HEWLETT Ihﬁ PACKARD

Sort/3000
(" Reference Manual

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HP 3000 Series II Computer System

2

Sort/3000

Reference Manual

il

HEWLETT ﬁ PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95050

Printed in U.S.A. 8/76

Part No, 32214-90001

Product No. 32214B

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

ii

Copyright ® 1976 by HEWLETT-PACKARD COMPANY

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the most recent date on which the technical material on any given page was altered. If

a page is simply re-arranged due to a technical change on a previous page, it is not listed as a changed page. Within the
manual, changes are marked with a vertical bar in the margin.

Title ..o Aug 1976
OV . e Jun 1976
Vi o e Apr 1975
1-1 20 1-8 . o e e e Apr 1975
N Jun 1976
. O Jun 1976
2-21t02-3 .. . Apr 1975
24 10 2-B ... e Jun 1976
2 Apr 1975
D Jun 1976
2960 211 .\t Apr 1975
Bl i e Jun 1976
3-2t03-4. ... e Apr 1975
B-5103-6. ...t e Jun 1976
BT o e Apr 1975
B8 i e Jun 1976
3-9t03-12 ... Apr 1975
B B 1 2 Jun 1976
B-1d . e e Apr 1975
B-1G e Jun 1976

3-16 .. Apr 1975
31T Jun 1976
B-18 . e Apr 1975
3-19 . e Jun 1976
8-20 . . e Apr 1975
B2l e Jun 1976
B2 e Apr 1975
328 e Jun 1976
32410325 ... Apr 1975
N Jun 1976
Ao e e Apr 1975
Ao e i e Jun 1976
4-4t04-T .. o e Apr 1975
S U P Jun 1976
52 0 5-T . i i e e e Apr 1975
B-1106-2..0 i Apr 1975
L Jun 1976
6-4t06-6..........00 i Apr 1975
Al e e Apr 1975
L1toI-3 oo Jun 1976

iii

iv

PRINTING HISTORY

New editions incorporate all update material since the previous edition. Update packages, which are issued between
editions, contain additional and replacement pages to be merged into the manual by the customer. The date on the title
page and back cover changes only when a new edition is published. If minor corrections and updates are incorporated,
the manual is reprinted but neither the date on the title page and back cover nor the edition change.

FirsteditionApril1975
Update Package #1Junel976
Secondedition August1976

PREFACE

This publication is the reference manual for SORT/3000. SORT/3000 is a subsystem of
the MPE/3000 Operating System and consists of two programs: a Sort program and a
Merge program. The SORT/3000 subsystem sorts a file of records or merges multiple
files of sorted records into a single file.

The Sort and Merge programs can be run as stand-alone programs controlled by direct
user commands, or they can be called from user programs. Examples are provided
throughout this manual which demonstrate how to run Sort and Merge as stand-alone
programs and how to call them from SPL/3000 (Systems Programming Language for
the HP 3000 Computer System) and FORTRAN/3000 (a version of FORTRANV for the
HP 3000 Computer System). (The COBOL programmer uses the COBOL SORT verb to
run SORT/3000.)

The content of this publication is:

Section I
introduces the SORT/3000 subsystem. The concepts of sorting and merging files are
discussed, and the basic structure of SORT/3000 is explained.

Section II

provides instructions for executing the Sort program as a stand-alone program. Exam-
ples are provided which demonstrate running the Sort program in interactive and batch
modes.

Section III

explains how to call Sort intrinsics from SPL/3000 and FORTRAN/3000 programs. Also
provided are definitions of the Sort intrinsics, a discussion of the HP 3000 hardware
data stack, and complete, operating programs in SPL/3000 and FORTRAN/3000.

Section IV

provides instructions for executing the Merge program as a stand-alone program.
Examples are provided which demonstrate running the Merge program in interactive
and batch modes.

Section V
explains how to call Merge intrinsics from SPL/3000 and FORTRAN/3000 programs.
Operating programs are used as examples.

Section VI
provides error messages and recovery procedures.

Appendix A
contains a table of ASCII characters.

Index
contains an alphabetical listing of the main topics of the manual.

The following manuals are available for reference:

MPE Intrinsics Reference Manual (30000-90010)

MPE Commands Reference Manual (30000-90011)

FORTRAN Reference Manual (30000-90040)

System Programming Language Reference Manual (30000-90024)
COBOL/3000 Reference Manual (32213-90001)

System Reference Manual (30000-90020)

PREFACE (continued)

For 3000 systems which are not Series II, the following differences in manuals should be noted:

e Whenever the MPE Commands Reference Manual is referenced in this manual, use the MPE/3000
Operating System Reference Manual (32000-90002).

e Whenever the FORTRAN Reference Manual is referenced in this manual, use the FORTRAN/3000
Reference Manual (32102-90001).

® Whenever the System Reference Manual is referenced in this manual, use the SPL/3000 Reference
Manual (03000-90002).

® Whenever the System Reference Manual is referenced in this manual, use the HP 3000 Computer
System, Reference Manual (03000-90019).

CONTENTS

Section 1 Page
INTRODUCING SORT/3000

What is SORT/3000ccviiiiiirnneeennn. 1-1
Purposes of SORT/3000 1-1
Files, Records, and Data Fields 1-1
Keys . 1-2
Sorting Orderoiiiiiiiiiiiiiiiin. 1-2
Inputs to SORT/3000...........ccvvvvviiinnennn. 1-4
Outputs from SORT/3000................cccvvnnnn 1-4
Section II Page

RUNNING THE SORT PROGRAM AS A STAND-
ALONE PROGRAM

File Definitionscoviiiiiiiirnnernnnennnnn 2-1
INPUTFile ... iiieaieeennn 2-1
OUTPUT Fileoiviiiiiieiiiiianennnns 2-1

Output Optionscoiiveinennnnnn 2-2
LISTFileoov i 2-2
TEXT File ..cooiiiiii it et e e iininenns 2-3
PROMPT Fileccoiiiiiiiiiiiiiiiniinnns 2-3
SCRATCH Filecovniiiiiiiiiiiiiiinann, 2-3

Sort Commands...........cooviiiiiniiiinnnnenn. 2-3
INPUT Commandc.covveeennnn.. 2-3
OUTPUT Commandccovienrnninnnn. 2-3
KEY Commandcoviiiinrnnnnnnnnne. 2-4
RESET Commandccoivvvnnnnnnnn. 2-5
VERIFY Command e 2-5
ENDCommand............ccovviiiriinennnnnn. 2-6

Statisticsccovitiiii i e e e e 2-6

Control Y ..o i e e 2-6

Running the Stand-Alone Sort Program in Interactive
T3 10 ¢ S 2-6

Running the Stand-Alone Sort Program in Batch
Mode ..o e, 2-10

Section III Page

RUNNING THE SORT PROGRAM FROM A USER

PROGRAM

SORTINITIAL Procedurecconvenn... 31
INPUTFILE Parameter............cccovvvnnn... 3-1
OUTPUTFILE Parameter....................... 3-1
OUTPUTOPTION Parameter 3-2
RECLEN Parameter................cciivvinen.. 3-2
NUMRECS Parameter....................c.o..n. 3-2
NUMKEYS and KEYS Parameters 3-2
ERRORPROC Parametercocnvnn... 3-2
KEYCOMPARE Parameter 3-2
STATISTICS Parametercccvvvvnnn. 3-3
FAILURE Parameterccciiiveinennnn. 3-3

SORTINPUT Procedurecconvvvvevnnnn. 3-3

SORTOUTPUT Procedurecovvnnennnn. 3-3

SORTEND Procedurec.oovvvvnerenncnnns 3-4

SORTERRORMESS Procedure 3-4

SORTTITLE Procedurecccvvvueenn.... 34

Calling the Sort Program from SPL/3000........... 34
Treatment of the Stack 3-6
Section IV Page

RUNNING THE MERGE PROGRAM AS A STAND
ALONE PROGRAM

File Definitionsc.oiviiiiieiniiininennnen 4-1
INPUTFiles ..., 4-1
OUTPUT Filecoviviiiii ittt 4-1
LIST File ..ot iiiiieiiiinnns 4-2
TEXT File ...ttt iiiie i iiiiiinnennn 4-2
PROMPT File..........cciiiiiiiiin . 4-2

Merge Commands............covviiniinnnennnnnnnn 4-2
INPUT Commandc.oooviiviiiiininnns 4-2
OUTPUT Commandccovevvvnnnnn. 4-2
KEYCommandcceiiiniiinninnnnnnn 4-3
RESET Commandcovvvrvevnnnannnnn 4-3
VERIFY Commandcccovviivvnnnnn. 4.3
ENDCommandccoivviniiininnnnnn. 4-4

Statisticscoiii i e e 4-4

Control Y ... e 4-4

Running the Stand-Alone Merge Program in Inter-
active Session ...ttt 4-4

Running the Stand-Alone Merge Program in Batch
Mode ..ot e e 4-4

Section V Page

RUNNING THE MERGE PROGRAM FROM A USER

PROGRAM

MERGE Procedureccoiiviinn... 5-1
NUMINPUTFILES Parameter 51
INPUTFILES Parameterc.cc...... 5-1
OUTPUTFILE Parameter....................... 51
KEYSONLY Parameter 5-1
NUMKEYS and KEYS Parameters51
PREPROCESSOR Parameter 5-2
POSTPROCESSOR Parameter 52
ERRORPROC Parameter 5-2
KEYCOMPARE Parameter 52
STATISTICS Parameterccovvvunn. 5-3
FAILURE Parameterccccvvvvunn... 5-3

MERGEERRORMESS Procedure................... 5-3

MERGETITLE Procedure 5-3

Calling the Merge Program from SPL/3000......... 5-3

Calling the Merge Program from FORTRAN/3000 .. 5-3

Section VI Page

ERROR MESSAGES AND RECOVERY
PROCEDURES

Sort Program Error Mesages 6-1
Merge Program Error Messages 6-2
Recovery Procedurescccoivvennn.. 6-2
APPENDIX A i A-1
INDEXiiiiiiiiiieeessesssnssesssosssonssannns I1

ILLUSTRATIONS

Title Page Title Page
Record Exampleooiiiiiiiii, 1-1 Program 5O0utputl 3-14
Key Positions..........ccovviriieiiiiinnnennnnnnn 1-2 Program 6. FORTRAN/3000 Program to Write
KeyFormatsccoiiiiiviiiiinnnn., 1-3 Records into a File in Sorted Order 3-15
Major and Minor Key Examples 14 Program 6 Qutputccooivvviinn.... 3-16
Using the :FILE Command to Specify INPUT and Program 7. FORTRAN/3000 Program to Read Records
OUTPUT Files for the Stand-Alone Sort Program 2-7 from a File for Processing 3-17
Using the Sort Program INPUT and OUTPUT Com- Program 7OQutput ool 3-18
mands to Specify INPUT and OUTPUT Files for Program 8. FORTRAN/3000 Program to Read Key
the Stand-Alone Sort Program 2-8 Fields from a File in Sorted Order 3-19
Usglggglfemmal to Input Records to the Sort 00 Program 8 OUtPULeoeenneeennneeannnnns 3-20
Sorting a File Read In from a Card Reader 29 Pr"lgflam gingRmA.N/ 30?%;”‘5’ am o %“;‘}'te e
Running the Stand-Alone Sort Program in Batch ndex File Consisting of Relative Record Numbers
MOGE - < eeeeeaeieieeeenaasaaseeeainns 2-11 Only ..oovonnnennniiine 3-21
Prog'ram 1. SPL/3000 Prog'ram to Call Sort When Program 9 Output 3-22
Both INPUTFILE and OUTPUTFILE are Specified Program 10. FORTRAN/3000 Program to Read Key
in the SORTINITIAL Call ... 3.5 Field and Its Record Number 3-23
Program 1.Outputcccoiiiiinnnnn.. 3-6 Program 10Qutput ...ttt 3-24
Program 2. SPL/2000 Program to Call Sort When Data Stack Layout During Execution of the Sort
INPUTFILE is Specified in the SORTINITIAL Call Programccoiiiiiiiiiiiiiiii 3-25
but OUTPUTFILE is Notc..c.utn. 3-7 Running the Stand-Alone Merge Program in Inter-
Program 2 Output il 3-8 active Mode ..ottt 4-5
Program 3. SPL/3000 Program to Call Sort When Use of $STDLIST to List the Merged Records on the
OUTPUTFILE is Specified in the SORTINITIAL Terminalcccooiiiiiiiniiiiiiiaannn.. 4-6
Call but INPUTFILE is Not 3-9 Running the Stand-Alone Merge Program in Batch
Program 3 Qutputcoiivviiint 3-10 Mode ...cooviiiiee e e e 4-7
Program 4. SPL/3000 Program to Call Sort When Program 11. Calling the Merge Program from
Neither INPUTFILE nor OUTPUTFILE are SPL/3000coiiiiir i ieeie et 5-4
Specified in the SORTINITIAL Call 3-11 Program 11 Qutput, 5-5
Program 4 Qutputccciiiiiinnann. 3-12 Program 12. Calling the Merge Program from
Program 5. FORTRAN/3000 Program to Sort from FORTRAN/3000........coiueiiiiiiiiiennnennnns 5-6
One Fileto Another 3-13 Program 12Outputccvvviiiieeennnnn. 5-7
TABLES
Title Page Title Page
Units Digit Representation For DISPLAY Format .. 2-5
SORTLIB Error Messagescccvvveiennen 6-1 MERGELIB Error Messages 6-4
Sort Program Error Messages 6-2 Merge Program Error Messages 6-5

viii

INTRODUCING SORT/3000

SECTION

1-1 WHAT IS SORT/3000?

SORT/3000 is a subsystem of the HP 3000 Multiprogram-
ming Executive Operating System (MPE/3000).
SORT/3000 consists of two programs: a Sort program and a
Merge program.

The Sort program provides the capability of sorting a set of
data records into a specified order. Sort may be used as a
stand-alone program or the Sort intrinsics may be called
from your own program. When used as a stand-alone prog-
ram, the original records are taken from a file specified by
you, and the sorted records are written to a similar file.
When the Sort intrinsics are called from your program, the
records to be sorted are passed programmatically between
your program and Sort.

The Merge program provides the capability of merging
several files, each of which has been sorted independently,
and producing a single sorted file as the result. Merge may
be used as a stand-alone program or the Merge intrinsics
may be called from your own program.

1-2. PURPOSES OF SORT/3000

Organizing data can be a time consuming job if done manu-
ally. For example, imagine yourself as a high school ad-
ministrator who is asked to present a list ranking all stu-
dents in terms of their grades in math and English. The
task of sorting manually through data on every student,
arranging it in terms of the requirements, and preparing a
list might take days, particularly if the school population
is large. A

Assume, however, that the necessary student records are
available on punched cards, or stored on magnetic tape or a
disc file. A program that can read these records, rearrange
them according to the criteria of grades in English and
math, and print the rearranged records (accomplishing all
of this in a short amount of time), is a very valuable tool.
SORT/3000 is such a program. Given an input file,
SORT/3000 will rearrange the records in that file into any
order prescribed by you. This rearranged file then can be
combined with other files, each arranged in the same man-
ner, to form one file.

The two separate programs of SORT/3000, then, operate as
follows:

e The Sort program rearranges (or sorts) the records in a
file.

e The Merge program takes any number of files, all sorted
according to the same criteria, and combines (or merges)
these files into one file. Thus, if each high school in a
school district compiled a list like the one described
above, all of the lists then could be combined into one file
that represented all sudents in that district.

1-3. FILES, RECORDS, AND DATA
FIELDS

Afile is a collection of records. The individual records for all
students in a high school collectively form a file. Each
record in the file might contain such specific information as
name, sex, age, address, grade level, and grades in indi-
vidual courses. For example, an individual record could be
as shown in Figure 1-1.

NAME AGE SEX ADDRESS {
Markham, Alice B. 15 F 725 High St. i
[LEVEL ENGLISH | HISTORY P.E. MATH ART
11 C B A A B

Figure 1-1. Record Example

11

Introducing SORT/3000

Each item of information in a record is called a data field.
Thus, HISTORY is a data field in the record shown in
Figure 1-1. The record shown is part of a file containing
many other such records, each having the same data fields.

SORT/3000 processes both fixed-length and variable-
length records. (Fixed-length records are records which
always occupy the same amount of space, for example, the
80 columns of a punched card. Variable-length records, as
the name implies, consist of records of varying lengths.
SORT/3000 can process both types of records because it
sorts on fields, or keys, within each record. See paragraph
1-4 for a discussion of keys.) The size of a record is subject
only to the amount of storage space available to the prog-
ram, although it is recommended that the record size be
kept at 256 bytes or less to obtain the most efficient opera-
tion.

1-4. KEYS

SORT/3000 rearranges records in a file on the basis of keys.
A key consists of a group of characters contained in specific
positions in a record. In Figure 1-2, for example, if the sort
were to be performed on the basis of telephone numbers,
then the key would be specified as positions 21 through 32.
Thus, a key can be a data field in a record (the telephone
numbers are separate data fields (positions 21 through 32)
as are the first names (positions 1 through 10) and the last
names (positions 11 through 20)). Also, a key can be any
group of characters within a data field (the area codes of the
telephone number field, for example), or a key can overlap
data fields. For example, the key could be the whole record.
The only restriction on the size of a key is that it must be
contained within the size of the record.

Records are sorted according to the number of keys, and all
of the data fields in a record can be keys. Keys can be
contiguous or separated in a record, or they can overlap.
They must, however, appear in the same relative position
in each record of the file to be sorted. Thus, if the first five
positions (or elements) in a record are specified as a key,
then the first five elements in every record of the file will be

32214B

considered to be a key and must have the same data format.
Similarly, keys in files to be merged must be in the same
relative position and have the same data format in each
record of each file.

Figure 1-3 shows three card records that illustrate various
formats for keys in a record. Note that these records do not
belong to the same file, as the locations of the keys are
different in each record. (These files, even though each
could be sorted separately, could not be merged since the
keys are not in the same relative position in each record of
each file.) Commands are used to inform SORT/3000 of the
location of the keys in the file records. The most significant
key is called the major key and is declared first in the
command. Other keys are called minor keys and have sig-
nificance according to their relative position following the
major key in the command. Minor keys arecompared only if
a comparison of more significant keys results in an equal
condition. Thus, if the major key is ENGLISH and the
minor key is MATH, the data in the MATH fields is com-
pared only if the data in the ENGLISH fields are the same.

1-5. SORTING ORDER

SORT/3000 sorts records in a file (according to the value of
the data in the keys) into either ascending or descending
order. Records are in ascending order when the key value of
each record is greater than or equal to the preceding record.
The series A, B, C, D, E and 1, 2, 3, 4, 5 are in ascending
order. When each record is less than or equal to the preced-
ing record, such as the series F, D, C, A and 10, 6, 5, 2, the
records are in descending order.

You can specify the order in which records in a file are to be
sorted. Thus, if the first record in a high school file is to be
that of the student with the highest grades (A) in English
and math, you would specify an ascending order. (Although
A is the highest grade, it is the lowest value in a sort and
thus would appear as the first record in an ascending sort.)
If the student with the lowest grade (D) is to be first, you
would specify a descending sort.

POSITIONS
T[] 111(2f2(2f2]2|2|2|2]2|2|3]|3|3|3]3
112 |3]4]|5|6|7|8]9]0]1]2]|3 5|6 g8l9fof1]2(3]|]4a|5|6[7]|8|9]|0]1[2]|3]4
J|JA|N|E D(O|E 4|10(8 9|7|8 71600
JIAIM[E|S D(O|V]|G|H 917]|8 4(0|8 9|7(0|0
s[aA|M|M]|Y D|O|U|G|H|E 711|9 7162 704(2|1

Figure 1-2. Key Positions

1-2

Introducing SORT/3000

32214B

data fields

RECORD A — CONTIGUOUS KEYS

RECORD B — NONCONTIGUOUS KEYS

data fields

1

RECORD C — OVERLAPPING KEYS
data fields

Figure 1-3 Key Formats

1-3

Introducing SORT/3000

The sorting order is specified in the same commands that
specify the sorting keys. An order is declared for each key.
This order does not necessarily have to be the same for all
thekeys in a record. In other words, an ascending order can
be specified for the major key and adescending order for the
minor keys. Then if the major keys are equal, the record
with the higher value in the minor key is selected.

For example, assume that you declare that the major key,
ENGLISH, has an ascending order, and the minor key,
MATH, has a descending order. Then, given two records as
shown in Figure 1-4, the second record would appear in
the list before the first, producing a list beginning with
those students having the highest grades in English (A
before B) but the lowest grades in math (D before C).

SORT/3000 correctly sorts keys that containbinary, ASCII,
and EBCDIC data according to an 8-bit binary sequence
(00000000 to 11111111). Other types of data (integer, real,
etc.) are sorted according to standard arithmetic relational
operators (e.g., 5 x 103 is greater than 2 x 10° and 2 is
greater than -5). The type of data in a key also is specified in
a user command.

