

HP '3000 Computer System

PASCAI./30DO
Reference Manual

19420 ~IOMESTEAD RD., CUPERnNO, CALIFORNIA 95014

Part NO. 32106-90001 Printed in U.SA 10/83
E10S3

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDiNG, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall
not be liable for errors oontained herein or for incidental or oonsequentlal damages in
connection with the furnishing, performance or use of this material.

This dooument oontains proprietary information whioh is proteoted by copyright. All rights are
reserved. No part of this document may be photocopied or reproduced without the prior written
consent of Hewlett-Packard Company.

Copyright @ since 1981 by HEWlETI-PACKARD COMPANY

Keven
Rectangle

LIST OF EFFECTIVE PAG1:SI

The List of Effective Pages gives the date of the current edition and the dates when pages were changed in updates to that edition.
Within the manual, any page changed since the last edition has the date the changes were made on the bottom of the page.
Changes are marked with a vertical bar in the margin. When an update is incorporated in a subsequent reprinting of the manual,
these bars are removed.

First Edition Dee 1981
Second Edition Oct 1983

Hi

I·. Pf.JINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional and
replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the manual
changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition are incorporated.
No information is incorporated into a reprinting unless it appears asa prior update. The edition does not change.

The software product part number printed alongside the date indicates the version and update level of the software product at the
time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and conversely,
manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one correspondence
between product updates and manual updates.

First Edition Dec 1981 32106A.OO.OO
Second Edition "" """ Oct 1983 ., " .. , , 32106A.OO.OO

iv

SECTION 1 - THE PASCAL/3000 LANGUAGE

Introduction 1-1
ManualOrganization 1.:.2
HP Standard Pascal 1-S
Pascal/SOOO 1-8
Compiling Pascal/SOOO Programs 1-11

SECTION 2 - DECLARATIONS

Program Form 2-1
Declaration Part 2-4
Label Declaration 2-6
Constant Definition 2-7

Array Constant (Array Constructor) 2-9
String Constant (String Constructor) .. 2-11
Record Constant (Record Constructor) • .. 2-1S
Set Constant (Restricted Set Constructor) 2-15

Type Definitions (Data Types) 2-16
Boolean Type 2-19
Char Type•..................................... 2-20
Integer Type 2-21

. Enumerated Type•...................................... 2-22
Subrange Type 2-23
Real Type 2-24
Longreal Type ', , ,... 2-25
Array Type 2-26
String Type .. 2-28
Record Type 2-30
Set Type , 2-33
File Type 2-34

Text Type 2-35
Pointer Type 2-36
Type Compatibility 2-38

Variable Declaration 2-40
Procedure Declaration 2-42
Function Declaration 2-43
Formal Parameter List 2-45
Directives 2-47

FORWARD Directive 2-48
EXTERNAL Directive 2-49
INTRINSIC Directive ~. .. 2-51

Level 1 Procedures and Functions 2-53
Recursive Procedures and Functions 2-54
Scope ' , 2-55

v

[! CONTENTS

SECTION 3 - STATEMENTS

Introduction .. 3-1
Compound Statement , , , , 3-3
Empty Statement , , ,........ 3-4
Assignment Statement , -: , 3-5

Assignment Compatibility , , 3-7
Procedure Statement , , ,........ 3-10
GOTO Statement ,., , ,...... 3-13
IF Statement 3-15
CASE Statement ,... 3-18
WHILE Statement , , 3-21
REPEAT Statement , , , ,.... 3-23
FOR Statement " , , , ,.... 3-25
WITH Statement ,',... 3-29

SECTION 4 - EXPRESSIONS

Introduction 4-1
Operators , , , .. ,............................ 4-2

Precedence " '......................... 4-4
Arithmetic Operators , .. 4-5
Boolean Operators 4-8
Set Operators ;............................... 4-9
Relational Operators 4-10
Concatenation Operator 4-15

Operands ' 4-16
Set Constructors 4-17
Function Calls ,.,.. 4-19

Pointer Dereferencing 4-21
Array Selector 4-22
Record Selector 4-23
File Buffer Selector 4-24

SECTION 5 - TOKENS

Identifiers 5-1
Numbers (Integer, Real, and Longreal Literals) 5-3
String Literals 5-5
Comments 5-7
Separators .-. .. 5-8
Special Symbols 5-9

vi

Keven
Rectangle

CONTENTS -,

SECTION 6 - I/O

Introduction 6-1
Append 6-6
Close 6-9
Eot '" 6-10
Eoln 6-11
Fnum 6-12
Get 6-13
Linepos 6-15
Maxpos 6-16
Open 6-17
Overprint 6-19
Page 6-20
Position 6-21
Prompt .. 6-22
Put 6-23
Read 6-25
Readdir 6-29
Readln 6-31
Reset 6-32
Rewrite '" .. 6-35
Seek , 6-38
Write 6-39
Writedir•.. 6-43
Writeln 6-45

Logical Files 6-46
Textfiles 6-48
Standard Files Input and Output 6-49
Opening and Closing Files 6-50
Physical Files : .. 6-52
Associating Logical and Physical Files 6-53
I/O Considerations 6-57

vii

~~---~---~ ~~--

CONTENTS

SECTION 7 - STANDARD PROCEDURES AND FUNCTIONS

Arithmetic Functions 7-1
Abs ~ 7-1
Arctan 7-2
Cos 7-3
Exp 7-4
Ln 7-5
Sin 7-6
Sqr , 7-7
Sqrt 7-8

Predicate Functions 7-9
Odd 7-9

Transfer Functions .. 7-10
Trunc 7-10
Round 7-11

Ordinal Functions ~ 7-12
Chr ',' 7-12
Ord 7-13
Pred 7-14
Succ 7-15

Numeric Conversion Functions 7-16
Binary 7-16
Hex 7-17
Octal 7-18

String Operations " 7-19
Setstrlen " .. 7-19
Str 7-21
Strappend 7-22
Strdelete 7-23
Strinsert 7-24
Strlen 7-25
Strltrim 7-26
Strmex .. 7-27
Strmove 7-28
Strpos 7-29
Strread .. 7-30
Strrpt 7-32
Strrtrim .. 7-33
Strwrite .;.. 7-34

viii

Keven
Rectangle

CONTENTS

SECTION 7 (Continued)

Heap Procedures 7-36
New 7-37
Dispose 7-39
Mark 7-41
Release 7-42

Transfer Procedures '. .. 7-43
Pack 7-43
Unpack 7-45

Additional Procedures and Functions 7-47
Assert 7-47
Baddress 7-49
Gcode 7-51
Halt 7-52
Sizeof .. 7-53
Waddress 7-55

SECTION 8 - COMPILER OPTIONS
Introduction 8-1
ALIAS ,................................... 8-7
$FONT , 8-8A
$SET , 8-88
$IF , 8-8e
$SYMDE8UG , , , 8-8E
ANSI 8-10
ASSERT_HALT ',' ~ 8-12
CHECK-ACTUALPARM 8-13
CHECK-FORMALPARM 8-15
CODE : 8-17
CODE_OFFSETS 8-18
COPYRIGHT 8-21
EXTERNAL 8-22
GLOBAL 8-23
HEAP_COMPACT :.. 8-25
HEAP_DISPOSE ;......... 8-26
INCLUDE 8-27
LINES ' 8-28
LIST 8-29
LIST_CODE 8-32
PAGE 8-34
PARTIALEVAL 8-35
PRIVATE--PROC 8-36
RANGE 8-38
SEGMENT 8-39

ix

[CONTENTS

SECTION 8 (Continued)

SKIP_TEXT 8-41
SPLINTR 8-42
STANDARD_LEVEL 8-43
SUBPROGRAM 8-45
TABLES , 8-47
TITLE 8-51
USLINIT , 8-53
WIDTH .. , 8-54
XREF 8-55

SECTION 9 - STORAGE AND EXECUTION EFFICIENCY

Introduction 9-1
Boolean Storage 9-2
Integer Storage 9-3
Integer Subrange Storage 9-4
Enumerated Storage 9-5
Enumerated Subrange Storage 9-6
Real Storage 9-7
Longreal Storage 9-8
Char Storage 9-9
Pointer Storage 9-10
Array Storage 9-11
Record Storage 9-14
String Storage 9-17
Set Storage 9-18
File Storage ...•..................... 9-21

Storage Optimization - A Summary ,............................. 9-22
Execution Efficiency ,....................................... 9-23

SECTION 10 - USING PASCAL/3000

Introduction 10-1
:PASCAL 10-2
:PASCALPREP 10-4
:PASCALGO 10-6
:RUN PASCAL.PUB.SYS 10-8
Debugging Pascal/3000 Programs Symbolically 10-8A
Running Pascal/3000 Programs 10-10
Debugging Pascal/3000 Programs 10-12
Trapping Run-Time Errors 10-19

x

CONTENTS

APPENDIX A - PASCAL/3000 SYNTAX DIAGRAMS

Syntax Diagrams A-1

APPENDIX B - RESERVED WORDS AND STANDARD IDENTIFIERS

Reserved Words B-1
Standard Identifiers B-1

APPENDIX C - COMPILE-TIME ERRORS

Compile Time Errors C-1

APPENDIX D - RUN-TIME ERRORS

Run Time Errors D-1

APPENDIX E - UNDEl!ECTED ERRORS

Undetected Errors r ••• E-1

APPENDIX F - USING INTRINSICS

Matching Intrinsic Parameters F-1
Pascal Support Library F-7
HP32106 F-8
GETHEAP F-9
RTNHEAP F-10

APPENDIX G - PASCAL/30eO AND OTHER LANGUAGES

Overview G-1
Calling Other Languages from Pascal .. G-1
Calling Pascal from Other Languages .. G-1
Pascal Strings as Parameters G-2
Pascal and SPL "" G-4
Pascal and FORTRAN G-9
Pascal and COBOL G-16

xi

CONTENTS

APPENDIX H - PASCAL/3000 AND HP3000 SUBSYSTEMS

Pascal and SORT-MERGE H-1
Pascal and IMAGE H-5
Pascal and VPLUS . H-9

APPENDIX I - I/O DEFINITIONS

II 0 Definitions.. 1-1

TABLES AND FIGURES

Figure 2-1. Pascal/3000 Data Types 2-18
Table 3-1. String, PAC, Char, and String Literal Assignment 3-9
Table 4-1. Pascal I3000. Operators 4-2
Table 4-2. String, PAC, Char, and String Literal Comparisons 4-13
Table 5-1. Pascal/3000 Special Symbols 5-9
Table 6-1. File Procedures and Functions 6-2
Table 6-2. Implicit Data Conversion 6-28
Table 6-3. Default Field Widths 6-41
Table 8-1. Compiler Options 8-3
Figure 9-1. Set Storage 9-20
Table 9-1. Data Access 9-23
Table F-1. Intrinsic Value Parameters and Pascal Types F-3
Table G-1. Pascal and SPL Types G-7
Table G-2. Pascal and FORTRAN Types G-14
Table G-3. COBOL Types and Formats G-17

xii

Keven
Rectangle

THE PASCAL/3000LANGUAGE

INTRODUCTION

On rare occasions in programming language development there appears a programming language
which is widely recognized as superior, and which propagates itself among discerning
implementors and users solely by its merits, and without any political or commercial backing.
ALGOL 60 was such a language. Pascal is another.

- Welsh, Sneeringer, and Hoare quoted in Tutorial:
Programming Language Design by Wasserman,
p.284

Niklaus Wirth designed the programming language Pascal in 1968 as a vehicle for teaching the
fundamentals of structured programming and as a demonstration that it was possible to efficiently and
reliably implement a 'non-trivial' high level language.

Since then, Pascal has established itself as the dominant programming language in university-level
computer science courses. It has also become an important language in commercial software projects,
especially in systems programming.

Pascal/3000 is a version of Pascal intended for the HP3000 computer. The Pascal/3000 compiler
implements Pascal/3000 by compiling Pascal/3000 source code into HP3000 object code and storing
this code in a user subprogram library (USL). The MPE Segmenter may subsequently prepare the USL
into an executable program file.

Pascal/3000 is a superset of Hewlett-Packard Standard Pascal, a company-standard language currently
implemented on several Hewlett-Packard computers. HP Standard Pascal, in turn, is a superset of
American National Standards Institute (ANSI) Pascal.

Subsequent pages of this section outline the organization of this manual and summarize the HP Standard
Pascal and Pascal/3000 extensions. The experienced Pascal programmer may use these summaries as a
guide for further study of unfamiliar features.

1-1

MANUAL ORGANIZATION

This manual fully describes Pascal/3000. The reader wishing to learn Pascal should refer to an
introductory text.

Sections 2 through 5 of this manual discuss the features of Pascal/3000 in top-down fashion, starting with
programs and concluding with lexical tokens. _

Section 6 explains Pascal/3000 files and the various procedures and functions which the programmer
may use to manipulate them.

Section 7 presents the standard operations and functions supported by Pascal/3000.

Section 8 discusses the Pascal/3000 compiler options.

Section 9 explains the storage requirements of the various Pascal/3000 data types and shows how the
programmer can optimize storage and execution efficiency.

Section 10 discusses ways to invoke the Pascal/3000 compiler using various MPE commands.

Finally, several appendices present supplementary information.

Throughout this document, Pascal/3000 reserved words, compiler options, and directives appear in
upper case, e.g. BEGIN, USLINIT, FORWARD. Standard identifiers appear in italiCS,e.g. readln, maxint,
text.

Appendix B lists the Pascal/3000 reserved words and standard identifiers.

In the original Jensen and Wirth Pascal Report, the term 'string' refers to any packed array of char with a
starting index of 1. Pascal/3000, however, supports the standard type string. To avoid confusion, the term
PAC is used for the type packed array of char.

1-2

HP STANDARD PASCAL

The following is a list of the HP Standard Pascal features which are extensions of ANSI Standard Pascal.
For the full description of a feature, the reader should refer to the appropriate pages in subsequent
sections.

Identifiers

The underscore character L) may appear in identifiers, but not as the first character (see Section 5).

Longreal Numbers

The type longreal is identical with the type real except that it provides greater precision (see Section 2).
The letter' L' precedes the scale factor in a longreal literal (see Section 5).

String Literals

HP Standard Pascal permits the encoding of control characters or any other single ASCII character after
the sharp symbol (#) (see Section 5). For example, the string literal #G represents CTRL-G, i.e. the bell.

Constructors (Structured Constants)

The programmer can specify the value of a declared constant with a constructor. In general, a constructor
establishes values for the components of a previously declared array, record, string or set type (se,e
Section 2). Record, array, and string constructors may only appear in a CONST section of a declaration
part of a block. Set constructors, on the other hand, may also appear in expressions in executable
statements and their typing is optional (see Section 4).

1-3

--------- --.---.------ ... -------.---------~~~

HP STANDARD PASCAL

Constant Expressions

The programmer may also specify the value of a declared constant with a constant expression. A constant
expression returns an ordinal value and may contain only declared constants, literals, calls to the functions
ord, chr, pred, succ, hex, octal, binary, and the operators +, -, *, DIV, and MOD (see Section 2).

A constant expression may appear anywhere that a constant may appear.

Minint

The standard constant minint is defined in the Pascal/3000 system as the integer value -2147483648.

String Type

HP Standard Pascal supports the predefined type string. A string type is a packed array of char with a
declared maximum length (see Section 2) and an actual length that may vary at run time.

The programmer may compare a variable of type string with a similar variable or a string literal (see
Section 4), or assign a string or string literal to a string (see Section 3).

Several standard procedures and functions manipulate strings (see Section 7). Strlen returns the current
length of a string; strmax the maximum length. Strwrite writes one or more values to astring; strread reads
values from a string. Strpos returns the position of the first occurrence of a specified string within another
string. Strltrim and strrtrim trim leading and trailing blanks, respectively, from a string. Strrpt returns a
string composed of a designated string repeated a specified number of times. Strappend appends one
string to another. Str returns a specified portion of a string, i.e. a substring. Setstrlen sets the current length
of a string without changing its contents. Strmove copies a substring from a source string to a destination
string. Strinset inserts one string into another. Strdelete deletes a specified number of characters from a
string.

1-4

Keven
Rectangle

HP STANDARD PASCAL

Record Variant Declaration

The variant part of a record field list may have a subrange as a case constant (see Section 2).

Declaration Part

In the declaration part of a block, the programmer can repeat and intermix the CaNST, TYPE, and VAR
sections (see Section 2). The LABEL section must still precede and the PROCEDURE and FUNCTION
sections follow the CaNST, TYPE, and VAR sections.

ASSignment Compatibility

If T1 is a PAC variable and T2 is a string literal, then T2 is assignment compatible with T1 provided that T2
is not longer than T 1. If T2 is shorter than T1, the system will pad T 1 with blanks.

If T.1 is real and T2 is longreal, the system truncates T2 to real before assignment.

CASE Statement

The reserved word OTHERWISE may precede a list of statements and the reserved word END in a CASE
statement. If the case selector evaluates to a value not specified in the case constant list, the system
executes the statements between OTHERWISE and END (see Section 3). Also, subranges may appear as
case constants.

WITH Statement

The record list in a WITH statement may include a call to a function which returns a record as its result
(see Section 3).

1-5

HP STANDARD PASCAL

Function Return

A function may return a structured type, except the type file. That is, a function may return an array,
record, set or string (see Section 2).

I/O

The programmer may open a file which is not a textfile for direct access with the procedure open. Direct
access files have a maximum number of components, indicated by the function maxpos. The procedure
seek places the current position of a direct access file at a specified component. The programmer can
read from a direct access file or write to it with the procedures readdir or writeait, which are combinations
of seek and the standard procedures read or write.

The programmer may open any file in the 'write-only' state without altering its contents using the
procedure append. The current position after append is the end of the file.

The programmer may explicitly close any file with the procedure close.

To permit interactive input, the system defines the primitive file operation get as 'deferred get' (see
Appendix I).

The procedure read accepts any simple type as input. Thus, it is possible to read a boolean or enumerated
value from a file. It is also possible to read a value which is a packed array of char or string.

The procedure write accepts identifiers of an enumerated type as parameters. The programmer may write
an enumerated constant directly to a file.

The function position returns the index of the current position for any file which is not a textfile. The
function linepos returns the integer number of characters which the program has read from or written to a
textfile since the last line marker.

1-6

HP STANDARD PASCAL

The procedures page, overprint, and prompt operate on textfiles. Page causes a page eject when a text
file is printed. Overprint causes the printer to perform a carriage return without a line feed, effectively
overprinting a line. Prompt flushes the output buffer without writing a line marker. This allows the cursor to
remain on the same screen line when output is directed to a terminal.

Section 6 describes files and I/O operations in detail.

Heap Procedures

The procedure mark marks the state of the heap. The procedure release restores the state of the heap to a
state previously marked. This has the effect of deallocating all storage allocated by the new procedure
since the program called a particular mark (see Section 7).

Halt Procedure

The halt procedure causes an abnormal termination of a program (see Section 7).

Numeric Conversion Functions

The functions binary, octal, and hex convert a parameter of type string or PAC, or a string literal, to an
integer. Binary interprets the parameter as a binary value; octal as an octal value; hex as a hexadecimal
value (see Section 7).

Compiler Options

Compiler options appear between dollar signs ($). HP Standard Pascal has five options: ANSI,
PARTIAL EVAL, LIST, PAGE, and INCLUDE. ANSI sets the compiler to issue warnings in the listing
when source code includes features which are not legal in ANSI Standard Pascal. PARTIAL_ EVAL
permits the partial evalution of boolean expressions. LIST allows the programmer to suppress the compiler
listing. PAGE causes the listing to resume on the top of the next page. INCLUDE specifies a source file
which the compiler will process at the current position in the program.

1-7

PASCAL/3000

The following is a list of Pascal13000 features which are extensions of HP Standard Pascal. For a full
description of these features, the reader should refer to the relevant pages in subsequent sections.

Directives

EXTERNAL and INTRINSIC are legal Pascal/3000 directives fully described in Section 2.

EXTERNAL indicates that the system will find a procedure or function in an external compilation unit. The
programmer may qualify EXTERNAL with the terms SPL, SPL VARIABLE, FORTRAN, or COBOL. SPL
indicates the external procedure or function is in SPL without option variable parameters; SPL VARIABLE
that it is in SPL and has option variable parameters; FORTRAN that it is in FORTRAN; and COBOL that it
is in COBOL 68 or COBOL II.

INTRINSIC indicates the declared procedure or function is a MPE or user-defined intrinsic. The formal
parameter list of a procedure or function declared with the INTRINSIC directive is optional. That is, the call
to the procedure may contain actual parameters even if no formal parameters appear in the declaration.
Furthermore, the system will perform certain conversions of the actual parameters (see Appendix F).

Procedure and Function Calls

Calls of a procedure or function declared EXTERNAL SPL VARIABLE or INTRINSIC (where there are
option variable parameters) may omit actual parameters. The programmer must specify empty option
variable parameters with the comma (,) (see Section 3).

Ccode Function

The ccodefunction returns an integer in the range 0..2 which indicates the condition code after an intrinsic
call (see Section 7).

Fnum Function

The fnum function returns an integer which indicates the value of the MPE file number of the physical
file associated with a logical file.

1-8

PASCAL/3000

Sizeof Function

The sizeoi function returns the size in bytes of the storage required for a variable (see Section 7).

Waddress and 8address Functions

The waddress function returns the DB relative word address of a variable, or the external P label of a
procedure or function (see Section 7). The baddress function returns the DB relative byte address of a
variable (see Section 7).

Assert Procedure

The assert procedure evaluates a boolean expression and, provided the compiler option ASSERT_HALT
is ON, aborts a program when the expression is false. It is also possible to specify an optional procedural
parameter. When the expression is telse, the system will execute this procedure before terminating the
program (see Section 7).

Compiler Options

Pascal/3000 supports a number of compiler options fully described in Section 8 and briefly summarized
here.

ALIAS permits the programmer to specify an external name for a procedure or function which is different
from its declared name.

ASSERT_HALT causes program termination when the boolean expression in a call to the assert
procedure is false.

CHECK-ACTUALPARM or CHECK-FORMALPARM specify the level of checking the system will
perform tor actual or formal parameters.

CODE permits the programmer to suppress the generation of object code for a portion of source code.

CODE-OFFSETS shows the p register offsets for statements.

COPYRIGHT inserts a copyright notice in the USL and program files.

1-9

PASCAL/3000

EXTERNAL and GLOBAL permit the separate compilation of procedures and functions.

HEAP COMPACT causes the system to concatenate free space in the heap. HEAP_DISPOSE lets the
systerTil'ealiocate disposed areas in the heap.

LINES sets the number of listing lines per page.

LIST_CODE produces a mnemonic listing of the HP3000 machine code generated by the compiler.

PRIVATE PROC permits non level 1 procedures or functions to be compiled into separate relocatable
binary modules with 'public' entry points.

RANGE causes the compiler to generate range checking code for assignments, array indexing, parameter
passing, and pointer dereferencing.

SEGMENT changes the current segment name to a specified name.

SKiP_TEXT causes the compiler to ignore source code.

SPLlNTR specifies a file which the system will search when a program declares an intrinsic.

STANDARD LEVEL specifies the level of legal Pascal syntax. The compiler issues a warning when
encounteringa feature not permitted at the specified level.

SUBPROGRAM allows independent compilation of specified level 1 procedures or functions.

TABLES produces an identifier map for each compilation block.

TITLE places a specified title at the top of the listing page.

USLINIT causes the compiler to initialize the designated USL to empty before placing any object code in it.

WIDTH instructs the compiler to process a specified number of columns of source text.

XREF tells the compiler to prepare and issue a cross reference of a compilation block.

1-10

PASCAL/3000

As well as these language features, Pascal/3000 provides three support library routines which are
accessible from other HP3000 subsystems or languages. GETHEAP allocates a region of the DL-DB area
of the stack; RTNHEAP deallocates a region of the DL-DBarea; HP32106 returns the version name for the
currently installed Pascal/3000 support library. Appendix F describes these three procedures.

When called by Pascal, subsystems such as VPLUS which use the DL-DB area of the stack call
GETHEAP and RTNHEAP to avoid possible conflict with the Pascal heap (see Appendix H).

1-11

COMPILING PASCAL/3000 PROGRAMS

An Overview

The Pascal/3000 compiler scans and parses Pascal/3000 source code and then emits HP3000 object
code into a USL file. The compiler produces object code for one procedure, function, or outer block at a
time and the programmer may control this code generation with various compiler options. For example,
the SUBPROGRAM compiler option instructs the compiler to issue object code only for specified level 1
procedures or functions and theirnested procedures or functions, and to suppress code generation for the
outer block (see Section 8). Also, the compiler options EXTERNAL and GLOBAL permit the separate
compilation of procedures or functions without redeclaring all global variables (see Section 8).

As it processes source code, the Pascal/3000 compiler produces a program fisting. The programmer may
suppress this listing by setting the LIST compiler option OFF, or enhance it with several optional features
such as an identifier map, a cross reference, or code offsets (see Section 8).

To invoke the Pascal/3000 compiler, the programmer may select one of four MPE commands described in
Section 10. The MPE command :PASCAL processes a source text into a USLfile; the command
:PASCALPREP compiles the source text and then prepares the resulting USL into a program file; the
command :PASCALGO compiles, prepares, and then executes a program; finally, the :RUN commmand
can directly invoke the compiler, which is a program file fully specified by the name PASCAL.PUB.SYS.

Since the compiler opens the source file "read only" with semiexclusive access to insure that no one
writes to the file during compilation, the use of semiexclusive access requires that the group have
LOCK access.

1-12

DEVELOPING PASCAL/3000
PROGRAMS WITH HPTOOLSET

Pascal programs can be developed, compiled, prepped, run and symbolically debugged using the
program development utility HPToolset. TOOLSET contains an Editor, a Program key to translate and
run your code, and a symbolic debugger that alleviates having to know memory locations or convert
source statements into code statements.

See the HPToolset Reference Manual for details on how to run TOOLSET and how to use each of its
features.

1-12A

--------------~--~~~~--~--

Keven
Rectangle

Keven
Rectangle

DECLARATIONS Iaa'----- OCJ
PROGRAM FORM
The Pascal/3000 compiler will successfully compile any Pascal/3000 source code which conforms to the
syntax and semantics of a Pascal/3000 program. The form of a Pascal/3000 program consists of a
program heading, a semi-colon (;), an outer block, and a period.

Syntax

program --+/ ~------..Iprogram heading

Compilation fails when any of these elements are missing.

The program heading consists ofthe reserved word PROGRAM, an identifier (the program name) and an
optional parameter list.

Syntax
program
heading

The identifiers in the parameter list are variables which the programmer must declare in the outer block,
except for the standard textfiles input and output.

Input and output are standard file variables which the system associates by default with the MPE files
$STDIN and $STDLlST and which it opens automatically at the beginning of program execution (see
Section 6). In Pascal/3000, input or output need only appear as program parameters if some file
operation, e.g. read or write, refers to them explicitly or by default.

Program parameters are often the names of file variables, but a logical file, i.e. a file declared in the
program, need not necessarily appear as a program parameter. The advantage of putting the name of the
logical file in the program parameter list is that the system will use the first 8 characters of this name as the
default name for the MPE file associated with the program's logical file (see Section 6).

2-1

PROGRAM FORM

Other types of variables may appear in the parameter list of the program heading. In particular, a variable
of type integer, subrange of integer, PAC, or string may occur. Such a variable will capture the value of the
PARM or INFO parameter of the MPE :RUN command. In other words, the programmer may pass the
integer value of the PARM parameter or the character string value of the INFO parameter to a
Pascal 13000 program at run time (see Section 10). For example, the INFO parameter can pass the name
or names of physical files which the programmer wishes to associate with the logical files in a program
(see Section 6).

The outer block of a program consists of an optional declaration part and a required statement part.

Syntax

declaration
part

compound
statement

The declaration part consists of definitions of labels, constants and types, and declarations of variables,
procedures and functions. The statement part is made up of a compound statement which may be empty
or may contain several simple or structured statements (see Section 3). The statement part is also termed
the' body' or 'executable portion' of the block.

The outer block of a program is identical with the block of a procedure declaration, except that it
terminates with a period (.).

2-2

PROGRAM FORM

Examples
PROGRAM minimum;
BEGIN
END.

{The mlnlmum program the Pascal/3000 }
{compiler will process successfully: }
{no program parameters; }

PROGRAM show_forml (output);
BEGIN

~teln ('Greetings! ')
END.

{Uses the standard textfile output}
{and the standard procedure }
{~teln. }

PROGRAM show_form2 (i,f);
VAR
i: integer;
f: FILE OF integer;

BEGIN
append (f);
~te (f,i);

END.

{The program parameters are declared}
{in the declaration part. The PARM }
{parameter of the :RUN command will }
{pass a value to i. The second }
{executable statement in the body of}
{outer block writes this value on }
{the file f. }

PROGRAM show_form3 (input,output);
VAR

a,b,total: integer;
FUNCTION sum (i,j: integer): integer;

BEGIN
sum:= i + j

END;
BEGIN

~rite ('Enter two integers: ');
prompt;
readl.n (a,b);
total:= sum (a,b);
~riteln ('The total is: total)

END.

{Function declaration }
{with an inner block }
{which is not part of }
{outer block. }

2-3

DECLARATION PART

The declaration part of an HP Pascal block defines the labels, declared constants, data types,
variables, procedures, and functions which will appear in the executable statements in the body of the
block.

The reserved word LABEL precedes the declaration of labels; CONST or TYPE the definition of declared
constants or types; VAR the declaration of variables; PROCEDURE or FUNCTION the declaration of a
procedure or a function.

Syntax

CONST

procedure heading

function heading

2-4

Keven
Rectangle

DECLARATION PART

Within a declaration part, label declarations must come first; procedure or function declarations last.
The programmer, however, may intermix and repeat CONST and TYPE definition sections and VAR
declaration sections (see example below). This is an HP Standard Pascal extension of ANSI Standard
Pascal.

ANSI Standard Pascal does not allow any of the reserved words LABEL, CONST, TYPE or VAR to be
used more than once.

The programmer can, but usually will not, redeclare or redefine a standard declared constant, type,
variable, procedure or function in the declaration part.

Example
PROGRAM show_declarepart;
LABEL 25;
VAR

birthday: integer;
TYPE

friends = (Joe, Simon, Leslie, Jill);
CONST

maxnurninvitee = 3;
VAR

invitee: fFiends;
PROCEDURE celebrate; EXTERNAL; {End of declaration part.}

BEGIN {Beginning of body. }

END.

2-5

LABEL DECLARATION

A label declaration specifies integer labels which mark executable statements in the body of the block. The
GOTO statement transfers control to a labeled statement (see Section 4).

The reserved word LABEL precedes one or more integers separated by commas.

Syntax

label
declaration LABEL

Integers must be in the range 0 to 9999. Leading zeros are not significant. For example, the labels 9 and
00009 are identical.

Label declarations must come first in the declaration part of a block.

The programmer cannot use a label to mark a statement in a procedure or function nested within the
procedure, function, or outer block where the label is declared. This means a GOTO statement may jump
out of but not into a procedure.

Example

LABEL 9, 19. 40;

2-6

CONSTANT DEFINITION

A constant definition establishes an identifier as a synonym for a constant value. The programmer may
then use the identifier in place of the value.

The reserved word CONST precedes one or more constant definitions. A constant definition consists of an
identifier, the equals sign (=), and a constant value.

Syntax

identifier

constant expression

constructor

Section 5 explains the form of numbers and string literals. The reserved word NIL is a pointer value.
Declared constants include the standard constants maxint and minint as well as the standard enumerated
constants true and false.

Constant expressions are a restricted class of Pascal/300a expressions. They must return an ordinal value
which is computable at compile time. Consequently, operands in constant expressions must be integers or
ordinal declared constants. Operators must be +, -,*, DIV, or MOD. All other operators are excluded.
Furthermore, only calls to the standard functions ord, cht, pred, SUCC, ebs, hex, octal, and binary are legal.

2-7

CONSTANT DEFINITION

One exception to the restrictions on constant expressions is permitted: the programmer may change the
sign of a real or longreal declared constant using the negative real unary operator (-). The positive
operator (+) is legal but has no effect.

A constructor specifies values for a previously declared array, string, record, or set type. Subsequent
pages describe constructors and the structured declared constants they define.

Constant definitions must follow label declarations and precede function or procedure declarations. The
programmer can repeat and intermix CONST sections with TYPE and VAR sections.

Example
CONST

fingers = 10; {Unsigned integer. }

pi = 3.1415; {Unsigned real. }

message = 'Use a fork! '; {String literal. }

nothing = NIL;

delicious = true; {Standard constant. }

negyi = -pi; {Real unary operator. }

hands = fingers DIV 5; {Constant expression. }

numforks = pred(hands); {Constant expression with }
{call to standard function. }

2-8

Keven
Rectangle

ARRAY CONSTANT
(Array Constructor)

An array constant is a declared constant defined with an array constructor which specifies values for the
components of an array type.

An array constructor consists of a previously defined array type identifier and a list of values in square
brackets. Each component of the array type must receive a value which is assignment compatible with the
component type.

Syntax

array
constructor

array
type
identifier

Within the square brackets, the reserved word OF indicates that a value occurs repeatedly. For example, 3
OF 5 assigns the integer value 5 to three successive array components. The symbols (. and.) may replace
the left and right square brackets, respectively. An array constant may not contain files.

Array constructors are only legal in a CONST section of a declaration part. They cannot appear in other
sections or in executable statements. '

The programmer may use an array constant to initialize a variable in the executable part of a block. The
programmer may also access individual components of an array constant in the body of a block, but not in
the definition of other constants (see Selectors in Section 4).

2-9

---~"-~-- --~--

ARRAY CONSTANT

Examples

TYPE
boolean table
table
row
matrix
color
color_string
color_array

CONST
true values
init-valuesl
init-values2
identity

colors

= ARRAY [1..5] OF boolean;= ARRAY [1 ..100] OF integer;
= ARRAY [1 ..5] OF integer;= ARRAY [1 ..5] OF row;= (red, yellow, blue);= PACKED ARRAY [1 ..6] OF char;
= ARRAY [color] OF color_string;

= boolean table [5 OF true];= table [100 OF 0];= table [60 OF 0, 40 OF 1];= matrix [row [1, 0, 0, 0, 0],
row [0, 1, 0, 0, 0].
row [0, 0, 1,0,0],
row [0, 0, 0, 1, 0],
row [0, 0, 0, 0, 1]];= color_array [color string ['RED', 3 OF ' '],

color-string ['YELLOW'],
color: string ['BLUE', 2 OF ' ']];

In the last example, the type of the array component is char. yet both string literals and characters appear in
the constructor. This is one case where a value (string literal) is not assignment compatible with the
component type (char). Alternatively, the programmer could write

colors = color_~rray['RED', 'YELLOW' ,'BLUE'];

for the last constant definition.

2-10

Keven
Rectangle

STRING CONSTANT
(String Constructor)

A string constant is a declared constant defined with a string constructor which specifies values for a string
type.

A string constructor consists of a previously defined string type identifier and a list of values in square
brackets.

Syntax

string
constructor

constant

Within the square brackets, the reserved word OF indicates that a value occurs repeatedly. For example 3
OF 'a' assigns the character 'a' to three successive string components. The symbols (. and.) may replace
the left and right brackets, respectively. String literals of more than one character may appear as values.

The length of the string constant may not exceed the maximum length of the string type used in its
definition.

String constructors are only legal in a CONST section of a declaration part. They cannot appear in other
sections or in executable statements.

The programmer may use a string constant to initialize a variable in the statement part of a block. The
programmer may also access individual components of a string constant in the body of the block, but not
in the definition of other declared constants (see Selectors in Section 4).

2-11

STRING CONSTANTS

Examples

TYPE
s = string[80];

CONST
blank = ' ';
greeting = s['Hello! '];
farewell = s['G',2 OF '0', 'd', 'bye'];
blank_string = s[10 OF blank];

2-12

Keven
Rectangle

RECORD CONSTANT
(Record Constructor)

A record constant is a declared constant defined with a record constructor which specifies values for the
fields of a record type.

A record constructor consists of a previously declared record type identifier and a list in square brackets of
fields and values. All fields of the record type must appear, but not necessarily in the order of their
declaration. Values in the constructor must be assignment compatible with the fields.

Syntax

record
constructor

record
type
identifier

field identifier

For records with variants, the contructor must specify the tag field before any variant fields. Then only the
variant fields associated with the value of the tag may appear. For free union variant records, i.e. tag less
variants, the initial variant field selects the variant.

The values may be constant values or constructors. To use a constructor as a value, the programmer must
define the field in the record type with a type identifier. A record constant may not contain a file.

A record constructor is only legal in the CONST section of a declaration part. It cannot appear in other
sections or in an executable statement.

The programmer may use a record constant to initialize a variable in the body of a block. The programmer
can also select individual fields of a record constant in the body of a block, but not when defining other
constants.

2-13

--- ---------------~~~~~-

RECORD CONSTANT

Examples

TYPE
securtype
counter

report

= (light, medium, heavy);
= RECORD

pages: integer;
lines: integer;
characters: integer;

END;
= RECORD

revision: char;
price: reaZ;
info: counter;
CASE securtag: securtype OF

light: ();
medium: (mcode: integer);
heavy: (hcode: integer;

password: string[10);
END;

CONST
no count = counter [pages: 0, characters: 0, lines: 0];
big_report = report [revision: 'B',

price: 19.00,
info: counter [pages: 19,

lines: 25.
characters: 900],

securtag: heavy,
hcode: 999,
password: 'unity'];

2-14

Keven
Rectangle

SET CONSTANT
(Restricted Set Constructor)

A set constant is a declared constant defined with a restricted set constructor which specifies set values.

A restricted set constructor consists of an optional previously declared set type identifier and a list of
constant values in square brackets. Subranges may appear in this list.

Syntax

restricted
set
constructor '--------"'"

A value must be an ordinal constant value or an ordinal subrange. A constant expression is legal as a
value. The symbols (. and.) may replace the left and right square brackets, respectively.

Restricted set constructors may appear in a CONST section of a declaration part or in executable
statements. Unrestricted set constructors permit variables to appear as values within the brackets (see
Section 4).

The programmer can use a set constant to initialize a set variable in the body of a block.

Examples

TYPE
digits
charset =

CONST
= SET OF o .. 9;

SET OF char;

all_digits = digits [0 .. 9];
odd_digits = digits [1. 1+2, 5.
letters charset [' I I'= a .. z ,
no chars = charset [] ;- [2, 4, 6, 8]no iden =

{Subrange.}
7, 9];
'A I •• I Z '] ;

{No set identifier.}

2-15

--~~--~-~ ~~~-

TYPE DEFINITIONS
(Data Types)

A type definition establishes an identifier as a synonym for a data type. The identifier may then appear in
subsequent type or constant definitions, or in variable declarations.

The reserved word TYPE precedes one or more type definitions. A type definition consists of an identifier,
the equals sign (=), and a data type.

Syntax

~:c~aration--C TYPE rC:i identifier r--0--1 type 1---0-")---."

type --..-----+t r....- ..J
type identifier

2-16

Keven
Rectangle

TYPE DEFINITIONS

A data type determines a set of attributes which include:

• the set of permissible values

• the set of permissible operations

• the amount of storage required

Subsequent pages explain the permissible values and operations for the various data types. Section 9
discusses storage.

The three most general catagories of data type are simple, structured, and pointer.

Simple data types are the types ordinal, real, or longreal. Ordinal types include the standard types integer,
char, and boolean, as well as enumerated and subrange types defined by the programmer.

Structured data types are the types array, record, set, or file. The standard type string is also a structured
data type. The standard type text is a variant of the file type.

Pointer data types define pointer variables which point to dynamically allocated variables on the heap.

Figure 2-1 shows the relation of these various categories.

2-17

---------- _._--------- -..... ---

TYPE DEFINITIONS

DATA TYPES

. ----------------------------

POINTER

SIMPLE

I
- STRUCTURED

I
I I I

Array Record Set

I
Real

I
Ordinal Longreal

I II
BooleanInteger Char SubrangeEnumerated

Fig. 2-1. PASCALl3000 DATA TYPES

2-18

I
File

I
Text

I
String

Keven
Rectangle

BOOLEAN TYPE

Pascal/3000 predefines the type boolean as:

TYPE boolean = (false, true);

The identifiers false and true are standard identifiers, where true> false.

Boolean is a standard simple ordinal type.

Permissible Operators

assignment
boolean
relational

- AND, OR, NOT
- <, <=, =, <;>, >=, >, IN

Standard Functions

boolean argument
boolean return

oro, pred, succ
- eat, eo/n, odd

Standard Procedure

boolean parameter - assert

Example

VAR
loves me: boolean;

2-19

CHAR TYPE

The 8-bit ASCII character set comprises the type char, which is a simple ordinal standard type.

A pair of single quote marks encloses a char literal (see Section 5).

Permissible Operators

assignment
relational

- :=
- <, -c=, ==, <>. >=, >, IN

Standard Functions

char argument
char return

- ord
- cht, pred, succ

Example

VAR
do_you: char;

2-20

Keven
Rectangle

INTEGER TYPE

The type integer is a subrange whose lower bound is the standard constant minint and whose upper
bound is the standard constant maxinit. Pascal/3000 defines minint, maxint, and integer like this:

CONST
minint = -2147483648;
maxint = 2147483647;

TYPE
integer = mininLmaxint;

The value of the standard constant minint may not appear as an integer literal, although it may be input
from a file.

Integer is a standard simple ordinal type.

Section 5 describes the form of an integer literal.

Permissible Operators

assignment
relational
arithmetic

- <, <=, =, <>, >, >=, IN
- +, -,*, I, DIV, MOD

Standard Functions

integer argument
integer return

- ebs, arctan, chr, cos, exp, In, odd, ord, pred, sin,sqr, sqrt, succ
- ebs, binary, ccode, fnum, hex, Iinepos, maxpos, octal, ord, position, pred,

round, sizeot, strlen, strmex, strpoe, sqr, trunc

Example

VAR
wholenum: i.nteqe»;

2-21

ENUMERATED TYPE

An enumerated type is an ordered list of identifiers in parentheses. The sequence in which the identifiers
appear determines the ordering. The ord function returns 0 for the first identifier; 1 for the second
identifier; 2 for the third identifier; and so on (see Section 7).

Syntax

enumerated
type

There is no arbitrary limit on the number of identifiers that may appear in an enumerated type.

Enumerated types are simple ordinal types defined by the programmer.

Permissible Operators

assignment - :=

relational - -c, <=, =, <>, >=, ». IN

Standard Functions

enumerated argument - ord, ored, succ
enumerated return - pred, succ

Example

TYPE
workdays = (monday, tuesday, wednesday, thursday, friday);
weekend = (saturday, sunday);

2-22

SUBRANGE TYPE

A subrange type is a sequential subset of an ordinal host type. A subrange type consists of a lower bound,
the special symbol .., and an upper bound. The upper and lower bounds must be constant values of the
same ordinal type and the lower bound cannot be greater than the upper bound.

Syntax

subrange
type

A constant expression may appear as an upper or lower bound.

A subrange type is a simple ordinal type.

Permissible Operations and Standard Functions

A variable of a subrange type possesses all the attributes of the host type of the subranqe, but its
values are restricted to the specified closed range.

Example

TYPE
day_of_year = 1 ..366;
lowercase I I {Host type is char. }= a .. z ;

earlyweek = Monday ..Wednesday {Identifiers from }
{enumerated host type.}
{Monday < Wednesday. }

= 1 ..maxsize - 1 {Upper bound is con- }
{stant expression. }
{Maxsize is declared }
{constant. }

2-23

REAL TYPE

The type real represents a subset of the real numbers. For Pascal/3000, this subset covers the ranges:

-1.15792E+77 to -8.63617E-78
0.0
8.63617E-78 to 1.15792E+77

The type real is a standard simple type.

Section' 5 describes the form of a real literal.

Permissible Operators

assignment
. relational
arithmetic

- <, <=, =, <>, >=, >
- +, -,*, /

Standard Functions

real argument
real return

- abs, arctan, cos, exp, In, round, sin, sqr, sqrt, trunc
- ebs, arctan, cos, exp, In, sin, sqr, sqrt

Example

VAR
realnwn: real;

2-24

LONGREALTYPE

The type longreal represents a subset of the real numbers. In Pascal/3000, this subset covers the ranges:

-1. 157920892373162L + 77 to -8.636168555094445L-78
0.0
8.636168555094445L -78 to 1.157920892373162L +77

The type longreal is a standard simple type.

Section 5 describes the form of a longreal literal.

Permissible Operators

assignment
relational
arithmetic

- <'.<=, =, <>, >=, >
- +, -,*, /

Standard Functions

long real argument - abs, arctan, cos, exp, In, round, sin,
sqr, sqrt, trunc

longreal return - abs, arctan, cos, exp, In, sin, sqr
sqrt

Example

VAR
precisenum: ZongreaZ;

2-25

ARRAVTVPE

An array is a fixed number of components which are all the same type. A computable index designates
each component of an array.

An array type definition consists of the reserved word ARRAY, an index type in square brackets, the
reserved word OF, and the component type. The reserved word PACKED may precede ARRAY. It instructs
the compiler to optimize storage space for the array components (see Section 9).

Syntax

array
type

The index type must be an ordinal type. The component type may be any simple, structured, or pointer
type, including a file type. The symbols (. and.) may replace the left and right square brackets,
respectively.

An array type is a structured type defined by the programmer.

The programmer may access a component of an array using the index of the component in a selector (see
Section 4).

In ANSI Standard Pascal, the term 'string' designates a packed array of char with a starting index of 1. HP
Standard Pascal and Pascal /3000, however, define a standard type string which is identical with a packed
array of char except that its actual length may vary at run time. To distinguish these two data types, the
acronym PAC will denote

PACKED ARRAY [1..n] OF char,
throughout this manual.

2-26

ARRAVTVPE

Permissible Operators

assignment

relational (PAC only) - <, <=, =, <>, >=, >

Standard Procedures

array parameters - pack, unpack

Examples

TYPE
name
list
strange
flag
files

= PACKED ARRAY [1..30] OF char; {PAC type}
= ARRAY [1..100] OF integer;= ARRAY [boolean] OF char;= ARRAY [(red, white, blue)] OF 1 ..50;= ARRAY [1..10] OF text;

Multiply-dimensioned Arrays

If an array definition specifies more than one index type or if the components of an array are themselves
arrays, then the array is said to be multiply-dimensioned. There is no arbitrary limit on the number of array
dimensions.

Examples

TYPE
{ equivalent definitions of truth}
truth = ARRAY [1..20] OF

ARRAY [1. .5] OF
ARRAY [1..10] OF boolean;

truth = ARRAY [1..20] OF
ARRAY [1..5. 1 ..10] OF boolean;

truth = ARRAY [1..20, 1. .5] OF
ARRAY [1..10] OF boolean;

truth = ARRAY [1..20, 1 ..5, 1 ..10] OF boolean;

2-27

STRING TYPE

In Pasca1/3000, a string is a packed array of char whose maximum length is SE~tat compile time and
whose actual length may vary dynamically at run time.

A string type consists of the standard identifier string and an integer constant expression in square
brackets which specifies the maximum length.

Syntax

integer constant
expression

The maximum length must be in the range 1..32767. The symbols (. and.) may replace the left and right
square brackets, respectively.

A string type is a standard structured type.

Characters enclosed in single quotes are string literals. The compiler interprets a string literal as type PAC,
string, or char, depending on context.

Integer constant expressions are constant expressions which return an integer value, an unsigned integer
being the simple case (see Constant Definition above).

When a formal reference parameter is type "string", the programmer may not specify the maximum
length (see example below). This allows actual string parameters to have various maximum lengths.

The programmer may access a single component of a string using an integer expression in square
brackets as a selector (see Section 4). The standard function str selects a substring of a string (see
Section 7).

NOTE: Variables of string type, as other Pascal variables, are NOT initialized. The current string length
contains meaningless information until the user initializes the string.

2-28

Permissible Operators

assignment

concatenation - +
relational - =, <>, <=, >=, >,

Standard Functions

string argument
string return

- str, sttten, stritrim, strmax, strpos, strrpt, strttrim
- str, strltnm, strrpt, strrtrim

Standard Procedures

STRING TYPE

string parameter - setstr/en, strappend, strdeiete, strinsert, strmove, strread, strwrite

Examples

CONST
maxlength = 100;

TYPE
name = string[30];
remark = string[maxlength * 2];

PROCEDURE pro c1 (VAR s: string); EXTERNAL; {Max imum length }
{not required. }

2-29

RECORD TYPE

A record is a collection of components which are not necessarily the same type. Each component is
termed a field of the record and has its own identifier.

A record type consists of the reserved word RECORD, a field list, and the reserved word END.

The reserved word PACKED may precede the reserved word RECORD. It instructs the compiler to
optimize storage of the record fields (see Section 9).

Syntax

record
type field list

The field list has a fixed part and an optional variant part.

Syntax

2-30

Keven
Rectangle

RECORD TYPE

In the fixed part of the field list, a field definition consists of an identifier, a colon (:), and a type. Any
simple, structured, or pointer type is legal. The programmer may define several fields of the same type by
listing identifiers separated by commas.

In the variant part, the reserved word CASE introduces an optional tag field identifier and a required
ordinal type identifier. Then the reserved word OF precedes a list of case constants and alternative field
lists. Fields of type file or of a type which contains files are not legal in the variant part of a record.

Case constants must be type compatible with the tag. The programmer may associate several case
constants with a single field list. The various constants appear separated by commas. Subranges are
also legal case constants. HP Pascal does NOT require that you specify all possible tag values. This is
an extension to the ANSI Standard Pascal. The programmer may use the empty field list to indicate that
a variant doesn't exist (see example below).

The programmer may not use the OTHERWISE construction in the variant part of the field list.
OTHERWISE is only legal in CASE statements (see Section 3).

Variant parts allow variables of the same record type to exhibit structures that differ in the number and
type of their component parts. The value of the tag field, if any, indicates which variant is currently valid.
When the tag is assigned another value, previous variants cease to exist.

The programmer may access a field of a record using the appropriate field selector (see Section 4).

A record is a structured type defined by the programmer.

Permissible Operator

assignment (entire record) -

2-31

RECORD TYPE

Examples
TYPE

word_type = (int, ch);
word = RECORD {variant part only with tag}

CASE word tag: word type OF
int: (number: integer);
ch : (chars: PACKED ARRAY [1..2] OF char);

END;

polys
polygon

= (circle, square, rectangle, triangle);= RECORD {fixed part and tagless variant part}
poly color: (red, yellow, blue);
CASE-polys OF

circle: (radius: integer);
square: (side: integer);
rectangle: (length, width: integer);
triangle: (base, height: integer);

END;

name string
date-info

= PACKED ARRAY [1..30] OF char;
= PACKED RECORD {fixed part only}

mo: (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);

da: 1. .31;
yr: 1900 ..2001;

marital_status
person_info

END;
= (married, separated, divorced, single);= RECORD {nested variant parts}

name: name string;
born: date-info;
CASE status: marital status OF

married ..divorced:
(when: date info;
CASE has kids: boolean OF

true: (how many: 1..50);
false: ();-{Empty variant}

)
single: ();

END;

2-32

SET TYPE

A set is the powerset, i.e. the set of all subsets, of a base type. A set type consists of the reserved words
SET OF and an ordinal base type.

Syntax

set
type type

The base type may be any ordinal type and may contain up to 32767 elements.

If the standard type integer appears as the base type, the compiler uses the integer subrange 0..255 as the
actual base type. Thus, the programmer cannot associate a value outside this range with such a set.

It is legal to declared a packed set, but this does not affect storage.

A set type is a structured type defined by the programmer.

Permissible Operators

assignment -: =
union - +
intersection - *
difference
subset - <=
superset - >=
equality - =, <>
inclusion - IN

Examples

TYPE
charset
fruit
somefruit
poets
big_set

= SET OF char;= (apple, banana, cherry, peach,
= SET OF apple ..cherry;= SET OF (Blake, Frost, Brecht);
= SET OF 1 ..10000;

pear, pineapple);

2-33

FILE TYPE

A logical file is a declared data structure in a Pascal/3000 program. A physical file is an independent entity
controlled by the MPE Operating System. At run time, logical files are associated with physical files,
allowing a program to manipulate data in the external environment (see Section 6).

A logical file is a sequence of components of the same type, which may be any type except a file type or a
structured type with a file type component.

A file type consists of the reserved words FILE OF and a component type.

Syntax

~~.~ 'YO'

~)- ---,J

The programmer may access file components sequentially or directly using a variety of Pascal/3000
standard procedures and functions fully described in Section 6.

It is legal to declare a packed file, but this has no effect on storage.

The standard file type text is described on the next page.

Examples

TYPE
person

bit vector
person file
data fIle
vector file

= RECORD
name: PACKED ARRAY [1..30] OF chax-;
age: 1. .100;

END;= PACKED ARRAY [1..100] OF boolean;= FILE OF person;
= FILE OF integer;= FILE OF bit_vector;

2-34

TEXT FILE TYPE

The standard file type text permits ordinary input and output oriented to characters and lines. Text type
files have two important features: (1) the components are type char, (2) the file is subdivided into lines
by special end-of-line markers.

Text type variables are termed 'textfiles'. _

The programmer cannot open textfiles for direct access, i.e. with the procedure open. Textfiles may be
sequentially accessed, however, with the procedures reset, rewrite, or append. All standard procedures
that are legal for sequentially accessed files are also legal for textfiles (see Section 6).

Certain standard procedures and functions, on the other hand, are legal only for textfiles: readIn, wtiteln,
page, prompt, overprint, eoln, and linepos.

Textfiles permit conversion from the internal form of certain types to an ASCII character representation
and vice versa.

Subsequent pages in this chapter and in Section 6 describe two standard textfiles, input and output.

Example
VAR

myfile: text;

2-35

POINTER TYPE

A pointer references a dynamically allocated variable on the heap. A pointer type consists of the caret
(,,) and a type identifier.

Syntax

pointer
type

type identifier

The type may be any type, including file types. The @ symbol may replace the caret.

The programmer need not have previously defined the type appearing after the caret. This is an exception
to the general rule that Pascal identifiers are first defined and then used. However, the programmer must
define the identifier after the caret within the same declaration part, although not necessarily within the
same TYPE section.

The pointer value NIL belongs to every pointer type; it points to no variable on the heap.

Permissible Operators

assignment
equality

_ 0=
- =, <>

Standard Procedures

pointer parameters - new, dispose, mark, release

2-36

Keven
Rectangle

POINTER TYPE

Examples
TYPE

ptrl = "reel;
ptr2 = "ree2;
reel = RECORD

fl, f2: integer;
link: ptr2;

END;
ree2 = RECORD

ri , f2: real;
link: ptrl;

END;

2-37

TYPE COMPATIBILITY

Relative to each other, two Pascal/3000 types can be identical, type compatible, assignment compatible,
or incompatible.

Identical Types

Two types are identical if either of the following is true:

(1) Their types have the same type identifier.

(2) If A and B are their two type identifiers, and they have been made equivalent by a definition of the
form

TYPE A = B

Type Compatible Types

Two types T1 and T2 are type compatible if any of the following is true.

(1) T1 and T2 are identical types.

(2) T1 and T2 are subranges of the same host type, or T1 is a subrange of T2, or T2 is a subrange of
Tt

(3) T1 and T2 are set types with compatible base types and both T1 and T2 or neither are packed.

(4) T1 and T2 are PAC types with the same number of components, or if T2 is a string literal no longer
than T1.

(5) T1 and T2 are both string types.

(6) T1 and T2 are both real types, i.e. real or longreal.

Assignment Compatible Types

Section 3 describes assignment compatible types.

