
HPMe-n,u

, .'; ", ~ .

La" Diner,..i,... ,)

Lunch

-

TraiJ'ning

; ".~f'~·

fB07/84.
3~11g-90008

..~. ,

~.:\.':.i
~rl

J "4! ~ ",1

,'j
,

;in:

..
..::~J l'

., ;,..
: - ..,

Table of Contents

I. Introduction

"'What
"'Who
"'Why
Where
Minimum requirements

II. Features & Functions

Defaults
Cu.stomization
Including UDC's
Listing choices offline
Parameter passing
comrand mode

"'Current Object Store
"'Intrinsics
"'NewReserved Commands
Security
RecO'l)ery

III. Internals

File structure
Debug/tracing
Fatal errors and recovery from them
Compiler access

IV. Performance
Load times
Table usage

"'Whydoes it take so long to load

I
"
e

V. ·Installation
Rtlstmng
Altering the default menu

vt. Limitations

VI.t., Appendix
setting up menus for security
Using menus from another group

VIII. Irtde;:

* Indicates ne~ or modified material for second release.

Introduction

Purpose of this training

This is the second version of the SE training for HPHenu. It is
designed to live the SE a working knowledge of the product.
After completing this traininl, an SE should be able to:

install the product
use customization
convert udc's
set up logon menus
take most PIeS calls on the product
Discuss intrinsics, current object store and parameter passing

The entire training should take bet~een 1 and 2 hours. The
materials necessary to complete this training are:

HPMenu Administration Manual
HPMenu Quick Reference Guide
this booklet

HPMENU
SE

Training 1

OFFICE
PRODUCTS
TRAINING

What exactly Is this product?

HPMenu provides the \iur with a f:.>i~n~ly,menu -ch>iven interface
for transitions between system fur.e~io~2t including ~p products,
user-written applications, and some HPE commands. BPMenu is

h targeted at all HP3000 users. It is easy to learn and the
I' customization facility allows each u~er to tailor his menus to

match his view oftne system. Each aser may have different names
for the same functions and organize them in different ways. A
single user can set up several sets of menu:! corresponding to the
various roles he assumes.
HPMenu shields the novice user by providing the means for him to
invoke system functions without being aware of the MPE program
and file structures which support them. Users select from a menu
by point and push, by number, or by typing in the name of any

; defined function. They can make a menu choice by recognition
rather than recall. In addition, HPMenu does not slow down the
experienced users who are familiar with functions, because they
can type function names for direct access.

The second release of the product provides a simple object
management and current object passing facility. This can be done
both interactively and programmatically. HPMenu provides users
with a programmatically accessable extra data segment containing
a 256 word "Scratchpad" area as well as a current object store.
The current object store sets and yields current object names
(e.g. chart file name) and configuration parameters (e.g. output
device) .

Disclaimer: It should be noted that HPMenuhas no control O'IJer
the actions of any programs that it runs. This means that HPMenu
cannot change interface inconsistencies, error handZing, hard~
and soft1JJa1'erestrictions, or any feature of the program run
under i~, be it a user application or an HP subsystem.

HPMENU
SE

Training 2

OFFICE
PRODUcrs
TRAINING.

Who Is the product for?

The target customers are office workers who are not familiar with
computers and operating systems, and need to have the operation
of MPE transparent to them. The key market ,comprises office
workers.
With the addition of the current object store capability, HPMenu
is now more userful to EDP departments t" connect applications
and pass information from application t,oapplication. Current
applications can be enhanced and new ones written to t~ke
advantage of the parameter passing capability, both interactively
and programmatically.

HPMENUSE
Training 3

OFFICE
PROUllCl'S
TRAINING '1

I
I

_---~.--------------------------r-"""":"""'~---

Why is HPMenu?

The introduction of BPMenu will show the marketplace that HP is
moving towards integrating the existing office capabilities.
HPHenu is the forerunner of a truly integrated word
processing/data processing/graphics capability that will follow.

HPMenu provides the means for tying HP Office Products into a
related set of capabilities which will allow HP to market the HP
office packages and all the office products more effectively.
The operational value of HPMenu is that of making software
applications more accessable to the typical office professional.
HPMenu enhances the usability of the office system. It also
reflects HP's commitment to developing products that make working
easier for the typical office professional.

HPMENU
SE

Training 4

OFFICE
PRODUCTS
TRAINING

Where Is HPMenu resident?

HPMenu is run as a program file from Pub.Sys, BUT it uses
MENUCUST and LOCK files which must reside in the users group and
account.
At the time of installation, the MENUCUST file is restored into
MENUCUST.HPMenu.HPOFFICE. The first modifications to the menus
are made at this time by the system manager to create the system
specific default menus. When the users run HPMenu for the first
time, the program checks for a MENUCUST file in the users group.
When it is not found, the program copies in the system default
from MENUCUST.HPMenu.HPOFFICE. After the default menu has been
copied into the users group. the user can then use the menus and
modify them to meet their group specific needs.

The LOCK file is created by the HPMenu program itself. It is
named MLQ8X2Z. There must be a lock file in the users group in
order for customization to occur.

HPMENU
SE

Training 5

OFFICE
PRODUcrs
TRAINING

~--------------~---~----------

---.-------------- ---------------- ------

OFFICE
PRODUCTS
TRAINING

Minimum Requirements

1 bloek mode terminal
MPE IV (Q HIT or later)
VPLUS (B.03.03)
ND,SF.IA.BA,PH capability in users' croup

rjl'
1,1

1

"

It,
'I,
!

