HP 3000 Computer Systems A crckaro

PASCAL/3000 Reference Manual

HP 3000 Computer System

PASCAL./3000

Reference Manual

: 19420 HOMESTEAD RD., CUPERTING, CALIFORNIA $5014

Part Ho. 32106-50001 Printed in U.E.A. 1(¥83

NOTICE
The information contained in this document is subject to change withaut nctice.

HEWLETFRACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TC, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICUL AR PURPQSE. Hewlett-Packard shall
not pe Hable lor errors contained harein or for incidental or consequential damages in
connection with the furnishing, performance or use of this material.

This document containg proprietary information which Is protected by copyright, All rights are
reserved. No part of this dosumnent may be photocopied or reproduced withou? the prior written
consent of Hewlett-Packard Company.

Copynight @ since 1981 by HEWLETT-PACKARD COMPANY

Keven
Rectangle

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and the dates when pages were changed in updates to that-edition.
Within the manual, any page changed since the iast edition has the date the changes were made on the bottom of the page.
Changes are marked with a verticai bar in the margin. When an update is incorporated in a subsequent reprinting of the manual,
these bars are removed. '

S A e 11 WA Dec 1581
Second EOIOM ottt e Oct 1983

'PRINTING HISTORY

New editions are compiete revisions of the manual, Update packages, which are issued between editions, centain additional and
repiacement pages to be merged into the manuat by the customer. The date on the title page and back cover of the manual
changes only when a new edition is published. When an edition is reprinted, all the prior updates 10 the edition are incorporated.
No inforration is incorporated into a reprinting uniess it appears as. a prior update. The edition does not change.

The software product part nurnber printed alongside the date indicates the version and update level of the software product at the
time the manual edition or update was issued. Many product upiates and fixes ¢o not require manuat changes, and conversely,
manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one correspondsnce
between product updates and manual updates.

First Edition. ceveienn. ... Dec 1981 e e 32108A.00.00
Second Edition, e OBLAEBE e 32106A.00.00

RSN PRRPEPINEL PN

CONTENTS"

SECTION 1 - THE PASCAL/3000 LANGUAGE

ITOGUCHION it e e e e e PR
Manual OrgaNIZAHON .. . i et i e e i e e 12
HP Standard Pascalttt it it it i O B
Pascal/3000 e ety 1-8
Compiling Pascal/3000 Programs ccveeinrnnrrnanincanns SN 1-11

SECTION 2 - DECLARATIONS

Program FOrm ... it i i s e e eiaeea e 2-1
Deciaration Pamt ... i i e i e ettt it e et 2.4
Label Declarationottt i i i e i et e e e e 2-6
Constant Definition it iirnnanan e et -7
Array Constant (Armay ComsITUCIONttt iniin it irrentrn v rer i onaninaes 2-9
String Constant (String Constructor)c.coivrn, s et i 2«11
Record Constant (Record Constructor) ..v i ri ittt ittt e e i et ea 2-13

Set Constant (Restricted Set Construeton)t ii it i i it ctarrecnranonn 2-15
Type Definitions (DataTypes}civinuvnn. e r et et ety 2-16
e e T o T 2-19
Charlype i e et s e ettt a e e e e et 2-20
= LT o= AN NP 2-21

B =200 T= T T I Y T e 2-22
LT T T Y o 2-23
RealTypeccoviiriiiniininiiaaaann, e e 2.24
Longreal Typet ii ittt it nanees e it s et 2-25
L 5 o O 2-26

R 7 B v - R 2-28
oo o T+ e 2-30

SRt TYPE .. i it PN 2-33

File TYPE ..vvvvevnnrnnnnnnns U P 2-34
FL=> ¢ QR 1 L= O P e 2-35

e g g 1 o A 2-36
Type Compatibility i i e 2-38
Variable Declaralion i e i e et 2-40
Procedure Declaration e r et s ar e e g s e e e 2-42
FunClion DeClaration i i it it i i e e e 2-43
Formal Parameter LISl i i e e 2-45
5T = 2-47
FORWARDDIrectiveottt it iiinnnnannns e ee e 2-48

X T RN AL DIrallVe ... it it sttt i tm ettt ts e taaesisrainnnns 2-49
INTRINSIC Directive e mat et eaa ettt e e 2-51
Level 1 Procedures ant FUnCliONSt it i irrirreraonreransannnans 2-53
Recursive Procedures and FunClions i i 2-54
LT o T U 2-55

' CONTENTS

SECTION 3 - STATEMENTS
L gaEge a3 Lo ¢ o] T O 3-1
COMIPOUNT Sl I ON.t ittt et e e e 3-3
Bty S alBIEN, L . e e e e e 34
Assignment Statement, et e e e e 3-5
Assignment Compatibility e i e e 3-7
Procedure Statementttt i e F 3-10
GOTO Statement e e e ettt e e e e e e 3-13
LT F= N (=1 17T o) 3-15
R S 1= 112 P 3-18
L L1 Y T 1= o PP 3-21
REPE AT StalEmMel i ittt ittt et et e e e e 3-23
£ (= 4T o 3-25
WITH Statement i e e i e 3-29
SECTION 4 - EXPRESSIONS
EE 4o [0 { o o e e 4-1
1 0T - 1 e £ P s 4-2
o T LT O 4-4
Arithmetic Operators it i e et e e 4-5
BoOIean O peraIONS . ..o i ittt e e e i e et e e e 4-8
St OPBIBIOIS . ot ie e e 4-9
Relational Operatorscinoninnenson.s e e 4-10
Concatenation Operalort it et e e e 4-18
0T oo L O PRSI 4-18
SOt oM UG OIS . v ittt ittt b et e e e e st 4-17
FunctionCalflecoviivniennn e e e [P 4-19
Pointer Derelerencing i e e e e e ey 4-23
Array Selector e et e ettt 4-22
Yol ga IR Yo (o) A PP 4-23
File BUffer Galetlor .. i . it it e ittt e e e e e 4-24
SECTION 5 - TOKENS
e L= g {1 0P 5-1
Numbers {Integer, Real, and Longreal Literals) i i 5-3
Ry 1o [O 5-5
Commentscviiiiiiainn ke e e et e et et e 57
GEDATAIONS vt i e e e e ce e e 5-8
Special SYMbDOIS i e e ae e e 5-9

vi

Keven
Rectangle

CONTENTS

SECTION 6 - 1/O

ok ST W £ T O 6-1
Y oo o S 6-6
191 - 6-9
Yo N e b e 6-10
e £ T 6-11
Frum P 6-12
G o e e e e e PP 6-13
72T o S g 6-15
7Y ¢« o - S P 8-18
- 6-17
Y e 7 o T O 6-19
Page e e e e e e e e 8-20
s o111 o 1 S A AP 6-21
¢+ S 6-22
= 7 2 DA U 6-23
=7 T« A GO U UGN 6-25
207 Vo (o /7 A 6-29
T Lo {2 R O 6-31
-7 6-32
T T 1 - 2O 6-35
=S 6-38
T = X £-38
0= (7 O R 6-43
T = 11 o R DU 6-45
o T 1 C 6-48
TOXHEE & . ottt ot e et e e et 8-48
Standard Files Input @nd OUIDUL . . L ot i i e e 6-49
Opening and Closing Flesot i et i i ... 6-80
PhysicalFilest P 8-52
Associating Logical and Physical Flles i i i 6-53

170 ConSIderationsttt it ittt i ..., 657

vii

CONTENTS

SECTION 7 - STANDARD PROCEDURES AND FUNCTIONS

B 4 L Y E1oR W2 o 17 o1 D 7-1
- o TS 7-1

Y o - £ N 7-2

08 o e e e e e e e e 7-3

1+ O 7-4

28 7-5

Y 7-6

S i e e e e e e e e e e 7-7

Y o 7-8
PrEdiCaIE FUNC NS L .ot ittt et e ettt et sttt e e e e 7-8
48 s O 7-9
LT T =T ¥ ool T ot 7-10
Trunc e e e e e e e e e 7-10
ROUNT e e e e e e e e e aa 7-11
Ordinal Funetions e e e e e e 7-12
407 P 7-12
68« 7-13
= 7-14
Bl o e e e e e e e e e e e 7-15
NUMETIC CONVETSION FUNCIONS . L.ttt e et i et et e et e et e 7-18
BBy e e e e e e e e e 7-16

H X o e e e e e e e e 7-17

6 7 N 7-18
OtiNg OpBratiONS . .. e e i e e e 7-19
Setsirienr e e et e e et e e e s 7-19

8 7 7-21

Sl D NI i e e e e e e e 7-22

Y 2 = = 7-23
Stringert i, e e e e e e e T-24

Y {1 o T 7258

RS 1 1 7-26

R £ -3 7-27
Strenove T 7-28

R £+ T 7-29

C Strread e e e e et 7-30

R L DI 7-32
N ¢ 3 7-33
ST s e e e e, 7-34

viit

Keven
Rectangle

CONTENTS

SECTION 7 (Continued)

HeaD PrOCBaUNES . it e e e e 7-36
2 7-37

DS D08E e e e e e e e e e e 7-39

L = S D 7-41
L - 7-42
CTransfer Procedures ... e e e e e e e 7-43
= {1 7-43
T o) SO 7-45
Additional Procedures and FUNCIONS .. it it e e e e e 7-47
T 7-47
B8 . i e e e e e e e e e e 7-48
O e e e e e e e e e e 7-51

o 7-52

7 -1 A 7-53
T 1= = 7-558

Y T 18 Lo £ Lo T U DR 8.1
AL A e e e 8-7
B ONT e e 8-8A
4 = O A B-88
3 S O PP 8-8C
Y M E B G i i i e e e e B-8E
A S o e e s e e e e e e e 8-10
ASSERT__HALT e e e e e e 8-12
CHECK L ACTIUAL L PARM i i i i st e et atr it tr ey 8-13.
CHECK L FORMAL _PARM . e e e e 8-15
CODE e e e e e e e e e e 8-17
CODE L OFFSE TS . o i e ettt e e e e e 8-18
COPYRIGHT e e e e e e e e 8-21
BT RN AL L i e e e e e e e 8-22
GLOBAL e e e e e U e e e B-23
MEAP, COMPACT T PP 8-25
HEAP ISP S L. it it it et e e e e B-28
NG LD e e e e e e B-27
LINE S o it i i et e e e e e e e e e B-28
5 8-29
LIST G ODE . e e e e e e 8-32
o | 8-34
PARTIAL _EVAL e e e e e .. B35
PRIVATE PR C . e e e e e s 8-36
RANGE . e e e e e e e e e e 8-38
e GMENT . i e e e e e e e e e e e 8-39

CONTENTS

SECTION 8 (Continued)

RS I D - 841
T 8-42
STANDARD L EVEL L i it i e e e 8-43
SUBPROGRAM L e e e 8-45
TABLES .. e e i e 8-47
12 % = 8-51
R T | PO 8-53
WD TH e e e e e e 8-54
S 8-65

SECTION 9 - STORAGE AND EXECUTION EFFICIENCY

infroduction L o S Y 8-1
BOCIEAN SlOTAGE vttt i i e e e e ke g-2
g (= [T (ol £ T L 8-3
Integer Subrange Sterage Lo e e e e e e e 9-4
EnUMErated SlOra0e . . . oottt i e e s e e g-5
Enumerated Subrange BlOTa0E i i it e 9-6
e TR Lo g T P 9-7
Longreal Storage iy e, e 9-8
10 1T o (e [9-9
POINer SIOra0E i i e 9-10
Array SIOrage e e e e e 9-11
Becord BlOrage e e e e 9-14
SIINg BOrage e e s 9-17
= O Lo - T O PR 9-18
Fle Btorage . . . e e e e e 9-21
Storage Optimization - A Summary e e e e DR 9-22
Execulion EXCIBNCY . e i et i e 9-23

SECTION 10 - USING PASCAL/3000

OGN L. . e e 10-1
PSS AL e e e e e e 10-2
TP A A L P RE P . e et e 10-4
H 7 K 4 10-6
RUN PASCALPUB SYS . e e 10-8
Debugging Pascal/3000 Programs Symboilically 10-8A
Running Pascal/3000 Programs ... e 10-10
Debugging Pascal/000 Programs .. ot e e e e e .. 10-12
Trapping Run-Time Errors e e e, 10-19

CONTENTS

APPENDIX A - PASCAL/3000 SYNTAX DIAGRAMS

Syniax DIagrams ..o oo

APPENDIX B - RESERVED WORDS AND STANDARD IDENTIFIERS

FEESEIVEL VOIS Liovveiiiirie i iivieiiosccnmenstsssernateasenasssresssrtss s eaes s e s saasareets s bnestsssnnasassssennensstessnnennasernnseeans
AN LB TS it ciiini it et s st e e aes st et ae s tremts it eseeantansaesmanssaes s oaasbbes s ssssnatarbnnecenansrrnrnnns

APPENDIX C - COMPILE-TIME ERRORS

Compile Time Ermrors ... U OU OOV AR TUU PP

- APPENDIX D - RUN-TIME ERRORS

R TIT18 Bl O0S oeersoeteeeerereees s eesseeanesaresaaassareen aess e eeasee b bamseenna sesaes s essasar et snmeas smn e anesemanasanmmn e e e aeeemmnans

APPENDIX E - UNDETECTED ERRORS

Undetected Errors ..oioveneas

APPENDIX F - USING INTRINSICS

MAIChING INNSIC PAIAMEIBISiiiiiiiir i reisesisiiess st rveraeceatraee e e ebbar s e asnssnsinnebavasanesabmrasnsssare
Pascal Support Library

HP32106 ..
GETHEAP .
RTNHEAP . e

APPENDIX G - PASCAL/3000 AND OTHER LANGUAGES

Overview

Calling Other Languages from Pascal ... e ieeerestererneee e tasesaban

........

Calling Pascal from Other Languages ..
Pascal Strings as PATAMEIEIS ...occeriininenisncemrinnernr s ansses e ssesseesns

P aBEBE BN O o i o oo oot ettt ee e e et st eatis i n s s saetakseeiaseereseeaceeurtansdnnins s bseba s aneeniats urhne
Pascal and FORTRAN ...t et e e e
P as il BN GBI, ot iiiracerrteistsaascsaeraissrtnssrtasrtnesasasassar et arotbanssssannrastsesnnnayssrns

xi

£-1

......... F-1

L7

i rg
e P9

CONTENTS

APPENDIX H - PASCAL/3000 AND HP3000 SUBSYSTEMS

Pascal and SORT-MERGEcoiiriv e cvrenencves e e . H-1
PasCal and IMAGE ..o vt et e s et 4e Rt menst et . H-5
Pascal and VPLUS ... et e e s et st H-9
APPENDIX | - 1/0 DEFINITIONS

170 DBHINITIONS ..t oot iimmerieins s imreirses tin e srssniere srmevatss er e sesaes evbessssnsesnsrssors ansasssrecoseatsnssreniversrasesesnserensns -1

TABLES AND FIGURES

Figure 2-1. Pascal/3000 Data TYPES wvvrivevirmsiirsicninesonissces e beneersorarassereesaassorne 2-18
Table 3-1. String, PAC, Char, and String Literal ASSiGnNMENT vcerrsrne e s s enssssarnsssnes 3-8
Table 4-1. Pascal/ 3000 OPOraiors .. iicieinmreacesomrsaaireesratvsrraessorsssrerrastasssrssass artensarassnssarasssrs 4-2
Table 4-2. String, PAC, Char, and String Literal COMPAESONS .o veccirinsvmiierrisnss e enees 4-13
Table 5-1. Pascal/ 3000 Special SYmDBOIS ...ttt rcrsis st e en s e es e sres o os §-9
Table 6-1. File Procedures and FUNCHIONS (..ot errciermnisienrnneesrssreassssrssssesssessrnnssrsrasssases sesssssssens &-2
Table 6-2. IMPIlIcit Data CONVEISIONoiviieieecrieivirreesrerrertrersresevssiresssesessrsersanasssesrossscs saons 6-28
Table 8-3. Default Figld WIGhs ... resse s essaes e ssnevesserrsnnsnssnns 6-41
Table B-1. CoOMPIUET OPIONS ..oiiiiiieceireerrirecsieireererererreserereesbssesasssssssressaonsssssarssessnsossnsonssrnsranssssres 8-3
FIGUIE O-1. ST STOMAGE ..ot ee et rcecs s aae e e vt erasaesasrsssses taressa ren vansens sanvaraann snsnsnsanes 8-20
Table 8-1. DA1A ACCESS ...iiiiiiireiiriiiiiiceniirmiee s irrrsss e sastretrensecas s st aasrstsssnnnasstrensnnesrases 8-23
Table F-1. Intrinsic Value Parameters and PasCal TYPES .o iriicriinrisnvsssnreesssiss sosssssvesasvassnssnsans F-3
Table G-1. PasCal and SPL TYDES .iiiiiriioriracires s esrassceessreasascbansssssstrsnsasssrsntassssenrssssssssssnsrerens G-7
Table G-2. Pascal and FORTRAN TYDBS ivivcieiiiiiirnreensirresesicerseasstnscsineasrssnssss srsorassesssenses G-14
Table G-3. COBOL Types and FOrmMatscccooimmmrmvcerimrmreemrassisennsssnesserresssssssssusssevosssan G-17

xii

Keven
Rectangle

THE PASCAL/3000 LANGUAGE

INTRODUCTION

On rare occasions in programming language developrent there appears a programming language
which is widely recognized as superior, and which propagates itself among discerning
implementors and users solely by its merits, and without any political or commercial backing.
ALGOL 60 was such a language. Pascal is another.

—Waish, Sneeringer, and Hoare quoted in Tutorial:
FProgramming Language Design by \Wasserman,
p. 264

Niklaus Wirth designed the programming language Pascal in 1968 as a vehicle for teaching the
fundamentals of structured programming and as a demonstration that it was possible 1o efficiently and
reliably implernent a "'non-trivial' high level language. :

Since then, Pascal has established itself as the dominant programming language in university-level
cemputer science courses. It has also become an important Ianguaga in commercial software projects,
especially in systems programming.

Pascal/ 3000 is a version of Pascal intended for the HP3000 computer. The Pascal/3000 compiler
impiements Pascal/ 3000 by compiling Pascal/ 3000 source code into HP3000 object code and storing
this code in a user subprogram library (USL). The MPE Segmenter may subsequently prepare the USL
into an executable program file.

Pascai/3000 is a superset of Hewlett-Packard Standard Pascal, a company-standard language currentiy
impiemented on several Hewleti-Packard computers. HP Standard Pascal, in turn, is a superset of
American Nationa! Standards insiitute {ANSI} Pascal.

Subsequent pages of this section outline the organization of this manual and summarize the HP Standard

Pascal and Pascal/ 3000 extensions. The experienced Pascal programmer may use these summaries as a
guice for further study of unfamiliar features.

1-1

MANUAL ORGANIZATION

This manual fully describes Pascal/3000. The reader wishing to learn Pascal should refer 1o an
introductory text,

Sections 2 through 5 of this manua! discuss the features of Pascal/ 3000 in top-down fashion, starting with
programs and conciuding with lexical tokens. .

Section & expiains Pascal/ 3000 files and the various procedures and functions which the programmer
may use o manipuiate them.

Section 7 presents the standard operations and functions supported by Pascal/3000.
Section 8 discusses the Pascal/ 3000 compiler options.

Section 9 explains the storage requirements of the various Pascal/ 3000 data types and shows how the
programmer can optimize storage and execution efficiency.

Section 10 discusses ways 1o invoke the Pascal/ 3000 compiler using various MPE commands.

Finally, several appendices present supplementary information.

Throughout this document, Pascal/ 3000 reserved words, compiler options, and directives appear in
upper case, e.g. BEGIN, USLINIT, FORWARD. Standard identifiers appear in italics, .g. readin, maxint,
text. ’
Appendix B lists the Pascal/3000 reserved words and standard identifiers,

In the criginal Jensen andg Wirth Pascal Report, the term "string’ refers 1o any packed array of char with a

starting index of 1. Pascal/3000, however, supports the standard type string. To avoid contusion, the term
PAC is used for the type packed array of char.

HP STANDARD PASCAL

The foliowing is a list of the HP Standard Pascal features which are extensions of ANSi Standard Pascal.
For the full description of a feature, the reader should refer o the appropriate pages in subsequent
sections,

Identifiers

The underscore character () may appear in identifiers, but nof as the first character {see Section 5).

Longreal Numbers

The type jongreal is identical with the type real except that it provides greater precision (see Section 2)
The letter 'L’ precedes the scale factor in a longreal literal (see Section b).

String Literals

HP Standard Pascal permits the encoding of control characters or any other singie ASCY characier after .
the sharp symbol (#) (see Section 5). For example, the string literal #G represents CTRL-G, Le. the bell,

Constructors (Structured Constants)

The programmer can specify the value of a declared constant with a constructor. in general, a constructor
establishes values for the components of a previously declared array, record, string or set type (see
Section 2). Record, array, and string constructors may only appear in a CONST section of a declaration
part of a block. Set constructors, on the other hand, may also appear in expressions in executable
statements and their typing is optional (see Section 4).

1-3

HP STANDARD PASCAL

Constant Expressions

The programmer may also specify the value of a declaraed constant with a constant expression. A consiant
expression returns an ordinal value and may contain only declared constants, literals, calis to the functions
ord, chr, pred, suce, hex, octal, binary, and the operators +, -, *, DIV, and MOD (see Section 2).

A constant expression may appear anywhere that a constant may appear.

Minint

The standard constant minint is defined in the Pascal/3000 system as the integer value -2147483648.

String Type

HP Standard Pascal supports the predefined type string. A string type is a packed array of char with a
dectared maximum length (see Section 2) and an actual length that may vary at run time.

The programmer may compare a variable of type string with a similar variable or a string literal (see
Section 4), or assign a string or string literal 10 & string (see Section 3).

Several standard procedures and functions manipulate strings (see Section 7). Strfen returns the current
tength of a string; sirmax the maximum length. Strwrite writes one or more values to a string; strread reads
values from a string. Strpos returns the position of the first occurrence of a specified string within another
string. Stritrim and strririm trim leading and trailing blanks, respectively, from a string. Strrpt returns a
string composed of a designated string repeated a specified number of times. Strappend appends one
string 10 another. Sfrreturns a specified portion of a string, i.e. & substring. Setstrien sets the current length
of a string without changing its contents. Strmove copies a substring from a source string to a destination
string. Strinset inserts one string into another, Strdslefe deletes a specified number of characters from a
string. '

1-4

Keven
Rectangle

'HP STANDARD PASCAL

Record Variant Declaration

The variant part of a record field st may have a subrange as a case constan! (see Section 2},

Declaration Part

In the deciaration part of a block, the programmer can repeat and intermix the CONST, TYPE, and VAR
sections (see Section 2). The LABEL section must still precede and the PROCEDURE and FUNCTION
sections follow the CONST, TYPE, and VAR sections.

Assignment Compatibility

if T1isa PAC variable and T2 is a string literal, then T2 is assignment compatible with T1 provided that T2
is not longer than T1. § T2 is shorter than T1, the system wili pad T1 with blanks.

If T1is real and T2 is fongreal, the system truncates T2 o real before assignment.

CASE Statement

The reserved word OTHERWISE may precede a list of statements and the reserved word END in a CASE
statement. If the case selector evaiuates to a value not specified in the case consiant list, {he system
executes the statements between OTHERWISE and END {see Section 3). Also, subranges may appear as
case consiants.

WITH Statement

The record list in a WITH statement may include a call to a functlon WhiCh returns a record as its resuit
(see Section 3).

HP STANDARD PASCAL

Function Return

A function may return & structured type, except the type file. That is, a function may return an array,
record, set or string (see Section 2).

170

The programmer may open & file which is not a textfile for direct access with the procedure opén. Direct
access files have a maximum numbper of components, indicated by the function maxpos. The procedure
seek places the current position of a direct access file at a specified component. The programmer can
read from a direct access file or write to it with the procedures readdir or writedir, which are combinations
of seek and the standard procedures read or write.

The programmer may open any file in the 'write-only’ state without altering its contents using the
procedure append. The current position after append is the end of the file.

The programmer may explicitly close any file with the procedure close.

To permit interactive input, the system defines the primitive file operation gef as 'deferred get’ (see
Appendix 1}.

_ The procedure read accepts any simple type as input. Thus, it is possible to read a boojean or enumerated
value from a file. It is also possible to read & value which is a packed array of ¢har or siring.

The procedure write accepts identifiers of an enumerated type as parameters. The programmer may write
an enumerated constant directly to a file.

The function position returns the index of the current position for any file which is not a textfile. The

function /inepos returng the integer number ¢f characters which the program has read from or written to a
textfile since the last line marker.

16

HP STANDARD PASCAL

The procedures page, overprint, and prompt operate on textfiles. Fage causes a page eject when a text
file is printed. Overprint causes the printer to perform a carriage return without a ling feed, effectively
overprinting a tine. Prompt flushes the output buffer without writing a line marker. This allows the cursor to
remain on the same screen ling when output is directed to a terminal.

Section b describes files and {/0 operations in detail.

Heap Procedures

The procedure mark marks the state of the heap. The procedure refease restores the state of the heap to a
state previously marked. This has the sffect of deallocating all storage allocated by the new procedure
since the program calied a particular mark (see Section 7).

Halt Procedure

The halt procedure causes an abnormal termination of a program (see Section 7).

Numeric Conversion Functions

The functions binary, octal, and hex convert a parameter of type string or PAC, or a string literal, to an
integer, Binary interprets the parameter as a binary vaiue; octal as an octal vaiug; hex as a hexadecimal
value (see Section 7} : '

Compiler Options

Compiler options appear between dollar signs (§). HP Standard Pascai has five options: ANS,
PARTIAL _ EVAL, LIST, PAGE, and INCLUDE. ANS! sets the compiler to issue warnings in the listing

when source code includes features which are not legal in ANS! Standard Pascal. PARTIAL__EVAL
permits the partiai evatution of boolean expressions. LIST aliows the programmer to suppress the compiier

listing. PAGE causes the listing to resume on the top of the next page. INCLUDE specifies a source file
which the compiler will process at the current position in the program.

PASCAL/3000

The foliowing is a list of Pascal/ 3000 features which are extensions of HP Standard Pascal. For a full
description of these feaiures, the reader should refer 1o the relevant pages in subsequent sections.

Directives

EXTERNAL and INTRINSIC are legal Pascal/ 3000 directives fully described in Section 2.

EXTERNAL indicates that the system will find & procedure or function in an external compitation unit. The
programmer may qualify EXTERNAL with the terms SPL, SPL VARIABLE, FORTRAN, or COBQL. SPL
indicates the external procedure or function is in SPL without option variable parameters; SPL VARIABLE
that it is in SPL and has option variable parameters; FORTRAN that it is in FORTRAN; and COBOL that it
is in COBOL. 68 or COBOL Il

INTRINSIC indicates the declared procedure or function is a MPE or user-defined intrinsic. The formal
parameter list of a procedure or function declared with the INTRINSIC directive is optional. That is, the call

to the procedure may contain actual parameters even if no formal parameters appear in the declaration,
Furthermore, the system will perform certain conversions of the actual parameters {See Appendix F).

Procedure and Function Calls

Calis of & procedurs or function declared EXTERNAL SPL VARIABLE or INTRINSIC (where there are
option variable parameters) may omit actual parameters. The programmer must specify empty option
variable parameters with the comma {,) (see Section 3).

Ccode Function

The ccode function returns an integer in the range 0..2 which indicates the condition code after an intrinsic
call {see Section 7).
Fnum Function

The fnum function returns an integer which indicates the value of the MPE file number of the physical
file associated with a logical file. '

PASCAL/3000

Sizeof Function

The sizeof function returng the size in bytes of the storage required for a variable (see Section 7).

Waddress and Baddress Functions

The waddress funclion returns the DB relative word address of a variable, or the external P jabel of a
procedure or function (see Section 7). The baddress function returns the DB relative byte address of a
variable (see Section 7).

Assert Procedure

The assert procedure evaluates & booiean expression and, provided the compiler option ASSERT_HALT
is ON, aborts a program when the expression is false. It is also possibie to specify an optional procedural
parameter. When the expression is faise, the system will execute this procedure before terminating the
program (see Section 7). '

Compiler Options

Pascal/ 3000 supports a number of compiler options fully described in Section 8 and briefly summarized
here.

ALIAS permits the programmer 1o specify an external name for a procedure or function which is different
from its declared name.

ASSERT_.HALT causes program termination when the boolean expression in a call 1o the assert
procedure is false.

CHECK.._ACTUAL.._.PARM or CHECK.._FORMAL_,PARM specify the level of checkmg the system will
periorm for.actual or formal parameters.

CODE permits the programmer to suppress the generation of object code for a portion of source code.
CODE.OFFSETS shows the p register offsets for statements.

COPYRIGHT inserts a copyright notice in the USL and program files.

PASCAL/3000

EXTERNAL and GLOBAL permit the separate compilation of procedures and functions.

HEAP COMPACT causses the system to concatenate free space in the heap. HEAP__DISPOSE lets the
systemn teallocate disposed areas in the heap.

LINES sets the number of listing lines per page.
L1ST__CODE produces a mnemenic listing of the HP3000 machine code gensrated by the cor'npiier‘

PRIVATE__PROC permits non level 1 procedures or functions to be compiled into separate relocatable
binary modules with 'public' entry points,

RANGE causes the compiler to generate range checking code for assignments, array indexing, parameter
passing, and peinter dereferencing.

SE_GMENT changes the current segment name to a specified name.

SKiP__ TEXT causes the compiler to ignore source code.
SPLINTR specifies a file which the system will search when a program declares an intrinsic.

STANDARD__LEVEL specifies the level of legal Pascal syntax. The compiler issues & warning when
encouniering a feature not permitted at the specified level.

SUBPROGRAM allows independent compilation of specified level 1 prbcedures or functions.

TABLES produces an identifier map for each compilation biock.

TITLE places a specified titie at the top of the listing page.

USLINIT causes the compiigr to initialize the designated USL 1o empty before placing any objec! codein it
WIDTH instructs the compiler to process a specified number of columns of source text.

XREF tells the compiler 1o prepare and issue a cross reference of a compilation biock.

1-10

- PASCAL/3000

As well as these language feaiures, Pascal/3000 provides three support fibrary routines which are
accessibie from other HP3000 subsysiems or languages. GETHEAP allocates a region of the DL-DB area
of the stack; RTNHEAP deallocates a region of the DL-DB area; HP32 106 returns the version name for the
currently installed Pascal/3000 support library, Appendix F describes these three procedures.

When called by Pascal, subsystems such as VPLUS which use the DL-DB area of the stack call
GETHEAP and RTNHEAP to avoid possible conflict with the Pascal heap {see Appendix H).

COMPILING PASCAL /3000 PROGRAMS

An Qverview

The Pascal/3000 compiler scans and parses Pascal/ 3000 source code and then emits HP3000 object
code into a USL file. The compiler produces object code for one procedure, function, or outer block at &
time and the programmer may control this code generation with various compiler options. For exampie,
the SUBPROGRAM compiler aption instructs the compiler to issue object code only for specified levet 1
procedures or functions and their nested procedures or functions, and to suppress code generation for the
outer biock (see Section 8). Also, the compiler options EXTERNAL and GLOBAL permit the separate
compilation of procedures or functions without redeclaring all global variables (see Section 8).

As it processes source code, the Pascal/ 3000 compiier produces a pfogram listing. The programmer may
suppress this listing by setting the LIST compiler option OFF, or enhance it with several optional features
such as an identifier map, & cross reference, or code offsets (see Section 8).

To invoke the Pascal/ 3000 compiler, the programmer may select one of four MPE commands described in
Section 10, The MPE command :PASCAL processes a source text into a USL file; the command
:PASCALPREP compiles the source text and then prepares the resulting USL into a program fiie; the
command :PASCALGO compiles, prepares, and then executes a program; finally, the :RUN commmand
can directly invoke the compiler, which is a program file fully specified by the name PASCAL.PUB.5YS.

Since the compiler opens the source file “read only” with semiexciusive access o insure that no one

writes {0 the file during compilation, the use of semiexciusive access requires that the group have
LOCK acocess. _

1-12

DEVELOPING PASCAL/3000
PROGRAMS WITH HPTOOLSET

Pascal programs can be developed, compiled, prepped, run and symbolically debugged using the
program development utility HPToolset. TOOLSET contains an Editer, a Program key to transiate and
run your code, and a symbolic debugger that alleviates having to know memory locations or convert
saurce statements into code statements.

See the HPTooiset Reference Manual for details on how 1o run TOOLSET and how to use each of its
features.

Keven
Rectangle

Keven
Rectangle

SECTION

DECLARATIONS

-

PROGRAM FORM

The Pascal/ 3000 compiier will successiully compile any Pascal/ 3060 source code which contorms o the
syntax and semantics of a Pascal/ 3000 program. The form of a Pascal/ 3000 program consists of a
program heading, a semi-colon (;), an outer block, and & period.

Syntax

program—-[program heading

Compilation fails when any of these slements are missing.

The program heading consists of the reserved word PROGRAM, an identifier (the program name) and an
optional parameter list.

Syntax

program

heading identitier ,

identifier

The identifiers in the parameter ligt are variables which the programmer must declare in the outer biock,
except for the standard texttiles nput and output.

Input and output are standard file variables which the system associates by default with the MPE files
$STDIN and $STDLIST and which it opens automatically at the beginning of program execution {see
Section 8). In Pascal/3000, input or output need only appear as program parameters if some file
operation, e.g. read or write, refers to them explicitly or by defauit.

Program parameters are often the names of file variables, but a logical file, i.e. a file declared in the
program, need not necessarily appear as a program parameter. The advantage of putting the name of the
logical file in the program parameter list is that the system will use the first 8 characters of this name as the
detault name for the MPE file associated with the program’s logical file {see Section 6).

- 2-1

PROGRAM FORM

Other types of variabies may appear in the parameter list of the program heading. in particuiar, a vanable
of type integer, subrange of integer, PAC, or siring may occur. Such a variable will capture the value of the
PARM or INFQ parameter of the MPE :RUN command, In other words, the programmer may pass the
integer value of the PABM parameter or the character string value of the INFO parameter to a

Pascal/ 3000 program at run time (see Section 10). For exampie, the INFO parameter can pass the name
or names of physicatl files which the programmer wishes to associate with the logical files in & program
{see Section 6).

The outer block of a program consists of an optional declaration part and a required statement part.

Syntax

geclaration » COmpound] »
block j par: j statament

The declaration part consists of definitions of iabels, constants and types, and deciarations of variables,
procedures and functlions. The statement part is made up of 2a compound statement which may be empty
or may contain several simple or structured statemenis (see Section 3). The statement part is also termed
the "body’ or "executable portion’ of the block.

The outer block of a program is identical with the block of a procedure declaration, except that it
terminates with a period {).

PROGRAM FORM

Exampies
PROGRAM minimum; {The minimum program the Pascal/3000 }
BEGIN {compiler will process successfully: }
END, {no program parameters; }

PROGRAM show_forml (output}; {Uses the standard textfile output}

BEGIN {and the standard procedure }
writeln ('Greetings!’') {uriteln. }
END.

PROGRAM show_form2 (i,f); (The program parameters are declared}

VAR {in the declaration part. The PARM)}
i: integer; {parameter of the :RUN commend will }
£: FILE OF integer; {pass a value to i. The second }

BEGIN {executable statement in the body of)}
append (f); {outer block writes this value on }
write (f,1i); : {the file f, }

END. .

PROGRAM show form3 (input,output);

VAR -
a,b,total: integer;

FUNCTION sum (i,j: integer): integer; {Function declaration }
BEGIN {with an inner bleock }

gum:= i + j {which is not part of }
END; {outer block. }

BEGIN
write {'Enter two integers: ');
prompt;
readin (a,b);

total:= sum {a,b};
writeln {'The total is: ', total)
END.

DECLARATION PART

The declaration part of an HP Pascal biock defines the iabels, declared constants, data types,
variables, procedures, and functions which will appear in the executable statements in the body of the

_ biock.

The reserved word LABEL precedes the declaration of labels; CONST or TYPE the definition of declared
constants or types; VAR the declaration of variables; PROCEDURE or FUNCTION the declaration of a

procedure or a function.

Syntax

declaration

part

ungigned
intager

»

idantitier

congtructor

identifier

{ Ne
ot

icentifier

k J

procedure heading

\-b{ furction heading
L

bilack

dirsctive

Keven
Rectangle

DECLARATION PART

Within a declaration part, label declarations must come first; procedure or function deciarations iast.
The programmer, however, may intermix and repeat CONST and TYPE definition sections and VAR
deciaration sections (see exampie below). This is an HPF Standard Pascal extension of ANS! Standard
Pascal.

ANS! Standard Pascal does not allow any of the reserved words LABEL, CONST, TYPE or VAR to be
used more than once.

The programmer can, but usualiy will not, redeciare or redefine a standard declared constant, type,
variable, procedure or function in the declaration part.

Example
PROGRAM show_declarepart;
LABEL 25;
VAR _
birthday: integer;
TYPE
friends = {Joe, Simon, Leslie, Jill);
CONSYT
maxnuninvitee = 3;
VAR

invitee: friends;
PROCEDURE celebrate; EXTERNAL: {End of declaration pars.}
BEGIN {Beginning of body. }

END.

LABEL DECLARATION

A label declaration specifies integer labels which mark executabie statements in the body of the block. The
GOTO statement transfers controi to 2 iabeled statement {see Section 4).

The reserved word LABEL precedes one or more integers separated by commas.

Syntax

label
declaration

Integers must be in the range 0 to 9998. Leading zeros are not significant. For example, the labels § and
00009 are identical.

Label declarations must come first in the declaration part of a block.
The progr;ammer cannot use & label 10 mark a staterment in a procedure or function nested within the

procedure, function, or outer block where the labe! is declared. This means a GOTO statemsnt may jump
out of but not into a procedure.

Example

LABEL 9, 19, ko,

26

CONSTANT DEFINITION

A constant definition establishes an identifier as a synonym for a constant value. The programmer may
then use the identifier in place of the valus.

The reserved word CONST precedes one or more constant definitions. A constant definition consists of an
identifier, the equals sign (=), and a constant value,

Syntax

gz’f’ifltg{:)tn identifier —D@T-’ number ————————-—7—@—#——'

g string literal e’

\-pj. deciarad constant .—)
i }

Mol CONSTANE EXPTEISTAN e’

Mgt CENSIFUCTOr_-)

Section 5 explains the form of numbers and string iiterals. The reserved word NiL is a pointer value.
Declared constanis include the standard consiants maxint and minint as well as the standard enumerated
constanis true ang faise,

Constant expressions are a restricted class of Pascal/ 3000 expressions. They must return an ordinal value
which is computable at compile time. Consequently, operands in constant expressions must be integers or
ordinal daclared constants. Operators must be +, - *, DIV, or MOD. All other operators are exciuded.

Furthermore, only calls to the standard functions ord, chi, pred, succ, abs, hex, octal, and binary are legal.

CONSTANT DEFINITION

One exception to the restrictions on constant expressions is permitted: the programmer may change the
sign of a real or longreal declared constant using the negative real unary operator (-). The positive
operator {+) is legal but has no effect.

A constructor specifies values for a previously declared array, string, record, or set type. Subsequent
pages describe constructors and the structured declared constants they define,

Constant definitions must follow labe! declarations and precede function or procedure declarations. The
programmer can repeat and intermix CONST sections with TYPE and VAR sections.

Exampie

CONST
fingers = 10; {Unsigned integer. }
pi = 13,1415, ' {Unsigned real. | }
message = 'Use a fork!'; (String literal. }

nothing = NIL;

delicious = true; {Standard constant. ¥
- neg_pi = ~pi; {Real unary operator. }
hands = fingers DIV 5; {Constant expression. .}
numfofks = pred(hends); {Constant expression with }
{call to standard function. }

2-8

Keven
Rectangle

ARRAY CONSTANT

(Array Constructor)

An array constant is a declared constant defined with an array constructor which specifies values for the
components of an array type.

An array constructor consists of a previously defined array type identifier and a list of values in square

brackeis. Each component of the array type must receive a value which is assignment compatible with the
component type.

Syntax

consiang

Lonstructor

array array (
— lype
constructor wdentifier _@ L ‘
constant @

Within the sguare brackets, the reserved word OF indicates that a value occurs repeatedly. For example, 3
OF 5 assigns the integer value 5 10 three successive array components. The symbols {. and.) may replace
the left and right square brackets, respectively. An array constant may not contain files.

Array constructors are only legal in a CONST section of a deciaration part. They cannot appear in other
sections or in executable statements.)

The programmer may Use an array constant to initialize a variable in the executable part of a block. The
programmer may also access individual components of an array constant in the body of & block, but not in
the definition of other constants (see Selectars in Section 4).

ARRAY CONSTANT

Examples

TYPE
boolean_table
‘table
row
matrix
color
color string
color_array

[I SO T

CONST
true values
init_valuesl
iniv_values2
identity

o W

matrix {row
row
row
row
Tow
color_array

colors

1, 0, 0,
[0, 1, 0,
{c, 0, 1,
[09 OS 0‘
[c, c, 0

L] *
[eolor_string
coler string
coler_string

ARRAY [1..5] OF boclean;
ARRAY [1..100) OF integer;
ARRAY [1..S5] OF integer;
ARRAY [1..5] OF row;
(red, yellow, blue);
PACKED ARRAY [1..6] OF char;

ARRAY [color] OF color_string;

'...l
L]

-

o,

0

boolean table [5 OF true];
table [100 OF 0);
table {60 OF O, Lo OF

OO OO0

g oy p— Rl il St S ot

REDQ‘SOFI !]'
YELLOW'],
BLUE', 2 OF ' '1];

I T T)

In the last sxample, the type of the array component is char yet both string literals and characters appear in
the constructor. This is one case where a value (string literal) is not assignment compatible with the
component type (char). Alternatively, the programmer could write

colors = color_array|'RED', 'YELLOW', 'BLUE'};

for the last constant definition.

2-10

Keven
Rectangle

STRING CONSTANT

(String Constructor)

A string constant is a declared constant defined with a string constructor which specifies values for a string
fype. .

A string constructor consists of a previously defined string type identifier and a list of values in square
brackets.

Syntax

string string

CONStruCtor "} Hioveities constant @
7\
NS

Within the square brackets, the reserved word OF indicates that a value occurs repeatedly. For example 3
OF ‘a’ assigns the characier 'a’ {0 three successive string components. The symbols (. and .} may repiace
the ieft and right brackets, respectively. Siring iiterals of more than one character may appear as values.

The length of the string constant may nol exceed the maximum length of the siring type used'in its
definition,

String constructors are only legal in a CONST section of a declaration part. They cannot appear in other
sections or in executable statements. '

The programmer may use a string constant to initialize a variable in the statement part of a block. The
programmer may aiso access individual components of a string constant in the bady of the block, but not
in the definition of other declared constants {see Selectors in Section 4},

2-11

STRING CONSTANTS

Examples

TYPE
s = string[80];

CONET
blank = ' ‘;
greeting = s{ 'Hello!'];
farewell = s['G',2 OF '0','4", 'bye’];
blank string = s{10 OF blank];

2-12

Keven
Rectangle

RECORD CONSTANT

(Record Constructor)

A record constant is & declared constant defined with a record constructor which specifies values for the
fields of a record type.

A record constructor consists of a previously deciared record type identifier and a list in square brackets of
fieids and vaiues. All figlds of the record type must appear, but not niecessarily in the order of their
declaration. Vatues in the constructor must be assignment compatible with the fields.

Syntax

record record ;
CONStructor aentifier (®—’

field igentifier CONSIANT jaweree’]
A—

constructor {

For records with varants, the contructor must specify the tag field before any variant fields. Then only the
variant fields associated with the vaiue of the tag may appear. For free union variant records, i.e. tagless
variants, the initial variani field selects the variant.

The values may be constant values or constructors. To use a constructor as a value, the programmer must
define the field in the record type with a type identifier. A record constant may not contain a file.

A record constructor is only legal in the CONST section of a declaration part. It cannot appear in other
sections or in an executable statement.

The programmer may use a record constant to initialize a variable in the body of a biock. The programmer

can also seiect individual fields of a record constant in the body of a block, but not when defining other
constants.

2-13

RECORD CONSTANT

Exampies
TYPE
securtype = {light, medium, heavy);
counter = RECORD

vages: integer;
lines: integer;
characters: integen;
END;
report = RECORD
revision: char;
price: real;

info: counter;

CASE securtag: securtype OF
light: ()3
medium: {mccde: integer);
heavy: {hcode: integer;

password: string{ic]);
END;

CONST
no_count = pounter [pages: 0, characters: 0, lines: 0];

big_report = report [revision: 'B’,
price: 19.00,
info: counter [pages: 19,
lines: 25,

characters: 900],
securtag: heavy, '
heede: 999,

password: 'unity'];

2-14

Keven
Rectangle

SET CONSTANT

(Restricted Set Constructor)

A set constant is a declared constant defined with a restricted set constructor which specifies set values,

A restricted set constructor consists of an optional previously declared set type identifier and a list of
constant values in square brackets. Subranges may appear in this list.

Syntax

set

restricted
set
constructor

type
identifier

©

)

constant
‘. -congtant j

A value must be an ordinal constant value or an ordinal subrange. A constant expression is legal as a
value. The symbois (. and .} may replace the left and right square brackets, respectivaly.

Restricted set constructors may appear in a CONST section of a declaration part or in executable
statemenis. Unrestricted set constructors permit variables to appear as values within the brackels (see
Secticn 4). :

The programmer can use a set constant 1o initialize a set variable in the body of a block.

Examples

TYPE
digits = SET OF 0..9;
charset = SET OF char;

CONST
all digits = digits [0..9]; {Subrange. }
odd_digits = digits {1, 1+2, 5, 7, 9};
letters = charset ['a’..‘2z', 'A"..'2'];
noe chars = charset []; '
no:iden = [2, 4, &, 8] {No set identifier.}

2-15

TYPE DEFINITIONS
(Data Types)

A type definition establishes an identifier as a synonym for a data type. The identifier may then appear in
subsequent type or constant definitions, or in variable declarations.

The reserved word TYPE precedes one of more type definitions. A type definition consists of an identifier,
the equals sign {=), and a data type.

Syntax

type 3 » type identifier | . —

O -

2-16

Keven
Rectangle

TYPE DEFINITIONS

A data type determines a set of attributes which include:
« the set of permisgsible values
+ the set of permissible operations
« the amount of storage required

Subsequent pages explain the permissible values and operations for the various data types. Section 9
discusses storage.

The three most general catagories of data type are simple, structured, and pointer.

Simple data types are the types ordinal, real, or fongreal. Ordinal types include the standard types integer,
char, and boolean, as well as enumerated and subrange types defined by the programmer.

Structured data types are the types array, record, set, or file. The standard type string is also a structured
. data type. The standard type text is a variant of the file type.

Pointer data types define pointer variables which point to dynamically allocated variables on the heap.

Figure 2-1 shows the relation of these various categories.

217

TYPE DEFINITIONS

DATA TYPES
POINTER STRUCTURED
Array Rscard Set " File String
Text
SIMPLE
Reat Ordinal Longresl
integer Boolean Char Ernumorated Subrange
Fig. 2-1. PASCAL/3000 DATATYPES

2-18

Keven
Rectangle

BOOLEAN TYPE

Pascal/ 3000 predefines the {ype boolean as:
TYPE boolean == (false, true);
The identifiers false and true are standard identifiers, where frue > false.

Boolean is a standard simple ordinal type.

Permissible Operators

assignment - e
boolean - AND, OR, NOT

relational ., Cmm mm e e e N

Standard Functions

boolean argument - ord, pred, succ
boolean return - eof, eoin, odd

Standard Procedure

boolean parameter - asserf

Example

VAR
loves_me: boolean;

2-19

CHAR TYPE

The 8-bit ASCIl character set comprises the typs char, which is a simple ordinal standard type,

A pair of single quote marks encioses a char literal (see Section 5).

Permissibie Operators

assignment - =
relational -, e = e s (N

Standard Functions

char argument - ord
char return - chr, pred, succ
Example
VAR

do_you: char;

2-20

Keven
Rectangle

INTEGER TYPE

The type integer is a subrange whose iower bound is the standard constant minint and whose upper
bound is the standard constant raxinit. Pascal/3000 defines minint, maxint, and integer like this:

CONST
minint = -2147483648;
maxint = 2147483647;

TYPE
integer = minint..maxint;

The vaiue of the standard constant minint may not appear as an integer literal, although it may be input
from a file.

Integer is a standard simple ordinal type.

Section 5 describes the form of an integer literal,

Permissibie Operators

assignment - =
relational - L, =, D, > N
arithmetic - 4+, /, DIV, MOD
Standard Functions
integer argument - abs, arctan, chr, cos, exp, In, odd, ord, pred, sin, sqr, sqrt, succ
integer return - abs, binary, ccode, fnum, hex, linepos, maxpos, octal, ord, position, pred,

round, sizeof, strien, strmax, strpos, sqr, trunc

Exampile

VAR
wholenum: integer;

2-21

ENUMERATED TYPE

An enumerated type is an ordered list of identifiers in parentheses, The sequence in which the identifiers
appear determines the ordering. The ord function returns O for the first identifier; 1 for the second
identifier; 2 for the third identifier; and so on (see Section 7).

Syntax

enurmerated
type

dentifier

There is no arbitrary limit on the number of identifiers that may appear in an enumnerated type.

Enumerated types are simple ordinal types defined by the programmer.

Permissible Operators

assignment - ;=
relational - <, <<=, =, <>, >= > [N

Standard Functions

enumerated argument - ord, pred, sucr

enumerated return - pred, suce
Exarnple
TYPE .
workdays = (monday, tuesday, wednesday, thursday, friday);

o

weekend (saturday, sunday);

2-22

SUBRANGE TYPE

A subrange type is a sequential subset of an ordinal host type. A subrange type consists of a lower bound,
the special symbol .., and an upper bound. The upper and lower bounds must be constant vaiues of the
same ordinal type and the lower bound cannot be greater than the upper bound.

Syntax

(O |

..... A constant expression may appear as an upper or lower bound.

A subrange type is a simple ordinai type.

Permissibie Operations and Standard Functions

A variable of a subrange type possesses all the attributes of the host type of the subrange, but its
values are restricted to the specified closed range.

Example
 TYPE
day of year = 1..366;
lowercase = 'a'..'2'; {Host type is char. }
earlyweek = Monday..Wednesday {Identifiers from 3}
: : {enumerated host type.)
{Monday < Wednesday. }
e_type = 1..maxsize ~ 1 {Upper bound is con- }
{stant expression. }
{Maxsize iz declared }
{constant. }

2-23

REALTYPE

The type real represents a subset of the real numbers. For Pascal/ 3000, this subset covers the ranges:

-1, 15792E+77 to -8.63617E-78
0.0
8.83617E-78 to 1.15792E+77

The type real is a standard simple type.

Section 5 describes-the form of & real fiteral.

Permissible Operators

assignment .=
_ relational - <, G mm D e s
arithmetic B A

Standard Functions

real argument

- abs, arctan, cos, exp, In, round, sin, sqr, sqrt, trunc
real return

- abs, arctan, cos, exp, In, sin, sqr, sqri

Example

VAR
realnum: real;

2-24

LONGREAL TYPE

The type longreal represents a subset of the real numbers. In Pascal/ 3000, this subset covers the ranges:
-1.157920892373162L+ 77 to -8.636168555094445L-78
0.0

8.6361685550944451.-78 to 1.15?9208923?31 G2L+77

The type longreal is a standard simple type.

Section 5 describes the form of a longreal literat.

Permissible Operators

assignment .=
relational - e, L m D T T
arithmetic e S

Standard Functions
longreal argument - abs, arctan, cos, exp, In, round, sin,
sqr, sqrt, trunc

longreal return - abs, arctan, cos, exp, In, sin, sqr

sgrt
Exampie

VAR
precisenum: longreal;

2-25

ARRAY TYPE

An array is a fixed number of components which are all the same type. A computable index designates
gach component of an array.

An array type definition consists of the reserved word ARRAY, an index type in square brackets, the

reserved word OF, and the component type. The reserved word PACKED may precede ARRAY. It instructs
the compiler to optimize storage space for the array components (see Ssction 9).

Syntax

array
type

The index type must be an ordinal type. The component type may be any simple, structured, or pointer
type, including a file type. The symbols {, and .} may replace the left and right square brackets,
respegctively.

An array type is a structured type defined by the programmer.

The programmer may access a component of an array using the index of the component in a selector (see
Section 4).

tr ANSI Standard Pascal, the term "string' designates a packed array of char with a starting index of 1. HP
Standard Pascal and Pascal/ 3000, however, define a standard type string which is identical with a packed
array of char except that its actual fength may vary at run time. To distinguish these two data types, the
acronym PAC will dencte

PACKED ARRAY {1..n] OF char;
throughout this manual.

2-26

ARRAY TYPE

Permissible Operators

assignment -i=

refational (PAC only) «» <, <=, =, <>, >=, >

Standard Procedures :

array parameters - pack, unpack

Examples
TYPE
name = PACKED ARRAY [1..30] OF char; {PAC type}
list = ARRAY [1..100] OF integer;
strange = ARRAY [boclean] OF char;
flag = ARRAY [(red, white, blue)] OF 1..50;
files = ARRAY {1..10} OF text;

Multiply-dimensioned Arrays

If an array definition specifies more than one index type or if the componenis of an array are themselves
arrays, then the array is said to be multipiy-dimensioned. There is no arbitrary timit on the number of array
dimensions.

Examples

TYPE
{ eguivalent definitions of truth
truth = ARRAY [1..20] OF '
ARRAY {1..5] OF .
ARRAY {1..10) OF boolean;

truth = ARRAY [1..20) OF

ARRAY [1..5, 1..10] OF boolean;
truth = ARRAY [1..20, 1..5] OF

ARRAY {[1..10] OF boolean;
truth = ARRAY {1..20, 1..5, 1..10] OF boolean;

2-27

STRING TYPE

in Pascal/ 3000, a string is a packed array of char whose maximum length is set at compite time and
whose actual length may vary dynamically at run time. '

A string type consists of the standard identifier string and an integer constant expression in square
brackets which specifies the maximum length.

Syntax

string _ o intager constant
type expression ' () '

The maximum length must be in the range 1..32767. The symbols (. and.} may replace the left and right
sqguare prackets, respectively.

A string type is a standard structured type.

Characters enclosed in single quotes are siring literals. The compiler interprets a string literal as type PAC,
- glring, or char, depending on context.

Integer constant expressions are ¢constant expressions which return an integer value, an unsigned integer
being the simple case (see Constant Definition above).

When a formal reference parameter is type “string”, the programmer may not specify the maximum
length (see exampie below). This allows actual string parameters t¢ have various maximum lengths.

The programmer may access a single compoenent of a string using an integer expression in square

brackets as a selector {see Section 4). The standard function str selects a substring of a string {(see
Section 7).

NOTE: Variables of string type, as other Pascal variabies, are NOT initialized. The curreni string length
contains meaningiess information until the user initiglizes the string.

2-28

'STRING TYPE

Permissi'bie Operators

assignment - =
concatenation - +
retational .= = D

Standard Functions

string argument - sgtr, strlen, siritrim, strmax, strpos, strrpt, strrinm
siring return - st stritrim, strrpt, strririm

Standard Procedures

string parameter - setstrien, strappend, strdelets, sirinsert, strmovs, strread, strwrite

Examples

CONST
maxlength = 100;

TPE
name
remark

string{30];
stringmaxlength * 2];

%o

PROCEDURE procl (VAR s: string); EXTERNAL; {Maximum length }
- {net required. }

2-29

RECORD TYPE

A record is a collection of components which are not necessarily the same type. Each component is
termed a field of the record and has its own identifier.

A record type consists of the reserved word RECORD, a field list, and the reserved word END,

The reserved word PACKED may precede the reserved word RECORD. It instructs the cornpzler 10
optimize storage of the record fields (see Section 8).

Syntax

:;:grd_.(REcono}--[fistd list

The field list has a fixed part and an optional variant part.

Syntax

Q

fisied st (

il whentd b iree

CASE

Lyt
HEn Lt

tomith
liat

Trkd
wentiber

2-30

Keven
Rectangle

RECORD TYPE

in the fixed part of the field iist, a field definition consists of an identifier, a colon (i), and a type. Any
simpie, structured, or pointer type is iegal. The programmer may define several fields of the same type by
iisting identifiers separated by commas.,

in the variant part, the reserved word CASE introduces an optional tag field identifier and a required
ordinal type identifier, Then the reserved word OF precedes a fist of case constants and aliernative field
lists. Fieids of type file or of a type which coniains files are not legal in the variant part of a record.
Case constants must be type compatible with the tag. The programmer may associate several case
constants with a single field list. The various constants appear separated by commas. Subranges are
aiso legal case constants. MP Pascal does NOT require that you specify all possible tag values. Thisis
ar extension to the ANS! Standard Pascal. The programmer may use the emply field list to indicate that
a variant doesn't exist {see example below).

The programimer may not use the OTHERWISE construction in the variant part of the field list.
OTHERWISE is only legal in CASE statements (see Section 3).

Variant parts allow variables of the same record type 1o exhibit struciures that differ in the number and
type of their component parts. The valug of the tag field, if any, indicates which variant is currently valid.
When the tag is assigned another value, previous variants cease to exist,

The programmer may access a field of a record using the appropriate field selector (see Section 4).

A record is a structured type defined by the programmer.