2-38

TYPE COMPATABILITY

Incompatible Types

Two types are incompatible if they are not identical, type compatible, or assignment compatibile.

Examples
TYPE

interval = 0..10;
range = interval;

VAR
v1 : O •• 10;
v2, v3: o .. 10;
v4 interval;
v5 interval;
v6 : range;

All of the variables are type compatible, but only v4, v5, and v6, as well as the pair v2 and v3, have
identical types.

2-39

-- ~----- -- - ~-~~-~~--- --------

VARIABLE DECLARATION

A variable declaration associates an identifier with a type. The identifier may then appear as a variable in
executable statements.

The reserved word VAR precedes one or more variable declarations. A variable declaration consists of an
identifier, a colon (:), and a type. The programmer may list any number of identifiers separated by
commas. These identifiers will then be variables of the same type.

Syntax

J: O· .J
)0-1variable

type r-0declaration --.(vAR identifier •

The type may be any simple, structured, or pointer type. The form of the type may be a standard identifier,
a declared type identifier, or a data type (see example below).

Variable declarations must follow label declarations and precede function and procedure declarations. The
programmer may repeat VAR sections and intermix them with CONST and TYPE sections.

The programmer may access components of a structured variable using an appropiate selector. Pointer
variable dereferencing accesses dynamic variables on the heap. (see Section 4).

Pascal/3000 predefines two standard variables, input and output, which are textfiles. Formally,

VAR
input, output: text;

Section 6 discusses these standard variables in detail. They commonly appear as program parameters
and serve as default files for various file operations.

2-40

Keven
Rectangle

VARIABLE "DECLARATION

Examples

TYPE
answer = (yes, no, maybe);

VAR
page count ,
linecount,
charcount: integer; {Standard identifier. }

whats the: answer; {User-declared identifier.}

album RECORD {Data type.
speed: (Lp , for5, sev8);
price: real.;
name string[20];

END;

}

2-41

PROCEDURE DECLARATION

A procedure is a block which the programmer may activate with a procedure statement. A procedure
declaration consists of a procedure heading, a semi-colon (;), and a block or a directive followed by a
semi-colon.

Syntax

procedure
declaration

block

directive

The procedure heading consists of the reserved word PROCEDURE, an identifier (the procedure name),
and, optionally, a formal parameter list. For level-1 procedures, the procedure name must be unique within
fifteen characters (see below).

Syntax

procedure
heading

PROCEDURE formal parameter lilt

A directive can replace the procedure block. The directives are FORWARD, EXTERNAL, and INTRINSIC
(see below).

A procedure block is syntactically identical with the block described in Sections 2 and 3 of this manual. It
consists of an optional declaration part and a statement part.

Procedure declarations must occur at the end of a declaration part after label, constant, type, and variable
declarations. The programmer may repeat procedure declarations and intermix them with function
declarations.

2-42

FUNCTION DECLARATION

A function is a block which the programmer may activate with a function call and which returns a value. A
function declaration consists of a function heading and a block or a directive.

Syntax

function
declaration

block

directive

A function heading consists of the reserved word FUNCTION, an identifier (function name), an optional
formal parameter list, and a result type. For level 1 functions, the function name must be unique within
fifteen characters (see below). The result type may be any type, except a file type or a structured type
containing a file.

Syntax

function
heading

formal
parameter
list

FUNCTION type identifier

A directive can replace the function block. The directives are FORWARD, EXTERNAL, and INTRINSIC
(see below).

A function block is syntactically identical with the block described in Sections 2 and 3 of this manual.
However, in the body of a function block there must be at least one statement assigning a value to the
function identifier. This assignment statement determines the function result. If the function result is a
structured type, the programmer must assign a value to each of its components using an appropriate
selector (see Section 4).

2-43

FUNCTION DECLARATION

Function declarations may occur at the end of a declaration section after label, constant, type, and
variable declarations. The programmer may repeat function declarations and intermix them with
procedure declarations.

2-44

FORMAL PARAMETER LIST

A 'formal parameter list appears optionally in a procedure or function heading and specifies the formal
parameters for a procedure or function. A procedure statement or function call in the body of a block
provides the matching actual parameters.

The four sorts of formal parameters are value, variable, functional, and procedural parameters, Value
parameters are identifiers followed by a colon (:) and a type identifier. Variable parameters are identical
with value parameters except they are preceded by the reserved word VAR. Functional or procedural
parameters are function or procedure headings.

Syntax

formal
parameter
list

type identifier

procedure heading

function heading

The programmer may repeat and intermix the four types of formal parameters. Several identifiers may
appear separated by commas. These identifiers will then represent formal variable or value parameters of
the same type.

A formal value parameter functions as a local variable during execution of the procedure or function. It
receives its initial value from the matching actual parameter. Execution of the procedure or function
doesn't affect the actual parameter, which, therefore, may be an expression.

A formal variable parameter represents the actual parameter during execution of the procedure. Any
changes in the value of the formal variable parameter will alter the value of the actual parameter, which,
therefore, must be a variable. A string type formal variable parameter need not specify a maximum length.

2-45

FORMAL PARAMETER LIST .

A formal procedural or functional parameter is a synonym for the actual procedural or functional
parameter. The parameter lists, if any, of the actual and formal procedural or functional parameters must
be congruent (see Section 3).

Examples

PROGRAM show_formparm;
VAR

test: boolean;

FUNCTION chekl (x, y, z: real): boolean;
BEGIN

{Perform some type of validity check on x, y, z }
{and return appropriate value. }

END;

FUNCTION chek2 (x, y, z: real): boolean;
BEGIN

{Perform an alternate validity check on x, y, z }
{and return appropriate value. }

END;

PROCEDURE read data (FUNCTION check (a, b, c: real): boolean);
VAR p, q, r:-real;
BEGIN

{read and validate data}
readln (p, q, r);
IF check (p, q, r) THEN ...

END;

BEGIN {show_formparm}

IF test THEN read data (chekl)
ELSE read data (chek2);

END.

2-46

DIRECTIVES

A directive may replace a block in a procedure or function declaration. In Pascal/3000, the three
directives are FORWARD, EXTERNAL and INTRINSIC. The programmer may qualify the EXTERNAL
directive with the terms SPL, FORTRAN, or COBOL. Furthermore, the term VARIABLE may appear after
SPL.

Syntax

FORWARD

INTRINSIC

EXTERNAL

The FORWARD directive makes it possible to postpone full declaration of a procedure or function; the
EXTERNAL directive to declare Pascal or non-Pascal procedures or functions in other compilation units;
the INTRINSIC directive to declare MPE or programmer-created intrinsics.

The terms FORWARD, EXTERNAL, SPL, VARIABLE, FORTRAN, COBOL, and INTRINSIC may appear as
programmer-defined identifiers in source code and, at the same time, as directives.

Subsequent pages describe each directive in detail.

2-47

FORWARD DIRECTIVE

The FORWARD directive permits the full declaration of a procedure or function to follow the first call of the
procedure or function. For example, suppose a programmer declares procedures A and B on the same
level. Both A and 8 cannot call each other without using the FORWARD directive:

PROCEDURE A; FORWARD;
PROCEDURE B;

BEGIN
A; {calls A}

END;
PROCEDURE A; {full declaration of A}

BEGIN
B; {calls B}

END;
After using the FORWARD directive, the programmer must fully declare the function or procedure in the
same declaration part of the block. Formal parameters, if any, and the function result type must appear
with the FORWARD declaration. The programmer may omit these formal parameters or result type,
however, when making the subsequent full declaration (see example below). If repeated, they must be
identical with the original formal parameters or result type.

The FORWARD directive may appear with a procedure or function at any level.

Example

FUNCTION exclusive or (x,y: boolean): boolean;
FORWARD;

FUNCTION exclusive or;
BEGIN -

{Parameters not repeated.}
exclusive or:= (x AND NOT y) OR (NOT x AND y);

END; -

2-48

Keven
Rectangle

EXTERNAL DIRECTIVE

The EXTERNAL directive permits the programmer to call Pascal or non-Pascal procedures or functions in
other compilation units. These external procedures and functions may be part of a segmented library, a
relocatable library, or a separately compiled subprogram; their source code may be Pasca1/3000, SPL,
FORTRAN, COBOL 68, or COBOL II.

The EXTERNAL directive may appear with a procedure or function declaration at any level. The actual
external procedure or function referenced, however, must be a level 1 procedure or function.

In general, the programmer is responsible for matching the formal parameters or result type of a procedure
or function declared EXTERNAL with the formal parameters or result type of the external procedure or
function (see Appendix G). In contrast, the INTRINSIC directive requires little or no matching.

There are five possible forms of an EXTERNAL directive,

EXTERNAL
EXTERNAL SPL
EXTERNAL SPL VARIABLE
EXTERNAL FORTRAN
EXTERNAL COBOL

which we examine in turn.

EXTERNAL - The source code of the external procedure or function is Pasca1/3000. The formal
parameters of the declaration, if any, must match the formal parameters of the external procedure or
function in number, order, and type, i.e. they must be type ·identical. They need not have the same name.
Also, the result type of a function must be identical with the result type of the external function.

EXTERNAL SPL - The source code of the external procedure or function is SPL without option variable
parameters. Formal parameters need not have the same name as the external formal parameters. They
must, however, match the external formal parameters in number and order. Furthermore, the Pascal/3000
type of the formal parameters or the function result must satisfactorily conform to the SPL type of the
external formal parameters or result type (see Appendix G and SPL Reference Manual).

2-49

EXTERNAL DIRECTIVE

EXTERNAL SPL VARIABLE - The source code of the external procedure or function is SPL with option
variable parameters. The programmer must use this form of the EXTERNAL directive even if no
parameters are omitted when calling the external SPL procedure or function. The formal parameters must
match the formal parameters of the external SPL procedure in number, order and type, but not necessarily
in name. The Pascal/3000 type of the formal parameters or result type must satisfactorily conform to the
SPL type of the external formal parameters or function result (see Appendix G and the SPL Reference
Manual).

EXTERNAL FORTRAN - The source code of the external procedure or function is FORTRAN, The formal
parameters, if any, must match the external formal parameters in order and number, but not necessarily in
name. The Pascal/3000 type of the formal parameters or function result must satisfactorily conform with
the FORTRAN type of the external formal parameters or function result (see Appendix G and the
FORTRAN/3000 Reference Manual).

EXTERNAL COBOL - The source code of the external procedure or function is COBOL 68 or COBOL II.
The declared formal parameters must match the external formal parameters in order and number, but not
necessarily in name. Again, the Pascal/3000 type of the declared formal parameters or function result
must satisfactorily conform with the COBOL type of the external formal parameters or function result (see
Appendix G and the COBOL or COBOL" Reference Manuals).

Examples

See Appendix G.

2-50

INTRINSIC DIRECTIVE

The INTRINSIC directive permits the programmer to call MPE or user-created intrinsics with great
flexibility. For example, the programmer can declare an intrinsic procedure or function with a full or partial
formal parameter list, or no formal parameter list at all. Also, the programmer may use the ALIAS option
to declare an intrinsic in more than one way.

Formal Parameter List

In a procedure or function declared with the INTRINSIC directive, the formal parameter list is optional. A
subsequent procedure statement or function call may pass actual parameters to the intrinsic even if no
formal parameter list appeared. A formal parameter list for an intrinsic only provides strong type checking
of actual parameters. When formal parameters appear, the actual parameters must match in the normal
manner. When formal parameters are absent, the actual parameters may be of any type as long as
reasonable conversion to the intrinsic parameter is possible (see Appendix F).

Furthermore, partial formal parameter lists are legal. The MPE intrinsic FOPEN, for example, is an option
variable intrinsic with up to 13 parameters. The programmer could declare FOPEN with only 3 formal
parameters, and these parameters would correspond to the first 3 parameters of FOPEN. Then the
compiler will strongly type check the first 3 actual parameters against the specified formal parameters. The
system will convert succeeding actual parameters to whatever FOPEN requires.

There is one restriction on the formal parameters in an INTRINSIC declaration: if a formal parameter
appears for the nth intrinsic parameter, then formal parameters must also appear for the 1st to n-t st
intrinsic parameters.

Specifying formal parameters does not affect the use of empty actual parameters in calls to option
variable intrinsics. The programmer is still free to pass empty actual parameters to the option variable
intrinsic (see Section 3).

2-51

INTRINSIC DIRECTIVE

Alternative Intrinsic Declarations

The programmer must declare an intrinsic with no functional return as a procedure. On the other hand, an
intrinsic with a functional return may be declared as a procedure or as a function, depending on the way
the programmer wishes to use it in the Pascal/3000 program. Furthermore, the ALIAS option makes it
possible to declare the same intrinsic in both ways (see example below).

To use the intrinsic as a function, the programmer declares it as a function with a Pascal/3000 result type.
The system cannot handle the intrinsic function return without having a Pascal/3000 type. Once declared
as a function, the intrinsic cannot appear as a procedure in executable statements.

To use the intrinsic as a procedure, the programmer declares it as a procedure in the usual way. The
system will discard the intrinsic function return. Once declared as a procedure, the intrinsic cannot appear
as a function in the body of the program.

The programmer may also use the ALIAS option to declare an intrinsic which does not have a legal
Pascal/3000 name, e.g. there are single quote marks in the name.

Examples

TYPE
smallint = -32768 ..32767;

PROCEDURE pfileinfo; $ALIAS 'PRINT''FILE''INFO'$ {System name.}
INTRINSIC; .

PROCEDURE fopen~(VAR form_desg: barr;
foptions: smallint;
aoptions: smallint

) ;
$ALIAS 'FOPEN'$
INTRINSIC;

{FOPEN used as procedure. }

FUNCTION fopen f(VAR form desg: name rec
-): smallint; -

$ALIAS 'FOPEN'$ {FOPEN used as function .. }
INTRINSIC;

2-52

LEVEL 1 PROCEDURES AND FUNCTIONS

Level 1 procedures and functions are procedures and functions which the programmer declares at the
main program level. That is, other procedures or functions do not contain them. The Pascal/3000
compiler creates entry points for level 1 procedures and functions. This means they are accessible from
outside the compilation block in which the programmer declares them. Since they appear as distinct
entries in a USL directory, the MPE Segmenter requires that names of level 1 procedures and functions be
unique within the first fifteen characters.'

When the compiler option PRIVATE_PROC is OFF, the compiler makes the names of all procedures and
functions from any level known to the Segmenter, i.e. the names appear in the USL directory. Thus, all
procedure or function names must be unique within 15 characters. When PRIVATLPROC is ON (the
default setting), however, names of non-level 1 procedures or functions need not be unique. This conforms
with the usual scope conventions for Pascal identifiers.

Example

PROGRAM show_level;

PROCEDURE proc1;
PROCEDURE subprocl;

BEGIN

{Levell procedure. }
{Level 2 procedure. }

END;
BEGIN {procl}

END;

BEGIN {show_level}

END.

2-53

RECURSIVE PROCEDURES
AND FUNCTIONS

A recursive procedure or function is a procedure or function that calls itself. It is also legal for procedure A
to call procedure B which in turn calls procedure A. This is indirect recursion and is often an instance when
the FORWARD directive is useful.

When a program uses extensive recursion, the stack space allocated by the system may not be sufficient.
The programmer can overcome this problem using the STACK or MAXDATA parameters of the MPE
:PREP or :RUN commands.

Example

FUNCTION factorial (n: integer): integer;
{Calculates factorial recursively}

BEGIN
IF n = 0 THEN

factorial := 1
ELSE

factorial := n * factorial(n-l);
END;

2-54

Keven
Rectangle

SCOPE

The scope of an identifier is its domain of accessibility, i.e. the region of a program in which the
programmer may use it.

In general, a programmer-defined identifier may appear anywhere in a block after its definition.
Furthermore, the identifier may appear in a block nested within the block in which it is defined.

If the programmer redefines an identifier in a nested block, however, this new definition takes precedence.
The object defined at the outer level will no longer be accessible from the inner level (see example below).

Once defined at a particular level, an identifier may not be redefined at the same level (except for field
names).

Labels are not identifiers and their scope is restricted. They cannot mark statements in blocks nested
within the block where they are declared.

Identifiers defined at the main program level are 'global'. Identifiers defined in a function or procedure
block are 'local' to the function or procedure.

Example

PROGRAM show_scope (output);
CONST

asterisk =
VAR

x: char;
PROCEDURE writeit;

CONST
x = 'LOCAL AND GLOBAL IDENTIFIERS DON'T CONFLICT' ;

BEGIN
write (x)

END;
BEGIN {show_scope}

x:= asterisk;
write (x};
writeit;
write (x)

END. {show_scope}

2-55

STATEMENTS

INTRODUCTION
A statement is a sequence of special symbols, reserved words, and expressions which either performs a
specific set of actions on data or controls program flow.

Pascal / 3000 statement types and purposes include:

STATEMENT TYPE
compound

PURPOSE
group statements

empty do nothing

assignment assign a value to a variable

procedure activate a procedure

GOTO transfer control unconditionally

IF, CASE conditional selection

WHILE, REPEAT, FOR repeat a group of statements

WITH manipulate record fields

Empty, assignment, procedure, and GOTO statements are 'simple' statements. IF, CASE, WHILE,
REPEAT, FOR, and WITH statements are 'structured' statements because they themselves may contain
other statements.

An integer label declared in the declaration section of the block may mark a statement (see Section 2).
This label is the object of a GOTO statement.

The following pages describe each type of statement.

3-1

INTRODUCTION

Syntax

statereenr

stattmel'1(

3-2

Keven
Rectangle

COMPOUND STATEMENT

A compound statement is a sequence of statements bracketed by the reserved words BEGIN and END. A
semi-colon (;) delimits one statement from the next. The system executes the statements in the sequence
in order.

Syntax

compound
statement BEGIN

A compound statement has two primary uses: (1) it defines the statement part of a block; (2) it replaces
a single statement within a structured statement. A compound statement may also serve to logically group
a series of statements.

Examples

PROCEDURE check_min;
BEGIN

IF min > max THEN
BEGIN

~teln('Min is wrong. ');
min := 0;

END;
END;

{Compound }
{statement is}
{part of IF}
{statement. }

{This
{compound
{statement
{is

}
}
}
}

{the }
{procedure's}
{body. }

BEGIN
BEGIN

start_part_l;
finishyart_l;

END;

{Nested compound statements }
{for logically grouping statements.}

BEGIN
startyart_2;
finishyart_2;

END;
END;

3-3

---~ -~~---~--~-.- -~~

EMPTY STATE~MENT

An empty statement performs no action and is denoted by no symbol. It is often useful for indicating that
nothing should occur or for inserting extra semi-colons in code.

These two statements, for example, explicitly specify no action when i is 2,3,4,6,7,8,9, or 10:

CASE i OF
o
1
2 •• 4
5 report_error;
6 .. 10:
11 stop;
OTHERWISE fatal__error;

start;
continue;

IF i IN [2..4,6 ..10] THEN
{do nothing}
ELSE continue;

END;
In this compound statement, there is an empty statement before END:

BEGIN
I:= J + 1;
K:= I + J;

END

3-4

ASSIGNMENT STATEMENT

An assignment statement assigns a value to a variable or a function result. The assignment statement
consists of a variable or function identifier, an optional selector, a special symbol (:=), and an expression
which computes a value.

Syntax

assignment
statement

variable identifier

function identifier

The receiving element may be of any type except file, or a structured type containing a file type
component. An appropriate selector permits assignment to a component of a structured variable or
structured function result.

The type of the expression must be assignment compatible with the type of the receiving element (see
below).

3-5

ASSIGNMENT STATEMENT

Example
FUNCTION show_assign: integer;

TYPE
rec = RECORD

f: integer;
g: real.;

END;

index = 1. .3;
table = ARRAY [index] OF integer;

CONST
ct = table [10, 20, 30];
cr = rec [f:2, g:3.0];

VAR
s: integer;
a: table;
i: index;
r: rec;
p1,
p: "'integer;
str: string[10];

FUNCTION show structured: rec;
BEGIN

show structured.f := 20;
show-structured := cr;
show-assign := 50;

END; -

BEGIN {show_assign}
s := 5; i:= 3;
a := ct;
a [i] := s + 5;
r := cr;
r.f := 5;
p := p1;
pA := r.f - a [i];
str := I Hi! I ;

show assign := p"';
END; {show_assign}

{Assign to a }
{part of the record, }
{whole record, }
{outer function. }

{Assign to a }
{simple "variable, }
{array variable, }
{subscripted array variable, }
{record variable, }
{selected record variable, }
{pointer variable, }
{dynamic variable, }
{string variable, }
{function result variable. }

3-6

ASSIGNMENT COMPATIBILITY

Section 2 defines type identity and type compatibility. We now define assignment compatibility.

The programmer may only assign a value of type T2 to a variable or function result of type T1 if T2 is
assignment compatible with T1. For T2 to be assignment compatible with T1, any of the following
conditions must be true:

(1) T1 and T2 are type compatible types which are neither files nor structures that contain files.

(2) T1 is real or longrea{ and T2 is integer or an integer subrange. The compiler converts T2 to real or
longrea{ prior to assignment.

(3) T1 is tonqree! and T2 is real. The compiler converts T2 to {ongreal prior to assignment.

(4) T1 is real and T2 is longreal. The compiler rounds T2 to the precision of T1 prior to assignment.

Furthermore, a run-time or compile-time error will occur if the following restrictions are not observed:

If T1 and T2 are type compatible ordinal types, the value of type T2 must be in the closed interval specified
by T1.

If T1 and T2 are type compatible set types, all the members of the value of type T2 must be in the closed
interval specified by the base type of T1.

A special set of restrictions applies to assignment of string literals or variables of type string, PAC, or char
(see below).

Special Cases

The pointer constant NIL is both type compatible and assignment compatible with any pointer type.

The empty set [] is both type compatible and assignment compatible with any set type.

3-7

ASSIGNMENT COMPATIBILITY

String Assignment Compatibility

Certain restrictions apply to the assignment of string literals or variables of the type string, packed array of
char (PAC), or char.

If T1 is a string variable, T2 must be a string variable or a string literal whose length is equal to or less
than the maximum length of T1. T2 cannot be a PAC or char variable. Assignment sets the current
length of T 1.

If T1 is a PAC variable, T2 must be a PAC of equal length or a string literal whose length is less than or
equal to the length of T1. T1 will be blank filled if T2 is a string literal which is shorter than T1. T2
cannot be a string or a char variable.

If T1 is a char variable, T2 may be a char variable or a string literal with a single character. T2 cannot
be a string or PAC variable.

Table 3-1 summarizes these rules. The standard function strmax (s) returns the maximum length of the
string s. The standard function stnen (s) returns the current length of the string s.

String constants are considered string literals when they appear on the right side of an assignment
statement.

Any string operation on two string literals, such as the concatenation of two string literals, results in a
string of a string type.

3-8

Keven
Rectangle

ASSIGNMENT COMPATIBILITY

Table 3-1. STRING, PAC, AND STRING LITERAL ASSIGNMENT

String
T11 :=1 T2 string - PAC char Literal

Only if Only if
strmax (T1) >= Not Not strmax (T1)

string strlen (T2) allowed allowed >=strlen (T2)

strlen (T1) := strlen (T1)
strlen (T2) :=strlen (T2)

Only if Only if
Not T1 length = Not T1 length

PAC allowed T2 length allowed >= strlen (T2)

T1 is padded
if necessary

Not Not Yes Only if
char allowed allowed strlen (T2)

= 1

3-9

PROCEDURE STATEMENT

A procedure statement transfers program control to the block of a declared or standard procedure. A
procedure statement consists of a procedure identifier and, if required, a list of actual parameters in
parentheses.

Syntax

procedure
statement

procedure identifier

The procedure identifier must be the name of a standard procedure or a procedure declared by the
programmer.

If a procedure declaratlon includes a formal parameter list (see Section 2), the procedure statement must
supply the actual parameters. The actual parameters must match the formal parameters in number and
order, except in the case of a procedure declared with the directive INTRINSIC or the directive EXTERNAL
SPL VARIABLE (see Section 2). Such a procedure has option variable parameters which the programmer
may omit by specifying the empty actual parameter with a comma (,) (see example below). Furthermore,
the programmer may pass actual parameters to a procedure declared INTRINSIC even if no formal
parameters appear in the declaration. Appendices F and G discuss the details of calling intrinsics and
procedures or functions written in languages other than Pascal/3000.

Actual value parameters are expressions which must be assignment compatible with the formal value
parameters.

Actual variable parameters are variables which must be type identical with the formal variable parameters.
Components of a packed structure cannot appear as actual variable parameters.

Actual procedural or functional parameters are the names of procedures or functions declared by the
programmer. Standard procedures or functions are not legal actual parameters.

3-10

Keven
Rectangle

PROCEDURE STATEMENT

If a procedure or function passed as an actual parameter accesses any entity non-locally upon activation,
then the entity accessed is one which was accessible to the procedure or function when it was passed as a
parameter. For example, suppose Procedure A uses the non-local variable x. If A is then passed as an
actual procedural parameter to Procedure B, it will still be able to use x, even if x is not otherwise
accessible from B. Technically, the compiler preserves the static link when A is passed.

The formal parameters, if any, of an actual procedural or functional parameter must be congruent with the
formal parameters of the formal procedural or functional parameter. Two formal parameter lists are
congruent if they contain an equal number of parameters and the parameters in corresponding positions
are equivalent. Two parameters are equivalent if

(1) They are both value parameters of the identical type. Assignment compatibility is not legal.

(2) They are both variable parameters of the identical type.

(3) They are both procedural parameters with congruent parameter lists.

(4) They are both functional parameters with congruent parameter lists and identical result types.

After a procedure executes, control returns to the statement after the procedure statement.

3-11

PROCEDURE STATEMENT

Example
PROGRAM show_pstate (output);

PROCEDURE external proc {External declaration. }
(e1: integer;
e2: real); EXTERNAL SPL VARIABLE; {Parameters are option}

{variable. }

PROCEDURE actual-proc {Actual procedure declaration.}
(a1: integer;
a2: real);

BEGIN
IF a2 < a1 THEN

actual-proc (a1, a2-a1) {recursive call}

END;

PROCEDURE outer
(a: integer;
PROCEDURE proc-parm
(p1: integer; p2 : real»;

{Another actual declaration. }

PROCEDURE inner;
BEGIN

{nested procedure}

actual-proc (50, 50.0);
END;

BEGIN {outer}
tJriteln ('Hi I) ;

inner;
external proc (,2.2);

proc-parm (2, 4.0);
END; {outer}

BEGIN {show-pstate}
outer (10, external proc);
outer (30, actual-proc);

END. {show-pstate}

{Calling a }
{predefined procedure, }
{inner procedure, }
{external procedure with actual }
{parameter omitted, }
{procedural parameter. }

{Procedure statements with
{procedural parameters.

}
}

3-12

GOTO STATEMENT

A GOTO statement transfers control unconditionally to a statement marked by a label. A GOTO statement
consists of the reserved word GOTO and the specified label.

Syntax

GOTO
statement

The scope of labels is restricted. Labels may only mark statements appearing in the executable portion of
the block where they are declared. They cannot mark statements in inner blocks. GOTO statements,
however, may appear in inner blocks and reference labels in an outer block. Thus, it is possible to jump out

. of a procedure or function but not into one. It is also possible to jump across segment boundaries.

A GOTO statement may not lead into a component statement of a structured statement from outside that
statement or from another component statement of that statement. For example, it is illegal to branch to
the ELSE part of an IF statement from either the THEN part, or from outside the IF statement.

3-13

.. - ..-.-~.---------~

GOTO STATEMENT

Example

PROGRAM show_goto;
LABEL 500, 501;
TYPE

index = 1. .10;
VAR

i: index;
target: integer;
a: ARRAY[index] OF integer;

PROCEDURE check;
VAR

answer: string [10];
BEGIN

{ask user if OK to search}
IF answer= .no' THEN GOTO 501; {jumping out of procedure}

END;

BEGIN {show_goto}

check;

FOR i := 1 TO 10 DO
IF target = a[i] THEN GOTO 500;

U1riteZn (' Not found') j

GOTO 501;
500:

~teZn (' Found');
501:
END. {show_goto}

3-14

Keven
Rectangle

IF STATEMENT

An IF statement specifies a statement the system will execute provided that a particular condition is true. If
the condition is false, then the system doesn't execute the statement, or, optionally, it executes another
statement.

The IF statement consists of the reserved word IF, a boolean expression, the reserved word THEN, a
statement, and, optionally, the reserved word ELSE and another statement. .

Syntax

IF statement expression statement

The statements after THEN or ELSE may be any Pascal/3000 statements, including other IF statements
or compound statements. No semicolon separates the first statement and the reserved word ELSE.

The following IF statements are equivalent:

IF a = b THEN
IF c = d THEN

a := c
ELSE

IF a = b THEN
BEGIN

IF c = d THEN
a := c

ELSE
a := e; a := e;

END;

That is, ELSE parts that appear to belong to more than one IF statement are always associated with the
nearest IF statement.

3-15

------------- ---------

IF STATEMENT

A common use of the IF statement is to select an action from several choices. This often appears in the
following form:

IF el THEN
ELSE IF e2 THEN
ELSE IF e3 THEN
ELSE

This form is particularly useful to test for conditions involving real numbers or string literals of more than
one character, since these types are not legal in CASE statements.

Depending on the nesting level of statements in a program, a large number of chained ELSE-IF's may
cause the compiler to exceed an internal limit and not complete compilation.

3-16

Keven
Rectangle

IF STATEMENT

Example

PROGRAM show_if (input, output);

VAR
i, j.
s
found:

integer;
PACKED ARRAY [1..5] OF char;
boolean;

BEGIN

IF i = 0 THEN ~teln ('i = 0');
IF found THEN

~teln ('Found it')
ELSE

~teln ('Still looking');

{IF with no ELSE. }
{IF with an ELSE part. }

IF i = j THEN
~riteln ('i = j')

ELSE IF i < j THEN
~teln ('i < j')

ELSE {i > j}
~teln ('i > j');

{Select among different}
{boolean expressions. }

IF s = 'RED' THEN
i := 1

ELSE IF s = 'GREEN' THEN
i := 2

ELSE IF s = 'BLUE' THEN
i := 3;

END ..

{This IF statement }
{cannot be rewritten as}
{a CASE statement }

3-17

CASE STATEMENT

The CASE statement selects a certain action based upon the value of an ordinal expression.

The CASE statement consists of the reserved word CASE, an ordinal expression (the selector), the
reserved word OF, a list of case constants and statements, and the reserved word END. Optionally, the
reserved word OTHERWISE and a list of statements may appear after the last constant and its statement.

Syntax

CASE
statement

The selector must be an ordinal expression, Le. it must return an ordinal value. A case constant may be a
literal, a constant identifier, or a constant expression which is type compatible with the selector. Subranges
may also appear as case constants. Separate ranges may not overlap.

A case constant cannot appear more than once in a list of case constants.

The programmer may associate several constants with a particular statement by listing them separated by
commas.

3-18

CASE STATEMENT

The programmer need not bracket the statements between OTHERWISE and END with BEGIN..END.

When the system executes a CASE statement:

(1) It evaluates the selector.

(2) If the value corresponds to a specified case constant, it executes the statement associated with
that constant. Control then passes to the statement following the CASE statement.

(3) If the value does not correspond to a specified case constant, it executes the statements between
OTHERWISE and END. Control then passes to the statement after the CASE statement. A run time
error occurs if the programmer has not used the OTHERWISE construction and the compiler has
processed the CASE statement with the RANGE option ON.

3-1~

CASE STATEMENT

Examples

PROCEDURE scanner;
BEGIN

get_next_char;
CASE current char OF

I I I Ia .. z ,
'A' •• 'Z':

scan_word;
•0 I •• t 9' :

OTHERWISE scan_special;
END;

END;

{Subrange label. }

FUNCTION octal digit
(d: digit):-boolean; {TYPE digit = O •.9}

BEGIN
CASE d OF

0 ..7: octal_digit := true;
8..9: octal_digit := false;

END;
END;

{TYPE operators=(plus,minus,times,divide)}
operators;

FUNCTION op
(operator:
operandl,
operand2:
: :real;
BEGIN

real)

CASE operator OF
plus: op := operandl + operand2;
minus: op : = operandl operand2;
times: op := operandl * operand2;
divide: op := operandl I operand2;

END;
END;

3-20

WHILE STATEMENT

The WHILE statement executes a statement repeatedly as long as a given condition is true. The WHILE
statement consists of the reserved word WHILE, a boolean expression (the condition), the reserved word
DO, and a statement.

Syntax

WHILE
statement

When the system executes a WHILE statement, it first evaluates the condition. If the condition is true, it
executes the statement after DO and then re-evaluates the condition. When the condition becomes false,
execution resumes at the statement after the WHILE statement. If the condition is false at the beginning,
the system never executes the statement after DO.

The statement

WHILE condition DO statement

is equivalent to the following:

1: IF condition THEN BEGIN
statement;
GOTO 1;

END;

Usually a program will modify data at some point so that the condition becomes false. Otherwise, the
statement will repeat indefinitely. It is also possible, of course, to branch unconditionally out of a WHILE
statement using a GOTO statement.

3-21

-----------~~---------.-~ -- ------------ .. ---~ --------------- - ------------~--- ~~~~- .~--

--~---- --.-------.~.---.-- - ---~- -- ---

WHILE STATEMENT

Examples

WHILE index <= limit DO
BEGIN
~teZ~ (real_array [index]);
index := index + 1;

END;

WHILE NOT eo! (f) DO
BEGIN
read (f, ch};
~teZ~ (ch};

END;

3-22

Keven
Rectangle

REPEAT STATEMENT

A REPEAT statement executes a statement or group of statements repeatedly until a given condition is
true. A REPEAT statement consists of the reserved word REPEAT, one or more statements, the reserved
word UNTIL, and a boolean expression (the condition).

Syntax

REPEAT
statement

The programmer need not bracket the statements between REPEATand UNTIL with BEGIN..END.

When the system executes a REPEAT statment, it first executes the statement sequence and then
evaluates the condition. If it is false, it executes the statement sequence again. If it is true, control passes
to the statement after the REPEAT statement.

The statement

REPEAT
statement;

UNTIL condition

is equivalent to the following:

1: staternent;
IF N~r condition THEN GOTO 1;

Usually the statement sequence will modify data at some point so that the condition becomes false.
Otherwise, the F~EPEATstatment will loop forever. Of course, it is possible to branch unconditionally out of
a REPEAT statement using a GOTO statement.

3-23

----- ---

REPEAT STATEMENT

Examples

IF NOT eo!(num_file) THEN
REPEAT

read (num_file, value);
sum := sum + value;
count := count + 1;
average := sum / count;
lA1r'iteln (' value = I, value. I average = average)

UNTIL eo! (num_file) OR (count >= 100);

REPEAT
lA1r'iteln (real array [index]);
index := index + 1;

UNTIL index> limit;

3-24

Keven
Rectangle

FOR STATEMENT

The FOR statement executes a statement a predetermined number of times. The FOR statement consists
of the reserved word FOR and a control variable initialized by an ordinal expression (the initial value);
either the reserved word TO indicating an increment or the reserved word DOWNTO indicating a
decrement; another ordinal expression (the final value); the reserved word DO; and a statement.

Syntax

FOR
statement

variable identifier

The control variable must be a local ordinal variable. It may not be a component of a structured variable or
a locally declared procedure or function parameter. The initial and final values must be type compatible
with the control variable. They must also be in range with the control variable when the initial value is first
assigned. The statement after DO, of course, may be a compound statement.

When the system executes a FOR statement, it evaluates the initial and final values and assigns the initial
value to the control variable. Then it executes the statement after DO. Next, it repeatedly tests the current
value of the control variable and the final value for inequality, increments or decrements the control
variable, and executes the statement after DO. After completion of the FORstatement, the control variable
is undefined.

In a FOR..TO construction, the system never executes the statement after DO if the initial value is greater
than the final value in a FOR..DOWNTO construction, it never executes the statement if the initial value is
less than the final value.

3-25

--~- --~ ~~~~ --~-

FOR STATEMENT

The FOR statement

FOR control var := initial TO final DO
statement

is equivalent to the statement

BEGIN
templ := initial;
temp2 := final;
IF templ <= temp2 THEN
BEGIN

control var := templ;
statement;
WHILE control_var <> temp2 DO

BEGIN
control var := succ(control_var); {increment}
statement;

END;
END

ELSE BEGIN END;
END

{Don't execute statement at all;}
{control_var now undefined. }

The FOR statement

FOR control var := initial DOWNTO final DO
statement

is equivalent to the statement

BEGIN
templ := initial;
temp2 := final;
IF templ >= temp2 THEN

BEGIN
control_var := templ;
statement;
WHILE control_var <> temp2 DO

BEGIN
control var := p~d(control var); {decrement}
statement;

END;
END

ELSE BEGIN END;
END

{Don't execute statement at all;}
{control_var now undefined. }

3-26

Keven
Rectangle

FOR STATEMENT

In the statement after DO, the compiler protects the control variable from assignment. The programmer
cannot pass the control variable as a variable parameter or use it as the control variable of a second FOR
statement nested within the first. Furthermore, it may not appear as a parameter for the standard
procedures read or readln. Also, the statement cannot call a procedure or function which changes the
value of the control variable.

The system determines the range of values for the control variable by evaluating the two ordinal
expressions once, and only once, before making any assignment to the control variable. So the statement
sequence

i := 5;
FOR i := pred(i) TO succ(i) DO ~teln('i=' ,i:l);

will write

i=4
i=5
i=6

instead of

i=4
i=5

The system will not execute the statement after DO if the initial value is greater than the final value when
the FOR..TO construction appears, or less than the final value with FOR..DOWNTO.

3-27

FOR STATEMENT

If a FOR statement occurs in a section of a program with the RANGE compiler option OFF, the result of
execution will not be predictable if a range error occurs. Suppose:

VAR
i ' O ..10;
initial,
final o .. 32767;

$RANGE OFF$
initial := 1;
final := 20;
FOR i := initial TO
tUriteln (i);

final DO {The result of this FOR state-}
{ment is unpredictable, since }
{final is out of i's range. }

Examples

{VAR color: (red, green, blue, yellow);}
FOR color := red TO blue DO
~teln ('Color is " color);

FOR i := 10 DOWNTO 0 DO
~teln (i);

~teln ('Blast Off');

FOR i := (a[j] * 15) TO (f(x) DIV 40) DO
IF odd (i) THEN

x [i] := cos (i)
ELSE

x [i 1 : = sin (i);

3-28

Keven
Rectangle

WITH STATEMENT

A WITH statement allows the programmer to refer to record fields by field name alone. A WITH statement
consists of the reserved word WITH, one or more record designators, the reserved word DO, and a
statement.

Syntax

WITH
statement

A record designator may be a record identifier, a function call which returns a record, or a selected record
component.

The statement after DO may be a compound statement. In this statement, the programmer can refer to a
record field without mention of the record to which it belongs. However, the programmer may not assign a
new value to a field of a record constant or a field of a record returned by a function. In certain cases, the
WITH statement saves execution time since the system need not recalculate the offset of a record field
(see Section 9).

When the system executes a WITH statement, it evaluates the record designators and then executes the
statement after DO. .

The following statements are equivalent:

WITH rec DO
BEGIN

fieldl := el;
~teln(fieldl * field2);

END;

BEGIN
rec.fieldl := el;
~teln(rec.fieldl

* rec.field2);
END;

3-29

WITH STATEMENT

Since the sytem evaluates a record designator once and only once before it executes the statement, the
statement sequence, where f is a field,

i := 1;
WITH a[i] DO

BEGIN
U1ritel:n(f) ;
i:=2;
writeln(f)

END;
produces the same effect as:

U1riteln(a[l].f);
writeln(a[l] .f);

Records with identical field names may appear in the same WITH statement. The following interpretation
resolves any ambiguity:

The statement

WITH record1, record2, ..,' recordn DO
BEGIN

statement;
END;

is equivalent to

WITH recordl DO
BEGIN

WITH record2 DO
BEGIN

WITH recordn DO
BEGIN

statement;
END;

END;
END;

3-30

Keven
Rectangle

WITH STATEMENT

Thus, if field f is a component of both record 1 and record2, the compiler interprets an unselected reference
to f as a reference to record2.f. The programmer may access the synonymous field in record1 using
normal field selection, i.e. record 1.f.

This interpretation also means that if rand f are records, and f is a field of r, then the statement

WITH r DO
BEGIN

WITH r.f DO
BEGIN

statement;
END;,

END;
is equivalent to

WITH r,f DO
BEGIN

statement;
END;

If a local or global identifier has the same name as a field of a designated record in a WITH statement, then
the appearance of the identifier in the statement after DO is always a reference to the record field. The
local or global identifier is inaccessible.

3-31

------------------ ---- ------- -----------_._- .----------- ------------------

WITH STATEMENT

Examples

PROGRAM show_with;

TYPE
status
date

= (married, widowed, divorced, single);
= RECORD

month (jan, feb, mar, apr, may, jun,
july, aug, sept, oct, nov, dec);

1. .31;
integer;

day
year

END;
person = RECORD

name RECORD
first, last:stl'ing[lO]

END;
integer;
(male, female);
date;
status;
real

ss
sex
birth
ms
salary

END;

VAR
employee : person;

BEGIN {show_with}

WITH employee. name, birth DO
BEGIN

last := 'Hacker';
first := 'Harry';
ss := 2147483647;
sex := male;
month := feb;
day := 29;
year := 1952;
ms := single;
salary := 32767.0

END;

3-32

Keven
Rectangle

'-----EX_P_R_E_S_S_IO_N_S I~
INTRODUCTION
An expression is a construct which computes a result of a particular type. An expression is composed of
operators and operands. An operator performs an action on objects denoted by operands and produces a
value.

Operators are classified as arithmetic, boolean, relational, set, or concatenation operators. An operand
may be a literal, constant identifier, set constructor, or variable. Function calls are also operands in the
sense that they return a result which an operator can use to compute another value.

The type of the result of an expression is determined when the programmer writes the expression. It never
changes. The actual result, however, may not be known until the sytem evaluates the expression at run
time. It may differ for each evaluation. A constant expression is a restricted expression whose actual result
is computable at compile time (see Section 2).

In the simplest case, an expression consists of a single operand with no operator.

Examples
X:= 19; {Simplest case. }

y:= 100 + X; {Arithmetic operator with literal and }
{variable operands. }

IF X > Y THEN . .. , {Relational operator with variable
{operands.

}
}

}
}

IF (A AND B) . {Boolean operator with boolean
OR (C AND D) THEN ...;{operands.

setC:= setA * setB; {Set operator with variable operands. }

dessert:='ice'+'cream';{Concatenation operator with string }
{literal operands. }

4-1

OPERATORS

An operator performs an action on one or more operands and produces a value.

Operators are classified as arithmetic, boolean, set, relational, and concatenation operators. A particular
symbol may occur in more than one class of operators. For example, the symbol' +' is an arithmetic, set
and concatenation operator representing numeric addition, set union, and string concatenation,
respectively.

Precedence ranking determines the order in which the compiler evaluates a sequence of operators (see
below).

The value resulting from the action of an operator may in turn serve as an operand for another operator.

Table 4-1 lists each Pascali 3000 operator together with its actions, permissible operands, and type of
results. In the table, the term 'real' indicates both real and longreal types. Subsequent pages describe
each operator in detail.

Table 4-1. PASCAL/3000 OPERATORS

Operator Actions Type of Operands Type of Results

additions real, integer real, integer
+ set union any set type T T

concatenation string, string lit. string

- subtraction real, integer real, integer
set difference any set type T T

* multiplication real, integer real, integer
set intersection any set type T T

I division real, integer real

4-2

OPERATORS

Table 4-1. PASCALl3000 OPERATORS (Continued)

DIV division with integer integer
truncation

MOD modulus integer integer

AND logical 'and' boolean boolean

OR logical 'or' boolean boolean

NOT logical negation boolean boolean

< less than any simple type boolean
string, or PAC boolean

> more than any simple type boolean
string, or PAC boolean

less than or any simple type boolean
<= equal string, or PAC boolean

set subset any set boolean

more than or any simole type
I

boolean
>= equal, string, or PAC boolean

set superset any set boolean

any simple type boolean
- equal to string, or PAC boolean

any set type boolean
pointer boolean

any simple type boolean
<> not equal to string, or PAC boolean

any set type boolean
pointer boolean

left operand: any
IN set membership ordinal type T boolean

right operand: set
of T

4-3

PRECEDENCE

The precedence ranking of a Pascal/3000 operator determines the order of its evaluation in an
unparenthesized sequence of operators. The four levels of ranking are:

Precedence Operators

highest NOT

*, /, DIV, MOD, AND

+,-, OR

lowest <', <=, <>, =, >=, >

The compiler evaluates higher precedence operators first. For example, since * ranks above +, it
evaluates these expressions identically:

(x + y * z) and (x + (y * z))

When a sequence of operators has equal precedence, evaluation proceeds in a left-to-right manner. For
example, the compiler evaluates these expressions the same way:

(x + Y - z) and ((x + y) - z)

If an operator is commutative (e.g. *), the compiler may choose to evaluate the operands in any order.

Within a parenthesized expression, of course, the compiler evaluates the operators and operands without
regard for any operators outside the parentheses.

4-4

ARITHMETIC OPERATORS

Arithmetic operators perform integer and real arithmetic. They include +, -, *, I, DIV, and MOD.

Most arithmetic operators permit real, longreal, integer, or integer subrange operands. DIVand MOD,
however, only accept integer operands.

In general, the type of its operands determines the result type of an arithmetic operator. In certain cases,
the compiler implicitly converts an operand to another type (see below).

Operator Result

+
(unary)

The value of a single operand which may be any numeric type.

The negated value of a single operand which may be any numeric type.
(unary)

+
(addition)

The sum of two operands which may be any but not necessarily the same
numeric type.

(subtraction)
The difference of two operands which may be any but not necessarily the same
numeric type.

* The product of two operands which may be any but not necessarily the same
numeric type.(multiplication)

I
(division)

The quotient of two operands which may be any but not necessarily the same
numeric type. If both operands are type integer, the result is, nevertheless, real.

DIV
(division with
truncation)

The truncated quotient of two operands which both must be type integer. The
sign of the result is positive if the signs of the operands are the same, negative
otherwise. The result is zero if the first operand is zero.

4-5

ARITHMETIC OPERATORS

MOD
(modulus)

The remainder when the right operand divides the left operand. Both operands
must be integers, but an error occurs if the right operand is negative or zero.
The result is always positive, regardless of the sign of the left operand, which
must be parenthesized if it is a negative literal (see example). The result is zero
if the left operand is zero. Formally, MOD is defined as

i MOD j = i - ((i DIV j) * j)

where i > 0 and j > O. Or

i MOD j = i - ((i DIV j) * j) + j

where i < 0 and j > O.

lmpllcltOonverslon

The operators +, -,-, and / permit operands with different numeric types. For example, it is possible to
add an integer and a real number. The compiler converts the integer to a real number and the result of the
addition is real.

This implicit conversion of operands relies on a ranking of numeric types:

Rank Type

highest longreal

real

lowest integer

If two operands associated with an operator are not the same rank, the compiler converts the lower to the
higher prior to the operation. The result will have the type of the higher rank operand. In sum:

4-6

Keven
Rectangle

One operand type
integer
integer
real

ARITHMETIC OPERATORS

Other operand type
real
longreal
longreal

Result type
real
longreal
longreal

Real division (I) is an exception. If both operands are integers, the compiler changes both to real
numbers prior to the division and the result is real.

Integer values require 1 or 2 words of storage in memory depending on their size (see Section 9). If a 1-
word integer and a 2-word integer are operands for a particular arithmetic operator, the compiler converts
the storage for the 1-word operand to 2 words prior to the operation. The result is a 2-word integer.

Examples
Expression Result

------------ ---------
-(+10) -10
5+ 2 7
5 - 2.0 3.0
5 * 2 10
5·0 / 2.0 2.5
5/2 2.5
5·0LO / 2 2·5LO
5 DIV 2 +2
5 DIV (-2) -2
-5 DIV 2 -2
-5 DIV (-2) +2
5 MOD 2 +1
5 MOD (-2) error
(-5) MOD 2 +1

{Unary - }
{Addition with integer operands. }
{Subtraction with implicit conversion.}
{Multiplication with integer operands.}
{Division with real operands. }
{Division with integer operands. real}
{result. }
{Division with implicit conversion. }

{Division with truncation. }

{Modulus. }
{Right operand must be positive. }
{Result is positive regardless of }
{sign of left operand, which is }
{parenthesized since MOD has higher }
{precedence than - }

4-7

BOOLEAN OPERATORS

The boolean operators perform logical functions on boolean type operands and produce boolean results.
The boolean operators are NOT. AND, and OR.

Operator Result

NOT
(logical negation)

The logical negation of a single boolean operand according to the following
table:

AND
(logical and)

a
T (rue)
F

NOTa
F (alse)
T

The evaluation of two boolean operands produces a boolean result according
to the following table:

~
T
T
F
F

12-
T
F
T
F

aAND b
T
F
F
F

OR
(inclusive or)

The evaluation of two boolean operands produces a boolean result according
to the following table:

~
T
T
F
F

Examples

IF NOT possible THEN forget_it;
WHILE time AND money DO your_thing;
REPEAT ...UNTIL tired OR bored;

4-8

12- .
T
F
T
F

aOR b
T
T
T
F

Keven
Rectangle

SET OPERATORS

The set operators perform set operations on two set operands. The result is a third set. The set operators
are +, -,and *.

Operator Result

+
(union)

A set whose members are all the elements present in the left set operand and
those in the right, including members present in both sets.

(difference)
A set whose members are the elements which are members of the left set but
are not members of the right set.

* A set whose members are only those elements present in both of the set
operands.(intersection)

Operands used with set operators may be variables, constant identifiers, or set constructors (see below).
The base types of the set operands must be type compatibile with each other.

Examples

PROGRAM show_setops;
VAR

a, b, c: SETOF1 .. 10;
x : 1. .10;

BEGIN

a:= [1, 3, 5];
b:= [2, 4];
c:= [1. .10];
x:= 9;
a:= a + b
b:= c - a
c:= a * b
c:= [2, 5] +

{Union; a is now [1, 2, 3, 4, 5].
{Difference; b is now [6, 7, 8, 9,
{Intersection; c is now [].

[xl {Set constructor operands; c is now
{[2, 5, 9].

}
10] .}

}
}
}END.

4-9

-----------~------ -------

RELATIONAL OPERATORS

Relational operators compare two operands and return a boolean result. The relational operators are -c,
<=, =, <>, >=, >, and IN. The < operator means 'less than'; <= 'less than or equal'; = 'equal';
<> 'not equal'; >= 'more than or equal'; > 'more than'; and IN indicates set membership.

Depending on the type of their operands, relational operators are classified as simple, set, pointer, or string
relational operators.

Simple Relational Operators

A simple relational operator has operands of any simple type, i.e. integer, boolean, char, real, longreal,
enumerated, or subrange. All the operators listed above except IN may be simple relational operators. The
operands must be type compatible, but the compiler may implicitly convert numeric types before
evaluation (see Arithmetic Operators above).

For numeric operands, simple relational operators impose the ordinary definition of ordering. For char
operands, the ASCII collating sequence defines the ordering. For enumerated operands, the sequence in
which the constant identifiers appear in the type definition defines the ordering. Thus the predefinition of
boolean as

TYPE boolean = (false, true);

means that false < true.

If both operands are boolean, the operator = denotes equivalence, < = implication, and <> exclusive
or.

4-10

Keven
Rectangle

RELATIONAL OPERATORS

.set Relational Operators

A set relational operator has set operands. The set relational operators are =, <>, >=, <=, and IN.

The operators = and < > compare two sets for equality or inequality, respectively. The < = operator
denotes the subset operation, while> = indicates the superset operation. Set A is a subset of Set B if
every element of A is also a member of B. When this is true, B is said to be the superset of A.

The IN operator determines if the left operand is a member of the set specified by the right operand. When
the right operand has the type SET OF T, the left operand must be type compatible with T. To test the
negative of the IN operator, the programmer must use the following form:

NOT (element IN set)

Pointer Relational Operators

The programmer can use the operators = and <> to compare two pointer variables for equality or
inequality, respectively. Two pointer variables are equal only if they point to exactly the same object On the
heap. The programmer may compare two pointers of the same type or the constant NIL to a pointer of any
type.

4-11

RELATIONAL OPERATORS

String Relational Operators

The programmer may use the string relational operators =, <>, -c, <=, ». or >= to compare
operands of type string, PAC, char, or string literals.

The system performs the comparison character by character using the order defined by the ASCII
collating sequence.

If one operand is a string variable, the other operand may be a string variable or string literal. If the
operands are not the same length and the two are equal up to the length of the shorter, the shorter
operand is less. For example,if the current value of S1 is 'abc' and the current value of S2 is 'ab', then S1
> S2 is true. It is not possible to compare a string variable with a PAC or char variable.

If one operand is a PAC variable, the other may be a PAC of equal length or a string literal no longer than
the first operand. If shorter, the string literal is blank filled prior to comparison. It is not possible to compare
a PAC with a string or char variable.

If one operand is a char variable, the other may be a char variable or a single-character string literal. It is
not possible to compare a char variable with a string or PAC variable.

If one operand is a string literal, the other may be a string variable, a PAC which is the same length or
longer, a string literal, or a char variable provided that the string literal is only of length 1.

Table 4-2 summarizes these rules. The standard function strmax (s) returns the maximum length of the
string variable s. The standard function strlen (s) returns the current length of the string expression s (see
Section 6).

A string constant is considered a string literal when it appears on either side of a relational operator.

4-12

Keven
Rectangle

RELATIONAL OPERATORS

Table 4-2. STRING, PAC, CHAR, STRING LITERAL COMPARISON

A /<relop>/ B string PAC char string literal

Length of If they are not =
comparison Not Not Length of

string based on allowed allowed comparison
smaller based on
str/en smaller

str/en

Only if
Only if A length >=

Not A length = Not sfr/en(B)
PAC allowed B length allowed

B is blank
filled if
necessary

Not Not Only
char allowed allowed Yes strten (8) = 1

Only if
Length of B length >= Only if Yes
comparison strlen(A) strlen(A)

string based on = 1
literal smaller A is blank A or B is

sttten filled if blank filled if
necessary necessary

4-13

RELATIONAL OPERATORS

Examples

PROGRAM show_relational;
TYPE

color = (red, yellow, blue);
VAR

a,b,c: bool.ean;
p,q: "bool.ean;
s,t: SET OF color;
col: color;
stg: string[10];

BEGIN

{Types of relational operators: }
{simple, }
{simple, }
{implication,}

b; {pointer, }
{set, }
{set, subset,}
{set, IN, }

b := 5 > 2;
b := 5 < 25.0L+l;
b := a AND (b OR (NOT c AND (b <= a»);
IF (p = q) AND (p <> NIL) THEN p":= a =
b := s <> t;
b := s <= t;
b := col IN [yellow, blue];
stg := 'alpha';
c := stg > 'beta';

END.

4-14

{string. }

CONCATENATION OPERATOR

The concatenation operator + concatenates two operands. The operands may be string variables, string
literals, function results of type string, or some combination of these types.

If one of the operands is type string, the result of the concatenation is also type string. If both operands
are string literals. the result is a string.-

It is not legal to use the concatenation operator in a constant definition.

Examples
VAR
sl,s2: string[80];

BEGIN
sl:= •abc ' ;
62: = 'def';
sl:= sl + s2; {Sl is now 'abcdef'}

s2:= 'The first six letters are " + sl;

END.

4-15

OPERANDS

An operand denotes an object which an operator acts on to produce a value. An operand may be a literal,
a declared constant, a variable, a set constructor, a function call, a dereferenced pointer, or the value of
another expression.