1-6 INPUTS TO SORT/3000

SORT/3000 requires you to define the input and output
files. The MPE/3000 :FILE command or the SORT/3000
INPUT and OUTPUT commands are used to accomplish
this, as explained in Section II. (An input file is the file
which is to be read and sorted, an output file is the rear-
ranged file.) File references are made through standard
MPE/3000 file designators. If run as a stand-alone program
or called from a FORTRAN/3000 program, SORT/3000

32214B

opens all files. If SORT/3000 is called from an SPL/3000
program, you must open the files with the MPE/3000
FOPEN intrinsic. For further information concerning the
file system, consult the MPE Commands Reference
Manual.

An input file can be any file capable of sequential storage
such as a file on magnetic tape, disc, or punched cards.

1-7 OUTPUTS FROM SORT/3000

After being processed by SORT/3000, records are written
sequentially to the output file. You can specify the composi-
tion of the output file with the SORT/3000 OUTPUT com-
mand (explained in Section II).

A sorted output file can consist of:

e Records of the sorted input file.

o Key fields of the sorted input file.

o Relative addresses of records of the sorted input file.

¢ Relative addresses of records and key fields of the sorted
input file.

A merged outputfile can consist of key fields only or records
only.

Because it is possible to increase the number of records in
an output file when the Merge program is run, you must
ensure that the output file is capable of storing all incoming
records. (Refer to Sections I'V and V for discussions concern-
ing how to run the Merge program.)

major key minor key

|
|

{ ENGLISH

[

record 1

major key minor key
ENGLISH MATH7
A D
record 2

Figure 1-4. Major and Minor Key Examples

RUNNING THE SORT PROGRAM AS

A STAND-ALONE PROGRAM | 1

The Sort program can be run as a stand-alone program
duringeither a batch job or an interactive session. It may be
more convenient, when large amounts of input and output
are involved, to run the program in batch mode. You can,
however, initiate the Sort program from an interactive
terminal and can instruct the program to read input from
the terminal, from a batch input device (such as a card
reader), or from a disc file. The output file can be a line
printer, punched cards, disc, tape, or the terminal itself.

Initiation of batch jobs and interactive sessions is covered
in this section to the extent necessary for you to run the Sort
program; however, more extensive descriptions of these

procedures can be found in the MPE Commands Reference
Manual.

The Sort program operates in the minimum HP 3000 mem-
ory size. The amount of memory available to Sort, however,
is a critical factor in determining the performance and can
affect both the time required to perform a sort and the
amount of secondary storage which is required for a tem-
porary file. The Sort program normally will attempt to
make its stack as large as possible, within the limits estab-
lished at the time the Sort program was installed on the
system. You can overrride this limit and provide a larger
stack size for the Sort program by appending the MAX-
DATA = segsize parameter to the RUN SORT.PUB.SYS
command. (This is not necessary unless the error message
“INSUFFICIENT STACK SPACE?” is received when you
attempt to run the Sort program.) Asegsize of 10,000 should
be sufficient for sorting most files. If the error message
occurs again, however, increase the segsize parameter.

2-1. FILE DEFINITIONS

The stand-alone Sort program references various files dur-
ing execution. These files are described in the following
paragraphs. For a complete understanding of the treat-
ment of files by the operating system, read the MPE
Commands Reference Manual.

2-2. INPUT FILE
The INPUT file contains the records to be sorted.

When running the Sort program, you must equate the
formal designator INPUT with the actual file designator
(or filename). This is done with the MPE/3000 :FILE
command or the Sort program INPUT command, as fol-
lows:

:FILE INPUT=TEST (The colon () is output by

MPE/3000 in a session)

or filename

>INPUT TEST (The > symbol is output by

the Sort program in a ses-
sion)

The INPUT file is opened as follows:

Formaldesignator:
INPUT

Foptions:
Domain — old or oldtemp; others default in a session.

Aoptions:
Read-access only; others default.

All other parameters:
Default.

NOTE: The file is opened automatically by
MPE/3000 and you need not be concerned
with the file parameters. They are pre-
sented here (and in paragraph 2-3) for
reference only.

2-3. OUTPUT FILE
The sorted records are written to the OUTPUT file.

As with the INPUT file, you must equate the file formal
designator (OUTPUT) with the actual file designator
(filename) with the MPE/3000 :FILE command or the Sort
program OUTPUT command, as follows:

:FILE OUTPUT=TEST1

or filename

>OUTPUT TEST1
The OUTPUT file is opened as follows:

Formaldesignator:
OUTPUT

Foptions:
Domain = new; ASCII/BINARY same as INPUT file
(but if output option (see paragraph 2-4) is record

21

Stand-Alone Sort Program

number, BINARY is used); record format same as
INPUT file (but if output option (see paragraph 2-4) is
not default, fixed is used); others default.

Aoptions:
Write-access only; others default.

Recsize:
Depends on output option, as follows:

Output Option Recsize (in bytes)

default same as INPUT file
recnum only 4
keys only sum of lengths of keyfields

recnum + keys sum of lengths of keyfields + 4

Device:
DISC

Blockfactor:
If default output option, same as INPUT file; other-
wise default.

Filesize:
Same as end-of-file of INPUT file.

Numextents:
If default option, same as INPUT file; otherwise de-
fault.

Initalloc:
All extents are initially allocated.

Filecode:
Same as INPUT file.

All other parameters:
Default.

2-4, OUTPUT OPTIONS. The format of the output
records depends on the output option. There are four op-
tions, as follows:

o The output records will be the same as the input records.

22

32214B

o The output records will each consist of a double integer
whose value is the original logical (relative) record
number. (The MPE/3000 file system numbers records in
a file beginning at zero, thus the file system record
number of the fourth record in a file is three, whereas the
logical (or relative) number is four.)

o The output records will consist of the key fields concate-
nated (butted) together from left to right.

o The output records will consist of both the original logi-
cal {relative) record number and the key fields concate-
nated (butted) together, with the logical record number
on the left.

The OUTPUT file is closed with the option SAVE, and, if it
was opened as a new file, space beyond the end-of-file is
released. If the close fails due to another file having the
same name, the interactive user is asked if the old file can
be purged, as follows:

PURGE OLD OUTPUT FILE filename?

If the response is “Y”, the old file will be purged. If this
cannot be done (for example, you cannot purge a file which
is not in your group account or a file which is being used
concurrently by another user), or if the answer was “N”,
you will be asked for a new name for the OUTPUT file:

ENTER NEW NAME FOR OUTPUT FILE:

The OUTPUT file will be renamed using the name entered
by you, and another attempt will be made to save it.

In batch mode, the foregoing sequence cannot take place.
Instead, the OUTPUT file will be assigned an artificial
name constructed by the Sort program and the OUTPUT
file will be saved under that name.

The following message will be printed on the LIST file:

OUTPUT FILE SAVED WITH FILENAME
“filename”

Note: If* is specified in the OUTPUT command
(meaning that the sorted records will be
output to the standard list device), the
OUTPUT file will not be saved. (See
paragraph 2-11.)

2-5. LIST FILE

The LIST file is used by the Sort program to output infor-
mation to you and to prompt for input (if in interactive
session). The LIST file should not be confused with the
OUTPUT file (which is used to output the sorted records).
The LIST file normally is equated with $STDLIST.

32214B

2-6. TEXT FILE

The TEXT file is used by the Sort program to read com-
mands and other information from you. Normally, TEXT is
equated with $STDINX.

2-7. PROMPT FILE

The PROMPT file is used by the Sort program to prompt
you for input when the TEXT file is the session terminal
but the LIST file is not the session terminal. The prompt is a
“greater than” (>) symbol.

2-8. SCRATCH FILE

The Sort program requires a SCRATCH file on disc to
perform the sort. This file is not apparent to you but it may
be necessary to know the name of the file in case of errors.
The name of the SCRATCH file is SORTSCR.

2-9. SORT COMMANDS

The Sort program is controlled by commands which specify
INPUT files, key fields, OUTPUT files, output options, etc.
In batch mode, these commands are included with the
:RUN SORT.PUB.SYS command for the Sort program; in
interactive session, the Sort program outputs a prompt
character (>) after it begins execution and the commands
are typed in from the terminal.

2-10. INPUT COMMAND

The INPUT command specifies the file which contains the
records to be sorted. The form of the INPUT command is

INPUT { ﬁlename} [Lnumber of records]
* [,record size]

Note The use of brackets [] throughout this
manual indicates that the enclosed
parameters are optional. Braces { }
indicate that one of the enclosed
parameters is required.

where

filename
is any legal formal designator.

*

specifies that the input records will be read from the
TEXT file instead of from the INPUT file.

number of records
is a positive integer specifying the upper limit of the
number of records to be sorted.

record size
is a positive integer specifying the number of charac-
ters in each record.

Stand-Alone Sort Program

If you specified filename in the INPUT command instead of
*, filename will be used as the formal designator of the
INPUT file instead of the designator “INPUT”. If * is
specified, input records will be read from the TEXT file
instead of from the INPUT file. Input records will be as-
sumed to follow the END command (see paragraph 2-15)
and continue until the end-of-file is reached. If the TEXT
file is the session terminal and you specified *, you will be
prompted with the character “?” for each record (end-of-file
is signalled by typing :EOD). The OUTPUT file in this case
will be opened with ASCII, fixed-length records, and de-
fault blockfactor, numextents, and filecode.

If you specify number of records, it is used as the upper limit
of the number of records which are to be sorted. This should
be specified only when the INPUT file is not a disc file.
When the INPUT file is a disc file, its current end-of-file
value will be used even if number of records is specified. If
the INPUT file is not a disc file and number of records is not
specified, a default value of 10,000 is assumed by the Sort
program.

Record size may be used to override the record size of the
TEXT file when the INPUT * option is used. Record size
indicates the number of characters which are to be read,
and must not be greater than the record size of the TEXT
file. This parameter is ignored if the INPUT * option is not
being used.

One or more INPUT commands may be entered at any time
before the END command. If more than one INPUT com-
mand is used, only the new parameters which are specified
have any effect.

Examples of the INPUT command are as follows:

INPUT TAPEX,50000
Sort file TAPEX, which has at most 50,000 records.

INPUT *,250,40
Sort up to 250 records from TEXT file, with a max-
imum of 40 characters to be read from each record.

2-11. OUTPUT COMMAND

The OUTPUT command specifies the file to which the
sorted records will be written. The form of the OUTPUT
command is

filename

OUTPUT | } [LNUM][,KEY]

*
where

filename

is any legal formal designator.

*

specifies that the sorted records will be sent to the
LIST file.

NUM
specifies that the output records will consist of the
original logical record numbers.

2-3

Stand-Alone Sort Program

KEY
specifies that the output records will consist of the
key fields.

Iffilename is specified in the OUTPUT command, it will be
used as the formal designator instead of the designator
“QUTPUT.”

If * is specified, the sorted output records will be sent to the
LIST file instead of the OUTPUT file. (The OUTPUT file
will not be saved in this case.)

If NUM is specified and KEY is not, the output records will
each consist of a double integer whose value is the original
logical (relative) record number.

If KEY is specified and NUM is not, the output records will
consist of the key fields concatenated together from left to
right.

IfNUM and KEY are both specified, the output records will
consist of both the original logical record number and the
key fields concatenated together, with the logical record
number on the right.

Ifneither NUMnor KEY isspecified, the output records are
identical to the input records.

Examples of the OUTPUT command are as follows:

OUTPUT *
Output the sorted records to the LIST file.

OUTPUT *,KEY
Output the keys to the LIST file.

OUTPUT SEQFILE,NUM
Output the logical record numbers to the file SEQ-
FILE.

2-12. KEY COMMAND

The KEY command specifies the key fields to be used in
sorting the input records. The form of the KEY command is

KEY {position } [,length] [,type]
LDESC] [;position [,length]
Ltype] LDESC]] . ..

where

position
is a positive integer.

length
is a positive integer.

type

is one of the following mnemonics: BYTE, INT,
DOUBLE, REAL, LONG, PACKED, DISPLAY, or
PACKED*. (See the meanings of the mnemonics
below.)

2-4

32214B

DESC
indicates that the records are to be sorted in descend-
ing order.

As shown in the example of the KEY command form, each
KEY command can specify one or more key fields, with the
specifications being separated by semicolons. Multiple key
fields also can be specified with several KEY commands (all
the key fields do not have to be specified in one KEY
command). In either case, the first key field specified is the
most significant, or major key, with subsequent fields hav-
ing less significance.

The position parameter indicates the number within the
record of the first position of the key field (the first position
of the record is numbered 1).

The length parameter indicates the number of bytes in the
field. This parameter is required if type = BYTE,
PACKED, DISPLAY, or PACKED*. It is optional in other
cases. If not specified, the value assumed for length depends
on the type: 2 if type = INT; 4 if type = DOUBLE or REAL;

and 8 if type = LONG.*

Thetype parameter defines the type of data contained in the
key field. If not specified, BYTE is assumed. The
mnemonics used have the following meanings:

BYTE

adirect byte comparison is to be used. This specifica-
tion should be used for ASCII, EBCDIC, or logical
quantities. The length parameter is required.

INT

the key field contains a 2’s complement number of the
specified length (in bytes). If no length is given, 2 is
assumed.

DOUBLE

the key field contains a 2’s complement number of the
specified length (in bytes). If no length is given, 4 is
assumed. -

REAL

the key field contains a floating-point number. Any
length may be specified; if no length is specified, 4 is
assumed.

LONG

the key field contains a floating-point number. Any
length may be specified; if no length is specified, 8 is
assumed.*

PACKED

the key field contains a packed decimal number. In
this format, each byte except the last contains 2 di-
gits, each of which occupies 4 bits, with digits 0- 9
represented by 4-bit quantities. The last byte con-
tains the least significant digit of the number in its
leftmost 4 bits, and the sign of the number in its
rightmost 4 bits. The sign is considered to be minus if
it has the value 1101, and plus for any other value.

*For 3000 systems which are not Series II, the type
= LONG has a length of 6.

32214B

DISPLAY

the key field contains a numeric display quantity.
Numeric display items are represented as ASCII
coded (8 bits) decimal digits (0 through 9) except for
the units digit which carries the sign of the data item.
The units digit, with the sign of its associated number
being positive, negative, or no sign (absolute value)
respectively, is represented in ASCII code as shown
in Table 2-1. For example, to represent the digit 1 as
positive, the ASCII code octal 101 (which is the code
for the letter A) is used; to represent this digit as -1,
octal 112 is used; and for no sign, octal 61. In this
manner, the same eight bits can represent both the
digit and the sign.

PACKED*

this format is identical to PACKED except that there
are only an even number of digits plus a sign,
whereas PACKED has an odd number of digits plus a
sign. In PACKED* format, the highest order. 4 bits
are not considered to be part of the field.

The DESC option, if specified, indicates that the records are
to be ordered in descending order with respect to this key
field. If DESC is not specified, the records will be ordered in
ascending order (the default condition).

Examples of the KEY command are:

KEY 10,5
BYTE key of length 5 starting in position 10, to be
sorted in ascending order.

KEY 20,REAL
REAL key of length 4 starting in position 20, to be
sorted in ascending order.

Stand- Alone Sort Program

KEY 30,20,INT,DESC
20-byte INTEGER key starting in position 30, to be
sorted in descending order.

KEY 10,5;20,REAL;30,20,INT,DESC

This last example is equivalent to the first three.

2-13. RESET COMMAND

The RESET command indicates that any KEY commands
which have been entered thus far are to be ignored and that
a new set will be entered. (This command is useful if you

make a typing error.) The form of the RESET command is

RESET

2-14. VERIFY COMMAND

The VERIFY command causes a listing of the options in
effect. The form of the VERIFY command is

VERIFY

The format of the listing is as follows:
INPUT FILE = FILEA
NUMBER OF RECORDS = 10,000

OUTPUT FILE = * KEY

POSITION LENGTH TYPE DESC
50 5 BYTE ASC (MAJOR
KEY)
1 10 DISPLAY DESC
21 8 PACKED ASC

Table 2-1. Units Digit Representation for DISPLAY Format

Internal Representation in ASCII
Units (with its octal equivalent inside
Digits parentheses)

Positive Negative No Sign
0 { (173) } (175) 0 (60)
1 A (101) J (112) 1 (61)
2 B (102) K (113) 2 (62)
3 C (103) L (114) 3 (63)
4 D (104) M (115) 4 (64)
5 E (105) N (116) 5 (65)
6 F (106) O (117) 6 (66)
7 G (107) P (120) 7 (67)
8 H (110) Q (121) 8 (70)
9 I (111) R (122) 9 (71)

2-5

Stand-Alone Sort Program

2-15. END COMMAND

The END command indicates that there are no more com-
mands and that the sort should begin. The form of the END
command is

END
If INPUT * has been specified, the Sort program will output

the character “?” and the input records are typed in from
the terminal.

2-16. STATISTICS

When a sort is completed, the Sort program prints statistics
on the standard list device as follows:

NUMBER OF RECORDS = 100,000
RECORD SIZE (IN BYTES) = 100

NUMBER OF INTERMEDIATE PASSES = 2
SPACE AVAILABLE (IN WORDS) = 18,521
NUMBER OF COMPARES = 1,734,091
NUMBER OF SCRATCHFILE I0’S = 9,921
CPU TIME (MINUTES) = 44.19

ELAPSED TIME (MINUTES) = 63.95

Parameters whose meanings are not self evident are:

NUMBER OF INTERMEDIATE PASSES
the number of passes over the data made by Sort, not
including the input and output of the records.

SPACE AVAILABLE
the number of words in the working space for the Sort
procedures.

NUMBER OF COMPARES
the number of comparisons made between records.

NUMBER OF SCRATCHFILE I0’S
the number of FREADs and FWRITEs performed
against the SORTSCR file.

CPU TIME
CPU time expended between the start and end of the
Sort program.

ELAPSED TIME

real time between start and end of the Sort program.

2-17. CONTROL Y

During the running of the stand-alone Sort program, it is
possible to obtain the status of the sort by typing CON-

2-6

32214B

TROL Y. This feature is available only if the program is
being run in the interactive mode. The format of the output
depends on the phase (input, intermediate sort, or output)
as follows:

INPUT PHASE:
1234 RECORDS HAVE BEEN INPUT

INTERMEDIATE SORT PHASE:
PASS 1 OF 3

OUTPUT PHASE:
1234 RECORDS HAVE BEEN OUTPUT

2-18. RUNNING THE STAND-ALONE
SORT PROGRAM IN INTERACTIVE
SESSION

The Sort program can be used to sort an existing file or the
records to be sorted can be typed in from the terminal in
interactive mode. In either case, the INPUT file must be
specified.

When an existing file is to be sorted, the actual file desig-
nator (filename) must be equated with the formal desig-
nator “INPUT” through the use of the MPE/3000 :FILE
command or with the Sort program > INPUT command.

For example:

:FILE INPUT = TEST

(Use of the MPE/3000 :FILE command to equate the
, existing file TEST to “INPUT”)
or

> INPUT TEST

(Use of the Sort program INPUT command to equate
the existing file TEST to “INPUT”)

The INPUT * command is used to specify that the input
records will be read from the TEXT file, as follows:
INPUT *
The OUTPUT file must be equated to the formal designator
“OUTPUT” with the MPE/3000 : FILE command or the Sort
program > QUTPUT command, as follows:
:FILE OUTPUT = OUTFILE

or

> OUTPUT OUTFILE

If the sorted records are to be sent to the LIST file, the
OUTPUT * command is used, as follows:

> OUTPUT *

32214B

Stand-Alone Sort Program

fHELLO MANAGER.SCR

SESSION NUMBER = #5127

FRI, JAN 17, 1975, 23142 PM
HP32000C.F@.25

tFILE INPUT =MAIL]}
tFILE OUTPUT=TEST
$ RUN SORT.PUB.SYS

>KEY ['1,9
>KEY 1,10
>VERIFY

INPUT FILE = INPUT
OUTPUT FILE = OUTPUT

NUMBER OF RECORDS =

RECORD SIZE (IN BYTES) =
NUMBER OF INTERMEDIATE PASSES =
SPACE AVAILABLE (IN WORDS) =
NUMBER OF COMPARES =

NUMBER OF SCRATCHFILE 10'S =
CPU TIME (MINUTES) =

ELAPSED TIME (MINUTES) =

END OF PROGRAM
: BYE

CPU (SEC) = 7
CONNECT (MIN) = 'S

FRI, JAN 17, 1975, 2:46 Pd
END OF SESSION A

HP32214B.920.89 SORT/3098 FRIl, JAN 17, 197S,

KEY POSITION LENGTH TYPE ASC/DESC
11 9 BYTE ASC
1 10 BYTE ASC
>END
STATISTICS

2143 PM

(MAJOR KEY)

Figure 2-1. Using the ;:FILE Command to Specify INPUT and OUTPUT Files for the Stand-Alone Sort Program.