Permissibie Operator

assignment {entire record) - =

2-31

RECORD TYPE

Examples
TYPE :
word _type = (int, ch};
word = RECORD {variant part only with tag}
CASE word_tag: word_type OF :
int: (number: integer);
h : {chars : PACKED ARRAY {1..2] OF char);
EXD;
polys = {eirele, sguare, rectangle, triangle);
polygon = RECORD {fixed part and tagless variant part}
poly color: {red, yellow, blue);
CASE polys OF _
circle: {radius: integer);
square: {side: integer);

rectangle: {length, width: integer);
triangle: (base, height: integer)};
END; .

name_string PACKED ARRAY [1..30] OF char;

date_info = PACKED RECORD {fixed part only}

mo: (Jan, feb, mar, apr, may, Jjun,

jul, sug, sep, oct, nov, dec};
da: 1..31;
yr: 1900..2001;
END;

marital status = {married, separated, divorced, single);
person info = RECORD {nested variant parts}

name: name string;
vorn: date _info;
CASE status: marital status OF
married. .divorced:
{vhen: date_info;
CASE has kids: boolean CF
true: Thou;many: 1..50);
false: {); {Empty variant)}

single: ()3
END

e

2-32

SET TYPE

A set is the powerset, i.e. the set of all subsets, of a base type. A set type consists of the reserved words
SET OF and an ordinal base type.

Syntax

set

e @ e

The base type rmay be any ordinal type and may contain up to 32767 slements.

If the standard type integer appears as the base type, the compiler uses the integer subrange 0..255 as the
actual base type. Thus, the programmer cannot associate a value outside this range with such a set.

it is legal to declared a packed set, but this does not affect storage.

A set type is a structured type defined by the programmer.

Permissible Operators

assignhment - ;=
union -+
intersection -
difference - -
subset - e
superset - >=
equality - =, <>
inclusion - IN

Examples

TYPE
charset
fruit
somefruit
poets
big_set

SET OF char;

{apple, banana, cherry, peach, pear, pineapple);
SET OF apple..cherry;

SET OF (Blake, Frost, Brecht);

SET OF 1..10000;

LI I T

2-33

FILE TYPE

Alogical fite is a declared data structure in a Pascal /3000 program. A physical file is an independent entity
controlied by the MPE Operating System. At run time, logical files are associated with physical files,
gliowing a program to manipulate data in the external ervironment (see Section 8).

Alogical file is a sequence of components of the same type, which may be any fype except a file type or a
structured type with a file type component.

A tile type consists of the reserved words FILE OF and a component type.

Syntax

The programmer may access file components sequentially or directly usmg a variety of Pascal/ 3000
standard procedures and functions fully described in Section 6.

It is legai to deciare a packed file, but this has no effect on storage.

The standard fiie type text is described on the next page.

Examples
TYPE
person = RECORD
name: PACKED ARRAY [1..30] OF char-
age: 1..1003
END;

bit_vector = PACKED ARRAY [1..100] OF boclean;
person_file = FILE OF person;
data file = FILE OF infeger;

=

vector file = FILE OF bit_vector;

2-34

TEXT FILE TYPE

The standard file type text permits ordinary input and output criented {o characters and lines. Text type
files have tweo important features: (1) the components are type char, (2) the file is subdivided inta lines
by special end-of-ine markers.

Tex!t type variables are termed "textfiles’. .

The programmer cannot open textfiles for direct access, i.e. with the procedure open. Textfiles may be
sequentially accessed, however, with the procedures reset, rewrite, or append. All standard procedures
that are legat! for sequentially accessed files are alsc legal for textliies (see Section 6).

Certain standard procedures and functions, on the other hand, are legal only for textfiles: readin, writeln,
page, prompt, overprint, ecln, and linepos.

Textfiles permit conversion from the internal form of certain types to an ASCI character represeniation
and vice versa.

Subsequent pages in this chapter and in Section 6 describe two standard textfiles, input and output.

Exampie

VAR
myfile: text;

2-35

POINTER TYPE

A pointer references a dynamically allocated variable on the heap, A pointer type consists of the caret
{~) and a type identifier.

Syntax

o w1

The type may be any type, inciuding file types. The @ symbol may replace the caret,

The programmer need not have previously defined the type appearing after the caret. This is an exception
10 the general rule that Pascal identifiers are first defined and then used. However, the programmer must
define the identifier after the caret within the same declaration part, aithough not necessarily within the
same TYPE section.

The pointer value NIL belongs to every pointer type; it points to no variabie on the heap.

Permissible Operators

assignment -

equality - o=

Standard Procedures

pointer parameters - new, disposs, mark, release

2-36

Keven
Rectangle

Examples

TYPE
ptrl
pird
Tecl

Tec?

4 0 Ok

#

“recls:
“recd;
RECORD

fi, f2:

link:
END;
RECORD

£i, f£2:

iink:
END:

integer;
ptr;

real;
prrl;

2-37

POINTER TYPE

TYPE COMPATIBILITY

Relative to each other, two Pascal/3000 types can be identical, type compatible, assignment compatible,
or incompatible.

Identical Types

Two types are identicai if either of the following is true:
(1) Their types have the same type identifier.

(2} If A and B are their two type identifiers, and they have been made equivaient by a definition of the
form

TYPEA =8

Type Compatibie Types
Two types Tt and T2 are type compatible if any of the foliowing is trus.

{1) T1and TR are identical types.

(2) T1and T2 are subranges of the same host type, or T1is a subrange of T2, or T2 is a subrange of
T1.

{3) T1and 72 are set types with compatible base types and both T1 and T2 or neither are packed.

{4) T1and T2 are PAC types with the same number of components, or if T2 is a string literaf no longer
than T1,

(5 T1and T2 are both siring types.
{8) T1and T2 are both real types, i.e. real or longreal.

Assignment Compatible Types

Section 3 describes assighment compatible types.

2-38

TYPE COMPATABILITY

incompatible Types

Two types are incompatible if they are not identical, type compatible, or assignment compatibile.

Examples

TYPE
interval = 0..10;3
range = interval;

VAR
vl : 0..10:
v2, v3i: 0..10;
vh : interval;
v5 @ interval;
v6 : range;

All of the variables are type compatible, but only v4, v5, and vB, as well as the pair v2 and v3, have
identical {ypes.

VARIABLE DECLARATION

A variable declaration associates an identifier with a type. The identifier may then appear as a variable in
exacutable statements.

The reserved word VAR precedes one or more variable declarations. A variable declaration consists of an

identifier, & colon (:}, and a type. The programmer may list any number of identifiers separated by
commas. These identifiers will then be variables of the same type.

Syntax

identifier

- variable
deciaration

The type may be any simpie, structured, or pointer type, The form of fhe type may be a standard identifier,
a deciared type identifier, or & data type (see example below).

Variable declarations rmust foifow tabe! declarations and precede functicn and procedure declarations. The
programmer may repeat VAR sections and intermix them with CONST and TYPE sections,

The programmer may access components of a structured variable using an appropiate selector. Pointer
variabls dereferencing accesses dynamic variables on the heap. (see Section 4},

Pascal/ 3000 predefines two standard variables, input and oufput, which are textfiles. Formally,

VAR
input, output: fext;

Section 6 discusses these standard variables in detail. They commonly appear as program parameters
and serve as default files for various file operations.

2-40

Keven
Rectangle

‘Examples

TYPE

VARIABLE DECLARATION

answer = {yas, no, maybe);

VAR
pagecount,
linecount,
charcount:

whats the:

album

integer;) {Standard identifier. }
answer; {User~declared identifier.}
: RECORD {Data type. }

speed: (lp, for5, sevd8);
price: real;
name : String[20};

END;

2-41

PROCEDURE DECLARATION

A procedure is a block which the programrmer may activate with a procedure statement, A procedure
declaration consists of a procedure heading, a semi-colon (1), and a block or a directive followed by a
semi-coion.

Syntax

block
T
_ gx:gl;’;n — proceciure huding—@{ }-‘O—-—-’
. directive

Tﬁe procedure heading consists of the reserved word PROCEDURE, an identifier (the procedure namey),
and, optionally, 8 formal parameter fist. For level-1 procedures, the procedure name must be unique within
fifteen characters (see below).

Syntax

g;c;‘:zg;m | idantifier L formal paramater fist 7—-'

A directive can replace the procedure block. The directives are FORWARD, EXTERNAL, and INTRINSIC
{see below).

A procedure block is syntactically identical with the biock described in Sections 2 and 3 of this manual. it
consists of an optional declaration part and a statement part.

Procedure declarations must occur at the end of a declaration part after iabel, constant, type, and variable

declarations. The programmer may repeat procedure declarations and intermix them with function
declargtions.

2-42

FUNCTION DECLARATION

A function is & block which the programmer may activate with a function call and which returns a value. A
function declaration consists of a function heading and a block or a directive.

Syntax

tiack
function wennipd furiction heading
deciaration

directive

A function heading consists of the reserved word FUNCTION, an identifier (function name), an optional
formal parameter list, and a result type. For level 1 funclions, the function name must be unique within
fifteen characters (see below). The result type may be any type, except a file type or a structured type
containing a file.

| Syntax

function — formai S
. FUNCTION | identifier parameter type identifier |fruwdge
heading 1 sist

A directive can replace the function biock. The directives are FORWARD, EXTERNAL, and INTRINSIC
(see below).

- A function block is syntactically identical with the block described in Sections 2 and 3 of this manual.
Howevaer, in the body of a function block there must be at least one statemeant assigning & vaiue 1o the
function identifier. This assignment statement determines the function result. If the function resuit is &
structured type, the programmer must assign a value o each of its compoenents using an appropriate
setector {see Section 4). '

2-43

FUNCTION DECLARATION

Function deciarations may occur at the end of a declaration section after label, constant, type, and
variable deciarations. The programmer may repeat function dsclarations and intermix them with
procedure declarations.

2-44

FORMAL PARAMETER LIST

A formal parameter list appears oplionally in a procedure or function heading and specifies the formal
parameters for a procedure or function. A procedure statement or function call in the body of a block
provides the matching actual parameters,

The four sorts of formal parameters are value, variabie, functional, and procedural parameters, Value
parameters are identifiers followed by a colon {1} and a type identifier. Variable parameters are identical
with vaiue parameters except they are preceded by the reserved word VAR. Functional or procedural
parameters are function or procedure headings.

Syntax

formal _
parameter -41® - wdentifier type identifier]
list - :

-t procedure heading } A

Lﬁ{ function heading }-— -

The programmer may repeat and intermix the four types of formal parameters. Several identifiers may
appear separated by commas. These identifiers will then represent formal variable or value parameters of
the same type,

A formal value parameter functions as a local variable during execution of the procedure or function. it
receives its initial value from the matching actual parameter. Execution of the procedure or function
doesn't affect the actual parametser, which, therefore, may be an expression.

A formal variable parameter represents the actual parameter during execution of the procedure. Any

changes in the value of the formal variable parameter will alter the value of the actual parameter, which,
therefore, must be a variable. A string type formal variable parameter nesd not specify a maximurm length.

2-45

FORMAL PARAMETER LIST

A tormal procedural or functional parameter is a synonym for the actual procedurat or functional
parameter. The parameter lists, if any, of the actual and formai procedural or functional parameters must
be congruent (see Section 3),

Examples

PROGRAM show formparm;
VAR
test: boolean;

FUNCTION chekl {x, vy, z: real)}: boolean;
BEGIN
{Perform some type of validity check on x, ¥, z }

{and return appropriate value.
END;

FUNCTION chek? (x, ¥, z: real): boolean:
BEGIN
{Perform an alternate validity check on x, ¥y, 2 }
{and return appropriate value,
END;

PROCEDURE read data (FUNCTION check (a, b, ¢: real): boolean);
VAR p, q, r: real;
BEGIN
{read and validate data}
readin (p, ¢, r);
IF check {p, q, r) THEN ...
END;

BEGIN {show formparm}

IF test THEN read data {cheki)
ELSE read_data {chek2);

END.

2-46

DIRECTIVES

A directive may replace a block in & procedure or function declaration. In Pascal/3000, the three
directives are FORWARD, EXTERNAL and INTRINSIC. The programmer may qualify the EXTERNAL
directive with the terms SPL, FORTRAN, or COBOL. Furthermore, the term YARIABLE may appear after
SPL.

Syntax

FORWARD

directive

INTRINSIC

Y
A 4

EXTERNAL

VARIABLE

COBOL

The FORWARD directive makes it possible to postpone full declaration of a procedure or function; the
EXTERNAL directive to declare Pascal or non-Pascal procedures or functions in other complianon units;
the INTRINSIC directive to declare MPE or programmer-created intrinsics.

The terms FORWARD, EXTERNAL, SPL, VARIABLE, FORTRAN, COBOL, and INTRINSIC may appear as
programmer-defined identifiers in source code and, at the same time, as directives.

Subsequent pages describe each directive in detail.

2-47

FORWARD DIRECTIVE

The FORWARD directive permits the full declaration of a procedure or function to foliow the first cali of the
procedure or function. For exampile, suppose a programmer declares procedures A and B on the same
level. Both A and B cannot call each other without using the FORWARD directive:

FROCEDURE A; FORWARD;
PROCEDURE B;
BEGIN
A3 {calls A}
END;
PROCEDURE A; {(full declaration of A)
BEGIN
é; {calls B}
END;
Atter using the FORWARD directive, the programmer must fully declare the function or procedure in the
same declaration part of the block. Formal parameters, if any, and the tunction result type must appear
with the FORWARD deciaration. The programmer may omit these formal parameters or result type,

however, when making the subsequent full declaration (see exampie below). If repeated, they must be
identical with the original formal parameters or result tvpe,

The FORWARD diractive may appear with a procedure or function at any level.

Example

FUNCTION exclusive or (x,y: boolean): boolean;
FORWARD;

FUNCTION exclusive or; {Parameters not repeated.)
BEGIN :
exclusive or:= (x AND NOT y) OR (NOT x AND y);
END;

2-48

Keven
Rectangle

EXTERNAL DIRECTIVE

The EXTERNAL directive permits the programmer 1o call Pascal or non-Pascal procedures or functions in
other compilation units. These externai procedures and functions may be part of a segmented library, a

relocatable iibrary, or a separately compiled subprogram; their source code may be Pascal/ 3000, SPL,
FORTRAN, COBOL 68, or COBOL Il

The EXTERNAL directive may appear with a procedure or function declaration at any level. The actuai
external procedure or function referenced, however, musi be a level 1 procedure or function.

In general, the prograrnmer is responsible for matching the formal parameters or result typs of a procedure
or function declared EXTERNAL with the formal parameters or resuit type of the external procedure or
function (see Appendix G). In contrast, the INTRINSIC directive requires little or no matching.

There are five possible forms of an EXTERNAL directive,

EXTERNAL

EXTERNAL SPL
EXTERNAL SPL VARIABLE
EXTERNAL FORTRAN
EXTERNAL COBOL

which we examine in turn.

EXTERNAL - The source code of the external procedure or function is Pascal/3000. The formal
parameters of the declaration, if any, must match the formal parameters of the external procedure or
function in number, order, and type, i.e. they must be type identical. They need not have the same name.
Also, the result type of a function must be identical with the result type of the external function.

EXTERNAL SPL -The source code of the external procedure or function is SPL without option variable -
parameters. Formal parameters need not have the same name as the external formal parameters. They
must, however, match the external formal parameters in number and order. Furthermore, the Pascal/ 3000
type of the tormal parameters or the function result must satisfactorily conform to the SPL type of the
external formal parameters or result type (see Appendix G and SPL Reterence Manuall.

2-49

EXTERNAL DIRECTIVE

EXTERNAL SPL VARIABLE - The source code of the external procedure or function is SPL with option
variable parameters. The programmer must use this form of the EXTERNAL directive even if no
parameters are omitted when calling the external SPL procedure or function. The formal parameters must
maich the formal parameters of the external SPL procedure in number, order and type, but not necessarily
in name. The Pascal /3000 type of the formal parameters or result type must satisfactorily conform to the
SPL type of the external formal parameters or funclion result (see Appendix G and the SPL Reference
Manual). ' :

EXTERNAL FORTRAN - The source code of the external procedure or function is FORTRAN. The formal
parameters, if any, musi match the external formal parameters in order and number, but not necessarily in
nams. The Pascal/ 3000 type of the formal parameters or function result must satistactorily conform with
the FORTRAN iype of the external formal parameters or function result {(see Appendix G and the
FORTRAN/3000 Reference Manual).

EXTERNAL COBOL - The source code of the external procedurs or function is COBOL 68 or COBOL il
The declared formal parameters must match the external formal parameters in order and number, but not
necessarily in name. Again, the Pascal/ 3000 type of the declared formal parameters or function result

must satisfactorily conform with the COBOL type of the external formal parameters or function resuit {see
Appendix G and the COBOL or COBOL Hl Reference Manuals).

Examples

See Appendix G.

2-50

INTRINSIC DIRECTIVE

The INTRINSIC directive permits the programmer to call MPE or user-created intrinsics with great
flexibility. For exampie, the programmer can declare an intrinsic procedure or function with a full or pariial
tormai parameter list, or no formal parameter list at all, Also, the programmer may use the ALIAS option
to declare an intrinsic in more than one way.

Formal Parameter List

in & procedure or function deciared with the INTRINSIC directive, the formal parameter list is optional, A
subsequent procedure statement or function cali may pass actual parameters to the intrinsic even i no
formal parameter list appeared. A formal parameter list for an intrinsic only provides strong type checking
of actual parameters. When formai paramsters appear, the actual parameters must match in the normal
manner, When formal parameters are absent, the actual parameters may be of any type as long as
regsonable conversion to the intrinsic parameter is possible {see Appendix F).

Furthermore, partial formal parameter lists are legal. The MPE intrinsic FOPEN, for example, is an option
variable infrinsic with up 10 13 parameters. The programmer could declare FOPEN with only 3 formatl-
parameters, and these parameters would correspond {o the first 3 parameters of FOPEN. Then the
compiter wiil strongly type check the first 3 aciual parameters against the specified formal parameters. The
systemn will conver! succeeding actual parameters to whatever FOPEN requires.

There is one restriction on the formal parameters in an INTRINSIC declaration: if & formal parameter
appears for the nth intringic parameter, then formal parameters must alsc appear for the 1st to n-1st
intrinsic parameters.

Specifying formal parameters doss not affect the use of emply actual parameters in calls 1o option

variabie intrinsics. The programmer is still free to pass empty actual parameters to the option variable
intrinsic {see Section 3).

2-51

INTRINSIC DIRECTIVE

~Alternative Intrinsic Declarations

The programmer must declare an intrinsic with no functional return as a procedure. On the other hand, an
intringic with a functional return may be declared as a procedure or as a function, depending on the way
the programmer wishes to use it in the Pagcail/ 3000 program. Furthermore, the ALIAS option makes i
possible to declare the same intrinsic in both ways (see example below).

To use the intrinsic as a function, the programmer declares it as a function with a Pascal/ 3000 result type.
The system cannot handle the intrinsic function return without having a Pascal/3000 type. Once declared
as a function, the intrinsic cannot appear as a procedure in executable stajements.

To use the intrinsic as a procedure, the programmer deciares it as a procedure in the usua! way. The
system will discard the intrinsic function return. Once declared as a procedure, the intrinsic cannot appear
as a function in the body of the program.

-The programmer may also use the ALIAS option to declare an intrinsic which does not have a legal
Pascal/3000 name, e.g. there are single quote marks in the name,

Examples

TYPE
smallint = -32768..32767;

PROCEDURE pfileinfo; $ALIAS 'PRINT' 'FILE "INFO'$ {System name.}
INTRINSIC; - .

PROCEDURE fopen p(VAR form_desg: darr;
foptions: smallint;
acptions: emallint
)i
SALIAS 'FOPEN'S$ {POPEN used as procedurs.)
INTRINSIC,

FUNCTION fopen_f{VAR form_desg: name_rec
~): smallint; '
$ALIAS 'FOPEN'$ {FOPEN used as function. - }
INTRINSIC;

2-52

LEVEL 1 PROCEDURES AND FUNCTIONS

L.evel 1 procedures and functions are procedures and functions which the programmer declares at the
main program level. That is, other procedures or functions do not contain them. The Pascal/ 3000
compiler creates entry points for level 1 procedures and functions. This means they are accessible from
outside the compilation biock in which the programmer declares them. Since they appear as distinct
gntries in a USL directory, the MPE Segmenter requires that names of level 1 procedures and functions be
unique within the first fifteen characters.

When the compiler option PRIVATE___PROC is OFf, the compiler makes the names of all procedures and
functions from any level known to the Segmenter, i.e. the names appear in the USL directory. Thus, all
procedure or function names must be unique within 15 characters, When PRIVATE__PROC is ON (the
defauit setling), however, names of non-level 1 procedures or functions need not be unique, This conforms
with the usuai scope conventions for Pascal identifiers,

Example

PROGRAM show_level;

PROCEDURE procl; {Level 1 procedure. }
PROCEDURE subprocl; {Level 2 procedure. }
BEGIN ' '
END;

‘BEGIN {procl}
END;
BEGIK {show level}

END.

2-53

RECURSIVE PROCEDURES
AND FUNCTIONS

A recursive procedure or function is a procedure or function that calls itseli. it is aiso legal for procedure A
to call procedure B which in turn calls procedure A, This is indirect recursion and is often an instance when
the FORWARD directive is useful.

When a program uses extensive recursion, the stack space allocated by the system may not be sufficient.
The programmer can overcome this problem using the STACK or MAXDATA parameters of the MPE
:PREP or :RUN commands.

Example

FUNCTION factorial (n: integer): integer;
{Calculates factorial recursively}
BEGIN
IF n = 0 THEN
factorial := 1
ELEE '
factorial := n * factorial(n-i);
ENDy

2-54

Keven
Rectangle

SCOPE

The scope of an identifier is its domain of accessibility, i.e. the region of a program in which the
programmer may use it.

in general, a programmer-defined identifier may appear anywhere in a block after its definition.
Furthermore, the identifier may appear in a block nested within the block in which it is defined.

if the programmer redefines an identifier in a nested block, however, this new delinition takes precedence.
The object defined at the outer leval will no longer be accessible from the inner level (see example below),

Once defined at a particuiar level, an identifier may not be redefined at the same level (except for field
names). '

Labels are not identifiers and their scope is ress.'r'rictec'}T They cannot mark statements in blocks nested
within the biock where they are declared.

identifiers defined at the main program levet are ‘global’. identifiers defined in & function or procedure
block are ‘local’ to the function or procedure.

Exampie

PROGRAM show_scope {output};

CONST
asterisk = ‘%'

VAR
x: char;

PROCEDURE writeiti;

CONST '
-x = 'LOCAL AND GLOBAL IDENTIFIERS DON'T CONFLICT';
BEGIN
write {(x)
END;

BEGIN {show_scope}
®¥:1= asterisk;
write (x};
writeit;
write (x)

END. {show_scope}

2-95

STATEMENTS -

INTRODUCTION

A statement is a sequence of special symbols, reserved words, and expressions which either performs a
specific set of actions on data or controls program fiow.

Pascal/ 3000 statement iypes and purposes include:

STATEMENT TYPE - PURPOSE

compound group statements

empty do nothing

assignment assign a vaiue to a variable
procedure : activate a procedure

GOTO transter control unconditionally
IF, CASE conditional selection

WHILE, REPEAT, FOR repeat a group of statements
WITH - manipulate record fields

Ernpty, assignment, procedure, and GOTO staternents are "simple’ statements. IF, CASE, WHILE,
REPEAT, FOR, and WITH statements are "structured’ statements because they themselves may contain
other statements.

An integer labe! declared in the declaration section of the block may mark a statement (see Section 2).
This iabel is the object of a GOTO statement.

The foliowing pages describe each type of statement,

INTRODUCTION

Syntax

statement

unsigned
(y intager ' ())

-

vaniable identitier
TRIBCTEY
function igentiligr

unsignad
e
- integer
LT FHEN

-

! L—a{ ELSE)"—'*I VBRI

D @

1O I

hogad

N-—-v(ns»au‘r)t:gj—(URTIL) o
e 1 ,
—@—E=-0-=h

3-2

Keven
Rectangle

COMPOUND STATEMENT

A compound statement is a sequence of statements bracketed by the reserved words BEGIN and END. A
semi-colon (;) delimits one statement from the next. The sysiem execuies the siatements in the seguence
in order.

Syntax

compound
statement

starement

A compound statement has two primary uses: {1} it defines the statement part of a block; (2} it replaces
a single statement within a structured statement A compound statement may also serve to logically group
a series of statements.

Examples
PROCEDURE check min;
BECIN {This Y
IF min > max THEN {compound }
BEGIN {Compound } {statement }
wrtteln(Min is wrong. '}; {statement is)} (is }
min := {part of IF } {the .}
END; {statement. } {procedure’ s}
ERD; {body . }
BEGIN {Nested compound statements }
BEGIN {for logiecally grouping statements.)

start part 13
finish part 1,
END;

BEGIN
start_part_2;
finish_part 2;

END;

END;

EMPTY STATEMENT

An empty statement performs no action and is denoted by no symbol. It is often useful for indicating that
nothing should ocour or for inserting extra semi-colons in code.

These iwo statements, for example, explicitly specify no action when iis 2,3,4,6,7,8,9, or 10:

CASE 1 Ol IF i IN [2..4, 6..10] THEN
0 1 start; {do nothing}
1 : continue; ELSE continue;
2..4 5 3
] ! report_error:
é..10:
11 : stop;
OTHERWISE fatal error;
END;

in this compouﬁd statement, there is an empty statement before END:

BEGIN
I:=J + 1;
X:= I + J;
END

ASSIGNMENT STATEMENT

An agsignment statement assigns a value 1o a variabie or a function result. The assignment statement

consists of a variable or function identifier, an optional selector, a special symbol {:=), and an expression
which computes a value. '

Syntax

variable identifier

assignment
statement

seiector expression

function identifier

The receiving slement may be of any type except file, or a structured type containing & file type

componerd. An appropriate selector permits assignment to a compoenent of @ structured variable or
structured function resuit.

The type of the expression must be assignment compatible with the type of the receiving element (see
below).

3-5

ASSIGNMENT STATEMENT

Example

FUNCTION show assign: integer;

TYPE
rec = RECORD
£: integer;
g: real;
END;
index = 1..33
table = ARRAY [index] OF integer;
CONST
et = table [10, 20, 30]:

cr = rec {f:2, g:3.0);
VAR

§: integer;

a: table;

i: index:

r: rec;

rl,

p: “integer;
str: string[10];

PUNCTION show_structured: rec;

BEGIN {Assign to a
show_structured.f 1= 20 {part of the racord,
show_structured := ¢r; {whole record,
show_assign := 50; {outer function.

END:

BEGIN {show assign)
s 1= 53 i1s 33
a = ¢t3
a {i] := s + 5;
r i= ery
r.f 1= 5;
P := Pl;
p* = r.f - a [i];

str := 'Hil';
show assign = p”}
END; Tshow_gssign}

{Assign to a

{simple variable,

{array variable,
{subscripted array variable,
{record variable, _
{selected record variable,
{pointer variable,

{dymamic variable,

{string variable,

{function result variable.

)
)
)
}

R e e i e st e e

ASSIGNMENT COMPATIBILITY

Section 2 defines type ideniity and type compatibility. We now define assignment compatibility.

The programmer may only assign a value of type T2 10 a variable or function result of type T1if T2 is
assignment compatible with T1. For T2 to be assignment compatible with T1, any of the following
conditions must be rue;

(1) T1and T2 are type compatible types which are neither files nor structures that contain files.

(2) T1is reafor longrealand T2 is integer or an integer subrange. The compiter converts T2 to reaf or
fongreai pricr o assignment.

(3} T1isfongrealand T2 is real The compiler converts T2 o fongreal prior {0 assignment.
(4) T1is realand T2 is fongreal. The compiler rounds T2 to the precision of T1 prior to assignment,

Furthermore, a run-time or compile-time error will occur if the following restrictions are not cbserved:

If T1and T2 are type compatible ordinal types, the value of type T2 must be in the closed interval specified
- by T1.

If T1and T2 are type compatible set types, all the members of the value of type T2 must be in the closed
interval specified by the base type of T

A special set of restrictions applies 1o assignment of string literals or variables of type siring, PAC, or char
{see below).

Special Cases

The painter constant NIL is both type compatibie and assignmert compatible with any pointer type.

The empty set [] is both type compatible and assignment compatibie with any set type.

3-7

ASSIGNMENT COMPATIBILITY

String Assignment Compatibility

Certain restrictions apply to the assignment of siring'iiterais or variables of the type string, packed array of
char {(PAC), or char.

If T1is a string variable, T2 must be a string variabie or a string literal whose length is equatl to or less
than the maximum length of T1. T2 ¢annot be a PAC or char variable. Assignment sets the current
tength of T1. ‘

11 T1is a PAC variabile, T2 must be a PAC of equai length or a string literal whose length is less than or
equal to the length of T1. T1 will be blank filled if T2 is a string literal which is shorter than T1. 72
cannot be a string or & char variable.

1 T1is a char variable, T2 may be a char variable or a string literal with a single character. T2 cannot
be a string or PAC varigble.

Table 3-1 summarizes these rules. The standard function strmax {s) returns the maximum length of the
string s. The standard function strien (s) returns the current length of the string s.

String constants are considered string literals when they appear on the right side of an assignment
statement. :

Any string operation on two string literals, such as the concatenation of two string literals, results in a
string of a string type.

3-8

Keven
Rectangle

ASSIGNMENT COMPATIBILITY

Table 3-1. STRING, PAC, AND STRING LITERAL ASSIGNMENT

\ String
Til:=|T2 string - PAC char Literal
Oniy if Only if
strmax (T1) >=| Not Not strrnax (T1)
string strien (T2) allowed atiowed >=gtrien {T2)
sirlen {T1) ;o= strien (T1)
sirlen (T2) r=sirlen {12}
Only if Only if
Not T1 length = Not T1 length
PAC ailowed T2 length allowed >=gtrlen (T2)
T1is padded
if necessary
Not Not ' Yes Only if
char aliowed aliowed strien (T2)
=1

39

PROCEDURE STATEMENT

A procedure statement transfers program control to the block of a declared or standard procedure. A
procedure statement consists of a procedure identifier and, if reguired, a list of actuai parameters in
parentheses.

Syntax

PFOC‘—‘C*U"B_.| procedure idantifisr (actus! parsmener - !
statement

The procedure identifier must be the name of a standard procedure or a procedure declared Dy the
programrmer.

If a procedure - declaration includes a formal parameter list (see Section 2}, the procedure statement must
supply the actual parameters. The actual parameters must match the formal parameters in number and
order, except in the case of a procedure declared with the directive INTRINSIC or the directive EXTERNAL
SPL VARIABLE (see Section 2). Such a procedure has option variable parameters which the programmer
may omit by specifying the empty actual parameter with a comma () {see example beiow). Furthermore,
the programmer may pass actual parameters 1o a procedure declared INTRINSIC even if no formal
parameters appear in the declaration. Appendices F and G discuss the details of calling intrinsics and
procedures or functions written in languages other than Pascal/3000.

Actual value parameters are expressions which musi be assignment compatible with the formal vaiue
parameters,

Actual variable parameters are variables which must be type identical with the formal variable parameters.
Components of a packed structure cannct appesar as actual variable parameters.

Actual procedural or functional parameters are the names of procedures or functions declared by the
programmer. Standard procedures or functions are not legal sctual parameters,

3-10

Keven
Rectangle

PROCEDURE STATEMENT

If & procedure or function passed as an aciual parameter accesses any entity non-locally upen activation,
then the entity accessed is one which was accessible 1o the procedure or function when it was passed asa
parameter. For example, suppose Procedure A uses the non-local variable x. If A is then passed as an
actuat procedural parameter to Procedure B, it will still be able to use x, even if X is not otherwise
accessible from B. Technically, the compiler preserves the static link when A is passed.

The formal parameters, if any, ¢f an actual procedural or functional parameter must be congruent with the
formal parameters of the formal procedural or functional parameter. Two formal paramster lists are
congruent if they contain an equal number of parameters and the parameters in corresponding posifions
are equivaleni. Two parameters are equivalent if _

(1} They are both value parameters of the identical type. Assignmem compatibility is not fegal.
(2) They are both variable parameters of the identical type.
(3) They are both procedural parameters with congruent parameter lists.

(4) They are both functional parameters with congruent parameter lists and identical result fypes.

After a procedure' executes, control refurns 1o the statement after the procedure statement.

PROCEDURE STATEMENT

Example

PROGRAM show pstate {output);

FROCEDURE external proc
{el: integer;
e2: real);

PROCEDURE actual proc

{al: integer;
a2: real);
BEGIN

IF a2 < al THEN

actual _proc (al, a2-al)

END;

PROCEDURE outer
{a: integer;
PROCEDURE proc parm

{External declaration.

{variable.

}

EXTERNAL SPL VARIABLE; {Parameters are option }

}

{Actual procedure declaration.)}

{recursive call}

{Another actual declaration. }

(pl: integer; p2 : real});

PROCEDURE inner;
BEGIN

actual proc {50, 50.0);

END;

BEGIN {outer}
writeln ('Hi');
inner;
external pro¢ {,2.2);

proc_parm {2, 4.0};
END; {outer)

BEGIN {show_pstate)
outer (10, extermal proc¢);
cuter (30, actual proc);
END. {show pstate}

{nested procedure}

{Caliing e .

{predefined procedure,

{inner procedure,

{external procedure with actual
{parameter omitted,

{procedural parameter.

{Procedure statements with
{procedural parameters.

3-12

Suaga St gt Yt St St

GOTO STATEMENT

A GOTO statement transters control unconditionally 1o a statement marked by a iabel. A GO?O statemem
consists of the reserved word GOTO and the specified label.

Syntax

GOTO unsigned } .
gt aze ment in 1eger

The scope of labels is restricted. Labels may only mark statements appearing in the executable portion of
the block where they are declared. They cannot mark statements in inner biocks. GOTO statements,
howaver, may appear in inner blocks and reference labels in an outer block. Thus, it is possible to jump out
- of & procedure or function but not into one. it is also possible to jump atross segment boundaries.

A GOTO statement may not lead into a component statement of a structured statement from outside that

statemaent or from another component statement of that statement. For example, it is illegal to branch to
the EL.SE part of an IF statement from either the THEN part, or from outside the IF statement.

3-13

GOTO STATEMENT

Example

. PROGRAM show goto;
LABEL 500, 501;
TYPE
index = 1..10;
VAR
i: index;
target: integer;
a: ARRAY[index] OF integer;
PROCEDURE check: :
VAR
answer: string [10];
BEGIN

{ask user if OK to search}
IF answer= 'no’ THEN GOTO 501; {jumping out of procedure}

Eﬂé;
BEGIN {show_goto}
check;

FOR i := 1 T0 10 DO
IF target = a[i] THEN GOTO 500}
writeln (' Not found');
GOTO 501
500:
writeln {’ Found };
501:
END. {show_goto}

3-14

Keven
Rectangle

IF STATEMENT

An IF statement specifies a statement the systern will execute provided that a particular condition is true. H
the condition is false, then the system doesn’t execute the statement, or, optionally, it executes another
statement.

The IF statement consists of the reserved word IF, a boolean expression, the reserved word THEN, a
statement, and, optionally, the reserved word EL.SE and another statement. :

Syntax

wa A {
#{ ELSE Jomt

mwmentg}-J

The statements after THEN or ELSE may be any Pascal/ 3000 statements, including other iF statements
or compound statements. No semicolon separates the first statement and the reserved word ELSE.

The following IF statements are equivalent:

IF a = b THEN

IF a = b THEN BEGIN
IF ¢ = 4 THEN IF ¢ = @4 THEN
a = ¢ a 1= ¢
ELSE ELSE
& ¥ e, a = gy
END; :

That is, ELSE parts that appear 10 belong 10 more than one IF statement are always associated with the
nearest IF staternent.

3-15

IF STATEMENT

A common use of the I statement is to select an action from several choices. This often appears in the
following form:

IF el THEN

ELSE [F e2 THEN

ELSE IF e3 THEN

ELSE

L

This form is particutarly useful to test for conditions involving real numbers or string literals of more than
one character, since these types are not legal in CASE statements.

Depending on the nesting level of statements in a program, a large number of chained ELSE-IF's may
cause the compiter to exceed an internai limit and not complete compiiation.

3-16

Keven
Rectangle

IF STATEMENT

Example

PROGRAM show if (input, output);

VAR
i,j : dnteger;
s : PACKED ARRAY [1..5) OF char;
found: boolean;
BEGIN
IF i = 0 THEN writeln ('i = 0'); {IF with no ELSE. }
IF found THEN {IF with an ELSE part.)}
writeln {'Found it')
ELSE

writeln ('Still looking'):

I

IF i = j THEN {Select among different}
writeln (‘i = 3') {boolean expressions. }
ELSE IF i < j THEN
writeln ("1 < i7)
...... : ELSE {i > j}
writeln ("1 > 3'):

I¥ s = 'RED’ THEN {This IF statement }
i= 1 {cannot be rewritten as}
ELSE IF s = 'GREEN' THEN {a CASE statement }
i =2
ELSE IF s = 'BLUE' THEN
i= 35
END.

3-17

CASE STATEMENT

The CASE statement selects a certain action based upon the value of an ordinal expression.
The CASE statement consists of the reserved word CASE, an ordinal expression {the selector), the

reserved word OF, a list of case constants and statements, and the reserved word END. Cptionally, the
reserved word OTHERWISE and g list of statements may appear after the last constant and its statement.

Syntax

K
statemant ~ CASE xpresan @

D
N
oS
N,
y N/
ho@'usnw:ss)—c__ } : I
N wt{ END Jretr

The selector must be an ordinal expression, i.e, it must return an ordinal value. A case constant may be a
literal, a constant identifier, or a constant expression which is type compatibie with the seiector. Subranges
may also appear as case constants. Separate ranges may not overlap.

A case constant cannot appear more than once in a list of case constants.

The programmer may associate several constants with a particular staterment by listing them separated by
commas.

3-18

CASE STATEMENT

The pmgrammer need not bracket the statements between OTHERWISE and END with BEGIN..END.

When the system executes a CASE statement:

{1) it evaluates the selector.

(2) i the value corresponds to a specified case constant, it executes the statement associated with
that constant. Control then passes 1o the statement {oliowing the CASE statement.

(3} i the value does not correspond to a specified case constant, it executes the statements between
OTHERWISE and END. Control then passes to the statement after the CASE statement. A run time
error occurs if the programmer has not used the OTHERWISE construction and the compiler has
processed the CASE statement with the RANGE option ON.

CASE STATEMENT

Examples

PROCEDURE scanner;
BEGIN
get_next char;
CASE current_char OF
at..u 'zt {Subrange label.)
’At..!zl: . .
scan word;

‘9',.'9";
scan number;

OTHERWISE scan_special;
END;
END;

%

FUNCTION octal digit :
{4: digit): boolean; {TYFE digit = 0..9}
BEGIN
CASE 4 CF
0..7: octal digit := true;
8..9: octal digit := false;
END;
END;

" a

FUNCTION op {TYPE operators=(plus,minug,times,divide)}
{operator: operators;
operandl,
operand2: real)
: real;
BEGIN
CASE operator OF
plus: op 1= operandl + operand?;
minus: op !+ operandl - coperand?2;
times: op :¥ operand]l * coperand?2;
divide: op := operandl / operand2;
END; '
END;

3-20

WHILE STATEMENT

The WHILE statement executes a statement repeatedly as iong as & given condition is true. The WHILE
statement consists of the reserved word WHILE, a boolean expression (the condition), the reserved word
DO, and a statement.

Syntax

e oo (@

When the system executes a WHILE statement, it first evaluates the condition. If the condition is true, it
executes the statement after DO and then re-evaluates the condition. When the condition becomes false,
execution resumes at the statement after the WHILE statement. If the condition is faise at the beginning,
the sysiem never executes the statement after DO.

The statement

WHILE condition DO statement

is equivalent to the following:

1: IF condition THEN BEGIN
' statement
GOTO i3
END;

Usually a program will modify data at some point so that the condition becomes false. Otherwise, the

statement will repeat indefinitely. 1t is also possible, of course, to branch unconditionaily out of a WHILE
statement using a GOTO statement.

3-21

WHILE STATEMENT

Examples
WHILE index <= limit DO
BEGIN
writeln {real array [index]});
index :# index + 1;

END;

WHILE NOT eof (f£) DO
BEGIN
read {f, ch);
writeln {ch);
END;

Keven
Rectangle

REPEAT STATEMENT

A REPEAT statement executes a statement or group of statements repeatediy until a given condition is
frue. A REPEAT statement consists of the reserved word REPEAT, one or more statements, the reservad
word UNTIL, and a boolean expression {the condition).

Syntax

statemant

REPEAT
statement

expression

The programmer need not bracket the statements between REPEAT and UNTIL with BEGIN..END.

When the system executes a REPEAT statment, it first executes the statement sequence and then
evaluates the condition. If it is talse, it executes the statement sequence again. If it is true, control passes
to the statement after the REPEAT statement.

The statement

REPEAT
statement;
UNTIL eondition

is equivalent to the following:

1: statement;
IF NOT condition THEN GOTO 1;

Usually the statement sequence will modify data at some point so that the condition becomes faise.

Otherwise, the REPEAT statment will loop forever. Of course, it is possible to branch unconditionally out of
a REPEAT statement using a GOTO statement.

3-23

REPEAT STATEMENT

Examples

IF NOT ecf(num_file) THEN
REPEAT
read {num_file, value);
sum = sum + value;

count := count + 1;
average := sum / count;)
writein ('value =', value, ' average =', average)

UNTIL eof (num file)} OR (count >= 100);

REPEAT

writeln (real array [index]);
index := index + 1;

UNTIL index » limit;

3-24

Keven
Rectangle

FOR STATEMENT

The FOR statement executes a statement a predetermined number of times. The FOR statement consists
of the reserved word FOR and a control variabie initialized by an ordinal expression {the initial vajue);
either the reserved word TO indicating an increment or the reserved word DOWNTOQ indicaling a
decrement; ancther ordinal expression (the final value); the reserved word DO; and a statement.

Syntax

FOR N . o ! @ :
. } variable identifier X PrEFEion
statement @ '

s a(56)—f |

The contro! variabie must be a loca! ordinal variable. it may not be a component of a structured variable or
a locatly declared procedure or function parameter. The initial and final values must be type compatibie
with the control variable. They must also be in range with the control variable when the initial value is first
assigned. The statement afier DO, of course, may be a compound statement.

When the system executes a FOR statement, if evaluates the initial and final values and assigns the initia!
value 10 the controf variable, Then it executes the statement after DO. Next, it repeatedly tests the current
value of the conirol variable and the final vaiue for ineguality, increments or decrements the conirol
variable, and executes the statement after DO. After completion of the FOR statement, the ¢control variahie
is undefined. '

in a FOR.. TO construction, the system never executes the statement after DO if the initial value is greater
than the final value in & FOR..DOWNTO construction, it never executes the statement if the initial value is
less than the final value.

3-25

FOR STATEMENT

The FOR statement

FOR control var := initial TO final DO
statement

is equivalent to the statement

BEGIN
templ := initial;
temp2 := final;
IF templ <= tempZ THEN

BEGIN
control_var := templ;
statement:
WHILE contreol var <> tempZ DO
BEGIN -

control_var := succ(control var); {increment}
statement; '

END;
END
ELSE BEGIN END; {Don't execute statement at all;}
END {control_var now undefined. }
The FOH statement

FOR control var := initial DOWNTO final DO
statement

is equivalent to the statement

BEGIN
templ := initjal;
temp2 :# finaly
IFf templ »= temp2 THEN

BEGIN
contrel var := templ;
statetent;
WHILE control var <> temp2 DO
BEGIN
contrel var := pred(contrcl var); {decrement)
statement; .
END;
END .
ELSE BEGIN END: {Don't execute statement at all;}
END {control var now undefined. }

3-26

Keven
Rectangle

FOR STATEMENT

In the statement atier DO, the compiler protects the control variable from assignment. The programmey
cannot pass the control variable as a variable parameter or use it as the control variable of a second FOR
statement nested within the first. Furthermore, it may not appear as a parameter for the standard
procedures read or readin. Also, the statement cannot cali a procedurs or function which changes the
vaiue of the control variable,

The system determines the range of vaiues for the control variabie by evaluating the two cordinal
expressions once, and only once, before making any assignment 1o the control variable. So the statement
sequence

i=5;
FOR i := pred(i) TO suce(i} DO writeln('i=',i:1};

will write
i=4
j==5
=6

instead of

i=4
=5

The system will not execute the statement after DO i the initial value is greater than the final value when
the FOR..TO construction appears, or iess than the final value with FOR..DOWNTO.

3-27

FOR STATEMENT

If a FOR statement occurs in a section of a program with the BANGE compiler option OFF, the result of

execution will not be predictabie if a range error occurs. Suppose:

VAR
B S : 0..10;
initial,
final : 0..32767;
$RANGE OFF$
initial := 1;
final = 20;
FOR i := initial TO final DO {The result of this FOR state-)
writeln (i); {ment is unpredictable, gince }
{final is out of i's range. }
Examples

{VAR color: {red, green, blue, yellow);}
FOR color := red TC blue DO
writeln ('Color is ', color);

FOR i := 10 DOWNTO 0 DO
writeln (i);
writeln ('Blast 0ff');

FOR i := {a[j] * 15) TO (£(x) DIV ko) DO

IF odd(i) THEN
x[i) := cos(i)
ELSE

x[i] = sin{i);

3-28

Keven
Rectangle

WITH STATEMENT

A WITH statement allows the programmer to refer to record fields by field name alone. A WiTH statement

consists of the reserved word WITH, one or more record designators, the reserved word DO, and &
statement.

Syntax

WITH
statement

record

statement
designator

A record designator may be a record identifier, a function call which returns a record, or a sslected record
component,

The statement after DO may be a compound statement. in this statement, the programmer can refer o a
record field without mention of the record to which it belongs. However, the programmer may not assign a
new value to a field of a record constant or a field of a record returned by a function. In ¢ertain cases, the
WITH statement saves execution iime since {he system need not recalculate the offset of a record fieid
{see Section 9).

when the system executes a WITH statement, it evaluates the record designators and then executes the -
statement after DO. ‘

The foliowing statements are equivalent:

WITH rec DO BEGIN
BEGIN rec.fieldl := el;
fieldl := el; writeln({rec.fieldl
writeln{fieldl * field2); * rec.field2);
END; END;

3-29

WITH STATEMENT

Since the sytem evaluates a record designator once and only once before it executes the statement, the
statement sequence, where { is a field,

= 1
WITH af[i] DO
BEGIN
writein(f);
f:=2y
writeln(f)
END;
produces the same effect as:

writein(afll.f);
writeln{afl].f):

Records with identical field names may appear in the same WITH statement. The following interpretation
resolves any ambiguity: '

The statement

WITH recordl, record2, ..., recordn DO
BEGIN
statement;
END;

is equivalent to

WITH recordl DO
BEGIN
WITH record2 DO
BEGIN
WITH recordn DO
BEGIN
statement;
END;

END;
END;

3-30

Keven
Rectangle

WITH STATEMENT

Thus, if field f is a component of both record! and record2, the compiler interprets an unselected reference
to f as a reference to record2.f. The programmer may access the synonymous field in record? using
normal fieid selection, i.e. record1.f.

This interpretation also means that if r and { are records, and f is a field of r, then the statement

WITH r DO
BEGIN
WITH r.f DO
BEGIN
statement;
END;
END;

is equivalent to

WITH r,.f DO
BEGIN

statement;
END;

if 2 local or global identifier has the same name as a field of a designated record in a WITH statement, then

the appearance of the identifier in the statement after DO is always a reference to the record field. The
locai or giobal identifier is inaccessible.

3-31

WITH STATEMENT

Examples
PROGRAM show_with;

TYPE
status = (married, w
date RECORD
menth

1

H

day :

year
END;
RECORD

name :

(13

parson

g8

sex :

birth

ms :

salary :
END;,

VAR
empleyee : person;

BEGIN {show srith}

idowed, divorced, single);

{jan, feb, mar, apr, may, jun,
July, aug, sept, oct, nov, dec};
1..31

integenr;

RECCRD
first, last: string{i0)]
END;

: integer;

{male, female};
date; '
status;

real

WITH employee, name, birth DO

BEGIN
last := 'Hacker'
first := 'Harry'

*
]

»
¥

ss 1= 21LT7L8364T;

sex = male;
nonth := feb;
day := 293
year := 1952;
ms := single;

salary := 32T767.0

END;

END {show with}

3-32

Keven
Rectangle

.
EXPRESSIONS v

INTRODUCTION

An expression is a construct which computes a result of a particular type. An expression is composed of
operators and operands. An operator performs an action on objects denoted by operands and produces a
value. :

Qperators are classified as arithmetic, boolean, refational, set, or concatenation operators. An operand
may be a literal, constant identifier, set constructor, or variable, Function calls are also operands in the
sense that they return a result which an operator can use to compute another valus.

The type of the result of an expression is determined when the programmer writes the expression, it never
changes. The actual result, however, may not be known until the sytem evaluates the expression at run
time. it may differ for each evaluation. A constant expression is a restricted expression whose actual result
is computable at compile time {see Section 2},

In the simplest case, an expression consists of a single operand with no operator.

Examples
x:® 19, {Simplest case. }
yi= 100 + x; {Arithmetic operator with literal and }
' {variable operands. }
IF (A AND B)- {Boolean operator with boolean }
OR (C AND D) THEN...;{operands. }
IF x >y THEN ... 3 {Relational c¢perator with variable }
{operands. }
setC:= setA * setB: {Set operator with variable operands. }
dessert:='ice'+'cream’ ;{Concatenation operator with string }
{literal operands. }

4-1

OPERATORS

An pperaior performes an action on one or more operands and produces a value.

Operators are classified as arithmetic, boolean, set, relational, and concatenation operators. A particular
symbol may occur in more than one class of operators. For exampie, the symbol '+’ is an arithmetic, sst
and concatenation operator representing numeric addition, set union, and string concatenation,
regpectively, ‘

Precedence ranking determines the order in which the compiler evaivates a sequence of operators (see
below).

The value resulting from the action of an operator may in turn serve as an operand for anothe? operator.
Table 4-1 lists each Pascal/ 3000 operator together with its actions, permissible operands, and type of

resulis. In the table, the term 'real’ indicates both reaf and longreal types. Subsequent pages describe
each operator in detail.

Table 4-1. PASCAL /3000 OPERATORS

Operator Actions Type of Operands - Type of Results
additions | real integer real, integer
+. set union any set type T T
coencatenation string, string lit. string
- subtraction real, integer real, integer
set ditference any settype T T

£ muitiplication real, integer real, integer
set intersection any settype T T
/ division real, integer real

42

Tabie 4-1. PASCAL /3000 OPERATORS (Continued)

OPERATORS

DIV division with integer integer
truncation
MQD maodulus intege} integer
AND logical ‘and’ boolean ‘hoolean
OR logica! “or’ boolean boolean
NOT jogical negation boolean boolean
< jess than any simpie type boolean
string. or PAC boolean
> more than any simple type boolean
string, or PAC boolean
_ less than or any simpie type boolean
< o equal string, or PAC boolean
gel subset any set booiean
more than or any simple type boolean
o equal, string, or PAC boolean
set superset any set bootean
any simple type boolean
== equal to string, or PAC boolean
any set type boolean
pointer boolean
_ any simple type boolean
<> not equal to string, or PAC boolean
: any set type boolean
pointer boolean
left operand: any
N set membership ordinal type T boolean

right operand. sel
of T

4-3

PRECEDENCE

The precedence ranking of a Pascai/3000 operator determines the order of its evaluation in an
unparenthesized sequence of operators. The four leveis of ranking are:

Precedence _ _ Cperators

highest NOT “
*, /, DIV, MOD, AND
+.- CR
lowest <, L, (D o, DI T
The compiler evaluates higher precédence operators firs_t., For example, since * ranks above =+, it
evaluates these expressions identically:
(x +y*2) and {x+ {y*2))

When a sequence of operators has equal precedence, evaluation proceeds in a letf-to-right manner. For
example, the compiler evaluates these expressions the same way:

X+ y-2) and {{x 4y} -2

if an operator is commutative (e.g. *), the compiler may choose io evaluate the operands in any order.

Within a parenthesized expression, of course, the compiler evaluates the operators and operands without
regard for any operators outside the parentheses.

4-4

ARITHMETIC OPERATORS

Arithmetic operators perform integer and real arithmetic. They include -+, -, *, /, DIV, and MOD.

Most arithmetic operators permit real, longreal, integer, or integer subrange operands. DIV and MOD,
however, only accept integer operands.

In general, the type of its operands determines the result type of an arithmetic operator. in certain cases,
the compiler impiicitly converts an operand to another type (see below),

Operator Result
+ The value of a single operand which may be any numeric type.
{unary) '
- The negated vaiue of a singie operand which may be any numeric type.
{Unary)
+ The sum of two operands which may be any but not necessarily the same
{addition} numeric type.

{subtraction}

*

(muitiplication})

The difterence of two operands which may be any but not necessarily the same
nwmneric type. _

The product of two operands which may be any but not necessarily the same
numeric type.

/ The quotient of two operands which may be any but not necessarily the same
{division} numeric type. If both operands are type integer, the resull is, nevertheless, real.
DIV The truhcatéd quotient of two operands which both must be type integer. The
(division with sign of the result is positive if the signs of the operands are the same, negative

truncation)

otherwise. The result is zero if the first operand is zero.

ARITHMETIC OPERATORS

MOD ' The remainder when the right operand divides the left operand. Both operands
(modulus) must be integers, but an error occurs if the right operand is negative or zero.
The result is always positive, regardiess of the sign of the left operand, which
must be parenthesized if it is a negative literal (see exampie). The result is zero
if the ieft operand is zero. Formally, MOD Is defined as :
IMODj=1- ((iDIV]) *§
wherei> Oand | > 0. Or
iMOD | =i- {(IDIV]) =) + i}

wherei << Qandj> 0.

implicit-Conversion

The operators <+, -, *, and / permit operands with different numeric types. For example, it is possible 1o
add an integer and a real number. The compiler converts the integer to & real number and the result of the
addition is real.

This implicit conversion of operands relies on a ranking of numeric types:

Rank Type
highest longreal
real
fowest integer

It two operands associated with an operator are not the same rank, the compiler converts the lower to the
higher prior to the operation, The result will have the type of the higher rank operand. In sum:

4-85

Keven
Rectangle

One gperand type

integer
integer
real

Examples

Expression

P L L]

-5 DIV 2
5 DIV (-2)

5 MOD 2
5 MOD (-2)
(-5) MOD 2

ARITHMETIC OPERATORS

Other operand type Result type
real real
iongreal fongreal
longreal fongreal

Result

o ———————

+1
error
+1

{Unary -.

{Addition with integer operands.
{Subtraction with implicit conversion.
{Multiplication with integer operands.
{Divizion with real operands.
{Division with integer operands, real
{result.

{Division with implicit conversion.

{Division with truncation.

{Modulus.

{Right operand must ba pcsitive.
{Regult is positive regardless of
{¢ign of left operand, which is
{parenthesized since MOD has higher
{precedence than -.

' St Nt g et S = e Semt

L s o

Real division (/) is an exception. If both operands are integers, the compiler changes both 10 real
numbers prior to the division and the result is real.

Integer values require 1 or 2 words of storage in memory depending on their size (see Section 9). if a 1-

word integer and a 2-word integer are operands for & particular arithmetic operator, the compiler converts
the storage for the 1-word operand 10 2 words prior to the operation. The resul{ is a 2-word integer.

BOOLEAN OPERATORS

The boociean operators perform logical functions on boolean type operands and produce boolean resuits.
The boolean operators are NOT, AND, and OR.

Operator

Result

NOT
{logical negation)

AND
{logical and)

OR
(inclusive ar)

Examples

The logical negation of a singie boolean operand according to the following
tabie: '

a NOTa
T (rue) F {alse)
F T

The evatuation of iwo boolean operands produces a boolean result according
10 the following tabie: :

a b a AND b
T T T
T F F
F T F
F F F

The evaluation of two boolean operands produces a boclean result according
to the following table:

a b~ a0Rsb
T T T
T F T
F T T
F F F

IF NOT possible THEX forget it;

WHILE time AND money DO your thing;

REPEAT.. ,UNTIL tired OR bored;

Keven
Rectangle

SET OPERATORS

The set operators perform set operations on two set operands. The result is a third set. The set operators
are -+, -, and *.

Qperator Resuit
+ A set whose members are all the elements present in the left set operand and
(union} those in the right, including members present in both sets.
- _ A set whose members are the elements which are members of the left set but
(difference) are not members of the right set.
* A set whose members are only those elements present in both of the set
(interseciion} ope_rands‘

Operands used with set operators may be variables, constant identitiers, or set constructors (see below).
The base types of the s¢t operands must be type compatibile with each other.

Examples
PROGRAM show_setops;
VAR
a, b, ¢: SET OF 1..10;
®x @ 1..10;
BEGIK
a:= [1, 3, S
b= [2, U];
c:= [1..10];
X:1= 93
a:= a + b {Union; a is now [1, 2, 3, 4, 5]. }
biz e - a {Difference; b iz now [6, 7, 8, §, 10].}
c:=a b {Intersecticn; ¢ is now {]. }
o:= [2, 5] + [x] ({Set constructor operands; ¢ is now }
END. {{2, 5, 9]. }

RELATIONAL OPERATORS

Relational operators compare two cperands and return a boolean resull. The relationat operators are <,
<= = <3 = > andIN. The < operator means 'less than'; <= 'less than or equal’; = 'equal’,
<> 'not equal’; > = 'more than or equal’; > 'more than’; and IN indicates sef membership.