Section 5 describes the form of literals; Section 2 declared constants and variables. Subsequent pages in
this chapter discuss set constructors, function calls, and pointer dereferencing.

A component of a structured type may appear as an operand. This requires use of an appropriate selector
(see below).

The programmer must declare and initialize a variable before it can appear as an operand in an
expression.

Example

3 + 2
pi * 3
IF day = monday THEN ...
x / y
[5..9] + dolly[p]
$l.tCc(a) * b
p'" DIV 2
(be + bop) > (dixieland)

{Literals. }
{Declared constant. }
{Enumerated constants.}
{Variables. }
{Set constructors. }
{Function call. }
{Dereferenced pointer.}
{Result of expression.}

4-16

SET CONSTRUCTOR

A set constructor designates one or more values as members of a set whose type mayor may not have
been previously declared. A set constructor consists of an optional set type identifier and one or more
ordinal expressions in square brackets. Two expressions may serve as the lower and upper bound of a
subrange.

Syntax

set
constructor

If the programmer specifies the set type identifier, the values in the brackets must be type compatible with
the base type of the set. If no set type identifier appears, the values must be type compatible with each
other. The symbols (. and.) may replace the left and right square brackets, respectively.

Set constructors may appear as operands in expressions in executable statements. Set constructors with
constant values are legal in the definition of constants (see Section 2).

If untyped set constructors appear as operands for a set operator, the compiler may not be able to
construct the sets. Suppose, for example, that k, i, and j are integer variables. Then the expression

IF k IN [i] + [j] THEN <statement>

produces a compile time error. The compiler cannot construct a set with a cardinality greater than 32768
(see Section 9) and, since k, i, and j are in the subrange minint ..mexint, the compilation fails.

4-17

SET CONSTRUCTOR

Examples

PROGRAM show setconstructor;
TYPE -

int set = SET OF 1 ..100;
cap-set = SET OF 'A'..'Z';

VAR -
a,b: O.. 255;
sl: SET OF integer;
s2: SET OF char;

BEGIN

sl:= int set[(a MOD 100) + (b MOD 100)]
s2:= cap-set['B' .. 'T', 'X', 'Z'];

END. -

4-18

FUNCTION CALL

A function call activates the block of a standard or declared function. The function returns a value to the
calling point of the program. An operator can perform some action on this value and, for this reason, a
function call is a sort of operand.

A function call consists of a function identifier, an optional list of actual parameters in parentheses, and an
optional selector.

Syntax

function _~ function identifiercall '--J

The actual parameters must match the formal parameters in number and order, except for a function
declared with the directives INTRINSIC or EXTERNAL SPL VARIABLE. Such a function has option variable
parameters which the programmer may omit using the empty actual parameter specified by a comma (,)
(see Appendix F). It is also possible to pass actual parameters to functions declared INTRINSIC even
when the declaration specifies no formal parameters (see Section 2).

Actual value parameters are expressions which must be assignment compatible with the formal value
parameters.

Actual variable parameters are variables which must be type identical with the formal variable parameters.
Components of a packed structure may not appear as actual variable parameters.

Actual procedural or functional parameters are the names of declared procedures or functions. Standard
functions or procedures are not legal actual parameters.

The parameter list, if any, of an actual procedural or functional parameter must be congruent with the
parameter list of the formal procedural or functional parameter (see Procedure Statement in Section 3).

4-19

FUNCTION CALL

If an actual functional or procedural parameter, upon activation, accesses any entity non-locally, then the
entity accessed is one which was accessible to the function or procedure when its identifier was passed.
For example, suppose Procedure A uses the non-local variable x. If A is passed as a parameter to Function
B, then it still has access to x, even if x is otherwise inaccessible in B. Technically, the compiler preserves
the static link when A is passed.

If the function result is a structured type, then the function call may select a particular component as the
result. This requires the use of an appropriate selector (see below). The programmer, however, should
avoid inefficient use of this alternative. It is usually better to copy the entire result of such a function into a
local variable before selecting a component.

Example
PROGRAM show function (input,output);
VAR

n,
coer,
answer: integer;

FUNCTION fact (p: integer) integer;
BEGIN

IF p > 1 THEN
fact := p'* fact (p-l)

ELSE fact := 1
END;

FUNCTION binomial_coef (n, r: integer) : integer;
BEGIN

binomial coef := fact (n) DIV (fact (r) * fact (n-r»
END;

BEGIN {show_function}
read(n) ;
FOR coef := 0 TO n DO

~teln (binomial coef (n, coer»;
END. {show_function}-

4-20

POINTER DEREFERENCING

A pointer variable points to a dynamically-allocated variable on the heap. The programmer may access
the current value of this variable by dereferencing its pointer.

Pointer dereferencing occurs when the caret symbol (,,) appears after a pointer designator in source
code.

Syntax

pointer I pointer L--.t:."\
dereferencing ----.... designator I -~,......------+~

The pointer designator may be the name of a pointer or selected component of a structured variable which
is a pointer. The @ symbol may replace the caret.

Unless the RANGE compiler option is OFF, the compiler processes a program so that the system will
check the value of the pointer at run-time. This value must be negative since dynamic variables are in the
DL-DB area of the data stack. If it is NIL or some other positive value, dereferencing causes an error.

A dereferenced pointer can be an operand in an expression.

Examples

PROGRAM show-pointerderef (output);
TYPE

p = "integer;
VAR

a,b
p_array
ptr

BEGIN

integer';
ARRAY [1..10] OF p;
p;

~teZn(ptrA * 2); {Dereferenced pointer is operand. }

END.

4-21

ARRAY SELECTOR

An array selector accesses a component of an array. The selector follows an array designator and consists
of an ordinal expression in square brackets.

Syntax

array
selector .0 (·1 "p~~;o, •••1~)-"~0

----(OM~-~

The expression must be assignment compatible with the index type of the array. An array designator can
be the name of an array, the selected component of a structure which is an array, or a function call which
returns an array. The symbols (. and.) may replace the left and right brackets, respectively. The
programmer may select a component of a multiply-dimensioned array in different ways (see example).

An array selector accesses a single component of a string variable, i.e. a character. The standard function
str; on the other hand, returns a selected sequence of characters from a string (see Section 7).

Examples

PROGRAM show_arrayselector;
TYPE

a_type = ARRAY [1..10] OF integer;
VAR

m,n
simp_array
multi-array
p

BEGIN

integer;
ARRAY [1..3] OF 1 ..100;
ARRAY [1..5,1 ..101 OF integer;
"'a_type;

m:= simp_array[2]; {Assigns current value of 2nd
{component of simp array to m.
{These are -
{equivalent.

}
}
}
}

multi array[2,9]:= mj
multi=array[2] [9]:= m;

n:= pA[m MOD 10 + 1] * m {Dynamic array variable selection.}
END.

4-22

RECORD SELECTOR

A record selector accesses a field of a record. The record selector follows a record designator and consists
of a period and the name of a field.

Syntax

record ~ ~I
selector --- •••••~~

field
identifier •

A record designator is the name of a record, the selected component of a structure which is a record, or a
function call which returns a record.

The WITH statement 'opens the scope' of a record. making it unnecessary for the programmer to use a
record selector (see Section 3).

Examples·

PROGRAM show_recordselector;
TYPE

= RECORD
f1: integer;
f2: char;

END;
VA!{

a,b integer;
ch char;
r r type;
rec_array ARRAY [1..10] OF r_type;

BEGIN

a:= r.f1 + b; {Assigns current value of integer field }
{Of r plus b to a. }

rec_array[a].f2:= ch; {Assigns current value of ch to char }
{field of a'th component of rec_array.}

END.

4-23

--- -~-~---~~---~~~~--~-

FILE BUFFER SELECTOR

A file buffer selector accesses the contents, if any, of the file buffer variable associated with the current
position of a file. The selector follows a file designator and consists of the caret symbol (').

Syntax

file buffer ~
selector ~

A file designator is the name of a file or the selected component of a structure which is a file. The @ symbol
may replace the caret.

If the file buffer variable is not defined at the time of selection, a run time error occurs. Section 6 describes
the file buffer variable and its possible state in detail.

Examples

PROGRAM show bufferselector;
VAR -
f:FILE OF integer,
a,b:integer,

BEGIN
a:= f~ + 2; {Assigns current contents of file}

{buffer plus 2 to a. }

f":=a + bi {Assigns sum of a and b to buffer}
{variable. }

END.

4-24

Keven
Rectangle

TOKENS

IDENTIFIERS
A Pascal / 3000 identifier consists of a letter preceding an optional character sequence of letters, digits, or
the underscore character {_}. Identifiers denote declared constants, types, variables, procedures,
functions, and programs.

Syntax:

A letter may be any of the letters in the subranges A..Z or a..z. The compiler makes no distinction between
upper and lower case in identifiers. A digit may be any of the digits 0 through 9. The underscore (_) is an
HP Standard Pascal extension of ANSI Standard Pascal.

An identifier may be up to a source line in length with all characters significant. Because of the
requirements of the MPE Segmenter, however, the names of level 1 procedures or functions, or global
variables appearing with the GLOBAL or EXTERNAL compiler options must be unique within 15
characters.

5-1

IDENTIFIERS

In general, the programmer must define an identifier before using it. Two exceptions are identifiers which
define pointer types and are themselves defined later in the same declaration part, and identifiers which
appear as program parameters and are declared subsequently as variables. Also, the programmer need
not define an identifier which is a program, procedure, or function name, or one of the identifiers defining
an enumerated type. Its initial appearance is the 'defining occurrence'. Finally, Pascal/3000 has a number
of standard identifiers which the programmer may redeclare. These standard identifiers include names of
standard procedures and functions, standard file variables, standard types, and procedure or function
directives. Appendix B lists the Pascal/3000 standard identifiers.

Appendix B also lists the Pascal/3000 reserved words. These are system defined symbols whose meaning
may never change. That is, the programmer cannot declare an identifier which has the same spelling as a
reserved word.

The symbol OTHERWISE is a reserved word in the HP Standard Pascal or Pascal 13000 modes, i.e. when
the compiler option STANDARD_LEVEL is set to HP or HP3000. When the STANDARD_LEVEL option
is set to ANSI, or when the ANSI option is ON, however, it is no longer a reserved word and may appear as
a declared identifier.

Examples

GOOD_TlME_9
good time 9
gOOd=Tlme=9'

{These identifiers
{are
{equivalent.

}
}
}

x2 GO
a long identifier
booZean {Standard identifier.}

5-2

Keven
Rectangle

NUMBERS

Pascal /3000 recognizes three sorts of numeric literals: integer, real, and long real.

Integer Literals

An integer literal consists of a sequence of digits from the subrange 0..9. No spaces may separate the
digits for a single literal and leading zeroes are not significant. The compiler interprets unsigned
integer literals as positive values. The maximum unsigned integer literal is 2147483647, which is the
value of the standard constant maxint. The minimum signed integer literal is -2147483648, which is
the value of the standard constant minint.

Syntax

unsigned
integer (·1r--d-;9;-t ~ ••....••••...)- •••

Real and Longreal Literals

A real or longrealliteral consists of a coefficient and a scale factor. An 'E' preceding the scale factor is
read as 'times ten to the power of' and specifies a real literal. An 'L' preceding the scale factor also means
'times ten to the power of', but specifies a longrealliteral.

Syntax

real or
longreal

Lowercase 'e' and 'I' are legal. At least one digit must precede and follow a decimal point. A number
containing a decimal point and no scale factor is considered a real literal.

5-3

NUMBERS

Real literals must be elements of the set defined by the ranges:

-1.15792E+77 to -8.63617E-78
0.0
8.63617E-78 to 1.15792E+77

Longreal literals must be members of the set defined by the ranges:

-1. 157920892373162L +77 to -8.636168555094445L -78
0.0
8.636168555094445L-78 to 1.157920892373162L+77

Examples
100
0.1
5E-3
3.14159265358979LO
87.35e+8

{Integer. }
{Real with no scale factor. }
{Real with no decimal point.}
{Longreal. }
{Real. }

5-4

Keven
Rectangle

STRING LITERALS

A string literal consists of a sequence of ASCII printable characters enclosed in single quote marks, a
single character after a sharp symbol (#), or some combination of the two.

Syntax

The printable characters appearing between the single quotes are those ASCII characters assigned
graphics and encoded by ordinal values 32 through 126.

An letter or symbol after a sharp symbol is equivalent to a control character. For example, #G or #g
encodes CTRL-G, the bell character. The compiler interprets the letter or symbol according to the
expression chr (ord (letter) MOD 32). Thus, the ordinal value of G is 71; modulus 32 of 71 is 7; and the
ASCII value of 7 is the bell.

A number after a sharp symbol must be in the range 0..255. It directly encodes any ASCII character,
printing or non-printing. For example, the string literal #80#65#83#67#65#76 is equivalent to the string
literal' PASCAL'.

A string literal is type char, PAC, or string, depending on the context.

5-5

--------~-----------,--- .-.-----,.,---_ .._- ------~--,---------------~--.--

STRING LITERALS

If a single quote is a character in a string literal, it must appear twice.

A string literal may not be longer than a single line of source code, nor may it contain separators, except
for spaces (blanks) within the quotes.

Two consecutive quote marks (") specify the null or empty string literal. Assigning this value to a string
variable sets the length of the variable to zero. Assigning it to a PAC variable blank-fills the variable.

Examples
'Please don' 't!'
'A'

{Single quote character.}

{Null string. }IF
12431H
127'that was an ESe char, and this is also'l[
'this string has five bells'Ig#glgI717' in it'

5-6

Keven
Rectangle

COMMENTS

Comments consist of a sequence of characters delimited by the special symbols: and :' or the symbols (*
and *). The compiler ignores all the characters between these symbols. Comments usually document a
program.

Syntax

charactercomment

A comment is a separator and may appear anywhere in a program a separator may appear. A comment
may begin with: and close with *), or begin with (* and close with i.

Nested comments are not legal.

A comment may cross a line boundary in source code.

Examples

{comment}
(.,.comment*)
{comment*)
{This comment
occupies more than one line.}

5-7

SEPARATORS

A separator is a blank, an end-of-Iine marker, a comment, or a compiler option.

At least one separator must appear between any pair of consecutive identifiers, numbers, or reserved
words. When one or both elements are special symbols, however, the separator is optional.

Examples

IF eo! THEN GOTO 99
x := x + 1
x:=x+l

{Required separators.}
{Optional separators.}
{No separators. }

5-8

Keven
Rectangle

SPECIAL SYMBOLS

Table 5-1 lists the special symbols valid in Pascal/3000.

Table 5-1. PASGALl3000 SPECIAL SYMBOLS

Symbol Purpose

+ add, set union, concatenate strings

- subtract, set difference

* multiply, set intersection

/ divide (real results)

- equal to

< less than

> greater than

(

delimit a parameter list or a subexpression
)

[
delimit an array index or a constructor.

] May be replaced by (. or .)

select field, decimal point

, separate listed identifiers

, delimit statements

delimit list of identifiers

,... define or deference pointers, access file
buffer. May be replaced by @.

5-9

SPECIAL SYMBOLS

Table 5-1. PASCALl3000 SPECIAL SYMBOLS
(Continued)

<> not equal

<= less than or equal, subset

>= greater than or equal, superset

- assign value to a variable

.. subrange

{ delimit a comment.

}
May be replaced by (* or *.)

encode a control character

$ delimit a compiler option

,
delimit a string literal

- separate words in an identifier

Separators may not appear within special symbols having more than one component (e.g. :=).

Certain special symbols have synonyms. In particular, (. and.) may replace the left and right brackets [
and] . The symbol @ may substitute for the up-arrow />. and (* and *) may take the place of the left and
right braces: and :.

5-10

1/0

INTRODUCTION
Files are the means by which a program receives input and produces output. A file is a sequence of
components of the same type. This type may be any type, except a file type or a structured type with a file
type component.

Logical files are files declared in a Pascal/3000 program. Physical files are files which exist independently
of a program and are controlled by the MPE operating system. The programmer may associate logical and
physical files so that a program manipulates data objects external to itself.

The components of a file are indexed starting at component 1. Each file has a current component. The
standard procedure read (f,x) copies the contents of the current component into x and advances the
current position to the next component. The procedure write (f,x) copies x into the current component
and, like read, advances the current position.

Each file has a buffer variable on the stack or heap whose contents, if defined, are accessible using a
selector (see Section 5).

One of the standard procedures reset, rewrite, append, or open opens a file for input or output. The
manner of opening a file determines the permissible operations. In particular, reset opens a file in the read-
only state, i.e. writing is prohibited; rewrite and append open a file in the write-only state, i.e. reading is
prohibited; and open opens a file in the read-write state, i.e. both reading and writing are legal.

Files opened with reset, rewrite, or append are sequential files. The current position advances only one
component at a time. Files opened with openare direct access files. The programmer may relocate the
current position anywhere in the file using the procedure seek. Direct access files have a maximum number
of components determinable with the standard function maxpos. The maximum number of components of
a sequential file, on the other hand, is not determinable with a Pascal function.

If a temporary nameless file is reopened via a rewrite, reset, open or append command and the
parameter for carriage control, file disposition or file access is used, a new file is created and any
association with the old file is lost.

6-1

-----------._--_ ..---------_.

INTRODUCTION

Textfiles are sequential files with char type components. Furthermore, end-of-line markers substructure
textfiles into lines. The standard procedure writeln creates these markers. The standard files input and
output are textfiles which the system automatically associates with the MPE files $STDIN and $STDLlST.
The programmer cannot open textfiles for direct access.

Table 6-1 lists each Pascal/3000 file procedure or function together with a brief description of its action.
The third column of the table indicates the permissible categories of files which a procedure or function
may reference.

Subsequent pages describe the file procedures and functions in full.

Table 6-1. FILE PROCEDURES AND FUNCTIONS

Procedure Permissible
or Function Action Files

append Opens file in write-only state. Current position any
is after last component and eof is true.

close Closes a file. any

eof Returns true if file is write-only, if no component any
exists for sequential input, or if current position
in direct access file is greater than the
highest-indexed component ever written to the
file.

6-2

INTRODUCTION

Table 6-1. FILE PROCEDURE AND FUNCTIONS (Continued)

eoln Returns true if the current position of a text read-only
file is at a line marker textfiles

fnum Returns the MPE file number of the physical any
file associated with a logical file.

get Allows assignment of current component read-only
to buffer and, in some cases, advances or read-write
current position. files

linepos Returns number of characters read from textfiles
or written to textfile since last line marker

maxpos Returns index of last possible component direct access
of direct access file. files

open Opens file in read-write state. Current position any file
is 1 and eof is false. except a

textfile

overprint A form of write which causes the next line of a write-only
textfile to print over the current line. textfiles

page Causes skip to top of new page when a textfile write-only
is printed. textfiles

6-3

INTRODUCTION

Table 6-1. FILE PROCEDURE AND FUNCTIONS (Continued)

position Returns integer indicating the current any file
component of a non-text file. except a

textfile

prompt A form of write which assures textfile write-only
buffers have been written to the device. textfiles
No line marker is written.

put Assigns the value of the buffer variable write-only
to the current component and advances the or read-write
current position. files

read Copies current component into specified read-only or
variable parameter anc advances read-write
current position. files

readdir Moves current position of a direct access direct access
file to designated component and then files
performs read.

readIn Performs read on textfile and then skips read-only
to next line textfiles

reset Opens file in read-only state. Current any
position is 1 and eof is false.

rewrite Opens file in write-only state. Current any
position is 1 and eof is true.
Old components discarded.

6-4

Keven
Rectangle

INTRODUCTION

Table 6-1. FILE PROCEDURE AND FUNCTIONS (Continued)

seek Places current position of direct access direct access
file at specified component number. files

write Assigns parameter value to current file write-only
component and advances current position. or read-write

files

writedir Advances current position in direct access direct access
file to be designated component and performs files
a write.

writeln Assigns parameter value to current textfile write-only
component, appends a line marker, textfiles
and advances current position.

6-5

-- -- - - ---- - - --~~----

APPEND

Usage

append (f)
append (f,s)
append (f,s, t)

Parameters

f The name of a logical file. f may not be omitted.

s The name of an MPE physical file which the system will associate with f. s may be a string

expression or PAC variable.
Parameters specifying carriage control and file access. These are:

CCTL - specifies that textfile f has carriage control.

NOCCTL - specifies that textfile f has no carriage control.

SHARED - specifies that f may be open to more than one process.

EXCLUS - specifies that f may be open to only one process at a time.

T may be a string or PAC variable, or a string literal. Two parameters may appear separated by a
comma. The compiler ignores leading and trailing blanks and considers upper and lower case
equivalent.

The default file access for all files is EXCLUS; the default carriage control for textfiles is CCTL.

6-6

Keven
Rectangle

APPEND

Descri ption

The procedure append(f) opens file f in the write-only state and places the current position immediately
after the last component. All previous contents of f remain unchanged. EOF(f) returns true and the file
buffer fA is undefined. The programmer may now write data on f.

If f is already open, append closes and then reopens it. If the parameter s is specified, the system closes
any physical file previously associated with 1.

When f appears as a program parameter and s is not specified, the system uses an MPE file with a name
made up of the first 8 characters of the f identifier. It associates this physical file with f. If a physical file with
the default name doesn't already exist, the system creates a temporary MPE file with the default name.
The programmer may subsequently save this file using the close procedure and the SAVE parameter.

When f does not appear as a program parameter and s is not specified, the system maintains any previous
association of an MPE file with f. If there is no such association, it creates a temporary nameless MPE file
and opens it in the write-only state.

The programmer cannot save a temporary nameless MPE file and it becomes inaccessible after the
process terminates or the physical-to-Iogical file association changes.

Append is an HP Standard Pascal extension of ANSI Pascal.

6-7

APPEND

Illustration

Suppose examp_file is a closed file of char containing three components. In order to open it and write
additional material without disturbing its contents, we call append.

iinitial condition!

state: closed

append (examp_file);

current position

1
state: write-only
exarnp.Ltlle «: undefined
eof (examp_file): true

6-8

CLOSE

Usage

close (f)
close (f, t)

Parameters
f The name of a logical file. f may not be omitted

A parameter specifying the disposition of any physical file associated with f. The possibilities are:

SAVE - The system will save the file as a permanent file.

PURGE - The system will destroy the file.

TEMP - The system will save the file as a temporary file which disappears at the end of the
current session or job.

t may be a string or PAC variable, or a string literal. The compiler ignores leading and trailing
blanks and considers upper and lower case equivalent.

If t is not specified, the file will retain its current status.

Description

The procedure close (f) closes the file f so that it is no longer accessible. After close, the function eot (f) is
true, the buffer variable f" is undefined, and any association of f with a physical file is dissolved.

When closing a direct access file, the last component of the file will be the highest-indexed component
ever written to the file. The value of maxpos for the file, however, remains unchanged

Close is an HP Standard Pascal extension of ANSI Pascal.

6-9

----------- ~-~-----

EOF

Usage

eof (f)
eof

Argument
f The name of a logical file. If f is omitted, the system uses the standard file input.

Description

The boolean function EOF(f) returns true when f is in the write-only state, when f is in the direct access
state and its current position is greater than the highest-indexed component ever written to f,.or when
no component remains for sequential input. Otherwise, EOF(f) returns false.

When reading a non-char value from a textfile, EOF may return false even if no other value of that type
remains in the file for input, e.g. the components atter the current position are all blanks.

6-10

EOLN

Usage

eoln (f)
eoln

Argument
The name of a logical textfile opened in the read-only state. If f is omitted, the system uses the
standard file input.

Description

The boolean function eoln (f) returns true if the current position of textfile f is at an end-of-line marker. The
function references the buffer variable f", possibly causing an input operation to occur. For example, after
readln, a call to eoln will place the first character of the new line in the buffer variable.

6-11

FNUM

Usage

fnum (f)

Argument
f The name of a logical file. f may not be omitted. The programmer must specify the standard

files input or output by name.

Description

The function fnum (f) returns the MPE file number of the physical file currently associated with the logical
file f. The programmer may use this number in calls to MPE File System intrinsics. If no associated physical
file exists, an error occurs.

Fnum is a Pascal/3000 extension of HP Standard Pascal.

Fnum returns an integer in the range 0..255.

6-12

Keven
Rectangle

GET

Usage

get (f)
get

Parameter
The name of a logical file which must be in the read-only or read-write state. If f is omitted, the
system uses the standard file input.

Description

The procedure get (f) causes a subsequent reference to the buffer variable f" to actually load the buffer
with the current component. This is the' deferred' get described in detail in Appendix I. In certain
circumstances, namely after a call to read, get also advances the current position.

If the current component does not exist when get is called, f" will be undefined and EOF(f) will return
true. An error occurs if f is in the write-only state or if EOF(f) is true prior to the call to get.

Illustration

Suppose examp_file is a file of char with three components which has just been opened in the read-write
state. The current position is the first component and exarnp.Lfue> is undefined. To inspect the first
component, we call get:

:initial condition:

current position

state: read-write
examp_fiIe ": undefined
eof(examp_file) : false

6-13

------_._-

GET

get (examp_.Jile);

current position

1
~~D state: read-write

exarno.Ltlle> (deferred) : a
eof(examp_file) : false

The current position is unchanged. Now, however, a reference to examp_file ~ loads the first component
into the buffer and advances the current position. We assign the buffer to a variable.

current position

state: read-write
examp_file ~ : a
eof (examp_file) : false

6-14

Keven
Rectangle

LINEPOS

Usage

linepos (f)

Argument
The name of a logical textfile. f may not be omitted. The programmer must specify the standard
files input or output by name.

Description

The function linepos (f) returns the integer number of characters read from or written to the textfile f since
the last end-of-line marker. This does not include the character in the buffer variable f". The result is zero
after reading a line marker, or immediately after a call to readln or write/no

6-15

---- --------------------

MAXPOS

Usage

maxpos (f)

Argument

The name of a logical file in the read-write state. f may not be omitted.

Description

The function maxpos (f) returns the integer index of the last component of f which the program may
access. An error occurs if f is not opened as a direct access file.

The value of maxpos (f) is the limit of the physical file associated with 1. If a Pascal program creates a
physical file, this limit is 1023 records by default. The programmer may change this limit using the MPE
:BUILD or :FILE commands.

OPEN

Usage

open (f)
open (f,s)
open (t.s,t)

Parameters
The name of a logical file which is not a textfile. f may not be omitted.

s The name of an MPE physical file which the system will associate with f. s may be a string
expression or PAC variable.

File access specification. The possibilities are:

SHARED - specifies that file may be open to more than one process.

EXCLUS - specifies that file may be open to only one process at a time.
t may be a string or PAC variable, or a string literal. The compiler ignores leading and trailing
blanks and considers upper and lower case equivalent.

If t is omitted, the default is EXCLUS.

Description

The procedure open (f) opens f in the read-write state and places the current position at the beginning
of the file. The function EOF(f) returns false, unless the file is empty. The buffer variable fA is undefined.

After a call to open, f is said to be a direct access file. The programmer may read or write data using the
procedures read, write, reedoit, or writedir. The procedure seek and the function maxpos are also legal.
Eot (f) becomes true when the current position is greater than the index of the higest-indexed component
ever written to f.

6-17

OPEN

Direct access files have a maximum number of components. The function maxpos returns this number.

The programmer cannot open a textfile for direct access since its format is incompatible with direct access
operations.

If f is already open, the system will close it automatically and then reopen it. If the parameter s is specified,
the system will close any physical file previously associated with 1.

When f appears as a program parameter and s is not specified, the system uses an MPE file with a name
consisting of the first 8 characters of t's identifier as the associated physical file. If a physical file with the
appropriate name doesn't exist, the system creates a temporary MPE file with the default name. The
programmer may save this file using the procedure close with the SAVE parameter.

When f does not appear as a program parameter and s is not specified, the system maintains any previous
association of a physical file with f. If there is no such association, it opens a temporary nameless MPE file.
The programmer cannot save this file. It becomes inaccessible after the process terminates or the
physical-to-Iogical file association changes.

Illustration

Suppose examp_file is a file of integer with three components. To perform both input and output, we call
open:

open (examp_file);

current position

j
000 state: read-write

examp_file ": undefined
eot (examp.Lfile); false

6-18

OVERPRINT

Usage

overprint (f)
overprint (f,e)
overprint (f,e1, ... ,en)
overprint (e)
overprint (e1, ...,en)
overprint

Parameters
f The name of a logical textfile. If f is omitted, the system uses the standard file output.

e An expression of any simple, string, or PAC type, or a string literal. The system writes the value of e
on f according to the formatting conventions described for the procedure write. Several
expressions may appear separated by commas.

Description

The procedure overprint (f) writes a special line marker on the textfile f and advances the current posnion.
When f is printed, this special marker causes a carriage return but suppresses the line feed. This means the
printer will print the line after the special marker over the line preceding it.

After the execution of overprint (f), the buffer variable f" is undefined and eoln (f) is false.

The expression parameter e behaves exactly like the equivalent parameter for the procedure write (see
below).

6-19

PAGE

Usage

page (f)
page

Parameter
f The name of a logical textfile. If f is omitted. the system uses the standard file output.

Description

The procedure page (f) writes a special character to the textfile f which causes the printer to skip to the
top of form when f is printed. The current position in f advances and the buffer variable f A is undefined.

The form feed only works if the file (f) has been associated to the lineprinter with a file equation, or the
"CCTL" option is used.

6-20

Keven
Rectangle

POSITION

Usage

position (f)

Ar~lument
f The name of a logical file which is not a textfile.

Description

The function position (f) returns the integer index of the current component of f, starting from 1. Input or
output operations will reference this component. f must not be a textfile. If the buffer variable fA is full,
the result is the index of the component in the buffer.

f can't be associated with a physical file which is a tape.

6-21

--- --- -------

PROMPT

Usage

prompt (f)
prompt (f,e)
prompt (f,e1, ...,en)
prompt (e)
prompt (e1,... ,en)
prompt

Parameters
the name of a logical textfile. If f is omitted, the system uses the standard file output.

e An expression of any simple, string, or PAC type, or a string literal. The system writes the value of e
on f according to the formatting conventions described for the procedure write. Several
expressions may appear separated by commas.

Description

The procedure prompt (f) causes the system to write any buffers associated with textfile f to the device.
Prompt does not write a line marker on f. The current position is not advanced and the buffer variable f"
becomes undefined.

The programmer will normally use prompt when directing I/O to and from a terminal. Prompt causes the
cursor to remain on the same line after output to the screen is complete. The user may then respond with
input on the same line.

The expression parameter e behaves exactly like the equivalent parameters in the procedure write (see
below).

6-22

Keven
Rectangle

PUT

Usage

put (f)
put

Parameter

The name of a logical file opened in the write-only or read-write state. If f is omitted, the system
uses the standard file output.

Description

The procedure put (f) assigns the value of the buffer variable f" to the current component and advances
the current position. Following the call, f" is undefined.

An error occurs if f is open in the read-only state.

Illustration

Suppose exarnpc.Jlle is a file of integer with a single component opened in the write-only state by append.
Furthermore, we have assigned 9 to the buffer variable examp_file". To place this value in the second
component, we call put

append (examp_file);
examp.Lfile e-:= 9;

current position

1
state: write-only
exarnp.Lfile »: 9
eof (exarnp.Lfile): true

6-23

PUT

put (examp_file);

current position

state: write-only
examp_file ": undefined
eof(examp_file): true

6-24

Keven
Rectangle

READ

Usage

read (f,v)
read (f,v1, ...,vn)
read (v)
read (v1, ... ,vn)

Parameters
The name of a logical file opened in the read-only or read-write state. If f is omitted, the system
uses the standard file input.

v The name of a simple, string, or PAC variable when f is a textflle, If f is not a textfile, its components
must be assignment compatible with v. Any number of v parameters may appear separated by
commas.

Description

The procedure read (f,v) assigns the value of the current component of f to the variable v, advances the
current position, and causes any subsequent reference to the buffer variable f,... to actually load the buffer
with the new current component.

The parameter v may be a component of a packed structure.

If f is a textfile, an implicit data conversion may precede the read operation (see below).

The call

read (f,v1 ,...,vn);

is equivalent to

read(fr, v1);
read(fr,v2);

read(fr,vn);

where fr is the reference established to file variable parameter f at the
call to read(f,v1 ... ,vn).

6-25

~~--~-~-~-----~- ~---- - -----~.~----~----.-~~--~--~---------~~-~~-~~-~-~-~~--~--~~-

-READ

Illustration

Suppose exarnp.Lfile is a file of char opened in the read-only state. The current position is at the second
component. To read the value of this component into char.Lvar, we call read: .

linitial condition:

current position

state: read-only
exarnp.Lnle>: i or undefined
eof (examp_file): false
char.Lvar: old value, if any

read (exarnp.c.tlle.char.Lvar)

current position

I
Q8GJ state: read-only

examp_file" (deferred): p
eot (examp_file): false
char.Lvar: i

Implicit Data Conversion

If f is a textfile, its components are type char. The parameter v, however, need not be type char. It may be
any simple, string, or PAC type. The read procedure performs an implicit conversion from the ASCII form
which appears in the textfile f to the actual form stored in the variable v.

If v is type real, longreal, integer, or an integer subrange, the read operation searches f for a sequence of
characters which satisfies the syntax for these types. The search skips preceding blanks or end-of-line
markers. If v is /ongreal, the result is independent of the letter preceding the scale factor.

6-26

Keven
Rectangle

READ

An error occurs if the read operation finds no non-blank characters or a faulty sequence of characters, or if
an integer value is outside the range of v. After read, a subsequent reference to the buffer variable f'" will
actually load the buffer with the character immediately following the number read. The programmer should
also note that eof will be false if a file has more blanks or line markers, even though it contains no more
numeric values.

If v is a variable of type string or PAC, then read(f,v) will fill v with characters from f. When v is type PAC
and eofn(f) becomes true before v is filled, the operation puts blanks in the rest of v. If v is type string
and eofn(f) becomes true before v is filled to its maximum length, no blank padding occurs. Strlen(v)
then returns the actual number of characters in v. The programmer may wish to use this fact to
determine the actual length of a line in a textfile.

If v is a variable of an enumerated type, read (f,v) searches f for a sequence of characters satisfying the
syntax of a Pascal/3000 identifier. The search skips preceding blanks and line markers. Then the
operation compares the identifier from f with the identifiers which are values of the type of v, ignoring upper
and lower case distinctions. Finally, it assigns an appropriate value to v. An error occurs if the search finds
no non-blank characters, if the string from f is not a valid Pascal 13000 identifier, or if the identifier doesn't
match one of the identifiers of the type of v.

Table 6-2 shows the results of calls to read with various sequences of characters for different types of v.

If v is a variable of type string or PAC, then read(f,v) will fill v with characters from f. When v is type PAC
and eoln(f) becomes true before v is filled, the operation puts blanks in the rest of v. If v is type string
and eoln(f) becomes true before v is filled to its maximum length, no blank padding occurs. Strlen(v)
then returns the actual number of characters in v. The programmer may wish to use this fact to
determine the actual length of a line in a textfile.

If v is a variable of type string or PAC,and eoln is true when read is called, a string of length 0 is
returned or the PAC is blankfilled. The user must use readln to advance beyond the current line when v
is of type string.

6-27

-- -----------------

READ

Table 6-2. IMPLICIT DATA CONVERSION

Sequence of characters in f Type of Result stored
following current position v in v

(space) (space) 1.850 real 1.850
(space) (end-ot-line) (space) 1.850L longreal 1.850
10000 (space) 10 integer 10000
8135 (end-ot-line) integer 8135
54 (end-of-tine) 36 integer 54
1.583E7 real 1.583x107
1.583L+7 longreal 1.583x107
(space) Pascal/3000 string [5] • Pasco
(space) Pas (end-ot-tine) cal/3000 string [9] • Pas'
(space) Pas (end-ot-tine) cal/3000 PAC {length 9} • Pas

PAC {length 9}
(end-ot-line) Pascal/3000 string[5] .

, ,---------
enumerated

(space) Monday (space) enumerated Monday

6-28

READDIR

Usage

readdir (f,k,v)
readdir (f,k,v1 ,...,vn)

Parameters
The name of a logical file which is not a textfile.

k The index of a component in f.

v The name of a variable. The components of f must be assignment compatible with v. Any number
of v parameters may appear separated by commas.

Description

The procedure readdir (f,k,v) places the current position at component k and then reads the value of that
component into v. Formally, this is equivalent to

seek(f,k);
read(fr,v); read v from the file reference established by the seek.

The call get (f) is not required between seek and read because of the definition of read (see Appendix I).

The programmer may use the procedure readdir only with files opened for direct access. Thus, a textfile
cannot appear as a parameter for readdir.

6-29

- '-'-'-"-"'_.--- -- -_. ---- --- ...---- ----------

READDIR

Illustration

Suppose examp_file is a file of integer with four components opened in the read-write state. The current
position is the first component. To read the third component into inLvar, we call readdir. After readdir
executes, the current position is the fourth component.

linitial condition:

current position

j
~800

readdir (examp_file,3,int_var);

current position

j
00

state: read-write
examp_file ,...:undefined
eof (exarnp.Lfile): false
inLvar: old value

state: read-write
examp_file"" (deferred): 10
eof (examp_file): false
inLvar: 40

6-30

Keven
Rectangle

'READLN

Usage

readln (f)
readln (f,v)
readln (f,v1, ... ,vn)
readln (v)
readln (v l, ...vn)
readIn

Parameters
The name of a logical textfile. 'If f is omitted. the system uses the standard file input.

v The name of a variable. The type of v may be any simple type, a string type, or a PAC. Any number
of variables may appear separated by commas.

Description

The procedure readln (t.v) reads a value from the textfile f into the variable v and then advances the
current position to the beginning of the next line. i.e. the first character after the next end-of-line marker.
The operation performs impliCit data conversion if v is not type char (see discussion of read above).

The call readln (f,v1, ...•vn) is equivalent to

read(f,v1, ... ,vn);
readln (f);

If the parameter v is omitted, readln simply advances the current position to the beginning of the next line.

6-31

-'--"-~-'--- ---- ----------------

RESET

Usage

reset (f)
reset (t.s)
reset (f,s,t)

Parameters
The name of a logical file f may not be omitted.

s The name of an MPE physical file which the system will associate with f. s may be a string
expression or PAC variable.

Parameters specifying carriage control and file access. The possibilities are:

CCTL-specifies that textfile f has carriage control.

NOCCTL-specifies that textfile f has no carriage control.

SHARED-specifies that f may be open to more than one process.

EXCLUS-specifies that f may be open to only one process at a time .
. t may be a string or PAC variable, or a string literal. Two parameters may appear separated by .
comma. The compiler ignores leading and trailing blanks and considers upper and lower case
equivalent.

The default file access for all files is EXCLUS; the default carriage control for text files is CCTL.

6-32

RESET

Description

The procedure reset (f) opens the file f in the read-only state and places the current position at the first
component. The contents of f, if any, are undisturbed. The programmer may then read from f sequentially.

If f is not empty, eot (f) is false and a subsequent reference to the buffer variable f" will actually load the
buffer with the first component. The components of f may now be read in sequence. If f is empty, however,
eot (f) is true and f" is undefined. A subsequent call to read produces an error.

If f is already open at the time reset is called, the system automatically closes and then reopens it. If the
parameter s is specified, the system closes any physical file previously associated with f.

When the identifier for f appears as a program parameter and s is not specified in the call to reset, the
system uses an MPE file with a name made up of the first 8 characters of f's identifier. This MPE file is
associated with f. An error occurs if it doesn't exist.

When f does not appear as a program parameter and s is not specified, the system maintains any previous
association of an MPE file with f. If there is no such association, it uses a temporary nameless MPE file
opened in the read-only state.

6-33

RESET

Illustration

Suppose examp_file is a closed file of char with three components. To read sequentially from examp_file, we call reset

linitial condition!

state: closed

reset (examp_file);

current position

j
[;J8GJ state: read-only

examp_file" (deferred): a
eof(examp_file): false

6-34

Keven
Rectangle

REWRITE

Usage

rewrite (f)
rewrite (f,s)
rewrite (f,s, t)

Parameters
f The name of a logical file. f may not be omitted.

s The name of an MPE physical file the system will associate with f. s may be a string expression or
PAC variable.

Parameters specifying carriage control and file access. These are:

CCTL-specifies that textfile f has carriage control.

NOCCTL-specifies that textfile f has no carriage control.

SHARED-specifies that f may be open to more than one process.

EXCLUS-specifies that f may be open to only one process at a time.
t may be a string or PAC variable, or a string literal. Two parameters may appear separated by •
comma. The compiler ignores leading and trailing blanks and considers upper and lower case
equivalent.

The default file access for all files is EXCLUS; the default carriage control for textfiles is CCTL.

6-35

REWRITE

Description

The procedure rewrite (f) opens the file f in the write-only state and places the current position at the
beginning of the file. The system discards any previously existing components of f. The function eof (f)
returns true and the buffer variable f'" is undefined. The programmer may now write on f sequentially.

If fis already open at the time rewrite is called, the system closes it automatically and then reopens it. If s is
specified, the system closes any physical file previously associated with f.

When the identifier for f appears as a program parameter and s is not specified, the system uses an MPE
file with a name made up of the first 8 characters of f's identifier. This file isassociated with f. If an MPE file
with the default name doesn't exist, the system creates a temporary one. The programmer can save this
file using the procedure close with the SAVE parameter.

When f does not appear as a program parameter and s is not specified, the system maintains any previous
association of an MPE file with f. If there is no such association, it creates a temporary nameless MPE file
opened in the write-only state. The programmer cannot save this file. It becomes inaccessible after the
process terminates or the physical-to-Iogical file association changes.

Illustration

Suppose examp_file is a closed file of char with three components. To discard these components and
write sequentially to examp_file, we call rewrite:

linitial condltionl

state: closed

6-36

REWRITE

rewrite (examp_file);

current position

state: write-only
exarnp.Ltlle> : undefined
eof(examp_file): true

6-37

Keven
Rectangle

SEEK

Usage

seek (f,k)

Parameters
f The name of a logical direct access file.

k The integer index of a component of f. This may be an integer expression.

Description

The procedure seek (f,k) places the current position of f at component k. If k is greater than the index of
the highest-indexed component ever written to f, the function eof (f) returns true, otherwise false. The
buffer variable f" is undefined following the call to seek. An error occurs if f is not open in the read-write
state.

Illustration

Suppose examp_file is a file of char with four components opened for direct access. The current position
is the second component. To change it to the fourth component, we call seek.

:initial condition:

current position

j
~Q0[!]state: read-write

exarnp-fne e (deferred): e
eof(examp_file): false

seek (examp_file,4);

current position

j
~Q0[!]state: read-write

examp_file -: undefined
eof (exarnp.Lftle): false

6-38

Keven
Rectangle

WRITE

Usage

write (f,e)
write (f,e1, ... ,en)
write (e)
write (e1,en)

Parameters
The name of a logical file. If f is omitted, the system uses the standard file output.

e If f is not a textfile, an expression whose result type is assignment compatible with the components
of f. If f is a textfile, e may be an expression whose result type is any simple or string type, a variable
of type string or PAC, or a string literal. Also, the programmer may format the value of e as it is
written to a textfile (see below).

Description

The procedure write (f,e) assigns the value of e to the current component of f and then advances the
current position. After the call to write, the buffer variable f,... is undefined. An error occurs if f is not open
in the write-only or read-write state. An error also occurs if the current position of a direct access file is
greater than maxpos (f).

The call write (f,e1, ...en)
is equivalent to

write(fr,e1);
write (fr,e2);

write(fr,en);

where fr is the reference established to file variable parameter f at the
call to write(f,e1 ...,en).

6-39

WRITE

Illustration

Suppose examp_file is a file of integer opened in the write-only state and that we have written one number
to it. To write another number, we cali write again:

linitial condition:

current position

1
state: write-only
exarnp.Lflle e : undefined
eat (examp_file): true

write (examp_file, 19);

current position

j
state: write-only
examp_file ,...:undefined
eat (examp_file): true

Formatting of Output to Textfiles

When f is a textfile, the result type of e need not be char. It may be any simple, string, or PAC type, or a
string literal. The programmer may format the value of e as it is written to f using the integer field-width
parameters m and, for real or longreal values, n. If m and n are omitted, the system uses default formatting
values. Thus, three forms of e are possible in source code:

e [detauit torrnattlng]
e:m [when e is any type:
e:m:n lwhen e is real or longreal:

Table 6-3 shows the system default values for m.

6-40

WRITE

Table 6-3. DEFAULT FIELD WIDTHS

TYPE of e DEFAULT FIELD WIDTH (rn)

char 1
integer 12
real 12
longreal 20
boolean length of identifier
enumerated length of identifier
string current length of string
PAC length of PAC
string literal length of string literal

If e is boolean or an enumerated type, the operation writes the value of e on f in upper case.

When m is specified and the value of e requires less than m characters for its representation, the operation
writes e on f preceded by an appropriate number of blanks. If the value of e is longer than m, it is written on
f without loss of significance, i.e. m is defeated, provided that e is a numeric type. Otherwise, the operation
writes only the leftmost m characters. M may be 0 if e is not a numeric type.

When e is type real or longreaf, the programmer may specify n as well as m. In this case, the operation
writes e in fixed-point format with n digits after the decimal point. If n is 0, the decimal point and
subsequent digits are omitted. If the programmer doesn't specify n, the operation writes e in floating-point
format consisting of a coefficient and a scale factor. In no case is it possible to write more significant digits
than the internal representation contains. This means write may change a fixed-point format to a floating-
point format in certain circumstances.

6-41

WRITE

Examples

PROGRAM sho~ formats (output);
V/Ut
x: real;
lr: l.onqreal ;
george: boolean;
list: (yes, no, maybe);

BEGIN
1I7riteln (999);
1I7riteln(999:1) ;
1I7riteln ("abc ') ;
1I7riteln("abc ' :2);
x:= 10.999;
1I7riteln (x) ;
1I7riteln (x: 25) ;
~teln(x:25:5);
~teln(x:25:1);
~teln(x:25:0);
lr:= 19.1111;
1I7rite l:n(lr) ;
george:= true;
~riteln(george);
~teln(george:2);
list:= maybe;
~te(list) ;

END.

The output of this program is:

999
999
abc
ab
1.099900E+01

1.0999001 E+ 0 1
10.99900

11.0
11

1.91110992431640625L+01
TRUE
TR
MAYBE

{default formatting}
{format defeated}

{string literal truncated}

{default formatting}

{default format}

{default formatting}

6-42

Keven
Rectangle

WRITEDIR

Usage

writedir (f,k,e)
writedir (f, k,e 1,...,en)

Parameters
f The name of a logical file opened for direct access.

k The integer index of a component of f.

e An expression. Its result type must be assignment compatible with the components of f.

Description

The procedure writedir (f,k,e) places the current position at the component of f specified by k and then
writes the value of e to that component. It is equivalent to

seek(f,k);
write (fr,e); Write e on the file reference established by the seek.

An error occurs if f has not been opened in the read-write state or if k is greater than maxpos (f). After
writedir executes, the buffer variable f" is undefined and the current position is k+ 1.

6-43

WRITEDIR

Illustration

Suppose file examp_file is a file of integer opened for direct access. The current position is the third
component. To write a number to the first component, we call writedir.

iinitial condition:

current position

state: read-write
examp_file'" (deferred): 1
eof (examp_file): false

writedir (examp_file, 1,4 + 5);

current position

j
~0~ state: read-write

examp_file"': undefined
eof (examp..Jne): false

6-44

Keven
Rectangle

WRITELN

Usage

writeln (f)
writeln (f,e)
writeln (f,e1, ... ,en)
writeln (e)
writeln (e1,....en)
writeln

Parameters

The name of a logical textfile open in the write-only state. If f is omitted; the system uses the
standard file output.

e An expression with a simple, string, or PAC result type, or a string literal.

Description

The procedure writeln (t.e) writes the value of the expression e to the textfile f, appends an end-of-line
marker, and places the current position immediately after this marker. After execution, the file buffer f" is
undefined and eof (f) is true. The programmer may write the value of e with the formatting conventions
described for the procedure write (see above).

The call writeln(f,e1 ,... ,en) is equivalent to

write(fr,e1);
write (fr,e2);

write(fr,en);
write/n(fr);

where fr is the reference established to file variable parameter f at the
call to write/n(fr).

The call writeln without the file or expression parameters effectively inserts an empty line in the standard
file output.

6-45

-------- ------- ----- -------

LOGICAL FILES

Any file declared in the declaration part of a Pascal/3000 block is a logical file. Within a program, the
scope of a file name is the scope of any other Pascal/3000 identifier. The programmer, however, may
associate the logical file with a physical MPE file that exists outside the program (see below). Then
operations performed on the logical file are performed on the physical file.

A logical file consists of a sequence of components of the same type. This type may be any type, except
the type file or a structured type with a file type component. Every logical file has a buffer variable and a
current position pointer.

The buffer variable is the same type as the type of the file's components. It is denoted:

f"

where f is the designator of the logical file. The programmer may use the buffer variable to preview the
value of the current component.

The current position pointer is an integer index, starting from 1. It indicates the component that the next
input or output operation will reference. The function position returns the value of this index, except in the
case of textfiles.

After certain file operations, such as write with direct access files, the buffer variable is undefined. The
programmer must call get before f" will access the value of the current position. After other operations,
such as read, a subsequent reference to f" will successfully access the current component. No get is
necessary (see Appendix I).

The programmer may assign the contents of f A. to a declared variable of the appropriate type.
Alternatively, the value of an expression with an appropriate result type may be assigned to fA..

Textfiles are a special class of logical files substructured into lines (see below). Input and output are
standard textfiles (see below).

6-46

Keven
Rectangle

LOGICAL FILES

The programmer must explicitly open any logical file before performing a file operation, except for input
and output when they appear as program parameters (see below). The four file opening procedures are
reset, rewrite, append, and open (see below). The manner of opening a logical file determines its' state'.
For example, a file opened with append is in the write-only state. No input operation is possible.

The programmer may use the procedures read, write, get, and put, and the functions eot, and fnum with
any appropriately opened logical file, regardless of its type.

Example

PROGRAM show_logfile (input,output,bfile);
TYPE

book info = RECORD
title PACKED ARRAY [1..50] OF char;
author PACKED ARRAY [1 •.50] OF char;
number 1..32000;
status (on_shelf,checked_out ,lost ,ordered)

END;
VAR

old book: book_info;
bfile FILE OF book_info;
posnum integer;

BEGIN

{Declaring a logical file. }

reset (bfile) ; {Opening logical file which is associated }
{by default with MPE file named 'BFILE'. }

{Assigning buffer variable to }
{declared variable. }

posnum:= position(bfile); {Using index of current }
{component. }

END.

6-47

TEXTFILES

Textfiles are a special class of logical files which are substructured into lines by end-of-line markers. The
programmer may declare textfiles with the standard identifier text (see Section 3). The components of a
textfile are type char.

If the current position in a textfile advances to a line marker (Le. beyond the last character of a line), the
function eoln returns true and the buffer variable is assigned a blank. When the current position advances
once more, a reference to the buffer variable will access the first character of the next line and eoln returns
false, unless the next line has no characters. An end-of-Iine marker is not an element of type char. Only the
procedure writeln places it in a textfile. A line marker always precedes an eot condition, whether the
programmer terminated the last line with writeln or not.

The procedures readln, writeln, page, prompt, and overprint, and the functions eoln and linepos are
available exclusively for textfiles.

Reading from a textfile may entail implicit data conversion. In certain cases, the operation searches the
textfile for a sequence of characters which satisfies the syntax for a string, PAC, or simple type other than
char.

Writing to a textfile may entail formatting of the output value. The programmer can specify a field-width
parameter or allow the system to use various default field-width values.

The programmer cannot open textfiles for direct access. Their format is incompatible with certain direct
access operations.

The system defines two standard textfiles, input and output (see below).

6-48

Keven
Rectangle

STANDARD FILES INPUT AND OUTPUT

The standard texttiles input and output often appear as program parameters. When they do, there are
several important consequences:

(1) The programmer may not declare input and output in the source code.

(2) The system automatically resets input and rewrites output.

(3) The system automatically associates input and output with the MPE files $STDIN and $STDLlST.
These files usually represent the terminal. Thus, input will read from the terminal and output will
write to it. At the terminal, a colon (:) in the left-most column indicates end-ot-file. The
programmer may change these default associations with a file equation.

(4) It certain file operations omit the logical file name parameter, input or output is the default file. For
example, the call read (x), where x is some variable, reads a value from input into x. Or consider:

PROGRAM sample (output);
BEGIN

~teln('I like Pascal! ');
END.

The program displays the string literal on the terminal screen. Output must appear as a program
parameter; input need not appear, however, since the program doesn't use it.

6-49

------------~~----------

OPENING AND CLOSING FILES

A program must open a logical file before any input, output, or other file operation is legal. Four file
opening procedures are available: reset, rewrite, append, or open. When they appear as program
parameters, the standard textfiles input and output are exceptions to this rule. The system automatically
resets input and rewrites output.

The procedure reset opens a file in the read-only state without disturbing its contents. After reset, the
current position is the first component and the program can read data sequentially from the file. No output
operation is possible.

The procedure rewrite. opens a file in the write-only state and discards any previous contents. After rewrite,
the current positton is the beginning of the file. The program can then write data sequentially to the file. No
input operation is possible.

The procedure append is identical to the procedure rewrite except that the current position is placed after
the last component and the file contents are undisturbed. The program can then append data to the file.

The procedure open opens a file in the read-write state. The contents of the file, if any, are undisturbed and
the current position is the beginning of the file. The program may then read or write data.

A file opened in the read-write state is a direct access file. Using the procedure seek, the programmer can
place the current position anywhere in the file. Furthermore, direct access files permit calls to the standard
procedures readdir or writedir, which are combinations of seek and the procedures read or write. Direct
access files have a maximum number of components. The function maxpos returns this number.

In contrast, files opened in the read-only or write-only states are sequential files; the current position only
advances one component at a time and the maximum number of components cannot be determined by a
Pascal function.

6-50

Keven
Rectangle

OPENING AND CLOSING FILES

The procedure close explicitly closes any logical file and its associated physical file. The programmer need
not use this procedure, however, before opening a file in a new state. For example, suppose file f is in the
write-only state and the program calls reset (f). The system first closes f and its associated physical file and
then reopens f in the read-only state. This is default closing.

The system also closes a file not on the heap by default when the program exits from the scope in which
the file was declared. It closes a heap file by default when the procedure dispose uses the pointer to the file
as a parameter, when the procedure release specifies the heap region in which the file variable is allocated,
or when the program terminates.

When using close, the programmer may specify the disposition of a file. When the system closes a file, on
the other hand, the disposition is the same as the disposition of the file when it was opened.

6-51

PHYSICAL FILES

The MPE operating system controls physical files which exist independently of a Pascal/3000 program.
These files may be permanent files on disc or other media, or interactive files created at a terminal.

The programmer may associate a particular MPE file with a logical file declared in a Pascal/3000 program.
The type of the logical file determines the characteristics of the MPE file. For example, the system
associates a logical file of integer with an MPE file which is a fixed length binary file with 2 word records.
File output operations create a MPE file with these characteristics; input operations require a file with these

, characteristics.

Except for textfiles, all MPE files associated with Pascal logical files are fixed length binary files. The
system associates textfiles with variable length ASCII files with carriage control. The record length of non-
textfiles depends on the type of the component; files of integer have 2 word records; files of char 1 word
records; files of /ongrea/4 word records; etc. In contrast, the maximum record length of a textfile is one line
of 254 bytes.

6-52

Keven
Rectangle

ASSOCIATING LOGICAL
AND PHYSICAL FILES

A program doesn't affect the outside world unless its logical files are associated with physical files at run
time. Then file operations work concurrently on logical and physical files.