Figures 2-1 through 2-4 illustrate the use of the Sort prog-
ram in the interactive mode. Note that the MAXDATA =
segsize parameter is not used in the RUN SORT.PUB.SYS
commands (which is normal unless exceptionally large
files are being sorted).

In Figure 2-1, the :FILE command is used to specify the
INPUT file (MAILLIST) and QUTPUT file (TEST). Once
the Sort program is accessed (with the RUN
SORT.PUB.SYS command), only the key fields need be
specified.

Figure 2-2 shows the use of the Sort program INPUT and
OUTPUT command to specify the INPUT and OUTPUT
files. The OUTPUT * command is used in the example,
which causes the sorted records to be sent to the LIST file
(the terminal in interactive session). (The OUTPUT file
will not be saved in this case.)

Figure 2-3 illustrates how to input records from the termi-
nal, have them sorted by the program, and listed on the
terminal.

Figure 2-4 illustrates how to read the input file from a card
reader, have it sorted by the program, and stored on disc.
The data deck must be preceded by a :DATA card, as fol-

lows:

:DATA [jobname,] { username } [/upass]
{ .acctname} [/apass] [filename]

where

Jjobname
is the name of the job or session that is to read the
data. (Optional parameter.)

27

Stand-Alone Sort Program

32214B

tRUN SORT.PUB.SYS

> INPUT MAILLIST
>QUTPUT *

>KEY 11,9

>KEY 1,10
>VERIFY

OQUTPUT FILE = *

HP32214B.008.908 SORT/3208 FRI, JAN 17

INPUT FILE = MAILLIST

s 1975, 2347

™

END OF PROGRAM

KEY POSITION LENGTH TYPE ASC/DESC

11 BYTE ASC (MAJOR KEY)

1 BYTE ASC
>END
LOIS ANYONE 6190 COURT ST METROPOLIS NY 20115 619-732-4997
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 B12-208-0108
ALI BABA 49 THIEVES VAY SESAME CO 69142 NONE
JOHN BIGTOWN 965 APPIAN VWAY METROPOLIS NY 204813 619-487-2314
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND £4321 976-299-2998@
SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN CA 61497 NONE
JAMES DOE 4193 ANY ST ANYTOWN MD Q@133 237-408-7180
JANE DOE 3959 TREEW0OD LN BIGTOWN MA 21843 714-399-4563
JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 714-411-1123
J ENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191-9191
KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA 21799 713-244-3717
SPACE MANN 9999 GALAXY WAY UNIVERSE CA 61239 231+999-9999

STATISTICS

NUMBER OF RECORDS = 12
RECORD SIZE (IN BYTES) = 72
NUMBER OF INTERMEDIATE PASSES = 2
SPACE AVAILABLE (IN WORDS) = 13, 346
NWMBER OF COMPARES = 44
NUMBER OF SCRATCHFILE 10°'S = 8
CPU TIME (MINUTES) = 21
ELAPSED TIME (MINUTES) = 1.62

Figure 2-2. Using the Sort Program INPUT and OUTPUT Commands to Specify INPUT and QUTPUT Files

for the Stand-Alone Sort Program

username
is the user’s name, as established in MPE/3000 by the
user with Account Manager capability. (Required
parameter.)

upass
the user password. (Required if user has a password.)

acctname

the name of the account, as established by the user
with System Manager capability. (Required parame-
ter.)

2-8

apass
the account password. (Required if account has a
password.)

filename

an additional qualifying name that can be used by
the job or session to access the data. (Optional
parameter.)

See the MPE Commands Reference Manual for
further descriptions of the :DATA command
parameters.

32214B

Stand-Alone Sort Program

tRUN SORT.PUB.SYS
HP32214B.08.83 SORT/3066 FRI, JAN 17, 1975, 2:53 P4

>INPUT =*
>QUTPUT =
>KEY 1,5, INT
>END
298765
287654
276543
265432
?54321
267890

? 56789

? 45678
23456789
7234567
?12345
?2:E0D
12345
234567
3456789
45678
54321
56789
65432
67890
76543
87654
98765

STATISTICS

NUMBER OF RECORDS = 11
RECORD SIZE (IN BYTES) = 72
NUMBER OF INTERMEDIATE PASSES = a
SPACE AVAILABLE (IN WORDS) = 13,349
NUMBER OF COMPARES = 34
NUMBER OF SCRATCHFILE 10°'S = 8
CPU TIME (MINUTES) = 21
ELAPSED TIME (MINUTES) = 1«86

END OF PROGRAM

Figure 2-3. Using the Terminal to Input Records to the Sort Program

tFILE INSDEV=C@RD
tRUN SORT.PUB.SYS

HP32214B+.00 .88 SORT/3200 THU, JAN 36, 1975, 1:16 PM

>INPUT IN

>0UTPUT MAILI

>KEY 11,9

>KEY 1,10

>END

PURGE OLD OUTPUT FILE MAIL1.PUB.GOODWIN ? YES
STATISTICS

NUMBER OF RECORDS = 25

RECORD SIZE (IN BYTES) = 8a

NUMBER OF INTERMEDIATE PASSES = %]

SPACE AVAILABLE (IN WORDS) = 13,346

NUMBER OF COMPARES = 125

NUMBER OF SCRATCHFILE 10°'S = 18

CPU TIME (MINUTES) = 01

ELAPSED TIME (MINUTES) = 18

END OF PROGRAM

Figure 2-4. Sorting a File Read In From a Card Reader

Stand-Alone Sort Program

2-19 RUNNING THE STAND-ALONE
SORT PROGRAM IN BATCH MODE

The stand-alone Sort program can be run in batch mode by
specifying the INPUT and OUTPUT file by using the
MPE/3000 :FILE command or by using the Sort program
INPUT and OUTPUT commands.

For example, the cards could be as follows:
:JOB BATCH.JOB
:FILE INPUT =MAILLIST
:FILE OUTPUT=TEST
:RUN SORT.PUB.SYS
KEY 11,9
KEY 1,10
END
:EQJ

or
:JOB BATCH.JOB
:RUN SORT.PUB.SYS
INPUT MAILLIST
OUTPUT TEST
KEY 11,9
KEY 1,10
END

:EOJ

2-10

32214B

Figure 2-5 shows the printout resulting from a batch job
which specified * as the INPUT file (the cards to be sorted
were included with the :JOB deck), and * as the OUTPUT
file, which outputs the sorted records to the LIST file (the
line printer in batch mode).

Note: The OUTPUT file is not saved in this
case.

The cards used were as follows:
:JOB MANAGER.SCR
:RUN SORT.PUB.SYS
INPUT *

OUTPUT *

KEY 11,9

KEY 1,10

END

bARDS CONTAINING RECORDS TO

BE SORTED

.EOD

:EOJ

32214B Stand-Alone Sort Program

. tJOB MANAGER,SCRy PUB

PRI= DpS3 INPRI= 133 TIME= ?
JOB NUMRER = #J14

WED, JAN 15y 1975 1130 PM
HP32000C.F0.25

tRUN SORT «PUB.SYS

HP32214R,00,00 SORT/3000 WEDe JAN 15, 1975s 1130 PM

INPUT @

QUTPUT

KEY 1199

KEY 1410

END

PLAINS ANTELOPE 201 OPENSPACE AVE BIGCOUNTRY WY 49301 369~732-4821

RLACK REAR 47 ALLOVER DR ANYWHERE US 00111 NONE

ANIMAL CRACKERS 1000 ANYWHERE PL ALLUVER US 00001 601~-100-1000

MULE DEER 963 FOREST PL NICECOUNTRY CA 97643 493~900~9000

WHITETATL DEER 34 WOODSY PL BACKCOUNTRY ME 01341 619-433-4333

PRAIRIE 006G 493 ROLLINGHILLS DR OPENSPACE ND 24321 992~419-4192

MALLARD DUCK 79 MARSH PL PUDDOLEDUCK CA 97432 492~492-4922

SNOWSHOF HARE 742 FRIGID way coLOSPOT MN 37434 T732-732-7320

MOUNTAIN LION 796 KING DR THICKET NM 37643 712-712=7122

SWAMP RARBIT 4444 DAMPPLACE RD RAYUU LO 79999 NONE

NASTY RATTLER 243 DANGER AVE DESERTVILLE CA A7654 828-432-4321

BIGHORN SHEEP 999 MOUNTAIN DR HIGHPLACE CO 34567 776-409=9040

GREY SQUIRREL 432 PLEASANT DR FALLCOLORS MA 14321 619-619-6199
‘ STATISTICS

NUMBER OF RECORDS = 13

RECORD SIZE (IN BYTES) = 80

NUMBER OF INTERMEDIATE PASSES = 0

SPACE AVAILABLE (IN WORDS) = 135346

NUMBER OF COMPARES = 50

NUMBER OF SCRATCHFILE I10°'S = 10

CPU TIME (MINUTES) = $01

ELAPSED TIME (MINUTES) = v 01

END OF PROGRAM
tEQJ

CPU (SEC) = 5

ELAPSED (MIN) = 1

WED» JAN 15, 1975, 1130 PM
END OF JO8

Figure 2-5. Running the Stand-Alone Sort Program in Batch Mode
2-11

RUNNING THE SORT PROGRAM
FROM A USER PROGRAM ||

SECTION

You can run the Sort program from an SPL/3000 or
FORTRAN/3000 program through the use of intrinsic calls.
The arguments of the intrinsic calls provide the parameters
needed by Sort to perform specific operations. With
COBOL, the COBOL SORT verb is used to run the Sort
program (see the COBOL/3000, Reference Manual for com-
plete details).

To run Sort from your program, the Sort program intrinsics
must be called in the correct order. There are six program-
matically callable intrinsics, as follows:

SORTINITIAL
SORTINPUT
SORTOUTPUT
SORTEND
SORTERRORMESS
SORTTITLE

These intrinsics (in the form of SPL/3000 procedures) re-
side in the system segmented library (SL.PUB.SYS) in the
segment SORTLIB. SORTINITIAL is always called first,
followed by calls to SORTINPUT and SORTOUTPUT (un-
less SORTINITIAL has been instructed to perform input
and/or output directly (see paragraphs 3-2 and 3-3)). Fi-
nally, SORTEND must be called to allow the Sort program
to restore the data stack to its original state.

The procedures are described in the following paragraphs
and their forms (in SPL/3000) are shown. It is necessary for
you to know the forms of the various procedures so that you
may provide arguments in the correct order (and of the
correct type) in your intrinsic calls from SPL/3000 or
FORTRAN/3000. See the System Programming Language
Reference Manual for further descriptions of SPL/3000
procedures.

The Sort program operates in the minimum HP 3000 mem-
ory size. The amount of memory available to Sort, however,
is a critical factor in determining the performance and can
affect both the time required to perform a sort and the
amount of secondary storage which is required for a tem-
porary file. The Sort program normally will attempt to
make its stack as large as possible. When you are calling
the Sort intrinsics from your program, you must permit
Sort to obtain this stack space by using the MAXDATA =
segsize parameter when your program is being prepared. A
segsize of 4000 was used in the :PREP commands in the
examples shown in this section (see paragraphs 3-17 and
3-18).

3-1. SORTINITIAL PROCEDURE

The SORTINITIAL procedure is called to initiate the Sort
program. The form of this procedure (in SPL/3000) is

PROCEDURE SORTINITIAL (INPUTFILE,
OUTPUTFILE,0UTPUTOPTION,RECLEN,
NUMRECS,NUMKEYS,KEYS,
ERRORPROC,KEYCOMPARE,STATISTICS,
FAILURE);

VALUE INPUTFILE , OUTPUTFILE,
OUTPUTOPTION,RECLEN,NUMRECS,
NUMKEYS;

INTEGER INPUTFILE, OUTPUTFILE,
OUTPUTOPTION,RECLEN,NUMKEYS;

DOUBLE NUMRECS;

ARRAY KEYS,STATISTICS;
PROCEDURE ERRORPROC;

LOGICAL PROCEDURE KEYCOMPARE;
LOGICAL FAILURE;

OPTION VARIABLE,EXTERNAL;

The SORTINITIAL parameters are all optional, but, cer-
tain combinations are not permitted, as explained in the
following paragraphs.

3-2. INPUTFILE PARAMETER

INPUTFILE is the MPE/3000 file number of the file which
is to be sorted. If this parameter is specified in your call to
the SORTINITIAL intrinsic, the input records are read
directly from the file by the Sort program, and no calls must
be made to SORTINPUT (see paragraph 3-12). If the
parameter is not specified, the records are passed via
SORTINPUT (which must be called). In addition, the
RECLEN parameter is mandatory in this case.

3-3. OUTPUTFILE PARAMETER

OUTPUTFILE is the MPE/3000 file number of the file to
which sorted records are to be output. If specified in your
call to the SORTINITIAL intrinsic, no calls to SORTOUT-
PUT must be made (see paragraph 3-13). If the parameter
is not specified, the sorted records are output via SOR-
TOUTPUT (which must be called).

31

Calling The Sort Program

3-4. OUTPUTOPTION PARAMETER

OUTPUTOPTION determines the format of the output re-
cords. There are four possibilities:

0 The output record is the same as the input record.

1 The output record is a double integer (4 bytes)
whose value is the logical (relative) record number
of the record.

2 The output record contains only the key fields,
concatenated together with the major keys on the
left, minor keys following.

3 The outputrecord is the logical record number (as
in 1) followed by the key fields (as in 2).

If OUTPUTOPTION is not specified, its value is defaulted
to 0. :

3-5. RECLEN PARAMETER

RECLEN is the maximum length of a record, in bytes. If
RECLEN is not specified, the record length is taken from
INPUTFILE, which must be specified.

3-6. NUMRECS PARAMETER

NUMRECS is an upper bound on the number of records
which are to be sorted. If this parameter is not specified, the
end-of-file of INPUTFILE is used. If INPUTFILE is not
specified, the value of 10,000 (double integer) is used.

3-7. NUMKEYS AND KEYS PARAMETERS

The parameters NUMKEYS and KEYS specify how the
records are to be ordered. If either is specified, the other
must be also. These parameters must be specified ¥ and
only if KEYCOMPARE is not. NUMKEYS is the number of
keys to be used in the compare and must be at least one.
KEYS is an array which specifies how the records are to be
compared. It contains three words for each key field. These
are defined as follows:

WORD 0 =

position within input record of the first character of
the key. (The first character of the record is position
1)

WORD 1 =
number of bytes in the key.

WORD 2 (bits 0 through 7) =
0 for ascending key, 1 for descending key.

3-2

32214B

WORD 2 (bits 8 through 15)
gives type of data, as follows:

0=
logical or character

1 =
two’s complement (including integer and dou-
ble integer)

9 =
floating point (including real and long)

3 =
packed decimal (see KEY command, Section IT)

4 =
numeric display (see KEY command, Section
II)

5 =
packed decimal with even number of digits (see
KEY command, Section II)

3-8 ERRORPROC PARAMETER

The ERRORPROC is a user-supplied procedure and, if
specified in your call to SORTINITIAL, must be called from
your program and used in conjunction with the SORTER-
RORMESS procedure (see paragraph 3-15).

ERRORPROC, if specified, is called programmatically
whenever a fatal error occurs in one of the Sort program
procedures. The form of this procedure is

PROCEDURE ERRORPROC(ERRORCODE);
INTEGER ERRORCODE;

ERRORCODE is the Sort program error number which is
passed to ERRORPROC when an error occurs.

If ERRORPROC is not specified, a default procedure is
used. The default procedure simply prints an error message
which corresponds to ERRORCODE. For a list of these
errors, see Section VI.

3-9. KEYCOMPARE PARAMETER

The KEYCOMPARE parameter is a user-supplied logical
procedure which must be specified in your call to SORTIN-
ITIAL if you did not specify NUMKEYS and KEYS. If
KEYCOMPARE is specified, it will be called from your
program whenever two records must be compared. The
form of this procedure is

LOGICAL PROCEDURE KEYCOMPARE
(REC1,LEN1,REC2,LEN2);

BYTE ARRAY REC1,REC2;

INTEGER LEN1,LEN2;

32214B

REC1 and REC2 are pointers to the two records. LEN1 and
LENZ2 are their respective lengths in bytes. The procedure
will return a true value if REC1 is to precede REC2, and a
false value otherwise. True also will be returned in case of
ties, to ensure that records with equal keys retain their
original order.

3-10. STATISTICS PARAMETER

STATISTICS is an array which, if specified, is filled with
the following data:

WORDS 0 and 1 =
number of records sorted (double integer)

WORD 2 =
number of intermediate passes

WORD 3 =
space available for sorting

WORDS 4 and 5 =
number of comparisons (double integer)

WORDS 6 and 7 =
number of scratchfile inputs/outputs (double integer)

WORDS 8 and 9 =
cpu time used (milliseconds) (double integer)

WORDS 10 and 11 =
elapsed time (milliseconds) (double integer)

3-11. FAILURE PARAMETER

FAILURE is a logical variable which is set to —1 (true) ifa
fatal error occurred, and to 0 (false) otherwise. If this
parameter is specified, it also is set after each call to SOR-
TINPUT and SORTOUTPUT and, in addition, the condi-
tion code is set.

Error conditions:

CCE
no error occurred (FAILURE set to false)

CCL
error occurred (FAILURE set to true)

3-12. SORTINPUT PROCEDURE

If INPUTFILE was not specified in your SORTINITIAL
call, your program must pass the input records, one at a
time, to the Sort program by calling the SORTINPUT pro-
cedure. (The SORTINPUT procedure must not be called,
however, if the INPUTFILE parameter (see paragraph 3-2)
was specified in the SORTINITIAL call.)

Calling The Sort Program

The form of the SORTINPUT procedure is
PROCEDURE SORTINPUT(RECORD,LENGTH);
VALUE LENGTH;

ARRAY RECORD;
INTEGER LENGTH;

OPTION EXTERNAL;

where:

RECORD
is an array containing a data record.

LENGTH

is the (positive) number of characters in the record.
Length must bé long enough to contain all the keys
which were specified, and may not be longer than the
record size (RECLEN) which was specified in SOR-
TINITIAL.

Error conditions:

CCE
no error occurred (FAILURE set to false)

CCL
error occurred (FAILURE set to true)

3-13. SORTOUTPUT PROCEDURE

After SORTINPUT has been used to pass all the input
records to the Sort program, the SORTOUTPUT procedure

is used to pass the records to the OUTPUT file. (The SOR-

TOUTPUT procedure must not be called, however, if the
OUTPUTFILE parameter (see paragraph 3-3)was specified
in the SORTINITIAL call.)

The form of the SORTOUTPUT procedure is

PROCEDURE SORTOUTPUT(RECORD,
LENGTH);

ARRAY RECORD;
INTEGER LENGTH;

OPTION EXTERNAL;

where:

RECORD

is an array into which the next output record is depo-
sited, in the format specified by the OUTPUTOP-
TION parameter of SORTINITIAL.

3-3

Calling The Sort Program

LENGTH

is set to the positive number of characters returned in
the record. When no more records remain, LENGTH
is set to — 1.

Error conditions:

CCE
no error occurred (FAILURE set to false)

CCL
error occurred (FAILURE set to true)

3-14. SORTEND PROCEDURE

The SORTEND procedure is called after all calls to OUT-
PUTFILE are completed by the SORTINITIAL procedure
(if OUTPUTFILE was specified), or after all calls to SOR-
TOUTPUT are completed (if the SORTOQUTPUT procedure
was called). The SORTEND procedure allows the Sort prog-
ram to perform certain cleanup functions such as closing
the SCRATCH file and restoring the stack to its original
state. (For more details on the operation of the stack, see
paragraph 3-19).

The SORTEND procedure must be called from the same
procedure which called SORTINITIAL, so that the stack is
restored properly.

The form of the SORTEND procedure is
PROCEDURE SORTEND;
OPTION EXTERNAL;
Error conditions:
CCE
no error occurred during the sort (FAILURE set to
false)
CCL

an error occurred during the sort (FAILURE set to
true)

3-15. SORTERRORMESS PROCEDURE
The SORTERRORMESS procedure is used only when you
provide your own ERRORPROC procedure. The form of the
SORTERRORMESS procedure is

PROCEDURE SORTERRORMESS(ERRORCODE,
MESSAGE,LENGTH);

VALUE ERRORCODE;
INTEGER ERRORCODE,LENGTH;

BYTE ARRAY MESSAGE;
34

32214B

OPTION EXTERNAL;
where:

ERRORCODE
is the Sort program error number which is passed to
ERRORPROC when an error occurs.

MESSAGE
is a byte array into which the message is placed. The
array must be at least 72 bytes long.

LENGTH
is the (positive) length of the message, in bytes.

