HP 3000 Computer Systems
File System:
Reference Manual

=

(é” HEWLETT

PACKARD

HP Part No. 30000-80236
Printed in U.S.A. 1989

Third Edition
E1089

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
are reserved. No part of this document may be photocopied, reproduced, or translated to
another language without the prior written consent of Hewlett-Packard Company.

Copyright © 1989 by Hewlett-Packard Company

Print History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product

at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version
First Edition February 1982

Second Edition June 1987 G.03.00

Update 1 October 1988 G.03.04

Third Edition October 1989 G.03.08

MPE V Manual Plan

INTRODUCTORY LEVEL:
GENERAL INFORMATION :auzg :’,ﬁ g:' 380&?3 HP lgggo,r%lélbs
(Part No. Pending) NEW SYSTEM OPERATOR

(32033-90021)

MPE V/E HP 3000: MPE V GENERAL USER’S FCOPY
Advanced Skills Reference Manual Reference Manual
(Part No. Pending) (32033-80158) (32212-90003)

STANDARD USER LEVEL:
MPE Y COMMANDS MPE V INTRINSICS MPE V SYSTEM UTIUITIES
Reference Manual Reference Manual Reference Manual
(32033-90006) (32033-90007) (32033-90008)
MPE V SEGMENTER R ac Eoue/ MPE V FILE SYSTEM
Retference Manual Reference Manual Reference Manual
{30000-90011) (30000-90012) (30000-90236)

ADMINISTRATIVE LEVEL:

MPE V SYSTEM
OPERATION AND
RESOURCE MANAGEMENT
Reference Manual
(32033-80005)

MPE V SECURITY AND MPE V STORING AND MPE V SYSTEM BACKUP
ACCOUNT STRUCTURE RESTORING FILES AND RECOVERY
(32033-90136) (32033-90133) (32033-90134)

 SUMMARY LEVEL:

MPE V QUICK
REFERENCE GUIDE

(32033-90023)

LG200027_000a

Preface

The File System Reference Manual is the reference for MPE (Multi Programming Executive)
V/E operating system on the HP 3000.

You are assumed to have a working knowledge of the language(s) to be used and of the MPE
V/E operating system.

To assist you in locating information, a brief description of each chapter in this manual

follows:
Chapter 1
Chapter 2

Chapter 3

Chapter 4
Chapter 5
Chapter 6

Chapter 7

Chapter 8

Chapter 9

Appendix A
Appendix B

Appendix C
Appendix D

Appendix E
Appendix F
Appendix G

Introduction provides an overview of the MPE File System Reference Manual.

Record Structure describes the data fields which are organized into logical
records and discusses the best approach to efficient blocking.

File Structure discusses the file size, the arrangements of files in extents, file
identification and specification of file characteristics.

Domains describes the classifications of files as new, temporary or permanent.
File Operation describes the usage operation of files.

Data Transfer describes the selection of records and the transfer of
information, including the use of buffers and considerations for shared files.

File Security discusses the security provisions and specifies any restrictions on
access to the files associated with each account, group and individual file.

Interprocess Communications describes the interprocess communications
(IPC) facility of the file system which permits multiple process to
communicate with one another,

Magnetic Tape Considerations discusses the magnetic tape storage medium
and the requirements associated with magnetic tape files.

File System Reference provides a summary of the manual’s information.

Status Information describes how to check disk file status to include their
physical characteristics, current file information and error information.

Terminal Characteristics provides reference material for terminals and
character printers.

ASCII Character Set provides the available ASCII character set used with
MPE V/E.

Disk File Labels describes the contents of the disk file labels.
End-of-File discusses the use of the end-of-file indicator.

Magnetic Tape Labels describes the contents of the magnetic tape labels.

Some additional sources of information that might be helpful include:

s MPE V System Operation and Resource Management Reference Manual (32033-90005)
s MPE V Commands Manual (32033-90006)

s MPE V Utilities Reference Manual (32033-90008)

m MPE V Intrinsics Reference Manual (32033-90007)

Conventions
UPPERCASE

italics

bold stalscs

punctuation

underlining

In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND
can be entered as any of the following:
command Command COMMAND
It cannot, however, be entered as:
comm com_mand comamnd

In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.

In the following example, you must replace filename with the name of
the file:

COMMAND filename

In a syntax statement, a word in bold italics represents a parameter
that you must replace with the actual value. In the following example,
you must replace filename with the name of the file:

COMMAND(filename)

In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(filename) : (filename)

Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user’s response to the prompt:

Do you want to continue? >> yes

In a syntax statement, braces enclose required elements. When several
elements are stacked within braces, you must select one. In the
following example, you must select either ON or OFF:

ON
COMMAND
OFF

Conventions (continued)

L 1

3

(cIRU)character

10

In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND filename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

OPTION
COMMAND filename []

parameter

In a syntax statement, horizontal ellipses enclosed in brackets indicate
that you can repeatedly select the element(s) that appear within the
immediately preceding pair of brackets or braces. In the example
below, you can select parameter zero or more times. Each instance of
parameter must be preceded by a comma:

{,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the first occurrence of
parameler:

[parameter] [, ... 1

In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following example,
you must select A, AB, BA, or B. The elements cannot be repeated.

{g}l...l

In an example, horizontal or vertical ellipses indicate where portions of
an example have been omitted.

In a syntax statement, the space symbol A shows a required blank. In
the following example, parameter and parameter must be separated
with a blank:

(parameter) A (parameter)

The symbol () indicates a key on the keyboard. For example,
represents the carriage return key or represents the
shift key.

(cTRD)character indicates a control character. For example,
means that you press the control key and the Y key simultaneously.

Conventions (continued)

base prefixes

bits (bit:length)

The prefixes %, #, and $ specify the numerical base of the value that
follows:

%num specifies an octal number.
#num specifies a decimal number.
$num specifies a hexadecimal number.

If no base is specified, decimal is assumed.

When a parameter contains more than one piece of data within its
bit field, the different data fields are described in the format bits
(bit:length), where bit is the first bit in the field and length is the
number of consecutive bits in the field. For example, bits (13:3)
indicates bits 13, 14, and 15:

most significant least significant
l-=f==l==l== == == === |== [== [== | == | == | == | == | ==]
tol 1 0 1 L 0 1 1 1 I | | 113}14]18]
R R R e B e P P P P P P PR PR PR B
bits (0:1) bits (13:3)

11

Contents

S

1.

2.

Introduction

Record Structure and Blocking

Data Representation: ASCII Versus Binary
Record Formats
Fixed-Length Records

Record Size
Physical Records and Blocking

Disk Space Considerations

Blocks Containing Variable-Length Records
Blocks Containing Undefined-Length Records
Blocking Consideration: System File Label
Relative I/O Block Format
Improving Input/Output Efficiency

File Structure
Disk Files and Device files
File Placement
Extents . . e e Co .
Extent Allocation

Performance Implications of Extent Allocation . .

Special Considerations for Program I'iles
Defining File Characteristics
FOPEN Intrinsic
BUILD Command
FILE Command

File Identification
Non-Data Storage: User Labels

Reading a User File Label on a Disk File

File Codes« o o

FileName
Formal and Actual File Designators

.. 2-2
.. 2-2
Variable-Length Records
Undefined-Length Records
.. 2-5
. 2-7
Disk Access Considerations
. 2-8
Blocks Containing Fixed-Length Records

. 3-6
o 3-6
.. 3-7
.. 3-7
Summary of General Rules For Overrides

2-1

. 2-3
. 2-5

. 2-8

. 2-9
2-11
2-12
2-13

.. 2-14

2-14

3-2

o 3-2

3-3
3-4
3-6
3-6

. 3-10

. 3-11
System File Label
C 3-13
Writing a User Label on a Disk File.

. 3-11

. 3-13
. 3-14
. 3-15

.. 3-18
. 3-18

Renaming Your File
Devices and Devicefiles
Device-Dependent Characteristics

. 3-20
. 3-20
. 3-22

Contents-1

Contents-2

Headers and Trailers
Special Forms00 L.
Foreign Disk Facility.

Domains

TYPES OF DOMAINS
NEWFiles
TEMP Files
OLDFiles

Changing Domains

Directory Search

Listing Files

File Operation
File Operation
Specifying File Designators
User-Defined Files
Lockwords
Back Referencing Files
Generic Names
System-Defined Files
Input/Output Sets
Determining Interactive and Duplicative File Pairs
Passed Files
Comparing SNEWPASS and SOLDPASS to Other
Disk Files
Shared File Considerations
Simultaneous Access of Files
Exclusive Access
Semi-Exclusive Access
Share Access
Multi-Access L.
Global Multi-Access
Sharing the File

Data Transfer

Record Pointers
Pointer Initialization

Record Selection
Default Record Selection
Random Access
Optimizing Direct-Access File Reading
Update Selection
Relative I/O oL,

Control Operations
Spacingo L.
Pointingo
Rewinding

Transferring Files.
Inter-Group Transfers
Inter-Account Transfers

5-12
5-12
5-12
3-14
5-15
5-15
3-16
5-16
5-17

6-1
6-2
6-3
6-3
6-3
6-9
6-10
6-14
6-14
6-14
6-15
6-15
6-16
6-16
6-16

Inter-System Transfers
Buffered Input/Output
Why Buffer Transfers?
Automatic Blocking and Deblocking
Anticipatory Reading
Unbuffered 1/O oo
NOWAIT Input/Output

File Security
Standard File System Security Provision
Specifying and Restricting File Access by Access Mode
Specifying and Restricting File Access by Type or User
Account Level Security
Group Level Security
File Level Security
Changing Security Provisions of Disk Files
Suspending and Restoring Security Provisions .
Access Control Definitions (ACDs)
Who is the ACD Owner
How are ACDs Used
How to Createan ACD
How to Read, List and Copy an ACD
How to Modify an ACD
How to Delete an ACD

Interprocess Communication
Interprocess Communication
Operation
Additional Features
Writer IDs 0000000
Time-outs
Copy Access
Nondestructive Read
Software Interrupts
UsingIPC
Features of Intrinsics for Message Files
FOPEN
FCONTROL
FCHECK
FGETINFO
FFILEINFO
EXAMPLES USING MESSAGE FILES
Circular Files
Features of Intrinsics for Circular Files
FOPEN
FWRITE
FCLOSE

6-17
6-18
6-20
6-20
6-20
6-21
6-21
6-22
6-22
6-23

8-6
8-10
8-11
8-12
8-12
8-13
8-25
8-26
8-26
8-28
8-28
8-28

Contents-3

Contents-4

Example Use of Software Interrupts
Terminal Processes.
Function Processes
Supervisor Process

Magnetic Tape Considerations
Magnetic Tape Considerations
Beginning of Tape (BOT) and End of Tape (EOT)
Markerso o 0L
FWRITE
FREAD
FSPACE
FREADBACKWARD
FCONTROL (WRITEEOF)
FCONTROL (Forward Space to File Mark)
FCONTROL (Backward Space to File Mark)
End-of-File Marks on Magnetic Tape
Spacing File Marks
Using the FCLOSE Intrinsic with Magnetic Tape .
Updating Magnetic Tape Files
Reading and Writing an Unlabeled Magnetic Tape
File0 000000
Labeled Tapes
Writing a Tape Label
Opening a Labeled Magnetic Tape File
Reading a Labeled Magnetic Tape File
Writing to a Labeled Magnetic Tape File .
Writing a User-Defined File Label on a Labeled Tape
File0
Reading a User-Defined File Label on a Labeled Tape
Fileo o 000000
Storing Files Offine

File System Reference

File System Reference

Record Formats
Fixed Length
Variable Length
Undefined Length

Buffering o000 000

Parameters Common to FILE and BUILD Commands
Referencing Disc File Domains
FILE Back-Reference
Controlling Simultaneous Access to Disc Files
Specifying Access oL ..
Specialized Parametersof FILE
User Types

8-30
8-30
8-30
8-30

9-1

9-1
9-2
9-2
9-2
9-2
9-2

9-3
9-3

9-5
9-6

9-8
9-13
9-14
9-17
9-21
9-22

9-22

9-23
9-23

A-1
A-1
A-1
A-1
A-1
A-2

A-5
A-6
A-6
A-6
A-7

B.

Status Information

Obtaining Status Information
PRINTFILEINFO
FGETINFO, FFILEINFO, and FCHECK

Terminal Characteristics
Allocating a Terminal
Terminal Type Specification
Speed and Parity Sensing
Obtaining Terminal Output Speed
Changing Terminal Speed
Control of Parity Generation and Checking
Setting Parityo
Enabling and Disabling Parity Generation and
Checking
Setting a Time-Out Interval
Read Duration Timer
Reading the Terminal Input Timer
End of Record Characters
Break Functions
Enabling and Disabling System Break Function
Enabling and Disabling Subsystem Break Function
Operating in Normal Mode
Enabling and Disabling User Block Transfers . . .
Changing Input Echo Facility
Enabling and Disabling Tape-Mode Option
Enabling and Disabling Line Deletion Echo
Suppression
Reading Paper Tapes Without X-OFF Control . .
Operating in Transparent (Unedited) Mode
Operating in Binary Mode

ASCII Character Set
Disk File Labels
End-of-File Indication

Magnetic Tape Labels

B-1
B-2
B-8

C-3
C-3
C-4
C-5
C-5
C-6
C-6

C-7
C-7
C-8
C-9
C-12
C-13
C-13
C-13
C-14
C-16
C-17
C-18

C-18
C-19
C-19
C-20

Contents-5

Figures

—

Contents-6

1-1. File System Interface 1-2
2-1. Fixed-length Records 2-3
2-2. Variable-length Records 2-4
2-3. Record Placement for ASCII Files 2-6
3-1. Records/Files Relationship 3-1
3-2. FWRITELABEL Intrinsic Example (Disk) 3-14
3-3. FREADLABEL Intrinsic Example (Disk) 3-15
3-4. Device-Dependent Restrictions 3-23
5-1. Passing Files Between Program Runs 5-10
5-2. Passing Files Within a Program Run 5-11
6-1. Record Pointers 6-2
6-2. FREADDIR and FREADSEEK Example (1 of 2) . 6-5
6-3. FWRITEDIR Example (10f2) 6-8
6-4. FUPDATE Example (10f2) 6-11
6-5. Data Transfers Using Buffers 6-18
6-6. Buffer Operation 6-19
8-1. Data Paths among Processes and Message Files . 8-13
8-2. Data Paths among Processes and Message Files . 8-18
9-1. Using the FCLOSE Intrinsic with Unlabeled

Magnetic Tape 9-5
'9-2. Unlabeled Magnetic Tape Example 9-9
9-3. Writing to a Tape File(1of2) 9-15
9-4. Opening a Label Magnetic Tape File (10f 2) . . . 9-18
A-1. FOPTIONs for Use with FOPEN A-8
A-2. AOPTIONS for Use with FOPEN A-8
A-3. MPE Defaults and Device-Dependent Restrictions A-9
A-4. Relative IfO Block Format A-10
B-1. File Information Display - Full B-2
B-2. File Information Display - Short B-3
B-3. Name and Options in a File Information Display . B-5
B-4. Device and Data Structure in a File Information

Display B-6
B-5. Transfer Information in a File Information Display B-6
B-6. Labels and Physical Status in a File Information

Display B-7
B-7. Error Information in a File Information Display . B-7
B-8. Information Available Through FGETINFO and

FCHECK B-8
B-9. Parameter/Field Relationships B-9
C-1. Using FCONTROL to Enable/Read title the

Terminal Input Timer (1 0f2) C-11
G-1. MPE Tape Labels (Conforming to ANSI-Standard) G-2

Tables

AR R S

2-1. Comparison of Logical Record Formats 2-5
2-2. Standard Default Record Sizes 2-7
3-1. FOPEN Parameters and Their Defaults 3-7
3-2. FILE and FOPEN Parameters 3-8
3-3. Disk File Label Contents 3-11
3-4. Reserved File Codes 3-16
3-5. Device Configurations 3-21
4-1. Features of NEW, TEMP, and OLD Files . 4-2
4-2. File Domains Permitted e 4-2
5-1. System-Defined File Designators 5-7
52. InputSet oL 5-8
5-3. Output Set 5-8
5-4. New Files Versus NEWPASS 5-12
5-5. Old Files Versus $OLDPASS 5-12
5-6. File Sharing Restriction Options 5-13
5-7. Actions Resulting from Multi-Access of Files . . . 5-14
6-1. Intrinsics for Data Transfer 6-13
6-2. Implications of Number of Buffers 6-22
7-1. File Access Mode Types 7-2
7-2. Effects of Access Modes 7-3
7-3. User Type Definitions 7-4
7-4. Default Security Provisions 7-7
8-1. IPC Control Codes 8-10
8-2. Intrinsics not Permitted with Circular Files 8-28
8-3. Interrupt Procedure Code Domain Requirements . 8-32
A-1. System-Defined Mnemonic Codes A-3
C-1. Codes for Use with FCONTROL C-2
C-2. Parity Sensing with the ATC, ADCC, and ATP C-4
C-3. Setting Parity for ATC or for ADCC/ATP . . . C-7
C-4. Special Characters C-15
G-1. Format of Tape Labels Written by MPE. (ANSI

Standard) Lo G-3
G-2. Format of Tape Labels Written by MPE. (ANSI

Standard)o G-4

Contents-7

Section Divider

1. Introduction

Introduction

This manual describes the MPE file system. The file system is

the part of the MPE operating system that manages information
being transferred or stored with peripheral devices. It handles
various input and output operations, such as the passing of
information to and from user processes, compilers, and data
management subsystems. Conceptually, data transfers are very
simple: information is arranged as data elements within a record; this
record is input, processed, and output as a single unit.

Logically related records are grouped into sets known to the file
system as files, which may be kept in any storage medium or sent to
any input and output peripheral.

Since all input and output operations are performed through the
use of files, you may access very different devices in a standard,
consistent way: it will not make much difference to you whether
you read your file from a disk, from a magnetic tape, or from cards,
because the file system permits you to treat all files in the same
way. This property of the file system gives your program device
independence: the name and characteristics assigned to a file when
it is defined in a program do not restrict that file to residing on the
same device every time the program is run. You, the user, need only
reference the file by the file name assigned to it when it was created,
and the file system will determine the device or disk address where
the file is stored and access the file for you. (Of course, you should be
aware of the properties of the device you’re using. For example, not
even the MPE file system will permit you to read a file from a line
printer.) You can use the MPE FILE command to specify the device
you want.

Figure 1-1 shows how your program, the file system, the I/O system,
and the actual hardware of the system are related.

Introduction 1-1

Notice that the file system serves as the interface between you and
the rest of the system.

USER PROGRAM User high-level access.

ﬁ Permits the user to dea!
MPE FILE SYSTEM with all 10 at the flle level.
8 (Device independent.)

MPE I/O SYSTEM Handies control of physical

devices.

PHYSICAL DEVICES System hardware.

LG200016_001

Figure 1-1. File System Interface

1-2 Introduction

==

Section Divider

2. Record Structure and Blocking

2

Record Structure and Blocking

Data
Representation:

This chapter will discuss record structures, record lengths, blocking
factors and system consideration of the various formats used.

Logically related data elements are grouped together, forming a
logical record, the fundamental unit of information that is handled by
the MPE File System. It is the smallest data grouping that can be
defined by the user to the File System.

Since a logical record is a group of various data elements, its
structure will depend on the number, content and size of the data
elements within it. Therefore, when you design your records, there
are several questions to consider:

m How will the data be represented?

m Will all the records be the same size?

m How long will the records be?

m Should logical records be grouped together for transfer?

In this chapter we will discuss these questions.

ASCII Versus Binary

Note

Devices on the HP 3000 can transmit information in ASCII
(American Standard Code for Information Interchange) in binary
code, or both formats depending on the device. For example, a line
printer handles ASCII formatted data, while a disk can transmit and
store data in either format.

It is possible to transmit and store data in EBCDIC, as long as the
application program or subsystem (FCOPY, for example) handles
the character translation. EBCDIC is not handled automatically by
MPE.

With many devices, there is no format restriction on the data
actually transferred to or from the file. You can write ASCII data to
a binary file or binary data to an ASCII file. You can specify the
type of code you want, or accept the MPE default for the device you
are using.

The distinctions made between ASCII and binary files do not affect
the record size determination.

Record Structure and Blocking 2-1

When the allocated record space is not filled by data, records are
padded with blanks for ASCII files and zeros for binary files; this

padding is the only significant difference between ASCII and binary
files.

Examples of ASCII files on the HP 3000 include program source files,
general text and document files, and MPE stream files containing
MPE commands. Examples of binary files include USL (User
Subprogram Library) files containing compiled object code, program
files containing prepared object code, and application data files. In
MPE, printers, plotters, and card readers are accessed as files.

Record Formats

A file can contain records written in only one of three formats:
fixed-length, variable-length and undefined-length. You can specify
the format you want for your records, either with the FOPEN
intrinsic or with the MPE BUILD or FILE command. FOPEN,

Files residing on disk or magnetic tape may contain records in any
of the three formats. For files on other devices, the file system will
override any specifications you supply, and will treat the records as
undefined-length records.

Fixed-Length
Records

When you create a file and request fixed-length records, all the
records in the file will be the same size. The file system will know
how much space has been allocated for each record, and that all of
the space is to be available for data.

2-2 Record Structure and Blocking

Figure 2-1 depicts a file with fixed-length records. A record size of
n-bytes has been specified. Note that each record is the same size
and contains the same amount of information.

DATA RECORD 0
n bytes
DATA RECORD 1
n bytes
DATA RECORD 2
n bytes
° °
° °
° °
DATA RECORD m
n bytes

LG200016_002

Figure 2-1. Fixed-length Records

Variable-Length
Records

If you want a disk file in which the logical records need not be

the same size. You can request that the format of the records be
variable-length. Each record is preceded by a one-word (16-bit)
counter giving the length of the record in bytes. In variable-length
format each record is accompanied by an indication of its length.
When you build a file containing variable-length records, specify a
record size at least large enough to accommodate your longest record.

Record Structure and Blocking 2-3

Figure 2-2 shows a file with variable-length records. A one-word byte
precedes the first word of each record indicating the length of the
record.

Byte DATA RECORD 0

One nbytes

Byte DATA RECORD 1

Byte DATA RECORD 2

Byte
Cnt(o) DATA RECORD x

One p bytes
Word

LG200016_003

Figure 2-2. Variable-length Records

2-4 Record Structure and Blocking

Undefined-Length
Records

Undefined records are useful for terminals and magnetic tapes. You
can write various size records to tape. When a record is read back,
its size is made determined by the hardware and made available to
the program. The size of records read from a terminal is the number
of characters preceding a carriage return.

The three record formats, fixed-length, variable-length, and

undefined-length, are summarized in Table 2-1.

Table 2-1. Comparison of Logical Record Formats

Fixed-length

Variable-length

Undefined-length

Data length known to
file system.

Same length for all
records.

Record space contains
data only.

Request actual size for
records.

Data length known to
file system.

Record length varies.

Record space contains
data plus byte count.

Request maximum size
for records.

Data length not known
to file system.

Record length varies.

Record space contains
data plus filler.

Request maximum size
for records.

Record Size

Note 6

You can specify the size of the records in your file by using the BUILD
(for disk files) or FILE commands, or the FOPEN intrinsic. The file
system uses the convention that a negative record size means the

size is given in bytes and a positive record size means it is in words.
The record size may be given in either words or bytes, regardless

of whether the file is to be represented in ASCII or binary code.
However, the interpretation of the requested record size can be
affected by the record structure and data format chosen as well as
the device for the file.

Within MPE and in various subsystems, the record size for an ASCII
file is usually identified in terms of bytes and the record size for a
binary file is identified in terms of words. This convention is a matter
of convenience only, since most users think of ASCII files as being
character oriented.

The HP 3000 is designed around a 16-bit word boundary. Records
are aligned on the predetermined boundaries. This has a particularly
important effect on disk and magnetic tape files. Odd byte record
lengths are always grouped so that logical records begin on word
boundaries. When the file is a binary file, the extra byte is available
to be used for data. Similarly, for variable-length ASCII files, the odd
byte length are grouped and accessible for data.

Record Structure and Blocking 2-5

However, if the file is ASCII and has fixed-length or undefined-length
records, the extra byte is not accessible for data. The odd byte
length remains the maximum size allowed for data. Figure 2-3 shows
the placement of odd byte records and the disposition of the added
byte.

Fixed-length and Undefined-iength records:

le—— ACCESSIBLE ——— . t@&—— ACCESSIBLE ———|"

— Odd number of bytes—— +— Odd number of bytes—
p———— Actual record ~———+————— Actual record ——————|

One byte; Inaccessible

Varlable-length records:

- F 1
[«———— ACCESSIBLE ——JI-—<———— ACCESSIBLE ——1——
1 1

— Odd number of bytes—— — Odd number of bytes—
P———— Actual record +— Actual record ——

LG200016_005

Figure 2-3. Record Placement for ASCH! Files

Rather than specify your own record size, you can accept the default
record size for the device you are using. Default record sizes are
listed in Table 2-2. Note that subsystem defaults may be different
from MPE defaults; for example, the Editor default may be 72-bytes
or 80-bytes (depending on text format) while the MPE standard
default is the record size configured for the device.

2-6 Record Structure and Blocking

Physical Records
and Blocking

Note

Table 2-2. Standard Default Record Sizes

DEVICE RECORD SIZE (BYTES)
Disk 256
Magnetic Tape Unit 256
Terminals (most cases) 80
Card Reader 80
Line Printer 132
Paper Tape Reader 80
Paper Tape Punch 256
Plotter 510
Printing Reader/Punch No. of card columns, usually 80
Programmable Controller 256
Synchronous Single-Line Controller 256

The logical record is the smallest data grouping you may directly
address. The physical record, or block, is a grouping of one or more
logical records, and is the unit of information moved in one physical
read or write of data to or from the device containing the file.

The file system automatically handles the blocking and deblocking

of logical records when you are operating in buffered mode, but you
can block the records in your files on disk or tape when you are
operating in NOBUF mode. For files on other devices, physical records
are blocked according to the characteristics of the devices. A physical
record may be one card, or one line of print.

You may specify the blocking factor, or number of logical records in
a block, for the records in your files with the FOPEN intrinsic or the
BUILD or FILE command. The maximum blocking factor is 255. The
actual structure of your blocks will depend upon the format of your
logical records; for example, a block of fixed-length records will be
structured differently from a block of variable-length records.

Efficient grouping of logical records into blocks results in:
m Fewer disk accesses.

m Better disk space utilization.

Once the blocking factor is set, it cannot be overridden during the
life of the file.

Record Structure and Blocking 2-7

Disk Access

Considerations

Note #
Disk Space
Considerations

Since one disk read or write will transfer one physical record, you can
minimize input and output and file system overhead by grouping
several logical records into each block: one read or write will transfer
as many records as you have in one block.

In MPE, blocking helps to minimize device head contention on
system domain disks and shared private volumes. Since one disk
access will read or write as many records as one block contains, you
and other system users will need to gain control of the disk less often
than if you had to read each logical record individually.

The block size of your file is determined by multiplying two
parameters you supply when you create the file: the record size
and the blocking factor. The maximum block size allowed is 32,000
words.

You can save or waste disk space in the way your files are blocked.
Disks are not word addressable, disk space is organized into physical
groups of 128 words called sectors. Because of this organization,

all physical transfers must begin on a sector boundary, and so all
physical records (blocks) must begin on a sector boundary. A
physical record may span more than one sector, but it must begin on
a sector boundary. If your blocks do not fit neatly into sectors—that
is, if their size is not a multiple of 128 words—some disk space will
be wasted.

Suppose your blocks are 300 words long. They will each cover two
sectors and part of a third, as shown:

300 words 84 words
A\

.

1

N\

T A g

BLOCK : [WASTED 7/

| ! W ITIITS

. /. N\ v
% N/ \Y
128 128 128

L G200016_006

Since each block starts on a sector boundary, the unused space
following each block is wasted. If the block size had been 384 words
rather than 300, all of the space in three sectors could be used for
each block, and no space would be wasted.

2-8 Record Structure and Blocking

Blocks Containing
Fixed-Length
Records

It is recommended that to minimize wasting file space, choose a
blocking factor that is equal to or slightly less than a multiple of 128
words.

When your file contains fixed-length records, all the blocks will
contain the same amount of data in the same number of records.

The file system determines the size of your blocks by multiplying two
parameters you supply: the logical record size (recsize) times the
blocking factor. When written to disk, each block begins at the start
of a sector and may occupy one or more contiguous sectors. This
occurs because the disk controller can only transfer data in units
equivalent to the length of a sector, 128 words or 256-bytes. Thus,
on a disk file, a 240-byte block containing three 80-byte fixed-length
records would appear as follows:

BLOCK
(blockfactor x recsize)
p o

Logical Logical Logical
Record 0 Record 1 Record 2

N— M___W \ —
VT N~
recsize = -80 recsize = -80 recsize = -80

~

240 bytes
TN

Disc Sector

(256 bytes)

LG200016_007

The 16 bytes remaining at the end of the sector are wasted, since this
block cannot use them and the next block begins at the start of the
next sector. Because of this fact, you can waste disk space if you do
not block your records carefully. For example, if you use a blocking

Record Structure and Blocking 2-9

factor of 1 when writing a fixed-length record of 258-bytes, you will
waste 254 bytes of disk space as shown below:

Biock
Vo
pu
Sector
V. .
—

Logical Record 0

N \ - '

N
256 bytes 2 bytes 254 bytes unused

LG200016_008

In a large file, this much waste (about 49.6%) soon becomes
devastating. For optimum use of disk space, compute the block size
so that:

recsize X blockfactor = a multiple of 256 (for bytes)
or:
recsize x blockfactor = a multiple of 128 (for words)

If you can’t make the blocks fit into sectors exactly, it is better to
have blocks a bit too small than too large; less space is wasted. For
example, if your records are 102 bytes long, there will be little waste
if you choose a blocking factor of 5: 102 x 5 = 510, so your block will
occupy two sectors with only two wasted bytes, as shown below:

Block
7 -\ N
Sector Sector
7\ —
7 hd
Logical Logical Logical Logical Logical
Record 0 Record 1 Record 2 Record 3 Record 4
N V4
VO
510 by‘es 2 bytes
unused
\ -
N
512 bytes

LG200016_009

2-10 Record Structure and Blocking

Blocks Containing
Variable-Length
Records

When your file contains variable-length records, one block may
contain a variable number of records: one block may contain a few
large logical records or many small ones. The same amount of space
will be available for each block, but since the logical records will be
of different sizes.

The file system will change the record size and blocking factor that
you specify for your blocks. Your record size and blocking factor will
be multiplied to yield a new record size, and your blocking factor
will be changed to 1. For example, if you request a record size of

20 words and a blocking factor of 6, your new record size will be

120 words and your blocking factor will be 1. In both cases, the
available space in your blocks is the same: 120 words. The record
size and blocking factor are manipulated this way simply to maintain
a consistent internal structure. The actual block size will be several
words larger than the available space: the file system adds one word
for a byte count at the beginning of each record and another word
for a delimiter of “~1” at the end of each block. These words of
overhead allow for a minimum of one logical record per block.

Your block size will be determined by the formula:
(recsize + 1) x (blockfactor + 1)

To avoid permanent waste of file space, make your block size equal to
or slightly less than, a multiple of 128 words. This will make most

of the space covered by your file available for data. Even if your
blocks fit neatly into sectors, however, disk space may be wasted if
your logical records fit into your blocks poorly. Here, two logical
variable-length records fit into a block. A third record is too large to
fit into the block, so space is wasted:

"?‘:""rr“" o x""‘r rl:‘"‘ o “‘\ \N' '-
DATA LTSI ‘n* R
S ISSISIIN \;:{“ *~ \ “\l‘* N
undetlned blanks or ze
(hardware dependent) ros
. A\ v/ N\ -/ —
SECTOR SECTOR SECTOR
. —
N
BLOCK

LG200016_011

Record Structure and Blocking 2-11

Blocks Containing When your file contains undefined-length records, it is impossible to
Undefined-Length take advantage of blocking. Since the file system does not know how
much space the actual data will require, it cannot place more than
Records one record in a block; it does not know that more than one record
will fit into each block. For this reason, the file system will override
any blocking factor you supply and change the blocking factor to
1. Each block will contain one record. When you create your file,
specify a logical record size large enough to contain the largest record
you expect; the file system will allocate this much space for each
block. In files containing undefined-length records, logical records
and physical records are identical.

To avoid permanent waste of sector space in your file, your block size
(record size) should be a multiple of 128 words (256-bytes). Records
that are considerably shorter than the size allowed will waste space,
since the maximum record space is allocated and may contain only
one record. Consider the case below:

REC 2 .
ggSN'T Record 1|{COUNT Record 2 -1

BLOCK

Other records of the same flle may fit better:

REC 4 REC 5
(?CELCJ:NQT Record 3|COUNT| Record 4 |COUNT Record 5 -1
BLOCK
LG200016_010

2-12 Record Structure and Blocking

A block size of 384 words (768-bytes) has been specified; each block
covers three sectors. The record in this case is only 140 words long.
It fills one sector, and ends in the next; the contents of the remainder
of the second sector is hardware dependent. The third sector is not
used at all, and is filled with blanks (if this is an ASCII file) or zeros,
if the file is written in binary code.

Blocking Every disk file has a system file label. The label identifies the file to
: (P the system and contains the characteristics of the file. The system

gontSIdelr:a.lt IO|I;'I) bel file label is 128 words long, and occupies one block. An entire block

ysiem File Labe is allocated for the system file label for the sake of uniformity. All
blocks in the file are treated the same way. Because of this fact, a
small amount of file space can be wasted even if your records fit
neatly into blocks. Since the system file label requires only 128
words, any space beyond that in its block may be wasted.

Consider the extreme case of a file with 11 records, each 55 words
long. If a blocking factor of 11 is chosen, one block will contain the
11 records. The block will cover five sectors for a total of 640 words,
so only 35 words will seem to be unused. However, a block of the
same size is allocated for the system file label. Since it requires only
128 words, the additional 512 words in the block are unused. The
waste in this case includes the 35 words left over by the records plus
the 512 words lost on the system file label. A total of 547 words
wasted. This rather extreme situation is illustrated below:

BLOCK

ro N— N
~ SECTOR SEC/@R SECTOR SECTOR SEC/IOR

System

file label

~
UNUSED

SECIE)R SECTOR SEC,IOR SECTOR SEC;IOR

7 hd VT VT N\

~—
| 1 | p;/” "
DATA | DATA|DATA|DATA DATr DATA|DATA D[«TA DATA [DATA | DATA [, / %

UNUSED

LG200016_012

Record Structure and Blocking 2-13

Relative 1/0 Block Relative I/O format is a scheme (used principally by COBOL) for

Format tagging each record with a bit describing whether a record is active.
Records can be logically deleted from the file by setting their activity
bits to inactive status. The blocks used with relative I/O have a
characteristic format. This format is illustrated in Appendix A, “File
System Reference”.

Improving When you run a program that transfers data to or from a
Input /Output different input or output device from time to time, you can make

. . the physical input or output more efficient by overriding the
EffICIency programmatically-specified record size or blocking factor so that
these values better suit the device involved. For instance, suppose
you are running a program originally written to read input from
cards specified as 20-character logical records. If, before the next run,
the input file has been copied to disk, you could provide faster access
by reading these records in blocks of 240 characters. To do this, you
would enter a FILE command using a blocking factor of 12:

FILE CARDS; DEV=DISC;REC=-20,12
RUN PROGX

Note f When you specify record size in bytes, you must precede the block
ﬁ factor value with a minus sign when you express record size in words,
be sure to omit the minus sign.

2-14 Record Structure and Blocking

3

Section Divider

3. File Structure

File Structure

In this chapter, we will investigate files, sets of logically related
records which reside on one or more devices. Records are related to
files as illustrated in Figure 3-1, below.

\1
Record
) T
BLOCK -@
>
®
[]
S L FILE | OR
‘ OTHER DEVICE
.
[] /

LG200016_013

Figure 3-1. Records/Files Relationship

When you design your files, there are several questions vou should
consider:

m Where should the file be kept?

m How large should the file be?

m How should a disk file be distributed on the disk?
m How should the file be identified?

m What characteristics should the file have?

File Structivre 3-1

Disk Files and The File System recognizes two basic types of files, classified on the
Device files basis of the media on which they reside when processed:

m Disk files , which are files residing on disk, immediately accessible
by the system and potentially shareable by several sessions/jobs at
the same time.

m Device files , which are files currently being input to or output
from any peripheral device except a disk. (Files on serial disk
are considered device files.) When information exists on such a
device but is not being processed, the File System cannot recognize
it as a file. Thus, information on cards is not identified as a file
until the cards are loaded into the card reader and reading begins.
Data being written to a line printer is no longer regarded as a file
when output to the printer terminates. A device file is accessed
exclusively by the session or job that acquires it and is owned
by that session/job until the session/job explicitly releases it or
terminates.

Note I Spooled device files, although temporarily residing on disk, are

ﬁ considered device files in the fullest sense because they are always
originated on or destined for devices other than disk, and because
you generally remain unaware of their storage on disk as an
intermediate step in the spooling process. Whether they deal with
spooled or unspooled device files, your programs handle input/output
as if the files reside on non-disk devices. The console operator, not

the user, controls the spooling operation.

File Placement Free space on a disk is often not contiguous. It exists as small chunks
of space between occupied spaces. Therefore, when you create a file
and request a certain amount of space for it, the file system breaks
your file into individually placeable pieces called extents. These
extents may be placed wherever they can fit on the disk, or may even
be scattered over several disks, and the file system will recognize
them as belonging to the same file. Space for each extent will be
allocated and initialized as it is required.

Note } When you create your file, make it as large or larger than you believe
ﬁ it will ever need to be; later, you can make a file smaller, but you
cannot request more space for it unless you purge and recreate it.
If you use only a part of the file space you have requested, you can
access the file later and append to it, but you may only fill the file to

the limit you set when you create the file.

3-2 File Structure

Extents

Fach extent is an integral number of blocks; it consists of a number
of consecutively located disk sectors. You may specify the maximum
number of extents your file may occupy, up to a maximum of 32. -
The file system, however, may use fewer extents than you request.
Each extent must contain at least one physical record. So, if your file
consists of one block of data and one block for the system file label,
and you request eight extents for your file, the file system will allot
only two extents.

Each extent is the same size, with the possible exception of the
last. If the records cannot be distributed evenly among the extents,
the last extent will receive fewer records than the others. You can
determine the size of each extent by the following method.

In this algorithm, the constant 256 denotes the size of each sector in
bytes:

If any division equates
Extent Size = Sectors/Extent

Sectors/Extent = Number of blocks
divided by Number of extents
maltiplied by Sectors/Block

Sectors/Block = Block size (in bytes)
divided by 256

Number of blocks = Number of records
divided by Block factor
plus 1 (for file label)

If any division equates in a fractional remainder, the quotient is
rounded to the next higher integer (e.g., 65/8 = 8 with a fraction of 1
remaining, this equation is rounded up to 9).

To illustrate the use of the algorithm, the extent size is calculated
below for a file containing 1024 logical records, organized as eight
extents, with a blocking factor of 3. Each record is an 80-byte card
image. The extent size is:

Number of blocks = 1024 divided by 3 + 1 = 343
Sectors/Block = 240 divided by 256 = 1
Sectors/Extent = 343 divided by 8 x 1 = 43 x 1 = 43

Extent Size = 43 Sectors/Extent

The first seven extents contain 43 sectors each and the last extent
contains 41 sectors.

File Structure 3-3

Note i

Extent Allocation

3-4 File Structure

With a blocking factor of 16, applied in the above example, the
extent size is:

Number of blocks = 1024 divided by 16 + 1 = 65
Sectors/Block = 1280 divided by 256 = 5
Sectors/Extent = 65 divided by 8 x 5 = 9 x 5 = 45

Extent Size = 45 Sectors/Extent

In this case, the first seven extents contain 45 sectors each, and the
last extent contains 10 sectors.

Spooled device files (spoolfiles) are written in a special format and
managed entirely by the file system. They, like other files, may have
a maximum of 32 extents. The size of these extents is determined by
the system manager when configuring the system.

The extents that comprise your file will reside on disks in the device
class that you specify when you open the file. Normally, each extent
is assigned arbitrarily to a device in the class. If you wish, you may
have all your extents on the same disk by requesting a specific logical
device by its logical device number (ldev#) rather than by device
class. In either case, MPE maintains the integrity of your extents.
Any extent resides entirely on one device, and is not shared over
several.

If your system contains two or more disks with the class name DISC,
and their speeds are different, you may wish to consider the way

your file will be used and choose one disk specifically because of its
speed. In this case, you would reference that disk by its logical device
number (Idev#) when you create the file.