HPMENU
SE 6Training

.-

Features & Functions

-

Default condition

After installation. when the user first types in
:run HPMenu.Pub.Sys

the system default first menu will come up. The installation
default menu is an office oriented one and includes all of the HP
office products and includes some of the common HPE commands. At
the time of installation, the system manager (or installer)
deletes those functions which do not reside on their system. The
result of this first editing are the system specific default
menus and functions.

At the time of this first running, one file is put into the users
group. This is the HENUCUST file. The LOCK file, named HLQ8X2Z
is copied into the group only when customization in invoked. The
lock file locks the whole group during customization. This
protects the HENUCUST file when changes are being made to it.
This way, two individuals customizing at once do not cancel each
others changes. Hore about lock files and customization later.

The * next to a choice means that this is another menu. Office
functions, HPE commands, and Special Function are menus
themselves and contain those types of functions.
HPMenu contains two classes of operators: menus and functions.
FUNCTIONS are those specific commands which invoke a process
(e.g. :run HPDRAW.pub.sys). MENUS are lists of functions or
lists of other menus which contain functions. A function can
appear on more than 1 menu. In this model, functions are like
atoms, menus are like molecules and menus with menus are
compounds.
The default functions contained in each of the installation menus
are as follows:

Office Functions
HPWORD
HPMAIL
Editor
TDP/3000
Inform
HPDRAW
HPEASYCHART
HPSLATE
DSG/3000
HPWORD Utilities

7

MPE COlllll&lld.
Editor
Fcopy
Liltdir2
Lilteq2
List!
List!2
ShotJDev
ShowIn
ShowJob
ShololMe
ShowOut
ShowTime

Other Functions
Learn HPMAIL
Learn Inform

Customization and Command Hode (HPE mode) are not available to
the user in the default state. Customization and Command Hode
have to be specified at the time HPHenu is invoked with run
string parameters. This is so that naive or low security users
will not have the ability to change the default menus or use the
more powerful system utilities.

8

Customlzation

This il HPMenu's most po~ertul and versatile feature. It a11o~s
the user to easily and non programmatically change all of the
functions and menus. Customization must be turned on at run time
by using the run string parameters:

:run HPMenu.Pub.Sys;info="okcustom"
This ~ill invoke the customization ability and FS ~i11 appear on
the Main Menu ~ith Customize written on it.

NOTE: In order to customize you HlJST have a lock file. This
file is called MUt8X2Z. DONOT purge this file from yOUr' group.
If this file is purged by mistake, HPMenu 1Iri.ZZ create a new one.

Press Customize to enter the customization facility. The Main
Customization menu sho~s the first 30 of all the kno~ choices.
By pressing Next Page, you can see the res~ of the kno~
functions if there are more than 30 defined. These functions
have already been defined within HPMenu. The * next to a choice
means that the choices are menus themselves.

You can create ne~ menus or functions, edit or delete existing
ones, change which menu appears ~en you first enter HPMenu, read
functions in from an ASCII file (such as a UDC), or print a list
of all exi:sting choices and their definitions. You can also add
functions 'lo1i.thoutattaching them to a menu.
To add an existing function to a menu, type in the number of the
menu in the box and press Create/Edit. To add a new function,
type in its name in the box provided and press Create/Edit. The
choice number and choice name options are mutually exclusive.
Use either one OR the other. For more about how to use this menu
see "Customizing HPMenu" in the Administration Manual.

After you have added your functions, you ~il1 probably want to
define menus. HPMenu knows about a function as soon as it has
been defined. You don't need to press End Custom before changing
or adding menus.
HPMenu ~ill then bring up the Classify New Choice menu.

This is whe:reyou tell it whether the new additions are functions
or menus. lformore information, see 2-22 through 2-32 of the
Administration Manual.

9

You will have to detine new functions by enterinc the run
strings, file equations and parameters for all t~ctions you wish
to pertora. Once the functions and menus have been defined, they
can be accessed through the Selection menus.

Reserved Commands

There are several reserved commands which can be useful in
defining functions. These commands are defined only within
HPMenu and serve to add control information flow within HPMenu.
The reserved commands are:

$Liston
$Listoff
$Message

$MPE
$Parm i = text
$Password

$Pause
$Wait

For more information on these commands, see Appendix A in the
Administration Manual.

*NOTE: HPMenu has an upper limit of 100 defined choices.
These choices are both menus and functions. (e,g.
you can have 30 menus and 70 functions, 50 menus
and 50 functions eta), If you approach the limit,
a warning is issued. When the limit is reached,
customization ~ill stop.

10

Incorporating UDC's

Many customers have already defined their functions via UDC's.
In order to lave retyping all that information into HPMenu, there
is a feature which allows you to incorporate your UDC files.
This is the MERGE ASCII feature. MERGE ASCII is found on the
Main Customization menu by pressing the OTHER KEYS twice. This
brings up the Merge ASCII Menu.
The UDC file needs to be an ASCII file with the following
features:
1. Function name must be <= 16 characters (not counting

leading blanks)
2. Command line must be <=79 characters
3. Functions must be separated by a line with * in the first

character position
4. UDC files must be kept unnumbered. Otherwise the numbers

are read in as information.