3-16. SORTTITLE PROCEDURE

The SORTTITLE procedure prints the version of the
SORTLIB segment which is being used, along with the date
and time as produced by the library procedure DATELINE,
The form of the SORTTITLE procedure is

PROCEDURE SORTTITLE;
OPTION EXTERNAL;

The SORTTITLE message appears on the standard list
device as follows:

HP32214B.00.0 SORT/3000 TUE, Nov 21, 1974, 7:24 AM

3-17. CALLING THE SORT PROGRAM
FROM SPL/3000

Intrinsic calls to perform a sort from an SP1/3000 program
are shown in Figures 3-1 through 3-8. Note that the MAX-
DATA = 4000 parameter is appended to the :PREP com-
mands.

The four cases shown are:

Both INPUTFILE and OUTPUTFILE are specified
in the SORTINITIAL call (Figure 3-1).

INPUTFILE specified but not OUTPUTFILE in the
SORTINITIAL call (Figure 3-3).

OUTPUTFILE specified but not INPUTFILE in the
SORTINITIAL call (Figure 3-5).

Neither INPUTFILE nor OUTPUTFILE are
specified in the SORTINITIAL call (Figure 3-7).

32214B Calling The Sort Program

‘ $1SPL SPLTESTI

PAGE @@al HP32100A.24.6B

00001000 00000
6006200808 00000
66003000 00000
60004000 00020
90005000 00000
220806000 00000
20007060 00000
20008008 00006
00009008 00004
20010800 00007
20011000 @C007
00012000 00007

$CONTROL USLINIT
<< SPL EXAMPLE NO. 1| >>
<< INPUTFILE AND OUTPUTFILE BOTH SPECIFIED >>
<< SORT THE FILE MAILLIST INTO TEST >>
<< SORT ON FIRST NAME WITHIN LAST NAME >>
BEGIN
BYTE ARRAY MAILLIST(@:8)3="MAILLIST "3
BYTE ARRAY TEST(Q34)3="TEST *;
ARRAY ERROR(@:6):="ERROR IN SORT";
ARRAY BUF(9:135)3
ARRAY KEYS(0:5);
INTEGER OPIN,OPOUT,LENS
00013000 00267 INTRINSIC FOPEN, FREAD, FPOINT, PRINTS
00014000 0d007 INTRINSIC SORTINITIAL, SORTEND;

e
"]
o
2
]
]
1
1
1
1
1
1
1
1
00815000 00007 1 << OPEN FILES >>
‘ 00016000 00607 | OPIN3=FOPEN(MAILLIST, %605, %385)3
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Computer
Museum

00017000 00010 OPOUTs=FOPEN(TEST, X605, £305)3
60018000 00020 << ESTABLISH KEYS >>
00019000 00020 << MAJOR AT 11 FOR 9 BYTES (LAST NAME) >>
20020000 00020 << MINOR AT | FOR 12 BYTES (FIRST NAME) >>
20021000 00020 KEYS(@)s=113
2Qe22000 09B23 KEYS(1)1=9;3
00023000 00026 KEYS(2):=0;
00024008 @00831 KEYS(3)s=13
00025000 00034 KEYS(4):=10;3
00026000 00037 KEYS(S):=203
00027000 00042 << CALL SORTINITIAL - OUTPUT OPTION = @ >>
00028000 00842 SORTINITIAL(OPIN,OPOUT, @,,,2,KEYS)3
60029000 00053 SORTEND;
20030008 00054 IF <> THEN GOTO SORTERR;:
60030100 00055 << RESET OUTPUTFILE TO RECORD | >>
20030200 00055 FPOINTC(OPOUT, 2D)3
oo031000 00060 DISPLAY:
20032000 00060 LENs=FREADC(OPQUT, BUF, 3633
20033000 000366 IF > THEN GOTO STOP;
20034000 00067 PRINT(BUF-LEN, @)
20035000 ©0073 GOTO DISPLAY;

20036000 020101 SORTERR?

26937000 00101 PRINTCERROR, 7, @)

00038000 00105 STOP:

200390066 00105 | END.

PRIMARY DB STORAGE=%010: SECONDARY DB STORAGE=2%2087!
NO. ERRORS=@00; NO. WARNINGS=060

PROCESSOR TIME=0:00:033 ELAPSED TIME=0:03: 48

END OF COMPILE

Figure 3-1. Program 1. SPL/3000 Program to Call Sort When Both INPUTFILE and OUTPUTFILE are
Specified in the SORTINITIAL Call

Calling The Sort Program

32214B

s BUILD PROG1; CODE=PROG
t PREP SOLDPASS, PROG13MAXDATA=4000

END OF PREPARE

END OF PROGRAM

tRUN PROG!

LOIS ANYONE 6190 COURT ST
KING ARTHUR 329 EXCALIBUR ST
ALl BABA 40 THIEVES WAY
JOHN BIGTOWN 965 APPIAN VAY
KNEE BUCKLER 974 FISTICUFF DR
SWASH BUCKLER 497 PLAYACTING CT
JAMES DOE 4193 ANY ST

JANE DOE 3959 TREEWQOD LN
JOHN DOUGHE 239 MAIN ST
JENNA GRANDTR 493 TWENTIETH ST
KARISSA GRANDTR 7917 BROADMOOR WAY
SPACE MANN 9999 GALAXY WAY

METROPOLIS NY 22115 619-732-4997
CAMELOT CA 61322 812-200~-0100
SESAME CO 69142 NONE

METROPOLIS NY 28613 619-467-2314
PUGILIST ND 84321 976-299-2998
MOVI ETOWN CA 61497 NONE

ANYTOWN MD @6133 237-408-71280
BIGTOWN MA 21843 714-399~-4563
HOM ETOWN MA 26999 714-411-1123
PROGRESSIVE CA 61335 799-191-9191
BIGTOWN MA 21799 713-244-3717
UNIVERSE CA 61239 231-999-9999

Figure 3-2. Program 1 Output

3-18. CALLING THE SORT PROGRAM
FROM FORTRAN/3000

Figures 3-9 through 3-20 contain FORTRAN/3000 prog-
rams which perform the following: (Note that the MAX-
DATA = 4000 parameter is appended to the :PREP com-
mands.)

e Sort from one file to another (Figure 3-9).
o Write records into a file in sorted order (Figure 3-11).

o Readrecords from afile in sorted order (file did not have
the records in sorted order) for processing (Figure 3-13).

o Readkey fields from a file in sorted order (file was not in
sorted order) for a report (Figure 3-15).

o Create an index file consisting only of relative record
numbers. The index file is ordered by the Sort program
(Figure 3-17).

o Read the key field and its record number so that the
entire field may be read if the key field satisfies certain
conditions (Figure 3-19).

3-19. TREATMENT OF THE STACK

Note: The following information concerning
the stack is presented for reference in
case it is needed for advanced projects. It
is not necessary to read these paragraphs
in order to use the Sort and Merge prog-
rams.

3-6

During execution of the various procedures which comprise
the Sort program, each procedure must be able to access the
data generated by the other procedures. Because the proce-
dures are called separately, normally they would be unable
to share data. This is because the Q register (which marks
the starting location for the currently executing
procedure’s data) changes every time a procedure is called.
MPE/3000 avoids this problem by placing a four-word stack
marker on the stack whenever a procedure is called. This
marker indicates the beginning of the stack section gener-
ated for the current procedure. It also enables the current
procedure to return to its calling procedure and it resets the
Q register to point to the calling procedure’s stack marker.

Figure 3-21-A represents the stack just before SORTINI-
TIAL is called. The S register (top-of-stack) is represented
by S, and is set to the top-of-stack before the SORTINITIAL
call. The Z register (stack limit) is represented by Z,. When
SORTINITIAL returns to the calling program, the stack
will appear as shown in Figure 3-21-B. The Q register will
be as it was before the call, but S, and Z, will have been
moved up as much as possible in order to obtain room for the
Sort program data area. This area must not be modified by
the calling program. SORTINITIAL will always leave at
least 1000 words between S (top-of-stack) and Z (the stack
limit) for processing by the calling program. The proce-
dures SORTINPUT and SORTOUTPUT will not cause any
further modification of the stack. When SORTEND is cal-
led, it will restore the stack to the way it was in Figure
3-11-A. Care must be exercised, therefore, to call SORT-
END from the same procedure which called SORT-
INITIAL. SORTINPUT and SORTOUTPUT may be called
from other procedures.

For a complete explanation of the hardware stack struc-
ture and its use, refer to System Reference Manual.

32214B Calling The Sort Program

‘II’ $SPL SPLTEST2

PAGE 2001 HP32100A.04.6B

SCONTROL USLINIT
<< SPL EXAMPLE NO. 2 >>
<< INPUTFILE SPECIFIED BUT NOT OUTPUTFILE >>
<< SORT THE FILE MAILLIST INTO TEST >>
<< SORT ON PHONE NUMBER WITHIN STATE »>>
BEGIN
BYTE ARRAY MAILLIST(G3:8)s="MAILLIST *;
BYTE ARRAY TEST(@:4)t="TEST "3
ARRAY ERROR(@:6):="ERROR IN SORT";
ARRAY BUF(@335);
ARRAY KEYS(@:5)3
INTEGER OPIN,OPOUT,LEN:=363
INTRINSIC FOPEN, FREAD, FPOINT, PRINT, FWRI TE}
INTRINSIC SORTINITIAL, SORTEND, SORTOUTPUT:
<< OPEN FILES »>>
OPIN:=FOPEN(MAILLIST, %635, %3@5)3
OPOUTs=FOPEN(TEST, X605, X3065)3
<< ESTABLISH KEYS >>
<< MAJOR AT 52 FOR 2 BYTES (STATE) >>
<< MINOR AT 61 FOR 12 BYTES (PHONE NO) >>
KEYS(@)1=52;
KEYS(1)1=2;3
KEYS(2):=03
KEYS(3)3=613
KEYS(4):=12;3
KEYS(5):=23
<< CALL SORTINITIAL ~ OUTPUT OPTION = @ >>
<< QUTPUTFILE NOT SPECIFIED >>
SORTINITIAL(OPIN,» 3s,52,KEYS)3
IF <> THEN GOTO ENDSORT}
<< CALL SORTOUTPUT >>
OUTPUT:
SORTQUTPUT(BUF,LEN);
IF <> THEN GOTO ENDSORT;
IF LEN >33 THEN
BEGIN
FWRITECOPOUT, BUF, 36,0);
GOTO OUTPUT;

00001000 Q0000
20002088 00302
00003000 00000
00004000 080000
00005008 00000
00006000 060000
00007000 00000
22008002 20006
00009000 00004
00010000 00007
000110060 000607
00012000 00007
00013000 00007
opo14000 080907
000150800 00007

00016000 00007

90017000 00010

00018008 00020
00019008 00020
00020000 00020
90021000 00020
00022000 00023
00023000 80026
00024000 00031
00025000 00034
00026000 00937
20027000 008842
00028008 08042

00029000 00042

00030000 00053

00031000 00054
00032000 00054
00033000 020054
00034000 00057
99035000 00069
00036000 00063
90837000 20063
90038000 00070

20039000 00076 END;
20039196 00076 << RESET OUTPUTFILE TO RECORD 1| >>
00039200 00076 FPOINTC(OPOUT, D)3
00040000 00101 ENDSORT:s.

‘ 00041008 00101 SORTEND;
00042000 00102 IF <> THEN GOTO SORTERRJ
00043000 00103 DISPLAY3

99044000 00103
00045000 00111
00046000 08112
000470008 20116
00048000 00117
008495000 00117

LENs=sFREADC(OPOUT, BUF, 36);
IF > THEN GOTO STOP;
PRINT(BUF,LEN, 0);
GOTO DISPLAY:

SORTERR:
PRINTCERROR, 7, @) 3

b e s bt P s ma tme b b)) [e b b e e s bt pme s e P P Pt (s e Gt e et e G s G b Pe b e s e e b)) D & S

dag506008 00123 1 STOP:
oposS1e08 00123 | END.

PRIMARY DB STORAGE=%2103 SECONDARY DB STORAGEx=X90871
NO. ERRORS=000; NO. WARNINGS=930

PROCESSOR TIME=Q:003043 ELAPSED TIME=03:05:02

END OF COMPILE

l Figure 3-3. Program 2. SPL/3000 Program to Call Sort When INPUTFILE is Specified in the SORTINITIAL
Call but OUTPUTFILE is Not

3-7

Calling The Sort Program

32214B

: BUILD PR0OG2; CODE=PROG
t PREP $0L DPASS, PROG2;MAXDATA= 4000

END OF PREPARE
:RUN PROG2

SPACE
JENNA
KING
SWASH
ALl
KARISSA
JANE
JOHN
JAMES
KNEE
JOHN
LOIS

MANN
GRANDTR
ARTHUR
BUCKL ER
BABA
GRANDTR
DOE
DOUGHE
DOE
BUCKLER
BIGTOWN
ANYONE

END OF PROGRAM

9999 GALAXY VAY
493 TWENTIETH ST
329 EXCALIBUR ST
497 PLAYACTING CT
40 THIEVES VAY
7917 BROADMOOR WAY
3959 TREEWOOD LN
239 MAIN ST

4193 ANY ST

974 FISTICUFF DR
965 APPIAN WAY
6198 COURT ST

UNIVERSE
PROGRESSIVE
CAMELOT
MOVIETOWN
SESAME
BIGTOWN
BIGTOWN
HOMETOWN
ANY TOWN
PUGILIST
METROPOLIS
METROPOLIS

cA
CA
CA
ca
co
MA
MA
MA
MD
ND
NY
NY

61239
61335
61322
61497
69142
21799
21843
26999
20133
84321
20013
20115

231-999-9999
799-191-9191
812-200-0100
NONE

NONE

713-244-3717
714-399-4563
T14-411-1123
237-408-7100
976-299-2990
619-407-2314
619-732-4997

Figure 3-4. Program 2 Output

32214B Calling The Sort Program

' tSPL SPLTEST3

PAGE 0001 HP32100A. 04.6B

00001000 00000
00002000 00000
00003000 00000
00004000 00000
20005000 00000
00006000 ©BO000
e2007000 09000
P0008P00 00006
00009000 03004
00010000 0OB007
00p11000 00007
00012000 00007
00013000 00087
00014000 00007

20015000 00007
20016008 00007
20017000 00010

200180900 00020
00019000 00020
00020000 OBB20
00021000 080020
00022000 00823
20023000 00026
00024000 00031 KEYS(3)1=55;
80025000 00834 KEYS(4)1=5;

[*] $CONTROL USLINIT
2
[*]
[*]
[*]
"]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00026008 0060837 | KEYS(S5)1=03
1
1
1
1
1
1
1
1
1
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1

<< SPL EXAMPLE NO. 3 >>
<< OQUTPUTFILE SPECIFIED BUT NOT INPUTFILE >>
<< SORT THE FILE MAILLIST INTO TEST >>
<< SORT ON ZIP CODES WITHIN STATE >>
BEGIN
BYTE ARRAY MAILLIST(298):2"MAILLIST *;
BYTE ARRAY TEST(@:t4):="TEST "3
ARRAY ERROR(@36)s="ERROR IN SORT'";
ARRAY BUF(0:39);
ARRAY KEYS(@:5)3
INTEGER OPIN,OPOUT,LEN3
INTRINSIC FOPEN, FREAD, FPOINT, PRINT;
INTRINSIC SORTINITIAL, SORTEND, SORTINPUT;?
<< OPEN FILES »>>
OPINs=FOPEN(MAILLIST, X625, 2305)3
OPOUT:=FOPEN(TEST, X685, 2305);
<< ESTABLISH KEYS >>
<< MAJOR AT 52 FOR 2 BYTES (STATE) »>>
<< MINOR AT 55 FOR S BYTES (ZIP CODE) >>
KEYS(@):=52;
KEYS(1)3=2;3
KEYS(2)st=03

20827008 08042 << CALL SORTINITIAL - OUTPUT OPTION = 8 >>
00028000 00842 << INPUTFILE NOT SPECIFIED >>
00029000 00042 SORTINITIAL(,OPOUT, 8,80,, 2,KEYS)3
00030000 800S4 IF <> THEN GOTO ENDSORT}
00831000 80855 << READ RECORD FROM INPUT FILE >>
00032600 00055 INPUT:
00033000 00055 LEN:=FREAD(OPIN, BUF,~88);
00034000 008063 IF > THEN GOTO ENDSORT:
000350008 00064 BEGIN
00036000 00064 << CALL SORTINPUT >>
0PB37000 00064 SORTINPUT(BUF,LEN)3
0PB380PC ©BOB67 IF <> THEN GOTO ENDSORT;
2PP39000 00070
20040008 00876

GOTO INPUT;
BP041PP0 00BB76

END3
00042000 00076
000430008 00077
00043100 080100

ENDSORT:
20043200 020100

SORTEND;)

IF <> THEN GOTO SORTERR;
00044000 00103
00045008 00103

<< RESET OUTPUTFILE TO RECORD 1| >>
FPOINTC(OPOUT, 8D)3
DISPLAY:
LENt=FREADCQPOUT, BUF, 4@)3
00046008 0D111 IF > THEN GOTO STOP:
008470006 00112 PRINT(BUF,LEN, 2);
00048008 00116 GOTO DISPLAY;

00049008 806117 SORTERR?
00050000 00117 PRINTCERROR, 7, 0) 3
00051008 00123 STOP:
28052008 00123 | END.
PRIMARY DB STORAGE=2X0810; SECONDARY DB STORAGE=%80875
NO. ERRORS=0003 NO. WARNINGS=000
PROCESSOR TIME=0:080%04; ELAPSED TIME=0:05:15

END OF COMPILE

. Figure 3-5. Program 3. SPL/3000 Program to Call Sort When OUTPUTFILE is Specified in the SORTINITIAL
Call but INPUTFILE is Not

39

Calling The Sort Program

32214B

1 BUILD PROG3; CODE=PROG
1 PREP $OLDPASS, PROG3;MAXDATA=4000

END OF PREPARE

1 RUN PROG3

SPACE MANN 9999 GALAXY WAY
KING ARTHUR 329 EXCALIBUR ST
J ENNA GRANDTR 493 TWENTIETH ST
SWASH BUCKLER 497 PLAYACTING CT
ALl BABA 40 THIEVES WAY
KARISSA GRANDTR 7917 BROAIMOOR WAY
JANE DOE 3959 TREEWQOOD LN
JOHN DOUGHE 239 MAIN ST
JAMES DOE 4193 ANY ST

KNEE BUCKLER 974 FISTICUFF DR
JOHN BIGTOWN 965 APPIAN WAY
LOIS ANYONE 6190 COURT ST

END OF PROGRAM

UNIVERSE
CAMELOT
PROGRESSIVE
MOVIETOWN
SESAME
BIGTOWN
BIGTOWN
HOMETOWN
ANY TOWN
PUGILIST
METROPOLIS
METROPOLIS

ca

ca
CA
co
MA
MA
MA
MD
ND
NY
NY

61239
61322
61335
61497
69142
21799
21843
26999
20133
84321
20013
20115

231-999-9999
812-200-0100
799-191-9191
NONE

NONE

713-244=-3717
714-399-4563
714-411-1123
237-408-7100
976-299-2990
619-407-2314
619=-732-4997

3-10

Figure 3-6. Program 3 Output

32214B Calling The Sort Program

tSPL SPLTEST4

' PAGE 6081 HP32100A.04.6B

00001008 ©0008 SCONTROL USLINIT
20002000 060000 << SPL EXAMPLE NO. 4 >>
00003000 08000 << NEITHER INPUTFILE NOR OUTPUTFILE SPECIFIED >>
00004000 00000 << SORT THE FILE MAILLIST INTO TEST >>
00005000 00000 << SORT ON FIRST NAME WITHIN LAST NAME >>
00006000 0G000 BEGIN
00007000 GBG00 BYTE ARRAY MAILLIST(@:18)3="MAILLIST '
00008000 GGO06 BYTE ARRAY TEST(@:4)31="TEST "3
00009000 GOG0G4 ARRAY ERROR(@:16):="ERROR IN SORT";
00010000 000087 ARRAY BUF(@:139);
00011600 00007 ARRAY KEYS(0:15)3
00012000 00007 INTEGER OPIN,OPOUT,LEN3
00013000 00007 INTRINSIC FOPEN, FREAD, FWRITE, FPOINT, PRINT;
00014000 00007 INTRINSIC SORTINITIAL, SORTEND;
00015000 00007 INTRINSIC SORTINPUT, SORTOUTPUT:
20016060 00807 << OPEN FILES >>
00017000 00007 OPIN:=FOPEN(MAILLIST, 26085, X385)3
00018006 00010 OPOUTs=FOPEN(TEST, %605, $365)3
20019000 00020 << ESTABLISH KEYS >>
00020000 00020 << MAJOR AT 11 FOR 9 BYTES (LAST NAME) >>
00021000 00020 << MINOR AT 1| FOR 19 BYTES (FIRST NAME) >>

20022000 00820 KEYS(@)t=113
20023000 060023
00024000 00026

KEYS(1):=39;3
KEYS(2>3=0;5
00025600 00031 KEYS(3):=1;
20026000 ©0034 KEYS(4):=105
90027006 @06837
00028000 00042

KEYS(S):1=9;
<< CALL SORTINITIAL - OUTPUT OPTION = @ >>
00029000 00042
00030000 00042

<< INPUTFILE AND OUTPUTFILE NOT SPECIFIED >>
SORTINITIALC,» 8,80, 2, KEYS)3
00031008 000653 IF <> THEN GOTO ENDSORT;
000332008 ©0054 << READ RECORD FROM INPUT FILE >>

90033008 00854 INPUT:

00034008 00854 LENt=FREAD(OPIN, BUF,-88)3

00035000 00862 IF > THEN GOTO OUTPUT:
. 008360080 00263 << CALL SORTINPUT »>>

20337000 00063 BEGIN

20038003 0G0063 SORTINPUT(BUF,LEN); :
30839000 00066 IF <> THEN GOTO ENDSORT:
200839100 22267 END;

006339200 20067
300400006 00875

GOTO INPUT;
<< CALL SORTOUTPUT >>

00240108 00375 OUTPUT:
02041008 20375 BEGIN
200430080 20875 SORTOUTPUT(BUF,LEN)3

00044000 00100
300450600 020101

00046000 00104
20347000 00104
00048008 00111

IF <> THEN GOTO ENDSORT:
IF LEN >=@ THEN
BEGIN
FWRITE(OPOUT, BUF, 40, 8>3
GOTO OUTPUT:

0004906006 00112 END3
208491008 @0112 END;
00850008 00112 ENDSORT:
60351000 060112 SORTEND;

20052008 00113
a0952168 00114
08052208 40114
00053000 06117
22054000 020117
200552006 00125
30056008 00126
60657000 20132

IF <> THEN GOTO SORTERR;
<< RESET OUTPUTFILE TO RECORD 1 >>
FPOINT(OPOUT, D)3
DISPLAY:
LENtsFREAD(OPOUT, BUF, 48)3
IF > THEN GOTO STOP3
PRINT(BUF,LEN, 9)3
GOTO DISPLAY:

- s G G e Gme e fma fms pms bma e bt D) GO GO G PO O (O N st b pme b (O (D DD bma b bme fme bme bme bt bms Smn bn G Sme fma Bm b Bmn Bt B et St St et St et et s e e e e = R OO R D @

099580060 20133 SORTERR:

292590006 00133 PRINT(ERROR, 7, 8)3
00060000 G0137 STOP:

00061000 20137 END.