Depending on the type of their operands, relational operators are ciassified as simple, set, pointer, or string
relational operators.

Simpie Relational Operators

A simple relational operator has operands of any simple type, i.e. infeger, boolean, char, real, longreal,
enumerated, or subrange. Al the operators listed above except IN may be simple relationai operators, The
operands must be type compatible, but the compiler may implicitly convert numeric types before
evaluation {see Arithmetic Operators above).

For numeric operands, simple relational operators impose the ordinary definition of ordering. For char
operands, the ASCIt collating sequence defines the ordering. For enumerated operands, the sequence in
which the constant identifiers appear in the type definition defines the ordering. Thus the predefinition of
boolean as

TYPE boolean = (false, true);
means that false < true.

if both operands are boolean, the operator = denotes equivalence, <= jmplication, and <> exciusive
or.

4-10

Keven
Rectangle

RELATIONAL OPERATORS

Set Relational Operators

A set relational operator has set operands. The set relational operators are =, <>, >=, <<=, and iN.
The operators = and <> compare two sets for equality or inequality, respectively. The <= cperator
denotes the subset operation, while > = indicates the superset operation. Set A is & subset of Set B if
every element of A is aiso a member of B. When this is true, B is said to be the superset of A,

The IN operator determines if the left operand is a member of the set specified by the right operand. When
the right operand has the type SET OF T, the left operand must be type compatible with T. To test the
negative of the IN operator, the programmer must use the following form:

NOT {element IN set)

Pointer Relational Operators

The programmer can use the operators = and <> {0 compare two pointer variables for equality or
inequality, respectively. Two pointer variables are equal only if they point to exactly the same object on the
heap. The programmer may compare two pointers of the same type or the constant NiL {0 a pointer of any
type. '

4-11

RELATIONAL OPERATORS

String Relational Operators

The programmer may use the string relational operators =, <>, <, <=, >, or >= {0 compare
operands of type string, PAC, char, or string literals.

The system performs the comparison characier by character using the order defined by the ASCH
collating sequence. _

If one operand is a string variable, the other operand may be a string variable or string literal. if the
operands are not the same length and the two are equal up to the iength of the shorter, the shorter
operand is less. For exampile, if the current value of 815 'abc’ and the current value of 82 is 'ab’, then St
= 82 is true. !t is not possible 10 compare a string variable with a PAC or char variable.

If one operand is a PAC variable, the other may be a PAC of equat length or a string literal no longer than
the first operand. If shorter, the string literal is blank filled prior to comparison. it is not possible to compare
a PAC with a string or char variable.

if one operand is a char variable, the other may be a char variable or a single-character string literal. it is
not possible 1o compare a char variable with a string or PAC variable.

i one operand is a string literal, the other may be a string variable, a PAC which is the same Ieng.;ch of
longer, a string literal, or a char variable provided that the string literal is oniy of length 1,

Table 4-2 summarizes these rules. The standard function strmax (8} returns the maximum length of the
string variable s. The standard function strien (8} returns the current iength of the string expression s {see
Section 6).

A siring constant is considered a string fiteral when it appears on either side of a relational operator.

4-12

Keven
Rectangle

Table 4-2. STRING, PAC, CHAR, STRING LITERAL COMPARISON

RELATIONAL OPERATORS

A/<relop>/B string PAC char string literal
Length of If they are not =
comparison Not Not Length of

string based on allowed atlowed comparison
smafier based on
strien smaller
strien
Only if
Only if A length > =
Not A length = Not strien{B)
PAC aliowed B length allowed
B is blank
filled i
necessary
Not Not Only
char allowad allowed Yes strien (B} = 1
Only if
Length of B length > = Only if Yes
comparison strien{A} strien (A}
string based on = g
literal smaller A is biank AorBis
sirfen fitled if blank filled if
necessary necessary

4-13

RELATIONAL OPERATORS

Examples

PROGRAM show relational;
TYPE

color = {red, yellow, blue);
VAR .

a.b,¢: boolean;

p.q: “boolean;

s,t; SET OF coloer;

col: celor;

stg: stringl10];

BEGIN
. {Types of relational operators: 3
b =5 > 2; {simple, }
L =5 < 25.00+1; {simple, Yy
=2 AND (b OR (NOT ¢ AND (b <= a})); {implication,}
IF (p = q) AND (p <> NIL) THEN p~:= a = b; {pointer, 3
b 1= g <> t3 {set, }
b= g5 «= t3 {set, subget,}
b := cel IN [yellow, bluel: {set, IN, }
stg := ‘alpha';
¢ := stg > ‘beta'; {string. }
END.

4-14

CONCATENATION OPERATOR

The concatenation operator + concatenates twp operands. The operands may be str:ng variables, string
literals, function results of type sitring, or some combination of these types.

if one of the operands is type string, the resuli of the concatenation is also type string. If both operands
are string literals, the result is a string.-

i is not legal 1o use the concatenation operator in @ constant definition.

Examples

VAR
s1,82: string[80];
BEGIN
© 8l:= ‘abe';
g2:= ‘def';
§l:= s1 + s2; {S1 is now 'abedef'}
g2:= 'The first gix letters are ' + sl
END.

4-15

OPERANDS

An operand denotes an object which an operator acts on to produce a value. An operand may be a literal,
a declared constant, a variabie, a set constructor, a function call, a dereferenced pointer, or the vaiue of

another expression.

Section 5 describes the form of literals; Section 2 declared constants and variables. Subsequent pages in
this chapter discuss set constructors, function calis, and pointer dereferencing.

A component of a structured type may appear as an operand. This requires use of an appropriate selector

{see below).

The programmer must declare and initialize a variable before it can appear as an operand in an

axpression,

Example

3+ 2

pi * 3

IF day = monday THEN...
x /'y

[5..9] + dolly(p]
succ{a) * b

p* DIV 2

{be + bop) » (dixieland)

{Literals. 3
{Declared constant. }
{Enumerated constants.)
{Variables. H
{Set constructors. }
{Function call. }
{Dereferenced pointer.}
{Result of expression.)}

4-16

SET CONSTRUCTOR

A set constructor designates one or more values as members of a set whose type may or may not have
been previously declared. A set constructor consists of an optional set type identifier and one or more
ordinal expressions in square brackets, Two expressions may serve as the lower and upper bound of a
subrange. _

Syntax

set

constructor ‘

type
identifier

If the programmer specifies the set type identifier, the values in the brackets must be type compatible with
the base type of the set. if no set type identifier appears, the values must be type compatible with each
pther. The symbols (. and .} may replace the left and right square brackets, respectively.

Set constructors may appear as opefands in expressions in execuiable statements. Set constructors with
~ constant values are legal in the definition of constants (see Section 2).

If untyped set constructors appéar as operands for a set operator, the compiler may not be able to
construct the sets. Suppose, tor exampie, that k, I, and j are integer variables, Then the expression

FKIN [} + [j] THEN <statement>

produces a compile time error. The compiler cannot construct a set with a cardinality greater than 32768
{see Section 9) and, since k, i, and] are in the subrange minint..maxint, the compitation fails.

4-17

SET CONSTRUCTOR

Exampies

PROGRAM show setconstructor;
TYPE
int_set = SET OF 1..100;
cap_set = SET OF "A’..'Z';
VAR
a,b: 0..255; -
gl: SET OF integer;
g2: SET OF char;
BEGIN '

sl:= int szet{(a MOD 100} + (b MOD 100)]
s2:= cap set['B'..'T", X', 'Z'};
END.

4-18

FUNCTION CALL

A function call activates the block of a standard or declared function. The function returns a value to the
catling point of the program. An operator can perform some action on this vatue and, for this reason, a
function call is a sort of operand.

A function call consists of & function identifier, an optional list of actual parameters in parentheses, and an
“optional selector.

Syntax

function —
-——-—Ol function identifier
call

The actual pararmeters must match the formal parameters in number and order, except for a function
declared with the directives INTRINSIC or EXTERNAL SPL VARIABLE. Such a function has option variable
parameters which the programmer may omit using the empty actual parameter specified by a comma (.}
{see Appendix F). It is also possible to pass actual parameters to functions declared INTRINSIC even
when the declaration specifies no formal parameters (see Section 2).

Actual value parameters are expressions which must be assignment compatibie with the formal value
parameters.

Actual variabie parameters are variables which must be type identical with the formal variable parameters
Components of a packed structure may not appear as actual variable parameters,

Actual procedural or functional parameters are the names of declared procedures or funciions, Standard
functions or procedures are not legai actual parameiers.

The parameter list, if any, of an actual procedural or functional parameter must be congruent with the
parameter list of the formal procedural or functional parameter {see Procedure Statement in Section 3).

4-19

FUNCTION CALL

If an actual functional or procedural parameter, upon activation, accesses any entity non-iocalily, then the
entity accessed is one which was accessible to the function or procedure when its identifier was passed.
For example, suppose Procedure A uses the non-ocal variable x. if A is passed as a parameter 10 Function
B, then it still has access 1o x, even if x is otherwise inaccessible in 8. Technically, the compiler preserves
the siatic link when A is passed.

If the function result is a structured type, then the function call may select a particular component as the
resull, This requires the use of an appropriate selector (see below). The programmer, however, should
avoid inefficient use of this alternative, i is usually better ¢ copy the entire result of such a function into a
local variabie before selecting a component.

Example

PROGRAM show function (input,output};
VAR -

o,

coef,

answer: integer;

FUNCTION fact (p: integer) : integer;
BEGIN
IF p » 1 THEX
fact := p * fact (p-1)
ELSE fact := 1

END;
FUNCTION binomial coef (n, r: integer) : integer;
BEGIN .
binomial coef := fact {n) DIV (fact (r) ¥ fact (n-r})
END;

BEGIN {show_function}
read(n);
FOR coef := 0 10 n DO
writeln (binomial coef (n, coef));
END. {show function}

4-20

POINTER DEREFERENCING

A pointer variable points 10 a dynamically-allocated variable on the heap. The programmer may access
the current value of this variable by dereferencing its pointer.

Pointer dereferencing occurs when the caret symbol (~) appears after a pointer designator in source
code.

Syntax

pointer

, [pointer "
dereferencing = """ _designator A »

The pointer designator may be the name of a pointer or selected component of a structured variabie which
is a pointer. The @ symbol may replace the caret.

Unless the RANGE compiler option is OFF, the compiler processes a program so that the system will
check the vaiue of the pointer at run-time. This value must be negative since dynamic variables are in the
DL-DB area of the data stack. If it is NIL or some other positive value, dereferencing causes an error.

A dereferenced pointer can be an operand in an expression,

Examples
PROGRAM show pointerderef (output);
TYPE
p = “integer;
VAR
a,b : integenr;
p_array : ARRAY [1..10]} CF p;
ptr TP
BEGIN

p_array(a]”:= a + b;
writeln{ptr" * 2); {Dereferenced pointer is operand. }

»

END.

4-21

ARRAY SELECTOR

An array selector accesses a component of an array. The selector follows an array designator and consists
of an ordinal expression in square brackets.

Syntax

array

axpression
selector :

The expression must be assignment compatible with the index type of the array. An array designator can
be the name of an array, the selected component of a structure which is an array, or & function call which
returns an array. The symbols (. and.} may replace the left and right brackets, respectively. The
programmer may select a component of a multiply-dimensioned array in different ways {see exampia).

An array selector acceéses a singte component of a string variabie, i.e. a character, The standard function
str, on the other hand, returns a selected sequence of characters from a siring (see Section 7).

Examples

PROGRAM show _arrayselector;

TYFE .
a_type = ARRAY [1..10] OF integer;

VAR '
m.G : integen;
simp_array : ARRAY {1,.3] OF 1..100;
multi-array : ARRAY [1..5,1..10] OF integer;
o3 - 1 "a_type;

BEGIN
m:= simp_array[2]; {Assigns current value of 2nd }

. {component of simp_array to m. ' H

multi_array{2,9}:= m; {These are }
multi_array{2]{9}:= m; {equivalent. }

n:= p~[m MOD 10 + 1] * m {Dynamic array variable selection.}
END.

4-22

RECORD SELECTOR

A record selector accesses a fieid of a record. The record selector foliows a record designator and consists
of & period and the name of a field.

Syntax

record — .
selector identitier »

A record designator is the name of a record, the seiected component of a siructure whichis a record ora
function call which returns a record.

The WITH statement "opens the scope’ of a record. making it unnecessary for the prbgrammer to use a
record selector {see Section 3). :

Examples

PROGRAM show_recordselector;
TYPE
r_type = RECORD
f1: integer;

f2: char;
END;
VAR '
a,b : integer;
ch 1 char;
o v r_type;
rec array : ARRAY [1..10] OF r_type;
BEGIN
=r.fl + b; {Assigns current value of integer field }
{of r plus b to a. }
rec_arrayfal.f2:= ch; {Assigns current value of ch te char }
{field of a'th component of rec_array.)

END,

4-23

FILE BUFFER SELECTOR

A file buffer selector accesses the contents, it any, of the file buffer variable associated with the current
position of a file. The selector follows a file designator and congists of the caret symbo! ().

Syntax
file buffer_@_’
selector

A file designator is the name of a file or the selected component of a structure which is a file. The @ symboi
may replace the caret,

it the file buffer variable is not defined at the tirme of selection, a run time error occurs. Section 6 describes
the file buffer variable and its possibie state in detail.

Examples

PROGRAM show_bufferselector;
VAR
£:FILE OF integer,
a,biinteger,

BEGIN

a:; £+ 23 {AsSigns current contents of file}
. {buffer pius 2 to a, }

f‘;za + b {Assigns sum of a and b to buffer]
. ' {variable, }

END.

4-24

Keven
Rectangle

SECTION

TOKENS | %

IDENTIFIERS

A Pascal/ 3000 identifier consists of a letter preceding an optional character sequence of letters, digits, or
the underscore character (). Identifiers denote declared constants, types, variables, procedures,
functions, and programs.

Syntax:

 J

identifior —————af letter < -

[3

~

L

o tetter
e

digit —‘4

;..@.__)

A letter may be any of the letters in the subranges A..Z or &..z. The compiler makes no distinction between
upper and lower case in identifiers. A digit may be any of the digits 0 through 8. The underscore {__} is an
HP Standard Pascal extension of ANS! Standard Pascal.

An identifier may beup toa source' line in length with all characters significant. Because of the
requirements of the MPE Segmenter, however, the names of level 1 procedures or functions, or giobal
variables appearing with the GLOBAL or EXTERNAL compiter options must be unique within 15
characters.

IDENTIFIERS

In general, the programmer must define an identifier before using it. Two exceptions are identifiers which
define pointer types and are themselves defined laier in the same declaration part, and identifiers which
appear as program parameters and are declared subsequently as variables. Also, the programmer need
not define an identifier which is a program, procedure, or function name, or one of the identifiers defining
an enumerated type. its initial appearance is the 'defining occurrence’. Finally, Pascal/ 3000 has a number
~of standard identifiers which the programmer may redeciare. These standard identifiers include names of
standard procedures and functions, standard file variables, standard types, and procedure or function
directives. Appendix B lists the Pascal/ 3000 standard identifiers.

Appendix B also iists the Pascal/ 3000 reserved words. These are system defined sympois whose meaning
may never change. That is, the programmer cannct deciare an identifier which has the same gpelling as a
reserved word.

The symbot OTHERWISE is & reserved word in the HP Standard Pascal or Pascal/ 3000 modes, L.e. when
the compiler option STANDARD_LEVEL is set to HF or HP3000. When the STANDARD...LEVEL option
is set o ANSI, or when the ANS! option is ON, however, it is no longer a reserved word and may appear as
a declared identifier.

Examples
GOOD TIME 9 {These identifiers }
good_time 9 _ {are }
g00d_TIme § {equivalent. }
x2_GO
a_long identifier

boolean {Standard identifier.)

5-2

Keven
Rectangle

- NUMBERS

Pascal/ 3000 recognizes three sorts of numeric literais: integer, real, and longreal.

Integer Literals

An integer literal consists of a sequence of digits from the subrange 0..9. No spaces may separale the
digits for a singie literal and leading zerces are not significant. The compiler interprets unsigned
integer literals as positive values. The maximum unsigned integer iiteral is 2147483647, which ig the
value of the standard constant maxint. The minimum signed integer literal is —2147483648, which is
the value of the standard constant minint,

Syntax

unsigned [—]
digit

integer

Real and Longreal Literals

A real or iongreal literal consists of a coefficient and a scale factor. An 'E’ preceding the scale factor is
read as "times ten to the power of and specifies a real literal. An 'L’ preceding the scale factor also means
"times ten to the power of’, but specifies a longreal literal.

Syntax

real or unsigned u unsigned
iongreat integer " integer

unsigned |
intgger j

Lowercase 'e' and 'I' are legal. At ieast one digit must precede and follow a decimal point. A number
containing a decimal point and no scale factor is considered a real literal.

NUMBERS

Real literals must be elements of the set defined by the ranges:

-1.15792E+77 to -8.63617E-78
0.0
8.63617E-78 to 1.15792E+77

Longreal literals must be members of the set defined by the ranges:
-1,157920892373162l.+77 to -8.636168555094445L-78

0.0
8.6361685550944451.-78 to 1.157920892373162L +77

Examples
100 {Integer.
0.1 {Real withk no scale factoer.
5E-3 {Real with no decimal point.

3.14159265358979L0 {Longreal.
87.35e+8 {Real.

5-4

e e e Tl

Keven
Rectangle

STRING LITERALS

A string literal consists of a sequence of ASCH printable characters enclosed in single guote marks, a
single character after a sharp symbol (#), or some combination of the two,

Syntax

string
fiteral

character

[unsigned
integer .

fatter

The printabie characters appearing between the single quotes are those ASCIl characters assigned
graphics and encoded by ordinal values 32 through 126.

An letter or symbol after a sharp symbol is equivalent 0 a control character. For example, #G or #g
encodes CTRL-G, the bell character. The compiler interpreis the letter or symbol according to the
expression chr (ord (ietter) MOD 32), Thus, the ordinal value of G is 71; modulus 32 of 71 is 7; and the
ASCH vaiue of 7 is the bell,

A number after g sharp symbol must be in the range 0..255. 1t directly encodes any ASCI character,
printing or non-printing. For example, the string literal #80#65# 83467 #65#76 is equivalent to the string
literal 'PASCAL'.

A string literal is type char, PAC, or sfring, depending on the contexi.

§-6

STRING LITERALS

If a single guote is a character in a siring literal, it must appear {wice.

A string literal may not be longer than a single line of source code, nor may it contain separators, except
for spaces {blanks) within the quotes.

Two consecutive quote marks (') specify the null or emply string literal. Assigning this value 1o a string
variable sets the length of the variable to zero. Assigning it to a PAC variable blank-fills the variabie.

Examples
"Please don' ‘%ti' . {Single quote character.}
‘A‘
e {Null string. }
#F
#2L38H :

#27 that was an ESC char, and this is alzo #|
"this string has five bells' #g#g#eg#T#7' in it'

Keven
Rectangle

COMMENTS

Comments consist of a sequence of characters delimited by the special symbols | and |, or the symbois (*
and *). The compiler ignores all the characters between these symbols. Camments usually document a
program.

Syntax

comment character

A comment is a separator and may appear anywhere in a program a separator may appear. A comment
may begin with | and close with *), or begin with (* and close with |.

Nested comments are not legal.

A comment may cross a line boundary in source code.

Examples

{comment}

(*comment™)

{comment®)

{This comment

occupies more than one line.)}

SEPARATORS

A separator is a blank, an end-of-iine marker, a comment, or a compiler option,

Al least one separator must appear between any pair of consecutive identifiers, numbers, or reserved
words. When one or both elements are special symbois, howsaver, the separator is optional.

Examples
IF eof THEN GOTO 99 {Required separators.)}
® =%+ 1 {Optional separators.}
X:=N+] {No separators. }

Keven
Rectangle

SPECIAL SYMBOLS

Table 5-1 lists the special symbois vailid in Pascal/ 3000.

Table 5-1. PASCAL /3000 SPECIAL SYMBOLS

Symbol _ Purpose

+ add, set union, concatenate strings

- subtract, set difterence

* mulliply, set intersection
/ divide (reai results)

= equai to

< iess than

> greater than

delimit a parameter list or a subexpression

| delimit an array index or a constructor.
] May be reptaced by (. or.)

select field, decimal point

. separate listed identifiers

" delimit statements

detimit list of identifiers

n define or deference pointers, access file
"1 buffer, May be replaced by @.

SPECIAL SYMBOLS

Table 5-1. PASCAL/3000 SPECIAL SYMBOLS
{Continued)

<> not equal
< = less than or equai, subset
> == greater than or equal, superset

= assign value to a variabie

subrange

delimit a comment.
May be replaced by (* or %)

encode a control character

] H{ v | -

gelimit a compiler option

gelimit a string literal

separate words in an identifier

Separators may not appear within special symbols having more than one compeonent (e.g. : =}.
Certain special symbols have synonyms. in particular, (. and.) may replace the left and right brackets |

and | . The symbol @ may substitute for the up-arrow A, and (* and *} may take the place of the left and
right braces | and |.

5-10

1/0 Vi

INTRODUCTION

Fiies are the means by which a program racsives input and produces output. A file is a sequence of
components of the same type. This type may be any type, except a file type or a structured type with a file
type component.

Logical fiies are files declared in & Pascal/3000 program. Physical files are files which exist independently
of a program and are controlled by the MPE operating system. The programmer rnay associate logical and
physical files so that a program manipulates data objects external to itseif.

The components of a file are indexsd starting at component 1. Each file has a current component. The
standard procedure read (f,x) copies the contents of the current component into x and advances the
current position to the next component. The procedure write {f,x) copies x into the current compeonent
and, like read, advances the current position.

Each file has a buffer variable on the stack or heap whose contents, if defined, are accessible using a
selector {see Section 5).

One of the standard procedures reset, rewrite, append, or open opens a file for input or output. The
manner of apening a file determines the permissible operations, In particuiar, resetf opens & file in the read-
only state, i.e. writing is prohibited; rewrite and append open a file in the write-only state, i.e. reading is
prohibited; and open opens & file in the read-write state, i.e. both reading and writing are legal.

Files opened with resst, rewrite, or append are sequential files. The current position advances only one
component at 4 time. Fiies opened with open are direct access files. The programmer may relocate the
current position anywhere in the file using the procedure seek, Direct access files have a maximum number
of components determinabile with the standard function maxpos. The maximum number of components of
a sequential file, on the other hand, is not determinable with a Pascal function. '

if a temporary nameless file is reopened via a rewrite, reset, open or append command and the
parameter for carriage control, file disposition or file access is used, a new file is created and any
association with the old file is lost.

61

INTRODUCTION

Textiiles are sequential files with char type components. Furthermore, end-of-line markers substructure
textfiles into lines, The standard procedure writein creates these markers. The standard files input and
output are textfiles which the system automatically associates with the MPE fites $3STDIN and $3TDLIST.
The programmer cannot open textfiles for direct access.

Table 6-1 lists each Pascal/ 3000 file procedure or function together with a brief description of its action.

The third column of the table indicates the permissible categories of files which a procedure or function
may reference. '

Subseguent pages describe the file procedures and functions in full,

Table 6-1. FILE PROCEDURES AND FUNCTIONS

Procedure Permissible
or Function Action Flles
append Opens file in write-only state. Current position any

is after last component and eot is true.

ciose Closes a file. | any

eof Returns true if file is write-only, if no component any
exists for sequential input, or if current position
in direct access file is greater than the
highest-indexed component aver written to the
file.

Table 6-1. FILE PROCEDURE AND FUNCTIONS (Continued)

INTRODUCTION

soin Returns true if the current position of a text read-only
file is at a line marker textiiies
fnum Returns the MPE file number of the physical any
file associated with a logical file.
get Allows assignment of current component read-only
to buffer and, in some cases, advances or read-write
current position, files
linepos Returns number of characters read from textfiles
or written 1o textfile since last line marker
fnaxpos Returns index of iast possible compdnem direct access
of direct access file. files
open Opens file in read-write state. Current position any file
' is 1 and eof is faise. except a
' textfile
overprint . A form of write which causes the next line of a write-only
textfile to pririt over the current ling. textiiles
page Causes skip 10 top of new page when & textfile write-only
is printed. textfiies

INTRODUCTION

Table 8-1. FILE PROCEDURE AND FUNCTIONS (Continued)

position Returns integer indicating the current any file

component of a non-text file. except a
textfile

prompt A form of write which assures textiile write-only
buffers have been written to the device. textfiles
No line marker is written.

put Assigns the value of the buffer variable write-onfy
10 the current component and advances the of read-write
current position. files

read Copies current component info specified read-only or
variable parameter and advances read-write
current position. files

readair Moves current position of 2 direct access | direct access
file 1o designated component and then files
performs read.

readin Performs read on iextfile and then skips read-only
to next line - textfiles

reset Opens file in read-only state. Current any
position is 1 and eof is faise.

rewrife Opens file in write-only state. Current any
position is 1 and eof is true.
Old components discarded,

B-4

Keven
Rectangle

INTRODUCTION

Table 6-1. FILE PROCEDURE AND FUNCTIONS (Continued)

seek Places current position of direct access _ direct access
file at specified component number. files

write Assigns parameter value 10 current file - wiite-only
component and advances current position. or read-write

files

writedir Advances current position in direct access - direct access
file to be designated component and performs files
a write.

writein Assigns parameter value 1o current textfile write-only
component, appends a line marker, textfiles
and advances current position. :

APPEND

Usage

append (f)
append ({8}
append {f,5,1)

Parameters

f The name of a logical file. { may not be omitted.

s The name of an MPE physical file which the system will associate with f. s may be a string
expression or PAC variable,

1 Parameters specitying carriage control and file access. These are:

CCTL - specifies that textfile f has carriage control,
NOCCTL - specifies that textfile f has no carriage control.
SHARED - specifies that { may be open to more than one process.

EXCLUS - specifies that f may be open to only one process at a time.

T may be a string or PAC variable, or a string literal. Two parameters may appear separated by a
comma. The comipller ignores leading and trailing bianks and congiders upper and lower case
equivaient..

The detfault file access for all files is EXCLUS; the defauit carriage control for textfiles is CCTL.

6-6

Keven
Rectangle

APPEND

Description

The procedure append(f) opens file f in the write-only state and places the current position immediately
after the last compaonent. All previous contents of f remain unchanged. EOF(f) retums true and the file
buffer f* is undefined. The programmer may now write data on f.

If is already open, append closes and then recpens il. I the parameter s is specified, the system closes
any physical file previously associated with 1.

When f appears as a program parameter and s is not specified, the system uses an MPE file with 2 name
made up of the first 8 characters of the { identifier. It associates this physical file with 1. if a physical file with
the default name doesn’t already exist, the system creates a temporary MPE file with the default name.
The programmer may subseguently save this file using the ciose procedure and the SAVE parameter.

When f does not appear as a program parameter and s is not spegified, the system maintains any previous
association of an MPE file with 1, i there is no such association, it creates a temporary nameiess MPE file
and opens it in the write-only state.

The programmer cannot save a temporary nameiess MPE file and it becomes inaccessible afier the
process terminates or the physical-io-logical file association changes.

Append is an MP Standard Pascal extension of ANSt Pascal.

APPEND

IHustration

Suppose examp__file is a ciosed file of char containing three components. in order 10 open it and write
additional materiai without disturbing its contents, we call append.

linitial condition

state: closed

append (examp__tile);

current position

‘ state: write-only
l P A | S examp.file ~: undefined
8of {examp..file}: true

6-8

CLOSE

Usage

close {f)
close {f.1)

Parameters
t The name of a logical file. T may not be omitted
1 A parameter specitying the disposition of any physical file associated with . The possibilities are:

SAVE - The systermn will save the file as a permanent file.
PURGE - The system will destroy the file.

TEMP - The system will save the file as a temporary file which disappears at the end of the
curent session or job.

t may be a string or PAC variable, or a string literal. The compiler ignores leading and trailing
bianks and considers upper and lower case equivalent.

if t is not specified, the file will retain its current status.

Description

The procedure ciose (1) cioses the file { so that it is no longer accessible. After close, the function eof (1) is
true, the buffer variable f~ is undefined, and any association of t with a physical file is dissolved.

When closing a direct access file, the last component of the file will be the highest-indexed component
ever written to the file. The value of maxpos for the file, however, remains unchanged

Ciose is an HP Standard Pascal extension of ANS| Pascal.

6-9

EOF

Usage

eof {f)
eof

Argument

- The name of a logical file. It { is omitted, the system uses the standard file input,

Description

The boolean function EOF(f) retumns true when {is in the write-only state, when f is in the direct access
state and its current position is greater than the highest-indexed component ever written to f, or when
no component remains for sequential input. Otherwise, EOF(f) returns faise.

When reading & non-char value from a textfite, EOF may retum fa/se even if no other value of that type
remains in the file for input, e.g. the components after the current position are all blanks.

8-10

EOLN

Usage

eoin (1)
eoin

Argument

f The name of a logical textfile opened in the read-only state. if f is omiited, the system uses the
standard file inpui,

Description

The boolean function goin (f) returns true if the current position of texifile fis at an end-of-line marker. The
funiction references the buffer variable f ~, possibly causing an input operation 1o occur. For example, after
readin, a calt to eoin will place the first character of the new line in the buffer variable.

8-11

FNUM

Usage

faum ()

Argument

f The name of a logical file. f may not be omitted. The programmer must specify the standard
files input or output by name,

Description

The function fnum () returns the MPE file number of the physical file currently associated with the logical
file f. The programmer may use this number in calls to MPE File System intrinsics. If no assoclated physical
file exists, an error aceurs, '

Fnum is a Pascal/ 3000 extension of MP Standard Pascal.

Fnum retums an integer in the range 0..255.

Keven
Rectangle

GET

Usage

get ()
get

Parameter

f The name of a iogical file which must be in the read-only or read-write state. If f is omitted, the
system uses the standard file input.

Description

The procedure get {f) causes a subsequent reference to the buffer variabie 12 to actually load the butfer
with the current component. This is the 'deferred’ get described in detail in Appendix |, in certain
circumstances, namely after a call to read, get alse advances the current position.

if the current component does not exist when get is called, t* will be undefined and EOF() will return
trie. An error occurs i f is in the write-only state or if EOF(1) is true prior to the call to get.

lilustration

Suppose examp.. file is a file of char with three components which has just been opened in the read-write
state. The current position is the first component and examp....file~ is undefined. To inspect the first
component, we call get:

finitial condlition]

current position

staie : read-write
I a b ¢ examp__file ~: undefined
eof{examp__file) : false

6-13

GET

get (examp_.file);

current position

|

1 state : read-write

a b ¢ examp__file~ {deferred): a
eof (examp...file) : false

The current position is unchanged. Now, however, a reference 1o examp__file ~ loads the first component
into the bufter and advances the current position. We assign the buffer 1o a variable.

char...var.= gxamp...file ~
current position

|

| state : read-write

a b ¢ examp__tfile~ : a
eof (examp..file} : falce

6-14

Keven
Rectangle

LINEPOS

Usage
linepos (f)

Argument

f The name of a logical textfile. f may not be omitted. The programmer must specify the standard
files input or output by name.

Description

The function lingpos () returns the integer number of characters read from or written {o the texifile f since
the last end-of-line marker. This does not include the character in the buffer variable f~. The result is zerc
after reading a line marker, or immediately after a call to readin or writein.

6-18

MAXPOS

‘Usage

maxpos (f)

Argument

f The name of a iogical file in the read-write state. f may not be omitted.

- Description

The function maxpos (1) returns the integer index of the last component of f which the program may
access. An error oceurs if f is not opened as a direct access file.

The value of maxpos (f) is the limit of the physical file associated with {. 1f a Pascal program creates a

physical file, this limit is 1023 records by default. The programmer may change this limit using the MPE
:BUILD or :FILE commands.

g-16

OPEN

Usage

open (f)
open {f,s)
open{f,st)

Parameters

f The name of a Iogical file which is not a textfile. f may not be omitted.

s The name of an MPE physical file which the system will associate with f. ¢ may be a string
expression or PAC variable.

1 File access specification. The possibilities are:

SHARED - specifies that file may be open 1o more than one process.

EXCLUS - specifies that file may be open to only one process at a time.

t may be a string or PAC variable, or a string literal. The compiler ignores leading and trailing
blanks and considers upper and lower case equivalent.

if t is omitted, the default is EXCLUS.

Description

The procedure open(f) opens f in the read-write state and places the current position at the beginning
of the file. The function EQF(f) retumns false, unless the file is empty. The buffer variable {* is undefined.

After a call to open, T is said to be a direct access file. The programmer may read or write data using the
procedures read, write, readdir, or writedir. The procedure seek and the function maxpos are also legal.

Eof {f) becomes true when the current position is greater than the index of the higest-indexed component
ever written to {. '

8-17

OPEN

Direct access files have & maximum number of components. The function maxpos returns this number.

The programmer cannot open a textfile for direct access since its format is incompatible with direct access
operations.

If { is already open, the system will close it automatically and then reopen it. If the parameter s is specified,
ihe system will close any physical file previously associated with {.

When f appears as a program parameter and ¢ is not specified, the system uses an MPE file with a name
consisting of the first 8 characters of 's identifier as the associated physical file. i a physical file with the
approprigie name doesn't exist, the system creates a temporary MPE file with the defauit name. The
programmer may save this file using the procedure close with the SAVE parameter.

When { does not appear as a program parameter and s is not specified, the system maintains any previous
association of a physical file with f. If there is no such association, it opens a temporary nameless MPE file.
The programmet cannot save this file, It becomes inaccessible after the process terminates or the
physical-{o-iogical file agsociation changes.

Hlustration

Suppose examp__file is a file of infeger with three components. To perform both input and output, we cail
oper:.

open {examp_lfile};
current position

|

* state: read-write

18 10 25 examp__file ~: undefined
eof {fexamp....filey. false

6-18

OVERPRINT

Usage

overprint f)
overprint (f,2)
overprint {f.el,...,en)
gverprint (e)
overprint (e1,...,en)
averprint

Parameters

f The name of a logical textfie. If T is omitted, the system uses the standard file output.

e Anexpression of any simple, siring, or PAC type, or a string literal. The system writes the value of e .
on { according to the formatting conventions described for the procedure write, Several
expressions may appsar separated by commas.

Description

The procedure overprint (f} writes a special line marker on the texifile f and advances the current position.
When 1 is printed, this special marker causes a carriage return but suppresses the line feed. This means the
printer will print the line after the special markar over the line preceding it.

After the execution of overprint (f), the buffer variable f~ is undefined and eoln (f) is false.

The expression parameter € behaves exactly like the equivalent parameter for the procedure write (sse
below),

PAGE

Usage

page ({}
page

Parameter

f The name of a logical textfile. If { is omitted, the system uses the standard file output.

Description

The procedure page (f) writes a special character to the textfile f which causes the printer to skip 1o the
top of form when f is printed. The current position in f advances and the buffer variable f~ is undefined.

The form feed only works if the file (f) has been associated to the lineprinter with a tile equation, or the
"CCTL” option is used.

Keven
Rectangle

POSITION

Usage

position {f}

Argument

t The name of a logicai file which is not a texifile.

Description

The function position(f) returns the integer index of the current component of f, starting from 1. input or
output operations will reference this component. { must not be a textfile. if the buffer vanabie * is full,
the result is the index of the component in the buffer. :

f can't be associated with a physical file which is a tape.

6-21

PROMPT

Usage

prompt (1)

prompt (1,e)
prompt (f,e1,....en)
prompf (e}
prompt {e1,....en)
prompt

Parameters

{ the name of a logical textfile. if f is omitted, the system uses the standard file output.

e Anexpression of any simple, string, or PAC type, or a string literal. The system writes the vaiue ol e
on f according to the formatting conventions described for the procedure write. Several
expressions may appear separated by commas.

Description

The procedure prompt {f) causes the system 1o write ar{y buffers associated with textfiie f to the device.
Prompt does not write a line marker on {. The current position is not advanced and the buffer variable f

becomes undefined.

The programmer will normally use prompt when directing {/0 to and from a terminal. Prompt causes the
cursor to remain on the same line after output to the screen is complete. The user may then respond with
input on the same line,

The expression parameter e behaves exactly like the equivalent parameters in the procedure write (see

beatow].

6-22

Keven
Rectangle

PUT

Usage

put {f)
put

Parameter

f The name of a logical file opened in the write-only or read-write state. If f is omitied, the system
uses the standard file output.

Description

The procedure put (f} assigns the vaiue of the bufter variable f~ t0 the current component and advances
the current position. Following the call, {~ is undefined.

An error occurs it T is open in the read-only siate.

Hiustration

Suppose examp....file is a file of integer with a single component opened in the write-only state by append.
Furthermore, we have assigned $ to the buffer variable examp...file ~. To place this value in the second
componend, we call put

append (exarnp__file);

examp..file~:= g;
current position

! . state: write-only
1 examp__file~: ©

eof (examp_.file): true

6-23

PUT

put (examp__file);

current position

state: write-only
examp__tile A undefined
eof{examp__file} true

6-24

Keven
Rectangle

READ

Usage

read {f,v)
read{fv1,...,vn)
read{v)
read{vi,....vm

Parameters

f The name of a logical file opened in the read-only or read-write state. i 1 is omitted, the system
uses the standard fite input.

y Thenameofa simple, string, or PAC variabie when {is a textfile. It f is not a textiile, its components
must be assignment compatible with v. Any number of v parameters may appear separated by
COMImas, '

Description

The procedure read (1,v) assigns the value of the current component of f to the variable v, advances the
current position, and causes any subsegueni reference to the bufler variabie f~ to actually load the buffer
with the new current component.

The parameter v may be a component of a packed structure.

i {is a textiile, an implcit data conversion may precede the read operation (see below)

The cail
read{fv1,..vn);

is equivalent 10

read{frvl);
read(fr,va).

read{irvn);

wher_é fr is the reference established o file variable parameter { at the
call to read{f.vl... vn).

€6-25 |

‘READ

Hlustration

Suppose examp_.file is a file of char opened in the read-only state. The current position is af the second
component. To read the value of this component into char__var, we call read:

linitial condition;

current position
|

|

1 r4 i p

read (examp__file,char__var)

current position

Implicit Data Conversion

state: read-only
gxamp...file~: | or undefined
eof (examp__file): false
char....var: old value, if any

state: read-only
examp_file» (deferred). p
gof (examp__file). falee
char,_..var; i

it 1 is a textfile, its components are type char. The parameter v, howsver, need not be type char. it may be
any simpie, string, or PAC type. The read procedure performs an implicit conversion from the ASCH! form
which appears in the textfile f to the actual form stored in the variabie v.

If v is type real, longreal, integer, or an integer subrange, the read operation searches f for a sequence of
characters which satisfies the syntax for these types. The search skips preceding blanks or end-of-line
markers. If v is fongreal, the result is independent of the letter preceding the scale factor,

6-26

Keven
Rectangle

READ

An error occurs if the read operation finds no non-blank characters or a faulty sequence of characters, or if
an integer value is outside the range of v. After read, a subseqguent reference to the buffer variable 2 will
actually ioad the buffer with the character immediately following the number read. The programmer should
aiso note that eof will be false if a file has more blanks or line markers, even though it contains no more
numeric values. :

if v is a variable of type string or PAC, then read{1,v) will fill v with characters from f. When vis type PAC
and eoin(f) becomes rue before v is filled, the operation puts blanks in the rest of v. If v ig type string
and ecin(f) becomes true before v is filled 1o its maximurn length, no blank padding occurs. Strfen(v)
then returns the actual number of characters in v. The programmer may wish to use this fact to
determine the actual length of a line in a textfile.

i v is a variable of an enumerated type, read (f,v} searches f for a sequence of characters satistying the
syntax of a Pascal/3000 identifisr. The search skips preceding blanks and line markers. Then the
operation compares the identifier from f with the identifiers which are values of the type of v, ignoring upper
and lower case distinctions. Finally, it assigns an appropriate vaiue 1o v. An error occurs if the search finds
no non-blank characters, if the string from 1 is not a valid Pascal/ 3000 identifier, or if the identifier doesn’t
match one of the identifiers of the type of v

Table 8-2 shows the results of calls 10 read with various seguences of characters for different types of v.

i vis a variabie of type string or PAC, then read(f v} will fill v with characters from {. When vis type PAC
and eoin{f) hecomes true before v is filied, the operation puts blanks in the rest of v. {f v is type string
and eoln{f) becomes true belfore v is filled to its maximum length, no blank padding ocours. Sirfen(v)
then retums the actual number of characters in v, The programmer may wish to use this fact to
determine the actual length of a line in a textiile.

If v is a variable of type string or PAC, and eoin is true when read is called, a string of length O i
returned or the PAC is blankfilled. The user must use readin to advance beyond the curent line when v
is of type string. '

READ

Table 8-2. IMPLICIT DATA CONVERSION

Sequence of characters in § Type of Result stored

following current position v inv

{space) (space} 1.850 real 1.850

{space) {end-of-line) (space) 1.850L longreai 1.850

10000 {space) 10 integer 10000

8135 (end-of-line) integer 81358

54 (end-of-line) 36 integer 54

1.583E7 real 1.583x 107

1.583L+7 longreal 1.583x107

(space) Pascal/ 3000 string (5] ' Pasce’

_ (space) Pas {end-ot-line) cal/ 3000 string {8} ' Pag’

{space} Pas (end-of-ling) cal/ 3000 PAC {length 9} ' Pag
PAC {iength 9}

{end-of-line) Pascal/ 3000 string[®1 | Teeeeesee
enumerated

{space) Monday (space) enumerated Monday

B-28

READDIR

Usage

readdir (1,k,v)
readdir (f,k,v1,....yn)

Parameters |
f The name of a logical file which is not a textfile.

k The index of a component in f.

v The name of a variable. The componsents of f must be assignment compatible with v. Any number
of v parameters may appear separated by commas.

Description

The procedure readdir (1,k,v) places the current position at component k and then reads the value of that
component into v. Formally, this is equivalent to

seek(fK); _
read(ir.v), read v from the file reference established by the seek.

The call get (f} is not required between seek and read because of the definition of read {see Appendix |).

The programmer may use the procedure readdir only with files opened for direct access. Thus, a textfiie
cannot appear as & parameter for readdir

READDIR

fHustration

Suppose examp__file is a file of infeger with four components opened in the read-write state. The current
position is the first component. To read the third component inio int__var, we call readdir. After readdir
executes, the current position is the fourth component.

iinitial condition
¢urrent position

|

l state: read-write

9 1 40 10 examp.._file ~1 undefined
eof (examp__file): false
int..var: ¢ig vaiue

readdir (examp....file,3,int—var);

current position

state: read-write
S ! 40 10 § examp.___file ~ (deferred): 10
eof (examp... file): false
int__var: 40 '

6-30

Keven
Rectangle

'READLN

Usage

readin {f)

readin (f,v}
readin{f,vt,...,vn)
readin {(v)

readin {vi,...vn}
readin

Parameters
f The name of a logical textfile. If f is omitted, the system uses the standard file input.

v The name of a variable. The type of v may be any simple type, a string type, or a PAC. Any number
of variables may appear separated by commas.

Description

The procedure readin{f,v) reads a value from the textfile { into the variable v and then advances the
current position to the beginning of the next line, i.e. the first character after the next end-of-line marker.
The operation performs implicit data conversion if v is not type char (see discussion of read above).
The call readin (,v1,...,vn) is equivalent to |

read (fv1,....vn};

readin (f);

if the parameter v is omitted, readin sin'ipiy advances the current position to the beginning of the next line.

RESET

Usage

reset {f)
reset{f.s)
reset (f,s,1)

Parameters

f The name of a iogical file { may nol be omitted.

s The name of an MPE physical file which the system will associate with {. s may be a string
expression or PAC variable.

1 Parameters specifying carriage control and file access. The possibilities are:

CCTL-specifies that textlile { has carriage control.
NOCCTL-gpecifies that textfile f has no carriage control
SHARED-gspecifies that { may be open to more than one process.

- EXCLUS-specifies that f may be open to only one process at a time.

~ t may be a string or PAC variable, or a string literal. Two parameters may appear separated by
comma. The compiler ignores leading and trailing blanks and considers upper and lower case
equivaient.

The default file access for ail files is EXCLUS; the default carriage control for text files is CCTL.

6-32

RESET

Description

The procedure reset (f) opens the file T in the read-only state and piaces the current position at the first
component, The contents of f, if any, are undisturbed. The programmer may then read from f sequentially.

If {is not empty, gof (f) i3 false and a subsequent reference to the buffer variable { A~ will actually load the
buffer with the first component. The components of f may now be read in sequence. If f is empty, however,
eof () is frue and t~ is undelined. A subsequent call to read produces an error.

if { is already open at the time reset is called, the system automatically closes and then reopens it. {f the
parameter s is specified, the system closes any physical file previously associated with f.

When the identifier for { appears as a program parameter and s is not specified in the call 1o reset, the
systemn uses an MPE file with a name made up of the first 8 characters of f‘s identifier. This MPE file is
associated with §. An error occurs if it doesn’t exist.

When f does not appear as a program parameter and s is not specified, the system maintains any previous

association of an MPE file with f, If there is no such association, it uses a temporary nameless MPE file
opened in the read-only state.

6-33

RESET

illustration

Suppose examp... fiie is a closed fiie of char with three components. Te read sequentially from examp__file, we call resetf:

linitial condition!

state; closed
a b C

reget {examp_.file);

gurren? position

a - b c examp_—_file ~ (deferred): a

i state: read-only
eof (examp_file): false

6-34

Keven
Rectangle

REWRITE

Usage

rewrite (f)
rewrite (1,8)
rewrite (f,5,1)

Parameters

f The name of a logical file. f may not be omitted.

s The name of an MPE physical file the system will agsociate with f. s may be a string expression or
PAC variabie,

i Parameters specifying carriage control and file access. These are:

CCTL-specifies that textfile { has carriage control.
NOCCTL-specifies that textfiie { has no carriage control.
SHARED-specifies that f may be open to more than one process.

EXCLUS-specifies that { may be open to only one process at a time.

t may be a string or PAC variable, or a string iiteral. Twe parameters may appear separated by
comma. The compiler ignores leading and trailing blanks and considers upper and lower case
equivalent.

The default file access for all files is EXCLUS; the default carriage control for textfiles is CCTL.

6-35

REWRITE

Description

The procedure rewrite (f) opens the file f in the write-only state and piaces the current position at the
beginning of the filg. The system discards any previously existing components of f. The function eof {f)
returns true and the buffer variable £~ is undefined. The programmer may now write on f sequentially.

it {is already open at the time rewrifs is called, the system closes it automatically and then reopensit. #sis
specified, the system closes any physical file previously associated with f.

When the identifier for f appears as a program parameter and s is not specified, the system uses an MPE
file with a name made up of the first 8 characters of I's identifier. This file Is associated with {. If an MPE file
with the default name doesn't exist, the system creates a temporary one. The programmer can save this
file using the procedure ciose with the SAVE parameter.

When f does not appear as a program parameter and s is not specified, the system maintains any previous
association of an MPE file with f. If there is no such association, it creates a temporary nameless MPE file
opened in the write-only state. The programmer cannot save this file. it becomes inaccessibie after the
process terminates or the physical-to-iogical file association changes.

lHustration

Suppose examp__file is a closed file of char with three components. To discard these components and
write sequentially to examp_. file, we call rewrite;

iinitial condition,

state: closed

6-38

REWRITE

rewrite (examp....filg);

current position

state: write-only
examp__file A : undefined
eof{examp..file) true

8-37

Keven
Rectangle

SEEK

Usage

seek (f k)

Parameters
f The name of a logical direct access file,

k The integer index of a componant of f. This may be an integer expression.

Description

The procedure seek (f,k) places the current position of f at component k. if k is greater than the index of
the highest-indexed component ever written 1o {, the function eof{f) returns true, otherwise false. The
buffer variable { ~ is undefined following the call 10 seek. An error occurs if {is not open in the read-write
siate.

{llustration

Suppose examp...file is a file of char with four components opsened for direct access. The current position
is the second component. To change it to the fourth component, we call seek,

linitial condition!

current position

siate: read-write
h e p examp-file ~ (deferred): e
eof (examp.__file). false

seek {examp._. file,4);

current position

state: read-write
h 8 ! P examp.._file ~: undefined
eof (examp...file): faise

6-38

Keven
Rectangle

WRITE

Usage

write ({,e)

write (,el,... en}
write (8)

write {el,...,en}

Parameters
f The name of a logical file. If { is omilted, the systermn uses the standard file output.
e Ufis not.a textfile, an expression whose result type is assignment compatible with the components
of f. If { is a textfile, e may be an expression whose result type is any simple or string type, a variable

of type string or PAC, or a string Hteral. Alsg, the programmer may format the value of e as it is
written to a textfile (see below), '

Description

The procedure write (f.e} assigns the value of e {0 the current component of f and then advances the
current position. After the call 10 write, the buffer variable A is undefined. An error occurs if fis not open
in the write-only or read-write state. An error also occurs if the current position of a direct access file is
greater than maxpos (f).

The call write(f,.e1,...en)
is equivalent to

write{ir,e1);
write(fr.e2).

write (fr,.en);

where {1 is the reference established to file variable parameter f at the
call to write(fel. . .en).

6-3¢

WRITE

{Hustration

Suppose examp...file is a file of infeger opened in the write-only state and that we have written one number
to it. To write another number, we call write again:

initial condition;

current position

_ state: wri!é-oniy
L ' examp..file ~: undefined
gof (examp__file): true

write {examp__file, 19);

current position

state: write-only
examp._.file ~: undefined
eof (examp...file) frue

Formatting of Output {o Textfiles

When 1 is a textfile, the result type of & need not be char. It may be any simple, string, or PAC type, or a
string literal. The programmer may format the value of e as it is written to f using the integer field-width
parameters m and, for real or longreal values, n. H m and n are omitted, the system uses default formatiing
values. Thus, three forms of e are possible in source code:

e \default formatting!
em lwhen eis any {ype!
exm:n \when e is real or longreal]

Table 6-3 shows the systern default values for m.

6-40 .

WRITE

Table 6-3. DEFAULT FIELD WIDTHS

TYPE of e ODEFAULT FIELD WIDTH (m)
char ' 1

integer 12

real 12

Jongreal 20

boolean length of identifier
enumerated length of identifier
string current length of string
FPAC iength of PAC

string literal - length of siring literal

If & is boofean or an enumerated type, the operation writes the vaiue of & on f in upper case.

When m is specified and the value of e requires iess than m characiers for its representation, the operation
writes e on { preceded by an appropriate number of blanks, if the vaiue of e is longer than m, it is written on
f without loss of significance, i.e. mis defeated, provided that e is a numeric type. Otherwise, the operation
writes only the leltmost m characters. M may be 0 if & is not a numeric type.

When ¢ is type real or fongreal, the programmer may specify n as well as m. In this case, the operation
writes e in fixed-point tormat with n digits after the decimal peint. i nis 0, the decimai point and
subsequent digits are omitted. If the programmer doesn’t specify n, the operation writes e in fioating-point
format consisting of a coefficient and a scaie factor. in no case is it possibie to write more signiticant digits
than the internal representation contains. This means write may change a fixed-point format to a floating-
point format in certain circumstances.

6-41

WRITE

Examples

PROGRAM show_formats {outfput);

VAR
x: real;
1r: longreal;
george: boolean;

list: (yes, no, maybe);

BEGIN
writeln(999);
writeln(G99:1);
writein{'abe’');
writeln('abe’:2);
x:= 10.999;
writeln(x);
writeln{x:2%};
writeln(x:25:5);
writeln(x:25:1);
writeln{x:25%:0);
ir:= 19,111%;
writeln{lr);
george:= true;
writein(george);
writeln(george:2);
list:= maybe;
write(list);

END.

The cutput of this program is:

899
Qg9
abc
ab
1.088900E+01
1.0989001E+01
10.99800
11.0
11
1.91110852431640625L 01
TRUE
™
MAYBE

{default formatting)
{format defeated}

{string literal truncated)

{default formatting}

{default format)

{default formatting)

6-42

Keven
Rectangle

 WRITEDIR

Usage

writedir (f,k.e)
writedir (f k.e1,... .en)

Parameters
f The name of a logical file opened for direct access.

kK Theinteger index of a component of f.

e An expression. lts result type must be assignment compatibie with the components of §.

Description

The procedure writedir {f k&) places the current position at the component of f specified by k and then
writes the vaiue of ¢ 1o that component. It is equivalent 1o

sesk(f k), :
write{fr.e), Write e on the file reference established by the seek.

An error occurs if f has not been opened in the read-write state or if k is greater than maxpos (1), After
writedir executss, the bufter variable f» is undefinsd and the current position is k+ 1.

6-43

'WRITEDIR

Hlustration

Suppose fite examp__ file Is a fite of integer opened for direct access. The current position is the third
component. To write a number to the first component, we cail wrifedir.

linitial conditiony

current position

state: read-write
10 19 1 examp...file~ (deferred): 1
eof (examp__file): false

writedir (examp __file, 1,4 -+ &)

current position.
, ' state: read-write

9 19 1 examp._fileA: undefined
eof (examp.. file) false

6.44

Keven
Rectangle

WRITELN

Usage

writein ()
writein {{,e)
writein {f,e1,...,en)

writein (e}
writein{e1,....en)
writein
Parameters

f The name of a logical iextfiie open in the write-only state, If f is omitted, the system uses the
standard file output.

e An expression with a simple, string, or PAC result type, or a string literal,

Description

The procedure writein {f,e) writes the value of the expression e to the textfile {, appends an end-of-line
marker, and places the current position immediately after this marker. After execution, the file buffer f» is
undefined and ecf () is true. The programmer may write the value of e with the formatting conventions
described for the procedure write (see above),

The call writein(f,e1,....en) is equivaient 1o

write{fr,e1);
write(fr.e2);

write{fr en),
write/n{fr};

where fr is the reference established 1o file variable parameter f at the
call 1o write/n(fr).

The call writein without the file or expression parameters effectively inserts an empty line in the standarg
file output. :

6-45

LOGICAL FILES

Any file declared in the declaration part of a Pascal/ 3000 block is a iegical file. Within a program, the
scope of a file name is the scope of any other Pascal/ 3000 identifier. The programmer, however, may
associate the logical file with a physical MPE file that exists outside the program {(see below). Then
operations performed on the logical file are performed on the physicai file.

A logical file consists of a sequence of companents of the same type. This type may be any type, except
the type file or a structured type with a file type component. Every logical file has a butfer variable and a
current position pointer.

The butfer variable is the same type as the type of the file’s components. it is denoted:

fa

where f is the designator of the logical file. The programmer may use the buffer variable to preview the
value of the current component.

The current position pointer is an integer index, starting from 1. It indicates the component that {he next
input or ouiput operation wilt reference. The function position returns the value of this index, exoepi in the
case of textfiles.

After certain file operations, such as write with direct access files, the buffer variable is undefined. The
programmer must call get before f~ will access the value of the current position. Afler other operations,
such as read, a subsequent reference to f~ wili successfully access the current componem, No get is
necessary {see Appendix ().

The programmer may assign the contents of fA to a declared variable of the appropriate type.
Alternatively, the value of an expression with an appropriate result type may be assigned to {4,

Textfiles are a special class of iogical files substructured into lines {see below). /nput and ouiput are
standard textfiies (see below).

8-46

Keven
Rectangle

LOGICAL FILES

The programmer must explicitly open any logical file before performing a file operation, except for input
and output when they appear as program parameters {se¢ below). The four file opening procedurss are
reset, rewrite, append, and open (see below). The manner of opening a logical file determines its 'state’.
For example, a file opened with append is in the write-only state. No input operation is possible.

The programmer may use the procedures read, write, get, and put, and the functions eof, and fnum with
any appropriately opened iogical file, regardiess of its type.

Example

FROGRAM show_logfile {input,output,bfile};
TYPE
boock_info = RECORD
tifle : PACKED ARRAY [1..50] OF char;
author : PACKED ARRAY {1..50] OF char;
number : 1..32000;
status : {on_shelf,checked out,lost,ordered)}
END; ’
VAR
old_book: book_info;
bfile : FILE OF book_info; {Declaring a logical file. }
posnum : integer;
BEGIN

reset{bfile}; {Opening logical file which is associated }
. ' {by default with MPE file named 'BFILE'.)}

old_bocok:= bfile”; {Assigning buffer variable to)}
: {declared variable.)
posnum:= position(bfile); {Using index of current }
{component.
END.

6-47

TEXTFILES

Textfiles are a special class of logical files which are substructured into lines by end-of-line markers. The
programmer may declare textfiles with the standard identifier text (see Section 3). The components of a
texttile are type char.

if the current position in a textfile advances to a line marker {i.e. beyond the last character of a line), the
function eoin returns true and the buffer variable is assigned a blank. When the current pesition advances
once more, a reference to the buifer variabie will access the first character of the next line and eoln returns
_ falsg, unless the next line has no characters. An end-of-line marker is not an element of type char. Oniy the
procedure writeln places it in a textfile. A iine marker always precedes an eof condition, whether the
programmer terminated the iast line with writefn or not.

The procedures readin, writeln, page, prompt, and overprint, and the functions eoln and /inepos are
available exclusively for textfiles.

Reading from & textfile may entail implicit data conversion. In certain cases, the operation searches the
textfile for a sequence of characters which satisfies the syntax for a string, PAC, or simple type other than
char,

Writing to a textfile may entail formatting of the output value. The programmer can specify a field-width
parameter or aliow the system {0 use various default field-width vaiues.

The programmer cannoct open textfiles for direct access. Their format is incompatible with certain direct
access operations.

The systemn defines two standard textfiles, input and oufput {see below).