Even if these conditions are not met, HPMenu will attempt to copy
anyway.
If the file contains a name which matches a Known Choice, a
warning is issued and the choice is NOT copied. After the entire
file has been processed, HPMenu returns to the Main Customization
menu. The user will then decide whether or not to add these
known functions to new or existing menus.
There are several restrictions, however, when copying in UDC's.
HPMenu cannot execute if/then/else sequences or parameter passing
from UDC's. Also, since UDC's do not work within HPMenu, UDC's
that call one another do not work either.
HPMenu does not perform any kind of checking on the UDe's it
copies. If UDC's are copied that do not meet the requirements,
they are not executed, or are executed improperly when invoked.
The user should review his UOC's before copying them into HPMenu.
For more information see "Security Specifications" and Appendix B
of the Administration Manual.

-NOTE: When copying in large UDC files, HPMenu nny reach the
100 choices limit before completing the copy. At this
point, HPMenu stops, gives a message "Unable to Merge
entire file. Ma:cinvm choices nOlJin use." and then

11

returns to Main customizatien. In
order to find out ~here the copying process stopped,
press PREVIOUS PAGE en the Main Customizatien menu until
it displays the last page of choices entered.

12

List Functions Offline

From time to time it may be useful to obtain a hardcopy listing
of all the choices defined in HPMenu. You can do this through
the PRINT CHOICES feature in Customization. This will send a
listing to the system line printer. The listing can be directed
to another device if a file equation is issued prior to invoking
HPMenu. The output is automatically directed to MENULIST;Dev=lp.
To direct the output to another device, issue the following file
equation PRIOR to running HPMenu. (N.B. HPMenu runs nobreak)
:File MENULIST;dev=ldn
The printout shows all the known choices in the same order as
they appear in Main Customization. The menus are shown with all
their choices and the functions are shown with their full
definitions.

"'NOTE: Offline listings are only tWailable through
Customization. The defaul t: user runs II1ith no
customization and cannot use this feature.

13

Parameter passing

The purpo •• ot parameter passing is to allow the customizer to
prompt tor data trom the user and to set up function specific
parameter. which can be changed as needed. The commands which
allow parameter passing can only be used within the function
definition facility in customization and are not recognized
anywhere else in the program.
The customizer can define 10 parameters within a given function
$Parm 0 - $Parm 9. The parameters will prompt for and fetch
information from the user at the time when the function is
invoked through PERFORM CHOICE. Information which is passed as a
parameter is kept in storage for the duration of the function's
execution and can be called up repeatedly. The parameters can be
set up with default information, or they can store the user's
input as the parameter, or they can be set up with a default
value but be overwritten with user input information.

The information to be substituted with parameter input must be
enclosed in ~'s when the function is defined.

EXAMPLES OF FUNCTION DEFINITION

1. Parameter set up with default information

$Parm 0 = @.1
Listf ~O~
When executed, this function will perform a LISTF @,l.

2. Parameter is input by user and saved for future use

$Parm 1 = text
Listf ~lEnter a filename~

When executed, this function will first prompt the user for a
file name like this:

Enter filename:.

After the user enters a file name, the function will perform a
LISTF on that file name. Furthermore, $Parm 1 is now set to the
file name entered. If $Parm 1 is used again later on in the

14

function without prompt text, the user entered tHe name will be
passed. The parameter number will not appear on the terminal
screen even thouCh it appears between the ~'s. When the user i.
prompted for this information, he has no way of knowing what the
initial values are.

3. Parameter initial value set and user has input option

$Parm 2 = 2
File slp;dev=:pp,';2Enter' of copies~

When executed. this function will first prompt the user for a
number. The user can either type in a number or hit the carriage
return. If the user hits carriage return, the initial value is
used and a file equ.a.tionis issued. If the user types in a
number, a filiI!equation is issued for that number of copies and
$Parm 2 is set to the number typed by the user.

It is also possible to get information from the user without
saving it. You can simply define a function such'that:

Listf ~nter filename%,l

The user enters a file name but it is not kept. In this case,
however, the user MUST enter something. A carriage return is not
suffic:ient input. In this case HPMenu will continue to prompt
the user until something is typed in.

The vla.lueof parameters set in one function CANNOT be passed to
anoth'l!rfunction. $Parm 0-9 must be set separately in each
function where they are used.

15

Command Mode

The Command Mode feature lets the user exit from menu choices and
enter a command environment. Command mode allo~s you to issue
and run most MPE commands from ~ithin HPMenu. This feature is
not offered in the default state. To run HPMenu with the command
mode capability, you must start up HPMenu as follows:
:Run HPMenu.Pub.Sys;info="OKMPE"

If you ~ish to run ~ith both Command Mode and Customization, you
must run HPMenu like this:
:run HPMenu.Pub.Sys;info="OKCUSTOM;OKMPE"

When you press the COMMAND MODE softkey on the Selection menu,
you ~ill get a !as a prompt. This lets you know that you are in
command mode, but not out of HPMenu. From this prompt you can
use most MPE commands. There are some restrictions ho~ever.

The follo~ing commands CANNOT be used within HPMenu.

BYE
DEBUG
DSCOPY
HELLO

MRJE
RJE
SETCATALOG
SHOWCATALOG

SYSDUMP
VINIT
VSUSER
tIDC's

These commands are only accessible through the command
interpreter.

The following functions are available through HPMenu, BUT operate
with restrictions. (See Internals ~ld Appendix B in the
Administration Manual for more specifics.)
BASIC
BASICCOMP
BASICGO
COBOL
COBOLGO

COBOLPREP
EDITOR
FCOFY
FORTRAN
FORTGO

FORTPlREP
PREP
PREPRUN
RPG
RPGGO

RPGPREP
SEGMENTER
sPt
SPLGO
SPLPREP

In Command Mode. MPE commands are performed as in MPE and all MPE
error messages are returned.