PRIMARY' DB STORAGE=2810; SECONDARY DB STORAGE=2%30875
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:80:05; ELAPSED TIME=@:086:07

END OF COMPILE

Figure 3-7. Program 4. SPL/3000 Program to Call Sort When Neither INPUTFILE nor OUTPUTFILE are
Specified in the SORTINITIAL Call

3-11

Calling The Sort Program 32214B

+BUILD PROG4; CODE=PROG
: PREP $SOLDPASS, PROG4;MAXDATA=40080

END OF PREPARE

:RUN PROG4

LO1IS ANYONE 6198 COURT ST METROPOLIS NY 20115 619-732-4997
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 812-200-~0100
ALl BABA 40 THIEVES VAY SESAME CO 69142 NONE

JOHN BIGTOWN 965 APPIAN WAY METROPOLIS NY 20013 619-487-2314
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND 84321 976-299-2990
SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN ‘CA 61497 NONE

JAMES DOE 4193 ANY ST ANYTOWN MD @0133 237-488-7100
JANE DOE 3959 TREEWOOD LN BIGTOWN MA 21843 714-399-4563
JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 714-411-1123
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799=191-9191
KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA 21799 713-244-3717
SPACE MANN 9999 GALAXY WAY UNIVERSE CA 61239 231-999-9999

END OF PROGRAM

Figure 3-8. Program 4 Output

3-12

32214B

Calling The Sort Program

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000

HP32102R,.00,01 FORTRAN/3000 (C) HEWLETT«PACKARD CO.

$CONTROL USLINIT,INIT,FILE=21,FILE=22
PROGRAM XMPL1
CHARACTER*¥72 BUF
INTEGER KEYS(6),FNUM
LOGICAL FAILURE
SYSTEM INTRINSIC SORTINITIAL,SORTEND

SORT THE FILE MAILULIST (FTN21) INTO TEST (FTN22)
SORT ON PHONE NUMBFRS WITHIN STATES

ESTABLISH THE KEYS = MAJOR AT 52 FOR 2 BYTES (STATE)
MINOR AT 61 FOR 12 BYTES (PHONE NO)

aaaaaann

KEYS(1)=52
KEYS(2)=2
KEYS(3)=0
KEYS(4)=61
KEYS(5)=12
KEYS(6)=0

INITIALIZE SORT - OUT, OPTION = 0

aan

CALL SORTINITIAL(FNUM(21),FNUM(22),,,,
#2,KEYS,,,,FAILURE)

IF(FAILURE)STOP 10

CALL SORTEND

IF(FAILURE)STOP 20

READ AND DISPLAY OUTPUT FILE (STATE AND PHONE NO, ONLY)

aan

REWIND 22
30 READ(22,END=100)BUF
DISPLAY BUF(52:21," *“,BUF(61:12]
GO TO 30
100 STOP
END

PROGRAM UNIT XMPL1 COMPILED

*¥EX
*E¥X NO

GLOBAL STATISTICS (2L
ERRORS, NO WARNINGS #xxx

TOTAL COMPILATION TIME 0:00:02
TOTAL ELAPSED TIME 0:00:09

Figure 3-9. Program 5. FORTRAN/3000 Program to Sort from One File to Another

3-13

Calling The Sort Program

32214B

¢ BUILD PROGS; CODE=PROG

t PREP SOLDPASS, PROGS;MAXDATA=4000

END OF PREPARE

sFILE FTN21=MAILLIST,OLD
tFILE FTN22=TEST,OLD

t RUN PROGS

ca 231-999-9999
Cca 799-191-9191
CA 8§12-200-0100
ca NONE

co NONE

MA 713-244-3717
MA 714-399-4563
MA Ti4-411-1123
MD 237-4098-7100
ND 976-299-2990
NY 619-407-2314
NY 619-732-4997

END OF PROGRAM

3-14

Figure 3-10. Program 5 Output

32214B

Calling The Sort Program

PAGE 0001 HP32102B,00.01 FORTRAN/3000 (C) HEWLETT-PACKARD CO.

00001000 S$CONTROL USLINIT,INIT,FILE=21,FILE=22

00002000 PROGRAM XMPL2

00003000 CHARACTER*72 BUF

00004000 INTEGER KEYS(6),FNUM

00005000 LOGICAL FAILURE,LBUF(36)

00006000 EQUIVALENCE (LBUF,BUF)

00007000 SYSTEM INTRINSIC SORTINITIAL,SORTINPUT,SORTEND
00008000 C

00009000 C WRITE RECORDS INTO FILE IN SORTED ORDER
00010000 C FTN21=MATLLIST (INPUT) AND FTN22= TEST (OUTPUT)
00011000 C SORT ON FIRST NAME WITHIN LAST NAME
00012000 C

00013000 C ESTABLISH KEYS = MAJOR AT 11 FOR 9 BYTES (LAST NAME)
00014000 C MINOR AT 1 FOR 10 BYTES (FIRST NAME)
00015000 C

00016000 KEYS(1)=11

00017000 KEYS(2)=9

00018000 KEYS(3)=0

00019000 KEYS(4)=1

00020000 KEYS(5)=10

00021000 KEYS(6)=0

00022000 C

00023000 C INITIALIZE SORT = OUTPUT OPTION = 0
00024000 C OUTPUT RECORD = INPUT RECORD

00025000 C SORT WILL WRITE RECORDS TO OUTPUT FILE ONLY
00026000 C

00027000 CALL SORTINITIAL(,FNUM(22),,,,2,
00028000 ¥KEYS,,, ,FATLURE)

00029000 1F (FAILURE)STOP 10

00030000 C

00031000 C READ THE INPUT FILE (MAILLIST) TO SIMULATE
00032000 C GENERATION OF RECORDS

00033000 C

00034000 50 READ(21 ,END=100)RUF

00035000 C

00036000 C CALL SORTINPUT TO INPUT RECORD TN THE SORTED FILE
00037000 C

00038000 CALL SORTINPUT(LBUF,72)

00039000 IF (FAILURE)STOP 20

00040000 GO TO 50

00041000 100 CONTINUE

00042000 CALL SORTEND

00043000 IF (FAILURE)STOP 30

00044000 C

00045000 C READ AND DISPLAY OUTPUT FILE (FIRST 54 CHARACTERS)
00046000 C

00047000 REWIND 22

00048000 60 READ(22,END=200)BUF

00049000 DISPLAY BUF(1:54]

00050000 GO TO 60

00051000 200 STOP

00052000 END

PROGRAM UNIT XMPL2 COMPILED

xkx GLOBAL STATISTICS (22 2]
xk% NO ERRORS, NO WARNINGS *%%x
TOTAL COMPILATION TIME 0:00:02
TOTAL ELAPSED TIME 0:00:12

Figure 3-11. Program 6. FORTRAN/3000 Program to Write Records into a File in Sorted Order

3-15

Calling The Sort Program

32214B

tBUILD PROG6; CODE=PROG
t PREP $0LDPASS, PROG63:MAXDATA= 4600

END OF PREPARE
tFILE FTN21=MAILLIST,OLD
tFILE FTN22=TEST,OLD
$RUN PROG6

LOIS
KING
ALT
JOHN
KNEE
SWASH
JAMES
JANE
JOHN
JENNA
KARISSA
SPACE

ANYONE
ARTHUR
BABA
BIGTOWN
BUCKLER
BUCKL ER

END OF PROGRAM

61998 COURT ST

329 EXCALIBUR ST
49 THIEVES WAY
965 APPIAN VAY
974 FISTICUFF DR
437 PLAYACTING CT
4193 ANY ST

3959 TREEWO0OD LN
239 MAIN ST

493 TWENTIETH ST
7917 BROADMOOR WAY
9999 GALAXY WAY

METROPOLIS
CAMELOT
SESAME
METROPOLIS
PUGILIST
MOVIETOWN
ANYTOWN
BIGTOWN
HOMETOWN
PROGRESSIVE
BIGTOWN
UNIVERSE

NY
ca
co
NY
ND
ca
MD
A
MA
cAa
MA
ca

3-16

Figure 3-12. Program 6 Output

32214B _ Calling The Sort Program

PAGE 0001 HP32102B,00,01 FORTRAN/3000 (C) HEWLETT-PACKARD CO,

00001000 SCONTROL USLINIT,INIT,FILE=21,FILE=22

00002000 PROGRAM XMPL3

00003000 CHARACTER$72 BUF

00004000 INTEGER KEYS(9),FNUM

00005000 LOGICAL FAILURE,LBUF(36)

00006000 EQUIVALENCE (LBUF,BUF)

00007000 SYSTEM INTRINSIC SORTINITIAL,SORTOUTPUT,SORTEND
00008000 C

00009000 C READ RECORDS FROM A FILE IN SORTED ORDER
00010000 C SORT ON FIRST NAME WITHIN LAST NAME WITHIN TOWN
00011000 C

00012000 C ESTABLISH KEYS = MAJOR AT 40 FOR 12 BYTES (TOWN)
00013000 C MINOR AT 11 FOR 9 BYTES (LAST NAME)

00014000 C MINOR AT 1 FOR 10 BYTES (FIRST NAME)

00015000 C

00016000 KEYS(1)=40

00017000 KEYS(2)=12

00018000 KEYS(3)s0 i \
00019000 KEYS(4)=11 Computer
00020000 KEYS(5)=9 - Museum
00021000 KEYS(6)=0

00022000 KEYS(T)=1

00023000 KEYS(8)=10

00024000 KEYS(9)=0

00025000 C

00026000 C INITIALIZE SORT = OUTPUT OPTION = 0

00027000 C SORT WILL READ THE INPUT FILE ONLY

00028000 C

00029000 CALL SORTINITIALCFNUM(21),,,,,,

00030000 #KEYS,,, ,FAILURE)

00031000 IF(FAILURE)STOP 10

00032000 C

00033000 C CALL SORTOUTPUT TO DISPLAY THE SORTED RECORDS
00034000 C

00035000 50 CALL SORTOUTPUT(LBUF,LEN)

00036000 IF(LEN.EQ.=1)GO TO 60

00037000 IF(FAILURE)STOP 20

00038000 DISPLAY BUF([1:59]

00039000 GO TO 50

00040000 60 CONTINUE

00041000 CALL SORTEND

00042000 IF(FAILURE)STOP 30

00043000 STOP

00044000 END

PROGRAM UNIT XMPL3 COMPILED

L2 2 2 GLOBAL STATISTICS L 22 2]
L2 2 2 NO ERRORS, NO WARNINGS *¥%x
TOTAL COMPILATION TIME 0:00:02
TOTAL ELAPSED TIME 0:00:12

Figure 3-13. Program 7. FORTRAN/3000 Program to Read Records from a File for Processing
317

Calling The Sort Program

32214B

s BUILD PROG7:; CODE=PROG
1t PREP $OLDPASS, PROG7;MAXDATA= 4000

END OF PREPARE
s FILE FTN213MAILLIST,OLD
tFILE FIN22=TEST,OLD

1 RUN PROG7?7

JAMES DOE 4193 ANY ST

JANE DOE 3959 TREEWOOD LN
KARISSA GRANDTR 7917 BROADMOOR WAY
KING ARTHUR 329 EXCALIBUR ST
JOHN DOUGHE 239 MAIN ST

LoIS ANYONE 6198 COURT ST
JOHN BIGTOWN 965 APPIAN VAY
SWASH BUCKLER 497 PLAYACTING CT
JENNA GRANDTR 493 TWENTIETH ST
KNEE BUCKLER 974 FISTICUFF DR
ALl BABA 40 THIEVES WAY
SPACE MANN 9999 GALAXY WAY

END OF PROGRAM

ANY TOWN
BIGTOWN
BIGTOWN
CAMELOT
HOMETOWN
METROPOLIS
METROPOLIS
MOVIETOWN
PROGRESSIVE
PUGILIST
SESAME
UNIVERSE

20133
21343
21799
61322
26999
20115
20a13
61497
61335
#4321
69142
61239

3-18

Figure 3-14. Program 7 Output

Calling The Sort Program

PAGE 0001 HP§21028.00.01 FORTRAN/3000 (C) HEWLETT=PACKARD CO.

00001000 $CONTRNL USLINIT,INIT,FILE=21,FILE=22

00002000 PROGRAM XMPL4

0n003000 CHARACTER*9 BUF ,NAME

00004000 INTEGER KEYS(3),FNUM

00005000 LOGICAL FATLURE,LBUF(5)

00006000 EQUIVALENCE (LBUF,BUF)

00007000 SYSTEM INTRINSIC SORTINITIAL,SORTOUTPUT,SORTEND

00008000 10 FORMAT(//T20," NAME",6X,"NUMBER"/)
00009000 20 FORMAT(T20,5,T30,13)
00010000 30 FORMAT(//T25,"TOTAL = ",13///7)

00011000 C

00012000 C PRINT A SORTED REPORT OF ALL THE LAST NAMES IN MA]LLIST
00013000 C THE NUMBER UF TIMES A NAME APPEARS
00014000 C AND THE TOTAL NUMBER OF NAMES IN THE FILE
00015000 C

00016000 C PRINT HEADING

00017000 C

00018000 WRITE(6,10)

00019000 C

00020000 C ESTABLISH KEY

00021000 C

00022000 KEYS(1)=11

00023000 KEYS(2)=9

00024000 KEYS(3)=0

00025000 C

00026000 C INITIALIZE SORT = OUTPUT OPTION = 2
00027000 C OUTPUT = KEY FIELD ONLY

00028000 C

00029000 CALL SORTINITIAL(FNUM(21),,2,,,
00030000 #1 ,KEYS,,, ,FAILURE)

00031000 IF(FAILURE)STOP 100

00032000 50 CALL SORTOUTPUT(LBUF,LEN)
00033000 IF(LEN.EQ.-1)GO TO 500
00034000 IF(FAILURE)STOP 200

00035000 C

00036000 C REPORT GFENERATION SECTION

00037000 C

00038000 ITOTAL=ITOTAL+1

00039000 IF(BUF,EQ,NAME)GO TO 60
00040000 IF(ICTR.EQ.0)GO TO 70

00041000 WRITE(6,20)NAME,ICTR

00042000 70 NAME=BUF

00043000 ICTR=0

00044000 60 ICTRSICTR+1

00045000 GO TO 50

00046000 500 WRITE(6,30)ITOTAL

00047000 C

00048000 C END OF REPORT GENERATION

00049000 C

00050000 CALL SORTEND

00051000 IF(FAILURE)STOP 300

00052000 STOP

00053000 END

PROGRAM UNIT XMPL4 COMPILED

L2 2 3] GLOBAL STATISTICS Exx
(22 2] NO ERRORS, NO WARNINGS *%xx
TOTAL COMPILATION TIME 0:00:02
TOTAL ELAPSED TIME 0:00:09

Figure 3-15. Program 8. FORTRAN/3000 Program to Read Key Fields from a File in Sorted Order

3-19

Calling The Sort Program 32214B

3 BUILD PROGS8; CODE=PROG
t PREP $OL DPASS, PROGS3MAXDATA= 4000

END OF PREPARE

sFILE FTN21=MAILLIST,OLD
:FILE FTN22=TEST,OLD

s RUN PROGS

NAME NUMBER

ANYONE
ARTHUR
BABA
BIGTOWN
BUCKLER
DOE
DOUGHE
GRANDTR

O = DO = t= s b

TOTAL = 12

END OF PROGRAM

Figure 3-16. Program 8 Output

3-20

32214B Calling The Sort Program

' PAGE 0001 HP32102B.00.01 FORTRAN/3000 (C) HEWLETT-PACKARD CO.

