~HP 3000 Computer Systems

Data Entry Library

Reference Manual

HEWLETT {ho; PACKARD

5303 STEVENS CREEK BLVD.,, SANTA CLARA, CALIFORNIA, 95050

Part No. 306000.¢0050
Product No. 322064 Printed in U.B.A. 5/78

NOTICE

The information contained in this document is subject to change without netice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TQO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard,

This document contains proprietary information which is protected by copyright. All rights are reserved.
Ne part of this deeuament may be phatecopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyeight £1978 by REWLETT-PACKARD COMPANY

it

RO

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition, Within
the mantial, any page changed since the fast edition Is indicaled by printing the date the changes were made on the bottom
of the page, Changes are marked with & vertical bar in the margin. If an update is incorporated when an edition is reprinted,

these bars are removed hut the dates remain. No infonmation is incorporated into a rveprinting unless it appears as & |
prior update,

Third Edifion vt r i ne e vnn e May 1978

PRINTING HISTORY

New editions are compleie revisions of the manual. Update packages, which are issued belween editions, contain additional
and replacemeni pages to be merged into the manual by the customer. The date on the titie page and back cover of the
manual changes oniy when a new edition is published. When an ediiion is reprinied, all the prior updates to the edition

are incorporated. No information is incorporated into s reprinting unless it appears as a prior update. The edition does
noti ehange.

The sofiware product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updaies and fixes do not require manual changes, and

conversely, manual corrections may be done wilhout accompanying product changes, Therefore; do not expect a one to one
correspondence hefween product updates and manual updates.

First Edition. Jun 1976, 32206 4.00
Second Edifion.-. Mar 1977, . .00t i i e 32206A.00
Third Edition , et May 1978 i 32206A.01.07

PR PREFACE

This manual explains how to use the Data Entry Library (DEL/3000) for the HP 3000. (Operational
differences are noted for MPE-C as required.) Specifically, if shows you how to:

1. create and store on the system, various forms such as purchase orders, billing forms, or accounts
payable/receivable records

2. display, modify er delete the forms

3. write programs that eall DEL procedures to display the forms, accept and edit data transferred to
the forms, and optionally store the data in data files on the system.

Your user-written programs can be written in COBOL, FORTRAN, BASIC, or Systems Programming
Language (SPL).

To use this manual, you should understand the fundamental technigues of programming and be

familiar with at least one of the languages described in the following manusls:

Manual Title -

Part No.

BASIC/3000 Interpreter Reference Manual
BASIC/2000 Compiler Reference Manual
COBQL/3000 Reference Manual
FORTRAN/3000 Reference Manual
Systems Programming Language Manual

30000-3002¢6
32103-90001
32213-90001
30000-90040
20000-90024

You should also be familiar with the HP 3000 Computer System, and the HP 264x terminals as

described in the following documents:

Manual Title

Part No.

TP 3000 Series I MPE Commands Reference Manual

HP 3600 MPE Commands Reference Manual

HP 3000 Series I MPE Intrinsics Reference Manual

HP 3000 MPE Intrinsics Reference Manual

HP 3000 Series I System Manager/System Supervisor
Reference Manual

HP 3000 Systern Manager/System Supervisor Reference Manual

EDIT/3000 Reference Manual

COBOL/3000 Reference Manual

BASIC Interpreter Reference Manual

Using the HP 3000 — A Guide for the Terminal User

2640A Interactive Display Terminal Owner’s Manual

26408 Display Station User’s Manual

26414 APL Display Station User’s Manual

2641 A/264DA/26458 Display Station Reference Manual

2644 A Mini DataStation Owner’s Manual

2644A Mini DataStation Reference Card

26454 Display Station User’s Manual

2645K Display Station User's Manual Supplement

2648A Graphics Terminal User's Manuat

30000-90088
30000-90009
30000-30087
30400-90010

30000-90089
30000-90014
03000-96012
32213-90001
30000-20026
(03000-90121
02640-90011
02640-90109
02641-90001
02645-90005
02644-90001
5952-9950
02645-80001
02645-80030
02648-30001

CONVENTIONS USED IN THIS MANUAL

NOTATION

{1l

{}

italies

underlining

supearseript C

refurn

linefeed

DESCRIPTION

An element inside brackets is optionel. Several elements stacked inside a pair of brackets means
the user may select any one or none of these elements.

Example: {:S] user may select A or B or meither

When several elements are stacked within braces the user must select one of these elements.
A

Example; B ; user must select A or B or C.
C

Lowercase italics denote a parameter which must be replace&_ by a uger-supplied variable

Example: CALL name
name one to 15 alphanumeric characters.

Dizlogue: Where it is necessary to distinguish user inpul from computer cutput, the input is
underlined.

Example: NEW NAME? ALPHA1

Control characters are indicated by & superscript C
Example: ¥©

refurn in italics indicates a carriage return
lingfeed in italics indicates a linefeed

A horizontal ellipsis indicates that a previous bracketed elernent may be repeated, or that elements
have heen omitted.

™

CONTENTS

Section {

INTRODUCING DATA ENTRY LIBRARY . ..
Applications
Features. . . .

Using DEL .

Step 1: Designing the Form
Step 2: Creating the Form .
Step 3: Designing and Writing the Data Entry
Entry Program« . . .
Biep 4: Testing the Applications . .
Step 5: Running the Program for Data Entry
System Beguirements - . ..

Section £l
USINGTHE TERMINAL
Terminal Requirements.
Page and Line Modes .
Multipoint Terminals |
Terminal Buffers .
Terminal Keyboard Functions
Operating the Terminal .

Section IH
DESIGNING AND ENTERING FORMS
Designing the Form . . .
Creating, Modifying, and De!etmg Ferm:s .
Rules for Using FORMAINT Displays . .
Changing Form File Characteristics
Creating a New Form
Laying Out the Form
Specifying Field Editing
Listing Formsina Form Fite
Changilnga¥orm.
Displayinga¥Form
Deletingaborm ,
DeletingaForm¥File
Terminating FORMAINT

Section IV

USINGBELPROCEDURES
How Proceduresare Used
Common Procedure Charscteristies

Section V

ACCESSING FORMS FROM PROGRAMS .
OpeningaFormFile . .,
Locatinga Formina Form File
Moving 8 Form to a Program Buffer
Retrieving Next Edit Specifications .
ClosingaFormFile ,

.

. 1l

1.5

21
21
22
2-3
23
27

3-1

31

3-6

39
.39
. 310
. 310
. 313
. 3-16
. 317
. 3-18
. 3-19
. 319
. 320

4.1

4.3

.5l
B-1

5-5
5-6

vii

Section VI
ACCESSING TERMINALS FROM PROGRAMS
Opening a Terminai File .
Writing Ouiput to a Terminal ,
Reading Input from a Terminal .
Reading in Page Mode
Multipeint . .
Requesting Terminal Status
Closing a Terminal File .

Section VI

CALLING EDIT PROCEDURES.

Alphabetic Data Field (ALPHARDIT) . . .,
Alphabetic Space-Filled Field {ALPHAFILL}Y
Alphanumerie Data Field (ANEDIT)

Numeric Bata Field {(NUMRCEDIT)

Numeri¢ Zero-Filled Field (ZEROFILL) |,
Numeric Range Edit (NRANGE) . .
Modulo 11 Check Digit Create (MllCREATE}
Modulo 11 Check Digit Verify (MHVERIFY}
Bummary of DEL Edit Procedures .

Section VI

USING HEGH-LEVEL INTERFACE PROCEDURES.

Displaying Form and Reading Input
Editing Next Input Field

Section 1X

WRITING PROGRAMS
Using DEL Procedures
COBOL Program .
Preparing Programs .
Executing Programs .
Enput/Cutput Files .
Writing User Procedures
Look-Up Tables .
Detecting!Correcting Errors

Section X
CORRECTING ERRORS .

Appendix A

DATA AREA FORMATS |
DEL/300G Communications Area
Contents of 3 through 10 .
Editing Specifications Tables .

Appendix B
FORM FILE FORMAT. . .

. 9.18
. 912
- 913
- 513
-9-14
- 9-14

6-1
6-1
6-2
€-3
64
6-4
8-5
6.7

7-1
T-3
T-2
7-2
7-3
T4
-4
1-5
7-5
7.6

8-1
B-1
82

9.1
9-1
9.2

. 101

- Al
. Al
. A2
. AB

CONTENTS (continued)

Appendix C
TERMINAL TYPE CODES .

Appendix D
ASCII CHARACTER SET .

Appendix E
DATA ENTRY LIBRARY FORM LAYOUT

C1

. D41

. Bl

Appendix F

DATA ENTRY LIBRARY EDITING SPECIF]--
- CATION SHEET . . .

Appendix G
FCHECK ERROR CODES

Appendix H
DEL STATUS WORD SETTINGS .

viii

.G

SN

ILLUSTRATIONS

Title Page Title Page
Application Program Datza Flow . 1-1 Form Listing Selection Display . . 3-18
Using DEL in an Application . 1-4 Form Listing Output ., . , ., , . 320
Sales Transaction Form. . . 3-2 Form Deletion Display . . . 3.22
Sales Transaction Form Layout Sheet . 3-3 Form File Deletion Verification D1spiay . . 3-22
Transaction Form Editing Specification Sheet 35 Procedure Calls in Application Programs . 4-4
Function Selection Display . . 8T Application Program Procedures in Action 5.1
Form Creation Display 310 COBOL Program Flowchart . e 9.3
Sales Transaction Report Form as Entered . 313 COBOL Program Listing . . .- . 9.4
Editing Specification Display . . . 314 COBOL Program Symbol Table Map P . 811
Form Fiie DHrectory Display . . . 3-16

Form Medification Display 337

TABLES

Title Fage Tide Page
Keyboard Functions 2.4 DEL{3000 Communications Area Format . A2
Form File Characteristics . e . 37 Edit Specifications Table Format . A8
Function Selection Display Ezrors . . . 3-8 Forms File Format B.2
Form Creation Display Exrors 3-11 File (P} Record Format B-3
Bditing Specification Display Errors . . 3415 Direetory Record Format . . B.3
Summary of Procedure Paramaters ., . 4-5 Form Definition Record Format . B-3
Terminal Status Buffer . . , , . . . 5-6 Input/Edit Description Record Format . B4
Data Characteristics 7.6 ASCH Code Chart e e e e . D1
DEL Edit Procedure Summary .. . 78 DEL Status Word Settings . . H-2
Erroy Messages Generated by FORMAINT L 10.2

INTRODUCING DATA ENTRY LIBRARY

The Data Entry Library (DEL/3000) helps you use an HP 264x terminal* to create and maintain

files of formatted data on an HP 3000 Computer System. First, DEL assists you in creating forms

that are stored in form files residing on the system. Then DEL aids you in writing programs that .
access bath the pre-defined forms and terminals. These programs can be written in COBOL, FOR-

TRAN, BASIC, and Systems Programming Language (SPL). Typically, vour program displays a

form selected from a form file onto the terminal screen and allows users to enter data on the form

image. You can use DEL procedures to edit the dala, which you may optionally store on a data file

in a format defined by your program. The fonn image sexves as a visible guide or template for enter-

ing data. The form image is moved onto the screen through a program buffer {work area), and the

data entered is transferred to the data {file via this or another buffer as shown in figure 1-1.

PROGRAM BUFFER
{Work Arca}
TERMINAL
SCREEN
FORM FILE
FORM QUTEUT TO USER'S
B - USER
v EIPUT FROM
i TERMINAL
i
FORM
FORMATTED
DATA
DATA FILE

Figure 1.1, Application Program Data Flow
DEL consists of:

L. An interactive form-maintenance program (FORMAINT} that enables you to:

* create the forms and store them in the form files,

¢ display, modify, or delete the forms,

¢ list all forms in 2 form file, and

¢ delete entire form files.

Each form file contains one or more forms that are usually retated in some way. Forms of 24 lines
or less, when brought into terminal memory, are stored in one memory page and can be displayed
on the terminal screen in their entirety. Larger forms occupy additional memory pages that are

automatically displayed in sequence as the form data is entered or transmitted. In addition, sets of
related forms can be chained together to permit their display in a given order.

*Note: Whenever the term HP 264x tarminal or the word terminal appears in this manual, it applies to the HP 26404,

HP 26408, HP 26414, HP 2644A, HP 26454, HP 2645K, and HP 26484, but to no other terminals, unless
otherwise noted.

1-1

2. Form-access prbcedures ﬁhat allow your program to:

® open a form ﬁié,
¢ locate any form in that file,
¢ make the form available to the program by moeving it into & buffer, and

¢ close the form file.

These procedures allow your program read-only access to the form.

3. Terminal-access procedures that provide read/write access to & terminal as an HP 3000 file. They
permit yvour program to:

* gpen a terminal as & file,
® write output from the program buffer to the terminal,
read input from the terminal to this or ancther buffer,

¢ request status information about the terminal, and

+ close the terminal file.

These functions allow you {¢ c¢all up the form on your terminal screen programmatically.

4, Editing procedures that validate the general content of user input to alphabetic, alphanumeric,
and numeric fields on the forms. Your programs call these procedures, which check the appropriate
input after it is entered, and then return to your program indications of whether the input data
passed this edit check. For instance, if your program calls a procedure to verify that input to a field
is alphabetic, but someone running that program instead enters numeric data, the editing proce-
dure returng an error indication to your program. In addition to these procedures supplied with
DEL, you may also provide your own input editing procedures to interface between your program,
the forms it displays, and the user at the terminal. (Note that these procedures do not edit
Katakana characters.)

5. High-level interface procedures that combine some of the form-access and terminal-access opera-
tions described above.

APPLICATIONS

DEL is useful for any application that displays a form or formatted report on a terminal screen, allows
a user to enter or change data on the form, and edits this data as it is entered. In the fields of business
and commerce, for example, applications include:

® Preparation of purchase orders, inventory transactions, invoices, and billing forms.

¢ Input to accounts payable and receivable systems, employee transactions, journals, and general
ledgers.

1.2

¢ Qutput from management-inquiry programs.
‘s Low-volume generation of financial, managerial, and legal statements.

¢ Centralized data-processing activities in banks.
At all levels of the education field, DEL is useful for applications involving:

¢ On-line registration of students.
& Maintenance of student and alumni records.
QGeneration of grade, progress, and status reports.

¢ Various payroll and accounting activities.

For scientific applications, DEL is valuable in data collection, entry, and retrieval operations. For
example, it could be applied to help technicians enter data on-line into application programs that run
one or more terminals,

In genersl, DEL is valuable for any applications thai require computer interaction with forms.

FEATURES

DEL provides a simple, consistent interface with HP 264x terminals, It is easy to uge, displaying
convenient interactive prompts for form creation, modification, and selection of editing routines,
and reducing the burden of transmitting escape codes and other terminal-oriented requirements
when interacting with programs. (The prompts allow you to seleci various operations much as you
would pick items {rom a shopping list or menu.} DEL does much of the form creation and mainten-
ance work for you, letting you avoid the details.involved in writing special programs or routines to
accomplish this effort; this is particularly valuable in cases where the forms themselves are changed
frequently.

DEL offers many conveniences. First, it incorporates dual-level operations — form creation/
maintenance and data entry/modification - in one software package. This is useful in applications
where the individual who actually uses the forms also designs them, while another person (the
programmer) is concerned only with the data to appear on the forms. Two additicnal conveniences are
the Form Layout Sheet (a pre-printed matrix on which you may make a preliminary sketch of yéur
form} and the ability to produce permanent copies of forms on a line-printer. Finally, the basic field
checking and editing procedures allow programs to verify the format of data as it is entered, and fo
detect and report format errors fo the user; this, in turn, may allow him to make any necessary
corrections on-line.

DEL is highly versatile. It provides the ability to call procedures ﬁ'(;m four different programming
languages — COBOL, FORTRAN, BASIC, and 8PL. It also allows you t0 draw upon all the varied
functions of HP 264x terminals'— protected fields, video high-lighting, insert/delefe functions, and
so forth. :

USING DEL

In using DEL, you typically follow the steps outlined below and illustrated in figure 1-2.
1.3

T0 COMPUTER

Figure 1-2. UsingDEL in an Application
14

Step 1: Designing the Form
Analyze the requirements of your form by determining the permanent headings required, the data to

be entered, and how these fields of information can best be arranged and presented. Then sketch the
form on a Form Layout Sheet, indicating where each field is to begin and end.

Step 2: Creating the Form
Run the FORMAINT program to create your form in the system. You may store the form in an existing
form file or create a new file for this purpose. To define the form, transcribe your entries from the Form

Layout Sheet onto the terminal sereen via the keyboard. If you make any mistakes, you simply correct
them as you go aleng, or re-run FORMAINT Iater for this purpose.

Step 3: Designing and Writing the Data Entry Program

Write a program to interface with the persen who will enter data into the formatted data file and keep

it updated. The possible structure and details of such programs are wide and varied. Kxamples appear
Iater in this manual.

Step 4: Testing the Application

Once you have ereated the forms and programs required, your normal application program validation
procedures apply.

Step 5: Running the Program for Data Entry

Your application is ready for data eniry use.

SYSTEM REQUIREMENTS

DEL operates on any HP 3000 Computer System with at least one HP 264x terminal. DEL runs
under control of MPE, and can be used with the COBOL, FORTRAN and SPL compilers and the
BASIC interpreter. No other hardware or software is needed.

1.5

T

USING THE TERMINAL

If you have noi yet operated an HP 284x% terminal, you may read this section of the manual for an
overview of major points and commonly-used functions. To learn the full capabilities and operating
procedures for your terminals, however, be sure to read the appropriate owner’s manual:

s HP 2640A Interactive Display Terminal Quner's Manual
8 HP 26408 Display Station User’s Manual

o P 26414 APL Display Station User’s Manual

& HP 2644A Mini DataStation Owner's Manual

o HP 268454 Disploy Station User's Manual

o HP 2645K Disploy Station User's Manual Supplement

s HP 2648A Graphics Terminal User's Manucl

TERMINAL REQUIREMENTS

To interface with DEL/3000, your terminal must be:

s Equipped for line/FORMAT or pagefFORMAT mode. When operating in FORMAT mode, the
terminal {ransmits information in unprotected fields only, ignores all control characters (except
record~separators (RS) characters) embedded in data entered, and generates a carriage refurn as
a data-block terminator. (An unprotected field is a field into which you ean enter data; a pro-
tected field is a field that you cannot alter, such as a title or column heading on z form display.}

¢ Operated in block mode, where the information you enter is transmitied to the computerin lines
or blocks of characters, allowing you to edit this data before transmitting it. {When not in block
made, the terminal operates in choracter mode, where each character is transmitted as you
type it.) BLOCK MODE/PAGE is supported on all terminals except the HP2640A and BLOCK
MODE/LINE iz supported on all 264x terminals. Only BLOCK MODE/LINE is supported when
using DEL with MPE-C.

¢ {(onnected to the computer over an asynchronous terminal controler.

PAGE AND LINE MODES. DEL operates in both BLOCK MODE/PAGE and BLOCK MODE/LINE
depending on the internal configuration of the terminal being used. DEL operates only in BLOCK
MODE/LINE when used with MPE-C. To use BLOCK MODE/PAGE, the D and G strapping optfions
on the keyhoard inferface printed circuit board (which is labeled KEYBD I/¥) inside ihe terminal
must be open (strap pulled out). In addition, the F strapping option must be open on 2640B
terminals. Although the HP 2640A has these straps, the G strap has no effect. Therefore, BLOCK
MODE/PAGE is not supported on the HP 2640A. It is supported on all other terminals.

The HP 2641A, 26454, 26458K, and 2648A terminals have the capability to have the strapping
options and latching keys set programmatically, DEL makes use of this feature by setting the termi-
nal in BLOCK MODE/PAGE mode when the terminal is opened with the OPENTERM procedure
{refer to Section VI). You may suppress this feature by setting a flag in the Terminal Mode Informa-
tion word in the communication area (refer to Appendix A). If the automatic configuration is used,
the normal modes are restored when the terminal is closed using the CLOSETERM procedure.

2-1

Note that FORMAINT progra&lmatiéé.uy overrides the {Jhysical strapping (except when operating
with multipoint) to ensure that it operates in BLOCK MODE/LINE mode.