Device class names and logical device numbers are discussed later in
this chapter.

When you create your file and specify the number of extents you
want, you may not need all of those extents right away. Perhaps

you will need only a small part of the file space at first, and do not
anticipate filling the space until later. In this case, when you build
your file you can specify how many extents are to be allocated at
once; the file system default is one extent. As the file grows to its full
size and requires more space, the file system allocates the extents

you have reserved as they are needed. This ability to take only as
much space as you need when you need it enables you to optimize file
access to save disk space.

When you create your file, only the space that is actually allocated
is subtracted from the total available to you. The file system will
allocate only as many extents as you request, but will remember how
many extents you will eventually want.

If you create a file that will eventually consume more disk space than
you have in your group or account, extents will be allocated until
your available space is filled. After that, you may not allocate more
extents until you increase the disk space available to you.

Occasionally, you may wish to override programmatic specifications
dealing with extents to optimize the use of disk space. For instance,
if your disk space is limited, the space available may exist as isolated
small groups of sectors (fragments) rather than as contiguous groups
of many sectors. You may then decide to break the file into more
extents, each small enough to fit into the fragments available. I you
fail to do this, perhaps attempting to open the file with one extent,
you may not be able to get the disk space you require. To illustrate,
consider that your disk space is limited and you run a program

to create a new file for 1000 records of 80 bytes each, treated as

10 extents, you could enhance yhour chances of acquiring the disc
space needed by issuing a :FILE command specifying 32 extents, all
allocated immediately:

No. of extents allocated immediately
No. of extents in file |
File capacity | |
I
v v v
:FILE MYFILE;DEV=DISC;DISC=1000,32,32
:RUN XPROG A
l

Requests search for space on any disk

In general, the rule is that if your disk space is limited and you know
the total space your file will need, divide the file into many extents
and request immediate allocation of all of them.

Wlhen you create your file and allocate the initial extents, those
extents are allocated in order. Subsequent allocations of extents for
that file need not be in order. For example, if you write a record that
maps into an unallocated extent, that extent will be allocated, but
intervening extents will not.

Extents are allocated as they are needed until your file has grown

to its full size. When your file’s initially allocated extents have

been filled, the next block you write to the file forces allocation

of an extent for that block. Similarly, if you try to read from an
unallocated block, the extent containing that block will be initialized
and allocated.

The file system will not allow uninitialized space to be read. When
an additional extent is allocated for a file, it is initialized before it
can be read; this is done for security reasons, to prevent a user from
reading information that he did not write, such as old (purged-
files. The file system assumes that any space which is beyond

the end-of-file indicator or which has not yet been allocated is
uninitialized.

File Structure 3-5

Note

Performance
Implications of Extent
Allocation

Special Considerations
for Program Files

Since extents need not be allocated in order, the last extent of a file
may be allocated before the middle extents. For this reason, even if
the end-of-file indicator is set at the file limit, the file system will not
assume that the entire file space has been allocated and initialized.

You can take advantage of the ability of the file system to allocate
and initialize extents as they are needed. Instead of initializing your
extents when you open your file, distribute the file system overhead
(that is, the wait time) by initializing the minimum amount of

space needed. When you write data to your file, you do not need to
initialize the file space; this is only done when you attempt to write a
new extent. So, by initializing only a minimum of space, you avoid
the unnecessary initialization of file space that will be written to, and
save time.

Program files must be contained in only one extent. When the MPE
Segmenter prepares a program file, the file is automatically created
with one extent, and so it fits this specification. If you are preparing
a program obnto an existing file in your job/session domain, you

can make sure the file is limited to one extent by using the BUILD
command:

:BUILD PROGFL;DISC=,1; CODE=PROG
T Specifies 1 extent

Defining File
Characteristics

FOPEN Intrinsic

3-6 File Structure

When you create a file, you choose the attributes that file will have.
Your choices are made on the basis of how the file will be used. A
file’s characteristics are determined by the parameters you choose
when you create the file with the FOPEN intrinsic or BUILD command,
or when you specify the file with the FILE command. Once a file

has been created, its characteristics cannot be changed. It can be
renamed, purged, or made permanent, but the only way to change
the attribute is by building a new file and copying the old one into it.

The FOPEN intrinsic is your best tool for supplying the file system
with information about your file.

The FOPEN intrinsic is used to define the structure of the file and

its records, and the file’s identification, domain and usage. The
characteristics that are affected are listed in Table 3-1, along with the
corresponding FOPEN parameters and their defaults.

Table 3-1. FOPEN Parameters and Their Defaults

Record FOPTIONS Binary,
Structure RECSIZE Fixed Recsize = 128 words
File Structure | BLOCKFACTOR (128/RECSIZE), rounded down
FILESIZE 1023 records
NUMEXTENTS 8 extents
INITALLOC 1 extent
DEVICE Disk
FOPTIONS
File USERLABELS Userlabels= 0
Identification |FILECODE Filecode= 0
FORMALDESIGNATOR} Unnamed
FOPTIONS
File Domain FOPTIONS New
File Usage AOPTIONS Read Only
Access= SHR (read only)
EXC (all others)
No FLOCK
Buffered
No mulitrec
No multi-access
Wait for 1/0
NUMBUFFERS Numbuf=2
FOPTIONS

File domains are discussed in a later chapter. Settings for the
aoptions and foptions are shown in Appendix A. For more details
on using the FOPEN intrinsic, see the MPE V Intrinsics Reference
Manual (32033-90007).

BUILD Command The BUILD command creates a file in much the same way as the
FOPEN intrinsic, except that FOPEN is used within a program and
BUILD is entered as an MPE command.

The parameters for the BUILD command have meanings and
applications that are similar to the corresponding parameters for
FOPEN. For more information about how to use the BUILD command,
see the MPE V Commands Reference Manual (32033-90006).

FILE Command The FILE command is used to determine how a file will be accessed.
You may use FILE to describe any of the characteristics available
with FOPEN or BUILD, but you cannot actually create a file with the
FILE command. While FOPEN and physically allocate space for a file
and define its characteristics. The FILE command will define file
attributes that will be ascribed to when a program accessing it is
run. A comparison of the parameters for FILE and FOPEN is given in
Table 3-2.

File Structure 3-7

Table 3-2. FILE and FOPEN Parameters

Characteristic

FILE parameter

FOPEN parameter

MPE default

Formal file designator formaldesignator formaldesignator Temporary nameless file.
Actual file designator filereference Default file designator Same as formal file
$NEWPASS foption (bits 10:3) designator
$0LDPASS
$NULL
$STDIN
$STDINX
$STDLIST
Domain NEW Domain foption (bit 14:2) | New file
OLD
OLDTEMP
Logical record size recsize recsize Configured default size
of device for unit-record
devices; 256 bytes for
other devices
Block/buffer size blockfactor blockfactor Configured block size of
device divided by recsize
Record format F Record format foption Fixed-length records for
v (bit 8:2) disk and magnetic tape
U files; undefined-length
records for all others
ASCII/Binary Code ASCII ASCII/Binary foption Binary
BINARY bits 13:1)
Carriage-control CCTL Carriage-control foption | No carriage control
characters supplied in NOCCTL (bits 7:1) characters supplied in
FWRITE FWRITE.
Access mode IN Access-type aoption (bit |Read-only access for all
ouUT 12:4) devices except output
OUTKEEP devices that are assigned
APPEND output-only access
INOUT
UPDATE
Number of Buffers numbuffers numbuffers (bits 11:5) 2 buffers
NOBUF

3-8 File Structure

Table 3-2. FILE and FOPEN Parameters (continued)

Characteristic

FILE parameter

FOPEN parameter

MPE default

Exclusive/Share access EXC Exclusive access aoption | For read-only access, SHR
SEMI (bits 8:2) takes effect; for other
SHR modes, EXC

Multi-access MULTI Multi-access mode No multi-access allowed
NOMULTI aoption (bits 5:2)
GMULTI

Multi-record mode MR Multi-record aoption (bits [No multi-record mode
NOMR 11:1)

File disposition DEL (None-defined by default |Same as when file was
SAVE disposition parameter of |opened
TEMP F CLUSE)

Device Class Name or device device Class Name DISC

Logical Device Number

Output priority oulputpriority numbuffers (bits 0:4) 8

NOWAIT input/output |NOWAIT NOWAIT 1/O eoption NOWAIT input/output
WAIT (bits 4:1) prohibited

Number of copies numcopies numbuffers (bits 4:7) 1

File code filecode filecode 0

File capacity numrec filesize 1023

Total number of extents | numestents numezitents 8

Extents initially allocated |initalloc nitalloc 1

FILE command (None) Disallow FILE equation Allow FILE command

prohibition foption (bits 5:1)

Dynamic file locking (None) Dynamic locking aoption | Disallow dynamic locking

(bits 10:1)

Forms-alignment message |FORMS formmsg No forms message sent

User labels for disk file (None) userlabels No user labels processed

File labels for magnetic LABEL Labeled tape foption (bits { No label

tape files NOLABEL 6:1)

File type STD File type foption (bits Standard file
MSG 2:3)
CIR

File Structure 3-9

Summary of General
Rules For Overrides

3-10 File Structure

To be effective, a FILE command must be issued before your

file is accessed; it takes effect when the file is accessed. A FILE
command remains in effect until the job or session ends, until it is
cancelled with a RESET command, or until it is overridden by another
command for the same file. Thus, if you enter a FILE command
equating the formal designator DATAFL to the actual designator CARDS
(indicating a card file) and then run three programs that reference
DATAFL, all three programs will access the file CARDS. If you wish to
define other characteristics for the file, simply issue another FILE
command. If you want to nullify the FILE command completely

so that the formal designator has the characteristics originally
specified by the program that is using it, issue a RESET command.
For example, suppose you run two programs, both referencing a

new temporary file on disk named DFILE. Before you run the first
program, you want to redefine the file so that it is output to the
standard list device. To do this, you would issue a FILE command
equating DFILE with the actual designator $STDLIST. In the second
program, the file is again to be a temporary file on disk. You issue

a RESET command so that the specifications supplied by the second
program (rather than those in the FILE command) apply:

:JOB JNAME,UNAME.ANAME

:FILE DFILE=$STDLIST
:RUN PROG1

:RESET DFILE

:RUN PROG2

For more information about using the FILE command, see the MPE
V Commands Reference Manual (32033-90006).

If a FILE command has been entered that contradicts some of

the FOPEN parameters for a file, which takes precedence? What
happens if some parameters are left out? The file system maintains a
hierarchy of overrides for just such situations:

DISC FILE LABEL
overrides
FILE COMMAND
overrides
FOPEN
overrides

FILE SYSTEM DEFAULTS

Note i

Since the physical characteristics of a file cannot be changed after

it has been created, it makes sense that the file label would take
precedence over all commands. Other determinants are effective only
when a new file is being created.

FILE commands and FOPEN calls cannot alter physical characteristics
of an existing file, but they can alter the way the file is to be used:
access parameters, whether to use buffered mode or whether to
permit file locking are examples of the characteristics FILE and FOPEN
can affect.

File Identification

You will probably want to identify your files in some way, so you can
distinguish between them or to remind yourself of their applications.
When you consider how to identify your files, both to yourself and to
the system, there are several questions to bear in mind:

» Where will file identification information be stored?
m Is special non-data storage required?
m Does the file need a special file code associated with it?

m Should the file have a name?

System File Label

The system file label contains all the information about your file
that you specified when you created it. Information about your file’s
structure, the format of its records, and details about its intended
use are permanently recorded. Here once a file has been created, the
system file label cannot be altered. The contents of a standard disk
file label are listed in Table 3-3.

Table 3-3. Disk File Label Contents

Words Contents
0-3 Local file name.
4-7 Group name
8-11 Account name
12-15 Identity of file creator
16-19 File lockword
20-21 File security matrix
22 (bits 0:8) |Language attribute
(bits 15:1)| File secure bit:
If 1, file secured
If 0, file released

File Structure 3-11

3-12 File Structure

Table 3-3. Disk File Label Contents (continued)

Words Contents
23 File creation date
24 Last access date
25 Last modification date
26 File code
27 Private volume information
28 (bits 0:1) |Store bit (if on, STORE in progress)
(bit 1:1) |Restore bit (If on, RESTORE in progress)
(bit 2:1) |Load bit (If on, program file is loaded)
(bit 3:1) | Exclusive bit (If on, file is opened with exclusive
access)
(bits 4:4) | Device sub-type
(bits 8:6) | Device type
(bits 14:1)| File open for write
(bits 15:1)] File open for read
29 (bits 0:8) | Number of user labels written
(bits 8:8) | Number of user labels
30-31 Maximum number of logical records
32-33 File access information (while file is open)
34 Checksum
35 Cold-load identity
36 Foptions specifications
37 Logical record size (in negative bytes)
38 Block size (in words)
39 (bits 0:8) |Sector offset to data
(Bit 11:5) { Number of extents, minus 1
40 Last extent size
41 Extent size
42-43 Number of logical records in file
44-107 Two-word addresses of up to 32 disk extents
beginning with address of first extent (words 44-45)
108-109 Restore time
110 Restore date
112-113 Start of file block number
114-115 Block number of End-of-File
116-117 Number of open and close records (MSG File)
118-119 Time last modified
124-127 Device class (in ASCII)

Non-Data Storage:
User Labels

Note

Writing a User Label on
a Disk File

If you want some special identifying feature for your file, you can
record it in a user label. For example, labels can be used on files
that are frequently updated to maintain the time of the last update.
These special labels can be used for files on disk or tape. If you
want a user label in a tape file, the tape must be labeled with an
ANSI-standard or IBM-standard label.

Since labels cannot share a block with data, the first data record

in a file will begin in the block following the last user label. If your
blocks are large and your last user label occupies only a small part of
a block, file space might be wasted.

When a disk file is created, MPE automatically supplies the system
file label in the first sector of the first extent occupied by that

file. User labels are stored just after the system file label, and will
begin in the system file label’s block (if it is two sectors or more).
The maximum number of user-supplied labels for any file must be
specified in the userlabels parameter of the FOPEN intrinsic call that
creates the file; you may have a maximum of 254 user labels, each
128 words long. In Figure 3-2 the FOPEN intrinsic call:

DFILE2:=FOPEN(DATA2,%4,%4,128,,,1);

opens a new file and specifies 1 for the userlabels parameter (last
parameter before parenthesis in this example), meaning that one
128-word user label will be set aside. Any attempt to write a label
beyond this will result in a CCG condition code and the intrinsic
request will be denied.

For example, the statement:
FWRITELABEL(DFILE2,LABL,9,0);

calls the intrinsic FWRITELABEL to write a user-supplied label. The
parameters supplied in the intrinsic call are:

filenum Supplied by DFILE2, which was assigned the file
number when the FOPEN intrinsic opened the file.

target The array LABL, containing the string "EMPLOYEE
DATA FILE", which will be written as the user file
label.

tcount 9 words, specifying the length of the string to be

transferred from the array LABL (the remaining 119
words are wasted).

labelid 0, specifying the number of the label. (0=first label,
1=second label, etc.)

If the label is written successfully, a CCE condition code results;
any subsequent FWRITELABEL calls specifying a previous label will
overwrite it.

File Structure 3-13

Reading a User File
Label on a Disk File

3-14 File Structure

$CONTROL
BEGIN
BYTE ARRAY DATA1(0:7):="DATAONE";
BYTE ARRAY DATA2(0:7):="DATATWQ";
ARRAY LABL (0:127):="EMPLOYEE DATA FILE";
ARRAY BUFFER (0:127);
INTEGER DFILE1.DFILEZ2.DUMMY;

DFILE2:=FOPEN(DATA2,%4,%4,128,,,1);
FWRITELABEL (DFILE2,LABL,9,0);
FCLOSE(DFILE2,2,0);

END.

Figure 3-2. FWRITELABEL Intrinsic Example (Disk)

To read a user file label, you use the FREADLABEL intrinsic.
In Figure 3-3, the FOPEN intrinsic call:
DFILE2:=FOPEN(DATA2,%6,%4,128) ;

contains aoptions parameter %4, which specifies input/output access
(data of the file, not the labels). The statement:

FREADLABEL (DFILE2,BUFFER, 128,0) ;

reads a user file label from the file specified by DFILE2. The
parameters specified in the intrinsic call are:

lenum Supplied by DFILE2, which was assigned the file
g
number when the FOPEN intrinsic opened the file.

target BUFFER, the array in the stack to which the file label
is transferred.

tcount 128, specifying the maximum number of words to be
transferred.

labelid 0, specifying the number of the label to be read.

If the label is read, a CCE condition code results.

File Codes

Note

$CONTROL
BEGIN
BYTE ARRAY DATA2(0:7):="DATATWO";
ARRAY BUFFER (0:127)
DFILE2:=FOPEN(DATA2,%6,%4,128);
FREADLABEL (DFILE2,BUFFER,128,0);

END.

Figure 3-3. FREADLABEL Intrinsic Example (Disk)

MPE subsystems often create special-purpose files whose functions
are identified by four-digit integers called file codes, written in their
system file labels. For instance, compilers create user subprogram
library (USL) files, written in a special format and identified by the
code 1024, for the compilation of object programs. User programs
sometimes create files that must be identified in some unique way,
too. Such a program might produce a permanent disk file identified
by the integer 1. If you were to run this program several times and
wanted to uniquely identify the file produced on each run (or set of
runs) by a special class, purpose, or function, you could use a FILE
command to supply a unique file code for each run (or group of
runs). For instance, on the second run, you might wish to classify the
file with the file code 2, as follows:

:FILE DESGX=DESGB;CODE=2 File code
:RUN FILEPROD

If you later wished to determine the classification to which this file
belonged, you could use the LISTF command with an information
level of 1, which would print the file name, file code, and other
information about the file. The LISTF command is discussed

in the MPE V Commands Reference Manual (32033-90006).
Alternatively, you could determine the file code by calling the
FGETINFO intrinsic, as discussed in the MPFE V Intrinsics Reference
Manual(32033-90007).

The file codes that have particular HP-defined meanings are listed in
Table 3-4.

For user files, you may use as file codes any number from 0 through
1023. Numbers from 1024 upwards are generally reserved for special
system files. File codes can only be specified at the time the file is
created; if you do not specify a file code when you create a file, the
MPE default value of zero applies.

File Structure 3-15

3-16 File Structure

Table 3-4. Reserved File Codes

Mnemonic File Code Meaning
1024 USL User Subprogram Library
1025 BASD BASIC Data
1026 BASP BASIC Program
1027 BASFP BASIC Fast Program
1028 RL Relocatable Library
1029 PROG Program File
1031 SL Segmented Library
1035 VFORM View Form File
1036 VFAST View Fast Forms File
1037 VREF View Reformat File
1040 XLSAV Cross Loader ASCII File
1041 XLBIN Cross Loader Relocated Binary File
1042 XLDSP Cross Loader ASCII File (DISPLAY)
1050 EDITQ Edit Quick File
1051 EDTCQ Edit KEEPQ File (COBOL)
1052 EDTCT Edit TEXT File (COBOL)
1054 TDPDT TDP Diary File
1055 TDPQM TDP Proof Marked QMARKED
1056 TDPP TDP Proof Marked non-COBOL File
1057 TDPCP TDP Proof Marked COBOL File
1058 TDPQ TDP Workfile
1059 TDPXQ TDP Workfile (COBOL)
1060 RJEPN RJE Punch File
1070 QPROC QUERY Procedure File
1080 KSAMK KSAM Key File
1083 GRAPH GRAPH Specification File
1084 SD Self-describing File
1090 LOG User Logging Logfile
1100 wpoc HPWORD Document
1101 WDICT HPWORD Hyphenation Dictionary
1102 WCONF HPWORD Configuration File
1103 w2601 HPWORD Attended Printer
Environment
1110 PCELL I1FS/3000 Character Cell File
1111 PFORM IFS/3000 Form File
1112 PENV IFS/3000 Environment File
1113 PCCMP IFS/3000 Compiled Character Cell File
1114 RASTR Graphics Image in RASTR Format

Reserved File Codes (continued)

Mnemonic File Code Meaning
1130 OPTLF OPT/3000 Logfile
1131 TEPES TEPE/3000 Script File
1132 TEPEL TEPE/3000 Logfile
1133 SAMPL APS/3000 Logfile
1139 MPEDL MPEDCP/DRP Logfile
1140 TSR HPToolset Root File
1141 TSD HPToolset Data File
1145 DRAW Drawing File for HPDRAW
1146 FIG Figure File for HPDRAW
1147 - FONT Reserved
1148 COLOR Reserved
1149 D48 Reserved
1152 SLATE Compressed SLATE File
1153 SLATW Expanded SLATE Workfile
1156 DSTOR Store File for RAPID/3000 Utility
DICTDBU
1157 TCODE Code File For Transact/3000 Compiler
1158 RCODE Code File for Report/3000 Compiler
1159 ICODE Code File For Inform/3000 Compiler
1166 MDIST HPDESK Distribution List
1187 MTEXT HPDESK Text
1168 MARPA ARPA Message File
1169 MARPD ARPA Distribution List
1170 MCMND HPDESK Abbreviated Commands File
1171 MFRTM Reserved
1172 Reserved
1173 MEFT Reserved
1174 MCRPT Reserved
1175 MSERL Reserved
1176 UCSF Reserved
1177 TTYPE Term Type File
1178 TVFC Term Vertical Format Control File
1192 NCONF Network Configuration File
1193 NTRAC Network Trace File
1194 NLOG Network Logfile
1195 MIDAS Reserved
1211 ANODE Reserved
1212 INODE Reserved
1213 INVRT Reserved
1214 EXCEP Reserved
1215 TAXON Reserved
1216 QUERF Reserved
1217 DOCDR Reserved
1226 Ve VC File
1227 DIF DIF File
1228 LANGD Language Definition File

File Structure 3-17

Reserved File Codes (continued)

Mnemonic File Code Meaning

1229 CHARD Character Set Definition File

1230 MGCAT Formatted Application Message Catalog

1236 BRAP Reserved

1242 BDATA Basic Data File

1243 BFORM Basic Field Order File for VPLUS

1244 BSAVE Basic Saved Program File

1245 BCNFG Configuration File/Default Option Basic
Program

1258 PFSTA Pathflow STATIC File

1259 PFDYN Pathflow DYNAMIC File

1270 RTDCA Revisable Form DCA Document

1271 FFDCA Final Form DCA Document

1272 DIU Document Interchange Unit File

1273 PDOC HPWORD/150 Document

1401 CWPTX Reserved

1421 MAP HPMAP/3000 Map Specification File

1422 GAL Reserved

1425 TTX Reserved

3333 Reserved

File Name

Formal and Actual File
Designators

3-18 File Structure

The most obvious way to identify a file is to give it a name. A file
may remain unnamed, but its flexibility will be greatly limited. The
FILE command cannot be used on unnamed files, and a file cannot be
saved without a name. Your file’s name may consist of up to eight
alphanumeric characters, beginning with an alphabetic character. It
may be qualified with the name of your group and account, and may
have a lockword associated with it.

The name by which a program specifies your file is its formal file
designator. This is the file name that is coded into the program,
along with the program’s specifications for the file. The FILE
command will reference a file by its formal designator.

Suppose that you are about to run a COBOL program named
MYPROG that, in its data division, defines an input file on cards named
CARDFILE. In this file, each logical record contains 80 characters and
is equivalent to one block.

The coded file specification in the program appears as follows:

DATA DIVISION.
FILE SECTION.

FD CARDFILE <------ File name
BLOCK CONTAINS 1 RECORDS <---- Block size (1 record per block)
DATA RECORD IS MYDATA intended for card input
RECORDING MODE IS F <--------- Record type (fized length)

LABEL IS OMITTED
RECORD CONTAINS 80 CHARACTERS.

----- Logical record size (80 characters)

Although this program was designed to accept its input from
punched cards, there may be occasions when you wish to read

this input from a disk file. Rather than recode and recompile the
program, you could reference the file in a FILE command to change
the file specifications:

Changes file Formal Requests block size
specifications designator of 3 logical records
) v v
:FILE CARDFILE; REC=80, 3; DEV=DISC
:RUN MYPROG
T T

Runs COBOL program Maintains same record
size (80 bytes)

Since CARDFILE exists on DISC, its record size and blocking factor
are defined by the system label and cannot be overridden by a file
equation.

The formal file designator is the name by which your program -
specifies the file, but there must also be a means by which the file
system can recognize it, allowing it to be referenced by various
commands and programs. For an old disk file, this is the file name
contained in the file label and in the system or job/session temporary
file directory. For a device file, it is the name optionally supplied in
the DATA command and copied into the device directory. For a new
disk file, it is the name you supply when you open the file; this name
is then copied into the appropriate directory and entered in the file
label. Whether it applies to a disk or device file, this is the name
that identifies the file to the file system. It is called the actual file
designator.

For example, suppose you create a file and name it DISKFILE. This
name is the actual file designator. Suppose you would like to use
DISKFILE in the program MYPROG described above. MYPROG specifies a

File Structure 3-19

Renaming Your File

file whose formal designator is CARDFILE only, so a FILE command is
used to equate the formal designator to the actual designator:

:FILE CARDFILE=DISKFILE

T T
Formal Actual
designator designator

In this way, the FILE command provides a map between the file
system’s name for a file and your program’s name for that file.

The creator of a file can change the name of the file, so you can
rename your files. Renaming a file will change its actual file
designator and its lockword, if it has one. Permanent (OLD) and
temporary (TEMP) files can be renamed. Since new files do not
yet exist under another name, there is no need to rename them.
Changing a file’s name will not change its domain.

To rename your files, use the RENAME command; it is discussed in
detail in the MPE V Commands Reference Manual (32033-90006).

Devices and Device
files

3-20 File Structure

Devices required by files are allocated automatically by the file
system. You can specify these devices by class (such as any card
reader or line printer) or by a logical device number related to a
particular device (such as a specific line printer). A unique logical
device number (LDEV) is assigned to each device when the system
is configured. Regardless of what device a particular file resides
on, when your program requests to read that file, it references the
file by its formal designator. The file system then determines the
device on which the file resides, and its disk address if applicable,
and accesses it for you. When your program writes information to
a file destined for an output device such as a line printer, again
the program refers to the file by its formal designator. The file
system then automatically allocates the required device to that file.
Throughout its life, every file remains device-independent, that is,
it is always referenced by the same formal designator regardless of
where it currently resides.

Both the device class name and the LDEV associated with a device
are determined by the system supervisor or console operator when
they add the device to the system. The device class name is an
arbitrary name that can be allocated to more than one device. The
logical device number, however, is unique for each device; it may
range from 1 to 255. As an example, devices might be configured
with the class names and logical device numbers shown in Table 3-5.

Table 3-5. Device Configurations

Device
DEVICE LDEV Classname

System Disk 1 SYSDISC
(Required)
Disk 2 DISC
Serial Disk 3 SDISC
Card Reader 5 CARD
Line Printer 6 LP, PRINTER
Magnetic Tape 7 TAPE, TAPEO
Magnetic Tape 8 TAPE, TAPE1
Magnetic Tape 9 TAPE, TAPE2
Magnetic Tape (Job 10 JOBTAPE
Accepting)
Line Printer 11 LP
Laser Printer 14 EPOC, PP, LPS
Console 20 CONSOLE
Terminal 21 TERM
Terminal 22 TERM

In this configuration, the card reader is assigned LDEV5 and device
class name CARD. In this case, you could make a unique reference to
this device by using either the Ldev or the class name CARD (since no
other device shares this class name) when you open the file. In the
case of a magnetic tape unit, you could make specific references to
LDEV 7, 8, or 9, or to the device classes TAPEO, TAPE1, or TAPE2
respectively. But if you are willing to use any magnetic tape unit,
you could make a non-specific reference to the class name TAPE,
which would provide the first tape unit available for your file.

When an SPL program opens a file, it can specify any device for that
file in the FOPEN intrinsic. If it specifies no device, the class name
DISC is assigned by default. Programs written in other languages
often restrict the devices you can use for certain files. For instance,

a FORTRAN program always equates the file named FTNO5 to the
standard input device, and the file named FTNO6 to the standard
listing device. In many cases, if you do not or cannot specify a device
for a file in such programs, the program assumes the system default:
the class name DISC.

You can, however, override the programmatic device specifications by
using the FILE command to specify different devices. For example,
suppose you plan to use the BASIC Interpreter from a terminal and
wish to direct your program listing to any line printer rather than the
subsystem default device (which is the standard listing device, your
terminal). You first define the listing file, arbitrarily named PRINTER,
as a line printer (class name LP) in a FILE command. After you
issue the BASIC command to invoke the interpreter, you enter your
BASIC program, which includes a LIST command that directs output
to the file named PRINTER, which is now recognized as a line printer:

File Structure 3-21

Device-Dependent
Characteristics

3-22 File Structure

:FILE PRINTER; DEV=LP Defines PRINTER as a

:BASIC line printer file
>10 FOR I=1 TO 10 Invokes BASIC Interpreter
>LIST,0UT=PRINTER Transmits output to PRINTER

The BASIC command is discussed in the MPE V Commands
Reference Manual (32033-90006).

If a file is a spooled device file, you can assign an output priority

to the file. The priority can range from 1 (lowest) to 13 (highest).
The console operator will establish the outfence to limit spooling
activity. Spooled output files with priorities lower than or equal to
the outfence are not printed or punched until the outfence is lowered
or the priorities are raised by the console operator. Suppose you are
running a program that will print an extensive output file at a time
when the computer is left unattended. To safeguard against problems
arising from the printer jamming or running out of paper while it
prints the file, you could specify an output priority less than the
current outfence (8), and request the operator to lower the outfence
upon return to the machine room. When this is done, your file can
be transmitted from disk to printer. You might specify the priority
as follows:

Output priority
v

:FILE LONGFILE; DEV=LP,6

:RUN PROGX

Certain file characteristics for device files are restricted by the devices
on which the files reside. For instance, the file system always assigns
a blocking factor of 1 to any file read from a card reader regardless
of the blocking factor specified in your FOPEN call or FILE command.
Device-dependent restrictions are summarized in Figure 3-4.

INPUT ONLY DEVICES (SERIAL)

Card Reader/Paper Tape Reader
No carriage control
Undefined-length records
If card reader, ASCII only (can only read ASCII cards using FCONTROL)
Blocking factor = 1
Domain = 1 (OLD permanent)

If not ASCII, then NOBUF
If access type = 1,2,3 then access violation results
INPUT/OUTPUT DEVICES (PARALLEL)

Terminals
ASCII
NOBUF
Undefined-length records
Blocking factor = 1

INPUT/OUTPUT DEVICES (SERIAL)

Magnetic Tape Drive

Serial Disk Drive
No restriction

OUTPUT ONLY (SERIAL)

Line Printer/Card Punch/Paper Tape Punch/Plotter
If Paper Tape Punch, ASCII only
Undefined-length records
Blocking factor = 1
Domain = NEW
Access Type = 1, write only (if read only specified, accesqs violation results)

Laser Printer
Initially and always spooled
Write only access
All other restrictions same as for line printer

UNDEFINED (COMMON CHECKING)

If carriage control specified and not ASCII, access violation results

Figure 3-4. Device-Dependent Restrictions

File Structure 3-23

Headers and Trailers

Special Forms

Foreign Disk Facility.

3-24 File Structure

A facility for printing header and trailer records can be enabled by
the Console Operator through the Console command HEADON. When
this facility is enabled and an output device file is directed to a card
punch, the file system automatically punches a header card and a
trailer card identifying the job that produced the file. If an output
device file is directed to a line printer, the file system automatically
prints header and trailer pages identifying the job that produced the
file. The console operator can disable the header facility by entering
the HEADOFF command.

When a program opens a new output device file, it may request
special forms. This request transmits a user forms message to the
Operator’s console, along with a request to mount the forms. The
Operator may respond as follows:

1. If the program specified a device class name for the file, the
Operator may allocate any unowned device in the class.

2. If the program specified a particular LDEVfor the file, the file
system asks the Operator to mount the forms on the device
requested if it is available.

When the Operator allocates a line printer, the file system initiates a
dialog to align the forms. A standard record of the following form is
output to the line printer:

Column 132

This record is followed by a Console message which asks the
Operator if the forms are properly aligned. This transaction is
repeated until the Operator indicates proper alignment. Now the file
can be output.

When a program closes a device file with special forms, the file
system notifies the Operator that the forms are no longer needed on
the device.

If special forms are mounted on a device and a device file not
requiring them is assigned to the device, the file system automatically
asks the Operator to mount standard forms or paper.

The foreign disk facility (FDF) allows you to use the file system to
access and alter disk packs and flexible diskettes that do not have
standard HP 3000 file system disk label formats. When mounted, a
disk volume with an unrecognizable disk label is assumed to be a
foreign disk. Disks and diskettes must be physically compatible with
HP hardware. For example, the IBM 3741 format diskettes (64 words
per sector), are compatible.

When using the FOPEN intrinsic to open a foreign disk file, the recsize
is forced to 128 words (IBM diskettes are forced to 64 words). The
file system will treat disk sectors as file records, allowing you to
manipulate the foreign file as if it were an MPE created file.

File Structure 3-25

=

Section Divider

4. Domains

Domains

TYPES OF
DOMAINS

NEW Files

TEMP Files

The various ways to classify a file is, permanent or temporary, or

it may exist only to one particular process. This is referred to as a
domain. The file system maintains separate directories to record the
location of temporary (or TEMP) files and permanent (or OLD) files.
Of course, there is no file system directory for files which exist only
to their creating process (NEW files).

In this chapter, we will address the following questions:
m What do the various domains mean?
m Can a file’s domain be changed?

m How can the files in various domains be listed?

When you create a file, you can indicate to the file system that it

is a NEW file. It has not previously existed. Space for it has not yet
been allocated. As a new file, it is known only to the program that
creates it and exists only while the program is being executed. When
the program concludes, the file will vanish, unless you take actions to
retain it.

A TEMP file is one which already exists, but which is known only to
the job or session which created it. Some or all of the space for a
TEMP file has already been allocated, and its physical characteristics
have already been defined. A file in this domain is considered a job
temporary file. It was created for some specific purpose by its job or
session, and may not be needed when the job or session concludes. It
will be discarded when its creating job or session is over.

Domains 4-1

OLD Files

An OLD file exists as a permanent file in the system. Its existence
is not limited to the duration of its creating job or session, and
depending on security restrictions, it may be accessed by jobs or
sessions other than the one that created it. Some or all of the
space for an OLD file has already been allocated, and its physical
characteristics have been defined.

The features of NEW, TEMP and OLD files are listed in Table 4-1.

Table 4-1. Features of NEW, TEMP, and OLD Files

NEW Files

TEMP Files

OLD Files

Exists only to creating
process.

Space not allocated
yet.

Physical characteristics
not previously defined.

Known only to creating
Job or session.

Exists only for

Exists as job temporary
file.

Space (some or all)
already allocated.

Physical characteristics
defined.

Known only to creating
Jjob or session.

Exists only for duration

Exists as permanent
file in system.

Space (some or all)
already allocated.

Physical characteristics
defined.

Known system-wide.

Permanent.

duration of program
execution.

of creating job/session.

In some cases, the domain you can specify for a file may be restricted
by the type of device on which the file resides. The permitted
domains are summarized in Table 4-2.

Table 4-2. File Domains Permitted

Device Type Domain
Disk NEW, OLD, or TEMP
Card Reader OLD
Paper Tape Reader OLD
Terminals NEW or OLD
Printing Reader/Punch NEW or OLD
Synchronous Single-Line Controller | NEW or OLD
Programmable Controller NEW or OLD
Magnetic Tape Unit NEW or OLD
Line Printer NEW
Paper Tape Punch NEW
Plotter NEW

4-2 Domains

Changing Domains

A file need not always stay in the same domain. Any file can

be made permanent, or it can be deleted when it has served its
purpose. The disposition parameter of the FCLOSE intrinsic can
specify a different domain for a file as it closes, or the FILE command
can be used to change the domain of a file. The DEL, TEMP and

SAVE parameters determine the disposition of the file when it is
closed. For details about how the FCLOSE intrinsic handles file
domain disposition, see the MPFE V Intrinsics Reference Manual
(32033-90007).

A file in any domain may be deleted if the DEL parameter is used in
a file equation. For example, suppose you have an old file named
OLDFL, and wish to delete it after its next use. Before running the
program that uses OLDFL, enter:

FILE OLDFL;DEL

The file may now be opened in your program, and when the program
closes the file, it will be deleted. If OLDFL were a new or temporary
file, it would be deleted in the same way.

New files may be made temporary if the TEMP parameter is used in a
file equation. If you are about to create a file named NEWFL, and wish
it to remain as a temporary file after it is used, enter:

FILE NEWFL,NEW;TEMP

After the file is created in your program and is closed, the file system
will maintain it as a temporary file.

If you wish to keep a new or temporary file as a permanent file after
it is used, use the SAVE parameter in a file equation. If you have a
temporary file named TEMPFL, and you want it to be kept as an old
file in the system, enter:

FILE TEMPFL,OLDTEMP;SAVE

TEMPFL will be kept as a permanent file, so it will not be lost when
your job or session concludes.

File equations are useful for determining the disposition of files when
the files are being accessed and closed by the program.

By using the MPE SAVE command, you can keep a temporary file

as permanent without opening and closing the file. If you want to
keep a temporary file named TEMPDATA, but do not need to use it in a
program at this time, enter:

SAVE TEMPDATA

and the file system will immediately reclassify it as a permanent
file. If there were a lockword associated with TEMPDATA, you would
be prompted to enter it. You can use the SAVE command to keep
$OLDPASS and assign it a name for future reference by entering:

SAVE $0LDPASS,filename

Domains 4-3

where filename is any name you choose.

For more information about the FILE and SAVE commands, consult
the MPE V Commands Reference Manual (32033-90006).

Directory Search

There are two directories with addresses of files: the job temporary
file directory (JTFD) for the addresses of temporary files and the
System File Directory for the addresses of permanent files. There is
no directory for new files. When both directories are searched for a
file address, the JTFD is searched first. There is one JTFD for every
job/session; each is kept in an extra data segment.

Listing Files

4-4 Domains

To obtain a list of your permanent files, use the LISTF command.
Use the LISTFTEMP command to list your temporary files and FILE
equations. The LISTF and LISTFTEMP commands are discussed in
detail in the MPE V Commands Reference Manual (32033-90006).

3

Section Divider

5. File Operation

File Operation

File Operation

Specifying File
Designators

User-Defined Files

In this chapter, we will explore the operation and usage of files. As
you read this chapter, keep these considerations in mind:

m How will the file be referenced?

m How will the file be used?

m Will others be allowed concurrent access?

m Will the concurrent access need special management?

m Are there special features required to access the file?

The file system recognizes two general classes of files:

m User-Defined Files, which you or other users define, create, and
make available for your own purposes.

m System-Defined Files, which the file system defines and makes
available to all users to indicate standard input/output devices.

These files are distinguished by the file names and other descriptors
(such as group or account names) that reference them, as discussed
below. You may use both the file name and descriptors, in
combination, as either formal designators within your programs or as
actual designators that identify the file to the system. However, most
programmers use only arbitrary names as formal designators, and
then equate them to appropriate actual file designators at run time.
In such cases, the formal designators (user file names) contain from

1 to 8 alphanumeric characters, beginning with a letter. The actual
designators include a user or system file name, optionally followed by
a group name, account name, and/or security lockword, all separated
by appropriate delimiters.

This technique facilitates maximum flexibility with respect to file

references.

You can reference any user-defined file by writing its name and
descriptors in the file reference format, as follows:

filename[/ lockword][. groupname][. accountname]

The file reference format cannot exceed 35 characters, including
delimiters.

File Operation 5-1

When you reference a file that belongs to your logon account and
group, you need only use the file reference format in its simplest
form, which includes only a file name that may range from 1 to 8
alphanumeric characters, beginning with a letter. In the following
examples, both formal and actual designators appear in this format:

Formal Actual
designator designator

v v
FILE ALPBHA=BETA
FILE REPORT=0UTPUT
FILE X=AL126797
FILE PAYROLL=SELFL

A file reference is always qualified, in the appropriate directory,
by the names of the group and account to which the file
belongs, so you need ensure only that the file’s name is unique
within its group. For instance, if you create a file named

FILX under GROUPA and ACCOUNT1, the system will recognize
your file as FILX.GROUPA.ACCOUNT1. A file with the same file
name, created under a different group, could be recognized as
FILX.GROUPB.ACCOUNT1.

File groups serve as the basis for your local file references. Thus,
when you logon, if the default file system file security provisions

are in effect, you have unlimited access to all files assigned to your
logon group and your home group. Furthermore, you are permitted
to read, and execute programs residing in the public group of your
logon account. This group, always named PUB, is created under every
account to serve as a common file base for all users of the account. In
addition, you may read and execute programs residing in the public
group of the System Account. This is a special account available to
all users on every system, named SYS.