00001000 S$CONTROL USLINIT,INIT,FILE=21,FILE=2?2

00002000 PROGRAM XMPLS

00003000 CHARACTER*72 BUF

00004000 INTEGER KEYS(6),FNUM

00005000 LOGICAL FAILURF

00006000 DOUBLE PRECISION DFLOAT

00007000 SYSTEM INTRINSIC SORTINITIAL,SORTEND

00008000 C

00009000 C BUILD AN INDEX FILE (FTN22) FROM MAILLIST (FTN21)

00010000 € CONSISTING OF DOUBLE=-WORD RECORD POINTERS

00011000 C THE INDEX WILL BE SORTFD ON ZIP CODES WITHIN STATES

00012000 C

00013000 C ESTABLISH THE KEYS - MAJOR AT 52 FOR 2 BYTES (STATE)

00014000 C MINOR AT 55 FOR 5 BYTES (2IP CODE)

00015000 ¢C

00016000 KEYS(1)=52

00017000 KEYS(2)=2

00018000 KEYS(3)=0

00019000 KEYS(4)=55

00020000 KEYS(5)=5

00021000 KEYS(6)=0

00022000 C

00023000 C INITIALIZE SORT = OUTPUT OPTION = 1

00024000 C OUTPUT RECORD = DOUBLE-WORD RECORD NUMBER ONLY

00025000 C SORT WILL READ/WRITE THE FILES

00026000 C

00027000 CALL SORTINITIAL(FNUM(21),FNUM(22),1,,,

00028000 #2,KEYS,,,,FAILURE)

00029000 IF(FAILURE)STOP 10

00030000 CALL SORTEND

00031000 TF(FAILURE)STOP 20

00032000 C

00033000 C CHECK INDEX FILE BY USING IT TO READ MAILLIST

00034000 C

00035000 REWIND 22

00036000 50 READ(22,END=100)DUMMY

00037000 C

00038000 C RECORD NUMBERS IN INDEX START AT ZERO

00039000 C FORTRAN/3000 ACCEPTS RECORD NUMBERS STARTING AT ONE

00040000 C THUS ADD ONE TO RECORD NUMBERS IN INDEX

00041000 C

00042000 READ(21@DFLOAT(\DUMMY\)+1.D0)BUF

00043000 DISPLAY BUF{1:19}1,* =~ ,BUF{52:21," *",BUFI[55:51]

00044000 GO TO 50

00045000 100 STOP

00046000 END

PROGRAM UNIT XMPLS COMPILED

KE¥¥ GLOBAL STATISTICS *k¥¥

*x%% NO ERRORS, NO WARNINGS s#%%

TOTAL COMPILATION TIME 0:00:02

TOTAL ELAPSED TIME 0:00:07
. Figure 3-17. Program 9. FORTRAN/3000 Program to Create an Index File Consisting of Relative Record

Numbers Only

321

Calling The Sort Program

32214B

t BUILD PROG9; CODE=PROG

1 PREP $OLDPASS, PROG93MAXDATA= 4000

END OF PREPARE

tFILE FTN21=MAILLIST,OLD

tFILE FTN22=TEST,OLD
tRUN PROG9

SPACE MANN
KING ARTHUR
JENNA GRANDTR
SWASH BUCKL ER
AL BABA
KARISSA GRANDTR
JANE DOE
JOHN DOUGHE
JAMES DOE
KNEE - BUCKLER
JOHN BIGTOWN
LOIS ANYONE

END OF PROGRAM

61239
61322
61335
61497
69142
21799
21843
26999
20133
24321
20013
20115

3-22

Figure 3-18. Program 9 Output

32214B

Calling The Sort Program

PAGE 0001

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000

$

nanNnNn nNNNONOONnN

nnNnaon

o
C
o

HP32102B.00.01 FORTRAN/3000 (C) HEWLETT=-PACKARD CO,

CONTROL USLINIT,INIT,FILE=21,FILE=22

PROGRAM XMPL6

CHARACTER*72 BUF,CITY*12

INTEGER KEYS(9),FNUM

LOGICAL LBUF(23),FAILURE

DOUBLE PRECISION DFLOAT

EQUIVALENCE (CITY,LBUF(3)),(DUMMY,LBUF(1))

SYSTEM INTRINSIC SORTINITIAL,SORTOUTPUT,SCURTEND
10 FORMAT(//T11,"NAME",T40,"CITY",T57,"PHONE NO."//)
20 FORMAT(2X,S,T37,5,T54,8)

PRINT A REPORT OF ALL THOSE LIVING IN
METROPOLIS, PROGRESSIVF, AND BIGTOWN

ORDER THE REPORT BY FIRST NAME WITHIN LAST NAME
WITHIN CITIES

PRINT HEADING
WRITE(6,10)

ESTABLISH KEYS - MAJOR AT 40 FOR 12 BYTES (CITY)
MINOR AT 11 FOR 9 BYTES (LAST NAME)
MINOR AT 1 FOR 10 BYTES (FIRST NAME)

KEYS(1)=40
KEYS(2)=12
KEYS(3)=0
KEYS(4)=11
KEYS(5)=9
KEYS(6)=0
KEYS(7)=1
KEYS(8)=10
KEYS(9)=0

INITIALIZE SORT = OUTPUT OPTION = 3
OUTPUT RECORD = DOUBLE=WORD RECNUM + KEYS

CALL SORTINITIAL(FNUM(21),,3,,,3,
#KEYS,,, ,FAILURE)
IF(FAILURE)STOP 100

50 CALL SORTOUTPUT(LBUF,LEN)
IF(LEN.EQ.-1)GO TO 60
IF(FAILURE)STOP 200

PRINT DESIRED FIELDS IF THE CITY MATCHES

IF(CITY.NE,"METROPOLIS ".AND,
¢ CITY.NE."PROGRESSIVE ".AND.
¢ CITY.NE."BIGTOWN ")GO TO S0
READ(21@DFLOAT(\DUMMY\)+1,D0)BUF
WRITE(6,20)BUF(12:19),BUF(40:12] ,BUF[61:12]

GO TO 50

60 CALL SORTEND
sSTOP
END

PROGRAM UNIT XMPL6 COMPILED

L2 X 2]

GLOBAL STATISTICS XEEE
sEEX NO ERRORS, NO WARNINGS *x%%%
TOTAL COMPILATION TIME 0:00:02
TOTAL ELAPSED TIME 0:00:08

Figure 3-19. Program 10. FORTRAN/3000 Program to Read Key Field and Its Record Number

3-23

Calling The Sort Program

32214B

t BUILD PROG 105 CODE=PROG

$ PREP $OLDPASS, PROG10;MAXDATA= 4000

END OF PREPARE

$tFILE FTN21=MAILLIST,OLD
s FILE FTN22=TEST,OLD

s RUN PROG10G

NAME
JANE DOE
KARISSA GRANDTR
LOIS ANYONE
JOHN BIGTOWN
JENNA GRANDTR

END OF PROGRAM

CITY

BIGTOWN
BIGTOWN
METROPOLIS
METROPOL1IS
PROGRESSIVE

PHONE NO.

714-399-4563
713-244-3717
619-732-4997
619-4087-2314
799-191-9191

3-24

Figure 3-20. Program 10 Output

32214B

Calling The Sort Program

DB

DB

SORT
DATA
AREA

AT LEAST
1000 WORDS

Figure 3-21. Data Stack Layout During Execution of the Sort Program

3-25

RUNNING THE MERGE PROGRAM
AS A STAND-ALONE PROGRAM |

SECTION

The Merge program provides the capability of merging
several files, each of which has been sorted independently,
and producing a single sorted file. The Merge program can
be run as a stand-alone program during a batch job or an
interactive session.

The Merge program operates in the minimum HP 3000
memory size. Performance can be improved, however, by
increasing the amount of memory available if the files
being merged and/or the output file reside on the same
device. A larger stack will enable Merge to read/write more
records consecutively from/to the same file, thereby reduc-
ing the number of disc arm movements. You can increase
the stack size by appending the MAXDATA = segsize
parameter to the RUN MERGE.PUB.SYS command. (This
is not necessary unless you receive the “INSUFFICIENT
STACK SPACE” error message when you attempt to run
the Merge program.) Asegsize 0of 10,000 should be sufficient
for merging most files. If the error message occurs again,
however, increase the segsize parameter.

4-1. FILE DEFINITIONS

The stand-alone Merge program references various files
during execution. These files are described in the following
paragraphs. For a complete understanding of the treat-
ment of files by the operating system, read the MPE
Commands Reference Manual.

4-2. INPUT FILES
The INPUT files contain the records to be merged.

When running the Merge program, you must equate the
formal designator INPUT with the actual file designator
{filename). This is done with the Merge program INPUT
command, as follows:

>INPUT MASTER,UPDATE
(The > symbol is output by the Merge program in a
session)

The INPUT files are opened as follows:

Formaldesignator:
INPUT

Foptions:
Domain = old or oldtemp; others default.

Aoptions:
Read-access only; others default.

All other parameters:
Default.

Note: The files are opened automatically by
MPE/3000 and you need not be concerned
with the file parameters. They are in-
cluded here (and in paragraph 4-3) for
reference only.

4-3. OUTPUT FILE

The merged records are written to the OUTPUT file. It is
opened as follows:

Formaldesignator:
OUTPUT

Foptions:

Domain = new; ASCII/BINARY (same as the first
INPUT file); record format is fixed if all the INPUT
files are fixed and have the same record size or if the
KEY option is specified in the OUTPUT command,
otherwise variable is used; others default.

Aoptions:
Write-access only; others default.

Recsize:

If the KEY option is specified in the QUTPUT com-
mand, the recsize is the sum of the keyfield lengths;
otherwise, the recsize is the maximum recsize of the
INPUT files.

Device:
DISC

Blockfactor:

If all the INPUT files have the same blockfactor and
the KEY option is not specified in the OUTPUT
command, that blockfactor is used. Otherwise, the
system default is used.

Filesize:

If all the INPUT files are disc files, the sum of their
end-of-files is used. Otherwise, each of the INPUT
files which are not disc files is assumed to have 10,000
records. The filesize parameter may be overridden by
a Merge program OUTPUT command.

Initalloc:
All extents are initially allocated.

Filecode:
Same as the first INPUT file.

4-1

Stand-Alone Merge Program

All other parameters:
Default.

The OUTPUT file can be specified by using an MPE/3000
:FILE command or by using a Merge program OUTPUT
command, as follows:

:FILE OUTPUT=OUTFILE
(The colon is output by MPE/3000 in a session)
or
>QUTPUT OUTFILE
(The > symbeol is output by the Merge program in a
session)

The format of the output records depends on whether or not
the KEY option is specified.

The QOUTPUT file is closed with the option SAVE, and, if it
was opened as a new file, space beyond the end-of-file is
released. If the close fails due to another file having the
same name, the interactive user is asked if the old file can
be purged, as follows:

PURGE OLD OUTPUT FILE filename?

If the response is “Y”, the old file will be purged. If this
cannot be done (for example, you cannot purge a file which
is not in your group account, or a file which is being used
concurrently by another user), or if the answer was “N”,
you will be asked for a new name for the OUTPUT file:

ENTER NEW NAME FOR OUTPUT FILE:

The OUTPUT file will be renamed using the name entered
by you, and another attempt will be made to save it under
this name.

In batch mode, the foregoing sequence cannot take place.
Instead, the OQOUTPUT file will be assigned an artificial
name constructed by the Merge program and the OUTPUT
file will be saved under that name. The following message
will be printed on the LIST file:

OUTPUT FILE SAVED WITH FILENAME
“filename”

Note: If $STDLIST is specified in the OUTPUT
command (meaning that the merged re-
cords will be sent to the LIST file), the
OUTPUT file will not be saved. (See
paragraph 4-9.)

4-4. LIST FILE

The LIST file is used by the Merge program to output
information to you and to prompt for input (if in interactive
session). The LIST file should not be confused with the
OUTPUT file (which is used to output the merged records).
The LIST file normally is equated with $STDLIST.

4-2

32214B

4-5. TEXT FILE

The TEXT file is used by the Merge program to read com-
mands and other information from you. Normally, the
TEXT file is equated with $STDINX.

4-6. PROMPT FILE

The PROMPT file is used by the Merge program to prompt
you for input when the TEXT file is the session terminal
but the LIST file is not. The prompt is with a “greater than”
(>) symbol.

4-7. MERGE COMMANDS

The Merge program is controlled by commands which
specify INPUT files, key fields, OUTPUT files, output op-
tions, etc. In batch mode, these commands are entered with
the RUN MERGE.PUB.SYS command for the Merge prog-
ram; in interactive session, the Merge program outputs a
prompt character (>) after it begins execution and the
commands are typed in from the terminal.

4-8. INPUT COMMAND

The INPUT command is used to specify the names of the
files which are to be merged. The form of the INPUT com-
mand is

INPUT{ filename } [filename] [filename] [, . .]
where

filename
is any legal formal designator.

Each of the files to be merged is assumed to be ordered
correctly according to the specified keys. The order in which
the files are specified is relevant in that records with equal
keys will be ordered according to files in which they appear.

If more than one INPUT command is entered, only the last
one entered will be significant. Thus, all files to be merged
must be specified in a single INPUT command.

An example of the INPUT command is

INPUT MASTER,UPDATE

4-9, OUTPUT COMMAND
The OUTPUT command specifies the file to which the
merged records will be written. The form of the OUTPUT

command is

OUTPUT{ filename } [,number of records] [, KEY]

32214B

where

filename

is any legal formal designator. Unlike the Sort prog-
ram, the Merge program does not allow the use of an
asterisk (*) to send the merged records to the LIST
file. You can use the filename $STDLIST, however, if
you want the merged records listed on the output
device. (The OUTPUT file will not be saved in this
case.)

number of records
is a positive integer.

KEY
specifies that the output option will consist of the key
fields.

If number of records is specified, this value will be used as
the filesize parameter when opening the OUTPUT file, if
any of the INPUT files are not disc files. This parameter is
ignored if all INPUT files are disc files.

IfKEY is specified, the output records will consist of the key
fields only.

If more than one OUTPUT command is entered, only the
last one entered will be significant.

Examples of the OUTPUT command are
OUTPUT NEWMASTER,KEY

OUTPUT MYFILE, 50000

4-10. KEY COMMAND

The KEY command specifies the key fields to be used when
the input records are merged and is used in the same man-
ner as with the Sort program (see paragraph 2-12). The
form of a KEY command is

KEY { position } [length] [type] [,DESC]
[;position [,length][,type] [,DESC]]

where:

position
is a positive integer.

length
is a positive integer.

type

is one of the following mnemonics: BYTE, INT,
DOUBLE, REAL, LONG, PACKED, DISPLAY, or
PACKED*. (See the meanings of the mnemonics in
Section II, paragraph 2-12.)

DESC

indicates that the records are to be merged in de-
scending order.

Stand-Alone Merge Program

As shown in the example of the KEY command form, each
KEY command can specify one or more key fields, with the
specifications being separated by semicolons. Multiple key
fields also can be specified with several KEY commands. In
either case, the first key field specified is the most signific-
ant, or major key, with subsequent fields having less sig-
nificance.

The position parameter indicates the number within the
record of the first position of the key field (the first position
of the record is numbered 1).

Thelength parameter indicates the number of bytes in the
field. This parameter is required if type = BYTE,
PACKED, DISPLAY, or PACKED*. It is optional in other
cases. If not specified, the value assumed for length depends
on the type: 2 if type = INT; 4 if type = DOUBLE or REAL;
and 8 if type = LONG.*

The type parameter defines the type of data contained in the
key field.If not specified, BYTE is assumed. The types are
explained in Section II, paragraph 2-12.

Examples of the KEY command are

KEY 10,5
BYTE key of length 5 starting in position 10, to be
merged in ascending order.

KEY 20,REAL
REAL key of length 4 starting in position 20, to be
merged in ascending order.

KEY 30,20,INT,DESC
20-byte INTEGER key starting in position 30, to be
merged in descending order.

KEY 10,5;20,REAL;30,20,INT,DESC
This last example is equivalent to the first three.

4-11. RESET COMMAND

The RESET command indicates that any KEY commands
which have been entered thus far are to be ignored and that
a new set will be entered. (This command is useful if you
make a typing error.) The form of the RESET command is

RESET

4-12, VERIFY COMMAND

The VERIFY command causes a listing of the options in
effect. The form of the VERIFY command is

VERIFY
The format of the listing is as follows:

INPUT FILES = MASTER, UPDATE
OUTPUT FILE = NEWMASTER

*For 3000 systems which are not Series II, the type =

LONG has a length of 6.
4-3

Stand-Alone Merge Program

KEY ASC/
POSITION LENGTH TYPE DESC
50 5 BYTE ASC (MAJOR
KEY)
1 10 DISPLAY DESC

21 9 PACKED ASC

4-13. END COMMAND

The END command indicates that there are no more com-
mands and that the merge should begin. The form of the
END command is

END

4-14. STATISTICS

When a merge is completed, the Merge program prints
statistics, as follows:

NUMBER OF INPUT FILES = 3

NUMBER OF RECORDS = 100,000
RECORD SIZE (IN BYTES) = 100

SPACE AVAILABLE (IN WORDS) = 15,325
NUMBER OF COMPARES = 167,012

CPU TIME (MINUTES) = 3.25

ELAPSED TIME (MINUTES) = 9.73

Parameters whose meanings are not self evident are:

SPACE AVAILABLE
the number of words in the working space for the
Merge procedures.

NUMBER OF COMPARES
the number of comparisons made between records.

CPU TIME
CPU time expended between the start and end of the
Merge program.

ELAPSED TIME

real time between start and end of the Merge prog-
ram.

44

32214B

4-15. CONTROL Y

During the running of the stand-alone Merge program, it is
possible to obtain the status of the merge by typing CON-
TROL Y. This feature is available only if the program is
being run in interactive mode. The format of the output is
as follows:

1234 RECORDS HAVE BEEN OUTPUT

4-16. RUNNING THE STAND-ALONE
MERGE PROGRAM IN INTERAC-
TIVE SESSION

Figures 4-1 and 4-2 illustrate how to run the stand-alone
Merge program during an interactive session. Note that
the MAXDATA = segsize parmeter is not used in the :RUN
MERGE.PUB.SYS commands (which is normal unless ex-
ceptionally large files are being merged).

In Figure 4-1, the INPUT files specified were MAIL1 and
MAIL2 and the OUTPUT file was specified as MAIL3. The
merged OUTPUT file (MAIL3) will be saved as MAIL3 on
disc.

In Figure 4-2, $STDLIST was specified as the OUTPUT file
and the merged records were listed on the terminal (the
merged file will not be saved in this case).
Note: The Merge program does not allow the

use of the asterisk (*) to send the merged

records to the LIST file. $STDLIST must

be used, therefore,if you want the merged
output records listed on the terminal.

4-17. RUNNING THE STAND-ALONE
MCE)FD!EE PROGRAM IN BATCH

Figure 4-3 demonstrates the use of the stand-alone Merge
program in batch mode.

The commands used were as follows:
:JOB MANAGER.SCR
:RUN MERGE.PUB.SYS
INPUT MAIL1,MAIL2
OUTPUT $STDLIST
KEY 11,9
KEY 1,10
END

:EQJ

32214B Stand-Alone Merge Program

t RUN MERGE . PUB.SYS
HP32214B.08.00 MERGE/ 3088 FPRI, JAN 17, 1975, 2:57 PM

> INPUT MAIL1,MAIL2

>»0UTPUT MAILJ

>KEY 11,951,180

>»END

PURGE OLD OUTPUT FILE MAIL3.PUB.GOODWIN ? YES

STATISTICS
NUMBER OF INPUT FILES = 2 Computer
NUMBER OF RECORDS = 25 Museum
RECORD SIZE (IN BYTES) = 72
SPACE AVAILABLE (IN VWORDS) = 13, 368
NUMBER OF COMPARES = 21
CPU TIME (MINUTES) = «31
ELAPSED TIME (MINUTES) = « 37

END OF PROGRAM

Figure 4-1. Running the Stand-Alone Merge Program in Interactive Session

4-5

Stand-Alone Merge Program

32214B

¢ RUN MERGE.PUB.SYS

HP32214B.0@.02 MERGE/ 323@ TUE, JAN 21,

> INPUT MAIL 1,MAIL2
>0UTPUT S$STILIST

>KEY 11,9

>KEY 1,18

>END

PLAINS ANTELOPE 2721 OPENSPACE AVE
L0OIS ANYONE 6193 COURT ST
KING ARTHUR 329 EXCALIBUR ST
ALl BABA 49 THIEVES VWAY
BLACK BEAR 47 ALLOVER DR
JOHN BIGTOWN 96S APPIAN VAY
KNEE BUCKLER 974 FISTICUFF DR
SWASH BUCKLER 497 PLAYACTING CT
ANIMAL CRACKERS 1208 ANYWHERE PL
MULE DEER 963 FOREST PL
WHITETAIL DEER 34 WOODSY PL.
JAMES DOE 4193 ANY ST

JANE DOE 3959 TREEWOOD LN
PRAIRIE DOG 493 ROLLINGHILLS DR
JOHN DOUGHE 239 MAIN ST
MALLARD DUCK 79 MARSH PL

JENNA GRANDTR 493 TWENTIETH ST
KARISSA GRANDTR 7917 BROADMOOR WAY
SNOWSHOE HARE 742 FRIGID WAY
MOUNTAIN LION 796 KING DR

SPACE MANN 9999 GALAXY VAY
SWAMP RABBIT 4444 DAMPLACE RD
NASTY RATTLER 243 DANGER AVE
BIGHORN SHEEP 999 MOUNTAIN LR
GREY SQUIRREL 432 PLEASANT DR

STATISTICS

NUWBER OF INPUT FILES =
NUWBER OF RECORDS =

RECORD SIZE (IN BYTES) =
SPACE AVAILABLE (IN WORDS) =
NUWBER OF COMPARES =

CPU TIME (MINUTES) =

ELAPSED TIME (MINUTES) =

END OF PROGRAM

1975, 10:48 A4

BIGCOUNTRY
METROPOLIS
CAMELOT
SESA1E
ANYWHERE
MMETROPOLIS
PUGILIST
MOVIETOWN
ALLOVER
HIGHCOUNTRY

BACKCOUNTRY @

ANYTOWN
BIGTOWN
OPENSPACE
HOMETOWN
PUDDL EDUCK
PROGRESSIVE
BIGTOWN
COLDSPOT
THICKET
UNIVERSE
BAYOU
DESERTVILLE
HIGHPLACE
FALLCOLORS

49391
29118
61322
69142
22111

22913

24321
61497
eannl
97643
21341
22133
21843
24321
26999
97432
61335
21799
37434
37643
61239
79999
87654
34567
14321

369-732-4321
619-732-4997
812-230-2100
NONE

NONE

619-477-2314
976-299-2992
NONE

231-132-192a9
9AA=493=9302
619-433-4333
237-408-7120
714~-399-4563
992-419~-4192
714-411-1123
492-492-4922
799-191-9191
713-244-3717
732-732-7320
712=-712-7122
231-999-9999
NONE

828-432~4321
T776=-439-9349
619-619-6199

Figure 4-2. Use of $STDLIST to List the Merged Records on the Terminal

32214B

Stand-Alone Merge Program

tJOB MANAGER,SCRy
PRI= DS3 INPRI= 133
JOB NUMBER = #J15
WEDy JUAN 159 1975,
HP32000C.F0.25

PUB
TIME= ?