When you wish to return to the menus, type RESUME. This will
bring up the menu from which you pressed the COMMAND MODE key.

16

UDC'. cannot be accessed from within HPHenu. It a user wants to
execute UDC functions trom BPMenu, they must define this function
in customization. This can be done either by detining the
function a. a new function, or copying in the UDC file using the
MERGE ASCII teature.

·No~rE: Caution should be used "'hen invoking compilers from
BPHenu. This is "'here the fatal e%"%'OrsocCUr'. See
Compiler Access in the Internals part of this document
for TD::>N detaiZs.

17

Current Object Store

HPHenu now provides the capability to share information between
the applications running under it. The Current Object Store is
an extra data segment, created by HPMenu, that contains:

--ScratchPad Area, a 256-word area used for applications
to communicate with each other, or to store application
dependent information. An application can perform any
operation on a value in the ScratchPad area as long as
the value can be expressed in a 16-bit word.

--User Password and Name, set and retrieved by HPMENU or
applications.

--Current Object, contains values that can be passed
from one application to another. Twenty of these are
reserved for HP products (chart and file names, etc.),
while five are user-definable. These can be accessed
via the new $CURRENT n function, as well as intrinsics.
This area also contains values for configuration
specifications for plotters, accessed by the $CONFIG n
functions. More on these later.

(NOTE: This means that the HP Office products are
evolving to all share this common data store--i.e.
INCREASING PRODUCT INTEGRATION!!)

--HPMENU Status, used to determine if an application ~s
invoked by HPMENU. Only applications invoked by HPMENU
can access the Current Object Store.

Thus. information can be passed from one program or application
to another without the user intervening to supply the information
themself.

Some HP Office Applications running under HPMenu have been
designed to access the data in the Current Object Store. For
example, if an HPMenu user runs DSG/3000 and plots a chart, the
values supplied for the plotter (logical device number, plotter
type, etc.) will be saved in the Current Object Store. If the
user then runs HPDRAW, HPDRAW will retrieve this current data
from the extra data segment and use it as the default plotter
specifications for plotting in HPDRAW. This way, the user does
not have to re-enter this informatio for every plot, but they
still can modify the specifications as necessary.

New HPMenu reserved commands and extensions to the $PARM command
allow easy access to the Current Object Store when they are used
in building HPMENU functions. These commands allow direct access
into the extra data segment. For example, when a user runs
HPMENU, their USERID and USERPASS can be recorded in the Current

18

Object Store. Then a function de.iened for running HPOesk could
retrieve this information from the Store. The $PARM !unctions
could be set to the USERID and USERPASS and the function could
call HPDesk using $PARMs in the INFO: string to pass the data.
Thus, the user would not have to enter their name again.

A third use of the information saved in the Current Object Store
is to access it programmatically through HPMENU intrinsics. An
application which could be used to enhance system security would
retrieve the user name ancipassword from the Store. It could
check this data against a security matrix to ensure the user has
proper capability to eXeC1Jte the function before continuing in
the program.
This Current Object Store feature greatly enhances HPMenu'.
feature set and provides for a very broad range of applications.
It adds the flexibility needed to increase the user friendliness
and reduce entry of redundant information.

19

HPMenu Intrlnslcs

Application. invok.d b.y BPHenu may take advantage of a set of
intrinsics which allc)w the passinc of information between those
applications. Only applications running under HPMenu can access
the Current Data Stor., the vehicle for the communication. This
Store is a shared extra data segment which contains a scratchpad
area of 256 words, as well as the user's name and password, 20
current object names reserved tor use by BP and five cur:rent
object names for use by users, and an area which is used to stor
seven configuration values. An application could set in:formation
in this Current Object Store, and subsequent programs could
retrieve the data, using it perhaps as input data or as control
information.

All of the intrinsics but one (OLMenuStatus) require the passing
of an array of words. The array is 23 words long and must be in
the global area of the application. All parameters are passed by
reference. See Appendix D of the new HPMenu Reference Manual for
conventions used to define the parameters.

OLMenuStatus is used within an application to determine if the
application itselt was invoked by HPMenu.

This intrinsic should be called before any other
HPMenu calls are made. Only applications invoked
by HPMenu can use the current objects, so failure
here should flag an error condition.

OLEnableCurrObj is used to initialize all other HPMenu
intrinsics except OLMenuStatus.

This intrinsic should be called immediately after
OLMenuStatus and before any other HPMenu
intrinsics.

OLGetCurrObj returns the value of the specified current object.
OLSetCurrObj sets the value of the specified current object.

These intrinsics are used to set/return values in
the current object area of the Current Object Store
80 data can be passed between user applications and
also between a user application and several HP
Office applications. These values can also be
referenced by the new $CURRENT reserved word.
Details on referencing these objects are provided
in Appendix A of the HPMenu Reference Manual and in
the "New Reserved Conunands" section of this
document.

20

For .xample, an application could acceu a data
bas. to create a data tile and set the file as
Current Object 8 (DSG data tile) for a particular
Chart (Current Object 6) in a Chart File (Current
Object 5). Then a DSG/3000 programmatic
application could reference these objects in the
Current Object Store and plot the chart without
turther operator intervention.

OLGetPassword returns the eight-character password stored by
HPMenu.

OLSetPassword sets the password string in the Current Object
Store.

OLGetUserld returns up to 46 characters containing the user id.
OLSetUserId sets the user id string in the Current Object Store.