Multipoint terminals may not operate in BLOCK MODE/LINE mode. (See below.}

During BLOCK MODE/PAGE operation, echo is always off, and the inpuf terminators are DC2
{whose function is a block transfer enable from the terminal) and RS {a record separator). These
ASCII characters replace CR (carriage return) as the input terminators. These codes are automatically
generated by the terminal in block mode. If you are debugging a program with the MPE DEBUG in-
trinsic and the terminal does not respond to a carriage return, or if you have pressed the BREAK
key to interrupt execution of a program that calls DEL procedures, i1y entering CONTROL R (R
which is ASCII DC2) to terminate your input. To reset echg—on after breaking a program, enter

e gt

semicolon} and be sure the terminal switch is set to full duplex.

When there are many terminals simultaneously transmitting data in BLOCK MODE/PAGE, there is
a small chance that a data overrun error could occur. DEL can detect this when it occurs. Refer to
the READTERM procedure discussion for an explanation of how this situation is handled. When
using BLOCK MODE/PAGE, it is recommended that the number of MPE terminal buffers (TBUF)
be at least 128. The number of buffers is specified by the system supervisor at systern configuration
time. (Refer to the System Manager/System Supervisor Reference Menual.)

NOTE

The MPE READ intrinsic which is used by the COBOL
ACCEPT statement cannoi be used in BLOCK MODE with a
terminatl that is strapped for BLOCK MODE/PAGE operation.
This is due to the input termination characters used by the
{erminal in BLOCK MODE/PAGE.

MULTIPGINT TERMINALS. Multipoint terminals may be used with DEL. The following character-
istics of DEL muliipoint operation should be noted:

e Multipoint terminals are always MPE terminal type 14.

e Multipoint terminals operate in BLOCK MODE/PAGE only. A negative value in the Terminal
Information Word of the communications area (refer to Appendix A) has no effect,

* Muttipoint terminals require a portion of the ferminal memory for the Data Communications
buffer. Therefore, care should be taken that the size of a form does not exceed the available
terminal memory.

e The design of multipoint terminals restricts an individual terminal read to a_maximum of 2048
characters. Therefore, forms containing more than 2048 displayable and non-displayable
characters cannot be created or modified on a multipoint terminal. Application progrars read-
ing data from forms are limited to 2048 characters of data. (Refer to the description of the
READTERM procedure for more information.)

2.2

TERMINAL BUKFERS. If it is anticipated that many users will be using FORMAINT or the DEL,
procedures simultanecusly, it is recommended that the system supervisor configure the system with
the maximum number of terminal buffers (265}, Refer to the System Manaoger/System Supervisor
Reference Manua! for more information abouf how tao do this,

TERMINAL KEYBOARD FUNCTIONS

The HP 264x% terminal keyboard provides keys for a wide variety of operations. Those you are most
likely to use with DEL are summarized in table 2.1, where they are organized as functional groups.
Others are discussed as they are used later in this manual, All are deseribed in detail in the owner’s
manial,

NOTE

All discussions of keyboard functions in this manual assume that
you are nsing the standard HP 264x character set with upper
and lower case letters.

Table 2-1. Keyhoard Functions

KEY GROUP

KEY

FUNCTION

Character Set

Aiphabetic {A-Z},
numeric (0-9), and
special symbels {=, #,
$. and so forth),

Similar to standard typewriter key operations,; enters
character selected, in upper or lower case.

ESC

Generates ASCH escape character; transters from normal
operationsl made 10 allow you to enter commands for pro-
gramsable terminal functions. {For instance, £5C ¢ pro-
duces a NEXT PAGE cormmand.} See Appendix D for
character set sumynary and owner’s manual for further
details, ’

CNTL

When heid down whife any alphabetic key or &, [, \,
[UEATE A |,} . ~, or DEL key is pressed, con-
veris the character code for that key to an ASCEH contret
code. {See Appendix D for character set summary.}

LiINE FEED {on HP
2640 or 2641%) or
JS {on all terminais)

Maoves cursor down one line, if cursor is on last line dis-
played, moves entira display up one line and places cursor
in new tast line.

RETURN

Returns cursor ta beginning of current line. When antered
at end of fine, also generates a line-Tead,

Numeric and Display
Control

Mote: See cwner's
manual for many
other keys in this
group.

Moves cursor up one line. 1f cursor is in top ling of display,
WIraps Cursor around to bottom line.

Moves eursor down one line. Hf cursor is in hottom line,
wraps cursor around to top line.

Moves cursor one column to right. I cursor is in last colbs
umn, wraps cursor around 1o first column of next line,

I cursor is in last position of display, wraps cursor around

1o first position,

Moves cursor ane coltimn to left. [f cursor is in first column,
4 wraps it around to last column of above line. H cursor (s

ie first position of display, wraps it around to last position.

N

Moves eursor to first unprotected {Home) position of
display.

Edit and Conteol
Group

RESET TERMINAL

Sets terninal to its initial state when power was turned or
clears display and memory, moves cursor to Home position,
shuts off programmabie functions,

NOTE

Whan using this function in a program, use
extreme caution and be sure you accurately
amticipate the results,

BREAK

Requests & system break, returning control to MPE.

DISPLAY EUNCTIONS

{isables all escape codes and conirol functions {except
return) entered or received. With 128-character Roman
character set, displays escape codes and control functions

2-4

Table 2-1. Keybosrd Fuactions {Continued)

KEY GROUP KEY FUNCTION
associated with an entry as an aid in debugging. {See
owrner's manual.)
BLOGCK MODE When latched down, places terminal in block mode.
REMOTE When {atched down, places terminal in remote {on-line)

operating mode for communicating with the computer,

TAB {In FORMAT mode}, moves cursor to start of next unpro-
tected field; disregards normai horizontal taly stops.
ENTER tn DEL's FORMAINT Program, sends entire form to form

fite.

in response to DEL application program prompis, transfers
all input data in unprotected fisld to pragram’s input buffer.

ENHANCE DISPLAY
(on HP 2640}

1€ {on all other
terminais)

NOTE

The superscript ¢ indi-
cates the CNTRL fune-
tion — thus, you must
hold down the CNTL
key white pressing f1.

When foilowed by one of the letters A through 0, indicates
display of one of 18 possible combinations of half-bright,
underling, inverse video (black letters on white background),
and blinking characters. When followed by commercial at-
sign (@} entry, cancels previgusly-selected combination,

The combinations possible are Hsted in this chart:

@iAIB|CIMEIFIGIHIIJJIKILIMINIO
Hali
Bright XX [XM XIXIX
Undedine X|XIX|X X[xIxix
invarse
Video Xix XX XX X:X
Blinking X X X X X X X X

in the above chart, X indicates that the feature is displayed.
For example, to start a field of blinking, underlined charac-
ters on the HP 2649, press the ENHANCE DISPLAY key
followad by the E key. To terminate the blinking under-
iined field, press the ENHANCE DISPLAY key followed by
the @ key. You could use these Keys to visuaily distinguish
between protected versus unprotected fields, or to bring
certain fields to the artention of the person entering data
an tha form,

NOTE

On othet terminals you must hoid down CNTL
while pressing the ft key. Thus, to start a blink-
ing underlined field on that terminal, hold
CNTL down, press £1, release CNTL and strike
E.

START UNPROTECTED
FIELD {on HP 2640}

£2C {on &l] other
terminals)

Starts an unprotected fisld, In FORMAT mode, characters
from present cursor position to end of this field or end of
this ling are unprotecied and can be overnwritten, (These
characters are normally spaces.]

Table 2-1. Keyboard Functions {Continued)

KEY GROUP KEY FUNCTION

END UNPROTECTED Ends an unprotected field. Characters from present cursor

FIELD {on HP 2540) pasition to end of thisline or start of next unprotected

£3° {on all other f[e!::t, are protected in FORMAT muode and cannot be over-

terminals} writien.

FORMAT MODE {on Ptaces termninat in FORMAT mode {ON] so that only unpra-

HP 2640) tected fields can be altered by either terminat user or com-
puter, (The unprotected fields are specifically defined by
14° {on all other the START UNPROTECTED FIELD and END UNPRO-
terminals) TECTED FIELD keys. All other tields are protected in
FORMAT model) -
MNOTE
To turn FORMAT maode off on the HP 2640,
untateh the FORMAT mode key, To do the
same on other terminals, enter ESC X,

BACK SPACE Moves cursor one character to left. 11 cursor is in first col-
umn, it remains there,

INSERT LINE Rolls down line containing cursor and subsequent lines be-
low this ting, inserts biank line before cursar line, and moves
cursor to first column of new blank ling. Disabled in FOR-
MAT mode.

DELETE LINE Deletes line containing cursor, rolls upward the following
lines, and places cursor at beginning of first rolled-up line.
Disabled in FORMAT mades,

INSERT CHAR When latched dawn, attows you to specify characters to be
inserted at present cursor position. In FORMAT mode,
operates on a Tield-by-field hasis.

DELETE CHAR Deletes character at cursor position and moves all succeed-
ing characters ieftward by one column. In FORMAT maode,
operatas on a field-by-field basis.

8% {on MP 2640} Special function key that returns you to Function Selection
Display in FORMAINT, When entered on Editing Specitica-

{8 {on all othar tion Display, generates blank edit descriptions for remaining

terminals) unprotected fieids on form, {See Section |H.}

Additional ne {Contral A) Acts as end-of-data indicator.
Functions {Record separator)

ESC &k {Clear Line.
from Cursor)

Clears line from cursor position to end of current line or
current unprotected field.

RE (Control R}
{ASCH DC2)

Acts as end-oi-data indicator to terminate input when
in BREAK or DEBUG and BLOCK MODE/PAGE is

set.

OPERATING THE TERMINAL

To prepare your terminal for use, follow these steps:

1. Assure that the REMOTE latching key is not depressed; thus, the terminal is s'et for off-line (local}
operation.

2. Set the A.C. POWER Switch, located on the terminal's rear panel, to the ON position. After a
15-second warm-up period, the terminal enters its initial operating state with the display screen
and memory cleared, the cursor in the upper-left corner (Home position) of the screen, and all
programmable functions turned off.

3. At your option, press the TEST kev to validate the eperation of the terminal’s memory, frmware,
and display. Generally, if the terminal emits ap audible “beep” and a test pattern appears that is
similar te those described in the Self-Test section of your owner’s manual, the terminal is working
properly. This patiern also denotes the character sets available on your terminal. (See owner’s
manual.) Press the RESET TERMINAL key to clear the display.

NOTE
If the TEST function does not work properly and the cursor still
does not appear, set the A.C. POWER switch to OFF and call an
HP service representative. Do not fry to operate the terminal

again until it hag been repaired.

4. Set the following keys and switehes as indicated below:

Key/Switch Position
BLOCK MODE OFF {unlatched)
AUTO LF, (Line Feed) OFF (unlatchad)
DUPLEX FULL
PARITY : NONE
BAUD RATE (Speed) Any setting desired

To initiate communication with the computer, latch down the REMOTE key to set your terminal to the
on-line (remote} mode and log-on as directed in either:

= MPE Ct-)mmarads Reference Manual , or
e Using the HP 3000

This procedure requires use of the MPE command :HELLO, discussed in detail in the MPE Commands
Reference Manual.

The terminal type is set to 10 by the DEL OPENTERM procedure unless it is already 10, 0ritisa
multipoint terminal {type 14) or a Katakana terminal {type 12). The log-on terminal type is re-
stored by CLOSETERM, If you log on to an MPE-C system, it is recommended that you specify
terminal type 10 (using the TEREM= parameter of the :HELLO command}. The terminal type can-
not be altered programmatically in these systems.

2-7

To terminste communication with the computer, enter the ;BYE command as directed in the above
manual and summarized in Appendix C.

To shut off your terminal:

1. Press the RESET TERMINAL key to re~initialize the terminal. (To do a hard reset on an HP
2641, 2645, or 2648, press the RESET TERMINAL key twice.

2. Set the A.C. POWER switch to the OFF position, turning off the power,

NOTE

It is recommended that you do not use the memory lock
feature of the 264x terminals when using DEL. If the cursor is
positioned in the locked area of the terminal when a read iz
executed, a read error will occur,

2-8

DESIGNING AND ENTERING FORMS

The first steps in any DEL/3000 application involve designing and entering the form {or forms) that
the application will use. These steps and those that follow are hest illusirated by an example. Suppose,
for instance, that you are preparing an application that enables a clerk in a construction supply store
to interactively enter data onto a sales transaction form using an HP 3000 computer system. The
application program is to display the form on the terminal sereen showing the following information:

* Form title: “"SALES TRANSACTION”

* Date of transaction

#» Transaction number

+ Customer identification number {Six-digit numeric code)
* Salesman identification number

+ Billing recip-ient

® Product number {four-digit numeric code)

¢ Product description

¢ Price per unit |

© Quantity sold

DESIGNING THE FORM

If the clerk were manually entering the data upon a paper form for this application, that form would
resemble the one shown in figure 3-1. When you adapt this form for terminal display and enter it in the
computer, you will need to know exactly where sach field begins and ends, and what kind of editing
requirements, if any, apply to each unprotected field. (In figure 3-1, the unprotected fields are circled.)
You can determine the precise location of each field by laying out the form on the DEL/3000 Form
Layout Sheet provided in Appendix E of this manual. For the sales transaction example, the layout
sheet shown in figure 3-2 might be used. On this sheet, you should enter these elements:

¢ Form File Name. This is the MPE formal file designator of the file on which your form will reside.
In addition to the file name, it may also include 2 file lockword, a group name, and an account
name. The names and lockword may each contain up te eight alphanumeric characters, beginning
with a letter. Within the total entry, you must also include any appropriate delimiting perieds and
slash-marks. The total entry must not exceed 35 characters. See MPE Commands Reference
Manual for further information on formal file designators. Examples are:

Fife name
Group norme
Eile MYFILE
narme+ MYFILEMYGRQOUP
MYFILEMYLGCK MYGROUP.MYACCT
File norme Lock Group Accaurnt

wortd Hame name

31

CUSTOMER I
SALESMARN ID:

ACTIUN
TRANSACTION N
BILLED TO: &

PRODUCT
NO.

Figure 3-1. Sales Transaction Form

On the Form Layout Sheet for the sales transaction report, the form file name SALESFIL is used.

¢ Form Name. This is the name by which DEL will recognize and access your form. This name can
include up to 16 alphanumeric characters, beginning with either a letter or a digit. Within the
form file, this name must be unique. Examples are:

MYFORM
ACCQUNTSREC
ACCOUNTSPAY
GENLEDGERL1
FORM22A

3 FORM

On the layout sheet for the Sales Transaetion Report, the form name SALESFORM is used.

3-2

eg

w0 ® -~ i+ o o= M - =]

DATA ENTRY LIBRARY FORM LAYOUT SHEET

’

HEWLETT ﬁ PACKARD N SRR |

eenave (SAWESIFIAel | | L L F LTI P ITI]TT]

romanans (SIAICEISIFloIRM | [] [[]] et R RANEERENER RN
Q 1 234 56 78 9101112131418 181718 102021 22 232425 26 23 26 22 30 31 32 33 34 36 36 37,96 33 40 11 4743 44 45 £0 47 <8 4 50 51 52 53 54 55 56 57 08 59 60 51 57 53 64 65 68 87 68 69 70 73 72 73 74 75 70 71 78 19 80
SWHLES TR 5&:1‘14,&‘
pare | mr/lro/iziz Wishiclriiiou Mol ZZZZZZ
ST OPIER T \ZXTZZT L e Tt IXXKKILKKKIKINE N XIKKK XA IKIX
. XXX YXIXIK KK A XXX K XXX
SALESpANY T Fzzzirr xﬁ{:x x:;x%] XX
Pole|T WwNY
. DIESCRL 2Tt oM PR/ |CE! QAN Ty
XXX XXX XXX KX XK 3 XX K XK K KX XX XXX XXX | | ZE70Z]- 177 | | (ZiZ2
2Lz KKK X e XU X XX Y XX K AKX D XK XX DX rAp a7y APYrard Ararars
Fagab Xxx XX X MOKIX DI X DM XX XXX |3 XK I AT XKEICKX X v iy ra@ v iya jFarayaip
viriFs KIX N | XIXIX 0 SOX A0 XK 3 XX XU (el KKK 3G MO | | 17 .27 Z
i?-' rard xxxx-crgxfngtxlx xthKKKKXKKK;KfXXKXKKX!{XX | |_]Ki)(reFrarafira rarapats

Figure 3-2, Sales Transaction Form Layout Sheet

® Chain To Form Name. This entry allows you to name any other form te which the form you are
now designing relates. When specified during the form design process, this entry permits your
application program to automatically display the ferms sequentially. Because the form for the
sales transaction report is not related to any other form, this entry is left blank in the example,

e Page Number. If your form contains 24 lines or less, it will occupy only one page of terminal
memory and will fit completely onto the terminal screen; in this case, you can indicate "Page 1 of
17 in the upper-right corner of the Form Layout Sheet as in the example. If, however, you are
producing a larger form that requires additional memory pages, you may continue it onto one or
more additional layou{ sheets, indicating the particular page number and total number of pages in
this entry, such as “Page 2 of 3”. When the form is entered and displayed, the terminal automati-
cally presents each successive page on the screen in the sequence required.

Forms containing more than 2048 displayable/non-displavable characters cannot be created or mod-

ified on multipoint terminals. However, you may display a form with as many as 4096 chg{g“c_f,gm.

The maximum number of displayable/non-dispiayable characters allowed on gach line 6f a form is
e—— T e

600, T
=,

Te locate the individual fields for a form, simply enter these fields in the lines and columus desired on
the layout sheet. To indicate the contents of unprotected fields, you may use any convention you desire.
In the sales transaction report example, Xs are used to show alphanumeric fields and Zs are used for
numeric fields.

Immediately after you enter your form via FORMAINT, you must specify any editing requirements
that apply to the unprotected fields on your form. At that time, it will be helpful if you have all the
editing information for each field already at hand. You can define this information by filling out the
Editing Specification Sheet provided in Appendix F, listing all requirements that apply to each edited
field. (Editing specifications should not be entered if the data is to be entered in Katakana charac-
ters.) For the sales transaclion example, a sample specification sheet appears in figure 3-3. This
sheet allows you to specify the following items:

¢ Field Name. Enter the name or description of the unprotected field. The first field named in the
example is the “Month™ portion of the DATE entry.

¢ Length. Enter the length of the unprotected fieid. In the example, the “Month” entry is two digits
long. - : .

& FEdit Type. Enter the type of editing you desire for this field. You may wish to specify a combination
of different types. For the “Month” entry in the example, the application requires that numeric
data only appears in the entry, that the data is rightjustified and the field is filled with zeros to
the left of the data, and that the data falls within a given numeric range (01 through 12).

* Edit Procedure Name. Enter the name of the procedure that will edit this field when your
application program runs. You may name more than one procedure, selecting from those furnished
by DEL, procedures written by yourself, or both. (DEL procedures and the functions they perform
are described in detail in Section VII) Each procedure name may include up to 15 of any
characters legal in the language used for your application program. In the specification sheet for
the example, the CNRANGE procedure is used for the “Month” entry to provide numeric/zero-fill
editing and range-checking.

og

——

DATA ENTRY LIBRARY EDITING SPECIFICATION SHEET

Edit Ranpe Check Look-up
Fisld Edit Procedure Test Flagdf Alter Edit “Same ae” | “Opposite” Low High Frocedure
Name Length Type Narne Before Edit Set Fragh Flag# Flogh Value Value File Name Characters
patE(moum)) T wumepic (CARAMGE
TERO-Frue)|
RANCE~ o7 /2
CHeECK
DATE (DAY)| 2 |MUMERIC|CHRANGE
ZERo-Fret |
RAN e E- o7 37
CHECK
DATEYEAR), R \Wvacric. |enRance
ZERO Firu |
RANGE- 7o 79
CHECK
TRANSACIW| b | NUMER (C (ChomRCediT
Cosomncg 5.} © NPERIC CNPRCENT
[Sﬂtesnm,r.n 6 NoMERC (NvomrcErT]
‘Pﬂm o, | A \Nomeic cromeccrir
IUJ’A’J?’P;E:(E ‘/ NUpMER e |CTEROFILL
(porines) RS Fics,
UNr PecE | N Ivomaren \czarne.
(cEnTs) ZERD Fred-
GuAnrity | o |Vokegic Promscesir

Figure 3-3. Transaction Form Editing Specification Sheet

¢ Test Flag # Before Edit. DEL accesses 16 one-bit flags that are all cleared to zero each time a new
form is accessed. Both DEL and user-supplied edit procedures may set these flags, which may be
tested by your application program to allow conditional editing or logical editing between two or
more fields. These flags are numbered 1 through 16. If the procedure named in the previous
column is to be used conditionaily or is to be modified by a previcusly-invoked edit procedure,
specify the related flag to be tested. (No flags are uged in the sales transaction example.)

o After Edit, Set Flag #. If the procedure named is 1o set one of the flags when it edits the data,
specify which flag this is.