1131 PM

tRUN MERGE .PUB.SYS

HP32214B,00,00 MERGE/3000 WED. JAN 15,

INPUT MAIL1.MAILZ
OUTPpUT S$STDLIST

KEY 1149

KEY 1410

END

PLAINS ANTELOPE 201 OPENSPACE AVE
LOIS ANYONE 6190 COURT ST
KING ARTHUR 329 EXCALIBUR ST
ALl BABA 40 THIEVES way
BLACK BEAR 47 ALLOVER DR
JOHN BIGTOWN 965 APPIAN WAY
KNEE BUCKLER 974 FISTICUFF DR
SWASH BUCKLER 497 PLAYACTING CT
ANIMAL CRACKERS 1000 ANYWHERE PL
MULE DEER 963 FOREST PL
WHITETAIL DEER 34 WOODSY PL
JAMES DOE 4193 ANY ST

JANE DOE 3959 TREEWOOD LN
PRAIRIE DOG 493 ROLLINGHILLS DR
JOHN NOUGHE 239 MAIN ST

MAL LARD puck 79 MARSH PL

JENNA GRANDTR 493 TWENTIETH ST
KARISSA GRANDTR 7917 BROADMOOR WAY
SNOWSHOE HARE 742 FRIGID wWAY
MOUNTAIN LION 796 KING DR

SPACE MANN 9999 GALAXY WAY
SWAMP RARBIT 4444 DAMPPLACE RD
NASTY RATTLER 243 DANGER AVE
BIGHORN SHFEP 999 MOUNTAIN DR
GREY SQUIRREL 432 PLEASANT DR

STATISTICS

NUMBER OF INPUT FILES =
NUMBER OF RECORDS =

RECORD SIZE (IN BYTES) =
SPACE AVAILABLE (IN WORDS) =
NUMBER OF COMPARES =

CPU TIMF (MINUTES) =

ELAPSED TIME (MINUTES) =

END OF PROGRAM
1EO0V

CPU (SEC) = 5
ELAPSED (MIN) =]
WED, JAN 15+ 1975,
END OF u08

1131 PM

1975,

BIGCOUNTRY
METROPOLIS
CAMELOT
SESAME
ANYWHERE
METROPOLIS
PUGILIST
MOVIETOWN
ALLOVER
NICECOUNTRY
BACKCOUNTRY
ANYTOWN
BIGTOWN
OPENSPACE
HOME TOWN
PUDDLEDUCK
PROGRESSIVE
8I1G10wWN
cOLDSPOT
THICKET
UNIVERSE
BAYUU
DESERTVILLE
HIGHPLACE
FALLCOLORS

25

80
13,368
21

«01
02

1131 PM

49301
20225
61322
69142
00111
20113
04321
61497
00001
97643
01341
00133
21843
24321
26999
97432
61335
21799
37434
37643
61239
79999
87654
34567
14321

369=-T32-4821
619=-732-4997
812=-200-0100
NONE

NONE

619=407=-2314
976=299=2990
NONE

001-100-1000
493-900-9000
619-433-4333
237-408=-7100
714=399=-4563
992=-419-4192
T14-411-1123
492-492=4922
799-191-9191
T13=244=3717
732~732=-7320
712=712=-T122
231=-999-9999
NONE

828~432-4321
776=409=-9040
619-619-6199

Figure 4-3. Running the Stand-Alone Merge Program in Batch Mode

RUNNING THE MERGE PROGRAM
FROM A USER PROGRAM | v

SECTION

You can run the Merge program from an SPL/3000 or
FORTRAN/3000 program through the use of intrinsic calls.
There are three programmatically callable intrinsics, as
follows:

MERGE
MERGEERRORMESS
MERGETITLE

These intrinsics (in the form of SPL/3000 procedures) re-
side in the system segmented library (SL.PUB.SYS) in the
segment MERGELIB.

The procedures are described in the following paragraphs
and their forms (in SPL/3000) are shown. It is necessary for
you to know the forms of the various procedures so that you
may provide parameters in the correct order (and of the
correct type) in your intrinsic calls from SPL/3000 and
FORTRAN/3000. See the System Programming Language
Reference Manual for further descriptions of SPL/3000
procedures.

The Merge program operates in the minimum HP 3000
memory size. Performance can be improved, however, by
increasing the amount of memory available if the files
being merged and/or the output file reside on the same
device. A larger stack will enable Merge to read/write
more records consecutively from/to the same file, thereby
reducing the number of disc arm movements. When you
are calling the Merge intrinsics from your program, you
must ensure that Merge obtains sufficient stack space by
using the MAX-DATA = segsize parameter when your
program is being prepared. A segsize of 4000 was used in
the examples provided in this section (see paragraphs 5-15
and 5-16).

5-1. MERGE PROCEDURE

The MERGE procedure is called to merge one or more files,

each of which has been sorted previously. The form of the
MERGE procedure is

PROCEDURE MERGE
(NUMINPUTFILES,INPUTFILES,
OUTPUTFILE,KEYSONLY,NUMKEYS,KEYS,
PREPROCESSOR,POSTPROCESSOR,ERRORPROC,
KEYCOMPARE,STATISTICS,FAILURE);

VALUE NUMINPUTFILES,0UTPUTFILE,
KEYSONLY,NUMKEYS;

INTEGER NUMINPUTFILES,OUTPUTFILE,
NUMKEYS;

LOGICAL KEYSONLY,FAILURE;

INTEGER ARRAY INPUTFILES,KEYS,STATISTICS;

PROCEDURE PREPROCESSOR,POSTPROCESSOR,
ERRORPROC;

LOGICAL PROCEDURE KEYCOMPARE;

OPTION VARIABLE, EXTERNAL;

The parameters for the MERGE procedure are described in
the following paragraphs.

5-2. NUMINPUTFILES PARAMETER

NUMINPUTFILES is the number of input files which are
to be merged. This parameter must be at least one, and is
not optional.

5-3. INPUTFILES PARAMETER

INPUTFILES is an array which contains the MPE/3000
file numbers of the files to be merged. These file numbers
appear in locations INPUTFILES(0) through
INPUTFILES(NUMINPUTFILES - 1). This parameter is
not optional.

5-4. OUTPUTFILE PARAMETER

OUTPUTFILE is the MPE/3000 file number of the file to
which the merged records are to be written. If OUTPUT-
FILE is not specified in your MERGE call, the records are
not written anywhere. In that case, the parameter POST-
PROCESSOR (see paragraph 5-8) must be specified.

5-5. KEYSONLY PARAMETER

KEYSONLY indicates whether entire records or keyfields
only will be output. If KEYSONLY is true, only the
keyfields, concatenated together with the major key on the
left, are output. Otherwise, the entire record is output. If
KEYSONLY is true, the parameter KEYCOMPARE may
not be specified. The default for KEYSONLY is falge.

5-6. NUMKEYS AND KEYS PARAMETERS

NUMKEYS and KEYS specify how the records are to be
ordered. If either is specified, the other must be also. These
parameters must be specified if and only if KEYCOMPARE
is not. NUMKEYS is the number of keys to be used in the
compare. It must be at least one. KEYS is an array which
specifies how the records are to be compared. It contains
three words for each key field, as follows:

WORD 0 =
position within record of the first character of the key.
(The first character of the record is position 1.)

WORD 1 =
number of bytes in the key.

WORD 2 (bits 0 through 7) =
0 for ascending key, 1 for descending key.

51

Calling The Merge Program

WORD 2 (bits 8 through 15) =
gives type of data, as follows:

0 =
logical or character

1 =
two’s complement (including integer and dou-
ble)

2 =
floating point

3=
packed decimal

4 =
numeric display

5 =
packed decimal with even number of digits

5-7, PREPROCESSOR PARAMETER

PREPROCESSOR is a procedure which, if specified, is cal-
led whenever a record is read from any of the input files.
The form of this procedure is

PROCEDURE PREPROCESSOR(FILE,RECORD,
LENGTH);

INTEGER FILE,LENGTH;
BYTE ARRAY RECORD;
where

FILE

is the index to the array INPUTFILES of the file from
which the record was read. This index has a value
between 0 and NUMINPUTFILES - 1.

RECORD
is the data record.

LENGTH
is the number of characters in the record.

5-8. POSTPROCESSOR PARAMETER

POSTPROCESSOR is a procedure which, if specified, is
called before each record is sent to the OUTPUTFILE.
Either this parameter or OUTPUTFILE (or both) must be
specified. The form of this procedure is

PROCEDURE POSTPROCESSOR (RECORD,
LENGTH);

INTEGER LENGTH,;

BYTE ARRAY RECORD;

52

32214B

where

RECORD
is the data record.

LENGTH
is the number of characters in the record.

5-9. ERRORPROC PARAMETER

The ERRORPROC procedure is a user-supplied procedure,
and, if specified in your call to MERGE, must be called from
your program and used in conjunction with the
MERGEERRORMESS procedure (see paragraph 5-13).

ERRORPROC, if specified, is called programmatically
whenever a fatal error occurs in the MERGE procedure.
The form of this procedure is

PROCEDURE ERRORPROC(ERRORCODE);

INTEGER ERRORCODE;

ERRORCODE is the Merge program error number which is
passed to ERRORPROC when an error occurs. If ERROR-
PROC is not specified, a default procedure is used. The
default procedure simply prints an error message which
corresponds to ERRORCODE. For a list of these errors, see
Section VI.

510. KEYCOMPARE PARAMETER

The KEYCOMPARE parameter is a user-supplied logical
procedure which must be specified in your call to MERGE if
you did not specify NUMKEYS and KEYS. If KEYCOM-
PARE is specified, it will be called from your program
whenever two records must be compared. The form of this
procedure is

LOGICAL PROCEDURE KEYCOMPARE
(REC1,LEN1,REC2,LEN2);

BYTE ARRAY REC1,REC2;
INTEGER LEN1,LEN2;
where

REC1 and REC2
are pointers to the two records.

LEN1 and LEN2
are the lengths of the respective records in bytes.

The KEYCOMPARE procedure will return a true value if
RECI1 is to precede REC2, and a false value otherwise. True
also will be returned in case of ties. This ensures that
records from input files earlier in the list will precede those
from input files later in the list.

32214B

5-11. STATISTICS PARAMETER

STATISTICS is an array which, if specified, is filled with
the following data:

WORD 0 =
number of input files.

WORDS 1 and 2 =
number of records merged (double integer)

WORD 3 =
space available for merging.

WORD 4 and 5 =
number of comparisons (double integer).

WORDS 6 and 7 =
CPU time (milliseconds) (double integer).

WORDS 8 and 9 =
elapsed time (milliseconds) (double integer).

5-12. FAILURE PARAMETER

FAILURE is a logical variable which, if specified, is set to
—1(true) if a fatal error occurred, and to 0 (false) otherwise.

Error conditions:

CCE
no error occurred (FAILURE set to false)

CCG
an error occurred (FAILURE set to true)

5-13. MERGEERRORMESS PROCEDURE
The MERGEERRORMESS procedure is used to convert
MERGE error codes into ASCII strings. This procedure
normally is used only when you provide your own ERROR-
PROC procedure. The form of the MERGEERRORMESS
procedure is

PROCEDURE MERGEERRORMESS
(ERRORCODE MESSAGE,LENGTH);

VALUE ERRORCODE;
INTEGER ERRORCODE,LENGTH,;
BYTE ARRAY MESSAGE;

OPTION EXTERNAL;

Calling The Merge Program

where:

ERRORCODE
is the MERGE error number which is passed to ER-
RORPROC when an error occurs.

MESSAGE
is a byte array into which the message is placed. It
must be at least 72 bytes long.

LENGTH
is the (positive) length of the message, in bytes.

5-14. MERGETITLE PROCEDURE

The MERGETITLE procedure prints the version of the
MERGELIB segment which is being used, along with the
date and time as produced by the library procedure
DATELINE. The form of the MERGETITLE procedure is

PROCEDURE MERGETITLE;
OPTION EXTERNAL;

The MERGETITLE message appears on the job list device
as follows:

HP32214B.00.00 MERGE/3000 WED,JAN 22, 1975, 8:43
AM

5-15. CALLING THE MERGE PROGRAM
FROM SPL/3000

Figure 5-1 provides an example of how to call Merge from
an SPL/3000 program. Note that the MAXDATA = 4000
parameter is appended to the :PREP command.

5-16. CALLING THE MERGE PROGRAM
FROM FORTRAN/3000

When calling Merge from a FORTRAN/3000 program, the
same conventions must be observed as explained in Section
II, paragraph 3-18.

Figure 5-3 provides an example of how to call Merge from

FORTRAN/3000. Note that the MAXDATA = 4000
parameter is appended to the :PREP command.

5-3

Calling The Merge Program

32214B

$SPL SPLTESTS

PAGE 0001 HP32100A« 04468

20001080 00060
20002000 ©OOGO00
20003080 ©OG0C0
00004000 00000
00025080 0000e
200060080 0000Q
00007000 0O0C0
000080008 00204
33009500¢ ©0884
00010000 00004
20011080 00007
00212000 00007
00213000 000087
00014000 00067
20015000 006007
20016000 oOGB7
20217002 006267
00018000 00007
00019000 00011
00020000 00022

$SCONTROL USLINIT

<< SPL MERGE EXAMPLE >>

<< MERGE FILES MAIL]1 AND MAIL2 >>

<< (WHICH HAVE BEEN SORTED) >>

<< INTO ONE FILE (TEST) »>>

BEGIN

BYTE ARRAY MAIL1(@3:5):='"MAIL] "
BYTE ARRAY MAIL2(@:S5):="MAIL2 *;
BYTE ARRAY TEST(@:14)3=™TEST *;
ARRAY ERROR(@:6):s"ERROR IN MERGE"S
ARRAY BUF(@135);
ARRAY KEYS(@:15);
INTEGER ARRAY INFILES(@:1);
INTEGER OPOUT,L ENS
LOGICAL FAILURES

%]

[*]

]

%]

]

%]

1

1

1

1

1

1

1

1

1

1

1 << OPEN FILES >>

1 INFILES(@):=FOPEN(MAIL1, X685, X385);
1 INFILES(C]1)s=FOPEN(MAILZ2, X605, X305);
1 OPOUT:=FOPEN(TEST, X605, X305) 3
00021000 080032 1 << ESTABLISH KEYS »>>

20922000 9200232 1| << MAJOR AT 11 FOR 9 BYTES (LAST NAME) >>
20023000 080632 | << MINOR AT 1 FOR 1@ BYTES (FIRST NAME) >>
90024000 000632 1 KEYS(@):=11:

20025000 00035 1 KEYS(1):=9;

00026000 00040 | KEYS(2):=0;

00027000 00043 1 KEYS(3):=1;

00028000 00046 1 KEYSC4):=10;

20029000 020051 | KEYS(5):1=0;

00030000 006654 | << CALL MERGE >>

20231000 020654 1 MERGE(2, INFILES, OPOUT,, 2, KEYS);
00032000 00065 1 IF <> THEN GOTO MERGERR:

2806330060 00066 | << QUTPUT MERGED FILE »>>

00033100 00666 1 << RESET OUTPUTFILE TO RECORD 1 >>
20033202 20866 1 FPOINT(OPOUT, 0D);

000340606 00071 1 DISPLAY:

¢80635008 80871 1 BEGIN

20036000 G06871 2 LEN:=FREAD(OPOUT, BUF, 36);
00037008 000877 2 IF > THEN GOTO STOP;

000380008 00100 2 PRINT(BUF,LEN, @)3

20039000 60104 2 GOTO DISPLAY;

00040008 00114 2 END;

20041000 00114 1 MERGERR:

20042000 00114 | PRINT(ERROR, 7, 8);

00043008 00120 | STOP:

00044208 00120 | END.

PRIMARY DB STORAGE=2012; SECONDARY DB STORAGE=208974
NO. ERRORS=000: NO. WARNINGS=20@
PROCESSOR TIME=0:00:04; ELAPSED TIME=0:84:51

END OF COMPILE

INTRINSIC FOPEN,FREAD, FPOINT, PRINT,MERGE3;

Figure 5-1. Program 11. Calling the Merge Program from SPL/3000

5-4

32214B Calling The Merge Program

st BUILD PROG115CODE=PROG
$ PREP $SOL DPASS, PROG113MAXDATA=4000
END OF PREPARE

s RUN PROG11

PLAINS ANTELOPE 201 OPENSPACE AVE BIGCOUNTRY WY 49321 369-732-482]

LO1S ANYONE 6198 COURT ST . METROPOLIS NY 20115 619-732-4997
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 gl12-200-010¢
ALl BABA 40 THIEVES VAY SESAME CO 69142 NONE

BLACK BEAR 47 ALLOVER DR ANYWHERE US 26111 NONE

JOHN BIGTOWN 965 APPIAN VAY METROPOLIS NY 20013 619-497~2314
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND 9432] 976-299-2990
SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN CA 61497 NONE

ANIMAL CRACKERS 1008 ANYWHERE PL ALLOVER US 000021 021-100-10080
MULE DEER 963 FOREST PL HIGHCOUNTRY CA 97643 904-493-9000
WHITETAIL DEER 34 WOODSY PL BACKCOUNTRY ME 91341 619-433-4333
JAMES DOE 4193 ANY ST ANY TOWN MD 00133 237-408-710¢
JANE DOE 3959 TREEWOOD LN BIGTOWN MA 21843 714-399-4563
PRAIRIE DOG 493 ROLLINGHILLS DR OPENSPACE ND 24321 992-419-4192
JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 T714-411-1123
MALLARD DUCK 79 MARSH PL PUDILEDUCK CA 97432 492-492-4922
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191~-9191
KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA 21799 713-244-3717
SNOWSHOE HARE 742 FRIGID VAY COLDSPOT MN 37434 732-732-7320
MOUNTAIN LION 796 KING DR THICKET NM 37643 712-712-7122
SPACE MANN 9999 GALAXY WAY UNIVERSE CA 61239 231-999-9999
svamMp RABBIT A444 DAMPLACE RD BAYOU LO 79999 NONE

NASTY RATTLER 243 DANGER AVE DESERTVILLE CA 87654 828-432-4321
BIGHORN SHEEP 999 MOUNTAIN DR HIGHPLACE CO 34567 776~409-9040
GREY SQUIRREL 432 PLEASANT DR FALLCOLORS MA 14321 619-619-6199

END OF PROGRAM

Figure 5-2. Program 11 Output

5-5

Calling The Merge Program

32214B

t FORTRAN XMPL7

PAGE 0001 HP32102A01+4

292821009 S$CONTROL INIT,FILE=20,FILE=21,FILE=22

20002000 PROGRAM XMPL7

200030200 CHARACTER BUFx*72

00024000 INTEGER KEYS(6), FNUM, INFILES(2)

20005000 LOGICAL FAILURE

202206008 C

P2208700@ C MERGE TWO SORTED FILES (MAIL1 (FTN23) AND MAIL2 (FTN21))
290780008 C INTO A THIRD FILE (MAIL3 (FTN22))

20009008 C

20010000 C ESTABLISH KEYS - MAJOR AT 11 FOR 9 BYTES (LAST NAME)
?2211292 C MINOR AT 1 FOR 1@ BYTES (FIRST NAME)

20912000 C

200213000 KEYS(1)=11

20014000 KEYS(2)=9

20015000 KEYS(3)=0

20016000 KEYS(4)=1

20017000 KEYS(5)=10

20218000 KEYS(6)=0

200219000 C

99020009 C ESTABLISH NUMBERS FOR INPUT FILES (MAIL1 AND MAIL2)
ooe21000 C

20022000 INFILES(1)=FNUM(20)

20023000 INFILES(2)=FNUM(2])

20024000 C

22925000 C INITIALIZE MERGE - 2 KEYS ARE SPECIFIED

20026000 C

20027000 CALL MERGE(\2\, INFILES,\FNUM(22)\,\@\,\2\,KEYS,
20028000 FAONLN\2\L\D\,\O\,\O\, FAILURE, \27301\)

20029000 IFC(FAILURE)STOP 10

2003090200 C

200831200 C READ AND DISPLAY OUTPUT FILE

20932000 C

20233000 REWIND 22

20034000 20 READ(22, END=30)BUF

29035000 DISPLAY BUF[1:721

20036000 GO TO 290

20037000 30 STOP

20038000 END

****x NO ERRORS, NO WARNINGS3 PROGRAM UNIT COMPILED k*x*x*%
COMPILATION TIME 1.699 SECONDS ELAPSED TIME 155.120 SECONDS
TOTAL COMPILATION TIME @2:00:02

TOTAL ELAPSED TIME 2:02:49

END OF COMPILE

5-6

Figure 5-3. Program 12. Calling the Merge Program from FORTRAN/3000

32214B Calling The Merge Program

. $ BUILD PROG123 CODE=PROG
t PREP SOLDPASS, PROG12;MAXDATA=4000
END OF PREPARE
sFILE FTN20=MAIL1,0LD
tFILE FTN21=MAIL2,0LD
tFILE FTN22=MAIL3,0LD
tRUN PROG12
PLAINS ANTELOPE 281 OPENSPACE AVE BIGCOUNTRY WY 49301 369-732-4821
LOIS ANYONE 6198 COURT ST METROPOLIS NY 28115 619-732-4997
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 812~-200-0100
ALl BABA 40 THIEVES WAY SESAME CO 69142 NONE
BLACK BEAR 47 ALLOVER DR ANYWHERE US 84111 NONE
JOHN BIGTOWN 965 APPIAN WAY METROPOLIS NY 20013 619~407-2314
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND 24321 976~299-2990
‘ SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN CA 61497 NONE
ANIMAL CRACKERS 100@ ANYWHERE PL ALLOVER US 00001 001-100-1000
MULE DEER 963 FOREST PL HIGHCOUNTRY CA 97643 980-493-9000
WHITETAIL DEER 34 WOODSY PL BACKCOUNTRY ME ©1341 619-433-4333
JAMES DOE 4193 ANY ST ANY TOWN MD 00133 237-408-7100
JANE DOE 3959 TREEWOOD LN BIGTOWN MA 21843 714~399-4563
PRAIRIE DOG 493 ROLLINGHILLS DR OPENSPACE ND 24321 992-419-4192
. JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 714-411-1123
MALLARD DUCK 79 MARSH PL PUDILEDUCK CA 97432 492-492-4922
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191-9191
KARISSA GRANDTR 7917 BROAIMOOR WAY BIGTOWN MA 21799 713-244-3717
SNOWSHOE HARE 742 FRIGID WAY COLDSPOT MN 37434 732-732-7320
MOUNTAIN LION 796 KING DR THICKET NM 37643 712-712-7122
. SPACE MANN 9999 GALAXY WVAY UNIVERSE CA 61239 231-999-9999
swaMP RABBIT 4444 DAMPLACE RD BAYOU LO 79999 NONE
NASTY RATTLER 243 DANGER AVE DESERTVILLE CA 87654 828-432-4321
BIGHORN SHEEP 999 MOUNTAIN DR HIGHPLACE CO 34567 T776-409-9344
GREY SQUIRREL 432 PLEASANT DR FALLCOLORS MA 14321 619-619-6199
END OF PROGRAM

Figure 5-4. Program 12 Output

5-7

ERROR MESSAGES AND
RECOVERY PROCEDURES |[v

SECTION

6-1. SORT PROGRAM ERROR MES-
SAGES

Table 6-1 contains a list of error numbers and the corres-
ponding messages which are output by the SORTLIB seg-
ment of the system segmented library. Those messages
which are marked by /O in the second column of the table

also will result in a file information display. Those which
contain LIB in the second column will not be printed by the
stand-alone Sort program but will be printed (if an error
occurs) if the Sort library intrinsics are being called prog-
rammatically. Each of the messages consists of the charac-
ters “SORTLIB:”, followed by the remainder of the mes-
sage.