When you reference a file that belongs to your logon account but
not to your logon group, you must specify the name of the file’s
group within your reference. In this form of the file reference format,
the group name appears after the file name, separated from it by

a period. Embedded blanks within the file or group names, or
surrounding the period, are prohibited.

As an example, suppose your program references a file under

the name LEDGER, which is recorded in the system by the actual
designator GENACCT. This file belongs to your home group, but you
are logged on under another group when you run the program. To
access the file, you must specify the group name as follows:

5-2 File Operation

Note

FILE LEDGER=GENACCT.XGROUP <--~------- Group name
RUN MYPROG <------=--==--=-ccmoccoeooe Program file (in logon group)

Another example, suppose you are logged on under the group named
XGROUP but wish to reference a file named X3 that is assigned to the
public group of your account. If your program refers to this file by
the name FILLER, you would enter:

FILE FILLER=X3.PUB

When you reference a file that does not belong to your logon account,
you must use an even more extensive form of the file reference
format. With this form, you include both group name and account
name. The account name follows the group name, and is separated
from it by a period. Embedded blanks are not permitted. As an
example, suppose you are logged on under the account named MYACCT
but wish to reference the file named GENINFO in the public group

of the system account. Your program references this file under the
formal designator GENFILE. You would enter:

FILE GENentity=GENINFO.PUB.S5YS

You can create a new file only within your logon account. Therefore,
if you wish to have a new file under a different account, you logon to
the other account and create the file in that account and group.

In summary, remember that if you do not supply a group name

or account name in your file reference, the system will supply the
defaults of the group and account in which you are currently logged
on.

Lockwords

When you create a disk file, you can assign to it a lockword that
must thereafter be supplied (as part of the file reference format)
to access the file in any way. This lockword is independent of,
and serves in addition to, the other file system security provisions
governing the file.

You assign a lockword to a new file by specifying it in the file
reference parameter of the BUILD command or the formal designator
parameter of the FOPEN intrinsic used to create the file. For example,
to assign the lockword SESAME to a new file named FILEA, you could
enter the following BUILD command:

BUILD FILEA/SESAME <-=-=--mc-ceommmmem oo Lockword

From this point on, whenever you or another user reference the file in
an MPE command or FOPEN intrinsic, you must supply the lockword .
It is important to remember that you need the lockword even if you
are the creator of the file. Lockwords, however, are required only for
old files on disk.

File Operation 5-3

5-4 File Operation

When referencing a file protected by a lockword, supply the lockword
as follows:

m In batch mode, supply the lockword as part of the file designator
(file reference format) specified in the FILE command or FOPEN
intrinsic call used to establish access to the file. Enter the lockword
after the file name, separated from it by a slash mark. Neither
the file name nor the lockword should contain embedded blanks.
In addition, the slash mark (/) that separates these names should
not be preceded or followed by blanks. The lockword may contain
from 1 to 8 alphanumeric characters, beginning with a letter. If a
file is protected by a lockword and you fail to supply that lockword
in your reference, you will be denied access to the file. In the
following example, the old disk file XREF, protected by the lockword
DKAY, is referenced:

:FILE INPUT=XREF/OKAY <-=-===-====-=-=ocmmmooe Lockword

m In session mode, you can supply the lockword as part of the file
designator specified in the FILE command or FOPEN intrinsic call
that establishes access to the file, using the same syntax rules
described above. If a file is protected by a lockword and you fail
to supply it when you open the file, the file system interactively
requests you to supply the lockword as shown in the example
below:

LOCKWORD: YOURFILE.YOURGRP.YOURACCT?

Always bear in mind that the file lockword relates only to the ability
to access files, and not to the account and group passwords used to
logon. Three examples of FILE commands referencing lockwords

are shown below; the last command illustrates the complete, fully
qualified form of the file reference format:

:FILE Aentity=GOFILE/Z22 <----=--~-=--~---- Lockword

fjmmmmmmm e Lockword

fmmmmmm e Lockword

-V
:FILE Centity=PAYROLL/X229AD.GROPN.ACCT10

A file may have only one lockword at a time. You can change the
lockword by using the RENAME command or the FRENAME intrinsic.
Both are discussed later in this chapter. You can also initially assign
a lockword to an existing file with this command or intrinsic. To do
either of these tasks, you must be the creator of the file.

Back Referencing Files

Once you establish a set of specifications in a FILE command, you
can apply those specifications to other file references in your job or
session simply by using the file’s formal designator, preceded by an
asterisk (*), in those references. For example, suppose you use a FILE
command to establish the specifications shown below for the file
FILEA, used by program PROGA. You then run PROGA. Now, you wish
to apply those same specifications to the file FILEB, used by PROGB,
and run that program. Rather than respecify all those parameters

in a second FILE command, you can simply use FILE to equate the
FILEA specifications to cover FILEB, as follows:

FILE FILEA;DEV=TAPE;REC=-80,4,V;BUF=4 Establishes
specifications

RUN PROGA
FILE FILEB=+FILEA

Runs program A

Back references
specifications for
FILEA

RUN PROGB Runs program B

This technique is called back referencing files, and the files to which
it applies are sometimes known as user predefined files. Whenever
you reference a predefined file in a file system command, you must
enter the asterisk before the formal designator if you want the
predefinition to apply.

Generic Names

The commands LISTF, LISTVS, REPORT, RESTORE, and STORE permit
the specification of sets of files, volume set definitions, or groups. For
example, a fileset for the STORE command can be specified in the
form:

filedesignator |. groupdesignator |. acctdesignator]]
The characters @, #, and 7 can be used as wild card characters.
These wild card characters have the following meanings:

@ - specifies zero or more alphanumeric characters.
- specifies one numeric character.
? - specifies one alphanumeric character.

File Operation 5-5

The characters can be used as in the following examples:

n@ Refers to all files starting with the character n .

@n Refers to all files ending with the charactern .

n@x Refers to all files starting with the character n and
ending with the character x.

n## ... # Refers to all files starting with the character n
followed by up to seven digits.

7ne@ Refers to all files whose second character is n .

n? Refers to all two-character files starting with n .

n Refers to all two-character files ending withn .

System-Defined Files System-defined file designators indicate files that the file system
uniquely identifies as standard input/output devices for jobs and
sessions. These designators are described in Table 5-1. When you
reference them, you use only the file name; group or account names
and lockwords do not apply.

5-6 File Operation

Table 5-1. System-Defined File Designators

FILE
DESIGNATOR/NAME DEVICE/FILE REFERENCED

$STDIN The standard job or session input device from
which your job/ session is initiated. For a
session, this is always a terminal. For a job, it
may be a disk file, card reader, or other input
device. Input data images in this file should
not contain a colon in column 1, because this
indicates the end-of-data. (When data is to
be delimited, use the :EOD command which
performs no other function.)

$STDINX Same as $STDIN, except that MPE command
images (those with a colon in column 1)
encountered in a data file are read without
indicating the end of-data. However, the
commands EOD and EOF: (and in batch

jobs, the commands JOB, EOJ and DATA) are
exceptions that always indicate end-of-data
but are otherwise ignored in this context; they
are never read as data. $STDINX is often used
by interactive subsystems and programs to
reference the terminal as an input file.

$STDLIST The standard job or session listing device,
nearly always a terminal for a session and a
printer for a batch job.

$NULL The name of a non-existent ghost file that

is always treated as an empty file. When
referenced as an input by a program, that
program receives an end-of-data indication
upon each access. When referenced as an
output file, the associated write request is
accepted by MPE but no physical output is
actually done. Thus, $NULL can be used to
discard unecessary data output from a running
program.

As an example of how to use some of these designators, suppose

you are running a program that accepts input from a file
programmatically defined as INPUT and directs output to a file
programmatically defined as OUTPUT. Your program specifies that
these are disk files, but you wish to respecify these files so that INPUT
is read from the standard input device and OUTPUT is sent to the
standard listing device. You could enter the following commands:

:FILE INPUT=$STDIN
:FILE OUTPUT=$STDLIST
:RUN MYPROG

File Operation 5-7

5-8 File Operation

input/Output Sets

All file designators can be classified as those used for input files
(Input Set) and those used for output files (Output Set). For your
convenience, these sets are summarized in Table 5-2 and Table 5-3.

Table 5-2. Input Set

File Designator

Function/Meaning

$STDIN

$STDINX

$0LDPASS

$NULL

formal designator

file reference

Job/session input device.

Job/session input device with commands
allowed.

Last $NEWPASS file closed. Discussed in the
following pages.

Constantly empty file that returns end-of-file
indication when read.

Back reference to a previously defined file.

File name, and perhaps account and group
names and lockword. Indicates an old file. May
be a job/session temporary file created in this
or a previous program in current job/session,
or a permanent file saved by any program or a

BUILD or SAVE command in any job/session.

Table 5-3. Output Set

File Designator

Function/Meaning

$STDLIST

$OLDPASS

$NEWPASS

$NULL

formal designator

file reference

Job/session list device.

Last file passed. Discussed in the following
pages.

New temporary file to be passed. Discussed in
the following pages.

Constantly empty file that returns end-of-file
indication when written.

Back reference to a previously defined file.

File name, and perhaps account and group
names and lockword. Unless you specify
otherwise, this is a temporary file residing on
disk that is destroyed on termination of the
creating program. If closed as a job/session
temporary file, it is purged at the end of the
job/session. If closed as a permanent file, it is

saved until you purge it.

Passed Files

Determining Interactive and Duplicative File Pairs

An input file and a list file’are said to be interactive if a real-time
dialog can be established between a program and a person using the
list file as a channel for a programmed requests, with appropriate
responses from a person using the input file. For example, an input
file and a list file opened to the same teleprinting terminal (for a
session) would constitute an interactive pair. An input file and a
list file are said to be duplicative when input from the former is
duplicated automatically on the latter. For example, input from a
card reader is printed on a line printer.

You can determine whether a pair of files is interactive or duplicative
with the FRELATE intrinsic call. (The interactive/duplicative
attributes of a file pair do not change between the time the files are
opened and the time they are closed.)

The FRELATE intrinsic applies to files on all devices.

To determine if the input file INFILE and the list file LISTFILE are
interactive or duplicative, you could issue the following FRELATE
intrinsic call:

ABLE := FRELATE(INFILE,LISTFILE);

INFILE and LISTFILE are identifiers specifying the file numbers
of the two files. The file numbers were assigned to INFILE and
LISTFILE when the FOPEN intrinsic opened the files.

A word is returned to ABLE showing whether the files are interactive

or duplicative. The word returned contains two significant bits, 0 anc
1:

If bit 15 = 1, INFILE and LISTFILE form an interactive pair.

If bit 15 = 0, INFILE and LISTFILE do not form an interactive
pair.

If bit 0 = 1, INFILE and LISTFILE form a duplicative pair.

If bit 0 = 0, INFILE and LISTFILE do not form a duplicative pair.

Programmers, who write compilers or other subsystems, sometimes
create a temporary disk file that can be automatically passed to
succeeding MPE commands within a job or session. This file is
always created under the special name $NEWPASS.

When your program closes the file, MPE automatically changes its
name to $O0LDPASS and deletes any other file named $0LDPASS in

the job/session temporary file domain. From this point on, your
commands and programs reference the file as $0LDPASS. Only one file
named $NEWPASS and/or one file named $0LDPASS can exist in the
job/session domain at any one time.

File Operation 5-9

The automatic passing of files between program runs is depicted in

Figure 5-1.

:RUN P1 ! 1) User program P1 writes

to $NEWPASS.
$SNEWPASS
P1 : 2) INEWPASS Is closed;
name changed to
$OLDPASS.
2
:RUN P2 3) Program P2 reads from

$OLDPASS and writes
3 $OLDPASS to $OLDPASS.
P2 4) $0LDPASS closed;
4 remains $OLDPASS.
. 5 5) Program P3reads from
:RUN P3 $OLDPASS.

6) $0LDPASS will remain
P3 untll replaced, deleted,
or saved (renamed).

6

LG200016_018

Figure 5-1. Passing Files Between Program Runs

To illustrate how file passing works, consider an example where two
programs, PROG1 and PROG2, are executed. PROG1 receives input
from the actual disk file DSFILE (through the programmatic name
SOURCE1) and writes output to an actual file $NEWPASS, to be passed
to PROG2. ($NEWPASS is referenced by the program in PROG1 by
the name INTERFIL.) When PROG2 is run, it receives $NEWPASS (now
‘known by the actual designator $0LDPASS), referencing that file as
SOURCE2. Note that only one file can be designated for passing:

:FILE SOURCE1=DSFILE

:FILE INTERFIL=$NEWPASS <--------- I Same file
:RUN PROG1
:FILE SOURCE2=$0LDPASS <--------- I Same file

:RUN PROG2

A program file must pass through several steps as it is executed.

Passed files are most frequently used between these steps. A program
file must be compiled and prepared before it is executed. By default,
the compiled form of a text file is written to $NEWPASS. When the
compiler closes $NEWPASS, its name is changed to $OLDPASS.

5-10 File Operation

This file is prepared for execution. The prepared form of the program
file is written to a new $NEWPASS, which is renamed $0LDPASS when
the file is closed. The old $0LDPASS is deleted. Now, this file is ready
to be executed. The $OLDPASS file may be executed any number of

times, until it is overwritten by

another $0LDPASS file.

The steps that a program takes as it is run are shown in Figure 5-2.

:SPLGO textfile

COMPILE

5

PREP

=l

E

RUN

8

6 _I
|:| $OLDPASS

$NEWPASS

$OLDPASS
4
|
|
]
|

1) Text read; compiied.

2) Object code written
to SNEWPASS.

3) SNEWPASS closed;
name changed to
$OLDPASS.

4) Object code prep'd
from SOLDPASS.

5) Program wrltten to
new INEWPASS.

6) SNEWPASS closed;
name changed to
SOLDPASS ; old
SOLDPASS deleted.

7) Run SOLDPASS.
8) SOLDPASS (program

file) not changed or
deleted after run.

LG200016_019

Figure 5-2. Passing Files Within a Program Run

File Operation 5-11

Comparing SNEWPASS $NEWPASS and $0LDPASS are specialized disk files with many
and $OLDPASS to Other similarities to other disk files. Comparisons of $NEWPASS to new files,
Disk Files and $0LDPASS to old files, are given in Table 5-4 and Table 5-5.

Table 5-4. New Files Versus $SNEWPASS

NEW $NEWPASS

Disk space allocated. Disk space allocated.

Disk address put into Disk address put into

control block. control block

Default close disposition: Default close disposition:

Deallocate space. Rename to $0LDPASS.

Delete control block entry. Save disk address in job/session tabld.
(Job Information Table).
Delete control block entry.

Disk address not saved Disk address saved for future

(Not in any directory). use in the job/session.

Table 5-5. Old Files Versus $OLDPASS

OLD $OLDPASS
Directory (job temporary or Disk address obtained from
system) searched for disk address. | Job Information Table (JIT).
Disk address put into Disk address put into
control block. control block.
Default close disposition: Default close disposition:
Delete control block. Delete control block.
Disk address still in directory Disk address still in JIT for
for future use. future use in job/session.

Shared File Accessing and controlling a file that is open only to you is a relatively
Considerations simple matter. When your file is being accessed by several users
simultaneously, each user must be aware of special considerations for

this shared file.

Simultaneous Access of Files

When an FOPEN request is issued for a file, that request is regarded

as an individual accessor of the file and a unique file number, set of
buffers, and other file control information is established for that file.
Even when the same program issues several different FOPEN calls for
the same file, each call is treated as a separate accessor.

5-12 File Operation

Under the normal (default) security provisions of the system, when
an accessor opens a file not presently in use, the access restrictions
that apply to this file for other accessors depend upon the access
mode requested by this initial accessor:

m If the first accessor opens the file for read-only access, any
other accessor can open it for any other type of access (such as
write-only or append), except that other accessors are prohibited
exclusive access.

m If the first accessor opens the file for any other access mode (such
as write-only, append, or update), this accessor maintains exclusive
access to the file until it closes the file; no other accessor can access
the file in any mode.

Programs can override these defaults by specifying other options in
FOPEN intrinsic calls. Users running those programs can, in turn,
override both the defaults and program options through the FILE
command. The options are listed in Table 5-6. The actions taken by
the system when these options are in effect and simultaneous access
is attempted by other FOPEN calls are summarized in Table 5-7. The
action taken depends upon the current use of the file versus the
access requested.

Table 5-6. File Sharing Restriction Options

ACCESS :FILE

RESTRICTION | PARAMETER DESCRIPTION

Exclusive EXC After file is opened, prohibits concurrent

Access access in any mode through another FOPEN
request, whether issued by this or another
program until this program issues FCLOSE
or terminates.

Exclusive SEMI After file 1s opened, prohibits concurrent

Write write access through another FOPEN request,

Access whether issued by this or another program,
until this program issues FCLOSE or
terminates.

Sharable SHR After file 1s opened, permits concurrent

Access access to file in any mode through another
FOPEN request issued by this or another
program, in this or any session or job. Each
accessor uses copy portion of file within its
own buffer.

File Operation 5-13

Note d

5-14 File Operation

Table 5-7. Actions Resulting from Multi-Access of Files

REQUESTED ACCESS GRANTED, UNLESS NOTED

Current FOPEN for FOPEN for FOPEN for
Use Input Output Input/Output
SHR/ SHR/ SHR/
Requested MULTI | SEMI [MULTI/| SEMI |MULTI/| SEMI
GMULTI GMULTI GMULTI
RequestedRequestedRequested|Requested|Requested[Requested
SHR JAccess ccess |Access |Access Access |Access
FOPEN for Granted ranted |Granted |Granted |Granted [Granted
Input RequestedRequested
SEMI JAccess ccess |Error Error Error Error
Granted |Granted [Message |Message [Message |Message
Requeste Requested Requested
SHR JAccess ITOr Access |Error Access |Error
FOPEN for Granted essage |Granted [Message Granted {Message
Output Requested
SEMI |Access [Error Error Error Error Error
|Granted [Message [Message [Message |Message [Message
Requested Requested Requested
SHR |JAccess [Input Access |Input Access (Input
fOPEN/fOI‘ Granted {Granted |[Granted |Granted [Granted [Granted
8&UIut Requested
P SEMI JAccess [Input Error Error Error Error
Granted |Granted [Message [Message [Message [Message

In all cases, when the first accessor to a file opens it with exclusive
(EXC) access, all other attempts to open the file will fail.

If input or output access is requested, and input only is obtained,
examine the file options after a successful FOPEN to see if you have
obtained a needed output access. See FGETINFO and FFILEINFO.

Exclusive Access

This option is useful when you wish to update a file and wish to
prevent other users or programs from reading or writing on the file

while you

are using it.

Thus, no user can read information that is about to be changed, nor
can he alter that information. To override the program option under
which the file would be opened and request exclusive access, you
could use the EXC keyword parameter in the FILE command:

FILE DATALIST;EXC <==-==w==-me-- Requests exclusive access
RUN FLUPDATE

Semi-Exclusive Access

This option allows other accessors to read the file but prevents
them from altering it. When appending new part numbers to a file
containing a parts list, for instance, you might use this option to
allow other users to read the current part numbers at the same time
you are adding new ones to the end of the file. You could request
this option as follows:

FILE PARTSLST;SEMI <-=-==-vc====- Requests semi-ezclusive access
RUN FLAPPEND

Share Access

When opened with the share option, a file can be shared (in all
access modes) among several FOPEN requests, whether they are
issued from the same program, different programs within the same
job/session, or programs running under different jobs/ sessions.
Each accessor transfers its input/output to and from the file via its
own unique buffer, using its own set of file control information and
specifying its own buffer size and blocking factor. Effectively, each
accessor accesses its own copy of that portion of the file presently
in its buffer. Thus, share access is useful for allowing several users
to read different parts of the same file. It can, however, present
problems when several users try to write to the file. For instance,
if two users are updating a file concurrently, one could easily
overwrite the other’s changes when the buffer content from the
first user’s output is overwritten on the file by the buffer content
from the second user’s output. To use write access most effectively
with shared files, specify the multi-access and/or locking option as
discussed below.

File Operation 5-15

Note

Note

5-16 File Operation

To request share access for a file, use the SHR parameter in the FILE
command, as follows:

FILE RDFILE;SHR <-------~-----moememeee Requests share access
RUN RDPROG

Multi-Access

This option extends the features of the share access option to allow a
deeper level of multiple access. Multi-access not only makes the file
available simultaneously to other accessors (in the same job/session),
but permits them to use the same buffers, blocking factor, and other
file-control information. The file must be buffered. Multi-access may
not be used on files that are opened with the NOBUF Option. Thus,
transfers to and from the file occur in the order they are requested,
regardless of which program in your job/session does the requesting.
When several concurrently running programs (processes) are writing
to the file, the effect on the file is the same as if one program were
performing all output, truly sequential access by several concurrently
running programs.

Multi-access allows the file to be shared (in all access modes) among
several FOPEN requests from the same program, or from different
concurrently running programs in the same job/session. Unlike share
access, however, multiaccess does not permit the file to be shared
among different sessions and jobs.

Global Multi-Access

This option extends the features of the multi-access option to permit
simultaneous access of a file by processes in different jobs/sessions.
As in multi-access, accessors use the same buffers, blocking factor,
and other file-control information. You can request this option as
follows:

FILE GFILE;GMULTI <------------ Requests global multi-access
RUN GPROG

To prohibit the use of MULTI or GMULTT access, use the NOMULTI
keyword in a FILE command. When the NOMULTI keyword is used,
different processes may share the data in a file, but will maintain
separate buffers and pointers.

The first accessor to a file that sets the allowable access to a file. For
example, if the first accessor specifies share access, that is the access
that will be allowed to all future accessors. However, if a subsequent
accessor specifies an access option that is more restrictive than the
first opener’s access option, it will remain in effect until the user that
requested it closes the file.

Sharing the File

Sharing a file among two or more processes may be hazardous. When
a file is being shared among two or more processes and is being
written to by one or more of them, care must be taken to ensure that
the processes are properly interlocked.

For example, if Process A is trying to read a particular record of the
file, and at that time Process B should execute and try to write that
record, the results are not predictable. Process A may see the old
record or the new record, and not know whether it has read good
data. If buffering is being done, please bear in mind that an output
request (FWRITE) will not cause physical I/O to occur until a block is
filled, which typically will contain several records. A process trying
to read such a file could, for example, read past the last record of the
file which has been written on the disk because the end-of-file pointer
is not kept in the file but is kept in core where it can be updated
quickly as writes occur.

The necessary interlocking is provided by the intrinsics FLOCK and
FUNLOCK, which use a Resource Identification Number (RIN) as a flag
to interlock multiple accessors.

In the simple case of a file shared between a writer process and a
reader process, where the writer is merely adding records to the file,
the writer calls FLOCK prior to writing each record and FUNLOCK after
writing. The reader calls FLOCK prior to reading each record, and
FUNLOCK after reading. If the writing process should execute while
the reader is in the middle of a read, the writer will be restricted

on its FLOCK call until the reader signals that it is done by calling
FUNLOCK. If the reader should execute while the writer is performing
a write, the reader will be restricted on its FLOCK call until the writer
calls FUNLOCK. FUNLOCK ensures that all buffers are posted on the disk
so that the reading processes can see all the data.

More complicated cases arise when a file has two or more writing
processes, or when the writer may write more than one record at a
time. If, for example, it should be necessary to write pairs of records,
with read prohibited until both records of the pair are written, the
writing process can call FLOCK before writing the first record of the
pair, and FUNLOCK after writing the second. If any of the other files
have buffered access, it is necessary to empty the buffers for each file
to allow both readers and writers access to clean copies. This can be
done by executing FCONTROL 2 (complete input/output) for each
file prior to executing FUNLOCK. If posting the current record pointer
as the END-OF-FILE is needed, use FCONTROL 6 (write end of file)
instead of FCONTROL 2.

For more information about the FLOCK and FUNLOCK intrinsics,
consult the MPE V Intrinsics Reference Manual (32033-90007).

File Operation 5-17

Section Divider

6. Data Transfer

Data Transfer

This chapter examines how the file system transfer of data. As you
read this chapter, keep these considerations in mind:

m How are records selected for transfer?
m What intrinsics are used for data transfer?
m Will there be any file buffering?

m If so, how many buffers will be used?

Record Pointers

The file system uses record pointers to find specific records for your
use. Physical record pointers are used to locate specific blocks on
disk; logical record pointers are used to block and deblock the logical
records in a physical record and indicate specific logical records
within a file buffer. (NOBUF files have physical record pointers only.

Figure 6-1 shows how the physical and logical record pointers operate
together to locate any record in a file. For any record, the physical

Data Transfer 6-1

Pointer Initialization

6-2 Data Transfer

record pointer indicates the correct block and the logical record
pointer locates the logical record within the block.

~

// ~ ~
P Physical -
PR Record N
- Pointer ~
”~ ~
e e
, "

I BLOCK eeo oo

Physical Record:
One file buffer

~—

LogicalA Physical Pointer: Used to locate physical record on disc.

Record
Loglcal Pointer: Used for blocking/deblocking logical
Pointer records In file buffer. 9
LG200016_020

Figure 6-1. Record Pointers

The file system uses both the physical and the logical record pointers
to locate records. Future references to record pointer in this manual
will imply this combination.

When you open your file, the FOPEN intrinsic sets the record pointer
to record 0 (the first record in your file) for all operations. If you
have opened the file with APPEND access, however, the record
pointer will be moved to the end of the file prior to any write
operation. This will ensure that any data you write to the file will be
added to the end of the file rather than written over existing data.

Following initialization, the record pointer may remain in position at
the head of your file, or it may be moved by the intrinsics used in
record selection.

Record Selection

Default Record
Selection

Random Access

Note

Various file system intrinsics are designed to move records to and
from your file, but how do they choose the records they want? The
record pointer for a particular file indicates the specific location
where that file will be accessed. Records can be transferred to or
from this location, or the pointer can be moved to another place in
the file you wish to access.

There are three methods of record selection: the default method, in
which you transfer data to or from the place which the record pointer
currently indicates; random access, in which you move the record
pointer before transferring data; and update selection, in which you
choose a record and write a new record over it.

When you use this method of record selection, you assume the

record pointer is already where you want it. You transfer your

data using the FREAD or FWRITE intrinsic, and the record pointer is
automatically set to the next record. For this reason, this method

is also called sequential record selection. For fixed-length and
undefined-length record files, the file system updates the record
pointer by adding the uniform record length to the pointer after you
read or write a record. For variable-length record files, the file system
takes the byte count from the record being transferred and adds that
to the record pointer.

If the record pointer is not indicating the location you want, you can
use the random access method to move the pointer and begin your
transfer wherever you like. This method is called controlled record
selection.

It is possible to access specific records in a disk file with the
FREADDIR and FWRITEDIR intrinsics. The record number to be read
or written is specified as one of the parameters in the FREADDIR or
FWRITEDIR intrinsic call. Following the read or write operation,

the record pointer is set to the next record, as in the default case.
FREADDIR and FWRITEDIR may be issued only for a disk file composed
of fixed-length or undefined-length records.

The FREADDIR and FWRITEDIR intrinsics operate in the usual manner
to access foreign disks. However, on IBM diskettes sectors are
numbered starting with one rather than zero, and the diskette driver
adds one to all sector addresses for IBM diskettes. Therefore, you
specify record number zero to access sector number one on an IBM
diskette.

Data Transfer 6-3

6-4 Data Transfer

Figure 6-2 contains a program that reads every other record in a disk
file using the FREADDIR intrinsic. The FREADDIR intrinsic call:

FREADDIR (DFILE2,BUFFER,128,REC);

reads a record from the file designated by DFILE2 (the file number
was assigned to DFILE2 when the FOPEN intrinsic opened the file)
and transfers this record to the array BUFFER in the stack. Up to
128 words are read from the record. The parameter REC specifies
which record is read. The double integer value ¢ ’ (double integers are
indicated by the suffix D in SPL) was assigned to REC in statement
number 9, and so the first time the LIST’>LO0OP is executed, the
first record in the file (logical record number 0) is read. REC is
incremented by 2D each time the loop is executed, so the third
logical record (logical record number 2) is read the second time
the loop is executed, then the fifth, seventh and so on. The record
pointer is advanced by one each time the FREADDIR intrinsic is
executed.

The record number to be read is specified by REC. The FREADDIR
intrinsic does not necessarily read records in sequential order, as does
the FREAD intrinsic.

If the information is not read successfully by the FREADDIR intrinsic,
a CCL condition is returned. The statement:

IF < THEN FILERROR (DFILE2,3);

checks the condition code and, if it is CCL, calls the error-check
procedure FILERROR. The FILERROR procedure prints a FILE
INFORMATION DISPLAY on the standard list device, enabling you
to determine the error number returned by FREADDIR, then aborts
the program’s process.

A condition code of CCG signifies an end-of-file condition and the
statement:

IF > THEN GO END’OF’FILE;

transfers program control to the label END’OF’FILE when the
end-of-file condition is encountered.

Page 0001 HEWLETT-PACKARD 32100A.05.1 SPL/3000 TUE, OCT 7, 1975, 1034 AM
00001000 00000 O $CONTROL USLINIT

00002000 00000 0O BEGIN

00003000 00000 1 BYTE ARRAY DATA2(0:7):="DATATWO ";

00004000 00005 1 BYTE ARRAY LISTFILE(0:8):="LISTFILE ";

00005000 00006 1 BYTE ARRAY ALTNAME(O:7):="ALTDATA “;

00006000 00005 1 ARRAY BUFFER(0:127);

00007000 00005 1 ARRAY MESSAGE(0:18):="DUPLICATE FILE NAME-FIX DURING
BREAK" ;
00008000 00023
00009000 00023
00010000 00023
00011000 00023
00012000 00023
00013000 00023
00014000 00023
00015000 00000
00016000 00000

[N =]

INTEGER DFILE2,LIST,ERROR;
DOUBLE REC:=0D;

INTRINSIC FOPEN,FREADLABEL,FREADDIR,FWRITE,FCLOSE,FRENAME,
FREADSEEK ,CAUSEBREAK ,FCHECK ,PRINT’FILE’ INFO,QUIT;

PROCEDURE FILERROR(FILENO,QUITNO);
VALUE QUITNO;
INTEGER FILENO,QUITNO;

00017000 00000 1 BEGIN

00018000 00000 2 PRINT’FILE’INFO(QUITNO);
00019000 00002 2 QUIT(QUITNO);

00020000 00004 2 END;

00021000 00000
00022000 00000
00023000 00000
00024000 00000
00025000 00011
00026000 00015
00027000 00015
00028000 00025
00029000 00031
00030000 00031
00031000 00037
00032000 00043
00033000 00050
00034000 00054
00035000 00054
00036000 00054
00037000 00061
00038000 00065
00039000 00066
00040000 00066

<<END OF DECLARATION>>

DFILE2:=FOPEN(DATA2,%6,%4,128 <<O0LD TEMP FILE>>
IF < THEN FILERROR(DFILE2,1); <<CHECK FOR ERROR>>

LIST:=FOPEN(LISTFILE,%14,%1) <<$STDLIST>>
IF < THEN FILERROR(LIST,2); <<CHECK FOR ERROR>>

FREADLABEL(DFILE2,BUFFER,128,0); <<FILE ID>>

IF <> THEN FILERROR(DFILE2,3); <<CHECK FOR ERROR>>
FWRITE(LISLT,BUFFER,9,0); <<DISPLAY ID>>

IF <> THEN FILERROR (LIST,4) <<CHECK FOR ERROR>>

LIST’LOOP;

FREADDIR(DEFILE2,BUFFER, 128, ,REc <<EVERY OTHER RECD>>
IF < THEN FILERROR(DFILE2,5); <<CHECK FOR ERROR>>

IF > THEN GO END’OF’FILE; <<CHECK FOR EOF>>

T N N T S o S T S T i O T O T (O I i e i I o i

REC:=REC+2D; <<EVERY OTHER RECD>>

Figure 6-2. FREADDIR and FREADSEEK Example (1 of 2)

Data Transfer

00041000 00072
00042000 00075
00043000 00101
00044000 00101
00045000 00106
00046000 00112
00047000 00112
00048000 00117
00049000 00117
00050000 00117
00051000 00123
00052000 00124
00053000 00131
00054000 00134
00055000 00134
00056000 00137
00057000 00137
00058000 00143
00059000 00144
00060000 00146
00061000 00183
00062000 00154
00063000 00155
00064000 00155

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

1

FREADSEEK(DFILE2,REC); <<FILL SYSTEM BUFFER>>
IF < THEN FILERROR(DFILE2,5); <<CHECK FOR ERROR>>

FWRITE(LIST,BUFFER,35,0); <<ALTERNATE RECORD>>
IF <> THEN FILERROR(LIST7); <<CHECK FOR ERROR>>

GO LIST’LOOP; <<CONTINUE LISTING>>

END’OF’FILE:

FCLOSE(DFILE2,1,0); <<MAKE PERMANENT>>

IF = THEN GO DONE; <<LISTING DONE>>

FCHECK (DFILE2,ERROR) ; <<FCLOSE ERROR>>

IF ERROR=100 THEN <<DUPLICATE FILE NAME>>
BEGIN

FRENAME(DFILE2,ALTNAME) ; <<CHANGE FILE NAME>>
CLOSE:

FCLOSE(DFILE2,1,0); <<TRY AGAIN>>

IF = THEN GO DONE; <<GOOD FCLOSE>>
PRINT’FILE’INFO(DFILE2); <<PRINT ERROR>>
FWRITE(LI ST, MESSAGE,19,0) ; <<SEEK HELP>>
CAUSEBREAK; <<SESSION BREAK>>

GO CLOSE; <<LOOP BACK>>

END;

DONE:END.

PRIMARY DB STORAGE=%012; SECONDARY DB STORAGE=Y%00240
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:)04; ELAPSED TIME=0:00:58

6-6 Data Transfer

Figure 6-2. FREADDIR and FREADSEEK Example (2 of 2)

Figure 6-3 contains a program that reads records from one file

and writes these records, in inverse order, into a second file using

the FWRITEDIR intrinsic. The FGETINFO intrinsic (see Appendix B,
“Status Information”) is used to locate the end-of-file in the file to be
read. This information is returned to the variable REC.

The FREAD statement:
DUMMY := FREAD (DFILE1,BUFFER,128);

reads up to 128 words from the first record of the file DATAONE
(specified by the file number assigned to DFILE1 by the FOPEN
intrinsic when the file was opened) and transfers this information to
the array BUFFER.

The statement:
REC := REC-1D;

decrements REC by the double integer value 1D to arrive at the
logical record number of the last record in the file. Note that REC
contains a current value of the last logical record + 1D as a result of
the FGETINFO intrinsic call.

The FWRITEDIR statement:
FWRITEDIR (DFILE2,BUFFER,128,REC);

writes the record contained in the array BUFFER to the file specified
by DFILE2. Up to 128 words are written to the record. The record is
written to the location specified by REC, which contains the logical
record number of the last record in the file.

If the FWRITEDIR request is successful, a CCE condition is returned.
The statement:

IF <> THEN FILERROR (DFILE2,6);

checks for a “not equal” condition code and, if such a condition code
is returned, the error-check procedure FILERROR is called.

The FILERROR procedure prints a FILE INFORMATION DISPLAY
on the standard list device, enabling you to determine the error
number returned by FWRITEDIR, then aborts the program’s process.

If a condition code of CCE is returned, the FILERROR procedure is
not executed and the:

GO INVERT’LOOP;

statement transfers program control to the statement label
INVERT’LOOP, causing the invert loop to be repeated.

The second time the loop is executed, the FREAD intrinsic reads the
second record from DATAONE and the FWRITEDIR intrinsic writes
this record into the next-to-last record in DATATWO (REC has been
decremented again by 1D). The loop repeats until the last record is
read from DATAONE.

Data Transfer 6-7

PAGE 0001 HEWLETT-PACKARD 32100A.05.1 SPL/3000 TUE, OCT 7, 1975 10:33 AM
00001000 00000 O $CONTROL USLINIT

00002000 00000 O BEGIN

00030000 00000 1 BYTE ARRAY DATA1(0:7):="DATAONE ",

00004000 00005 1 BYTE ARRAY DATA2(0:7) :="DATATWO ";

00005000 00005 1 ARRAY LABL(0:8):="EMPLOYEE DATA FILE";

00006000 00011 1 ARRAY BUFFER(0:127);

00007000 00011 1 INTEGER DFILE1,DFILE2,DUMMY;

00008000 00011 1 DOUBLE REC;

00009000 00011
00010000 00011
00011000 00011
00012000 00011
00013000 00011
00014000 00000
00015000 00000

INTRINSIC FOPEN,FWRITELABEL,FGETINFO,FREAD,FWRITEDIR,
FLCOSE,PRINT’FILE’INFO,QUIT;

PROCEDURE FILERROR(FILENO,QUITNO);
VALUE QUITNO;
INTEGER FILENO,QUITNO;

00016000 00000 1 BEGIN

00017000 00000 2 PRINT’FILE’INFO(FILENO);
00018000 00002 2 QUIT(QUITNO);

00019000 00004 2 END;

00020000 00000
00021000 00000
00022000 00000
00023000 00000
00024000 00010
00025000 00014
00026000 00014
00027000 00027
00028000 00033
00029000 00033
00030000 00041
00031000 00045
00032000 00045
00033000 00053
00034000 00057
00035000 00057
00036000 00057
00037000 00065
00038000 00071
00039000 00072
00040000 00072
00041000 00076

<<END OF DECLARATIONS>>

DFILE1: =FOPEN (DATA1, %5 , %100) ; <<OLD FILE-DATAONE>>
IF < THEN FILERROR(DFILE1,1); <<CHECK FOR ERROR>>

DFILE2:=FOPEN(DATA2,%4,%4,128,,,1 <<NEW FILE-DATATWO>>
IF < THEN FILERROR(DFILE2,2); <<CHECK FOR ERROR>>

FWRITELABEL (DFILE2,LABL,9,0); <<FILE ID>>
IF <> THEN FILERROR(DFILE2,3); <<CHECK FOR ERROR>>

FGETINFO(DFILE,,,,,,,,,,REC); <<LOCATE EOF>>
IF < THEN FILERROR(DFILE1,4); <<CHECK FOR ERROR>>

INVERT’LOOP;

DUMMY: =FREAD (DFILE1,BUFFER,128); <<OLD FILE RECORD>>
IF < THEN FILERROR(DFILE1,5); <<CHECK FOR ERROR>>

IF > THEN GO END’0QF’FILE; <<CHECK FOR EOF>>

REC:=REC-1D; <<LAST REC NO>>
FWRITEDIR(DFILE2,BUFFER, 128, ,REC); <<INVERT REC ORDER>>

H R R R R R R R R R R R R R, RARARNNMNNMNERSR RSPRS00

Figure 6-3. FWRITEDIR Example (1 of 2)

6-8 Data Transfer

00042000 00103
00043000 00107
00044000 00107
00045000 00116
00046000 00116

00048000 00122
00049000 00126
00050000 00126
00051000 00132

IF <> THEN FILERROR(DFILE2,6); <<CHECK FOR ERROR>>
GO INVERT’LOCP; <<CONTINUE OPERATION>>

1
1
1
1
1 END’OF’FILE:
00047000 00116 1 FCLOSE(DFILE2,2,0); <<SAVE NEW AS TEMP>>
1 IF < THEN FILERROR(DFILE2,7); <<CHECK FOR ERROR>>
1
1
1

FCLOSE(DFILE1,4,0); <<DELETE OLD FILE>>
IF < THEN FILERROR(DFILE1,8); <<CHECK FOR ERROR>>
00052000 00136 1 END.

PRIMARY DB STDRAGE=Y011; SECONDARY DB STORAGE=%00221
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:04; ELAPSED TIME=0:00:59

Optimizing
Direct-Access File
Reading

Figure 6-3. FWRITE Example (2 of 2)

If you know in advance that a certain record is to be read from a file
with the FREAD-DIR intrinsic, you can speed up the [/O process by
issuing an FREADSEEK intrinsic call.

The FREADSEEK intrinsic moves the record from the file to a file
system buffer. Then, when the FREADDIR intrinsic call is issued,

the record is transferred from this buffer to the buffer in the stack
specified by FREADDIR. The use of FREADSEEK enhances the I/0
process, because the file system buffer already contains the record to
be read before the FREADDIR call is issued.

The LIST’LOOP in Figure 6-2 performs the following functions:

1. Issues an FREADDIR intrinsic call to transfer a record (specified by
REC) from a file (specified by DFILE2) to an array (BUFFER) in the
stack.