*» Same As Flag #. If the result of this edit must be compared with that of a prior edit and a flagis to
be set if the results match, specify which flag this is.

s (pposite Flag #. If the result of this edit must be compared with that of a prior edit and a flag
is to be set if the results do not match, specify which flag this is.

* Range Check, Low Volue and High Value. I a range-check applies to this field, enter the lowest
and highest value permitted in the field. Each value may be up to 18 characters long. (

o Look-Up Procedure File Name. If the field is edited by a user-written procedure that looks up
information in a file, enter the name of that file. Such a procedure might, for instance, scan a table
to determine & tax percentage or some other factor. The file name entry may be required for
linkage by this procedure, depending on how the procedure is coded. This entry can include file
name and optional lockword, group name, and account name.

e Characters. If the edit procedure does not perform range-checking or a file lock-up, you may enter
in this column up to 32 characters of data to be used in any way that your procedure requires.
These characters are written exactly as shown inte the record containing the edit specifications on

your form file. You might use this feature, for example, for an edit procedure that verifies that the
data entered is any of eight four-digit account numbers; these numbers could be stored as this set
of 32 characterz, making it unnecessary for the editing procedure to perform an extensive file
search for this data,

CREATING, MODIFYING, AND DELETING FORMS

Once you have designed your form and have a clear idea of the editing specifications required, you are .
ready to create the form in the system. When the form is created, you can display, modify, or delete it, (
and perform various other operations. For all of these funetions, you must run the FORMAINT '
program by logging-on and entering:

‘RUN FORMAINT.PUB.SYS

If you have logged-on at a terminal other than an HP 264x, FORMAINT prints the following mes-
sage and immediately terminates:

INPUT DEVICE IS NOT A 264x

‘J i
i If you have logged-on o an HP 264x terminal that cannot be set to block mode programmatically,
. FORMAINT prints the message:

PLEASE PRESS BLOCK MODE KEY AND AUTO LF.

Latch the BLOCK MODE key down, placing the terminal in block mode, FORMAINT now presents

the message “HP 222064 .uu.ff FORM MAINTENANCE” on the terminal screen, followed by the -
Function Selection Displzy shown in figure 3-4. (In this message, uu and ff are digits indicating the

cuarent soffware update level and fix level, respectively, assigned by HP.)

3-6

Enter the name of your form file in the input field indicated by the present cursor position. If the
file does not exist, FORMAINT will create the form file as a permanent file on disc with the charae-
teristics listed in table 3.1, when the entire screen contents are transmitted to FORMAINT as di-
rected below. If the file name indicates an old (existing) file, FORMAINT will access that file. In
the exampie in figure 3-4, the name of the new file SALESFIL (indicated on the layout sheet) is
entered. :

o)

HP32206A. 60. 88 FORM MAINTENANCE {C} HEWLETT-PACKARD CO. 1976

Enter the name of yaur form file here SALESFIL

and select ane of the foliowing functions by entering an X in front of the
desired function. '
DEFINE A NEW FORM.
LIST FORM FILE DIRECTORY

MODIFY AN EXISTING FORM

DISPLAY AN EXISTING FORM

DELETE AN EXISTING FORM
OELETE THE FORM FILE

EXIT FORMAINT

\. 4
Cursor position Figure 3-4. Function Selection Display
Tabie 3-1. Form File Characteristies

CHARACTERISTIC ASSIGNED VALUE
Record size 64 bytes (characters)
Record type Fixed-length, ASCH format
Biocking factor 8 records per block
File size 10,000 lagical records ™
Number of extents attowed EL4]
Mumber of extents imitially altocated 1
AcGess type Exciusive

"only 1000 records are allocated unti! more are needed.

NOTE

Because FORMAINT granis a user exclusiie access to a form file,
two or more users cannoct use FORMAINT to operate on the same
form file simultaneously. For the same reason, ne one can run an
application program to enter data via a form file while someone
¢lse is using FORMAINT to operate on that same file,

3-7

Now select the function you desire, as follows:

1. Use the TAB key to move the cursor to the input field that indicates the eperation you desire.

2. Enter the character X {upper case only) in the input field.

3. Pressthe ENTER key to transmit your eniries to FORMAINT and begin the function you selected.

in the example in figure 3-4, the function DEFINE A NEW FORM is selected.

if you specified more than one function, the funetion nearest the top of the display is performed and al}

others are ignored.

if you did not make the required entries on the Function Select Display, these errors will be reported to
you when you press ENTER, via the message shown in table 3-2. Following the message oulput,

FORMAINT waits for you to correct the error and press ENTER again.

NOTE

Several errorz that you may encounter when using FORMAINT
are noted throughout this manual; all errors possible are dis-
cussed in detail in Section X. In general, if the error is caused
“ directly by your input {o a particular field, that field will blink on

the display.

Table 3-2. Function Selection Display Errors

MESSAGE

CAUSE

FILE NAME REQUIRED

You did not enter a form file name,

FORM FILE NAME INVALID

You entared an invalid form file name (perhaps not
beginning with a letter or containing too many
characters],

FILE {S NOT A FORMS FILE

You specified an existing file that is not a2 form
file.

FILE 1S INACCESSIBLE

Another user is presently using the form file.

FILE CANNOT BE OPENED ERROR CODE=nnnn

-

FORMAINT cannot open the form fite you speci-
fied. in this message, anan indicates an error code
return through FORMAUINT by the FCHECK intrin-
sia, as discussed in MPE latrinsics Reference Manuaf
and Appendix G of this manual. See that discussion
for the meaning of this code.

NO FUNCTION SELECTED

You did not setect any function from the list
displayed.

FORM FILE ACCESS ERROR CODE = grror number

FORMAINT encountered a read or write error whan
accassing your form file. Refer to Appendix G for
the meaning of the error number listed under the
FCHECK intrinsic errors,

FORMAINT MUST HAVE UPDATE ACCESS
TO FORMS FiLE

The form file was not created 1o aliow readfwrite
access (ACC=INQUT).

3-8

P

RULES FOR USING FORMAINT DISPLAYS

When responding {o the prompts for any FORMAINT display, remember these general rules:

& Press the TAB key to skip to a new prompt (input field).

* Press the ENTER key to indicate that you are finished with a display and continue with the
normal progression of a funetion.

Press the I8 ke \{OI‘ the {8 key with CNTL depressed on the HP 2640) to exit from any func-
tion and return to the Function Selection Display.

* Reposition the cursor to the beginning of the line and use the DELETE LINE key to correct
an entry.

In general, if you enter data that equals the length of an input field for & prompt, the cursor skips to
the next input fleld. The next character you enter appears in this field.

CHANGING FORM FILE CHARACTERISTICS

Although you cannot change the record size, record type, and access type for any form file, you can
re-specify certain other characteristics for new form files. These characteristics are; blocking factor,
file size, number of disc extents aliowed, and number of extents initially allocated. You may, for
instance, want to conserve file space by specifying a form file shorter than that normally provided. To
do this, use the MPE :FILE command to specify a new file gize, ag discussed in MPE Commands
Reference Manuel. For instance, {0 assign a file size of 6,000 records with a biocking factor of 16
records per block for SALESFIL, saving this file in the MPE permanent file domain, enter:

:FILE SALESFIL;REC=64,16,F ASCII:DISC=6000;SAVE

It is usually difficult to predict the file spé;:e actually needed for a particular form file because
many factors apply. Nonetheless, if you wish to alter the size of your file, consider these points:

e One fenth of the total file space is alwa?s allocated for the form file dn'ectmy that eontains the
“rawmies and Iocations of the fotmé in the file. Thus, a Mgg\ﬁle Tequires 1000 directory
entries and contains a maximum of of 100 forms, Since the form file size can not be expanded; it

~ is recommended. that - vou estimate the maximum number of forms you intend o define and
create a form file large enough t0 contain them.

- Ble.nk areas ot the form that exceed seven characters are removed when the form spec:lﬁca-
tions are stored.

CREATING A NEW FORM

Teo ereate a new form, enter an X beside the DEFINE A NEW FORM entry in the Function Selection
Display and press ENTER. In response, FORMAINT presents the Form Creatmn Display shown in
figure 3-5.

Respond to the first prompt in this display by entering the name you wish to assign your new form,
You may copy this from your Form Layout Sheet, No other form of this name is permitted in this form -
file. The name SALESFORM is entered in response to this prompt in figure 3-5.

I you wish to relate {(chain} this form to any other form, respond to the second prompt by entering the
name of the other form; this will enable your application program to automatically display both forms
in sequence, Otherwise, skip this prompt.

Press ENTER to transmit your responges to FORMAINT. At this point, FORMAINT clears the screen,
permiiting you te lay out the form on the screen. If you have made an error in any response, it is
reported to you by one of the messages in table 3-3.

LAYING OUT THE FORM. To lay out the form on the terminal screen, simply enter characters
where you wish them to appear, using the Form Layout Sheet as a guide. Use the cursor-positioning

keys to skip rapidly about the form. Use the enhance-display capabilities to indicate areas of the form

tobe be filled-in by the person runmng your apphcatlon program. Use the terminal’s line-drawing set, if

FPresent cursor position, 2
press TAB to skip 10 nexr
prompt (if desired).

/ :

Enter the same of your form hese SALESFORM 7

it this form is @ mombor of g series of forms anter the

name of the naxt form in the series NN

Figure 3-b. Form Creation Display
3-10

Table 3-3. Form Creation Display Errors

MESSAGE CALSE

FORM FILE iS FULL Ne space is available in the form file for the new form. FOR-

MAINT returns to the Function Seisction Display, allowing
you to specify a new form fite or function.

FORM ALREADY EXISTSIN fifename You spacified a form that already exists in the form file named
filename. FOBRMAINT waits for you to enter 2 new form
name.

FORM NAME REQUIRED You failed to enter a form name. FORMAINT waits for vou

10 8nter a name.

NOTE
If you are not eertain what graphic capabilities are furnished
with your terminal, press the TEST key and examine the result-
ing test pattern display, (See Section H.) (All terminals are
equipped with the inverse-video capability.)

When the terminal is placed in Format Mode all character posifions on the screen are protected
except those fields that have been specifically defined as unprotected or transmit only. (Transmif
pnly fields are available only on HP 2641, 2645, and 2648 terminals.) For a definition of these

types of fields refer to the 2641A/2645A/2648A Display Station Reference Manual.

When entering your form, use the following guide lines:

1.

2.

To define an unprotected field:

a.

A

Press the START UNPROTECTED FIELD key (on the HP 2640} or ente@ﬁ(on other
terminals) to begin the field.

Enter the characters in the field; these are typically blanks (spaces). —

b
Press the END UNPROTECTED FIELD key (on the HP 2840} or enter{ﬁé/d {on other
terminals} to terminate the field.

NOTE
FORMAINT does not allow unprotected fields that extend beyond

the end of a line. If you attempt to continue such a field onto a
second line, FORMAINT converts it inte two separate fields.

To use the display enhancement features with an unprotected field:

a.

Press the ENHANCE DISPLAY key (on the HP 2640) or entet:ffl,-‘;J {on other terminals, and
then press the key for the enhancement you wish (blinking fielEi: inverse video, or so forth)
to begin the enhancement. (See Seciion I1.)

. e
Press the START UNPROTECTED FIELD key (on HP 2640) or ente{?," {on other termi-
nals to begin the field, .

Enter the characters in the fisld. (Blanks are usually used.)

Press the END UNPROTECTED FIELD key (on HP 2640} or enter £3° (on other terminals)
to terminate the field.

Press the ENHANCE DISPLAY key {on the HP 2640) or enter f1° {on other terminals),
and then press the @ (commercial at-sign) key to turn-off the enhancement.

3-11

NOTE

To help keep track of where each unprotected field begins, users
often start a display enhancement for an unprotected field at the
same time they start that field. Similarly, they typically termi-
nate the display enhancement and unprotected field simultane-
ousiy. For instance, on an HP 2640, a user might begin a field by
pressing the ENHANCE DISPLAY key foliowed by the key for
his desired enhancement, and then pressing the START UN-
PROTECTED FIELD key. He could then observe the spaces mak-
ing up this field on the screen as he enters them.

3. To define a fransmit only field:

a. Position the cursor to the beginning of the transmit only field.
-
b. Press the ESC (Escape) key and left brac:{'(/{);’
¢. Move the cursor {o the column following the end of the transmit only field being defined.

Ty
d. Press the ESC (Escape) key and right brackfv(]),
~

LY

4. To indicate that the form is complete, enter the \/\& F{'COTL‘\TTRO‘I../‘\) key, producing a record-
separator. This indicates the end of the form and;on most terminals, diaplays the following
characters on your screen:

Ry

FORMAINT arbitrarily terminates the form after encountering a sequence of twenty consecutive
blank lines. Any information appearing after such a sequence is ignored.

5. To transmit the form to your form file, press ENTER.

For the Sales Transaction Report in the continuing example, you could enter the form as shown in
figure 3-6. The unprotected fields are indicated by the inverse video (white on black) entries. The
unprotected avea labeled BILLED TO: is actually composed of four one-line unprotected fields for the
mailing address of the person billed. Five unprotected fields appear under each of the headings

PRODUCT NO., DESCRIPTIOGN, UNIT PRICE, and QUANTITY to allow for recording the sale of
five items. '

3-12

N

SALES TRANSACTION REPORT

paTe: R /M /R TransacTion no: N

CUSTOMER (D [BILLED TO: o

SALESMAN 1D

PRODUCT DESCRIPTION " UNIT
" PR ICE QUANTITY

N .

/

* Figure 3-6. Sales Transaction Report Form As Entered

SPECIFYING FIELD EDITING. When the form is stored in the form file, FORMAINT scans the
form for unprotected input fields. As the first unprotected field is located, the line containing it and the
most recently preceding non-blank line are displayed at the top of the screen, with an arrow pointing
to the field. Below these two lines, FORMAINT presents the Editing Specification Display {as shown
in figure 3-T)

-

If you do not want to edit eny unprotected fields on the form, press the 8 key on the terminal
{f8° keys on the HP 2640) to terminate the form-creation function and refurn the Function
Selection Display to the screen.

If you do not plan lo edit the current field but wish to edit others, @"iite_rji 4t the first prompt in the
display and press ENTER to move the field-indicating avrow to the next unprotected field;
continue this procedure until the field to be edited is reached.

If you want to edit the current field, use the TAB key to skip to the applicable prompts. These
prompis allow you to enter the following options, in the order they appzar on your Editing
Specifications Sheet: Edit Procedure Name, Test Flag # Before Edit, After Edit Set Flag #, Same
As Flog #, Opposite Flag #, Range Check Low and High Value, Look-Up Procedure File Name, and
Characters. To request editing, you must supply an Edit Procedure Name; you may enter or omit
any of the other eptions according to your editing requirements. To transmit the current screen
contents to FORMAINT, press ENTER. This returns the cursor to the beginning of the Editing
Specification Display, allowing you to optionally specify additional procedures for this field. When

Arrow indicating
field to be edited S - L

—— Second line First -
irst ne from form, ceen
fram form. I .) . Cursor

I—"SALES TRAMSACTION REPORT

oate: Il /IR TRANSACTION NO:
A

f no editing s renuired or all edits for this Beld have heen speaificd

enter an X here .

The edit pracedure rame 13 CZEROFILL _

Test Hag '—?- hefore performing edit. Aftereditset flag = . arwd it must be
the same as flag = [li] or opposite flag = i

' For range check editing the low value is RIS
seu the high va i+ [
For fle look-up procedures the fe name i< [AN

1f the ectit is oot a range check nor a file look-un you xﬁay enter up to 32

characters in this space — far use by the
edit procadure. .

-

Figure 3-7. Editing Specification Display

you have specified all editing for this field, enter X at the first prompt and press ENTER t0 move to

the next unprotected fleld. When you wish o terminate entry of editing specifications, press the f8
key tenter {8° on the HP 2640). When you have defined the last edit specification for the last

unprotected field on the form, this termination og¢curs automatically. At this time, all edit
specifications are copied to the form file, and the Functicn Selection Display refurns to the
sereen with the current form file name appearing at the prompt that requests entry of a form
file name. You may now select another function for this file. Alternatively, you may select

another form file by entering its name; in this case, FORMAINT closes the current {ile as the
form file name and opens the new one.

NOTE

When you press the ENTER key, all entries or responses to
prompts presently appearing on your screen are transmitted to
FORMAINT, Thus, if you are specifving a second editing proce-
dure for a field and old entries for the firat procedure still appear
on your screen following the cursor, clear these old entries if you
do not want them to apply to the second procedure. Do this by
pressing the CLEAR DISPLAY key after the last entry you do
wish to apply. Then, press ENTER to transmit the entries on the
screen.

3-14

N

When you terminate the editing process, FORMAINT detects any erroneous entries and reports them
as indicated in table 3-4.

Table 3-4. Editing Specification Display Errors

MESSAGE CAUSE
FORM DEFINITION EXCEEDS SYSTEM CAPA- You defined & form which contains more than 216
BILITY {MPE-C megsage) characters on one line. This exceeds MPE.C system

capabrility. {If the form is defined on 4 non-MPE-C
Systemn, however, it will be acceptable 1o MPE-C}

EDIT PROCEDURE NAME IS INYALID You enterad an edit procedure name that does not
begin with a letter or that contains a special characier,

or you omitted a procedura name where ane is re-
quired. The cursor returrs 1o the beginning of the
Editing Specifivations Display, aowing you to cor-
- - ' rect the error, - o

FLAG # 18 INVALID _ You entered a number other than 1 through 16 ora
: i blank in respense 1o a prompt for a flag. FOBMAINT
- causes the invalid entry 19 blink and waits for you to
carrect the error.

INVALID ROW ADDRESS Form file may be invalid. Check form with DISPLAY
: function. If error, delete and reenter form.

SELECT ONE — RANGE CHECK, FILE LOOK— You specified more than one of the following entries

UP OR EDIT DEFINED DATA . for an input field:

FAanga Check, Look-Up Procedure Fife Name,
or Characters (for edit-defined datal.

FORMAINT waits for you to correct the error,

315

LISTING FORMS IN A FORM FILE

. Each form file contains a directory that indicates the names of all forms residing in that file, plus other
information about these forms that must be maintained and used by DEL. The standard content and
format of form file directories is described in Appendix B. You can request FORMAINT to display the
names of the forms appearing in the directory for the current form file, plus the date and time these
forims were created. To do this, enter X beside the LIST FORM FILE DIRECTORY prompt in the
Function Selection Display and press ENTER. The directory display appears as shown in figure 3-8;
this example, requested for the file named SALESFIL, shows that this flle contains two forms,
SALESFORM and COSTFORM.

To clear the screen and return to the Function Selection Display, press ENTER,; alternatively, you
may press {8 on the terminal {or £8¢ on the HP 2640).

-

CREATION CREATION
FORM NAME _ DATE TIME FORM NAME DATE TIME

SALESFORM 416776 10:58 COSTFORM 4/18/76 12:16

Figure 3-8. Form File Direetory Display

3-16

P

CHANGING A FORM

To change a form already defined in a form file, enter X at the MODIFY AN EXISTING FORM entry
in the Function Selection Display and press ENTER. FORMAINT presents the Form Modification
Display as shown in figure 3-8, allowing you to specify this form. If the form is chained to another form,

and you wish to chain it to a different form, enfer the name of the new second form in the second
prompi.

CAUTION

WHEN YOU REQUEST THE MODIFY OPERATION, ALL
EDITING SPECIFICATIONS THAT APPLY TO THE CUR-
RENT FORM ARE AUTOMATICALLY DESTROYED. BEAR
THIS IN MIND BEFORE REQUESTING THIS FUNCTION.

Transmit your responses to FORMAINT by pressing ENTER. FORMAINT then clears the screen and
displays the form to be modified, allowing vou to alter any entries you desire and to create new ones.
Use the same methods you employed when first creating the ferm.