Applications can retrieve or set the user's
password and name using these intrinsics. The user
name can include node and location codes for
HPDesk. For some applications, it may be preferred
that the user avoid re-entering their name and
password for each application. In these cases,
once the information has been entered into the
Current Object Store, it can be accessed by the
other applications. If name and password are
supplied by the user when HPMenu is invoked. these
values will automatically be entered into the
Current Object Store. If no name or password is
specified. HPMenu assigns blanks. When the user
exits HPMenu, blanks are substituted for the
password in the Current Object Store. Applications
requiring high security should always require a
password.

OLGetOneScratch returns the specified value from the scratchpad
area.

OLSetOneScratch copies a value passed by an application into the
scratchpad area.

The scratchpad is the application's communication
area. The application can put information into the
scratchpad by Index to be used in later
communications or as storage for
application-dependent information. These
intrinsics provide much flexibility for tailoring
application programs to share as much information
as possible.

21

It a series of application program. are to be run
in a single session, the •• intrin.ic. could be used
to .et values in the Current Object Stor ••
Subsequent programs could access this information
and use it as input data or to control program
tlow.
Note that only numeric data can be .tored in the
scratchpad area. There are tive current objects in
the current object area that can be used tor
passing textual information.

OLSetConfig sets one ot the configuration value ••
OLGetConfig returns one of the configuration value ••

The values stored in the configuration area specify
information for certain HP office products. They
include logical device number, HPIB number,
recovery count. expertise level. medium type. page
size. and position. Again, these fields could be
set by an application program so the operator does
not have to enter the data each time.

Note that the Current Object Store is a shared extra data
segment. Thus, it remains active until the end ot the session.
So even if the user exits from HPMenu, the data will be stored
for use if they should return to HPMenu in the same session. For
security, the password is changed to blanks upon exiting HPMenu.

The key to accessing the extra data segment is the required VAR
parameter "WORDS," This is the first parameter in all the access
intrinsics and provides the area which can be used tor data
segment communication. This space must be in the ,lobal area.
See Appendix D of the HPMenu Reference Manual for examples ot
calling these intrinsics in Pascal, SPL, Basic, COBOL. and
Fortran.

Although the user applications do not need to specify length or
offset into the extra data segment when using these intrinsics,
here is the structure ot the Current Object Store.

• • • For your information • ••
The 'OL' prefix on all the intrinsic names stands for

OFFICE LIBRARY.

22

o to 255 Scratchpad Area Len=256 Word.

256 to 278 UserId .trinl Len=46 Byte.

279 to 282 User Password String Len=8 Byte.

283 Logical Device lumber Len=l Word

284 HPIB channel number Len=l Word

285 Recovery Count(HPDRAW) Len=l Word

286 User Expertise Level Len=l Word

287 Medium Len=2 Bytes
I
I
I 288 Page Size Len=2 Bytes
I
I
I 289 Position Len=2 Bytes
I
I
I 290 to 307 Ascii Current Object Len=36 Bytes
I
I
I 308 to 325 Word Document Object Len=36 Bytes
I
I
I 326 to 343 Slate Document Object Len=36 Bytes
I
I
I 344 to 361 Chart File Name Object Len=36 Bytes
I
I
I 362 to 379 Chart Name Object Len=36 Bytes
I
I
I 380 to 397 EzChart File Name Len=36 Bytes
I
I
I 398 to 415 Data File Object Len=36 Bytes
I
I
I 416 to 433 SD Data File Object Len=36 Bytes

23

434 to 451 HPLiit Fil. Obj.c~ L~n-36 Byt••

4~..to 469 Draw1nc Fil. Object Len-36 Byte.

410 to 481 Drawtnc lam. Object Len-36 Byte.

488 to 505 Fieur. Fil_ Object Len-36 Byte.

506 to 523 Fieure lame Object Len-36 Bytes

524 to 541 Roster File Object Len=36 Bytes

542 to 569 Customization Object Len=36 Bytes

510 to 581 Environment File Object Len=36 Bytes

588 to 605 Raster File Object Len=36 Bytes

606 to 623 Device Hodel Number Len=36 Bytes

624 to 641 Spare 1 Len=36 Bytes

642 to 669 Spare 2 Len=36 Bytes

610 to 687 User 1 Object Len=36 Byte.

688 to 105 User 2 Object Len=36 Byte.

706 to 723 User 3 Object Len-36 Bytes

724 to 741 User 4 Object Len=36 Bytes

742 to 169 User 5 Object Len=36 Bytes

710 to 1022 Reserved tor Expansion Len=252 Words

24

New Reserved Commands

HPMenu haa reserved commands that are used in tunction
definition.. The commands can be used to control the operation
of a function ($PAUSE, $WAIT, $LISTON, etc.) or to pass
information within the function ($MESSAGE, $PARM i, etc.).

Several new reserved commands have been added to access the
Current Object Store, and the $PARM i command has been expanded.
This broadens the data sharing capabilities not only between
applications accessing the Current Object Store, but also between
functions within HPMenu. Thus, a reserved command set in one
function will retain its value when executed by another function.