2. Increments REC by 2D.

3. Issues an FREADSEEK intrinsic call to read the record specified by

the new value of REC and to transfer this record to a file system
buffer.

4. Lists the record in the stack array (BUFFER) on the standard list
device.

5. Repeats the loop.

The next time LIST’LO0P is executed, the FREADDIR intrinsic reads
the record from the file system buffer to the stack array (BUFFER),
eliminating the need for file access and thus reducing the execution
time of the loop.

Data Transfer 6-9

Update Selection

6-10 Data Transfer

To update a logical record of a disk file, use the FUPDATE intrinsic.
FUPDATE affects the last logical record (or block for NOBUF files)
accessed by any intrinsic call for the file named, and writes
information from a buffer in the stack into this record. Following

the update operation, the record pointer is set to indicate the next
record position. The record number need not be supplied in the
FUPDATE intrinsic call. FUPDATE automatically updates the last record
referenced in any intrinsic call. The file system assumes the record to
be updated has just been accessed in some way.

The file containing the record to be updated must have been opened
with the update aoption specified in the FOPEN call and must not
contain variable-length records. FUPDATE operates in the usual
manner to update a foreign disk file. Figure 6-4 contains a program
that opens an old disk file and updates records in the file. The
update information (employee number) is entered from a terminal
(the program is run interactively) into a buffer in the stack, then the
contents of the buffer are used to update the record.

The statement:
LGTH := FREAD(DFILE1,BUFFER,128);

reads an employee record from the file specified by DFILE1 into the
array BUFFER in the stack. The statement:

FWRITE (LIST,BUFFER,-20,%320);

then displays this record on the terminal; $STDLIST has been opened
with the FOPEN intrinsic and the resulting file number has been
assigned to LIST. The statement:

DUMMY := FREAD(IN,BUFFER(30),5);

reads an employee number, entered on the terminal ($STDIN has been
opened with the FOPEN intrinsic and the resulting file number has
been assigned to IN), into the array BUFFER starting at word ‘0°. The
statement:

FUPDATE(DFILE1,BUFFER, 128);

then calls the FUPDATE intrinsic to update the last record accessed in
the file specified by DFILE1. The contents of BUFFER (including the
employee number entered from the terminal) are written into this
record. Up to 128 words are written.

If the FUPDATE request was granted, a CCE condition code results.
The statement:
IF <> THEN FILERROR(DFILE,9);

checks for a “not equal” condition code and, if such is the case, calls
the error-check procedure FILERROR. The procedure FILERROR prints
a FILE INFORMATION DISPLAY on the terminal, enabling you to
determine the error number returned by FUPDATE, then aborts the
program’s process.

Table 6-1 summarizes the characteristics of the intrinsics used in data

transfer.

PAGE 0001 HEWLETT-PACKARD 32100A.05.1 SPL/3000 TUE, OCT 7, 10:32 AM

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000

00000
00000
00000
00005
00005
00005
00005
00005
00005
00005
00000
00000
00000
00000
00002
00004
00000
00000
00000
00000
00011
00015
00015
00024
00030
00030
00030
00044
00044
00044
00047
00053
00053
00061
00065
00070
00070
00075
00101
00101

T T T T T e ST A SO T S I S I S I e o e o o i = i o]

$CONTROL USLINIT

BEGIN

BYTE ARRAY DATAI(O:7):="DATAONE ";
ARRAY BUFFER(0:127);

INTEGER DFILE1,LGTH,DUMMY,IN,LIST;

INTRINSIC FOPEN,FREAD,FUPDATE,FLOCK,FUNLOCK,FCLOSE,
PRINT’FILE’INFO,QUIT,FWRITE,FREAD;

PROCEDURE FILERROR(FILENO,QUITNO);
VALUE QUITNO;

INTEGER FILENO,QUITNO;

BEGIN

PRINT’FILE’ INFO(FILENO) ;
QUIT(QUITNO) ;

END;

<<END OF DECLARATIONS>>

DFILE1:=FOPEN(DATA1,%5,%345,128); <<OLD DISC FILE>>
IF < THEN FILERROR(DFILE1,1); <<CHECK FOR ERROR>>

IN:=FOPEN(,%244); <<$STDIN>>
IF < THEN FILERROR(IN,2); <<CHECK FOR ERROR>>

LIST:=FOPEN(,%614,%1); <<SSTDLIST>>
IF < THEN FILERROR(LIST,3); <<CHECK FOR ERROR>>

UPDATE’LOOP:
FLOCK(DFILE1,1); <<LOCK FILE/SUSPEND>>
IF < THEN FILERROR(DFILE1,4); <<CHECK FOR ERROR>>

LGTH:=FREAD(DFILE1,BUFFER,128); <<GET EMPLOYEE REC>>
IF < THEN FILERROR(DFILE1,5); <<CHECK FOR ERROR>>
IF > THEN GO END’OF’FILE; <<CHECK FOR EOF>>

FWRITE(LIST,BUFFER,-20,%320); <<EMPLOYEE NAME>>
IF <> THEN FILERROR(LIST,6); <<CHECK FOR ERROR>>

DUMMY : =FREAD (IN,BUFFER(3) ,5) ; <<EMPLOYEE NUMBER>>

Figure 6-4. FUPDATE Example (1 of 2)

Data Transfer

00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000

00110
00114
00115
00115
00121
00125
00125
00127
00133
00133
00140
00140
00140
00142
00146
00146
00151
00155

[S N S = = S S SO S S N

1

IF < THEN FILERROR(IN,7); <<CHECK FOR ERROR>>
IF > THEN GO END’OF’FILE;

FUPDATE(DFILE1,BUFFER,128); <<EMPLOYEE RECORD>>
IF <> THEN FILERROR(DFILE1,8); <<CHECK FOR ERROR>>

FUNLOCK(DFILE1); <<ALLOW OTHER ACCESS>>
IF <> THEN FILERROR(DFILE1,9); <<CHECK FOR ERROR>>

GO UPDATE’LOOP; <<CONTINUE UPDATE>>

END’OF’FILE:
FUNLOCK(DFILE1); <<ALLOW OTHER ACCESS>>
IF <> THEN FILERROR(DFILE1,10); <<CHECK FOR ERROR>>

FCLOSE(DFILE1,0,0); <<DISP-NO CHANGE>>
IF < THEN FILERROR(DFILE1,11); <<CHECK FOR ERROR>>
END.

PRIMARY DB STORAGE=Y,007; SECONDARY DB STORAGE=}00204
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:03: ELAPSED TIME=0:00:17

6-12 Data Transfer

Figure 6-4.FREADDIR and FREADSEEK Example (2 of 2)

Table 6-1. Intrinsics for Data Transfer

Intrinsic

Data Transfer Uses

FREAD

FWRITE

FREADDIR

FREADSEEK

FWRITEDIR

FUPDATE

Used for sequential read.

May be used with fixed, variable, or undefined-length record files.
File must be opened with read, read/write, or update access.
Successful read returns CCE condition code and transfer length; file
error results in CCL condition code; end-of-file results in CCG
condition code and returns a transfer length of zero.

Used for sequential write.

May be used with fixed, variable, or undefined-length record files.
File must be opened with write, write/save, append, read/write. or
update access.

Successful write returns CCE condition code; file error results in
CCL condition code; end-of-file results in CCG condition code.

Used for random-access read.

Use only with fixed or undefined-length record files.

File must be opened with read, read/write, or update access.
Successful read returns a CCE condition code; file error results in
CCL condition code; end-of-file results in CCG condition code.
No transfer length is returned because you get the amount
requested unless an error occurs.

Used for anticipatory random-access read into file system buffers.
Use only with buffered fixed and undefined-length record files.
File must be opened with read, read/write, or update access.
Successful read returns a CCE condition code; file error results in
CCL condition code; end-of-file results in CCG condition code.

Used for direct write.

Use only with fixed or undefined-length record files.

File must be opened with write, write/save, read/write, or update
access; append not allowed.

Successful write returns CCE condition code; file error results in
CCL condition code; end-of-file results in CCG condition code.

Used to update previous record (logical or physical).

Use only with fixed or undefined-length record files.

File must be opened with update access. No multi-record update
allowed.

Successful date returns a CCE condition code; file error results
in CCL condition code; end-of-file results in CCG condition code.

Data Transfer

6-13

Relative 1/O

Control Operations

Spacing

6-14 Data Transfer

In addition to the conventional random and serial access, MPE offers
Relative I/O access (RIO). RIO is intended for use primarily by
COBOL II programs; however, you can access these files by programs
written in any language.

RIO is a random access method that permits individual file records
to be deactivated. These inactive records retain their relative
position within the file.

RIO files may be accessed in two ways: RIO access and non-RIO
access. RIO access ignores the inactive records when the file is

read serially using the FREAD intrinsic, and these records will be
transparent. However, they can be read by random access using
FREADDIR. They may be overwritten both serially and randomly
using FWRITE, FWRITEDIR or FUPDATE. With RIO access the internal
structure of RIO blocks is transparent.

There may be times when you want to move the record pointer to a
particular place without necessarily transferring any data. There are
three general categories for this type of record selection:

m Spacing: Move the record pointer backward or forward a specified
number of records.

m Pointing: Set the record pointer to a specified record.

m Rewinding: Reset the pointer to record 0.

To space forward or backward in your file, use the FSPACE intrinsic.
Its syntax is:

FSPACE(filenum, displacement) ;

The displacement parameter gives the number of records to space
from the current record pointer. Use a positive number for spacing
forward in the file, or a negative number for spacing backward.

The FSPACE intrinsic may be used only with files that contain
fixed-length or undefined-length records. Variable-length record files
are not allowed. FSPACE may not be used when you have opened
your file with append access and ‘the file system will return a CCL
condition if you attempt to use it in that case. Attempted spacing
beyond the end-of-file results in a CCG condition, and the pointer
will not be changed.

Pointing

Rewinding

Note

To request a specific location for the record pointer to indicate, use
the FPOINT intrinsic. The syntax is:

FPOINT (filenum,recnum);

Use the recnum parameter to specify the new location for the record
pointer. Recnum is the record number relative to the start of the file
(record 0).

The FPOINT intrinsic may be used only with files that contain
fixed-length or undefined-length records. Variable-length record files
are not allowed. FPOINT may not be used when you have opened
your file with append access, and the file system will return a CCL
condition if you attempt to use it in that case. Attempting to point
beyond the end-of-file results in a CCG condition, and the pointer
will not be changed.

When you “rewind” your file, you set the record pointer to indicate
record 0, the first record in your file. Use the FCONTROL intrinsic with
a control code of 5 to accomplish this. The FCONTROL syntax in this
case would be:

FCONTROL (filenum,§,dummy’param) ;

Issuing this intrinsic call will set the record pointer to record

0. You may use FCONTROL with fixed-length, variable-length, or
undefined-length record files, and you may use it with any access
mode.

FCONTROLS has a special meaning when used with append access.
The file system will set the record pointer to record 0, as with other
access modes, but at the time of the next write operation to the file,
the record pointer will be set to the end of the file so no data will be
overwritten.

For more information about the FSPACE, FPOINT, and FCONTROL

intrinsics, consult the MPE V Intrinsics Reference Manual
(32033-90007).

Data Transfer 6-15

Transferring Files

Inter-Group Transfers

Note i

Inter-Account Transfers

Note

6-16 Data Transfer

MPE provides facilities for transferring files between groups, accounts
and different systems.

To transfer a file from one group to another within the same account,
use the RENAME command, simply naming the new group in the
second parameter. For example:

:RENAME MYFILE.GROUP1,MYFILE.GROUP2

In this example, GROUP1 is the old group and GROUP2 is the new
group.

To use RENAME in this way, you must be the creator of the file and
have SAVE access to the group named in the second parameter
(GROUP2 in the previous example). In addition, both groups must
be in the system domain or must both reside on the same private
volume set (renaming of files across volume sets is not allowed).

To transfer a file from one account to another, proceed as follows:

1. Logon to the computer under the account presently containing the
file.

2. Enter the RELEASE command to temporarily suspend any file
system security provisions covering the' file. For example:

RELEASE FILEX File name

You can enter this command only if you are the creator of the file.

3. Log off from this account and logon under the account to which
the file is to be transferred.

4. Run the File Copier Subsystem (FCOPY) to copy the file from the

old account into this account. For example:

:RUN FCOPY.PUB.SYS
>FROM=FILEX.GROUPA.ACCT1;NEW;TO=FILEX.GROUPA.ACCT2

In this example ACCT1 is the old account name and ACCT2 is the
new account name (optional entry).

The renaming of files across volume sets is not allowed, since this
would require that the operation physically transfer the file between
different volume sets.

A copy of FILEX now exists under GROUPA of ACCT2; the original
FILEX still exists under GROUPA of ACCT1.

5. Log off from the present account and logon again under the
account containing the original file.

6. Restore the security provisions to the original file by entering the
SECURE command:

Note i

Inter-System Transfers

:SECURE FILEX

Or, if you want only one copy of the file in the system, delete the
original file by entering the PURGE command:

:PURGE FILEX

To use the above commands, you must be the creator of the file.

Steps 1 through 3, and 5 through 6, can be avoided if the file security

for ACCT1 (the old account) allows read access from other accounts.

You can transfer one or more files between systems by copying
them from their present system onto magnetic tape or serial disk
in a special format, transporting that tape or disk pack to the new
system, and loading the tape contents into the new system. To
permit you to do this, however, the accounts, groups, and users to
which the files belonged on the old system must also be defined

on the new system. The technique for accomplishing this transfer
involves the STORE command (to write the files to tape) and the
RESTORE command (to copy the files from the tape into the new
system).

For example, to store FILEZ on tape for transporting to another
system, enter:

FILE TP ;DEV=TAPE
STORE FILEZ;TP {--==—-==--m—=e—— Back references tape

Mount a tape and allow the file to be stored on it. Take the tape file
to the new system, mount the tape, and copy the file into the system
by using the RESTORE command:

FILE TP;DEV=TAPE
RESTORE TP; FILEZ

You can also transfer files by copying them to magnetic tape or serial
disk via FCOPY and transporting that tape or disk pack to the new
system and loading it. The method for doing this is discussed in the
FCOPY Reference Manual (03000-90064).

Data Transfer 6-17

Buffered
Input/Output

6-18 Data Transfer

A buffer is an area maintained by the file system outside of a user’s
stack. It serves as an intermediate area for data transfer. The file
system can move data from a file to a buffer, and from there to your
stack, or it can move the data from your stack to a buffer and from
there to a file.

USER STACK
DATF{_\OQREA LABEL|Block|eeee|Block|Block|eeee
LOGICAL
RECORDS
BUFFER?1
BUFFER2
®
[J
= <
[J
[]
LG200016_027

Figure 6-5. Data Transfers Using Buffers

Your buffers will be the same size as the blocks for your file. Every
read or write of data between the file and a buffer will move one
‘block of data from or to the buffer. Data is moved between the buffer
and your stack in units of one logical record each.

So, if your program is reading data from a file into your stack, it will
move a block of data from the file into a buffer, and then move the
data from the buffer to your stack one logical record at a time. When
it has moved the entire block, another block of data will be moved

to the buffer and will be moved record by record to your stack. On
the other hand, if your program is writing data from your stack to a
file, it will write data to a buffer one logical record at a time. When
the buffer is filled, it will contain a block of data. This block will be
moved or posted to your file. When the buffer has been posted to the
file, it is ready to receive more records from your stack.

Figure 6-6 shows the transfer of data using two buffers. The blocking
factor of the file is three, so three logical records fit into each block.
Each buffer is the size of one of the file’s blocks.

Note

Note

A program is writing data from the user’s stack to the file. The first
three logical records are written to the first buffer. Now that it is
filled, this buffer is posted to the file and the fourth logical record is
written to the second buffer. When the fifth and sixth records have
been written to this buffer, this buffer is also posted to the file, and
the seventh logical record is written to the first buffer.

STACK FILE
®
®
®
Bl'iJFFE:FH BL:JFFE:RZ
_____Af A A
T
______ -
®
®
®

LG200016_028
Figure 6-6. Buffer Operation

You may specify the number of buffers you want to use with your file
by issuing a FILE command or using the numbuffers parameter in the
FOPEN intrinsic. If you do not specify the number of buffers, the file
system will assign the default of two buffers. You may have one or
more buffers, to a maximum of sixteen.

Although you may specify a maximum of 16 buffers, any number
beyond 3 does not usually increase input/output efficiency and
occupies needless space in main memory. If you request 0 buffers, the
file system will override this and supply the standard default of 2.

For files input or output at interactive terminals, you need not
specify any buffer parameter. A system-managed buffering operation
is always used for terminals. If you do specify any buffers for a

terminal, the file system will override this specification and assign no
buffers.

Data Transfer 6-19

Note

Why Buffer Transfers?

6-20 Data Transfer

The maximum total buffer space for an individual file is 32,000
words. This means that if a file has one buffer, that buffer may be up
to 32,000 words in size. If a file has two buffers, they may each be up
to 16,000 words in size and so on. If the total buffer size you request
is too large (that is, blocksize x numbuffers > 32,000) an error, “out
of virtual memory”, will result.

For magnetic tape files, the maximum size of a data transfer is
8K words (8,192 words). The actual transfer size can be larger
depending on the specific magnetic tape device.

There are two major reasons for buffering data transfers: buffering
results in automatic blocking and deblocking of logical records and
provides the ability to do anticipatory reading.

Automatic Blocking and Deblocking

Your program may try to locate a particular logical record. All data
transfers, however, occur in units of blocks. With buffering, the file
system will handle the details of locating the desired record in a
particular block.

Anticipatory Reading

This technique effectively permits the overlapping of input/output
requests, often significantly reducing the time required to process

a file. Anticipatory reading involves moving data from a file into a
buffer before it is needed, so it can be moved into the user’s stack
immediately when it is needed. For instance, if your program is
reading data from a sequential disk file in blocks of four records each,
upon the first read request, the file system automatically moves

the first four records from the file to the first buffer (Buffer 1) and
the next four records into the second buffer (Buffer 2). When your
program has read all four records from Buffer 1 and accesses the

first record in Buffer 2, the file system automatically moves the

next four unread records in the file into Buffer 1 so that they will

be immediately available for any upcoming read request. When

your program reads all records in Buffer 2, the file system moves
another four records into Buffer 2, continuing in this fashion until the
program terminates access to the file. Anticipatory reading is most
effective in purely sequential access operations, but it can also be
used in conjunction with the FREADSEEK intrinsic when you wish to
access records nonsequentially.

Unbuffered 1/0

FILE

Note i

NOWAIT Input/Output

On occasion, you may wish to avoid the use of buffers altogether.
This may be the case, for instance, when you are transferring

records in large blocks. These can require excessive amounts of
memory for the data transferred and additional overhead for

pointers and file-access information required to maintain the buffers.
Furthermore, certain file-access modes prohibit the use of buffers. For
example, multi-record (MR) access and NOWAIT input/output, are
incompatible with buffering. If you request buffering in such cases,
the file system will override your request and allocate no buffers.

To expressly specify no buffering, enter the NOBUF keyword
parameter in a FILE command, as follows:

BIGDATS;REC=—4096,16,F ;NOBUF¢~===~===w-== Specifies no buffers

During an unbuffered transfer, your stack will be frozen in memory
because the I/O processor needs the absolute addresses of the records
it processes. Also, your process will suspend execution during the
transfer.

When you do not use buffering, you may transfer your data in blocks
only. The file system will not deblock logical records for you. For
this reason, it is more efficient to use unbuffered transfers when you
are copying files.

Normally, when a program issues a request for input/output, control
does not return to the program until that request has been satisfied.
However, the file system allows programs to bypass this convention
by initiating input/output requests with control returning to the
program prior to the completion of the request. This feature is
known as NOWAIT input/output.

You may specify NOWAIT input/output in your FOPEN call to your
file, or you may request it in a FILE command that references the file:

File name Requests no buffering
|
I
|
I
\Y
FILE QUICKFL; NOBUF; NOWAIT
[

|
Requests NOWAIT input/output

Data Transfer 6-21

Note f To ultimately confirm input/output completion, your program must

t call the IOWAIT intrinsic after the request.

To use the NOWAIT feature, your program must be running in
Privileged Mode. A NOWAIT request implies that no buffering is
used.

The normal checks and limitations that apply to standard users

in MPE are bypassed in Privileged Mode. It is possible for a
Privileged Mode program to destroy file integrity, including the
MPE operating system software itself. Hewlett-Packard will
investigate and attempt to resolve problems resulting from the use of
Privileged Mode code. This service, which is not provided under the
standard service contract, is available on a time and materials billing
basis. Hewlett-Packard will not support, correct, or attend to any
modification of the MPE operating system software.

How Many Buffers? How do you choose the number of buffers for your file? The
implications of the number you choose are given in Table 6-2.

Table 6-2. Implications of Number of Buffers

0 User program suspends execution during every transfer. User’s stack is frozen in memory
(NOBUF) during transfer. Can only transfer physical records.

1 User program suspends when necessary logical record is not in buffer. User’s stack is not
frozen in memory.

2 User program may not suspend; allows parallel processing. Buffer usage is alternated.
3 User program may not suspend even under heavy 1/0 load. Useful for local set of frequently
(or more) |accessed records.
Note § Table 6-2 lists implications, not recommendations. The most efficient

t number of buffers will depend upon your particular application.

Multi-Record Mode In almost all applications, programs conduct input/output in normal
recording mode, where each read or write request transfers one
logical record to or from the data stack. In certain cases, however,
you may want your program to read or write, in a single operation,
data that exceeds the logical record length defined for the input or
output file. For instance, you may want to read four 128-byte logical
records from a file to your stack in a single 512-byte data transfer.
Such cases usually arise in specialized applications. Suppose,
for example, that your program must read input from a disk file
containing 256-byte records.

6-22 Data Transfer

This data, however, is organized as units of information that may
range up to 1024-bytes long. In other words, the data units are

not confined to record boundaries. Your program is to read these
units and map them to an output file, also containing 256-byte
records. You can bypass the normal record-by-record input/output,
instead receiving data transfers of 1024-bytes each, by specifying the
multi-record (MR) mode in your FOPEN call or FILE command. For
example:

FILE BIGCHUNK; REC=-256,1,U;NOBUF;MR <------ Specifies multi-record mode

Note

Buffer Control Intrinsics

The essential effect of multi-record mode is to make it possible to
transfer more than one block in a single read or write. This mode
effectively ignores block and sector boundaries, and will permit
transfers of as much data as you wish (specified in the "TCOUNT’
parameter of the READ or WRITE request). It will not, however,
break up blocks or sectors and every transfer must begin on block
and sector boundaries. In order to take advantage of multi-record
mode, you should specify the NOBUF option in your FILE command or
FOPEN call.

When you read from a file in multi-record mode, you may not
read beyond the end-of-file indicator. When you write to a file in
multi-record mode, you may write only up to the block containing
the file limit. If your transfer exceeds its limit, a condition code of
CCG is returned, data is transferred only up to the limit, and the
FREAD intrinsic returns a transfer length of 0.

To obtain the actual transfer length for your data, use the FCHECK
intrinsic, as described in the MPE V Intrinsics Reference Manual
(30000-90010). The transfer length will be returned in the TLOG
parameter of FCHECK.

For maximum efficiency in multi-record mode transfers you should
build your file with a blocksize that is a multiple of 128 words (one
sector). When you do this, data can be transferred from disk to your
stack (or vice versa) with a single physical I/O request. When your
file’s blocksize is not a multiple of 128 words, a separate physical I/O
request will be issued by MPE to transfer each block.

Certain intrinsics permit you to exert a degree of control over
the way the file system manages your buffers. The FSETMODE and
FCONTROL intrinsics can be used in this way.

If you issue a call to FSETMODE with a modeflag value of 2, you set

the Critical Output Verification bit. When you do this, every time
a full buffer is posted to your file, your process suspends execution
while the transfer is made, and remains suspended until the posted
buffer is verified as complete. Use FSETMODE in this way only with

buffered files; it is ineffective and unused in the NOBUF case.

Data Transfer 6-23

6-24 Data Transfer

When you issue an FCONTROL intrinsic call with a control code of 2,
you are requesting that the file system “complete I/O”. This will
force the posting of all buffers that have been changed since the last
time they were posted, and will mark the buffers as empty. Your
process will suspend execution until these operations are complete.
Use FCONTROL in this way only with buffered files. It is ineffective in
the NOBUF case.

The FCONTROL intrinsic can also be used with a control code of 6, to
specify "write EOF". When you issue this call for a buffered file, the
file system will post all buffers that have been changed since their
last posting and your process will suspend execution until posting is
complete. The buffers will then be marked empty. For both buffered
and unbuffered files, issuing FCONTROL 6 will update the end-of-file
indicator and the extent map in the file label; updating the extent
map will protect newly allocated extents from being lost in the case
of a system crash.

The FSETMODE and FCONTROL intrinsics are discussed in detail in the
MPE V Intrinsics Reference Manual (32033-90007).

Section Divider

7. File Security

File Security

7

There are two types of file security offered on the HP 3000 Computer
System, they are:

m The Standard File System Security Provision
m The Access Control Definition (ACD)

Standard File
System Security

Provision
Note #

Associated with each account, group, and individual file is a set of
security provisions that specifies any restrictions on access to the files
in that account, group, or particular file.

These provisions apply to disk files only.

These restrictions are based on three factors:
m Access Mode

m Type of User

m Use of Private Volumes

The security provisions for any file describe what modes of access are
permitted and to which users.

Specifying and
Restricting File
Access by Access
Mode

When a program opens or creates a file, it can define the way it can
access the file by specifying a particular access mode for the file.
These specifications apply to files on any device. In addition, for files
on disk, a program can also restrict acces

The access types that can be specified by a program are listed in
Table 7-1.

File Security 7-1

Table 7-1. File Access Mode Types

:FILE
ACCESS MODE | PARAMETER DESCRIPTION

Read Only IN Permits file to be read but not
written on. Used for device files
such as card reader and paper tape
reader files, as well as magnetic
tape, disk, and terminal output files

Write Only ouT Permits file to be written on but not
read. Any data already in the file

1s deleted when the file is opened.
Used for device files such as card
punch, line printer, as well as tape,
disk, and terminal output files.

Write (Save) OUTKEEP Permits file to be written on but
Only not read, allowing you to add
new records both before and after
current end-of-file indicator. Data
will not be deleted, but a normal
write will replace it.

Append Only APPEND Permits information to be
appended to file, but allows neither
overwriting of current information
nor reading of file. Allows you

to add new records after current
end-of-file indicator only. Used
when present contents of file must
be preserved.

Input/Qutput INOUT Permits unrestricted input and
output access of file; information
already on file is saved when the file
is opened. (In general, combines
features of IN and OUTKEEP.)

Update UPDATE Permits the use of FUPDATE intrinsic
to alter records in file. Record is
read into your data stack, altered,
and rewritten to file. All data
already in file is saved when the file
is opened.

When specifying the access mode for a file, it is important to realize
where the current end-of-file is before and after the file is opened and
where the logical record pointer indicates that the next operation will
begin. These factors depend upon the access mode you select.

7-2 File Security

Because they are best explained by example, the effects of each
access mode upon these factors are summarized in Table 7-2. This
file contains ten logical records of data (numbered 0 through 9).
The table shows that the current end-of-file (EOF) lies at Record 10
before the file is opened, indicating that if

Table 7-2. Effects of Access Modes

LOGICAL EOF

ACCESS CURRENT RECORD AFTER

MODE EOF POINTER OPEN
Read Only 10 0 10
Write Only 10 0 0
Write (Save) Only 10 0 10
Append 10 10 10
Input/Output 10 0 10
Update 10 0 10

Suppose you are running a program that opens a magnetic tape file
for write-only access, but you wish to append records to that file
rather than delete existing records. You can override the default
specifications by using the FILE command to request append access
to the file, as follows:

FILE TASK; DEV=TAPE; ACC=APPEND {requests append access}
RUN PROGN

Suppose you run a program that opens a disk file for write-only
access, copies records into it, and closes it as a permanent file. Under
the standard file system security provisions, the access mode is
automatically altered so that the file permits the read, write, and
append access modes (among others). Now, suppose you run the
program a second time, but wish to correct some of the data in

the file rather than delete it. You could use the FILE command to
override the programmatic specification, opening the file for update
access:

FILE REPFILE; ACC=UPDATE {requests update access}
RUN PROGN

File Security 7-3

Consider a program that reads input from a terminal (file name
INDEV) and directs output to a line printer (OUTDEV). You can
redirect the output so that it is instead transmitted to the terminal

by entering:

FILE INDEV; DEV=TERM; ACC=INOUT {Respecifies INDEV for both
input and output access}

FILE OUTDEV=xINDEV

{Equates INDEV to OUTDEV}

RUN PROGO {Runs program}
Spec|fy|ng and Restrictions on who can access a file are established when the file is
Restricting File created according to the default prescribed for the group and account

Access by Type or

where the file resides.

User The capabilities of the user who accesses a file may determine the
security restrictions that apply to him. The types of users recognized
by the MPE security system, the mnemonic codes used to reference
them, and their complete definitions are listed in Table 7-3.

Table 7-3. User Type Definitions

MNEMONIC
USER TYPE CODE MEANING

Any User ANY Any user defined in the system; this
includes all categories defined below.

Account Librarian AL User with Account Librarian capability,

User who can manage certain files within his
account that may or may not all belong
to one group.

Group Librarian GL User with Group Librarian capability,

User who can manage certain files within his
home group.

Creating User CR The user who created this file.

Group User GU Any user allowed to access this group as
his log on or home group, including all
GL users applicable to this group.

Account member AC Any user authorized access to the

system under this account; this includes
all AL, GU, GL, and CR users under
this account.

Users with system manager or Account manager capability bypass
the standard security mechanism. A system manager has unlimited
file access to any file in the system (R,A,W,L,X:ANY), but can save

7-4 File Security

Note 1

Account Level Security

files only in his own account (S:AC). An account manager user has
unlimited access to any file within the account (R,A,W,L,X,S:ANY).

One exception is that in order to access a file with a negative file
code (a privileged file), the account manager must also have the
Privileged Mode (PM) capability.

The user-type categories that a user satisfies depend on the file he is

trying to access. For example, a user accessing a file that is not in his
home group is not considered a group librarian for this access even if
he has the Group Librarian user attribute.

In addition to the above restrictions in force at the account, group,
and file level, a file lockword can be specified for each file. Users then
must specify the lockword as part of the filename to access the file.

The security provisions for the account and group levels are
managed only by users with the System Manager and the Account
Manager capabilities respectively, and can only be changed by those
individuals.

The security provisions that broadly apply to all files within an
account are set by a system manager user when creating the account.
The initial provisions can be changed at any time, but only by that
user with system manager capability..

At the account level, five access modes are recognized:

R = Read
A = Append
W = Write
L = Lock
X = Execute

Also at the account level, two user types are recognized:

ANY = Any User
AC = Account Member

If no security provisions are explicitly specified for the account, the
following provisions are assigned by default:

m For the system account (named SYS), through which the system
manager user initially accesses the system, reading and executing
access are permitted to all users; appending, writing, and locking
access are limited to account members.

m For all other accounts, the Read, Append, Write, Lock, and
Execute access modes are limited to account members.

File Security 7-5

Group Level Security

File Level Security

Note

7-6 File Security

The security provisions that apply to all files within a group are
initially set by an account manager user when creating the group.
They can be equal to or more restrictive than the provisions specified
at the account level. (The group’s security provis checking at the
account level is denied access at that point, and is not checked at the
group level).

The initial group provisions can be changed at any time, but only by
an account manager for that group.

At the group level, six access modes are recognized:

R = Read

A = Append
W = Write

L = Lock

X = Execute
S = Save

Also at the group level, five user types are recognized:

ANY = Any User

AC = Account Member
GL = Group Librarian
GU = Group User

AC = Account Member

If no security provisions are explicitly specified, the following
provisions apply by default:

m For a public group (named PUB), whose files are normally accessible
in some way to all users within the account, reading and executing
access are permitted to all users; Append, Write, Save, and Lock
access are limited to Account Librarian group user.

m For all other groups in the account, Read, Append, Write, Save,
Lock, and executing access are limited to group users.

When a file is created, the security provisions that apply to it are the
default provisions assigned by MPE at the file level, coupled with

the user-specified or default provisions assigned to the account and
group to which the file belongs. At any time, the creator of the file
(and only this individual) can change the file level security provisions.
Therefore, the total security provisions for any file depend upon
specifications made at all three levels: the account, group, and file
levels. A user must pass tests at all three levels, account, group, and
file security,(in that order), to

If no security provisions are explicitly specified by the user, the
following provisions are assigned at the file level by default.

Because the total security for a file always depends on security at all
three levels, a file not explicitly protected from a certain access mode
at the file level may benefit from the default protection at the group
level. For example, the default provisions at the group level allow
access to group users only. Thus, the file can be read only by a group
user.

In summary, the default security provisions at the account, group,
and file levels combine to result in overall default security provisions
as listed in Table 7-4. Stated another way, when the default security
provisions are in force at all levels, the standard user (without any
other user attributes) has:

m Unlimited access (in all modes) to all files in his log on group and
home group.

m Read and Execute access (only) to all files in the public group of
his account and the public group of the System Account.

The important file security rules may be defined as follows:
m Users can create files in their own accounts.
m Only the creator can modify a file’s security.

m If a lockword is present on a file, then it is required in order to
access the file.

m Account managers have unlimited access to the files within their
accounts.

m System managers have unlimited access to any file, but can save
files only in their account.

Table 7-4. Default Security Provisions

FILE ACCESS SAVE ACCESS
REFERENCE FILE PERMITTED | TO GROUP
filename.PUB. SYS Any file in Public R,X:ANY; AL GU
Group of System W:AL,GU)
Account.
filename.groupname Any file in any Group | R,W X:GU) GU
\.SYS in System Account.
filename.PUB, Any file in Public (R,X:AC; AL,GU
accouniname Group of any account. | W:AL,GU)
filename.groupname. | Any file in any group GU
accountname in any account. (R,W,X:GU)

File Security 7-7

Changing Security
Provisions of Disk
Files

7-8 File Security

The security provisions for the account and group levels are managed
only by users with the system manager or account manager
capabilities respectively, but you can change the security provisions
for any disk file you have created. You do this by using the ALTSEC
command, which permanently deletes all previous provisions specified
for this file at the file level, and replaces them with those defined as
the command parameters. This command does not, however, affect
any account-level or group-level provisions that may cover the file.
Furthermore, it does not affect the security provided by the lockword
(if one exists).

For example, suppose you want to alter the security provisions for
the file FILEX to permit the ability to read, execute, and append
information to the file only to the creating user and the log on

or home group users. You can do this with the following ALTSEC
command:

ALTSEC FILEX;(A,R,X:CR,GU)

Any parameters not included in the ALTSEC command are cleared. To
restore the default security provisions to this file, you would enter:

ALTSEC FILEX

Suppose you have created a file named FILEZ for which you have
allowed yourself program-execute access only. You now wish to
change this file’s security provisions so that any group user can
execute the program stored within it, but only the group librarian
can read and write on it. Even though you do not have read or write
access to the file, you can still alter its security provisions by entering
the command:

ALTSEC FILEZ;(X:GU;R,W:GL)

You retain the ability to change the security provisions of a file that
you have created, even when you are not allowed to access the file
in any mode. Thus, you can even change the provisions to allow
yourself access. For more information, refer to the ALTSEC command

in the MPE V Commands Reference Manual (32033-90006).

Suspending and
Restoring Security
Provisions

Access Control
Definitions (ACDs)

You may temporarily suspend the security restrictions on any disk
file you create. This allows the file to be accessed in any mode by
any user. In other words, it offers unlimited access to the file. You
suspend the security provisions by entering the ¢ RELEASE command
does not modify the file security settings recorded in the system. It
merely bypasses them temporarily. The RELEASE command remains
in effect until you enter the SECURE command in this or a later
job/session.

To release the security provisions for the file named FILESEC in your
log on group, enter:

RELEASE FILESEC

If the file has a lockword and you wish to remove that as well as all
account, group, and file level security provisions, you must use the
RENAME command as well as the RELEASE command:

RENAME FILESEC/LOCKSEC,FILESEC {Removes lockword}
RELEASE FILESEC {Removes security provisions}

To restore the security provisions of a file, use the SECURE command.
For example:

SECURE FILESEC

The original security restrictions for the file will be in effect.

Access Control Definitions (ACDs) contain a list of the users and
the access mode each user or group of users has to the file. When
an ACD is initiated, all previous Standard File System Security
Provisions and lockwords are ignored. Only the ACD in eff

m Modes can be a combination of any of the following types of
access/permissions and can be established for any user, account,
and group level:

Read access

Write access

= Lock access

Append access

Execute access

None = No access

RACD = Copy or Read permission (to the ACD only)

e = T
|

u

m User specifications are defined as a fully qualified user name (for
example, JOHN.DOE). Therefore, an ACD can be defined as a
combination of modes:user specifications, for example:

ACD=(R:JOHN.DOE;W,A,L:@.DOE,@.PAYROLL;R:€.0Q)

File Security 7-9

Who is the ACD Owner

How are ACDs Used

Note

How to Create an ACD

7-10 File Security

The owner of an ACD associated with a file is:

m The creator of the file the ACD is associated with

m A user with AM capability for the account where the file resides
m A user with SM capability

The owner of an ACD is the only user capable of adding, changing,
or deleting an ACD.

ACDs are used to determine if a user trying to access a file is
authorized. When an ACD is used to secure a file, it will be the
only mechanism used to determine access rights. The Standard File
System Security Provision will not be used.

To access a file, the system will execute the following checks at
FOPEN.

1. Is the user one of the following:
m System Manager (SM capability)
m Account manager (AM capability)
m Creator of the file

If you are one of these three, you can access the file. If you are not
one of these three, the next check is made by the system.

2. Is there an ACD associated with the file? If yes, the system

evaluates the user against any user specifications given in the
ACD:

m The user name is compared to all specific names in the ACD.

m The user name is compared to all wild cards that include the
account name in the ACD.

m The user name is compared to any wild cards used to represent
the system.

m If there is no match then, the user is not granted access.

3. If there is no ACD assigned, the system will default to the
Standard File System Security Provision to determine if the user
is granted access.

An ACD can be created and associated with a file in one of two
ways:

m Create a file ("acdfilename) which contains the ACD modes:user
specifications only, and then assign it to the file.

m Assign the ACD, modes:user specifications (pair_spec) explicitly to
the file.

How to Read, List and
Copy an ACD

Note

To create an ACD, issue the ALTSEC command as follows:

ALTSEC filename[,filetype] ;NEWACD={"acdfilename}
{(pair_spec)}

allows the file FILEX to be read by all groups on all accounts, allows
Write access by all groups on account DOE, and allows Execute access
by JOHN.DOE only. Or, the command could be written as:

ALTSEC FILEX,JOHN.DOE;NEWACD="ACDFILE

where “ACDFILE is the “acdfilename containing the modes:user
specifications only, as found in the previous example. Refer to the
ALTSEC command in the MPE V Commands Reference Manual
(32033-90006) for more information.

Wild cards are not allowed for file names.

The ALTSEC command can be used to copy an ACD:

ALTSEC filename[,filetype]; [COPYACD={sourcefilename}[,sourcefiletypel]

How to Modify an ACD

To copy an ACD from one file to another, the user must have Read
ACD access (RACD) to the source file or be the owner of the source
and destination files. Reading an ACD is performed when copying or
listing an ACD.

The ALTSEC command can be used to modify an existing ACD. There
are three types of modifications that can be made with the ALTSEC
command.

n Add
u Replace
m Delete

To add the modes:userspecification pairs to an ACD that does not
contain one, enter:

ALTSEC filename[filetype] ; ADDPAIR= {(pair_spec)}
{"acdfilename}

File Security 7-11

The modifications can be given explicitly with (pair_spec) or can be
the contents of the acdfilename file.

To replace the user specifications given in the (pair_spec) or
acdfilename, enter:

ALTSEC filename[,filetype] ;REPPAIR= {(pair_spec)}
{"acdfilename}

The modifications can be given explicitly with (pair_spec) or can be
the contents of the acdfilename file.

To delete a userspecification enter:
ALTSEC filename[,filetype] ;DELPAIR= {(userspecification}}
{"acdfilename}

This will delete those pairs associated with the userspecification or
the acdfilename.

How to Delete an ACD The ALTSEC command can be used to delete an ACD:
ALTSEC filename[,filetype] ;DELETE
The owner of-an ACD is the only one allowed to delete an ACD.

7-12 File Security

Section Divider

8. Interprocess Communication

8

Interprocess Communication

Interprocess
Communication

Interprocess communication (IPC) is a facility of the file system
which permits multiple user processes to communicate with one
another in an easy and efficiently. To accomplish this, IPC uses
message files as the interface between user processes. These message
files act as first-in-first-out queues of records, with an entry made
by FWRITE and a deletion made by FREAD. One process may submit
records to the file with the FWRITE intrinsic while another process
takes records from the file using the FREAD intrinsic.