Keven
Rectangle

STANDARD FILES INPUT AND OUTPUT

The standard textfiles input and ouiput often appear as program parameters, When they do, there are
several important consequences:

{1} The programmer may not declare input and cutput in the source code.
{2} The system automatically resets input and rewrites outpul,

{3) The system automatically associates input and oufput with the MPE files $STDIN and $STDLIST.
These files usually represent the terminal. Thus, input will read from the terminal and output will
write 10 it. At the terminal, a colon {:} in the left-most column indicates end-of-file. The
programmer may change these default associations with a file equation.

{4) if certain file operations omit the logical file name parameter, input or output is the defauit file. For
example, the call read (x), where x is some variable, reads a value from inputinto x. Or consider:

PROGRAM sample {output);
BEGIN

writein('I like Pascall'};
END.

The program displays the string literal on the terminal screen. Oufput must appear as a program
paramster; input need not appear, however, since the program doesn’t use it.

6-49

OPENING AND CLOSING FILES

A program must open a logical file before any mnput, output, or other file operation is legal. Four file
opening procedures are available: resef, rewrite, append, or open. When they appear as program
parameters, the standard textfiles /nput and oufput are exceptions to this rule. The system automatically
resets input and rewrites oulput.

The procedure reset opens a file in the read-only state without disturbing its contents. Alter reset, the
current position is the first component and the program can read data sequentially from the file. No output
operation is possibie.

The procedure rewrite opens a file in the write-only state and discards any previous contents. After rewrite,
the current position is the beginning of the file. The program can then write data sequentially to the file. No
input operation is possible.

The procedure appendis identical to the procedure rewrite except that the current position is placed after
the iast component and the file contents are undisturbad. The program can then append data 1o the file,

The procedure open opens a file in the read-write state. The contents of the file, if any, are undisturbed and
the current position is the beginning of the file. The program may then read or write data.

A file opened in the read-write state is a direct access file. Using the procedure seek, the programmer can
place the current position anywhere in the file. Furthermore, direct access files permit calls to the standard
procedures readdir or writedir, which are combinations of seek and the procedures read or wrife. Direct
access files have & maximum number of componenis. The function maxpos returns this number.

in contrast, files opened in the read-only or write-only states are sequential files; the current position only
advances one component at a time and the maximum number of components cannot be determined by a
Pascal function.

g-50

Keven
Rectangle

OPENING AND CLOSING FILES

The procedurs cfose explicitly closes any logical file and its associated physicai file. The programmer need
not use this procedure, however, before opening a file in & new state. For example, suppose fite fis in the
write-only state and the program calls reset (). The system first closes f and its associated physical file and
then reopens { in the read-only state. This is default closing.

The system also closes a file not on the heap by default when the program exits from the scepe in which
the file was declared. it closes a heap file by default when the procedure dispose uses the pointer 10 the file
as a parameter, when the procedure refease specifies the heap region in which the file variabie is allocated,
or whean the program terminates.

When using close, the programmer may specify the disposition of a file. When the system closes a file, on
the other hand, the disposition is the same as the disposition of the file when it was opened.

6-51

PHYSICAL FILES

The MPE operating system controls physical files which exist independently of a Pascal/ 3000 program.
These files may be permanent files on disc or other media, or interactive files created at a terminal.

The programmer may associate a particular MPE file with a logical file declared in & Pascal/ 3000 program.
The type of the logical file determines the characteristics of the MPE file. For example, the system
associates a logical file of integer with an MPE file which is a fixed length binary file with 2 word records.

File output operations create a MPE file with these characteristics; input cperations require a file with these
. characteristics.

Except for textfiles, all MPE files associated with Pascai logica files are fixed length binary files. The
systemn associates textfiles with variable length ASCII files with carriage control. The record iength of non-
textfiles depends on the type of the component; files of integer have 2 word records; files of char 1 word
records; files of fongreal 4 word records; etc. In contrast, the maximum record length of a textiile is one line
of 254 bytes. -

6-52

Keven
Rectangle

ASSOCIATING LOGICAL
AND PHYSICAL FILES

A program doesn't affect the outside world uniess its iogical files are associated with physical files at run
time. Then file operations work concurrently on iogical and physical files,

in Pascal/3000, there are several ways this physical-to-logical file association can occur:
{1} The name of a logical file appears as a program parafneter.
{2) The second parameter of one of the file-opening procedures specifies a physical file.

(3} The INFO parameter of the RUN command passes names of physical files 10 the program, and
these names then appear as the sacond parameters of fiie-opening procedures.

{4} An MPE file equation specifies & physical-to-logical file association,
We consider each case in detail.

{1) Alogical tile name may appear as a program parameter, When this name is the first parameter for one
of the flie-opening procedures and there is no second parameter, the system uses a defauli physical file
name consisting of the first 8 characters of the logical file name. This name must be an acceptable MPE
filename, e.g. it cannot contain the underscore () character. For example, consider this source code:

PROGRAM case_one (input,output,filel);

VAR
filel: FILE OF integer;

BEGIN
reurite{filel);

END.

The system associates an MPE file FILE 1 with the logical file. If none exists, it creates a temporary file with
this default name.

ASSOCIATING LOGICAL AND PHYSICAL FILES

The standard files inpuf and output are exceptions to this scheme. When they appear as program
parameters, the system automatically associates thern with the MPE files $STDIN and $STDLIST.

if the name of the logical file doesn’t appear in the program parameter list and if a file-opening procedure
doesn't have a second parameter, the system associates a temporary nameless MPE file with the logical
file, provided there is no previously physical-to-iogical file association. The programmer cannot save this

file. After the process terminates or after the physical-to-logical file association changes, it is inaccessible.

(2) The second parameter of a file-opening procedure specifies a physical fie to be associated with the
logical file. For example: ‘

PROGRAM case two (input,output);
VAR |
filel : FILE OF integer;

+

BEGIN
reurite(filel, 'numfile');

»

END.
The logical fiie filet is associated with the MPE physical file NUMFILE.

This association holds, even if the name of the logical file appears as a program parameter. For example:
PROGRAM case three (inpuf,output,filel);
VAR
filel : FILE OF integenr;

BEGIN .
rewrite(filel, 'numfile’);

END.

6-54

Keven
Rectangle

ASSOCIATING LOGICAL AND PHYSICAL FILES

The system stilt associates the MPE file NUMFILE, not FILE1, with filet,

The second parameter of a file-opening procedure may be a string or PAC variable, It need not be a sirmg
fiteral.

{3) The INFO parameter of the RUN command ¢an pass & string literal of up to 255 characters to a Pascal
variable. This variable may then appear as the string parameter of a file-opening procedure. The variable
must be a program parameter, It is declared as & siring or PAC type in the usual manner. For example:

:RUN PRG4; INFO="intfile” IMPE command. PRG4 is prcvgramf
‘fute for case four source. I

PROGRAM case four (input,output,fname);
VAR

fname : string[l15];
filel : FILE OF integer;

EEGIN
rewrite{filel, fname);

END.
The system associates the MPE file INTFILE with the iogical file file1.

The programmer may list the names of several physical files in the INFO parameter. In source code, the
programmer can extract the individual file names using indexing for a PAC variable or the standard
function str tor a string variable.

6-56

ASSOCIATING LOGICAL AND PHYSICAL FILES

{4) Finally, an MPE FILE command may associate a logical file and a physical file, or change a physical-to-
logical fite association. The FILE command's "formaldesignator’ may be the name of a logical file and the
filereference’ the name of the physical file (see MPE Commands Reference Manual). In this case, the
togical file must appear as a program parameter. For example:

:FILE fifel =numfile
RUN PRGE {PRGS is case...five.]

PROCRAM case five (input,output,filel);
VAR
filel : FILE OF integer;

BEGIN
reurite{filel);

END:
The MPE file NUMFILE is associated with the logical file filet.

Alternatively, the "formaldesignator’ may be the name of a physicai file specified by the string parameter of
a file opening procedure. Suppose:

FILE intfle=numfile)
:RUN PRGE - |PRGE is case_six.|

- PROGRAM case_six (input,output);
VAR
filel : FILE OF integer;

BEGIN
revrite{filel, 'intfile'};

END.

The system associates NUMFILE, not INTFILE, with filel.

6-56

Keven
Rectangle

1/0 CONSIDERATIONS

The procedures read and write perform the fundamental input and output operatioﬁs. Read (f,x} copies
the contents of the current component into X and advances the current position. Write {f,x) copies x into
the current component and advances the current position.

The original Pascal standard describes read and write in terms of the buffer variable f~ and the
procedures gel and put. The procedure puf writes the contents of the buffer variable to the current
component and then advances the position. Write (f,x) is thus equivalent to

fai=x;
put (f);

Read (f,x} is equivalent to

X=fas

get{f),

In the Jensen and Wirth Pascal Report, the procedure get copies the current component 1o the buffer
variable and advances the position.

These delinitions of gef and read, however, have certain unfortunate consequences when {/0 operations
occur with interactive devices such as terminals, which were not available at the time Pascal was designed.
In particular, at the initiation of a program or toliowing a call to readin, the system reads the next line
pefore the user can write a prompt.

HP Standard Pascal addresses this issue by defining a "deferred’ get which postpones the actual loading

of a component into the buffer variable. Appendix | offers a formal description of deferred get and other
HP Standard Pascal I/0 operations. The programmer should keep these practical implications in mind:

6-57

I/0 CONSIDERATIONS

(1)

(2}

(3)

{4)

(5}

)

(8)

Suppose read (f,x) has just placed the value of component nin x. Then a reference to I~ copies
the value of component n-+ 1 into the buffer variable. 1t isn't necessary 1o call get sxplicitly. iIf getis
called, however, a reference {0 fA copies the value of component n++ 2 into the buffer. Component
n+1 is skipped. -

The buffer variable is undefined after calls to put, writs, seek, writedir, writeln, open, rewrits, and
append. Before inspecting the current component, the programmer must call get explicitly.

1t is best not to use the buffer variabie with direct access files. After read, for exampie, a reference
tof~ piaces the next component in the buffer even if A appears on the left side of an assignment
statement. '

When reading a file sequentially, there may come a time when no component is available for
assignment o x. Galling read in this case will cause a run-time error. The programmer shouid use
gof 10 determine if another component exists. On some files, notably terminals, this may require
that a device read be performed to request another component. The component is held in the
files's buffer variable and will be produced as the next result of a call to read

It f iz a direct access file, ecf(f) is distinct from maxpoes (). In particular eof is determined by the
highest-indexed component ever written 10 {. Maxpos, on the other hand, is a limit on the size of
the associated physical file. An error ocours if a progam attempis to read a component beyond the
current eof. 1t is always possible, however, 10 write 10 & component with an index no greater than
maxpos (f). This will create a new eof condition if the index of the component written is greater than
the index of any previously written component. It is never possible to write beyond maxpos (f).

When writing to a direct access file, the programmer may skip certain components, If the file is
iater read sequentially, these components will have unpredictable values.

in a direct access file, the system doesn’t allocate components preceding n untii nis written. if n is
very large and preceded by many unused components, this aliocation may take a significant
amount of time. The programmer should write {o lower-indexed components in preference to
higher-indexed components.

Under the MPEI operating system, a call append (f) when f has variable length records may force
a system read of the entire file. Under MPEIV, & similar problem may arise when f is a nameless file
with variable length records.

6-58

STANDARD PROCEDURES
AND FUNCTIONS Vil

ARITHMETIC FUNCTIONS

The eight standard arithmetic functions are abs, arctan, cos, exp, In, sin, sqr, and sqri.

The type of the value returned depends on the type of the argument, The functions abs and sgr return
integer values if integer arguments are used. The other arithmetic functions return real values if passed
integer arguments. All functions return a real or longreal vaiue when passed a real or jongreal argument.

ABS

Usage

abs (%}

Argument

x A numeric expression.

Description | |

The function abs {x} computes the absolute value of the numeric expression x. If x is an integer vaiue, the
result will also be an integer. Taking the absolute vaiue of minini causes a warning message at compiie time
and an integer overfiow at run time.

Exampies
- Call _ Return
abs(-13) 13 {integer result}
abs(-7.11) 7.110000E+00.

ARCTAN

Usage

aretan (x)

Argument
X A numeric expression,

| Description

The function arctan (x) computes the arctangent of x. The result is in radians within the range -pi/2..pi/ 2.

Examples
Cali Return
arctan(2) 1.107T14GE+00
arctan{-4.002) -1.325G64E+00

COSs

Usage

£0s ()

Argument
X A numeric expression.

Deséription

The function ¢os (x} computes the cosine of x, where x is interpreted to be in radians.

Exampie

Call Return

cos(1.62) -4.91836E+00

7-3

EXP

Usage
exp {x)

Argument

x A numeric expression. integer expressions must be in the range ~176.. 176; real expressions
-176.7525.. 176.7525, longreal expressions ~176.75253104.. 176.75253104.

Description

The function exp (x) computes e to the power of x, where e is the base of the natural logarithm. If x is less
than the lower bound of its permissible subrange, an underflow occurs and the value 0 is returned without
an error message. |f x is greater than the upper bound, a run-time error ogcurs.

Examples
Call Returmn
exp(3) . 2.008554E+01
exp{8.8E-3) 1.008839E+0¢

7-4

Keven
Rectangle

LN

Usage

In (x}

Argument

X Any positive numeric expression, excluding 0.

Description

The function in (x} computes the natural logarithm of x. i x is O or iess than 0, a run-time error ocours,

Examples
Cell Feturn
In(k3) %. 761 200E+00
In{2.121) 7.51887LE-01
In(0) {error}

7-5

SIN

Usage
sin {x}

Argument

X A numeric expression.

Description

The function sin (x} computes the sine of x, where x is interpreted to be in radians. X can be any numeric
vaiue. i

Example

Call Return

sin{0.02k) 2.3997T0E-02.

7-6

SQR

Usage
5qr (x}
Argument
X Any numaric expression.

Description

The function sgr (x} computes the vaiue of X squared. If x is an integer value, the result is also an integer. if
the value to be returned is greater than the maxirmum value for a particular type, & run-time error ocours.

Examples
Calt Return
sqr(3) 9
sqr(1.198E3) 1.43520LE+06.
sqr{maxint) {error}

77

SQRT

Usage

sgri (%)

Argument

x Any positive numeric expression.

Description

The function gqri (x) computes the square root of x. i x is iess than 0, a run-time error occurs.

Examples
Calt Return
sqrt(64) 8.000000E+00
sqrt{13.5E12) 3.674235E+06
sqri{0) 9. 000000E+00
sqret{-5) {error)

PREDICATE FUNCTIONS

The three predicate functions eof, eofn, and odd return boolean values. Section 6 describes eof and eoln.

OoDD

Usage

0dd (x)

Argument

X Any integer expression.

Description

The function odd (x) returns frug if x is odd, and faise otherwise.

Examples

Cail

odd{2 + k)
odd{-32767)
odd{32768)
odd{D)

Heturn

false
true
faise
false

TRANSFER FUNCTIONS

The two transfer functions are trunc and round.

TRUNC

Usage
- trunc ()

Argument

X Any real or longreal expression.

Description

The function trunc {x) returns an integer result which is the integral part of x. The absoiute value of the
result is not greater than the absolute value of x An integer overtiow occurs if the result is not in the range
minint.. maxint. '

Examples
Cali Return
trunc{5.61) 5
trunc{-3.38) =3
trunc(18.999) 18

7-10

Keven
Rectangle

ROUND

Usage
round {x}

Argument

x Any real or iongreal expression.

Description

The function round {x} returns the integer value of X rounded to the nearest integer. If x is positive or zero,
then round (x) is equivalent to trunc (x <+ 0.5) otherwise, round (x) is equivalent to trunc (x - 0.5). An
integer overtlow occurs it the result is not in the range minint..maxint.

Examples
Call Return
round(3.1) 3
round(-6.4) -6
rownd(-4.8) -5
rmmd(_l.s) _ 2

7-11

ORDINAL FUNCTIONS

The ordinal functions are chr, ord, pred, and suce.

CHR

Usage
c:hr (x}

Argument

X Aninteger expression in the range C..255.

Description

The function chr {x} returns the character value, if any, whose ordinal number is equal to the vaiue ot x, An
error oceurs if x is not within the range 0..255,

Examples
Call Return
chr{63) - ‘e
chr{82) ‘R’
chr{13) {carriage return)

- 7-12

Keven
Rectangle

ORD

Usage

ord (x)

Argument

x Any ordinal expression.

Description

The function ord (x) returng the integer representing the ordinal associated with the value of x, i x is an
integer, x itself is returned. If x is type char, the resull is an integer value between 0 and 255 determined by .
the ASCII order sequence. [f X is any other ordinal type (i.e., a predefined or user-defined enumerated
iype), then the resulit is the ordinal number determined by mapping the values of the type onto consecutive
non-negative integers starting at zero, For example, since the standard type boolean is predefined as:

TYPE boolean = (false,true)
the call ord{false) returns 0, and the call ord (frue) returns 1.
For any character ¢h, the following is true:

chr (ord (ch)) =ch

Examples
Call Return
ord('a'} 97
ord("A") 65
ord(-1} ~1 _
ord(yellow) 2 {TYPE coler={red,blue,yellow}}
ord(red) 0

7-13

PRED

Usage

pred (x)

Argument

X Any ordinal expression.

Descri ption

The function pred {x) returns the value, if any, whose ordinal number is one less than the ordinal number of
. The type of the result is identical with the type of x. A run-time error occurs if pred (x) does not exist, For

example, suppose:

TYPE day = (monday, tuesday,wednesday)

Then,
pred (tuesday) = monday

but pred (monday) is undefined.

Examples

Call

pred(l)
pred(-5)
pred('B')

pred(true)

Return

-6
lal
false

7-14

Keven
Rectangle

SUCC

Usage

suce (x)

Argument

x Any cordinal expression.

Description

The function succ (x} returns the value, if any, whose ordinal number is one greater than the ordinal
number of x. The type of the result is identical with {he type of x. A run-time error occurs n‘ succ {x) does
not exist. For example, suppose:

TYPE color = {red, biue, yeliow)
Then,

suce {red) == blue

but suce (yeliow) is undefined.

Examples
Call Return
suce (1) ' 2
suce(~5%) -4
suce{'a’) b
suce{false) true
suce{true) {error}

7-16

NUMERIC CONVERSION FUNCTIONS

The three numeric conversion functions are binary, hex, and octal. All three accept arguments which are
string or PAC variables, or string literais. The compiler ignores leading and trailing blanks in the argument.
Al other characters must be iegal digits in the indicated base.

Since binary, hex, and octal return an integer value, which is represented as a 32 bit quantity on the
HP3000, the programmer must specity all 32 bits if a negative result is desired, Alternatively, the
programmer may negate the positive representation.

BINARY

Usage

binary (s)

Argument

s Any string or PAC variabie, or a string literal.

Description

The function binary (s} converts s to an integer. S is interpreted as a binary vaiue.

Examples
Call Return
binary('10011°) 19
~binary(10011°) =19

binary('11111111131311111111111111101101°) ~-19

7-16

Keven
Rectangle

Usage

hex (g)

Argument

s Any string or PAC variable, or a string literal.

Description

The function hex {s) converts s to an integer. S is interpreted as a hexadecimal value.

Examples
Call Return
hex:('FF'}) . 255
hex{ FFFFFFO1"‘) -25%

7-17

HEX

OCTAL

Usage

octal (s)

Argument

s Any string or PAC variable, or & string literal.

Description

The function octal (s) converts s to an integer. S is interpreted as an octal value.

Examples

Call Return

petal ('TT") 63
cetal (*3TTTTTITIT0L) -63

7-18

STRING OPERATIONS

Pascal/3000 supports a number of standard functions and procedures which manipulate string
expressions, variables, and literals. The standard string functions include str, strfen, stritrim, strmax,
strpos, strrpt, and stretrim. The string procedures are seistrien, strappend, strdelete, strinsert, strmove,
strread, strwrite.

A string expression may consist of a string literal, a string variable, a string constant, a function resuit
which is a string, or an expression formed with the concatenation operator.

Note: Strings must be initialized by the user just like any other variable. The strings functions and
procedures assume that its string parameters contain valicd information.

SETSTRLEN

Usage

setsirlen (8,8}

Parameters
s A string variable,

e Aninteger expression. The value of e cannot be greater than the maximum length of s.

Description

The procedure seistrien (5,8) sets the current length of s to e without modifying the contents of s.
if the new length of s is greater than the previous length of s, the extra components wili be undefined. No

blank filling occurs. If the new length of s is jess than the previous length of s, previously defined
components beyond the new tength will no longer be accessible.

7-18

SETSTRLEN

Examples
VAR
alpha: string{80];
BEGIN
aipha:= "abedef’ ;- {strlen{alpha) = &)
setstrien(alpha,2*stnlen{alpha)); {Doubles current length }
) {of alpha. Alpha([7] }
{through alpha{iz] not }
{defined. }
setstrlen(alpha,2) {Alpha[3] through }
. {alpha[80] unavailable. }

END.

7-20

STR

Usage

sir{s,b,e)

Arguments
s A string expression.
b Aninteger expression indicating the index of the starting character.

e Aninteger expression indicating the length of the substring.

Description

The function str (s,b,e) returns the portion of s which starts at 8 [b] and is of length e. The result is type
string and may be used as a string expression.

An error occurs if the strfen(s) is less than the sum of b and e minus 1, or b.

Example

VAR :
i: integer;

wish_list: string{132];
granted: stringls];

BEGIN
ir= 133
wish list:= ‘wishl wish2 wish3 wishl wish5';
granted:= str(wish list,i,5); {Selects the 3rd wish.}
{Granted is 'wish3i'.)}
END.

7-21

STRAPPEND

Usage

strappend (1,82}

Parameters
81 A string variabie.

82 A string expression.

Description

The procedure strappend{s1,s2) appends string s2 to s1. The call passes s1 as an actual variable
parameter to the procedure. Strien{s2) must be less than or egual 10 strmax(st) -strien(s1). That is, it
cannot exceed the number of characters left to fill in s1. The current length of s1 is updated to strien(s1)
+ sirlen{s?2). '

Example

VAR
message: String{i32]
BEGIN

L]

message:= 'Now hear ';
strappend(message, ‘this!');

END.

7-22

Keven
Rectangle

STRDELETE

Usage

strdelete (s,p.n)

Parameters

s A string variable.

p Aninteger expression representing the starting index of the deletion.
n Aninieger expression representing the number of characters to be deleted,
Description

The procedure strdelete{s,p.n) deletes n characters from s starting at component s{p], and the current
length of s is updated to current tength of s-n,

Example
VAR
upcensored, censored: string[80];
BEGIN
uncensored:= 'Attack at 6 a.m.!’;

strdelete{uncensored,7,strien{uncensored)-T7};
censored:= uncensored; {Censored iz 'Attack!'.)}

-

END.

7-23

STRINSERT

Usage

stringert{&1,82,n)

Parameters
s1 A string expression,
s2 A string variable.

n Aninteger or an integer expression representing the offset in s2 where insertion will begin.

Description

The procedure strinsert{s1,82,n) inserts string s1 inte 82 starting at s2[n]. The resulting string may not
exceed strmax(s2). The current length of s1 is updated to strien(s1) + strien{s2).

Examples
VAR :
remark: etring[80];
BEGIN
r:emark:= 'There is' missing!';

stringert (' something - ,Temark,9);

END,

7-24

STRLEN

Usage

sirlen {s)

Argument

8 A string expression.

Description

The function strfen (s) returns the current length of the string expression s.

~ H s is not initialized, strier{s} is undefined.

Example

VAR '

ars, vita: string[13z2];
b: boolean;

BEGIN

IF strlen{ars) > strlen{vita) THEN
b= true

ELSE
hali;

END.

STRLTRIM

Usage

stritrim (s)

Argument

$ A string expression.

Description

The function strftrim (s) returns a string consisting of s trimmed of all leading blanks. The function strrtrim
trims trailing blanks (see below).

Example

VAR
s: string[80];
BEGIN

si= ! abe';
s:=gtritrim(s); {s is now ‘abc'}
. {strien(s)=3}

END,

7-26

Keven
Rectangle

Usage

strmax (s)

Argument

s A string variable.

Description

The function sfrmax (s} returns the maximum length of s.

Example

VAR
s: string[l32];
BEGIN

IF gtrlen(s) = strmax(s) THEN
BEGIN

§:

Y

END;

strltrim(s);
strotrim(s);

END.

7-27

STRMAX

STRMOVE

Usage

strmove (n,51,p1,82,02)

Parameters
n Aninteger expression indicating the number of characters to be copied.
s1 A string expression or PAC variable.
pt Aninteger expression indicating the offset in s1 from which copying will start.

s2 A string or PAC variable.

p2 Aninteger expression indicating the offset in 2 where copying will start.

Description

The procedure strrmove(n,s1,p1,82,p2) copies n characters from s1, starting at s1{p1}, to s2, starting at
s2[p2]. String length is updated, if needed, to p2 + (n-1} if P2 + (-1} > strfen{s2).

1f p2 equals strien{s2) + 1, strrmove is equivalent to appending a subset of s1 to s2.

The prograrmmer may use strrmove 10 convert PAC's to strings and vice versa, it is also an efficient way
ot manipulating subsets of PAC's.

Note: You should not strmove into an uninitialized variable regardless of its type.

Example

VAR
pac: PACKED ARRAY[1..15] OF char;
s: siring{80];
BEGIN

pac:z 'Hewlett-Packard';
strmove(l5,pac,L,s,1); {Converte a PAC to a string.}

END.

7-28

Keven
Rectangle

STRPOS

Usage

strpos (s1,52)

Arguments
81 A string expression.

52 A string expression.

Description

The function sirpes (81,52} returns the integer index of the position of the first occurrence of s2 ins1. If s2
is not found, zero is returned.

Example

CONST

separator = ' '3
VAR

i: integer;

names: string{80];
BEGIN

names:= 'Jon Jill Ruth Marnie Bob Joan Wendy':
it= strpos {names,separator);
IF i <> 0 THEN '
strdelete{names,1,i); {deletes first name)

END

7-29

STRREAD

Usage

strrread (3,p,4,v)
strread (s,ptvi,...,vn)

Parameters
s A string expression.
P Aninteger axpression;
t Aninteger or integer subrange variable.

v Asimple, string, or PAC variable. Any number of v parameters may appear separated by commas.

Description

The procedure strread (5,0.1,v) reads a value from s, starting at 8 [p], ino ihe variabie v. After the
operation, the value of the variable appearing as the t parameter wiill be the index of s immediately after the
index of the last component read into v
S is treated as a single-line textfile. Strread ($,p,1,V} is analogous 1o read (f,v) when tis a textfile of one line
{see Section 6). Like read, strread implicitly converts a sequence of characters from s into the types
integer, real, iongreal, boolean, enumerated, PAC, or string (see Section 6).
An error oceurs if sirread attempts to read beyond the current length of s.
The call

strread {(s,p,4Lv1,...vn);
is equivaient to

strread (s,p.t,v1y;

strread (s,1,1,v2);

strread (s,1,1,vn);

7-30

Keven
Rectangle

STRREAD

Example

VAR
s: string[80];
p,b: 1..80;
m,n: integer;
BEGIN

si= ' 12 564 '

H

pi= 1 :
strread(s,p,t.m); {The value of m will be 12; }
. {t will be 6. ¥
}
}

strread(s,t,t.n); {The value of n will be 584;

. {t will be 11.
END.

7-31

Keven
Rectangle

STRRPT

Usage

strrpt (s,n}

Arguments:
s A siring sxpression,

n Aninteger expression indicating the number of repetitions.

Description

The function strrpt (s,n) returns a string composed of s repeated n times.

‘Example
CONST
one = '1°;
VAR
®_num: string{32);
BEGIN

b_num:= strrpt{cne,strmax{b_num});
END.

7-32

Keven
Rectangle

Usage
strririrn (3)

Argument

s A string expression.

- Description

The function sirrtrim (s) returns a string consisting of s trimmed of trailing blanks. Leading blanks are
stripped by the function stritrim (see above), _

Example
VAR
s: string[80]
"""" BEGIN
s:= ‘abc -
si= Btrririm(s); {s is now 'abc’}
. {strien(s)=3}
END.

7-33

STRWRITE

Usage

strwrite (s,p,4,€}
strwrite (s,p.t,e1,...en)

Parameters
$ A string variable.
D Aninjeger expression.
i An integer or integer subrange variable.

g A simple or string expression, or a PAC varigble. Any number of & parameters may appear
separated by commas.

Description

The procedure strwrite (s,p.t,e) writes the vaiue of e on s starting at s [p] . After the operation, the value of

the variable appearing as the t paramster will be the index of the component of s immediately afier the last
component of s that strwrite has accessed.

5 is treated as a single-line textfile. Strwrite (s,p,1,8) is analogous to write {f,e) when f is a one-iing textfile
(see Section 6). As with write, strwrite also permits the programmer 1o format the value of & as it is written
1o s using the formatting conventions described in Section 6. The same default formatting vaiues hold for
strwrite {see Table 6-3). '

An error occurs if strwrite attempts 1o write beyond the maximum length of s, or if p is greater than
strlen{s) -+ 1. :

The call

sirwrite {(s,p.t,e1,...en);
is equivalent to

strwrite (s.p,1,01);

strwrite (s,1,1,82);

strwrite {s,1,1,en),

7-34

Keven
Rectangle

STRWRITE

Examples
VAR
s: string[80]

p.t: 1..80;
f,g: integer;

pi=l;
strurite(s,p,t,f:1); {S is now '100'; ¢t is L }

strurite(s,t,t," ',g:1): {§ isnow "100 99'; £ is 7. }

END.

7-35

HEAP PROCEDURES

Pascal/ 3000 distinguishes two classes of variables: static and dynamic.

The programmer explicitly declares a static variabie in the declaration part of a biock and may then refer
10 it by name in the body. The compiler allocates storage for this variable on the stack. The system does
not dealiocate this space until the process closes the scope of the variable.

Cn the other hand, the programmer does not deciare a dynamic variable and cannot refer to it by name.
Instead, a declared pointer referances this variabie (see Section 3). The system alliocates and deallocates
storage for a dynamic variable during program execution as a resuit of calls to the standard procedures
new and dispose. The area of memory reserved for dynamic variables is termed the heap'. On the
HP3000, this is the DL-DB area of the stack,

Pascal/3000 also supports the standard procedures mark and refeass, and the compiler options
HEAP_DISPOSE and HEAP__COMPACT. Mark records the state of the heap. A subsequent call to
relgase returns the heap 10 the state recorded by mark. Effectively, this disposes any variables allocated
since the call to mark. The compiler option HMEAP_DISPOSE permits the reallocation of storage space
dealiocated by disposs. The option HEAP._COMPACT aliows the concatenation of available free space in
the heap. Section 8 fully describes both compiler options.

When it prepares a program inte an executable program file, the MPE Segmenter aliocates a few thousand
extra words of stack space. if a program uses & large heap, this default extra space may not be sufficient
at run time. The programmer may reserve enough space by specifying vaiues for the DL or MAXDATA
parameters of the :PREP or :RUN commands,

The Pascal/3000 support library includes the procedures GETHEAP and RTNHEAP. These procedures
allocate and deallocate regions of the DL-DB area (see Appendix F). A subsystem such as VPLUS
uses these procedures when it is called from a Pascal program (see Appendix H).

Dynamic variables permit the creation of temporary buffer areas in memory. Furthermore, since a pointer

may be a component of a struciured dynamic variable, it is possible to write programs with dynamic data
structures such as linked lists or trees.

7-36

Keven
Rectangle

NEW

Usage

new {p)
new (p,t1,...1n)

Parameters
p Any pointer varigble.

1 A case constani. Nested variants may appear separated by commas.

Description

The procedure new (p} aliocates storage for a dynamic variable on the heap and assigns its address to the
pointer variable p. If insufficient heap space is available for the aliocation, a run-time error occurs,

If the dynamic variable 1s a record with variants, then the programmer may use t 10 specity a case
constant. This constani only determines the amount of storage allocated. The procedure call does not
actuaily assign it to the dynamic variable. For nested variants, the programmer must list the vaiues
contiguously and in the order of their declaration (see example below).

if the programmer calis new for a record with variants and doesn’t specify any case constants, the
compiler determines storage by the size of the fixed part plus the size of the iargest variant.

The programmer should avoid using an entire dynamic record variabie aliocated with one or more case
constants as an operand in an expression, an actual parameier, or on the ieft side of an assignment
statement. The variant may be smaller than the actual size at run {ime.

P may be a component of a packed structure,

Pointer dereferencing accesses the actual vaiues stored in a dynamic variable on the heap {see Section 4}

7-37

NEW

Examples

PROGRAM show new (owtput);
TYPE
marital status = {single, engaged, married, widowed, divorced);
year = 1900..2100;
ptr = “perseon_info;
person_info = RECORD .
: name: string(25];
birdate: year;
next_person: pir;
CASE gtatus: marital status OF
married..divorced: {when: year;
' CASE has kids: bPoolean OF
true: Thow;many: 1..50)
BN
engaged: (date: year),
VAR END,sxngle.(Y
P : ptr;
BEGIN {Various legal calls of new.}

new(p);
Qew(p,enggged)i
éew(p,marriad);
éew(p.widowed.false);

END,

7-38

Keven
Rectangle

DISPOSE

‘Usage

dispose (p}
dispose (p,t1,..,1n)

Parameters
D A pointer variable.

1 A case constant value,

Description

The procedure dispose (p) indicates that the storage allocated for the dynamic variable refsrenced by p is
no longer needed. The sysiem will not actually realiocate the space unless the compiler option
HEAP_ DISPOSE is ON. An error oceurs if p is NIL or undefined. After dispose, the system has closed any
. files in the disposed storage and p is undefined.

if the programmer specified case constant values when calling new, the identical constants must appear
as t parameters in the call to dispose. Otherwise, the system may deallocate an incorrect amount of
storage.

P must not reference a dynamic variable which is currently an actual variable parameter, an element of the
record variable list of a WITH statement, or both.

7-39

DISPOSE

Examples

PROGRAM show _dispose {output);
TYPE '
marital status = (single, engaged, married, widowed, divorced);
year = 1900..2100;
Pir = “person_info;
person_info = RECORD

name: string{25};

birdate: year;

next person: ptr;

CASE sgtatus: marital status OF

married..divorced; {when: year;

CASE has_kids: boolean OF
true: (how many:1..50};
false: ()

HF S

engaged: (date: year);

VAR END;single: (J;

P : ptr:
BEGIR

-

;ew(p);

*

&ispose(p);

new(p,engaged);

»

dispose{p,engaged);

éew(p,marriad,fhlse);

&ispose(p,married,fhlse);

ENDO

7-40

Keven
Rectangle

MARK

Usage

mark (p)

Parameter:

p A pointer variable.

Description

The procedure mark (D} marks the state of the heap and sets the value of p to specify that state. In other
words, mark saves the state of the heap in p, which the programmer must not subsequently aiter by
assignment,

The pointer variable appearing as the p parameter must be a dedicated variable. That is, it should not
currently point t0 a dynamic variable when it is used with mark.

Mark is used in conjunction with release.

Example:

See release example below.

7-41

RELEASE

Usage

release (p)

Parameter:

p A pointer variable which previously appeared as a parameter in a call 1o mark.

Description

The procedure refease (p) returns the heap to its state when mark was called with p as a parameter, This
has the effect of dealiocating any heap variables allocated since the program called mark (p). The system
can then reallocate the released space. The system automatically closes any files in the released area.

An error oceurs if the programmer never passed p as a parameter to mark, or if it was previously passed 1o
release explicitly or implicitly {see example below).

After release, p is undefined.

Examples

PROGRAM show_markrelease;

VAR

w,x,y: “integer;

BEGIN
mark (w) ;
release{w); (Returns heap to state marked by w. }
rirk (x) ;
mark(y};
;‘eZease(x); {Returns heap to state marked by x. The)

. {pointer y ne longer marks a heap state.)
END. {Releasely) is now an error. }

7-42

Keven
Rectangle

TRANSFER PROCEDURES

The transter procedures are pack and unpack.

PACK

Usage

pack {a.iz)

Parameters
a Any ARRAY Im.n] OF L.
i An expression which is type compatible with the index of a.
z Any PACKED ARRAY [u.v] OF L

Description

The procedure pack {a,i,z) assigns components of the unpacked array a, starting at component i, to each
component of the packed array z. The unpacked array must be as long as or longer than the packed array,
i.e. n-m > = v-u. The value of i must be greater than or equat to m, the lower bound of a. Since all the
components of z are assigned a value, the normalized value of i must be less than or or equal to the
difference between the lengths of a and z plus 1, ie. i-m-+1 <= (n-m) - {v-u) + 1. Otherwise, a range
arror occurs when pack attempls to access a non-existent commponent of 2 (see example below).

The component types of arrays a and z must be type identical. The index types of & and z, however, may
be incompatibie, '

The call pack {(a,i,z) s equivalent to:

BEGIN
K:= i3
FOR j:= u TQO v DO
BEGIN
z[jl:= alk]); -
IF j <> v THEN k:= suce(k);
END;
END;

7-43

PACK

“where k and j are variables that are type compatible with the index type of a and the index type of z,
raspectively.

Examples
PROGRAM show_pack (input,output);
TYPE
¢lothes = (hat, glove, shirt, tie, sock);
VAR

dis : ARRAY [1..10] CF clothes;
box : PACKED ARRAY {1..5] of clothes;
index: integer;

BEGIN
index:= 1;
pack(dis,index,box); {After pack executes, box contains 3
. : {the first 5 components of dis. }
index:= §;

pack{dis,index,box); {An error results when pack attempts }
. {to access non-existent 11lth component}
. {of dis.

END.

7-44

UNPACK

Usage

unpack {z,a,1)

Parameters
z Any PACKED ARRAY [u..v] OF 1.
~a Any ARRAY [m.n] OF 1.

i An expression that is type compatibie with the index of a.

Description

The procedure unpack (z,a,i} successively assigns the components of the packed array z, starting at
component u, to the components of the unpacked array a, starting at a {i} .

" All the components of z are assigned. Hence, z must be shorter than or aslongasa,ie. (v-u) <= (n-m}.
Also, the normalized value of i must be less than or equal to the difference between the lengths of s and z
plus 1,i.e. i-m+1 <= {n-m} - (v-u} -+ 1. Otherwise, an out-of-range error occurs when unpack attempts
to index a beyond its upper bound {see example below).

The index types of a and z need not be compatible. The components of the two arrays, however. must be
type identical.

7-45

UNPACK

The call unpack (z,a,i) is equivalent to:

BEGIN

ki= i,

FOR j:=uw TO v DO

BEGIN
a[k]:= 2{J];

IF j <» v THEN k:= succ{k);
END; :
END;

where k and | are variables that are type compatible with the indices of a and z respectively.

Examples

PROGRAM show unpack (input,output);
T™YPE :
suit_types = (casual, business, leisure, birthday);
VAR

suit : PACKED ARRAY [1..5] OF suit types;

kase : ARRAY [1..10] OF suit types;

BEGIN

unpack (suit,kase,1); {After execution, the first 5 }
. {components of kase contain the }
. {value of suit, }

wunpack (suit,kase,7); {An error results because wnpack }

. {attempts to assign a component of }
{suit to a component of kase which }
{is out of range. 1

BND.

7-46

Keven
Rectangle

ADDITIONAL OPERATIONS

Pascal/ 3000 supporis the additional procedures assert, halt, and the functions baddress, ccode, sizeof,
and waddress. Except for hait, all these additionai operations are Pascai/ 3000 extensions of HP Standard
Pascal.

ASSERT

Usage

assert{b,i,p)
assert (b,i)

Parameters
b A boolean expression.
i A integer expression.

p A procedure identifier. P may be omitted.

Description

The procedure assert {b,i,p} evaluates the boolean expression b, If b is true, conirol passes {o the
statement after the calil. If b is false, {he system calis p using the value of i as ils only parameter. After p
exscutes, the program continues provided the compiler option ASSERT._.HALT is OFF. if it is ON, the
program terminates. :

The procedure heading for p must have the form:
PROCEDURE p (i integer),

if the assert call omits parameter p, bis evaluated. If it is false, the system issues a run-time error message
including the value of i, Execution continues if ASSERT_.HALT is OFF. if it is ON, the program aboris.

ASSERT

The comptier option ASSERT.._HALT determines the effect of the assert call on execution when b is false.
Section 8 describes this option in full. its defauit setting is OFF.

The programmer may use asserf to test assumptions, specify invariant conditions, and check data
structure integrity. '

Assert is a Pascal/ 3000 extension of HP Standard Pascal.

Example

$ASSER’.I‘_HAL’I‘ ON$
PROCRAM show assert(input,output);
VAR
n: integer;
PROCEDURE proel (i:integer);
BEGIN
write('Assert called this procedure ');
writeln('and passed it the value ',i:3);
END;
BEGIN
write('Please enter an integer: '};
prompt;
readin{n};
assert(n > 100, 99, procl);
writeln{ 'The program didn''t abort!’);
END.

7-48

Keven
Rectangle

BADDRESS

Usage

baddress (v}

Argument

v Avariable,

Description

The function baddress (v} returns the DB relative byte address of the variable specified by the parameter
v. This variable may not be type file or a file type component of a structured variable. Also, it cannot be a
component of a packed structure, except if it is a component of a PAC.

Baddress is useful for calling certain intrinsics which require byte addresses for parameters.

Baddress is a Pascal/ 3000 extension of HP Standard Pascal.

Baddress returns an integer in the range —32768.. 32767.

7-49

BADDRESS

Examples
TYPE
rec_type = RECORD

f1: integer;
£2: boolean;
£3: char;
END;

VAR

n: integer;

r: rec_type;

p: “rec_type;

a: ARRAY [1..310] OF 0..255;

pac: PACKED ARRAY [1..10] OF char;
pab: PACKED ARRAY [1..10] OF boolean;

L im e ma me m de Ae TEE A o B e

baddress(r)

baddressir.£3)

baddress{p)

baddress(p™}

baddress(p™.£3)

baddress(a)

baddress (a{k])

baddress(pac)

baddress(pac2]) {Legal since component type }
}

{is char.
baddress(pab)
baddress (pav[2]) {Error. }

‘CCODE

Usage

cecode

Description

The function ccode returns an integer value in the range G..2. This number indicates the condition code
resulting from a call 10 a procedure or function declared as INTRINSIC or EXTERNAL SPL according to
the following scheme:

Number Condition Code
4] CCa
1 GCL
2 CC_E

The MPE Intrinsics Reference Manual gives the meaning of the condition code for each intrinsic.

The value returned by ccode is valid any time after return from a call to an intrinsic or external SPL routine
and before either the next similar call or an exit from the procedure or function where the call ogcured.
Furthermore, it is not possible to access the value from a procedure or function nested within the
procedure or function where the call occured. '

Ceode is a Pascal/3000 extension of HP Standard Pascai.

Exampile:

PROGRAM show ccode;

LABEL 99; .
PROCEDURE procl; INTRINSIC,
BEGIN

proci; {intrinsic calll
CASE ccecode OF

0: ;
1: GOTC 99;

2: BEGIN
END

END{CLOSE}

END.

7-51

HALT

Usage

hait {n)
hait

Parameter:

n Aninteger expression. N may be omitted,

Description

The procedure halt {n) causes execution of a program to abort. The system displays the value of the
integer expression n with an error message.

Halt calls the MPE intrinsic QUIT which discards the high order word for n. Thus, the value of n actually
displayed will be in the range -32768..32787.

Exampie:

PROGRAM show halt,
CONST

div_by 0 = 99;
VAR

X.y: real;
BEGIN

IF x <> 0.0 THEN {If x is 0 when IF executes, the program)
yi= y/x {terminates and an error message with }

ELSE {99 appears. }
halt(div_by_0);

END.

7-52

SIZEOF

Usage

sizeof (v)
sizeof (vt1,...4n}

Arguments:
v Any variable, except a file variable or a component of a packed structure,

t A case constan! when v is a record variable. Nested variants may appear separated by commas.

Description

The function sizeof (v) returns the number of bytes of storage required for v. If v is a record variable with
variants, the programmer may select a variant by specifying a case constant with the t parameter.
Qtherwise, sizeof will return ths size of the largesi variani.

it is not legal for v 1o be a component of a packed structure, a file, or a file type component of & structured
variable.

For a variable of a simple dafa type, the number returned by sizeofis equivalent to the storage required for
the variable in the 'unpacked’ context descr;bed in Section 9. For example, if v is type char or boolean,
sizeof returns 1,

The programmer will find the sizeof funclion useful when calling intrinsics such as FWRITE or FREAD.

Sizect is a Pascal/ 3000 extension of MP Standard Pascal.

Sizeof returns an integer in the range 0.. 32767.

7-53

SIZEOF

Exampies

TYPE

rec_type = RECORD

VAR
ir:

¢ch:
sT:

pa:

pr:

£1: integer;

CASE boolean OF

true: (vi: 0..10);
Jfalse: (v2: lomgreal),
BND;

longreal ;

: boolean;

char;
¢..10;

: ARRAY [1..10] OF -32768..32767;

PACKED ARRAY [1..10} OF char;

¢ rec_type;
} “rec_type;

PACKED RECORD
£1: 0..10;
£f2: char;

END;

Call

sizeof(1ir)
sizeof(b)
stzeof(ch)
sizeof{sr)
sizeof(a)}
sizeof{a{3])
sizecf{pa)
sizeof(pa[3])
sizeof(r)
sizeof(r.f1)

. stzeof(r, true)
sizeof(r,false)
sizeof{p)
sizeof(p~)
sizeof(p~.£1)
sizeof(p”,true)
sizeof{pr)
sizeof{pr.f1)

7-54

Return

8 {bytes)
1
i
2
20
2
190
{error}
12
b
€
12
4
12
L
"6
2
{error}

Keven
Rectangle

WADDRESS

Usage

waddress (i)

Argument

i The name of a variable, procedure, or function.

Description

The function waddress{i) returns the DB relative word address of i when i is a variable name, and the
external P label when it is a procedure or function name. An error occurs if the variabie is type file or a file
type component of a structured variable. Also, it is not legal to select a companent of & packed structure
as an argument, except when this component is an element of a PAC,

When referencing a component of an array which occupies an odd byte, waddress will return the address
of the previous compenent since this component is on the word boundary (see exampig).

The programmer may use the waddress function when cafling brocedures in other 'I'anguages such as
FORTRAN or COBOL. Aiso, wadoress is useful when arming the XLIBTRAP intrinsic ({see Section 10).

Waddress is a Fasca!_/ 3000 extension of MP Standard Pascal,

Waddress retums an integer in the range -32788.. 32767.

7-55

WADDRESS

Examples
TYPE
rec_type = RECORD
fl: integer;
£2: boolean;
END;
VAR
n : integer;
r : rec_iype;

Y : “rec_type;
a : ARRAY [1..10] OF mteger,

pac: PACKED ARRAY [1..10) OF char;

pab: PACKED ARRAY {1 .10] OF boolean,
PROCEDURE pro;

BEGIN

END;
FUNCTION f: integer;

BEGIN

END;

Calls

waddressi{n)
waddress{r)
waddress(r.£2)

- waddress{p)
waddress(p™)
waddress{(p~.f2)
waddress(a)
waddress{alll)
weddress{pac)
waddress{pac{3])

waddress(pab)
waddress (pabi3l}
waddress(pro)
waddress(f)

7-56

{Same as waddress{a[3]).

{Legal since component type is
{char.

{Error.

}
}
}
}

Keven
Rectangle

COMPILER OPTIONS

Vill

INTRODUCTION

Compiler options direct the action of the Pascal/ 3000 compiler as it processes source code.

Dollar signs ($) bracket a compiler option or series of options. The option name may be followed by the
words ON or OFF, an unsigned integer, or & string literal, Commas ()} or semi~colons ({) must separate

several options appearing within one pair of dollar signs.

Syntax

compiler o identifier
options ' A

— @

OFF

. -

unsigned integar |

\............ .

string fiteral

The programmer may write the option name or the words ON or OFF in any combination of upper and
lower case letters. A string literal may also use upper and lower case indifferently, except in the case of the

options TITLE and COPYRIGHT. For example, the options
$ANS! ON, INCLUDE '‘MYFILE'$
$ansi on; include 'myfiie’$
$ANSI oN, INcluDE "MyFile'$

are equivaient.

8-1

INTRODUCTION

The programmer must place certain compiler options at particular locations in source code. For example,
the option GLOBAL must precede the program heading. Others, such as TITLE, may occur anywhere.

Many options have default settings which remain in effect until the programmer explicitly overrides them,
For exampie, the option LIST is ON by default, This means the compiier always produces a listing of the
program it is processing unless the programmer writes $LIST OFF$ somewhere in the source code.

The Pascal/ 3000 compiler performs three major steps:
{1) 1t scans source code 10 produce tokens,
{2} 1t parses these tokens into intermediate data structures (abstract-syntax trees).
(3) Finglly, it generates HP3000 object code from these structures.
The compiler scans, parses, and emits cbject code for one 'compilation block’ at a time in source code. A

compiation block is a procedure or function from any level, or the outer block of the source program. A
compiiation block should be distinguished from a Pascal block, which is a syntactical unit of source code.

Some compiler options are only meaningful for entire compilation biocks. For example, the TABLES option
produces an identifier map of an entire compilation tlock if it is set ON when the compiler finishes parsing
the block and is ready to emit object code. In other words it is not possible to generate a map for partof a
procedure, function, or ouier biock.

Table 8-1 summarizes the various options and the actions they periorm,

B-2

Keven
Rectangle

INTRODUCTION

Tabie 8-1. COMPILER OPTIONS

Option Action Default
Setting
ALIAS ' Substitutes an alias as external name for a none

procedure of function.

ANGS! Causes compiler to issue a warning when a QFF
- non-Ansi Pascal feature appears in source code.

ASSERT_HALT Causes execution to hait when assert is called OFF
and the boolean expression is false.

CHECK_ACTUAL_ | Specifies lavel of checking for actual parameters 3
PARM of procedure or function cali.

CHECK__FORMAL . Specifies level of checking for formal parameters 3
FARM of procedure or function. '

CODE Causes code to be generated after parsing of a ON

procedure, function, or outer block.

CODE_OFFSETS Displays a table showing the number of a OFF
' statement in the listing and its offset from
the starting p register.

8-3

INTRODUCTION

Table 8-1. COMPILER OPTIONS ({continued)

'COPYRIGHT

compiled.

Inserts a copyright notice and specified name none
in the USL and program files.

ENDIF Delimits previous use of a $IF.

- ELSE Allows you to select alternate code to be com-

piled if the previous IF expression was false.

EXTERNAL Used in conjunction with the GLOBAL option 1o PASCAL
permit separate compitation of procedures.

GLOBAL Used in conjunction with the EXTERNAL option PASCAL
to permit separate compilation of procedures.

HEAP__COMPACT Causes free~space areas in the heap 10 be OFF

' combined.

HEAP__DISPOSE Permits disposed areas in heap to be QFF
realiocated.

iF Conditionally compiles biocks of source code.
Its identifiers must have been defined by the
SET option.

INCLUDE Aliows specified file to be compiled with none
source text.

LINES Sets the number of listing lines per page. £9

LIST Produces listing of source code as it is ON

8-4

Keven
Rectangle

INTRODUCTION

Table 8-1, COMPILER OPTIONS (continued)

LIST__CODE Produces mnemonic listing of generated OFF
object code.

PAGE Causes the output listing to start a new page. none

PARTIAL.___EVAL Fermits partial evaluation of boolean ON
expressions.

PRIVATE__PROC Aliows use of normal Pascal scope conven- ON
tions for names of non-level 1 procedures or
functions.

RANGE Emits range checking code for assignments, ON
array indexing, pointers, and set operations.

SEGMENT Changes current segment name 1o specified SEG
name. : _

SET Defines Boolean variables and assigns a
Boolean value to the variable for use in a SIF
expression.

SYMDEBUG Produces symbolic information headers in the

USL that is used by the HPToolset product for
symbolic debugging of user programs.

SKIP__TEXT Causes compiler to skip source code. QFF
SPLINTR Specifies name of SPL intrinsic file to be SPLINTR.
searched when a function or procedure is PUB. SYS

daciared INTRINSIC.

B-5

INTRODUCTION

Table 8-1. COMPILER OPTIONS {continued)

function, or the cuter block.

STANDARD__LEVEL Specifies Pascal level which will be compiled HP

SUBPROGRAM Permits compiiation_of a subset of ievel 1 ali level 1 pro-' '
procedures or functions. cedures, functions

TABLES Produces an identifier map for a procedure, QFF

: function or outer block.

TITLE Places specified string literal as titie on each (see below)
listing page. '

USLINIT Initializes USL, file to empty. none

WIDTH Sets number of columns compiler will process 132 characters

: from each record of source code.
XREF Produces cross reference of a procedure, OFF

8-6

Keven
Rectangle

ALIAS

Usage

SALIAS s$

Parameter

$ A string literal.

Description

The option ALIAS specifies an external name, s, for a procedure or function. ALIAS must appsar in the
procedure or function heading after the reserved words PROCEDURE or FUNCTION, and before the body
or directive following the heading.

The programmer may use ALIAS to define multiple internal names of an intrinsic, to interface with a library
routine containing & single quote ('} in its name, or to differentiate internal names which would not be
unique in the first 15 ¢characters when they become external names. This last possibility arises, for
example, if the option PRIVATE. _PROC is OFF and different but synonymous non-level 1 procedures
nested in distinct level 1 procedures are compiled into the same USL file (see example below).

8-7

ALIAS

Example

PROGRAM show alias;

PROCEDURE A $ALIAS 'intrinname §; INTRINSIC: {The intrinsic }
PROCEDURE B $ALIAS 'intrinname’'$; INTRINSIC; {now has two }
. {internal names.)

PROCEDURE xx $ALIAS 'x''x’'$; INTRINSIC: {The intrinsic has a }
. {gingle quote in ite }
. {name. }
$PRIVATE_PROC OFF$
PROCEDURE procl;
FuggTiﬂN doit (m: 1nteger) : boolean; $ALIAS 'D1'§
GIN

END: {doit)
BEGINX

*

END; {proci}
PROCEDURE proc2;
FUNCTION doit (a,b: integer) : integer; $ALIAS 'D2'§
BEGIN

END; {doit}
BEGIN

END; {proc2}
BEGIN {show _alias}

END.

The compiter processes proct and proc2 with PRIVATE__PROC OFF, This means the two non level 1
functions doit, which are distinct but homonymous, will be compiled as separate RBM's, and only one will
be active. To avoid this impasse, ALIAS gives the functions the externai names D1 and D2. The resuiting
USL looks like this:

8-8

$FONT

Usage

$FONT ' unsigned unsigned '§
integer " integer

Parameter

unsigned integer A number for the Primary and Secondary character sets.

Description

The $FONT option allows you 1o set primary and secondary character fonts for source fistings printed
on a 2680 printer. 8FONT uses a siring parameter consisting of two unsigned integers separated by a

comma. The first integer is the set number for the primary font, and the second integer is the set
~ number for the secondary font. The primary font is the default, and can be changed at any time by
entering the $FONT option again.

You can shift from the primary font into the secondary font by entering a control N character within a
string within the compiier option, or within & comment in your program. To change back to the primary
fore, enter a control O character,

Currently this option can only be used with the 2680 page printer. See the intrinsic description of
FDeviceContro! for further information.

8-BA

$SET

Usage
TRUE TRUE
$SET IDENTIFIER ={ Y[, IDENTIFIER ={ }.. .18
‘ FALSE FALSE
Description

The 8SET compiler option enables you to define aliowed BOOLEAN variables and assign a BOOLEAN
vaiue o the variable. The value assigned by the $SET option is used by the $IF compiler option. The

8SET option can use any legitimate Pascal identifier. Note that the identifiers defined by the $8ET

option are known only to the compiler and not the program. Therefore, for example, the variable "X’ can
be used in your source program and can be defined in the $SET compiler option as well. A value of
True or False must be assigned to the variable you define. You may define and assign a vaiue to more
than one variable by separating each by a comma.

The $SET option is the only way to give an identifier used in the condition of a $1F option a vaiue. For an
example of the $SET option, see the $IiF compiler option in this section.

8-88

Keven
Rectangle

$IF

Usage
$IF *boolean Expression'$ [Source code] [$Eise 1 [Source code] $ENDIFS

where boolean expression is

v

boolean expression ——<—m identifier

boolean
expression

boolean
NOT expression

(e biyolean

axXpressich

baolean
U] exprassion

Parameter

identifier - A Bociean identifier that was defined by the $SET compiler option. All Boolean identifiers
used in a Boolean expression are defined in the $SET option.

$Else - Ogpticnal compiier option that specified code to compile if the exprassion was False.
There can only be one SELSE for each $IF.

SENDIF - Required delimiter for $if statement.

8-8C

SIF

Description

The $IF compiler option is used to conditionaiiy compile blocks of source code. This option requires 2
string parameter representing a Boolean expression that is computed using identifiers defined and
assigned a value in the $SET compiler option.

The Boolean operators NOT, AND, and OR are allowed in the $IF expression.

The §IF compiler option works similarly to the Pascal i statement. In its simplest form using just $iF and
SENDIF, the compiler evaluates the string expression, and if the value of the BOOLEAN expression is
true, the code between the BiF and SENDIF is compiled. If the value is faise, the compiler skips the
code between the 3IF and $SENDIF and starts the compilation on the line following the $ENDIF.
SELSE paraliels the Pascal else condition. If $ELSE is used, the source following it is compiled if the

previous §IF Boolean expression had a value of False. Only one S3ELSE can be used for each $IF,
$ENDIF serves as the delimiter for SELSE as well as for its associated $IF,

$iF can be nested for up o 16 levels. If there are more than 16 levels, you receive an grror message
and the code within the illegal $iF block is compiled.