$CURRENT n=text

This command sets the designated current object in the Current
Object Store to the first 36 characters found in "text", The
current object to be set is indicated by the value n where n is
an integer from 1 through 2; as indicated in the following table:

Number Object Name

1 TOP File
2 WORD Doc
3 SLATE File
4 Chart File
5 Chart Name
6 EZChart
7 Data File
8 SO Data File
9 HPList

10 HPDraw File
11 Drawing Name
12 Figure File
13 Figure Name
14 Roster File
15 Custom File
16 ENV File
17 Raster File
18 Device Type
19 Spare 1 (For future
20 Spare 2 HPMenu expansion)
21 User Object 1
22 User Object 2 (21 thru 25 for
23 User Object 3 user application)
24 User Object 4
25 User Object 5

The User Objects provide a store for textual information to be
shared between application programs. Remember, the Scratchpad
area can only be used for numeric values,

25

$CONFIO n=value
This command .et. the configuration item specified by n to
"value". These items specify characteristics of the output
device and operational features of certain HP office products.

Item Number

Logical Device number
HPIB number
Recovery Count (HPDRAW)

26
27
28

Expertise Level
Medium
Paper Size
Position

29
30
31
32

This example shows how to set up an HPMenu tunction that will
call EZChart and set the initial specifications to plot chart
PIECHART with the SO data file PIEDATA to transparency on a 7221C
plotter on logical device 66:

$CURRENT 6=PIECHART.PUB.DEMO
$CURRENT 7=PIEDATA.PUB.DEMO
$CURRENT 18=7221C
$CONFIG 30=T
RUN EZCHART.PUB.SYS;info="ldev=66"

Note that EZChart ONLY accepts LDEV information through the INFO=
string Thus, the $CONFIG 26 reserved word can not be used to pass
a logical device number to EZChart, although it can be used with
DSO/3000 and HPDraw.
$SCRATCH n=value

This command sets the scratchpad location specified by n (1 thru
256) to a number contained in "value", providing the capability
to pass information to an application program via the Current
Object Store.
Again, the scratchpad area can be used for communication between
a series of programs run in a single session. The values can be
retrieved from the Current Object Store and passed to the RUN
command in the function via the PARM= or INFO: string.

26

$USERID-text
This command .ets the user identification string to the first 46
characters tound in text.

$USERPASS=text
This command sets the user password string to the first 8
characters in text.
$CLEAR
This command sets all the textual values in the Current Object
Store to blanks, and all the numeric values to zero (0). The one
exception is the object name corresponding to the HPMenu
customization file name (number 15). This object name remains as
before to prevent reliability problems with HPMenu.
Perhaps a user wants to be able to return to EZChart sometimes
with their chart as the default and other times with the standard
defaults displayed. ~o functions could be specified--one
containing the standard RUN command (so EZChart will access the
Current Object Store) and the other containing the $CLEAR command
before the RUN so that the Current Object Store will not have the
past information. Thus, the user could specify which default
they wanted by selecting the appropriate function.

Current EZChart Fresh EZChart
RUN EZCHART.PUB.SYS $CLEAR RUN EZCHART.PVB.SYS

$PARM i=Keyword
This extension to the PARM command is used to retrieve the values
of the Current Object Store. You may place the Current Object
indicated by Keyword into a $PARM storage location and pass this
value to an application, probably with the PARM= or INFO=
parameters on the RUN command. The available Keywords are:

CONFIG n
CURRENT n
SCRATCH n
USERID
USERPASS

For example, when a user runs HPMENU, their USERID and USERPASS
could be recorded in the Current Object Store. The function
designed for running HPDesk could set $PARM functions to the
USERID and USERPASS. then call HPDESK using the INFO= string to
pass the data. Thus, the user would not have to enter their name
again. The function definition for HPDesk would be:

21

$PARM 1 :& USERID
$PARM 2 • USERPASS
RUN HPMAIL.HPMAIL.SYS;PARM=l;INFO="~l~:~~"

*** BEWARE of upper and lower case in password. *.*
If no password is set for the user in HPDesk, it does not matter
whether or not the second parameter is passed in the INFO=
string. However, if the password is set, this parameter MUST be
included in the INFO= string. HPDesk will not accept the name
from the INFO= string then prompt the user for the password.

28

Security for Individual functions

In addition to the normal MPE tile security, HPMenu can protect
specif'ic t'\mctions. This can be useful in situations where
members ot the same group do not have the same security levels
tor application usage.

HPMenu allows passwords to be specified for individual functions
defined in HPMenu. When the function is invoked, HPMenu prompts
for the passwords. Terminal echo is turned off at this point.
and the user gets three trys to correctly type in the password.
If the password is not correctly entered after the third try.
HPMenu returns to the most recent menu.

You can specify a lockword for a Customization file. HOWEVER.
you must issue a file equation specifying the lockword PRIOR to
running HPMenu. (e.g. :file menucust=menucust/lockword) If this
is not done, the lockword is requested when the terminal is in
block mode. It is very difficult to respond to this. The usual
outcome is that the terminal hangs and the ·session has to be
aborted.

Passworded functions are much more suitable for security than
passworded MENUCUST files.

*NOTE: Any user ~ho can customize can list all of the
functions and pas~rds. Also, if the $Liston
option is in effect ~hen the pas~rd check is
performed, HPMenu rill Zist the correct passwrd
before prompting for it.

29

Recovery after a crash

HPHenu goes to great lengths to protect the user from data loss
in the Custom file during a system crash. Menu data loss can
occur only if the user is customizing at the time of the crash.
The user can choose the level of backup desired. There are three
options:

Transact- this option backs up the file after every transaction
made during customization. Performance during
customization is slower because of this.

On Save - backup occurs only when the user leaves customization.

Never no backup is done during customization. File errors
can occur if the file is being written to when the
crash occurs. This is the run-time default.