Occasionally a process may attempt to read a record from an empty
message file, or write a record to a message file that is full. In such
cases, the file system will usually cause the process to wait until its
request can be serviced. That is, until another process either writes a

record to the empty file or reads enough records to take a block from
the full file.

There is a unidirectional flow of information between a given process
and a message file. A process opening the file with read access,
identified as a reader, may only read from the file, and not write. A
process opening the file with write access, identified as a writer, may
only write to the file and not read. If it is necessary for the same
process to read and write, it may open the file twice, once as a reader
and once as a writer. More than one message file may be associated
with a process, and the process may be configured as a reader to
some of the files and as a writer to others. A given message file
typically has one reader, though more are allowed, and one or more
writers.

Applications for IPC exist wherever it is necessary for processes

to communicate with one another. In the case of a father process
with several sons, message files may serve as interfaces between the
processes. Through one file, the father may direct the activities of
the sons; through another, the sons may inform the father of their
progress. Message files may also aid object managers during data
base operations. Several writers may send information to a file which
serves as the single source from which the data base process actually
receives the information.

Interprocess Communication 8-1

Operation Message files are maintained and manipulated by several intrinsics.
The FOPEN, FREAD, FWRITE, FCONTROL, and FCLOSE intrinsics operate
upon the files to yield a unidirectional, first-in-first-out message
queue:

FOPEN Establishes a connection to a message file. With
FOPEN, a user process identifies itself as either a
reader or a writer. Readers access the front of
the message file and writers access the end of the
message file. Incompatible parameters that are
specified with FOPEN are adjusted. For example, since
messages are read or written to the file one record
at a time, a multi-record parameter is corrected. If
FOPEN is used to access a new file, a new message file
is created.

Note The Access Type (bits (12:4) of the Access Options) specifications
are interpreted slightly different than for writers of conventional

files. In one case, if a writer is the first accessor to a message file, the
file’s contents are purged; in another case, the writer simply appends

records to the tail of the file.

FREAD Reads one record from the start of a message file.
The record is copied to the reader’s TARGET area
and is logically deleted from the message queue. The
next record is now at the beginning of the file. If
a process tries to read from an empty message file
which writers are accessing, the file system waits
until a writer process enters a record to the file. If
there are no writers associated with the message file,
an end-of-file indication, CCG, is returned.

Note A If the message file is empty and there no writers, the reader process
” will wait if there is an FCONTROL 45 in effect, or if this is the first

FREAD after the reader’s FOPEN.

FWRITE Appends one record to the end of a message file. If
a process tries to write to a full message file which
readers are accessing, the file system waits until
a reader process has read a block of records from
the file. If there are no readers associated with
the message file, an end-of-file indication, CCG, is
returned.

Note If the message file is full and there are no readers, the process will
wait if there is an FCONTROL 45 in effect, or if this is the first FWRITE

after the writer’s FOPEN.

8-2 Interprocess Communication

Additional Features

FCONTROL Supplies various control functions to a process that is
using a message file. These control functions permit
a process to take advantage of the additional features
of IPC, which are discussed in detail later in this
chapter.

FCLOSE Breaks a process’ connection with a message file. If
the process reopens the same file later, it may do so
as either a reader or a writer, regard less of what it
was previously.

Besides the regular attributes of IPC and message files, other features
are available for use with these facilities. Writer IDs, nondestructive
reads and software interrupts are specifically intended for use with
IPC. Copy access is a general enhancement to the file system.

FREADS and FWRITES to message files can use time-outs.

Writer IDs

When a writer process opens a message file, the file system assigns

a unique 16-bit ID number to the writer. Each record the process
writes to the message file is prefixed with this number by FWRITE.
When the writer closes the file, the ID number is no longer associated
with the process and may be reused. A writer posts his OPEN
record when the first write to the file takes place. The CLOSE record
is written if any records have been written while the file was open.
This was designed into IPC to eliminate the need for FOPEN to wait
for file space. It also allows a writer to open/close the file without
having any effect on it. Record prefixes and open/close records are
usually transparent to the readers of the message file, but by issuing
an FCONTROL 46, the reader process may see them. The interested
reader may use the writer IDs to determine the source of the records
it is receiving.

Time-outs

A reader or a writer process may limit the length of time it will wait
to be serviced. By issuing an FCONTROL 4, a reader may specify the
maximum number of seconds it will permit the file system to keep it
waiting for a record to be written to an empty message file. A writer
may also use FCONTROL 4 to specify the maximum number of seconds
it will wait for a block of records to be read from a full file.

Interprocess Communication 8-3

Note

Copy Access

When records are read from a message file, FREAD logically deletes
them as it reads. In order to copy a message file without destroying
it, the file must be opened with the file copy option specified in the
aoptions of the FOPEN, or the COPY keyword must be specified in a
FILE command. When this option is selected, the message file is
treated as a standard sequential file rather than as a message queue
and may be copied safely. The file may then be read by logical record
or by block and information may be written to it by block.

In order to access a message file in copy mode, a process must have
exclusive access to the file.

Nondestructive Read

By issuing an FCONTROL 47, a reader may avoid deleting the next
record it reads. The record will remain at the head of the message
queue. This feature differs from the copy access feature in that it is a
temporary condition. The second FREAD following the FCONTROL 47
will reread the record and delete it in the usual manner.

Software Interrupts

You may specify that your FREAD and FWRITE completion processing
be done with an “interrupt” procedure supplied in your program. An
FREAD or FWRITE intrinsic call is required to start the I/O request. As
with NOWAIT I/0, the FREAD/FWRITE intrinsics return control to your
program immediately after the request is initiated. When the request
completes, your program is “trapped” to your interrupt procedure to
process the I/O completion.

Using IPC

Message files can be created in several ways. When a user process
opens a new file and indicates in the foptions that it will be a
message file, the FOPEN intrinsic creates the new message file. In
order to create a message file with the BUILD command, use the MSG
keyword. For example, to build a message file named SARA, enter:

BUILD SARA; MSG

A new message file may also be defined with a FILE command. Use
the MSG keyword for a new file:

FILE LISBETH, NEW; MSG
A message file named LISBETH is indicated.

8-4 Interprocess Communication

FILENAME CODE

SARA

When you perform a LISTF,2 command, message files will be
identified by an "M" in the third column of the TYP field; SARA is
identified here:

------------ LOGICAL RECORD------=---= ==-==--SPACE----~-
SIZE TYP EOF LIMIT R/B SECTORS #X MX
128W VBM 0 1031 1 258 18

Other types of files are similarly indicated by a token in the TYP
field:

R—identifies a Relative I/O file
O—identifies a Circular file
A blank in the third column indicates a standard MPE file.

Occasionally, you might create a message file and specify a certain
number of records for the file to contain, only to discover that the file
system has allocated more records than you requested. The reason
for this is that the file system leaves room to maintain the necessary
internal structure for the message file. The file system has four basic
rules for establishing this structure when the message file is created:

1. The file system adds two records to the requested number to allow
for a minimum of one open and one close operation.

2. The requested number of records is rounded up to fill an even
number of blocks.

3. The file system adds an extra block to the message file for the file
label to occupy. (This block is transparent.)

4. The file system assigns the same number of blocks to each extent.

For example, suppose you want to create a message file named
ODDSIZE:

BUILD ODDSIZE; MSG; REC=,3; DISC-51,8

You have specified a message file with fifty-one records, three records
per block, that occupies eight extents. The file system will adjust the
number of records to conform to the rules for message file structure:

1. The file system adds two records to allow for one open and one
close indication; the number of records goes from 51 to 53.

2. The number of records is rounded up to 54 to provide an even
number of blocks. With three records per block, 54 records will fill
18 blocks.

3. An additional block is added to the file to accommodate the file
label. Now the file contains 19 blocks.

Interprocess Communication 8-5

Note

Features of
Intrinsics for
Message Files

8-6

FOPEN

Note

4. The eight extents must all be the same size, so the number of

blocks is increased from 19 to 24. Each extent now contains three
blocks.

Of the 24 blocks in ODDSIZE, 23 are data blocks and one contains the
file label, which is invisible to you. With three records per block, 23
blocks contain a total of 69 data records.

In addition to adjusting the number of blocks in a message file, the
file system adds a certain amount of space to each block for overhead,
six bytes will be added to each record, and four bytes will be added
for each block.

There are a few features of several intrinsics which apply specifically
to message files. Most of these features are found in FOPEN and
FCONTROL, but several other intrinsics are also affected.

Some of the parameters of the following intrinsics contain more than
one piece of information within each 16-bit word. When this is the
case, data fields are described in the following format: (n:m), where
n is the first bit of the field and m is the number of consecutive

bits in the field. For example, the FOPTION field for File Type,
described below, occupies bits (2:3), or bits 2, 3 and 4.

Parameters not mentioned in the following descriptions retain their
normal range of values and their normal default values.

FOPTIONs: File type. Determines the type of file to create for a

(2:3) - new file. If the file is old, this field is ignored.
000 - Ordinary file
001 - KSAM file
010 - Relative I/0O file
100 - Circular file; discussed later
110 - Message file

The Default Designator FOPTION, bits 10 through 12, offers several
choices for default file designators. Any value used other than 0 for
filename will override the File Type field.

Interprocess Communication

(8:2) - Record format. Message files are always internally
formatted as variable-length record files. However, a
message file can appear as a fixed file to an opener.
There is no difference for a writer, but a reader will
have the portion of his target area which exceeds the
record filled with blanks (for an ASCII file) or zeros
(for a binary file).

00 - Fixed

01 - Variable

10 - Undefined; changed to variable
AOPTIONs: File copy. This feature permits a message file to be
(3:1) - treated as a standard sequential file, so it can be

copied by logical record or physical block to another

file.

0- The file will be accessed in its native

mode. A message file will be treated
as a message file.

1- The file is to be treated as a
standard, sequential file with
variable-length records. This allows
nondestructive reading of an old
message file at either the logical
record or physical block level. Only
block level access is permitted if
the file is opened with write access.
These blocks are checked for proper
message file format to prevent
incorrectly formatted data from
being written to the message file
while it is unprotected.

Note i In order to access a message file in copy mode, a process must have
ﬁ exclusive access to the file.

Setting this bit on causes all the
remaining file parameters to have
their normal defaults.

Interprocess Communication 8-7

(5:2)

(7:1) -

Multi-access mode. This feature permits processes

located in different jobs or sessions to open the same
file.

00 - No multi-access. The file system
changes this value to 2 to allow
global multi-access.

01 - Only intra-job multi-access allowed.
This is the same as specifying the
MULTI option in a FILE command.

10 - Inter-job multi-access allowed.
This is the same as specifying the
GMULTI option in a FILE command.

11 - Undefined. If this is specified, the
FOPEN will be rejected with an error
code of 40: ACCESS VIOLATION.

Inhibit buffering. For message files, the file system
sets this bit off.

0- Read by logical record
1- Read by physical block

Writers must open message files with NOBUF if they are in copy mode.
Access of the file is block by block.

Note

f Readers may open a message file with NOBUF if they are in copy
ﬁ mode. This determines whether they will be accessing the file record

by record or block by block.

(8:2) -

(11:1) -

Interprocess Communication

Exclusive. The values for this field are the same as
for any disk file, but they have different meanings for
the readers and writers of a message file:

User Value Meaning

EXCLUSIVE One reader, one writer.

SEMI One reader, multiple writers.
SHARE Multiple readers and writers
Default One reader, ane writer.

Multi-record. For message files, the file system sets
this bit to 0, except in copy mode.

(12:4) -

device

numbuffers

filesize

Access type. These bits specify whether the user will
be a reader or a writer process.

0000 READ access only. The FWRITE
intrinsic cannot reference this file.
This access type requires both read
and write access capability to the
file. A process that has opened a file
with this access type is a reader.

0001 WRITE access only. If this is the
first accessor to the file and the
process has write access capability,
then the file’s contents are purged.
If this is not the first accessor to
the file, the file system sets this
access type to APPEND. The FREAD
intrinsic cannot reference this file. A
process that has opened a file with
this access type is a writer.

0010 WRITE SAVE access. The file
system sets this to APPEND access.
0011 APPEND access only. The FREAD

intrinsic cannot reference this file.
This access type requires append
capability to the file. A process that
has opened a file with this access
type is a writer.

This field is relevant only if this is a new file. The
DEVICE field must either be omitted or specify a
disk; specification of any device other than a disk
opens the device. When this occurs, the file is no
longer a message file.

(0:11) - Ignored.

(11:5) - Value between 2 and 31; default is 2.
This parameter must not exceed the
physical record capacity of the file.

The number of records is rounded up to completely
fill the last block and to make the last extent the
same size as the other extents. Two additional
records are included for the open and close records.

Interprocess Communication 8-9

8-10

FCONTROL The control codes that deal specifically with IPC are shown in
Table 8-1. Those not mentioned here are invalid when IPC is being

used.

Table 8-1. IPC Control Codes

CONTROL CODE

PARAM

DESCRIPTION

2

43

45

integer

TRUE

FALSE

Complete all 1/0; ignored in the case of
message files.

Read hardware status word.

Set time-out interval. This applies to
both FREADs and FWRITES. The timeout
will be armed at the beginning of the

I/O request and cleared when the 1/0
completes. PARAM specifies the length of
the time-out in seconds. A value of zero
disables timeouts in the file.

Write end-of-file, used to verify the state

of the file by writing out the file label and
buffer area to disk. This ensures that the
message file can survive system crashes. No
eof is written.

Abort NOWAIT I/0. A CCG condition code

is returned if an outstanding I/O operation
has completed. An IOWAIT must be issued

to finish the request.

Enable extended wait. Permits a reader to
wait on an empty file that is not currently
opened by any writer, or a writer to wait
on a full file that has no reader. This
FCONTROL Will remain in effect until
FCONTROL 45 is issued with a PARAM value
of FALSE.

Disable extended wait. Specifies that when
an FREAD encounters an empty file that has
no writer, or an FWRITE encounters a full
file that has no reader, it will return an
end-of-file condition. (Default.)

Interprocess Communication

Table 8-1. IPC Control Codes (continued)

CONTROL CODE| PARAM DESCRIPTION

46 TRUE | Enable reading the writer’s ID. Each record
read will have a two-word header. The first
word will indicate the type of record:

0 - date record
1 - open record

2 - close record

The second word will contain the writer’s
ID number. If the record is a data record,
the data will follow the header; open and
close records contain no more information.

FALSE |Disable reading the writer’s ID. Only data
is read to the reader’s TARGET area. The
open and close records are skipped and
deleted by the file system when they come
to the head of the message queue, and the
two-word header is transparent to the
reader. (Default.)

47 TRUE |Nondestructive read. The next FREAD by
this reader will not delete the record.
Subsequent FREADs will be unaffected.

47 FALSE | The next FREAD by this reader will delete
the record. (Default.)

48 PLABEL [Arm soft interrupts. PARAM contains

the external-type label (plabel) of your
interrupt procedure. In SPL it is passed as
a parameter by placing an “at” sign (@)
before the procedure name.

Also if aoptions (4:1) was set to 0, option
48 resets it to 1. Be sure to use TIOWAIT or
IODONTWAIT if you use control code 48.

If the value of PARAM is O, the interrupt
mechanism is disabled for this file.

FCHECK There is one error message that is returned only when using IPC:

151 CURRENT RECORD WAS LAST RECORD WRITTEN BEFORE SYSTEM CRASHED

This message is returned when this record is read following system
startup.

Interprocess Communication 8-11

8-12

FGETINFO

FFILEINFO

Note

The value returned in RECSIZE will indicate the user’s data record
size, and the value returned in EOF will indicate the number of data
records, unless an FCONTROL 46 is in effect. When an FCONTROL 46 is
in effect, the value returned in RECSIZE will be the size of the user’s
data records, including the two word header. The number of records
returned in EOF will include open, close and data records.

The value returned in BLKSIZE reflects the actual blocksize of the file.
When the file is created, the blocksize is computed by the following
algorithm:

BLOCKSIZE:=((RECORDSIZE+3)*BLOCKING FACTOR)+2

where RECORDSIZE and BLOCKSIZE are in words. For example, with
a recordsize of 100 words and a blocking factor of 10, the blocksize
would be 1032 words.

Three values for ITEMVALUE are specifically for use with IPC:

Item # Type Description
34 Integer The current number of writers.
35 Integer The current number of readers.
49 Logical The plabel of the user’s soft interrupt procedure. A
value of zero implies that soft interrupts are not being
used.

The following intrinsics are not allowed for message files:
FPOINT FREADDIR

FREADSEEK FSPACE

FUPDATE FWRITEDIR

FDELETE

The FSETMODE intrinsic is permitted, but ignored.

Interprocess Communication

EXAMPLES USING
MESSAGE FILES

The following programs illustrate the use of IPC via message files.
Intrinsics called within the programs manipulate the message files to
produce a unidirectional flow of information.

In these two programs, the first is sending information to the second
through a message file. The first program, PROC1, reads data from a
data file and writes it to MSGFILE2. The second program, PROC2, can
then read this data from MSGFILE2 and print it.

When PROC2 finishes reading and printing the data, it writes a
message to MSGFILE1 indicating this and terminates. PROC1 reads
this message from MSGFILE1 and also terminates. The messages
travel among processes and message files as illustrated in Figure 8-1.

DATA

PROC1

/

MSGFILE1 MSGFILE2

N/

PROC2

LG200016_029

Figure 8-1.

Data Paths among Processes and Message Files

Interprocess Communication 8-13

8-14

$CONTROL USLINIT

<<Purpose:>>
<<Read data from a data file and send to another process.>>

BEGIN
LOGICAL EQF := FALSE;
INTEGER DATA’FILE, LEN, PIN, IN’FILE, OUT’FILE;

BYTE ARRAY IN’FILE’NAME (0:8) := "MSGFILE1 ";
BYTE ARRAY QUT’FILE’NAME (0:8) := "MSGFILE2 ";
BYTE ARRAY DATA’FILE’NAME (0:8) := "DATA ";
BYTE ARRAY PRINTPROC (0:8) := "PRNTPROC “;

ARRAY MESSAGE (0:39);

INTRINSIC CREATEPROCESS, FCLOSE, FOPEN, FREAD, FWRITE,
QUITPROG, PRINT, READ;

<<Create entries for the message files in the directory:>>

<<Note that IN’FILE’NAME ("MSGFILE1") is opened with FOPTIONs>>
<<}\30004: this indicates a new ASCII message file.>>

IN’FILE := FOPEN (IN’FILE’NAME, %30004);
IF < THEN QUITPROG (1);
FCLOSE (IN’FILE, 2, 0); << Save file as session temporary.>>
IF < THEN QUITPROG (2);

<<Note that OUT’FILE’NAME ("MSGFILE2") is opened with FOPTIONs>>
<<%30004: this indicates a new ASCII message file.>>

QUT’FILE := FOPEN (OUT’FILE’NAME, ¥30004);

IF < THEN QUITPROG (3);

FCLOSE (OUT’FILE, 2, 0); <<Save file as session temporary>>
IF < THEN QUITPROG (4);

<<Create and activate the print process:>>

CREATEPROCESS (, PIN, PRINT’PROC)
IF < THEN QUITPROG (5);

Interprocess Communication

<<0Open message file for traffic from print process:>>

<<Note that IN’FILE’NAME ("MSGFILE1") is opened with FOPTIONs>>
<<%106 and AOPTIONs %1100: %106 indicates an old temporary>>
<<ASCII file and %1100 indicates a reader process with>>
<<exclusive access and multi-access capability. MSGFILE1>>
<<has already been designated as a message file. Since>>

<<only one reader and one writer process will be accessing>>
<<the message file, exclusive access mode is specified.>>

IN’FILE := FOPEN (IN°FILE’NAME, %106, %1100);
IF < THEN QUITPROG (7);

<<0Open message file for traffic to print process:>>

<<Note that OUT’FILE’NAME ("MSGFILE2") is opened with FOPTIONs>>
<<%106 and AOPTIONs %1101: %106 indicates an old temporary>>
<<ASCII file and %1101 indicates a writer process with>>
<<exclusive access and multi-access capability. MSGFILE2 has>>
<<already been designated as a message file. Since only>>

<<one reader and one writer process will be accessing the>>
<<message file, exclusive access mode is specified.>>

OUT’FILE := FOPEN (OUT’FILE’NAME, %106, %1101);
IF < THEN QUITPROG (8);

<<0Open data input file:>>

<<Note that DATA’FILE’NAME ("DATA") is opened with FOPTIONs %3>>
<<and AOPTIONs 0: %3 indicates an old permanent or temporary>>
<<file and 0 indicates read only access. The file system>>
<<will change the FOPTIONs to specify an ASCII file.>>

DATA’FILE := FOPEN (DATA’FILE’NAME, %3, 0);
IF <> THEN QUITPROG (9);
WHILE NOT EOF DO BEGIN
LEN ‘s:= FREAD (DATA’FILE, MESSAGE, -80);
IF < THEN QUITPROG (10);
IF > THEN EOF := TRUE
ELSE BEGIN
FWRITE (OUT’FILE, MESSAGE, -LEN, 0);
IF <> THEN QUITPROG (11);
END;
END << WHILE >>;

Interprocess Communication 8-15

8-16

FCLOSE (QUT’FILE, 4, 0); <<No more data to send: EOF>>
IF < THEN QUITPROG (12);

FREAD (IN’FILE, MESSAGE, 1); <<Wait for printing process>>
IF <> THEN QUITPROG (1 <<to finish.>>

FCLOSE (IN’FILE, 4, 0);
IF < THEN QUITPROG (14);
END.

$CONTROL USLINIT

<<Purpose:>>
<<Receive data from other process and print it.>>

BEGIN

LOGICAL EOF := FALSE;
INTEGER LEN, IN’FILE, OUT’FILE;

BYTE ARRAY IN’FILE’NAME (0:8) := "MSGFILE2 “;
BYTE ARRAY OUT’FILE’NAME (0:8) := "MSGFILE1l ;
ARRAY MESSAGE (0:39);

INTRINSIC FCLOSE, FOPEN, FREAD, FWRITE, QUITPROG, PRINT;
<<0pen message file for traffic from other process:>>

<<Note that IN’FILE’NAME ("MSGFILE2") is opened with FOPTIONs>>
<<%106 and AOPTIONs %1100: %106 indicates an old temporary>>
<<ASCII file and %1100 indicates a reader process with>>
<<exclusive access and multi-access capability. MSGFILE2>>
<<has already been designated as a message file. Since>>

<<only one reader and one writer process will be accessing>>
<<the message file, exclusive access mode is specified.>>

IN’FILE := FOPEN (IN’FILE’NAME, %106, %1100);
IF < THEN QUITPROG (13);

Interprocess Communication

<<0Open message file for traffic to other process:>>

<<Note that OUT’FILE’NAME ("MSGFILE1") is opened with FOPTIONs>>
<<},106 and AOPTIONs %1101: %106 indicates an old temporary>>
<<ASCII file and %1101 indicates a writer process with>>
<<exclusive access and multi-access capability. MSGFILE1>>

<<has already been designated as a message file. Since only>>
<<one reader and one writer process will be accessing the>>
<<message file, exclusive access mode is specified.>>

OUT’FILE := FOPEN (OUT’FILE’NAME, %106, %1101);
IF < THEN QUITPROG (14);

WHILE NOT EOF DO BEGIN
LEN := FREAD (IN’FILE, MESSAGE, &--;80);
IF < THEN QUITPROG (15);
IF > THEN EOF := TRUE
ELSE PRINT (MESSAGE, &--;LEN, 0);
END << WHILE >>;
<<Now signal other process; we are done.>>
FCLOSE (OUT’FILE, 4, 0);
IF < THEN QUITPROG (16);
FCLOSE (IN’FILE, 4, 0);
IF < THEN QUITPROG (17);

END .

Interprocess Communication 8-17

The following two COBOL programs perform the same tasks as the
preceding SPL programs. The first program, FATHERPROC, reads data
from a data file and writes it to MSGFILE2. The second program,
SONPROC, can then read this data from MSGFILE2 and print it. When
SONPROC finishes reading and printing the data, it writes a message
to MSGFILE1 indicating this and terminates. FATHERPROC” reads this
message from MSGFILE1 and also terminates. The messages travel
among processes and message files as illustrated in Figure 8-2.

DATA

'

FATHERPROC

0N

|MSGFILE1 I&SGFILEZ

NS

SONPROC

LG200016_030

Figure 8-2. Data Paths among Processes and Message Files

8-18 Interprocess Communication

$CONTROL USLINIT

IDENTIFICATION DIVISION.

PROGRAM-ID. FATHERPROC.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
OBJECT-COMPUTER. HP3000.
SPECIAL-NAMES.

CONDITION-CODE IS CC.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 DATA-FILE PIC S9(4) COMP.

01 LEN PIC S9(4) COMP.

01 PIN PIC S9(4) COMP.

01 IN-FILE PIC S9(4) COMP.

01 OUT-FILE PIC S9(4) COMP.

01 IN-FILE-NAME PIC X(9) VALUE "MSGFILE1 “.
01 OUT-FILE-NAME PIC X(9) VALUE "MSGFILE2 ".
01 DATA-FILE-NAME PIC X(5) VALUE "DATA ".
01 PRINTPROC PIC X(9) VALUE "PRNTPROC ".
01 MESSAGE-BUF PIC X(80).

01 EOF-VAR PIC X. 88 EOF VALUE "E".
* ERROR VARIABLES

01 ERROR-BUFFER.

05 FILLER PIC X OCCURS 1 TO 80 TIMES
DEPENDING ON LEN.

01 ERR-NUM PIC S9(4) COMP.

01 FILE-NUM PIC S9(4) COMP.

0I QUIT-PARM PIC S9(4) COMP.
PROCEDURE DIVISION.

MAIN PROCESSING SECTION.

$DEFINE YQUITPROG= QUITPROG

MOVE !'1 TO QUIT-PARM QUITPROG

MOVE !2 TO FILE-NUM QUITPROG
PERFORM PRINT-ERROR# QUITPROG
DRIVER-PARA.

PERFORM INIT-PARA.

MOVE "F" TO EQF-VAR.

PERFORM LOAD-PARA UNTIL EGF.

PERFORM CLOSE-PARA.

STOP RUN.

Interprocess Communication

8-19

8-20

%

* Create entries for the message files in the directory.
*
* Note that IN-FILE-NAME "MSGFILE1") is opened with FOPTIONs
* %30004: this indicates a new ASCII message file.
*
INIT-PARA.
CALL INTRINSIC "FOPEN"
USING IN-FILE-NAME %30004
GIVING IN-FILE,
IF CC NOT = 0O
AQUITPROG(1#,IN-FILE#).
CALL INTRINSIC "FCLOSE" USING IN-FILE %2 %0.
IF CC NOT = 0O
%QUITPROG(2#,IN-FILE#) .

Note that OUT-FILE-NAME ("MSGFILE2") is opened with FOPTIONs
%30004: this indicates a new ASCII message file.

* ¥ ¥

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %30004
GIVING OUT-FILE,
IF CC NOT = 0
%QUITPROG(3#,0UT-FILE#).
CALL INTRINSIC "FCLOSE" USING OUT-FILE %2 Y%0.
IF CC NOT = 0
%QUITPROG(4#,0UT-FILE#).

* Create and activate the print process.

CALL INTRINSIC "CREATEPROCESS'" USING PIN PRINTPROC.
IF CC NOT = O
AQUITPROG(5#,-1%) .

Open message file for traffic from print process,

Note that IN-FILE-NAME ("MSGFILE1") is opened with FOPTIONs
%106 and AOPTIONs %1100: %106 indicates an old temporary
ASCIT file and %1100 indicates a reader process with
exclusive access and multi-access capability. MSGFILE1 has
already been designated as a message file.
Since only one reader and one writer process will
be accessing the message file, exclusive access
mode is specified.

CALL INTRINSIC "FOPEN"

USING IN FILE-NAME %106 %1100

GIVING IN-FILE.

IF CC NOT = O

%QUITPROG (7#,IN-FILE#).

E I T K I B R S R

Interprocess Communication

Open message file for traffic to print process.

Note that OUT-FILE-NAME ("MSGFILE2") is opened with FOPTIONs

%106 and AOPTIONs %1101: %106 indicates an old temporary

ASCII file and %1101 indicates a writer process with

exclusive access and multi-access capability. MSGFILE2 has already
been designated as a message file. Since only one reader and

one writer process will be accessing the message file,

exclusive access mode is specified.

¥ OF K OF X K ¥ X X K *

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %106 %1101
GIVING OUT-FILE.
IF CCNOT = O
AQUITPROG(8#,0UT-FILE#).
*

* Open data input file.
*
*Note that DATA-FILE-NAME ("DATA") is opened with FOPTIONs %3
*and AOPTIONs O: %3 indicates an old permanent or temporary
*file and O indicates read only access. The file system will
*change the FOPTIONs to specify an ASCII file.
*
CALL INTRINSIC "FOPEN"
USING DATA-FILE-NAME %3 %0
GIVING DATA-FILE.
IF CC NOT =0
AQUITPROG(O # , DATA-FILE #)
*
* Load input to message file.
*
LOAD-PARA.
CALL INTRINSIC "FREAD"
USING DATA-FILE MESSAGE-BUF &--;80
GIVING LEN.
IF CC NOT = O
IF CC LESS THAN O THEN
AQUITPROG(10#,DATA-FILE#)
ELSE
MOVE "E" TO EOF-VAR

Interprocess Communication 8-21

ELSE
COMPUTE LEN = &--; LEN
CALL INTRINSIC "FWRITE"
USING OUT-FILE MESSAGE-BUF LEN %0
IF CC NOT = 0
AQUITPROG(11#,0UT-FILE#).

CLOSE-PARA.

CALL INTRINSIC "FCLOSE" USING OUT-FILE %4 %0.

IF CC NOT =00

AQUITPROG(12#,0UT-FILE#),

*

* Wait for print to finish.
*
CALL INTRINSIC "FREAD" USING IN-FILE MESSAGE-BUF 1.
IF CC <O
%QUITPROG(13#,IN-FILE#).
CALL INTRINSIC "FCLOSE" USING IN-FILE %4 0.
IF CC NOT = O
%QUITPROG(14#,IN-FILE#).
*
* General error routine.
*
PRINT-ERROR SECTION.
WHAT-TYPE.

IF FILE-NUM IS NOT NEGATIVE THEN
CALL INTRINSIC "FCHECK" USING FILE-NUM ERR-NUM
MOVE 80 TO LEN
CALL INTRINSIC "FERRMSG" USING ERR-NUM ERROR-BUFFER LEN
DISPLAY ERROR-BUFFER.
IF QUIT-PARM IS NOT NEGATIVE THEN
CALL INTRINSIC "QUITPROG" USING QUIT-PARM.
$CONTROL USLINIT
IDENTIFICATION DIVISION.

PROGRAM-ID.
SONPROC.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. HP3000.
O0BJECT-COMPUTER. HP3000.
SPECIAL-NAMES.
CONDITION-CODE IS CC.

8-22 Interprocess Communication

DATA DIVISION.
WORKING-STORAGE SECTION.
01 LEN PIC S9(4) COMP.
01 IN-FILE PIC S9(4) COMP.
01 OUT-FILE PIC S9(4) COMP.
01 IN-FILE-NAME PIC X(9) VALUE "MSGFILE2 ".
01 OUT-FILE-NAME PIC X(9) VALUE "MSGFILE1 ".
01 MESSAGE-BUF PIC X(80).
01 EOF-VAR PIC X.
88 EOF VALUE "E".
* Error variables.
01 ERROR-BUFFER.

05 FILLER PIC X OCCURS 1 TO 80 TIMES

DEPENDING ON LEN.
01 ERR-NUM PIC S9(4) COMP.
01 FILE-NUM PIC S9(4) COMP.
01 QUIT-PARM PIC S9(4) COMP.
PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.
$DEFINE %QUITPROG= QUITPROG
MOVE !1 TO QUIT-PARM QUITPROG
MOVE !2 TO FILE-NUM QUITPROG
PERFORM PRINT-ERROR# QUITPROG

DRIVER-PARA.

PERFORM OPEN-PARA.

MOVE "F" TO EOF-VAR.
PERFORM READ-PARA UNTIL EOF.
PERFORM CLOSE-PARA.

STOP RUN.

file, exclusive access mode is specified.

E I T R R A

OPEN-PARA.
CALL INTRINSIC "FOPEN"
USING IN-FILE-NAME %106 %1100
GIVING IN-FILE.
IF CC NOT = O
%QUITPROG(15%,IN-FILE#)

Open message file for traffic from other process,

Note that IN-FILE-NAME ("MSGFILE2") is opened with FOPTIONs
%106 and AOPTIONs %1100: %106 indicates an old temporary
ASCII file and %1100 indicates a reader process with
exclusive access and multi-access capability. MSGFILE2 has
already been designated as a message file. Since only one
reader and one writer process will be accessing the message

Interprocess Communication 8-23

8-24

¥ ¥ ¥ ¥ ¥ K X * ¥ X *

*
*
*

R

*
*
*

*
*
*

C

Interprocess Co

Open message file for traffic to other process.

Note that OUT-FILE-NAME ("MSGFILE1") is opened with FOPTIONs

%106 and AOPTIONs %1101:./,106 indicates an old temporary

ASCII file and %1101 indicates a writer process with

exclusive access and multi-access capability. MSGFILE1 has already
been designated as a message file. Since only one reader and

one writer process will be accessing the message file,

exclusive access mode is specified,

CALL INTRINSIC "FOPEN"
USING OUT-FILE-NAME %106 %1101
GIVING OUT-FILE.
IF CC NOT = O
%QUITPROG (16#,0UT-FILE#)

Read messages from message file.

EAD-PARA.
CALL INTRINSIC "FREAD"
USING IN-FILE MESSAGE-BUF -80
GIVING LEN.
IF CC NOT = O
IF CC LESS THAN O THEN
AQUITPROG (17# , IN-FILE#)
ELSE
MOVE "E" TO EOF-VAR

Print message out.

ELSE
COMPUTE LEN = -- LEN
CALL INTRINSIC "PRINT"
USING MESSAGE~BUF LEN %0
IF CC NOT = O
AQUITPROG(18#,2#) .

Now signal the other process; we are done.

LOSE-PARA.
CALL INTRINSIC “FCLOSE" USING OUT-FILE %4 %0.
IF CC NOT = O

%QUITPROG(19% ,0UT-FILE#).
CALL INTRINSIC "FCLOSE" USING IN-FILE %4 YO.
IF CC NOT = O

#QUITPROG (20#,IN-FILE#).

mmunication

Circular Files

*

* General error routine.
*

PRINT-ERROR SECTION.
WHAT-TYPE.

IF FILE-NUM IS NOT NEGATIVE THEN
CALL INTRINSIC "FCHECK" USING FILE-NUM ERR-NUM
MOVE 80 TO LEN
CALL INTRINSIC "FERRMSG" USING ERR-NUM ERROR-BUFFER LEN
DISPLAY ERROR-BUFFER.
IF QUIT-PARM IS NOT NEGATIVE THEN
CALL INTRINSIC "QUITPROG" USING QUIT-PARM.

Circular files are wrap-around structures which behave as standard
sequential files until they are full. As records are written to a circular
file, they are appended to the end of the file. When the file is filled,
the next record added causes the block at the front of the file to be
deleted and all other blocks to be logically shifted toward the front of
the file. Circular files may not be simultaneously accessed by both
readers and writers. When the file has been closed by all writers, it
may be read. A reader takes records from the circular file one at a
time, starting at the front (oldest record remaining) of the file.

Circular files are particularly useful as history files, when a user is
interested in the information recently written to the file and is less
concerned about earlier material that may have been deleted. These
history files are frequently used as debugging tools. Diagnostic
information may be written to the file, and the most recent and
relevant material can be saved and studied.

Creating a circular file is similar to creating a message file. When a
user process opens a new file and indicates in the AOPTIONSs that it
will be a circular file, the FOPEN intrinsic creates the new circular file.
In order to create a circular file with the BUILD command, use the
CIR keyword. For example, to build a circular file named CIRCLE,
enter:

BUILD CIRCLE; CIR

A new circular file may also be specified with a FILE command. Use
the CIR keyword for a new file:

FILE ROUND, NEW; CIR
A circular file named ROUND is indicated.

Interprocess Communication 8-25

Features of Intrinsics

8-26

When you perform a LISTF,2 command, circular files will be
identified by an “O” in the TYP field; CIRCLE is identified here:

FILENAME CODE

CIRCLE

for Circular Files

128W

LOGICAL RECORD-----=---- ---- SPACE-~~~

EOF LIMIT R/B SECTORS #X MX

0 1023 1 12 1 8

Most intrinsics treat circular files the same way they treat regular
disk files, but some have special features which apply specifically to

circular files. Most of these features are found in FOPEN, but a few
other intrinsics are also affected.

Parameters not mentioned in the following descriptions retain their
normal range of values and their normal default values.

FOPEN

FOPTIONSs:

(2:3) -

AOPTIONSs:

(5:2) -

interprocess Communication

File type. Determines the type of file to create. If
the file is old, this field is ignored.

000 -
001 -
010 -
100 -
110 -

Ordinary file
KSAM file
Relative I/O file
Circular file

Message file

Multi-access mode. This feature permits processes
located in different jobs or sessions to open the same

file.
00 -

01 -

10 -

11 -

No multi-access. For a writer, the
file system changes this value to a 2
for global multi-access.

Only intra-job multi-access allowed.
This is the same as specifying the
MULTI option in a FILE command.

Interjob multi-access allowed. This is
the same as specifying the GMULTI
option in a FILE command.

Undefined. If this is specified, the
FOPEN will be rejected with an error
code of 40: ACCESS VIOLATION.

(7:1) -

(8:2) -

(11:1) -

(12:4) -

Inhibit buffering. Reader processes may open circular
files with either the BUF or NOBUF Option. For write
access to circular files, the file system sets this bit off.

Note: Readers may open a circular file with NOBUF
if they are in copy mode. The NOBUF bit determines
whether the file will be read record by record or
block by block:

0 - Read by logical record
1- Read by physical block

Exclusive. The values for this field are the same as
for any standard disk file, but they have different
meanings for the readers and writers of a circular file:

Changed To:
User Value READER WRITER
EXCLUSIVE EXCLUSIVE EXCLUSIVE
SEMI SHARE EXCLUSIVE
SHARE SHARE SHARE
Default SHARE EXCLUSIVE

For readers, SHARE means “allow other readers”.
For writers, SHARE means “allow other writers”.

Multi-record. When a reader specifies this option,
the file will be accessedNOBUF. For writers, this bit is
set to zero.

Access type. These bits specify whether the user will
be a reader or a writer process.

0000- READ access only.

0001- WRITE access only. If this is the
first accessor to the file, then the
file’s contents are purged. If this is
not the first accessor to the file, the
access type is set to APPEND.

0010- WRITE SAVE access. Set to
APPEND access.
0011- APPEND access only.

Note: Circular files allow
variable-length records with append
access.

Any other access types are invalid.

Interprocess Communication 8-27

8-28

FILESIZE The number of records is rounded up to completely
fill the last block.
FWRITE

This intrinsic logically appends the user’s record to the end of

the file. If the file is full, the first block is deleted, the remaining
blocks are logically shifted to the file’s head, and the new record is
appended to the end of the file.

FCLOSE

For circular files, deletion of disk space beyond the end-of-file is not
allowed.

Certain intrinsics are not allowed when circular files are used. These
intrinsics are listed in Table 8-2.

Table 8-2. Intrinsics not Permitted with Circular Files

Not permitted Not permitted
for READ access for WRITE access
FUPDATE FUPDATE
FDELETE FDELETE
FWRITEDIR FWRITEDIR
FWRITE FREAD
FREADDIR
FREADSEEK
FPOINT
FSPACE

SOFTWARE INTERRUPTS

The software interrupt facility enables you to perform FREAD and
WRITE completion processing with your own interrupt procedures.

A call to FREAD or FWRITE is necessary to initiate the I/O request.
Both of these intrinsics will return control to your program as soon
as the request has begun. When the operation completes, your
program is trapped (or interrupted) to a procedure of your choice.
This procedure performs whatever processing is necessary and then
exits back to your mainline program.

Initially, software interrupts are disabled for your programs. To
enable soft interrupts, use the FINTSTATE intrinsic with a value of
TRUE, as follows:

VALUE :=FINSTATE(TRUE) ;

The FINTSTAT intrinsic called with a value of FALSE will inhibit soft
interrupts. MPE will inhibit soft interrupts just before entering an

Interprocess Communication

Note

Note

interrupt procedure. This is done to prevent unwanted nesting of the
interrupt procedures. Use the FINTEXIT intrinsic to return from an
interrupt procedure. It will re-enable soft interrupts just before it
exits.