In Pasca1/3000, there are several ways this physical-to-Iogical file association can occur:

(1) The name of a logical file appears as a program parameter.

(2) The second parameter of one of the file-opening procedures specifies a physical file.

(3) The INFO parameter of the RUN command passes names of physical files to the program, and
these names then appear as the second parameters of file-opening procedures.

(4) An MPE file equation specifies a physical-to-Iogical file association.

We consider each case in detail.

(1) A logical file name may appear as a program parameter. When this name is the first parameter for one
of the file-opening procedures and there is no second parameter, the system uses a default physical file
name consisting of the first 8 characters of the logical file name. This name must be an acceptable MPE
filename, e.g. it cannot contain the underscore (_) character. For example, consider this source code:

PROGRAM case one (input,output,filel);
VAP. .-

filel: FILE OF integer;

BEGIN
re?Uri te (filel) ;

END.

The system associates an MPE file FILE1 with the logical file. If none exists, it creates a temporary file with
this default name.

6-53

ASSOCIATING LOGICAL AND PHYSICAL FILES

The standard files input and output are exceptions to this scheme. When they appear as program
parameters, the system automatically associates them with the MPE files $STDIN and $STDLlST.

If the name of the logical file doesn't appear in the program parameter list and if a file-opening procedure
doesn't have a second parameter, the system associates a temporary nameless MPE file with the logical
file, provided there is no previously physical-to-Iogical file association. The programmer cannot save this
file. After the process terminates or after the physical-to-Iogical file association changes, it is inaccessible.

(2) The second parameter of a file-opening procedure specifies a physical Hie to be associated with the
logical file. For example: '

PROGRAM case_two (input,output);
VAA

filel : FILE OF integer;

BEGIN
~te(filel, 'numfile');

END.
The logical file file1 is associated with the MPE physical file NUMFILE.

This association holds, even if the name of the logical file appears as a program parameter. For example:

PROGRAM case three (input,output,filel);
VAA

filel : FILE OF integer;

BEGIN
rewrite(filel, 'numfile');

END.

6-54

Keven
Rectangle

ASSOCIATING LOGICAL AND PHYSICAL FILES

The system still associates the MPE file NUMFILE, not FILE1, with file1.

The second parameter of a file-opening procedure may be a string or PAC variable. It need not be a string
literal.

(3) The INFO parameter of the RUN command can pass a string literal of up to 255 characters to a Pascal
variable. This variable may then appear as the string parameter of a file-opening procedure. The variable
must be a program parameter. It is declared as a string or PAC type in the usual manner. For example:

:RUN PRG4; INFO=wintfilew jMPE command. PRG4 is program:
lfile for case four source. :

PROGRAM case_four (input.output.fname);
VAR

fname string[15];
filel : FILE OF integer;

BEGIN
~rite(filel.fname);

END.

The system associates the MPE file INTFILE with the logical file file1.

The programmer may list the names of several physical files in the INFO parameter. In source code, the
programmer can extract the individual file names using indexing for a PAC variable or the standard
function str for a string variable.

6-55

ASSOCIATING LOGICAL AND PHYSICAL FILES

(4) Finally, an MPE FILE command may associate a logical file and a physical file, or change a physical-to-
logical file association. The FILE command's 'formaldesignator' may be the name of a logical file and the
'filereference' the name of the physical file (see MPE Commands Reference Manual). In this case, the
logical file must appear as a program parameter. For example:

:FILE file1=numfile
:RUN PRG5 WRG5 is casa..Jlve.]

PROGRAM case five (input,output,filel);
VAR

filel : FILE OF integer;

BEGIN
ret.>rite(filel) ;

END.
The MPE file NUMFILE is associated with the logical file file1.

Alternatively, the 'formaldesignator' may be the name ota physical file specified by the string parameter of
a file opening procedure. Suppose:

:FILE intfile=numfile
:RUN PRG6 jPRG6 is casa..six.]

PROGRAM case six (input,output);
VAR

filel : FILE OF integer;

BEGIN
ret.>rite(filel, 'intfile');

END.
The system associates NUMFILE, not INTFILE, with file1.

6-56

Keven
Rectangle

1/0 CONSIDERATIONS

The procedures read and write perform the fundamental input and output operations. Read (f,x) copies
the contents of the current component into x and advances the current position. Write (f,x) copies x into
the current component and advances the current position.

The original Pascal standard describes read and write in terms of the buffer variable f A and the
procedures get and put. The procedure put writes the contents of the buffer variable to the current
component and then advances the position. Write (f,x) is thus equivalent to

fA:= x;
put (f);

Read (f,x) is equivalent to

x.=f »:
get (f);

In the Jensen and Wirth Pascal Report, the procedure get copies the current component to the buffer
variable and advances the position.

These definitions of get and read, however, have certain unfortunate consequences when 1/0 operations
occur with interactive devices such as terminals, which were not available at the time Pascal was designed.
In particular, at the initiation of a program or following a call to readIn, the system reads the next line
before the user can write a prompt.

HP Standard Pascal addresses this issue by defining a 'deferred' get which postpones the actual loading
of a component into the buffer variable. Appendix I offers a formal description of deferred get and other
HP Standard Pascal 1/0 operations. The programmer should keep these practical implications in mind:

6-57

I/O CONSIDERATIONS

(1) Suppose read (f,x) has just placed the value of component n in x. Then a reference to f" copies
the value of component n+ 1 into the buffer variable. It isn't necessary to call get explicitly. If get is
called, however, a reference to f" copies the value of component n+2 into the buffer. Component
n+ 1 is skipped.

(2) The buffer variable is undefined after calls to put, write, seek, writedir, writeln, open, rewrite, and
append. Before inspecting the current component, the programmer must call get explicitly.

(3) Itis best not to use the buffer variable with direct access files. After read, for example, a reference
to f" places the next component in the buffer even if f" appears on the left side of an assignment
statement.

(4) When reading a file sequentially, there may come a time when no component is available for
assignment to x. Calling read in this case will cause a run-time error. The programmer should use
eof to determine if another component exists. On some files, notably terminals, this may require
that a device read be performed to request another component. The component is held in the
files's buffer variable and will be produced as the next result of a call to read.

(5) If f is a direct access file,eof(f) is distinct from maxpos (f). In particular eofis determined by the
highest-indexed component ever written to 1.Maxpos, on the other hand, is a limit on the size of
the associated physical file. An error occurs if a progam attempts to read a component beyond the
current eof. It is always possible, however, to write to a component with an index no greater than
maxpos (f). This will create a new eof condition if the index of the component written is greater than
the index of any previously written component. It is never possible to write beyond maxpos (f).

(6) When writing to a direct access file, the programmer may skip certain components. If the file is
later read sequentially, these components will have unpredictable values.

(7) In a direct access file, the system doesn't allocate components preceding n until n is written. If n is
very large and preceded by many unused components, this allocation may take a significant
amount of time. The programmer should write to lower-indexed components in preference to
higher-indexed components.

(8) Under the MPEIII operating system, a call append (f) when f has variable length records may force
a system read of the entire file. Under MPEIY, a similar problem may arise when f is a nameless file
with variable length records.

6-58

STANDARD PROCEDURES 1111~A_N_D_F_UN_C_T_I_O_NS ~

ARITHMETIC FUNCTIONS
The eight standard arithmetic functions are ebs, arctan, cos, exp, In, sin, sqr, and sqrt.

The type of the value returned depends on the type of the argument. The functions abs and sqr return
integer values if integer arguments. are used. The other arithmetic functions return real values if passed
integer arguments. All functions return a real or longreal value when passed a real or longreal argument.

ABS

Usage

abs (x)

Argument
x A numeric expression.

Description

The function abs (x) computes the absolute value of the numeric expression x. If x is an integer value, the
result will also be an integer. Taking the absolute value of minint causes a warning message at compile time
and an integer overflow at run time.

Examples

Call Return

abs(-13)
abs(-7.11)

13 {integerresult}
7.110000E+OO.

7-1

ARCTAN

Usage

arctan (x)

Argument
x A numeric expression.

Description

The function arctan (x) computes the arctangent of x. The result is in radians within the range -pi/2 ..pi/2.

Examples

Call

arctan (2)
arctan (-4. 002)

7-2

Return

1.107149E+00
-1. 32594E+OO

Usage

CDS (x)

Argument
x A numeric expression.

Description

The function CDS (x) computes the cosine of x, where x is interpreted to be in radians.

Example

Call

cos(1.62)

7-3

Return

-4. 91836E+OO

cos

EXP
Usage

exp (x)

Argument
x A numeric expression. Integer expressions must be in the range -176 .. 176; real expressions

-176.7525 .. 176.7525; longreal expressions -176.75253104 .. 176.75253104.

Description

The function exp (x) computes e to the power of x, where e is the base of the natural logarithm. If x is less
than the lower bound of its permissible subrange, an underflow occurs and the value 0 is returned without
an error message. If x is greater than the upper bound, a run-time error occurs.

Call Return

exp(3)
exp(8.8E-3)

2.0085S4E+Ol
1.oo8839E+OO

7-4

Keven
Rectangle

Usage

In (x)

Argument
x Any positive numeric expression, excluding O.

Description

LN

The function In (x) computes the natural logarithm of x. If x is 0 or less than 0, a run-time error occurs.

Examples

Call

In(43)
In(2.121)
In(O)

7-5

Fleturn

31. r6120oE+OO
7' • 518874E-Ol
{error}

SIN

Usage

sin (x)

Argument
x A numeric expression.

Description

The function sin (x) computes the sine of x, where x is interpreted to be in radians. X can be any numeric
value.

Example

Call

sin(O.024}

7-6

Return

2.399770E-02.

SQR

Usage

sqr (x)

Argument
x Any numeric expression.

Description

The function sqr (x) computes the value of x squared. If x is an integer value, the result is also an integer. If
the value to be returned is greater than the maximum value for a particular type, a run-time error occurs.

Examples

Call Return

sqr(3)
sqr(1.198E3)
sqr(rrnrint)

9
1.435204E+o6.
{error}

7-7

- ---------- -- ---- ------------------------------

SQRT

Usage

sqrt (x)

Argument
x Any positive numeric expression.

Description

The function sqrt (x) computes the square root of x. If x is less than 0, a run-time error occurs.

Examples

Call Return

sqrt(64)
sqrt(13.5E12)
sqrt(O)
sqrt(-5)

8.o00000E+OO
3.674235E+o6
O.OOOOOOE+OO
{error}

7-8

PREDICATE FUNCTIONS

The three predicate functions eot, eoln, and odd return boolean values. Section 6 describes eof and eoln.

ODD

Usage

odd (x)

Argument
x Any integer expression.

Description

The function odd (x) returns true if x is odd, and false otherwise.

Examples

Call Return

odel(2 + 4)
odel(-32767)
odel(32768)
odd(o)

false
true
false
fdlse

7-9

TRANSFER FUNCTIONS

The two transfer functions are trune and round.

TRUNC

Usage

trune (x)

Argument
x Any real or longreal expression.

Description

The function trune (x) returns an integer result which is the integral part of x. The absolute value of the
result is not greater than the absolute value of x An integer overflow occurs if the result is not in the range
minint ..maxint.

Examples

Call

truno(5.61)
truno(-3.38)
truno(18·999)

7-10

Return

5
-3
18

Keven
Rectangle

ROUND

Usage

round (x)

Argument
x Any real or longreal expression.

Description

The function round (x) returns the integer value of x rounded to the nearest integer. If x is positive or zero,
then round (x) is equivalent to trune (x + 0.5); otherwise, round (x) is equivalent to trune (x - 0.5). An
integer overflow occurs if the result is not in the range minint ..maxint.

Examples

Call Return

round(3.1)
round(-6.4)
round(-4.6)
round (1. 5)

3
-6
-5
2

7-11

-.--~---------

ORDINAL FUNCTIONS

The ordinal functions are chr, ord, pred, and succ.

CHR

Usage

chr(x)

Argument
x An integer expression in the range 0..255.

Description

The function chr (x) returns the character value, if any, whose ordinal number is equal to the value of x. An
error occurs if x is not within the range 0..255.

Examples

Call Return

chr(63)
chr(82}
chr(13}

'? '
'R'

(carriage return)

7-12

Keven
Rectangle

ORD

Usage

ord (x)

Argument
x Any ordinal expression.

Description

The function ord (x) returns the integer representing the ordinal associated with the value of x. If x is an
integer, x itself is returned. If x is type char, the result is an integer value between 0 and 255 determined by
the ASCII order sequence. If x is any other ordinal type (i.e., a predefined or user-defined enumerated
type), then the result is the ordinal number determined by mapping the values of the type onto consecutive
non-negative integers starting at zero. For example, since the standard type boolean is predefined as:

TYPE boolean = (false,true)

the call ord(fa/se) returns 0, and the call ord(true) returns 1.

For any character ch, the following is true:

chr (ord (ch)) = ch

Examples

Call Return

ord(' a')
ord('A')
ord(-1)
ord(yellow)
ord(red)

97
65
-1
2 (TYPE color=(red,blue,yellow)}
o

7-13

----- -- - ~----

-~~~~-~-.------ - -~-----.~-- -------.-- -~~

PRED

Usage

pred (x)

Argument
x Any ordinal expression.

Description

The function pred (x) returns the value, if any, whose ordinal number is one less than the ordinal number of
x. The type of the result is identical with the type of x. A run-time error occurs if pred (x) does not exist. For
example, suppose:

TYPE day = (monday, tuesday, wednesday)

Then,

pred (tuesday) = monday

but pred (monday) is undefined.

Examples

Call Return

pred(l)
pred(-5)
pred('B')
pred(true)

o
-6
'A'

false

7-14

Keven
Rectangle

Usage

succ (x)

Argument
x Any ordinal expression.

Description

succ

The function succ (x) returns the value, if any, whose ordinal number is one greater than the ordinal
number of x. The type of the result is identical with the type of x. A run-time error occurs if succ (x) does
not exist. For example, suppose:

Then,

TYPE color = (red, blue, yellow)

succ (red) = blue

but succ (yellow) is undefined.

Examples

Call

succ(l)
succ(-5)
succ('a')
succ(false)
succ(true)

7-15

Return

2
-4
"b '

true
{error}

NUMERIC CONVERSION FUNCTIONS

The three numeric conversion functions are binary, hex, and octal. All three accept arguments which are
string or PAC variables, or string literals. The compiler ignores leading and trailing blanks in the argument.
All other characters must be legal digits in the indicated base.

Since binary, hex, and octal return an integer value, which is represented as a 32 bit quantity on the
HP3000, the programmer must specify all 32 bits if a negative result is desired. Alternatively, the
programmer may negate the positive representation.

BINARY

Usage

binary (s)

Argument
s Any string or PAC variable, or a string literal.

Description

The function binary (s) converts s to an integer. S is interpreted as a binary value.

Examples

Call Return

binary('10011') 19
-binary('10011') -19
binary('11111111111111111111111111101101') -19

7-16

Keven
Rectangle

Usage

hex (s)

Argument

s Any string or PAC variable, or a string literal.

Description

The function hex (s) converts s to an integer. S is interpreted as a hexadecimal value.

Examples

Call

hext; 'FF')
hex ('FFFFFF 01 ')

7-17

Return

255
-255

HEX

OCTAL

Usage

octal (s)

Argument
s Any string or PAC variable, or a string literal.

Description

The function octal (s) converts s to an integer. S is interpreted as an octal value.

Examples

Cali

octal ('77')
octal('37777777701')

7-18

Return

63
-63

STRING OPERATIONS

Pascal/3000 supports a number of standard functions and procedures which manipulate string
expressions, variables, and literals. The standard string functions include stt, str/en, str/trim, strmax,
strpos, strrpt, and strrtrim. The string procedures are setstr/en, strappend, strde/ete, strinsert, strmove,
strread, strwrite.

A string expression may consist of a string literal, a string variable, a string constant, a function result
which is a string, or an expression formed with the concatenation operator.

Note: Strings must be initialized by the user just like any other variable. The strings functions and
procedures assume that its string parameters contain valid information.

SETSTRLEN
Usage

setstr/en (s,e)

Parameters

s A string variable.

e An integer expression. The value of e cannot be greater than the maximum length of s.

Description

The procedure setstr/en (s,e) sets the current length of s to e without modifying the contents of s.

If the new length of s is greater than the previous length of s, the extra components will be undefined. No
blank filling occurs. If the new length of s is less than the previous length of s, previously defined
components beyond the new length will no longer be accessible.

7-19

- -~-~--~------~------------~

SETSTRLEN

Examples
VAR

alpha: string[80];
BEGIN

alpha:= 'abcdef'; {strlen(alpha) = 6}
.

setstrlen(alpha,2*str.len(alpha»; {Doubles current length}
{of alpha. Alpha [7] }
{through alpha[12] not }
{defined. }

.
setstrlen(alpha,2) {Alpha[3J through }

{alpha [80] unavailable. }
END.

7-20

STR

Usage

str(s,b,e)

Arguments
s A string expression.

b An integer expression indicating the index of the starting character.

e An integer expression indicating the length of the substring.

Description

The function str(s,b,e) returns the portion of s which starts at s [b] and is of length e. The result is type
string and may be used as a string expression,

An error occurs if the strlen(s) is less than the sum of band e minus 1, or b.

Example
VAR
i: integer;
wish_list: string[132];
granted: string[5];

BEGIN

i:= 13;
wish list: = 'wish1 wish2 wish3 wish4 wish5' ;
granted:= str(wish_list.i.5); {Selects the 3rd wish.}

{Granted is 'wish3'. }

END.

7-21

STRAPPEND

Usage

strappend (51,52)

Parameters
51 A string variable.

52 A string expression.

Description

The procedure strappend(s1 ,52) appends string 52 to s1. The call passes s1 as an actual variable
parameter to the procedure. Strlen(s2) must be less than or equal to strmax(s1) -strlen(s1). That is, it
cannot exceed the number of characters left to fill in 51. The current length of s1 is updated to strlen(s1)
+ strlen(s2).

Example
VAR.

message: string [132]
BEGIN

message:= 'Now hear ';
strappend(message, 'this! ');

END.

7-22

Keven
Rectangle

STRDELETE

Usage

strdelete (s,p,n)

Parameters
s A string variable.

p An integer expression representing the starting index of the deletion.

n An integer expression representing the number of characters to be deleted.

Description

The procedure strde/ete(s,p,n) deletes n characters from s starting at component s[p), and the current
length of s is updated to current length of s-n.

Example
VAR

uncensored, censored: string[80];
BEGIN

uncensored:= 'Attack at 6 a.m.!';
strde l.ete (uncensored,7, stl'l.en(uncenscr-ed) -7) ;
censor-ed: = uncensored; {Censored is 'Attack!'.}

END.

7-23

STRINSERT

Usage

strinsert (s1,s2,n)

Parameters
s1 A string expression.

s2 A string variable.

n An integer or an integer expression representing the offset in s2 where insertion will begin.

Description

The procedure strinsert(s1 .sz.n) inserts string s1 into s2 starting at s2[n]. The resulting string may not
exceed strmax(s2). The current length of s1 is updated to strlen(s1) + strlen(s2).

Examples

VAR
remark: string[SO];

BEGIN
remark:= 'There is' missing!';
strinsert(' something ,remark,9);

END.

7-24

STRLEN

Usage

strlen (s)

Argument
s A string expression.

Description

The function strlen (s) returns the current length of the string expression s.

If s is not initialized, strlen (s) is undefined.

Example
VAIl.

ars, vita: string[1321;
b: boolean;

BEGIN
IF strlen(ars) > strZen(vita) THEN
b:= true

ELSE
haZt;

END.

7-25

STRLTRIM

Usage

strlttim (s)

Argument
s A string expression.

Description

The function str/trim (s) returns a string consisting of s trimmed of all leading blanks. The function strrtrim
trims trailing blanks (see below).

Example

VAR
s: string[SO];

BEGIN
s: = , abc ' ;
s:=strltrim(s) ; {s is now label}

{strz,en(s)=3}
END.

7-26

Keven
Rectangle

STRMAX

Usage

strmax (s)

Argument

s A string variable,

Description

The function strmax (s) returns the maximum length of s.

Example

VAR
s: string[132];

BEGIN
IF strlen(s) = st~(s) THEN

BEGIN
s := strltrim(s) ;
's:= strrtrim(s);

END;
END.

7-27

STRMOVE

Usage

strmove (n,s1,p1,s2,p2)

Parameters
n An integer expression indicating the number of characters to be copied.

s1 A string expression or PAC variable.

p 1 An integer expression indicating the offset in s1 from which copying will start.

s2 A string or PAC variable.

p2 An integer expression indicating the offset in s2 where copying will start.

Description

The procedure strmove(n,s1 ,p1 ,s2,p2) copies n characters from st. starting at s1 [p1], to s2, starting at
s2[p2]. String length is updated, if needed, to p2 + (n-1) if p2 + (n-1) > strlen(s2).

If p2 equals strlen(s2) + 1, strmove is equivalent to appending a subset of s1 to s2.

The programmer may use strmove to convert PAC's to strings and vice versa, It is also an efficient way
of manipulating subsets of PAC's.

Note: You should not strmove into an uninitialized variable regardless of its type.

Example

VAR
pac: PACKED ARRAY[l ..lS] OF char;

s: string[80];
BEGIN

pac:= 'Hewlett-Packard';
strmove(15,pac,1,s,1); {Converts a PAC to a string.}

END.

7-28

Keven
Rectangle

STRPOS

Usage

strpos (s1,s2)

Arguments
s1 A string expression.

s2 A string expression.

Description

The function strpos (s1,s2) returns the integer index of the position of the first occurrence of s2 in s1. If s2
is not found, zero is returned.

Example

CONST
separator =

VAR
i: integer;
names: string[80];

BEGIN
names:= 'Jon Jill Ruth Mamie Bob Joan Wendy';
i:= strpos (names,separator);
IF i <> 0 THEN
etirdel ete (names, 1,i); {deletes first name}

END

7-29

STRREAD

Usage

strrread (s.p, t.v)
strread (s.p, t,v1•...•vn)

Parameters

s A string expression.

p An integer expression.

An integer or integer subrange variable.

v A simple, string. or PAC variable. Any number of v parameters may appear separated by commas.

Description

The procedure strread (s,p,t,v) reads a value from s, starting at s [p] • into the variable v. After the
operation. the value of the variable appearing as the t parameter will be the index of s immediately after the
index of the last component read into v.

S is treated as a single-line textfile. Strread (s,p,t,v) is analogous to read (f.v) when f is a textfile of one line
(see Section 6). Like read, strread implicitly converts a sequence of characters from s into the types
integer, real, longreal, boolean, enumerated, PAC. or string (see Section 6).

An error occurs if strread attempts to read beyond the current length of s.

The call

strread (s,p, t.v l, ...vn);

is equivalent to

strread (s.p.t.vt);
strread (s, t.t,v2);

strread (s, t. t, vn);

7-30

Keven
Rectangle

Example

VAR
s: string[BO);
p,t: 1..BO;
m,n: integer;

BEGIN

s:= 12 564
p:= 1;
strread(s,p,t,m);

strread(s,t,t,n);

END.

STRREAD

{The value of m will be 12; }
{t will be 6. }

{The value of n will be 564;}
{t will be 11. }

7-31

Keven
Rectangle

STRRPT

Usage

strrpt (s,n)

Arguments:
s A string expression.

n An integer expression indicating the number of repetitions.

Description

The function strrpt (s,n) returns a string composed of s repeated n times.

Example
CONST

one = '1';
VAR

b_num: string[32];
BEGIN
b num:= stl"%'pt(one,stl"r7llX(b_num));

END.

7-32

Keven
Rectangle

Usage

strrtrim (s)

Argument
s A string expression.

Description

The function strrtrim (s) returns a string consisting of s trimmed of trailing blanks. Leading blanks are
stripped by the function strltrim (see above).

Example

VAR
5: string [80]

BEGIN
5:= I abc I.,

s:= strrtrim(s); {s is now I abc' }
{strZen(s)=3}

END.

7-33

---------- ---------- -----------

STRWRITE

Usage

strwrite (s,p,t,e)
strwrite (s,p,t,e1, ...en)

Parameters
s A string variable.

p An integer expression.

An integer or integer subrange variable.

e A simple or string expression, or a PAC variable. Any number of e parameters may appear
separated by commas.

Description

The procedure strwrite (s.p.t.e) writes the value of eon s starting at s [p] . After the operation, the value of
the variable appearing as the t parameter will be the index of the component of s immediately after the last
component of s that strwrite has accessed.

S is treated as a single-line textfile. Strwrlte (s.p, t,e) is analogous to write (f,e) when f is a one-line textfile
(see Section 6). As with write, strwrite also permits the programmer to format the value of e as it is written
to s using the formatting conventions described in Section 6. The same default formatting values hold for
strwtite (see Table 6-3). -

An error occurs if strwrite attempts to write beyond the maximum length of 5, or if p is greater than
str/en (s) + 1.

The call

strwrite (s,p,t,e 1,...en);

is equivalent to

strwrite (s,p,t,el);
strwrite (s,t,t,e2);

strwrite (s,t, t,en);

7-34

Keven
Rectangle

Examples

VAR
s: string [Bo]
p,t: 1. .so.
f,g: integer;

BEGIN
f:= 100;
g:= 99;

p:=l;
st~te(s,p,t,f:1); {s is now '100'; t is 4
.

st~te(s,t,t,' ',g:l); {S is now 'lOa 99'; t is 7. }

END.

7-35

STRWRITE

}

---"~--- - - ---~------

HEAP PROCEDURES

Pascal/3000 distinguishes two classes of variables: static and dynamic.

The programmer explicitly declares a static variable in the declaration part of a block and may then refer
to it by name in the body. The compiler allocates storage for this variable on the stack. The system does
not deallocate this space until the process closes the scope of the variable.

On the other hand, the programmer does not declare a dynamic variable and cannot refer to it by name.
Instead, a declared pointer references this variable (see Section 3). The system allocates and deallocates
storage for a dynamic variable during program execution as a result of calls to the standard procedures
new and dispose. The area of memory reserved for dynamic variables is termed the 'heap'. On the
HP3000, this is the DL-DB area of the stack.

Pascal/3000 also supports the standard procedures mark and release, and the compiler options
HEAP_DISPOSE and HEAP_COMPACT. Mark records the state of the heap. A subsequent call to
release returns the heap to the state recorded by mark. Effectively, this disposes any variables allocated
since the call to mark. The compiler option HEAP_DISPOSE permits the reallocation of storage space
deallocated by dispose. The option HEAP_COMPACT allows the concatenation of available free space in
the heap. Section 8 fully describes both compiler options.

When it prepares a program into an executable program file, the MPE Segmenter allocates a few thousand
extra words of stack space. If a program uses a large heap, this default extra space may not be sufficient
at run time. The programmer may reserve enough space by specifying values for the DL or MAXDATA
parameters of the :PREP or :RUN commands.

The Pascal/3000 support library includes the procedures GETHEAP and RTNHEAP. These procedures
allocate and deallocate regions of the DL-DB area (see Appendix F). A subsystem such as VPLUS
uses these procedures when it is called from a Pascal program (see Appendix H).

Dynamic variables permit the creation of temporary buffer areas in memory. Furthermore, since a pointer
may be a component of a structured dynamic variable, it is possible to write programs with dynamic data
structures such as linked lists or trees.

7-36

Keven
Rectangle

NEW

Usage

new(p)
new (p,t 1,...,tn)

Parameters

p Any pointer variable.

t A case constant. Nested variants may appear separated by commas.

Description

The procedure new (p) allocates storage for a dynamic variable on the heap and assigns its address to the
pointer variable p. If insufficient heap space is available for the allocation, a run-time error occurs.

If the dynamic variable is a record with variants, then the programmer may use t to specify a case
constant. This constant only determines the amount of storage allocated. The procedure call does not
actually assign it to the dynamic variable. For nested variants, the programmer must list the values
contiguously and in the order of their declaration (see example below).

If the programmer calls new for a record with variants and doesn't specify any case constants, the
compiler determines storage by the size of the fixed part plus the size of the largest variant.

The programmer should avoid using an entire dynamic record variable allocated with one or more case
constants as an operand in an expression, an actual parameter, or on the left side of an assignment
statement. The variant may be smaller than the actual size at run time.

P may be a component of a packed structure.

Pointer dereferencing accesses the actual values stored in a dynamic variable on the heap (see Section 4).

7-37

-~---~ --.- --- --------------- ----

- ------- -~------ -------- --------- ---- - - -------~-~-

NEW

Examples
PROGRAM show new (output);
TYPE

marital_status = (single, engaged, married, widowed, divorced);
year = 1900 ..2100;
ptr = Aperson_info;
person_info = RECORD _

name: string[251;
birdate: year;
next-person: ptr;
CASE status: marital status OF

married ..divorced: (when: yearj
CASE has kids: booZean OF

true: (how_many: 1..50)
;) ;

engaged: (date: year),
END;single:();VAR

P ptrj
BEGIN {Various legal calls of n~.}

ne1l1(p) ;

ne1l1(p,engaged);

ne1l1(p,married);

neW(p,widowed,false);

END.

7-38

Keven
Rectangle

DISPOSE

.Usage

dispose (p)
dispose (p,t1, ...,tn)

Parameters

P A pointer variable.

A case constant value.

Description

The procedure dispose (p) indicates that the storage allocated for the dynamic variable referenced by p is
no longer needed. The system will not actually reallocate the space unless the compiler option
HEAP_DISPOSE is ON. An error occurs if p is NIL or undefined. After dispose, the system has closed any
files in the disposed storage and p is undefined.

If the programmer specified case constant values when calling new, the identical constants must appear
as t parameters in the call to dispose. Otherwise, the system may deallocate an incorrect amount of
storage.

P must not reference a dynamic variable which is currently an actual variable parameter, an element of the
record variable list of a WITH statement, or both.

7-39

DISPOSE

Examples

PROGRAM show_dispose (output);
TYPE

marital_status = (single, engaged, married, widowed, divorced);
year = 1900 ..2100;
ptr = Aperson info;
person_info = RECORD

name: string[2S];
birdate: year;
next-person: ptr;
CASE status: marital status OF

married ..divorced:-(when: year;
CASE has kids: boolean OF

true: (how many:1 ..50);
false: () -

;) ;
engaged: (date: year);

END;single: ();VAR
PBEGIN

ptr;

netU(p);

dispose(p) ;

net.1(p,engaged);

dispose(p,engaged);

netU(p,married,false);

dispose(p,married,false);

END.

7-40

Keven
Rectangle

MARK

Usage

mark (p)

Parameter:
P A pointer variable.

Description

The procedure mark (p) marks the state of the heap and sets the value of p to specify that state. In other
words, mark saves the state of the heap in p, which the programmer must not subsequently alter by
assignment.

The pointer variable appearing as the p parameter must be a dedicated variable. That is, it should not
currently point to a dynamic variable when it is used with mark.

Mark is used in conjunction with release.

Example:

See release example below.

7-41

RELEASE

Usage

release (p)

Parameter:
P A pointer variable which previously appeared as a parameter in a call to mark.

Description

The procedure release (p) returns the heap to its state when mark was called with p as a parameter. This
has the effect of deallocating any heap variables allocated since the program called mark (p). The system
can then reallocate the released space. The system automatically closes any files in the released area.

An error occurs if the programmer never passed p as a parameter to mark, or if it was previously passed to
release explicitly or implicitly (see example below).

After release, p is undefined.

Examples

PROGRAM show_markrelease;
VAR
w,x,y:"'irlteger;

BEGIN
nnrk(w) ;

reZease(w); {Returns heap to state marked by w. }
nnrk(x) ;

nnrk(y) ;

reZease(x); {Returns heap to state marked by x. The }
{pointer y no longer marks a heap state.}

END. {Release(y) is now an error. }

7-42

Keven
Rectangle

TRANSFER PROCEDURES

The transfer procedures are pack and unpack.

PACK

Usage

pack (a.i.z)

Parameters
a Any ARRAY [m..n] OF t.

An expression which is type compatible with the index of a.

Z Any PACKED ARRAY [u..v] OF t.

Description

The procedure pack (a,i,z) assigns components of the unpacked array a, starting at component i, to each
component of the packed array z. The unpacked array must be as long as or longer than the packed array,
i.e. n-m >= v-u. The value of i must be greater than or equal to m, the lower bound of a. Since all the
components of z are assigned a value, the normalized value of i must be less than or or equal to the
difference between the lengths of a and z plus 1, i.e. i-m+ 1 <= (n-m) - (v-u) + 1. Otherwise, a range
error occurs when pack attempts to access a non-existent commponent of a (see example below).

The component types of arrays a and z must be type identical. The index types of a and z, however, may
be incompatible.

The call pack (a.i.z) is equivalent to:

BEGIN
k:= i;
FOR j:= u TO v DO

BEGIN
z[j]:= ark];
IF j <> v THEN k:= succ(k);

END;
END;

7-43

PACK

where k and j are variables that are type compatible with the index type of a and the index type of z,
respectively.

Examples
PROGRAM show"'pack (input, output) ;
TYPE

clothes = (hat, glove, shirt, tie, sock);
VAR

dis : ARRAY [1..10] OF clothes;
box: PACKED ARRAY [1..5] of clothes;
index: integer;

BEGIN

index:= 1;
pack(dis,index,box); {After pack executes, box contains

{the first 5 components of dis.
}
}

index:= 8;
pack(dis,index,box); {An error results when pack attempts }

{to access non-existent 11th component}
{of dis. }

END.

7-44

UNPACK

Usage

unpack (z,a,i)

Parameters
Z Any PACKED ARRAY [u..v] OF t.

a Any ARRAY [m..n] OF t.

An expression that is type compatible with the index of a.

Description

The procedure unpack (z.a.i) successively assigns the components of the packed array z, starting at
component u, to the components of the unpacked array a, starting at a [i] .

. All the components of z are assigned. Hence, z must be shorter than or as long as a, i.e. (v-u) <= (n-rn),
Also, the normalized value of i must be less than or equal to the difference between the lengths of a and z
plus 1, i.e. i-m+ 1<= (n-m) - (v-u) + 1. Otherwise, an out-of-range error occurs when unpack attempts
to index a beyond its upper bound (see example below).

The index types of a and z need not be compatible. The components of the two arrays, however, must be
type identical.

7-45

----- --- ---.-.---.--- ..-..~-------.-.--- -----

UNPACK

The call unpack (z,a,i) is equivalent to:

BEGIN
k:= i;
FOR j:= u TO v DO

BEGIN
a[k]:= z[j];
IF j <> v THEN k:= succ(k);

END;
END;

where k and j are variables that are type compatible with the indices of a and Z respectively.

Examples

PROGRAM show_unpack (input, output) ;
TYPE

suit_types = (casual, business, leisure, birthday);
VIU{

suit PACKED ARRAY (1..5] OF suit_types;
kase ARRAY [1..10] OF suit_types;

BEGIN

unpack(suit,kase,1); {After execution, the first 5
{components of kase contain the
{value of suit.

}
}
}

unpack(suit,kase,7); {An error results because unpack }
{attempts to assign a component of }
{suit to a component ofkase which}
{is out of range. }

END.

7-46

Keven
Rectangle

ADDITIONAL OPERATIONS

PascalJ3000 supports the additional procedures assert, halt, and the functions baddress, ccode, sizeoi,
and waddress. Except for halt, all these additional operations are PascalJ3000 extensions of HP Standard
Pascal.

ASSERT

Usage

assert (b,i,p)
assert (b.l)

Parameters

b A boolean expression.

A integer expression.

p A procedure identifier. P may be omitted.

Description

The procedure assert (b.l.p) evaluates the boolean expression b. If b is true, control passes to the
statement after the call. If b is false, the system calls p using the value of i as its only parameter. After p
executes, the program continues provided the compiler option ASSERT_HALT is OFF. If it is ON, the
program terminates.

The procedure heading for p must have the form:

PROCEDURE P (i: integer);

If the assert call omits parameter p, b is evaluated. If it is false, the system issues a run-time error message
including the value of i. Execution continues if ASSERT_HALT is OFF. If it is ON, the program aborts.

7-47

ASSERT

The compiler option ASSERT_HALT determines the effect of the assert calion execution when b is false.
Section 8 describes this option in full. Its default setting is OFF.

The programmer may use assert to test assumptions, specify invariant conditions, and check data
structure integrity.

Assert is a Pascal/3000 extension of HP Standard Pascal.

Example
$ASSERT HALT ON$
PROGRAM-show_assert(input,output);
VAR

n: integer;
PROCEDURE proc1 (i:integer);

BEGIN
~te('Assert called this procedure ');
~teln('and passed it the value' .,i:3);

END;
BEGIN

~rite('Please enter an integer: ');
prompt;
readln(n);
assert(n > 100, 99, proc1);
~teln('The program didn' 't abortl ');

END.

7-48

Keven
Rectangle

BADDRESS

Usage

baddress (v)

Argument
v A variable.

Description

The function baddress (v) returns the DB relative byte address of the variable specified by the parameter
v. This variable may not be type file or a file type component of a structured variable. Also, it cannot be a
component of a packed structure, except if it is a component of a PAC.

Baddress is useful for calling certain intrinsics which require byte addresses for parameters.

Baddress is a Pascal/3000 extension of HP Standard Pascal.

Baddress returns an integer in the range -32768 .. 32767.

7-49

BADDRESS

Examples

TYPE
rec_type = RECORD

f1: integer;
f2: booZean;
0: char;

END;
VAR

n: integer;
r: rec_type;
p: "rec type;
a: ARRAY [1..10] OF o .. 255;
pac: PACKED ARRAY [1..10] OF char;
pab: PACKED ARRAY [1..10] OF booZean;

Calls
baddress(n)
baddress(r)
baddress(r.f3)
baddress(p)
baddress(p")
baddress (p".0)
baddress(a)
baddress(a [4])
baddress(pac)
baddress(pac[2])
baddress(pab)
baddress(pab[2])

{Legal since component type }
{is char. }

{Error. }

7-50

CCODE

Usage

eeode

Description

The function eeode returns an integer value in the range 0..2. This number indicates the condition code
resulting from a call to a procedure or function declared as INTRINSIC or EXTERNAL SPl according to
the following scheme:

Number

o
1
2

Condition Code

CCG
CCl
CCE

The MPE Intrinsics Reference Manual gives the meaning of the condition code for each intrinsic.

The value returned by eeode is valid any time after return from a call to an intrinsic or external SPl routine
and before either the next similar call or an exit from the procedure or function where the call occured.
Furthermore, it is not possible to access the value from a procedure or function nested within the
procedure or function where the call occured.

Geode is a Pascal/3000 extension of HP Standard Pascal.

Example:

PROGRAM ShO'!oT_ ccode;
LABEL 99;
PROCEDURE procl; INTRINSIC;
BEGIN
procl;
CASE ccode OF

0:
1: GOTO 99;
2: BEGIN

{intrinsic call}

END
END{CLOSE}

END.

7-51

HALT

Usage

halt (n)
halt

Parameter:
n An integer expression. N may be omitted.

Description

The procedure halt (n) causes execution of a program to abort. The system displays the value of the
integer expression n with an error message.

Halt calls the MPE intrinsic QUIT which discards the high order word for n. Thus, the value of n actually
displayed will be in the range -32768 ..32767.

Example:

PROGRAM show_halt;
CONST

div_by_O = 99;
VAR

x,y: real;
BEGIN

IF x <> 0.0 THEN
y:= y/x

ELSE
halt (div_by_O) ;

{If x is ° when IF executes, the program}
{terminates and an error message with }
{99 appears. }

END.

7-52

SIZE OF

Usage

sizeof(v)
sizeof (v,t 1,... tn)

Arguments:

v Any variable, except a file variable or a component of a packed structure.

A case constant when v is a record variable. Nested variants may appear separated by commas.

Description

The function sizeot (v) returns the number of bytes of storage required for v. If v is a record variable with
variants, the programmer may select a variant by specifying a case constant with the t parameter.
Otherwise, sizeof will return the size of the largest variant.

It is not legal for v to be a component of a packed structure, a file, or a file type component of a structured
variable.

For a variable of a simple data type, the number returned by sizeofis equivalent to the storage required for
the variable in the 'unpacked' context described in Section 9. For example, if v is type char or boolean,
sizeof returns 1.

The programmer will find the sizeof function useful when calling intrinsics such as FWRITE or FREAD.

Sizeof is a Pascal/3000 extension of HP Standard Pascal.

Sizeof returns an integer in the range 0.. 32767.

7-53

SIZEOF

Examples

TYPE
rec_type = RECORD

f1: integer;
CASE boolean OF

true: (v1: O.. 10) ;
false: (v2: longreal);

END;
VAR
lr: Lonqreal.;
b: boolean;

ch: aha!';
sr: O..10;
a: ARRAY [l..10J OF -32768 ..32767;

pa: PACKED ARRAY [1..10] OF aha!';
r: rec type;
p: "rec_type;

pr: PACKED RECORD
£1: O.. 10;
f2: char;

END;

Call Return

sizeof(lr) 8 {bytes}
sizeof(b) 1
sizeof(ch) 1
sizeof(sr) 2
sizeof(a) 20
sizeof(a[3]) 2
sizeof(pa) 10
sizeof(pa[3]) {error}
sizeof(r) 12
sizeof(r.f1) 4
sizeof(r,true) 6
sizeof(r ,false) 12
sizeof(p) 2
sizeof(pA) 12
sizeof(p"·f1) 4
sizeof(p" ,true) -6
sizeof(pr) 2
sizeof(pr.f1) {error}

7-54

Keven
Rectangle

WADDRESS

Usage

waddress (i)

Argument
The name of a variable, procedure, or function.

Description

The function waddress(i) returns the DB relative word address of i when i is a variable name, and the
external P label when it is a procedure or function name. An error occurs if the variable is type file or a file
type component of a structured variable. Also, it is not legal to select a component of a packed structure
as an argument, except when this component is an element of a PAC.

When referencing a component of an array which occupies an odd byte, waddress will return the address
of the previous component since this component is on the word boundary (see example) .

. -
The programmer may use the waddress function when calling procedures in other languages such as
FORTRAN or COBOL. Also, waddress is useful when arming the XLlBTRAP intrinsic (see Section 10).

Waddress is a Pascal/3000 extension of HP Standard Pascal.

Waddress returns an integer in the range -32768 .. 32767.

7-55

WADDRESS

Examples

TYPE
rec_type = RECORD

f1: integer;
f2: boolean;

END;
VAA
n integer;
r rec type;
p "ree type'-' .a ARRAY [1..10] OF ~nteger;
pac: PACKED ARRAY [1..10] OF char;
pab: PACKED ARRAY [1..10] OF boolean;

PROCEDURE pro;
BEGIN
END;

FUNCTION f: integer;
BEGIN
END;

Calls

tJaddress(n)
!Jaddress(r)
!Jaddress(r.f2)
waddress(p)
wddress(p")
!Jaddress(p....f2)
wddress(a)
tUaddress(a[4])
!Jaddress(pac)
wddress(pac[3])
waddress (pab)
waddress(pab[3]}
tUaddress(pro)
wddress(f)

7-56

{Same as ~ss(a[3]). }
{Legal since component type is }
{char. }

{Error. }

Keven
Rectangle

COMPILER OPTIONS I J11n.111
'--- 1 VIII I

INTRODUCTION
Compiler options direct the action of the Pascal/3000 compiler as it processes source code.

Dollar signs ($) bracket a compiler option or series of options. The option name may be followed by the
words ON or OFF, an unsigned integer, or a string literal. Commas (,) or semi-colons (;) must separate
several options appearing within one pair of dollar signs.

Syntax

compiler
options -~ identifier

string literal

The programmer may write the option name or the words ON or OFF in any combination of upper and
lower case letters. A string literal may also use upper and lower case indifferently, except in the case of the
options TITLE and COPYRIGHT. For example, the options

$ANSI ON, INCLUDE 'MYFILE'$
$ansi on; include 'myfile'$
$AnSI oN, INcluDE ,MyFile'$

are equivalent.

8-1

INTRODUCTION

The programmer must place certain compiler options at particular locations in source code. For example,
the option GLOBAL must precede the program heading. Others, such as TITLE, may occur anywhere.

Many options have default settings which remain in effect until the programmer explicitly overrides them.
For example, the option LIST is ON by default. This means the compiler always produces a listing of the
program it is processing unless the programmer writes $L1STOFF$ somewhere in the source code.

The Pascal / 3000 compiler performs three major steps:

(1) It scans source code to produce tokens.

(2) It parses these tokens into intermediate data structures (abstract-syntax trees).

(3) Finally, it generates HP3000 object code from these structures.

The compiler scans, parses, and emits object code for one 'compilation block' at a time in source code. A
compilation block is a procedure or function from any level, or the outer block of the source program. A
compilation block should be distinguished from a Pascal block, which is a syntactical unit of source code.

Some compiler options are only meaningful for entire compilation blocks. For example, the TABLES option
produces an identifier map of an entire compilation block if it is set ON when the compiler finishes parsing
the block and is ready to emit object code. In other words, it is not possible to generate a map for part of a
procedure, function, or outer block.

Table 8-1 summarizes the various options and the actions they perform.

8-2

Keven
Rectangle

INTRODUCTION

Table 8-1. COMPILER OPTIONS

Option Action Default
Setting

-

ALIAS Substitutes an alias as external name for a none
procedure of function.

ANSI Causes compiler to issue a warning when a OFF
non-Ansi Pascal feature appears in source code.

ASSERT_HALT Causes execution to halt when assert is called OFF
and the boolean expression is false.

CHECK-ACTUAL Specifies level of checking for actual parameters 3
PARM of procedure or function call.

CHECK-FORMAL_ Specifies level of checking for formal parameters 3
PARM of procedure or function.

CODE Causes code to be generated after parsing of a ON
procedure, function, or outer block.

CODE-OFFSETS Displays a table showing the number of a OFF
statement in the listing and its offset from
the starting p register.

8-3

INTRODUCTION

Table 8-1. COMPILER OPTIONS ((continued)

COPYRIGHT Inserts a copyright notice and specified name none
in the USL and program files.

ENDIF Delimits previous use of a $IF.

ELSE Allows you to select alternate code to be com-
piled if the previous IF expression was false.

EXTERNAL Used in conjunction with the GLOBAL option to PASCAL
permit separate compilation of procedures.

GLOBAL Used in conjunction with the EXTERNAL option PASCAL
to permit separate compilation of procedures.

HEAP_COMPACT Causes free-space areas in the heap to be OFF
combined.

HEAP_DISPOSE Permits disposed areas in heap to be OFF
reallocated.

IF Conditionally compiles blocks of source code.
Its identifiers must have been defined by the
SET option.

INCLUDE Allows specified file to be compiled with none
source text.

LINES Sets the number of listing lines per page. 59

LIST Produces listing of source code as it is ON
compiled.

8-4

Keven
Rectangle

INTRODUCTION

Table 8-1. COMPILER OPTIONS (continued)

LIST_CODE Produces mnemonic listing of generated OFF
object code.

PAGE Causes the output listing to start a new page. none

PARTIAL_EVAL Permits partial evaluation of boolean ON
expressions.

PRIVATE- PROC Allows use of normal Pascal scope conven- ON
tions for names of non-level 1 procedures or
functions.

RANGE Emits range checking code for assignments, ON
array indexing, pointers, and set operations.

SEGMENT Changes current segment name to specified SEG'
name.

SET Defines Boolean variables and assigns a
Boolean value to the variable for use in a $IF
expression.

SYMDEBUG Produces symbolic information headers in the
USL that is used by the HPToolset product for
symbolic debugging of user programs.

SKIP_ TEXT Causes compiler to skip source code. OFF

SPLlNTR Specifies name of SPL intrinsic file to be SPLINTR.
searched when a function or procedure is PUI3. SYS
declared INTRINSIC.

8-5

---_.-----

~---~-~~ ~~~~~-

INTRODUCTION

Table 8-1. COMPILER OPTIONS (continued)

STANDARD_LEVEL Specifies Pascal level which will be compiled HP

-
SUBPROGRAM Permits compilation of a subset of level 1 all level 1 pro-

procedures or functions. cedures, functions

TABLES Produces an identifier map for a procedure, OFF
function or outer block.

TITLE Places specified string literal as title on each (see below)
listing page.

USLINIT Initializes USL file to empty. none

WIDTH Sets number of columns compiler will process 132 characters
from each record of source code.

XREF Produces cross reference of a procedure, OFF
function, or the outer block.

8-6

Keven
Rectangle

ALIAS

Usage

$ALlAS s$

Parameter
s A string literal.

Description

The option ALIAS specifies an external name, S, for a procedure or function. ALIAS must appear in the
procedure or function heading after the reserved words PROCEDURE or FUNCTION, and before the body
or directive following the heading.

The programmer may use ALIAS to define multiple internal names of an intrinsic, to interface with a library
routine containing a single quote (') in its name, or to differentiate internal names which would not be
unique in the first 15 characters when they become external names. This last possibility arises, for
example, if the option PRIVATLPROC is OFF and different but synonymous non-level 1 procedures
nested in distinct level 1 procedures are compiled into the same USL file (see example below).

8-7

ALIAS

Example

PROGRAM show_alias;

PROCEDURE A $ALIAS 'intrinname'$; INTRINSIC;
PROCEDURE B $ALIAS 'intrinname'$; INTRINSIC;

{The intrinsic }
{now has two }
{internal names.}

PROCEDURE xx $ALIAS 'x''x'$; INTRINSIC; {The intrinsic has a }
{single quote in its }
{name. }

$PRIVATE_PROC OFF$
PROCEDURE procl;

FUNCTION doit (n: integer)
BEGIN

booLean; $ALIAS 'Dl'$

END; {doit}
BEGIN

END; {procl}
PROCEDURE proc2;

FUNCTION doit (a,b: integer) integer; $ALIAS 'D2'$
BEGIN

END; {doit}
BEGIN
END; {proc2}

BEGIN {show_alias}
END.

The compiler processes proc1 and proc2 with PRIVATE-PROe OFF. This means the two non level 1
functions doit, which are distinct but homonymous, will be compiled as separate RBM's, and only one will
be active. To avoid this impasse, ALIAS gives the functions the external names 01 and 02. The resulting
USL looks like this:

8-8

$FONT

Usage

$FONT unsigned
integer

unsigned '$
integer

Parameter

unsigned integer A number for the Primary and Secondary character sets.

Description

The $FONT option allows you to set primary and secondary character fonts for source listings printed
on a 2680 printer. $FONT uses a string parameter consisting of two unsigned integers separated by a
comma. The first integer is the set number for the primary font, and the second integer is the set
number for the secondary font. The primary font is the default, and can be changed at any time by
entering the $FONT option again.

You can shift from the primary font into the secondary font by entering a control N character within a
string within the compiler option, or within a comment in your program. To change back to the primary
font, enter a control 0 character.

Currently this option can only be used with the 2680 page printer. See the intrinsic description of
FDeviceControl for further information.

8-8A

$SET

Usage

TRUE
$SET'IDENTIFIER ={ } [,

FALSE

TRUE
IDENTIFIER ={ } ... J '$

FALSE

Description

The $SET compiler option enables you to define allowed BOOLEAN variables and assign a BOOLEAN
value to the variable. The value assigned by the $SET option is used by the $IF compiler option. The
$SET option can use any legitimate Pascal identifier. Note that the identifiers defined by the $SET
option are known only to the compiler and not the program. Therefore, for example, the variable 'X' can
be used in your source program and can be defined in the $SET compiler option as well. A value of
True or False must be assigned to the variable you define. You may define and assign a value to more
than one variable by separating each by a comma.

The $SET option is the only way to give an identifier used in the condition of a $IF option a value. For an
example of the $SET option, see the $IF compiler option in this section.

8-89

Keven
Rectangle

$IF

Usage

$IF 'boolean Expression'$ [Source code] [$Else] [Source code] $ENDIF$

where boolean expression is

Parameter

Identifier - A Boolean identifier that was defined by the $SET compiler option. All Boolean identifiers
used in a Boolean expression are defined in the $SET option.

$Else - Optional compiler option that specified code to compile if the expression was False.
There can only be one $ELSE for each $IF.

$ENDIF - Required delimiter for $IF statement.

8-8e

$IF

Description

The $IF compiler option is used to conditionally compile blocks of source code. This option requires a
string parameter representing a Boolean expression that is computed using identifiers defined and
assigned a value in the $SET compiler option.

The Boolean operators NOT, AND, and OR are allowed in the $IF expression.

The $IF compiler option works similarly to the Pascal If statement. In its simplest form using just $IF and
$ENDIF, the compiler evaluates the string expression, and if the value of the BOOLEAN expression is
true, the code between the $IF and $ENDIF is compiled. If the value is false, the compiler skips the
code between the $IF and $ENDIF and starts the compilation on the line following the $ENDIF.

$ELSE parallels the Pascal else condition. If $ELSE is used, the source following it is compiled if the
previous $IF Boolean expression had a value of False. Only one $ELSE can be used for each $IF.
$ENDIF serves as the delimiter for $ELSE as well as for its associated $IF.

$IF can be nested for up to 16 levels. If there are more than 16 levels, you receive an error message
and the code within the illegal $IF block is compiled.

Example
$SET 'X=TRUE, Y=FALSE' $

$IF 'x' $ {A}
{must be declared before Program Header}

{code compiled}
$ENDIF$ {A}

$IF 'X AND Y' $ {B}

{code not compiled}

$ELSE$
$IF 'X' $ {C}

{code compiled}
$ENDIF$ {C}
$IF 'Y' $ {D}

{code not compiled}

$ENDIF$ {D}

$ENDIF$ {B}

8-80

Keven
Rectangle

$SYMDEBUG

Allows you to symbolically debug your program with the HPToolset utility.

Usage

$SYMDEBUG$

Description

The $SYMDEBUG compiler option allows you to symbolically debug your Pascal program with the
HPToolset utility. When this option is specified, the compiler puts symbolic information into the USL file
to be used by TOOLSET when you use its Symbolic Debugging feature. The $SYMDEBUG option must
appear in your source file before the declaration statements. If you do not enter the option, no symbolic
information is passed to the USL file and your program cannot be debugged symbolically.

8-8E

----~ -- ~---~-~---- --- -~--~-

Keven
Rectangle

USL FILE <filename>

SEG'
OB' 35 OB A C N
PROC2 1 P A C N R
D2 4 P A C N R
PROC1 1 P A C N R
D1 3 P A C N R

FILE SIZE
DIR. USED
DIR. GARB.
DIR. AVAIL.

377600(1777. 0)
337(1.137)

o(o. 0)
37241(175. 41)

- INFO USED
INFO GARB.
INFO AVAIL.

8-9

116 (0.116)
ot o. 0)

337662(1577. 62)

ALIAS

ANSI

Usage

$ANSION$
$ANSIOFF$

Default Setting

OFF

Description

When the ANSI option is ON, the compiler issues a warning whenever it encounters a feature in source
code that is not legal in ANSI Standard Pascal. The warning appears as part of the listing.

The option $ANSI ON$ is equivalent to the option $STANDARD_LEVEL ANSI$ (see below).

Example

$ANSI ON$
$ASSERT HALT ON$
PROGRAM-showansi (input,output);
TYPE -

a = ARRAY [1..10] OF integer;
CONST

count = a[1,2,3,4,5,6,7,8,9,10];
VAR
i: integer;

BEGIN
read (i);
assert (i = count[i],99);
~teln('Your number is acceptable');

END.