NOTE

The R¢ notation, indicating the end of the form, is not displayed.

If you specified the name of a form that does not reside in the form file, the following message appears
when you press ENTER and FORMAINT waits for you to enter a correct form name:

FORM DOES NOT EXIST IN filename

Enter the name of the form to,be mcdiri' s COSTFORM_

tf tha form to ba moo isama d f forms and the
ne form ir the se : : me af the n

Figure 3-9. Form Modification Display
3-17

When you have made all necessary changes to the form, press ENTER. If the form eontains unpro-
tected fields, the Editing Specification Display (figure 3-7) appears, requiring you te re-specify all
editing desired.

NOTE

In addition to entering new or altered editing specifications, you
must alse re-enter any eold, unchanged specifications that you
wish to retain for the form.

To restore the form and editing specifications to the form file and return to the Function Selection
Display, press ENTER.

DISPLAYING A FORM

You can display any form in the form file on your terminal. Alternatively, you can copy this form, plus
any editing specifications for the form and other descriptive information, to an outpui device cther
than the terminal. To do this, enter X at the DISPLAY AN EXISTING FORM prompt and press
ENTER. In response, FORMAINT presents the Form Listing Selection Display {figure 3-10). At the
first prompt, enter the name of the form you wish displayed. If you also want to list the deseriptive
information and editing specifications, specify (at the second prompt) the name of another file/device to
which this data can be transmitted; your terminal cannot be used for this purpose because it does not
include enough memory to hold all of the information to be transmitted. The output file/device is
typically a line printer, but other devices such as a disc or magnetic tape unit can be used. If you want
to use a device other than a disc for the output, you must specify its file and device class names in an
MPE :FILE command prior o running FORMAINT, as follows:

K e File name of output file.
FILE PRNTR;DEV=LP=w—._ Device class nare of output
RUN FORMAINT.PURSYS device (a printer}.
@ ™

Enter the name ot the form 1o be displayed ARSI Z81{Y] : - .

if you want the atinns displayed enter the name of the destiratiun

Figure 3-10. Form Listing Selection Display
3-18

When you enter the name of a non-disc file in the Form Listing Selection Display, you must also
precede that name with an asterisk to indicate a back-reference to the :FILE command, as shown in
figure 3-10. See MPE Commands Reference Manual {or a discussion of back-referencing files.

Presg ENTER to transmit the entries in the Form Listing Selection Display to FORMAINT,

You can request the display of ol forms in the form file by entering a commercial-at sign (@) in’
response to the first prompt in the Form Listing Selection Display. If the listing device is your

terminal, press ENTER after each form appears to display the next form, or enter f& (or £8°on HP

2640) to terminate the display. If the listing device is another device, all forms are listed in sequence

automatically ; you cannoé terminate this operation prematurety,

“that does not exist in the form ﬁie FORMAINT presents the following message and waits for vou to
enter a new form name:

FORM DOES NOT EXIST IN filename

If the output file for the form listing cannot be accessed, FORMAINT prints the following message and
waitg for you to enter 2 new file name. In this message, nann i3 the error code returned by the
FCHECK intrinsic as discussed in MPE Intrinsics Reference Manuel, and Appendix G of this
manual.

LIST FILE CANNOT BE ACCESSED, ERROR CODE=nnnn

If FORMAINT displayed the form on yvour s¢reen, press ENTER to clear the screen and return the
Function Selection Display. If the form was written to another file, FORMAINT returns the Function
Selection Display automatically. An output listing for the form SALESFORM, transmitted to a line
printer, appears in figure 3-11.

DELETING A FORM

To delete a form from a form file, enter X at the DELETE AN EXISTING FORM prompt in the
Function Selection Display and press ENTER. FORMAINT presents the Form Deletion Displey (figure
3-12). Enter the form name at the prompt and press ENTER. The form is removed from the system
immediately. If, however, you entered the name of a form that does not exist in the form file,
FORMAINT prints the following message and waits for you to enter a correct name;

FORM DOES NOT EXIST IN filename

When the form is deleted, FORMAINT returns the Funetion Selection Display to the screen.

DELETING A FORM FILE

To delete an entire form file from the system, enter X at the DELETE THE FORM FILE prompt in the
Function Selection Display and press ENTER. Because this action is irrevocable, FORMAINT outputs
aForm File Deletion Verification prompt {(figure 3-13) to ensure that you really want this file removed.
To delete the file, enter YES; to keep it, enter NO. In either case, FORMAINT returns the Function
Belection Display to the screen.

3-19

DESCRIPTIVE INFORMATION

FORM NaAME IS5 SALESFORM CREATED 5/10/76 17:00
THIS FORM CONTAINS 35 INPUT FIlELDS, TOTAL INPUT LENGTH IS5 423 BYTES.
THERE ARE 23 EDITS SPECIFIED.

W

FORM
SALES TRANSACTENN
DATEs / / TRANSACTION NO.
CUSTOMER ID¢ HILLED TO:

SALESHMAN ID:

PRODUCT UNIT
N, DESCRIPTION PRICE QUANTITY

Figure 3-11. Form Listing Qutput

TERMINATING FORMAINT

To terminate FORMAINT, closing all files accessed by it, enter X at the EXIT FORMAINT prompt

in the Function Selection Display, and press ENTER. If block mode was not set programmatically,
FORMAINT prints the message:

REMEMBER TO UNLATCH THE BLOCK MODE KEY.

In this case, remove the terminal from block mode by releasing the BLOCK MODE key. MPE re-
sumes controi, printing the message shown below and prompting you for a new command:

END OF PROGRAM
: prompt for new MPE command,

3-20

EDITING SPECIFICATIONS

FIELD LOCATION

CFIELD

ROW COL IM INPUT LENGTH
3 11 1 2
PROCEDURE NAHE FLAGS TEST
CNRANGE ' 0
FIELD LDCATION FTELOD
RUW COL IM THPYUT UFNGTH
3 14 - .3 7
PROCENYURE MAME . FLAGS TEST
CNRANGE = =7 0
FIELD LOCATIUN FYELD
ROW COL EM-I&PUT LENGTH
3 i7 5 2
PROCEDURE SAME FLAGS TEST
CNRANGE .]
. FIELD LOCATYON FIELD
CROW COL-IN TNPUT LFENGTH
3 8% 7 6
PROCEDUPE NAME . FLAGS TEST
CMUMRCEDIT 3 : o
FIELD LOCATTON FIELD
COROW COL IM THPUT LEAGTH
05 12 13 é
PRUCENURE NAME FLAGS TEST
CNUMRCEDIT 0
FIELD LOCATION FTERD
ROW 0L IY IHPUT LFNGTH
5 54 16 23
FTETD LOCATION FTELD
ROW AL (M ITuBUT LENGTH
6 54 42 23
FIKLD LOCATFTIUH FIELD
ROW C0L IN TNPUY LENGTH
7 18 65 6
PROCEDNURE NANK FLAGS TEST
CNUMRCEDTT 0
FIFLD LNCATTI{OY FIELD
R{W COL LN T4PUT LENGTH
_ 7 54 71 23
- FEIELD LOCATTYOH FTIELD
. POQW COL IN T4PUT LENGTH
" R 54 - ;. 94 23
FYELD LOCATTON FTHLD
. ROW COL IN THPUT LFNGTH
14 5 0 117 4
FIELD LOCATION® PTELD -
ROW 0L IM IAPUT LENGTH
418 12t 39
. FIETD LOCATYON . FIELD
ROW - £OL tN TAPUT ~ LENGTH
14 18 160 - 41
FTELD LOCATION. PFIELD
ROW COL M TNPUT LENGTH
14 60 - 201 4
£ TESR

NUMBER

DF EDRTTS
: 1

SET SAME

0 0
NMBER

OPPOSITE
' 0

OF FDITS =

1
SET SAME
0 . 0
NUMBER
OF EDITS

1
SET SAME
0 0
NUMBER
OF EDITS
1

SET SAMFE

o 0
N{UMBER'
OF EDITS
1
SET SAME
0)
NUMRFER
OF FRITS
Q
NUMBER
OF FEDITS
0
NUMBER
OF EDITS
1
SET SAME
o 1]
NUMBER

3F EDTTS

a.
NUMBER

OF En{TS

0

NUHMBER .

UF EDITS
0
NUMBER

OPPOSITE
N

OPPOSITE.

0 -

DPPOSITE
o

OPPOSITE
&

OPPDSITE
)

PROCEDURE

Gt

PROCENURE
01

PROCEDURE
i

PRACEDURE

PROCEDURE

PROCEDURE

OF FoITs <~ 0 7

0
NOMBER

OF EDITS

o

NUMBER

OF EDITS
1

SET 514

[TE PROCEDURE DATA

Figure 3-11. Form Listing Qutput (Continued)
3-21

DATA

12
DATA

31
DATA

79
DATA -
DATA
DATA

Enter the name of the form to be deleted SALESFORM :

L |)

Figure 3.12. Form Deletion Display

Name of fite specified in
function selection display.

4 ™
s form file SEYRSXIIM to b delcted?

Enter YES or NO R

Figure 3-13. Form File Deletion Verification Display
3-22

USING DEL PROCEDURES

Once you have entered your form into the system, you are ready to write the application program that
will access the form and interface with the user at the terminal. To do this, your program must call
various procedures supplied by DEL. (You may also optionally supply additional specialized proce-
dures that you write yourself for your DEL application. These procedures need not be written in the
same language as your main program. In fact, you may write them in languages other than COBOL,
FORTRAN, SPL and BASIC, as long as your program provides for any peculiarities involved in calling
procedures in such languages.)

NOTE

If you use your own procedures as weil as the DEL procedures
to manipulate the terminal, you must make sure that the com-
munications area {refer to Appendix A) is left in the state
that DEL expects and that any escape sequences you transmit
to the terminal leave the terminal in a state that DEL expects.
The latter point is also true if you use escape seqguences with the
DEL procedures.

The DEL procedures fall into four basic functional categories, and are discussed in this order in
Sections V through VIIL

¢ Form access procedures (Section V) that access the form file, including:
OPENFORM to open a form file.
FINDFORM 1o locate a form in the form file.
GETFORM to move a form inte a program buffer (work area) called the form buffer.
NEXTEDIT to move the next edit specification into a program buffer called the edit buffer,
CLOSEFORM to close the form file,

o Terminal czcce;s procedures (Section VI} that access the terminal as a file, including:

OPENTERM te open the terminal as a file.

WRITETERM to write outpul from a program buffer to the terminal. (This output is typically the
form moved into the form buffer by GETFORM.}

READTERM to read input from the terminal into a program buffer called the dota buffer. (This
input is the data entered by the person running the application pregram; at your option, the data
buffer may occupy the same area of storage as the form buffer)

TERMSTATUS to request status information about the terminal.

CLOSETERM to close the terminal file.
4-1

Editing pmcedur-es (Section VID) that validate the general contents of input fields read from the
terminal:

ALPHAEIIT to verify that the input field contains alphabetic characters (the letters A through Z)
only.

ALPHAFILL to verify that the input field contains alphabetic characters only, with the last

alphabetic character optionally followed to the right by blanks (spaces); no blanks, however, can be .

embedded within the alphabetic character string.

ANEDIT to verify that the input field contains alphanumeric characters (the latters A through 73,
the digits 0 through 9, or spaces.

NUMRCEDIT to verify that the input field containg numeric data (the digits 0 through 9} only.

ZEROFILL to verify that the input field contains a leading plus or minus and numeric data only,
with the numeric string optionally preceded and/or followed by blanks. ZEROFILL also right-
justifies this field and fills it to the left with zeros following the sign. No blanks, however, can
appear within the numeric string.

NRANGE to ensure that the input field contains numeric data that falls within a specified range.

The numeric string may be optionally preceded and/or foliowed by blanks, but may not contain

blanks. This procedure, like ZEROFILL, right-justifies this field and fills it to the left with zeros,
following the sign.

MIICREATE to ensure that the input field contains numeric data only, generate a module-11
check digit, and ingert this digit as the right-most digit of the input field.

MIIVERIFY to ensure that the input field contains numeric data only, generate a modulo-11
check digit, and compare this with the right-most digit of the input field.

High-level procedures (Section VIII)} that combine some of the above procedures:
SHOWFORM to combine the FINDFORM, GETFORM, WRITETERM, and READTERM opera-
tions noted above in sequence; in essence, to locate and access a form, display the form on terminal

gcreen, and read the user’s input from terminal.

EDITFIELD to combine the NEXTEDIT and editing-procedure operations; effectively, to obtain
the next editing procedure and then execute that procedure.

HOW PROCEDURES ARE USED

in your application program, the order in which you use the procedures depends partly on the
application and partly upon your own preference. Typically, however, a program:

1. Initializes the required data areas and then opens the form file (OPENFORM) and terminal file

(OPENTERM).

2. Locates the form (FINDFORM) and moves it into the form buffer (GETFORM).

3. Digplays the form on the terminal (WRITETERM).

4.2

4. Reads the data thaf the user enters on the displayed form info the data buffer (READTERM).
5. Moves an editing specification into the edit buffer (NEXTEDIT).

6. Executes the editing procedure (ALPHAEDIT, NUMRCEDIT, and so forth).

7. Repeats steps 5 and 6, as applicable to the current input field.

8. Writes the user’s data from the data buffer to a data file, using statements in the host program
language. {The host language is that in which the application program is written.)

9. Chaing to another form, if applicable.

10, Closes the form file (CLOSEFORM} and terminal file (CLOSETERM) when through.

After executing each procedure, the application program normally checke the status of the procedure
fo determine whether the procedure was executed successfully. {The status is reported in a special
status word, discussed below.) The typical order of procedure calls is summarized in figure 4-1, where

it is also compared with a sequence of calls that combines some operations by invoking SHOWFORM
and EDITFIELD.

COMMON PROCEDURE CHARACTERISTICS

All DEL procedures can be accessed from programs written in COBOL, FORTRAN, BASIC, and SPL.
The same name is used for each procedure in FORTRAN, BASIC, and SPL programs. For instance, in
all three languages, you invoke the procedure that opens your form file by using the procedure name
OFPENFORM. In COBOL programs, however, you must prefix the standard procedure name with the
letter C; this denotes an alternate entry-point for the procedure that must be used by COBQOL
programs because these programs pass parameters somewhat differently than FORTRAN, BASIC,
and SPL pregrams. Thus, to open the form file in a COBOL program, you would invoke the OFEN-
FORM procedure by using the name COPENFORM.

All procedures require at least one parameter: the name of the DEL communication area {commareal,
a global storage area in memory used by DEL to maintain information about the form file and
terminal that the application program is using. This information includes the file nurabers that
identify these files to the MPE File Management System, information about the currently-used form,
data regarding the editing procedures for the form, and various pointers to areas on the form and other
data. This area occupies 128 contiguous words of memory, the first of which is the status word. When
each procedure terminates, it sets the status word with a value that indicates whether the procedure
succeeded or failed. For FORTRAN, BASIC, and SPL programs, this value is designated as type
INTEGER. For COBOL programs, it is designated as USAGE COMP. When a procedure returns the
value zero to this word, this indicates successful (normal) completion. When it returns any other value,
an abmormal condition occurred; the specific meaning of a value depends both upon the type of
abnormality encountered and the procedure that returned the value,

The remaining 127 words in the communication area arve used by DEL. The format of the entire
comnunication area is summarized in Appendix A,

Various DEL procedures may refer to any of the parameters defined in table 4-1 and noted throughout
this manual. Those parameters defined as type CHARACTER are assumed to reference data whose
first byte (character) is located at the beginning of a memory word. When you define a data item or
area referenced by one of these parameters in your application program, make certain that you assign
it the characteristics specified for it in table 4-1. For instance, always assign the form buffer (formbuf-
fer parameter) & minimum length of 64 bytes, and specify it as a data item of type CHARACTER. For
further information, see the program example in Section IX.

4.3

PROGRAM WITHOUT COMBINED OPERATIONS

“"OPENFORM"
{CHECK STATUS)
“OPENTERM™
{CHECK STATUS)

-

(A} “FINDFORM™
{CHECK STATUS)

“GETFORM”
(CHECK STATUS)

“WRITETERM"
(CHECK STATUS)

(B8} "READTERM"”
(CHECK STATUS)

“NEXTEDIT”
(CHECK STATUS)
"NUMRCEDIT™
(CHECK STATUS)

"NEXTEDIT™
(CHECK STATUS)
“ALPHAEDIT"
{CHECK STATUS)

SAME FORM? GO TO (B}
NEW FORM? GO TO (A}

“CLOSEFORM"”
{CHECIKK STATUS)
“CLOSETERM”
{CHECK STATUS)

PROGRAM WITH COMBINED OPERATIONS

"OPENFORM"
(CHECK STATUS)
“"OPENTERM”
{CHECK STATUS)

“SHOWFORM”
{CHECK STATUS)

"EQITFIELD”
(CHECK STATUS)

“EMTFIELD™
{CHECKSTATUS)

“CLOSEFORM”
{CHECK STATUS)
“CLOSETERM”
{CHECK STATUS}

*1f it is necessary ta clear the screen {clear unprotected fields), it can be done at this point.

Figure 4-1. Procedure Calls in Application Programs

4-4

Table 4.1. Summary of Procedure Parameters

DATA ITEM AREA/NARIABLE
PAAAMETER MEANING TYPE LENGTH
commaresd Narme of DEL communication area used INTEGER 128 words exactly
for your program. This isa t128-word
area whosg first entry is status word
that can be interrogated by your pro-
aram to determine if last procedure
catied was executed successfully. The
status word is a 1&-bit numeric quantity
that rust be declared as usage COMP
for COBOL. programs and typs INTE-
GER for all other programs, The re-
maining 127-words are used for global
storage by DEL.
databutfer Name of program buffer used for input CHARACTER lLength depends upon
of user data from terminat. nurmber of input characters
expecied plus number of
fietds plus gns,
datalength Name of variable used to specify length INTEGER 2 bytes {1 word)
- of databuffer; DEL also returns length exactly.
of data actually read to this variable. (If |
you use far more than ane call, you must’
reset the length since DEL changes it}
aditdaf Mame of program buffer 1o hald speci- CHARACTER 72 bytes [characters)
fications for edit procedures.
fhufferiength Name of variable containing length of INTEGER 2 bytas (1 word)
form buffer; Some DEL procedures also axactly.
return actual leagth of form and its
afligd information to this buffer.
formbufier Name of praogram buffer to which form CHARACTER 64 bytes minimum.
is moved from form fite, and from
" which form is written to terminal.
formiile Narne of area containing MPE formal CHARACTER 35 by tes {characters)
file designator of current form file. maximum. {f less than 8
characters, must e termi-
nated by a blank.
formlength Name of variable 1o which length of INTEGER 2 bytes {1 word}
current form is returned. exactly.
formname Marne of area containing identity of CHARACTER 16 bytes {characters)
- current form, exactly.
nax form Name of area 10 which name of next CHAHACTER 16 bytes {characters]
farm in a chained series is returned, exactly,
{¥ ou can movs 1o formname to re-
quest next form in chain.)
statbutfer Name of buffer to which status of ter- CHARACTER 28 bytes minimum.
minal is returned.
termiiie Mame of area containing MPE format CHARACTER 8 bytes {characters}

file designator of terminal file, (De-
fault SSTDOIN/SSTOHLIST).

maximum, 1§ less than 8
characters, must be termi-
nated by a blank.

MNote: All parameters must beairt on 8 word boundary.

4-5

ACCESSING FORMS FROM PROGRAMS

Using the procedures discussed in this section, your program can obtain read-only access to the form
file. One of these procedures, GETFORM, enables your program to copy a form residing in the form file
into a program buffer. Then, by calling the WRITETERM procedure, discussed in Section VI, the
program can display the form on the terminal screen. After the user at the terminal enters data on the
form, your pregram can read this data into a program buffer by calling the READTERM procedure,
also discussed in Section V1. This buffer can be the same one used by the GETFORM procedure, or it
can be a different one. (Subsequently, the program may transfer the data to a data file, using its own
host-language statements.) These steps, which generally form the heart of mest DEL application
programs, are illustrated In figure 5-1. An explicit example of these steps appears in the sample
program in Section IX.