Exampie

$SET 'X=TRUE, Y=FALSE' § {must be declared before Program Header}
$IF "X+ § {A) _

: {code compiled}
SENDIF$ (A}
$IF 'X AND Y' § (B}

{code not compiled}

$ELSE$
$IF 'X' § {C}

{code compiled}
SENDIES {C)
$IF 'v* § {D}

{code not compiled}

$ENDIFS {D}

$ENDIF$ {B} -

8-8D

Keven
Rectangle

$SYMDEBUG

Ajlows you to symbotically debug your program with the HPToolset utility.

Usage

$SYMDEBUGS

Description

The $SYMDEBUG compiter option allows you 1o symbolically debug your Pascal program with the
HPToolset utility. When this option is specified, the compiier puts symboiic information inte the USL file
to be used by TOOLSET when you use its Symboiic Debugging feature. The $SYMDEBUG option must
appear in your source file before the declaration statements. if you do not enter the optien, no symbolic
information is passed to the USL file and your program cannot be debugged symboiically,

Keven
Rectangle

ALIAS

USL FILE <filename>

SEG'
o' 35 OBACN
PROCZ i P ACNR
D2 4L, P ACKNR
PROCT 1 P ACKER
D1 3 P ACNR
FILE SIZE 377600{ 1777. ©)
DIR. USED 337¢ 1.137) - INFO USED 116{ 0.116)
DIR. GARB. 0(0. @) INFO GARB. o{ 0. ©)

DIR. AVAIL. 372%1{ 175. 41} INFO AVAIL., 337662{(1577. 62)

ANSI

Usage

$ANSI ONS
$ANS! OFF$

Default Setting

OFF

Description

When the ANS! option is ON, the compiler issues a'waming whenever it encounters a teature in source
code that is not legal in ANSI Standard Pascal. The warning appears as part of the listing.

The option $ANSI ONS is equivalent to the option $STANDARD._LEVEL ANSIS (see bealow).

Example

$ANST ON$
$ASSERT HALT ON$ |
PROGRAM show_ansi (input,output);

TYPE

a = ARRAY {1..10] OF integer;
CONST :

count = al1,2,3,4,5,6,7,8,9,101;
VAR

i: integer;
BEGIN

read (1),

assert (i = count[i],9%);
writein(’'Your number is acceptable’);
END.

This source code produces the following listing:

8-10

Keven
Rectangle

ANSI

PAGE 1 <Listing title>

1,000 0 0 $ANSI ONS$

2.000 0 O $ASSERT HALT ON§

3.000 C ¢ PROGRAM show ansi {input,ocutput);
##¥%¥% WARNING # 1 THIS FEATURE IS HP STANDARD PASCAL {517)

4.000 0 0 TYPE

5.000 ¢ 0 a = ARRAY [1..10] OF integer;

6.000 0 0O CONST

7.000 c © count = af1,2,3,4,5,6,7,8,9,10);

*¥u¥® WARNING # 2 THIS FEATURE IS HP STANDARD PASCAL (517) .
. {For CONST after)
: - {IYPE section. }
®uu® WYARNING # 3 THIS FEATURE IS HP STANDARD PASCAL (517)
{For siructured }
}

8.000 0 0 VAR : {constant.
9,000 ¢ 0 i: integer;
10,000 g 1 BEGIN
11.00C ¢ 1 read {i};
12.000 i assert (i = countfi],99);
CHERER UARNING # b THIS FEATURE IS HEP3000 PASCAL (518)
13.000 2 1 writeln {'Your number is acceptable'};
14.000 2 1 END.
WUMBER OF ERRORS = 0 FUMBER OF WARNINGS = §

ASSERT__HALT

Usage

$ASSERT__HALT ONS
$ASSERT__HALT OFF$

Default Setting

QFF

Description

When the ASSERT._HALT option is CON, a program terminates if the boolean parameter of an assert cail
evaluates false (see Section 7). Hf a procedure parameter p appears in the assert call, the program haits
after p has executed.

ASSERT__HALT is OFF, the program will not terminate, regardiess of the value of the boolean
parameter in the assert call.

ASSERT__HALT may appear anywhere in source code.

- Example

$4ASSERT HALT ON$
PROGRAM show asgerthalt (input,output);
VAR
i: integer;
BEGIN
write{' Please enter an integer: ');
prompt;
read(i);
assert(i<i0,99):
writeln('Good show! You didn’ 't abort the program.');
END.

8-12

Keven
Rectangle

CHECK __ACTUAL__PARM

Usage

SCHECK _ACTUAL..PARM n$

Parameter

n Aninteger in the range 0..3.

Default Setting

3

Description

The CHECK_..ACTUAL.__PARM option specifies the level of checking the MPE Segmenter will perform
whaen a program calls a procedure or function. The level specified, n, determines the amount of information
placed in the USL file. The Segmenter uses this information o check the aciual parameters against the
formal parameters of the function or procedure. The levels are:

- No checking.

- Check function type.

- Check function type and the number of procedure or function parameters.

- Check function type, the number of procedure of function parameters, and the type of each
parameter. _ o

Wy 2 QG

Level 3 is the default setting.

if the procedure or function has a lower checking level, the Segmenter ignores the level indicated by
CHECK..ACTUAL__PARM and uses the lower level.

The compiler generatss no pararneter checking information for procedures or functions declared
INTRINSIC. When a language specification appears with the EXTERNAL directive (see example), the
checking code will be compatible with the external language.

CHECK_ACTUAL__PARM may appear anywhere in source code.

CHECK _ACTUAL__PARM

Example

PROGRAM show_actparmcheck;
TYPE
a = PACKED ARRAY [1..32] OF boolean;
VAR '
v i oa
PROCEDURE fortproc(VAR p : a); EXTERNAL FORTRAN;
BEGIK

$CHECK_ACTUAL PARM 0$
fortproc(v);

END.

8-14

CHECK_FORMAL __PARM

Usage

$CHECK . FORMAL__PARM n$

Parameter

n Aninteger in the range 0.3,

Default Setting

3

Description

The CHECKL.FORMAL__PARM option specifies the level of checking the MPE Segmenter will perform
when a procedure or function is called. The levei specified, n, determines the amount of information placed
in the USL file. The Segmenter uses this information to check the formal parameters of the declared
procedure or function against the actual paramelers in the calling program, procedure, or function. The
possible levels are:

0 - No'checking.

1 - Check function type.

2 - Check function type and the number of procedure or function parameters.

3 - Check function type, the number of procedure or function parameters, and the type of each

parameter.

Level 3 is the default setting.

if the checking Iévei ot the procedure or function call is lower, the Segmenter ignores the checking level
specified by CHECK__FORMAL_.PARM and uses the lower value.

CHECK__FORMAL_. PARM may appear anywhere in source code,

8-18

CHECK _ FORMAL_PARM

Example
PROGRAM show chkformparm;
$CHECK_FORMAL_PARM 1%
FROCEDURE procl;
BEGIN
END;
$CHECK_FORMAL PARM 3$ {Restores default setting }
FUNCTION funcl: integer;
BEGIN

END;
BEGIN

END.

8-16

CODE

Usage

$CODE ONS
$CODE OFF$

Default Setting

ON

Description

if the CODE option is ON, the compiler generates object code when it finishes parsing a compilation block.
CODLE may appear anywhereg in source code, but it only affects the object code for an entire procedure,
function, or outer block, To suppress code emission for smaller portions of source, the programmer may
use the SKIP_..TEXT option or the Pascal comment symbols.

Example

PROGRAM show_code;
PROCEDURE proel;

BEGIN
END;
PROCEDURE proc2;
EEGIN
$CODE OFF$ {Compiler generates nc object code for)
. {any part o’ proc2, even though CODE }
{OFF is in the middle of proc2. }

END; {proc2)
$CODE ON$
BEGIN ({show_code}

END.

8-17

CODE_OFFSETS

Usage

$CODE_OFFSETS ONS
$CODE._OFFSETS OFF$

Default Setting

OFF

Description

The option CODE_OFFSETS causes the compiler to list the number of each executabie statement in &
compiiation block, starting from 0, and its p register offset in octal from the starting value of p for that
block. The informatiorn appears as part of the listing. ¥ no code is generated for a particular statement,
wxeresl appears instead of a p register offset,

i the option PRIVATE_PROC is OFF, the p register is reset for for each compilation block. When PRIVATE _
PROC is ON (the default setling), the p ragister offset accumuiates as the the compiler encounters
executable statements from any nested compilation blocks, e.q. level 2 procedures.

The compiler inserts certain information whenever the p register is reset. in particular, it uses 11 words to
record the version of the compiler, the date, and the time.

CODE__OFFSETS has no effect if the LIST option is OFF,

CODE.._OFFSETS may occur anywhere in source code but it only acts on an entire compilation block. In
other words, it is not pessible to list statement offsets for part of a procedure, function, or outer biock.

The programmer rmay use CODE.._OFFSETS in conjunction with the TABLES option, a PMAP from the
MPE Segmenter, and the MPE Debug utility to determine break points in a program (se¢ Section 10},

8-18

Keven
Rectangle

‘CODE__OFFSETS

Exampie

$PRIVATE PROC OFF$
$CODE_OFFSETS ON§
PROGRAM show offsets {oufput);
PROCEDURE precl;
PROCEDURE subproel;
BEGIN '
writeln{ ' This is subprocl’);
writein:
writeln
END;
BEGIN
writeln{'This is procl’'};
subprocl
END;
BEGIN
writeln('This is the main program’);
procl
END.

This source code results in the foliowing tisting:

B-13

CODE__OFFSETS

PAGE 1 <Listing title>

1.000
2.000
3.000
%.000
5.000
6.000
7.000
8.000
G.000
10.000

11.000
1z2.00¢C
13.o000
14,000

15.000
16. 000
17.000
18.000
19.000

MMNMEPOOOOOOG

HPr oo

MNP OO

H eSO Q000

R e

b 0 pd i pa

$PRIVATE_PROC OFF$
$CODE*OFFSETS ON$
PROCRAM show offsets (output);
PROCEDURE procl;
FROCEDURE subprocl;
BEGIN
writeln{ 'This is subprocl’};
writeln:
writeln
END;

CODE OFFSETS

STMT P LOC SIMT P LOC STMI P LOC

o

000013 1 0¢o031 2 000033
BEGIN

writeln({ 'This is proci’};

subprocl
EXND;

CODE OQFFSETS

STMI P LOC STMT P LOC

4]

000013 1 000031

BEGIN
writeln('This is the main program');
procl;
writeln

END.

CODE OFFSETS

SITMT P LGC STMT P LOC SIMT P LOC

0

£00035 1 000053 2 00005k

8-20

COPYRIGHT

Usage

SCOPYRIGHT s$

Parameter

$ A string literal.

Description

The COPYRIGHT option places a copyright notice in the USL file. The notice will aiso appear in the
program file. The s parameter specifies a name which will be part of the notice.

COPYRIGHT may only appear before a program heading.
The text of the notice is:
(C) Copyright <Ccurrent year> by <(a>>. Ali righis reserved. No part of this program rhay be

photocopied, reproduced, or transmitted without prior written consent of <{s>.

The compiler respects distinctions between upper and lower ¢ase letters in the s parameter.

Exampie

$COPYRIGHT 'Blaise Pascal'$
PROGRAM show_copyright;
BEGIN

writein{ 'Got any dice?')
END.

8-21

EXTERNAL

Usage

SEXTERNALS
SEXTERNAL ‘PASCALS
SEXTERNAL 'SPL'S
SEXTERNAL ‘NONE'S

Detault setting

PASCAL

Description

The option EXTERNAL, used in conjunction with the option GLOBAL, permits the separate compilation of
procedures and functions, When EXTERNAL appears in source code, the compiler generates information -
about the variables declared in the outer block that will allow them to be matchad up with variables of the
same name and type in an outer block compiled with the GLOBAL option. The compiler doesn't generate
object code for the statement part of the outer block, only for the procedures and functions.

The optional string parameter determines the type of checking information the compiler places in the USL
file. ‘PASCAL’ is used to match a Pascal outer block compiled with $GLOBALS or SGLOBAL 'PASCAL'S;
‘SPL’ to match an SPL outer block or & Pascal outer block complled with $GLOBAL 'SPL'$; "NONE' to
relax all type checking. SEXTERNALS is equivalent to $EXTERNAL 'PASCAL'S.

Because of requirements of the MPE Segmenter, global variabies in a program compiled with the
EXTERNAL option must be unigque within 15 characters.

EXTERNAL must appear before the prograrm heading. The body of the outer block should be empty, i.e.
there should be no statements between BEGIN and END, EXTERNAL and GLOBAL may not appear in the
same source.

An outer block compited with the GLOBAL option may declare several variabies. The outer block in the

code compiied with EXTERNAL need not mention all of these. Only the variables referenced in its
procedures or functions must appear.

Example

See the GLOBAL example below.

8-22

Keven
Rectangle

GLOBAL

Usage

$GLOBALS
$GLOBAL 'PASCAL'S
$GLOBAL 'SPL'$
$GLOBAL 'NONE'S

Description

The option GLOBAL, used in conjunction with the option EXTERNAL, permits separate compilation of
procedures and functions. When GLOBAL is specified, the compiter prepares information about the
variables declared in the outer block which will allow them to be matched with variables of the same name
and type used in & procedure or function compiied with EXTERNAL.

The optional string parameter determines the type of checking information the compiler wili place in the
USL fite. 'PASCAL’ is used to maich a Pascai procedure of function compiter with SEXTERNALS or

SEXTERNAL ‘PASCAL'S; ‘SPL' to match a SPL routine, or a Pascal procedure or function compiled with
SEXTERNAL 'SPL'$; 'NONE' fo relax all checking. $GLOBALS is equivalent to $GLOBAL ‘PASCAL'S.

The compiler processes all of the GLOBAL source code and emits object code for the outer block as well
as all the functions and procedures.

Because of requirements of the MPE Segmenter, global variabies in a program compiled with the GLOBAL
option must be unique within 15 characters. '

GLOBAL must appear before the program heading. GLOBAL and EXTERNAL may not occur in the same
source. '

Source code compiled with GLOBAL and source code compiled with EXTERNAL are placed in the same

USL file. Af prep time, the MPE Segmenter is able to determine the addresses of the giobal variables used
in the code compiled with EXTERNAL.

8-23 -

GLOBAL

Example

$GLOBALS
PROGRAM show _global (input,output);
VAR
a,b,c,d: integer;
state: boolean;
PROCEDURE procl; EXTERNAL;
BEGIN

IF a » © THEN state:= true;

procl;
END.
$EXTERNALS
PROGRAM show_external (input, output};
VAR '
- state: boolean: {This will be matched with the variable }
PROCEDURE procl; {declared in the outer block of show_global.}
BEGIN
IF state THEN... {Referesnce to variable declared in cuter }
{plock of show glohal. }
END;
BEGIN {The body of this outer block is empty. }
END.

8-24

Keven
Rectangle

HEAP_COMPACT

Usage

SHEAFP__COMPACT ON§
SHEAP__COMPACT OFF$

Detault Setting

OFF

Description

The option HEAP_.COMPACT works in conjunction with the option HEAP__DISPOSE to permit the
concatenation of freg space in the heap. HEAP__COMPACT has no effect it HEAP__DISPOSE is OFF.

HEAP__COMPACT must appear before the program heading.

HEAP__.COMPACT is useful when a program manipulates many dynamic record variables of various sizes
{see exampie below).

HEAP COMPACT takes effect when specified in the main program.

Example

$HEAP COMPACT ON; HEAP DISPOSE ON$
FROGRAM show compact;
TYPE _ -
name = PACKED ARRAY [1..25%]) OF char;
big _rec = RECORD
£1: ARRAY [1..100] OF name;
f2: FILE OF integer;
END;
small rec = PACKED RECORD
f1: (Ives, Carter, Thompson, Copeland};
£2: boolean;
END;
VAR
pl: "big rec;
p2: "sma—l—l'_rec;
BEGIN

END.

8-25

HEAP__DISPOSE

Usage

PHEAP_DISPOSE ONS$
SHEAP__DISPOSE OFF$

Default Setting

OFF

Description

When the option HEAP_.DISPOSE is ON, a call to dispose (see Section 6) creates free space in the
" heap. A subsequent call to new can then reuse this storage. If HEAP._DISPOSE is OFF, on the other
hand, the system will not reallocate the disposed storage.

HEAP,__DISPOSE must be ON in order for the option HEAP__COMPACT (see above) to have any
rmeaning.

HEAP__DISPOSE takes effect when specified in the main program.

Example

$HEAP_DISPOSE ON$
- PROGRAM show_heap;
TYPE '
big_array = ARRAY {1..1000] OF longreal;
VAR
ptr: “big array;
i,3: integer;
BEGIN
FOR i:= 1 TO 500 DO {If HEAP DISPOSE is OFF, an error }
BEGIN {results when the heap overflows. }
new(ptr);
FOR j:=1 TO 1000 DO
prro{ile= &
dispose(ptr);

¥

END.

8-26

Keven
Rectangle

INCLUDE

Usage

$INCLUDE s8

Parameter

§ A string literal.

Description

The INCLUDE option permits inclusion of another file which the compiler will process as source code, The
parameter s represents the name of the included file, which may be fully qualified by group and account
names, and a lockword. Upper and lower case letters are equivaient in s. The compiler reads the
designated fite until i{ encouniers an EQF marker, Then it resumes processing from the source line after the
INCLUDE option. This means the compiler ignores any options listed immediately after INCLUDE or any
subsequent source code on the same jine as INCLUDE.

INCLUDE may appear anywhers in source code.

INCLUDE options may be nested. That Is, the included code may itself contain INCLUDE options.

Example

PROGRAM show_include;

VAR
$INCLUDE 'globvars'$ {GLOBVARS file is: }

BEGIN {)
ii= 33 { i: integer; }
x:= 1.55; { x: real;- }

END.

LINES

Usage

SLINES n$

Parameter

n Aninfeger not less than 20.

Default Setting

58

Description

The option LINES specifies the numbser (n) of lines that will appear on a single page of the listing. The
parameter n may not be less than 20.

LINES may appear anywhere in a source program.

Exampie
$LINES 20%
PROGRAM ghow_lines;

BEGIN '
writeln(The listing has 20 lines per page.'};

END.

8-28

Keven
Rectangle

LIST

Usage

SLIST ON$
SLIST OFF$

Default Setting

ON

Description

When the option LIST is ON, the compiler produces a listing of the source code it is processing. LIST may
appear anywhere in source code.

The first column of the ligting displays the editor ling number of the source code. If the source file is
unnumbered, the compiler supplies a sequence of numbers starting with 1in increments of 1. The second
column shows the number associated with a Pascal statement in the code location table. if a "~ *' appears
in the second column, then the ling is within a Pascal comment or the SKIP__TEXT option. The third
column exhibits the BEGIN-END level number in each procedure.

When compilation is complete, the system displays information about the number of errors and warnings.
It also indicates the processor time, elapsed time, number of lines compiled, and the number of lines
processed per minute (see exampie below). These times and rates depend on the actual processor and
the version of the MPE Operating System in use. Unless it is relevant to the example, this information does
not appear with sample listings eisewhere in this manual.

If the programmer is entering source code interactively and the listing file is also the terminal (8STDLIST),
then the LIST option does not redisplay the source code on the screen. Any error miessages, however, will
appear.

When LIST is ON, the programmer may invoke other options which produce extra information or control
-the listing. These options are ANSI, CODE__OFFSETS, LINES, LIST__CODE, PAGE, STANDARD__
LEVEL, TABLES, TITLE, and XREF. If LIST is OFF, setting any of these options ON has no sffect untif LIST
is turned ON.

LIST

H a warning or error occurs during compiliation, a message appears on the ligting with the following tormat: |
s WARNING n <message> or **** ERROR n <massage>

with, in most cases, a caret (~) above pointing to the feature or problem. N is an integer which indicates
the error or warning is the n'th error or warning in the current compilation, If the error message catalog for
the compiler is not available, or if the error or warning occurs when the compiler’s stack is very large, e.g.
in & level 4 procedure, the message consists of the Pascal error number only. Appendix C lists the compile-
time errors by number.

Errors and warnings on listings of more than one page are ’chained’. That is, the first error or warning on a
page will include a message indicating the page where the last previous error or warning occurred, This
message also appears on the last page when it doasn’t have an error or warning.

Example

$LIST ONS {default setting)
PROGRAM show list (input,output);
{Shows typical listing., This comment
spans scross

three lines.}
VAR

a,b: integer;
PROCEDURE check (VAR n: integer)s

EXTERNAL FORTRAN;
BEGIN

read{a,b);

IF a » b THEN

BEGIN
¢i= a + b; {An intentional error.)
WHILE a «<» b DO '
BEGIN
a:= a - 1
writein(a);
END;
END

ELSE check (a);
END.

LIST

PAGE 1 «<Ligting title>

1.000
2.000
3.000
4. 000
5,000
£.000
7.000
8.000
9,000

 WERE UARNING #
10.000
11.9000
12.000
13.000
ik.000

#%%* ERROR # 1

15.000
16.0090
17.000
18.000
19.000
20.000
21.000
22.000

SO OO K000

b

IV i B]

Ghvhven w2 ol

OO OCQORO

ARV Sl e

$LIST ON$ {default setting)
PROGRAM show list {input,output});
{Shows typical listing. This comment
spans across

three lines.)
VAR

2,b: integer;
PROCEDURE check {VAR n: integer);

EXTERNAL FORTRAN;

THIS FEATURE IS HP3000 PASCaAL {518)
BECGIN
read{a,b);
IF a » % THEN
BEGIN
ci= a + b; {An intentional error.}

-~

IDENTIFIER NOT DEFINED (014)

P o pwwisie

WHILE a <> b DO

BEGIN
ai=s a - 13
writeln(a);

END;

END
ELSE check {a};
END.

NUMBER OF ERRORS = 1 NUMBER OF WARNINGS = 1
PROCESSOR TIME O0: 0: 2 ELAPSED TIME 0: 0:12
NUMBER OF LINES = 22 LINES/MINUTE = €60.0

8-31

LIST__CODE

Usage

$LIST_CODE ON$
$LIST__CODE OFFS

Default Setting

OFF

Description

if the option LIST_CODE is ON, the compiler produces a MP 3000 mnemonic listing of the object code it
generates for a compilation black. LIST....CODE has no effect if the LIST option is OFF.

LIST._CODE may appear anywhere in source code, but it affects only an entire procedure, function, or
outer block. [t is not possible to list object code for pari of a compilation block.

The first column of the object code listing indicates the P iocation offset from the beginning of the
procedure, function, or outer biock; the second column the object code in octal; the third column the code

in ASCH with non-printable characacters displayed as pefiods (.); and the fourth column the mnemonic for
the instruction.

PCAL and LLBL instructions incitide the name of the procedure of function called, Also, if the EXTERNAL
option is used, the first 15 characters of the name ©f a global variable appear instead of the DB ofiset,

The programmer will usually use the option CODE.__OFFSETS in combination with LIST.._CODE.

8-32

Keven
Rectangle

LIST__CODE

Example

$LIST CODE ON$
$CODE OFFSETS ON§$
PROGRAM show_listcode;
PROCEDURE procl,
VAR
m,n: integer;

This source code produces the following listing:

E.00Q a 0 SLIST_COUE OnE
Z.04% 9 9 $CODETOFFSETS Ohg
3,000 & 0 PROGRAM show_listcode;
4,000 ¢ ¢ P!?GCEDURE pricl;
€.04C ¢ 0
£.040 ¢ 9 A integer;
7.400 ¢ 1 assf
— 8.000 o 1]
g.000 i 1 r| 5 Q,
16,040 2 1 m:m m + h:
11.000 20t END ;
CoDE GCFFBETS
STHT P LOC STHT P LOC aTHT P 00
4 000014 1 O0DBLE 2 oRoG21
CRoE LISTING
® OFFSET DRTA QSCII INSTRUCTION 4 {JF:‘-‘SET DATR ASCIT INSTRUCTION
fo08t3 O0070Y 02R0,02RD €-mn 00002 151493 . LRD G+3
ulel 328 QeH723 . GZRO, INCH 000022 1531401 . LOD Q+L
QORoLS 1614023 s STD Q+3 [Helslsrac] 001100 N DROO MO
Qaogie Q00800 ‘. JERD, NGP J00024 161403 o STD 0«3
GG00LT - Q21011 ". L0] $UCn25% 0314040 3. EXIT O
Q00020 161401 . STR G‘I
12.000 0 1 BEGIN
13,000 [pragl;
I4.000 4 1 ENL,
COo0DE BFFESETS
STHT & LOC
o ead017?
CODE ELISTING
P QFFSET DRTR A5CIT INSTRUCTION B QFFSEY 0aTa RSCIT INSHW TIDN
00013 Q40308 @, LORD R = oe0017 00LG00 ‘ wOP
GoOCis GoR013% *, LoMY B3 bogoh [nlelslily) e PCQL TSRHI’%TE
QOQG1E AOTE00 .. JERD NOR noo00zl D000 .- BEME
HO001E alslsTeluls] ia BlRL PYINITHEAR 3000
MJMEER OF ERRORS = 9 NUMBER OF LARNINGS = ¢
PRECESILR TIME g: 3 ELARPIED TIME C: 0:28

NUMBER OF LINES . 14 LINES/HINUTE = 280.0

8-33

PAGE

Usage

$PAGES

Description

The PAGE option causes the compiler listing to a line printer to peform a page eject and start a new page.

PAGE may appear anywhere in source code.

Example

PROGRAM show page {output);

BEGIN
writeln{ This appears on the lst page of the listing');
$PAGES
writeln{'This appears on the second’);

END.

8-34

Keven
Rectangle

PARTIAL _EVAL

Usage

SPARTIAL __EVAL ONS$
SPARTIAL __EVAL OFF$

Default Setting .

ON

Description

When the PARTIAL__EVAL option is ON, the compiler processes source code so that the system wiil
determine the value of a boolean expression by evaiuating the minimum number of operands. If PARTIAL
EVAL is OFF, on the other hand, the system evaluates all the operands in 2 boolean expression at run-lime.

Partial evaluation usually permits more readable source code and results in more efficient object code.
With PARTIALL.LEVAL OFF, for example, the programmer may have 10 write & series of nested I+
statements to prevent run-time arrors:

IF index IN [lower.upper] THEN
iF ptr__array [index] <> NIL THEN

[F ptr__array [index] " = 5 THEN
found__it 1= true;

if Index is out of range, then the reference o pir__array[index] fails.
If index is valid, but ptr__arraylindex] is NiL, then ptr__array[index] * fails.
With PARTIAL...EVAL turned ON, however, the programmer may rewrite this code as foliows:

found..it:= {index IN [lower.upper] } AND (ptr_.array [index] <>>NiL)
AND (ptr_.armray [index} “= 5j;

Evaluation of the boolean expression stops when the result is known. Thus, if index is invalid, the system
never evaluates the the expression (ptr_.array [index] <> NIL), preventing a range violation. Likewise, if
ptr_array [index] is NIL, the system never evaluates the expression (ptr__array [index] " = 5).

Not all Pascal compiiers permit partial evaluation. Programs relying on this feature may not work when
compiled gisewhere.

8-35

PRIVATE__PROC

Usage

SPRIVATE...PROC ONS$
SPRIVATE _PROC OFF$

Default Setting

ON

Description

When the option PRIVATE._PROC is ON, the compiler puts the object code for non-level 1 procedures or
functions and their containing level 1 procedures or functions into the same Relocatable Binary Module
(RBM). This means the names of the non-level 1 procedures or functions do not appear in the USL file,
Instead, they are maintained as unnamed private entry points. Only the names of ievel 1 procedures or
functions arg in the USL directory. (Because of the requirements of the MPE segmenter, these level 1
names must be unique within 15 characters.}

With PRIVATE. _PROC ON, thereforg, the programmer can observe the usual conventions of Pascal
scope. In particular, two different level 1 procedures or functions may contain non-level 1 procedures or
functions with the same name.

it PRIVATE._PROC is OFF, however, the compiler compiles the non- level 1 procedures and functions into
separate RBM’s. This means all procedure or function names from any level must be unique within 15
characters. The Pascal scope convention for non-level 1 procedure or function names does not hold.

The programmer can set PRIVATE__PROC OFF if a level 1 procedure and the procedures and functions
nested within it would produce more object code with PRIVATE _PRCC ON than the maximum permitted
in a singie RBM.

PRIVATE__PROC may appear between the declaration of level 1 procedures or functions, or in the

declaration pari of the outer block. That is, the programmer cannot use it within the block of a tevel 1
procedure or function.

8-36

Keven
Rectangle

PRIVATE_ PROC

Example
$PRIVATE PROC ON§ ({default setting}
PROGRAM show privateproc;
PROCEDURE procl;

FUNCTION check (n: integer) : boolean;
BEGIN

END: <{check}
BEGIN
END; {proeci}
PROCEDURE proc?;

FUNCTION check {a,b: integer) : integer; {synonymous with)}
BEGIN {function in procl}

END; {check)
BEGIN

END; {procz}
BEGIN {show privateproc}

END. {show privateproc}

This source code produces the foliowing USL directory:

USL FILE <filename>

SEG'
OB’ 33 OBACHN
PROCZ ' 1 P ACNR
PRCC1 1 P ACKNR
FILE SIZE 377600(1777. 0)
DIR. USED 337¢ 1.137) INFO USED 116¢ 0.116)
DIR. GARB. 0{ 0. 0) INFO GARB. of 0. 0)

DIR. AVAIL. aT2kl(175. L1) INFO AVAIL. 337662(1577. 62)

8-37

RANGE

Usage

$RANGE ONS
$RANGE OFF$

Default Setting -

ON

Description

When the option RANGE is ON, the compiler generates range checking code for assignments, array
indexing, parameter passing, pointers, CASE statements, and set operations. This code causes a program
10 terminate and an error message to appear if a vaiue is out of range. if RANGE is OFF, the compiler does
not generate checking code.

The compiler minimizes the amount of range checking code produced when RANGE is ON. If it is able to
determine at compile time that at a value can never be out of range, it does not issue checking code.

RANGE may appear anywhere in source code.

Example

$RANGE ON$ {default setting}
PROGRAM show range;
TYPE
index = 1..25;
VAR
samp_array: ARRAY [index] OF integer;
m,nn: index;
i: integer;

BEGIN
FOR i:=m T0 n DO {The compiler doesn't gemerate }
samp_array[i):= i; {range checking code for this FOR}
{statement since i can never be }
. {out of bounds. }
END. :

8-38

Keven
Rectangle

SEGMENT

Usage

$SEGMENT s$

Parameter

$ A string literal.

Default Setting

SEG

Description

‘T'he SEGMENT option specifies a name, s, for the current segment. If a segment with the specified name
exists, the compiier places the generated object code in it. Otherwise, it creates a new segment with the
name indicated in the s parameter.

The compiter continues to place object code in the designated segment until it encounters another
SEGMENT option.

When SEGMENT doesn't appear, the compiler uses the name SEG’ as the defauit name of the current
segment;

The compiler ignores distinctions hetween upper and lower case letters in the s parameter.
SEGMENT may appear anywhers in source code, but the compiler puts the object code for an entire

compilation block in the last named segment. it is not possible to place part of a compilation block in a
particuiar segment.

8-38

SEGMENT

Example

$SEGMENT 'Sample ' $
PROGRAM show_segment (owfput);
PROCEDURE proeci;

BEGIN

writelin;

END;
BEGIN

Procl;

writein
END.

This source code produces the following USL directory:

USL FILE «<filename>

SAMPLE

OB’ L0 CRACKN

PROCL 3 P ACKR
FILE SIZE 377600{ 1777. 0O}
DIR. USED 266 1. 66) INFO USED
DIR. GARB. o{ G. 0) INFO GARB.
DIR. AVAIL. 37312(175.112) INFO AVAIL.

8-40

1h1{ 0.141)
0{ 6. 0)
337637(1577. 37)

Keven
Rectangle

SKIP__TEXT

Usage

$SKIP_TEXT ON$
$SKIP__TEXT OFF$

Default Setting

OFF

Description

When the option SKIP_TEXT is ON, the compiler ignores all subsequent source code, including any
compiler options, until SKIP_TEXT is turned OFF. '

SKIP_TEXT may appear anywhere in source code.

Example

FPROGRAM show_skiptext (output);
BEGIN
writeln('This will print.’);
$SKIP TEXT ON$
writeln(' This won' 't.');
$SKIP TEXT OFF$
END.

8-41

SPLINTR

Usage

$SPLINTR s$
$SPLINTRS

Parameter

s Astring literal. lf omitted, the compiler restores the delault satting.

Default Setting

SPLINTR.PUB.SYS

Description

The SPLINTR option permits the programmer to specify an SPL intrinsic file which the system will search
for a procedure or tunction declared with the INTRINSIC directive (see Section 2). The programmer may
fully qualify this file name, s, with with group and account names.

The default vaiue of the SPLINTR option is the MPE file SPLINTR, PUB.SYS, Uinless the programmer
specifies another file, the system searches this default file for an intrinsic.

A file specified in a SPLINTR option remains in effect until the programmer uses SPLINTR again. To

restore the file SPLINTR.PUB.SYS as the designated file, the programmer can omit the s parameter (see
exampile below).

Example

PROGRAM show splinter;

PROCEDURE procl: INTRINSIC; {System searches SPLINTR.PUR.SYS }
$SPLINTR 'myfile'$ {for proci. <}
PROCEDURE proc2; INTRINSIC; {System searches MYFILE for proc2 }
$SPLINTRS

PROCEDURE proc3; INTRINSIC; {System searches SPLINIR. PU'B s¥s }
BEGIN {for proci. }
EXD.

8-42

Keven
Rectangle

STANDARD LEVEL

Usage

$STANDARD _LEVEL "ANSI'S
$STANDARD__LEVEL ‘HP'$
$STANDARD _LEVEL 'HP3000'$

Default Setting

HP

Description

The STANDARD _ LEVEL option sets the level of syntax which the compiier will process routinely. if it
gncouniers a Pascal language feature which is not legal at the specified level, the compiler issues a
warning message on the listing and then compiles the feature normally.

in order of additional ianguage features, the three leveis are ANSI, HP, and HP3000. The ANS! leve! refers
1o the proposed (May 20, 1981) Pascal standard from the American National Standards Institute; HP, the
default level, indicates Hewlett Packard Standard Pascal; HP3000 is Pascal/ 3000, the language
describad in this manual. The level must appear between single guote marks. The compiler ignores
distinctions between upper and lower case letters.

STANDARD _ LEVEL may occur anywhere in source code.

Section 1 outlines the salient features of HP Standard Pascal and Pascal/ 3000,

STANDARD__LEVEL

Example

$STANDARD_LEVEL 'ANSI'$ {equivalent to ANSI ON)
PROGRAM show level {output);
PROCEDURE proci;

VAR i: integer;

b: bocleun:
BEGIN
assert{b,i);

END;
BEGIN
END.

This source code produces the following listing:
PAGE 1 <Listing title>»

1.000 g ¢ $STANDARD_LEVEL 'ANSI'S
2.000 Q0 0 PROGRAM show _level (output);

WH*¥ WARNING # 1 THIS FEATURE IS HP STANDARD PASCAL {517)

3.000 ¢ 0 PROCEDURE procl:
L. 000 0. 0 VAR i: integer;
5.000 0 @ b: boolean;
€.000 0 1 BEGIN

7.000 ¢ 1

assert (b,i);

¥u%® WARNING # 2 THIS FEATURE IS HP3000 PASCAL (518)

8.000 6 1 END;
g.000 0 1 BEGIN
le.000 e 1 END.

NUMBER OF ERRORS = 0O NUMBER OF WARNINGS = 2

8-44

Keven
Rectangle

SUBPROGRAM

Usage

$SUBPROGRAM s
$SUBPROGRAMS

Parameter

s A string literal. S may be omitted.

Description

The option SUBPROGRAM causes the compiler to emit code only for the level 1 procedures or functions
specified in the parameter s. The compiler also processes procedures or functions nested within the
specified level 1 procedures and functions. it does not, however, compile the outer block.

SUBPROGRAM must appear before the program heading,

i s is omitted or if it is entirely blanks, the compiler processes all level 1 procedures or functions. S may
contain the names of any number of ieve! 1 procedures or functions separated by commas. If there are too
many to fit on one line, the programmer may write ancther SUBPROGRAM option. The s parameters are
concatenaied.

An asterisk (*) may follow the name of a procedure or function in 5. The compiler then procasses the
compilation block with the LIST, CODE, and TABLES options ON. Subsequent use of LiST, CODE, or

TABLES in the source code of designated procedures or functions, however, will override the asterisk

machanism. :

The programmer can use the SUBPROGRAM option to select parts of a large program for compiiation.
This minimizes the number of entries in the directory of the USL file. The compiler scans the entire source
program and performs syntax and semantic checking, but it only generates object code for the specified
level 1 procedures and functions.

8-45

SUBPROGRAM

Exampie .

$SUBPROGRAM 'proc2™'$ {Asterisk turns ON options)
PROGRAM show _subprg (oufput}; {LIST, CODE, and TARLES. }
FROCEDURE preocl;
BEGIN
writeln('This won' 't be compiled');
END;
PROCEDURE proe2;
BEGIN
writeln('This will be compiled');
END;
BEGIN
writeln{ The outer block isn''t compiled')
END.

This source code results in the following USL file directory:

USL FILE <filename>

SEG'
PROC? 33 P ACHNR
FILE SIZE 37T7600(1777. 0)
DIR. USED 234¢ 1. 34) INFO USED 5L { 0. 54)
DIR. GARE. of 0. 0) INFO GARB. o{ 0. 0}

DIR. AVAIL. 37348(175.144) INFO AVAIL. 33772u4{ 1577.12k)}

8-46

Keven
Rectangle

TABLES

Usage

$TABLES ONS$
$TABLES OFF$

Default Setting

OFF

Description

When the option TABLES is ON, the compiler produces an identifer map for a compiiation biock. The map
appears as part of the listing. Thus, TABLES has no effect if the LIST option is OFF.

TABLES may appear anywhere in source code, but the compiter only issues a map if the option is ON
when it completes parsing of a procedure, function, or cuter block.

The map shows the declared identifiers, their class, type, and address or constant value. This information
is important when the programmer uses the MPE Debug utility.

The first column lists in alphabetical order the initial 20 characters of all the identifiers declared at the
current level. Field names of record types appear indented under the record name. Variabies which are
neither local nor global also appear in this column since the compiler aliocates storage for them on the
current scope. '

~ "The second column disp!ays'the class of each identifier. The compiler distinguishes the following Classes:
USER DEFINED, CONSTANT, VARIABLE, NON LOC VAR, FIELD, FUNCTION, TAG FIELD, PARAMETER,
NON LOC PARM, and PROCEDURE.

The third column shows the type of the identifier. The types include: INTEGER, SHORT INTEGER, REAL,
BOOLEAN, SUBRANGE, ENUMERATED, CHAR VALUE, CHAR ARRAY, 8TRING LITERAL, ARRAY,
RECORD, SET, FILE, and POINTER.

Note: The $SUBPROGRAMS option disables printing of global types and constanis when $TABLES
ONS.

8-47

TABLES

The fourth column indicaigs the register-relative location of an identifier in octal or, if it is 2 constani, its
value in decimal or characters, For a record type, the maximum word size in octal appears instead of an
address. Fields of a record type are in the form W@B, where W is the word ofiset and B is the bit offset
within the word, both in octal. Finally, the octal size of the field in bits, bytes, or words appears.

Under these four columns, the identifier map shows the amount of primary and secondary storage the
compilation block requires and the number of non-local, non-giobal variabies referenced within it. All these
values are in octal,

Example

$TABLES ON$
PROGRAM show map {imput,output);
CONST -

realnum = 16.Q;

maxsize = 100;

title = 'Customer List';

TYPE
answer = (yes, no);
rec = RECORD
ch; char;
CASE tag : answer OF
yes : (messsage: PACKED ARRAY{1..20] OF char);
ne : (i: integer);
END;
VAR

customer: rec;
PROCEDURE procl (VAR num: real);
VAR
debt: boolean;
PROCEDURE subproel;
BEGIN
IF debt THER wrifeln
END;
BEGIN
END;
FUNCTION funcl: integer; EXTERNAL;
BEGIN
END.

This source code produces the following listing from which the editor line numbers have been removed:

8-48

M OO OOOOo0OOCOo0O0OOO000OOLDOOO00

[B)

BTARLES ONS
PROGRAM show tables {input,output);
CONST
realnum 18.9;4
maxsize 100;
title = 'Customer List’;
TYPRE
answer = (yes, no};
rec = RECCORD
¢h: char;
CASE tag : answer OF
ves : (messsage: PACKED ARRAY([1..20] OF char);
no : {i: integer};
END;

VAR
customer: rec.
PROCEDURE procl {VAR num: real};
VAR
debt: boolean:
PROCEDURE subprocl:
BEGIN
IF debt THEN writeln
END;

FEPROCCOoOO0DCOO0OO0O0000000 00000

IDENTIFIER HAP

IDENTIFIER CLASS TYPE - ADDRESS /VALUE
DEBT NON LOC VAR BOOLEAN Q +1,I
PRIMARY Q STORAGE = 1 SECONDARY § STORAGE = 0
NON LOCAL VARIABLES = 1

1 BEGIN

1 END;

IDENTIFIER MAP

IDENTIFIER CLASS TYPE ADDRESS /VALUE
DEBT VARIABLE BOOLEAN Q +1
NUM PARAMETER REAL Q -h,1
SUBPROC1 . PROCEDURE

PRIMARY Q STORAGE = 1 SECONDARY @4 STORAGE = 0
NON LOCAL VARIABLES = 0 '

(continued)

8-49

TABLES

TABLES

0 © FUNCTION funcl: integer; EXTERNAL;
0 1 BREGIN
0 1 "END.
IDENTIFIER MAP

IDENTIFIER CLASS TYPE ‘ ADDRESS /VALUE
ANSWER USER DEFINED ENUMERATED

CUSTOMER VARIABLE RECORD DB+2,1

FUNC1 NON LOC FUNC INTEGER . Q-5

INPUT PARAMETER FILE DB+0,T

MAXSIZE CONSTANT SHORT INTEGER 100

NO CONSTANT ENUMERATED 1
OUTPUT PARAMETER FILE DB+1,1I

PROCL PROCEDURE :
REALNUM CONSTANT REAL 1.990000E+01

REC USER DEFINED RECORD MAX RECORD SIZE = 13

CH FIELD CHAR VALUE 080 FOR 1 BYTE(S)
TAG TAG FIELD ENUMERATED 0810 FOR 1 BYTE(S)
I FIELD INTEGER 180 FOR 2 WORD(S)
MESSSAGE FIELD ARRAY 180 FOR z4 BYTE(S)

TITLE CONSTANT STRING LITERAL Customer List

YES CONSTANT ENUMERATED 0
PRIMARY DB STORAGE = 3 SECONDARY DB STORAGE = Lb3

NON LOCAL VARIABLES = 0

8-50

Keven
Rectangle

TITLE

Usage

$TITLE s%

Parameter
s Any string literal.

Default Setting

HEWLETT PACKARD 32106A.00.00 PASCAL/3000 (C) Hewlett Packard Co. 1981 <date>> <time>>

Description

The option TITLE places the specified title, s, next to the page number in the top left corner of subsequent
pages of the listing. The default setting is restored when s is "', The listing has a blank fitie whensis’ .

The compiler respects upper and lower case letters in the s parameter. They appear aé written in the title.

TITLE may occur anywhere in source code,

Example

$TITLE 'My Program'$
$PACES
PROGRAM show_title (output};
BEGIN
writein(’'Greetings!'')
END.

This source code produces the following listing:

8-51

TITLE

PAGE 1 <Default listing title>

1.000 0 0 $TITLE 'My Program'$
2.000 0 O $PAGES

PAGE 2 My Program

3.000 0 © PROGRAM show title (output);
L. 000 0 1 BEGIN

5.000 0 1 writeln('Greetings!')
£.000 0 1 END.

8-52

Keven
Rectangle

- USLINIT

Usage

SUSLINITS

Description

The option USLINIT causes the compiler to initialize the USL file to empty before placing any objsct code
in it i USLINIT is not used, the compiler appends new object code to any code already in the USL.

If the programmer does not specify a USL file when invoking the Pascai/ 3000 compiler and if $OLDPASS
is not a USL file, or i the contents of a specified USL file are obviously incorrect, the system initializes the
USL file to empty whether USLINIT occured in code or not.

USLINIT must appear before the program heading.

Exampie

$USLINITS

PROGRAM show uslinit (output);

BEGIN
write{ ' Object code for this program will be placed in '},
writeln('an empty USL file.')

END.

B-53

WIDTH

Usage

SWIDTH n$

Parameter
n Aninteger in the range 10..132.

Default Setting

Size of record in source file.

Description

The WIDTH option sets the number of columns, n, which the compiler will read from each record of the file
gontaining the source code. N may not be smaller than 10 or greater than 132. The defaul setting is 132,

WIDTH permits the compiler to ignore non-iegal comments at the end of subseguent input knes.

For an INCLUDE file, the WIDTH option is reset to 132 or the specified setting within the inciuded file. it
returns to the previous seiting at the end of the inchuded file.

WIDTH may appear anywhere in source code,

Example

$WIDTH 30%
PROGRAM show _width (output); The compiler ignores this text

BEGIB}' "~ since it is beyond column 30.
writeln{'The width is 30')
ERD,

B-54

Keven
Rectangle

XREF

Usage

$XREF ON$
$XREF OFF$

Default Setting

OFF

Description

When the aptlion XREF is ON, the compiler produces a cross reference for each compilation block. The
cross reference is part of the listing, so XREF has no effect if LIST is OFF.

XREF may occur anywhere in source code. However, i it is placed in the middle of a procedure or function,
only subsequent source code will appear in the ¢ross reference.

The cross reference lists the first 15 characiers of each identifier and its occurrences within the source
code. If an identifier is declared in a block which contains the block where it occurs, the cross reference
indicates its declaration leval.

The cross refgrencg shows the occurrence of an identifier by listing the number of the editor line of the _
source code where it appears. A symbol may prefix this number:

@ means the identifier was declared on that ine.

* means the identifer was modified or could be maodified on that line.

An editor line number appears one time for each time an identifier occurs in sourcé code. if a source file is
unnumbered, the cross reference will use the compiler-assigned sequence number.

if source code is from an include fite, the include file number and a slash {/) appear before the editor line
number. The compiler prints the name and number of the include file at the end of every cross reference

page.

8-55

XREF

Example

$XREF ON$ _
PROGRAM show xref {(input,oulput);
$INCLUDE 'const'$ {see below}
VAR
n: integer;
t: boolean;
FROCEDURE check (VAR b: boolean);
BEGIN
IF¥ n » k THEN b:= true
ELSE b:= false;
END;
BEGIN
readin{n);
check{t);
IF ¢ THEN writeln('Too big!')
ELSE writeln{ Nc problem’);
END.

The INCLUDE file is:

CONST
k = 1003

When the compiler processes show._xref and its included file, the following listing results:

8-56

Keven
Rectangle

XREF

PAGE 1 <Listing title»

1.000 0 0 $XREF ON$
2.000 0 O PROGRAM show xref (input,output};
3.000 D 0 S$INCLUDE 'const'$
1.000 0 0 CONST
2.000 0 o k = 100;
4,000 0 0 VAR
5.000 0 O n: integer;
€.000 ¢ 0 t: boolean;
7.000 o 0 FROCEDURE check (VAR b: boolean):
8.000 ¢ 1 BEGIN
9.co0 ¢ 1 IF n » k THEN bi:= true
10.000 2 1 ELSE b:= false;
11.000 2 1 END;
CROES REFERENCE
B € 0000T.000 * 0D00Q9.000 * 00010.000
X 0 00009, 000
N 0 00009, 000
12.9000 ¢ 1 BEGIN
13.000 ¢ 1 readln(n);
14.000 11 check(t);
15.000 2 1 IF t THEN writeln('Too big!’)
16.000 L 1 ELSE writeln('No problem');
17.000 4 1 END.
CREOS S REFERENCE
CHECK € 00007.000 Q001,000
K ' 00009.000 € 1/00002.000
N € 00005.000 G0009.000 * 00013.000
READLN 00013.000
SHOW_XREF 00002.000
T : € 00006.000 * 00014.000 00015.000

WRITELN 00015.000 00016.000

INCLUDE FILE # NAME
1 const

Keven
Rectangle

STORAGE AND EXECUTION
EFFICIENCY TIX |

INTRODUCTION

The Pascal/ 3000 compiler converts source code into machine language instructions and data definitions.
Data definitions aliocate space on the stack for variables, The compiier does not allocate space for type
definitions, but the type of a declared constant or variable determines the amount of gpace aliocated.

There are three distinct contexts which may affect the storage for a declared variable: (1) itis
independsnt, i.e. not a component of another struciure, or {2} it is a component of an unpacked
structure, or (3) il is a component of g packed structure. For example, the simple type boolearn uses 1
word of storage in the first case, 1 byte in the second, and 1 bit in the third. On the other hand, the type
integer requires 2 words of storage in all three cases,

if the reserved word PACKED precedes the ldeciaration of an array or record, the compiler optimizes
storage for certain simple data types within the structured type. This reduces the amount of space
required by the program, but increases the time necessary to access data.

While it is syntactically lsgal to declare a packed file or sst, this dossn't change the size of storage
allocated by the compiier, Cnly packing an array or record actually alters the amount of space reserved on
the data stack. ' _

The standard function sizeof returns the amount of storage in bytes for a variable (see Section 7},

The following pages describe the storage ailocation for each data type and expiain how the programmer
may use this information to write faster or more compact Pascal/ 3000 programs.

BOOLEAN STORAGE

independent: 1 word
Unpacked: 1 byte

Packed: 1 bit

Notes

Falseis represented by Q, frue by 1.

When it is independent, a boolean variable requires 1 word of storage. The left byte contains the boolean
value and the right byte is undetined.

When a boolean variabie is a component of an unpacked array or record, the compiler may use the right
byte of the 1 word allocation for the next component. This means the boolean variable or declared
constant will effectively occupy 1 byte of storage.

in a packed array or record, boclean variables require 1 bit of storage aligned by bit boundary.

Keven
Rectangle

INTEGER STORAGE

Independent: 2 words
Unpacked: 2 words

Packed: 2 words

Notes

For the simple type integer, storage aliocation is identical in the three contexts. Bit 0 of the first word is the
sign bit,

The compiler aligns integer storage on word boundaries.

For an integer field of a record, slightly better machine code results when the fieid has an even word ofiset.
This permits the compiler to issue double word maching instructions,

9-3

INTEGER SUBRANGE STORAGE

Independent: 1 or 2 words
Unpacked: 1 or 2 words

Packed: Minimum number of bits.

Notes

As an independent variabie or in an unpacked structure, an integer subrange requires 1 word of storage
when it is contained in the range -32768..32767. Otherwise, it takes 2 words. Consider these examples:

Ag an independent variable or in an unpacked structure, an integer subrange requires 1 word of storage
when it is contained in the range -32768..32767. Otherwise, it takes 2 words, Consider ihese examples:

Subrange Allocation
0.8 : 1 word
-32768..32767 1 word
10..40000 2 words
-70000..1 ’ 2 words

In a packed array or record, an integer subrange requires the minimum number of bits necessary to
represent each value of the subrange, if the subrange is in the range —32768.. 32767, otherwise it
takes two words.

Subrange Packed Allocation

0.3 2 bits

-3..0 3 bits {1 bit for the sign}

0..4 3 bits

1.7 3 bits

1.8 4 bits

0..255 8 bits

400..401 9 bits {no bias is used}
0..65000 32 bits

The compiler aligns the field representing the subrange by bit boundary and never permits the field to
cross a word boundary. In & packed array, a field of 8, 7, or 8 bits takes an entire byte of storage; a field of
8 to 16 Dits takes a word (see Array Storage below).

9-4

Keven
Rectangle

ENUMERATED STORAGE

independent. 1 ward
Unpacked: 1 byle or 1 word

Packerd: Minimum number of bits

Notes

When it is independent, an enumeraied type variable requires 1 word of storage. If the number of its
elements is jess than or equal to 256, the left byte of the word represents the value and the right byte is
undefined.

If the enumerated variable is a component of an unpacked array or record and if the number of its
glements is less than or equal to 256, the compiter may use the right byte of the 1 word allocation for the
next component. In this case, the enumerated variabie efiectively requires 1 byte of storage.

In a packed array or record, an enumerated variable reguires the minimum number of bils necessary to
represent its values, For example:

Enumerated Type Alipcation

{east,west,north,south) 2 bits
(one, two, three, four, five) 3 bits

The compiler aligns the bit field by bit boundary and never permits the field to ¢cross a word boundary. In a
packed array, a type requiring 8, 7, or 8 bits takes 1 byte of storage; a type needing 8 or more bits requires
a full word (see Array Storage below).

8-5

SUBRANGE OF
ENUMERATED STORAGE

Independent: 1 word
Unpacked: Bame as host type

Packed: Minirnum number of bits

Notes

A subrange of an enumerated type requires the same storage as its host type, except in packed
siructures,

An independent variable which is a subrange of some enumerated type requires 1 word of storage. If the
number of elermnents of the host type Is less than 257, the left byts of the word represents the subrange
values and the right byte is undefined.

In an unpacked record or array, a subrange enumerated variable occupies the same siorage as its host
type. That is, if the number of elements in the host type is less than 257, the compiter may use the right
byte of the 1 word aifocation for the next component.

in a packed array or record, the system determines the storagse for a subrange enumerated variable
according 1o the upper bound of the subrange. For exampie, suppose:

TYPE
e_type = (Lee, Ron, Dave, Steve, Chris, Jon, Jean);
VAR
sub e type: FACKED RECORD
fl: Dave..Chris;

END:

Field 11 of the variable sub__e__type has three elements, but the compiler calculates its storage from the
tirst element of the host type, e.type, 10 the upper bound of the subrange. In other words, 11 requires 3
bits.

tn @ packed array, a subrange of 8, 7, or 8 bits takes an entire byte of storage; a subrange of 8 or more bits
an entire word {see Array Storage below).

9-6

REAL STORAGE

lndependen{: 2 words
Unpacked: 2 words

Packed: . 2 words

Notes

The storage requirement for a variable or declared constant of type real is always 2 words, regardiess of
the context.

The system stores the real value in HP3000 floating point format {see Compiler Library Reference
Manuai}.

For a real variable which is a field of a record, slightly more efficient machine code results if the field has an
even word offset. This permits the compiler {0 generate double word machine instructions,

LONGREAL STORAGE

Independent: 4 words
Unpacked: 4 words

Packed: 4 words

Notes

l.ongreal variabies or declared constants always require 4 words of storage, regardiess of the context.

The system stores the longreal value in HP3000 floating point format (see Compiler Library Reference |
Manual). _ '

In contrast to integer and real variables, there is no gain in machine instruction efficiency if longreal .
variables which are record fieids have even word ofisets.

CHAR STORAGE

independent: 1 word
Unpacked: 1 byte

Packed: 1 byte

Notes

An independent char variable or declared constant requires 1 word of storage. The left byte represems the
value and the right byte is undefined.

In an unpacked array or record, the compiler aliocates the char type component 1 word, but may use the
right byte for the next component., This means the component effectively takes 1 byie of storage.

In a packed record, a char type component takes 8 bits of storage The compiler aligng this field by bit

boundary and never permits it 10 cross g word boundary. In & packed array, the sams component takes 1
byte of space and is aligned by byte boundary.

8-8

POINTER STORAGE

Independent: 1 word
Unpacked: 1 word

Facked: 1 word

Notes

A pointer type variable requires 1 word of siorage regardless of the context in which it appears.

The pointer value NIL is represented in storage by the positive integer 32767,

9-10

Keven
Rectangle

ARRAY STORAGE

In general, the size of an array allocation is the sum of the allocation of its componenis. The compiler
determines this sum by the formula:

E

{product of cardinalities of index types) (allocation of one compaonent)

The compiler stores the components in row major order.

In an unpacked array, components of certain types require less storage than independent variables or
deciared constants of the same type. Consider this example:

VAR ,
beauty: boolean;
truth: ARRAY [1..4] OF boolean;

The variable beauty takes 1 word of storage. The left byte contains the value and the right byte is
undefined.
lefi byte right byte

boolean not
value defined

The unpacked array truth, on the other hand, oniy takes 2 words of storage, not 4. The compiler uses the
undefined right byie for the subsequent component.

first word second word
truth {1} | truth [2] | truth [3] | truth {4}

9-11

ARRAY STORAGE

The same sort of default storage optimization occurs when the component type of an unpacked array is
an enumerated type less than 257 elements, a subrange of such an enumerated type, ot a char type.
There is no storage difference between a packed or unpacked array of char.

Irr a packed array, bit fields represent certain types of components. Types with this representation include

boolean, subrange of integer, enumerated, and subrange of enumerated types. The number of bits

required, however, does not strictly determine the amount of storage. in particular, a fisld of 6, 7, or 8 biis
requires 1 byte of storage, and fields ot 8 or more bits take 1 word. Consider this exampie:

VAR.
a: PACKED ARRAY {1..3] OF 0..31;
b: PACKED ARRAY {1..3] OF 0..32;

The component type of a' is the subrange 0..31 which requires a minimum of 5 bits 10 represent its values.
The index of a has 3 elements. This means the compiler can store the entire array in 1 word. The
companenis sccupy successive fields of § bits and the last bit is undefined:

a1 af2] a3 |x
X

On the other hand, the component type of b requires 6 bits to represent all its values. Since no more than
two 6-bit fields can fit into a single word in any case, the compiler assigns each field a single byte. The
storage required for b, then, is two words, The right byte of the second word is unused.

b (1] b[2] b [3] not
_ defined

9-12

Keven
Rectangle

ARRAY STORAGE

The packed attribute of an array does not distribute to components of type array or record. For example,
in the declaration '

TYPE
upa = ARRAY [1..4) OF boolean;
" - VAR
pa: PACKED ARRAY [1..10] OF upa;

the array upa remains unpacked even when it is the component of the packed array pa.