Table 6-1. SORTLIB Error Messages

ERROR TYPE OF
NUMBER ERROR MESSAGE
1 LIB IF KEYCOMPARE IS SPECIFIED, KEYS AND NUMKEYS MUST NOT BE
2 LiB IF KEYCOMPARE IS NOT SPECIFIED, KEYS AND NUMKEYS MUST BE
3 LIB NO RECLEN PARAMETER SPECIFIED OR < =0
4 LIB KEYCOMPARE MAY NOT BE SPECIFIED IF OUTPUTOPTION > 1
5 110 FREAD ERROR ON SCRATCHFILE
6 LIB ILLEGAL OUTPUTOPTION
7 1’0 SCRATCH FILE CANNOT BE OPENED
8 LIB,I/O FAILURE ON FGETINFO(INPUTFILE)
9 LIB ILLEGAL NUMKEYS
10 KEYFIELD IS NOT WITHIN SPECIFIED RECORD LENGTH
11 LB ILLEGAL ASCENDING/DESCENDING CODE
12 LIB ILLEGAL KEY CODE
13 INSUFFICIENT STACK SPACE
14 INPUT RECORD DOES NOT INCLUDE ALL KEY FIELDS
15 LIB INPUT RECORD IS TOO LONG
16 TOO MANY INPUT RECORDS
17 i/0 FWRITE ERROR ON SCRATCHFILE
18 /O FREAD ERROR ON INPUTFILE
19 11O FWRITE ERROR ON OUTPUTFILE
20 1’0 FCLOSE ERROR ON SCRATCHFILE

6-1

Error Messages

Table 6-2 contains messages which occur in addition to the
SORTLIB messages. Those containing I/O in the second
column also will result in a file information display. Those
marked with HARD in the second column cause the prog-
ram to terminate. All others also cause program termina-
tion, unless the program is being run interactively, in
which case you will be asked to enter the command again.
The stand-alone Sort program commands listed in the
fourth column of the table are those commands which can
cause the error to occur.

MERGE PROGRAM ERROR MES-
SAGES

6-2.

Table 6-3 contains a list of error numbers and the corres-
ponding messages which are output by the MERGELIB
segment of the system segmented library. Those messages
which contain I/O in the second column of the table also will
result in a file information display. Those which contain
LIB in the second column will not be printed by the stand-
alone Merge program but will be printed (if an error occurs)
if the Merge library intrinsics are being called program-
matically. Each of the messages consists of the characters
“MERGELIB:”, followed by the remainder of the message.

Table 6-4 contains a list of the error numbers and the
corresponding messages which occur in addition to the

32214B

MERGELIB messages. Those containing I/O in the second
column also will result in a file information display. Those
marked with HARD in the second column cause the prog-
ram to terminate. All others also cause program termina-
tion unless the program is being run interactively, in which
case you will be asked to enter the command again. The
stand-alone Merge program commands listed in the fourth
column of the table are those commands which can cause
the error to occur.

6-3. RECOVERY PROCEDURES

If you wish your program to continue when SORTLIB er-
rors occur, your program must call SORTEND in order to
restore the stack to its original condition. The remainder of
your program then will continue to run.

When an error occurs in the MERGELIB procedures (.e.,
when the program is being called from your program), no
recovery is necessary since the procedure returns directly
to your program.

Errors which occur when the stand-alone Sort or Merge
programs are being run in batch mode are not recoverable
and the programs will abort. In interactive mode, however,
syntax errors are recoverable and you will be asked to enter
the command again.

Table 6-2. Sort Program Error Messages

ERROR TYPE OF
NUMBER ERROR MESSAGE COMMAND
1 /O,HARD FAILURE ON FOPEN OF LIST FILE
2 HARD LIST FILE IS READ-ONLY
3 YO, HARD FAILURE ON FOPEN OF TEXT FILE
4 HARD TEXT FILE IS WRITE-ONLY
5 ILLEGAL COMMAND
6 NO KEYS WERE SPECIFIED END
7 FILENAME CANNOT EXCEED 35 CHARACTERS INPUT,
OUTPUT
8 MISSING COMMA INPUT,
OUTPUT,
KEY
9 ILLEGAL NUMBER OF RECORDS INPUT
10 NUMBER OF RECORDS TOO LARGE OR TOO SMALL INPUT
11 ILLEGAL RECORD SIZE INPUT

6-2

32214B

Table 6-2. Sort Program Error Messages (Continued)

Error Messages

ERROR TYPE OF
‘ NUMBER ERROR MESSAGE COMMAND
12 RECORD SIZE TOO LARGE OR TOO SMALL INPUT
13 TOO MANY PARAMETERS INPUT,
OUTPUT,
KEY,
RESET,
VERIFY,
END
14 I/0, HARD FAILURE ON FOPEN OF INPUT FILE END
15 MISSING NUM OR KEY OUTPUT
16 ILLEGAL POSITION KEY
‘ 17 POSITION OUT OF RANGE KEY
18 MISSING PARAMETER INPUT,
OUTPUT,
KEY
19 LENGTH OUT OF RANGE KEY
20 LENGTH PARAMETER NOT AN INTEGER KEY
21 LENGTH NOT SPECIFIED FOR TYPE BYTE, PACKED, DISPLAY KEY
. 22 MISSING DESC KEY
23 HARD INPUT FILE IS WRITE-ONLY END
24 I/0, HARD FAILURE ON FOPEN OF OUTPUT FILE END
25 HARD OUTPUT FILE IS READ-ONLY END
26 /10 FAILURE ON FCLOSE OF OUTPUT FILE
. 27 SUM OF KEYFIELD SIZES TOO LARGE
28 1’0 FAILURE ON PURGE OF OLD OUTPUT FILE
29 1’0 FAILURE ON FOPEN OF OLD OUTPUT FILE
30 1’0 FAILURE ON FRENAME OF OUTPUT FILE
31 I/0, HARD FAILURE ON FWRITE OF PROMPT FILE
32 /0, HARD FAILURE ON FREAD OF TEXT FILE

6-3

Error Messages

32214B

Table 6-3. MERGELIB Error Messages

ERROR TYPE OF
NUMBER ERROR MESSAGE
1 LIB NO NUMINPUTFILES PARAMETER SPECIFIED
2 LIB ILLEGAL NUMINPUTFILES
3 LIB NO INPUTFILES PARAMETER SPECIFIED
4 LiB NEITHER OUTPUTFILE NOR POSTPROCESSOR PARAMETER SPECIFIED
5 LLIB IF KEYCOMPARE IS SPECIFIED, KEYS AND NUMKEYS MUST NOT BE
6 LIB IF KEYCOMPARE IS NOT SPECIFIED, KEYS AND NUMKEYS MUST BE
7 LIB ILLEGAL NUMKEYS
8 LIB KEYFIELD 1S NOT WITHIN RECORD LENGTH OF EACH FILE
9 LIB ILLEGAL ASCENDING/DESCENDING CODE
10 LIB ILLEGAL KEY CODE
11 LIB, /O FAILURE ON FGETINFO(INPUTFILE)
12 110 FREAD ERROR ON INPUT FILE
13 1’0 FWRITE ERROR ON OUTPUT FILE
14 I/O INPUT RECORD DOES NOT INCLUDE ALL KEY FIELDS
15 LIB IF KEYCOMPARE IS SPECIFIED, KEYSONLY MAY NOT BE
16 INSUFFICIENT STACK SPACE

6-4

32214B Error Messages
Table 6-4. Merge Program Error Messages
ERROR TYPE OF
NUMBER ERROR MESSAGE COMMAND

1 I/O,HARD FAILURE ON FOPEN OF LIST FILE

2 HARD LIST FILE IS READ-ONLY

3 I/O, HARD FAILURE ON FOPEN OF TEXT FILE

4 HARD TEXT FILE IS WRITE-ONLY

5 ILLEGAL COMMAND

6 NO KEYS WERE SPECIFIED END

7 FILENAME CANNOT EXCEED 35 CHARACTERS INPUT,
OUTPUT

8 MISSING COMMA INPUT,
OUTPUT,
KEY

9 MISSING PARAMETER INPUT,
OUTPUT,
KEY

10 [LLEGAL NUMBER OF RECORDS OUTPUT

11 NUMBER OF RECORDS TOO LARGE OR TOO SMALL OUTPUT

12 TOO MANY PARAMETERS OUTPUT,
KEY
RESET,
VERIFY,
END

13 HARD INSUFFICIENT SPACE

14 I/0, HARD FAILURE ON FOPEN OF INPUT FILE END

15 ILLEGAL POSITION KEY

16 POSITION OUT OF RANGE KEY

17 LENGTH OUT OF RANGE KEY

18 LENGTH PARAMETER NOT AN INTEGER KEY

19 LENGTH NOT SPECIFIED FOR TYPE BYTE, PACKED, DISPLAY KEY

20 MISSING DESC KEY

21 1/0, HARD INPUT FILE 1S WRITE-ONLY END

22 I/0, HARD FAILURE ON FOPEN OF OUTPUT FILE END

6-5

Error Messages 32214B
Table 6-4. Merge Program Error Message (Continued)

ERROR TYPE OF

NUMBER ERROR MESSAGE COMMAND
23 I/0, HARD OUTPUT FILE IS READ-ONLY END
24 NO INPUTFILES WERE SPECIFIED END
25 FAILURE ON FCLOSE OF OUTPUT FILE
26 SUM OF KEYFIELD SIZES TOO LARGE OUTPUT FILE
27 /0 FAILURE ON PURGE OF OLD QUTPUT FILE
28 /O FAILURE ON FOPEN OF OLD QUTPUT FILE
29 1’0 FAILURE ON FRENAME OF OUTPUT FILE
30 I/O, HARD FAILURE ON FWRITE OF PROMPT FILE
31 I/0, HARD FAILURE ON FREAD OF TEXT FILE

6-6

ASCIl CHARACTER SET

APPENDIX

A

ASClI First Character Second Character
Character Octal Equivalent Octal Equivalent
A 040400 000101
B 041000 000102
[041400 000103
D 042000 000104
E 042400 000105
F 043000 000106
G 043400 000107
H 044000 000110
1 044400 000111
J 045000 000112
K 045400 000113
L 046000 000114
M 046400 000115
N 047000 000116
o 047400 000117 -
P 050000 000120
Q 050400 000121
R 051000 000122
S 051400 000123
T 052000 000124
U 052400 000125
\ 053000 000126
w 053400 000127
X 054000 000130
Y 054400 000131
z 055000 000132
a 060400 000141
b 061000 000142
c 061400 000143
d 062000 000144
e 062400 000145
f 063000 000146
g 063400 000147
h 064000 000150
i 064400 000151
j 065000 000152
k 065400 000153
| 066000 000154
m 066400 000155
n 067000 000156
[¢] 067400 000157
p 070000 000160
q 070400 000161
r 071000 000162
s 071400 000163
t 072000 000164
u 072400 000165
v 073000 000166
w 073400 000167
X 074000 000170
y 074400 000171
2z 075000 000172
0 030000 000060
1 030400 000061
2 031000 000062
3 031400 000063
4 032000 000064
5 032400 000065
6 033000 000066
7 033400 000067
8 034000 000070
9 034400 000071
NUL 000000 000000
SOH 000400 000001
STX 001000 000002
ETX 001400 000003
EOT 002000 000004
ENQ 002400 000005

ASCIl First Character Second Character
Character Octal Equivalent Octal Equivalent
ACK 003000 000006
BEL 003400 000007
BS 004000 000010
HT 004400 000011
LF 005000 000012
vT 005400 000013
FF 006000 000014
CR 006400 000015
SO 007000 000016
Sl 007400 000017
DLE 010000 000020
DC1 010400 000021
DC2 011000 000022
DC3 011400 000023
Dc4 012000 000024
NAK 012400 000025
SYN 013000 000026
ETB 013400 000027
CAN 014000 000030
EM 014400 000031
SUB 015000 009032
ESC 015400 000033
FS 016000 000034
GS 016400 000035
RS 017000 000036
us 017400 000037
SPACE 020000 000040
! 020400 000041
" 021000 000042
021400 000043
$ 022000 000044
% 022400 000045
& 023000 000046
’ 023400 000047
{ 024000 000050
) 024400 000051
* 025000 000052
+ 025400 000053
. 026000 000054
- 026400 000055
. 027000 000056
/ 027400 000057
: 035000 000072
; 035400 000073
< 036000 000074
= 036400 000075
> 037000 000076
? 037400 000077
@ 040000 000100
[055400 000133
\ 056000 000134
) 056400 000135
A 057000 000136
- 057400 000137
{‘ 060000 000140
075400 000173
| 076000 000174
} 076400 000175
~ 077000 000176
DEL 077400 000177
First Character Second Character
a A\
L l |

[of1]2]s]4]s]e]7[s]s

10[11[12

.13|14|1ﬂ

A-1

INDEX

Account name, 2-8
Account password, 2-8
Aoptions
Merge program, 4-1
Sort program, 2-1
Ascending sort, 1-2
ASCII Character Set, A-1

Batch mode
Merge program, 4-4
Sort program, 2-10
Byte data, 2-4

Calling the Merge program
from SPL/3000, 5-3
from FORTRAN/3000, 5-3
Calling the Sort program
from SPL/3000, 3-4
Control Y
Merge program, 4-4
Sort program, 2-6
CPU time
Merge Program, 4-4
Sort program, 2-6

:DATA command, 2-7
Data fields, definition of, 1-1
Data stack layout, 3-25
Data types

byte, 2-4

display, 2-5

double, 2-4

integer, 2-4

long, 2-4

packed, 2-4

packed*, 2-5

real, 2-4
Descending sort, 1-2
Display data, 2-5
Double data, 2-4

Elapsed time
Merge program, 4-4
Sort program, 2-6
END command
Merge program, 4-4
Sort program, 2-6
Error messages
MERGELIB, 6-4

Merge program, 6-2

SORTLIB, 6-1

Sort program, 6-1
ERRORPROC parameter

Merge program, 5-2

Sort program, 3-2

FAILURE parameter
Merge program, 5-3
Sort program, 3-3

File definitions
Merge program, 4-1
Sort program, 2-1

Filecode
Merge program, 4-1
Sort program, 2-2

Files, definition of, 1-1

Filesize
Merge program, 4-1
Sort program, 2-2

Foptions
Merge program, 4-1
Sort program, 2-1

Formaldesignator
Merge program, 4-1
Sort program, 2-1

Initialloc
Merge program, 4-1
Sort program, 2-2
INPUT command
Merge program, 4-2
Sort program, 2-3
INPUT file
Merge program, 4-1
Sort program, 2-1
INPUTFILE parameter
Merge program, 5-1
Sort program, 3-1
Inputs to SORT/3000
Integer data, 2-4
Interactive sessions
Merge program, 4-4
Sort program, 2-6
Intermediate passes, 2-6

Jobname, 2-7

KEY command
Merge program, 4-3
Sort program, 2-4

KEYCOMPARE parameter
Merge program, 5-2
Sort program, 3-2
Key formats, 1-3
Keys, definition of, 1-2
KEYSONLY parameter, 5-1
KEYS parameter
Merge program, 5-1
Sort program, 3-2

Length parameter, 2-4
LIST file
Merge program, 4-2
Sort program, 2-2
Long data, 2-4

Major and minor keys, 1-4
MAXDATA, 2-1
MERGEERRORMESS procedure, 5-3
MERGELIB error messages, 6-4
MERGE procedure, 5-1
Merge program

calling programmatically, 5-1

commands, 4-2

description, 1-1

error messages, 6-1

files, 4-1

stand-alone, 4-1
Merge program commands

END, 4-4

INPUT, 4-2

KEY, 4-3

OUTPUT, 4-2

RESET, 4-3

VERIFY, 4-3
Merge program files

INPUT, 4-1

LIST, 4-2

OUTPUT, 4-1

PROMPT, 4-2

TEXT, 4-2
MERGETITLE procedure, 5-3

Number of compares

Merge program, 4-4

Sort program, 2-6
Number of records, 2-3
NUMINPUTFILES parameter, 5-1
NUMKEYS parameter

Merge program, 5-1

Sort program, 3-2
NUM parameter, 2-3
NUMRECS parameter, 3-2

OUTPUT command
Merge program, 4-2
Sort program, 2-3

I-2

OUTPUT file

Merge program, 4-1

Sort program, 2-1
OUTPUTFILE parameter

Merge program, 5-1

Sort program, 3-1
OUTPUTOPTION parameter, 3-2
Output options, 2-2
Outputs from SORT/3000, 1-4

Packed data, 2-4
Packed* data, 2-5
Position parameter, 2-4
POSTPROCESSOR parameter, 5-2
PREPROCESSOR parameter, 5-2
PROMPT file

Merge program, 4-2

Sort program, 2-3

Q register, 3-6

Real data, 2-4
RECLEN parameter, 3-2
Records
definition of, 1-1
example, 1-1
Record size, 2-3
Recovery procedures, 6-2
Recsize
Merge program, 4-1
Sort program, 2-2
RESET command
Merge program, 4-3
Sort program, 2-5
Running the stand-alone Merge program
in batch mode, 4-4
in interactive session, 4-4
Running the stand-alone Sort program
in batch mode, 2-10
in interactive session, 2-6

SCRATCH file, 2-3
Scratchfile I/O’s, 2-6
SORTERRORMESS procedure, 3-4
Sorting order, 1-2
SORTINITIAL procedure, 3-1
SORTINPUT procedure, 3-3
SORTLIB error messages, 6-1
SORTOUTPUT procedure, 3-3
Sort program
calling programmatically, 3-1
commands, 2-3

description, 1-1
error messages, 6-1
files, 2-1
stand-alone, 2-1
Sort program commands
END, 2-6
INPUT, 2-3
KEY, 2-4
OUTPUT, 2-3
RESET, 2-5
VERIFY, 2-5
Sort program error messages, 6-1
Sort program files
INPUT, 2-1
LIST, 2-2
OUTPUT, 2-1
PROMPT, 2-3
TEXT, 2-3
SORTTITLE procedure, 3-4
SORT/3000
description, 1-1
purposes, 1-1
Space available
Merge program, 4-4
Sort program, 2-6
S register, 3-6
Stack limit, 3-6
Statistics

Merge program, 4-4
Sort program, 2-6
STATISTICS parameter
Merge program, 5-3

Sort program, 3-3

TEXT file
Merge program, 4-2
Sort program, 2-3
Treatment of the stack, 3-8

Username, 2-8
User password, 2-8

VERIFY command
Merge program, 4-3
Sort program, 2-5

Z register, 3-6

13