PROCEDURE INTERRUPTPROC(FILENUM);
VALUE FILENUM;
INTEGER FILENUM;
BEGIN

FINTEXIT;
END;

Software interrupts are automatically inhibited just before a
CONTROL-Y trap procedure. The trap procedure may elect to
allow soft interrupts by calling the FINTSTATE intrinsic. If it does not
call FINTSTATE, the RESETCONTROL intrinsic will restore the process’
interrupt state to its pre-CONTROL-Y value.

When you have enabled software interrupts for your program, you
arm them for a particular file by specifying the interrupt procedure’s
plabel in an FCONTROL 48. Calling FCONTROL 48 with a parameter of
zero will disarm the software interrupt mechanism so the file can be
accessed in the normal manner.

The FFILEINFO intrinsic may be used to return the plabel of the
interrupt handler. FFILEINFO 49 will return the plabel as an integer
value: if it returns a value of zero, no interrupt handler has been
armed.

After an interrupt has been received, an TODONTWAIT must be issued
against the file to complete the request. Your interrupt handling
procedure will usually issue the TODONTWAIT before it handles the
interrupt completion processing.

Only message files allow soft interrupts.

No more than one uncompleted FREAD or FWRITE may be outstanding
for a particular file. Any additional FREADS or FWRITES will be
rejected.

The interrupt will not occur while you are executing within MPE.
That is, while you are processing an MPE intrinsic or procedure.
Exceptions are the PAUSE, PAUSEX, and some IOWAIT intrinsics will
allow the interrupt. When the interrupt procedure exits, interrupts
are reenabled.

The timer in PAUSE will be restarted from the beginning. The timer
in PAUSEX Will be restarted where it left off. Only TOWAITS against a
message file, or a general IOWAIT (IOWAIT(O) ;) can be interrupted.
An TOWAIT against a specific non-message file cannot be interrupted.

Software interrupts may not be used with remote files.

Interprocess Communication 8-29

8-30

An uncompleted FREAD or FWRITE request may be aborted by issuing
an FCONTROL 43 (abort NOWAIT I/O).

Example Use of Software Interrupts

The two primary advantages of software interrupts are that they are
handled transparently to the process’ mainline code and that they
are given real time response by the target process. This example
uses both advantages in the control of a multiprocess transaction
processing system.

The three types of processes in the system are terminal processes,
function processes, and supervisor processes.

Terminal Processes.

Each terminal has its own private terminal process. These processes
perform some pre-editing of each transaction and then send it to the
proper function process.

Function Processes

These are expert in some particular aspect of the system. For
example, one for payroll, one for accounts receivable and so on. They
accept input from any of the terminal processes, using message files.

Supervisor Process

There is only one supervisor process. It accepts commands from its
terminal and then forces the appropriate terminal/function process to
execute the command. Examples of the commands would be:

m Report process status and/or run-time statistics.
m Set checkpoints, change files, etc.

m Enter DEBUG.

m Terminate gracefully.

Interprocess Communication

To get the attention of the target process, the supervisor process
need only send information to the target process’ “control” message
file. The target process has already enabled soft interrupts on the
file, so the supervisor process’ FWRITE will soft interrupt it.

This is a function/terminal process code fragment that enables soft
interrupts:

CONTROLFILE:=FOPEN(...);
INTADDRESS : =QINTHANDLER;

FCONTROL (CONTROLFILE,48, INTADDRESS) ;
IF < > THEN ERROR(CONTROLFILE);

FREAD(CONTROLFILE,DUMMY,CMDLEN) ;
IF < > THEN ERROR(CONTROLFILE);
FINTSTATE(TRUE) ;

This is a function/terminal process interrupt handler:

PROCEDURE INTHANDLER(FILENUM);

VALUE FILENUM;

INTEGER FILENUM;
BEGIN
ARRAY CMD (O : CMDLEN) , REPLY (O : REPLYLEN) ;
INTEGER REPLYSIZE;

IODONTWAIT(FILENUM,CMD) ;
IF < > THEN ERROR(FILENUM);
CASE CMD OF
BEGIN << PERFORM COMMAND, FORM REPLY >>

END ;

FWRITE(REPLYFILE, REPLY,REPLYSIZE,O):
IF < > THEN ERROR(REPLYFILE);
FINTEXIT;

END; << INTHANDLER >>

The validity of an interrupt procedure depends on the code domain
of your code executing mode (privileged or non-privileged) and

on the code domain of the plabel and the mode (privileged or
non-privileged). (See Table 8-3.) The code domains are:

PROG (User Program)

GSL (Group SL)

PSL (Public SL)

SSL (System SL,non-MPE segments)
MPESSL (System SL, MPE segments)

Interprocess Communication 8-31

8-32

Table 8-3. Interrupt Procedure Code Domain Requirements

WHEN THE CODE OF THE CALLER IS:

THE PLABEL:

Non-privileged in PROG, GSL, or
PSL

Privileged in PROG, GSL, or PSL.

Privileged or non-privileged in SSL.

Must be non-privileged in PROG,
GSL, or PSL.

May be privileged or non-privileged
in PROG, GSL, or PSL.

May be in any non-MPESSL
segment.

Interprocess Communication

Section Divider

9. Magnetic Tape Considerations

Magnetic Tape Considerations

Magnetic Tape
Considerations

Note

Beginning of Tape
(BOT) and End of Tape
(EOT) Markers

This chapter describes the matters you should keep in mind when
you work with your magnetic tape files.

Serial disk files are very similar to magnetic tape files. Unless
otherwise noted, information in this chapter applies to serial disks as
well as to magnetic tape.

Every standard reel of magnetic tape designed for digital computer
use has two reflective markers located on the back side of the tape
(opposite the recording surface). One of these marks is located
behind the tape leader at the beginning of tape (BOT) position, and
the other is located in front of the tape trailer at the end of tape
(EOT) position. These markers are sensed by the tape drive itself
and their position on the tape (left or right side) determines whether
they indicate the start or end of tape positions:

g N

LEADER FILE SPACE EOT TRAILER

LG200016_031

As far as the magnetic tape hardware and software are concerned,
the BOT marker is much more significant than the EOT marker
because BOT signals the start of recorded information, but EOT
simply indicates that the remaining tape supply is running low

and the program writing the tape should bring the operation to an
orderly conclusion. The difference in treatment of these two physical
tape markers is reflected by the file system intrinsics when the file
being read, written, or controlled is a magnetic tape device file. The
following paragraphs discuss the characteristics of each appropriate
intrinsic.

Magnetic Tape Considerations 9-1

FWRITE If the magnetic tape is unlabeled (as specified in the FOPEN intrinsic
or FILE COMmand) and a user program attempts to write over or
beyond the physical EOT marker, the FWRITE intrinsic returns an
error condition code (CCL). The actual data is written to the tape,
and a call to FCHECK reveals a file error indicating END OF TAPE.
All writes to the tape after the EOT tape marker has been crossed
transfer the data successfully but return a CCL condition code until
the tape crosses the EOT marker again in the reverse direction
(rewind or backspace).

If the magnetic tape is labeled (as specified in the FOPEN intrinsic or
FILE command), a CCL condition code is not returned when the
tape passes the EOT marker. Attempts to write to the tape after
the EOT marker is encountered cause end of volume (EQV) labels
to be written. A message then is printed on the Operator’s Console
requesting another volume (reel of tape) to be mounted.

FREAD A user program can read data written over an EOT marker and
beyond the marker into the tape trailer. The intrinsic returns no
error condition code (CCL or CCG) and does not initiate a file
system error code when the EOT marker is encountered.

FSPACE A user program can space records over or beyond the EOT marker
without receiving an error condition code (CCL or CCQG) or a file
system error. The intrinsic does, however, return a CCG condition
code when a logical file mark is encountered. If the user program
attempts to backspace records over the BOT marker, the intrinsic
returns a CCG condition code and remains positioned on the BOT
marker.

FREADBACKWARD If the BOT marker is encountered, a CCG condition code is returned.
However, when reading a labeled magnetic tape file that spans more
than one volume, CCG is not returned when the BOT marker is
encountered; instead, CCG is returned at the actual beginning of the
file, with a transmission log of 0 if an attempt is made to read past
the beginning of the file.

FCONTROL (WRITE If a user program writes a logical end-of-file (EOF) mark on a
EOF) magnetic tape over the reflective EOT marker, or in the tape trailer
after the marker, hardware status will be saved to return END OF
TAPE on the next FWRITE. The file mark is actually written to the
tape.

9-2 Magnetic Tape Considerations

FCONTROL (Forward
Space to File Mark)

FCONTROL (Backward
Space to File Mark)

End-of-File Marks on
Magnetic Tape

A user program which spaces forward to logical tape marks (EOFs)
with the FCONTROL intrinsic cannot detect passing the physical EOT
marker. No special condition code is returned.

The EOT reflective marker is not detected by FCONTROL during
backspace file (EOF') operations. If the intrinsic discovers a BOT
marker before it finds a logical EOF, it returns a condition code of
CCE and treats the BOT as if it were a logical EOF. Subsequent
backspace file operations requested when the file is at BOT are
treated as errors and return a CCL condition code and set a file
system error to indicate INVALID OPERATION.

In summary, except for FCONTROL, only those intrinsics which cause
the magnetic tape to write information are capable of sensing the
physical EOT marker. If a program designed to read a magnetic
tape needed to detect the EOT marker, it could be done by using
the FCONTROL intrinsic to read the physical status of the tape drive
itself. When the drive passes the EOT marker and is moving in the
forward direction, tape status bit 2 (%2000) is set and remains on
until the drive detects the EOT marker during a rewind or backspace
operation. Under normal circumstances, however, it is not necessary
to check for EOT during read operations. The responsibility for
detecting end of tape and concluding tape operations in an orderly
manner belongs to the program which originally created (wrote) the
tape.

A program which needed to create a multi-volume (multiple

reel) tape file would normally write tape records until the status
returned from FWRITE indicated an EOT condition. Writing could
be continued in a limited manner to reach a logical point to break
the file. Then several file marks and a trailing tape label would
typically be added, the tape rewound, another reel mounted, and
the data transfer continued. The program designed to read such a
multi-volume file must expect to find and check for the EOF and
the label sequence written by the tape’s creator. Since the logical
end of the tape may be somewhat past the physical EOT marker,
the format and conventions used to create the tape are of more
importance than determining the location of the EQT.

An FWRITE to magnetic tape, followed by any intrinsic call which
reverses tape motion (for example, backspace a record, backspace a
file, or rewind), causes the file system to write an EOF mark before
initiating the reverse motion.

For example, if a user program has just written several data records
to magnetic tape and writes a file mark, rewinds the tape, and closes
the file, the tape file will be terminated by two file marks (EOF).

Magnetic Tape Considerations 9-3

The first of these was requested by the user by calling FCONTROL to
write an EOF, and the second was provided by the system because
the direction of tape motion had been reversed after a write (rewind):

Z/" RECORD 1 | RECORD 2 Qg RECORD n
f/,»ll
-l

LG200016_032

mo
mo

Spacing File Marks When you space forward to a tape mark (EOF), the tape recording
heads have just read the EOF and are positioned beyond it:

-0w
nom
—0om

ﬁBEFORE — AFTER

LG200016_033

When you space backward to a tape mark (EOF), the mark is
recognized as the tape travels in the reverse direction. The tape
heads then are left positioned just in front of the EOF that was read:

-0
nom
—-0om

QAFTEH <———ﬁ BEFORE

LG200016_034

When FREAD has found a logical file mark and returned a condition
code of CCG, the EOF mark has been read and the tape heads are
positioned immediately following the mark (similar to space forward
to tape mark above).

9-4 Magnetic Tape Considerations

Using the FCLOSE The operation of the FCLOSE intrinsic as used with unlabeled

Intrinsic with Magnetic

magnetic tape is outlined in the flowchart of Figure 9-1.

Tape
FCLOSE
0 (NO CHANGE)
1 (SAVE PERM)
2 (SAVE TEMP)
4 (DELETE) 3 (TEMP-NO REWIND)

USER NO

HAS WRITTEN
ON TAPE

DISPOSITION?

TAPE YES
POSITIONED

AT BC??TTOM

WRITE EOF MARK NO
ON TAPE.
REWIND TAPE.

DISP. .
SAVE?PERM

UNLOAD TAPE-
SET OFFLINE

OTHER
FILES OPEN
ON THIS
DR'I?VE

YES

NO

REWIND &
UNLOAD TAPE
(DRIVE GOES
OFFLINE)

#

DEALLOCATE THE
MAGNETIC TAPE
DEVICE

LG200016_035

Figure 9-1. Using the FCLOSE Intrinsic with Unlabeled Magnetic Tape

Note that a tape closed with the temporary no-rewind disposition
will be rewound and unloaded if certain additional conditions are

Magnetic Tape Considerations 9-5

not met. It is possible for a single process to FOPEN a magnetic tape
device using a device class and later FOPEN the same device again
using its logical device number. This may be done in such a manner
that both magnetic tape files are open concurrently. The second
FOPEN does not require any operator intervention (for example, for
device allocation). When FOPEN/FCLOSE calls are arranged in a
nested fashion, tape files may be closed without deallocating the
physical device, as follows:

[(FOPEN Allocate Tape

[

C

[[FOPEN

[[

[[FCLOSE

L

[Tape Remains Allocated
[

[[FOPEN

[[

[([FCLOSE

[

[FCLOSE Deallocated Tape

C

Such nesting of FOPEN/FCLOSE pairs is required to keep an FCLOSE
tape from rewinding. A tape closed with the temporary, no-rewind
disposition will be rewound and unloaded unless the process closing it
has another file currently open on the device.

Note that when a temporary no-wind tape is deallocated, the file
system has not placed an end-of-file mark at the end of the data file.

The FCLOSE intrinsic can be used to maintain position when creating
or reading a labeled tape file that is part of a volume set. If you close
the file with a disposition code of 0 or 3, the tape does not rewind,
but remains positioned at the next file. If you close the file with a
disposition code of 2, the tape rewinds to the beginning of the file
but is not unloaded. A subsequent request to open the file does not
reposition the tape if the sequence (seq) subparameter is NEXT, or
default (1). A disposition code of 1 (save permanent) implies the
close of an entire volume set.

Updating Magnetic As a physical data storage device, magnetic tape is not designed
Tape Files to enable the replacement of a single record in an existing file. An
attempt to perform this type of operation will cause problems in
maintaining the integrity of records on the tape. Magnetic tape files,
therefore, should not be maintained (updated) on an individual
record basis but should be updated during copy operations from one
file to another.

9-6 Magnetic Tape Considerations

As an example of the type of problems that can occur, consider
the results of attempting to read a tape record, modify its data,
backspace the tape, and overwrite the original record:

B | RECORD | RECORD RECORD | § F §
T 1 2 n F [7
FREAD FWRITE
BACKSPACE
RECORD
FIX DATA
LG200016_036

If the replacement differed at all in size from the original record, the
result would not simply be an update of the record. A replacement
record of greater length than the original record would overwrite
(destroy) a portion of the next record on the tape, as shown below:

BEFORE 2'"‘,2'7» RECORD
,:""‘:,n" 2

4 RECORD 2

AFTER ij‘,‘,i- NEW

REMAINS OF RECORD 3

LG200016_037

Magnetic Tape Considerations 9-7

On the other hand, if the length of the replacement record is less
than that of the original record, a portion of the original record will
still remain on the tape as shown below:

BEFORE /| RECORD RECORD

Oxo—

On-

W
AFTER ? B g

Jick iR
L

REMAINS OF OLD RECORD 2
NEW RECORD 2

L.G200016_038

In either of the two cases shown, the partial records remaining
would cause magnetic tape read errors and would create problems in
subsequent processing of the tape file.

Even with replacement records of the same size as the original
records, errors can result. Mechanical and timing variations from
one magnetic tape drive to another can create substantial differences
in the actual length of tape records containing the same amount of
data. Magnetic tape standards, for example, permit the inter-record
gap (IRG) to vary in length from 0.5 to 0.7 inches. Similar variations
may occur to a lesser extent in the spacing of the actual data bytes
-recorded. In short, the variation of a number of hardware factors
which are beyond the user’s control can affect the physical length of
the tape records written. For this reason, always update your tape
files during copy operations from one tape to another.

Reading and Writing an Figure 9-2 contains a program that copies an unlabeled magnetic
Unlabeled Magnetic tape file into another file on the same reel of tape.

Tape File

9-8 Magnetic Tape Considerations

Page 0001 HEWLETT-PACKARD 32100A.05.A.1 SPL/3000 MON, OCT 27,

00001000
00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00028100
00022000
00030000
00031000
00032000
00032100
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000

00000
00000
00000
00000
00005
00004
00004
00004
00004
00004
00004
00004
00000
00000
00000
00000
00002
00004
00000
00000
00000
00000
00012
00016

00016

00016
00024
00030
00033
00033
00037
00043
00046
00052
00052
00057
000863
00063
00067
00073
00077
00103
00103
00104

0

$CONTROL USLINIT

0 BEGIN
INTEGER MT, RECD’POSITION:=0,LGTH;
BYTE ARRAY NAME(O:7) :="MAGTAPE ":
BYTE ARRAY CLASS(0:4):="TAPE ";

O = e = o S i T o i o i O I O O Rl i e

ARRAY BUFFER(0:65);
LOGICAL DUMMY;

1975, 10:06 AM

INTRINSIC FOPEN,FREAD,FCONTROL,FSPACE,SWRITE,FCLOSE,
PRINT’FILE’INFO,QUIT;

PROCEDURE FILERROR(FILENO,QUITNO) ;

VALUE FILENO,QUITNO;
INTEGER FILENO,QUITNO;
BEGIN

PRINT’FILE’INFO(FILENOD);

QUIT(QUITNOQ);
END;

<<END OF DECLARATIONS>>

MT;=FOPEN(NAME, %201,%4,66,CLASS) .<<MAG TAPE>>
IF < THEN FILERROR (MT,1); <<CHECK FOR ERROR>>

COPY:LOQP:
LGTH:=FREAD (MT ,BUFFER,66) ;
IF < THEN FILERROR(MT,2);
IF > THEN GO DONE;

FCONTROL(MT,7 ,DUMMY) ;

IF < THEN FILERROR(MT,3);
FSPACE (MT,RECD’POSITION) ;
IF <> THEN FILERROR(MT,4);

FWRITE(MT,BUFFER,LGTH,0) ;
IF <> THEN FILERROR(MT,5);

FCONTROL (MT, 8 ,DUMMY) ;
IF < THEN FILERROR(MT,6);
FCONTROL(MT, 8,DUMMY);
IF < THEN FILERROR(MT,7);

<<TAPE FILE 1>>
<<CHECK FOR ERROR>>
<<CHECK FOR EOQF>>

<<GO TO END FILE 1>>
<<CHECK FOR ERROR>>
<<NEXT FILE 2 RECD>>
<<CHECK FOR ERROR>>

<<TAPEFILE>>
<<CHECK FOR ERROR>>

<<BACK TO END FILE 1>>
<<CHECK FOR ERROR>>
<<BACK TO START FILE 1>>
<<CHECK FOR ERROR>>

RECD’POSITION :=RECD’POSITION+1; <<INCR RECORD CNTR>>

Figure 9-2. Unlabeled Magnetic Tape Example

Magnetic Tape Considerations 9-9

The FOPEN intrinsic call:
MT:=FOPEN(NAME,%201,%4,66,CLASS) ;
opens the magnetic tape file. The parameters specified are:

formaldesignator ~ MAGTAPE, which is contained in the byte array
NAME.

foptions %201, for which the bit pattern is as follows:
0123456789 10 11 12 13 14 15 Bits
0000000010 0 O O O O 1 Binary

2 0 1 Octal

The above bit pattern specifies the following file
options:

Domain: Old permanent file. Bits(14:2) = 01.
ASCII/Binary: Binary. Bit(13:1) = 0.
Default Designator: Same as formal file
designator.

Bits(10:3) = 000.

Record Format: Undefined length. Bits(8:2)
10.

aoptions %4, for which the bit pattern is as follows:
0123456789 10 11 12 13 14 15 Bits
0000000000 0 O O 1 O O Binary

4 Octal

The above bit pattern specifies the following
access option:

Access Type: Input/output access. Bits (12:4) =

0100.
recsize ‘f” words.
device TAPE, contained in the byte array CLASS.

All other parameters are omitted from the FOPEN intrinsic call.

Once the file is opened, the file number (used by other file system
intrinsics when referencing this file) is returned to the variable MT.

The statement:
IF<THEN FILERROR(MT,1);

checks the condition code and, if it is CCL, calls the error-check
procedure FILERROR. The FILERROR procedure prints a FILE
INFORMATION DISPLAY on the standard list device, enabling you

9-10 Magnetic Tape Considerations

to determine the error number returned by FOPEN, then aborts the
program’s process.

The tape format before the copy operation is started is:

—-0m

1 2 n

RECORD RECORD QQ RECORD

mom

LG200016_040

The statement:
LGTH :=FREAD (MT,BUFFER, 66) ;

reads a record from the file designated by MT and transfers this record
to BUFFER. The statement reads up to 66 words from the record,
then returns a positive value to LGTH indicating the actual length of
the information transferred.

The statement:
FCONTROL (MT, 7, DUMMY) ;

spaces forward to the EOF tape mark (the end of the file). As you
recall from paragraph “Spacing File Marks”, the recording head
actually is positioned slightly beyond the EOF file mark. Now the
statement:

FSPACE (MT,RECD’POSITION) ;

Magnetic Tape Considerations 9-11

spaces the tape to the point where the first record (RECD’POSITION
= 0, see statement number 3 in the program) of the second file is to
begin. The statement:

FWRITE(MT,BUFFER,LGTH,0);
writes the record contained in the array BUFFER into this record.
The statement:
FCONTROL (MT,8,DUMMY) ;
spaces back to the end of file 1 (the EOF mark) and the statement:
FCONTROL (MT,8,DUMMY) ;
then spaces back to the next tape mark (the start of file 1).

The record position is set to the next record in file 1 by incrementing
RECD’POSITION with the statement:

RECD’POSITION:=RECD’POSITICN+1;
and spaces ahead to that record with the statement:
FSPACE (MT,RECD’POSITION);

and the copy loop is repeated. After the copy loop is repeated, the
tape is as follows:

8 RECORDRECORD) RECORD| § RECORDRECORD £ 13
T 1 2 n |F 1 2 | F T
L v I\ v 7/
FILE 1 FILE 2
LG200016_041

Note that the reverse tape motion after a write creates an EOF mark
(see end of FILE 2).

The copy loop is repeated until the end of FILE 1 is reached, at
which point program control is transferred to the statement label
DONE. The tape then is rewound with the statement:

FCONTROL (MT,5,DUMMY) ;

and closed with the same disposition (old permanent) as before.

9-12 Magnetic Tape Considerations

Labeled Tapes

The format of the tape at the end of the copy operation is:

B E E E
0o RECORD|RECORD RECORD| 0o RECORD|RECORD] RECORD 0o o
T 1 2 n F 1 2 n F T
~ A /
% N
FILE 1 FILE 2
LG200016_042

MPE provides a means whereby you can read and write labels on
magnetic tape files. Labeled tapes are intended to provide for:

m A permanent identification for tape reels, or volumes.
m Files which extend over more than one volume.

m More than one file on a volume.

m Retrieval of files by file name.

m Additional security, to protect against invalid erasure or access to
files.

When each tape volume is first written, it is assigned a unique
identifier consisting of up to six alphanumeric characters. This
identifier is the volume name. It is often strictly numeric, and
volumes in an installation’s library can be sorted by this number for
storage.

A collection of volumes containing one or a related group of files is
called a volume set. The volume name of the first reel in the set is
taken as the volume set name.

Each file on a labeled tape has a header label or labels which
describe the name of the file, the sequential position of the file on the
Volume, and the sequential number of the volume in the volume set.
Optionally, the header label may also contain the record and block
size, a file lockword, and whether the file is ASCII or binary.

When opening a labeled tape file to be read, you must specify

the volume set name. This may appear either in a file equation
(;LABEL = parameter), or in the formsmsg parameter of FOPEN; if
it appears in neither place, the Console Operator will be prompted
for the volume set name. You may also specify whether to seek a
particular file name within the volume set, or simply to access the
next sequential file. If the file name you specify does not exist, an
End of Volume Set error (FSERR 123) will be returned by FOPEN.

Magnetic Tape Considerations 9-13

When opening a labeled tape file to be written, you specify the
volume set name for reading. You may declare that a specified
named file, or the next sequential file, is to be written, or that a file
is to be added to the end of the volume set. An End of Volume Set
error will be returned if the specified file is not found. Of course, if
there are other files following the file to be written, their contents will
be lost.

You may close a file without closing the volume set containing it.
This means a subsequent FOPEN specifying the same volume set name
will be able to access a file on the currently mounted volume of the
volume set without operator intervention. The volume thus accessed
need not be the first one in the volume set.

There are two standard formats for labels in common use: IBM

and ANSI. Except that IBM labels are written in EBCDIC, the
differences between them are minor. The MPE Tape Labels system
can read and write labeled tapes that conform to the ANSI standard,
and read tapes that conform to the IBM standard. Only ANSI
standard tapes support file lockwords.

According to ANSII Standards, blocks within a file are padded out to
the desired length as necessary with the circumflex character. MPE
uses two types of pads, blanks for ASCII type files and nulls (0s) for
binary type files. Users should ignore record

Writing a Tape Label The MPE FILE command or FOPEN intrinsic is used to write
ANSI-standard tape labels; MPE will not write IBM-standard tape
labels. See the MPE V Commands Reference Manual (32033-90006),
for a discussion of writing tape labels with the FILE command.

The program shown in Figure 9-3 opens a magnetic tape file and
writes a label on the file.

9-14 Magnetic Tape Considerations

$CONTROL USLINIT
BEGIN
BYTE ARRAY FILID1(0:8):="";
BYTE ARRAY FILID2(0:8):="NEWTAPE1 ";
BYTE ARRAY LABELID(0:25):="FIL099,ANS,12/31/81,NEXT;";
BYTE ARRAY DEV(0:4):="TAPE ";

ARRAY MSGBUF(0:35);
ARRAY INBUF(0:39);
ARRAY FIL’ID1(*)=FILID1;
ARRAY USERLABL(0:79);

INTEGER FNO1,FNO2,LGTH;

INTRINSIC FOPEN,FCLOSE,PRINT’FILE’INFO0,QUIT,PRINT,
READ,FWRITELABEL,FREAD,FWRITE;

PROCEDURE FILERROR(FILENO,QUITNO);

VALUE QUITNO;

INTEGER FILENO,QUITNO;

BEGIN
PRINT’FILE’INFO(FILENOQ);
QUIT(QUITNO);

END;

<<END OF DECLARATIONS>>

MOVE MSGBUF:="NAME OF INPUT FILE?";
PRINT (MSGBUF,-19,0);
READ(FIL’ID1,—8); <<READ NAME OF INPUT FILE>>

FNO1:=FOPEN(FILID1,1,5); <<OPEN OLD DISC FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T OPEN DISC FILE";
PRINT(MSGBUF,—20,0) ;
FILERROR(FNO1,1);
END;

FNO2:=FOPEN(FILID2,%1004,5,,DIV,LABELID); <<OPEN NEW LABELED TAPE FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF :="CAN’T OPEN TAPE FILE";
PRINT (MSGBUF, —20,0);
FILERROR(FN02,2);
END;

Figure 9-3. Writing to a Tape File (1 of 2)

Magnetic Tape Considerations 9-15

MOVE USERLABL:="";
MOVE USERLABL : =USERLABL(0),(40);
MOVE USERLABL:="UHL1 USER HEADER LABEL NO. 1";
FWRITELABEL (FNO2,USERLABL,40,0) ; <<WRITE USER HEADER LABEL>>
IF < > THEN FILERROR(FN02,3);
<<CHECK FOR ERROR>>

READ’WRITE’LOOP:

LGTH:=FREAD(FNO1,INBUF,40); <<READ RECORD FROM DISC FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T READ DISC FILE";
PRINT(MSGBUF,—20,0);
FILERROR(FNO1,4);
END;
IF > THEN GO CLOSE; <<CHECK FOR END-OF-FILE>>

FWRITE(FNO2,INBUF,LGTH,0); <<WRITE RECORD TO LABELED TAPE FILE>>
IF <> THEN <<CHECK FOR ERROR>>

BEGIN

MOVE MSGBUF:="CAN’T WRITE TO TAPE FILE";
PRINT(MSGBUF,—24,0);

FILERROR(FNO2,5);

END;

CLOSE:

FCLOSE(FNO01,0,0); <<CLOSE DISC FILE>>

IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T CLOSE DISC FILE";
PRINT(MSGBUF,—21,0);
FILERROR(FNO1,6);
END;

FCLOSE(FN02,1,0); <<CLOSE, REWIND, AND UNLOAD TAPE FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T CLOSE TAPE FILE";
PRINT(MSGBUF,—21,0);
FILERROR(FNO02,7);
END;
END.

Figure 9-3. Writing to a Tape File (2 of 2)

9-16 Magnetic Tape Considerations

Opening a Labeled
Magnetic Tape File

The statement:

BYTE ARRAY LABELID(0:25):="FIL099,ANS,12/31/81 ,NEXT;";

declares a byte array of 26 bytes and initializes it to:
.FIL099,ANS,12/31/81 ,NEXT;

which specifies that ANSI-standard labels will be used. Note that the -
tape label statement begins with a period and ends with a semicolon.
This is necessary to distinguish the tape label statement from a forms
message (which is another use for the same FOPEN parameter). The
LABELID byte array will be used in the FOPEN Intrinsic call to specify

a file label as follows:
Volume Identification:

Label Type:

Expiration Date:

Sequence:

The statement:

FILO99
ANS (ANSI)

12/31/81. This is the date after which
the file can be overwritten. If you
attempt to overwrite the file before this
date, MPE will send a message to the
Console Operator asking for confirmation
that such is really desired. This affords
an extra measure of protection against
inadvertently destroying a tape by
overwriting when a WRITE RING is left
on the tape by mistake.

NEXT, Signifies that the file is to be
positioned at the next file on the tape.

FNO2:=FOPEN(FILID2,%1004,5, ,DEV,LABELID, 1) ;

opens a new tape file and writes the tape label as specified by

LABELID.

Figure 9-4 shows a program that opens a labeled magnetic tape file
and a disk file, reads the contents of the tape file and writes the
records to the disk file, closes the tape file, and finally closes the disk

file as a permanent file.

Magnetic Tape Considerations 9-17

$CONTROL USLINIT
BEGIN
BYTE ARRAY FILID1(0:8):="TAPEFILE ";
BYTE ARRAY FILID2(0:8):=" ",
BYTE ARRAY LABELID(0:25):=".FIL0O1,ANS,12/31/81,,,";
BYTE ARRAY DEV(0:4):="TAPE ";

ARRAY MSGBUF(0:35);
ARRAY INBUF(0:39);
ARRAY FIL’ID2(*)=FILID2;

INTEGER FNO1,FNO2,LGTH;

INTRINSIC FOPEN,FCLOSE,FREAD,FWRITE,READ,PRINT,PRINTFILEINFO,
QUIT,CAUSEBREAK,FREADLABEL;

PROCEDURE FILERROR(FILENO,QUITNO);
VALUE QUITNO;
INTEGER FILENO,QUITNO;
BEGIN
PRINT’FILE’ INFO(FILENO);
QUIT(QUITNO);
END;

<< END OF DECLARATIONS >>

MOVE MSGBUF:="NAME OF NEW DISC FILE TO BE CREATED?";
PRINT (MSGBUF,-8,0) ;
READ(FIL’ID2,4); <<READ NAME OF NEW DIS FILE>>

FNO1:=FOPEN(FILEID1,%1001,,,DEV,LABELID) ;<<OPEN LABELED TAPE FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T OPEN TAPE FILE";
PRINT(MSGBUF,—20,0);
FILERROR(FNO1,1);
END;

FNO2:=FOPEN(FILID2,4,5); <<OPEN NEW DISC FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T OPEN DISC FILE";
PRINT(MSGBUF,—20,0);
FILERROR(FND2,2);
END;

FREADLABEL (FNO1,INBUF,40); <<READ FOR USER LABEL>>
IF <> THEN FILERROR (FNO1,3); <<CHECK FOR ERROR>>

Figure 9-4. Opening a Label Magnetic Tape File (1 of 2)

9-18 Magnetic Tape Considerations

PRINT (INBUF,40,0);
READ’WRITE’LOOP;

LGTH:=FREAD(FNO1,INBUF,40); <<READ RECORD FROM TAPE FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T READ TAPE FILE";
PRINT (MSGBUF,—20,0);
FILERROR(FNOO1,4);
END ;
IF > THEN GO CLOSE1l; <<CHECK FOR END-OF-FILE>>

FWRITE(FNO2,INBUF,LGTH,0) <<WRITE RECORD TO DISC FILE>>
IF <> THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T WRITE TO DISC FILE";
PRINT(MSGBUF,—24,0);
FILERROR(FNO2,5);
END;

GOTO READ’WRITE’LOCP;
CLOSE1:

FCLOSE(FNO1,1,0); <<CLOSE, REWIND, AND UNLOAD TAPE FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN
MOVE MSGBUF:="CAN’T CLOSE TAPE FILE"
PRINT (MSGBUF,—21,0);
FILERROR(FN0OO1,6);
END;

CLOSE2:

FCLOSE(FN02,1,0); <<CLOSE DISC FILE AS PERMANENT FILE>>
IF < THEN <<CHECK FOR ERROR>>
BEGIN

MOVE MSGBUF:="CAN’T CLOSE DISC FILE";
PRINT (MSGBUF,—21,0);
MOVE MSGBUF:="CHECK FOR DUPLICATE NAME";
PRINT(MSGBUF,-24,0);
MOVE MSGBUF:="FIX, THEN TYPE ’RESUME";
PRINT(MSGBUF,-23,0);
GOTO CLOSE2; <<TRY AGAIN>>

END;

END.

Figure 9-4. Opening a Labeled Magnetic Tape File (2 of 2)

Magnetic Tape Considerations 9-19

The statement:
FNO1:=FOPEN(FILID1,%1004,,,DEV,LABELID);

calls FOPEN to open the labeled magnetic tape file. The parameters
specified are:

formaldesignator TAPEFILE, stored in the byte array FILID1.
foptions %1005, for which the bit pattern is:

012345678910 11 12 13 14 15 Bits
0000001000 0 O O 1 O 1 Binary

1 0 0 5 Octal

The above bit pattern specifies the following
file options:

Domain: Old, permanent file, system file
domain.

Bits(14:2) =01.

File Designator: Actual file designator
same as formal file designator.
Bits(10:3) = 000. (Default)

Labeled Tape: Labeled. Bit(6:1) = 1.

Note { The following are specified but will be overridden by the file

ﬁ attributes on the tape if it is an HP-labeled tape:

ASCII/Binary: ASCII. Bit (13:1)=1. Record Format: Fixed length.
Bits (8:2)=0. (Default) Carriage Control: No carriage control. Bit
(7:1)=0. (Default)

aoptions Omitted. Default of read access, buffered, no
multi will be used.

recsize Omitted. The record size specified by the
tape label will be used.

device TAPE, contained in the byte array DEV.

tape label Contained in the byte array LABELID

(formmsg parameter). LABELID is initialized
with the value

.FIL0OO1,ANS,12/31/81,,;

(See statement number 5 in Figure 9-4). Note
that the tape label begins with a period and
ends with a semicolon. This is necessary

to distinguish the tape label from a forms
message (another use for this parameter).

9-20 Magnetic Tape Considerations

Reading a Labeled
Magnetic Tape File

When the FOPEN intrinsic call executes, MPE sends a message to the
system console, requesting the Console Operator to mount the tape
labeled FILOO1, if it is not already mounted.

The statement:
FNO2:=FOPEN(FILID2,4,5);
opens a new disk file.

The program then reads records from the tape file with the
statement:

LGTH:=FREAD(FNO1,INBUF,40);
and writes these records to the disk file with the statement:
FWRITE(FNO2,INBUF,LGTH,0);

When all records in the tape file have been read, both files are closed.
The disk file is saved as a permanent file.

Once a labeled tape file has been opened, the FREAD intrinsic may be
used in the same manner as on an unlabeled tape file. The system
uses the blocksize, recordsize and file format on the tape label. You
can call FGETINFO or FFILEINFO to get these values.

The program shown in Figure 9-4 reads a labeled magnetic tape file
in sequential order.

The labeled tape file is opened with the statement:
FNO1:=FOPEN(FILID1,%1005,5, ,DEV,LABELID) ;
The file 1abel is contained in the byte array LABELID.
The block of statements:
BEAD’WRITE’LOOP:

GOTO READ’WRITE’LOOP;

forms a read/write loop. Records are read from the tape file in
sequential order with the statement:

LGTH:=FREAD(FNO1,INBUF,40);
and written to a disk file with the statement:

FWRITE(FNO2, INBUF,LGTH,0) ;

Magnetic Tape Considerations 9-21

Writing to a Labeled Writing records to a labeled tape file differs slightly from writing to
Magnetic Tape File an unlabeled tape file:

m If the magnetic tape is unlabeled and a user program attempts
to write over or beyond the physical EOT marker, the FWRITE
intrinsic returns an error condition code (CCL). The actual data
has been written to the tape, and a call to FCHECK reveals a file
error indicating END OF TAPE. All writes to the tape after the
EOT tape marker has been crossed transfer the data successfully
but return a CCL condition code until the tape crosses the EOT
marker again in the reverse direction (rewind or backward).

m If the magnetic tape is labeled, a CCL condition code is not
returned when the tape passes the EOT marker. Attempts to write
to the tape after the EOT marker is encountered cause end of
volume (EOQV) labels to be written. A message then is printed on
the operator’s console requesting another volume (reel of tape) to
be mounted.

The program shown in Figure 9-3 opens an existing disk file and a
new labeled tape file, reads records from the disk file and writes
these records to the tape file. If an attempt is made to write records
on the tape beyond the EOT marker, MPE will write EOV1 and
EOV2 labels on the tape and request the Console Operator to mount
another reel of tape.

The statement:
FWRITE (FNO2,INBUF,LGTH,0);

writes the contents of array INBUF onto the tape file signified by
FNO2. The LGTH parameter specifies the number of words to be
written.

Writing a User-Defined User-defined labels are used to further identify files and may be used
File Label on a Labeled in addition to the ANSI-standard labels. Note that user-defined
Tape File labels may not be written on unlabeled magnetic tape files.

User-defined labels are written on files with the FRRITELABEL
intrinsic instead of the FOPEN intrinsic, as is the case for writing
ANSI-standard labels.

User-defined labels for labeled tape files differ slightly from
user-defined labels for disk files in that user-defined labels for

tape files must be 80 bytes (40 words) in length. The tape label
information need not occupy all 80 bytes, however, and you can set
unused portions of the space equal to blanks.

The program in Figure 9-3 opens a new tape file and writes an
ANSI-standard label on it, then writes a user-defined header label
with the FWRITELABEL intrinsic.

The statement:

FNO2:=FOPEN(FILID2,%1004,5, ,DEV,LABELID,1);

9-22 Magnetic Tape Considerations

Reading a User-Defined
File Label on a Labeled
Tape File

Storing Files Offline

opens a new tape file named NEWTAPE1 (the name is contained in byte
array FILID2) and writes an ANSI-standard label (specified by byte
array LABELID) to the file.

The statements:

MOVE USERLABL:="'";
MOVE USERLABL:=USERLABL(0), (40);

fill the array USERLABL with 80 ASCII blanks (40 words), and the
statement:

MOVE USERLABL:="UHL1 USER HEADER LABEL NO. 1";

moves the desired user label into the first 35 bytes of the array,
replacing the blanks.

The statement:
FWRITELABEL (FNO2,USERLABEL,40,0);
writes all 80 characters into the file as a user-defined header label.

Note that in order to write a user-defined header label, the
FWRITELABEL intrinsic must be called before the first FWRITE to
the file. MPE will, however, write user-defined trailer labels if
FWRITELABEL is called after the first FWRITE.

The FREADLABEL intrinsic is used to read a user-defined label on a
labeled magnetic tape file. To read a user-defined header label, the
FREADLABEL intrinsic must be called before the first FREAD is issued
for the file. Execution of the first FREAD causes MPE to skip past any
unread user-defined header labels.

In Figure 9-4, the statement:
FREADLABEL (FNO1,INBUF,40);

reads a user-defined header label. The parameters specified are:

FNO2 The file number as returned by the FOPEN intrinsic.
INBUF An array to which the label is transferred.
‘@’ Specifies the number of words to be read.