OPENING A FORM FILE

Before your application program can select a form, it must initiate access to (open) the forr file that
contains the form. To open the form file, call the QPENFORM procedure. If successful, this procedure
returns the value zero to the status word in the DEL communication area. If the file is not a form file
created by FORMAINT, this procedure sets the status word £o minus ene. If the file cannot be opened,
the procedure returns an FCHECK error code €a value greater than zers) to the status word. See the
discussion of the FCHECK intrinsic in the MPE Inkrinsics Reference Manual or the FCHECK error
code summary in Appendix G of this manual for the meaning of this code.

The calling sequence for the OPENFORM procedure appears below, as entered in the COBOL,
FORTRAN, SPL, and BASIC languages. In this sequence and those for all other DEL procedures,
entries in UPPER-CASE CHARACTERS must be written exactly as shown. Entries in lower-case

FROGRAM BUFFER
{Work Azes}
T N
- GETFORM ggﬁﬂe Egl
EORM FILE cali moves WHITETERM
fatm to call moves form USER'S
buffer. 10 terminal. DATA
«««««««« USER
JRS,
{ READTEAM
H call rmoves users
% data 10 buffer. \
FGHRM

Hgsi-Language
staterment {of FWRETE oall}
rmoves dasa 1o data file,

—

DATA FILE

Figure 5-1. Application Program Procedures in Action

o-1

italics are user-defined variables that you must supply. All parameters shown are required and cannot
be omitted. Unless the host language allows embedded blanks in procedure calls as a generality, do not
inciude them in these DEL procedure calls. Examples of calls also appear below.

LANGUAGE CALLING SEQGUENCE/EXAMPLE

COBROL CALL "COPENFEORM"” USING comurares formfile.
Example; CALL "COPENFORM™ USING MYCOMM MYFORMFL.

FGRYTRAN CALL OPENFORMIlcommarea, formfile)
Example: CALL QPENFORM{MYCOMM MYEORMFL)

SPL QOPENFORM {commarea, formfile};
Example: OPENFORMMYCOMM MYFORMFLY;

BASIC CALL OPENFORM{c{1).f3)
Example: CALL GPENFORM{CI(1},F$}

The parameters in the OPENFORM calling sequence indicate the following:

PARAMETER MEANING

COMmmaresa The name of the DEL communication area used for your program. This area {s a 128-woard
c integer data itemn whose first entry is the status word that can be interrogated by your pro-

gramn to determing if this and other procedures executed successfully, The status word is
a 16-bit numeric guantity that must be declared as usage COMP for COBOL programs and
type INTEGER for alt other programs. The remaining 127 words of the communications
area are used for global storage by DEL.

formfile The name of the araa containing the MPE formal file designator that identifies the form
5 fite. This is a character data item with 2 maximum length of 35 bytes.

Before using the above parameters in procedure calls, you should define them within your program
and initialize the areas they reference. The DEL communrication area, for instance, cannot be used by
any procedure unless it is defined as an integer data Hem with the status word declared as usage
COMP for COBOL programs and type INTEGER for all others. The area referenced by formfile must
be defined as a character data item, and should already contain the form file designator when you

reference it in any procedure call. This kind of rule applies to ail parameters referenced by all
procedures discussed in this manual.

NOTE

You must call OPENFORM before you ean call any other proce-
dure described in this section.

5-2

LOCATING A FORM IN A FORM FILE

Before yvour program can perform any operation on a form, it must locate that form in the form file. To
do this, the program calls the FINDFORM procedure, which places eurrent informaton about the form
in the DEL communication area for use by subsequent procedures, clears any edit flags by re-setting
them to zero, and returns the length of the form and the name of the next (chained) form, if any, to
areas established by your program. If these operations are successful, the procedure sets the status
word to zero; if the form is not stored in the form file, the procedure sets the status word to minus 1; if
the form file cannot be read, the procedure sets the status word to the appropriate FCHECK error code,

NOTE

Before your program can issue any calls to FINDFORM, it must
have issued an OPENFORM call to open the form file.

The calling sequence for FINDFORM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE
COBOL CALL "CFINDFORM™ USING commarea formname formfength nextform.
Example: CALL “CFINOFORM™ USING MYCOMM MYFORM LENF NEXTF.
FORTRAN CALL FINDFORM{commarea formrname, forrnfength.nexiform)
Example: CALL FINDFOEMIMYCOMM MYFORM LENF NEXTF)
SPL FINDEOAM{commarea, Formname formlength nextform);
Example: FINDFORMMYCOMM MYFORMLENF NEXTF):
BASIC CALL FINDFORM{e{1},F181 728}
Example: FINDFORMI{CI(1},F18,L.F28)

The parameters in this calling sequence indicate:

PARAMETER MEANING

commarea The name of the DEL comrnunication area used for your program. {See GPENFORM pro-

c cedure discussion.]

formname The name of the area that contains the name of your form. This area is a CHARACTER

1 data item that must be exactly 16 bytes {characters} long.

formiength The name of a variable to which FINDFORM returns the length of the form accessed. This

I is a one-word INTEGER data item. This itern must be declared usage COMP in COBOL
programs,

nextform The name of the area to which FINDFORM refurns the name of the next form in the

28 chained series, if the current form tielonas to such a series, This is a CHARACTER data
item that must be exactly 16 bytes long. To request the next form, this name must be
moeved to formname and another call 1o FINDFORM must be executed.

5-3

MOVING A FORM TO A PROGRAM BUFFER

When your program is ready to move a form from the current form file into a buffer, it calls the
GETFORM procedure. This precedure also transfers terminal control characters to the buffer; these
characters are used to clear the terminal screen, lock the keyboard, set format mode, and perform
other functions needed when your program later displays the form on the terminal screen. (See Section
Vi) If the program buffer is too small to hold the entire form, GETFORM updates current information
in the communication area so that your program ean retrieve the remainder of the form by issuing a
second GETFORM call. When the complete form has been delivered to the program buffer, word 43
of the communications area (refer to Appendix A) is seil to zero. If the GETFORM operation is
successful, this procedure sets the status word to zero, If the form file cannot be read, the proce-
dure sets the status word to the appropriate FCHECK error code. If the program buffer is less than
64 bytes, the status word is set to -4,

NOTE

Before your program can call GETFORM, it must have called
OPENFORM to open the form file and FINDFORM to locate the

form.

The calling sequence for GETFORM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CGBETFORM" USING commarea formbuffer fbufferiength.,
Example; CALL “CGETFORM™ USING MYCOMM MYFBUF LENB.

FORTRAN CALL GETECRM commarea,.formbuffer, fbufferlength)
Examplie: CALL GETFORMIMYCOMM MYFBUF LENB)

SPL GETFORM{commarea, fermbulfer, fbuiferlengih};
Example: GETFGRM(MYCOMMMYFBUF LENSB);

BASIC CALL GETFORM{c(11L05.0)
Example: CALL GETFORMICT{1),BOS, LG}

The parameters in this calling seguence are:

PARAMETER ' MEANING
commarea The name of the DEL communication area used for your program, {See OPENFORM pro-
fog eedure discussion.)
formburfer The name of the program buffer to which GETFORM copies the form and its allied infor-
5% mation. This must be 8 CHARACTER dzta item with a minimum length of 64 bytes,
fbufferiengrh The name of a variable that contains the Jength of your grogram buffer, and to which
i GETFORM returns the actual length of the form and its aflied information. This must

be a one-word INTEGER data item.

6-4

NOTE

The fbufferlength parameter for this procedure should typically
specify a different area than the formiength parameter for
FINDFORM, to avoid overwriting the information returned by
FINDFORM.

RETRIEVING NEXT EDIT SPECIFICATIONS

After your program has moved the form into its buffer (GETFORM procedure}, displayed it upon the
terminal screen (WRITETERM procedure, Section VI, and read the user's data (READTERM proce-
dure, also Section VI}, the program should then apply any editing specifications necessary to the data
read. Before the program can call the procedures for these specifications, however, it must move each
of them in sequence into a program buffer. This is done through the NEXTEDIT procedure, which also
updates the appropriate editing pointers in the DEL communication area. For example, if vour
program ig to use two editing procedures in sequence, ANEDIT and NRANGE, it would:

1. Call NEXTEDIT to move the ANEDIT specifications into the buffer.
Call ANEDIT to perform an alphanumeric edit check.

3. Call NEXTEDIT to move the NRANGE specification into the buffer.
4. Call NRANGE to perform a numeric range check on the data.

&

If the last edit specification has already been accessed when NEXTEDIT is called, the status word is
sat te minus one, the program buffer is unchanged, and the communication area is reset to indicate the
first edit specification. If the next editing specification cannot be read from the form file, NEXTEDHT
sefs the status word to the appropriate FCHECK error code.

NOTE

Before your pregram can call NEXTEDIT, i must have called S
FINDFORM to locate the form and its editing specifications.

The calling sequence for NEXTEDIT ie:

LANGUAGE - CALLING SEQUENCE/EXAMPLE

COBOL CALL “CNEXTEDIT"” USING commarea editdef.
Example: CALL "CNEXTEDIT” USING MYCOMM MYEDEF.

FORTRAN CALL NEXTEDIT{commarea,editdef)
Example: CALL NMEXTEDITIMYCOMMMYEDEF)

5Pt NEXTEDIT [cormmarea,editdef);
Exsmple: NEXTEDITIMYCOMM MYEDEF),

BASIC CALL NEXTEDIT{cl1),e8}
Example: CALL NLEXTERIT{C1{1],ES}

5-b

The parameters in the calling sequence are:

PARAMETER MEANING

£Qrrwniares The name of the DEL cornmunication area used for your program. {See OPENFORM pro-
Fo cedure discussion.)

aditdef The name of the program buffer 1o which NEXTEDIT copies the next editing specifica-
e$ tion. This must be @ CHARACTER data item with a minimum length of 72 bytes.

NOTE

The editdef parameter for this procedure should always specify a
different area from the datobuffer parameter of the READTERM
procedure to aveoid overwriting the information returned by
READTERM. READTERM reads the user’s data {refer to
Section VI}.

CLOSING A FORM FILE

When your program has finished using the form file, it closes it by calling the CLOSEFORM
procedure. If this operation fails, CLOSEFORM sets the status word to the appropriate FCHECK error
code. The CLOSEFORM calling sequence is:

LANGUAGE CALLING SEQUENCE/EXAMPLE
CoBOL CALL “CCLOSEFORM"” USING commarea.

Example: CALL "CCLOSEFORM USING MYCOMM,
FORTRAN CALL CLOSEFORMI(commareal

Exampie: CALL CLOSEFORMIMYCOMM)
5PL CLOSEFQRMicommarea) ;

Exampie: CLOSEFORM{MYCOMMY:
BASIC CALL CLOSEFCRMIciT)

Example: CALL CLOSEFORMICT{1})

The only parameter in this calling sequence ig:

PARAMETER

MEANING

conmmarea
[+

The name of the DEL communication area used for your program. {See OPENFORM
pracedure definition.)

5-6

N

ACCESSING TERMINALS
FROM PROGRAMS | vi

With the procedures discussed in this seetion, your program can obtain read/write access to the
terminal as an MPE file. Thus, your program can call the WRITETERM procedure to copy a form from
its program buffer (formbuffer} onto the terminal screen. The program can also call the READTERM
procedure to move the data that the user at the terminal enters into a program buffer (databuffer). The
formbuffer and databuffer can occupy a common area of memory, or they can be defined as two distinct
areas. Other procedures are also available for use in support of WRITETERM and READTERM.

OPENING A TERMINAL FILE

Just as your application program must open the form file befare it can select a form (Section V), it
must open the user’s terminal as an MPH file before it can access that terminal. To open the fermi-
nal/file and verify that the terminal is an HP 2064x ferminal, the program calls the OPENTERM
procedure. If suecessful, this procedure returns the value zero fo the status word in the DEL com-
munication area. If the terminal is not a 264x, the procedure sets the status word to minus one, i
the terminalffile cannot be opened, the procedure returns an FCHECK error code { a value greater
than zero) to the status word. The calling sequence for OPENTERM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "COPENTERM” USING commarea termfile.
Exampie: CALL “COPENTERM” USING MYCOMM MYTERMEL.

FORTRAN CALL OPENTERM{commarea, termiile)
Example: CALL OPENTERM{MYCOMMMYTERMFEL)

SPL OPENTERM{commarea, tertrfile};
Exampie: OPENTERM{MYCOMMMYTERMFLY;

BASIC CALL OPENTERM{c(11),¢$
Example: CALL QPENTERM{CI{1),T3

The parameters for GPENTERM are:

PARAMETER . MEANING

cormmarea The name of the DEL communication ares used for your program, {(See OPENFORM

c procedure discussicn in Section V)

tarenfile The name of the area containing the MPE formal file designator that identifies the termi-

s nal file, This is 2 character data item with a maximum langth of 8 bytes. If less than 8
characters are specified, the name must be terminated with a blank. if the area contains
3!} bfanks (no name is specified) the defauilt designator is $STOIN.

NOTE
You must call OPENTERM before you can call any other termi-
nal access procedure deseribed in this section.

6-1

If you want to open a terminal devicefile other than $8TDIN/$STDLIST (the session defaults for
your terminal), you can use a (FILE command to define soime devicefile characteristics. The name
passed to OPENTERM in the termfile parameter should be used as the formal file designator. The
:FILE command DEV= parameter should be used to specify the logical device number of the fermi-
nal te be opened; for example, ‘FILE TERM264X,NEW; DEV=386. If an MPE :DATA command has
been entered on the terminal o be opened, the terminal is opened as an old {existing) file and only
the device class or logical device number need be defined. Only $STDIN/$STDLIST may be used
with the MPE-C operating system.

If the terminal is not $STDIN/SSTDLIST, or the :DATA command is not used, and the terminal is
to operate at a speed other than 240 characters per second {2400 baud), or at a speed other than its
configured default speed, use the Terminal Allocation word in the communications area (refer to
Appendix A) to specify the speed. If the configuration value is non-zero and the Terminal Alloca-
tion word is zero, the configuration value will override the OPENTERM default of 240 eps.

If the amount of data to be read from any form displayed by the application program is greater
than 2000 bytes, you must use a :FILE command REC+ parameter to specify the maximum input
record size in bytes. For example, if the formal file designator for the terminal is ATERM and the
maximum amount of data to be read is 3500 bytes, the file equation should be (FILE ATERM;
REC=-3500,

If you want the default values for block mode terminal usage, the communications area should be
sei to binary zeros before OPENTERM is called. {Refer to Appendix A). If you are using a 2641A,
2648A, 2645K, or 2648A terminal, QPENTERM will set the BLOCK MODE znd BLCCK MODE/
PAGE strapping programmatically. If you want to suppress this feature, set the Terminal Mode In-
formation word in the communications area to a negative value. I your applications program may
be run on an HP 2641, 2645, or 2648 with the MPE-C operating system, be sure thas the Terminal
Mode Information word is set to a negative value before calling OPENTERM.

WRITING OUTPUT TO A TERMINAL

When your program is ready to display a form onto 2 terminal, it calls the WRITETERM procedure.
This procedure transfers the entive contents of the specified form buffer to the user’s terminal. If
the procedure succeeds, it sets the DEL status word to zero. If the write operation {ails, the proce-
dure sets the status word to the appropriate FCHECK error code. Only the characters in the buffer
are transmitted to the terminal, These include escape sequences to control normal forms display.
However, if you want to execute any special escape sequences for terminal control, they must be
included in the buffer. You are responsible for insuring that the terminal is in the state that DEL
expects it to be when WRITETERM completes execution.

NOTE

Before your programn can call WRITETERM, it must have
opened the terminal as a file by calling OPENTERM.

6-2

ol

The calling sequence for WRITETERM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE
COBOL CALL “CWRITETERM'" USING commares formbuffer fouFfeclength.
Examptie: CALL "CWRITETERM™ USING MYCOMM MYTFBUF LENB.
FORTRAN CALL WRiTETERMlcommarea,formbutier, fhufferfengtin
Example: CALL WRITETERM{MYCOMM MYFEUF LENB}
SPL WRITETERMIcommarea, formbuffer, fhufferiength};
Example: WRITETERMIMYCOMM MY FBUF, LENB};
BASIC CALL WRITETERM({1}1,63.0

Example: CALL WRITETERMI{C1{1},BOS,L0O}

The parameters in this calling sequence are:

PARAMETER MEANING

COMMarsa The name of the DEL communication area used for your program, (3ee QPENFCORM
¢ procedure discussion in Section V.)

formbuffor The name of the program buffer from which WRITETERM copies the form. This must
b% be a CHARACTER data item with 2 minimum length of 64 bytes.

fbufferfength The riame of a variable that contains the length of the data o be transferred from the

{

buffer. This must be a one-ward INTEGER data itemn. No value is returned.

NGTE

If commaren is placed in the DL to DB arez by an SPL pro-
gram, the formbuffer program buffer must also be in that
area.

DEL prevents messages sent using the MPE :TELL command
from being displayed onto forms,

READING INPUT FROM A TERMINAL

When your program is ready to accept the data a user entered at the terminal, it calls the READTERM
procedure. This procedure reads the data from all unprotected areas on the screen and copies it fo the
designated program buffer. This buffer may be the same one used by the GETFORM and
WRITETERM procedures, or it may be another buffer. It must noé, however, be the same buffer used
by any NEXTEDIT procedure ealled to edit the input data — otherwise, the editing specifications

6-3

needed for this edit will overwrite the input data. The READTERM precedure also sets the one-word
vartable datalength to indicate the length of the data actually read from the terminal. If READTERM
executes successfully, it sets the DEL status word to zero. If the procedure fails, it sets the status word
10 the appropriate FCHECK error code. If one of the function keys (fl through £8) is pressed while
READTERM is waiting for input, the status word will be set to the negabive function key number
{-1 through -8}.

NOTE

Before your program can call READTERM, it must have called
OPENTERM to open the terminal/file.

During 2 BLOCK MODE/PAGE read when the G strap is open, the actual transfer of data from a
terminal to the compuier by READTERM is timed. A data overrun or timeout error occurs if the
duration of a read exceeds a computed value. When READTERM detects this condition, it auto-
matically retries the read operation. ‘The number of error recovery retries that READTERM attempts
is recorded in words 5, 8, and 7 of the communications area. The default limit to the number of re-
tries is 4, although the transient nature of these errors usually necessitates only one or two retries. If
you do not want {0 use this feature, you can set the Maximum Number of Retries (Word 8 of the
communications area} to a negative value.

NOTE

Before your program can call READTERM, it must have called
OPENTERM to open the terminai/file. The buffer length must
bhe at least equal to the number of input data characters plus
the number of fields on the screen (to allow for the field
separators} plus one {to allow for the record separator),

READING IN PAGE MODE, Note that if you are using READTEREM in BLOCK MODE/PAGE,
all the fields will be read since READTERM must encounter the record separator at the end of the
form to complete the read successfully,

MULTIPOINT. If your application program is running on a multipoint terminal, the maximum num-
ber of characters that can be read as data from the unprotecied fields of a form is 2048 minus the
number of {ields minus one.

The calling sequence for READTERM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBCL CALL "CREADTERM” USING commarea databuffer datalength.
Example: CALL “CREADTERM™ USING MYCOMM MYDEUF LENDB.

FORTRAN CALL READTERM{commarea,databufier,datalength}
Example: CALL READTERMMYCOMM MYDBUF LENDE}

5Pt ‘READTERMIcommarea,databuifer,datalength};
Example: READTERM{MYCOMMMYDBUF, LENDB):

BASIC CALL BEADTERM{c{1}1L6%.1)
Example: CALL READTERM{CT{1},BI1S,LT}

6-4

The READTERM parameters are:

PARAMETER MEANING -
commarea The name of the DEL communication area used for your program, {See OPENFORM

< procedure discussion in Section V.}

databulfer The name of the program buffer to receive the user’s input from the terminal, The length
b of this buffer must be at least equal to the numbier of characters expectad in the data

ertered plus the number of fields pius ane. 1t must be g CHARACTER type data item.

datalength The name of a variable specifying the actual length of the data buffer; when READTERM
i is executed, the procedure returns to this verizble the actual length of the data read. This
must be a one-word INTEGER type variable. If you are using the same variable for data
fength in more than one call, you must reset the jength since BEL changes it

REQUESTING TERMINAL STATUS

From time to time, a program might require information about the eperating status of the terminal
from which the user enters his data. For example, you might wish your program to periodically
determine that the terminal is still in block mode while the user iz eniering his data. Other useful
information might include terminal memory size, strapping options in effect, latching key status
{latched/unlatched), input/output transfers pending, error conditions, or other data. (See the owner’s
manual for your terminal for further details on what particular information is maintained.) To obtain
this information, the program calls the TERMSTATUS procedure, which writes the status information
into a buffer defined by the program. The first six bytes of the buffer receive the terminal memory
size, reported in decimal digits; the remaining bytes receive the Primary Terminal S{atus flag settings,
reported as ASCII O (for OFF) and ASCII 1 (for ON). Table 6-1 illustrates how bytes in the ferminal
status buffer correspond tc bits in the Primary Terminal Status bytes described in the terminal
owner and programmiog reference manuals. The HP 2640 (A or B) maintains 18 error flags, while
all other terminals maintain 22. Because the procedure returns the maximum number of bytes pos.
sihle with either type of terminal, the program buffer should be at ieast 28 bytes long. If the status
information is written to the buffer, the procedure sets the DEL status word 1o zero. If the status
information is not written, it retums the appropriate FCHECK code to the DEL status word.,

NOTE
Before your program can call the TERMSTATUS procedure, it
must have called the OPENTERM procedure to open the
terminal/file.