9-13

RECORD STORAGE

The size of & record allocation is the sum of the allocation of the fixed part and, if any, the tag field and the
iargest variant.

In an unpacked record, fields of certain types may require less storage than independent variables of the
same type. Consider this example:

VAR
bv 1 boolean;
ev : char;
upr: RECORD
bf: boolean;
cf: char;
END;

The independent variables bv and cv each require 1 word of storage. The left byte contains the value and
the right byte is undefined. The unpacked regord upr aiso requires only 1 word of storage, not 2. The right
byte of the bf allocation is used for the next fistd of the record, ¢f,

This default optimization of storage In unpacked records implies that the programmer may control the
total storage requirement simply by coniroiling the order in which fieids appear in source code. Consgider
this dectaration: '

VAR
upr: RECORD
vf: boolean;
pf: “upr;
ef: char;
ENRD;

This structure requires 3 words of storage. The value of bf appears in the left byte of the first word and the
right byte of this word is unused. The vaiue of pf requires 1 word and cannot be put in the unused byte in
the first word since no field may cross a word boundary. The value of ¢f ocours in the Ieft byte of the third
word and the right byte of this word is undefined;

9-14

Keven
Rectangle

RECORD STORAGE

first word second word third word
bi unused pf cf unused

The programmer can reduce the siorage for upr to 2 words, however, simply by changing the order in
which the fields are listed. Consider:

VAR
upr: RECORD
bf: boolean:
ef: char;
pf: “upr;
END;

Now the vaiue of bf occupies the left byte of the first word and the valus of cf the right. The second and last
word stores the value of ph

first word sacond word
bf of “pf

in a packed record, the progammer can also control the total amount of storage allocated by the order of
the fields. Suppose;

VAR
pr: PACKED RECORD
srf: 0..32;
b: boolean;
pf: 7pr;
cf: char;
END;

9-15

RECORD STORAGE

With the fields in this order, pr requires 3 words of storage. The field srt takes the first 8 bits of the first
word. The field b occupies the next immediate bit. Bits 8-15 of the first word are unused. The field pf
requires ali of the second word. The field cf takes the first byte of the third word:

~ first word

second word - third word

srf b| unhused

pf

cf unused

Again, the programmer cém reduce the total storage by reordering the fields. Suppose:

- VAR
pr: PACKED RECORD
srf: 0..32;
b: boolean;
ef: char,
pf: Tpr
END;

Now the first word contains the bit fields for srf, b, and ¢f, and only the last bit is unused. The total storage

for pris 2 words:

first word

second word

grf b

cf

of |

|

In contrast to packed arrays, bit fields in packed records always occupy exactly the minimum number of
bits. In the example above, for instance, srf takes exactly 6 bits, the minimum required to represent all its
values. If srf were a component of a packed array, however, it would occupy 8 bits.

The packed attribute does not distribute o fields which are records or arrays. In other words, an array or
record which is a field of a packed record is unpacked uniess the progammer explicitly packs it in source

code.

9-18

Keven
Rectangle

STRING STORAGE

The compiler aliocates storage for a string according to the declared maximum length of the string. Each
character takes a single byte. As weli, the system requires 1 word of storage for the integer indicating the
current length of the string and 1 extra byte for the implementation of certain standard string functions, i.e.
strpos. This final byte is not accessible {0 the programmer, Thus, the variable s, when declared as

VAR
s: string[10};

will take 7 words of storage: 1 word for the integer indicating the current length; 5 words for the 10
characters; and 1 word for the "housekeeping' byte. The right byte of this final word is unused:

15t 2nd | 6th 7th
' word ‘ word ‘ | word I word ‘
| o e | |
integer s{1] s{2] s[9] s [10} byte unysed

The cali sizeof (s) returns 14,
If the maximum length of s is odd, the compiler uses the right byte of the last word for the extra byte. It

does not have to aliocate an extra word. For example, i s has a maximum ilength of g, the compiier
allocates 6 words of storage and sizeof (s returns 12.

817

SET STORAGE

The compiler aliocates storage for a set in minimum units of single words according to the ardinal base
type of the set. For gertain base types, the cardinality of this type directly determines the number of bits
and, hence, the number of words needed to represent the set. This is the case, for example, with
enumeraied base types. Suppose:

VAR
s: SET OF {fire, air, earth, water};

The cardinality of the base type of s is 4 and the compiler aliocates 1 word of storage. Bits 0 thrciugh 3 of
this word will represent the members of s,

The standard type boolean has a cardinaiity of 2 and is represented by the subrange 0..1. it requires 1
word of storage. The type char has 256 elements and irnplies the subrange 0..2585. It requires 16 words of
storage. When a set declaration has the base type integer, the compiler defaults the cardinality to 256 ang
assigns 16 words of storage. Values outside the range 0..255 cannot be members of this set.

When a subrange is specified as the base type, the compiler allocates storage in a different manner. it
determines the positions of the upper and lower bounds on a logical word axis and then assigns storage
according to the number of words 'occupied’ by the subrange. This means more words than the actual
number of subrange bits required may be allocated. This scheme, however, permits the machine code for
set operations 10 avoid shift operations. The compiler treats any sort of subrange base type in this manner
— subranges of integer, char, or enumerated {ypes.

g-18

SET STORAGE

Starting at the origin and going right on the logical word axis, the subrange 0..15 occupies fogical word 0;
the subrange 16..31logical word 1; the subrange 32..47 logica! word 2; etc. Going to the left, the subrange
-16..-1 s in logicial word -1; the subrange -32..-17 logical word -2, etc. (see Fig. 8-1a).

Then to allocate storage, the compiler subtracts the lower bound word position from the upper bound
word position and adds 1. The result is the number of words required for storage. Suppose:

VAR
s: SET OF -7..18;

The upper bound of the subrange representing the base type of s falls in logical word 1. The lower bound is
in logical word -1 (see Fig. 9-1b). Subtracting the latter from the tormer and adding 1 results in 3, and this
is the number of words the compiler will allocate for the storage of s. Bit 8 of the first word represents the
vajue -7, bit 9 the value -8, and so on. Bit 2 of the third word represents the upper bound, 18, This means
bits 0-7 of the first word and bits 3-15 of the third are unused (see Fig. 9-1¢).

The cardinality of the subrange -7.. 18 is 26. Without reference to the logical word axis, i.e. if the base type
of s were an enumerated type, this would require 2 words of sterage. In fact, s requires 3 words of storage.

Thus, in order to optimize storage, the programmer should aveid small subranges which overiap

logical word boundaries. For examgile, if the base type of a setis the subrange 15.. 16, the compiler will
allocate 2 words of storage, even though only two bits represent the sat.

9-19

SET STORAGE

Lw-3 LW-2 LW-1 LWo LwW1 LW2

.. .- etc.
| | | 1 | o 1 .
—48 —~32 -~ 18 0 15 31 47
{a) The lopgical word axis. LW == logical word.
LW-1 Lwo LW1
ee B1C.
1 I I |
— 16 0 15 31

-7 18

{b} Position of subrange —7 . . 18 on logical word axis.

15t word Znd word _ 3rd word
l//z’f! I l/fu/-;/u
0 0 0
. Y N
Bit 8 of 1st word Bit 2 of 3rd word
represents —7. rapresents 18.

{c) Actuai storage of the type SET OF —7..18. / = unused.

Figure 8-1, SET STORAGE

8-20

Keven
Rectangle

FILE STORAGE

The declaration of a logical file causes the compiler to allocate space on the stack for the file control block
and the file buffer variabie.

The size of the file control block varies from 8 10 13 words, depending on the type of the file, The
programmer has no control over the size of this allocation.

The size of the buffer variable storage, on the other hand, depends on the type of the file component. For
exampie, a file of integer requires 2 words of storage for the butfer variable; a file of longreal 4 words; a file
of char 1 word; etc. Textfiles, however, are buffered one line at a time, not one character. The storage for a
text file buffer variable, then, is 128 words.

In certain cases, the judicious programmer may optimize file operation speed or file buffer size. Suppose:

VAR
f£: FILE OF integer;

The buffer variabie of f requires only 2 words of storage. Alternatively, the programmer may declare:

VAR
f: FILE OF ARRAY[1..100] OF integer;

The buffer variable for f now takes 200 words of space on the stack. However, it is now possible to perform
certain file operations more efficiently. For example, the programmer can assign values to components in
{he buffer and then write the buffer to the file:

FOR i:= 1 TO 100 DO #£+[i]:= 10;
put{f);

g-21

STORAGE OPTIMIZATION

A SUMMARY .

The previous pages of this chapter describe the storage requirements of the various Pascal /3000 data
types in detail. Here is a2 summary of the ways the programmer can oplimize storage:

(1) In an unpacked array, components of type boolean, char, or enumerated types with less than 257
slements occupy one byte of storage. Thus, twe components of such an array require 1 word of storage. In
particular, this means an unpacked array of char fakes the same storage as a packed array of char (PAC).

{2) In a packed array, certain data types appear as bit storage fields aligned by bit boundary. A bit
storage field never crosses a word boundary. These types include booiean, char, integer subrange,
enumerated, and subrange of enumerated types. If a bit field requires 6, or 7 bits, the compiler assigns a
byte storage field since no more than two 8 or 7 bit fields could fit in a single word in any case. Thus, the
programmer may wish to tailor the data types so that only a 5 bit storage field is needed. Three & bit fields
would occupy a singie word.

{3} In a packed or unpacked record, the programmer may optimize storage by deliberately listing the
record fields in & particular order in source code.

(4) The compiler determines set storage by the logical word reguirement of the base type of the set.
This means that a small subrange which overiaps a logical word boundary may require more storage
than a similar subrange which doesn’'t. The programmer can optimize set storage by positioning a
subrange on the logical word axis so that it crosses the minimum number of logical word boundaries.

(5} The size of the file buffer variable on the stack or the heap depends on the type of the file component.
The programmer may choose to minimize this storage or maximize it in order 10 avoid the high overhead of
frequent input or output operations between the data stack and a file on external disc.

Additionally, the programmer should note that the system makes a singie copy of each value parameter

when a program calls a procedure or function, This may use up a critical amount of storage if, for example,
a value parameter is a large array.

- 922

Keven
Rectangle

EXECUTION EFFICIENCY

As well as storage, the programmer must often consider the interrelated issue of execution efficiency,
especially when alternative versions of source code are otherwise equivalent.

Addressing Modes

The compiter generates object code which aceesses program data with a variety of machine instructions.
Depending on the type of the data, these instructions may use direct or indirect addressing. Direct
addressing is more efficient in terms of space and time.

The compiler issues direct address instructions for global variables and ocal variables which require 3 or
tewer words of storage. It emits indirect address instructions for variables requiring more than 3 words of
storage, or for variables which are non-local and non-giobal. Also, it generates indirect address
instructions for ail dynamic variables on the heap and for reference parameters.

For value parameters, on the other hand, the compiter produces indirect address instructions it the
parameter is very farge or if the actual parameter list is very fong. It may emit direct address instructions
when one or both these conditions are false. The TABLES option (see Section 8} will indicate the actual
case.

Table 9-1 summarizes these observations.

Table 9-1. DATA ACCESS

DATA CLASS - ADDRESSING MODE

Static variables

Global <= 3 words Direct

Local <<= 3 words Direct

Non-igcal, non-global indirect
Dynamic variabies indirect
Parameters

Reference Indirect

Value Direct ar Indirect

EXECUTION EFFICIENCY

indexing Arrays and Records

The access time for an element of a packed structure can be significantly greater if the programmer uses a
variable expression rather than-a constant to determine the offset af run time. For example, it is faster to
select a component of a packed array with a constant or constant expression index rather than with a
variable. 3

On the other hand, there is not much time difference when a constant index selects a component of a
packed or an equivalent unpacked structure,

In sum, to maximize storage and spesd, the programmer should prefer packed struciures indexed with

constants or constant expressions.

Partiai Evaluation

The system avaluates boolean expressions compiied with PARTIAL_.EVAL ON more quickly than boolean
expressions compiied with PARTIAL__EVAL OFF.

Common Subexpressions

The compiler does not sliminate common subexpressions, but the programmer may often do so by using
temporary variables 1o save intermediate results. The programmer may eliminate subexpressions mvolvmg
the re-calculation of record addresses by employing the WITH statement (see below),

Constant Folding

if an expression ¢ontaing more than one literal, declared constant, or constant expression, the
programmer may optimize performance by grouping these elemenis next o one another in source code.
For example, the expression:

2+ A+ B + maxsize

where A and B are variables and maxsize is a declared constant, results in less efficient object code than
the expression:

g-24

EXECUTION EFFICIENCY

2+ maxsize + A+ B

In the second case, the compiler ig able tb evaluate the first three tokens, i.e. 2, +, and maxsize, and
repiace them with a new constani without generating any object code. This is termed "constant foiding’.

Since evaluation proceeds from left to right when operator precedence is equal, however, the expression
2 + A + maxsize

is not oplimized by
A + 2 + maxsize

which is equivalent 10 (A + 2) + maxsize. Instead, the programmer should write

2 + maxsize + A or A + (2 + maxsize)

Numeric Data Types

Using exact subranges may save time and the programmer shouid prefer real variables 1o longreai
variabies, Operations with reals are generally faster; longreals offer more precision at the expense of
execution speed.

An integer subrange in the range -32768..32767 requires one word of storage. It may not be the case,
however, that iwo integer operands typed within this range will necessarily result in single word arithmetic.
For example, suppose: :

VAR
m: 0..32767;
n: =1i00..100;
BEGIN

m;-'— {n * m) MOD 32767;

END

9-25

EXECUTION EFFICIENCY

Regardiess of the 1-word typing of m and n, the compiter emits double word instructions to evaluate m * n
since the result is potentially greater than 32767 or less than -32768. Thus, the programmer should use
subranges as close 1o zero as possible.

Range Checking

Range checking is extremely useful in debugging a program. I aisc can add a significant amount of
overhead which the programmer may wish to eliminate from fully tested, frequently executed portions of a
program by recompiling with the RANGE option OFF. However, the system performs certain checking, e.g.
for division by zero, regardiess of the RANGE setling.

Sets

The system performs set operations most efficiently on 1-word sets with identical base types, Also, it
handles 2-word sets more efficiently than larger sets.

WITH Statement

The programmer may use the WIiTH statement 1o avoid the repeated calcuiation of a record address when
referencing more than one field in the record (see Section 3). For exampie, these WITH statements
provide greater efficiency:

WITH p*.r PO <statement>
WITH p~.ali] DO <statement>

i there is no address recalculation, WITH provides no gain in efficiency. These statements, for exampie,
will save typing but not execution time:

WITE r DO <statement>
WITE p* DO <statement>

9-26

EXECUTION EFFICIENCY

Structured Constants

Structured constants are declared constants defined with record, array, string, or set consfructors (see
Section 2} A structured constant requires the same amount of storage as an equivalent structured variable
(except in the case of a record with variants), but the compiler stores the structured constant in the
program code segment and not in the data stack, Furthermore, the programmer must initialize a
structured variable at run time. In versions of Pascal without structured constants, this must be done
component by component.

The system does not copy structured constants to and from the data stack for each activation of a
procedure or function, which saves siack space as well as execution time.

Structured constants can improve on CASE statements which map one data type onto ancther. For
gxampie, the foliowing functions are equivalent:

TYPE
color = {red,blue)};
hue = {red,blue,purple);

FUNCTION shade FUNCTION shade

(colori, {colorl,
colorg: color): hues colorZ: coler): hue;
BEGIN '
CASE colerl OF TYPE
red: Tow = ARRAY [color] OF hue;

CASE color? OF

[
|
|
|
!
f
f
red: shade := red; | trans_table =
blue: shade := purple; | ARRAY [color] OF row;
END; | '
I
blue: | CONST
CASE colorz OF i table = trans_table
red: shade := purple; | - [row {red, purplel,
blue: shade := blue; | row {purple, bluell;
END; : |
END; | BEGIN
EKD; E shade := table{colorl,color2l;
| END;

9-27

EXECUTION EFFICIENCY

FOR Statement

FOR ioops with t-word integer control variables are much faster than FOR loops with 2-word integer or
byte control variables.

CASE Statement

More efficient object code results when the programmer specifies case constants in a CASE statement by
subrange rather than by ieration. That is,

CASE speed OF

1..k4: <statement>
END;

is better than
CASE speed OF

1,2,3,4: <statement>
END;

The programmer cannot rely on the system to consider the case constants of a CASE statement in any
particular order. The system treats all CASE constant values as being equally likely.

8-28

Keven
Rectangle

‘ ‘
USING PASCAL/3000 X

Before a Pascal/3000 source program becomes a valid HP3000 process, three steps must oceour:

{1) The Pascal/3000 compiler must translate the source code into binary form and store it as one or
more relocatable binary modules (RBM)} in a specially-formatted disc file calied a user subprogram li-
brary (USL). in USL form, however, the system cannot execute a program..

(2) The MPE Segmenter must prepare the USL for execution by binding the RBM's from the USL into
linked, re-entrant code segments organized in & program file, During preparation, the Segmenter also
defines the initial requirements of the user data stack.

{3) The MPE Operating System must aliocate and initiate execution of the program. in allocation, a
process binds the segments from the program file to referenced external segments from a segmented
liprary (SL). Then the process moves the first code segment and the associated data stack into main
memaory and initiates execution.

The programmer can advance through each of these sieps independently, controlling the specifics of each
process aiong the way. In particular, it is possible to use the MPE commands :PASCAL, :PREP, and :RUN
for steps 1, 2, and 3, respectively.

Alternatively, the programmer rmay combine steps with a single MPE command. For example, the MPE
command :PASCALPREP performs steps 1 and 2; the MPE command :PASCALGO steps 1, 2, and 3; the
MPE command :PREPRUN steps 2 and 3.

Subsequent pages discuss the MPE commands :PASCAL, :PASCALPREP, and :PASCALGO in detail,
They alsc explain how the programmer may invoke the Pascal/ 3000 compiler with the :RUN command, in
the discugsion of these commands, optional parameters appear in square brackets. '

This section also outlines technigues for debugging Pascal/3000 programs and trapping run-time errors,

10-1

:PASCAL

Format

‘PASCAL [textfile] [, [uslile] [, Histfile]] LINFO = "text”)

Parameters

textiile The name of the input file which the Pascal/3000 compiler will read. This may be any
ASCli-coded file. if omitted, the file 3STDIN, the current input device, is the default file. 1
the input file is an MPE disc file, it must be stored in a group with LOCK access.

usifile - The name of the USL file on which the ccrﬁpiier will write the obiect code, This may be any:
binary file. If omitted, the file SOLDPASS is the default file, If no file is in the passed state,
the system uses $NEWPASS, which is closed subsequently as $OLDPASS.

The programmer may create a new USL file in one of four ways:

(1) By specifying a non-existent USL file in the parameter. This creates a permanent
USL file of the corract size and type,

(2} By saving a default $OLDPASS USL file with the :SAVE command.
(3} By building a USL file with the MPE Segmenter command -BUILDUSL.

(4y By building a new file of USL type with the :BUILD command The filecode
parameter must be 1024 or USL.

listfile The name of the file on which the compiler will write the program listing. This can be any
ASCIl fite. If omitted, the system assigns the file $35TDLIST as the default file. Typlcaity thig
is the terminal in a session or the printer in & batch job.

10-2

:PASCAL

text The text field of the INFO parameter permits the programmer to specify initial compiter
options. Pascal/3000 brackets this field with dollar signs and places it before the first line of
source code In the textfile,

Description

The MPE command :PASCAL invokes the Pascai/ 3000 cdmpi!er and causes it 10 process the specified
source program and generate object code to a USL file. All of the parameters of the : F’ASCAL command
are optional with the resulting default vaiues indicated above.

When the textfile parameter is omitted, the default textﬁie is 3S8TDIN. In a session, this wiit be the terminal
and the programmer may enter source code interactively. A special prompt (=) appears on screen. The
programmer signals the end of source code by entering the colon () immediately after the prompt. If the
listfile is $STDLIST, the listing is not echoed back to the terminal. If the list file is $NULL or a file other then
$STOLIST, the compiler displays lines with errors on $STDLIST.

Examples
1 PASCAL mypro,myusl;INFO = "USLINIT"
{Complies souce file mypro into USL file myusl, which is . 3
{initialized to empty. }

:PASCAL mypro, *LP;INFO = "PAGE {Final Version}"
{Compiles source file mypro into $OLDPASS, prints listing
{on line printer with initial page eject, and inserts
{leading comment in source code.

T S gt

1PASCAL ,myusl
{Invokes compiler for interactive entry of source code. The }
{compiler will place the object code in the USL file myusl. }

10-3

:PASCALPREP

Format

‘PASCALPREP [textfite] [, [proglile} [, Distfile]]] [;INFO = "text"}

Parameters

textiiie

textfile

progfile

fisttile

text

The name of an input file from which the compiler will read the source program. This can
be any ASCli file.)f omitted, the compiler uses 3ETDIN as the default file, which permits
the programmer {0 enter source code interactively. if the input file is an MPE disc file, it
must be stored in a group with LOCK access.

The name of an input file from which the compiler will read the source program. This can be
any ASCII file. If omitted, the compiler uses $STDIN as the default file, which permits the
programmer 10 enter source code interactively.

The name of the program file on which the Segmenter will write the prepared program
segrhents. This can be any binary file. If omitted, the compiler uses the fils SNEWPASS as
the default file.

The programmer may create a program file in two ways:
{1) By spacifying a non-existent program file with the progfile parameter. The system
creates a temporary file of the correct size and type.
{2} By building a new program file with the :BUILD command. The filecode
parameter must be 1029,

if the programmer specifies an existing program filg, ihe system reuses this file. An error
occurs if this file is too small or if its file code is not PROG.

The name of a file on which the compiler will write the program listing. This can be any
ASCII file. it omitied, the compiler uses the system file $STDLIST as the default file.

The text field of the INFO parameter permits the programmer to specify initial compiier
options. Pascal/ 3000 brackets this field with doliar signs and places it before the first line
of source code in the iextfile,

10-4

Keven
Rectangle

:PASCALPREP

Description

The MPE command :PASCALPREP compiles a Pascal/3000 program into a USL file and then prepares
this USL file into a specified program file. All of the parameters of the command are optional.

1f the programmer omits the textiile parameter, the system defaults {o $STDIN as the source fite. During a
session, this will be the terminal. The programmer may then enter source code interactively. A special
prompt (=) appears on screen. To terminate the source code, the programmer must enter a colon {: J
immediaiely after the prompt.

The MPE Segmenter assigns a few thousand extra words of heap and stack space to programs compiled
and prepared with the :PASCALPREP command. If a program requires a large heap, or if it is deeply
recursive, however, the programmer may have to increase the available space by using the DL or
MAXDATA parameters with the :RUN command.

Examples

:FILE LP;DEV=LP _

:PASCALPREP test, testprog,*lp;INFO = "TABLES ON”

{Compiles source file test, prints listing on line printer with}
{TABLES option ON, and prepares resulting USL file into program}
{file testprog.

:PASCALPREP test; INFO = "LIST OFF"

{Compiles source file test, suppressing the listing. Prepares }
{resulting USL file inte the default program file $NEWPASS, }
{which may be run ag the program file $OLDPASS b
:PASCALFPREP ,myprog

{Permits interactive entry of source code at terminal. This }
{code ig compiled and the resulting USL file is prepared into }
{the program file myprog. }

10-5

:PASCALGO

Format
:PASCALGO [textfile] [, {listfile]] [;INFO = "text’]

Parameters

textiile The name of an input file from which the compiter will read source code. This can be any
ASCli-coded file. If omitted, the compiler uses $3TDIN as the defauli file, which permits
the programmer 1o create source code interactively at the terminal. if an input file is an
MPE disc file, it must be stored in a group with LOCK access.

textfile The name of an input file from which the compiler will read source code. This can be any
ASCll-codead file. If omitied, the compiler uses $8TDIN as the default file, which permits the
programmer 10 create source code interactively at the terminal,

listfile The name of a file to which the compiler will transmit the program tisting. 1f omitted, the
default fite is $STDLIST.

{ext Pascal 3000 inserts the texi fieid of the INFO parameter before the first line of source code
in the textfile and brackets it with dollar signs ($). Thus, the programmer may use the INFO
parameter to specify initial compiler options. '

Description

The MPE command :PASCALGO compiles, prepares, and executes a Pascal/ 3000 program. All of the
parameters are optional. After successiul compietion of :PASCALGO, the program file is the temporary file
$OLDPASS, which the programmer may save using the MPE :SAVE command.

if the 1extfiie'parameter is omitted, the system permits the interactive creation of source code at the
terminal. A special prompt {>) appears. The programmer signals the end of source code Dy entering a
colon {1) immediately afier the prompt.

The MPE Segmenter aliocates a few thousand exira words of stack space for a prograrn compiied,
prepared, and executed by the :PASCALGO command. If a program uses a large heap, or if i is deeply
recursive, this default extra space may not be sufficient. The program will not execute successtully and the
programmer will have to use an alternative 1o :PASCALGO.

10-6

:PASCALGO

Exampies

: PASCALGO test INFO = "CODE_OFFSETS ON;TABLES ON"

{Compiles, prepares, and then executes the source file test.
{The listing appears on $STDLIST with two compiler cptions
{turned on by the INFO parameter,

Sy S St

:PASCALGO universe,$NULL
{Compiles the source text universe, discarding the listing, }
{and then prepares and executes the program. }

10-7

:RUN PASCAL.PUB.SYS

The Pascal/ 3000 compiler is a program file named PASCAL in the PUB group of the 8YS account. The
programmer may use the MPE command :RUN 1o execute PASCAL.PUB.SYS, i.e. invoke the
- Pascal/ 3000 compiler.

The default source, USL, and listing files for the compiler are $STDIN, $OLDPASS, and $STDLIST,
respectively. To override these default values, the programmer must perform two steps: (1} equate the
non-default file with its formal designator using an MPE :FILE command; (2) select an appropriate vaiue
for the PARM parameter of the :RUN command. This value indicates which files are not defaulted.

The compiler recognizes these format file designators:

Formal Designator ' File
PASTEXT source file
PASUSL USL file
PASLIST listing file

The PARM parameter of the :RUN command indicates which files have appeared in file equations. The
compiler opens these files instead of the defaull files. For the Pascal/3000 compiler, the PARM parameter
accepis an integer value in the range 0..7. The low order three bits of the PARM figld represent the thres
files:

Bit 13 Bit 14 Bit15
UsL listing source

10-8

Keven
Rectangle

DEBUGGING PASCAL/3000
PROGRAMS SYMBOLICALLY

Pascal/3000 programs can be debugged symbolically with the HPToolset uti!ity by entering the
$SYMDEBUG compiler option in your source file before any declaration statements.

The Symbolic Debug feature of HPToolset allows you 1o debug your program Dy referencing a
procedure name or the compiler generated line numbers of your listing instead of having 1o know
memoty locations. '

Refer to the HPTooiset Reference Manua! for information on how to run TCOLSET and use its
debugging facility. '

10-8A

Keven
Rectangle

:RUN PASCAL.PUB.SYS

The integer value of PARM sets these bils as foilows:

Value - Files present in FILE commands

none

source

listing

listing, source

ust

USL, source

USL., listing

USL, listing, source

SO A WA O

An error gccurs if the PARM value sets a bit for one of the three files and if no fle equation for that file
exists. On the other hand, if a file equation exists and the PARM value doesn't set the bit, the compiler will
use the defaull file,

Setting PARM 10 0 is equivalent to the command :PASCAL without parameters.

The :RUN command aiso has an optional INFO parameter. Pascal/ 3000 inserts the texi fieid of this
parameter before the first line of source code and brackets it with dollar signs {$). Thus, as with the
commands :PASCAL, :PASCALPREP, and :PASCALGO, the programmer may use INFO to specity initial
compiler options,

Examples

(FILE PASTEXT=MYSOURCE

:FILE PASLIST; DEV=LP

‘RUN PASCAL.PUB.SYS;PARM=3; INFO="TABLES ON"

{This sequence of MPE commands will compile the file MYSOQURCE }
{into the default USL file $NEWPASS. The listing will appear }
{on the line printer and will include an identifier table.

:FILE PASUSL=TESTUSL

:RUN PASCAL.PUB.SYS;PARM=UL; INFO="USLINIT"

{This sequence compiles source code entered interactively at
{the terminal, i.e. $STDIN, into the USL file TESTUSL, which
{the compiler initiazlizes to empty.

[

10-¢

RUNNING PASCAL/3000 PROGRAMS

The MPE :RUN command has two optional parameters, PARM and INFO, whose values the programmer
may pass to any Pascat/ 3000 program. The PARM field is a 16 bit signed intager. The INFO figid is a string
ot up to 255 characters, including the double or single quote delimiters at the beginning and end.

The programmer may obtain the values of PARM or INFQ in a Pascal/ 8000 program by specifying
appropriate parameters in the program heading. These parameters, which normally contain the names of
togical files, may specify a variable for PARM, a variabie for INFO, or both.

After placing them in the program parameter list, the programmer must declare the identifiers as global
variables in the declaration part of the outer block.

The variable for PARM must be type integer or an integer subrange. The system will convert the PARM
value {o this type and perform range checking if necessary.

The variable for INFO must be type string or PAC. The system will range check the length of the INFQ field
with this variabie if needed. If the INFO field is shorter than a packed array of char, the array will be biank
filled.

The system performs range chécking on the PARM value and the length of the INFO field depending on the
getting of the RANGE option when the compiler encounters the first line of the executable part of the outer
biock.

Section 8 discusses ways the programmer may use the INFO parameter to associate physical and logical
filgs.

10-10

Keven
Rectangle

RUNNING PASCAL/3000 PROGRAMS

Example

PROGRAM example 1 (parm,info);
VAR :

parm: infeger;

info: PACKED ARRAY [1..255] OF char;
BEGIN
END.

PROGRAM example 2 (i, input, ocutput, p);
VAR
p: 1..10;
i: stringfio]ls
BEGIN
END.

PROCGRAM example 3 (Jj);

VAR
J: -1..13

BEGIN

ERD.

PROGRAM example % (a};

VAR
a: PACKED ARRAY [1..132] OF char;

BECGIN
ERL;

10-11

DEBUGGING PASCAL/3000 PROGRAMS

To debug a Pascal/3000 program, the programmer may use the TABLES and CODE__OFFSETS compiler
options in conjunction with a PMAFP and the MPE Debug taciiity.

The TABLES option lists each declared identifier and its stack location {see Section 8). The CODE__
OFFSETS option shows the P register offset for each siatement in a compilation block (see Section B).
The PMAP indicates the procedure iocation within a code segment {see MPE Reference Manual} and is
available through the :PREP command. The Debug facility is documented in the Debug/Stack Dump
Reference Manual.

In general, the programmer may follow these steps:

{1} Compiie the program into a USL file with the TABLES and CODE...OFFSETS options ON and
direct the listing 1o the line printer.

'(2) Prepare the USL file into a program file invoking the PMAP option and directing the map to the line
printer.

{3} Run the program using the DEBUG facility, Set appropriate break points by using the segment
number and the code location from the PMAP combined with the statement offset from the listing.

{4} Resume program execution and, when the breakpoint occurs, use the variable locations on the
-isting to display or otherwise manipulate the current variable values.

To iflustrate these steps, we consider a sampie program. Show_.Debugging has a level 1 'biackbox’
function and a level 1 procedure which cails the function. When calling the function, the procedure passes
& giobal variable, a local variable, and an actual parameter from the main program as parameters. The

procedure stores the result of the function call in another focal variable and then writes this variable on the
standard file oufput.

The source code for Show__Debugging is:

10-12

DEBUGGING PASCAL/3000 PROGRAMS

$TABLES ON;CODE_OFFSETS ON§
PROGRAM Show Debugging (output);

TYPE .
smallint = -32768..32767; {Takes 1 word of storage.)}
VAR .
global var: smallint; {A global variable. H
FURCTION blackbox {This blackbox function is}
{parml: smallint; {invisible to the ordinary}
parm?: smallint; {reader,. }
parm3: smallint
}: smallint;
VAR temp result: smallint;
BEGIN

{ find max of parml and parm2 }
IF parml > parm2
THEN temp result := parml
ELSE temp result := parm2;
{ find min of temp_result and parm3 }
IF temp result < parmj .
THEN blackbox := temp result
ELSE Dblackbox := parm3;
END;

i

PROCEDURE a_level 1 proc (parm_wval: smallint);

VAR local war: smallint; {A local variable. }
result : smallint;
BEGIN

result := 0
local var := -32768;
result := blackbox {global_var,1ocalﬁyar,parmuyal};
writeln{ Blackbox returns’, result:f);
END;

BEGIN {Show Debugging)
global“va; 1= T3
a_level 1 proc{3);

END. {Show Debugging}

When compiled, this source code produces the following listing, which we have annotated with numbers
bracketed by asterisks, e.g. *1*, to aid subsequent discussion.

10-13

DEBUGGING PASCAL/3000 PROGRAMS

1.000 0 0 $TABLES ON;CODE_OFFSETS ON§
2.000 0 0 PROGRAM Show_Debugging {output);
3.600 C 0 TYPE

4.000 0 O smallint = -32768..32767;

R.000 © O VAR

6.000 © O global var: smallint;

7.008 0 O _

B.ODO O 0 FUNCTION blackbox

g.000 O O {parml: smallint;
10.000 0 © parmZ: smallint;

11.000 0 0O parm3: smallint
12.000 0 0 }: smallint;
13.000 © © VAR temp result: smallint;
1k.000 0 1 BEGIN

15.000 0 1 IF parml > parm2
16.000 1 1 THEN temp_result := parml
i7.000 2 1 ELSE temp result := parm2;
18.000 3 1 IF temp result < parm3 '
18.000 y 1 THEN ©blackbox := temp result
20.0066 5 1 ELSE ‘blackbox := parm3;
21.000 S 1 END;
22.000 & 0

CODE OFFSETS
STMT P LOC STMT P LOC STMT P LOC
0 00001b 2 000022 L 000027
i 000017 3 000024 5 000032

IDENTIFIER MAP

IDENTIFIER CLASS TYPE | ADDRESSIVALUE
BLACKBOX FUNCTION SUBRANGE Q-7

PARM] PARAMETER SUBRANGE Q -6

PARM2 PARAMETER SUBRANGE Q-5

PARM3 PARAMETER SUBRANGE Q -b
TEMP_RESULT VARIABLE SUBRANGE Q +1

PRIMARY @ BSTORAGE = 1 SECONDARY Q@ STORAGE = O

NON LOCAL VARIABLES = ©

10-14

Keven
Rectangle

DEBUGGING PASCAL /3000 PROGRAMS

- 23.000 6 O PROCEDURE a_level 1 proc (parm val: smallint);
2L, 000 0 ¢ VAR local var: smallint;
25.000 0 © result: smallint;
26.000 0 1 BEGIN
27.000 O 1 result := 0;
28.000 1 1 local var := ~32768;
26.000 2 1 result:=blackbox{glebal var,local var,parm val);
30.000 3 1 writein { Blackbox returns', result:6);
31.000 3 1 END; : '
32.000 % ©
CODE OFFSETS
) *lﬁ *6*
STMT P LOC STHT P LOC STMT P LOC ST P LOC
g 00001k 1 000016 2 000020 3 000028
IDENTIFIER MAP

IDENTIFIER CLASS TYPE ADDRESS /VALUE
*3*LOCAL_V£R VARIABLE SUBRANGE Q +1
*h*PARMLﬁEL PARSMETER SUBRANGE Q -4
*S¥RESULT VARIABLE SUBRANGE Q +2

PRIMARY Q STORAGE = 5 SECONDARY @ STORAGE = 0

NON LOCAL VARIABLES = 0

33,000 0 1 BEGIN {main}

34.000 0 1 global var := T;
35.000 1 t a_level 1 proc {(3);
36.000 1 1 END.

CODE OFFGSETSES

STMT P LOC SIMT P LOC
0 000035 1 000037

IDENTIFPFIER MAP

IDENTIFIER CLASS TYPE ADDRESS/VALUE

A_LEVEL 1 PROC PROCEDURE

BLACKBOX NON LOC FUNC SUBRANGE Q -7
*2%GLOBAL VAR VARIABLE SUBRANGE DB+1

OUTPUT PARAMETER. FILE DB+0,I

SMALLINT USER DEFINED SUBRANGE

PRIMARY DB STORAGE = 2 SECONDARY DB STORAGE = 21k

NON LOCAL VARIABLES = 0

10-15

DEBUGGING PASCAL/3000 PROGRAMS

We then prepare the USL file to a program file with the :PREP command and the PMAP option. The
resulting PMAP looks like this:

PROGRAM FILE <progam filename>

SEG' 0

NAME ' STT CODE ENTRY SEG

OB’ 1) 13

TERMINATE N ?

P'REWRITE 5 ?

P'CLOSEIO 6 ?

P'INITHEAP' 3000 7 ?

A_LEVEL_1_PROC 2 51 64

PTWRITELN 10 ?

P WRITESTR 11 ?

P WRITESINT 12 ?

BLACKBROX 3 13k 147

SEGMENT LENGTH 204
PRIMARY DB 3 INITIAL STACK 102h0 CAPABILITY 600
SECONDARY DB 214 INITIAL DL 0 TOTAL CODE 204
TOTAL DB 216 MAXIMUM DATA ? TOTAL RECORDS T
ELAPSED TIME 00:00:00.837 PROCESSOR TIME 00:00.277

The necessary information to use the Debug facility successiully is now on hand. We will set a break point
at the place in the program where the level 1 procedure calls biackbox; examine the values of the three
parameters and the vaiue of the local variable which will store the function return; and then set & second

break point immediately after the call to blackbox and again ook at the local variable storing the returned
value.

We begin by executing the program with the DEBUG option specified. To set the first break point at the
call to blackbox, we first use the PMAP to find the segment number, G, and the code location, 51, fora
level_1..proc. Then we turn 1o the listing which shows that the call to blackbox occurs in statement 2 of
this procedure. The offset of this statement is 20 {see *1* above).

10-16

Keven
Rectangle

DEBUGGING PASCAL/3000 PROGRAMS

Thus, the initial Debug prompt and our response will be
b 0.51+20

foliowed by
7

1o 'resurne’ execution,

When the process reaches the break point, Debug again prompts us for a command. To dispiay the value
of the global._..var parameter, we look at the listing to find the variable’s iocation on the stack, it is DB+ 1
{see *2* above)., We respond to the Debug prompt accordingly, and the current value appears in decirnal

?2d db+ 1
DB+ 1 +00007

The value of global.._var at the time of the call to blackbox is 7.

in analogous fashion, we now display the current values of local__var, parm__vai, and result, using the
tocations Q-+ 1, O-4, and Q+2, respectively {see *3*, *4*, and *5* above)

2d q+1,i

Q-1 ~-32768
7d g-4,i

Q-4 <+ 00003
?d q+2,i

Q+2 <+ 00000

The value of local__var is -32768; parm__val 3; result .

10-17

DEBUGGING PASCAL/3000 PROGRAMS

We now set the second break point immediately after the function call, i.e. statement 3 of the procedure,
and then resume execution. The code offset of statement 3 is 26 (see *6* above). The segment number
and procedure entry point are unchangad.

?b 0.51+28
"

At the break, we again display the value of the variable containing the function return. its location is still
G+2 (see *5* above),

?2d g+
Q+2 +00003

The new vaiue of result is 3.

Now, by resuming, we allow execution to finish:

r
Blackbox returns 3

'END OF PROGRAM

10-18

Keven
Rectangle

- TRAPPING RUN-TIME ERRORS

An error in Pascal/ 3000 may be a compiie-time error, & run-time error, or an undetected error. These three
types of error occur when:

{1) The compiier detects and reports the error at compile time. The error message appears on the

(2)

(3)

listing with a caret {a) pointing to the location of the problem. Appendix C discusses the compile-
time errors.

The system detects an error at run time. The system witl report the error and abort the program
untess the programmer has created and armed a trap procedure. Appendix D lists the run-time
errors.

Neither the compiter nor the system detect the error and no message appears. Appendix E
discusses currently undetected errors for Pascal/3000. In any future release, an undetectsd error
may become a compile-time or run-time error.

Pascal/ 3000 permits the programmer to use the XLIBTRAP intrinsic to trap any software-related run-time
grrof. Alsg, the XARITRAP intrinsic can trap hardware-related run-time errors such as integer overfiow or
division by O.

To use the XLIBTRAP intrinsic for software-related run-time errors, the prdgrammer must follow these

steps:

(A} Declare the XLIBTRAP infrinsic in Pascal source code with the INTRINSIC directive (see Section 2

(8)

and the MPE intrinsics Reference Manual).

Deciars the trap procedure using the appropriate formal parameters. in particular, the first faormal
paramster must be a VAR parameter. it will return the stack marker created when the error
pccurred. (In the example below, only the 1st word is returned.) The second and third parameters
must be 1-word VAR parameters. The second returns the number of the error. The third is a flag
which the programmer can set with an integer value within the trap procedure.

10-18

TRAPPING RUN-TIME ERRORS

According to the setting of this flag on exit from the {rap procedure, the system will abort
the program, continue execution, print the system error message, or suppress this
message. The following table indicates how various types of flag values determine the
permutations of the possible actions.

Flag Action

0, or <0 and even Continue exacution;
suppress message

>0 and even Continue execution:
print message

>0 and odd Stop execution;
print message

<0 and odd Stop execution; |
: SUppress message

If the flag is not set anywhere in the trap, the system uses 1 as the default flag value on
exiting the procedure.

The Compiler Library Reference Manual, Section IV, examines these parameters in detail.

{C} Arm the frap by caliing XLIBTRAP in the executable part of the program. The first
actual parameter must be the external iabei of the trap procedure. in Pascal /3000,
this is availabie from the waddress function when the name of the trap procedure is
the argument (see Section 7). The second actual parameter must be a reference
parameter, i.e. a variable. The intrinsic SPL parameter type is INTEGER, so 2
suitable type is the integer subrange -32768.,32767. This second parameter returns
the previous external label to the program, or 0 if no label existed.

10-20

Keven
Rectangle

TRAPPING RUN-TIME ERRORS

A trap is disarmed when the first actual parameter of the XLIBTRAP call is 0.

After a XLIBTRAP call, the condition code returned by the procedure ccode indicates the
success of the operation (see MPE Intrinsics Reference Manual).

The example below illustrates these three steps.

To use the XARITRAP intringic, the programmer must foliow a series of analogous steps. The only
possible parameter for the trap procedure, however, is & 1-word VAR parameter which returns a bit
pattern indicating which hardware error ogcured. The parameters of the XARITRAP intrinsic are
described in detail in the MPE intrinsics Reference Manual. XCONTRAP, XSYSTRAP and XARITRAP
handiers cannot be totally written in Pascal.

Example:
PROGRAM FileErrorTrap(input,output);

{The main program reguests the name of a file for processing}
{from the user. If this name causes a file system error at)
{the c¢all to reset, the trap procedure prints the error }
{message and lets the user re-enter a file name. Otherwise, }
{the program aborts with a message from the trap.)

TYPE
ShortInteger = -32768..32767;
VAR
Try_Again : boolean;
01d_P _Label : Shortinteger;
Filel : FILE OF integer;
File Name : PACKED ARRAY{1..40} OF char;

PROCEDURE XLibTrap; INTRINSIC; {step A}

Since level 2,3... procedures are only known o Pascal alf TRAP MANDLERS should be level 1
procedures.

10-21

TRAPPING RUN-TIME ERRORS

PROCEDURE Lib Traps({step B}
VAR StkMrk,
ErrerNum,
AbertFlag : Shortlinteger
): {must be a level 1 procedure}
TYPE
Msglen = 1..72;
VAR
Message_Buffer : PACKED ARRAY[Msglen] OF char;
Message Length : MsgLen;
F§_Erroxr : Shortinteger;

PROCEDURE FErrMsg; INTRINSIC;
PROCEDURE FCheck; INTRINSIC;
BEGIN {Lib_Traps}.

CASE ErrorNum OF
692
BEGIN {File open error}
FCheck(0,FS_Error);
FErrMsg(FS_Error,Message Buffer,Messapge Length);
writeln{Message Buffer : Message Length}s
Try_ Again := frue;)
AbortFlag:= 0; {permits return t¢ main program}
END; {File open error)
OTHERWISE
Try Again := false;
END; {CASE ErrorNum}

IF NOT Try Again THEN
BEGIN -
writeln{ *** Error detected during execution ***'});
writeln{ *** Library Error No. ' ,ErrorNum:8," ***').
AbortFlag:= -1; {causes abort without message}
END; '

END; (Lib_Traps}

10-22

Keven
Rectangle

TRAPPING RUN-TIME ERRORS

BEGIN {FileErrorTrap}
KLivIrap(waddress(Lib _Traps), Old P Label); {step C}
Try Again := frue;

WHILE Try_ Again DO
BEGIN
prompt (' Type file name for input: ')
readin(File Name); g
Try_Again ;= false; {Only try again if this one fails.}
reset(Filel,File Name);
END :
WHILE NOT ecof(Filel) DO
BEGIN
{Process Filel}
END;

END. {FileErrorTrap}

10-23

Keven
Rectangle

PASCAL/3000 SYNTAX DIAGRAMS A

program—...[program heading ° m - .

rogram
gea%iig PROGRAM identitier } .

7N
s

O 40

P VR

oS _

nsigned :
biock «—.——L i

r ¢ ™

identifier

TYPE identifier ° :) -

\..p1 procedure heading }O—{ Bblock
i function heading directive

G-y

staterment

A-1

PASCAL/3000 SYNTAX DIAGRAMS

type
CONSIUCIOT —u igentiﬁar —.@‘\

L constant
\—[—- fieid identifier : camstant

construtior

‘N
NS j

constant

.
L

type ~ ‘.-{ type identifier

ﬂ

O— == /
\—OO—-Di type identifier }— -

FACKED

index type

RECORD field tist END v
J
: =)
FiLE QF = R
G W S v, B

A-2

Keven
Rectangle

PASCAL/3000 SYNTAX DIAGRAMS

fieﬁq fist (_ Bl)

s - -

fie pprndier

N
(g
e P
e ’@f bt (-)"{ }"" o
S
Faa
oA

procedure

heading —(_PROCEDURE_H identifier I—t‘ farmal paramater list }T

function

O (T FUNCTION y—{ identitier Torma parameter st ()
heading fier_} I I =

PASCAL/3000 SYNTAX DIAGRAMS

N\,
o/
formai
parametear —.® - » identifier Type identifier
list _ ’ o
At procedure heading A
\-,l function heading % v
FORWARD \
directive INTRINSIC } >
EXTERNAL A

m VARIABLE

COBOL s

A-4

Keven
Rectangle

wrrigred
nipger

PASCAL/3000 SYNTAX DIAGRAMS

statement [,

r i
varsabie wdeniatier
felezma;
" funeton @enlfer
.
GOTO nigger
-

WHILE

Gty eorewen J+{29)

L—(&LSEH iTRCemAnT I—l‘
O-[F=

cirstanT

eongtant

CTHERWISE

END

Lol)

N
o }

dtazernem

A-b

PASCAL/3000 SYNTAX DIAGRAMS

expres_sion unsignad > e .

O~}

| [~

sglesior

S e
L e J wh@j - [o
TR

selector

Y

o 1)
'—\J
L..O—. field identifier A

EXPIESSION Jmm

A-6

Keven
Rectangle

PASCAL./3000 SYNTAX DIAGRAM

identifier ————w] tetter .

ot lotter e

e dight -

unsigned [R }
digit

integer

real or o] unsigned u ansigned
fongreal e “ integer T
unsighed

integer

AT

PASCAL/3000 SYNTAX DIAGRAMS

string
literal

character

S T

comment “ 1 charagier —7—@—~

A-8

Keven
Rectangle

PASCAL/3000 SYNTAX DIAGRAMS

corz_wpt!er o identifier ~ N
options

unsigned integer —

string lizerat .] #1“" % M

{

A-9

Keven
Rectangle

RESERVED WORDS AND -
STANDARD IDENTIFIERS B |

Reserved Woids

Reserved words are indivisible symbols with a fixed meaning. The programmer may not redefine a
reserved word, or use it other than in its defined way, except within a string literal or a comment.

Reserved words appear in upper case througout this manual. Within a Pascal/ 3000 source text, however,
they may appear in any combination of upper and lower case. The Pascal/ 3000 reserved words are:

AND ELSE IN OTHERWISE THEN
ARRAY END LABEL FPACKED T0
BEGIN FiLE MOoD PROCEDURE TYPE
CASE FCR NiL PROGRAM UNTIL
CONST FUNCTION NOT RECORD VAR
Div GOT0 OF REPEAT WHILE
DO IF ' OR SET WITH
DOWNTO

OTHERWISE is a special case. It ceases to be a reserved word when the ANSI compiler option is ON, or
when the STANDARD__LEVEL option is set to ANSI {see Section 8). When one of these conditions hold,
OTHERWISE may appear as a programmer-defined identifier.

Standard Identifiers

Standard identifiers are predsfined identifiers which the compiler will recognize without explicit declaration
in source code. The programmer, however, may redefine a standard identifier in source code. In this case,
the compiter recognizes the new definition within the scope of the deciared identifier.

Standard identifiers appear initalics throughout this manual. In source code, the compiler recognizes
standard identifiers in any combination of upper and lower case.

B-1

RESERVED WORDS AND STANDARD IDENTIFIERS

The Pascal/ 3000 standard identifiers are;

Standard Constants

false

Standard Types

boolean
char

Standard Files

input

maxint

integer
fongreal

ourpuf

Standard Functions

abs

arctan
*baddress

binary
*ccode

chr

cos

eof

eoin

exp

“faum
hex
linepos
in
maxpos
octal
odd
ord

Standard Procedures

append
*assert
close
dispose
get
hatt
mark
new

*Pascal/ 3000 only,

open

overprint

pack
page
prompt
put
read
readdir

minint

real
string

position

- pred

round
sin
*sizeof
sqr
sqgrt
str
strien

release
readin
resef
rewrite
seek
setstrien
strappend
strdeiete

B-2

true

text

stritrim
strmax
strpos
strrpt
strrtrim
SUCe
trunc
*waddress

strinsert
strmove
strread
strwrite
unpack
write
writedir
writeln

Keven
Rectangle

COMPILE-TIME ERRORS
AND WARNINGS "¢ |

This appendix lists the annotated compile-time error messages and warnings for the Pascal/3000
compiler. Compile-time errors are numbersed in the range 0..499; warnings are in the range 500..599.

The text of the message is {ollowed by notes explaining the situations which cause the error or warning. An
exciamation point (1) in the messages reproduced here will be replaced in an actual message with an
appropiate token. These error and warning messages fogether with the notes are available on iine in the
file PASCAT.PUB.BYS.

COMPILE-TIME ERRORS

001 FLOATING POINT OVERFLOW (001)
1. The absolute vaiue of a real number is greater than 1.15792E77.
2. The absoclute value of a longreal number is greater than 1.1578208923731682E77.

002 FLOATING POINT UNDERFLOW (002)
1. The real number is nonzero and the absolute value is tess than 8.8636817E-78.
2. The longreal number is nonzero and the gbsolule value is less than 8.636 16855509444 5k-78.

003 ERROR IN FLOATING POINT NUMBER REPRESENTATION (003)
1. The real or longreal number must have a digit after the decimal point.

004 AN EXPONENT 1S REQUIRED HERE (004)
1. The exponent for a real or longreal number is missing. A number is required after the 'E' or L.

005 {LLEGAL CONTROL CHARACTER CONSTANT (0085)
1. The value of the constant foliowing the sharp (#) is greater than 258.
2. The only characters that can follow a sharp (#) arealetier, @, [], \, », 0r __

006 A QUOTE IS EXPECTED HEF{EI {006)

1. The end of iine was found before the terminating quote. Strings literals cannot span source
lines.

007 INTEGER OVERFLOW (007}
1. The absciute value of the integer is greater than maxint, i.e. 2147483647

008 END OF FILE FOUND BEFORE EXPECTED (008)
1. The compiler expects more source code. There may be an unmatched BEGIN-END or an
ynciosed comment.

009 UNRECOGNIZED CHARACTER (009}
1. Aniliegal character was found in the source.

{010 100 ERRORS~-PROGRAM TERMINATED (010)
1. Only 100 errors are allowed before the compiler stops.

C-1

COMPILE-TIME ERRORS

011 A COMMA 1S REQUIRED HERE (011)
1. A comma is needed 10 separate procedure/function names in the SUBPROGRAM compiler
option.

012 VARIABLE SPECIFICATION NOT ALLOWED HERE (012)
1. Only SPL procedures are allowed to have a variable number of parameters.

013 IDENTIFIER DOUBLY DEFINED {013}
-1, Anidentifier in a parameter iist is a duplicate of another identifier.
2. The procedure/function name is defined earlier and is not a FORWARD procedure/ function.
3. The field name of a record is already declared.
4. The identifier is already deciared in the current scope.

014 IDENTIFIER NOT DEFINED (014)
1. The identifier is an undeclared variable, constant, procedure or function.
2. The type identifier is undeclared,

015 INVALID VARIABLE USE (015)

1. The control variable of a FOR loop is being modified in the component statement of the FOR
toop, e.g. it is the control variable of a nested FOR loop, the ieft side of an assignment
statement, or an actual reference parameter of a user-defined or standard procedure.

2. The variabie appears in the variable list of a2 WiTH statement but is not a record type.

3. The identifer appears with subscripts but it s not an array or string.

016 TYPE iDENTIFIER REQUIRED HERE (016)
1. A constant or variable identifier has been used where a type identifier is required.

017 INVALID TYPE IDENTIFIER USE (017)
1. A type identifier has been used where a constant or variable identitier is required.
2. The construct in which the identifier occurs is not legal in this context, This is often an array,
record, or et constructor in executable code.

018 A CONSTANT EXPRESSION I8 REQUIRED HERE (018)
1. Avariable occurs where a constant is required.
2. An expression with variables occurs where & constant expression is required.
3. The expression contains an operator or a standard procedurs or function which is not legal ina
constant expression.
4, The expression containg constant operands which are not iegal, €.¢. real, set, or boolean
vaiues.

012 INVALID FORWARD TYPE IDENTIFIER DEFINITION (019)

1. The identifier appeared in a forward type definition and is now being decliared as somaething
cther than a type. :

020 BOOLEAN EXPRESSION IS REQUIRED HERE (020)
1. An expression with & boolean result is required here.

c-2

Keven
Rectangle

COMPILE-TIME ERRORS

021 AN ORDINAL EXFPRESSION 18 REQUIRED HERE (021}
1. An expression with an ordinal result is required here,

022 INCOMPATIBLE SUBRANGE BOUNDS (022)
1. The type of the lower bound is not compatible with the type of the upper bound in a subrange. -

023 AN INTEGER EXPRESSION i8S REQUIRED HERE (023)
1. An expression with an integer resuit is required for the repeat factor in zhe ‘OF construct ina
constructor,

024 LOWER BOUND OF SUBRANGE IS GREATER THAN UPPER BOUND {024}
1. The lower bound is greater than the upper bound in a subrange type declaration.

025 FOUND UNEXPECTED V" (025)
1. The compiler was not expecting this token and it has been discarded. The token is itlegal here
or a previous undetectable error has caused the compiler 1o issue this message, e.g. a semi-
colon (;} before ELSE.

026 MISSING "I” (028)
1. The compiler expected this token but it was omitted or badly misspeiled. The correct {oken
was inserted.

027 "t" FOUND BEFORE EXPECTED. SOURCE MISSING. (027)
1. The compiler found this token before it was expected. The compiler was able to accept it by
inserting dummy conditions or statements,

028 MISUNDERSTOOD SOURCE BEFORE "V (028)
1. The compiler has discarded some previously accepied source code preceding this token.
Either the token is inappropriate but the compiler has been able to accept it by ignoring
previous code, or the token is correct and code must now be discarded.

029 " NOT ALLOWED AS A STRING LITERAL DELIMITER (029)
1. A double guote cannot delimit & string literal.

030 OPEN FAILED ON SQURCE FILE “I" (030}
1. The compiler could not open the source file.
2. The compiler could not open the include file.

(031 READ FAILED ON SQURCE FILE {031)
1. The compiier coutd not read the source fiie.
2. The compller could not read the include file.

032 EMPTY SQURCE FIiLE (032)
1. The source file is empty.

C-3

COMPILE-TIME ERRORS

(033 MISSPELLED RESERVED WORD: ™" {033)
1. The reserved word is misspelied.

034 FORWARD TYPE "" NOT FOUND (034)
1. The identifier occurs in a pointer type definition but is not subsequently defmed

035 FORWARD PROCEDURE "{" NOT DECLARED (035)
1. A procedure dectared with the FORWARD directive is not subsequently defined. The definition
may be missing, or the name appearing in the definition may be misspelled.

036 VIOLATION QF PASCAL SCOPING RULES (036)
1. The scope of a Pascal identifier is the entire biock in which it is declared. It is not possibie to
use an identitier from an enclosing tevel and then to redefing it at the nsw level.

037 INVALID USE OF 1" IN PCINTER DEFINITION {037}
1. A nonetype identifier defined on a previous level was used in a pointer type definition.