You can obtain a backup copy of a particular user disk file or set

of files by storing it ofline onto magnetic tape or serial disk with
the STORE command. Use the RESTORE command to restore files
from magnetic tape. Refer to MPE V/E Storing and Restoring Files
(32033-90133) for instructions.

Magnetic Tape Considerations 9-23

Section Divider

A. File System Reference

A

File System Reference

File System Records always begin and end on word boundaries (odd byte length
Reference records padded out to a word boundary).

Record Formats The three record formats available with the File System are fixed
format, variable format, and undefined length format.

Fixed Length All records are fixed length; blocks contain a fixed number of records.
Record length and blocking factor are known to file system.

Records consist of data only.

Variable Length Record length varies; blocks contain a variable number of records.

File attribute defined to file system is Maximum Record Length =
(Record Length + 1) x Blocking Factor. This is the largest data
record the file can accommodate.

Block length is Maximum Record Length plus 1 word.

Each record consists of data plus a field containing length of that
record in bytes (field is 1 word long).

Each block contains an end-of-block indicator (1 word long).

Undefined Length Block length is set to record length defined to file system.
Blocking factor is assumed to be 1.

Blocking and deblocking of records is the user’s responsibility.

File System Reference A-1

Buffering The syntax for buffering with the FILE command is:
FILE ... [;BUF [=numbuffers]]
[;NOBUF]

Block length is buffer size.
Default is two buffers.
May be overridden at run time with FILE command.

NOBUF specifies no buffers allocated for this file. Blocks transferred
directly onto user’s stack.

File system performs no blocking/deblocking.

Parameters Parameters common to both the FILE and BUILD Commands are
Common to FILE shown in the syntax:
and BUILD (F]
Commands [;REC=[recsize] [,[blockfactor] [,[U] [,BINARY]1]]
vl [,AsCII]
recsize + for words, — for bytes.
BINARY Pad longer records or new disc extents with binary
zeroes (%0).
ASCII Pad longer records or new disc extents with spaces
(%40).
[;DISC=[numrec] [,[numeatents|[,initalloc]]]
numrec Maximum number of records to allow in file. Default
= 1023.
numezxtents 1 through 32; default is 8.
inttalloc Number of extents initially allocated. Default = 1.
[;CODE] User codes are 0 through 1023. Negative codes

accessible only in Privileged Mode. 10244 or
mnemonic are system defined and shown in
Table A-1.

A-2 File System Reference

Table A-1. System-Defined Mnemonic Codes

Integer | Mnemonic Meaning
1024 USL User Subprogram Library
1025 BASD BASIC Data
1026 BASP BASIC Program
1027 BASFP BASIC Fast Program
1028 RL Relocatable library
1029 PROG Program file
1031 SL Segmented Library
1035 VFORM View Form file
1036 VFAST View Fast Forms file
1037 VREF View Reformat file
1040 XLSAV Cross Loader ASCII file (SAVE)
1041 XLBIN Cross Loader Relocated Binary file
1042 ILDXP Cross Loader ASCII file (DISPLAY)
1050 EDITQ Edit Quick file
1051 EDTCQ Edit KEEPQ file (COBOL)
1052 EDTCT Edit TEXT file (COBOL)
1054 TDPDT TDP Diary file
1085 TDPQM TDP Proof Marked QMARKED
1056 TDPP TDP Proof Marked non-COBOL file
1057 TDPCP TDP Proof Marked COBOL file
1058 TDPQ TDP Workfile
1059 TDPXQ TDP Workfile (COBOL)
1060 RJEPN RJE Punch file
1070 QPROC QUERY Procedure file
1080 KSAMK KSAM Key file
1083 GRAPH GRAPH Specification file
1084 SD Self-describing file
1090 LOG User Logging logfile
1100 wDoC HPWORD Document
1101 WDICT HPWORD Hyphenation dictionary
1102 WCONF HPWORD Configuration file
1103 w2601 HPWORD Attended Printer Environment
1110 PCELL TFS/3000 Character Cell file
1111 PFORM IFS/3000 Form file
1112 PENV IFS/3000 Environment file
1113 PCCMP IFS/3000 Compiled Character Cell file
1114 RASTR Graphics Image in RASTR Format
1130 | OPTLF OPT/3000 logfile
1131 TEPES TEPE/3000 Script file
1132 TEPEL TEPE/3000 logfile
1133 SAMPL APS/3000 logfile
1139 MPEDL MPEDCP /DRP logfile
1140 TSR HPToolset Root file
1141 TSD HPToolset Data file

File System Reference

A-3

A-4 File System Reference

Table A-1. System-Defined Mnemonic Codes (continued)

Integer | Mnemonic Meaning
1145 DRAW Drawing file for HPDRAW
1146 FIG Figure File for HPD
1147 FONT Reserved
1148 COLOR Reserved
1149 D48 Reserved
1152 SLATE Compressed SLATE file
1183 SLATW Expanded SLATE workfile
1156 DSTOR Store file for RAPID/3000 Utility DICTDBU
1157 TCODE Code file for Transact/3000 Compiler
1168 RCDOE Code file for Report/3000 Compiler
1159 ICODE Code file for Inform/3000 Compiler
1166 MDIST HPDESK Distribution list
1167 MTEST HPDESK Test
1168 MARPA ARPA Message file
1169 MARPD ARPA Distribution List
1170 MCMND HPDESK Abbreviated Commands file
1171 MFRT Reserved
1172 Reserved
1173 MEFT Reserved
1174 MCRPT Reserved
1175 MSERL Reserved
1176 UCSF Reserved
1177 TTYPE Term Type file
1178 TVFC Term Vertical Format Control file
1192 NCONF Network Configuration file
1193 NTRAC Network Trace file
1194 NLOG Network logfile
1195 MIDAS Reserved
1211 ANQDE Reserved
1212 INODE Reserved
1213 INVRT Reserved
1214 EXCEP Reserved
1215 TAXON Reserved
1216 QUERF Reserved
1217 DOCDR Reserved
1226 Ve VC file
1227 DIF DIFfile
1228 LANGD Language Definition file
1229 CHARD Character Set Definition file
1230 MGCAT Formatted Application Message Catalog
1236 BMAP Reserved
1242 BDATA Basic Data file

Referencing Disc File
Domains

Table A-1. System-Defined Mnemonic Codes (continued)

Integer | Mnemonic Meaning

1243 BFORM Basic Field Order File for VPLUS

1244 BSAVE Basic Saved Program File

1245 BCNFG Configuration File for Default Option Basic
Program

1258 PFSTA Pathflow STATIC file

1259 PFDYN Pathflow DYNAMIC file

1270 RTDCA Revisable Form DCA Document
(DCA=Document Content Architecture)

1271 FFDCA Final Form DCA Document
(DCA=Document Content Architecture)

1272 DIU Document Interchange Unit file

1273 PDOC HPWORD/150 Document

1401 CWPTX Reserved

1421 MAP HPMAP/3000 Map Specification file

1422 TTX Reserved

3333 Reserved

Default is the unreserved file code of 0.

Using 1090 (LOG) as your designated filecode may not yield the
number or records you specify in the DISC= parameter. Most files
use the number of records specified in the DISC= parameter as
the maximum limit; user logging uses this specified number as a
minimum.

[;CCTL]
[;NOCCTL]

CCTL An additional character is added to the beginning of
each record containing carriage control information,
in addition to record length. Valid for ASCII files
only.

NOCCTL No additional character reserved for carriage control.
(Default = NOCCTL.)

[; TEMP] The BUILD command can only create a file in
the Permanent or Temporary domain. Default is
Permanent.

The syntax for referencing disc file domains is:

[,NEW 1] [;DEL]

FILE ... [,0LD] [;SAVE]
(,OLDTEMP] [;TEMP]
NEW Create a disc file in the NEW domain.
OLD Find a disc file that already exists in the OLD

(PERMANENT) domain.

File System Reference A-5

FILE Back-Reference

Controlling
Simultaneous Access to
Disc Files

Specifying Access

A-6 File System Reference

OLDTEMP Find a disc file that already exists in the
TEMPORARY domain.

Default Search TEMPORARY domain then PERMANENT
domain.

DEL Delete file upon close.

SAVE Move this file to PERMANENT domain upon close.

TEMP Make this NEW file TEMPORARY upon close.

Default Upon close, file is left in the domain in which
it was found when opened. (New files are deleted.)

The syntax used with the FILE command to back-reference files is:
FILE formaldesignatorl = *formaldesignator2

Here formaldesignator! takes on all the same attributes as
formaldesignator2 from a previous or subsequent FILE command.

The syntax for controlling simultaneous access to disc files is:

[;EXC]
FILE ... [;SEMI]
[;SHR]

EXC Exclusive access. No other users will be allowed to
access this file while you have it open. You will not

be allowed EXC access if someone is already using
the file.

SEMI Exclusive Allowing Read. Other users may open file
but only for read-only access (ACC=IN). You will be
granted this access only if no one else is using this
file or It is opened for read-only access.

SHR Shared access. Allow concurrent use by other users.
You will not be granted access to the file if someone
has it opened with EXC access.

The syntax to specify access is:

IN
ouT
INOUT
FILE ... [:ACC = OUTKEEP]
APPEND
UPDATE

IN Read only.

ouUT Write only. Original contents of file overwritten. File
cannot be read.

Specialized Parameters
of FILE

User Types

INOUT write

OUTKEEP

APPEND

UPDATE

Default

Any operation except update is allowed. (You can
still read then the same record.)

Write-only access. Original contents kept and you
are allowed to write both before and after end-of-file.
File cannot be read.

Records may be written only beyond end-of-file. File
cannot be read nor can you write into the original
part of the file.

Update access. All operations may be performed on

file.

IN access for devices that can perform input;
otherwise QUT for output-only devices.

The specialized parameters of the FILE command are:

MULTI:

MR:
NOWAIT:

Multi-user access; requires Process Handling
capability.

Allows multiple block access.

Do not wait for I/O completion; requires Privileged
Mode capability.

User codes, for security specification, and their definitions are:

ANY

AL

GL

CR
GU

AC

Any User. This category covers any user defined in
the system, and includes all categories defined below.

Account Librarian User. User with Account
Librarian capability, who can manage certain files
within his account that may or may not all belong to
one group.

Group Librarian User. User with Group Librarian
capability, who can manage certain files within his
home group.

Creating User. The user who created this file.

Group User. Any user allowed to access this group
as his log-on or home group, including all GL users
applicable to this group.

Account Member. Any user authorized access to the
system under this account; this includes all AL, GU,
GIL, and CR users under this account.

Figure A-1 shows the FOPTIONs available with the FOPEN intrinsic.

File System Reference A-7

8ITs (0:2) {2:3) (5:1) (6:1) (7:1) 8:2) (10:3) (13:1) (14:2)
Disallow MPE Tape Carrlage Record Default ASCl/
FIELD Reserved | Flie Type :FILE Labels Control Format Designator Binary Domain
MEANING 00 | 0=STD O=Allow 0=NON 0=NOCCTL | 00=Fixed 000=Filename O=Binary | 00=New File
:FILE LABELED
TAPE
00 | 1=KSAM 1aCCTL 01=Varleble 001=8STOLST 1=ASCH 01=0Id
1=No :FLE{ 1=LABELED Permanasnt
TAPE Flle
01 | ORIO 10=Undefined]] O10=SNEWPASS
10 } 0=CIR 01140LDPASS 10=01id
Temporary
11 | o=msaG i 100ssTDIV Flle
101=8STDINX 11=0ld Perm,
or Temp.
110=8NULL Fie
Figure A-1. FOPTIONSs for Use with FOPEN
Figure A-2 shows the AOPTIONs available with the FOPEN intrinsic.
BITS (0:3) (3:1) (4:1) (5:2) (7: (8:2) (10:1) (11:1) (12:4)
Multl-
Flle No-Wait Muit| Inhibit Exclusive Dynamic | record Access
FIELD Reservecd| Copy 170 Access Butfering | Access Locking AcCCess Type
O=Access in [[1=No Walit | 00=Non-multi-! 0=BUF 00=Default 0=No 0=No Multl- | © 000=Read Only
MEANING flle's native access FLOCK Record
mode Allowed
12Access as |l 2=Non No— |01=Only Intra= | 1=NCBUF | 01=Exclusive || 1=FLOCK } 1=Muiti- 0 001=Wrlite only
standard Walt Job muttl- Allowed Record
sequential access
tile
10=Inter-job 10=Exclusive [} 010=Write (save)
1ti- Access |
2::‘::0:: Read only
allowed
11=Share] 011=Append only
100=Read/wrlte
o} 101=Update
0 110=Execute

A-8 File System Reference

Figure A-2. AOPTIONS for Use with FOPEN

MPE defaults and device-dependent restrictions are shown in
Figure A-3.

INPUT ONLY DEVICES (SERIAL)
Card Reader/Paper Tape Reader

No carriage control

Undefined-length records if card reader, ASCII only (can only read ASCII
cards using FCONTROL)

Blockfactor = 1

Domain = 1 (OLD permanent)

If not ASCII, then NOBUF

If access type = 1,2,3, then access violation results

INPUT/OUTPUT DEVICES (PARALLEL)
Terminals

ASCII

NOBUF

Undefined=length records
Blockfactor = 1

INPUT/OUTUT DEVICES (SERIAL)

Magnetic Tape Drive
Serial Disc Drive
No restriction

OUTPUT ONLY (SERIAL)
Line Printer/Card Punch/Paper Tape Punch/Plotter

If Paper Tape punch, ASCII only

Undefined-length records

Blockfactor = 1

Domain = NEW

Access Type = 1, write only (if read only specified, access violation results)

Laser Printer
Initially and always spooled
Write only access
All other restrictions same as for line printer

UNDEFINED (COMMON CHECKING)

If carriage control specified and not ASCII, access violation results

Figure A-3. MPE Defaults and Device-Dependent Restrictions

File System Reference A-9

The Relative I/O Block Format is shown in Figure A-4.

Item

#23 Logical Record
Logical Record

Item

#24 Active Record

FFILEINFO Item Numbers

Item 21 - Physical Blo

22 - Data Block S
23 -

24 - 0ffset to Ac
25 - Size of Acti

Active Record Table

A = active-record table

F = blocking factor (number of records

R = index of desired rec

0
Item
#22
F-1
Item
Table #25
ck Size
ize

Offset to Data in Blocks

tive Record Table
ve Record Table

Item
#21

within the block

record O (block-relative)

record 15
I I I word O
I Y O O word A-1
111111
9012345
size 1n words= E
16
per block)

ord, modulo F

W = index of word for desired record = R/16

P = index of bit for desired record = R mod 16

bit = 0 :inactive record

1 :active record

A-10 File System Reference

Figure A-4. Relative 1/O Block Format

Section Divider

B. Status Information

Status Information

You can use certain file system intrinsics to obtain information on the
status of your disc files. Information is available about actual file
characteristics, current file information, and error information:

m Actual file characteristics include the physical and operational
features of your file. Such characteristics are defined by a
combination of FOPEN parameters, FILE commands, file label
contents, and file system defaults.

m Current file information includes details on the current status of
your file, such as the placement of the end-of-file indicator, the
location of the record pointer, and the logical and physical record
transfer count.

m Error information lists the last error for your file or the last FOPEN
error.

Obtaining Status
Information

The same status information may be obtained via different intrinsic
calls. The FGETINFO and FFILEINFC intrinsics will return actual file
characteristics and current file information, the FCHECK intrinsic
will return error information, and the PRINTFILEINFO intrinsic

will list details of all three categories. PRINTFILEINFO will format
information and output it to the list device for your job/session;
FGETINFO, FFILEINFO, and FCHECK will return unformatted
information directly to your calling program.

Status Information B-1

PRINTFILEINFO

Note

B-2 Status Information

The PRINTFILEINFO intrinsic requires the file number returned by
an FOPEN call; in the case of an FOPEN failure, give zero as the file
number. Output will be printed to your job/session list device in
one of two formats; a full file information display for open files (see
Figure B-1) or a short file information display for files that are not
open (see Figure B-2).

These formats are sometimes referred to as tombstones. This may
give the impression that the executing process aborts, but this is not
s0; a file information display is simply a listing of status.

+ - F-I-L-E---I-N-F-0-R-M-A-T-I-0-N-=--D-I-S-P-L-A-Y - +

FILE NAME IS SPL.PUB.SYS

FOPTIONS: SYS,B,*FORMALx,F,N,FEQ
AOPTIONS: IN/OUT,SREC,NOLOCK,DEF,BUFFER
DEVICE TYPE: O DEVICE SUBTYPE: 3

LDEV: 2 DRT: 5 UNIT: O

RECORD SIZE: 128 BLOCK SIZE: 128 (WORDS)
EXTENT SIZE: 360 MAX EXTENTS: 1

RECPTR: O RECLIMIT: 359

LOGCOUNT: O PHYSCOUNT: O

ECF AT: 359 LABEL ADDR: 700200262753
FILE CODE: 1029 ID IS MANAGER ULABELS: 0O
PHYSICAL STATUS: 1111000000000000

ERROR NUMBER: 42 RESIDUE: 0O

BLOCK NUMBER: O NUMREC: 1

\

Figure B-1. File Information Display - Full

File is open:
m File number represents a currently open file.
m Error indicates last error on file.

m Full display condensed when file is not open.

4 y

+ = F-I-L-E---I-N-F-0-R-M-A-T-I-0-N---D-I-S-P-L-A-Y - +

FILE NUMBER -1 IS UNDEFINED.

ERROR NUMBER: 52 RESIDUE: 0

\ BLOCK NUMBER: 0 NUMREC: O

Figure B-2. File Information Display - Short

File is not open:
m File number is zero or invalid.

m FOPEN failure assumed if zero file number (first line not printed)
or invalid file number.

m Error is always last FOPEN error.

Sections of the full File Information Display yield different types of
information, as indicated below.

Name and options:

FILE NAME IS SPL.PUB.SYS
FOPTIONS: SYS, B,*FORMAL*,F,N.FEQ
AOPTIONS: IN/QUT,SREC,NOLOCK,DEF,BUFFER

Device and data structure:

DEVICE TYPE: O DEVICE SUBTYPE: 3

LDEV: 2 DRT: 5 UNIT: 0
RECORD SIZE: 128 BLOCK SIZE: 128 (WORDS)
EXTENT SIZE: 360 MAX EXTENTS: 1

Transfer information:

RECPTR: o - RECLIMIT: 359
LOGCOUNT: 0 PHYSCOUNT: 0
EOP AT: 359

Status Information B-3

Labels and physical status:

LABEL ADDR: %00200262753
FILE CODE: 1029 ID IS MANAGER ULABELS: O
PHYSICAL STATUS: 1111000000000000

Error information:

ERROR NUMBER: 42 RESIDUE: O .
BLOCK NUMBER: 0 NUMREC: 1

The fields in a file information display are described in Figure B-3
through Figure B-7.

B-4 Status Information

FILE NAME IS SPL.PUB.SYS
FOPTIONS: SYS,B,*FORMAT*,F,N,FEQ
AOPTIONS: IN/OUT, SREC, NOLOCK, DEF, BUFFER

m File name: Fully qualified (name, group, account)

» FOPTIONs: Actual FOPTIONS in effect.

s AOPTIONs: Current AOPTIONs in effect.
FOPTION Keywords:

ASCII/ Default Record Carriage Disallow
Domain Binary Designator Format Control FILE
NEW A *FORMAL* F N FEQ
SYS B $STDLIST A C DEQ
JOB NEWPASS U
ALL $OLDPASS ?
$STDIN
$STDINX
$NULL

AOPTION Keywords:

Dynamic Exclusive Inhibit
Access Type Multi-Record Locking Access Buffering
INPUT SREC NOLOCK DEF BUFFER
OUTPUT MREC LOCK EXC NOBUFF
OUTKEEP SEA*
APPEND SHR
IN/OUT
UPDATE

*Semi-exclusive access (SEMI).
NOTE: Multi-access, NOWAIT fields not represented.

Figure B-3. Name and Options in a File Information Display

Status Information B-5

DEVICE TYPE: O
LDEV: 2 DRT: 5
RECORD SIZE: 128
EXTENT SIZE: 360

Device Type, Subtype,
LDEV, DRT, UNIT

Record Size

Block Size

Extent Size
Max Extents

DEVICE SUBTYPE: 3
UNIT:O

BLOCK SIZE: 128
MAX EXTENTS: 1

Hardware Information (Set at
configuration)

Logical Record Size (Words/Bytes).
For variable-length records, does not
include 2 words added.

Physical Record Size (Words/Bytes).
Does not include words added for
variable-length records.

Number of Sectors per extent.

Maximum allowed for file.

Figure B-4. Device and Data Structure in a File Information Display

RECPTR: 0O

LOGCOUNT: O

EOF AT: 359
RECPTR

RECLIMIT
LOGCOUNT

PHYSCOUNT

EOF AT

file. NOBUF, LOGCOUNT

RECLIMIT: 359
PHYSCOUNT: 0

Current record pointer (logical or physical).
Points to next record to be transferred.

Maximum number of records in file.

Number of logical record transfers to/from
user stack since FOPEN.

Number of physical record transfers
to/from file (disk) since FOPEN.

Current EOF pointer (one plus largest
logical record number ever used to write
data to the file).

NOTE: RECPTR, LOGCOUNT, PHYSCOUNT, EOF start at 0 for new
= PHYSCOUNT; PHYSCOUNT updated only on
completion of I/O transfer.

Figure B-5. Transfer Information in a File Information Display

B-6 Status Information

FILE CODE; 1029
PHYSICAL STATUS:

LABEL ADDR:

FILE CODE:

ID:

ULABELS:
PHYSICAL STATUS:

LABEL ADDR: %00200262753
ID IS MANAGER ULABELS: 0
1111000000000000

Sector address and 1dev number for file
label. First three digits for ldev: next eight
digits for sector address.

User or system defined (blank if zero).
User name of creator.
Maximum number of user labels allowed.

Status of disk at time of last interrupt.
(Meaningless for disk in multiprogramming
environment.)

Figure B-6. Labels and Physical Status in a File Information Display

ERROR NUMBER:
BLOCK NUMBER:

ERROR NUMBER:

RESIDUE:

BLOCK NUMBER:
NUMREC:

NOTE: Block number starts at 0.

42 RESIDUE: 0

NUMERIC: 1

Last error for file. 0 means EOF detected or
no error occurred.

1. Number of words/bytes not transferred
after error was detected.

2. In case of EOF, number of words/bytes
transferred before EOF was detected.

Error detected in this block.

Number of logical records in “error” block.

Figure B-7. Error Information in a File Information Display

Status Information B-7

FGETINFO, Much of the status information obtainable through the
FFILEINFO, and PRINTFILEIIZIFO .1nt.r1n31c can be discovered by using the F(?ETINFO -
FCHECK and FCHECK intrinsics. While PRINTFILEINFO prints a file information
display, FGETINFO and FCHECK return status information directly to
our program through their parameters.
The information returned by FGETINFO and FCHECK that corresponds
to PRINTFILEINFO information is shown in Figure B-8.
FGETINFO
s F-l-L-E=——I-N-F~0O-R-M-A-T—|-O-N~--D—I-8-P-L-A-Y ——————- +
FILE NAME IS SPL.PUB.SYS
FOPTIONS: SYS,B,*FORMAL*,F,N,FEQ
AOPTIONS: IN/OUT,SREC,NOLOCK,DEF,BUFFER
DEVICE TYPE: O DEVICE SUBTYPE: 3
LDEV: 2 DRT: 5 UNIT: O
RECORD SIZE: 128 BLOCK SIZE: 128 (WORDS)
‘ EXTENT SIZE: 360 MAX EXTENTS: 1
RECPTR: O RECLIMIT: 359
LOGCOUNT: PHYSCOUNT: O

FILE CODE:

EOF AT: 359
1029 ID IS MANAGER ULABELS: O

LABEL ADDR: %00200262753

PHYSICAL STATUS: 1111000000000000

-— - — ——

ERROR NUMBER: 42 AR e 1
BLOCK NUMBER: 0) |
+
FCHECK
NOTE: Physical status (not useful for disc) is obtained through FCONTROL.
LG200016_059

Figure B-8. Information Available Through FGETINFO and FCHECK

B-8 Status Information

Both FGETINFO and FCHECK require the file number returned by an
FOPEN call. If you omit the file number with FCHECK, or supply a file
number of zero (0), FCHECK will assume an FOPEN failure. Invalid
file numbers result in error conditions for both FGETINFO and FCHECK.

Status information is returned through the parameters of FGETINFO
and FCHECK. With FCHECK, the error code returned is the error which
occurred on the most recent intrinsic call or the last FOPEN error.

The relationship between PRINTFILEINFO fields and FGETINFO, and

FCHECK parameters is outlined in Figure B-9.

FGETINFO/PRINTFILEINFO

FGETINFO PRINTFILEINTO FGETINFO PRINTFILEINFO

Parameters Fields Parameters Fields

FILENAME FILE NAME LOGCOUNT LOGCOUNT

FOPTIONS FOPTIONS PHYSCOUNT PHYSCOUNT

AOPTIONS AOPTIONS BLKSIZE BLOCK SIZE
EXTSIZE EXTENT SIZE

RECSIZE RECORD SIZE NUMEXTENTS MAX EXTENTS

DEVTYPE DEVICE TYPE, SUBTYPE

LDNUM LDEV USERLABELS ULABELS

HDADDR DRT,UNIT CREATORID ID IS
LABADDR LABEL ADDR

FILECODE FILE CODE

RECPTR RECPTR

EOF EOF AT

FLIMIT RECLIMIT

FCHECK/PRINTFILEINFO

FCHECK PRINTFILEINFO

PARAMETERS FIELDS

ERRORCODE ERROR NUMBER

TLOG RESIDUE

BLKNUM BLOCK NUMBER

NUMRECS NUMREC

LG200016_060

Figure B-9. Parameter/Field Relationships

Status Information B-9

Section Divider

C. Terminal Characteristics

C

Terminal Characteristics

Note

Terminals and character printers, such as the HP 2613B, are
supported by MPE in two modes: point-to-point and multipoint.
The point-to-point mode is operated through one of three I/0
controllers: the Asynchronous Terminal Controller (ATC) on the
HP 3000 Series II/III, the Asynchronous Data Communications
Channel (ADCC) on the HP 3000 Series 30/33/40/44, and the
Advanced Terminal Processor (ATP) on the HP 3000 Series 64.
(See the corresponding data sheets for devices, terminal types and
other features supported on each controller.) The multipoint mode
is supported by the Multipoint Terminal Software (DSN/MTS).
Character printers are not supported by MPE for DSN/MTS. A full
description of the DSN/MTS facility is available in the DSN/MTS
Reference Manual (32193-90002).

This appendix deals primarily with the operation of point-to-point
terminals. Most of the facilities do not apply to multipoint devices.

Terminals may be operated as session log on devices or as file system
devices. You can control certain aspects of terminal operation with
the FSETMODE, FCONTROL, and PTAPE intrinsics. Before these intrinsics
can be used in a program to alter terminal characteristics, the
terminal/file must be opened with the FOPEN intrinsic.

Terminals are operated in one of three modes: normal, or edited;
transparent, or unedited; and binary. Normal mode is the default.

In normal mode, the terminal driver provides extensive editing and
control facilities to help the user make productive use of the terminal.
These facilities use several keyboard-generated characters for special
purposes, including one that is user-definable. These characters may
not be entered into your input buffer, but are stripped from the input
character stream and acted upon by the driver. Only one restriction
applies to output; if the ENQ/ACK pacing handshake is enabled by
means of termtype, the ENQ is considered a special character and
output is suspended until the terminal replies with ACK.

On the Series 30/33/40/44/64, user-embedded ENQs are not
supported and may not produce the desired effect.

In transparent mode, almost all of the above facilities have been
removed. Only six input special characters remain; three of these
may be user-defined. These special characters are discussed later in
this appendix. The ENQ is still considered a special character for
output, as stated above.

Terminal Characteristics C-1

C-2 Terminal Characteristics

In binary mode, all 256 eight-bit ASCII character patterns may be
read or written. All pacing handshakes are disabled.

Table C-1 summarizes the controlcodes used with the FCONTROL
intrinsic to alter terminal characteristics. These controlcodes are
discussed in more detail in the rest of this appendix.

Table C-1. Codes for Use with FCONTROL

2 Complete input/output

3 Read hardware status word

4 Set time-out interval

10 Change terminal input speed

11 Change terminal output speed

12 Turn echo facility on

13 Turn echo facility off

14 Disable the system break function

15 Enable the system break function

16 Disable the subsystem break function

17 Enable the subsystem break function

18 Disable tape mode option *

19 Enable tape mode option *

20 Disable the terminal input timer

21 Enable the terminal input timer

22 Read the terminal input timer

23 Disable parity checking

24 Enable parity checking

25 Define line-termination characters for terminal input

26 Disable binary transfers

27 Enable binary transfers

28 Disable user block mode transfers

29 Enable user block mode transfers

34 Disable line deletion echo suppression

35 Enable line deletion echo suppression

36 Set parity * *

37 Allocate a terminal

38 Set terminal type

39 Obtain terminal type information

40 Obtain terminal output speed

41 Set unedited terminal mode

43 Abort pending NO WAIT I/0O request
* Not supported on the Series 30/33/40/44/64
computers.
* * On the Series II/III, this enables parity generation,
but not parity checking; you must issue an FCONTROL
23 or 24 to control parity checking. On the Series
30/33/40/44/64, this returns the current parity, but
enables neither parity generation nor parity checking; use
FCONTROL 23 or 24 to control both.

Allocating a
Terminal

A terminal can be removed from speed-sensing mode, initialized
according to the type and speed specified by the FCONTROL intrinsic,
and set online (The terminal cannot be configured as JOB or DATA
accepting.)

The format for this application of the FCONTROL intrinsic is:

Iv Iv L
FCONTROL (filenum,controlcode,param) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 37.
param Logical (required). A logical word:
Bits (0:11) - Speed in characters per second.
Bits (11:5) - Terminal type (see Table C-2).

If param is set to zero, the speed and terminal
type specified when the system was configured will
be used to initialize the device. (In this case, the
use of FCONTROL is not necessary; the terminal is
automatically allocated when the file is opened.)

For more information about the FCONTROL intrinsic, see the MPE V
Intrinsics Reference Manual (32033-90007).

Terminal Type
Specification

MPE has limited facilities to support the features of specific
terminals or devices. Originally, these facilities supported specific
terminal models; on more recent machines, they have been
generalized to support devices of the terminal’s class. For non-HP
terminals, no guarantee of successful operation is made. The facilities
are designed to allow operation of the most commonly used devices.

The terminal type can be changed with the FCONTROL intrinsic. The
format for this application of FCONTROL is:

IV IV L
FCONTROL (filenum,controlcode,param) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 38.

param Logical (required). A logical word which specifies the
desired terminal type (see Table C-2).

Terminal Characteristics C-3

To determine the current terminal type, use the FCONTROL intrinsic
with a controlcode of 39,

This application of FCONTROL may be used before a terminal is
allocated to return the terminal type specified when the system was
configured; a value of 31 is returned in param if no terminal type was
specified at configuration time.

The format for this application of the FCONTROL Intrinsic is:

IV IV L
FCONTROL (filenum, controlcode,param) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 39.

param Logical (required). The identifier to which the

terminal type is returned.

Speed and Parity
Sensing

C-4 Terminal Characteristics

When you establish a session from a terminal, MPE uses the carriage
return character that you input during the log on process to sense
the line speed and parity setting of your terminal.

The ATC (Series II/III) will detect the line speed at all supported
speeds. The ADCC (Series 30/33/40/44) and ATP (Series 64) are
able to detect the line speed at speeds of 2400 bits per second or less;
logging at higher speeds is possible only when you use the non-speed
sense configuration option, subtype 4.

Only a single parity bit is available for parity sensing. The ATC,
ADCC, and ATP make different assumptions based upon this bit, as
shown in Table C-2.

Table C-2. Parity Sensing with the ATC, ADCC, and ATP

Party Bit on Carriage Return (15%) Is:

0 1

ATC 7-bit characters with odd
parity are assumed; odd parity
is generated on output; input
checking is not done unless

explicitly enabled.

7-bit characters with even
parity are assumed; even parity
is generated on output; input
checking is not done unless
explicitly enabled.

7-bit characters with even
parity are assumed. Even parity
is both generated and checked.

8-bit characters are assumed;
ADCC] the 8th bit is passed through in

or both input and output.
ATP

Obtaining Terminal

Output Speed

Changing Terminal

Speed

Note

The terminal output speed can be determined with the FCONTROL
intrinsic.

This application of FCONTROL may be used before a terminal is
allocated to return the speed at which the device was last operated,
or the speed specified when the system was configured. A value of
zero is returned in param if the device has not been speed sensed.

The format for this application of the FCONTROL intrinsic is:

Iv Iv L
FCONTROL (filenum,controlcode,param) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 40.

param Logical (required). A logical identifier to which the
terminal output speed in characters per second is
returned.

The initial terminal speed is set either by speed sensing or by the
configuration default. You can programmatically change this speed
with the FCONTROL intrinsic. This capability allows a user running

a mark sense card reader coupled to a terminal to operate the two
devices at different speeds (for example, the card reader at 240
characters per second for input and the terminal at 10 characters per
second for output). '

The ATC allows the input line speed to differ from the output line
speed. This facility is available only on the Series II/III.

The format for this application of the FCONTROL intrinsic is:

IV IV L
FCONTROL (filenum,controlcode,speed) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal for which
the speed is to be changed.

controlcode Integer by value (required). The decimal integer 10 to
change the input speed or 11 to change the output
speed.

speed Logical (required). A word identifier that specifies the
new speed desired: 10, 14, 15, 30, 60, 120, 240, 480,
or 960 characters per second. When the FCONTROL

Terminal Characteristics C-5

intrinsic is executed, the previous input or output
speed is returned the calling process through this
parameter.

As an example, consider the terminal identified by the file number
stored in the word TERMFN. To change its input speed from 60 to 120
characters per second, the following call could be used. The word
SPEED contains the value 120:

FCONTROL (TERMFN,10,SPEED) ;

After the intrinsic is executed, the word SPEED Contains the integer
60 (the previous speed).

Control of Parity
Generation and
Checking

All ATC controller ports are initially set with parity checking
disabled. They may, however, be programmatically enabled for parity
checking with the FCONTROL intrinsic. If a parity error is detected, an
error code is made available through the FCHECK intrinsic.

Setting Parity

C-6 Terminal Characteristics

Default output parity generation is determined by the parity sensing
facility. If the device is opened as a File System device (not a log on
or session device), the default parity settings are used: odd for ATC,
none for ADCC or ATP.

You may programmatically change both the parity type and the
generation and checking facility. Note that parity generation and
checking is an option only with 7-bit terminal types.

The FCONTROL intrinsic can be used to specify the parity, if any, to be
used in transmitting data to a terminal. Parity is generated on the
right seven bits of a character.

The format for this application of the FCONTROL intrinsic is:

Iv IV L
FCONTROL (filenum,controlcode,param) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 36.

param Logical (required). A logical word, as shown in
Table C-3.

Table C-3. Setting Parity for ATC or for ADCC/ATP

ATC (Series II/III)

ADCC (Series 30/33/40/44) or ATP (Series 64)

0 Output: All 8 bits are transmitted.
Input: No checking; bit 8 set to 0.

1 Output: Bit 8 set to 1.
Input: No checking; bit 8 set to 0.

2 Output: Even parity is generated if bit 8 of the
output character is 0); odd parity is generated if bit 8
of the output character is 1.

Input: Even parity is checked, if enabled.

3 Output: Odd parity is generated.
Input: Odd parity is generated, if enabled.

Input and output: All 8 bits transmitted.

Input and output: All 8 bits transmitted.

Output: Even parity is generated, if enabled.
Input: Even parity is checked, if enabled.

Output: Odd parity is generated, if enabled.
Input: Odd parity is checked, if enabled.

Enabling and

This may be accomplished by using the FCONTROL intrinsic. The

Disabling Parity
Generation and
Checking

format for this application of FCONTROL is:

v v L
FCONTROL (filenum,controlcode,anyinfo) ;

The parameters are:

filenum
controlcode

anyinfo

Setting a Time-Out
Interval

Integer by value (required). A word identifier
supplying the file number of the terminal.

Integer by value (required). The integer 24 to enable
parity checking, or 23 to disable parity checking.

Logical (required). Any variable or word identifier.
This parameter is needed by FCONTROL to satisfy
the internal requirement of this intrinsic; however, it
serves no other purpose and is not modified by the
intrinsic.

You can use the FCONTROL intrinsic to apply a time-out interval on
input from a terminal. If input is requested from the terminal but is

not received in the specified interval, the requesting FREAD terminates
at the end of the time-out interval with condition code CCL. In this
case, no data is transferred to your buffer. Note that this FCONTROL
affects only the next read. For block mode operation, the timer is
halted when the DC2 character (CONTROL-R) is received.

Terminal Characteristics C-7

Read Duration Timer

C-8 Terminal Characteristics

The format for this application of the FCONTROL intrinsic is:

v IV L
FCONTROL (filenum,controlcode,time) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 4.

time Logical (required). A word identifier specifying the
time-out interval in seconds. If this interval is zero,
any previously established interval is cancelled, and
no time-out occurs.

The terminal input timer records the time required to satisfy an
input request on the terminal, from the time the input is requested
until it is completed. This applies only to unbuffered, serial terminal
input requests.

You can programmatically enable or disable the terminal input timer
with the FCONTROL intrinsic.

The format for this application of the FCONTROL intrinsic is:

v v L
FCONTROL (filenum,controlcode,anyinfo) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 21 to enable
the timer, or 20 to disable the timer.

anyinfo Logical (required). Any variable or word identifier.
This parameter is needed by FCONTROL to satisfy the
internal requirements of this intrinsic; however, it
serves no other purpose and is not modified by the
intrinsic.

Reading the Terminal
Input Timer

You can read the result from the terminal input timer with the
FCONTROL intrinsic. The result will be valid only if the terminal input
was preceded by a call to enable the terminal input time. If valid,
the result is the time, in hundredths of seconds, required for the last
direct, unbuffered serial input on the terminal.

The format for this application of the FCONTROL intrinsic is:

IV Iv L
FCONTROL (filenum,controlcode,inputtime) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the number of the terminal.

controlcode Integer by value (required). The integer 22.

inputtime Logical (required). A word to which the input time is
returned (in hundredths of seconds).

Figure C-1 contains a program that generates an ASCII character,
instructs the user to enter this character on the terminal, then
measures and displays the reaction time of the user.

At line 26, the statement:
FCONTROL (IN,21,DUMMY);

enables the terminal input timer so that the reaction time of the
user can be measured. The parameter IN supplies the file number of
the terminal and was obtained through the FOPEN intrinsic call (see
statement 19 in the program).

At line 28, the statement:
FCONTROL (IN,4,TIME OUT);

is used to set a time-out interval of ten seconds (see statement 5

in the program). If there is no response to the FREAD intrinsic call
(statement 33) within ten seconds, a CCL condition code is returned
and the program displays the message:

YOU’RE TOO SLOW!
At line 45, the statement:
FCONTROL (IN,22,TIME);

reads the reaction time from the terminal input timer. This result is
returned to the word TIME.

At line 47, the statement:
ASCII (TIME%10,10,CRESP (15);

multiplies the value of TIME by ten and converts this result to an
ASCII string so that the user’s reaction time, in milliseconds, can
be displayed. The resulting ASCII string is stored in the byte array
CRESP,starting at the 16th position (CRESP (15)).

Terminal Characteristics C-9

At line 48, the statement:

FWRITE (OUT,RESPONSE,17,0);

displays the reaction time. (Arrays CRESP and RESPONSE have been
equivalenced; see statements 12 and 13.)