The TERMSTATUS ealling sequence is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

oaGL CALL "CTERMSTATUS USING commares statbuffer.
Example: CALL "CTERMSTATUS” USING MYCOMM MYSTATUS.

FORTRAN CALL TERMSTATUS(commarea, statbuffer)
Exampie: CALL TERMETATUSIMYCOMM MYSTATUS)

SPL TERMSTATUS {commarea statbuffert;
Exampie: TERMSTATUSMYCOMMMYSTATUS);

BASIC CALL TERMSTATUS{c{1} 55}
Exampie: CALL TERMSTATUS(C1(7).818}

6-5

The TERMSTATUS parameters are:

PARAMETER MEANING
commarea The name of the DEL communication area usad for your program. (See OPENFORM
¢ procedure discussion in Section V.)
statbuffer Name of buffer 10 which terminal memory size and status-flag settings are returned. This
5% rmust be a CHARACTER 1ype data itern at least 28 bytes long.
Table 6-1. Terminal Status Buffer
PTS Byie G PTS Byte 1 Key- PTS Byte 2 Key-
board Interface board Interface
Terminal Switches (A-D, Switches (E-H,
Memory Size Lower Straps} Higher Straps}
PTS Bits 4 3 2 1 4 3 2 1
TSB Bytes 1 2 3 4 5 8 7 8 9 e f 1 | 121 13] 14
PTS Byte 3 PTS Bytz 4 PTSByte § PTS Byte 6
Transfer Device Transfer
Latching Panding Error Panding
Keys Flags Flags Flags
PTS Bits 3 2 1 3 2 1 4 3 2 1 4 3 Z 1
TS8 Bytes 14 (16 | 1718 | 19| 20| 2% 22§ 23 V24 § 256 |26 | 27 {28

PT3: Primary Terminal Status
TSBE: Terrminal Status Buffer
Note: PTS Byte B dosgs not apply to 2640A and 26408,

CLOSING A TERMINAL FILE

When your program has finished using the terminal file, it must close this file by calling the CLOSE-
TERM procedure. If this procedure executes successfully, it sets the DEL status word to zero. If
this procedure cannot close the file, it seis the status word to the appropriate FCHECK error code,
The CLOSETERM calling sequence is:

LANGUAGE CALLING SEQUENGE/EXAMPLE

COBOL CALL "CCLOSETERM USING commarea.
Example: CALL "CCLOSETERM™ USING MYCTOMM.

FORTRAN CALL CLOSETERMIcommarea)
Example, CALL CLOSETERM{MYCOMM)

SPL CLOSETERMicommareal;
Exarnple: CLOSETERM(MYCOMM):

BASIC CALL CLOSETERMIc(1])
Example: CALL CLOSETERM{CH (1}

The CLOSETERM parameters are:

PARAMETER MEANING
COIMarea The name of the DEL communication area used for your program, (See QGPENFORM
c procedure definition in Section V. }

CLOSETERM returns an HP 26414, 2645A, 2645K, or 2648A terminal to the state in which it
existed before OPENTERM was called. For example, it may reset the terminal to Character Mode.
It also returns the $STDIN/$STDLIST devicefile characteristics such as terminal type to their ori-
ginal conditions.

&7

CALLING EDIT PROCEDURES

DEL provides eight procedures that perform editing functions on data entered at any terminal ex.
cept an HP 2845K. (Katakana characters cannot be edited with these procedures.) Edit procedures
are called from your programs by first caliing the NEXTEDIT procedure described in Section V.
and then calling the desired edit function. After performing the edit funetion, a pass/fail indication
is returned to the first word (status word) or the DEL communications avea. If the input data fails
the edit procedure that was called, the status word is set to minus one; if the input data passes the
edit, the status word is set to zero,

Your program should read the status word to determine whether the data passed or failed the edit, and
then take whatever appropriate action you desire. The DEL editf procedures do not interact with the
terminal operator, since the system does not keep sufficient information about the current contents of
the terminal memory to select an unoccupied area of the screen for displaying an error message. If
your application requires error messages and interaction with the terminal operator, you must provide
the additional programming to accomplish this,

The eight DEL edit procedures listed below are described in the following pages.

Alphabetic data feld {ALPHAEDIT:
Alphabetic space-fAilled field {ALPHAFILL)
Alphanumeric data field (ANEDITY
Numeric data fieid {(NUMRCEDIT)
Numeric zero-filled field (ZEROFILLY
Numeric range adit (NHANGE)
Modulo 11 check digit create {(M11CREATE)
Module 11 check digit verify {M1IVERIFY)

ALPHABETIC DATA FIELD (ALPHAEDIT)

ALPHAEDIT checks the data in the input field to determine if all of the characters are alphabetic, The
procedure scans the input field; if any character is not one of the letters A through Z, the data fails the
adif, and the status word in the DEL communication area is set to minus one. If the data passes the
edit, the status word is set to zero. No spaces, numbers or special characters are allowed.

The calling sequence for the ALPHAEDIT edit procedure appears belew, as entered in the COBOL,
FORTRAN, SPL, and BASIC languages. As described in Section V, eniries in UPPER-CASE
CHARACTERS must be written exactly as shown, and entries in Jower-case ifalics are user-defined
variagbles that vou must supply. Examples of each calling procedure are included below.

LANGUAGE CALLING SEQUENCE/EXAMPLE

coBOL CabL “"CALPHAEDIT " USING commarea editdef databuffer.
Example: CALL “"CALPHBAEDRIT” USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL ALPHAED Ticommarea editdef databuffer}
Exampie: CALL ALPHAEDITIMYCOMM MYEDEF MYDBUFF)

SPL ALPHAEDIT{commarea,editdef databuffer);
Example: ALPHAEDITIMYCOMM MYEDEF MYDBUFF];

BASIC CALL ALPHAEDIT{c11,05.05)
Example: CALL ALPHAEDITICI(1).ES.B1S)

The parameters in the ALPHAEDIT calling sequence indicate the following:

FPARAMETER MEANING
commarea The name of the DEL communication area, a 128-word integer data item whaose first
c entry is the status word that can be interrogated by your program to determine if this

and other procedures executed successfutly.

editdef The name of 3 CHARACTER-type data item containing the adit specifications as

e% returned by NEXTEDIT, This itemn must be 72 bytes {characters) tong.

databuifer Tha name of a CHARACTER-type data item containing the data from the terminal as
b% refurned by READTERM. This itern can be any tength, depending on the number of

input characters expected plus the number of fields plus one.

ALPHABETIC SPACE-FILLED FIELD (ALPHAFILL)

ALPHAFILL allows you to check the data in the input field to defermine if the data consists of
alphabetic characters and spaces to the right of the last alphabetic character. The procedure scans the
input field; the characters must be one of the lesters A through Z, or any number of spaces to the right
of the last alphabetic character. If the input data fails the edit, the status word is set to minus cne; if
the data passes the edif, the staius word is set to zere. No embedded spaces, numbers or special
characters are sllowed.

The calling sequence for the ALPHAFILL edit procedure appears below, as entered in the COBOL,
FORTRAN, BPL, and BASIC languages.

LANGUACGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CALPHAFILL" USING commarea editdef databuffer,
Example; CALL "CALPHAFILL USING MYCOMM MYEDEF MYDBUFF,

FORTRAN CALL ALPHAF LU {commarea.editdef, databuffer)
Example: CALL ALPHAFILL{IMYCOMM MYEDEF MYDBUFF)

SPL ALPHAFILL{commarea,editdef, databuffer);
Example: ALPHAFILLIMYCOMM MYEDEF MYDRBUFFY;

BASIC CALE ALPHAFILL{c{1},e5,68)
Example: CALL ALPHAFILL{C1{1},ESB1S}

The parameters {(commarea, cl, editdef, €3, databuffer, b3) as described for the ALPHAEDIT calling
sequence are the same for all eight DEL edit procedures.

ALPHANUMERIC DATA FIELD (ANEDIT)

ANEDIT ailows you to check the data in the input field to determine if all characters are alphabetic
characters, numeric digits, or spaces. The procedure scans the input field; if any character is not one of
the letters A through Z, or one of the digits 0 through 9, or a space, the status word is set to minus one.
if the data passes the edit, the status word is set to zero. No special characters {except spaces) are
allowed.

T2

NOTE

This is the only DEL editing procedure that permits embedded
SpACEs,

The calling sequence of the ANEDIT procedure appears below.

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL “CANEDIT™ USING commarea editdef detabuffer.
Example: CALL "CANEDIT” USING MYCOMM MYEDEF MYDBUFF,

FORTRAN CALL ANED!T{commarea,editdef.databufier)
Example: CALL ANEDITIMYCOMMMYEDEF, MYDBUFF)

SPL ANEDIT{commarea,editdel, databuifer};
Example: ANEDIT{(MYCOMMMYEDEF MYDBUFF);

BASIC CALL ANEDIT2(1).25.65}
Example: CALL ANEDIT{C1(1),ES,B15)

NUMERIC DATA FIELD (NUMRCEDIT)

NUMRCEDIT allows you to check the dafa in the input field to determine if all of the characters are
numerie digits. The procedure scans the field; if any character is not one of the digits 0 through 9, the
status word is set to minus one. If the data passes the edit, the status word is set to zero, No spaces,
alphabetic characters or special characters are allowed.

The calling sequence of the NUMRCEDIT edit procedure is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COROL 1 CALL “"CNUMRCEDIT™ USING commarea editder databuffer,
Example; CALL "CNUMRCEDIT"” USING MYCOMM MYEDEF MYDBUFF,

FORTRAN CALL NUMRGEDIT (cammarea.editdef.databuffer)
Example: CALL NUMRCEDIT{MYCOMM MYEDEF MYDBUFF}

SPL NUMRCED T{commarea editdef,databuffer);
Example: NUMRCEDIT{MYCOMM MYEDEFMYDBUFF};

BASIC CALL NUMRCEDITi(c{1),5.0%)
Example: CALL NUMRCEDIT{C1{1},,E5,818)

NUMERIC ZERO-FILLED FIELD (ZEROFILL)

ZEROFILL allows you to check the data in the input field to determine if the data consists of only
numeric digits a leading plus or minus sign, and/or spaces. The spaces can appear before and/or
after the numeric digits, but the edit does not allow embedded spaces. As part of the ZEROFILL
edit procedure all spaces are stripped from the numeric digits, the digits are right-justified, and the
field is filled with zeros to the left of the digils following the sign. The procedure then scans the
input field; if any character is not a leading plus or minus sign or a digit, 0 through 9, the datais
considered failed, and the status word is sei to minus one. If the data passes the edit, the DEL status
word is set to zero. No embedded spaces, alphabetic characters or special characters other than +
or - are allowed.

The calling sequence of the ZEROFILL edit procedure is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CZERQFILL" USING commarea editdef databuffer.,
Example: CALL "CZEROQFiLL"” USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL ZEROFILL (commarea, ecitoef databufrer)
Example: CALL ZERCFILLIMYCOMM MYEDEFMYDBUFFE)

SPL ZEROFILL{commarea,editdef,databuffer);
Example: ZEROFILLIMYCOMM MYEDEF MYDBUFF};

BASIC CALL ZEROFILL[c(1),25.0%)}
Example: CALL ZEROFILLIC1{1),ES.B1%}

NUMER!C RANGE EDIT (NRANGE)

NRANGE allows you o check the data in the input field to determine if the data is numerie, and falls
within a range that you have specified in the edit gpecifications table. The procedure scans the input
field and calls the ZEROFILL edit procedure to ensure that all the data is numeric. If the data fails the
ZEROFILL edit, the status word is set to minus one, and the edit is complete. If the data passes the
ZEROFILL edit, it is then compared with the contents of the low range and high range fields in the
edit specifications table. The data must be greater than, or equal to the low range, and less than, or
equal to the high range. If both these conditions are not met, the status word is set to minus one. If both
conditions are met, the status word is set to zero.

The calling sequence of the NRANGE edit procedure is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CNRANGE™ USING cammarea editdef darabufifer,
Example: CALL “CNRANGE” USING MYCOMM MYEDEF MYDBUFF,

FORTRAN CALL NRANGE(commarea, editdef.databuffer}
Example: CALL NRANGEIMYCOMM MYEDEF MYDBUFF)

SPEL, NRANGE(commarea,editdef databuffer);
Example: NRANGEMYCOMM MYEDEF MYDBUFF},

BASIC CALL NRANGE{s{1).85,5%)
Example: CALL NRANGE(C1{1),£5,81%)

7-4

MODULO 11 CHECK DIGIT CREATE (M11CREATE)

M11CREATE checks the data in the input field to ensure that the data is numeric, and then creates a
modulo eleven cheek digit. The modulo eleven check digit is a value computed by DEL from the
numeric value in the input field, It is used in the module eleven check digit verify procedure to check
the accuracy of the data entered to the terminal. The procedure scans the input field and calls the
ZEROFILL edit procedures to ensure that all the data is numeric. If the data fails the ZEROFILL edit,
the status word is set to minus one, and the edit is terminated. If the data passes the ZEROFILL edit,
an attempt i5 made to generate a2 module eleven check digit.

If the check digit is generated, it is inserted as the right-most digit of the input field. If a check digit
cannot be generated, the status word is set t¢ minus one.

The calling sequence of the MIICBEATE edit pracedure is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBROL CALL "OCMIICREATE" USING commarea editdef databuffer.
Example; CALL "CM11CREATE"” USING MYCOMM MYEDEF MYDRUEF,

FORTRAN CALY MIMCREATE{commarea, editdef databuffer}
Exampie: CALL MTICREATEIMYCOMM MY EDEF MYDBUFF)

SPL MI1ICREATE(commarea.editdef, databuffer);
Example: MUTICREATEIMYCOMM MYEDEF MY DBUFF);

BASIC CALL M11CREATE(c{1}.65.65!
Example: CALL M1ICREATE(CI{1].E$.B13)

MODULO 11 CHECK DIGIT VERIFY (M11VERIFY)

MI1IVERIFY checks the data in the input field to ensure the data is numeric, generate a modulo
eleven check digit, and compare the check digit to the right-most digit of the input data. The procedure
calls the ZEROFILL edit procedure to ensure that all the data is numeric. If the data fails the
ZEROQFILL edit, the status word is set to minus one, and the edit is terminated. If the data passes the
ZEROFILL edit, 2 module eleven check digit is generated and compared with the right-most digit of
the input data. If the check digits are not equal, the status word is set to minus one. if the check digits
are equal, the status word is set to zere.

The calling sequence of the M1IVERIFY edit procedure is:

LANGUAGE CALLING SEQOUENCE/EXAMPLE

CoRaoL CALL “CMIIVERIFY"” USING commarsa editdef databuffer,
Exampte: CALL "CMTIVERIFY™ USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL M1IVERIFY{commarea,editdef databuffer)
Example: CALL M1IVERIFYIMYCOMMMYEDELEF MYDBUFF}

SPL MI1IVERIF Yicommarea editdef databuffery;
Example: M1IVERIFY{MYCOMMMYEDEF MYDOBUFF):

BASIC CALL MVIVERIFY{c{1}.e5.55)
Example: MITVERIFY(Ci{1},ES.B1S)

1-5

SUMMARY OF DEL EDIT PROCEDURES

Tables 7-1 and 7-2 show the combinations of data editing that can be performed and the DEL
procedures that ¢an be used to check for these data characteristics.

Table 7-1. Data Characteristics

Adphabetic characters

Mumeric characters”

Spaces (anywherg in data, including embedded spaces)
Spaces (to right of data ondy}

Spaces (before and/for atter data only, not embedded)
Numeric range (numeric data oniy}

Modulo 11 check digit create {numeric data only)

T om0 m

Moduto 17 check digit verify {numeric data only]

Table 7-2. DEL Edit Procedure Summary

To check for: ise DEL edit procedure:

A ALPHAEDIT

AD ALPHAFILL
ARC ANEDIT

8 NUMRCEDIT

B.E ZEROFILL

F NRANGE

G M1ICREATE

H MI1IVERIFY

7-6

USING HIGH-LEVEL
INTERFACE PROCEDURES |[it

To simplify coding in many applications, DEL provides higher-level procedures that combine some of
the form-access precedures {discussed in Section V), terminal-access procedures (discussed in Section
VI), and editing procedures (discussed in Section VII). These procedures gllow your program to
perform the following tasks, each with a single request:

* Display a form on the terminal screen and read the input entered en the form by the terminal user.

¢ Hdit the input data.

DISPLAYING FORM AND READING INPUT

Your application program can display a form on the terminai screen and read data entered by the user
on that form with a single call to the SHOWFORM procedure. This procedure, in turn, implicitly calis:

s FINDFOEM, to locate the form in the form file.
s GETFORM, to move the form inte a program buffer.
s WRITETERM, to write the form to the terminal, and

s« READTERM, to read the user’s input dats ‘into the same program buffer used by
GETFORM/WRITETERM.

To minimize coding in your application program, you could use SHOWFORM in place of the above
procedures to move a form into the program buffer, display it, and read the user's data the first time
thizs sequence of operatione is required. Then, for subsequent data-entry operations, you could use
READTERM ecalis. :

If SHOWFORM executes successfully, it sets the DEL status word to zero, If' a file-access error occurs
during WRITETERM or READTERM execution, SHOWFORM sets the status word te the appropriate
FCHECK error code; if a file-access error occurs during FINDFORM or GETFORM execution, how-
ever, SHOWFORM sets the status word to the sum of the FCHECK error code plus the value 10G0. (In
this way, DEL distingutishes between errors on the terminal file and those on the form file.) If the form
cannot be located in the form file, SHOWFORM seis the status word to minus one.

NOTE

Before calling SHOWFORM, you must call OPENFORM and
OPENTERM, to open the form file and terminal files,
respectively.

8-1

The ealling sequenee for SHOWFORM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE
COROL CALL "CSHOWFORM™ USING commarea formaame nextform formdatabutfer
fdlength. '
Example: CALL “CSHOWFORM" USING MYCOMM MYFORM MYFORMN
MYFDBUF LENFD.
FORTRAN CALL SHOWFORMIcommarea, formname, nextform, formdatabufier, fdfength}
Example: CALL SHOWFORMIMYCOMM MYFORM MYFORMN MYFDBUF, LENFD)
SPL SHOWFORM{commarea, formnarme, nextiorm, formdatabuffer,fdlength;
Exarnple: SHOWFORMMYCOMM,MYFORMMYFORMN MY FDBUF,LENFD);
BASIC CALL SHOWFORMIc(11,F75,§2%.68.1)
Example: CTALL SHOWFOBMICI{1),FI1$,F28 88 L)

The parameters for

SHOWFORM are:

PARAMETER MEANING

commared The name of the DEL communication area used for your program. {(See OPENFORM

c procedure discussion in Seetion V)

formname The name of tha area that contains the identity of the current form. This isa CHARAC—

s TER data {tem exactly 16 bytegs long.

nex tform The name of the area in which SHOWFORM will place the name of the next form if it is

£23 accessing a chained sequence of forms. This is a CHARACTER data item exactly 16 bytes
tong.

formdatabufier The name of the program buffer to which the form is copied fram the form file, and to

b5 which the user’s data is returned from the terminal. This must be 8 CHARACTER data
iternt with a minimum length equal to the number of characters plus the number of fields
pius one, a greater length may be reguired, depending on the size of the screen 1o be
displayed. Must be on word boundary.

fdfength The name of 3 variable that contains the length of the program buffer formdatabuffer.
{ i When SHOWFORM executes, it overwrites this buffer tength with the length of the data
actually read from the terminal, This must be a ene-werd numaeric data item.