If a crash should occur when e1ther Transact or On Save is
specified, one or more recovery files may be left In the user's
group. These files are named MOQ8X2Z (where is a
alphanumeric) and MRQ8X2Z. These files should-not be purged.
When HPMenu is run again after the crash, it will look for these
files and recover on its own. The user may receive a message
that recovery is going on.
During this i1rocess, the recovery files are located, the new
information is incorporated into MENUCUST t and the recovery files
are then purged, The user should not see the recovery files
after HPMenu has been run again.

If Never, the default, is active during a crash, it is possible
that the MENUCUST file will be damaged and unusable. This will
occur if the file is being written to during the crash. The only
recovery for this situation is to RESTORE an old copy of MENUCUST
and start over.

30

Internals

File structure

The tile structure tor MENUCUST is dynamic. It is roughly
divided into 4 main parts: header, list of choices, definitions
of choices and ender.

You can examine a MENUCUST file very easily by fcopying it to the
screen or a file.
The first line of the header contains a date and time as returned
by the CALENDAR and CLOCK intrinsics. The second line contains
the count of the number of choices found in the file.
The list of choices is the second major division of the file. It
contains information on the number of the choice in Main
Customization and whether it is a MENU or CMD (i.e. function).

In the third section are the details of each of the above listed
choices. It is indexed into the second section by number of
choice as appears in Main Customization. Each of the menus are
listed ~ith the index of all their choices. Each of the
functions are listed with their full definitions.

The last part lists the number of the user's selected first menu
and an end of file marker. The end of file marker is ***** If
this is missing then the file is declared invalid by the program.

The following is a dump of the default MENUCUST file.

-23030
27

185536773
Main Menu
HPSLATE
HPWORD
HPMAIL
HPEasyChart
HPDRAW
DSG/3000
Inform
MPE Commands
Fcopy
Listf2
ShowDev
Showln
ShowMe
ShowOut
ShowTime
Editor
ListDir2

MENU
COMD
COMD
COMD
COMD
COMD
COMD
COMD
MENU
COMD
COMD
COMD
COMD
COMD
COMD
COMD
COMD
COMD

31

ListEq2
ottic. Function.
TDP/3000
ShowJob
HPWORD Utiliti ••
Other Function.
Learn HPMAIL
Learn Inform
Listt
MENU 3

20
9

24
COMD 1

run hpslate.pub.sys
COMD 1

run HPWORD.pub.sys
COMD 1

run hpmail.hpmail.sys;lib=g
COMD 1

run ezchart.pub.sys
COMD 1

run hpdraw.pub.sys
COMD 1

run graph.pub.sys
COMD 1

run inform.pub.sys
MENU 12

11
10
18
19
27
11
12
13
22
14
1516

COMO 1
run tcopy.pub.sys
COMO 3

Spann O=@
listf ~OFiles to be listed «return> for all) ~,2
$loTait
COMO 3

Spann 0=
shOloTdev~OEnter device class or number «return> for all) ~
$loTait
COMD 2

CCMD
MENU
COMO
C(H)
COMO
MENU
COHO
COHO
COHn

shOloTin
$loTait
COMO 2

32

IhoWDle
$wait
COMO 2

Ihowout
twit
COMO 2

showtille
$wait
COHO 1

run editor.pub.sys
COHO 1

run listdir2.pub.sys
COHO 2

run listeq2.pub.sys
$wait
MENU 10

3
4

17
21
8
5
2
6
7

23
COHO 1

run tdp.pub.sys
COMO 2

showjob
$wait
COMO 1

run hpword.pub.sys.wordutil
MENU 2

2526
COHO 1

run training.hpmail.itf3000
COMO 1

run preview. inform. itf3000
COMO 2

listf
$wait

1*••••

33

Debug/Tracing

HPMenu contains a trace facility very similar to the one used
by DSG. It allows a user with two terminals to the same system
to monitor the calls made by the program while in progress.
This is a very useful tool when trying to troubleshoot a
problem. Most often a user can determine which procedure is
the one causing the problem.

In order to obtain the trace, log off the terminal on which
you want to have the HPMenu menus appear. The terminal on
which you run the trace should be logged on to the group
and account where the problem occurs.

You can obtain the trace listing in one of two ways, on the
terminal or as a disc file.
For a disc file listing, issue the following file equation.

:file DEBUGDEV = disc;save
For a listing on the terminal, issue this file equation.

:file DEBUGDEV;dev=logical device' of terminal

You also need to issue a file equation naming the logical device
number of your menu output terminal. This is done with the
following file equation.
:file MENUDEV;dev=ldn of logged off terminal

If the terminal to be used for MENUDEV is busy, the process will
abort.

The whole sequence to run the trace is as follows:

:file menudev;dev=ldn
:file debugdev=$stdlist (or disc;save)
:run hpmenu.pub.sys;info="DEBUG" (or DEBUG;OKCUSTOM if necessary)

When this first starts up nothing happens for a few seconds.
This is because the message catalog is being opened and read.
There is no debug information in the message catalog so none of
this will show up. Once this has been completed9 the terminal
opening procedures will appear and it will proceed as normal.

34

Fatal errors and recovery from them

There are two errors in HPMenu and one is more fatal than the
other.
If :EOD or :EOF is issued in Command Hode, HPHenu will try to
recover but will abort.

If :EOD or :EOF is issued in a function definition, then they
are treated as Unknown Commands and the program returns and lets
the user make another choice.

The recovery for the first case is to run HPMenu again. The
remedy for the second case is to log on again and then run
HPMenu.