PAGE 0001 HEWLETT-PACKARD 32100A.05.01

00001000 00000
00002000 00000
00003000 00000
00004000 00004
00005000 00000
00006000 00000
00007000 00004
00008000 00004
00002000 00011
00010000 00043
00011000 00020
00012000 00031
00013000 00021
00014000 00021
00015000 00021
00016000 00021
00017000 00021

0

[O O e o R R o Y o B i e)

1

$CONTROL USLINIT

BEGIN

BYTE ARRAY INNAME(O:5) :="INPUT ";

BYTE ARRAY OUTNAME(O:6):="0UTPUT ";

INTEGER IN,OUT,LGTH,DUMMY,TIME,TIMEOUT:=10;

ARRAY BUFR(0:3):="TYPE X",0;

BYTE ARRAY CBYF(*)=BUFR;

ARRAY INSTRUCTIONS(O:34):="REACTION TIMER: ",%6412,
"TYPE THE REQUESTED CHARACTER AS QUICKLY AS YOU CAN. ";
ARRAY MSG(0:24):=:TRY AGAIN? (Y/N)","WRONG CHARACTER.",
%6412 ,"YOU’RE TOO SLOW!";

ARRAY RESPONSE(0:16) :="REACTION TIME:MILLISECONDS";
BYTE ARRAY CRESP (x)=RESPONSE;

INTRINSIC FOPEN,FREAD,FWRITE,FCONTROL,ASCII,TIMER,QUIT;

END OF DECLARATIONS

00018000 00021
00019000 00021
00029000 00007
00021000 00012
00022000 00022
00023000 00025
00024000 00032
00025000 00035
00026000 00035
00027000 00041
00028000 00044
00029000 00050
00030000 00053

1
1
1
1
1
1
1
1
1
1
1
1

1

IN:=FOPEN(INNAME,!45; <<&STDIN>>

IF < THEN QUIT(1); <<CHECK FOR ERROR>>

QUT :=FOPEN (OUTNAME, %414,%1); <<$STDLIST>>
IF < THEN QUIT(2); <<CHECK FOR ERROR>>
FWRITE(OUT,INSTRUCTIONS,35,0); <<user ul DIRECTIONS>>
IF < THEN QUIT(3; <<CHECK FOR ERROR>>

LOOP:

FCONTROL(IN,21,DUMMY; <<ENABLE TIMER READ>>
IF < THEN QUIT(4); <<CHECK FOR ERROR>>
FCONTROL(IN,4,TIMEQUT); <<ENABLE TIMEQOUT>>
IF < THEN QUIT(5): <<CHECK FOR ERROR>>
CBUF(5) :=INTEGER(TIMER), (11:5)+}73;

<<GENERATE A CHARACTER>>

00031000 00062
00032000 00067
00033000 00072

00034000 00101
00035000 00102
00036000 00102
00037000 00110
00038000 00120
00039000 00120
00040000 00126

C-10 Terminal Characteristics

1
1
1

== NNNN P

FWRITE (OUT,BUFR,3,%320); <<REQUEST USER INPUT>>
IF < THEN QUIT(6); <<CHECK FOR ERROR>>
LGTH:=FREAD(IN,BUFR(3),~1; <<READ CHARACTER>>

IF < THEN <<TIMEQUT OCCURRED>>

BEGIN)

FWRITE<QUT,MSG(16),9,8>; <<T00 SLOW MESSAGE>>

IF < THEN QUIT(7) ELSE GO NEXT; <<CHECK FOR ERROR>>
END:

IF CBUF(5)<>CBUF(6) THEN <<INCORRECT CHARACTER>>
BEGIN

00041000 00126 2 FWRITE<OUT,MSG(8),8,0>; <<WRONG CHARACTER MESSAGE>>
00042000 00134 2 IF < THEN QUIT(8) ELSE TO NEXT; <<CHECK FOR ERROR>>
00043000 00141 2 END:

00044000 00141 1 MOVE RESPONSE (7) :=" "; <<RESET RESPONSE TIME>>

00045000 00153
00046000 00157
00047000 00162
00048000 00171
00049000 00177
00050000 00202
00051000 00202
00052000 00207

FCONTROL(IN,22,TIME); <<READ INPUT TIME>>

IF <> THEN QUIT(9) <<CHECK FOR ERROR>>
ASCII<TIME*10,10,CRESP(15)>; <<CONVERT TIME>>
FWRITE(QOUT,RESPONSE,17,0); <<REACTION TIME>>
IF < THEN QUIT(10); <<CHECK FOR ERROR>>

NEXT:

FWRITE(OUT,MSG,8,%320); <<CONTINUE TEST>>

IF < THEN QUIT(11) <<CHECK FOR ERROR>>

[I N S S e o =t o i \° 2 S 2 N

00053000 00212 1 FREAD(IN,BUFR(3) ,—1); <<GET Y/N ANSWER>>

00054000 00220 1 IF < THEN QUIT(12); <<CHECK FOR ERROR>>
00055000 00224 1 IF CBUF(6)="Y" THEN GO LOOP; <<Y-CONTINUE TEST>>
00056000 00232 1 END

PRIMARY DB STORAGE=),016; SECONDARY DB STORAGE=%00130

NO. ERRORS=000; NO. WARNING+000

PROCESSOR TIME=0:00:03; ELAPSED TIME=0:00:10

Figure C-1. Using FCONTROL to Enable/Read title the Terminal Input Timer (1 of 2)

A sample run of the program of Figure C-1 is shown below. User
input is underlined in this example:

:RUN TIME

REACTION TIMER

TYPE THE REQUESTED CHARACTER AS QUICKLY AS YOU CAN
TYPE M

YOU’RE TOO SLOW!

TRY AGAIN? (Y/N) Y

TYPE> > B

REACTION TIME: 9670 MILLISECONDS
TRY AGAIN? (Y/N) Y

TYPE UU a

REACTION TIME: 4090 MILLISECONDS
TRY AGAIN? (Y/N) Y

TYPE BB a

REACTION TIME: 1790 MILLISECONDS
TRY AGAIN? (Y/N) Y

TYPE ID B

WRONG CHARACTER

TRY AGAIN? (Y/N) N

END OF PROGRAM

Terminal Characteristics C-11

End of Record Normally, when using a terminal, you indicate the end of a line
Characters by entering a carriage return (with the RETURN key on most

terminals). With the FCONTROL intrinsic, however, you can specify
that an additional character, such as an equal sign, a period, or an
exclamation point, be recognized as a line terminator. On subsequent
read operations to the filenum specified in your FCONTROL Call, the
input operation is terminated by the specified character: receipt of
this character causes MPE to terminate an FREAD and return to
your program. The character is returned to your buffer. No carriage
return or line feed is generated.

The format for this application of the FCONTROL intrinsic is:

IV v L
FCONTROL (filenum,controlcode,character) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 25.

character Logical (required). A word identifier supplying (in
the right byte) the character to be used as a line
terminator. The left byte of this word can contain
any information &—; it is ignored by the intrinsic. If
the character null (%0) is specified in the character
parameter, the terminal reverts to its normal
line-control operation.

The following characters are not recognized as line-terminating
characters during normal reads:

ASCII Character Octal Code
Backspace (CONTROL-H) %10
Line Feed (CONTROL-J) %12
Carriage Return (CONTROL-M) %15
X-ON (CONTROL-Q) %21
DC?2 (CONTROL-R) %22
X-OFF (CONTROL-S) %23
Line Delete (CONTROL-X) %30
CONTROL-Y (CONTROL-Y) %31
Escape (CONTROL-{) %33
Del %177

In addition, when you are working at the Console, CONTROL-A will
not be recognized as a line terminator.

C-12 Terminal Characteristics

Break Functions

Enabling and Disabling
System Break Function

Enabling and Disabling
Subsystem Break
Function

Note

As an example, to specify a period as an additional line terminator
for a terminal, the following intrinsic call could be used:

FCONTROL (TERMFN,25,CHAR);

The word CHAR contains the octal value %56 (indicating a period) in
the right byte. The left byte can contain any value.

With the FCONTROL intrinsic, you can enable and disable the system
and subsystem break functions.

You can programmatically enable or disable a terminal’s ability to

generate a system break request with the FCONTROL intrinsic. (The
default is for this ability to be enabled.) System break requests are
initiated by pressing the BREAK key or by calling the CAUSEBREAK
intrinsic.

The format for this application of the FCONTROL intrinsic is:

v IV L
FCONTROL (filenum,controlcode,anyinfo) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 15 to enable
the break function, or 14 to disable the break
function.

anyinfo Logical (required). Any variable or word identifier.
This parameter is needed by FCONTROL to satisfy the
internal requirements of the intrinsic; however, it
serves no other purpose and is not modified by the
intrinsic.

As an example, to enable the break function, the following intrinsic
call could be used:

FCONTROL (TERMFN,15,DUMMY);

Using FCONTROL to disable break does not affect operation of the
CAUSEBREAKX intrinsic.

All terminals are initially set to disable (not accept) subsystem break
requests, generated by entering CONTROL-Y during a session. You
can, however, programmatically enable and again disable a terminal’s
ability to generate subsystem break requests with the FCONTROL
intrinsic.

The format for this application of the FCONTROL intrinsic is:

Iv Iv L
FCONTROL (filenum,controlcode,anyinfo) ;

Terminal Characteristics C-13

Note

Operating in Normal
Mode

Note

C-14 Terminal Characteristics

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 17 to enable
the sub-system break function, or 16 to disable the
subsystem break function.

anyinfo Logical (required). Any variable or word identifier.
This parameter is needed by FCONTROL to satisfy the
internal requirements of the intrinsic; however, it
serves no other purpose and is not modified by the
intrinsic.

As an example, to enable the subsystem break function, the following
intrinsic call could be used:

FCONTROL (TERMFN, 17 ,DUMMY) ;

For more information about the CONTROL-Y trap, consult the
XCONTRAP intrinsic in the MPFE V Intrinsics Reference Manual
(32033-90007).

During input (using FREAD, READ, or READX), a number of characters
and character sequences have special meanings to MPE. These
characters are listed in Table C-4.

In Table C-4, the superscript ¢ denotes a control character. Thus
“X¢” means “CONTROL-X.” These descriptions may be used
interchangeably.

Table C-4. $pecial Characters

Character

Meaning

AC

He (backspace)

J¢ (LF Jlinefeed)

M¢ (CR,

carriage return)

QC
(DC1, X-ON)

R¢ (DC2)

sce
(DC3, X-OFF)

When you are operating from the System Console, A©
initiates a Console command.

Deletes the previous character. (To delete n characters,
enter H® n times.)

For any terminal with a linefeed entry, you may strike
this key and a carriage return will be echoed. The
linefeed character is not placed in the input buffer.

This mechanism is primarily intended for devices which
do not have an automatic line wraparound feature. For
reads of length greater than the device’s line width, LFs
may be included so that the input will be displayed on
several lines on the device. thus avoiding overstrike of
characters in the last column position of the device.

Normal end-of-record character.

Places terminal in tape mode, allowing input from
paper tape. This facility is supported only on the Series
II/I11. When enabled, the tape-mode option inhibits the
implicit linefeed normally issued by MPE each time a
carriage return is entered. The tape-mode option also
inhibits responses to H¢ and X€ entries. Thus, when X¢
is received and tape mode is in effect, no exclamation
points (!!) are sent to the terminal. Tape mode is
terminated by Y©.

If used after S¢, Q° also resumes write operation during
output (cancels S5¢).

Indicates the beginning of a block mode read and

starts a special block mode timer. If the read does not
complete successfully within the timer period, the read
is returned with an FSERR 27. Normal block mode
transfers proceed as follows: The computer sends DC1 to
the terminal to initiate a read. If the user has pressed
ENTER for a block mode read, the terminal then sends
DC2 (R) to the computer to indicate a block mode
read; the computer sends another DC1 to the terminal
to initiate the transfer; the terminal then sends the data
to the computer.

NOTE: R€ has special significance only for termtypes
which support block mode.

Suspends the write operation during output. Output
may be resumed with Q°.

Terminal Characteristics C-15

Enabling and Disabling
User Block Transfers

C-16 Terminal Characteristics

Table C-4. Special Characters (continued)

Character Meaning

X Deletes (Ignores) all characters read on this line and
restarts the read. The system responds with a triple
exclamation point (!!!) followed by a carriage return and
linefeed.

Ye If the terminal is not in tape mode, Y¢ requests
subsystem break. If the terminal is in tape mode, Y€
returns it to the keyboard mode.

BREAK Requests a system break.

(ESC): Places the terminal in the echo-on mode so that
characters input are echoed on the terminal by MPE.

NOTE: (ESC) indicates the ESCAPE key on your
terminal keyboard.

(ESC); Place the terminal in echo-off mode so that characters
input are not echoed on the terminal by MPE.

The defined control characters A€, H¢, Q¢, §¢, X¢, Y¢, CR, and LF
are recognized even when following an (ESC) key entry. However,
entry of (ESC) followed by any other character (other than one of
these control characters, or a semicolon) is read as a two character
string in your input stream.

User mode block transfers (from block mode terminals such as
the HP 2644/2645) can be enabled or disabled with the FCONTROL
intrinsic. User mode block transfers are disabled in normal MPE
operation. The DC2 (CONTROL-R), transmitted by the terminal
when you press ENTER, is passed to your program for action At
this point you may write escape sequences to the terminal (i.e., to
position the cursor) before reading the data from the terminal.

The format for this application of the FCONTROL intrinsic is:

v v L
FCONTROL (filenum,controlcode,anyinfo) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal

controlcode Integer by value (required). The integer 28 to disable
user mode block transfers, or 29 to enable user mode
block transfers.

anyinfo Logical (required). Any variable or word identifier.
This parameter is needed by FCONTROL to satisfy the
internal requirements of this intrinsic; however, it
serves no other purpose and is not modified by the
intrinsic.

Note 1

Changing Input Echo
Facility

Note
¥

Data overruns may occur during block mode transfers. Your
applications programs must check for successful completion of each
FREAD operation and retry as required. Since a data overrun on the
last character read will cause the port to hang on the ADCC (Series
30/33/40/44). The normal block read timer will not work for own
handshaking.

You can programmatically determine whether MPE transmits
(echoes) input from the terminal keyboard back to the terminal
display by calling the FCONTROL intrinsic to turn the echo facility on
or off.

When the echo facility is on, input read from the terminal is echoed
to the terminal by the terminal controller hardware. If the terminal
is operating in full-duplex mode, the echoed information appears

as normal printed lines. If the terminal is in half-duplex mode on

a full-duplex line, however, the echoed printing may be illegible.

As you enter input on such terminals, it is simultaneously printed

by the terminal itself and subsequently overwritten by the echoed
information. When you log on, all terminals are assumed to be in the
full-duplex mode.

The format for this application of the FCONTROL intrinsic is:

IV Iv L
FCONTROL (filenum,controlcode,last) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 12 to turn
the echo facility on, or 13 to turn it off.

last Logical (required). A word identifier to which the
previous echo status is returned, where:

0 = Echo on.
1 = Echo off.

As an example, to turn the echo facility off, the following intrinsic
call could be used:

FCONTROL (TERMFN, 13,LAST) ;

After the intrinsic is executed, the word LAST contains the value 0 or
1 to reflect the previous echo facility status.

In addition to the FCONTROL intrinsic, the echo facility can be
switched on and off by entering the following two-character sequences
from your terminal:

(ESC) (:) = To turn the echo facility on.
(ESC) (5) = To turn the echo facility off.

Terminal Characteristics C-17

Enabling and Disabling
Tape-Mode Option

Enabling and Disabling
Line Deletion Echo
Suppression

Note
v

C-18 Terminal Characteristics

For Series II/III only you can programmatically enable or disable
the tape-mode option for a terminal with the FCONTROL intrinsic.
When enabled, the tape-mode option inhibits the implicit line feed
normally issued by MPE each time a carriage return is entered.
The tape mode option also inhibits responses to CONTROL-H and
CONTROL-X entries. Thus, when CONTROL-X is received and
tape mode is in effect, no exclamation points (!!!) are sent to the
terminal. To inhibit carriage return and/or linefeed for FREAD, use
the FSETMODE intrinsic (see the MPE V Intrinsics Reference Manual
(32033-90007).

The format for this application of the FCONTROL intrinsic is:

Iv Iv L
FCONTROL (filenum,controlcode,anyinfo) ;

The parameters are:

finenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 19 to enable
tape mode, or 18 to disable tape mode.

anyinfo Logical (required). Any variable or word identifier.
This parameter is needed by FCONTROL to satisfy the
internal requirements of this intrinsic; however, it
serves no other purpose and is not modified by the
intrinsic.

As an example, the following intrinsic call could be used to enable
tape mode:

FCONTROL (TERMFN, 19 ,DUMMY) ;

In normal MPE operation, CONTROL-X is interpreted as a line
deletion character, and the character string “!!!” is printed on the
terminal when it is used. You can suppress the line deletion echo, so
that the character string is not displayed on the terminal, with the
FCONTROL intrinsic.

This application of FCONTROL disables only the “!!!” string; it does
not disable the line deletion operation.

The format for this application of the FCONTROL intrinsic is:

IV IV L
FCONTROL (filenum,controlcode,anyinfo) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

Reading Paper Tapes
Without X-OFF Control

Operating in
Transparent (Unedited)
Mode

controlcode Integer by value (required). The integer 34 to disable
the line deletion echo, or 35 to enable the line
deletion echo.

anyinfo Logical (required). Any variable or word identifier.
This parameter is needed by FCONTROL to satisfy the
internal requirements of this intrinsic, however, it
serves no other purpose and is not modified by the
intrinsic.

The X-OFF control character, written by pressing the X-OFF key
on a teletype terminal, is used to delimit data input on paper tape.
When a teletype tape reader encounters this character while reading
a tape, reading halts until the program requests more input data.

You can programmatically read data from paper tapes not containing
the X-OFF control character, or from tapes input through terminals
not recognizing this character, with the PTAPE Intrinsic. In the latter
case, the X-OFF characters are stripped from the tape. Tape input
terminates when CONTROL-Y is encountered, returning control to
the terminal. Prior to calling the PTAPE intrinsic, you must be sure
to position the endfile pointer in the disk file to the proper position.
If you are reading more than one tape, you should set the disk file’s
end-of-file pointer to zero, if necessary, before issuing the first PTAPE
intrinsic call.

A PTAPE intrinsic call such as:
PTAPE (TEMFN,DISCFL);

could be used to read a paper tape not containing the X-OFF control
character, or to read a paper tape input through a terminal that does
not recognize this character. The data would be stored in the disk
file whose file number is specified by DISCFL.

To inhibit carriage return and linefeed after FREAD, use the FSETMODE
intrinsic (see the MPE V Intrinsics Reference Manual (32033-90007).

Your terminal can be set in unedited mode with the FCONTROL
intrinsic. In unedited mode, all characters, except those specified
below, are passed to your input buffer.

The end-of-record character terminates input from the terminal in
unedited mode, as a carriage return does in normal mode.

If enabled, the Attention character terminates input and causes a
Subsystem Break in unedited mode, as a CONTROL-Y does in
normal mode.

For block-mode terminal types, input of a DC2 (CONTROL-R) as
the first character, r embedding the character pair DC2CR anywhere

in the data stream, causes those characters to be stripped out and a
DC1 (CONTROL-Q) to be written.

Terminal Characteristics C-19

Note i

Operating in Binary
Mode

C-20 Terminal Characteristics

For the logical System Console, CONTROL-A (Start of Header)

signals the beginning of a Console command.

The X-ON/X-OFF (DC1/DC3) handshake characters are assumed to
be protocol characters and are stripped from the input stream.

If a terminal is accessed with FOPEN multiple times, and FCONTROL
is used to set unedited mode for any of the terminal files, unedited
mode will be in effect on all of the terminal files.

No automatic linefeed is output to the terminal when input
terminates in unedited mode.

In unedited mode, only the ENQ character has special consequences
on output. For terminals doing the ENQ/ACK handshake, output is
suspended following an ENQ to wait for an ACK from the terminal;
generally, the terminal strips the ENQ from the data stream.

The unedited mode is reset to normal when an FCLOSE intrinsic
call is issued against the terminal, or when the chars parameter of
FCONTROL equals zero. (See below.)

The unedited mode is disabled while the terminal is in Break or
Console mode.

Use FCONTROL to set unedited terminal mode:

IV IV L
FCONTROL (filenum,controlcode,chars) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 41.
chars Logical (required). A logical word, as follows:
Bits (0:8) - Attention character.
Bits (8:8) - End-of-record character.

If chars = 0, the unedited mode is reset to normal.

Binary transfers can be enabled or disabled with the FCONTROL
Intrinsic. (By default, binary transfers are disabled in normal MPE
operation.) Binary reads are terminated only by the Read Byte
Count or by the Read Time Out.

The format for this application of the FCONTROL intrinsic is:

Iv IV L
FCONTROL (filenum,controlcode,anyinfo) ;

The parameters are:

filenum Integer by value (required). A word identifier
supplying the file number of the terminal.

controlcode Integer by value (required). The integer 26 to disable
binary transfers, or 27 to enable binary transfers.

anyinfo Logical (required). Any variable or word identifier.
This parameter is needed by FCONTROL to satisfy the
internal requirements of this intrinsic; however, it
serves no other purpose and is not modified by the
intrinsic.

Terminal Characteristics C-21

Section Divider

D. ASCIl Character Set

ASCII Character Set

D

Character

Octal Equivalent

Octal Equivalent

NHKXI<ocHTOROoOZENRu~ogQrEOOQWm >

e i T — s - S e S o TP S & o -

040400
041000
041400
042000
042400
043000
043400
044000
044400
045000
045400
046000
046400
047000
047400
050000
050400
051000
051400
052000
052400
053000
053400
054000
054400
055000

060400
061000
061400
062000
062400
063000
063400
064000
064400
065000
065400
066000

000101
000102
000103
000104
000105
000106
000107
000110
000111
000112
000113
000114
000115
000116
000117
000120
000121
000122
000123
000124
000125
000126
000127
000130
000131
000132

000141
000142
000143
000144
000145
000146
000147
000150
000151
000152
000153
000154

_ ASCII Character Set D-1

D-2 ASCIl Character Set

Character Octal Equivalent Octal Equivalent
m 066400 000155
n 067000 000156
o 067400 000157
p 070000 000160
q 070400 000161
r 071000 000162
s 071400 000163
t 072000 000164
u 072400 000165
v 073000 000166
w 073400 000167
x 074000 000170
y 074400 000171
z 075000 000172
0 030000 000060
1 030400 000061
2 031000 000062
3 031400 000063
4 032000 000064
5 032400 000065
6 033000 000066
7 033400 000067
8 034000 000070
9 034400 000071

NUL 000000 000000
SOH 000400 000001
STX 001000 000002
ETX 001400 000003
EOT 002000 000004
ENQ 002400 000005
ACK 003000 000006
BEL 003400 000007
BS 004000 000010
HT 004400 000011
LF 005000 000012
VT 005400 000013
FF 006000 000014
CR 006400 000015
SO 007000 000016
SI 007400 000017
DLE 010000 000020
DC1 010400 000021
DC2 011000 000022
DC3 011400 000023
DC4 012000 000024
NAK 012400 000025

Character Octal Equivalent Octal Equivalent
SYN 013000 000026
ETB 013400 000027
CAN 014000 000030
EM 014400 000031
SUB 015000 000032
ESC 015400 000033

FS 016000 000034
GS 016400 000035
RS 017000 000036
Us 017400 000037
SPACE 020000 000040
! 020400 000041
” 021000 000042
021400 000043
$ 022000 000044
% 022400 000045
& 023000 000046
) 023400 000047
(024000 000050
) 024400 000051

* 025000 0000
+ 025400 000053
¢ 026000 000054
- 026400 000055
. 027000 000056
/ 027400 000057
: 035000 000072
; 035400 000073
< 036000 000074
= 036400 000075
> 037000 000076
? 037400 000077
Q 040000 000100
[055400 000133
\ 056000 000134
] 056400 000135
" 057000 000136
- 057400 000137
¢ 060000 000140
{ 075400 000173
| 076000 000174
1 076400 000175
- 077000 000176
DEL 077400 000177

First Character Second Character
(4 A N A Y
L 1 i

0111213 }4}15]6]718|9]10](11]12]13|14]15

ASCIl Character Set D-3

s

Section Divider

E. Disk File Labels

Disk File Labels

E

Whenever a disk file is created, MPE automatically supplies a file
label in the first sector of the first extent occupied by that file. Such
labels always appear in the format described below. (User-supplied
labels, if present, are located in the sectors immediately following the
MPE file label.) The contents of a label may be listed by using the
LISTF —1 command described in the MPF V Commands Reference
Manual (32033-90006).

Words Contents
0-3 Local file name
4-7 Group name
8-11 Account name
12-15 User name of file creator
16-19 File lockword
20-21 File security matrix
22 (Bits 0:15) Not used

(Bit 15:1) File secure bit:

If 1, file secured
If 0, file released

23 File creation date
24 Last access date
25 Last modification date
26 File code
27 File control block vector
28 (Bit 0:1) Store Bit (If on, STORE or RESTORE in
progress)
(Bit 1:1) Restore Bit (If on, RESTORE in
progress)
(Bit 2:1) Load Bit (If on, program file is loaded)
(Bit 3:1) Exclusive Bit (If on, file is opened.
-with exclusive access)
(Bits 4:4) Device sub-type
(Bits 8:6) Device type
(Bit 14:1) File is open for write
(Bit 15:1) File is open for read
29 (Bits 0:8) Number of user labels written

Disk File Labels E-1

Note

E-2 Disk Fife Labels

Words
(Bits 8:8)
30-31
32-33

34

35

36

37

38

39 (Bits 0:8)
(Bits 8:3)
(Bits 11:5)

40

41

42-43

44-45

46-107

108-109
110

112-113
114-115
116-117
120-123
124-127

Contents
Number of user labels available
File limit in blocks
Private volume information (while file
is open)
File label check sum (used for error
detection)
Cold-load identity
FOPTIONSs specifications
Logical record size (in negative bytes)
Block size (in words)
Sector offset to data
Not used
Number of extents-1
Last extent size in sectors
Extent size in sectors
Number of logical records in file
First extent descriptor
Remaining extent descriptors (32
maximum)
Restore time
Restore date
Start of file block number
Block number of End-of-file
Number of open and close records
Not used
Device class name

An extent descriptor (words 44 through 107 above) is a double-word.
The first byte contains the volume table index of the volume in which
the extent resides; the remaining three bytes of the double-word
extent descriptor contain the first sector number of the extent.

3

Section Divider

F. End-of-File Indication

F

End-of-File Indication

Note

The end-of-file indication will be returned by the card reader and
tape drivers under conditions specified by the initiators of read
requests. The type of requests are as follows:

Type Class of End-Of-File
A All records that begin with a colon (:).
B All records that contain, starting in the first byte,

EOD, E0J, JOB and DATA. (See Note.)

E Hardware-sensed end-of-file.

If the word count is less than three or the byte count is less than six,
then Type B reads are converted to Type A reads.

In utilizing the card/tape devices as files via the file system, the
following types are assigned:

File Specified Type

$STDIN Type A.

$STDINX Type B.

Dev=CARD/TAPE Type B, if device job/data accepting. Type

E, if device not job/data accepting.

Any subsequent requests initiated by the driver following sensing of
an end-of-file condition will be rejected with an end-of-file indication.

When reading from an unlabeled tape file, the request encountering a
tape mark will respond with an end-of-file indication but succeeding
requests will be allowed-to continue to read data past the tape mark.
Under these conditions, it is the responsibility of the caller to protect
against the reading of unrelated data behind an end-of-file and to
prevent reading off the end of the reel.

End-of-File Indication F-1

Section Divider

G. Magnetic Tape Labels

Magnetic Tape Labels

G

Labels conforming to ANSI-standard can be read and written on
magnetic tape files by MPE. IBM-standard labels can be read, but
cannot be written by MPE.

The tape labels written by MPE consist of:

Volume Header
File Header 1
File Header 2
End-of-File 1
End-of-File 2
End-of-Volume 1

End-of-Volume 2

At the beginning of each reel of tape.
At the beginning of each file on the reel.
Following File Header 1.

At the end of each file on the reel.
Following End-of-File 1.

At the end of a reel if the tape spans more
than one volume.

Following End-of-Volume 1.

The file labels (file headers, end-of-file, and end-of-volume labels)
are specified using the FILE command or the FOPEN intrinsic. Each
label is 80 bytes long and is formatted as shown in Figure G-1 and

Table G-1.

User-supplied labels, if any, are located on the tape as shown in
Figure G-1. User-supplied labels can only be written on tape labeled

Magnetic Tape Labels G-1

with MPE tape labels, and the user labels must be exactly 80 bytes,
to conform to the ANSI standard.

v| HlH E|E H| H E|lE
U 1) U v
AP 7| Recorp rRecorp | T{©C|°| |7 | P|®° H 7| rRecorp recorp| T[99 | T|T
L|R|R : MiF|F|{T|M[R]|R M M E[F| T[MM
n L L 1 n L
11]2 1]2 1]2 12
! Note: When the file spans more than
MULTIPLE FILES ON A SINGLE VOLUME one volume, EOV is wrltten instead of EOF.
VOLUME 1 OF 3
FILE A FILE B
VIHHL, CECORD EE|, HEHL LAST ElE
O|D|D H T RECORD T (o] Ko} T T D{D H T RECORq gics'_?'g TIO|O| T T
L{RiR[™M ! M| F|F| [m|R|R| |M| MIViViMl M
L] l(FILE A) n L L REEL
1{1]2 112 1]2 1]2
VOLUME 2 OF 3
FILE B
v|H| H E|E
FIRST
CONTINUATION OF LAST
955 |7 OR-THS FILE B RECORD(T|O| O[T | T
L/R Rl |m|REEL ON THIS[M|V|VIM | M
1]h]2 (FILE B) REEL s
VOLUME 3 OF 3
FILE B FILE C
v|HlH FIRST EgUTHgUT TEEU
Ol oo |T| RECORD | | Recormp | T | © P12 01T | recorp recorp| " |99 LTI T
L{R[R] M| REEL n MIFIF|TIM| RlIR M) " MIFIF] "ImMim
L L L
1]1]2 (FILE B) 12 1]2 1]2
MULTIPLE FILES ON MULTIPLE VOLUMES
LG200016_061

Figure G-1. MPE Tape Labels (Conforming to ANSi-Standard)

G-2 Magnetic Tape Labels

Table G-1.
Format of Tape Labels Written by MPE. (ANSI Standard)

VOLUME HEADER LABEL (80 BYTES)

POSITION| CONTENTS COMMENTS

Bytes 1-4 |VOL n Indicates volume label (n specifies the
volume number). Appears on each label.

Bytes 5-10 |volume id Six-character identifier as supplied by
FILE command, FOPEN intrinsic, or
Console Operator.

Bytes Blanks Reserved for future use.

11-37

Bytes Blanks Not used by MPE. (Reserved for owner
38-51 identification in ANSI-standard labels.)
Bytes Blanks Reserved for future use.

52-79

Byte 80 1 Indicates that label conforms to

ANSI-standard.

Magnetic Tape Labels G-3

G-4 Magnetic Tape Labels

Table G-2.
Format of Tape Labels Written by MPE. (ANSI Standard)

FILE HEADER LABEL (80 BYTES)

POSITION CONTENTS COMMENTS

Bytes 1-4 |HDRI Indicates file header 1 label. Appears
before each file on the reel.

Bytes 5-21 |filename.groupname| Used for file identifier in ANSI-standard
labels.

Bytes volume set id Six-character identifier of the first

22-17 volume in a set, as supplied by FILE
command, FOPEN intrinsic, or Console
Operator.

Bytes reel number A four-digit entry from 0001 to 9999,

28-31 indicating the relative position of a reel
in a volume set.

Bytes file sequence A four-digit entry from 0001 to 9999,

32-35 number indicating the relative position of a file
within a volume set.

Bytes Generation number | Always 0001.

36-39

Bytes Version number Always 00.

40-41

Bytes file creation date Indicates date on which file is written to

42-47 magnetic tape.

Bytes file expiration date [Indicates date file can be overwritten.

48-53

Bytes 54 %230 or blank If %230, indicates the file has a
lockword.

Bytes Block count Written as “000000”; otherwise ignored.

55-60

Bytes System ID Written as “HP MPE 3000”.

61-80

Table G-2.

Format of Tape Labels Written by MPE. (ANSI Standard)

(continued)

FILE HEADER LABEL (80 BYTES)

POSITION| CONTENTS COMMENTS

Bytes 1-3 |label identifier Indicates file header 2 label.

Byte 4 label number normally 2

Byte 5 record format “F” indicates a fixed record format “V”
indicates a variable record format “U”
indicates an undefined record format

Bytes 6-10 | block length Indicates the block length (in character
format)

Bytes record length Indicates the record length (adhering to

11-15 MPE rules) in characters.

Bytes lockword Indicates the MPE lockword.

16-23

Bytes Blank Not used by MPE.

24-36

Byte 37 record type “A” indicates an ASCII record. “B”
indicates a Binary record.

Byte 38 carriage control “C” indicates carriage control. Blank
indicates no carriage control.

Bytes Blank Not used by MPE.

39-80

Magnetic Tape Labels G-5

Section Divider

Index

Symbols

:BUILD, :BUILD command, 3-7
:FILE, :FILE command, 3-7
$NEWPASS, 5-9

$OLDPASS, 5-9

A

Access
exclusive, 5-14, 5-15
exclusive write, 5-14
global multi-, 5-16
multi-, 5-16
semi-exclusive, 5-15
sharable, 5-13
share, 5-15

Access mode, 3-8
append only, 7-2
input/output, 7-2
read only, 7-2
to restrict file access, 7-1
update, 7-2
write (save) only, 7-2
write only, 7-2

Account level security
access modes, 7-5
other accounts, 7-5
system account, 7-5
user types, 7-5

AOPTIONS, 3-7, A-8

ASCII (American Standard Code for Informa-

tion Interchange, 2-1

Binary mode, C-20

Binary,
data, 2-1
file, 2-1

Block, 2-7
blocking factor, 2-7

Index

maximum blocking factor, 2-7
used by COBOL, 2-14

Blocking, 2-13
system file label, 2-13

Blocks, 2-9, 2-11
blockfactor, 2-10
fixed-length records, 2-9
logical record size (recsize), 2-10
recsize, 2-10
variable-length records, 2-11

Break functions
disabling, C-13
enabling, C-13

Buffer control intrinsics
FCONTROL, 6-23
FSETMODE, 6-23

Buffers
determine number of, 6-22
number of buffers, 6-22

C

Changing input echo facility, C-17

Circular files, 8-25
intrinsics, 8-26

Command
:ALTSEC, 7-8
:BASIC, 3-21
:BUILD, 2-5, 3-7
:FILE, 2-5, 3-7, 4-4
:HEADOFF, 3-24
:HEADON, 3-24
:LISTF, 4-4
:LISTFTEMP, 4-4
:PURGE, 6-17
:RELEASE, 6-16, 7-9
:RENAME, 5-4
:SECURE, 6-17

Control
pointing, 6-15
rewinding, 6-15
spacing, 6-14
Copy access, 8-4

Index (Continued)

D

Device configuration, 3-21
BASIC interpreter, 3-21
FORTRAN program, 3-21
SPL program, 3-21

Devicefiles
devices, 3-20
spooled, 3-2

Devices,
input only devices (serial), 3-23
input/output devices (parallel), 3-23
input/output devices (serial), 3-23

Direct-access file reading, optimizing, 6-9

Directory
job temporary file, 4-4
searching, 4-4
system file, 4-4

Disc file label, 3-11
account name, 3-11
device sub-type, 3-12
device type, 3-12
file creator, 3-11
group name, 3-11
local file name, 3-11
lockword, 3-11
private volume, 3-12
restore date, 3-12
restore time, 3-12
security matrix, 3-11

Disc files, 3-2
security provisions changing, 7-9

Domain, 3-8, 4-1
changing, 4-3

Domains
NEW file, 4-1
OLD file, 4-2
TEMP file, 4-1

E

Extents, 3-3
extent allocation, 3-5
extent size, 3-3
sectors/block, 3-3
sectors/extent, 3-3

F

FCHECK, 8-11, B-8

FFILEINFO, 8-12, B-8

FGETINFO, 8-12, B-8

File, renaming, 3-20

File Copier Subsystem (FCOPY), 6-16

File codes, 3-15
user subprogram library (USL), 3-15

File designator, 3-18
actual, 3-8, 3-18
formal, 3-8, 3-18

File level security, default, 7-6
File name, 3-18

File pairs
duplicative, 5-9
interactive, 5-9

File placement, 3-2
extents, 3-3

Files
automatic blocking and deblocking, 6-20
back referencing, 5-5
buffered input/output, 6-18
filereference, 5-1
generic names, 5-§
inter-account transfers, 6-16
inter-group, 6-16
inter-system transfers, 6-17
lockwords, 5-3
passing, 5-9
system-defined, 5-1
transferring, 6-16
unbuffered 1/0, 6-21
user-defined, 5-1

Fixed-length records, 2-2

FOPEN
FOPEN intrinsic, 3-6
file copy, 8-7
file type, 8-6, 8-26
multi-access mode, 8-26
FOPTIONS, 3-7
Foreign Disc Facility (FDF), 3-24
FREADDIR, 6-3

FREADSEEK, 6-5

Index (Continued)

G unlabeled, 9-8
writing, 9-8
Group level security Magnetic tape file, labeled
access modes, 7-5 how to open, 9-17
other groups, 7-6 how to read, 9-21
public group, 7-6 how to write, 9-22

user types, 7-6 reading a user-defined file label, 9-23

Magnetic tape files, updating, 9-6
H Message files, examples, 8-13
Headers, :HEADON command, 3-24 Multi-record mode, 6-22

I N

I/O, relative, 6-14

NEW file, 4-1
Intrinsic
FCHECK, 8-11, B-8 NOWAIT, 3-9
FCLOSE, 8-1, 8-28 Nondestructive read, 8-4

FCONTROL, 6-23, 8-1, C-2

FGETINFO, 8-12, B-8

FOPEN, 2-5, 3-6, 8-1 o)
FREAD, 6-3, 8-1, 6-13

FREADDIR, 6-3, 6-13 ,
FREADSEEK, 6-9, 6-13 OLD file, 4-1
FSETMODE, 6-23 Overrides, 3-10
FUPDATE, 6-10

FWRITE, 6-3, 6-13, 8-1

FWRITEDIR, 6-3, 6-13

PRINTFILEINFO, B-2 P

Paper tapes, reading, C-19

L Parameters
. . . :FILE, 3-8
Line deletion echo suppression FOPEN. 3-8
disabling, C-18 ’
enabling, C-18 Physical record, 2-7
List files, 4-4 Pointer, initialization, 6-2
:FILE equations, 4-4
:LISTF command, 4-4
:LISTFTEMP command, 4-4 R
Lockwords, 5-3
Logical record, 2-7 Record
logical record, 2-7
updating, 6-10
M Record active, 2-14
Magnetic tape file Record format, 2-2, 3-8

reading, 9-2, 9-8 fixed-length, 2-2

Index (Continued)

undefined-length, 2-5
variable-length, 2-3

Record inactive, 2-14

Record pointer
logical, 6-1
physical, 6-1

Record selection
default, 6-3
random access, 6~3

Record size, 2-5
:BUILD command, 2-5
:FILE command, 2-5
default record sizes, 2-7
FOPEN intrinsic, 2-5
logical, 3-8
odd byte record lengths, 2-5
word boundry, 2-5

Relative I/O format, 2-14

Restricting file access
by type, 7-4
by user, 7-4

S

Sectors, sector boundary, 2-8

Security provisions
restoring, 7-9
suspending, 7-9

Software interrupt facility, 8-28

Software interrupts, 8-4, 8-28
example, 8-28

Status information
obtaining, B-1
PRINTFILEINFO, B-1

Supervisor process, 8-30

T

Tape label, writing, 9-14

Tape markers
Beginning of Tape (BOT), 9-1
End of Tape (EOT), 9-1
end-of-file, 9-3

FCONTROL (backward space to file mark),
9-3

FCONTROL (forward space to file mark), 9-3

FCONTROL (WRITE EOF), 9-2

FREAD, 9-2

FREADBACKWARD, 9-2

FSPACE, 9-2

FWRITE, 9-2

Tape-mode option
disabling, C-18
enabling, C-18

Tapes, labeled, 9-13
TEMP file, 4-1

Terminal
allocating a, C-3
changing speed, C-5
control of parity generation checking, C-6
input timer, C-9
output speed, C-5
parity sensing, C-4
read duration timer, C-8
specification, C-3
speed, C-4
time-out interval, C-7

Terminal characteristics
Advanced Terminal Processor (ATP), C-1
Asynchronous Data Communications Channel

(ADCC), C-1

Asynchronous Terminal Controller (ATC),
C-1

controlcodes, C-2

ENQ, C-2

Multipoint Terminal Software (DSN/MTS),
C-1

multipoint mode, C-1
point-to-point mode, C-1

Time-outs, 8-3

Trailers
‘HEADOFF command, 3-24
:HEADON command, 3-24

Transparent (unedited) mode, C-20

U

Undefined-length records, 2-5

User block transfers
disabling, C-16

Index (Continued)

enabling, C-16 W
User labels, 3-13

v WAIT, 3-9

Variable-length records, 2-3 Writer ID’s, 8-3

Manual Part Number 30000-90236 (bp HEWLETT

Printed in U.S.A. 06/87
E1089 PACKARD