EDITING 'NEXT INPUT FIELD

After your application calls FINDFORM to locate a form (and initialize the DEL eommunication area
with data pertinent to that form), and calls READTERM tfo read data from the terminal, it can edit the
current input fleld with a single call to the EDITFIELD procedure. (Alternatively, FINDFORM and
READTERM may have been called implicitly by SHOWFORM.) EDITFIELD implicitiy calls
NEXTEDIT (Section VII} to retrieve the edit specifications for the input field, and then calls the

appropriate DEL editing procedures to accomplish the editing. This effectively replaces two explicit
procedure calls with one.

NOTE

The EDITFIELD procedure cannot be used to call user-supplied
editing procedures.

8-2

If any required procedure is not a DEL editing procedure (as defined in Section VIIJ, EDITFIELD sets
the status word to minus 3. If the user’s input data fails any edit check, BEDITFIELD sets the status
word to minus 1 and writes the edit specifications that apply to the current input field into the data
area editdef. After defecting an ermror in 3 field, you cannot call EDITFIELE to edit the same field
again since it will call NEXTEDIT and advance to the next field.

I the last edit specification for last input field has already been accessed, EDITFIELD sets the status
word te minus 2, leaves editdef unchanged, and re-sets the communication area to reflect the first
unprotected field on the form; thus, the form is ready for the entry of new data at its beginning. If
EDITFIELD cannot access the form file, the status word is set to the appropriate FCHECK error
code, -

NOTE

Before calling EDITFIELID, you must have epened the form file
and terminal file (with QPENFORM and OPENTERM}, located
the form and initialized the communication area {with
FINDEFCORM or SHOWEFORM), and read the data from the termi-
nal (READTERM or SHOWFORM).

The EDITFIELD calling sequence is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CEDITFIELD" USING cormmaraa aditder databuffer.
Exampie: CALL "CEDITFIELD"” USING MYCOMM MYEDEF MYDBUF,

FORTRAN CALL EDITRIELD commares,editdef, databuffar)
Example: CALL EDITFIELG(MYCOMM MYEDEF MYDBUF)

3PL ETFIEL.D{commarea,editder, databufifer!;
Example: EQITFIELD{MYCOMM MYEDEF MYDBUF}):

BASIC CALL EDITFIELDC{T),05.55)
Exampte: CALLEDITFIELD{CH{1).E$.BS)

The EDITFIELD parameters are:

PARAMETER MEANING

commaras The name of the DEL communication area used for your program, {See OPENFORM

c) discussion in Section V.}

editdef The name of the area to which EDITFIELD returns the edit specifications for an input

&3 field that faiis edit~checking. This must be a CHARACTER data item that is 72 bytes
tong.

databuifer The name af the program buffer to receive the user's input from the tarminal {via

b3 READTERM]. This buffer can be any fength, depsnding on the number of input char-
acters expected plus the number of fields pius one. [t must be e CHARACTER data f1em.

8-3

e

WRITING PROGRAMS

DEL application programs can be written in COBOIL, FORTRAN, BASIC, or SPL to serve a variety
of data-entry applications. Exampies of calling DEL procedures in the various languages have been
provided in previous sections. In this section, the typical flow of a program using DEL procedures is
illusirated. An example of a COBOL application program is provided to illustrate some of the pro-
gramining technigues used for interfacing with DEL.

USING DEL PROCEDURES

The diagram below charts the typical order in which DEL procedures are called by an application

program.

OPENTERM

T

OPENFORM

FINDFORM

t

GETFORM

i R
z
2
=
tr
-
m
0
=

file ar ¢lara base.

Use data to update a

More inpu

no

== 1

Cperr terminal devicefila.,

Open form file.

L oeate desired form in form Fle

Move form to program buffer.

Display form on terminal.

Read input from rerminal.

» CLOSEFORM Close form fila.

desired?

L

CLOSETERM Ciosea rarminal fife.

|

End of program

‘The SHOWFORM procedure may be called to perform the functions of FINDFORM, GETFORM,
WRITETERM, and READTERM with one procedure call.

g-1

1If editing procedures are to be executed, the NEXTEDIT procedure and a specific editing procedure
may be called after READTERM, or the EDITFIELD procedure may be called.

It is important to remember that afl DEL procedure parameters must begin on word boundaries.

COBOL PROGRAM

The following COBOL program runs the SALES TRANSACTION application introduced in Sec-
tion I1I and uses the form shown as an example in that section. The program locates the form
(named SALESFORM) in the form file (names SALESFIL), writes the form to the ferminal screen,
and reads the data entered by the user at the terminal keyhoard. If the user enters “XX in the first
input field, the program terminates. But, if he enters any other characters in that field, the program
continues, When the user has entered all data on the form and pressed the ENTER key, the program
edits all input fields. If any editing procedure fails, the program produces an audible “beeping”
sound at the terminal and causes the first erroneous field to blink. When the user corrects the data
in this field, the program reads and edits this data again. If any other field contains an error, the
same beeping/blinking takes place again for that field. When the user has corrected all erronsous
fields, the program writes the valid record to a data file (named MYDATA-FILE) and clears the in-
put fields on the form. When the user enters the next data, the program performs the same reading/
editing as hefore. The program continues until the user enters “XX" in the first input fleld on the
form.

A flow-chart showing the major steps in the application program appearsin figure 9-1. Certain error-
checking steps, such as file or terminal-access error defection, are omitted from the chart so that the
pritmnary logic is clearly emphasized. All steps, however, appear in the listing of the compiled pro-
gram shown in Figure 9-2. A symbo!l table map for this program appears in Figure 9-3.

The program was entered intc the system with the Editor subsystem {EDIT/3000) and compiled
with the COBOL/3000 compiler. For further information about using these subsystems, please see:

o EDIT/3000 Reference Manual
e COBOL/3000 Reference Manual

Fana

Read
corrgcted data,

turn off blinking.

F

Baep and
blink field
with fatlure,

{ srtamrT)
4

Cefine fites,
initialize
storage areas.

v
Cpen data file
iMYDATA FILE],
form fife
ISALESFIL),

and terminal,

b

Display form
{SALESFORM],
read data.

(y—

User
entered
NN

?

Edit input fieid.

Edit

Yes failure

fbare
editing
?

Write valid
record

Ciose aif fites,

Dizplay
"DATA ENTRY
TERMINATEDR",

Ciear input

MYDATA-FILE,

figlds on form.

Read data
from lerminat.

Figure 9-1. COBOL Program Flowchart

9.3

PAGE 0001

PACE DOO2

HEWLETT-PACKARD 32213C.02.00 COBOL/I00H WED, JAYW 18, 1978, 9318 AW

000100SCUNTROL USLINIT,H#AP <<INITIALIZES GBJECT FILE, REQUESTS MAP.>>
000200+

Goo300%)
COQ400% % # £ & 4 5 & % & % # E & & B & % » & & F + & ¥ % B & F * x ¥
GoosSQ0s IDENTIFICATION DIVISION NAKES PROGRAM AND BATE WRITTEN, +

DOCEBGOE % & 3 & 4 & # % & 4 # & % 5 % & & 4 & 4 3 4 % # & % & & ® x &
gouings

QOQAB0

00900 IDENTIFICATION GIVISION.

01000 PROGRAM=ID., SALESPRG,

¢0Li0G DATE=WRITYIEN, JAN 1%, 1978.

a0L200
QOLIG0w
SALESPRG
015008 % & 2 % & & & & % & # % & & & & & X % & % & & ¥ 3 3 3 & & % 3
goig0ns ENVIRONMENT DIVISION NAMES SOURCE AND QBJECT COMPUTERS *
QOL700 ANO INPUT/OUTPUT FILES USED BY PROGRAM, -
*

D0iS80CR & =2 # % & & & & % & # # # + ¥ ¥ % % 4+ % 8 + % ¥ # * F # » &
Q001900

Q02900

GG2100 ENVIRONMENT DIVISION,

Q02200 CONFIGURATION SECTION.

Q02300 SOURCE«CUMPUTER,

QoZ4ge HP=300Q0,
Q02800 DBJECT~COMPUTER,
002600 HP=3000,

002700 INPUT=-QUTPUT SECTION,

002800 FILE-CONTROL,

Q02900+

00300Q#wue DEFINES ODATA FILE TO CONTAIN USERS INPUT DATA.

G031 00wses DEL AUTOMATICALLY DEFINES FGRY FILE AND TERMINAL FILE.
QG3200 SELECT MYDATA-FILE ASBIGN TD "DATAFILE®,

Gg33Q0»

401400

Figure 9-2. COBOL Program Listinyg

9-4

PAGE 00013

SALESPRG

G600+ = & % 5 5 % 2 & % 2 % & % X ¥ 5 F 4 B B F £ B ¥ K ¥ E X E F A

003T00w
003800+

DATHR DIVISIOR DESCRIBES FILES, RECORDS, BUFFERS. AND OTHER
STORAGE AREARS USED BY PROGRAM,

QOII00R % # & # # ¥ 5 & K &£ £ F B & % K & & F 4 & 8 B B B & R 4+ & 4 &

Qe4000e
064150

605200 DATA DIVISION,
604300 FILE SECTION,

GOa400%
G645 00wndn
004600 FO
Qoda7eo
004800
004900
4450060 Gt

DEFINE RECORDS FOR DATA FILE.
NYDATA-FILE

RECORD CONTAINS 423 CRARACTERS
LABEL RECORD IS OMITTED

DATA RECORD IS MYDATReREC,
MYDATA=REC PIC X{423),

005100 WORKING-STORAGE SECTIOM.

3052400«
005300 %4y
405400 77
205590
005500 % e
Qos7a0 ¥7
Q0S840
USI0sEey
GNEQA0CRERS
gos180 77
A06200#
Q03008
QoR400 TY
Q6500

PR 1T E R T L
Q06700 uma,
GoelQd 77
Q06900=
co7Q00 77
047100
Qo760 77
007300
07400 ene
007580 77
0aTE00w
007700e w3
go7800 Ot
207900

DEFINE FORM FILE NAME (USED IN "OPENTERM®),
HYFORMFL PIC X{35) VALUE SPACES,

DEFINE FORM NAME [(USED IN “CSHOWFOBMM/'CEINOFORM").
HYTORM PIC X(16) VALUE SPACES.

DEFINE NEXT FURM NAME {USED IN “CSHOWFORMT/"CFINDFORM"},
THIS IS A “DUMMY PARAMETER® SINCE MO DTHER FOQRM IS USED,
NEXTF PIC X(16) VARLUE SPACES.

DEFINE TEFMINAL FILE {USED IN "COPENFORM"].
MYTERMFL PIC X{8) VALUE SPACES.

OEFINE BUFFER LENGTHS (USED IN "CSHOWFORMT/"CREADTERMT/
"CHPRITETERM® /"CPINDFORM"™) .

LENFD PIC 55989 USAGE {OMP,
LENERRSBUF PIC 39%%% USAGE COMP,
LENFORM FIC 59999 USAGE COMP,

DEFIRE DATA-ITEM TO CONTAIN FCHECK ERRDR CCDE FOF QUTPUT,
EAROReCODE PIC =8999,

DEFINE FORM BUFFER,
MYFBUF PIC X(450),

£ * £ a

Figure 9-2. COBOL Program Listing {(Continusd)

9-5

PAGE 0004 SALESPRG

008100%ess
BOBZL0wse
DO8300ae"
GO8400 a2
DO8S500 Ot
008600
[EeR: I 2e]
608800
Go89%040
go9000
009100
009200
009300
0094400
QGI500
(113 T4 B
[1Rede e L)
009800
LELVE=R-2¢ 1))
010QG0
6310100
0410200
010300
010400
010504
H10600
410740
$41080¢0
018300
211300
911100
911208
811309
114040
04115409
Q11600
411790
9118990
cl11900
LP1Z208¢
012100+
QL2200

DEFINE DATA BUFFER,

PROGRAM ASSUMES THAT INPUT WILL BE ENTEIRED

IN ALL FIELDS OM THE FORM,

AND THAT A TUTAL OF FIVE

TRANSACTIONS PER FORM WILL BE ENTEPRED.
MYDBUF REDEFINES MYFBUF.

05 DB-MD

05 DB-DA

05 DB=YR

08 TRANS-NG

0% CUST«ID

0% BILLED-NAME
0S5 BILLED~COHP
0% SALES-ID

0% BILLED-STREET
05 BILLED=CITY
05 PRODNO=E

05 DESCRIP«!
05 PRICEDOLS=:
2% PRICECNTS~]
0% QUANTITY=1
Q5 PRODNG=2

05 DESCRIP»?
05 PFRICEDOLS-2
G5 PRICECNTS-2
0% QUANTITY=2
05 PRODNHG=3

25 DESCRIPw]
05 PRICEDDLS«]
Q5 PRICECNTS=3
95 QUANTITY~3
9% PRODN(=4

0% PDRESCRIP=4
05 PRICEDNLS~4
6S PRICECNTS=4
65 DQUANTITY«4
Q% PHODNO=5

G5 DESCRIP=%
¢S PRICEDOLS=S
05 PRICECNTS=S
9% GUANTITY=S

PIC
PIC
PIC
pIC
PIC
PIC
PIC
pIe
e1c
PIC
PIC
PIC
PIC
pIg
pIc
PIC
PIC
PIC
PIC
PIC
PIC

pIc

PIC
pic
#iC
pIc
PIcC
BIg
BIiC
FIC
BiC
PIC
PIC
pIc
BIC

{23,
2.
{2,
(6B},
(6.
(3287,
X¢253,
X{H).
x{asy,
{25y,
itay,
X453,
96996,
99.
Xc4y,
X£4).,
£¢45),
9949,
99,
(41,
{4,
X{45),
35549,
as,
L4y,
1e4y,
AC48),
9699,
99,
Xidy,
X(4).
£C45) .,
39949,
[9,
X(4),

Figure 9-2. COBOL Program Listing {Continued)

9-6

PAGE 0GOS

SALESPRG

012400ans2 DEFINE DEL COMMUNICATION AREA.

03123500 0 MYCOMM,

012600 % STATUS~WORD PIC 5999 USAGE CUMPE,

012700 63 FILLER BIC X(254).

012800

012500%«%s DEFINE EDITING ERROR~SIGNAL GUTPUT BUFFER,

$13900%sw» WHERT BLANKS APPEAR IN YALUE ITEMS, EITHER

013100##4s ESCAPE OR CONTROL CHARACTERS ARE ENTERED.

013200%+«a TRESE ARE NON-DRINTING CHARACTERS. (FIRST

Q13300+ “FILLER® CUNTAING “E3CRA®. rBELLS" CUN=

613400%%#% TAINS THREE CONTROL=G"S,.)

013500 ¢1 ERROR-OUTFUT, .

013600 845 PFILLER FIC X¢3) VALUE Is " sa*,

QL37G0 @5 ROW FIC X3,

013800 0% FILLER PIC X(1) VALUE 15 =r*,

913900 0% COL PIC Xt33),

014000 08 FILLER PIC X{13 VALUE Is "C»,

o14100 05 BLINKER PIC Xi43,

014200 0 BELLS FIC X(3) VALYE Is * ",
- 014300Q.

014400%e3» DEFINE EDITING-ERROR LOCATION DATA.

0145Q0 0t MYEDEF,

014600 05 HYROW PIC X(3),

2147040 03 MICOL PIC X{3}.

14300 65 FILLER PIC X{883 VALUE SPACES,

14900

615400

Figure 9-2. COBOL Program Listing {Continued)
9-7

PAGE 60G6

SALESPRG

Q1529¢s
015300
015400+
015500
015600+

4 % & &+ B 8 5 & B % F ¥ F & ¥ ¥ ¥ 4 8 BB F R B EEN

PHOCEDUKRE DIYISION SPECIFIES PROGHAM OPERATIONS, *

* & ¥ % B F & b ¥ B % ¥ 3 ¥ B ¥ E s REE N F SN

013700 PROCEDURE DIVISION.

015800+

015900%a2s QPEN ALL FILES USED BY THE PROGRAM,
016000 G1Q~0PEN«FILES,

016500
016260
016300
016400
216500

QPEN OUTPUT MYDATA-FILE,

MOVE "SALESFIL" TO MYFORMFL.

CaLi "COPENFORM®™ USING MYCOMM MYFORMFL,

IF STATUS=WORD = & GO TO 025-CHECK-TERM,

1F STATUS=WORD NOT = 0 GO TO 090=-FFILE=ERRA,

016600 025-CHECK-TERM.

016600
016500

CALL "COPENTERM™ USING MYTOMM MYTERMFL,

017000 »uas CHECK TERMINAL STATUS.

0178040
017200
0171040
8174090
01750¢
23176040
Gi7700
0174006

IF STATUS=WORD = § GO TO 030=01SPLAY=AKD=READ,

It STATUS=WORD = ~§ LISPLAY "TERMINAL NOT 264X,.*
GO TO D75«5HUTROWN,

IF STATUS«WORD > 0 MOVE STAIUS-WORD TO ERROR=-CODE
DISPLAY "TERMINAL ACCESS ERROR"
ERROR-CODE
GO TO S75~SHUTDOUWN,

017300#4¥» DISPLAY FORM AND READ TATA, FIRST TIME,
CiH000 DAG+DISPLAY-AND=READ.

Gi8100w

Q58200#awe SEY FORM NAME AND BUFFER LENGTH,

018300
018400
018500
018600+

HOYE *"SALESFORM®™ TO MYFORM,
MGVE 450 YO LENFD,
CALL "CSHOWFORM™ USING MYCOMM MYFORM NEXTF MYFEUF LENFO,

Cia7a0»was CHECX TERMINAL STATUS AGAIN,
C1BBC0 035~STATUS-CHECK,

GlE900»
339000
0139100+
G19200%
019304
019400
219500
019640
n19tee
019899
019900
0204400
026100
G292¢0
020300
320400
GZO%00=

LI NE T I B S A LR B A A Y R N AR NN 2 I IR I A
" X K J% IN pISPLAY STATEMENT 13 ESCAPE SEGUENCE THAT »
TURNS OFF FORMAT MODE, MOYES CURSOR To "HOME™ POSITION «
ARD CLEARS SCREEN, (THE ESC KEY IS5 A NON=PRINTING CHAR= »
ACTER,) -
B RS E R E RN E RN ERE RN
IF STATUS«WORD = 0 GO TQ 040~BERIT«INPUT,
IF STATUS=WURD = =t
DISPLAY * X W JFILE * MYFORMFL
® DOES MNOT CONTAIN ™ MYFORM
. 40 TO 975=SHUTDORN.
IF STATUS-WORD < 10090 GO TO 095-TERM~ERRA,
If STATUS~WORD > Q MOVE STATUS=WORD TG ERROR-CUDE
DISPLAY * X # JCANNOGT READ FORM FILE®
MIFORMFL
GQ TO 075-SHUTDOWN,

Figure 9-2. COBOL Program Listing (Continued)
9-8

PAGE Q04Q7

SALESPRG

020700»

03CHGOw+#s BEGIN EDITING FIELDS,

020906 040~EDIT~

0Z21000=

021100%+84 IF USER ENTERS *XX" IN FIRST FIELD.
IF DB=¥G = "XX*

Q21200
021300+

LNpuT,

END PROGRAM.
G0 TO 075 ~SHUTDGHN,

021400%»#+ PROCEED WITH EDIT,

021%0G CHLL
021600
2921700¢
0721800
021900
0z2i000
0321cG
022206
022306
0224005
022500%¥+a BEEP

022600 HOVE
023706 MOYE
Q22800 HOVE
022906 MOYE
023004 CALL
423100+

023200s3as READ

IF STATUS~WQORD = &

"CEDITFIELD™ USING MYCOMM MYEDEF MYOBUF,

GO TO 040=EDIT-INPUT.

[F STATUS=%QORD = =2

GO TC 080wVALIDRECORD,

IF STATUS«WORD & =3

GO TC 200~INVALID=PROCNAME,

IF STATUS=WORD » ¢

G8 T0 100~FF-READFALL,

AND BLINK FIELDS THAT FAIL EDIT CHECK,

HIROW TO ROW,

HICOL TO COL,

¥ &aC* TO BLINKER.