038 {LLEGAL PASCAL CONSTRUCT (038)
1. The use of the FOR construct with strings is illegal.

03¢ "1 ACCESSED, BUT NOT INITIALIZED {039)
1. A simple variable appears in an expression, as a vaiue parameter, or in some other accessing
reference and it has never appeared in an assigning reference, i.e. as a reference parameter, on
- the left side of an assignment statement, etc.
2. Bome component of a structured variable appears in an accessing reference but no
component of that variable has yet appeared in an assigning reference.

040 INVALID STRING TYPE USE (040)
1. The standard type identifier string is not used to define a string type.

041 MISSING SEPARATER BETWEEN NUMBER AND IDENTIFIER (041) .
1. Acharacter was detected immediately foliowing a number. Pascal requires that a separater
{space, comment, End of Line) be inbetween a number and an identifier or reserved word,

080 OPERAND NOT OF TYPE BOOLEAN {(060)
1. A non-booiean operand appears with the operator NOT, OR, or AND.

081 WRONG TYPE OF QPERAND FOR ARITHMETIC OPERATOR (081)
1. A non-numeric éperand appears with an arithmetic operator,

062 TYPE OF OPERAND NOT ALLOWED WITH OPERATOR (062)
1. An operand of this type cannot be used with this operator.

063 BASE TYPE OF OPERAND AND SET DO NOT AGREE (083)
1. The operand on the left of an IN operator is not type compatible with the set on the rlght‘

C-4

Keven
Rectangle

COMPILE-TIME ERRORS

064 TYPES OF OPERANDS DO NOT AGREE (064}

1. The operands can be used separately but not at the same time with the aperator. For example,
<boolean> = <integer>.

065 ASSIGNMENTS CANNOT BE MADE TO FILES {065)
1. An assignment cannol be made 10 a fite or a structured variable with a file type component.
2. Sfructured constants cannot contain files, Building a structured consiant with a type that
contains a file is illegal.
3. Variables which contain files cannot be passed as value parameters.

066 ASSIGNMENT TYPE CONFLICT (086)

1. The expression on the right side of an assignment staiement is not assignment compatlbie with
the receiving entity on the left. '

2. Aconstant in a constructor is not assignment compatible with the component to which it is
being assigned.

3. The subrange type of the expression being assigned does not infersect the type of the
recaiving eniity,

087 TYPE OF EXPRESSION NOT ALLOWED iN SUBRANGE {067)
1. The expression defining & subrange bound is not an ordinal expression.

068 ILLEGAL ASSIGNMENT TARGET (088)
1. An assignment was made 1o an identifier which is not a non-file variable or a function result,
£.¢. & declared constant, a set or string type identifier.

068 INVALID CONSTANT EXPRESSION (059)
1. This expression is not legal in a CONST declaration. It is not a constant expression, oritis a
constant expression and the resuits of the arithmetic would be out of range of minint..maxint,

070 ILLEGAL TO ASSIGN TO (C70)

1. The identifier denotes an entity which cannot appear on the right side of an assagnmem
statement, e.9. a set or string type identifier,

080 ARRAY INDEX TYPES NOT COMPATIBLE {08Q)
1. The subscript in an array reference is not compatible with the type of the index in the array
declaration.

081 ARRAY ELEMENT TYPES NOT EQUIVALENT (081)
1. Pack and unpack array parameters must have identical component types.

082 INVALID ARRAY SIZE (082}
1. The size of the array is too big for the compiler.
2. In pack or unpack the destination array is not large enough.

083 WRONG NUMBER OF ELEMENTS FOR ARRAY OR STRING CONSTANT (083)

1, While building an array of string constant, more components were specified than declared.
2. Ali the components were not specified while building an array constant.

C-5

COMPILE-TIME ERRORS

084 INVALID INDEX TYPE (084)
1. index type is not an ordinal type.

085 REFERENCE TYPE MUST BE STRING OR ARRAY {085)
1. Tried to index struciure which is not an array or string.

086 MAXIMUM STRING LENGTH MUST BE BETWEEN 1 AND 32767 (086)
1. Tried to declare string with with a maximum length < 1 or > 32767,

087 EXPRESSION FOR MAXIMUM LENGTH MUST BE TYPE INTEGER (087)
1. Tried to declare a string with a non-integer constant expression for the maximum length.

088 INCORRECT NUMBER OF INDICES FOR STRING DECLARATION (088)
1. A string can only have one index in a declaration.
2. No index was supplied in a string deciaration,

088 TOO MANY SUBSCRIPTS IN STRING OR ARRAY REFERENCE (088)
1. The number of subscripts in the reference exceeds the number of subscripts in the
declaration of the array or string.

090 ILLEGAL CONSTRUCT FOR AN ARRAY OR STRING INDEX (080)
1. A subrange construct was used as an array or string index.

100 INVALID RECORD REFERENCE (100)

1. Record fieid referenced without specifying a record variable, constant, or function call which
returns a record.

101 |NVAL!D FIELD IDENTIFIER (101)
1. The identifier is not one of the fields of the record used in the reference.

102 INVALID TAG TYPE (102)
1. The tag in & new or dispose procedure call is not a tag value of the specified record.

103 POINTER OR FILE REQUIRED FOR DEREFERENCE (103)
1. A pointer or file is required in a dereferenca.

104 POINTER VARIABLE IS REQUIRED HERE (104) _
1. New, dispose, mark, ang release all require a pointer variabis as the first parameter.

105 FILES MAY NOT APPEAR IN THE VARIANT PART OF A RECORD (105)

1. Fields of a file type or a structure containing a file type may not appear in the variant part of a
record.

120 INVALID BASE TYPE FOR SET (120)
' 1. The base type of a set is not an ordinal type.

C-6

Keven
Rectangle

COMPILE-TIME ERRORS

121 ITEM NOT A LEGAL SET ELEMENT (121)
1. Element of a set is not an ordinal type.

122 OPERAND NOT A SET (122)
1. Right operand for an IN operator is not a set.

123 SET ELEMENTS NOT TYPE COMPATIBLE WITH EACH OTHER (123) ,
1. inan untyped set constructor, this element is not compatible with the first element in the set.

124 SET ELEMENT NOT COMPATIBLE WITH SET TYPE (124)

1. In a typed set constructor, the set element is not assignment compatibie with the base type of
the set.

125 SET OF THIS SIZE CANNOT BE CONSTRUCTED (125)
1. To consiruct this set would require more than 2048 16-bit words.

140 BUILDING OF STRUCTURED CONSTANTS NOT ALLOWED HERE {140}
1. A constructor which is not a set constructor occurs outside of a CONST declaration section.
2. A constructor occurs as an element of a set or string constructor. :

141 RECCRD CONSTANT HAS MISSING FIELD (8) (141) _
1. Cne or more fields missing in a record constructor. This message will also appear when the
name of a field is misspelied.

142 DUPLICATE FIELD NAME (142)
1. This field has already been defined in the constructor.

143 FIELD NAME DESIGNATOR NOT ALLOWED HERE
1. The constructor is not a record constructor,
2. This construction <field name>: <expression> appears outside of a record constructor,

144 MISSING FIELD NAME DESIGNATOR (144)
1. The construction < field name>>:<expression>> is required in a record constructar.

145 TYPE IDENTIFIER REQUIRED HERE {145}
1. The identifier preceding the left square bracket of a constructor is not a type identifier.

146 CONSTRUCT ONLY ALLOWED FOR ARRAYS AND STRINGS (148)
1. <<Count> OF << expression> occurs when the canstructor is not an array or string
constructor.

147 CONSTRUCT ONLY ALLOWED IN CONSTRUCTORS (147)
1. «<Count> OF < expression> is used outside of a constructor.

148 SUBRANGE CONSTRUCT ILLEGAL EXCEPT IN SET CONSTRUCTOR (148)
- 1. A subrange construct was used in a string declaration or a non set structured constant.

C-7

COMPILE-TIME ERRORS

148 TOO BIG STRUCTURED CONSTANT (149)
1. A structured constant has a fimit of 18383 words.

160 INVALID BASE TYPE FOR FILE (180)
1. The component type of a file may not be a file or a structure with a file type component.

161 TEXTFILE VARIABLE 18 REQUIRED HERE {161} '
1. The pre-defined procedure or function in question may only be used with a file of type text.

162 TEXTFILE NOT ALLOWED MERE {162)
1. The standard proce_dure or function in question may not be used with a file of type text.

183 INVALID TYPE FOR A PROGRAM PARAMETER (163}
1. Anidentifier in the program parameter list has not been deciared as a file variable, or a variable
of type PAC, string, or integer.

164 VARIABLE 1S REQUIRED HERE (164)
1. A varable is required as the larget for reading from a file or a string.

| 165 DEFAULT FILE INPUT MUST BE IN PROGRAM PARAMETER LIST (165)
1. The file variabie in a standard procedure or function call was defauited to INPUT, but INPUT
was not declared in the program parameter list,

166 DEFAULT FILE QUTPUT MUST BE IN THE PROGRAM PARAMETER LIST (166)
1. The file variabie in a standard procedure or function call was defaulted to CUTPUT, but
OUTPUT did not appear in the program parameter iist.

167 FORMAT EXPRESSION ALLOWED ONLY FOR TEXTFILES (167)
1. A formatted ouiput expression may only sceur when writing 10 a textfile or a string.

168 INTEGER VALUE 18 REQUIRED HERE (168)
1. The expressions specifying the field width and the number of decimal digits for an output
expression are not type integer of an integer subrangs.

169 SECOND FORMAT VALUE ALLOWED ONLY FOR REAL OR LONGREAL (169)
1. The format value which specifies the number of decimal digits in an cutput expression is only
legal for output values of type real or longreal.

180 THIS PROGRAM PARAMETER WAS UNDECLARED: "1 {180)
1. The identifier appeared in the program parameter list but was never declared.

181 DUPLICATE PROGRAM PARAMETER (191)

1. There is more than one PARM parameter or more than one INFQO parameter in a brogram
parameter list.

192 PARAMETER "I" DOES NOT MATCH POSSIBLE SPLTYPES (192)
1. The Pascal type of the parameter does not correspond to an acceptable SPL type.

C-&

Keven
Rectangle

COMPILE-TIME ERRORS

193 PARAMETER "I" DOES NOT MATCH INTRINSIC PARM TYPE {193)

1. The Pascal type of the the parameter does not maich the parameter type required by the
intrinsic.

194 MISSING FUNCTION RETURN SPECIFICATION {184}
1. The return type is not specified in the function heading.

195 INVALID PARAMETER TO HALT (195)
1. The optionai parameter 1o halt is not type infeger or an integer subrange.

196 THIS INTRINSIC MAY NOT BE USED AS A FUNCTION (196)
1. The specified intrinsic does not return a result and, therefore, cannot be declaredas a funczlon

197 ELEMENTS OF PACKED STRUCTURES CANNQOT BE PASSED BY VAR (187}
1. Elements of packed arrays or records may not be passed 10 a routing expecting a reference
parameter.

198 EMPTY PARAMETER MAY NOT BE USED HERE {198}
1. Actual parameters may only be omitted for EXTERNAL SPL VARIABLE procedures or for
intrinsics which are option variable intrinsics.

198 PROCEDURE NOT DECLARED (198)
1. The identifier used in the procedure call has not been declared, or it is not a procedure name,

200 PARAMETER "1" MUST BE VAR PARAMETER. (200)
1. The parameter in the intrinsic declaration was specified as a value parameter, but the intringic
requires a reference parameter.

201 PARAMETER " MUST BE VALUE PARAMETER {201}
1. The parameter in the intrinsic declaration was specified as a reference parameter, but the
intrinsic requires a value parameter.

202 INVALID USE OF PROCEDURE OR FUNCTION IDENTIFIER {202)
1. A procedure identifier appears as a function call.
2. A function identifier appears as a procedure call.
3. A valid identifier mistakenly appears as a function or procedure identifier.

203 INCONSISTENT DEFINITION OF FORWARD PROCEDURE OR FUNCTION (203)
1. The definition of a procedure declared FORWARD is a function. The definition of a function
declared FORWARD is a procedure.
2. The ALIAS in the definition differs from the ALIAS in the FORWARD declaration of a procedure
ar function.
3. A FORWARD declaration is already provided for a function or procedure now declared
FORWARD, EXTERNAL, or INTRINSIC.

204 INVALID DIRECTIVE (204)
1. EXTERNAL, EXTERNAL SPL, EXTERNAL SPL VARIABLE, EXTERNAL FORTRAN,
EXTERNAL COBOL, FORWARD, and INTRINSIC are the only legal directives.

C-8

COMPILE-TIME ERRORS

205 INVALID LANGUAGE SPECIFICATION (205)
1. The language specified was not FORTRAN, SPL, or COBOL.
2. Alanguage cannot be specified with the FORWARD or INTRINSIC directivas,

206 INCORRECT NUMBER OF PARAMETERS (208)
1. The number of actual parameters given is too few or toc many for the procedure or function.

207 UNMATCHED PARAMETERS IN FORWARD (207)
1. Parameters in the definition of a procedure or function declared FORWARD do not match the
parameters of the criginal heading.

208 ACTUAL PARAMETER NOT COMPATIBLE WITH FORMAL PARAMETER (208)

1. This actual reference parameter is not type identica! with the formal reference parameter in a
user-defined function or procedure.

2. This actual value parameter is not assignment compatible with the formal vaiue parameterin a
user-defined function or procedure,

3. The type of this actual reference parameter is not convertible to the SPL type of the formal
refarence parameter of the intrinsic.

4, The type of this actua! value parameter is not convertible to the SPL type of the formal value
parameter of the intrinsic.

5. This actual reference parameter to a standard function or procedure is not type identical wath

' the formal reference parameter.

6. This actual value parameter to a standard function or procedureg is not assignment compatible
to the required type.

7. The parameter of the standard sqgr function is an integer subrange type with a lower bound
greater than the square root of maxint, or an upper bound iess than the negation of the square
root of maxint. in either case, an integer overtiow is possible at run time.

209 NO FURTHER CASE CONSTANT PARAMETERS ALLOWED TO NEW (209}
1. The pointer parameter to new points 1o a record that has no additional nested variant paris.
2. The pointer parameter to new points to a record that does not have a variant part.
3. The pointer pararneter to fnew points 1o a structure which is not a record.

210 NO FURTHER CASE CONSTANT PARAMETERS ALLOWED TO DISPCSE {210
- 1. The pointer parameter to dispose points to & record that has no additional nested variant
parts.
2. The pointer parameter to dispose points 10 & record that does not have a variant part.
3. The pointer parameter 10 dispose poinits 10 a structure which is not a record.

211 NO FURTHER PARAMETERS ALLOWED TO MARK (211)
1, More than one pointer parameter in a call (o mark.

212 NO FURTHER PARAMETERS ALLOWED TO RELEASE (212)
1. More than cone pointer parameter in a call to release.

C-10

Keven
Rectangle

COMPILE-TIME ERRORS

213 VALUE PARAMETER MAY NOT CONTAIN FILE COMPONENT (213)
1. This vaiue formal parameter is & file or a structured type with a file type component. This is
equivalent to assigning to & file.

214 FUNCTION TYPE MAY NOT CONTAIN FiLE COMPONENT {214)
1. - This function return type is a file or a structured type that contains a file type component. This
is equivalent 1o assigning to 2 file.

215 COMPILER LEVEL WRONG -- PROBABLY UNMATCHED "END” (215}
1. This occurrence of END cannot match a BEGIN because all compound statements have been
terminated. The compiler disregards the extranecus END.

216 BAD CONSTANT PARAMETER (216) '
1. This parameter to succ is a constant value equal to the maximum value of an ordinal type.
2. This parameter to predis a constant value equal to the minimum value of an ordina! type.
3. This string constant parameter to binary, octal, or hex contains an invalid character, or
represents a value outside the range minini.. maxint,
4, This parameter to abs is a constant value equal to minint but abs (minint) > maxint,
5. This parameier 1o chris a constant value sutside the range 0..255,

217 PROCEDURE OR FUNCTION NOT IN INTRINSIC FILE (217)
1. An incorrect SPLINTR file was specified prior 10 the declaration of the procedure or function.
2. The intrinsic name differs slightly from the procedure or function name declared INTRINSIC.
The ALIAS option should be used, or the spelling of the ALIAS parameter correcied.
3, The procedure has never been put into the SPLINTR file.

218 SPLINTR FILE NOT CHECKED {218)
1. Due o a prior error, the SPLINTR file was never opened. Thus, no attempt was made {¢ look up
this procedure or function.

219 “"STRING” 1S NOT ALLOWED AS A VALUE PARAMETER (219}
1. A string formal value parameter must have a gpecified maximum length.

220 FUNCTICN “I'"" NOT ASSIGNED TO (220)
1. A function of a simple type has no assigning reference to the result in the function body.
2. Afunction of a structured type has no assigning reference to any component of the result in the
 function body.

221 DECLARED FUNCTION TYPE DOES NOT MATCH INTRINSIC TYPE (221)

1. The Pascal type of the return of a function declared INTRINSIC does not match the SPL type of
the value returned by the intrinsic.

C-11

COMPILE-TIME ERRORS

222 VARIABLE PARAMETER REQUIRED HERE (222)
1. An expression appears as an actua! reference parameter instead of a variable.
2. A constant appears as an actual reference parameter instead of a variable,
3. A component of a structured constant appears as an actual reference parameter instead of a
variable,

223 ILLEGAL PARAMETER FORM (223)
1. The integer parameter to a string procedure/function is not compatible with a 16 bit integsr.
2. The actual parameter is a procedure or function identifier, but the corresponding formai
parameter is not a procedure or function heading.
3. The parameters of the actual procedural or functional parameter are not congruent with the
parameters of the formai procedural or functional parameter.
The parameter of a call to waddress or sizeof is a component of a packed structure.
The parameter of a call 1o baddress is a component of a packed struciure other than a PAC.
The third parameter of 2 cali 10 assert is not a procedure identifier, or the parameter of such a
procedure is not an integer vaiue parameter.

224 SYSTEM ADDRESSING LIMIT EXCEEDED (224)
1. . Q-minus addressing for parameters or function results is exceed. (Q-64)
2. The storage limit {or variables at run time is excesded. (DB +255; Q+127 or storage
excegded.)

230 INVALID CONTROL VARIABLE IN FOR STATEMENT (230)
i. The control variable of the FOR loop is a record fisid.
2. The control variable of the FOR loop is defined in a scope containing the current scope.
3. The control variable of the FOR loop is a formal parameter of a procedure of function
comtaining the FOR statement.
4. The identifier used as the control variable of the FOR is not a variable.

oo

231 CONTROL VARIABLE NOT AN ORDINAL TYPE {231)
1. The control variable of the FOR loop is not an ordinal type,

232 EXPRESSION NOT COMPATIBLE WiTH CONTROL VARIABLE (232)

1. The expressions for the initial and fma values are net type compatibie with the control variable
of & FOR ioop

233 INITIAL AND FINAL EXPRESSIONS NOT COMPATIBLE (233)

1. The types of the expressions for the initial and final values of the FOR ioop are not type
compatible. _

250 DUPLICATE CASE LABEL (250)
1. The case label is the same as a case labe! that appeared previously.
2. The case labe! is contained in a previous case label subrange.
3. The case labe! subrange contains at ieast one case label tha! appeared previously.

251 CASE LABEL OF INCORRECT TYPE {251)
1. The type of the case label is not the same as the type of of the 1ag in the select expression.

c-12

Keven
Rectangle

COMPILE-TIME ERRORS

252 CASE LABEL TYPE NOT SAME AS PREVIOUS CASE LABEL (252)
1. There was an error in the tag type or select expression and the case labels are checked against
each other. The type of the current case label does not match the type of previous case labels.

270 INVALID LABEL - MUST BE AN INTEGER BETWEEN 0 AND 8989 (270)
1. This iabel is not an integer,
2. A colon {:) appears or was inserted by the compiler where no label was desired.

271 LABEL HAS NOT BEEN DECLARED {271)
1. This label marks a statement but never appeared in a LABEL declaration for this block.

272 LABEL DECLARED MORE THAN ONCE {272}
1. This label already appeared in this LABEL section or in a LABEL section in an enclosing scope.

273 SAME LABEL NOT ALLOWED ON MORE THAN ONE STATEMENT (273)
1. This iabel has already marked a statement.

274 LABEL """ NOT USED (274)
1. The label appears in a LABEL declaration but is never used to mark a statement.

275 LABEL REFERENCED BY GOTO OUTSIDE STRUCTURED STATEMENT (275)
1. This label appears in & component statement of a structured statement and was previously
referenced by a GOTO statement:
(& preceding the structured staiement.
(b} ina preceding component statement of the sarne structured statement.
(¢} contained in an inner procedure or function.

276 GOTO REFERENCES LABEL INSIDE STRUCTURED STATEMENT (276)
1. The label referenced in a GOTO statement appears in a component statement of a structured
staternent and the GOTO statement appears:
{a) after the structured statement.
{b) in a later component statement of the same structured statement.

400 INVALID FILENAME (400)
1. The filename given in the INCLUDE or SPLINTR option is not a legal MPE filename.

401 ILLEGAL NAME IN ALIAS OR SUBPROGRAM OPTION (401)
1. The procedure or function name in an ALIAS option is not a valid identifier.
2. The procedure or function name in a SUBPROGRAM option is not a valid Pascal identifier.

402 NOT A LEGAL SEGMENT NAME (402}
1. The segment name for a SEGMENT option is not legal.

C-13

Keven
Rectangle

COMPILE-TIME ERRORS

403 IF EXPRESSION CAN NOT BE EVALUATED {403}
1. The expression in a $IF has a syntax error in it.

404 UNMATCHED ENDIF FOUND (404) \
1. An ENDIF compiler option was found without a preceeding IF option. This may happen if the
compiler rejects an IF because it was cut of place, as well as the user not putting in the iF.

405 A BOOLEAN EXPRESSION {S REQUIRED INSIDE STRING (405)
- 1. A blank string was found as part of a iF.

406 EXPECTED TRUE/FALSE AFTER '=' (406)
1. Misspeilied trueffalse after '=" in $SET.
2. Missing true/false after ‘=" in $SET.

408 UNMATCHED $ENDIF OR $ELSE FOUND (408)
1. An ENDIFELSE compiler option was found without a preceeding IF option. This may
happen if the compiler rejects an IF because it was out of place, as well as the user not
putting in the IF. '

409 EXCEEDED MAXIMUM NESTING LEVEL FOR $iF (409)
1. The nesting of $iF exceeded the maximum allowabile nesting level.

410 ILLEGAL IDENTIFIER IN $3SET (410)

1. Identifier is misspelled.
2. Expected an identifier and one was not found.

C-13A

Keven
Rectangle

COMPILE-TIME ERRORS

428 CATASTROPHIC COMPILER ERROR |, COMPILE TERMINATED (425}
(1..999) A run-time error was detected by the run-time support library during compiler
execution,
(1000..1015) A run-time error was detected in an arithmetic operation during compiler execution.
(2000..2999) A run-time error was detected by a system intrinsic during compiter execution.

426 SYSTEM RESQURCE EXHAUSTED |, COMPILE TERMINATED (426)
{1) The compiler ran out of space in the heap.
{2) The compiier ran out of space in one of its data segments.

427 PROCEDURE CALL OVERFLOW - COMPILE TERMINATED (427)
1. The maximum number of different procedures/functions and privaie procedures/functzons
which may be called from a single RBM is 254, This limit has been exceeded.

428 CODE SEGMENT OVERFLOW - COMPILE TERMINATED (428)
1. The maximum number of words permitted in a single RBM (16838} has been excesded.

451 UNABLE TO OPEN USL FiLE (451)
1. FOPEN error on USL file. Unable to open either an old, temporary, or new USL file.

452 UNABLE TO SAVE USL FILE PERMANENT - SAVED TEMPORARY (452)
1. A new USL file was unable to be saved as a permanent file. An atternpt was made to save the
file as a temporary fiie.

453 UNABLE TO CLOSE USL FiLE (453) _
1. Anew USL file, which was unabie {0 be saved as a permanent file, cannot be saved as a
temporary file and will be lost when compilation is compiete.

2.0 An error occurred when closing SNEWPASS, $OLDPASS, or an emstmg temporary or
permanent USL file.

454 USL FILE ACCESS ERROR (454)
1. A file system error occured while trying to access the USL file with FOCHECK,

455 USL FILE ACCESS ERROR (455)
1. A file system error occured while trying to access the USL file with FGETINFO.

456 USL FILE READ ERROR {456}
1. A file system error occured while trying 1o access the USL file with FREAD.

457 USL FILE WRITE ERROR {457)
1. A file system error occured while trying to access the USL file with FWRITE.

C-14

Keven
Rectangle

COMPILE-TIME ERRORS

459 OVERFLOW ON USL FILE (459)
1. The available information length (AlL) of the USL file is less than the size of the header to be
placed in the information area of the USL tile, The default size of the USL file is 1023 records.
This may be increased by pre- building the file or by using a file equation. Also, a USL file may
have several inactive procedures which can be removed using the USLINIT compiler option or
the CLEANUSL command in the Segmenter. '

480 DIRECTORY OVERFLOW ON USL FILE (460)
1. The available directory length (ADL) of the USL file is iess than the size of the entry to be
placed in the directory.

481 PARSER STACK OVERFLOW -TOO MANY NESTED CONSTRUCTS (462)
1. Aninternal compiler iimit on nested structures has been reached. The most common cause is a
long list of ELSE-IF's.

WARNINGS

500 OPTION NOT YET IMPLEMENTED {500)
1. This compiler option is not yet implemented.

501 UNRECOGNIZED COMPILER OPTION (501)
1. A compiler option with this name is not recognized by Pascal/ 3000,

502 THIS OPTION iS NOT ALLOWED HERE (502)
1. The option appears in an illegal location in source code, For example, the GLOBAL option
appears anywhere except before the PROGRAM heading.

503 TEXT AFTER INCLUDE OR SKIPTEXT IGNORED (503)
1. Anything on the source line after INCLUDE was ignored.
2. Anything on the sources ling after & SKIP—TEXT ON was treated as & comment,

504 INTEGER OUT OF RANGE, VALUE NOT CHANGED (504)
1. LINES requires an integer > 20
‘2. WIDTH requires an integer in the range 10..132.
3. CHECK—ACTUAL-—PARM and CHECK—FORMAL—PARM require an integer in the range
¢.3.

505 STRING PARAMETER IS REQUIRED, OPTION IGNORED (505)
1. This option requires information in a string literal parameter.

507 BOTH GLOBAL AND EXTERNAL NOT ALLOWED (507)
1. The option GLOBAL occurred after the option EXTERNAL was specified, Since only one is
aliowed, GLOBAL was ignored,
2. The option EXTERNAL occurred after the option GLOBAL was specified. Since only one is
allowed, EXTERNAL was ignored.

C-15

COMPILE-TIME ERRORS

508 A '$' IS REQUIRED HERE - ONE INSERTED (508)
1. Compiler option doesn't end with & $ on the same line.

509 EXPRESSION WILL CAUSE A RUN-TIME OVERFLOW (509)
1. The resuit of an expression wiit exceed maxint at run time. This is detected for

(a} +. - * when the types of the operands are such that the expression wilt go over. For
exampie: VAR A; maxint-10..maxint, Then the expression A + A would never be less
than 2 * maxint - 10, which is > maxint. '

{b} -minint.

(¢} the addition, substraction, or multiplication of of two constants resulting in an
overfiow,

510 EXPRESSION WILL CAUSE A RUN-TIME UNDERFLOW (510)
1. The result of an expression will be less than minint af run time. This is detected for:
{a} +,- *whenthe iypes of the operands are such that that the expression will go under.
For example: VAR A: maxint - 10..maxint, B: minint..minint <+ 10 Then the expression
B - A would be less than minint + 10 - maxint, which is < minint. _
{o) the addition, substraction, or muitiplication of two constants resulting in an underfiow.

511 MOD DIVISOR WILL CAUSE A RUN-TIME ERROR (511}
1. inan expression A MCD B, B will be <= 0 af run time. T
2. Inaconstant expression AMODEB Bis <=0,

512 RUN-TIME DIVISION BY ZEROD (512)
1. mmanexpression ADIVE, B = (,
2. inaconstant expression ADIVE, B = (.

513 EMPTY INCLUDE FILE {513)
1. The INCLUDE file had no text in it

514 § NOT ALLOWED IN INFO PARAMETER (514)
1. The INFO parameter of 2 :PASCAL, :PASCALFPREP, or :PASCALGO command is iMerpreted
as a compiler option with the $ assumed as the leading and trailing character. The § cannot
appear in the iNFO string itself,

515 NO DISC SPACE FOR XREF {515)
1. An MPE file error occured trying {0 open the file needed to do the cross reference. This could
be any MPE file error, with OUT OF DISC SPACE being the most likely. A temporary file with the
name PASXRIdd, where d is a digit, is another possible cause.

516 NO VARIANT FOR TAG VALUE {516}

1. A new was called specifiying a tag constant which did not appear in the cass list in the variant
part. The maximum space for the record is aliocated.

C-18

Keven
Rectangle

COMPILE-TIME ERRORS

517 THIS FEATURE IS HP STANDARD PASCAL (517)
1. ANSlis ON or STANDARD-—LEVEL is set to ANS! and this feature is an HP Standard Pascal
exiension of ANS! Pascal.

518 THIS FEATURE 1S HP3000 PASCAL (518}
7. ANStis ON or STANDARD—LEVEL is set to HP or ANSI and this feature is unique to the
HP3000 implementation of Pascal,

518 BOOLEAN EXPRESSION FOLDED TO A CONSTANT (519)
1. The compiler has folded an expression with IN, AND, or OR and constant opsrands or, in the
case of IN, with a left operand which is a constant appearing the set list.
2. The compiler has folded an expression with =, <>, <=, > =, or > and operands which are
non-set constants, _ '
3. With PARTIAL—EVAL ON, the compiler has folded an expression with OR when TRUE is an
operand, or an exprassion with AND when FALSE is an operand.

520 NON-OVERLAPPING TYPES - EXPRESSION FOLDED (520)
1. Two sets with ranges that don’t overlap were intersected. The compiler folded the expression to
the empty sst. ,
2. An arithmetic comparison was dong with operands of types with ranges that do not overiap.
The compiier folded the expression. For example, if A: 0..3 and B: 5..7, then A = B is folded to
false. :

521 BODY OF FOR LOOP WILL NEVER EXECUTE (521)
1. Values of the initial and final expressions will prevent the body of the FOR loop from ever
axecuting.
2. Non-overlapping subranges for the types of the initial and final expressions prevent the body of
the FOR loop from ever executing.

522 CASE LABEL NOT WITHIN TAG OR SELECT EXPRESSION RANGE (522)
1. The case label value or subrange is not within the range of the tag type and can never be
specified in a call to new or assigned to the tag fisld.
2. Thecase labsl value or subrange is not within the range of the select expression and can never
be selected.

523 INTEGER CONSTANT IS REQUIRED - OPTION IGNORED (523)
1. This compiler option requires an integer parameter, e.g. WiDTH. The compiier has ignored
this option.

524 SUBPROGRAM "I" SPECIFIED, BUT NOT FOUND (524)
1. A procedure or function name specified in the SUBPROGRAM option was not found in this
source,

C-17

'COMPILE-TIME ERRORS

525 ANY EXTERNAL GOTO TO THIS LABEL IS AN ERROR {525}
1. This label marks a component statement of a structured statement. This label cannot be
referenced by a GOTO statement contained in an external procedure or function, but that error
will not be detected until the program is prepared or executed.

626 EXPRESSION FOLDED TO THE EMPTY SET (526)

1. The compiler has determined that a set expression results in an empty set and folded that
expression 10 empty. This warning appears in case the user expected side effects ¢r made
some kind of error which caused the folding. Folding occurs when an intersection is performed
with the empty set, the emply set occurs on the left side of the set difference operater, or two
empty sets appear in a set operation.

527 'ON’ OR ‘OFF IS REQUIRED HERE (527)
1. The word ON or OFF is required after this compiler option name, &.g. LIST.

528 PREVIOUS VERSION OF 1" INACTIVATED (528)

1. A procedure or function by the same name already exists in the USL file and has been
inactivated.

2. if PRIVATE_PROC was CN, then two level 1 procedure or function names are not unique
within the first 15 characters or a copy from a previous compilation is being replaced.

3.l PRIVATE_PROC was OFF, then either duplicate non-level 1 procedure or function names
exist (i.e. they are not unique within 15 characters) or duplicate procedure or function
names have been introduced due to separate compilation of protedures or functions with
names which are identical within the first 15 characters. .

529 USL FILE DIRECTCRY NOT VALIE - INITIALIZED (529)
1. lf the USL file is a new file, the directory has been initialized.
2. i the USL fiie is a oid file, the directory information was not consistent with the USL file
structure and has been initialized. Any information that may have been contained in the USL
file is no longer accessible.

530 EXPRESSION WILL CAUSE A RUN-TIME SET RANGE ERROR (530)
1. Evaluation of a set construction in which an elerment of the set list will necessarily fali outside
the bounds of the set construction will causa this efror. :

531 BYTE TO WORD ADDRESS CONVERSION HERE (5831)

1. A byte oriented variable being passed 10 an intrinsic expecting a word oriented reference
parameter will result in this warning. Pascal/3000 will properly convert ali even byte
addresses to word addresses, but changes an odd byte address to the address of the word
containing the odd byte.

C-18

Keven
Rectangle

COMPILE-TIME ERRORS

532 PASWKSP 1S NOT A VALID TSAM ROOT FILE (532)
1. The actual file designator for the formal designator PASWKSP ig not a TSAM root file.

533 BAD FONT OPTION GIVEN (533)
1. The caill 1o FDeviceControl returmned an error condition.

534 CONTROL VARIABLE HAS BEEN ASSIGNED TO NONLOCALLY (534)

1. The control vatiable may be modified by a nonlocal reference from a routine invoked in the
body of the for loop.

535 1" ACCESSED, BUT NOT INITIALIZED (535)

1. A simple varable appears in an expression, as a value paramster, or in some other
accessing reference and it has never appeared in an assigning reference, i.e. as a
reference parameter, on the left side of an assignment statement, ete.

2. Some component of a structured variabie appears in an accessing reference but no
component of that variable has yet appeared in an assigning reference.

C-18A

Keven
Rectangle

APPENDIX

sooco
D

RUN-TIME ERRORS

This appendix lists the annotated run-time error messages for Pascal/ 3000, These messages are
numbered 800 and above. The messages together with the notes are available on line in the file
PASCAT.PUB.SYS. The programmer may trap any run-time Pascal error using the XLIBTRAP intrinsic
(see Section 10).

600 INSUFFICIENT HEAP AREA TO ALLOCATE VARIABLE (PASCERR 600)
1. Heap cannot be expanded to aliocate a dynamic variable because the MAXDATA value for the
program will be exceeded.

2. Heap cannot be expanded {0 allocate a dynamic variable because the sysiem configuration
MAXDATA vaiue will be excesded.

801 INVALID DISPOSE PARAMETER (PASCERR 601)
1. The poirter parameter (o dispose in NIL.
2. The pointer parameter 1o dispose does not identify any area allocated by new.
3. The pointer parameter 1o dispose identifies an area previously deallocated by re/sase.

802 REPEATED USE OF DISPOSE ON GIVEN PARAMETER (PASCERR 602}
1. The pointer parameter 10 dispose identifies an area previously deallocated by dispose.

603 DISPOSE PARAMETER ALLOCATED AS DIFFERENT VARIANT (PASCERR 603) :
1. The pointer parameter to dispose identifies an area allocated by new with a diferent sequence
of case constanis,
2. The pointer parameter to dispose includes case constants, but it identifies an area ailocated by
new without any case constants.
3. The pointer parameter to dispose does not include case consiants, but it identifies an area
allocated by new with case constanis.

604 DISPOSE PARAMETER CONTAINS AN OPEN SCOPE (PASCERR 804)
1. The pointer parameter {0 disposeidentifies an area containing an actual variable parameter, an
element of the record variable list of a WITH statement, or both.

605 INVALID RELEASE PARAMETER (PASCERR 605)
1. The parameter 1o refease was not set by a previous call 1o mark.
2. The parameter 10 release was set by a cail to mark, but a previous call to refease has been
made with this parameter.
3. The parameter to release was set by a call to mark, but that call to mark was preceded by a
call to mark with a different parameter that has already been used as a parameter 1o refease.

606 HELEASE PARAMETER ENCLOSES AN OPEN SCOPE {PASCERR 606)
1. The parameter 10 refease identifies an area containing an actual variabie parameter an
element of the record variable list of a WiTH statement, or both.

607 RELEASE PARAMETER ENCLOSES GETHEAP AREA (8) {(PASCERR 607)
1. The parameter 1o refease identifies an area containing areas the user allocated with the
GETHEAP procedure but has not yet dealiocated with the RTNHEAP procedure.
2. The parameter to reisase identifies an area containing areas a subsystemn aliocated with the
- GETHEAP procedure but has not yet dealiocated with the RTNMEAP procedure.

D-1

RUN-TIME ERRORS

608 HEAP INTEGRITY LOST /7 HEAP DATA LOST (PASCERR 608)
1. The internal data structures of the heap have become inconsistent. The most fikely causes are:
a) - A field has been assigned 1o in a variant different than the one specified in a call t¢

new.

b} A pointer 10 a disposed area, i.e. & dangling pointer, has been derelerenced in an
assignment.

¢} An SPL routine has directly accessed the DL-DB area outside of a region allocated by
the GETHEAF procedure.

dy The DLSIZE intrinsic has been called.
e} The RTNHEAP procedure was unable to return an area.

620 VALUE NOT WITHIN SUBRANGE (PASCERR 820}
1. The value of an ordinal expression is outside of the subrange of the target of an assignment
statement.
2. Thevalue of an ordinai expression appearing as an actual parameter is outside the subrange of
the formal value parameter.
3. The value of an ordinal expression appearing in an array selector is outside of the subrange of
the index type.

621 NO CASE LABEL FOR SELECTOR VALUE (PASCERR 621)
1. The value of the case seiect expression does not match an of the gpecitied case constants and
no OTHERWISE clause appears.

822 INVALID POINTER (PASCERR 622)
1. A pointer with the vaiug of NIL was dereferenced,
2. A pointer with an undefined value was dereferenced.
3. A pointer set by mark was dereferenced.
4. A pointer identifing an area previously deallocated was dereferenced.

623 VALUE OF PRED UNDEFINED (PASCERR 623)
1. The minimum value of an ordinal type or subrange was the parameter 1o pred. The resu%t is
undefined.

624 VALUE OF SUCC UNDEFINED (PASCERR 624)
1. The maximurn vaiue of an ordinat 1ype or subrange was the parameter 1o suge. The result is
undefined.

625 SET RANGE ERROR (PASCERR 825)
1. An attempt was made to assign a set to a set variabie when the set contains an element not
within the set range of the variabie.
2. An attempt was made to pass a set to & formal parameter when the set contains an element
not within the set range of the parameter.

626 ATTEMPT TO DO MOD BY NEGATIVE VALUE (PASCERR 628)
1. An attempt was made to perform the MOD operation when the right operand is negative,

D-2

Keven
Rectangle

RUN-TIME ERRORS

640 BAD PROCEDURAL PARAMETER (FASCERR 640)
1. A non-level 1 procedure or function was passed as a procedural or functional parameter to an
exiernal, non-Pascal routine,

650 STRING OVERELOW (PASCERR 650} o
1. An attempt was made {0 index beyond the maximum length of the string.

651 STRING INDEX EXCEEDS CURRENT LENGTH (PASCERR 651)
1. An attempt was made 10 index beyond the current length of the string.

652 DESIGNATED CHARACTER PQOSITION (S) CUTSIDE STRING (PASCERR 652)
1. The specified offsel is greater than the current length of the string.

653 DESIGNATED CHARACTER POSITION (8) QUTSIDE PAC (PASCERR 653)
1. The specified offset is greater than the upper bound of the PAC.

654 ATTEMPT TO READ PAST END OF STRING (PASCERR 654)
1. Attempt was made to read beyond the maximum length of the string.

655 INVALID NUMBER OF CHARACTERS SPECIFIED (PASCERR 655)'
1. The number of characters to be copied in the predefined procedure STRMOVE is less {han
zero, '

670 INVALID CHARACTER FOR HEX DIGIT (PASCERR 670)
1. The character was not in the set 0.9, A.F, ora..l.

671 INVALID CHARACTER FOR OCTAL DIGIT {PASCERR 671)
1. The character was not in the set 0..7.

672 INVALID CHARACTER FOR BINARY DIGIT {PASCERR 672)
1. The gharacter was not in the set Q.. 1.

673 NUMBER OF SIGNIFICANT DIGITS CAUSED OVERFLOW (PASCERR 673)
1. The number of significant digits was more than 32 for the standard function binary, 11 for the
function octal, or 8 for the function hex.

PASCAL FILE ERRCRS

Using the XLIBTRAP intrinsic, it is possible 1o trap run-time file errors. Certain of these errors actually
correspond to errors detected by MPE Fiie System intrinsics which Pascal invokes to perform I/O
operations. For errors of this type, a call to the intrinsic FCHECK will yield the particular MPE File System
error. For other errors, however, FCHECK will not return meaningful resuits. in the {oliowing annotations,
the advisability of using FCHECK is indicated.

- D-3

RUN-TIME ERRORS

890 OPEN ERROR: PHYSICAL FILE COULD NOT BE CLOSED (PASCERR 690)
1. An attempt was made to open a fite, but the logical file was already associated with a physical
file and this physical file could not be closed prior 1o opening ancther physicali file. FCHECK
may be called. '

691 OPEN ERROR: MISMATCH OF LOGICAL /PHYSICAL FILES (PASCERR 691)
1. The characteristics of the logical file are not compatibie with those of the associated physical
file. For exampie, a physical file with variable length records may not be opened for direct
access. FCHECK should not be calied.

692 FiLE OPEN ERROR (PASCERR 692)
1. An error ocourred when FOPEN was calied to open the f:!e FCHECK with 0 as the file number
will give the MPE File System error number.

683 ERROR OCCURRED WHILE READING FROM FILE {PASCERR 683)
1. MPE getected an error during a call to FREAD. FCHECK may be called.

684 ATTEMPT TO READ PAST EOF {(PASCERR 694)
1. The current position is past the last component of the file. FCHECK should not be calied.

895 ERROR OCCURRED WHILE WRITING TO FILE (PASCERR 695)
1. MPE detected an error during a call to FWRITE. FCHECK may be called.

6896 WRITE ON READ-ONLY FILE {PASCERR 696)
1. An attempt was made to perform an output operation on a file opened for input access only,
. FCHEGK should not be called.

897 OPEN ERROR: UNABLE TO INITIALIZE POSITION (PASCERR 627)
1. Arequest was made t0 open a logical file already associated with the physical file and MPE
was unable to reposition the file pointer at the beginning of the physical file. FCHECK may be
called.

698 OPEN ERROR: UNABLE TO EMPTY FILE (PASCERR 698)
1. Rewrite was unabie {o empty the file of its previous contents. FCHECK may be calied.

699 UNABLE TO CLOSE FILE (PASCERR 699)
1. The file couid not be closed as requested. FCHECK may be called. if the file system error

returned by FCheck is FSERR 72 (Invalid File Number), then the likely reasons for the error

are either 1) FClose was used to close the file at the system level, thereby making the file
number invalid when Pascal attempts 10 close it or 2) all or pant of the File Controf Block for
the file has been overwritten by the user program.

D-4

Keven
Rectangle

700 ERROR QCCURRED DURING DIRECT ACCESS 1/0 (PASCERR 700}
1. MPE deiected an error during a file operation on a direct access file. FCHECK may be calied.

701 ILLEGAL CHARACTER IN NUMBER {PASCERR 701)

1. An attempt was made {o read a number from a text file but an illegat character was found
before a valid number, FCHECK should not be called.

702 INPUT VALUE OVERFLOW (PASCERR 702)
1. The numeric value read is too large for the type of the variable. FCHECK should not be called.

703 ATTEMPT TO WRITE PAST PHYSICAL BOUNDS OF FILE (PASCERR 703}
1. THe current record position is past the physical Himit of the file. FCHECK should not be calied,

D-4A

Keven
Rectangle

704

705

706

707

708

709
710
711

712

713

714

RUN-TIME ERRORS

READ ATTEMPTED FROM QUTPUT FILE {PASCERR 704)
1. An attempt was made to perform an input operation on a file opened only for output. FCHECK
should not be called. '

FILE NOT OPENED FOR DIRECT ACCESS (PASCERR 705)
1. An attempt was made to perform a direct access file operation on a file not opened for direct
access with the open procedure. FCHECK should not be called.

FILE NOT OPENED (PASCERR 706)
1. An attempt was made {o access an unopened file. FCHECK should not be called.

INVALID OPEN OPTION (PASCERR 707)
1. Aninvalid open option was found in the third parameter 10 one of the fiie opening procedures.
FCHECK should not be called.

COULD NOT OPEN FILE FOR APPEND ACCESS (PASCERR 708)
1. Some physical files cannot have their record pointers automatically positioned at the end of the
file when opened for append access. This error indicates that Pascal could not successtully
prepare the file for append access. FCHECK may be called.

FIELD WIDTH LESS THAN ZERO {(FPASCERR 709)
1. The fietd width in a formatted write of a non-numeric expression was less than zero. FCHECK
should not be called.

FIELD WIDTH LESS THAN 1 (PASCERR 710)
1. The field width in the formatted write of a numeric expression was iess than 1. FCHECK should
. not be calied.

NC DIGITS AFTER DECIMAL POINT (PASCERR 711}
1. No digits occur after the decimal peint in a formatted write of a real or longreal expression.
FCHECK shouid not be called.

INPUT VALUE UNDERFLOW (PASCERR 712}
1. The value read is too small to be represented in the variable. FCHECK should not be called.

FIELD TOO SMALL TO PRINT NUMBER (PASCERR 713}
1. Aninternal PASCAL error that should be reported to Hewlett-Packard. FCHECK should not be
cailed.

INVALID CLOSE OPTION {PASCERR 714)

1. An invalid disposition option was found in the second parameter to close. FCHECK should not
be calied.

D-§

RUN-TIME ERRORS

715 INVALID ENUMERATED IDENTIFIER FOR INPUT (PASCERR 715)
1. An aftempt was made fo read an enumerated identifier from a textfile, but either a valid Pascal
identifier was not found or the identifier found was not an identifier of that enumerated type.
FCHECK should not be called.

716 CANNOT WRITE ENUMERATED VALUE {PASCERR 716)
1. An attempt was made to write an enumerated variable {0 a textfile, but the current ordinal
value of the variable is not within the range of the enumerated type. FCHECK shouid not be-
catled.

717 INVALID BOOLEAN READ (PASCERR 717}
1. An attermpt was made {0 read a boolean value from a textfile, but a non-boolean value was
found. FCHECK shouid not be called.

718 INVALID FLOATING POINT NUMBER REPRESENTATION (PASCERR 718)

1. An attempt was made to read a real or longreal number from a textfile, but an invalid floating
point number was found. FCHECK shouid not be called.

D-6

Keven
Rectangle

'
UNDETECTED ERRORS o

The following errors are currently undetecied by the compiler at compile time or by the system at run time.
'in any future release, an undeiscted error may become a detected error. '

There is no significance o the order in which the errors are listed here.

Errors which are only detected when the ANS! option is ON, or when STANDARD__LEVEL is set to ANSI,
do not appear on this kst

1. Each component of a structured function result must be assigned a value in the body of the function.
2. i assignment to a function result is conditional, it must occur at run time.

3. A control variable in a FOR statement cannot be changed in the statement after DO by caliing a
pracedure or funclion with a non-local reference o the variable,

4. A parameter of a dispose call cannot be an actual variable parameter, an element of a record
variable list of a WITH statement, or both. Similarly, a dynamic variable in a region of the heap
dealiocated by a call to release cannot fail in one of these categories.

5. When the tag field of a record with variants is changed, all previous variants become undefined.

8. For records with tagless variants, reference to a field for a particutar variant means that other
previcus variants become undefined.

7. Al tag values in a record declaration must be specified in the variant part.

E-1

UNDETECTED ERRORS

8. All possible record variants must be specified in & record declaration.

9. When a value is established for the tag fisld of a record with variants, it is itegal to use a field in another
variant,

10. The compiler does not guarantee dectection of uninitialized variables especially in the following
cases:

a. The path to use of a variable may not include the initializing assignment. Suppose:

PROCEDURE Proc...A;
VAR

X, Y. integer,
BEGIN

Ii’ <condition> THEN x:= 10 ELSE y:= x;
END;

The assignment after ELSE will not cause a compile time error, even if x has not been initialized
outside of the IF statement. (The compiler counts the assignment after THEN as initialization.}

B. Notall the components of a record or array have been assigned values. (The compiler counts the
assignment to a single component as initialization of the entire variable.}.

¢. A uninitialized global variable appears in a prograrm compiled with the GLOBAL or EXTERNAL
options, or in & program which contains procedures or functions declared with the EXTERNAL
directive. {The compiler cannot check outside the current source code.)

d. Anuninitialized dynamic variable on the heap. (This cannot be detected by the compiler or at run
time.)

11. An actual reference parameter may not be an expression congisting of a single variabie in
parentheses. :

12. Case constant labels can't be constant expressions.

13. Range checking code is suppressed when the type of logical file is identical with the type of a-
variable to which a file component is assigned. A physical file associated with the logical file, however,
may have valugs out of range and the consequent error will be undetected.

14, Not all uninitialized variables are detected.

Keven
Rectangle

APPENDIX

oo
F

USING INTRINSICS

MATCHING INTRINSIC PARAMETERS

When the compiler encbunters a procedure or function declared INTRINSIC in Pascal/ 3000 source code,
it performs the following steps:

{1) !t opens the current SPL intrinsic fite, if it isn’t open. The SPLINTR compiler option aliows the
programmer to designate the intrinsic file {see Section 8). The default file is SPLINTR.PUB.SYS.

(2} it checks that the specified intrinsic is in the SPL. intrinsic file. An error occurs if it isn't.

(3} It collects information about the intrinsic parameters.

if the programmer has declared Pascal formal parameters, the compiler then checks these against the
intrinsic parameters. If the intrinsic parameter is a reference parameter, the following conditions apply:

(A) The Pascal/3000Q formal parameter may only be a VAR parameter,

(B} Any Pascal/3000 data type is acceptable. (For strings, only the character part is passed, The
current length is discarded.}

{C) If the Pascal data type entails an SPL BYTE data object and the intrinsic expects a word address, a
warning appears when odd byte addresses rmight not correctly convert 1o the word address,

Condition B means that the programmer can use, for example, a VAﬁ_.pararheler of type char to
correspond to an indrinsic parameter of the SPL type INTEGER.

If the intrinsic parameter is a value parameter, the following conditions apply to the formal parameter:
(D} The Pascal/3000 formal parameter cannot be a VAR parameter.

F-1

MATCHING INTRINSIC PARAMETERS

{€) Depending on the SPL type of the intrinsic parameter, only certain Pascal types are acceptable
{see below), Furthermore, the system will perform ceriain checking when the intrinsic call
executes.

Condition E means that programmer cannct, for exampie, declare a formal parameter of type char to
correspond with an intrinsic parameter of SPL type INTEGER.

When formal parameters are sbeciﬁed the compiter checks the actual parameters of the intrinsic call for
compatibility in the usual manner. In fact, the only reason the prograrnmer will use format parameters is to
provide strong type checking of the actual parameters.

On the other hand, the programmer may choose 10 omit any or all formal parameters in a procedurs or
function declared INTRINSIC, In this case, the compiler uses the information from the splinter file to check
the actual parameters when the program calls the intrinsic. If the intrinsic parameter ig a refarence
parameter, the following conditions apply to the actual parameter:

{F} It must be a variable. | cannot be a constant, function reference, or procedural parameter.

{G) Any Pascal/3000 data type may appear as an actual parameter, The programmer must be aware -

of potential misinterpretation.

{H) The compiler converts word addresses 1o byte addresses and vice versa. It issues a warning if there
is the possibility that an odd byte address will be converted to a word address.

Condition G, like condition B, means the programmer could, for example, pass a char type variable 1o an
intrinsic parameter of SPL type INTEGER.

if the intrinsic parameter is a value parameter, this condition holds for the actual parameter:

(} The type of the actual parameter is restricted according to the SPL type of the intrinsic parameter
and certain checking may occur {see below).

Keven
Rectangle

MATCHING INTRINSIC PARAMETERS

Conditions E and | are really equivalent. They mean that if an intrinsic parameter is a value parameter, the -
Pascal type of the formal parameter or the actual parameter when there is no formal parameter is
restricted. Also, the system will range check certain actual vaiue parameters when the intrinsic call occurs,
provided that the RANGE option was not OFF at compile time.

An intrinsic value parameter may be one of six SPL types: INTEGER, DOUBLE, LOGICAL, BYTE, REAL,
or LONG. lt is not possible to pass an array by value {o an intrinsic. Table F-1 presents each intrinsic value
parameter SPL type and the corresponding permissible Pascal types for formal or actual parameters.

No USL file parameter type checking information is generated for intrinsic calls. An intrinsic function return
of type DOUBLE, REAL, or LONG must be maiched with the Pascal type integer, real, or jongreal,

respectively,
Table F-1. INTRINSIC VALUE PARAMETERS AND PASCAL TYPES
intrinsic
Vaiue Pascal Types tor Formal or Actual Parameters
ﬁ Parameter
SPL type
An integer subrange within the range -32768..32767.
An enumerated type with more than 256 elements.
A set requiring 1 word of storage.
- INTEGER i
A record requiring 1 word of storage.
The type iriteger, or an integer subrange outside the range-32768..32767. In
both cases, the systemn checks the actual value passed to the intringic, if RANGE
is ON. An error occurs if it is not in the range-32768..32767.
The type integer.
DOUBLE Any integer subrange. if the subrange is within the range -32768..32767, the
system converts the 1 word representation (0 a two word representation at run
time. '

-3

MATCHING INTRINSIC PARAMETERS

Table F-1. INTRINSIC VALUE PARAMETERS AND PASCAL TYPES {continued)

LOGICAL

The typs integer, or an integer subrange outside the range -32768..32767. In
both cases, the system will check the actural value when the intrinsic cail occurs.
if it is outside the range 0..65538, an error resuits.

An integer subrange in the range -32768..32767. The system wili not check for
negative actual values when the intrinsic ¢all occurs.

An enumerated type with more than 256 elements.

A set requiring 1 word of storage.

A record requiring 1 word of storage.

BYTE

The type char.

The type boolean.

An enumerated type with less than 257 elements. '

REAL

The type real.

The type iongreal. The system will truncate the low order two words when the
actual vatue passes to the intrinsic.

The type integer or any integer subrange.

LONG

The type Jongreal.

The type real The system adds two words of 0 to the real mantissa when the
intringic ¢all ocours. :

The type integer, or any integer subrange.

F-4

Keven
Rectangle

MATCHING INTRINSIC PARAMETERS

Examples

The reader should consult the MPE Intrinsics Manual for a full description of the intrinsics appearing in
these examples.

PROGRAM calendar (cutput);
{Calls the MPE intrinsic CALENDAR, which returns a LOGICAL }
{value. Bits O through 6 of this value represent the year of }
{the century; bits 7 through 15 the day of the year.)
TYPE o
date = PACKED RECORD
year: 1..100; {requires 7 bits of storage)}
day : 1..365; {requires 9 bits of storage}
END;
VAR
d: date;
FUNCTION calendar: date; INTRINSIC;
BEGIN
d:= ealendar;
writein{ The year is: ',d.year:i);
writein{ ' The day is: ',d.day:1);
END,

PROGRAM time (oufput);
{Calls the MPE intrimsic CLOCK, which returns a DOUBLE value. }
{The four bytes represent the hour, minute, second, and tenths)}
{of a second, successively. }
TYPE
+ = PACKED RECORD
CASE boolean OF :
true: (hour, minute, second, tenths: 0..255);
false: (dvlval: integer);
END;
VAR
time: t;
FUNCTION clock: integer; INTRINSIC;
BEGIN :
time.dblval:= clock;
write{ The time is ',time.hour:1,’:’ ,time.minute:1,’:'}3
writeln(time.second:1,':' time.tenths:1);
END.

F-5

MATCHING INTRINSIC PARAMETEFIS

PROGRAM show_fopen (input,output);

- {This program uses the FOPEN intrinsic to open a file which }
{disallows file eguationz and which ie an exclusive access,)}
{multi-record file with nc buffering. It then calls the }
{FCLOSE intrinsiec to cloge the file as a permanent file. }
TYPE

small_int= -32768..32767;
VAR .
file name: PACKED ARRAY{1..8] OF char;
f options,
a_options,
dispe,
sec,
f_num: small _int;

FUNCTION fopen: small int; INTRINSIC
PROCEDURE felose; INTRIHSKC
BEGIN

file name:= ‘myfile ';
£ options:= cotal('002000°); {disallow file egquations }
2 options:= octal({'000520'); {exclusive access, multi-record,}
{nec buffer }
£ num:= fopen(file name, {formaldesignator }
f options, {foptions }
a_options, {aoptions }
128, {recsize }
s {device }
, {formmsg }
N {userlabels }
. {bleckfactor }
. ~ {aumbuffers }
20000, {filesize)
, {not } {numextents)}
s {required} {initalloc }
¥ {filecods)

writeln('The ccode is: ',ecode:l);
{process file)

dispo:= octal{'000001");

sec:=0;

felose(f num,dispe,see);

writeln{ The ccode is: ',ccode:1);
END.

F-6

Keven
Rectangle

PASCAL SUPPORT LIBRARY

The Pascal support library includes three procedures which may be called as external procedures from a
HP3000 language or subsystem: GETHEAP, RTNHEAP, and HP32106.