This source code produces the following listing:

8-10

Keven
Rectangle

PAGE 1 <Listing title>

1.000
2.000
3.000

**** . WARNING
4.000
5·000
6.000
7.000

o 0
o 0
o 0

$ANSI ON$
$ASSERT_HALT ON$
PROGRAM show ansi (input,output);

"
II 1 THIS FEATURE IS HP STANDARD PASCAL (517)
OOTYPE
o 0 a = ARRAY [1..10] OF integer;
o 0 CONST
o 0 count = a[1,2,3,4,5,6,7,8,9,10];

VAR

IS HPSTANDARD PASCAL (517)
{For CONST after}
{TYPE section. }

IS HP STANDARD PASCAL (517)
{For structured }
{constant. }

WARNING II 2 THIS FEATURE

**** WARNING II 3 THIS FEATURE

8.000 a 0
9·000 a 0

10.000 a 1
11.000 a 1
12.000 1 1

i: integer;
BEGIN

read (i);
assert (i = count[i],99);

.**** WARNING # 4 THIS FEATURE IS HP3000 PASCAL (518)
13.000 2 1 wri teln ('Your number is acceptable I) ;

14.000 2 1 END.

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 4

8-11

ANSI

ASSERT_HALT

Usage

$ASSERT_HALT ON$
$ASSERT_HALT OFF$

Default Setting

OFF

Description

When the ASSERT_HALT option is ON, a program terminates if the boolean parameter of an assert call
evaluates false (see Section 7). If a procedure parameter p appears in the assert call, the program halts
after p has executed.

If ASSERT_HALT is OFF, the program will not terminate, regardless of the value of the boolean
parameter in the assert call.

ASSERT_HALT may appear anywhere in source code.

Example
$ASSERT HALT ON$
PROGRAM-showasserthalt (input,output);
VAR -
i: integer;

BEGIN
~rite('Please enter an integer: ');
prompt;
read (i);
assert (i<10 ,99);
~teln('Good show! You didn' 't abort the program.');

END.

8-12

Keven
Rectangle

CHECK_ACTUAL_PARM

Usage

$CHECLACTUALPARM n$

Parameter
n An integer in the range O..3.

Default Setting

3

Description

The CHECLACTUAL_PARM option specifies the level of checking the MPE Segmenter will perform
when a program calls a procedure or function. The level specified, n, determines the amount of information
placed in the USL file. The Segmenter uses this information to check the actual parameters against the
formal parameters of the function or procedure. The levels are:

o No checking.
1 Check function type.
2 - Check function type and the number of procedure or function parameters.
3 - Check function type, the number of procedure or function parameters, and the type of each

parameter.

Level 3 is the default setting.

If the procedure or function has a lower checking level, the Segmenter ignores the level indicated by
CHECLACTUALPARM and uses the lower level.

The compiler generates no parameter checking information for procedures or functions declared
INTRINSIC. When a language specification appears with the EXTERNAL directive (see example), the
checking code will be compatible with the external language.

CHECLACTUAL_PARM may appear anywhere in source code.

8-13

CHECK-ACTUAL_PARM

Example
PROGRAM show actparmcheck;
TYPE -

a = PACKED ARRAY [1..32] OF booZean;
V~
v : a;

PROCEDURE fortproc(V~ p a); EXTERNAL FOR~l'RAN;
BEGIN.

$CHECK ACTUAL PARM 0$
fortproc (v); -

END.

8-14

CHECK_FORMAL_PARM

Usage

$CHEC~FORMALPARM n$

Parameter
n An integer in the range 0..3.

Default Setting

3

Description

The CHECLFORMALPARM option specifies the level of checking the MPE Segmenter will perform
when a procedure or function is called. The level specified, n, determines the amount of information placed
in the USL file. The Segmenter uses this information to check the formal parameters of the declared
procedure or function against the actual parameters in the calling program, procedure, or function. The
possible levels are:

o - Nochecking.
1 Check function type.
2 - Check function type and the number of procedure or function parameters.
3 - Check function type, the number of procedure or function parameters, and the type of each

parameter.

Level 3 is the default setting.

If the checking level of the procedure or function call is lower, the Segmenter ignores the checking level
specified by CHEC~FORMALPARM and uses the lower value.

CHEC~FORMALPARM may appear anywhere in source code.

8-15

CHECK_. FORMAL_PARM

Example

PROGRAM show_chkformparm;
$CHECK FORMAL PARM 1$
PROCEDURE procl;

BEGIN
END;

$CHECK FORMAL PARM 3$
FUNCTION funcl: integer;

BEGIN
{Restores default setting }

END;
BEGIN
END.

8-16

CODE

Usage

$CODE ON$
$CODE OFF$

Default Setting

ON

Description

If the CODE option is ON, the compiler generates object code when it finishes parsing a compilation block.
CODE may appear anywhere in source code, but it only affects the object code for an entire procedure,
function, or outer block. To suppress code emission for smaller portions of source, the programmer may
use the SKIP_TEXT option or the Pascal comment symbols.

Example

PROGRAM show_code;
PROCEDURE procl;

BEGIN

END;
PROCEDURE proc2;

BEGIN

$CODE OFF$ {Compiler generates no object code for}
{any part o~ proc2, even though CODE }
{OFF is in the middle of proc2. }

END; {prccz}
$CODE ON$
BEGIN {show_code}

END.

8-17

CODE_OFFSETS

Usage

$CODLOFFSETS ON$
$CODLOFFSETS OFF$

Default Setting

OFF

Description

The option CODE-OFFSETS causes the compiler to list the number of each executable statement in a
compilation block, starting from 0, and its p register offset in octal from the starting value of p for that
block. The information appears as part of the listing. If no code is generated for a particular statement,
'******' appears instead of a p register offset.

If the option PRIVATE-PROC is OFF, the p register is reset for for each compilation block. When PRIVATE-
PROC is ON (the default setting), the p register offset accumulates as the the compiler encounters
executable statements from any nested compilation blocks, e.g. level 2 procedures.

The compiler inserts certain information whenever the p register is reset. In particular, it uses 11 words to
record the version of the compiler, the date, and the time.

CODE-OFFSETS has no effect if the LIST option is OFF.

CODE-OFFSETS may occur anywhere in source code but it only acts on an entire compilation block. In
other words, it is not possible to list statement offsets for part of a procedure, function, or outer block.

The programmer may use CODE-OFFSETS in conjunction with the TABLES option, a PMAP from the
MPE Segmenter, and the MPE Debug utility to determine break points in a program (see Section 10).

8-18

Keven
Rectangle

Example

$PRIVATE PROC OFF$
$CODE_OFFSETS ON$
PROGRAM show offsets (output);
PROCEDURE procl;

PROCEDURE subproel;
BEGIN

~teZn('This is subprocl');
~teZn;
~teZn

END;
BEGIN

~teln('This is procl');
subprocl

END;
BEGIN

~teZn('This is the main program');
proel

END.

This source code results in the following listing:

8-19

CODE_OFFSETS

CODE_' OFFSE"rS
PAGE 1 <Listing title>

1.000
2.000
3.000
4.000
5·000
6.000
7.000
8.000
9·000

10.000

11.000
12.000
13.000
14.000

15·000
16.000
17.000
18.000
19·000

o 0
o 0
o 0o 0
o 0
o 1o 1
1 1
2 1
2 1

o 1
o 1
1 1
1 1

o 1
o 1
1 1
2 1
2 1

$PRIVATE PROC OFF$
$CODE OFFSETS ON$
PROGRAM show offsets (output);
PROCEDURE procl;

PROCEDURE subprocl;
BEGIN

writeln('This is subprocl');
writeln;
writeln

END;
COD E 0 F F SET S

STMT P LOCo 000013
STMT P LOC

1 000031
STMT P LOC

2 000033

BEGIN
writeln('This is procl');
subprocl

END;
COD E 0 F F SET S

STMT P LOC
o 000013

STMT .P LOC
l' 000031

BEGIN
writeln('This is the main program');
proc1;
writeln

END.
COD E 0 F F SET S

STMT P LOCo 000035
STMT P LOC

1 000053
STMT P LOC

2 000054

8-20

COPYRIGHT

Usage

$COPYRIGHT s$

Parameter
s A string literal.

Description

The COPYRIGHT option places a copyright notice in the USL file. The notice will also appear in the
program file. The s parameter specifies a name which will be part of the notice.

COPYRIGHT may only appear before a program heading.

The text of the notice is:

(C) Copyright <current year> by <s>. All rights reserved. No part of this program may be
photocopied, reproduced, or transmitted without prior written consent of <s>.

The compiler respects distinctions between upper and lower case letters in the s parameter.

Example

$COPYRIGHT 'Blaise Pascal'$
PROGRAM show_copyright;
BEGIN

~teZn('Got any dice?')
END.

8-21

-------- -------- --- ------------------- ---------

EXTERNAL

Usage

$EXTERNAL$
$EXTERNAL 'PASCAL'$
$EXTERNAL'SPL'$
$EXTERNAL 'NONE'$

Default setting

PASCAL

Description

The option EXTERNAL, used in conjunction with the option GLOBAL, permits the separate compilation of
procedures and functions. When EXTERNAL appears in source code, the compiler generates information
about the variables declared in the outer block that will allow them to be matched up with variables of the
same name and type in an outer block compiled with the GLOBAL option. The compiler doesn't generate
object code for the statement part of the outer block, only for the procedures and functions.

The optional string parameter determines the type of checking information the compiler places in the USL
file. 'PASCAL' is used to match a Pascal outer block compiled with $GLOBAL$ or $GLOBAL 'PASCAL'$;
'SPL' to match an SPL outer block or a Pascal outer block compiled with $GLOBAL 'SPL'$; 'NONE' to
relax all type checking. $EXTERNAL$ is equivalent to $EXTERNAL 'PASCAL'$.

Because of requirements of the MPE Segmenter, global variables in a program compiled with the
EXTERNAL option must be unique within 15 characters.

EXTERNAL must appear before the program heading. The body of the outer block should be empty, i.e.
there should be no statements between BEGIN and END. EXTERNAL and GLOBAL may not appear in the
same source.

An outer block compiled with the GLOBAL option may declare several variables. The outer block in the
code compiled with EXTERNAL need not mention all of these. Only the variables referenced in its
procedures or functions must appear.

Example

See the GLOBAL example below.

8-22

Keven
Rectangle

GLOBAL

Usage

$GLOBAL$
$GLOBAL 'PASCAL'$
$GLOBAL 'SPL'$
$GLOBAL 'NONE'$

Description

The option GLOBAL, used in conjunction with the option EXTERNAL, permits separate compilation of
procedures and functions. When GLOBAL is specified, the compiler prepares information about the
variables declared in the outer block which will allow them to be matched with variables of the same name
and type used in a procedure or function compiled with EXTERNAL.

The optional string parameter determines the type of checking information the compiler will place in the
USL file. 'PASCAL' is used to match a Pascal procedure of function compiler with $EXTERNAL$ or
$EXTERNAL 'PASCAL'$; 'SPL' to match a SPL routine, or a Pascal procedure or function compiled with
$EXTERNAL 'SPL'$; 'NONE' to relax all checking. $GLOBAL$ is equivalent to $GLOBAL 'PASCAL'$.

The compiler processes all of the GLOBAL source code and emits object code for the outer block as well
as all the functions and procedures.

Because of requirements of tile MPE Segmenter, global variables in a program compiled with the GLOBAL
option must be unique within 15 characters.

GLOBAL must appear before the program heading. GLOBAL and EXTERNAL may not occur in the same
source.

Source code compiled with GLOBAL and source code compiled with EXTERNAL are placed in the same
USL file. At prep time, the MPE Segmenter is able to determine the addresses of the global variables used
in the code compiled with EXTERNAL.

8-23

GLOBAL

Example

$GLOBAL$
PROGRAM show_global (input,output);
VAR.

a,b,c,d: integer;
state: boolean;

PROCEDURE procl; EXTERNAL;
BEGIN

IF a > b THEN state:= true;
procl;

END.

$E;XTERNAL$
PROGRAM show external (input, output);
VAR.
state: boolean;

PROCEDURE procl;
BEGIN

{This will be matched with the variable }
{declared in the outer block of show_global.}

IF state THEN ... {Reference to variable declared in outer }
{block of show_global. }

END;
BEGIN {The body of this outer block is empty. }
END.

8-24

Keven
Rectangle

HEAP_COMPACT

Usage

$HEAP_COMPACT ON$
$HEAP_COMPACT OFF$

Default Setting

OFF

Description

The option HEAP_COMPACT works in conjunction with the option HEAP_DISPOSE to permit the
concatenation of free space in the heap. HEAP_COMPACT has no effect if HEAP_DISPOSE is OFF.

HEAP_COMPACT must appear before the program heading.

HEAP_COMPACT is useful when a program manipulates many dynamic record variables of various sizes
(see example below).

HEAP_COMPACT takes effect when specified in the main program.

Example

$HEAP_COMPACT ON; HEAP_DISPOSE ON$
PROGRAM show_compact;
TYPE

name = PACKED ARRAY [1..25] OF char;
big rec = RECORD

- f1: ARRAY [1..100] OF name;
f2: FILE OF integer;

END;
small rec = PACKED RECORD

fl: (Ives, Carter, Thompson, Copeland);
f2: boolean;

END;
VAR

p1: "big_rec;
p2: "small_rec;

BEGIN

END.

8-25

HEAP_DISPOS,E

Usage

$HEAP _DISPOSE ON$
$HEAP _DISPOSE OFF$

Default Setting

OFF

Description

When the option HEAP_DISPOSE is ON, a call to dispose (see Section 6) creates free space in the
heap. A subsequent call to new can then reuse this storage. If HEAP_DISPOSE is OFF, on the other
hand, the system will not reallocate the disposed storage.

HEAP_DISPOSE must be ON in order for the option HEAP_COMPACT (see above) to have any
meaning.

HEAP_DISPOSE takes effect when specified in the main program,

Example

$HEAP DISPOSE ON$
PROGRAM show heap;
TYPE -

big array = ARRAY [1.'.1000] OF longreal;
VAR -

ptr: "big array;
i,j: integer;

BEGIN
FOR i:= 1 TO 500 DO

BEGIN
n~(ptr) ;
FOR j:=l TO 1000 DO

ptr"[j]:= j;
dispose (ptr);

END;
END.

{If HEAP DISPOSE is OFF, an error}
{results-when the heap overflows. }

8-26

Keven
Rectangle

Usage

$INCLUDE s$

Parameter
s A string literal.

Description

INCLUDE

The INCLUDE option permits inclusion of another file which the compiler will process as source code. The
parameter s represents the name of the included file, which may be fully qualified by group and account
names, and a lockword. Upper and lower case letters are equivalent in s. The compiler reads the
designated file until it encounters an EOF marker. Then it resumes processing from the source line after the
INCLUDE option. This means the compiler ignores any options listed immediately after INCLUDE or any
subsequent source code on the same line as INCLUDE.

INCLUDE may appear anywhere in source code.

INCLUDE options may be nested. That is, the included code may itself contain INCLUDE options.

Example

PROGRAM show_include;
VAR

$INCLUDE 'globvars'$
BEGIN

i:= 3;
x:= 1.55;

{GLOBVARS file is:
{
{ i: integer>;
{ x: r>eal; .

END.

8-27

}
}
}
}

LINES

Usage

$LlNES n$

Parameter
n An integer not less than 20.

Default Setting

59

Description

The option LINES specifies the number (n) of lines that will appear on a single page of the listing. The
parameter n may not be less than 20.

LINES may appear anywhere in a source program.

Example

$LINES 20$
PROGRAM show_lines;

BEGIN
~teZn('The listing has 20 lines per page. I);

END.

8-28

Keven
Rectangle

LIST

Usage

$LlST ON$
$LlST OFF$

Default Setting

ON

Description

When the option LIST is ON, the compiler produces a listing of the source code it is processing. LIST may
appear anywhere in source code.

The first column of the listing displays the editor line number of the source code. If the source file is
unnumbered, the compiler supplies a sequence of numbers starting with 1 in increments of 1. The second
column shows the number associated with a Pascal statement in the code location table. If a '* *' appears
in the second column, then the line is within a Pascal comment or the SKIP_TEXT option. The third
column exhibits the BEGIN-END level number in each procedure.

When compilation is complete, the system displays information about the number of errors and warnings.
It also indicates the processor time, elapsed time, number of lines compiled, and the number of lines
processed per minute (see example below). These times and rates depend on the actual processor and
the version of the MPE Operating System in use. Unless it is relevant to the example, this information does
not appear with sample listings elsewhere in this manual.

If the programmer is entering source code interactively and the listing file is also the terminal ($STDLlST),
then the LIST option does not redisplay the source code on the screen. Any error messages, however, will
appear.

When LIST is ON, the programmer may invoke other options which produce extra information or control
the listing. These options are ANSI, CODE-OFFSETS, LINES, LIST_CODE, PAGE, STANDARD_
LEVEL, TABLES, TITLE, and XREF. If LIST is OFF, setting any of these options ON has no effect until LIST
is turned ON.

8-29

LIST

If a warning or error occurs during compiliation, a message appears on the listing with the following format:

**** WARNING n <message> or **** ERROR n <message>

with, in most cases, a caret (,..) above pointing to the feature or problem. N is an integer which indicates
the error or warning is the n'th error or warning in the current compilation. If the error message catalog for
the compiler is not available, or if the error or warning occurs when the compiler's stack is very large, e.g.
in a level 4 procedure, the message consists of the Pascal error number only. Appendix C lists the compile-
time errors by number.

Errors and warnings on listings of more than one page are' chained'. That is, the first error or warning on a
page will include a message indicating the page where the last previous error or warning occurred. This
message also appears on the last page when it doesn't have an error or warning.

Example

$LIST ON$ {default setting}
PROGRAM show list (input,output);
{Shows typical listing. This comment
spans across
three lines.}

VAR
a,b: integer;

PROCEDURE check (VAR n: integer);
EXTERNAL FORTRAN;

BEGIN
read(a,b);
IF a > b THEN

BEGIN
c:= a + b; {An intentional error.}
WHILE a <> b DO

BEGIN
a:= a - 1;
tA>ritel.n(a);

END;
END

ELSE check (a);
END.

8-30

LIST
PAGE 1 <Listing title>

1.000 0 0 $LIST ON$ {default setting}
2.000 0 0 PROGRAM show list (input,output);
3.000 0 0 {Shows typical listing. This comment
4.000 ** 0 spans across
5.000 0 0 three lines.}
6.000 0 0 VAR
7.000 0 0 a,b: integer;
8.000 0 0 PROCEDURE check (VAR n: integer) ;
9·000 0 0 EXTERNAL FORTRAN;

**** WARNING # 1 THIS FEATURE IS HP3000 PASCAL (518)
10.000 0 1 BEGIN
11.000 0 1 read(a,b);
12.000 1 1 IF a > b THEN
13.000 2 2 BEGIN
14.000 2 2 c:= a + b; {An intentional error ..}

**** ERROR # 1 IDENTIFIER NOT DEFINED (014)
15.000 3 2 WHILE a <> b DO
16.000 4 3 BEGIN
17.000 4 3 a:= a - 1;
18.000 5 3 writeln(a) ;
19·000 5 3 END;
20.000 5 2 END
21.000 6 2 ELSE check (a);
22.000 6 1 END.

NUMBER OF ERRORS = 1
PROCESSOR TIME 0: 0: 2
NUMBER OF LINES = 22

NUMBER OF WARNINGS = 1
ELAPSED TIME 0: 0:12
LINES/MINUTE = 660.0

8-31

LIST_CODE

Usage

$LlST _CODE ON$
$LlST _CODE OFF$

Default Setting

OFF

Description

If the option LIST_CODE is ON, the compiler produces a HP 3000 mnemonic listing of the object code it
generates for a compilation block. LIST_CODE has no effect if the LIST option is OFF.

LIST_CODE may appear anywhere in source code, but it affects only an entire procedure, function, or
outer block. It is not possible to list object code for part of a compilation block.

The first column of the object code listing indicates the P location offset from the beginning of the
procedure, function, or outer block; the second column the object code in octal; the third column the code
in ASCII with non-printable characacters displayed as periods (.); and the fourth column the mnemonic for
the instruction.

. .
peAL and llBl instructions include the name of the procedure or function called, Also, if the EXTERNAL
option is used, the first 15 characters of the name of a global variable appear instead of the DB offset.

The programmer will usually use the option CODE-OFFSETS in combination with LIST_CODE.

8-32

Keven
Rectangle

LIST_CODE

Example

$LIST CODE ON$
$CODE-OFFSETS ON$
PROGRAM show_listcode;
PROCEDURE proel;

VAR
m,n: integer;

BEGIN
m:= 1;
n:= 9;
m:=m+n;

END;
BEGIN

proel;
END.

This source code produces the following listing:
1.000 0 0 SLlST CODE ONS
2.000 0 0 SCODE-OFFSETS ON$
3.000 0 0 PROGR~M ~now li5tcode;
4.000 0 0 PROCEDURE proCl;
5.000 0 0 VAR
6.000 0 0 BEGj~: integer;7.000 C I8.000 0 I m:= 1;9.000 I 1 n:= 9 ;

10.000 2 1 m:= m - n;
11.000 2 I END;

C 0 o E 0 F F S E T S
STMT P LOC SmT P LOC STMT P LOC

0 000014 I 000016 2 000021

C o 0 E LIS T I N G
P OFFSET DATA ASCI I INSTRUCTION P OFFSET DATA ASCII INSTRUCTION000013 000707 DZRO,DZRO 000021 151403 LDD Q-3000014 000733 "ZRO, INCA 000022 151401 :~ lDD 0-1000015 161403 STO Q-3 000023 001100 DADO ,NOP000016 000600 ZERO,NOP 000024 161403 STO 0+3000017 021011 lDI 11 000025 031400 3. EXIT 0000020 161401 STD a-I

12.000 0 BEGIN
13.000 0 procl;
14.000 0 END.

COD E OFFSETS
STMT P LOC

0 000017

COD E LIS T I N G
P OFFSET DATA ASCII INSTRUCTION P OFFSET DATA ASCII INSTRUCTION
000013 040006 @. LOAO P-6 <--- 000017 000000 NOP, NOP
000014 025013 LON! 13 000020 000000 PCi'lL TERMINATE'
000015 00,'';·00 ZERO,NOP 000021 001000 OCMP,NOP
000016 000000 PCi'lL P' INlTHERP' 3000

NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 0PROCESSOR TIME 0: 0: 3 ELRPSED TIME 0: 0:28
NUMBER OF LINES = 14 LINES/MINUTE = 280.0

8-33

PAGE

Usage

$PAGE$

Description

The PAGE optton causes the compiler listing to a line printer to peform a page eject and start a new page.

PAGE may appear anywhere in source code.

Example
PROGRAM show_page (output);
BEGIN

~riteln('This appears on the 1st page of the listing');
$PAGE$
~riteln('This appears on the second');

END.

8-34

Keven
Rectangle

PARTIAL_EVAL

Usage

$PARTIAL_EVAL ON$
$PARTIAL_EVAL OFF$

Default Setting

ON

Description

When the PARTIALEVAL option is ON, the compiler processes source code so that the system will
determine the value of a boolean expression by evaluating the minimum number of operands. If PARTIAL
EVAL is OFF, on the other hand, the system evaluates all the operands in a boolean expression at run-time.

Partial evaluation usually permits more readable source code and results in more efficient object code.
With PARTIAL_EVAL OFF, for example, the programmer may have to write a series of nested IF
statements to prevent run-time errors:

IF index IN [Iower..upper] THEN
IF ptr.Larray [index] <> NIL THEN

IF ptr.Larray [index] , = 5 THEN
tound.Lit := true;

If index is out of range, then the reference to ptr _array[index] fails.
If index is valid, but ptr_array[index] is NIL, then ptr_array[index] A fails.

With PARTIALEVAL turned ON, however, the programmer may rewrite this code as follows:

found_it: = (index IN [Iower..upper]) AND (ptr_array [index] <>NIL)
AND (ptr_array [index] A = 5);

Evaluation of the boolean expression stops when the result is known. Thus, if index is invalid, the system
never evaluates the the expression (ptr.Larray [index] <> NIL), preventing a range violation. Likewise, if
ptr.Larray [index] is NIL, the system never evaluates the expression (ptr_array [index] , = 5).

Not all Pascal compilers permit partial evaluation. Programs relying on this feature may not work when
compiled elsewhere.

8-35

PRIVATE_PROC

Usage

$PRIVATE_PROC ON$
$PRIVATE_PROC OFF$

Default Setting

ON

Description

When the option PRIVATLPROC is ON, the compiler puts the object code for non-level 1 procedures or
functions and their containing level 1 procedures or functions into the same Relocatable Binary Module
(RBM). This means the names of the non-level 1 procedures or functions do not appear in the USL file.
Instead, they are maintained as unnamed private entry points. Only the names of level 1 procedures or
functions are in the USL directory. (Because of the requirements of the MPE segmenter, these level 1
names must be unique within 15 characters.)

With PRIVATLPROC ON, therefore, the programmer can observe the usual conventions of Pascal
scope. In particular, two different level 1 procedures or functions may contain non-level 1 procedures or
functions with the same name.

If PRIVATLPROC is OFF, however, the compiler compiles the non-level 1 procedures and functions into
separate RBM's. This means all procedure or function names from any level must be unique within 15
characters. The Pascal scope convention for non-level 1 procedure or function names does not hold.

The programmer can set PRIVATLPROC OFF if a level 1 procedure and the procedures and functions
nested within it would produce more object code with PRIVATE_PROC ON than the maximum permitted
in a single RBM.

PRIVATLPROC may appear between the declaration of level 1 procedures or functions, or in the
declaration part of the outer block. That is, the programmer cannot use it within the block of a level 1
procedure or function.

8-36

Keven
Rectangle

PRIVATE_PROC

Example

$PRIVATE_PROC ON$ {default setting}
PROGRAM sho~_privateproc;

PROCEDURE procl;
FUNCTION check (n: integer) : boolean;

BEGIN

END; {check}
BEGIN

END; {proel}

PROCEDURE proc2;
FUNCTION check (a,b: integer)

BEGIN
integer; {synonymous with }

{function in procl}

END; {check}
BEGIN

END; {proc2}
BEGIN {sho~_privateproc}

END. {sho~_privateproc}

This source code produces the following USL directory:

USL FILE <filename>

SEG'
OB'
PROC2
PROe1

35 OB A e N
1 P A e N R
1 P A e N R

FILE SIZE
DIR. USED
DIR. GARB.
DIR. AVAIL.

377600(
337(

O(
37241 (

1777. 0)
1.137)o. 0)

175.41)

INFO USED
INFO GARB.
INFO AVAIL.

116(0.116)
O(O. 0)

337662(1577. 62)

8-37

RANGE

Usage

$RANGE ON$
$RANGE OFF$

Default Setting

ON

Description

When the option RANGE is ON, the compiler generates range checking code for assignments, array
indexing, parameter passing, pointers, CASE statements, and set operations. This code causes a program
to terminate and an error message to appear if a value is out of range. If RANGE is OFF, the compiler does
not generate checking code.

The compiler minimizes the amount of range checking code produced when RANGE is ON. If it is able to
determine at compile time that at a value can never be out of range, it does not issue checking code.

RANGE may appear anywhere in source code.

Example'

$RANGE ON$ {default setting}
PROGRAM show_range;
TYPE

index = 1..25;
VIJ{

samp array: ARRAY [index] OF integer;
m,n:-index;
i: integer;

BEGIN

FOR i:= m TO n DO
samp_array[i]:= i;

{The compiler doesn't generate }
{range checking code for this FOR}
{statement since i can never be }
{out of bounds. }

END.

8-38

Keven
Rectangle

SEGMENT

Usage

$SEGMENT s$

Parameter
s A string literal.

Default Setting

SEG'

Description

The SEGMENT option specifies a name, s, for the current segment. If a segment with the specified name
'exists, the compiler places the generated object code in it. Otherwise, it creates a new segment with the
name indicated in the s parameter.

The compiler continues to place object code in the designated segment until it encounters another
SEGMENT option.

When SEGMENT doesn't appear, the compiler uses the name SEG' as the default name of the current
segment:

The compiler ignores distinctions between upper and lower case letters in the s parameter.

SEGMENT may appear anywhere in source code, but the compiler puts the object code for an entire
compilation block in the last named segment. It is not possible to place part of a compilation block in a
particular segment.

8-39

SEGMENT

Example

$SEGMENT 'Sample'$
PROGRAM show_segment (output);
PROCEDURE proc1;

BEGIN
lJriteln;

END;
BEGIN

proc1;
tA1riteln

END.

This source code produces the following USL directory:

USL FILE <filename>
SAMPLE

OB'
PROC1

40 OB A C N
3 P ACNR

FILE SIZE
DIR. USED
DIR. GARB.
DIR. AVAIL.

377600(1777. 0)
266(1. 66)

O(o. 0)
37312(175.112)

INFO USED
INFO GARB.
INFO AVAIL.

8-40

141(0.141)
O(O. 0)

337637(1577. 37)

--""----

Keven
Rectangle

SKIP_TEXT

Usage

$SKIP_TEXT ON$
$SKIP~ TEXT OFF$

Default Setting

OFF

Description

When the option SKIP_TEXT is ON, the compiler ignores all subsequent source code, including any
compiler options, until SKIP_TEXT is turned OFF.

SKIP_TEXT may appear anywhere in source code.

Example

PROGRAM show_skiptext (output);
BEGIN

~riteln('This will print. ');
$SKIP TEXT ON$
uJriteln('This won' 't.');
$SKIP_TEXT OFF$

END.

8-41

SPLINTR

Usage

$SPLlNTR s$
$SPLlNTR$

Parameter
s A string literal. If omitted, the compiler restores the default setting.

Default Setting

SPLINTR. PUB.SYS

Description

The SPLlNTR option permits the programmer to specify an SPL intrinsic file which the system will search
for a procedure or function declared with the INTRINSIC directive (see Section 2). The programmer may
fully qualify this file name, s, with with group and account names.

The default value of the SPLlNTR option is the MPE file SPLlNTR.PUB.SYS. Unless the proqrarnrner
specifies another file, the system searches this default file for an intrinsic.

A file specified in a SPLlNTR option remains in effect until the programmer uses SPLlNTR again. To
restore the file SPLINTR. PUB.SYS as the designated file, the programmer can omit the s parameter (see
example below). .

Example

PROGRAM show_splinter;
PROCEDURE procl; INTRINSIC;
$SPLINTR 'myfile'$
PROCEDURE proc2; INTRINSIC;
$SPLINTR$
PROCEDURE proc3; INTRINSIC; {System searches SPLINTR.PUB.SYS
BEGIN {for proc3.

{System searches SPLINTR.PUB.SYS }
{for procl. . }
{System searches MYFILE for proc2. }

}
}

END.

8-42

Keven
Rectangle

STANDARD_LEVEL

Usage

$STANDARD LEVEL 'ANSI'$
$STANDARD_LEVEL 'HP'$
$STANDARD_LEVEL 'HP3000'$

Default Setting

HP

Description

The STANDARD_LEVEL option sets the level of syntax which the compiler will process routinely. If it
encounters a Pascal language feature which is not legal at the specified level, the compiler issues a
warning message on the listing and then compiles the feature normally.

In order of additional language features, the three levels are ANSI, HP, and HP3000. The ANSI level refers
to the proposed (May 20, 1981) Pascal standard from the American National Standards Institute; HP, the
default level, indicates Hewlett Packard Standard Pascal; HP3000 is Pascal/3000, the language
described in this manual. The level must appear between single quote marks. The compiler ignores
dlstlnctions between upper and lower case letters.

STANDARD_LEVEL may occur anywhere in source code.

Section 1 outlines the salient features of HP Standard Pascal and Pascal/3000.

8-43

-------- ---------------- -- -------

STANDARD_LEVEL

Example

$STANDARD LEVEL 'ANSI'$ {equivalent to ANSI ON}
PROGRAM sho~_level (output);
PROCEDURE proc1;

VAP.. i: integer;
b: boolea.n;

BEGIN
a.ssert(b,i) ;

END;
BEGIN
END.

This source code produces the following listing:

PAGE 1 <Listing title>

1.000
2.000

o 0 $STANDARD LEVEL 'ANSI'$
o 0 PROGRAM show level (output);

A

**** WARNING
3.000
4.000
5·.000
6.000
7.000

1 THIS FEATURE IS HP STANDARD PASCAL (517)o a PROCEDURE proc1;
O· 0 VAR i: integer;a 0 b: boolean;
o 1 BEGIN
o 1 assert (b,i);

**** WARNING # 2 THIS FEATURE IS HP3000 PASCAL (518)
8.000 a 1 END;
9.000 0 1 BEGIN

10.000 0 1 END.
NUMBER OF ERRORS = 0 NUMBER OF WARNINGS = 2

8-44

Keven
Rectangle

SUBPROGRAM

Usage

$SUBPROGRAM s$
$SUBPROGRAM$

Parameter
s A string literal. S may be omitted.

Description

The option SUBPROGRAM causes the compiler to emit code only for the level 1 procedures or functions
specified in the parameter s. The compiler also processes procedures or functions nested within the
specified level 1 procedures and functions. It does not, however, compile the outer block.

SUBPROGRAM must appear before the program heading.

If s is omitted or if it is entirely blanks, the compiler processes all level 1 procedures or functions. S may
contain the names of any number of level 1 procedures or functions separated by commas. If there are too
many to fit on one line, the programmer may write another SUBPROGRAM option. The s parameters are
concatenated.

An asterisk (*) may follow the name of a procedure or function in s. The compiler then processes the
compilation block with the LIST, CODE, and TABLES options ON. Subsequent use of LIST, CODE, or
TABLES in the source code of designated procedures or functions, however, will override the asterisk
mechanism.

The programmer can use the SUBPROGRAM option to select parts of a large program for compilation.
This minimizes the number of entries in the directory of the USL tile. The compiler scans the entire source
program and performs syntax and semantic checking, but it only generates object code for the specified
level 1 procedures and functions.

8-45

SUBPROGRAM

Example

$SUBPROGRAM 'proc2*'$ {Asterisk turns ON options }
PROGRAM show_subprg (output); {LIST, CODE, and TABLES. }
PROCEDURE proc1;

BEGIN
~teln('This won' 't be compiled');

END;
PROCEDURE proc2;

BEGIN
~teln('This will be compiled');

END;
BEGIN

~teln('The outer block isn''t compiled')
END.

This source code results in the following USL file directory:

USL FILE <filename>
SEG'

PROC2 33 PAC N R
377600(1777. 0)

234(1. 34)
o(o. 0)

37344(175.144)

FILE SIZE
DIR. USED
DIR. GARB.
DIR. AVAIL.

INFO USED
INFO GARB.
INFO AVAIL.

8-46

54(o. 54)
O(o. 0)

337724(1577.124)

Keven
Rectangle

TABLES

Usage

$TABLES ON$
$TABLES OFF$

Default Setting

OFF

Description

When the option TABLES is ON, the compiler produces an identifer map for a compilation block. The map
appears as part of the listing. Thus, TABLES has no effect if the LIST option is OFF.

TABLES may appear anywhere in source code, but the compiler only issues a map if the option is ON
when it completes parsing of a procedure, function, or outer block.

The map shows the declared identifiers, their class, type, and address or constant value. This information
is important when the programmer uses the MPE Debug utility.

The first column lists in alphabetical order the initial 20 characters of all the identifiers declared at the
current level. Field names of record types appear indented under the record name. Variables which are
neither local nor global also appear in this column since the compiler allocates storage for them on the
current scope.

The second column displays the class of each identifier. The compiler distinguishes the following classes:
USER DEFINED, CONSTANT, VARIABLE, NON LOC VAR, FIELD, FUNCTION, TAG FIELD, PARAMETER,
NON LOC PARM, and PROCEDURE.

The third column shows the type of the identifier. The types include: INTEGER, SHORT INTEGER, REAL,
BOOLEAN, SUBRANGE, ENUMERATED, CHAR VALUE, CHAR ARRAY, STRING LITERAL., ARRAY,
RECORD, SET, FILE, and POINTER.

Note: The $SUBPROGRAM$ option disables printing of global types and constants when $TABLES
ON$.

8-47

TABLES

The fourth column indicates the register-relative location of an identifier in octal or, if it is a constant, its
value in decimal or characters. For a record type, the maximum word size in octal appears instead of an
address. Fields of a record type are in the form W@B, where W is the word offset and B is the bit offset
within the word, both in octal. Finally, the octal size of the field in bits, bytes, or words appears.

Under these four columns, the identifier map shows the amount of primary and secondary storage the
compilation block requires and the number of non-local, non-global variables referenced within it. All these
values are in octal.

Example

$TABLES ON$
PROGRAM show_map (input, output) ;
CONST

realnum = 19.9;
maxsize = 100;
title = 'Customer List';

TYPE
answer = (yes, no);
rec = RECORD

ch: char;
CASE tag : answer OF

yes (messsage: PACKED ARRAY [1..20] OF char);
no : (i: integer);

END;
VAR

customer: rec;
PROCEDURE proc1 (VAR num: reaZ);

VAR
debt: booZean;

PROCEDURE subprocl;
BEGIN

IF debt THEN ~teln
END;

BEGIN
END;

FUNCTION funcl: integer; EXTERNAL;
BEGIN
END.

This source code produces the following listing from which the editor line numbers have been removed:

8-48

o 0 $TABLES ON$
o 0 PROGRAM show tables (input,output);
o 0 CONST
o 0 realnum = 19.9;
o 0 maxsize = 100;
o 0 title = 'Customer List';
OOTYPE
o 0 answer = (yes, no);
o 0 rec = RECORD
o 0 ch: char;o 0 CASE tag : answer OF
o 0 yes (messsage: PACKED ARRAY[l ..20J OF char);
o a no : (i: integer);
o 0 END;
o 0 VAR
a a customer: rec;
o 0 PROCEDURE proc1 (VAR num: real);
o a VAR
o 0 debt: boolean;
a a PROCEDURE subproc1;
o 1 BEGIN
o 1 IF debt THEN writeln
1 1 END;

IDE N T I FIE R MAP

IDENTIFIER ADDRESS/VALUECLASS TYPE

DEBT NON LOC VAR BOOLEAN Q +1,1

PRIMARY Q STORAGE = 1 SECONDARY Q STORAGE = a
NON LOCAL VARIABLES = 1

0 1 BEGIN
0 1 END;

I DEN T I F I E R MAP

IDENTIFIER CLASS TYPE ADDRESS/VALUE

DEBT VARIABLE BOOLEAN Q +1
NUM PARAMETER REAL Q -4,1
SUBPROC1 PROCEDURE

PRIMARY Q STORAGE = 1
NON LOCAL VARIABLES = a

SECONDARY Q STORAGE = a

(continued)

8-49

TABLES

TABLES

a a FUNCTION func1: integer; EXTERNAL;a 1 BEGINa 1 END.

IDENTIFIER
ANSWER
CUSTOMER
FUNC1
INPUT
MAXSIZE
NO
OUTPUT
PROC1
REALNUM
REC

CH
TAG
I
MESSSAGE

TITLE
YES

USER DEFINED ENUMERATED
VARIABLE RECORD
NON LOC FUNC INTEGER
PARAMETER FILE
CONSTANT SHORT INTEGER
CONSTANT ENUMERATED
PARAMETER FILE
PROCEDURE
CONSTANT REAL 1.990000E+01
USER DEFINED RECORD MAX RECORD SIZE = 13
FIELD CHAR VALUE O@O FOR 1. BYTE(S)
TAG FIELD ENUMERATED 0@10 FOR 1 BYTE(S)
FIELD INTEGER 1@0 FOR:::~WORD(S)
FIELD ARRAY 1@0 FOR 24 BYTE(S)
CONSTANT STRING LITERAL Customer l,ist
CONSTANT ENUMERATED a

IDE N T I FIE R MAP
CLASS TYPE ADDRESS/VALUE

DB+2,I
Q -5
DB+O,I

100
1

DB+1,I

PRIMARY DB STORAGE = 3
NON LOCAL VARIABLES = a

SECONDARY DB STORAGE = 443

8-50

Keven
Rectangle

TITLE

Usage

$TITLE s$

Parameter
s Any string literal.

Default Setting

HEWLETT PACKARD 32106A.OO.OOPASCAL/3000 (C) Hewlett Packard Co. 1981 <date><time>

Description

The option TITLE places the specified title, 8, next to the page number in the top left corner of subsequent
pages of the listing. The default setting is restored when s is ". The listing has a blank title when s is I '.

The compiler respects upper and lower case letters in the s parameter. They appear as written in the title.

TITLE may occur anywhere in source code.

Example

$TITLE 'My Program'$
$PAGE$
PROGRAM show title (output);
BEGIN -

~teln('Greetings! ')
END.

This source code produces the following listing:

8-51

TITLE

PAGE 1 <Default listing title>
1.000
2.000

o 0 $TITLE 'My Program'$o 0 $PAGE$

PAGE 2 My Program

3.000
4.000
5·000
6.000

o 0
o 1
o 1
o 1

PROGRAM show_title (output);
BEGIN

writeln('Greetings! ')
END.

8-52

Keven
Rectangle

USLINIT

Usage

$USLlNIT$

Description

The option USLINIT causes the compiler to initialize the USL file to empty before placing any object code
in it. If USLINIT is not used, the compiler appends new object code to any code already in the USL.

If the programmer does not specify a USL file when invoking the Pascal/3000 compiler and if $OLDPASS
is not a USL file, or if the contents of a specified USL file are obviously incorrect, the system initializes the
USL file to empty whether USLINIT occured in code or not.

USLINIT must appear before the program heading.

Example
$USLINIT$
PROGRAM sho~ uslinit (output);
BEGIN

~rite('Object code for this program ~ill be placed in ');
~riteZn('an empty USL file. ')

END.

8-53

--- ---.------.-

WIDTH

Usage

$WIDTH n$

Parameter
n An integer in the range 10.. 132.

Default Setting

Size of record in source file.

Description

The WIDTH option sets the number of columns, n, which the compiler will read from each record of the file
containing the source code. N may not be smaller than 10 or greater than 132. The default setting is 132.

WIDTH permits the compiler to ignore non-legal comments at the end of subsequent input lines.

For an INCLUDE file, the WlbTH option is reset to 132 or the specified setting within the included file. It
returns to the previous setting at the end of the included file.

WIDTH may appear anywhere in source code.

Example

$WIDTH 30$
PROGRAM show width (output);
BEGIN -

~riteZn('The width is 30')
END.

The compiler ignores this text
since it is beyond column 30.

8-54

Keven
Rectangle

XREF
Usage

$XREF ON$
$XREF OFF$

Default Setting

OFF

Description

When the option XREF is ON, the compiler produces a cross reference for each compilation block. The
cross reference is part of the listing, so XREF has no effect if LIST is OFF.

XREF may occur anywhere in source code. However, if it is placed in the middle of a procedure or function,
only subsequent source code will appear in the cross reference.

The cross reference lists the first 15 characters of each identifier and its occurrences within the source
code. If an identifier is declared in a block which contains the block where it occurs, the cross reference
indicates its declaration level.

The cross reference shows the occurrence of an identifier by listing the number of the editor line of the.
source code where' it appears. A symbol may prefix this number:

@ means the identifier was declared on that line..

* means the identifer was modified or could be modified on that line.

An editor line number appears one time for each time an identifier occurs in source code. If a source file is
unnumbered,the cross reference will use the compiler-assigned sequence number.

If source code is from an include file, the include file number and a slash (/) appear before 'the editor line
number. The compiler prints the name and number of the include file at the end of every cross reference
page.

8-55

XREF

Example

$XREF ON$
PROGRAM show xref (input,output);
$INCLUDE 'const'$ {see below}
VAR

n: integer;
t: boolean;

PROCEDURE check (VAR b: boolean);
BEGIN

IF n > k THEN b:= true
ELSE b:= false;

END;
BEGIN

readln(n) ;
check(t);
IF t THEN ~teln('Too big!')

ELSE ~teln('No problem');
END.

The INCLUDE file is:

CONST
k = 100;

When the compiler processes show-xref and its included file, the following listing results:

8-56

Keven
Rectangle

XREF

PAGE 1 <Listing title>
1.000
2.000
3.000
1.000
2.000
4.000
5.000
6.000
7.000
8.000
9.000

10.000
11.000

B
K
N

12.000
13.000
14.000
15.000
16.000
17.000

CHECK
K
N
READLN
SHOW XREF
T
WRlTELN

o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 0
o 1
o 1
2 1
2 1

o 1
o 1
1 1
2 1
4 1
4 1

$XREF ON$
PROGRAM show xref (input,output);
$INCLUDE 'const'$
CONST

k = 100;
VAR

n: integer;
t: boolean;

PROCEDURE check (VAR b: boolean);
BEGIN

IF n > k THEN b:= true
ELSE b:= false;

END;
C R 0 S S REF ERE N C E

o
o

@ 00007.000
00009.000
00009.000

* 00009.000 * 00010.000

BEGIN
readln(n);
check(t);
IF t THEN writeln('Too big! ')

ELSE writeln('No problem');
END.

C R 0 S S REF ERE N C E

@ 00007.000
00009.000

@ 00005.000
00013.000
00002.000

@ 00006.000
00015.000

00014.000
@ 1/00002.000

00009.000 * 00013.000

* 00014.000
00016.000

00015·000

INCLUDE FILE' NAME
1 const

8-57

_-------- .._---

Keven
Rectangle

STORAGE AND EXECUTION I~E_FF_I_C_IE_N_C_Y ~~~

INTRODUCTION
The Pascal/3000 compiler converts source code into machine language instructions and data definitions.
Data definitions allocate space on the stack for variables. The compiler does not allocate space for type
definitions, but the type of a declared constant or variable determines the amount of space allocated.

There are three distinct contexts which may affect the storage for a declared variable: (1) it is
independent, i.e. not a component of another structure, or (2) it is a component of an unpacked
structure, or (3) it is a component of a packed structure. For example, the simple type boolean uses 1
word of storage in the first case, 1 byte in the second, and 1 bit in the third. On the other hand, the type
integer requires 2 words of storage in all three cases.

If the reserved word PACKED precedes the declaration of an array or record, the compiler optimizes
storage for certain simple data types within the structured type. This reduces the amount of space
required by the program, but increases the time necessary to access data.

While it is syntactically legal to declare a packed file or set, this doesn't change the size of storage
allocated by the compiler. Only packing an array or record actually alters the amount of space reserved on
the data stack.

The standard function sizeof returns the amount of storage in bytes for a variable (see Section 7).

The following pages describe the storage allocation for each data type and explain how the programmer
may use this information to write faster or more compact Pascal/3000 programs.

9-1

BOOLEAN STORAGE

Independent: 1 word

Unpacked: 1 byte

Packed: 1 bit

Notes

False is represented by 0, true by 1.

When it is independent, a boolean variable requires 1 word of storage. The left byte contains the boolean
value and the right byte is undefined.

When a boolean variable is a component of an unpacked array or record, the compiler may use the right
byte of the 1 word allocation for the next component. This means the boolean variable or declared
constant will effectively occupy 1 byte of storage.

In a packed array or record, boolean variables require 1 bit of storage aligned by bit boundary.

9-2

Keven
Rectangle

INTEGER STORAGE

Independent: 2 words

Unpacked: 2 words

Packed: 2 words

Notes

For the simple type integer, storage allocation is identical in the three contexts. Bit 0 of the first word is the
sign bit.

The compiler aligns integer storage on word boundaries.

For an integer field of a record, slightly better machine code results when the field has an even word offset.
This permits the compiler to issue double word machine instructions.

9-3

--- -- ---- ----------

INTEGER SUBRANGE STORAGE

Independent: 1 or 2 words

Unpacked: 1 or 2 words

Packed: Minimum number of bits.

Notes

As an independent variable or in an unpacked structure, an integer subrange requires 1 word of storage
when it is contained in the range -32768 ..32767. Otherwise, it takes 2 words. Consider these examples:

As an independent variable or in an unpacked structure, an integer subrange requires 1 word of storage
when it is contained in the range -32768 ..32767. Otherwise, it takes 2 words. Consider these examples:

Subrange Allocation

0..8 1 word
-32768 ..32767 1 word
10..40000 2 words
-70000 .. 1 2 words

In a packed array or record, an integer subrange requires the minimum number of bits necessary to
represent each value of the subrange, if the subrange is in the range -32768 .. 32767, otherwise it
takes two words.

Subrange

0..3
-3 ..0
0..4
1..7
1..8
0..255
400 ..401

0..65000

Packed Allocation

2 bits
3 bits {1 bit for the sign}
3 bits
3 bits
4 bits
8 bits
9 bits {no bias is used}

32 bits

The compiler aligns the field representing the subrange by bit boundary and never permits the field to
cross a word boundary. In a packed array, a field of 6, 7, or 8 bits takes an entire byte of storage; a field of
9 to 16 bits takes a word (see Array Storage below).

9-4

Keven
Rectangle

ENUMERATED STORAGE

Independent: 1 word

Unpacked: 1 byte or 1 word

Packed: Minimum number of bits

Notes

When it is independent, an enumerated type variable requires 1 word of storage. If the number of its
elements is less than or equal to 256, the left byte of the word represents the value and the right byte is
undefined.

If the enumerated variable is a component of an unpacked array or record and if the number of its
elements is less than or equal to 256, the compiler may use the right byte of the 1 word allocation for the
next component. In this case, the enumerated variable effectively requires 1 byte of storage.

In a packed array or record, an enumerated variable requires the minimum number of bits necessary to
represent its values. For example:

Enumerated Type

(east,west, north,south)
(one, two, three, four, five)

Allocation

2 bits
3 bits

The compiler aligns the bit field by bit boundary and never permits the field to cross a word boundary. In a
packed array, a type requiring 6, 7, or 8 bits takes 1 byte of storage; a type needing 9 or more bits requires
a full word (see Array Storage below).

9-5

SUBRANGE OF
ENUMERATED STORAGE

Independent: 1 word

Unpacked: Same as host type

Packed: Minimum number of bits

Notes

A subrange of an enumerated type requires the same storage as its host type, except in packed
structures.

An independent variable which is a subrange of some enumerated type requires 1 word of storage. If the
number of elements of the host type is less than 257, the left byte of the word represents the subrange
values and the right byte is undefined.

In an unpacked record or array, a subrange enumerated variable occupies the same storage as its host
type. That is, if the number of elements in the host type is less than 257, the compiler may use the right
byte of the 1 word allocation for the next component.

In a packed array or record, the system determines the storage for a subrange enumerated variable
according to the upper bound of the subrange. For example, suppose:

TYPE
e_type = (Lee, Ron, Dave, Steve, Chris, Jon, Jean);

V/l:R
sub_e_type: PACKED RECORD

fl: Dave ..Chris;

END;

Field f1 of the variable sub_e_type has three elements, but the compiler calculates its storage from the
first element of the host type, e_type, to the upper bound of the subrange. In other words, f1 requires 3
bits.

In a packed array, a subrange of 6, 7, or 8 bits takes an entire byte of storage; a subrange of 9 or more bits
an entire word (see Array Storage below).

9-6

REAL STORAGE

Independent: 2 words

Unpacked: 2 words

Packed: 2 words

Notes

The storage requirement for a variable or declared constant of type real is always 2 words, regardless of
the context.

The system stores the real value in HP3000 floating point format (see Compiler Library Reference
Manual).

For a real variable which is a field of a record, slightly more efficient machine code results if the field has an
even word offset. This permits the compiler to generate double word machine instructions.

9-7

LONGREAL STORAGE

Independent: 4 words

Unpacked: 4 words

Packed: 4 words

Notes

Longreal variables or declared constants always require 4 words of storage, regardless of the context.

The system stores the longreal value in HP3000 floating point format (see Compiler Library Reference
Manual).

In contrast to integer and real variables, there is no gain in machine instruction efficiency if longreal
variables which are record fields have even word offsets.

9-8

CHAR STORAGE

Independent: 1 word

Unpacked: 1 byte

Packed: 1 byte

Notes

An independent char variable or declared constant requires 1word of storage. The left byte represents the
value and the right byte is undefined.

In an unpacked array or record, the compiler allocates the char type component 1 word, but may use the
right byte for the next component. This means the component effectively takes 1 byte of storage.

In a packed record, a char type component takes 8 bits of storage The compiler aligns this field by bit
boundary and never permits it to cross a word boundary. In a packed array, the same component takes 1
byte of space and is aligned by byte boundary.

9-9

POINTER STORAGE

Independent: 1 word

Unpacked: 1 word

Packed: 1 word

Notes

A pointer type variable requires 1 word of storage regardless of the context in which it appears.

The pointer value NIL is represented in storage by the positive integer 32767.

9-10

Keven
Rectangle

ARRAY STORAGE

In general, the size of an array allocation is the sum of the allocation of its components. The compiler
determines this sum by the formula:

(product of cardinalities of index types) * (allocation of one component)

The compiler stores the components in row major order.

In an unpacked array, components of certain types require less storage than independent variables or
declared constants of the same type. Consider this example:

VAR
beauty: boolean;
truth: ARRAY [1..4] OF boolean;

The variable beauty takes 1 word of storage. The left byte contains the value and the right byte is
undefined.

left byte right byte

boolean not
value defined

The unpacked array truth, on the other hand, only takes 2 words of storage, not 4. The compiler uses the
undefined right byte for the subsequent component.

first word second word

truth [1] truth [2] truth [3] truth [4]

9-11

------~~

ARRAY STORAGE

The same sort of default storage optimization occurs when the component type of an unpacked array is
an enumerated type less than 257 elements, a subrange of such an enumerated type, or a char type.
There is no storage difference between a packed or unpacked array of char.

In a packed array, bit fields represent certain types of components. Types with this representation include
boolean, subrange of integer, enumerated, and subrange of enumerated types. The number of bits
required, however, does not strictly determine the amount of storage. In particular, a field of 6, 7, or 8 bits
requires 1 byte of storage, and fields of 9 or more bits take 1 word. Consider this example:

VAR.
a: PACKED ARRAY [1..3) OF 0..31;
b: PACKED ARRAY [1..3) OF 0..32;

The component type of a is the subrange 0..31 which requires a minimum of 5 bits to represent its values.
The index of a has 3 elements. This means the compiler can store the entire array in 1 word. The
components occupy successive fields of 5 bits and the last bit is undefined:

a [1) a [2] a [3]

On the other hand, the component type of b requires 6 bits to represent all its values. Since no more than
two 6-bit fields can fit into a single word in any case, the compiler assigns each field a single byte. The
storage required for b, then, is two words. The right byte of the second word is unused.

b [1) b [2] b [3] not
defined

9-12

Keven
Rectangle

ARRAY STORAGE

The packed attribute of an array does not distribute to components of type array or record. For example,
in the declaration

TYPE
upa = ARRAY [1..4] Ol~boolean;

VAR
pa: PACKED ARRAY [1..10] OF upa;

the array upa remains unpacked even when it is the component of the packed array pa.

9-13

~-~-~-~-~- - -- ----~------~-~-----.--~------

RECORD STORAGE

The size of a record allocation is the sum of the allocation of the fixed part and, if any, the tag field and the
largest variant.

In an unpacked record, fields of certain types may require less storage than independent variables of the
same type. Consider this example:

VM\
bv boolean;
cv char;
upr: RECORD

bf: boolean;
cf: char;

END;

The independent variables bv and cv each require 1 word of storage. The left byte contains the value and
the right byte is undefined. The unpacked record upr also requires only 1 word of storage, not 2. The right
byte of the bf allocation is used for the next field of the record, ct.