If :EOD or :EOF are defined as functions within Customization
there may be a dramatic reaction with flashing screens. This
condition persists until the session is aborted. HPMenu runs
nobreak so the session has to be aborted from another terminal.

*NOTE: If the user does not have 103 free sectors of disc
space the first time they try to ~ HPMenu, it ~lZ
abort. This space is necessary for copying in the
MENlJCUST file. The remedy for this is to increase
the available disc space.

35

Complier access

In order to successfully run compilers from HPMenu, you must RUN
them (e.c. :run spl.pub.sys). It you run the compilers
interactively (e.g. SPL) then there is a problem. This is a
problem because most compilers use :EOD or :EOF to quit. As was
mentioned earlier, this is a fatal error. HPMenu can recover
from the : but $Stdin becomes closed. HPMenu cannot then call
any other program which requires $Stdin. HPMenu opens $Stdinx
which allows the user to exit cracetully, but that is about all.

The suggested way to run compilers trom HPMenu is as follows:

$Parm O=$Stdlist
file PASTEXT=r,Enter source file name~
file PASLIST=~O Enter list file name~
run Pascal.pub.sys;parm=3
Any ABORT's of the compilers will abort HPMenu as well because
they call QUITPROG.

Segmenter

The segmenter must be run the same way as the compilers, except
that no file names are needed to run it. The segmenter function
should be defined:

run SEGDVR.pub.sys

An abort here will abort HPMenu.

To prepare a program, you need to use the PREPARE command from
within SEGMENTER.

--1

Installa tion

Why does It take so long to load?

In order to make the product localizable, HPMenu uses m~ssage
catalogs for warning and error messages as well as function key
labels. When HPMenu is first invoked it reads in all of the
message catalog and key labels to insure optimal performance for
the duration of the session. There are 4 message catalogs
involved. The information in one is read and the other 3 are
opened. In addition VPLUS, MPE, and HPMenu are initialized.
The forms files are opened and the appropriate localized text
read into the forms. Finally, the current customization file is
opened and read onto the stack in the global area. This insures
optimal performance in invoking known functions and menus. (see
previous pages)
The net result of this process is a lot of 10 at startup. The
processes discribed above cause a 90-120 second delay at startup.
HOWEVER, once the program is loaded, screen to screen
performance, message and error reporting, and function execution
occur at maximum possible speed.

Since HPMenu is a menu processor, it is assumed that it will be
invoked ONCE during the day, usually in the morning, and then
left running for the rest of the day. Under these conditions,
the product performs extremely well, with little if any delay_
HPMenu was not designed to be run as an application or subsystem
with multiple entrances and exits during the day.

47

Installation procedures

HPMenu version A.Ol.OO will be available to customers only on MIT
tapes. There will be no SE or customer installation of the
product.
After the MIT tape is installed, the system manager shouldd alter
the system default menu. Functions for non-resident ottice
products should be deleted. Other system-wide functions can be
added.
Allot the initial customization files will be copied trom
MENUCUST.HPHENU.HPOFFICE so it is important that this tile be
correct.
In order to customize this system default file, use the tollowing
procedure.

1. :Hello mgr.hpoftice,hpmenu
2. :run HPHENU.pub.sys;info="okcustom"
3. Make your changes, (see Administration Manual)
4. Bye
HPMenu is now ready to run. It you wish,make up some udc's tor
your novice users. You may also desire to personalize some
users' customization tile. To do this do the tollowing:

1. :Hello manager.useracct,usergroup
2. :Altuser username;cap=ia,ba,ph,nd,sf;home=usergroup

3. :Hello username.useracct
4. :run hpmenu.pub.sys;info="okcustom"
5. Make your changes (hint: keep info in customization small)
6. Set up a logon ude
Your user now has a personalized customization file. (It resides
in his group). Multiple customization tiles per group requires a
tile equation tor HENUCUST, see Administration Manual)

48

Limitations

I

Limitations

1. :£OD and :£OF cause aborts

2. 40 sessions running HPMenu take 120+ PCB's. The user's
system should be configured to have 160+ peB entries

3. 100 choices of both functions and menus
4. No nesting of HPMenu within HPMenu
5. 30 commands per function
6. 30 entries per menu

7. Must have 103 sectors of free disc space the first time
HPMenu is run to accommodate the MENUCUST and LOCK files

8. While copying in large UDe files. HPMenu may run out of room
and stop

9. There are no checks on UDe's copied in

10. No UDe's can be used from within HPMenu

11. Does not run in batch mode

51

Appendix

Setting up menus for security

There are some applications that may require users to be "locked
out" trollall but predefined functions. HPMenu can be used in
this type ot situation very successfully.

HPMenu can be called from a logon UDC with a BYE option. This
would insure that when a user logged on they would only be able
to perform tasks predefined within HPMenu and when they exited
HPMenu they would be logged off from the system.
In this situation it is important that the user be set up with no
customization and no mpe.

*NOTE: There is a change to the heirarchy of e:cecution of
UDC's in the Q MIT. UDC' s are executed tJith strict
precedence such that account udc preceeds user's and
system uda preceeds account. If -the system rrrmager
sets up a system UDC to Zogon/run HPMenu/bye then
no other UDC's tJiZl be accessed.

52

Using MENUCUST flies from other groups

It is very easy to run HPMenu and access customization files from
other croups. This can be done with tile equations e.g.:
:file menucust=menucust.alpha.mom
:run hpmenu.pub.sys

In this situation you CANNOT customize, even it the CUSTOM option
is turned on.