Subsystems such as VPLUS call GETHEAP and RTNHEAP to allocate and deallocate space in the DL-DB
ares of the stack and avoid possibie conflicts with the Pascal heap.

With conventions adopted from the MPE Intrinsics Reference Manual, subsequent pages describe each of
these procedures. Data types are SPL data types.

HP32106

Returns the version name for the instailed version of the Pascal/ 3000 support library. The version name is
in the form "HP32106v.uu. i’ where v denctes the maior enhancement level, uu the update level, and fi the
fix level.

BA
HP32106 (versionname);

PARAMETER

versionname BYTE ARRAY {required)
The array must contain at least 14 characters.
input : undefined,
Qutput: the string "HP32106v.uu.ff' left justified.

CONDITION CODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

None,

F-8

Keven
Rectangle

GETHEAP

Aliocates a region of the DL-DB area of the stack of the size requesied. The first parameter returns the
location of the first word of this region. If the system cannot completely satisfy the request, the third
parameter is set to FALSE.

LP | L
GETHEAP ({regptr, regsize, regalloc);

PARAMETERS

regpir LOGICAL POINTER (required)
input : undefined.
Quiput : pointer to region allocated when regalfloc is TRUE, or undefined when it is
FALSE and regsize is 0.

regsize INTEGER {required) _
input : number of words required in the reglon to be allocated.
Qutput : number of words actually allocated.

regalloc LOGICAL (required)
input : must be FALSE. TRUE raserved for future internal use.
Output : TRUE if the requested region was compietely aliocated; FALSE
if the allocation was not complete or totally unsuccessful,

CONDITION GODES

The condition code remains unchanged.

SPECIAL CONSIDERATIONS

This intrinsic cannot be used with the DLSIZE intrinsic, Nor is it possible to directly manipulate regions of
the DL-DB area not allocated by GETHEAP. BASIC/3000 cannot calt GETHEAP.

in order for space retumed by RTNHEAP to be compacted, the main program must be compiled with
$DISPOSE ONS and SHEAP_COMPACT ONS.

RTNHEAP

Deallocates a region of the DL-DB area of the stack. The pointer and size parameters must accurately
match the values returned by a previous caéll to GETHEAP. Hf the given area cannot be correctly
deallocated, the jogical parameter is set 16 FALSE,

LP Y L
RTNHEAP (regptr, regsize, regfreej;

PARAMETERS

regpir LOGICAL POINTER (required)
input : pointer returned by previous cali to GETHEAPR.
Qutput : undefined,

regsize INTEGER by value (required)
Input : size of region corresponding to pointer returned by GETHEAP,

regfree LOGICAL {required) :
Input :must be FALSE. TRUE reserved for future internal use.
Output : TRUE if region successiully returned; FALSE if region could not
be returned. The heap has been rendered invaiid and no subsequent calls
to GETHEAP or RTNMEAP will succeed.

'CONDITION CODES

The condition cade remains unchanged.

SPECIAL CONSIDERATIONS

See GETHEAP.

F-10

Keven
Rectangle

PASCAL/3000 AND |
OTHER LANGUAGES TG |

OVERVIEW

This appendix presents some of the information a programmer needs 10 ¢all routines coded in SPL,
FORTRAN, or COBOL successfully from a Pascal/3000 program, or to call a Pascal/ 3000 procedure or
function from another language. '

Calling Other Languages from Pascal

in general, the programmer must declare a procedure or function with the EXTERNAL directive and the
name of 2 language {see Section 2). The format parameters of the procedure or function must
satisfactorily match the formal parameters of the external procedure or function, The CHECK __
ACTUAL._PARM compiler option permits the programmer to determine the checking information placed
in the USL for use by the Segmenter when performing a PREF or ADDSL (see Section 8).

When the call to the external procedure or function occurs, any actual procedural or functional parameters
must be level 1 procedures or functions. The environment of the passed procedure or function must be
available 10 the external routine. it is &lso inadvisable to pass files by reference 1o external routines since
the conventions for input or output operations differ significantly between languages.

Calling Pascal from Other Languages

The programmer must maich the parameters appearing in the non-Pascal program with the formal
parameters of the extemnal level 1 Pascal procedure or function. The CHECK_FORMAL_PARM
compiler option permits the programmer 1o determineg the checking information placed in the USL file
for use by the Segmenter when performing a PREP or ADDSL.

The external Pascal code may be compiied with or without the SUBPROGRAM option. In either case,
when the non-Pascai program calls the external Pascal procedure or function, the standard files input and
output, even if they appear as program parameters in the Pascal code, will not have been opened and
associated with $STDIN and $STDLIST in the usual way. The programmer must explicitly deciare and open
a file in the external Pascal procedure or function and, if desired, use a file equation to associate it with
$STDIN or $STDLIST. Again, it is generally inadvisable to pass a file by reference to an exiernal Pascal
procedure or function since input and output operations may differ radically between languages.

OVERVIEW

if the non-Pascal program uses subsystems such as VPLUS or DSG and if the external Pascal procedure
or fungtions it calls uses the heap, i.e. the DL-DB area of the stack, the program must deciare itself as
Pascal to the subsystem by using language code 5, except in the case of BASIC which cannot cail a
Pascal procedure or function that uses the heap in any case. This permits the subsystem, which aiso uses
the DL-DB area, to call the Pascal procedures GETHEAP and RTNHEAP (see Appendix F).

A Pascal procedure or function with a long parameter list or with a very large value parameter, .q. & big
array, may be processed by the compiler so that a value parameter is pre-evaluated, temporarily stored on
TOS (top of stack), and subsequently refarenced indirectly. A non-Pagcal program cannot call such a
Pascal procedure or function because it will not correctly interpret the state of the stack at the start of
execution. The programmer may determine if, in fact, a Pascal procedure or function has been compiled in
this way by using the TABLES option (see Section 8).

Pascal Strings as Parameters

Pascal string variables are implemented in storage by 1 word and a sequence of bytes. The word holds the
integer value for the current length of the string and each byte holds a single ASGIl character.

The programmer must take this format into account when passing strings as parameters to other
languages or when passing characters from some other language 1o & Pascal string variable. Here is an
example of one way a siring parameter could be passed from Pascal to a COBOL, FORTRAN, or SPL
roauting:

PROGRAM pass string{input,output);
VAR

test: string(10];
FROCEDURE splt (VAR stest : string)iBXTERNAL SPL;
PROCEDURE fort (VAR ftest : string);EXTERNAL FORTRAN;
PROCEDURE cobt (VAR ctest : string);EXTERNAL COBOL;

G-2

Keven
Rectangle

BEGIN
test := "ABCD';
writeln(strien(test), test};
splti{test); fort{test); cobt{test):
END.

SPL procedure:

$CONTROL SUBPROGRAM
BEGIN
PROCEDURE SPLT(STR);
LOGICAL ARRAY STR;
BEGIN
INTRINSIC PRINT;
PRINT(STR{1)},-STR(0),0);
END;
END.

FORTRAN procedure:

SUBROUTINE FCRT{ARR)
LOGICAL ARR(6), LOG(S5), STRL
INTEGER I, LEN
CHARACTER™10 STR
EQUIVALENCE (STR, LOG), {LEN, STRL)
DC10 I = 1,5
LOG(I) = ARR(I+1)
19 CONTINUE
STRL = ARR({1)
DISPLAY LEN, STR
RETURN
END

COBOL procedure:

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION,
PROGRAM-1ID. COET.
AUTHOR. ME.
ENVIRONMENT DIVISION.
CONFTIGURATION SECTION.
SOURCE-COMPUTER. HP-3000.
OBJECT-COMPUTER. HP-3000.
DATA DIVISION.
LINKAGE SECTION.
01 ASTRING.

05 INT PIC 99 COMP.

05 STR PIC X(10)}.
FROCEDURE DIVISION USING ASTRING.
PARA-1.

DISPLAY INT, STR.
PARA-END.
EXIT PROGRAM.

G-3

OVERVIEW

PASCAL AND SPL

Calling SPL from Pascal

To call an externai SPL routine from a Pascal program, the programmer must deciare the function or
procedure with the EXTERNAL SPL or EXTERNAL SPL VARIABLE directive (see Section 2) and match
the Pascal types of the formal parameters or result type with the SPL types of the external parameters or
result type. Table G-1 lists the corresponding Pascal and SPL types.

SPL. cannot accept value parameters of any array type. Thus, the compiler will issue an error message if
the Pascal type of a formal vaiue parameter results in an SPL array. Pascal/3000 wili generate SPL-
compatible type checking information in the USL. file for calis to external SPL routines. To have parameter
type compatibility checked by the Segmenter, the SPL. procedure should be compiled with OPTION
CHECK 3.

‘Calling Pascal from SPL

To call a Pasca! procedure or function from an SPL program, the programmer must use an 5PL
EXTERNAL procedure declaration which provides parameter declarations that are compatibie with the
Pascal types of the external parameters, Table G-1 shows the Pascal and SPL type correspondences.

An SPL program cannot pass arrays by value 10 a Pascal procedure or function. Pascal/ 3000 will
generale Pascal type checking information in the USL file for Pascal procedures or functions. SPL
procedures which caill Pascal should be compiled with OPTION CHECK C or the Pascal procedure or
function should be compiled with CHECK__FORMAL__FARM set to 0.

G4

Keven
Rectangle

PASCAL AND SPL

Examples:

A Pascal program:

PROGRAM Pascal SPL(input,cutput);

TYPE

' char_str = PACKED ARRAY(1..20] OF char;
small int = -32768..32767;

VAR
a_str : char_str;

intl,int2,sum : small_int;

PROCEDURE splprc(VAR cstr : char str;
inta : small int;
. intb : small_int;
VAR total: small int
)3 EXTERNAL SPL;
BEGIN
a_str :+ 'Add these 2 numbers:';
intl = 25;
int2 := 15;
writeln(a_str,intl,int2);
splpre{a_str,intl,int2,sum};
writeln(a str,aum);
END.

An external SPL procedure:

$CONTROL SUBFROGRAM

BEGIN)

PROCEDURE splprec(cstr,intl,int2,sum);
VALUE intl,int2;
INTEGER intl,int2,sum;
BYTE ARRAY catr;

BEGIN
sum := intl + int2;
MOVE cstr := "Sum of two numbers:
END;
END,

G-5

Keven
Rectangle

PASCAL AND SPL

An SPL program:

BEGIN
LOGICAL ARRAY chr{0:9) := "Add these 2 numbers:";
BYTE ARRKAY bchr{*} = chr;
INTEGER sint:=1%,sint2:=25, len,
INTEGER int, int2, sum;
BYTE ARRAY csum(*) = sum, cint{*) = int,
cint2{*) =int2;

INTRINSIC PRINT,ASCII:
PROCEDURE pas{chr,sint,sint2,sum);
VALUE sint,.sint2;
INTEGER sint,sintZ,sum;
BYTE ARRAY chr;
OPTION EXTERNAL:

PRINT{chr,10,0);

len := ASCII(sint,-10,cint(l));
len := ASCII(sint2,-10,c¢int2(1));
PRINT{cint,-2,0);
PRINT{cint2,-2,0);

pas{chr,sint,sint2, sum);

PRINT (chr,10,0};
len := ASCII(sum,-10,caum(i)};
PRINT (csum,-2,0);

END,

A Pascal external procedure:

$SUBPROGRAMS

PROGRAM example (input,output);

TYPE
arr = PACKED ARRAY{[1..20] OF char;
small int = -32768..3276T;

PROCEDURE pas(VAR carr:arr; sint:small int; sint2:small int;
VAR sum:small_int);

BEGIN
carr :+= sum of two numbers: '
sum % sint + gint2;
END;
BEGIN
ERD.

Keven
Rectangle

PASCAL AND SPL

Table G-1. PABCAL AND SPLTYPES

Pascal/3000 Type SPL: Type

integer
DOUBLE
Integer subrange outside the range -32768..32767

Integer subrange within the range -32768..32767 INTEGER

real REAL
jongreal ' LONG
char ' BYTE
BYTE

boolean {Pascal false=0

Pascal true =1)

Enumerated type with less than 257 elements | BYTE

Enumerated type with more than 256 elements LOGICAL

PASCAL AND SPL

Table G-1. PASCAL AND SPLTYPES (continued)

{1 word) LOGICAL
SET
' {muiti word) e LOGICAL ARRAY
{1 word) LOGICAL
RECORD
(multi word) LOGICAL ARRAY
~ <ZPascal type> <SPL type> POINTER
string _ LCGICAL ARRAY
ARRAY OF «Pascal type>> < SPL type> ARRAY
ARRAY OF <Pascal pointer type> "~ LOGICAL ARRAY
FILE LOGICAL ARRAY
(The type of the Pascal file
is not accounted for.)
Procedural parameters Procedure Parameter

Keven
Rectangle

PASCAL AND FORTRAN

Calling FORTRAN from Pascal

To call a FORTRAN routine from a Pascal/3000 program, the programmer must declare the procedure or
function with the EXTERNAL FORTRAN directive (see Section 2) and match the Pascal types of the
formal parameters or result type with the FORTRAN types of the external parameters or result type. Table
(3-2 lists Pascal types and the corresponding FORTRAN types.

Pascal cannot access a FORTRAN COMMON area. Nor is it possible to pass & file or a label to an external
FORTRAN routine, Also, FORTRAN interprets all Pascal array index typas as 1..n, regardless of the
specified subrange in the Pascal source code.

FORTRAN expects only parameters passed by reference. The Pascal compiler creates a dummy location
for a value parameter and passes that address as a reference. This has certain implications when passing
dynamic variables. In particular, the programmer must pass a dersferenced pointer as the actual
parameter. With a reference tormal parameter, the FORTRAN routine will access the heap variable through
the address of the object indicated by the pointer (see exampie below). With a value formal parameter, a
copy of the dynamic variable is placed on the stack with a dummy reference; this may be quite expensive
i, for example, the variable is a large array.

Pascail/ 3000 will generate FORTRAN-compatible type checking information in the USL file for calis to

external FORTRAN routines. FORTRAN generates parameter type checking information in the USL file by
detault.

G-8

PASCAL AND FORTRAN

Calling Pascal from FORTRAN

To call 2 Pascal procedurs or function from a FORTRAN program, the programmer need not use an
EXTERNAL subroutine deciaration. However, a Pascal function name must appear in a type statement,
6.g. INTEGER PASFUNC, where the FORTRAN type corresponds to the Pascal type of the function result
{see Table G-2). '

FORTRAN cannot pass arrays by vaiue, 50 it is not possible to call a Pascal routine with a value paramster
of a type corresponding to a FORTRAN array type. For any other type of Pascal value parameter, the
programmer must use the backslash (\) notation of FORTRAN/3000. '

All parameters in FORTRAN are word addressed, except for character variables and character arrays
which are byte addressed.

All data must be passed through the parameter lists between FORTRAN and Pascal since FORTRAN
cannot specify giobal variables and Pascal cannot specify COMMON blocks. The calling FORTRAN
program may have a COMMON area, but the external Pascal procedure or funclion cannot use giobal
variables.

The programmer must set CHECK_FORMAL_PARM to 2 for all Pascal procedures, and 0 for functions
1o be called by FORTRAN.

G-10

Keven
Rectangle

PASCAL AND FORTRAN

Examples

Pascal program:

PROGRAM pass_heap var{input,output);
TYPE
pir = “ars;

arr PACKED ARRAY [1..80] OF char;
VAR
aptr : pir;

PROCEDURE fort (VAR arrptr : arr);EXTERNAL FORTRAN;
{The use of a reference parameter permits the}

{external FORTRAN routine to access the }
{variable through the pointer. }
BEGIN
new(aptr);
aptr*:= 'l am a dynamic variable';
fort(aptr”};
END.

External FORTRAN procedure:

SUBROUTINE FORT{PTRARR)
CHARACTER*80 PTRARR
DISPLAY PTRARR
RETURN
END

PASCAL AND FORTRAN

Pascal program:

PROGRAM pascal fort{input,output);

TYPE
char _str = PACKED ARRAY[1..20] OF char;
small_int = -32768..3276T;

VAR
a str ¢ char_str;

intl,int2,sum : small_int;

PROCEDURE fortpre(VAR cstr : char_str;
inta : small_int;
intb : small int;

VAR total: small int
y; EXTERNAL FORTRAN;

BEGIN
a_str := 'Add these 2 pnumbers:’;
intl := 25;
intz := 15

writeln{a str,intl,int2);
fortpre(a_str,intl,int2,sum);
writeln(a_str,sum);

END. :

External FCRTRAN procedure:
SUBROUTINE FORTPRC(CSTR,INTL,INT2,SUM)
INTEGER INT1, INTZ, SUM
CHARACTER CSTR™20

SUM = INTL + INIZ
CSTR = "SUM OF TWO NUMBERS:; "

RETURN
END

G-12

Keven
Rectangle

- PASCAL AND FORTRAN

FORTRAN program:

INTEGER INT1, INTZ2, ISUM
CHARACTER CSTR*30

CSTR = "“Add these 2 numbers”
INTYL = 25
INTZ = 15

DISPLAY CSTR, INT1, INTZ
CALL PAS{CSTR,\INT1\,\INT2\,ISUM)
DISPLAY CSTR, ISUM

ST0P
END

Externat Pascal procedure:
$SUBPROGRAMS

PROGRAM example{input,output);

TYFE
arr = PACKED ARRAY{1..20}1 OF char;
small_int = -32768..32767;

$CHECK _FORMAL PARM 0%
PROCEDURE pas{VAR carr : arr;
. sint : small int;
sint2 : small int;
VAR sum : small int

)3

BEGIN
carr := 'Sum of two numbers: ';
sum := gint + sint2;
END;
BEGIN
END.

PASCAL AND FORTRAN

Table G-2. PASCAL AND FORTRAN TYPES

Pgscal Type FORTRAN type
integer
: INTEGER*4
tnteger subrange outside the range -32768..32767
Integer subrange inside the range -32768..32767 INTEGER*2
real REAL
longreal DOUBLE PRECISION
char CHARA.CTER
PACKED ARRAY [1..n] OF char CH.ARACTER*n
boolean CHARACTER -

{1 = true, O = false)

Enumerated type with less than 257 elements

CHARACTER

Enumerated type with more than 256 elements

INTEGER*2

Keven
Rectangle

PASCAL AND FORTRAN

Table G-2. PASCAL AND FORTRAN TYPES (continued)

RECORD
real__part : real COMPLEX
imag...part : reaf {parameter type checking must be turned off}
END,
{1 word) LOGICAL
SET _
{multti-word) Array of LOGICAL
string Array of LOGICAL
ARRAY [] OF «Pascal type'> Array of corresponding FORTRAN type
(stored in row-maior orger) {stored in column-major order)
Procedurai parameters EXTERNAL statement

PASCAL AND COBOL

The data types of Pascal and COBOL ditter radically. in general, COBOL data types are either binary or
ASCIl format {see Table G-3). By taking the size as well as the format into consideration, the programmer
can successfully match Pascal and COBOL types.

The following are examples of possibie matches between COBOL and Pascal {vpes:

COROL ~ Pascal
PIC X (N) PACKED ARRAY [1..N} OF char
' ARRAY [1..N] OF char
PiC 58 (01) -89 (04) COMP small__int -8889.,9998:
PIC 59 {05} -88 {09) COMP integer
PIC S9 {10} -S9 {18) COMP ARRAY [1..2] OF integer

TYPE nibbie = 0..15
PiC 59 {01) -89 (18} COMP-3 PACKED ARRAY [1..28] OF nibble

In the last example, a Pascal record is constructed to hold a COBOL packed decimal number, but a Pascal
program cannnot operate on the number.

The COBOL types 01 and 77 always start on word boundaries,

The parameter capabilities of COBOL 68 and COBOL 1l differ. In particular, COBOL 68 cannot pass by
vaiue, but COBOL 1 can provided the backsiash (\) notation is used. COBOL. 68 cannot use a parameter

on a byte boundary; COBOL Il can provided the @ symbo! is specified. Finally, COBOL 68 cannot call a
Pascal function; COBOL {i.can if the GIVING phrase ogcurs. '

G-16

Keven
Rectangle

PASCAL AND COBOL

Table G-3. COBOL TYPES AND FORMATS

COBOL Type Format
COMP-3 Packed decimal format with sign in right-most half
byte and 2 digits per byte.
Binary format. SignbitGis +, 1is —.
COMP Size Number of Words
S9 10 89 (4} 1
S8 (5) 10 59 (9) 2
89 (10} to 88(18) 4
Unpacked decimal format (ASCI).
Unsigned- alphanumeric format:
no leading or trailing sign;
1 character per byte.
Signis - alphanumeric format;
leading sign ‘overpunched’ in left-most byte.
DISPLAY :
Signis - alphanumeric format,
traifing sign ‘overpunghed’ in right-most byte.
Signis - first byte is ASCH - for negative,
leading, anything eise specifies positive.
separate
Signis - last byts is ASCI ‘- for negative,
trailing, anything else specifies positive.
separate

PASCAL AND COBOL

Exampies

PROGRAM Pascal COBOL (input,output);
{Calls a simple CCOBOL II routine.}
VAR

intl,

int2,

int3 : integer;

{Al]l parameters are passed by reference.}
FROCEDURE subprogl{VAR parml: integer;
VAR parm2: integer;
VAR parm3: integer); EXTERNAL COBOL;
BEGIN
intl := 25000;
int2 1= 30000;
subprogi{intl, int2, int3);
writeln(inti};
END.

SUBPROGRAM 1:

$CONTROL SUBPROGRAM
IDENTIFICATION DIVISION,
PROGRAM-ID. SUBPROG].
AUTEOR. BP.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER . HP3000.
DATA DIVISION.

LINKAGE SECTION.

77 IN1 PIC S9{0T) COMP.
77 IN2 PIC S9{0T) COMP.
77 OUT PIC 89(07) COMP.
PROCEDURE DIVISION USING IN1, INZ, OUT.
PARA-1. '

ADD IN1, IN2, GIVIRG OUT,
EXIT PROGRAM,

G-18

Keven
Rectangle

PASCAL AND COBOL

This COBOL 68 program cails a Pascal procedure:

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL-TO-PASCAL.
AUTHOR. BP.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ASTRING PIC X{16) VALUE "A COBOL STRING! .
77 ANUM PIC 9(0k) USAGE COMP.
77 RESULT PIC -Z2ZZ.
PROCEDURE DIVISION.
FIRST-PARA.
DISPLAY ASTRING.
CALL "PASPROG" USING ASTRING, ANUM,
MOVE ANUM TO RESULT.
DISPLAY ASTRING, RESULT.
STOP RUN.-

$SUBPROGRAMS
PROGRAM Pascal code(input,output);
TYFE
small int = ~32768..32767T;
charstr = RECORD
cpart : PACKED ARRAY {[1..16] OF char;
END;
{Since the COBOL 68 program requires a variable on a word }
{boundary, this record type disguises the PAC as such a }
{variable. For COBOL II, this deception is unnecesgsary. }

PROCEDURE pasprog(VAR astr : charstr; VAR num : smallﬂint);

BEGIN
astr.cpart := ‘A PASCAL STRING! ;
num = 9999,
END;
BEGIN
END.

PASCAL AND COBOL

This COBOL li program calis a Pascal procedure using a byte-addressed parameter, a value parameter,
and a reference parameter:

$CONTROL USLINIT
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL-TO-PASCAL.
AUTHOR. BP..
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER . HP3000.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ASTRING PIC X(16) VALUE "A COBOL STRING!".
T7 ANUM PIC §{0k) USAGE COMP.
T7 ANUMZ PIC 9(0k) USAGE COMP.
77 RESULT PIC -2Z22.
PROCEDURE DIVISION,
FIRST-PARA,

MOVE 9999 TO ANUM,

DISPLAY ASTRING.

CALL "PASPROG" USING @ASTRING, \ANUM\, aNuUM2,

MOVE ANUM2 TC RESULT.

DISPLAY ASTRING, RESULT.

STOP RUN.

$SUBPROGRAMS
PROGRAM pas_proc{input,output);
TYPE
small int = -32768.,32767;
charstr = PACKED ARRAY {1..16] OF char;
{COBOL Il program will accept a byte-addressed variable.)

PROCEDURE pasprog{VAR astr : charstr;
: num : small int;
VAR num2 : small int};
BEGIN
astr. := 'A PASCAL STRING:';
numzZ := numg
END;
BEGIN
EXD.

G-20

Keven
Rectangle

PASCAL/3000 AND
HP3000 SUBSYSTEMS

APPENDIX

orenonx
_H

This appendix presents information the programmer needs to know in order to use certain HP3000
subsystems in a Pascal/ 3000 program. In particular it considers Pascal/3000 in relation to SORT-
MERGE /3000, IMAGE/ 3000, and VPLUS/3000.

PASCAL AND SORT-MERGE

The SORT-MERGE subsystem uses certain addressing modes which can potentially conflict with common
addressing modes in the object code generated by the Pascal/ 3000 compiler. For this reason, the

programmer should cali the SORTINIT and SORTEND, or the MERGEINIT and MERGEEND intrinsics within
the exetutabie portion of a single procedure. Furthermore, the Pascal code occurring between the calis to
these intrinsics should only consist of parameteriess procedure calls. in outline, this is a possible form of a
Pascal procedure using the SORT-MERGE subsystem: '

PROCEDURE sort;
PROCEDURE read_file;
BEGIN
sortinput (...};
END;

PROCEDURE write_file;
BEGIN

sortoutput (...};
END;
BEGIN {sori}
sortinit {(...};
read filej
write file;

sortend (...}

END; {sort}

{intrinsic

{intrinsic

{intrinsic

{intrinsic

call}

call}

eall}

call)

PASCAL AND SORT-MERGE

The following sampie program uses this outline:

FROGRAM mailing_list sort (mailfile};
{Sorts mail file by zip code using SORT intrinsics and reports;

{statistics from sorting procedure. }
TYPE
smallint = ~32768..32767;
milliseconds = integer;
sort_key = RECORD
position : smalilint;
length : smallint;

sequence : {ascending,descending);
data type: (character,
- twos_complement,

fleoating point,
packed decimal,
display_trailing sign,
packed decimal even,
display_leading sign,
display leading sign separate,

display_trailing sign_separate

s
END; -

sort_statistics = RECORD
records : tnteger;
intermediate_passes :@ smallint;
space_available : smallint:
comparisons : integer;
scrateh file ios : integer;
cpu_time : milliseconds;
elapsed_time : milliseconds;

END;

mailrec = RECORD '

: name : PACKED ARRAY([L1..23] OF char;
street address : PACKED ARRAY{1..23] OF char;
ity : PACKED ARRAY{1..231 OF char;
state : PACKED ARRAY{1..2] OF char;
zip : PACKED ARRAY{1..9] OF char;

END;

H-2

Keven
Rectangle

PASCAL AND SORT-MERGE

VAR
mailfile : FILE OF mailrec;

PROCEDURE sortinit; INTRINSIC;
PROCEDURE sortinput; INTRINSIC;
PROCEDURE sortoutput; INTRINSIC:
PROCEDURE sortend; INTRINSIC;
PROCEDURE sortstat; INTRINSIC:

PROCEDURE sort;

VAR
statistics : sort_statistics;
numkeys : smallint;
keys t sort_key;

PROCEDURE read_unsorted mailing list;
BEGIN
reset{mailfile);
WHILE NOT eof(mailfile) DO
BEGIN
sortinput (mailfile”,sizeof(mailfile”)};
get{mailfile};
END;
END;

PROCEDURE write sorted mailing list;
VAR h - B
length : smallint;
BEGIN
rewrite{mailfile);
soertoutput(mailfile”, length);
WHILE length > ¢ DO
BEGIN
put(maiifile};
sortoutput{mailfile”,length);
END:
END;

H-3

PASCAL AND SORT-MERGE

BEGIN { sort)
numkeys := 1;
WITH keys DO

BEGIN
position @
length :=
seqguence

LY o |

723

ascending;

data_type := character;

END;

gortinit(,,,sizecf (mailfile”), ,numkeys,keys,,,,statistics);

read unsorted mailing listy
write sorted mailing_list;

sortend;

sortstat{statistics};

END; { sort }

BEGIN { mailing list_sort }

sort;

END. { mailing list_sort }

Suppose the unsorted disc file MAILFILE consists of & records:

Mickey Mouse
Charles Babbage
Art Esian
Henrietta T. Mocse
Shamu Whale

Disneyland

11 Dowming Street
2000 Capitel Avenue
16420 Homestead Road
Sea World

Anaheim
London NW 5
Tumwater
Cupertine
San Diego

CA921010705
GROCOD01196
WA99%026138
CAG50146278
CA921205811

Then running this program will sort the contents of MAILFILE by zipcode and produce statistics for the
sorting procedure. MAILFILE will now be:

Charles Babbage
Mickey Mouse

Shamu Whale
Henrietta T. Moose
Art Esian

11 Dowming Stireet
Disnevland

Sea World

1942¢ Homestead Road
2000 Capitol Avenue

H-4

Londen NW &
Anahein
San Diego
Cupertine
Tumwater

GRODOCO1196
CA921010705
4921205811
CA9501L6278
WAS95029138

Keven
Rectangle

PASCAL AND IMAGE

This sample program illusirates cne way the programmer can use Pascal/ 3000 data types to define data
structures which are suitable for use with the IMAGE subsystem:

PROGRAM Pascal Image(input,output);

TYPE

pac = PACKED ARRAY [1..20] OF char;

data_rec = RECORD

name: pac;
position: pacy
location: pac;
phone: pac;

comment: pac;

END

-
L]

{Set-up of IMAGE

single_integer
base type
passﬁord_ﬁype
status_type
.ds_name_type
list_type
buffer_type
key type
item_type

err type

VAR :
cur_rec

cur get

answer
sample db
sample password
sample ds
sample item
sample buff
status

list

mode

dummy

4 W u 9 N R H

{some detail data-set)

parameter data types: }

-32768..32767;
PACKED ARRAY [1.
PACKED ARRAY [1.

.16] OF char;
.86] OF char;

ARRAY [1..10] OF single_integer;

PACKED ARRAY (1.
PACKED ARRAY (1.
PACKED ARRAY [1.
PACKED ARRAY {1.
PACKED ARRAY {1.

JA2] OF char,
2] OF char;
.100] OF char;
.40] OF char;
L8] OF char;

{db_get,db_put,db_find,db_open,db_close);

: data“rec;

: data_req;

: integer;

: base_type;

: password_type;
: ds_name type;

: item type;

: buffer type;

: gtatus_type;

: list type;

: single_integer;
: single_integer;

PASCAL AND IMAGE

{External declarations of IMAGE procedures:)
PROCEDURE dbopen; INTRINSIC,
PROCEDURE dbput; INTRINSIC:
FROCEDURE dbget; INTRINSIC,

PROCEDURE dbfind;INTRINSIC;
- PROCEDURE dbclose; INTRINSIC;

{External errcr handling routine: }

PROCEDURE fatal error (stat:status type,error: err_type);
EXTERNAL; :

{Menu screén: }

- PROCEDURE list _menu;

BEGIN
writein(' CONTACT TINFORMATION FILE');

Cwriteln(’ i) ADD A RECORD ')
writeln{’ 2) LIST LAST PERSON');
writein(’ 3} FINISHED Js
prompt{’ PLEASE ENTER DESIRED OPTION #: ')
readln(answer)};

END; '

PRCCEDURE get rec_info;
BEGIN
prompt{'ENTER CONTACT NaME: ');
readin{cur_rec.name};
prompt{ ENTER CONTACT POSITION: ');
readin{cur rec.position);
prompt{ ENTER CONTACT LOCATION: ')
readin{cur_rec.location);
prompt(ENTER TELEPHONE NUMBER: ');
readln{cur_rec.phone};
prompt{ ENTER COMMENT {FRESS RETURN IF NONE): '};
readln{cur rec.comment);
mode := 1
dbput(sample db, sample_ds, mode, status, list, cur rec);
IF status[l] <> 0 THEN -
fatal error(status, db_put);
END;)

Keven
Rectangle

PASCAL AND IMAGE

PROCEDURE finish_up;
BEGIN .
mode := 3;
dbclose(sample“db, sample_ds, mode, status);
IF status([1] <> 0 THEN fatal error(status,db close);
weiteln(HAVE A NICE DAY {!!!{'};
END;

PROCEDURE print_last_rec;

VAR

search item: item type;
BEGIN

search item := 'name; Yy

{call 4dbfind}

mode := 1,

dbfind(sample db, sample ds, mode, status, search item,
cur_rec.name);

IF status{l] <> 0 THEN fatal_error(status, db_find)};

{call dbge%}

mode := 53

dbget(sample db, sample ds, mode, status, list,
cur rec, dummy};

IF status[l] <> 0 THEN fatal error(status, db get);

writeln{cur_get.name);

writeln{cur_get.position);

writeln{cur_get.location);

writeln{cur_get.phone};

writeln{cur_get.comment);

END;

PASCAL AND IMAGE

BEGIN {Pascal Image}
. {set-up data-base information)
sample_db := ' SAMPLE; 3
sample_password := 'EASY; ';

sample_ds := 'INFO_DETAIL';
list = '@;';
mode = 3

dbopen(sample db, sample password, mode, status);
IF status{l] <> 0 THEN
' fatal error{status, db_open};

answer:= Q;
WHILE answer <» 3 DO
BEGIN
list_menu;
CASE answer OF
1l : get rec_infoy
2 : print_last rec;
3 : finish_up;
OTHERWISE writeln(INVALID _ PLEASE REENTER ')
END
. END
END. {Pascal Image}

H-8

Keven
Rectangle

PASCAL AND VPLUS

VPLUS/ 3000 uses the DL-DB area of the stack to store screen or form information. Pascal/3000 also
uses this area as its ‘heap’. To avoid any possibie conflict, 2 Pascal program ¢alling the VPLUS subsystem
must use language code 5. This signats VPLUS to call the Pascal library procedure GETHEAP, which
allocates a region of the DL-DB area for exclusive use by VPLUS. When the tormsfile is closed, VPLUS
calis another Pascal library procedure, RTNHEAP, which releases the region previously reserved for the
subsystem. (Appendix F describes GETHEAP and RTNHEAP.)

In general, the programmer should define VPLUS common areas and buffers on word boundaries. It will
also probably be necessary to specily the MAXDATA parameter of the :PREP or :RUN commands to
enlarge the DL-DB area, especially when a Pascal program uses VPLUS and dynamic allocation at the
same time.

This sampie program illustrates one way the programmer can construct Pascal /3000 dala structures
suitable for calling VPLUS:

PROGRAM Pascal Vplus(input,output);
TYPE
word = -32768..32767;
err type = (v“ppenformf, v_openterm, v_closetemrn,
- v_closeformf);

string2 = PACKED ARRAY [1..2] OF char;

string3 = PACKED ARRAY [1..3] OF char;

stringh = PACKED ARRAY [1..4] OF char;

string5 = PACKED ARRAY [1..5} oF char;_
stringé = PACKED ARRAY [1..6] OF chanr;

string? = PACKED ARRAY [1..7] OF char;

string8 = PACKED ARRAY [1..8] OF char;

string9 = PACKED ARRAY {1..9] OF char;

stringl0 = PACKED ARRAY [1..10) CF char:
stringll = PACKED ARRAY {1..11] OF char;
stringl? = PACKED ARRAY {1..12] OF char;
stringl3 = PACKED ARRAY [1..13] OF char;
stringlh = PACKED ARRAY [1..1k] OF char;
stringl5 = PACKED ARRAY [1..15] OF char;
stringlé = PACKED ARRAY [1..16] OF char;
string30 = PACKED ARRAY [1..30] OF char;
string30 = PACKED ARRAY [1..30] OF char;
word-2 = ARRAY [1..2] OF woxnd;

word-5 = ARRAY [1..5] OF word;

H-8

PASCAL AND VPLUS

vplus_comarea = RECCRD
: cstatus
language
comarealen
usrbuflen
cmode
lastkey
numerrs
windowenh
multiusage

cfname
nfname
repeatapp
freezapp
cfnumlines
dbuflen
skip?
lookahead
deleteflag
showeontrol
skiplh
printfilaoum
filerrnum
errfilenum
formstrsize
skipé
skip?
skip8
numrecs
recnum
- skip9
term filen
gkipl0
retries
term options
environ
usertime
identifier
labelinfo
END;

: word;
: word,
: word;
: word;
: word;
1 word;
: word;
1 word;
: words
labeloptions :

word;
stringlé;

: stringl6;

.
.

word;
word;
word;

¢ word;
: word;
: word:
: word;
: word;
: word;

word;

: word,
1 word;

.
.

word;

: word;
:+ word;

word;

: integer;
: integer;
: stringh;

13
.

word;

: stringid;
T word;

word;

: word;
: word;
: word;
: word;

H-10

Keven
Rectangle

CONST

com area init = vplus_comarea

VAR

terminal :

formfile
term id
com___are = 3

festatus @ O,
language : 3,
comarealen :
usrbufien : 0
cmode : 0,
lastkey : O,
numerrs : 9,
windowenh :
multiusage :

60,

¥

labeloptions :

cfname
nfname :
repeatapp : O
freezapp : 0O,
cfnumlines
dbuflen : 0,
skip2 : 0,
lookahead : 0
deleteflag :
showcontrol
skiph : 0,
printfilnum :
filerrnum @ 0
errfilenum :
formetrsize :
skipb : 0,
skip? : G,
skip8 : 0,
numrecs : 0,
recnum : @,
word-2{2 of 0
skip9

term,__-fi len :
word-5{5 of 0
skip9 @
term filen :
skipl0
retries : 0,
term _options
enviren : 9,
usetime : 0,
identifier :
labelinfo : O
13

stringd;

: string0d;
: word;
: vplus_comarea;

1

O,

4+

0,

0,

.

1

0,

a,

]

L

g,

]

1
%

0,

: O,

0,

HM-11

PASCAL AND VPLUS

{ Pascal code number }

PASCAL AND VPLUS

{ VPLUS/3000 Intrinsic¢ Procedure Declarations }

FROCEDURE vepenterm ; INTRINSIC;
PROCEDURE wvopenformf ; INTRINSIC;
PROCEDURE vcloseterm | INTRINSIC,
PROCEDURE veloseformf ; INTRINSIC;
PROCEDURE vgetnextform ; INIRINSIC;
PROCEDURE wshowform ; INTRINSIC
PROCEDURE vreadfields ; INTRINSIC;
PROCEDURE vgetbuffer ; INTRINSIC;
PROCEDURE wvputbuffer ; INTRINSIC;
PROCEDURE wvinitform ; INTRINSIC:
PROCEDURE wputfield ; INTRINSIC,

PROCEDURE fatal error (err : err_type; stat:word); EXTERNAL;
PROCEDURE main menu ; EXTERNAL;

BEGIN {Pascal Vplus)

terminal := ‘¥ 3
formfile := 'FORMFILE ';

{ Initialize comarea }
com_area := com_area init;

vopenterm(com area, terminal);
IF com area.cstatus <> O THEN
fatal error(v_openterm, com_area.cstatus);

vopenformf {com_area, formfile);
IF com_area.cstatus <> 0 THEN
fatalwerror(v_openformf, com_area.cstatus);

main_menu;

veloseterm{com area);
IF com_area.cstatus <> 0 THEN
‘fatal error(v_closeterm, com_area.cstatus);

veleseformf {com area);
I¥ com area.cstatus <> 0 THEN
fatalmerror(v#closeformf, com*area.cstatus};

END. (Pascal Vplus}

Keven
Rectangle

| '
1/0 DEFINITIONS S

This appendix provides formal definitions of certain [/ O procedures in HP Standard Pascal.

The tests for existence of a component fail on attempting to access a component which doesn’t exist, on
receiving an EQF condition from a device, or on attempting to access beyond the last compenent of a
direct access file. -

TYPE
file block = RECORD {A data structure associated with }
{file with components of type T. ¥
bound : integer; {Maximum number of components. H
component: ARRAY [1..bound] OF T; {file components. }
pos : integer; {Next component tc be read index. H
buffer : T; {Space for pre-fetched component. }
lookahead, {Buffer variable pre-fetched. }
getok, {f* ref buffers next component. 3
endeffile, {End of file was found. }
readable, {Read cperations are legal. }
writeable: boolean; {Write operations are legal. }
END;
PROCEDURE Setup (f: file; s: string); ' {An intermal procedure}
BEGIN
IF s exists THEN
BECGIK

close previously associated file, if any;
associate file specified by =,
EXND
ELSE IF previous f not open THEN
associate file specified by file's variable name;
f.bound :* system_established_value;
f.buffer := undefined;
END {Setup);

PROCEDURE Open(f,s);

BEGIN
Setup {f,s};
f.readable := true; f.uriteable := irue;
f.lookahead := false; f.getok := false;
f.endoffile := false;
f.pos = 1,

END {Open};

1/0 DEFINITIONS

PRCCEDURE Reset({f.s};

BEGIN
Setup {f,s);
f.readable = true; f.writeable :5 false;
f.lookahead := false; f.getok = true;
f.endeffile := false;
f.pos = 1;

END {Reset};

PROCEDURE Reuritel(f.,s):

BEGIN
Setup (f.s);
f.readable :* falgse: f.writeable = true;
f.lookahead := false; {.getok := false;
f.endoffile 1= true;
f.pos := 1; .
destroy any existing components of £

END {Rewrite)};

PROCEDURE Append(fl,s):

BEGIN
Setup (f.s);
f.readable := false; f.writeable := true;
f.lockahead := false; f.getok := false;
f.endoffile := true;
f.pos 1= last component of f + 1;

E¥D {Append};

PROCEDURE Read{f,x);
BEGIN
IF NOT f.readable OR Eof({f) THEN erreor
ELSE IF f.lpckahead THEN
BEGIN
x = fbuffer:
f.lockahead := false;
END
ELSE
BEGIN
IF f.component{f.pes] doesn’'t exist THEN error
ELSE x := f.component [f.pesl;
f.pos := f{.pos+l;
END;
f.getok 1= true;
END {Read);

Keven
Rectangle

1/0 DEFINITIONS

PROCEDURE Write{f,x);
REGIN
IF NOT f.writeable OR (f.pes > f.bound) THEN error
ELSE
BEGIN
f.component [f.pos] := x;
f.pos := f.pos + i;
END;
f.lookahead :+ false; f.getok := falge;
- f.huffer = undefined;
END {Write}:

~ FUNCTION Position (f}: integer;
BEGIN

IF f.lookahead THEN Position := f.pos ~ 1
ELSE Posgition := f.pos;
END {Positien};

PROCEDURE Seek(f,k)};

BEGIN
IF NOT {f.readable AND f.writeable) THEN error
ELSE
f.pos := k;

f.lookahead r= false; f.geteck := falsey
f.buffer := undefined;
END (Seek)};

PROCEDURE Look (f); {Local procedure to file buffer variable}
BEGIN

IF f.getok THEN
IF f.endoffile THEN error
ELSE
BEGIN
IF component, f.pos, doesn't exist THEN

f.endoffile := true
ELSE

BEGIN

f.buffer;=f.component {f.pos];
f.pos := f.pos + 1;
f.lookahead := true;
END;
f.getok := false;
END;
EXD {Look};

1/0 DEFINITIONS

FUNCTION Eof {f): boolean;
REGIN
I¥ f.readable AND f.writeable THEN
f.endoffile := f.pos > f.bound
FLSE IF NOT f.endeffile THEN Look (f)};
Eof := f.endoffile;
END {Eof};

FUNCTION Maxpos{f): integer;
BEGIN '
IF NOT (f.readable AND f.writeable) THEN error;
maxpos ;= f.hound; :
END {Maxpos};

fA
BEGIK
Look (£);
£ 1= £ .puffer;
END {f"};

PROCEDURE Get(f);
BEGIN .
IF f.andoffile OR NOT f.readable THEN error;
IF f.getok THEN Look {f);
f.getok := true; f.lockahead := false;
END {Get};

PROCEDURE Put{f);
BEGIN
Write{f, f.buffer);
END {Put};

PROCEDURE Close(f,g};
BEGIN
If 5 is given then perform a system dependent action;
Return the file contents to the system;
f.readable := false; f.writeable := false;
f.getok 1= false; f.endoffile :% true;
END {(Closel;

INDEX

A page reference marked with an asterisk {*) indicates the defini-

tion of 2 term or feature.

abs, *7-1
Actual parameters, 3-10, 4-19
Addressing modes, 9-23
ALIAS, *8-7
American National Standards Institute, 1-1
AND, *L4-8
ANSI, *B-10
Pascal, 1-1
‘string’, 2-26
append, *6-6
formal definition, I-2
arctan, *7-2
Arithmetic functions, *7-1
Arithmetic cperators, “i-5
Array constant, see Array constructor
Array
constructor, ¥2-9
indexing efficiency, 9-2h
selector, ¥4-22
storage, *9-11
type, *2-26
type, multiply-dimensioned, 2-27
ASCII character set, 2-20
assert, *7-47
ASSERT HALT option, *8-12
Assignment compatibility, *3-T
Assignment statement, *3-5
Association of logical/physical files, *6-53
baddress, *7-u9
binary, *7-16
Blanks as separators, 5-8
Block, *2-2
Boclean
operators, *L-8
storage, *9-2
type, ¥2-19
Buffer variable, *6-1L6
Case constant subrange, in record type, Z-31
CASE statement, *3-18
efficiency, 9-29
ceode, *7-51
Char
literal, *2-20
gtorage, *9-9
type, ¥2-20
CHECK_ACTUAL_PARM option, *8-13

index-1

INDEX

CHECK FORMAL_PARM option, *8&-15
chr, *7-12
close, *6-9

formal definition, I-1
closing files, *6-50
COBOL and Pascal/3000, G-16
CODE option, *B-17
CODE_OFFSETS option, *8-18
Comments, *5-7

non-legal, 8-%4
Common subexpressions, 9-24
Compatibility of types, see Type compatibility
Compatible types, *2-38
Compilation block, 8-2
Compile-time error messages and warnings, €-1
Compiler options

introduction, 8-1

syntax, 8-1

typographical conventions, 1-2
Compiling Pascal/3000 programs, overview, 1-12
Compound statement, *3-3
Concatenation operator, *i-1%
Congruent parameters, 3-11, hL-19
Constant definition, 2-7

order of, 2-8
Constant expressions, *2-7
Constant folding, 9-24
Constructors, 2-7

unrestricted set, L-17
Conversicn functions, 7-16
COFYRIGHT option, *§-21
cos, *7-3
Data accesgs, 9-23
Data types, see Type definitions
Debugging Pascal/3000 programs, *10-12
Declaration part of block, *2-4
Declaratiocns, *2-k

of functions, *2-43

of procedures, *z-hL2

af variables, *2-LD

crder of, 2-9

redefining standard identifiers, 2-5
Defsult field widths, &-41
Deferred get, 6-57
Difference of sets (-3, 4-9
Direct access files, 6-50

closing, 6-58

eof marker, 6-58

Index-2

Keven
Rectangle

INDEX

Directives, *2-47

Digc files, 6-82

dispose, *7-30

DIV, *4-5

Empty statement, ¥3-U

Enumerated
storage, “8-%
subrange storage, *5-6
type, *2-22

eof, *6-10
formal definition, I-k

eoln, *6-11

Error messages
format, B-30
c¢compile~-time, C-1
run-time, D-1

Execution efficiency, *9-23

exp, *7-h

Expression, k- 1

EXTERNAL directives, *2 49

EXTERNAL option, *8-22
unigue identifiers, 5-1

false, *2-19

File buffer selector, *k-24
formal definition, I-d

FILE type, *2-34

Files
association, 6-53
buffer variable, 6-Lé
direct access, 6-50
formal definitiens of operaticons, I-1
introduction, *&-1
logical files, 6-U6
opening and closing, 6-50
physical files, 6-52
programmer considerations, 6-58
sequential, 6-50
standard files imput and output, 6-k9
storage, *9-21
temporary nameless, 6-1
textfiles, 6-48

Fram, *6-12

$FONT, B8-8A

FOR statement, *3-25
efficlency, 9-28

Formal parameter list, *2-45

Formatting output, 6-40

FORTRAN and Pascal/3000, G-9

FORWARD directive, *2-48

INDEX

Functions
assignment to return, 2-u43
call, *L-19
declaration, *2-43
level 1, *2-53
recursive, *2-54
with PRIVATE PROC, 2-53
get, *6-13
deferred get, 6-57
formal definition, I-b
GETHEAP, 7-36, *F-0
GLOBAL option, *8-23
unique identifiers, 5-1
GOTO statement, 2-6, *3-13
halt, *7-52 '
Heap procedures, *7-36
HEAP_COMPACT option, *8-25
HEAP DISPOSE option, *8-26
hex, *7-17
BP Pascal, summary of extensions to ANSI Pascal, 1-3
KP32106, *F-8
Identical types, *2-38
Identifiers, *5-1
map, 8-47
scope, 2-35
IF statement, *3-15
nesting levels, 3-16
$IF, 8-8C
IMAGE and Pascal/3000, H-5
Implicit conversion, 4-6, 6-26
INCLUDE option, *8-27
Incompatible types, *2-39
Indexing efficiency, 9-24
Initializing USL file, B8-53
trnput, *6-49
Integer
numbers, 5-3
storage, *9.3
subrange storage, *9-4
type, *2-21 _ _
type, as set base type, 2-33
Intersection of sets (*), 4.9
INTRINSIC directive, *2-51
Intrinsics _
matching parameters, F-1
SPLINTR option, 8-42
Keywords, see Reserved words
Labels
declaration, *2-6
restrictigns, 2-6, 2-55

index-4

Keven
Rectangle

INDEX

Level 1 procedures and functions, *2-53
linepos, ¥6-15
LINES opticn, *8-28
LIST option, *B8-29
LIST CODE option, *8-32
Listing features, 8-29
Literals
integer, 5-3
longreal, 5-3
real, 5-3
string, 5-5
in, *7-5 .
Logical files, *6-ub
Longreal
numbers, 5-3
permissible values, 2-25
storage, *9-8
type, ¥2-25
Map of identifiers, see TABLES option
mark, *7-41
mazint, *2-21
mazpos, *6-16
formal definition, I-4
minint, *2-21
MOD, *L-6
MPE commands for Pascal/3000, 10-1
| overview, 1-12
MPE files, 6-5%2
Nesting of IF statements, 3-16
new, *?"3? _ -
NIL, integer wvalue, 2-T7, 9-10
NOT, *hL-8
Numbers, *5-3
Numerie conversion functions, *7-16
octal, *7-18
Odds *T"g
open, *6-17
formal definition, I-1
Opening files, *6-%0
Operands, *L-16
classes of, L4-1
implicit conversion, L-6
Operators, *4-2
arithmetic, 4-5
hoolean, u4-8
classes of, U-1
concatenation, &-15
precedence, 4-b
relational, 4-1C
set, 4§

Index-5

INDEX

Optimizing storage, %9-22
OR, *4-8
ord, *7-13
Ordinal
data types, *2-17
functiong, *7-12
OTHERWISE
as an identifier, 5-2, B-1
in record types, 2-31
Outer block, *2-2
output, *6-u49
overprint, %6-19
PAC, 1-2, *2-26
pack, *T-43
PAGE option, *8-3%
page, *6-20 '
. Parameters
agctual, 3-10
congruent, 3-11
formal, *2-45
PARTIAL EVAL option, *B-35
efficiency, 9-24
1PASCAL command, *10-2
:PASCALGO command, "10-6
: PASCALPREP command, *10-L4
Paseal/3000
compiler, filename, 1-12
cempile/prep/run, 10-1
debugging programs, 10-12
summary of extensions to HP Pascal, 1-8
support library, F-T7
gyntax diagrams, A-1
with COBOL, G-16
with FORTRAN, G-9
with IMAGE, H-S
with other languages, G-1
with SORT-MERGE, H-1
with SPL, G-L
with VPLUS, H-9
Physical files, %6-32
Pointer
data types, 2-17
dereferencing, *H-21
storage, “9-10
type. %2-36
position, *6-21
formal definition, I1-3

index-6

Keven
Rectangle

INDEX

Precedence of operators, *4-4
pred, *7-14
Predefined identifiers, see Standard zdentlflers
Predicate functions, *7-9
FRIVATE PROC option, *8-36
Procedure

declaration, *2-42

level 1, ¥2-53

recursive, *2-54

statement, *3-10

with PRIVATE_PROC, 2-53
Program

ecompilation, 1-12

efficiency, 9-23

form, *2-1

heading, *2-1
prompt, *6-22
put, *6-23

formal definition, I-k
Range checking, 9-26
RANGE option, *B-38
read, *6-25

formal definition, I-2

implicit data conversion, 6-26
veaddir, *6£-29
readin, *6-31
Real

numbers, 5-3

storage, ¥5-T7

type, *2-24

type, permissible values, 2-24
Record constant, see Record constructor
Record

constructor, *2-13

field selection eff1c1ency, 9.24

selector, *h-23

storage, *9-14

type, *2-30

type, fixed part, 2-31

type, tag field, 2-31

type, variant part, €-31
Recursive procedures and functions, *2-54
Relational operators, *4-10

peinter, 4-11

set, u-11

simple, 4-10

string, 4-12
release, *7-42

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

INDEX

REPEAT sgtatement, *3-213
Regerved words, B-1
typegraphical conventions, 1-2
reset, *6-32°
formal definition, I-2
reurite, %6-35
formal definition, I- 2
round, *7-11
RINHEAP, 7-36, *F-10
:RUN <Pascal/3000 programs>, 10-10
:RUN PASCAL,.PUR.SYS, *10-8
Run-time error
messages, D-1
traps, 10-19
Running Pascal/3000 programs, 10-10
‘Running the Pascal/3000 compiler, 10-8
Scope, *2-55
seek, *6-38
formal definition, I-3
SEGMENT option, *&-39
Selectors
array, L4-22
file buffer, L-2k
record, 4-23
Separators, *5-8
Set
constant, see Set constructor
constructor, for constant definitions, *2-15
constructor, unrestricted, *u4-17
operation efficiency, 9-235
operators, *h4-9
storage, ¥9-18
type, *2-33
type, with integer base type, 2-33
$SET, 8-8B
agtatrlen, *7-19
Simple data types, *2-17
Simple statements, 3-}
sin, *7-6
sigeof, *7-53
SKIP_TEXT opticn, *8-41
SORT-MERGE and Pascal/3000, H-1
Special symbols, *5-9
SPL and Pascal/3000, G-4
SPLINTR option, *8-42
sqr, *7-7
aqre, *7-8

index-8

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

INDEX

Standard
constants, 2-7
ideptifiers, listed, B-2

identifiers, typographical conventions, 1- 2

variables input and output, 2-k0

STANDARD LEVEL option, *8.-43
Statements, *3-1
agsignment, 3-5
CASE, *3-18
cempound, 3-3
empty, 3-4
POR, *3-295
GOTC, *3-13
IF, *3-1%
procedure, 3-10
REPEAT, *3-23
simple, 3-1
structured, 3-1
WHILE, *3-21
WITH, *3-39
Static link, 3-11, L-20
Static variables, 7-36
Storage
array, 9-11
beolean, 9-2
char, 9-9
enumerated subrange, 9-6
enumerated, 9-5
file, 9-21
integer subrange, 9-k
integer, 9-3
introduction, 9-1
longreal, 9-8
optimization, 9-22
pointer, 9-10
real, -7
record, 9-1ilh
set, 9-18 '
string, 9-17
str, *7-21
- strappend, *7-22
strdelete, *7-23

index-9

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

String '
assignment, 3-8

comparisons, 4-12

concatenation, *4-15%

constant, see S5tring constructor

constructor, *2-11

expression *7-19

formal parameter, 2-28

literals, 2-28, *5-5

operations, 7-19

passing as parameters, G-2

storage, *9-17

type, *2-28
strinsert, *7-24
strlen, *7-25
stritrim, *7-26
strmee, *7-27
strmove, *7-28
8trpos, *7-29
atrread, *7-30
strrpt, *7-32
strrtrim; #7-33

Structured constants, see constructors

Structured data. types, *2-17
Structured programming, 1-1
Structured statements, 3-1
strurite, *7-34
SUBPROGRAM option, *8.45 .
Subrange
efficiency, 8-28
of enumerated storage, *9-6
of integer storage, *Q-4
type, *2-23
Substring, 2-28
suce, *7-15
Symbols, 5-9
replacements, 5-10
$SYMDEBUG, 8-BE
Syntax diagrams, A-}
TABLES optien, *8-47
Temporary nameless files, 6-1
Textfile, *6-48%
declaration, 2-35
type, *2-35
permissible operations, 2-3§
TITLE option, *8-51
Transfer functions, *7-10
Transfer procedures, *7-43
Trapping run-time errors, *10-19
true, *2-19
trune, *7-10

Ingex-10

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Type compatibility, *2-38
assignment, 3-7
compatible types, 2-38
identical types, 2-38
incompatible types, 2-39

Type definitions, *2-16

Undetected errors, E-1

Union of sets (+), 4-9

wnpack, *7-43

USLINIT option, *8-53

Variable
declaration, *2-h0
global and local, 2-55

globals with EXTERNAL option, 8-22

globals with GLOBAL option, 8-23

static and dynamic, T-36
VPLUS with Pascal/3000, H-9
waddress, *7-55 :
Warning message format, B-30
Warnings, compile-time, C-1
"WHILE statement, *3-21
WIDTH option, *B-54 .

WITH statement, *3-29

efficiency, 9-26
write, *6-30

formal definition, 1-3

formatting output, 6-L40
writedir, *6-43
uriteln, *6-45
XARITRAP, 10-19
XLIBTRAP, 10~19
XREF option, *8-55

index-11

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