This default optimization of storage in unpacked records implies that the programmer may control the
total storage requirement simply by controlling the order in which fields appear in source code. Consider
this declaration:

VM\
upr: RECORD

bf: boolean;
pf:upr;
cf: char>;

END;

This structure requires 3 words of storage. The value of bf appears in the left byte of the first word and the
right byte of this word is unused. The value of pf requires 1 word and cannot be put in the unused byte in
the first word since no field may cross a word boundary. The value of cf occurs in the left byte of the third
word and the right byte of this word is undefined:

9-14

Keven
Rectangle

RECORD STORAGE

first word second word third word

bf unused pf cf unused

The programmer can reduce the storage for upr to 2 words, however, simply by changing the order in
which the fields are listed. Consider:

VAR
upr: RECORD

bf: boolean;
cf: char;
pf: "upr ;

END;

Now the value of bf occupies the left byte of the first word and the value of cf the right. The second and last
word stores the value of pf:

bf cf . pf

first word second word

In a packed record, the progammer can also control the total amount of storage allocated by the order of
the fields. Suppose:

VAR
pr: PACKED RECORD

srf: o .. 32;
b: boolean;

pf: "'pr;
cf: char;

END;

9-15

RECORD STORAGE

With the fields in this order, pr requires 3 words of storage. The field srf takes the first 6 bits of the first
word. The field b occupies the next immediate bit. Bits 8-15 of the first word are unused. The field pf
requires all of the second word. The field cf takes the first byte of the third word:

first word second word . third word

srf b unused pf cf unused

Again, the programmer can reduce the total storage by reordering the fields. Suppose:

VAR
pr: PACKED RECORD

srf: O.• 32;
b: boolean;

cf: char;
pf: Apr

END;

Now the first word contains the bit fields for srf, b, and cf, and only the last bit is unused. The total storage
for pr is 2 words:

first word second word

srf b cf x pf
x

In contrast to packed arrays, bit fields in packed records always occupy exactly the minimum number of
bits. In the example above, for instance, srf takes exactly 6 bits, the minimum required to represent all its
values. If srf were a component of a packed array, however, it would occupy 8 bits.

The packed attribute does not distribute to fields which are records or arrays. In other words, an array or
record which is a field of a packed record is unpacked unless the progammer explicitly packs it in source
code.

9-16

Keven
Rectangle

STRING STORAGE

The compiler allocates storage for a string according to the declared maximum length of the string. Each
character takes a single byte. As well, the system requires 1 word of storage for the integer indicating the
current length of the string and 1 extra byte for the implementation of certain standard string functions, i.e.
strpos. This final byte is not accessible to the programmer. Thus, the variable s, when declared as

VAR
s: string[lO];

will take 7 words of storage: 1 word for the integer indicating the current length; 5 words for the 10
characters; and 1 word for the 'housekeeping' byte. The right byte of this final word is unused:

1st
word

2nd
word

I" " "

6th
word

7th
word

integer s [1] s [2] s [9} s [10]
extra
byte unused

The call sizeof(s) returns 14.

If the maximum length of s is odd, the compiler uses the right byte of the last word for the extra byte. It
does not have to allocate an extra word. For example, if s has a maximum length of 9, the compiler
allocates 6 words of storage and sizeof (s) returns 12.

9-17

SET STORAGE

The compiler allocates storage for a set in minimum units of single words according to the ordinal base
type of the set. For certain base types, the cardinality of this type directly determines the number of bits
and, hence, the number of words needed to represent the set. This is the case, for example, with
enumerated base types. Suppose:

VAR
s: SET OF (fire, air, earth, water);

The cardinality of the base type of s is 4 and the compiler allocates 1 word of storage. Bits 0 through 3 of
this word will represent the members of s.

The standard type boolean has a cardinality of 2 and is represented by the subrange 0.. 1. It requires 1
word of storage. The type char has 256 elements and implies the subrange 0..255. It requires 16 words of
storage. When a set declaration has the base type integer, the compiler defaults the cardinality to 256 and
assigns 16 words of storage. Values outside the range 0..255 cannot be members of this set.

When a subrange is specified as the base type, the compiler allocates storage in a different manner. It
determines the positions of the upper and lower bounds on a logical word axis and then assigns storage
according to the number of words 'occupied' by the subrange. This means more words than the actual
number of subrange bits required may be allocated. This scheme, however, permits the machine code for
set operations to avoid shift operations. The compiler treats any sort of subrange base type in this manner
- subranges of integer, char, or enumerated types.

9-18

SET STORAGE

Starting at the origin and going right on the logical word axis, the subrange 0.. 15 occupies logical word 0;
the subrange 16..31 logical word 1; the subrange 32 ..47 logical word 2; etc. Going to the left, the subrange
-16 ..-1 is in logicial word -1; the subrange -32 ..-17 logical word -2; etc. (see Fig. 9-1a).

Then to allocate storage, the compiler subtracts the lower bound word position from the upper bound
word position and adds 1. The result is the number of words required for storage. Suppose:

VAR
s: SET OF -7 .. 18;

The upper bound of the subrange representing the base type of s falls in logical word 1. The lower bound is
in logical word -1 (see Fig. 9-1b). Subtracting the latter from the former and adding 1 results in 3, and this
is the number of words the compiler will allocate for the storage of s. Bit 8 of the first word represents the
value -7, bit 9 the value -6, and so on. Bit 2 of the third word represents the upper bound, 18. This means
bits 0-7 of the first word and bits 3-15 of the third are unused (see Fig. 9-1c).

The cardinality of the subrange -7 .. 18 is 26. Without reference to the logical word axis, i.e. if the base type
of s were an enumerated type, this would require 2 words of storage. In fact, s requires 3 words of storage.

Thus, in order to optimize storage, the programmer should avoid small subranges which overlap
logical word boundaries. For example, if the base type of a set is the subrange 15 .. 16, the compiler will
allocate 2 words of storage, even though only two bits represent the set.

9-19

-- ~-~ - ~-----~~~~~---~-

SET STORAGE

-48 -32 -16 o 15 31 47

LW-3 LW-2 LW-1 LWO LW1 LW2

(a) The logical word axis. LW = logical word.

LW-1 LWO LW1
.-----r---..,.--------.---,----~...etc.

I
31-16 o 15

-7 18

(b) Position of subrange -7 .. 18 on logical word axis.

1st word 2nd word 3rd word

Bit 8 of 1st word
represents -7.

Bit 2 of 3rd word
represents 18.

(c) Actual storage of the type SET OF -7..18. / = unused.

Figure 9-1. SET STORAGE

9-20

Keven
Rectangle

FILE STORAGE

The declaration of a logical file causes the compiler to allocate space on the stack for the file control block
and the file buffer variable.

The size of the file control block varies from 8 to 13 words, depending on the type of the file. The
programmer has no control over the size of this allocation.

The size of the buffer variable storage, on the other hand, depends on the type of the file component. For
example, a file of integer requires 2 words of storage for the buffer variable; a file of longreal4 words; a file
of char 1 word; etc. Textfiles, however, are buffered one line at a time, not one character. The storage for a
text file buffer variable, then, is 128 words.

In certain cases, the judicious programmer may optimize file operation speed or file buffer size. Suppose:

VAR
f: FILE OF integer;

The buffer variable of f requires only 2 words of storage. Alternatively, the programmer may declare:

VAR
f: FILE OF ARRAY[1 ..100) OF integer;

The buffer variable for f now takes 200 words of space on the stack. However, it is now possible to perform
certain file operations more efficiently. For example, the programmer can assign values to components in
the buffer and then write the buffer to the file:

FOR i:= 1 TO 100 DO fA[i):= 10;
put(f);

9-21

STORAGE OPTIMIZATION

A SUMMARY.

The previous pages of this chapter describe the storage requirements of the various Pascal/3000 data
types in detail. Here is a summary of the ways the programmer can optimize storage:

(1) In an unpacked array, components of type boolean, char, or enumerated types with less than 257
elements occupy one byte of storage. Thus, two components of such an array require 1word of storage. In
particular, this means an unpacked array of char takes the same storage as a packed array of char (PAC).

(2) In a packed array, certain data types appear as bit storage fields aligned by bit boundary. A bit
storage field never crosses a word boundary. These types include boolean, char, integer subrange,
enumerated, and subrange of enumerated types. If a bit field requires 6, or 7 bits, the compiler assigns a
byte storage field since no more than two 6 or 7 bit fields could fit in a single word in any case. Thus, the
programmer may wish to tailor the data types so that only a 5 bit storage field is needed. Three 5 bit fields
would occupy a single word.

(3) In a packed or unpacked record, the programmer may optimize storage by deliberately listing the
record fields in a particular order in source code.

(4) The compiler determines set storage by the logical word requirement of the base type of the set.
This means that a small subrange which overlaps a logical word boundary may require more storage
than a similar subrange which doesn't. The programmer can optimize set storage by positioning a
subrange on the logical word axis so that it crosses the minimum number of logical word boundaries.

(5) The size of the file buffer variable on the stack or the heap depends on the type of the file component.
The programmer may choose to minimize this storage or maximize it in order to avoid the high overhead of
frequent input or output operations between the data stack and a file on external disc.

Additionally, the programmer should note that the system makes a single copy of each value parameter
when a program calls a procedure or function. This may use up a critical amount of storage if, for example,
a value parameter is a large array.

9-22

Keven
Rectangle

EXECUTION EFFICIENCY

As well as storage, the programmer must often consider the interrelated issue of execution efficiency,
especially when alternative versions of source code are otherwise equivalent.

Addressing Modes

The compiler generates object code which accesses program data with a variety of machine instructions.
Depending on the type of the data, these instructions may use direct or indirect addressing. Direct
addressing is more efficient in terms of space and time.

The compiler issues direct address instructions for global variables and local variables which require 3 or
fewer words of storage. It emits indirect address instructions for variables requiring more than 3 words of
storage, or for variables which are non-local and non-global. Also, it generates indirect address
instructions for all dynamic variables on the heap and for reference parameters.

For value parameters, on the other hand, the compiler produces indirect address instructions if the
parameter is very large or if the actual parameter list is very long. It may emit direct address instructions
when one or both these conditions are false. The TABLES option (see Section 8) will indicate the actual
case.

Table 9-1 summarizes these observations.

Table 9-1. DATA ACCESS

DATA CLASS . ADDRESSING MODE

Static variables
Global <= 3 words Direct
Local <= 3 words Direct
Non-local, non-global Indirect

Dynamic variables Indirect

Parameters
Reference Indirect
Value Direct or Indirect

9-23

EXECUTION EFFICIENCY

Indexing Arrays and Records

The access time for an element of a packed structure can be significantly greater if the programmer uses a
variable expression rather thana constant to determine the offset at run time. For example, it is faster to
select a component of a packed array with a constant or constant expression index rather than with a
variable.

On the other hand, there is not much time difference when a constant index selects a component of a
packed. or an equivalent unpacked structure.

In sum, to maximize storage and speed, the programmer should prefer packed structures indexed with
constants or constant expressions.

Partial Evaluation

The system evaluates boolean expressions compiled with PARTIALEVAL ON more quickly than boolean
expressions compiled with PARTIALEVAL OFF.

Common Subexpressions

The compiler does not eliminate common subexpressions, but the programmer may often do so by using
temporary variables to save intermediate results. The programmer may eliminate subexpressions involving
the re-calculation of record addresses by employing the WITH statement (see below).

Constant Folding

If an expression contains more than one literal, declared constant, or constant expression, the
programmer may optimize performance by grouping these elements next to one another in source code.
For example, the expression:

2 + A + B + maxsize

where A and B are variables and maxsize is a declared constant, results in less efficient object code than
the expression:

9-24

EXECUTION EFFICIENCY

2 + maxsize + A + B

In the second case, the compiler is able to evaluate the first three tokens, i.e. 2, +, and maxsize, and
replace them with a new constant without generating any object code. This is termed 'constant folding'.

Since evaluation proceeds from left to right when operator precedence is equal, however, the expression

2 + A + maxsize

is not optimized by

A + 2 + maxsize

which is equivalent to (A + 2) + maxsize. Instead, the programmer should write

2 + maxsize + A or A + (2 + maxsize)

Numeric Data Types

Using exact subranges may save time and the programmer should prefer real variables to longreal
variables. Operations with reals are generally faster; longreals offer more precision at the expense of
execution speed.

An integer subrange in the range -32768 ..32767 requires one word of storage. It may not be the case,
however, that two integer operands typed within this range will necessarily result in single word arithmetic.
For example, suppose:

VAR
m: O •• 32767;
n: -100 .. 100;

BEGIN
m:= (n * m) MOD 32767;

END

9-25

EXECUTION EFFICIENCY

Regardless of the 1-word typing of m and n, the compiler emits double word instructions to evaluate m * n
since the result is potentially greater than 32767 or less than -32768. Thus, the programmer should use
subranges as close to zero as possible.

Range Checking

Range checking is extremely useful in debugging a program. It also can add a significant amount of
overhead which the programmer may wish to eliminate from fully tested, frequently executed portions of a
program by recompiling with the RANGE option OFF. However, the system performs certain checking, e.g.
for division by zero, regardless of the RANGE setting.

Sets

The system performs set operations most efficiently on 1-word sets with identical base types. Also, it
handles 2-word sets more efficiently than larger sets.

WITH Statement

The programmer may use the WITH statement to avoid the repeated calculation of a record address when
referencing more than one field in the record (see Section 3). For example, these WITH statements
provide greater efficiency:

WITH pA.r DO <statement>
WITH pA.a[i] DO <statement>

If there is no address recalculation, WITH provides no gain in efficiency. These statements, for example,
will save typing but not execution time:

WITH r DO <statement>
WITH pA DO <statement>

9-26

Structured Constants

EXECUTION EFFICIENCY

Structured constants are declared constants defined with record, array, string, or set constructors (see
Section 2). A structured constant requires the same amount of storage as an equivalent structured variable
(except in the case of a record with variants), but the compiler stores the structured constant in the
program code segment and not in the data stack. Furthermore, the programmer must initialize a
structured variable at run time. In versions of Pascal without structured constants, this must be done
component by component.

The system does not copy structured constants to and from the data stack for each activation of a
procedure or function, which saves stack space as well as execution time.

Structured constants can improve on CASE statements which map one data type onto another. For
example, the following functions are equivalent:

TYPE
color = (red,blue);
hue = (red,blue,purple);

FUNCTION shade
(colorl,
color2: color): hue;

BEGIN
CASE colorl OF

red:
CASE color2 OF

red: shade:= red;
blue: shade := purple;

END;

blue:
CASE color2 OF

red: shade:= purple;
blue: shade := blue;

END;
END;

END;

FUNCTION shade
(colorl,
color2: color): hue;

TYPE
row = ARRAY [color] OF hue;

trans table =
ARRAY [color] OF row;

CONST
table = trans table

[row [red, purple],
row [purple, blue]];

BEGIN
shade .- table[colorl,color2];

END;

9-27

EXECUTION EFFICIENCY

FOR Statement

FOR loops with 1-word integer control variables are much faster than FOR loops with 2-word integer or
byte control variables.

CASE Statement

More efficient object code results when the programmer specifies case constants in a CASE statement by
subrange rather than by iteration. That is.

CASE speed OF
1 ..4: <statement>

END;

is better than

CASE speed OF
1,2,3,4: <statement>

END;

The programmer cannot rely on the system to consider the case constants of a CASE statement in any
particular order. The system treats all CASE constant values as being equally likely.

9-28

Keven
Rectangle

~U_SI_N_G_P_A_S_C_AL_I_3_00_0 ~ __ ~I~
Before a Pascal/3000 source program becomes a valid HP3000 process, three steps must occur:

(1) The Pascal I 3000 compiler must translate the source code into binary form and store it as one or
more relocatable binary modules (RBM) in a specially-formatted disc file called a user subprogram li-
brary (USL). In USL form, however, the system cannot execute a program.

(2) The MPE Segmenter must prepare the USL for execution by binding the RBM's from the USL into
linked, re-entrant code segments organized in a program file. During preparation, the Segmenter also
defines the initial requirements of the user data stack.

(3) The MPE Operating System must allocate and initiate execution of the program. In allocation, a
process binds the segments from the program file to referenced external segments from a segmented
library (SL). Then the process moves the first code segment and the associated data stack into main
memory and initiates execution.

The programmer can advance through each of these steps independently, controlling the specifics of each
process along the way. In particular, it is possible to use the MPE commands :PASCAL, :PREP, and :RUN
for steps 1, 2, and 3, respectively.

Alternatively, the programmer may combine steps with a single MPE command. For example, the MPE
command :PASCALPREP performs steps 1 and 2; the MPE command :PASCALGO steps 1, 2, and 3; the
MPE command :PREPRUN steps 2 and 3.

Subsequent pages discuss the MPE commands :PASCAL, :PASCALPREP, and :PASCALGO in detail.
They also explain how the programmer may invoke the Pascal/3000 compiler with the :RUN command. In
the discussion of these commands, optional parameters appear in square brackets.

This section also outlines techniques for debugging Pascal/3000 programs and trapping run-time errors.

10-1

:PASCAL

Format

:PASCAL [textfile] [, [uslfile] [, [Iistfile]]] [;INFO = "text"]

Parameters

The name of the input file which the Pascal/3000 compiler will read. This may be any
ASCII-coded file. If omitted, the file $STDIN, the current input device, is the default file. If
the input file is an MPE disc file, it must be stored in a group with LOCK access.

The name of the USL file on which the compiler will write the object code. This may be any
binary file. If omitted, the file $OLDPASS is the default file. If no file is in the passed state,
the system uses $NEWPASS, which is closed subsequently as $OLDPASS.

The programmer may create a new USL file in one of four ways:

(1) By specifying a non-existent USL file in the parameter. This creates a permanent
USL file of the correct size and type.

(2) By saving a default $OLDPASS USL file with the :SAVE command.

(3) By building a USL file with the MPE Segmenter command -BUILDUSL.

(4) By building a new file of USL type with the :BUILD command. The filecode
parameter must be 1024 or USL.

listfile The name of the file on which the compiler will write the program listing. This can be any
ASCII file. If omitted, the system assigns the file $STDLlST as the default file. Typically, this
is the terminal in a session or the printer in a batch job. .

textfile

uslfile

10-2

:PASCAL

text The text field of the INFO parameter permits the programmer to specify initial compiler
options. Pascal / 3000 brackets this field with dollar signs and places it before the first line of
source code in the textfile.

Description

The MPE command :PASCAL invokes the Pascal/3000 compiler and causes it to process the specified
source program and generate object code to a USL file. All of the parameters of the :PASCAL command
are optional with the resulting default values indicated above.

When the textfile parameter is omitted, the default textfile is $STDIN. In a session, this will be the terminal
and the programmer may enter source code interactively. A special prompt (» appears on screen. The
programmer signals the end of source code by entering the colon (:) immediately after the prompt. If the
listfile is $STDLlST, the listing is not echoed back to the terminal. If the list file is $NULL or a file other then
$STDLlST, the compiler displays lines with errors on $STDLlST.

Examples

:PASCAL mypro,myusl;INFO = "USLINIT"
{Complies souce file mypro into USL file myusl, which is }
{initialized to empty. }

:PASCAL mypro,,*LP;INFO = "PAGE {Final Version}"
{Compiles source file mypro into $OLDPASS, prints listing }
{on line printer with initial page eject, and inserts }
{leading comment in source code. }

:PASCAL ,myusl
{Invokes compiler for interactive entry of source code. The }
{compiler will place the object code in the USL file myusl. }

10-3

--- --~------ ---

:PASCALPREP

Format
:PASCALPREP [textfile] [, [progfile] [, [listfile]]] [;INFO = ~texn

The name of an input file from which the compiler will read the source program. This can
be any ASCII file. If omitted, the compiler uses $STDIN as the default file, which permits
the programmer to enter source code interactively. If the input file is an MPE disc file, it
must be stored in a group with LOCK access.

The name of an input file from which the compiler will read the source program. This can be
any ASCII file. If omitted, the compiler uses $STDIN as the default file, which permits the
programmer to enter source code interactively.

The name of the program file on which the Segmenter will write the prepared program
segments. This can be any binary file. If omitted, the compiler uses the file $NEWPASS as
the default file.

The programmer may create a program file in two ways:

(1) By specifying a non-existent program file with the progfile parameter. The system
creates a temporary file of the correct size and type.

(2) By building a new program file with the :BUILD command. The filecode
parameter must be 1029.

If the programmer specifies an existing program file, the system reuses this file. An error
occurs if this file is too small or if its file code is not PROG.

listfile The name of a file on which the compiler will write the program listing. This can be any
ASCII file. If omitted, the compiler uses the system file $STDlIST as the default file.

Parameters
textfile

textfile

progfile

text The text field of the INFO parameter permits the programmer to specify initial compiler
options. Pascal/3000 brackets this field with dollar signs and places it before the first line
of source code in the textfile.

10-4

Keven
Rectangle

:PASCALPREP

Description

The MPE command :PASCALPREP compiles a Pascal/3000 program into a USL fileand then prepares
this USL file into a specified program file. All of the parameters of the command are optional.

If the programmer omits the textfile parameter, the system defaults to $STDIN as the source file. During a
session, this will be the terminal. The programmer may then enter source code interactively. A special
prompt (» appears on screen. To terminate the source code, the programmer must enter a colon (:)
immediately after the prompt.

The MPE Segmenter assigns a few thousand extra words of heap and stack space to programs compiled
and prepared with the: PASCALPREP command. If a program requires a large heap, or if it is deeply
recursive, however, the programmer may have to increase the available space by using the DL or
MAXDATA parameters with the :RUN command.

Examples

:FILE LP;DEV=LP
:PASCALPREP test, testprog,*lp;INFO = "TABLES
{Compiles source file test, prints listing on
{TABLES option ON, and prepares resulting USL
{file testprog.

ON"
line printer with}
file into program}

}

:PASCALPREP test; INFO = "LIST OFF"
{Compiles source file test, suppressing the listing. Prepares }
{resulting USL file into the default program file $NEWPASS, }
{which may be run as the program file $OLDPASS }

:PASCALPREP ,myprog
{Permits interactive entry of source code at terminal. This }
{code is compiled and the reSUlting USL file is prepared into }
{the program file myprog. }

10-5

:PASCALGO

Format
:PASCALGO [textfile] [, (Iistfile]] [;INFO = "text"]

Parameters
textfile

textfile

listfile

text

Description

The name of an input file from which the compiler will read source code. This can be any
ASCII-coded file. If omitted, the compiler uses $STDIN as the default file, which permits
the programmer to create source code interactively at the terminal. If an input file is an
MPE disc file, it must be stored in a group with LOCK access.

The name of an input file from which the compiler will read source code. This can be any
ASCII-coded file. If omitted, the compiler uses $STDIN as the default file, which permits the
programmer to create source code interactively at the terminal.

The name of a file to which the compiler will transmit the program listing. If omitted, the
default file is $STDLlST.

Pascal 3000 inserts the text field of the INFO parameter before the first line of source code
in the textfile and brackets it with dollar signs ($). Thus, the programmer may use the INFO
parameter to specify initial compiler options.

The MPE command :PASCALGO compiles, prepares, and executes a Pascal/3000 program. All of the
parameters are optional. After successful completion of :PASCALGO, the program file is the temporary file
$OLDPASS, which the programmer may save using the MPE :SAVE command.

If the textfile parameter is omitted, the system permits the interactive creation of source code at the
terminal. A special prompt (> appears. The programmer signals the end of source code by entering a
colon (:) immediately after the prompt.

The MPE Segmenter allocates a few thousand extra words of stack space for a program compiled,
prepared, and executed by the: PASCALGO command. If a program uses a large heap, or if it is deeply
recursive, this default extra space may not be sufficient. The program will not execute successfully and the
programmer will have to use an alternative to :PASCALGO.

10-6

:PASCALGO

Examples

:PASCALGO test;INFO = "CODE OFFSETS ON;TABLES ON"
{Compiles, prepares, and then executes the source file test. }
{The listing appears on $STDLIST with two compiler options }
{turned on by the INFO parameter. }

:PASCALGO universe,$NULL
{Compiles the source text universe, discarding the listing, }
{and then prepares and executes the program. }

10-7


~~~----- ~- ---

:RUN PASCAL.PUB.SYS

The Pascal/3000 compiler is a program file named PASCAL in the PUB group of the SYS account. The
programmer may use the MPE command :RUN to execute PASCAl.PUB.SYS, i.e. invoke the
Pascal I 3000 compiler.

The default source, USL, and listing files for the compiler are $STDIN, $OLDPASS, and $STDLlST,
respectively. To override these default values, the programmer must perform two steps: (1) equate the
non-default file with its formal designator using an MPE :FILE command; (2) select an appropriate value
for the PARM parameter of the :RUN command. This value indicates which files are not defaulted.

The compiler recognizes these formal file designators:

Formal Designator

PASTEXT
PASUSL
PASLIST

File

source file
USL file
listing file

The PARM parameter of the :RUN command indicates which files have appeared in file equations. The
compiler opens these files instead of the default files. For the Pascal 13000 compiler, the PARM parameter
accepts an integer value in the range 0..7. The low order three bits of the PARM field represent the three
files:

Bit 13 Bit 14 Bit1S.I~__U_S_L__ ~_I_is_ti_ng__ ~_so_u_r_ce~

10-8

Keven
Rectangle



DEBUGGING PASCAL/3000
PROGRAMS SYMBOLICALLY

Pascal/3000 programs can be debugged symbolically with the HPToolset utility by entering the
$SYMDEBUG compiler option in your source file before any declaration statements.

The Symbolic Debug feature of HPToolset allows you to debug your program by referencing a
procedure name or the compiler generated line numbers of your listing instead of having to know
memory locations.

Refer to the HPToolset Reference Manual for information on how to run TOOLSET and use its
debugging facility.

10-SA



Keven
Rectangle



:RUN PASCAL.PUB.SYS

The integer value of PARM sets these bits as follows:

Value Files present in FILE commands

o
1
2
3
4
5
6
7

none
source
listing
listing, source
USL
USL, source
USL, listing
USL, listing, source

An error occurs if the PARM value sets a bit for one of the three files and if no file equation for that file
exists. On the other hand, if a file equation exists and the PARM value doesn't set the bit, the compiler will
use the default file.

Setting PARM to 0 is equivalent to the command :PASCAL without parameters.

The :RUN command also has an optional INFO parameter. Pascal/3000 inserts the text field of this
parameter before the first line of source code and brackets it with dollar signs ($). Thus, as with the
commands :PASCAL, :PASCALPREP, and :PASCALGO, the programmer may use INFO to specify initial
compiler options.

Examples

:FILE PASTEXT=MYSOURCE
:FILE PASLIST; DEV=LP
:RUN PASCAL.PUB.SYS;PARM=3; INFO="TABLES ON"
{This sequence of MPE commands will compile the file MYSOURCE }
{into the default USL file $NEWPASS. The listing will appear }
{on the line printer and will include an identifier table. }

:FILE PASUSL=TESTUSL
:RUN PASCAL.PUB.SYS;PARM=4; INFO="USLINIT"
{This sequence compiles source code entered interactively at }
{the terminal, i.e. $STDIN, into the USL file TESTUSL, which }
{the compiler initializes to empty. }

10-9



-------

RUNNING PASCAL/3000 PROGRAMS

The MPE :RUN command has two optional parameters, PARM and INFO, whose values the programmer
may pass to any Pascal/3000 program. The PARM field is a 16 bit signed integer. The INFO field is a string
of up to 255 characters, including the double or single quote delimiters at the beginning and end.

The programmer may obtain the values of PARM or INFO in a Pascal/3000 program by specifying
appropriate parameters in the program heading. These parameters, which normally contain the names of
logical files, may specify a variable for PARM, a variable for INFO, or both.

After pl.acing them in the proqrarn parameter list, the programmer must declare the identifiers as global
variables in the declaration part of the outer block.

The variable for PARM must be type integer or an integer subrange. The system will convert the PARM
value to this type and perform range checking if necessary.

The variable for INFO must be type string or PAC. The system will range check the length of the INFO field
with this variable if needed. If the INFO field is shorter than a packed array of char, the array will be blank
filled.

The system performs range checking on the PARM value and the length of the INFO field depending on the
setting of the RANGE option when the compiler encounters the first line of the executable part of the outer
block.

Section 8 discusses ways the programmer may use the INFO parameter to associate physical and logical
files.

10-10

Keven
Rectangle



RUNNING PASCAL/3000 PROGRAMS

Example

PROGRAM example_1 (parm , info);
VAR

parm: integer;
info: PACKED ARRAY [1 ..255] OF char;

BEGIN
END.
PROGRAM example_2 (i, input, output, p);
VAR
p: 1. .10;
i: string[10];-

BEGIN
END.
PROGRAM example_3 (j);
VAR
j: -1. .1;

BEGIN
END.
PROGRAM example_4 (a);
VAR

a: PACKED ARRAY [1..132] OF char;
BEGIN
END;

10-11



DEBUGGING PASCAL/3000 PROGRAMS

To debug a Pascal/3000 program, the programmer may use the TABLES and CODE_OFFSETS compiler
options in conjunction with a PMAP and the MPE Debug facility.

The TABLES option lists each declared identifier and its stack location (see Section 8). The CODE_
OFFSETS option shows the P register offset for each statement in a compilation block (see Section 8).
The PMAP indicates the procedure location within a code segment (see MPE Reference Manual) and is
available through the :PREP command. The Debug facility is documented in the Debug/Stack Dump
Reference Manual.

In general, the programmer may follow these steps:

(1) Compile the program into a USL file with the TABLES and CODLOFFSETS options ON and
direct the listing to the line printer.

(2) Prepare the USL file into a program file invoking the PMAPoption and directing the map to the line
printer.

(3) Run the program using the DEBUG facility. Set appropriate break points by using the segment
number and the code location from the PMAP combined with the statement offset from the listing.

(4) Resume program execution and, when the breakpoint occurs, use the variable locations on the
listing to display or otherwise manipulate the current variable values.

To illustrate these steps, we consider a sample program. Show_Debugging has a level 1 'blackbox'
function and a level 1 procedure which calls the function. When calling the function, the procedure passes
a global variable, a local variable, and an actual parameter from the main program as parameters. The
procedure stores the result of the function call in another local variable and then writes this variable on the
standard file output.

The source code for Show_Debugging is:

10-12



DEBUGGING PASCAL/3000 PROGRAMS

$TABLES ON;CODE OFFSETS ON$
PROGRAM Show_Debugging (output);
TYPE

smallint = -32768 ..32767; {Takes 1 word of storage. }
VAR

global_var: smallint; {A global variable. }

FUNCTION blackbox
(parml: smallint;
parm2: smallint;
parm3: smallint
): smallint;

VAR temp_result: smallint;
BEGIN

{ find max of parml and parm2 }
IF parml > parm2

THEN temp_result:= parml
ELSE temp result := parm2;

{ find min of temp_result and parm3 }
IF temp_result < parm3

THEN blackbox := temp_result
ELSE blackbox := parm3;

{This blackbox function is}
{invisible to the ordinary}
{reader. }

END;

VAR local_var: smallint;
result : smallint;

BEGIN
result := 0;
local var := -32768;
result := blackbox (global var,local var,parm val);
~teln('Blackbox returns'~ result:6); -

END;

{A local variable. }

BEGIN {Show_Debugging}
global var := 7;
a level 1 proc(3);

END~ {Show=Debugging}

When compiled, this source code produces the following listing, which we have annotated with numbers
bracketed by asterisks, e.g. * 1*, to aid subsequent discussion.

10-13



----------------- ----

DEBUGGING PASCAL/3000 PROGRAMS

1.000 0 0 $TABLES ON;C()DE OFFSETS ON$
2.000 0 0 PROGRAM Sho'lo7._Debugging(output);
3.000 0 0 TYPE
4.000 0 0 smallint = -32768 ..32767;
5·000 0 0 V/ffi
6.000 0 0 global_var: smallint;
7.000 0 0
8.000 0 0 FUNCTION blackbox
9·000 0 0 (parm1: smallint;

10.000 0 0 parm2: smallint;
11.000 0 0 parm3: smallint
12.000 0 0 ) : smallint;
13.000 0 0 VAR temp_result: smallint;
14.000 0 1 BEGIN
15.000 0 1 IF parml > pam2
16.000 1 1 THEN temp_result := pam1
17.000 2 1 ELSE temp_result := parm2;
18.000 3 1 IF temp~result < parm3
19.000 4 1 THEN blackbox := temp_result
20.000 5 1 ELSE blackbox := parm3;
21.000 5 1 END;
22.000 6 0

COD E OFF SET S

STMT P LOC STMT P LOC S'l'MT P LOC
0 000014 2 000022 4 000027
1 000017 3 000024 5 000032

IDE N T I F I E R MAP

IDENTIFIER CLASS TYPE ADDRESS/VALUE

BLACKBOX FUNCTION SUBRANGE Q -7
PARM1 PARAMETER SUBRANGE Q -6
PARM2 PARAMETER SUBRANGE Q -5
PARM3 PARAMETER SUBRANGE Q -4
TEMP RESULT VARIABLE SUBRANGE Q +1

PRIMARY Q STORAGE = 1 SECONDARY Q STORAGE = 0
NON LOCAL VARIABLES = 0

10-14

Keven
Rectangle



23.000 6 0
24.000 0 0
25·000 0 0
26.000 0 1
27.000 0 1
28.000 1 1
29.000 2 1
30.000 3 1
31.000 3 1
32.000 4 0

STMT P LOC
0 000014

IDENTIFIER

*3*LOCAL VAR
*4*PARM VAL
*5*REStrLT

DEBUGGING PASCAL/3000 PROGRAMS

PROCEDURE a_level_1_proc (parm_val: smallint);
VAR local_var: smallint;

result: smallint;
BEGIN

result := 0;
local var := -32768;
result:=blackbox(global var,local var,parm val);
writeln ('Blackbox returns', result:6); -

END;

COD E 0 F F SET S
*1* *6*
STMT P LOC STMT P LOC

2 000020 3 000026
STMT P LOC

1 000016

IDE N T I FIE R MAP

CLASS ADDRESS/VALUETYPE:

VARIABLE
PARAMETER
VARIABLE

SUBFtANGE
SUBFtANGE
SUBFtANGE

Q +1
Q -4
Q +2

PRIMARY Q STORAGE = 5
NON LOCAL VARIABLES = 0

SECONDARY Q STORAGE = 0

33.000 0 1 BEGIN {main}
34.000 0 1 global_var := 7;
35.000 1 1 a_level_1yroc (3) ;
36.000 1 1 END.

COD E Ol~FSETS

STMT P LOC
o 000035

IDENTIFIER

A LEVEL 1 PROC- --BLACKBOX
*2*GLOBAL VAR

OUTPUT
SMALLINT

STMT P LOC
1 000037

IDE N T I FIE R MAP

CLASS ADDRESS/VALUE

PROCEDURE
NON LOC FUNC SUBRANGE
VARIABLE SUBRANGE
PARAMETER FILE
USER DEFINED SUBRANGE

Q -7
DB+1
DB+O,I

PRIMARY DB STORAGE = 2
NON LOCAL VARIABLES = 0

SECONDARY DB STORAGE = 214

10-15



DEBUGGING PASCAL/3000 PROGRAMS

We then prepare the USL file to a program file with the :PREP command and the PMAP option. The
resulting PMAP looks like this:

PROGRAM FILE <progam filename>

SEG' 0
NAME STI' CODE ENTRY SEG
OB' 1 0 13
TERMINATE' 4 ?
P'REWRITE 5 ?
P'CLOSEIO 6 ?
P'INITHEAP'3000 7 ?
A LEVEL 1 PROC 2 51 64
P'WRITELN- 10 ?
P'WRlTESTR 11 ?
P'WRlTESINT 12 ?
BLACKBOX 3 134 147
SEGMENT LENGTH 204

PRIMARY DB
SECONDARY DB
TOTAL DB
ELAPSED TIME

3 INITIAL STACK
214 INITIAL DL
216 MAXIMUM DATA
00:00:00.837

10240 CAPABILITY 600
o TOTAL CODE 204
? TOTAL RECORDS 7

PROCESSOR TIME 00:00.277

The necessary information to use the Debug facility successfully is now on hand. We will set a break point
at the place in the program where the level 1 procedure calls blackbox; examine the values of the three
parameters and the value of the local variable which will store the function return; and then set a second
break point immediately after the call to blackbox and again look at the local variable storing the returned
value.

We begin by executing the program with the DEBUG option specified. To set the first break point at the
call to black box, we first use the PMAP to find the segment number, 0, and the code location, 51, for C1-
level_1_proc. Then we turn to the listing which shows that the call to black box occurs in statement 2 of
this procedure. The offset of this statement is 20 (see * 1* above).

10-16

Keven
Rectangle



DEBUGGING PASCAL/3000 PROGRAMS

Thus, the initial Debug prompt and our response will be

?b 0.51 +20

followed by

?r

to 'resume' execution.

When the process reaches the break point. Debug again prompts us for a command. To display the value
of the global_var parameter, we look at the listing to find the variable's location on the stack. It is DB+ 1
(see *2* above). We respond to the Debug prompt accordingly, and the current value appears in decimal:

?d db+ 1,i
DB+ 1 +00007

The value of global_var at the time of the call to black box is 7.

In analogous fashion, we now display the current values of local.Lvar, parrru..val, and result, using the
locations 0+ 1,0-4, and 0+2, respectively (see *3*, *4*, and *5* above):

?d q+1,i
0+1 -32768
?d q-4,i
0-4 +00003
?d q+2,i
0+2 +00000

The value of local.Lvar is -32768; parm...val 3; result O.

10-17



DEBUGGING PA~SCAL/3000PROGRAMS

We now set the second break point immediately after the function call, i.e. statement 3 of the procedure,
and then resume execution. The code offset of statement 3 is 26 (see *6* above). The segment number
and procedure entry point are unchanged.

?b 0.51+26
?r

At the break, we again display the value of the variable containing the function return. Its location is still
0+2 (see *5* above).

?d q+2,i
0+2 +00003

The new value of result is 3.

Now, by resuming, we allow execution to finish:

?r

Blackbox returns 3

END OF PROGRAM

10-18

Keven
Rectangle



TRAPPING RUN-TIME ERRORS

An error in Pascal/3000 may be a compile-time error, a run-time error, or an undetected error. These three
types of error occur when:

(1) The compiler detects and reports the error at compile time. The error message appears on the
listing with a caret (A) pointing to the location of the problem. Appendix C discusses the compile-
time errors.

(2) The system detects an error at run time. The system will report the error and abort the program
unless the programmer has created and armed a trap procedure. Appendix D lists the run-time
errors.

(3) Neither the compiler nor the system detect the error and no message appears. Appendix E
discusses currently undetected errors for Pasca1/3000. In any future release, an undetected error
may become a compile-time or run-time error.

Pascal/3000 permits the programmer to use the XL/BTRAP intrinsic to trap any software-related run-time
error. Also, the XARITRAP intrinsic can trap hardware-related run-time errors such as integer overflow or
division by O.

To use the XLlBTRAP intrinsic for software-related run-time errors, the programmer must follow these
steps:

(A) Declare the XL/BTRAP intrinsic in Pascal source code with the INTRINSIC directive (see Section 2
and the MPE Intrinsics Reference Manual).

(B) Declare the trap procedure using the appropriate formal parameters. In particular, the first formal
parameter must be a VAR parameter. It wiil return the stack marker created when the error
occurred. (In the example below, only the 1st word is returned.) The second and third parameters
must be 1-word VAR parameters. The second returns the number of the error. The third is a flag
which the programmer can set with an integer value within the trap procedure.

10-19



TRAPPING RUN-TIME ERRORS

According to the setting of this flag on exit from the trap procedure, the system will abort
the program, continue execution, print the system error message, or suppress this
message. The following table indicates how various types of flag values determine the
permutations of the possible actions.

Flag Action

0, or <0 and even Continue execution;
suppress message

>0 and even Continue execution:
print message

>0 and odd Stop execution;
print message

<0 and odd Stop execution;
suppress message

If the flag is not set anywhere in the trap, the system uses 1 as the default flag value on
exiting the procedure.

The Compiler Library Reference Manual, Section IV, examines these parameters in detail.

(C) Arm the trap by calling XLlBTRAP in the executable part of the program. The first
actual parameter must be the external label of the trap procedure. In Pascal/3000,
this is available from the waddress function when the name of the trap procedure is
the argument (see Section 7). The second actual parameter must be a reference
parameter, i.e. a variable. The intrinsic SPL parameter type is INTEGER, so a
suitable type is the integer subrange -32768 ..32767. This second parameter returns
the previous external label to the program, or 0 if no label existed.

10-20

Keven
Rectangle



TRAPPING RUN-TIME ERRORS

A trap is disarmed when the first actual parameter of the XLlBTRAP call is O.

After a XLlBTRAP call, the condition code returned by the procedure eeode indicates the
success of the operation (see MPE Intrinsics Reference Manual).

The example below illustrates these three steps.

To use the XARITRAP intrinsic, the programmer must follow a series of analogous steps. The only
possible parameter for the trap procedure, however, is a 1-word VAR parameter which returns a bit
pattern indicating which hardware error occured. The parameters of the XARITRAP intrinsic are
described in detail in the MPE Intrinsics Reference Manual. XCONTRAP, XSYSTRAP and XARITRAP
handlers cannot be totally written in Pascal.

Example:

PROGRAM FileErrorTrap(input,output);

{The main program requests the name of a file for processing}
{from the user. If this name causes a file system error at }
{the call to ~eset, the trap procedure prints the error }
{message and lets the user re-enter a :filename. Otherwise, }
{the program aborts with a message from the trap. }

TYPE
Short Integer = -32768 ..32767;

VAR
Try_Again boolean;
Old P Label : ShortInteger;
Filel-: FILE OF intege~;
File_Name: PACKED ARRAY[1 ..40] OF aha~;

PROCEDURE XLibTrap; INTRINSIC; {step A}

Since level 2,3 ... procedures are only known to Pascal all TRAP HANDLERS should be level 1
procedures.

10-21



--~-------.---

TRAPPING RUN-TIME ERRORS

PROCEDURE Lib Traps ( {step B}
- VAR StkMrk,

ErrorNum,
AbortFlag : Short Integer

); {must be a level 1 procedure}
TYPE

MsgLen = 1..72;
VAR

Message_Buffer : PACKED ARRAY[MsgLen] OF char;
Message_Length : MsgLen;
FS_Error : ShortInteger;

PROCEDURE FErrMsg; INTRINSIC;

PROCEDURE FCheck; INTRINSIC;

BEGIN {Lib_Traps}

CASE ErrorNum OF
692:

BEGIN {File open error}
FCheck(O,FS Error);
FErrMsg(FS Error,Message Buffer,Message Length);
writeln(Message Buffer :-Message Length);
Try Again := true; -
AbortFlag:= 0; {permits return to main program}

END; {File open error}
OTHERWISE

Try Again := false;
END; {"CASE ErrorNum}

IF NOT Try_Again THEN
BEGIN

writeln('*** Error detected during execution ***');
writeln('*** Library Error No. ',ErrorNum:8, I ***');
AbortFlag:= -1; {causes abort without message}

END;

END; {Lib_Traps}

10-22

Keven
Rectangle



TRAPPING RUN-TIME ERRORS

BEGIN {FileErrorTrap}

{step C}

WHILE Try_Again DO
BEGIN

prompt('Type file name for input: ');
readZn(File Name);
Try Again :; false; {Only try again if this one fails.}
reset(Filel,File_Name);

END;

WHILE NOT eof(Filel) DO
BEGIN
{Process Filel}
END;

END. {FileErrorTrap}

10-23



Keven
Rectangle



PASCAL/3000 SYNTAX DIAGRAMS

program ---+I
'--------'

progra m head in9

program
heading PROGRAM

procedure heading

•

A-1



PASCAL/3000 SYNTAX DIAGRAMS

constructor type
identifier

field identifier

constant

type---~--~ L- -Jtype identifier

A-2

Keven
Rectangle



PASCAL/3000 SYNTAX DIAGRAMS

procedure
heading

PROCEDURE formal parameter list

function
heading

FUNCTION formal parameter list type identifier

A-3



--, ------------ - -- ------- ---~----.---.-~-.-.----.~-~~-- --------,-.---~--••....-

PASCAL/3000 SYNTAX DIAGRAMS

formal
parameter
list

type identifier

function heading

procedure heading

FORWARD

INTRINSIC

EXTERNAL

A-4

Keven
Rectangle



PASCAL/3000 SYNTAX DIAGRAMS

statement

statement

A-5



PASCAL/3000 SYNTAX DIAGRAMS

e)(pression_~....,~

selector

A-6

Keven
Rectangle



reelI or
longreal

PASCAL/3000 SYNTAX DIAGRAM

unsigned
integer

( _\r--di9-it----,~..L)-...•_

A-7



~------- ------

PASCAL/3000 SYNTAX DIAGRAMS

string
litera I --""--~'*1 character

comment character

A-8

Keven
Rectangle



compiler
options

PASCAL/3000 SYNTAX DIAGRAMS

identifier

string literal

A-9



Keven
Rectangle



RESERVED WORDS AND
STANDARD IDENTIFIERS

Reserved Words

Reserved words are indivisible symbols with a fixed meaning. The programmer may not redefine a
reserved word, or use it other than in its defined way, except within a string literal or a comment.

Reserved words appear in upper case througout this manual. Within a Pascall3000 source text, however,
they may appear in any combination of upper and lower case. The Pascal/3000 reserved words are:

AND ELSE IN OTHERWISE THEN
ARRAY END LABEL PACKED TO
BEGIN FILE MOD PROCEDURE TYPE
CASE FOR NIL PROGRAM UNTIL
CONST FUNCTION NOT RECORD VAR
DIV GOTO OF REPEAT WHILE
DO IF OR SET WITH
DOWNTO

OTHERWISE is a special case. It ceases to be a reserved word when the ANSI compiler option is ON, or
when the STANDARD_LEVEL option is set to ANSI (see Section 8). When one of these conditions hold,
OTHERWISE may appear as a programmer-defined identifier.

Standard Identifiers

Standard identifiers are predefined identifiers which the compiler will recognize without explicit declaration
in source code. The programmer, however, may redefine a standard identifier in source code. In this case,
the compiler recognizes the new definition within the scope of the declared identifier.

Standard identifiers appear in italics throughout this manual. In source code, the compiler recognizes
standard identifiers in any combination of upper and lower case.

B-1



RESERVED WORDS AND STANDARD IDENTIFIERS

The Pascal/3000 standard identifiers are:

Standard Constants

false maxint minint true

Standard Types

boolean integer real text
char longreal string

Standard Files

input output

Standard Functions

abs exp position strltrim
arctan *fnum pred strmax
"baddress hex round strpos
binary linepos sin strrpt
"ccode In "sizeot strrtrim
chr maxpos sat succ
cos octal sqrt trunc
eot odd str "waddress
eoln ord strlen

Standard Procedures

append open release strinsert
"assert overprint readIn strmove
close pack reset strread
dispose page rewrite strwrite
get prompt seek unpack
halt put setstrlen write
mark read strappend writedir
new readdir strdelete writeln

*Pasca1/3000 only.

8-2

Keven
Rectangle



COMPILE-TIME ERRORS I UII!IH§
'----A_N_D_W_'A_R_N_IN_G_S ----' I c I

This appendix lists the annotated compile-time error messages and warnings for the Pascal/3000
compiler. Compile-time errors are numbered in the range 0..499; warnings are in the range 500 ..599.

The text of the message is followed by notes explaining the situations which cause the error or warning. An
exclamation point (1) in the messages reproduced here will be replaced in an actual message with an
appropiate token. These error and warning messages together with the notes are available on line in the
file PASCATPUB.SYS.

COMPILE-TIME ERRORS

001 FLOATING POINT OVERFLOW (001)
1. The absolute value of a real number is greater than 1.15792E77.
2. The absolute value of a longreal number is greater than 1.157920892373162E77'.

002 FLOATING POINT UNDERFLOW (002)
1. The real number is nonzero and the absolute value is less than 8.63E317E-78.
2. The longreal number is nonzero and the absolute value is less than a.636168555094445E-78.

003 ERROR IN FLOATING POINT NUMBER REPRESENTATION (003)
1. The real or longreal number must have a digit after the decimal point.

004 AN EXPONENT IS REQUIRED HERE (004)
1. The exponent for a real or longreal number is missing. A number is required after the 'E' or'L'.

005 ILLEGAL CONTROL CHARACTER CONSTANT (005)
1. The value of the constant following the sharp (#) is greater than 255.
2. The only characters that can follow a sharp (#) are a letter, @, [,], \, "', or _.'

006 A QUOTE IS EXPECTED HERE (006)
1. The end of line was found before the terminating quote. Strings literals cannot span source

lines.

007 INTEGER OVERFLOW (007)
1. The absolute value of the integer is greater than maxint, i.e. 2147483647.

008 END OF FILE FOUND BEFORE EXPECTED (008)
1. The compiler expects more source code. There may be an unmatched BEGIN-END or an

unclosed comment.

009 UNRECOGNIZED CHARACTER (009)
1. An illegal character was found in the source.

010 100 ERRORS--PROGRAM TERMINATED (010)
1. Only 100 errors are allowed before the compiler stops.

C-1



COMPILE-TIME ERRORS

011 A COMMA IS REQUIRED HERE (011)
1. A comma is needed to separate procedure/function names in the SUBPROGRAM compiler

option.

012 VARIABLE SPECIFICATION NOT ALLOWED HERE (012)
1. Only SPL procedures are allowed to have a variable number of parameters.

013 IDENTIFIER DOUBLY DEFINED (013)
. 1. An identifier in a parameter list is a duplicate of another identifier.
2. The procedure/function name is defined earlier and is not a FORWARD procedure/function.
3. The field name of a record is already declared.
4. The identifier is already declared in the current scope.

014 IDENTIFIER NOT DEFINED (014)
1. The identifier is an undeclared variable, constant, procedure or function.
2. The type identifier is undeclared.

015 INVALID VARIABLE USE (015)
1. The control variable of a FOR loop is being modified in the component statement of the FOR

loop, e.g. it is the control variable of a nested FOR loop, the left side of an assignment
statement, or an actual reference parameter of a user-defined or standard procedure.

2. The variable appears in the variable list of a WITH statement but is not a record type.
3. The identifer appears with subscripts but it is not an array or string.

016 TYPE IDENTIFIER REQUIRED HERE (016)
1. A constant or variable identifier has been used where a type identifier is required.

017 INVALID TYPE IDENTIFIER USE (017)
1. A type identifier has been used where a constant or variable identifier is required.
2. The construct in which the identifier occurs is not legal in this context. This is often an array,

record, or set constructor in executable code.

018 A CONSTANT EXPRESSION IS REQUIRED HERE (018)
1. A variable occurs where a constant is required.
2. An expression with variables occurs where a constant expression is required.
3. The expression contains an operator or a standard procedure or function which is not legal in a

constant expression.
4. The expression contains constant operands which are not legal, e.g. real, set, or boolean

values.

019 INVALID FORWARD TYPE IDENTIFIER DEFINITION (019)
1. The identifier appeared in a forward type definition and is now being declared as something

other than a type.

020 BOOLEAN EXPRESSION IS REQUIRED HERE (020)
1. An expression with a boolean result is required here.

C-2

Keven
Rectangle



COMPILE-TIME ERRORS

021 AN ORDINAL EXPRESSION IS REQUIRED HERE (021)
1. An expression with an ordinal result is required here.

022 INCOMPATIBLE SUBRANGE BOUNDS (022)
1. The type of the lower bound is not compatible with the type of the upper bound in a subrange.

023 AN INTEGER EXPRESSION IS REQUIRED HERE (023)
1. An expression with an integer result is required for the repeat factor in the' OF' construct in a

constructor.

024 LOWER BOUND OF SUBRANGE IS GREATER THAN UPPER BOUND (024)
1. The lower bound is greater than the upper bound in a subrange type declaration.

025 FOUND UNEXPECTED"!" (025)
1. The compiler was not expecting this token and it has been discarded. The token is illegal here

or a previous undetectable error has caused the compiler to issue this message, e.g. a semi-
colon (;) before ELSE.

026 MISSING T (026)
1. The compiler expected this token but it was omitted or badly misspelled. The correct token

was inserted.

027 W!W FOUND BEFORE EXPECTED. SOURCE MISSING. (027)
1. The compiler found this token before it was expected. The compiler was able to accept it by

inserting dummy conditions or statements.

028 MISUNDERSTOOD SOURCE BEFORE wr (028)
1. The compiler has discarded some previously accepted source code preceding this token.

Either the token is inappropriate but the compiler has been able to accept it by ignoring
previous code, or the token is correct and code must now be discarded.

029 W NOT ALLOWED AS A STRING LITERAL DELIMITER (029)
1. A double quote cannot delimit a string literal.

030 OPEN FAILED ON SOURCE FILE "l" (030)
1. The compiler could not open the source file.
2. The compiler could not open the include file.

031 READ FAILED ON SOURCE FILE (031)
1. The compiler could not read the source file.
2. The compiler could not read the include file.

032 EMPTY SOURCE FILE (032)
1. The source file is empty.

C-3



--~"----------

COMPILE-TIME ERRORS

033 MISSPELLED RESERVEDWORD: "!" (033)
1. The reserved word is misspelled.

034 FORWARD TYPE "!" NOT FOUND (034)
1. The identifier occurs in a pointer type definition but is not subsequently defined.

035 FORWARD PROCEDURE "!" NOT DECLARED (035)
1. A procedure declared with the FORWARD directive is not subsequently defined. The definition

may be missing, or the name appearing in the definition may be misspelled.

036 VIOLATION OF PASCAL SCOPING RULES (036)
1. The scope of a Pascal identifier is the entire block in which it is declared. It is not possible to

use an identifier from an enclosing level and then to redefine it at the new level.

037 INVALID USE OF"!" IN POINTER DEFINITION (037)
1. A non-type identifier defined on a previous level was used in a pointer type definition.

038 ILLEGAL PASCAL CONSTRUCT (038)
1. The use of the FOR construct with strings is illegal.

039 N!" ACCESSED, BUT NOT INITIALIZED (039)
1. A simple variable appears in an expression, as a value parameter, or in some other accessing

reference and it has never appeared in an assigning reference, i.e. as a reference parameter, on
the left side of an assignment statement, etc.

2. Some component of a structured variable appears in an accessing reference but no
component of that variable has yet appeared in an assigning reference.

040 INVALID STRING TYPE USE (040)
1. The standard type identifier string is not used to define a string type.

041 MISSING SEPARATER BETWEEN NUMBER AND IDENTIFIER (041)
1. A character was detected immediately following a number. Pascal requires that a separater

(space, comment, End of Line) be inbetween a number and an identifier or reserved word.

060 OPERAND NOT OF TYPE BOOLEAN (060)
1. A non-boolean operand appears with the operator NOT, OR, or AND.

061 WRONG TYPE OF OPERAND FOR ARITHMETIC OPERATOR (061)
1. A non-numeric operand appears with an arithmetic operator.

062 TYPE OF OPERAND NOT ALLOWED WITH OPERATOR (062)
1. An operand of this type cannot be used with this operator.

063 BASE TYPE OF OPERAND AND SET DO NOT AGREE (063)
1. The operand on the left of an IN operator is not type compatible with the set on the right.

C-4

Keven
Rectangle



COMPILE-TIME ERRORS

064 TYPES OF OPERANDS DO NOT AGREE (064)
1. The operands can be used separately but not at the same time with the operator. For example,

<boolean> = <integer>.

065 ASSIGNMENTS CANNOT BE MADE TO FILES (065)
1. An assignment cannot be made to a file or a structured variable with a file type component.
2. Structured constants cannot contain files. Building a structured constant with a type that

contains a file is illegal.
3. Variables which contain files cannot be passed as value parameters.

066 ASSIGNMENT TYPE CONFLICT (066)
1. The expression on the right side of an assignment statement is not assignment compatible with

the receiving entity on the left.
2. A constant in a constructor is not assignment compatible with the component to which it is

being assigned.
3. The subrange type of the expression being assigned does not intersect the type of the

receiving entity.

067 TYPE OF EXPRESSION NOT ALLOWED IN SUBRANGE (067)
1. The expression defining a subrange bound is not an ordinal expression.

068 ILLEGAL ASSIGNMENT TARGET (068)
1. An assignment was made to an identifier which is not a non-file variable or a function result,

e.g. a declared constant, a set or string type identifier.

069 INVALID CONSTANT EXPRESSION (069)
1. This expression is not legal in a CONST declaration. It is not a constant expression, or it is a

constant expression and the results of the arithmetic would be out of range of minint..maxint.

070 ILLEGAL TO ASSIGN TO (070)
1. The identifier denotes an entity which cannot appear on the right side of an assignment

statement, e.g. a set or string type identifier.

080 ARRAY INDEX TYPES NOT COMPATIBLE (080)
1. The subscript in an array reference is not compatible with the type of the index in the array

declaration.

081 ARRAY ELEMENT TYPES NOT EQUIVALENT (081)
1. Pack and unpack array parameters must have identical component types.

082 INVALID ARRAY SIZE (082)
1. The size of the array is too big for the compiler.
2. In pack or unpack the destination array is not large enough.

083 WRONG NUMBER OF ELEMENTS FOR ARRAY OR STRING CONSTANT (083)
1. While building an array or string constant, more components were specified than declared.
2. All the components were not specified while building an array constant.

C-5



COMPILE·TIME ERRORS

084 INVALID INDEX TYPE (084)
1. Index type is not an ordinal type.

085 REFERENCE TYPE MUST BE STRING OR ARRAY (085)
1. Tried to index structure which is not an array or string.

086 MAXIMUM STRING LENGTH MUST BE BETWEEN 1 AND 32767 (086)
1. Tried to declare string with with a maximum length < 1 or> 32767.

087 EXPRESSION FOR MAXIMUM LENGTH MUST BE TYPE INTEGER (087)
1. Tried to declare a string with a non-integer constant expression for the maximum length.

088 INCORRECT NUMBER OF INDICES FOR STRING DECLARATION (088)
1. A string can only have one index in a declaration.
2. No index was supplied in a string declaration.

089 TOO MANY SUBSCRIPTS IN STRING OR ARRAY REFERENCE (089)
1. The number of subscripts in the reference exceeds the number of subscripts in the

declaration of the array or string.

090 ILLEGAL CONSTRUCT FOR AN ARRAY OR STRING INDEX (090)
1. A sub range construct was used as an array or string index.

100 INVALID RECORD REFERENCE (100)
1. Record field referenced without specifying a record variable, constant, or function call which

returns a record.

101 INVALID FIELD IDENTIFIER (101)
1. The ident ifier is not one of the fields of the record used in the reference.

102 INVALID TAG TYPE (102)
1. The tag in a new or dispose procedure call is not a tag value of the specified record.

103 POINTER OR FILE REQUIRED FOR DEREFERENCE (103)
1. A pointer or file is required in a dereference.

104 POINTER VARIABLE IS REQUIRED HERE (104)
1. New, dispose, mark, and release all require a pointer variable as the first parameter.

105 FILES MAY NOT APPEAR IN THE VARIANT PART OF A RECORD (105)
1. Fields of a file type or a structure containing a file type may not appear in the variant part of a

record.

120 INVALID BASE TYPE FOR SET (120)
1. The base type of a set is not an ordinal type.

C-6

Keven
Rectangle



COMPILE-TIME ERRORS

121 ITEM NOT A LEGAL SET ELEMENT (121)
1. Element of a set is not an ordinal type.

122 OPERAND NOT A SET (122)
1. Right operand for an IN operator is not a set.

123 SET ELEMENTS NOT TYPE COMPATIBLE WITH EACH OTHER (123)
1. In an untyped set constructor, this element is not compatible with the first element in the set.

124 SET ELEMENT NOT COMPATIBLE WITH SET TYPE (124)
1. In a typed set constructor, the set element is not assignment compatible with the base type of

the set.

125 SET OF THIS SIZE CANNOT BE CONSTRUCTED (125)
1. To construct this set would require more than 2048 16-bit words.

140 BUILDING OF STRUCTURED CONSTANTS NOT ALLOWED HERE (140)
1. A constructor which is not a set constructor occurs outside of a CONST declaration section.
2. A constructor occurs as an element of a set or string constructor.

141 RECORD CONSTANT HAS MISSING FIELD (S) (141)
1. One or more fields missing in a record constructor. This message will also appear when the

name of a field is misspelled.

142 DUPLICATE FIELD NAME (142)
1. This field has already been defined in the constructor.

143 FIELD NAME DESIGNATOR NOT ALLOWED HERE
1. The constructor is not a record constructor.
2. This construction <field name>: <expression> appears outside of a record constructor.

144 MISSING FIELD NAME DESIGNATOR (144)
1. The construction <field name>: <expression> is required in a record constructor.

145 TYPE IDENTIFIER REQUIRED HERE (145)
1. The identifier preceding the left square bracket of a constructor is not a type identifier.

146 CONSTRUCT ONLY ALLOWED FOR ARRAYS AND STRINGS (146)
1. <Count> OF <expression> occurs when the constructor is not an array or string

constructor.

147 CONSTRUCT ONLY ALLOWED IN CONSTRUCTORS (147)
1. <Count> OF <expression> is used outside of a constructor.

148 SUBRANGE CONSTRUCT ILLEGAL EXCEPT IN SET CONSTRUCTOR (148)
1. A subrange construct was used in a string declaration or a non set structured constant.

C-7



COMPILE-TIME ERR~ORS

149 TOO BIG STRUCTURED CONSTANT (149)
1. A structured constant has a limit of 16383 words.

160 INVALID BASE TYPE FOR FILE: (160)
1. The component type of a file may not be a file or a structure with a file type component.

161 TEXTFILE VARIABLE IS REQUIRED HERE (161)
1. The pre-defined procedure or function in question may only be used with a file of type text.

162 TEXTFILE NOT ALLOWED HEI=lE (162)
1. The standard procedure or function in question may not be used with a file of type text.

163 INVALID TYPE FOR A PROGRAM PARAMETER (163)
1. An identifier in the program parameterlist has not been declared as a file variable, or a variable

of type PAC, string, or integer.

164 VARIABLE IS REQUIRED HERE (164)
1. A variable is required as the target for reading from a file or a string.

165 DEFAULT FILE INPUT MUST BE IN PROGRAM PARAMETER LIST (165)
1. The file variable in a standard procedure or function call was defaulted to INPUT, but INPUT

was not declared in the program parameter list.

166 DEFAULT FILE OUTPUT MUST BE IN THE PROGRAM PARAMETER LIST (166)
1. The file variable in a standard procedure or function call was defaulted to OUTPUT, but

OUTPUT did not appear in the program parameter list.

167 FORMAT EXPRESSION ALLOWED ONLY FOR TEXTFILES (167)
1. A formatted output expression may only occur when writing to a textfile or a string.

168 INTEGER VALUE IS REQUIRED HERE (168)
1. The expressions specifying the field width and the number of decimal digits for an output

expression are not type integer or an integer subrange.

169 SECOND FORMAT VALUE ALLOWED ONLY FOR REAL OR LONGREAL (169)
1. The format value which specifies the number of decimal digits in an output expression is only

legal for output values of type real or longreal.

190 THIS PROGRAM PARAMETER WAS UNDECLARED: "!" (190)
1. The identifier appeared in the program parameter list but was never declared.

191 DUPLICATE PROGRAM PARAMETER (191)
1. There is more than one PARMparameter or more than one INFO parameter in a program

parameter list.

192 PARAMETER "!" DOES NOT MATCH POSSIBLE SPL TYPES (192)
1. The Pascal type of the parameter does not correspond to an acceptable SPL type.

C-8

Keven
Rectangle



COMPILE-TIME ERRORS

193 PARAMETER "!" DOES NOT MATCH INTRINSIC PARM TYPE (193)
1. The Pascal type of the the parameter does not match the parameter type required by the

intrinsic.

194 MISSING FUNCTION RETURN SPECIFICATION (194)
1. The return type is not specified in the function heading.

195 INVALID PARAMETER TO HALT (195)
1. The optional parameter to halt is not type integer or an integer subrange.

196 THIS INTRINSIC MAY NOT BE USED AS A FUNCTION (196)
1. The specified intrinsic does not return a result and, therefore, cannot be declared as a function.

197 ELEMENTS OF PACKED STRUCTURES CANNOT BE PASSED BY VAR (197)
1. Elements of packed arrays or records may not be passed to a routine expecting a reference

parameter.

198 EMPTY PARAMETER MAY NOT BE USED HERE (198)
1. Actual parameters may only be omitted for EXTERNAL SPL VARIABLE procedures or for

intrinsics which are option variable intrinsics.

199 PROCEDURE NOT DECLARED (199)
1. The identifier used in the procedure call has not been declared, or it is not a procedure name.

200 PARAMETER'T' MUST BE VAR PARAMETER. (200)
1. The parameter in the intrinsic declaration was specified as a value parameter, but the intrinsic

requires a reference parameter.

201 PARAMETER "!" MUST BE VALUE PARAMETER (201)
1. The parameter in the intrinsic declaration was specified as a reference parameter, but the

intrinsic requires a value parameter.

202 INVALID USE OF PROCEDURE OR FUNCTION IDENTIFIER (202)
1. A procedure identifier appears as a function call.
2. A function identifier appears as a procedure call.
3. A valid identifier mistakenly appears as a function or procedure identifier.

203 INCONSISTENT DEFINITION OF FORWARD PROCEDURE OR FUNCTION (203)
1. The definition of a procedure declared FORWARD is a function. The definition of a function

declared FORWARD is a procedure.
2. The ALIAS in the definition differs from the ALIAS in the FORWARD declaration of a procedure

or function.
3. A FORWARD declaration is already provided for a function or procedure now declared

FORWARD, EXTERNAL, or INTRINSIC.

204 INVALID DIRECTIVE (204)
1. EXTERNAL, EXTERNAL SPL, EXTERNAL SPL VARIABLE, EXTERNAL FORTRAN,

EXTERNAL COBOL, FORWARD, and INTRINSIC are the only legal directives.

C-9



COMPILE-TIME ERRORS

205 INVALID LANGUAGE SPECIFICATION (205)
1. The language specified was not FORTRAN, SPL, or COBOL.
2. A language cannot be specified with the FORWARD or INTRINSIC directives.

206 INCORRECT NUMBER OF PARAMETERS (206)
1. The number of actual parameters given is too few or too many for the procedure or function.

207 UNMATCHED PARAMETERS IN FORWARD (207)
1. Parameters in the definition of a procedure or function declared FORWARD do not match the

parameters of the original heading.

208 ACTUAL PARAMETER NOT COMPATIBLE WITH FORMAL PARAMETER (208)
1. This actual reference parameter is not type identical with the formal reference parameter in a

user-defined function or procedure.
2. This actual value parameter is not assignment compatible with the formal value parameter in a

user-defined function or procedure.
3. The type of this actual reference parameter is not convertible to the SPL type of the formal

reference parameter of the intrinsic.
4. The type of this actual value parameter is not convertible to the SPL type of the formal value

parameter of the intrinsic.
5. This actual reference parameter to a standard function or procedure is not type identical with

the formal reference parameter.
6. This actual value parameter to a standard function or procedure is not assignment compatible

to the required type.
7. The parameter of the standard sqr function is an integer subrange type with a lower bound

greater than the square root of maxint, or an upper bound less than the negation of the square
root of maxint. In either case, an integer overflow is possible at run time.

209 NO FURTHER CASE CONSTANT PARAMETERS ALLOWED TO NEW (209)
1. The pointer parameter to new points to a record that has no additional nested variant parts.
2. The pointer parameter to new points to a record that does not have a variant part.
3. The pointer parameter to new points to a structure which is not a record.

210 NO FURTHER CASE CONSTANT PARAMETERS ALLOWED TO DISPOSE (210)
1. The pointer parameter to dispose points to a record that has no additional nested variant

parts.
2. The pointer parameter to dispose points to a record that does not have a variant part.
3. The pointer parameter to dispose points to a structure which is not a record.

211 NO FURTHER PARAMETERS ALLOWED TO MARK (211)
1. More than one pointer parameter in a call [0 mark.

212 NO FURTHER PARAMETERS ALLOWED TO RELEASE (212)
1. More than one pointer parameter in a call to release.

C-10

Keven
Rectangle



COMPILE-TIME ERRORS

213 VALUE PARAMETER MAY NOT CONTAIN FILE COMPONENT (213)
1. This value formal parameter is a file or a structured type with a file type component. This is

equivalent to assigning to a file.

214 FUNCTION TYPE MAY NOT CONTAIN FILE COMPONENT (214)
1. This function return type is a file or a structured type that contains a file type component. This

is equivalent to assigning to a file.

215 COMPILER LEVEL WRONG -- PROBABLY UNMATCHED "END" (215)
1. This occurrence of END cannot match a BEGIN because all compound statements have been

terminated. The compiler disregards the extraneous END.

216 BAD CONSTANT PARAMETER (216)
1. This parameter to succ is a constant value equal to the maximum value of an ordinal type.
2. This parameter to pred is a constant value equal to the minimum value of an ordinal type.
3. This string constant parameter to binary, octal, or hex contains an invalid character, or

represents a value outside the range minint ..maxint.
4. This parameter to abs is a constant value equal to minint but abs (minint) > maxint.
5. This parameter to chr is a constant value outside the range 0..255.

217 PROCEDURE OR FUNCTION NOT IN INTRINSIC FILE (217)
1. An incorrect SPLlNTR file was specified prior to the declaration of the procedure or function.
2. The intrinsic name differs slightly from the procedure or function name declared INTRINSIC.

The ALIAS option should be used, or the spelling of the ALIAS parameter corrected.
3. The procedure has never been put into the SPLlNTR file.

218 SPLlNTR FILE NOT CHECKED (218)
1. Due to a prior error, the SPLlNTR file was never opened. Thus, no attempt was made to look up

this procedure or function.

219 "STRING" IS NOT ALLOWED AS A VALUE PARAMETER (219)
1. A string formal value parameter must have a specified maximum length.

220 FUNCTION "1" NOT ASSIGNED TO (220)
1. A function of a simple type has no assigning reference to the result in the function body.
2. A function of a structured type has no assigning reference to any component of the result in the

function body.

221 DECLARED FUNCTION TYPE DOES NOT MATCH INTRINSIC TYPE (221)
1. The Pascal type of the return of a function declared INTRINSIC does not match the SPL type of

the value returned by the intrinsic.

C-11



---------~--------- --------- -~-~~-- - -~ --- - -------------------------

COMPILE-TIME ERRORS

222 VARIABLE PARAMETER REQUIRED HERE (222)
1. An expression appears as an actual reference parameter instead of a variable.
2. A constant appears as an actual reference parameter instead of a variable.
3. A component of a structured constant appears as an actual reference parameter instead of a

variable.

223 ILLEGAL PARAMETER FORM (223)
1. The integer parameter to a string procedure/function is not compatible with a 16 bit integer.
2. The actual parameter is a procedure or function identifier, but the corresponding formal

parameter is not a procedure or function heading.
3. The parameters of the actual procedural or functional parameter are not congruent with the

parameters of the formal procedural or functional parameter.
4. The parameter of a call to waddress or sizeof is a component of a packed structure.
5. The parameter of a call to baddress is a component of a packed structure other than a PAC.
6. The third parameter of a call to assert is not a procedure identifier, or the parameter of such a

procedure is not an integer value parameter.

224 SYSTEM ADDRESSING LIMIT EXCEEDED (224)
1. . O-minus addressing for parameters or function results is exceed. (0-64)
2. The storage limit for variables at run time is exceeded. (DB+255; 0+127 or storage

exceeded.)

230 INVALID CONTROL VARIABLE IN FOR STATEMENT (230)
1. The control variable of the FOR loop is a record field.
2. The control variable of the FOR loop is defined in a scope containing the current scope.
3. The control variable of the FOR loop is a formal parameter of a procedure or function

containing the FOR statement.
4. The identifier used as the control variable of the FOR is not a variable.

231 CONTROL VARIABLE NOT AN ORDINAL TYPE (231)
1. The control variable of the FOR loop is not an ordinal type.

232 EXPRESSION NOT COMPATIBLE WITH CONTROL VARIABLE (232)
1. The expressions for the initial and final values are not type compatible with the control variable

of a FOR loop.

233 INITIAL AND FINAL EXPRESSIONS NOT COMPATIBLE (233)
1. The types of the expressions for the initial and final values of the FOR loop are not type

compatible.

250 DUPLICATE CASE LABEL (250)
1. The case label is the same as a case label that appeared previously.
2. The case label is contained in a previous case label subrange.
3. The case label subrange contains at least one case label that appeared previously.

251 CASE LABEL OF INCORRECT TYPE (251)
1. The type of the case label is not the same as the type of of the tag in the select expression.

C-12

Keven
Rectangle



COMPILE-TIME ERRORS

252 CASE LABEL TYPE NOT SAME AS PREVIOUS CASE LABEL (252)
1. There was an error in the tag type or select expression and the case labels are checked against

each other. The type of the current case label does not match the type of previous case labels.

270 INVALID LABEL - MUST BE AN INTEGER BETWEEN 0 AND 9999 (270)
1. This label is not an integer.
2. A colon (:) appears or was inserted by the compiler where no label was desired.

271 LABEL HAS NOT BEEN DECLARED (271)
1. This label marks a statement but never appeared in a LABEL declaration for this block.

272 LABEL DECLARED MORE THAN ONCE (272)
1. This label already appeared in this LABEL section or in a LABEL section in an enclosing scope.

273 SAME LABEL NOT ALLOWED ON MORE THAN ONE STATEMENT (273)
1. This label has already marked a statement.

274 LABEL "!" NOT USED (274)
1. The label appears in a LABEL declaration but iisnever used to mark a statement.

275 LABEL REFERENCED BY GOTO OUTSIDE STRUCTURED STATEMENT (275)
1. This label appears in a component statement of a structured statement and was previously

referenced by a GOTO statement:
(a) preceding the structured statement.
(b) in a preceding component statement of the same structured statement.
(c) contained in an inner procedure or function.

276 GOTO REFERENCES LABEL INSIDE STRUCTURED STATEMENT (276)
1. The label referenced in a GOTO statement appears in a component statement of a structured

statement and the GOTO statement appears:
(a) after the structured statement.
(b) in a later component statement of the same structured statement.

400 INVALID FILENAME (400)
1. The filename given in the INCLUDE or SPLlNTI~ option is not a legal MPE filename.

401 ILLEGAL NAME IN ALIAS OR SUBPROGRAM OPTION (401)
1. The procedure or function name in an ALIAS option is not a valid identifier.
2. The procedure or function name in a SUBPROGRAM option is not a valid Pascal identifier.

402 NOT A LEGAL SEGMENT NAME (402)
1. The segment name for a SEGMENT option is not legal.

C-13



------------- -------------------------

Keven
Rectangle



COMPILE-TIME ERRORS

403 IF EXPRESSION CAN NOT BE EVALUATED (403)
1. The expression in a $IF has a syntax error in it.

404 UNMATCHED ENDIF FOUND (404)
1. An ENDIF compiler option was found without a preceeding IF option. This may happen if the

compiler rejects an IF because it was out of place, as well as the user not putting in the IF.

405 A BOOLEAN EXPRESSION IS REQUIRED INSIDE STRING (405)
1. A blank string was found as part of a IF.

406 EXPECTED TRUE/FALSE AFTER '=' (406)
1. Misspelled true/false after '=' in $SET.
2. Missing true/false after '=' in $SET.

408 UNMATCHED $ENDIF OR $ELSE FOUND (408)
1. An ENDIF/ELSE compiler option was found without a preceeding IF option. This may

happen if the compiler rejects an IF because it was out of place, as well as the user not
putting in the IF.

409 EXCEEDED MAXIMUM NESTING LEVEL FOR $IF (409)
1. The nesting of $IF exceeded the maximum allowable nesting level.

410 ILLEGAL IDENTIFIER IN $SET (410)
1. Identifier is misspelled.
2. Expected an identifier and one was not found.

C-13A



Keven
Rectangle



COMPILE-TIME ERRORS

425 CATASTROPHIC COMPILER ERROR !, COMPILE TERMtNATED (425)
(1..999) A run-time error was detected by the run-time support library during compiler

execution.
(1000 .. 1015) A run-time error was detected in an arithmetic operation during compiler execution.
(2000 ..2999) A run-time error was detected by a system intrinsic during compiler execution.

426 SYSTEM RESOURCE EXHAUSTED !, COMPILE TERMINATED (426)
(1) The compiler ran out of space in the heap.
(2) The compiler ran out of space in one of its data segments.

427 PROCEDURE CALL OVERFLOW - COMPILE TERMINATED (427)
1. The maximum number of different procedures/functions and private procedures/functions

which may be called from a single RBM is 254. This limit has been exceeded.

428 CODE SEGMENT OVERFLOW - COMPILE TERMINATED (428)
1. The maximum number of words permitted in a single RBM (16838) has been exceeded.

451 UNABLE TO OPEN USL FILE (451)
1. FOPEN error on USL file. Unable to open either an old, temporary, or new USL file.

452 UNABLE TO SAVE USL FILE PERMANENT - SAVED TEMPORARY (452)
1. A new USL file was unable to be saved as a permanent file. An attempt was made to save the

file as a temporary file.

453 UNABLE TO CLOSE USL FILE (453)
1. A new USL file, which was unable to be saved as a permanent file, cannot be saved as a

temporary file and will be lost when compilation is complete.
2. An error occurred when closing $NEWPASS, $OLDPASS, or an existing temporary or

permanent USL file.

454 USL FILE ACCESS ERROR (454)
1. A file system error occured while trying to access the USL file with FCHECK.

455 USL FILE ACCESS ERROR (455)
1. A file system error occured while trying to access the USL file with FGETINFO.

456 USL FILE READ ERROR (456)
1. A file system error occured while trying to access the USL file with FREAD.

457 USL FILE WRITE ERROR (457)
1. A file system error occured while trying to access the USL file with FWRITE.

C-14



-------------~ ---------------"--------------------

Keven
Rectangle



COMPILE-TIME ERRORS

459 OVERFLOW ON USL FILE (459)
1. The available information length (AIL) of the USL file is less than the size of the header to be

placed in the information area of the USL file. The default size of the USL file is 1023 records.
This may be increased by pre- building the file or by using a file equation. Also, a USL file may
have several inactive procedures which can be removed using the USLINIT compiler option or
the CLEANUSL command in the Segmenter.

460 DIRECTORY OVERFLOW ON USL FILE (460)
1. The available directory length (ADL) of the USL file is less than the size of the entry to be

placed in the directory.

461 PARSER STACK OVEFiFLOW - TOO MANY NESTED CONSTRUCTS (462)
1. An internal compiler limit on nested structures has been reached. The most common cause is a

long list of ELSE:-IF's.

WARNINGS

500 OPTION NOT YET IMF'LEMENTED (500)
1. This compiler option is not yet implemented.

501 UNRECOGNIZED COMPILER OPTION (501)
1. A compiler option with this name is not recognized by Pascal/3000.

502 THIS OPTION IS NOT ALLOWED HERE (502)
1. The option appears in an illegal location in source code. For example, the GLOBAL option

appears anywhere except before the PROGRAM heading.

503 TEXT AFTER INCLUDE OR SKIPTEXT IGNORED (503)
1. Anything on the source line after INCLUDE was ignored.
2. Anything on the source line after a SKIP-TEXT ON was treated as a comment.

504 INTEGER OUT OF RANGE, VALUE NOT CHANGED (504)
1. LINES requires an integer> 20
2. WIDTH requires an integer in the range 10.. 132.
3. CHECK-ACTUAL-PARM and CHECK-FORMAL-PARM require an integer in the range

0..3.

505 STRING PARAMETER IS REQUIRED, OPTION IGNORED (505)
1. This option requires information in a string literal parameter.

50T BOTH GLOBAL AND EXTERNAL NOT ALLOWED (507)
1. The option ~LOBAL occurred after the option EXTERNAL was specified. Since only one is

allowed, GLOBAL was ignored.
2. The option EXTERNAL occurred after the option GLOBAL was specified. Since only one is

allowed, EXTERNAL was ignored.

C-15



COMPILE-TIME ERRORS

508 A '$' IS REQUIRED HERE - ONE INSERTED (508)
1. Compiler option doesn't end with a $ on the same line.

509 EXPRESSION WILL CAUSE A RUN-TIME OVERFLOW (509)
1. The result of an expression will exceed maxint at run time. This is detected for:

(a) +, -, * when the types of the operands are such that the expression will go over. For
example: VAR A: maxint-10 ..maxint, Then the expression A + A would never be less
than 2 * maxint - 10, which is > maxint.

(b) -minint.
(c) the addition, substraction, or multiplication of of two constants resulting in an

overflow.

510 EXPRESSION WILL CAUSE A RUN-TIME UNDERFLOW (510)
1. The result of an expression will be less than minint at run time. This is detected for:

(a) +, -,* when the types of the operands are such that that the expression will go under.
For example: VAR A: maxint - 10..tnexint; B: minint..minint + 10 Then the expression
B - A would be less than minint + 10 - maxint, which is < minint.

(b) the addition, substraction, or multiplication of two constants resulting in an underflow.

511 MOD DIVISOR WILL CAUSE A RUN-TIME ERROR (511)
1. In an expression A MOD B, B will be <= 0 at run time.
2. In a constant expression A MOD B, B Is <= O.

512 RUN-TIME DIVISION BY ZERO (512)
1. In an expression A DIV B, B = O.
2. In a constant expression A DIV B, B = O.

513 EMPTY INCLUDE FILE (513)
1. The INCLUDE file had no text in it.

514 $ NOT ALLOWED IN INFO PARAMETER (514)
1. The INFO parameter of a :PASCAL, :PASCALPREP, or :PASCALGO command is interpreted

as a compiler option with the $ assumed as the leading and trailing character. The $ cannot
appear in the INFO string itself.

515 NO DISC SPACE FOR XREF (515)
1. An MPE file error occured trying to open the file needed to do the cross reference. This could

be any MPE file error, with OUT OF DISC SPACE being the most likely. A temporary file with the
name PASXRFdd, where d is a digit, is another possible cause.

516 NO VARIANT FOR TAG VALUE (516)
1. A new was called specifiying a tag constant which did not appear in the case list in the variant

part. The maximum space for the record is allocated.

C-16

Keven
Rectangle



COMPILE-TIME ERRORS

517 THIS FEATURE IS HP STANDARD PASCAL (517)
1. ANSI is ON or STANDARD-LEVEL is set to ANSI and this feature is an HP Standard Pascal

extension of ANSI Pascal.

518 THIS FEATURE IS HP3000 PASCAL (518)
1. ANSI is ON or STANDARD-LEVEL is set to HP or ANSI and this feature is unique to the

HP3000 implementation of Pascal.

519 BOOLEAN EXPRESSION FOLDED TO A CONSTANT (519)
1. The compiler has folded an expression with IN, AND, or OR and constant operands or, in the

case of IN, with a left operand which is a constant appearing the set list.
2. The compiler has folded an expression with =, <c-, <=, >=, or > and operands which are

non-set constants.
3. With PARTIAL-EVAL ON, the compiler has folded an expression with OR when TRUE is an

operand, or an expression with AND when FALSE is an operand.

520 NON-OVERLAPPING TYPES - EXPRESSION FOLDED (520)
1. Two sets with ranges that don't overlap were intersected. The compiler folded the expression to

the empty set.
2. An arithmetic comparison was done with operands of types with ranges that do not overlap.

The compiler folded the expression. For example, if A: 0..3 and B: 5..7, then A = B is folded to
false.

521 BODY OF FOR LOOP WILL NEVER EXECUTE (521)
1. Values of the initial and final expressions will prevent the body of the FOR loop from ever

executing.
2. Non-overlapping subranges for the types of the initial and final expressions prevent the body of

the FOR loop from ever executing.

522 CASE LABEL NOT WITHIN TAG OR SELECT EXPRESSION RANGE (522)
1. The case label value or subrange is not within the range ofthe tag type and can never be

specified in a call to new or assigned to the tag field.
2. The case label value or subrange is not within the range of the select expression and can never

be selected.

523 INTEGER CONSTANT IS REQUIRED - OPTION IGNORED (523)
1. This compiler option requires an integer parameter, e.g. WIDTH. The compiler has ignored

this option.

524 SUBPROGRAM"!" SPECIFIED, BUT NOT FOUND (524)
1. A procedure or function name specified in the SUBPROGRAM option was not found in this

source.

C-17



COMPILE-TIME ERRORS

525 ANY EXTERNAL GOTO TO THIS LABEL IS AN ERROR (525)
1. This label marks a component statement of a structured statement. This label cannot be

referenced by a GOTO statement contained in an external procedure or function, but that error
will not be detected until the program is prepared or executed.

526 EXPRESSION FOLDED TO THE EMPTY SET (526)
1. The compiler has determined that a set expression results in an empty set and folded that

expression to empty. This warning appears in case the user expected side effects or made
some kind of error which caused the folding. Folding occurs when an intersection is performed
with the empty set, the empty set occurs on the left side of the set difference operator, or two
empty sets appear in a set operation.

527 'ON' OR 'OFF' IS REQUIRED HERE (527)
1. The word ON or OFF is required after this compiler option name, e.g. LIST.

528 PREVIOUS VERSION OF H!" INACTIVATED (528)
1. A procedure or function by the same name already exists in the USL file and has been

inactivated.
2. If PRIVATE_PROC was ON, then two level 1 procedure or function names are not unique

within the first 15 characters or a copy from a previous compilation is being replaced.
3. If PRIVATE_PROC was OFF, then either duplicate non-level 1 procedure or function names

exist (i.e. they are not unique within 15 characters) or duplicate procedure or function
names have been introduced due to separate compilation of procedures or functions with
names which are identical within the first 15 characters ..

529 USL FILE DIRECTORY NOT VAllE - INITIALIZED (529)
1. If the USL file is a new file, the directory has been initialized.
2. If the USL file is a old file, the directory information was not consistent with the USL file

structure and has been initialized. Any information that may have been contained in the USL
file is no longer accessible.

530 EXPRESSION WILL CAUSE A RUN-TIME SET RANGE ERROR (530)
1. Evaluation of a set construction in which an element of the set list will necessarily fall outside

the bounds of the set construction will cause this error.

531 BYTE TO WORD ADDRESS CONVERSION HERE (531)
1. A byte oriented variable being passed to an intrinsic expecting a word oriented reference

parameter will result in this warning. Pascal/3000 will properly convert all even byte
addresses to word addresses, but changes an odd byte address to the address of the word
containing the odd byte.

C-1B

Keven
Rectangle



COMPILE-TIME ERRORS

532 PASWKSP IS NOT A VALID TSAM ROOT FILE (532)
1. The actual file designator for the formal designator PASWKSP is not a TSAM root file.

533 BAD FONT OPTION GIVEN (533)_
1. The call to FDeviceControl returned an error condition.

534 CONTROL VARIABLE HAS BEEN ASSIGNED TO NONLOCALLY (534)
1. The control variable may be modified by a non local reference from a routine invoked in the

body of the for loop.

535 "!" ACCESSED, BUT NOT INITIALIZED (535)
1. A simple' variable appears in an expression, as a value parameter, or in some other

accessing reference and it has never appeared in an assigning reference, i.e. as a
reference parameter, on the left side of an assignment statement, etc.

2. Some component of a structured variable appears in an accessing reference but no
component of that variable has yet appeared in an assigning reference.

C-18A



.~~~~ ..~-~- .•. - .._--_ ..

Keven
Rectangle



RUN-TIME ERRORS

This appendix lists the annotated run-time error messages for Pascal/3000. These messages are
numbered 600 and above. The messages together with the notes are available on line in the file
PASCAT.PUB.SYS. The programmer may trap any run-time Pascal error using the XLlBTRAP intrinsic
(see Section 10).

600 INSUFFICIENT HEAP AREA TO ALLOCATE VARIABLE (PASCERR 600)
1. Heap cannot be expanded to allocate a dynamic variable because the MAXDATA value for the

program will be exceeded.
2. Heap cannot be expanded to allocate a dynamic variable because the system configuration

MAXDATA value will be exceeded.

601 INVALID DISPOSE PARAMETER (PASCERR 601)
1. The pointer parameter to dispose in NIL.
2. The pointer parameter to dispose does not identify any area allocated by new.
3. The pointer parameter to dispose identifies an area previously deallocated by release.

602 REPEATED USE OF DISPOSE ON GIVEN PARAMETER (PASCERR 602)
1. The pointer parameter to dispose identifies an area previously deal located by dispose.

603 DISPOSE PARAMETER ALLOCATED AS DIFFERENT VARIANT (PASCERR 603)
1. The pointer parameter to dispose identifies an area allocated by new with a different sequence

of case constants.
2. The pointer parameter to dispose includes case constants, but it identifies an area allocated by

new without any case constants.
3. The pointer parameter to dispose does not include case constants, but it identifies an area

allocated by new with case constants.

604 DISPOSE PARAMETER CONTAINS AN OPEN SCOPE (PASCERR 604)
1. The pointer parameter to dispose identifies an area containing an actual variable parameter, an

element of the record variable list of a WITH statement, or both.

605 INVALID RELEASE PARAMETER (PASCERR 605)
1. The parameter to release was not set by a previous call to mark.
2. The parameter to release was set by a call to mark, but a previous call to release has been

made with this parameter.
3. The parameter to release was set by a call to mark, but that call to mark was preceded by a

call to mark with a different parameter that has already been used as a parameter to release.

606 RELEASE PARAMETER ENCLOSES AN OPEN SCOPE (PASCERR 606)
1. The parameter to release identifies an area containing an actual variable parameter, an

element of the record variable list of a WITH statement, or both.

607 RELEASE PARAMETER ENCLOSES GETHEAP AREA (S) (PASCERR 607)
1. The parameter to release identifies an area containing areas the user allocated with the

GETHEAP procedure but has not yet deallocated with the RTNHEAP procedure.
2. The parameter to release identifies an area containing areas a subsystem allocated with the

GETHEAP procedure but has not yet dealiocatedwith the RTNHEAP procedure.

D-1



---"----

RUN-TIME ERRORS

608 HEAP INTEGRITY LOST I HEAP DATA LOST (PASCERR 608)
1. The internal data structures of the heap have become inconsistent. The most likely causes are:

a) A field has been assigned to in a variant different than the one specified in a call to
new.

b) A pointer to a disposed area, i.e. a dangling pointer, has been dereferenced in an
assignment.

c) An SPL routine has directly accessed the DL-DB area outside of a region allocated by
the GETHEAP procedure.

d) The DLSIZE intrinsic has been called.
e) The RTNHEAP procedure was unable to return an area.

620 VALUE NOT WITHIN SUBRANGE (PASCERR 620)
1. The value of an ordinal expression is outside of the subranqe of the target of an assignment

statement.
2. The value of an ordinal expression appearing as an actual parameter is outside the subrange of

the formal value parameter.
3. The value of an ordinal expression appearing in an array selector is outside of the subrange of

the index type.

621 NO CASE LABEL FOR SELECTOR VALUE (PASCERR 621)
1. The value of the case select expression does not match an of the specified case constants and

no OTHERWISE clause appears.

622 INVALID POINTER (PASCERR 622)
1. A pointer with the value of NIL was dereferenced.
2. A pointer with an undefined value was dereferenced.
3. A pointer set by mark was dereferenced.
4. A pointer identifing an area previously deallocated was dereferenced.

623 VALUE OF PRED UNDEFINED (PASCERR 623)
1. The minimum value of an ordinal type or subrange was the parameter to pred. The result is

undefined.

624 VALUE OF SUCC UNDEFINED (PASCERR 624)
1. The maximum value of an ordinal type or subrange was the parameter to succ. The result is

undefined.

625 SET RANGE ERROR (PASCERR 625)
1. An attempt was made to assign a set to a set variable when the set contains an element not

within the set range of the variable.
2. An attempt was made to pass a set to a formal parameter when the set contains an element

not within the set range of the parameter.

626 ATTEMPT TO DO MOD BY NEGATIVE VALUE (PASCERR 626)
1. An attempt was made to perform the MOD operation when the right operand is negative.

D-2

Keven
Rectangle



RUN-TIME ERRORS

640 BAD PROCEDURAL PARAMETER (PASCERR 640)
1. A non-level 1 procedure or function was passed as a procedural or functional parameter to an

external, non-Pascal routine.

650 STRING OVERFLOW (PASCERR 650)
1. An attempt was made to index beyond the maximum length of the string.

651 STRING INDEX EXCEEDS CURRENT LENGTH (PASCERR 651)
1. An attempt was made to index beyond the current length of the string.

652 DESIGNATED CHARACTER POSITION (S) OUTSIDE STRING (pASCERR 652)
1. The specified offset is greater than the current length of the string.

653 DESIGNATED CHARACTER POSITION (S) OUTSIDE PAC (PASCERR 653)
1. The specified offset is greater than the upper bound of the PAC.

654 ATIEMPT TO READ PAST END OF STRING (PASCERR 654)
1. Attempt was made to read beyond the maximum length of the string.

655 INVALID NUMBER OF CHARACTERS SPECIFIED (PASCERR 655)
1. The number of characters to be copied in the predefined procedure STRMOVE is less than

zero.

670 INVALID CHARACTER FOR HEX DIGIT (PASCERR 670)
1. The character was not in the set 0..9,A ..F, or a..f.

671 INVALID CHARACTER FOR OCTAL DIGIT (PASCERR 671)
1. The character was not in the set 0..7.

672 INVALID CHARACTER FOR BINARY DIGIT (PASCERR 672)
1. The character was not in the set 0.. 1.

673 NUMBER OF SIGNIFICANT DIGITS CAUSED OVERFLOW (PASCERR 673)
1. The number of significant digits was more than 32 for the standard function binary, 11 for the

function octal, or 8 for the function hex.

PASCAL FILE ERRORS

Using the XLlBTRAP intrinsic, it is possible to trap run-time file errors. Certain of these errors actually
correspond to errors detected by MPE File System intrinsics which Pascal invokes to perform I/O
operations. For errors of this type, a call to the intrinsic FCHECK will yield the particular MPE File System
error. For other errors, however, FCHECK will not return meaningful results. In the following annotations,
the advisability of using FCHECK is indicated.

0-3



RUN-TIME ERRORS

690 OPEN ERROR: PHYSICAL FILE COULD NOT BE CLOSED (PASCERR 690)
1. An attempt was made to open a file, but the logical file was already associated with a physical

file and this physical file could not be closed prior to opening another physical file. FCHECK
may be called.

691 OPEN ERROR: MISMATCH OF LOGICALIPHYSICALFILES (PASCERR 691)
1. The characteristics of the logical file are not compatible with those of the associated physical

file. For example, a physical file with variable length records may not be opened for direct
access. FCHECK should not be called.

692 FILE OPEN ERROR (PASCERR 692)
1. An error occurred when FOPEN was called to open the file. FCHECK with 0 as the file number

will give the MPE File System error number.

693 ERROR OCCURRED WHILE READING FROM FILE (PASCERR 693)
1. MPE detected an error during a call to FREAD. FCHECK may be called.

694 ATTEMPT TO READ PAST EOF (PASCERR 694)
1. The current position is past the last component of the file. FCHECK should not be called.

695 ERROR OCCURRED WHILE WRITING TO FILE (PASCERR 695)
1. MPE detected an error during a call to FWRITE. FCHECK may be called.

696 WRITE ON READ-ONLY FILE (PASCERR 696)
1. An attempt was made to perform an output operation on a file opened for input access only.

FCHECK should not be called.

697 OPEN ERROR: UNABLE TO INITIALIZE POSITION (PASCERR 697)
1. A request was made to open a logical file already associated with the physical file and MPE

was unable to reposition the file pointer at the beginning of the physical file. FCHECK may be
called.

698 OPEN ERROR: UNABLE TO EMPTY FILE (PASCERR 698)
1. Rewrite was unable to empty the file of its previous contents. FCHECK may be called.

699 UNABLE TO CLOSE FILE (PASCERR 699)
1. The file could not be closed as requested. FCHECK may be called. If the file system error

returned by FCheck is FSERR 72 (Invalid File Number), then the likely reasons for the error
are either 1) FCiose was used to close the file at the system level, thereby making the file
number invalid when Pascal attempts to close it or 2) all or part of the File Control Block for
the file has been overwritten by the user program.

D-4

Keven
Rectangle



700 ERROR OCCURRED DURING DIRECT ACCESS 110 (PASCERR 700)
1. MPE detected an error during a file operation on a direct access file. FCHECK may be called.

701 ILLEGAL CHARACTER IN NUMBER (PASCERR 701)
1. An attempt was made to read a number from a text file but an illegal character was found

before a valid number. FCHECK should not be called.

702 INPUT VALUE OVERFLOW (PASCERR 702)
1. The numeric value read is too large for the type of the variable. FCHECK should not be called.

703 ATTEMPT TO WRITE PAST PHYSICAL BOUNDS OF FILE (PASCERR 703)
1. THe current record position is past the physical limit of the file. FCHECK should not be called.

D-4A



Keven
Rectangle



RUN-TIME ERRORS

704 READ ATTEMPTED FROM OUTPUT FILE (PASCERR 704)
1. An attempt was made to perform an input operation on a file opened only for output. FCHECK

should not be called.

705 FILE NOT OPENED FOR DIRECT ACCESS (PASCERR 705)
1. An attempt was made to perform a direct access file operation on a file not opened for direct

access with the open procedure. FCHECK should not be called.

706 FILE NOT OPENED (PASCERR 706)
1. An attempt was made to access an unopened file. FCHECK should not be called.

707 INVALID OPEN OPTION (PASCERR 707)
"- 1. An invalid open option was found in the third parameter to one of the file opening procedures.

FCHECK should not be called.

708 COULD NOT OPEN FILE FOR APPEND ACCESS (PASCERR 708)
1. Some physical files cannot have their record pointers automatically positioned at the end of the

file when opened for append access. This error indicates that Pascal could not successfully
prepare the file for append access. FCHECK may be called.

709 FIELD WIDTH LESS THAN ZERO (PASCERR 709)
1. The field width in a formatted write of a non-numeric expression was less than zero. FCHECK

should not be called.

710 FIELD WIDTH LESS THAN 1 (PASCERR 710)
1. The field width in the formatted write of a numeric expression was less than 1. FCHECK should

not be called.

711 NO DIGITS AFTER DECIMAL POINT (PASCERR 711)
1. No digits occur after the decimal point in a formatted write of a real or longreal expression.

FCHECK should not be called.

712 INPUT VALUE UNDERFLOW (PASCERR 712)
1. The value read is too small to be represented in the variable. FCHECK should not be called.

713 FIELD TOO SMALL TO PRINT NUMBER (PASCERR 713)
1. An internal PASCAL error that should be reported to Hewlett-Packard. FCHECK should not be

called.

714 INVALID CLOSE OPTION (PASCERR 714)
1. An invalid disposition option was found in the second parameter to close. FCHECK should not

be called.

D-5



RUN-TIME ERRORS

715 INVALID ENUMERATED IDENTIFIER FOR INPUT (PASCERR 715)
1. An attempt was made to read an enumerated identifier from a textfile, but either a valid Pascal

identifier was not found or the identifier found was not an identifier of that enumerated type.
FCHECK should not be called.

716 CANNOT WRITE ENUMERATED VALUE (PASCERR 716)
1. An attempt was made to write an enumerated variable to a textfile, but the current ordinal

value of the variable is not within the range of the enumerated type. FCHECK should not be
called.

717 INVALID BOOLEAN READ (PASCERR 717)
1. An attempt was made to read a boolean value from a textfile, but a non-boolean value was

found. FCHECK should not be called.

718 INVALID FLOATING POINT NUMBER REPRESENTATION (PASCERR 718)
1. An attempt was made to read a real or longreal number from a textfile, but an invalid floating

point number was found. FCHECK should not be called.

D-6

Keven
Rectangle



UNDETECTED ERRORS

The following errors are currently undetected by the compiler at compile time or by the system at run time.
'In any future release, an undetected error may become a detected error.

There is no significance to the order in which the errors are listed here.

Errors which are only detected when the ANSI option is ON, or when STANDARD_LEVEL is set to ANSI,
do not appear on this list.

1. Each component of a structured function result must be assigned a value in the body of the function.

2. If assignment to a function result is conditional, it must occur at run time.

3. A control variable in a FOR statement cannot be changed in the statement after DO by calling a
procedure or function with a non-local reference to the variable.

4. A parameter of a dispose call cannot be an actual variable parameter, an element of a record
variable list of a WITH statement, or both. Similarly, a dynamic variable in a region of the heap
deallocated by a call to release cannot fall in one of these categories.

5. When the tag field of a record with variants is changed, all previous variants become undefined.

6. For records with tag less variants, reference to a field for a particular variant means that other
previous variants become undefined.

7. All tag values in a record declaration must be specified in the variant part.

E-1



UNDETECTED ERRORS

8. All possible record variants must be specified in a record declaration.

9. When a value is established for the tag field of a record with variants, it is illegal to use a field in another
variant.

10. The compiler does not guarantee dectection of uninitialized variables especially in the following
cases:

a. The path to use of a variable may not include the initializing assignment. Suppose:

PROCEDURE Proc.LA;
VAR

x,y: integer,
BEGIN

IF <condition> THEN x:= 10 ELSE y:= x;

END;

The assignment after ELSE will not cause a compile time error, even if x has not been initialized
outside of the IF statement. (The compiler counts the assignment after THEN as initialization.)

b. Not all the components of a record or array have been assigned values. (The compiler counts the
assignment to a single component as initialization of the entire variable.).

c. A uninitialized global variable appears in a program compiled with the GLOBAL or EXTERNAL
options, or in a program which contains procedures or functions declared with the EXTERNAL
directive. (The compiler cannot check outside the current source code.)

d. An uninitialized dynamic variable on the heap. (This cannot be detected by the compiler or at run
time.)

11. An actual reference parameter may not be an expression consisting of a single variable in
parentheses.

12. Case constant labels can't be constant expressions.

13. Range checking code is suppressed when the type of logical file is identical with the type of a .
variable to which a file component is assigned. A physical file associated with the logical file, however,
may have values out of range and the consequent error will be undetected.

14. Not all uninitialized variables are detected.

E-2

Keven
Rectangle



USING INTRINSICS

MATCHING INTRINSIC PARAMETERS
When the compiler encounters a procedure or function declared INTRINSIC in Pascal/3000 source code,
it performs the following steps:

(1) It opens the current SPL intrinsic file, if it isn't open. The SPLlNTR compiler option allows the
programmer to designate the intrinsic file (see Section 8). The default file is SPLlNTR.PUB.SYS.

(2) It checks that the specified intrinsic is in the SPL intrinsic file. An error occurs if it isn't.

(3) It collects information about the intrinsic parameters.

If the programmer has declared Pascal formal parameters, the compiler then checks these against the
intrinsic parameters. If the intrinsic parameter is a reference parameter, the following conditions apply:

(A) The Pascal/3000 formal parameter may only be a VAR parameter.

(B) Any Pascal/3000 data type is acceptable. (For strings, only the character part is passed. The
current length is discarded.)

(C) If the Pascal data type entails an SPL BYTE data object and the intrinsic expects a word address, a
warning appears when odd byte addresses might not correctly convert to the word address.

Condition B means that the programmer can use, for example, a VAR-parameter of type char to
correspond to an intrinsic parameter of the SPL type INTEGER.

If the intrinsic parameter is a value parameter, the following conditions apply to the formal parameter:

(D) The Pascall3000 formal parameter cannot be a VAR parameter.

F-1



MATCHING INTRINSIC PARAMETERS

(E) Depending on the SPL type of the intrinsic parameter, only certain Pascal types are acceptable
(see below). Furthermore, the system will perform certain checking when the intrinsic call
executes.

Condition E means that programmer cannot, for example, declare a formal parameter of type char to
correspond with an intrinsic parameter of SPL type INTEGER.

When formal parameters are specified, the compiler checks the actual parameters of the intrinsic call for
compatibility in the usual manner. In fact, the only reason the programmer will use formal parameters is to
provide .strong type checking of the actual parameters.

On the other hand, the programmer may choose to omit any or all formal parameters in a procedure or
function declared INTRINSIC. In this case, the compiler uses the information from the splinter file to check
the actual parameters when the program calls the intrinsic. If the intrinsic parameter is a reference
parameter, the following conditions apply to the actual parameter:

(F) It must be a variable. It cannot be a constant, function reference, or procedural parameter.

(G) Any Pascal/3000 data type may appear as an actual parameter. The programmer must be aware
of potential misinterpretation.

(H) The compiler converts word addresses to byte addresses and vice versa. It issues a warning if there
is the possibility that an odd byte address will be converted to a word address.

Condition G, like condition B, means the programmer could, for example, pass a cner type variable to an
intrinsic parameter of SPL type INTEGER.

If the intrinsic parameter is a value parameter, this condition holds for the actual parameter:

(I) The type of the actual parameter is restricted according to the SPL type of the intrinsic parameter
and certain checking may occur (see below).

F-2

Keven
Rectangle



MATCHING INTRINSIC PARAMETERS

Conditions E and I are really equivalent. They mean that if an intrinsic parameter is a value parameter, the
Pascal type of the formal parameter or the actual parameter when there is no formal parameter is
restricted. Also, the system will range check certain actual value parameters when the intrinsic call occurs,
provided that the RANGE option was not OFF at compile time.

An intrinsic value parameter may be one of six SPL types: INTEGER, DOUBLE, LOGICAL, BYTE, REAL,
or LONG. It is not possible to pass an array by value to an intrinsic. Table F-1 presents each intrinsic value
parameter SPL type and the corresponding permissible Pascal types for formal or actual parameters.

No USL file parameter type checking information is generated for intrinsic calls. An intrinsic function return
of type DOUBLE, REAL, or LONG must be matched with the Pascal type integer, real, or longrea/,
respectively.

Table F-1. INTRINSIC VALUE PARAMETERS AND PASCAL TYPES

Intrinsic
Value Pascal Types for Formal or Actual Parameters
Parameter
SPL type

An integer subrange within the range -32768 ..32767.

An enumerated type with more than 256 elements.

A set requiring 1 word of storage.
INTEGER

A record requiring 1 word of storage.

The type integer, or an integer subrange outside the range-32768 ..32767. In
both cases, the system checks the actual value passed to the intrinsic, if RANGE
is ON. An error occurs if it is not in the range-32768 ..32767.

The type integer.

DOUBLE Any integer subrange. If the subrange is within the range -32768 ..32767, the
system converts the 1 word representation to a two word representation at run
time.

F-3



--------------~- -------

MATCHING INTRINSIC PARAMETERS

Table F-1. INTRINSIC VALUE PARAMETERS AND PASCAL TYPES (continued)

The type integer, or an integer subrange outside the range -32768 ..32767. In
both cases, the system will check the actural value when the intrinsic call occurs.
If it is outside the range 0..65535, an error results.

An integer subrange in the range -32768 ..32767. The system will not check for
negative actual values when the intrinsic call occurs.

LOGICAL
An enumerated type with more than 256 elements.

A set requiring 1 word of storage.

A record requiring·1 word of storage.

The type char.

BYTE The type boolean.

An .enumerated type with less than 257 elements.

The type real.

The type /ongreal. The system will truncate the low order two words when the
REAL actual value passes to the intrinsic.

The type integer or any integer subrange.

The type longreal.

The type real. The system adds two words of 0 to the real mantissa when the
LONG intrincic call occurs.

The type integer, or any integer subrange.

F-4

Keven
Rectangle



MATCHING INTRINSIC PARAMETERS

Examples

The reader should consult the MPE Intrinsics Manual for a full description of the intrinsics appearing in
these examples.

PROGRAM calendar (output);
{Calls the MPE intrinsic CALENDAR, which returns a LOGICAL }
{value. Bits 0 through 6 of this value represent the year of }
{the century; bits 7 through 15 the day of the year. }
TYPE

date = PACKED RECORD
year: 1. .100;
day: 1. .365;

END;

{requires 7 bits of storage}
{requires 9 bits of storage}

VAR
d: date;

FUNCTION calendar: date; INTRINSIC;
BEGIN

d:= calendar;
~teln('The year is: ',d.year:1);
~teln('The day is: '.d.day:l);

END.

PROGRAM time (output);
{Calls the MPE intrinsic CLOCK, which returns a DOUBLE value. }
{The four bytes represent the hour, minute. second, and tenths}
{of a second, successively. }
TYPE

t = PACKED RECORD
CASE boolean OF

true: (hour, minute, second, tenths: 0 .•255);
false: (dblval: integer);

END;
VAR

time: t;
FUNCTION clock: integer; IN INSIC;
BEGIN

time.dblval:= clock;
~te('The time is ',time. our:1,':' ,time.minute:l, ':');
~iteln(time.second:1, ':',time.tenths:1);

END.

F-5

-----~-- ------------ - --- ---------



MATCHING INTRINSIC PARAMETERS

PROGRAM show_ fop'en (input, output) ;
{This program uses the FOPEN intrinsic to open a file which }
{disallows file equations and which is an exclusive access, }
{multi-record file with no buffering. It then calls the }
{FCLOSE intrinsic to close the file as a permanent file. }

TYPE
small int= -32768..32767;

VAR
file name: PACKED ARRAY [1..8] OF char;
f options,
a-options,
- dispo,

sec,
f num: small int;

FUNCTION fopen: small int;INTRINSIC;
PROCEDURE fclose;INTRINSIC;
BEGIN

file name:= 'myfile
f options:= octal('002000');
a:options:= octal('000520');

20000,
{not }

, {required}
) ;

{disallow file
{exclusive access,
{no buffer

{formaldesignator }
{foptions }
{aoptions }
{recsize }
{device }

{formmsg }
{userlabels }

{blockfactor }
{numbuffers }

{filesize }
{numextents }
{initalloc }
{filecode }

equa tions' }
multi-record, }

}
f num:= fopen(file name,

f_options,
a options,
128,

writeln('The ccode is: ',ccode:1);

{process file}

dispo:= octal('OOOOOl');
sec:=O;
fclose(f num,dispo,sec);
writeln('The ccode is: ',ccode:1);

END.

F-6

Keven
Rectangle



PASCAL SUPPORT LIBRARY

The Pascal support library includes three procedures which may be called as external procedures from a
HP3000 language or subsystem: GETHEAP, RTNHEAP, and HP32106.

Subsystems such as VPLUS call GETHEAP and RTNHEAP to allocate and deallocate space in the DL-DB
area of the stack and avoid possible conflicts with the Pascal heap.

With conventions adopted from the MPE Intrinsics Reference Manual, subsequent pages describe each of
these procedures. Data types are SPL data types.

F-7



HP32106

Returns the version name for the installed version of the Pascal/3000 support library. The version name is
in the form 'HP32106v.uu.ff' where v denotes the major enhancement level, uu the update level, and ff the
fix level.

BA
HP32106 (version name);

PARAMETER

vetsionneme BYTE ARRAY (required)
The array must contain at least 14 characters.
Input : undefined.
Output: the string 'HP32106v.uu.ff' left justified.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

None.

F-8

Keven
Rectangle



GETHEAP

Allocates a region of the DL-DB area of the stack of the size requested. The first parameter returns the
location of the first word of this region. If the system cannot completely satisfy the request, the third
parameter is set to FALSE.

LP L
GETHEAP (regptr, regsize, regal/oc) •.

PARAMETERS

regptr LOGICAL POINTER (required)
Input : undefined.
Output: pointer to region allocated when regal/oc is TRUE, or undefined when it is

FALSE and regsize is O.

regsize INTEGER (required)
Input : number of words required in the region to be allocated.
Output: number of words actually allocated.

regal/oc LOGICAL (required)
Input : must be FALSE. TRUE reserved for future internal use.
Output: TRUE if the requested region was completely allocated; FALSE

if the allocation was not complete or totally unsuc:cessful.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

This intrinsic cannot be used with the DLSIZE intrinsic. Nor is it possible to directly manipulate regions of
the DL-DB area not allocated by GETHEAP. BASIC/3000 cannot call GETHEAP.

In order for space returned by RTNHEAP to be compacted, the main program must be compiled with
$DISPOSE ON$ and $HEAP_COMPACT ON$.

F-9



RTNHEAP

Oeallocates a region of the OL-OB area of the stack. The pointer and size parameters must accurately
match the values returned by a previous call to GETHEAP. If the given area cannot be correctly
deallocated, the logical parameter is set to FALSE.

LP IV L
RTNHEAP (regptr, regsize, reg free) ;

PARAMETERS

regptr LOGICAL POINTER (required)
Input : pointer returned by previous call to GETHEAP.
Output: undefined.

regsize INTEGER by value (required)
Input : size of region corresponding to pointer returned by GETHEAP.

regfree LOGICAL (required)
Input : must be FALSE. TRUE reserved for future internal use.
Output: TRUE if region successfully returned; FALSE if region could not

be returned. The heap has been rendered invalid and no subsequent calls
to GETHEAP or RTNHEAP will succeed.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

See GETHEAP.

F-10

Keven
Rectangle



PASCAL/3000 ANDOTHER LANGUAGES

OVERVIEW
This appendix presents some of the information a programmer needs to call routines coded in SPL,
FORTRAN, or COBOL successfully from a Pascal/3000 program, or to call a Pascall3000 procedure or
function from another language.

Calling Other Languages from Pascal

In general, the programmer must declare a procedure or function with the EXTERNAL directive and the
name of a language (see Section 2). The formal parameters of the procedure or function must
satisfactorily match the formal parameters of the external procedure or function. The CHECK-
ACTUALPARM compiler option permits the programmer to determine the checking information placed
in the USL for use by the Segmenter when performing a PREP or ADDSL (see SectionS).

When the call to the external procedure or function occurs, any actual procedural or functional parameters
must be level 1 procedures or functions. The environment of the passed procedure or function must be
available to the external routine. It is also inadvisable to pass files by reference to external routines since
the conventions for input or output operations differ significantly between languages.

Calling Pascal from Other Languages

The programmer must match the parameters appearing in the non-Pascal program with the formal
parameters of the external level 1 Pascal procedure or function. The CHECK_FORMAL_PARM
compiler option permits the programmer to determine the checking information placed in the USL file
for use by the Segmenter when performing a PREP or ADDSL.

The external Pascal code may be compiled with or without the SUBPROGRAM option. In either case,
when the non-Pascal program calls the external Pascal procedure or function, the standard files input and
output, even if they appear as program parameters in the Pascal code, will not have been opened and
associated with $STDIN and $STDLlST in the usual way. The programmer must explicitly declare and open
a file in the external Pascal procedure or function and, if desired, use a file equation to associate it with
$STDIN or $STDLlST. Again, it is generally inadvisable to pass a file by reference to an external Pascal
procedure or function since input and output operations may dltter radically between languages.

G-1



OVERVIEW

If the non-Pascal program uses subsystems such as VPLUS or DSG and if the external Pascal procedure
or functions it calls uses the heap, l.e. the DL-DB area of the stack, the program must declare itself as
Pascal to the subsystem by using language code 5, except in the case of BASIC which cannot call a
Pascal procedure or function that uses the heap in any case. This permits the subsystem, which also uses
the DL-DB area, to call the Pascal procedures GETHEAP and RTNHEAP (see Appendix F).

A Pascal procedure or function with a long parameter list or with a very large value parameter, e.g. a big
array, may be processed by the compiler so that a value parameter is pre-evaluated, temporarily stored on
TOS (top of stack), and subsequently referenced indirectly. A non-Pascal program cannot call such a
Pascal procedure or function because it will not correctly interpret the state of the stack at the start of
execution. The programmer may determine if, in fact, a Pascal procedure or function has been compiled in
this way by using the TABLES option (see Section 8).

Pascal Strings as Parameters

Pascal string variables are implemented in storage by 1word and a sequence of bytes. The word holds the
integer value for the current length of the string and each byte holds a single ASCII character.

The programmer must take this format into account when passing strings as parameters to other
languages or when passing characters from some other language to a Pascal string variable. Here is an
example of one way a string parameter could be passed from Pascal to a COBOL, FORTRAN, or SPL
routine:

PROGRAM pas s string (input, output) ;
VAR -

test: string[lO];
PROCEDURE splt (VAR stest
PROCEDURE fort (VAR ftest
PROCEDURE cobt (VAR ctest

string) ;EXTERNAL SPL;
string) ;EXTERNAL FORTRAN;
string) ;EXTERNAL COBOL;

G-2

Keven
Rectangle



OVERVIEW
BEGIN

test := 'ABCD';
~riteZn(strZen(test), test);
splt(test); fort(test); cobt(test);

END.

SPL procedure:

$CONTROL SUBPROGRAM
BEGIN

PROCEDURE SPLT(STR);
LOGICAL ARRAY STR;
BEGIN

INTRINSIC PRINT;
PRINT(STR(l),-STR(O) ,0);

END;
END.

FORTRAN procedure:

SUBROUTINE FORT(ARR)
LOGICAL ARR(6) , LOG(5), STRL
INTEGER I, LEN
CHARACTER*lO STR
EQUIVALENCE (STR, LOG), (LEN, STRL)
DO 10 I = 1,5

LOG(I) = ARR(I+l)
10 CONTINUE

STRL = ARR(l)
DISPLAY LEN, STR
RETURN
END

COBOL procedure:

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-ID. COBT.
AUTHOR. ME.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP-3000.
OBJECT-COMPUTER. HP-3000.
DATA DIVISION.
LINKAGE SECTION.
01 ASTRING.
05 INT PIC 99 COMPo
05 STR PIC X(lO).

PROCEDURE DIVISION USING ASTRING.
PARA-l.

DISPLAY INT, STR'.
PARA-END.

EXIT PROGRAM.

G-3



PASCAL AND SPL

Calling SPL from Pascal

To call an external SPL routine from a Pascal program, the programmer must declare the function or
procedure with the EXTERNAL SPL or EXTERNAL SPL VARIABLE directive (see Section 2) and match
the Pascal types of the formal parameters or result type with the SPL types of the external parameters or
result type. Table G-1 lists the corresponding Pascal and SPL types.

SPL cannot accept value parameters of any array type. Thus, the compiler will issue an error message if
the Pascal type of a formal value parameter results in an SPL array. Pascal/3000 will generate SPL-
compatible type checking information in the USL file for calls to external SPL routines. To have parameter
type compatibility checked by the Segmenter, the SPL procedure should be compiled with OPTION
CHECK 3.

Calling Pascal from SPL

To call a Pascal procedure or function from an SPL program, the programmer must use an SPL
EXTERNAL procedure declaration which provides parameter declarations that are compatible with the
Pascal types of the external parameters. Table G-1 shows the Pascal and SPL type correspondences.

An SPL program cannot pass arrays by value to a Pascal procedure or function. Pascal/3000 will
generate Pascal type checking information in the USL file for Pascal procedures or functions. SPL
procedures which call Pascal should be compiled with OPTION CHECK Oar the Pascal procedure or
function should be compiled with CHECK-FORMALPARM set to O.

G-4

Keven
Rectangle



PASCAL AND SPL

Examples:

A Pascal program:

PROGRAM Pascal_SPL(input,output);
TYPE

char str
small int

VAR

= PACKED ARRAY[1 .•20] OF char;
= -32768 .. 32761;

int1, int2 ,sum
char str;
small_inti

a str

PROCEDURE splprc(VAR cstr
inta
intb

VAR total:
); EXTERNAL

char str;
small inti
small-inti
small-int
SPL;

BEGIN
a str := IAdd these 2 numbers: I ;

int1 := 25;
int2 := 15;
writeln(a str,int1,int2);
splprc(a str,int1,int2,sum);
writeln(a str,sum);

END. -

An external SPL procedure:

$CONTROL SUBPROGRAM
BEGIN
PROCEDURE splprc(cstr,int1,int2,sum);

VALUE int1, int2;
INTEGER int1,int2,sum;
BYTE ARRAY cstr;
BEGIN

sum := int1 + int2;
MOVE cstr := "Sum of two numbers: "

END;
END.

G-5

Keven
Rectangle



PASCAL AND SPL

An SPL program:

BEGIN
LOGICAL ARRAY chr(O:9) := "Add these 2 numbers:";
BYTE ARRAY bchr(~) = chr;
INTEGER sint:=15,sint2:::25,len;
INTEGER int, int2, sum;
BYTE ARRAY csum(*l = s~~, cint(*) = int,

cint2(*) =int2;
INTRINSIC PRINT,ASCII;
PROCEDURE pas(chr,sint,sint2,sum);

VALUE sint,sint2;
INTEGER sint,sint2,sum;
BYTE ARRAY chr;
OPrION EXTERNAL;

PRINT(chr,10,O);
len := ASCII(sint,-lO,cint(l»;
len := ASCIl(sint2,-lO,cint2(1»;
PRINT(cint,-2,O);
PRINT(cint2,-2,O);
pas(chr,sint,sint2,sum);
PRINT(chr,lO,O);
len := ASCII(sum,-lO,csum(l»;
PRINT (csum,-2,0) ;

END.

A Pascal external procedure:

$SUBPROGRAM$
PROGRAM example (input, output) ;
TYPE

arr = PACKED ARRAY[1 ..20] OF char;
small_int = -32768 ..32767;

PROCEDURE pas(VAR carr:arr;sint:small_int; sint2:small_lnt;
VAR sum:small_int);

BEGIN
carr := 'sum of two numbers: I

sum := sint + sint2;
END;

BEGIN
END.

G-6

Keven
Rectangle



PASCAL AND SPL

Table G-1. PASCAL AND SPL TYPES

Pascal/3000 Type SPL: Type

integer
DOUBLE

Integer subrange outside the range -32768 ..32767

Integer subrange within the range -32768 ..32767 INTEGER

real REAL

longreal LONG

char BYTE

BYTE
boolean (Pascal false= 0

Pascal true = 1)

Enumerated type with less than 257 elements BYTE

Enumerated type with more than 256 elements LOGICAL

G-7



PASCAL AND SPL

Table G-1. PASCAL AND SPL TYPES (continued)

(1 word) LOGICAL
SET

(multi word) LOGICAL ARRAY

(1 word) LOGICAL
RECORD

(multi word) LOGICAL ARRAY

,...<Pascal type> <SPL type> POINTER

string LOGICAL ARRAY

ARRAY OF <Pascal type> <SPL type> ARRAY

ARRAY OF <Pascal pointer type> LOGICAL ARRAY

FILE LOGICAL ARRAY
(The type of the Pascal file
is not accounted for.)

Procedural parameters Procedure Parameter

G-8

Keven
Rectangle



PASCAL AND FORTRAN

Calling FORTRAN from Pascal

To call a FORTRAN routine from a Pascal/3000 program, the programmer must declare the procedure or
function with the EXTERNAL FORTRAN directive (see Section 2) and match the Pascal types of the
formal parameters or result type with the FORTRAN types of the external parameters or result type. Table
G-2 lists Pascal types and the corresponding FORTRAN types.

Pascal cannot access a FORTRAN COMMON area. Nor is it possible to pass a file or a label to an external
FORTRAN routine. Also, FORTRAN interprets all Pascal array index types as 1..n, regardless of the
specified subrange in the Pascal source code.

FORTRAN expects only parameters passed by reference. The Pascal compiler creates a dummy location
for a value parameter and passes that address as a reference. This has certain implications when passing
dynamic variables. In particular, the programmer must pass a dereferenced pointer as the actual
parameter. With a reference formal parameter, the FORTRAN routine will access the heap variable through
the address of the object indicated by the pointer (see example below). With a value formal parameter, a
copy of the dynamic variable is placed on the stack with a dummy reference; this may be quite expensive
if, for example, the variable is a large array.

Pascal 13000 will generate FORTRAN-compatible type checking information in the USL file for calls to
external FORTRAN routines. FORTRAN generates parameter type checking information in the USL file by
default.

G-9



PASCAL AND FORTRAN

Calling Pascal from FORTRAN

To call a Pascal procedure or function from a FORTRAN program, the programmer need not use an
EXTERNAL subroutine declaration. However, a Pascal function name must appear in a type statement,
e.g. INTEGER PASFUNC, where the FORTRAN type corresponds to the Pascal type of the function result
(see Table G-2).

FORTRAN cannot pass arrays by value, so it is not possible to call a Pascal routine with a value parameter
of a type corresponding to a FORTRAN array type. For any other type of Pascal value parameter, the
programmer must use the backslash (\) notation of FORTRAN/3000.

All parameters in FORTRAN are word addressed, except for character variables and character arrays
which are byte addressed.

All data must be passed through the parameter lists between FORTRAN and Pascal since FORTRAN
cannot specify global variables and Pascal cannot specify COMMON blocks. The calling FORTRAN
program may have a COMMON area, but the external Pascal procedure or function cannot use global
variables.

The programmer must set CHECK_FORMAL_PARM to 2 for all Pascal procedures, and 0 for functions
to be called by FORTRAN.

G-10

Keven
Rectangle



Examples

Pascal program:

PASCAL AND FORTRAN

PROGRAM pass heap var(input,output);
TYPE - -

ptr = ....arr;
arr = PACKED ARRAY [1..80] OF char;

V;.;R
aptr : ptr;

PROCEDURE fort (V;.;R arrptr : arr) ;EXTERNAL FORTRAN;
{The use of a reference parameter permits
{external FORTRAN routine to access the
{variable through the pointer.

BEGIN
neia (aptr) ;
aptr ....:= 'I am a dynamic variable';
fort(aptr ....);

END.

External FORTRAN procedure:

SUBROUTINE FORT(PTRARR)
CHARACTER*80 PTRARR
DISPLAY PTRARR
RETURN
END

G-11

the}
}
}



--------~----.- ---

PASCAL AND FORTRAN

Pascal program:

PROGRAM pascal fort(input,output);
TYPE -

char str = PACKED ARRAY [1..20] OF char;
small int = -32768..32767;

VAR
a str : char_str;
int1,int2,sum : small_int;

PROCEDURE fortprc(VAR cstr char str;
inta small_inti
intb small inti

VAR total: small-int
); EXTERNAL FORTRAN;

BEGIN
a_str := 'Add these 2 numbers:';
int1 := 25;
int2 := 15;
~teln(a str,int1,int2);
fortprc(a-str,int1,int2,sum);
writeln(a-str,sum);

END. -

External FORTRAN procedure:

SUBROUTINE FORTPRC(CSTR,INT1,INT2,SUM)
INTEGER INT1, INT2. SUM
CHARACTER CSTR*20
SUM = INT1 + INT2
CSTR = "SUM OF TWO NUMBERS: "
RETURN
END

G-12

Keven
Rectangle



FORTRAN program:

INTEGER INT1, INT2, ISUM
CHARACTER CSTR*30

CSTR = "Add these 2 numbers"
INT1 = 25
INT2 = 15

DISPLAY CSTR, INT1, INT2
CALL PAS(CSTR,\INT1\,\INT2\,ISUM)
DISPLAY CSTR, ISUM

STOP
END

External Pascal procedure:

$SUBPROGRAM$

PROGRAM example(input,output);
TYPE

arr = PACKED ARRAY[1 ..20] OF char;
small_int = -32768 ..32767;

$CHECK FORMAL PARM 0$
PROCEDURE pas(VAR carr

sint
sint2

VAR sum
) ;

BEGIN

arr;
small_int;
small_int;
small int

carr := 'Sum of t~o numbers: '
sum .- sint + sint2;

END;

BEGIN
END.

G-13

PASCAL AND FORTRAN



------------~-----

PASCAL AND FORTRAN

Table G-2. PASCAL AND FORTRAN TYPES

Pascal Type FORTRAN type

integer
INTEGER*4

Integer subrange outside the range -32768 ..32767

Integer subrange inside the range -32768 ..32767 INTEGER*2

real REAL

longreal DOUBLE Pf,ECISION

char CHARACTER

PACKED ARRAY [1..n] OF char CHARACTER*n

boolean CHARACTER
(1 = true, 0 = false)

Enumerated type with less than 257 elements CHARACTER

Enumerated type with more than 256 elements INTEGER*2

G-14

Keven
Rectangle



PASCAL AND FORTRAN

Table G-2. PASCAL AND FORTRAN TYPES (continued)

RECORD
real.Lpart real; COMPLEX
imag_part real; (parameter type checking must be turned off)

END;

(1 word) LOGICAL
SET

(multi-word) Array of LOGICAL

string Array of LOGICAL

ARRAY [] OF <Pascal type> Array of corresponding FORTRAN type
(stored in row-major order) (stored in column-major order)

Procedural parameters EXTERNAL statement

G-15



PASCAL AND COBOL

The data types of Pascal and COBOL differ radically. In general, COBOL data types are either binary or
ASCII format (see Table G-3). By taking the size as well as the format into consideration, the programmer
can successfully match Pascal and COBOL types.

The following are examples of possible matches between COBOL and Pascal types:

COBOL Pascal

PIC X (N) PACKED ARRAY [1..N] OF char
ARRAY [1..NJ OF char

PIC S9 (01) -S9 (04) CaMP

PIC S9 (05) -S9 (09) CaMP

PIC S9 (10) -S9 (18) COMP

small_int 1-9999..9999:

integer

ARRAY [1..2] OF integer

PIC S9 (01) -S9 (18) COMP-3
TYPE nibble = 0.. 15
PACKED ARRAY [1..28] OF nibble

In the last example, a Pascal record is constructed to hold a COBOL packed decimal number, but a Pascal
program cannnot operate on the number.

The COBOL types 01 and 77 always start on word boundaries.

The parameter capabilities of COBOL 68 and COBOL 1\ differ. In particular, COBOL 68 cannot pass by
value, but COBOL \I can provided the backslash (\) notation is used. COBOL 68 cannot use a parameter
on a byte boundary; COBOL II can provided the @ symbol is specified. Finally, COBOL 68 cannot call a
Pascal function; COBOL ll.can if the GIVING phrase occurs.

G-16

Keven
Rectangle



PASCAL AND COBOL

Table G-3. COBOL TYPES AND FORMATS

COBOL Type Format

COMP-3 Packed decimal format with sign in right-most half
byte and 2 digits per byte.

CaMP

Binary format. Sign bit 0 is +', 1 is -.

Size Number of Words

DISPLAY

S9 to S9 (4)
S9 (5) to S9 (9)
S9 (10) to S8 (18)

1
2
4

Unpacked decimal format (ASCII).

Unsigned- alphanumeric format:
no leading or trailing sign;
1 character per byte.

Sign is
leading

Sign is
trailing

Sign is
leading,
separate

Sign is
trailing,
separate

- alphanumeric format;
sign 'overpunched' in left-most byte.

- alphanumeric format;
sign 'overpunched' in right-most byte.

- first byte is ASCII '-' for negative,
anything else specifies positive.

- last byte is ASCII '-' for negative,
anything else specifies positive.

G-17



PASCAL AND COBOL

Examples

PROGRAM Pascal COBOL (input,output);
{Calls a simple COBOL II routine.}
VAA

int1,
int2,
int3 : integer;

{All parameters are passed by reference. }
PROCEDURE subprog1(VAA parm1: integer;

VAA parm2: integer;
VAA parm3: integer); EXTERNAL COBOL;

BEGIN
intl := 25000;
int2 := 30000;
subprog1(intl, int2, int3);
tUrite1.n(int3);

END.
SUBPROGRAM 1:

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROG1.
AUTHOR. BP.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
DATA DIVISION.
LINKAGE SECTION.
77 INl PIC S9(07) COMPo
77 IN2 PIC S9(07) COMPo
77 OUT PIC S9(07) COMPo
PROCEDURE DIVISION USING IN1, IN2, OUT.
PAAA-l.

ADD IN1, IN2, GIVING OUT.
EXIT PROGRAM.

G-18

Keven
Rectangle



PASCAL AND COBOL

This COBOL 68 program calls a Pascal procedure:

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL-TO-PASCAL.
AUTHOR. BP.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ASTRING PIC X(16) VALUE "A COBOL STRING! "
77 ANUM PIC 9(04) USAGE COMPo
77 RESULT PIC -ZZZZ.
PROCEDURE DIVISION.
FIRST-PARA.

DISPLAY ASTRING.
CALL "PASPROG" USING ASTRING, ANUM.
MOVE ANUM TO RESULT.
DISPLAY ASTRING, RESULT.
STOP RUN.

$SUBPROGRAM$
PROGRAM Pascal_code(input,output);
TYPE

small int = -32768 ..32767;
charstr = RECORD

cpart : PACKED ARRAY [1..16] OF char;
END;

{Since the COBOL 68 program requires a variable on a word }
{boundary, this record type disguises the PAC as such a }
{variable. For COBOL II, this deception is unnecessary. }

PROCEDURE pasprog(VAR astr : charstr; VAR num : small_int);
BEGIN

astr.cpart := 'A PASCAL STRING!';
num := 9999;

END;
BEGIN
END.

G-19



PASCAL AND COBOL

This COBOL II program calls a Pascal procedure using a byte-addressed parameter, a value parameter,
and a reference parameter:

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL-TO-PASCAL.
AUTHOR. BP.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ASTRING PIC X(16) VALUE "A COBOL STRING! ".
77 ANUM PIC 9(04) USAGE COMPo
77 ANUM2 PIC 9(04) USAGE COMPo
77 RESULT PIC -ZZZZ.
PROCEDURE DIVISION.
FIRST-PARA.

MOVE 9999 TO ANUM.
DISPLAY ASTRING.
CALL "PASPROG" USING @ASTRING, \ANUM\, ANUM2.
MOVE ANUM2 TO RESULT.
DISPLAY ASTRING, RESULT.
STOP RUN.

$SUBPROGRAM$
PROGRAM pas_proc(input,output);
TYPE

small int = -32768 ..32767;
charstr.= PACKED ARRAY [1..16] OF char;
{COBOL II program will accept a byte-addressed variable. }

PROCEDURE pasprog(VAR astr charstr;
num : small int;

VAR num2 : small:int);
BEGIN

astr.:= 'A PASCAL STRING!';
num2 := num;

END;
BEGIN
END.

G-20

Keven
Rectangle



PASCAL/3000 AND
HP3000 SUBSYSTEMS

This appendix presents information the programmer needs to know in order to use certain HP3000
subsystems in a Pascal/3000 program. In particular it considers Pascal/3000 in relation to SORT-
MERGE/3000, IMAGE/3000, and VPLUS/3000.

PASCAL AND SORT-MERGE
The SORT-MERGE subsystem uses certain addressing modes which can potentially conflict with common
addressing modes in the object code generated by the Pascal/3000 compiler. For this reason, the
programmer should call the SORTINIT and SORTEND, or the MERGEINIT and MERGEEND intrinsics within
the executable portion of a single procedure. Furthermore, the Pascal code occurring between the calls to
these intrinsics should only consist of parameterless procedure calls. In outline, this is a possible form of a
Pascal procedure using the SORT-MERGE subsystem:

PROCEDURE sort;
PROCEDURE read_file;

BEGIN

sortinput (...); {intrinsic call}

END;

PROCEDURE write_file;
BEGIN

sortoutput (...); {intrinsic call}

END;

BEGIN {sort}

sortinit (...);
read_file;
write file;
sortend (...);

{intrinsic call}

{intrinsic call}

END; {sort}

H-1



-~-----~-~.---.-- .... ~--. ~~-- -

PASCAL AND SORT-MERGE

The following sample program uses this outline:

PROGRAM mailing list sort (mailfile);
{Sorts mail fil~ by zip code using SORT intrinsics and reports}
{statistics from sorting procedure. }

TYPE
smallint
milliseconds
sort_key

= -32768 ..32767;
= integer;
= RECORD

position
length
sequence
data_type:

smallint;
smallint;
(ascending,descending);
(character,
twos_complement,
floating_point,
packed decimal,
display_trailing_sign,
packed_decimal_even,
display leading sign,
display=leading=sign_separate,
display trailing sign separate
); - --

END;

sort statistics = RECORD
records
intermediate_passes
space_available
comparisons
scratch file ios
cpu time
elapsed_time

END;

integer;
smallint;
smallint;
integer;
integer;
milliseconds;
milliseconds;

mailrec = RECORD
name PACKED ARRAY[1 ..23] OF char;
street address PACKED ARRAY [1..23] OF char;
city PACKED ARRAY [1..23] OF char;
state PACKED ARRAY [1..2] OF char;
zip PACKED ARRAY[1 ..9] OF char;

END;

H-2

Keven
Rectangle



PASCAL AND SORT-MERGE

VAR
mailfile : FILE OF mailrec;

PROCEDURE sortinit; INTRINSIC;
PROCEDURE sortinput; INTRINSIC;
PROCEDURE sortoutput; INTRINSIC;
PROCEDURE sortend; INTRINSIC;
PROCEDURE sortstat; INTRINSIC;

PROCEDURE sort;
VAR

statistics
numkeys
keys

sort_statistics;
smallint;
sort_key;

PROCEDURE read_unsorted_mailing_list;
BEGIN

l'eset(mailfile) ;
WHILE NOT eof(mailfile) DO

BEGIN
sortinput(mailfileA,sizeof(mailfileA));
get (mailfile) ;

END;
END;

PROCEDURE write_sorted_mailing_list;
VAR

length: smallint;
BEGIN

l'ewrite(mailfile);
sortoutput(mailfileA,length);
WHILE length > 0 DO

BEGIN
put (mailfile) ;
sortoutput(mailfileA,length);

END;
END;

H-3



------------------- ---

PASCAL AND SORT-MERGE

BEGIN { sort }
numkeys := 1;
WITH keys DO

BEGIN
position := 72;
length := 9;
sequence := ascending;
data_type := character;

END;
sortinit(",sizeof(mailfile~)"numkeys,keys""statistics);
read_unsorted_mailing_list;
write_sorted_mailing_list;
sortend;
sortstat(statistics);

END; {sort}

BEGIN { mailing_list_sort }
sort;

END. {mailing_list_sort}

Suppose the unsorted disc file MAILFILE consists of 5 records:

Mickey Mouse Disneyland Anaheim CA921010705
Charles Babbage 11 Downing Street London NW 5 GBOOOOOl196
Art Esian 2000 Capitol Avenue Tumwater WA995029138
Henrietta T. Moose 19420 Homestead Road Cupertino CA950146278
Shamu Whale Sea World San Diego CA921205811

Then running this program will sort the contents of MAILFILE by zipcode and produce statistics for the
sorting procedure. MAILFILE will now be:

Charles Babbage
Mickey Mouse
Shamu Whale
Henrietta T. Moose
Art Esian

11 Downing Street
Disneyland
Sea World
19420 Homestead Road
2000 Capitol Avenue

London NW 5
Anaheim
San Diego
Cupertino
Tumwater

GBOOOOOl196
CA921010705
CA921205811
CA950146278
WA995029138

H-4

Keven
Rectangle



PASCAL AND IMAGE

This sample program illustrates one way the programmer can use Pascal/3000 data types to define data
structures which are suitable for use with the IMAGE subsystem:

PROGRAM Pascal Image(input,output);
TYPE

pac = PACKED ARRAY [1..20] OF char;
data rec = RECORD {some detail data-set}

name: pac;
position: pac;
location: pac;
phone: pac;
comment: pac;

END;

{Set-up of IMAGE parameter data types: }
Single_integer = -32768 ..32767;
base type = PACKED ARRAY [1..16] OF char;
password_type = PACKED ARRAY [1..6] OF char;
status_type = ARRAY [1..10] OF single integer;
ds_name_type = PACKED ARRAY [1..12] OF-char;
list type = PACKED ARRAY [1..2] OF char;
buffer_type = PACKED ARRAY [1..100] OF char;
key_type = PACKED ARRAY [1..40] OF char;
item_type = PACKED ARRAY [1..8] OF char;
err_type = (db_get,db_put,db_find,db_open,db_close);

VAR
cur rec
cur_get
answer
sample_db
sample_password
sample ds
sample:=item
sample_buff
status
list
mode
dummy

data_rec;
data rec;
integer;
base_type;
password_type;
ds_name_type;
item_type;
buffer_type;
status_type;
list_type;
single_integer;
single_integer;

H-S



~~~------~~----~~----~-~-~~~-~---~~~--~~-~-----~~~~~~~-

PASCAL AND IMAGE

{External declarations of IMAGE procedures: }

PROCEDURE dbopen;INTRINSIC;
PROCEDURE dbput; INTRINSIC;
PROCEDURE dbget;INTRINSIC;
PROCEDURE dbfind;INTRINSIC;
PROCEDURE dbclose;INTRINSIC;

{External error handling routine: }

PROCEDURE fatal error (stat:status_type;error: err_type);
EXTERNPJ..;

{Menu screen: }

PROCEDURE list_menu;
BEGIN
~riteln(' CONTACT INFORMATION FILE');
~riteln(' I} ADD A RECORD '};
~riteln (, 2) LIST LAST PERSON');
~teln(' 3) FINISHED ');
prompt(' PLEASE ENTER DESIRED OPTION #: ');
readln(answer) ;

END;

PROCEDURE get_rec_info;
BEGIN

prompt ('ENTER CONTACT NAME: ');
readln(cur rec.name);
prompt('ENTER CONTACT POSITION: ');
readln(cur rec.position);
prompt('ENTER CONTACT LOCATION: ');
readln(cur rec.location);
prompt('ENTER TELEPHONE NUMBER: ');
readln(cur rec.phone);
prompt ('ENTER COMMENT (PRESS RETURN IF NONE): ');
readln(cur_rec.comment);
mode := 1;
dbput(sample db, sample ds, mode, status, list, cur_rec);
IF status[l]-<> 0 THEN -

fatal_error(status, db_put);
END;

H-6

Keven
Rectangle

PASCAL AND IMAGE

PROCEDURE finish_up;
BEGIN

mode := 3;
dbclose(sample db, sample ds, mode, status);
IF status[l] <; 0 THEN fatal error(status,db close);
»r-i.tel.nt; 'HAVE A NICE DAY!! !T'); -

END;

PROCEDURE print last_rec;
VAR

search_item: item_type;
BEGIN

search item := 'name;

{call dbfind}
mode := 1;
dbfind(sample db, sample ds, mode, status, search_item,

cur rec.name);
IF status[l] <> 0 THEN fatal_error(status, db_find);

{call dbget}
mode := 5;
dbget(sample db, sample ds, mode, status, list,

cur rec, dummy);
IF statusTl] <> 0 THEN fatal error(status, db_get);
bJriteZn(cur get.name); -
bJriteZn(cur-get.position);
bJriteZn(cur-get.location);
writeZn(cur-get.phone);
bJriteZn(cur=get.comment);

END;

H-7

PASCAL AND IMAGE

BEGIN {Pascal Image}
{set-up data-=-base information}
sample db :=' SAMPLE;
sample-password := 'EASY; ';
s~ple=d7 :~ 'INFO_DETAIL';
llst := @; ;
mode := 3;
dbopen(sample db, sample password, mode, status);
IF status[l) ~> 0 THEN -

fatal_error(status, db_open);

answer:= Cl;
WHILE anSl:er <> 3 DO

BEGIN
list_menu;
CASE answer OF

1 get rec info;
2 : print last rec;
3 : finish up;-
OTHERWISE WM.teln(' INVALID PLEASE REENTER')

END
END

END. {Pascal_Image}

H-8

Keven
Rectangle

PASCAL AND VPLUS

VPLUS/3000 uses the DL-DB area of the stack to store screen or form information. Pascal/3000 also
uses this area as its' heap'. To avoid any possible conflict, a Pascal program calling the VPLUS subsystem
must use language code 5. This signals VPLUS to call the Pascal library procedure GETHEAP, which
allocates a region of the DL-DB area for exclusive use by VPLUS. When the formsfile is closed, VPLUS
calls another Pascal library procedure, RTN_HEAP,which releases the region previously reserved for the
subsystem. (Appendix F describes GETHEAP and RTNHEAP.)

In general, the programmer should define VPLUS common areas and buffers on word boundaries. It will
also probably be necessary to specify the MAXDATA parameter of the:PREP or :RUN commands to
enlarge the DL-DB area, especially when a Pascal program uses VPLUS and dynamic allocation at the
same time.

This sample program illustrates one way the programmer can construct Pascal/3000 data structures
suitable for calling VPLUS:

PROGRAM Pascal_Vplus(input,output);
TYPE

word = -32768 ..32767;
err_type = (v_openformf, v_openterm, v_closeterm.

v closeformf);
string2 = PACKED /llI.RAy [1. .2] OF char;
string3 = PACKED /llI.RAY [1. .3] OF char;
string4 = PACKED /llI.RAY [1. .4] OF char;
string5 = PACKED /llI.RAY [1. .5] OF char;
string6 = PACKED /llI.RAY [1. .6] OF char;
string7 = PACKED /llI.RAY [1. .7] OF char;
string8 = PACKED /llI.RAY [1. .8] OF char;
string9 = PACKED /llI.RAY [1..9] OF char;
string10 = PACKED /llI.RAY [1..10] OF char;
string11 = PACKED /llI.RAY [1. .11] OF char;
string12 = PACKED /llI.RAY [1. .12] OF char;
string13 = PACKED /llI.RAY [1..13] OF char;
string14 = PACKED /llI.RAY [1. .14] OF char;
string15 = PACKED /llI.RAY [1. .15] OF char;
string16 = PACKED /llI.RAY [1. .16] OF char;
string30 = PACKED /llI.RAY [1. .30] OF char;
string30 = PACKED ARRAY [1. .30] OF char;
word-2 = ARRAY [1. .2] OF iaord;
word-5 = ARRAY [1. .5] OF iaord;

H-9

~------------ --- -- ---- ------ -----

PASCAL AND VPLUS

vplus comarea = RECORD- cstatus 'Word;
language 'Word;
comarealen 'Word;
usrbuflen word;
cmode word;
lastkey word;
numerrs word;
'Windowenh word;
mUltiusage 'Word;
labeloptions word;
cfname string16;
nfname string16;
repeatapp 'Word;
freezapp word;
cfnumlines word;
dbuflen word;
skip2 word;
lookahead word;
delete flag 'Word;
showcontrol word;
skip4 word;
printfilnum word;
filerrnum 'Word;
errfilenum 'Word;
formstrsize word;
skip6 word;
skip7 word;
skipS word;
numrecs integer;
recnum integer;
skip9 string4;
term filen word;
skiplO stringlO;
retries word;
term_options word;
environ word;
usertime word;
identifier word;
labelinfo word;

END;

H-10

Keven
Rectangle

PASCAL AND VPLUS

CONST
com area init = vplus comarea

[cstatus : 0,
language : 5, {Pas cal code number }
comarealen : 60,
usrbuflen : 0,
cmode : 0,
lastkey : 0,
numerrs : 0,
'Windo'Wenh: 0,
multiusage : 0,
labeloptions : 0,
cfname : I

nfname : I

repeatapp : 0,
freezapp : 0,
cfnumlines : 0,
dbuflen : 0,
skip2 : 0,
lookahead : 0,
deleteflag : 0,
sho'Wcontrol 0,
skip4 : 0,
printfilnum 0,
filerrnum : 0,
errfilenum : 0,
formstrsize : 0,
skip6 0,
skip7 : 0,
skip8 : 0,
numrecs : 0,
recnum : 0,
word-2 [2 of 0]
skip9 :
term_filen : 0,
word-S[S of 0]
skip9 : I

term filen : 0,
skiplO : I

retries : 0,
term_options 0,
environ : 0,
usetime : 0,
identifier : 0,
labelinfo : 0

) ;
VAR

terminal
formfile
term id
com area

string8;
string9;
'Word;
vplus_comarea;

H-11

--------- -- .__ -

PASCAL AND VPLUS

{ VPLUS/3000 Intrinsic Procedure Declarations }

PROCEDURE vopenterm ; INTRINSIC;
PROCEDURE vopenformf ; INTRINSIC;
PROCEDURE vcloseterm ; INTRINSIC;
PROCEDURE vcloseformf ; INTRINSIC;
PROCEDURE vgetnextform ; INTRINSIC;
PROCEDURE vshowform ; INTRINSIC;
PROCEDURE vreadfields ; INTRINSIC;
PROCEDURE vgetbuffer ; INTRINSIC;
PROCEDURE vputbuffer ; INTRINSIC;
PROCEDURE vinitform INTRINSIC;
PROCEDURE vputfield ; INTRINSIC;

PROCEDURE fatal error (err: err_type; stat:word); EXTERNAL;
PROCEDURE main menu EXTERNAL;

BEGIN {Pascal Vplus}
terminal ;= 'X ;
formfile := 'FORMFILE ';

{ Initialize comarea }
com_area := com_area_init;

vopenterm(com_area, terminal);
IF com area.cstatus <> 0 THEN

fatal_error (v_openterm, com_area.cstatus);

vopenformf(com_area, formfile);
IF com area.cstatus <> 0 THEN

fatal_error (v_openformf, com_area.cstatus);

main_menu;

vcloseterm(com area);
IF com area.cstatus <> 0 THEN

fatal_error (v_closeterm , com_area.cstatus);

vcloseformf(com_area);
IF com area.cstatus <> 0 THEN

fatal_error (v_closeformf, com_area.cstatus);

END. {Pascal_Vplus}

H-12

Keven
Rectangle

1/0 DEFINITIONS

This appendix provides formal definitions of certain 1/0 procedures in HP Standard Pascal.

The tests for existence of a component fail on attempting to access a component which doesn't exist, on
receiving an EOF condition from a device, or on attempting to access beyond the last component of a
direct access file.

TYPE
file block = {A data structure associated with }

{file with components of type T. }
integer; {Maximum number of components. }
ARRAY [l..bound] OF T; {File components. }
integer; {Next component to be read index. }
T; {Space for pre-fetched component. }

{Buffer variable pre-fetched. }
{f" ref buffers next component. }
{End of file 1-TaSfound. }
{Read operations are legal. }
{Write operations are Lega.L. }

RECORD

bound
component:
pos
buffer
lookahead,
getok,
endoffile,
readable,
writeable: boolean;

END;
{An interna.lprocedure}PROCEDURE Setup (f: file; s: string);

BEGIN
IF s exists THEN

BEGIN
close previously associated file, if any;
associate file specified by s;

END
ELSE IF previous f not open THEN

associate file specified by file's variable name;
f.bound := system_established_value;
f.buffer := undefined;

END {Setup};

PROCEDURE Open(f,s);
BEGIN

Setup (f,s);
f.readable := true; f.T~iteable := true;
f.lookahead := false; f.getok := false;
f.endoffile := false;
f.pos := 1;

END {Open};

1-1

--.--,~- ..-.----- -------- ---------

1/0 DEFINITIONS

PROCEDURE Reset(f,s);
BEGIN

Setup (f,s);
f.readable := true;
f.lookahead := false;
f.endoffile := false;
f.pos := 1;

END {Reset};

PROCEDURE Rewrite(f,s);
BEGIN

Setup (f,s);
f.readable := false;
f.lookahead := false;
f.endoffile := true;

f.writeable := false;
f.getok := true;

f.writeable := true;
f.getok := false;

f.pos := 1;
destroy any existi.ng components of f;

END {Rewrite};

PROCEDURE Append(f,s);
BEGIN

Setup (f,s);
f.readable := false; f.writeable:= true;
f.lookahead := false; f.getok:= false;
f.endoffile := true;
f.pos := last component of f + 1;

END {Append};

PROCEDURE Read(f,x);
BEGIN

IF NOT f.readable OR Eof(f) THEN error
ELSE IF f.lookahead THEN

BEGIN
x := f.buffer;
f.lookahead := false;

END
ELSE

BEGIN
IF f.component[f.pos) doesn't exist THEN error
ELSE x ;= f.component [f.pos);
f.pos := f.pos+1;

END;
f.getok := true;

END {Read};

1-2

Keven
Rectangle

1/0 DEFINITIONS

PROCEDURE Write(f,x);
BEGIN

IF NOT f.writeable OR (f.pos > f.bound) THEN error
ELSE

BEGIN
f.component [f.pos] := X;
f.pos := f.pos + 1;

END;
f.lookahead := false; f.getok:= false;
f.buffer := undefined;

END {Write};

FUNCTION Position (f): integer;
BEGIN

IF f.lookahead THEN Position := f.pos - 1
ELSE Position .- f.pos;

END {Position};

PROCEDURE Seek(f,k);
BEGINIF NOT (f.readable AND f.writeable) THEN error

ELSE
f.pos := k;

f.lookahead := false; f.getok:= false;
f.buffer := undefined;

END {Seek};

PROCEDURE Look (f); {Local procedure to file buffer variable}
BEGIN

IF f.getok THEN
IF f.endoffile THEN error
ELSE

BEGIN
IF component, f.pos, doesn't exist THEN

f.endoffile := true
ELSE

BEGIN
f.buffer;=f.component [f.pos];
f.pos := f.pos + 1;
f.lookahead := true;

END;
f.getok := false;

END;
END {Look};

1-3

1/0 DEFINITIONS

FUNCTION Eof (f): boolean;
BEGIN

IF f.readable AND f.writeable THEN
f.endoffile := f.pos > f.bound

ELSE IF NOT f.endoffile THEN Look (f);
Eof := f.endoffile;

END {Eof};

FUNCTION Maxpos(f): integer;
BEGIN

IF NOT (f.readable AND f.writeable) THEN error;
maxpos := f.bound;

END {Maxpos};

f"
BEGIN

Look. (f);
f" := f.buffer;

END {f"};

PROCEDURE Get(f);
BEGIN

IF f.endoffile OR NOT f.readable THEN error;
IF f.getok THEN Look (f);
f.getok := true; f.lookahead:= false;

END {Get};

PROCEDURE Put(f);
BEGIN

Write(f, f.buffer);
END {Put};

PROCEDURE Close(f,s);
BEGIN

If s is given then perform a system dependent action;
Return the file contents to the system;
f.readable := false; f.writeable:= false;
f.getok := false; f.endoffile:= true;

END {Close};

1-4

INDEX

A page reference marked with an asterisk (*) indicates the defini-
tion of a term or feature.

abs, *7-1
Actual parameters, 3-10, 4-19
Addressing modes, 9-23
ALIAS, *8-7
American National Standards Institute, 1-1
AND, *4-8
ANSI, *8-10

Pascal, 1-1
,string', 2-26

append, *6-6
formal definition, 1-2

arctan, *7-2
Arithmetic functions, *7-1
Arithmetic operators, *4-5
Array constant, see Array constructor
Array

constructor, *2-9
indexing efficien~y, 9-24
selector, *4-22
storage, *9-11
type, *2-26
type, multiply-dimensioned, 2-27

ASCII character set, 2-20
assert, *7-47
ASSERT HALT option, *8-12
Assignment compatibility, *3-7
Assignment statement, *3-5
Association of logical/physical files, *6-53
baddress, *7-49
binary, *7-16
Blanks as separators, 5-8
Block, *2-2
Boolean

operators, *4-8
storage, *9-2
type, *2-19

Buffer variable, *6-:46
Case constant subrange, in record type, 2-31
CASE statement, *3-18

efficiency, 9-29
ccode, *7-51
Char

literal, *2-20
storage, *9-9
type, i'2-20

CHECK ACTUAL PARM option, *8-13

Index-1

--- ~~-~~--~-. ------ --~

INDEX

CHECK FORMAL PARM option, *8-15
ohr', *7-12
close, *6-9

formal definition, 1-4
closing files, *6-50
COBOL and Pascal/3000, G-16
CODE option, *8-17
CODE OFFSETS option, *8-18
Comments, *5-7

non-legal, 8-54
Common subexpressions, 9-24
Compatibility of types, see Type compatibility
Compatible types, *2-38
Compilation block, 8-2
Compile-time error messages and warnings, C-l
Compiler options

introduction, 8-1
syntax, 8-1
typographical conventions, 1-2

Compiling Pascal/3000 programs, overview, 1-12
Compound statement, *3-3
Concatenation operator, *4-15
Congruent parameters, 3-11, 4-19
Constant definition, 2-7

order of, 2-8
Constant expressions, *2-7
Constant folding, 9-24
Constructors, 2-7

unrestricted set, 4-17
Conversion functions, 7-16
COPYRIGHT option, *8-21
oos, *7-3
Data access, 9-23
Data types, see Type definitions
Debugging Pascal/3000 programs, *10-12
Declaration part of block, *2-4
Declarations, *2-4

of functions, *2-43
of procedures, *2-42
of variables, *2-40
order of, 2-5
redefining standard identifiers, 2-5

Default field widths, 6-41
Deferred get, 6-57
Difference of sets (-), 4-9
Direct access files, 6-50

cLosi.ng, 6-58
eof marker, 6-58

Index-2

Keven
Rectangle

INDEX

Directives, *2-47
Disc files, 6-52
dispose, *7-39
D1V, *4-5
Empty statement, *3-4
Enumerated

storage, *9-5
subrange storage, *9-6
type, *2-22

eof, *6-10
formal definition, 1-4

eoln, *6-11
Error messages

format, 8-30
compile-time, C-1
run-time, D-1

Execution efficiency, *9-23
exp, *7-4
Expression, *4-1
EXTERNAL directives, *2-49
EXTERNAL option, *8-22

unique identifiers, 5-1
false, *2-19
File buffer selector, *4-24

formal definition, 1-4
FILE type, *2-34
Files

association, 6-53
buffer variable, 6-46
direct access, 6-50
formal definitions of operations, 1-1
introduction, *6-1
logical files, 6-46
opening and closing, 6-50
physical files, 6-52
programmer considerations, 6-58
sequential, 6-50
standard files input and output, 6-49
storage, *9-21
temporary nameless, 6-1
textfiles, 6-48

fnwn3 *6-12
$FONT, 8-8A
FOR statement, *3-25

efficiency, 9-28
Formal parameter list, *2-45
Formatting output, 6-40
FORT~~ and Pascal/3000, G-9
FORWARD directive, *2-48

Index-3

~NDEX

Functions
assignment to return, 2-43
call, *4-19
declaration, *2-43
levell, *2-53
recursive, *2-54
with PRIVATE PROC, 2-53

get, *6-13 -
deferred get, 6-57
formal definition, 1-4

GETHEAP, 7-36, *F-9
GLOBAL option, *8-23

unique identifiers, 5-1
GOTO statement, 2-6, *3-13
hal t , *7-52
Heap procedures, *7-36
HEAP COMPACT option, *8-25
HEAP-DISPOSE option, *8-26
hex,-*7-17
HP Pascal, summary of extensions to ANSI Pascal, 1-3
HP32106, *F-8
Identical types, *2-38
Identifiers, *5-1

map, 8-47
scqpe, 2-55

IF statement, *3-15
nesting levels, 3-16

$IF, 8-8C
IMAGE and Pascal/3000, H-5
Implicit conversion, 4-6, 6-26
INCLUDE option, *8-27
Incompatible types, *2-39
Indexing efficiency, 9-24
Initializing USL file, 8-53
input, *6-49 .
Integer

numbers, 5-3
storage, *9-3
subrange storage, *9-4
type, *2-21
type, as set base type, 2-33

Intersection of sets (*), 4-9
INTRINSIC directive, *2-51
Intrinsics

matching parameters, F-1
SPLIi'JTRoption, 8-42

Keywords, see Reserved words
Labels

declaration, *2-6
restrictions, 2-6, 2-55

Index-4

Keven
Rectangle

INDEX

Levell procedures and functions, *2-53
linepos, *6-15
LINES option, *8-28
LIST option, *8-29
LIST CODE option, *8-32
ListIng features, 8-29
Literals

integer, 5-3
longreal, 5-3
real, 5-3
string, 5-5

In, *7-5
Logical files, *6-46
Longreal

numbers, 5-3
permissible values, 2-25
storage, *9-8
type, *2-25

Map of identifiers, see TABLES option
m::zrk, *7-41
rra.xint, *2-21
rra.xpos, *6-16

formal definition, 1-4
minint, *2-21
MOD, *4-6
MPE commands for Pascal/3000, 10-1

overview, 1-12
MPE files, 6-52
Nesting of IF statements, 3-16
neb), *7-37
NIL, integer value, 2-7, 9-10
NOT, *4-8
Numbers, *5-3
Numeric conversion functions, *7-16
octal, *7-18
odd, *7-9
open, *6-17

formal definition, 1-1
Opening files, *6-50
Operands, *4-16

classes of, 4-1
implicit conversion, 4-6

Operators, *4-2
arithmetic, 4-5
boolean, 4-8
classes of, 4-1
concatenation, 4-15
precedence, 4-4
relational, 4-10
set, 4-9

Index-5

---~-------

INDEX

Optimizing storage, *9-22
OR, *4-8
ord, *7-13
Ordinal

data types, *2-17
functions, *7-12

OTHERWISE
as an identifier, 5-2, B-1
in record types, 2-31

Outer block, *2-2
output, *6-49
overprint, *6-19
PAC, 1-2, *2-26
pack, *7-43
PAGE option, *8-34
page, *6-20
Parameters

actual, 3-10
congruent, 3-11
formal, *2-45

PARTIAL EVAL option, *8-35
efficiency, 9-24

:PASCAL command, *10-2
:PASCALGO command, *10-6
:PASCALPREP command, *10-4
Paseal/3000

compiler, filename, 1-12
compile/prep/run, 10-1
debugging programs, 10-12
summary of extensions to HP Pascal, 1-8
support library, F-7
syntax diagrams, A-l
with COBOL, G-16
with FORTRAN, G-9
with IMAGE, H-5
with other languages, G-l
with SOR~C-MERGE, H-l
with SPL, G-4
with VPLUS, H-9

Physical files, *6-52
Pointer

data types, 2-17
dereferencing, *4-21
storage, *9-10
type, *2-36

position, *6-21
formal definition, 1-3

Index-6

Keven
Rectangle

INDEX

Precedence of operators, *4-4
pred, *7-14
Predefined identifiers, see Standard identifiers
Predicate functions, *7-9
PRIVATE_PROC option, *8-36
Procedure

declaration, *2-42
levell, *2-53
recursive, *2-54
statement, *3-10
with PRIVATE_PROC, 2-53

Program
compilation, 1-12
efficiency, 9-23
form, *2-1
heading, *2-1

prompt, *6-22
put, *6-23

formal definition, I-4
Range checking, 9-26
RANGE option, *8-38
read, *6-25

formal definition, 1-2
implicit data conversion, 6-26

readdir,*6-29
readln, *6-31
Real

numbers, 5-3
storage, *9-7
type, *2-24
type, permissible values, 2-24

Record constant, see Record constructor
Record

constructor, *2-13
field selection efficiency, 9-24
selector, *4-23
storage, *9-14
type, *2-30
type, fixed part, 2-31
type, tag field, 2-31
type, var~ant part, 2-31

Recursive procedures and functions,
Relational operators, *4-10

pointer, 4-11
set, 4-11
simple, 4-10
string, 4-12

release, *7-42

*2-54

Index-7

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

r INDEX

REPEAT statement, *3-23
Reserved words, B-1

typographical conventions, 1-2
reset, *6-32

formal definition, 1-2
re'Write, *6-35

formal definition, 1-2
round, *7-11
RTNHEAP, 7-36, *F-10
:RUN <Pascal/3000 programs>, 10-10
:RUN PASCAL.PUB.SYS, *10-8
Run-time error

messages, D-1
traps, 10-19

Rur~ing Pascal/3000 programs, 10-10
Running the Pascal/3000 compiler, 10-8
Scope, *2-55
seek, *6-38

formal definition, 1-3
SEGMENT option, *8-39
Selectors

array, 4-22
file buffer, 4-24
record, 4-23

Separators, *5-8
Set

constant, see Set constructor
constructor, for constant definitions, *2-15
constructor, unrestricted, *4-17
operation efficiency, 9-25
operators, *4-9
storage, *9-18
type, *2-33
type, with integer base type, 2-33

$SET, 8-8B
8etstY'len~ *7-19
Simple data types, *2-17
Simple statements, 3-1
sin" *7-6
eieeoj', *7-53
SKIP TEXT option, *8-·41
SORT:MERGE and Pascalj3000, H-1
Special symbols, * 5-9
SPL and Pascal/3000, G-4
SPLINTR option, *8-42
sqY'~ *7-7
eqxrt , *7-8

Index-8

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

INDEX
"

Standard
constants, 2-7
identifiers, listed, B-2
identifiers, typographical conventions, 1-2
variables input and output, 2-40

STANDARD LEVEL option, *8-43
Statements, *3-1

assignment, 3-5
CASE, *3-18
compound, 3-3
empty, 3-4
FOR, *3-25
GOTO, *3-13
IF, *3-15
procedure, 3-10
REPEAT, *3-23
simple, 3-1
structured, 3-1
WHILE, *3-21
WITH, *3-39

Static link, 3-11, 4-20
Static variables, 7-36
Storage

array, 9-11
boolean, 9-2
char, 9-9
enumerated subrange, 9-6
enumerated, 9-5
file, 9-21
integer subrange, 9-4
integer, 9-3
introduction, 9-1
longreal, 9-8
optimization, 9-22
'pointer, 9-10
real, 9-7
record, 9-14
set, 9-18
string, 9-17

str, *7-21
strapp end , *7-22
strdeZete, *7-23

"'.••." -," ~f ",'..< .,.•' .~

)'--

Index-9

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

String
assignment, 3-8
comparisons, 4-12
concatenation, *4-15
constant, see String constructor
constructor. *2-11
expression *7-19
formal parameter, 2-28
literals, 2-28, *5-5
operations, 7-19
passing as parameters, G-2
storage, *9-17
type, *2-28

eta-ineerti, *7-24
etx-l en, '~7-25
eta-l.ta-im, *7-26
etirmax .• '11>7-27
etasnoue, *7-28
strpo8~ *7-29
strroead, *7-30
strrpt, *7-32
e trx-tx-im, *7-33
Structured constants, see constructors
Structured data types, *2-17
Structured programming.,.l-l
Structured statements, 3-1
e tl'Wl'i be, *7- 34
SUBPROGRAM option, *8•.45
Subrange

efficiency, 9-25
of enumerated storage, *9-6
of integer storage, *9-4
type, *2-23

Substring, 2-28
succ:J *7-15
Symbols, 5-9

replacements, 5-10
$SYMDEBUG, 8-8E
Syntax diagra~~, A-I
TABLES option. *8-47
Temporary nameless files, 6-1
Textfile, *6-48

declaration, 2-35
type, *2-35
permissible operations, 2-35

TITLE option, *8-51
Transfer functions, *7-10
Transfer procedures, *7-43
Trapping run-time errors, *10-19
true .• *2-19
trune, *7-10

Index-10

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Type compatibility, *2-38
assignment, 3-7
compatible types, 2-38
identical types, 2-38
incompatible types, 2-39

Type definitions, *2-16
Undetected errors, E-1
Union of sets (+), 4-9
unpack, *7-43
USLINIT option, *8-53
Variable

declaration, *2-40
global and local, 2-55
globals with EXTERNAL option, 8-22
globals with GLOBAL option, 8-23
static and dynamic, 7-36

VPLUS with Pascal/3000, H-9
llJaddress, *7-55
Warning message format, 8-30
Warnings, compile-time, C-l
WHILE statement, *3-21
WIDTH option, *8-54
WITH statement, *3-29

efficiency, 9-26
write, *6-39

formal definition, 1-3
formatting output, 6-40

writedir, *6-43
writeln, *6-45
XARITRAP, 10-19
XLIBTRAP, 10-19
XREF option, *8-55

fndex-11

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