18 TC LENERRBUY.

"CHRITETIERM® USING MYCOMM LRROR=0UTPUT LENERRBUF,
CQRAECTED INPUT,

RE=3£T EDIT SPECS: AND

02330G%wws CONTINUE EDIT CHECKING,

923400 HOVE
023500 CALL
GZ3600 CALL
023700+
023200%%#+ TURN
423900 HOYE
624000 MOYVE
0241006 CALL
0242400

Hz4300+%

456 TO LENFD,
"CREADTERM® USING MYCOMM MYDBUF LENFD,
*CFINDFORM™ USING MYCOMM MYFORM LENFORM NEXTF,

QFF BLIKKING FTELD,.

13 7O LENERRBUF,

" &dB™ TD BLINKER,

TCWRITETERM® USING MYCOMM ERRGR-GUTPUT LENERRBUF,

GO TQ 440=«ERIT~INPUT,

074400 0&4(=-YALID~RECORD,

V24500
024600%%4% SEND
024104 MOVE
024800
424%00w

025000=+xw DISPLAY ANDTHER FORM,
0425100 065 =-DISPLAY-READ-LOQY,

025200+
0283002 TURN

9425400 HOYE
0255400 MOVE
025600 CALL
025700 IF
GI5860 MOVE
625500G%

VALID RECORD TU DATA FILE.
MYDBUF 70 WYDATA-REC,

WRITE MYDATA=REC,

READ NEXT INMPUT RECOQRD,

0¥ FORMAT MODE, HOME CURSOR, AND CLEAR INPUT FIELDS,

" W H J" TO MYFBUF,
& TO LENFD,.
TCWRITETERN® USING MYCOMM HMYDBUF LENFOD,

STATUS-WORD QT = & GO TD 09S«~TERM-ERRA,

45¢ TO LENFD,

Figure 9-2. COBOL Program Listing (Continued)

9-9

PAGE Q008

SALESPRG

02€100+s+# READ NEXT INPUT RECORD

026200 CALL "CREADTERM™ USING MYCOMM MYDBUF LENFD.
026300 IF STATUS-WORD > 0 €0 TO 09S-TERM~ERRA,
026400 GO T 035=5TATUS~CHECK,

026500+ :

026600#»#% CLOSE ALL FILES USED BY THE PROGRAN,
026700 075-SHUTDOWN,

026800 CALL "CCLOSEFURM™ USING MYCOMM,
026900 CALL "CCLOSETERM® USING MYCOHMM,
627000 CLOSE MYDATAFILE,

027100%

027200%#«s DISPLAY TERMINATION MESSAGES
027300 DISPLAY *DATA ENTRY TERMINATED,”
027400+ _ :

0275004 4+¢ TERMINATE PROGRAM,

027500 STOP RUN,

027700

0278004++# ERROR=HANDLING,

0279004

028000#ves IF PROGRAM CANNQT OPEN FORM FILE, TRANSMIT APPRC-
Q28L00%»ss PRIATE MESSAGE,
08200 090=-FFILE~ERRA,

028300 IF STATUS=WORD < 0 RISPLAY " X K J* MYFORMFL
023400 " IS5 NOT A FORM FILE®,
028540 GO0 TO O7S~SHUTDOWN,

4286400 IF STATUS~WORD > O MOVE STATUS-WORD TG ERPOR~-CODE
Q8700 BISPLAY * B X JOPEN TAILURE ™ ERRGR=CODE
DIRE00 GO 10 L75=3HUTOOWN,

0299300

‘02900Q0ssas IF PROGRAM CANMOT QPEN TERMINAL FILE, TRANSMIT

029100sx3% MESSAGE,
029200 D9S-~TERM<ERRA,

029340 MOVE STATUS=WORD TO ERROR«CODRE,

029400 DISPLAY * X H JTERMINAL ACCESS ERROR™ ERRDR-~-CODE
029500 GO TO OTSwSHUTDOWN.

Q29500+

029700%was IF PROGRAM CANNQT READ FORM FILE, TRANSHIT HESSAGE,

029800 100=-FF=READFAIL.

Q29900 MOVE STATUS=WORD TO ERROR=CODE,
$30009¢ DISPLAY " X H JCANNGT READ FORM FILE"
43910¢ MYFORMFL

g3q¢200 GO TGO 075=SHUTDOWN,

D3IGIQ0»

23G400sx»e IF EDIT PROCEDURE NAMHE IS MNOT VALID., TRANSHIT
0305009 %44 MESSAGE.

030600 200-INVALID~PROCNANE,

g30700 DISPLAY ™ X H UINVALID CDEL PRUCEDURE NAME W“
030800 GG TO 075-SHUTDOWN,

Figure 9-2. COBOL Program Listing {Continued)
| 9.10

TN

PAGE 0009 SALESPRG
LV¥L BSODURCLE NAME

FILE SECTION

FD MYDATA~FILE
01 MYDATA=REC

WORKING=STORAGE SECTION

77 MYFORMFL

TV NYFORM
T MEXTF
77 MYTERMNFL
77 LENFD

77 LENERRBUF
TT LENFORM
77 EAROR-CODE

81 KYFBUF
01 MYDBUF
0% DBE-MO
0% DBeDA
0% DB-YR

0% TRANS=NO
g% CUsT-1ID

G% BILLED=NAME
05 BILLED=COMP
0% SALES-In

05 SBILLED~STREET
0% BILLED-CITY
0% PRODNO-t

0% DESCRIP-1
05 FRICEDOLS=1
05 PRICECNTS-1
0% QUANTITY=-1
G5 PRODN{O=Z

0% DESCRIP=?
05 PRICEDOLS~2
05 PRICECNTS=2
0% QUANTITY=~2
05 PRODNG=3
05 DESCRIP=3
05 PRICEDOLS=3
0% PRICECNYTS=3
05 GQUANTITY=)
0% DPRODNG=4

05 DESCRIP~4
0% PRICEDOLS-4
05 FRICECNTS~4
95 GUANTITY-4
0% PRODNO«S

05 DESCRIP«%
0% PRICEDOLS~S
0% PRICECNTSS

8Y¥B0L TABLE MAP.

BASE DISPL

CB G001 06

DB GoOoTSe
DB ¢01522
o8 cQ1042
BB 001062
DB 001072
08 actoT4
OB 001076
i} 00ilgd

oe goiloé
bE 081106
] 001106

0B I B
pe GO1112
OB ogoi114
0B 0Gii22
o8 00:130
ca 00ilEl

e Qa1212
ng 001220
g ooi251
o8 ca130?
o QaLtage
o8 001383
13 Q01387
1) 0gI371
3=} 001375
0B 001401

OB 0014586
DB 001462
0B B0idsd

i)} c01470
[+1-3 001474
nH 813551
DB 001555
tB Go15857
D& G015613
ce GO1567
DB 001644
DB 0016540
[+ 401652
oB 001656
e Q01662
oB 401737

0B 001743

SIXE

000647

000043
000020
206920
0009010
¢oQQ02
004902
Q00002
009005
Goo7o2
000643
2909002
200002
009002
D0Qo06
000006
Q00cQ31
00ga31
000a0s
400431
000031
000004
20Q0SS
006904
000062
000904
00004
000055
0000G4
geoeRz
00Ga04
900004
¢o00ss
Go00004
oao0a2
0643004
060604
060053
0042004
ae0002
goad04
060004
PGO08S
200604
0o0002

JSACE

8EGQ
GISP

bIse
DISE
pESP
DISP
cCoMP
coMp
coMp
pise
DIsP

BISE
DI&P
DISE
DISF
DIsp
DISP
DISP
DISP
ISP
DisP
pIsp
ISP
DIEP
LIsP
DESP
pige
BIsSP
DISP
DIsSE
o) $-15
BIsp
BLSy
DISF
DIsE
oIsve
BISP
BISP
DIsP
pisy
BIseE
Lrsp
pree
) 13
DIse

CATEGDRY R O D J 82

AN

AN

AN

AN

AN

N

N

N

RE

AN
GROUP R
AN

AN

AN

AN

AN

AN

AN

AN

AN

AN

AN

AN
DI5P=N
BIsp-N
AN

9-11

Figure 9-3. COBOL Program Symbol Table Map

S

PAGE 0010 SALESPRG SYMBOL TABLE MAP

LVL SOURCE NAKE BASE DISPL SIZE USAGE CATEGORY & 0 D J BZ

05 QUANTITY-S DB 001745 (000004 DISP AN

0f MYCOMHM DE 002010 000400 GROUP

0% STATUS=WORD D8 002010 000002 COMP N

05 FILLER DB 002047 000376 DISP AN

01 ERRGR=0OUTPUT DE Q02410 0000722 GROUP

05 FILLER OB 002410 00Q003 DISP AN

05 ROW DB 002413 000003 DISP AN

0S FILLER LB 007416 0DOQDOY DISP AN

08 <oy DB 007417 000003 DISP AN

0S FILLER 9B 002422 000001 DISP AN -
05 BLINKER . OB GO2423 000NO4 DISE AN (%
0S5 BELLS 0B 002437 000QG3 DISP AN :

01 MYEDEF DE 002432 000110 GROUP

0% MYROW DE 002432 0DOCG3 DISP AN

0% MYCOL DE 0024315 (000003 DISP AR

0% FILLER . DB £02440 000102 DISP AN

.

PAGE 06011 SALESPRG SYHBOL TABLE MAP

SOURCE MAME S/P INTERNAL NAME PB-RELATIVE LOC PRIGRITY ¥4, (j
010=0PENFILES P O10QPENFILES0Q® 000003 6

025=CHECK=TERM F 000101 o

030=DISPLAY=AND=READ P 0003277 8

¢35=STATUS=CHECK p 000353 o

040«EDTT=INPUT : p 000616 9

060~VALID«RECORD B 001104 b

085-CISPLAY+HEADLOCE Top 601133 o

07S-SHUTDOWN - P 061253 0

090-FFILE~ERRA B 001123)

G95~TERM=ECRRA P Q01516 o

L00=FF-READFAIL P Q01610 o

200-INVALID-PROCNAME P 001702 c

DATA AREA IS 3001742 WORDS,
CPU TIME = 0200111, WALL TIME = 0100126,
END CDBOL/3000 COMPILATION, NG ERRORS, NGO WARNINGS,

Figure 9-3. COBOL Program Symbol Table Map (¢ontinued)
9-12

PREPARING PROGRAMS

When you prepare a DEL application program prior to execution, it is advisable to specify a maxi-
mum stack {Z-DL) area size of at least 10,000 words. (If you fail to do this at the preparation
stage, the user must do it at the execution stage.) As an example, to prepare the compiled program
text in the user subprogram library (USL) file SALESUSL. into the program file SALESPRG,
specifying a stack area size of 10,000 words, enter the following MPE :PREP command:

:PREP SALESUSL,SALESPRG; MAXDATA=10000
Optionally, you can save the program file permanently in the system by entering:

:BAVE SALESPRG

EXECUTING PROGRAMS
When execuﬁng a DEL application program, the user enters the MPE :RUN command as follows:
RUN SBALESPRG

If you did not specify a maximum stack area size of 10000 words when you prepared the program,
the user must do 50 at execution time as follows:

RUN SALESPRG; MAXDATA=10000

The user must run the program in BLOCK MODE. If he does not, ke will be prompted by the fol-
lowing message when the program begins execution:

DEPRESS BLOCK MODE XKEY

INPUT/OUTPUT FILES

You may use an MPE :FILE command to equate the formal file designator (name used in your pro-
gram) for the form file fo any actual file designator you desire. However, ne (FILE comnmand is
necessary for the terminal file, since DEL handles the assignment of this file automatically.

WRITING USER PROCEDURES

When writing your own procedures for use with DEL, remember that any editing information
established for the form f{ile is available for these procedures to use in any way you desire. In
addition, words 60 through 128 of the DEL communication area, though not used by DEL, are
available for user procedures. (See Appendix A.)

9-18

LOOK-UP TABLES

In the Editing Specification Display produced by FORMAINT (described in Section III), you are
prompted for the name of any file that contains one or more tables to be searched by your appli-
cation program. This linkage is provided for your convenience. Implementation of the table-
search, however, is the responsibility of your program. The linkage is valuable in cases where
many edits require split ranges of values, such as:

1G00-2000
2500-2639
5000-5133

If this data was stored in a file named PRODMAST, yvou would enter that file name in response to
the prompt as indicated by the underlined entry below:

For file laok-up procedures the file name is FBRODMAST = File name

The file name is then stored in the edit specifications record (Bytes 41 through 72}, and is aceess-
ible to the calling program.

In summary, the tabie look-up manipu.‘iat.ioa is up to your application program and should be
handled in the best manner suitable for that program.

DETECTING/CORRECTING ERRORS

Detection and correction of exrors is also the responsibility of your application program. You must
consider many variables before selecting the best method for doing this. Two possible methods are
presented below; both require enhancing display of the field in error. The WRITETERM procedure
should be used to send escape codes and messages.

The first method involves reserving, on the screen, a line for any error messages sent by the applica-
fion program. A specific line within each screen is preferred but sometimes difficult to mainiain
between applications. The second method involves inserting a line below the field in error. The
escape codes used in both methods appear below. Note that any technique you use to add a line of
data to the screen, however temporarily that line may be displayed, risks loss of some information
from terminal memory if the memory is full.

To enhance the display of a field that contains an error, enter the line of code shown below:

column dispiay field length
row 1 enhancement
ESCEa~r— CESCRA - ESC&a+ - C ES5CX £5C&J@ ESCW
A’ o e g, TR R et —
-

g 55 g § & 3 g € E
oy o @ oo & o 3 3 3
3 c o 5 S T 92 & & o
o - 8 o & £ 5 = >
£ P = » 4 -
2 €2 = 2 8 9 7 o, g
=} £ 3 W & & - = [y ja
= FX] B i = parg 2] 3 3 3
' = =y —_— A — [~R n'—J" &
=9 S 8 M a2 oo B Z =
oy - =& o =2 o o
b ¢ 5 5 2 3 o =
4 w w 1] 2 n =
%] o w = oo = o]
g, 3 4. I B = o
5 da =1 m & E &
[1= £

i3

3

&

3

-t

In the above example, row, column, and field length are available in the DEL Edit Specifications
Table. (See Appendix A.)

9-14

Pl

To display a message on Line 23, enter the function requests shown below:

Function Entry
Lock the Keybeoard Fsee
Turn off Format Mode EscX
Cursor Addressing Esc&a23r0C
¥rror Message H ? ’
Turn on Format Mode EseW
Unlock Keyboard Esch

When vou turn on format mode, this automatically refurns the cursor to the home position. To move
the cursor to the appropriate field automatically, you must specify the necessary row/column posi-
tioning. (The terminal user could also use the TAB key to position the cursor.)

To insert an error message on the line below the filled-in error, enter the function requests shown
betow:

Function Entry
Lock Keyboard Esec
Turn off Format Mode EscX
Cursor Down EscB
Insert Line Fscl. (positioned at beginning of line.)
Error Message & ”
Turn on Format Mode EscW
Unlock Keyboard Eseb

The application program would use the READTERM procedure to refum the data back into the
buffer. READTERM reads the entire screen. The program could maintain a separate buffer and
pick up only the field in erroy, move it to the original buffer, and continue with the normal pro-
gram edit cycle.

If the terminal user might also see additional errors (logically-related fields) and correct them, the
application program should re-edit the entire buffer contents.

NOTE

A display enhancement that indicates a field in error should be tumed off after the
editing is complete, a related message should be blanked out, and any inserted line
should be deleted. The escape codes would be very similar to those indicated abaove.

9-15

CORRECTING ERRORS

All error messages appearing on your screen from DEL are generated by the program FORMAINT. If
an error is caused by incorrect data that you entered, the field containing the data blinks {if your
terminal has the blinking feature). FORMAINT waits for you to correct and re-enter the data.

Table 10-1 lists the DEL error messages, their meanings and probable causes, and the corrective
action you should take. There is also a column indicating which DEL display presents the error
message.

There are two messages that may appear before you select any FORMAINT function:

1.

INFUT DEVICE IS NOT A 284X

FORMAINT checks the input device, which must be an HP 264x terminal. If you are not using
one of these terminals, the above error message appears and the program terminates.

CANNOT OPEN INPUT DEVICE
SYSTEM ERROR CODE = nnnn

If FORMAINT cannot open your terminal as an input file, the above message appears on the
screen and FORMAINT terminates. The nnnn parameter indicates an error code returned to
FORMAINT by the MPE intrinsic FCHECK. Refer to MPE Intrinsics Reference Manual, {(part no.
30000-90010) for meanings of error codes listed under the FCHECK intrinsic.

The message listed below may appear at any time you are using the terminal

UNRECOVERED TEEMINAL ERROR, CODE=nnnn. ABORT?

An unrecoverable terminal error occurred. The nnnn parameter indicates an error code retumed
by the MPE intrinsic FCHECK. Refer to MPE Intrinsics Reference Manual for meanings of errox
codes listed under the FCHECK intrinsic. If you enter a YES in response to the prompt
ABORT?, FOQRMAINT aborts the current operation you are performing and retumms to the
Function Selection Display (figure 3-4). You must then restart the operation thai was inter-
rupted by the above error message. If you enter any response other than YES to the ABORT?
prompt, FORMAINT attempts to continue the current operation, ignoring the terminal error.

Table 10-1. Error Messages Generated by FORMAINT

MESSAGE D‘stg-;* MEANING CORRECTIVE ACTION
80TH D AND G STHRAPS MUST - In order to operate in line Pyt straps in
BE CLOSED modes, FORMAINT requires and rerun FORMAINT,

that the D and G straps be
ciosad on 26404, 26408
and 2844 A terminals.

101

Table 10-1. Error Messages Generated by FORMAINT (continued)

MESSAGE

DISPLAY
FIG, #

MEANING

CORRECTIVE ACTION

EDIT PROCEDURE NAME
1S INVALID

37

You entered an edit proce-
dure name that does not
begin with an alphabetic
character, or that containg
a special character; or you
omitted a procadure name
where one is required.

Refer to Edit Procedure
Narne in Section U1 and
enter valid edit procedure
name.

FILE IS INACCESSIBLE

34

Another user is presently
accessing the form file.
FORMAINT opens the
form file for exclusive
access by one user at a
time,

NOTE: Many users, how-
ever, may access the form
file for data eniry through
application programs,

When file becomes access.
ibie, enter the valid name
of your form file in the
designated input field and
press ENTER.

Fil.E CANNOT BE OPENED

ERROR CODE=nmnn

34

FORMAINT cannot open
the form file you specified.
Anen parameter indicates
arn error code returned by
the FCHECK intrinsic.

Fefer to Appendix G for
error code meanings listed
under FCHECK intrinsic.
Corract error condition,
than enter the valid name
of your form fiie in the
designated input field and
press ENTER,

FILEIS NOT A FORMS
EILE

34

You specified an existing
fiie that is not & form file.
FORMAINT aoperates on
form files only so that data
in another file is not de-
stroyed by accident.

The fite may be another
program/data file on the
system, Check accuracy of
file name, enter the valid
name of your form file in
the designated input field,
and press ENTER.

FILE NAME REQUIRED

34

You did not entar a form
file name.

Entgr the valid name of
yvour form file in the
dasignated inpui field and
press ENTER.

FLAG # 15 INVALID

37

You entered @ number
other than 1 through 16
or a blank in response to
a prompt for 3 fag.

Refer to Test Flag # Be-
fore Edit in Section 111 1f
a flag is required, enter &
number from 1 through 15.
Otharwise, enter a blank,

FORM ALREADY EXISTS
IN filename

35

You specified 2 form that
already exists in the form
fila,

- Theck accuracy of form

riamne and enter vatid form
name in the designated in-
put field, To select another
function, press /8% {on
2640} or 8.

Function Selection Dis-
play will appear on
erminat,

10-2

Table 10-1. Error Messages Generated by FORMAINT {continued)

DISPLAY .
MESSAGE FIG. # MEANING CORRECTIVE ACTION
FORM DEFINITION EXCEEDS 3.7 Form contging one or more Decrease the size of the line
SYSTEM CAPABILITY linas that exceed 216 char- and reenter the form,
acters in length. {Limitation
on MPE-C operating system.}
FORM DOES NOT EXIST 38 You specified the name of Check accuracy of form
IN fitename 3-10 a form that does not re- name and enter valid
3-12 side in the form file, name of form: o be modi-
fied, dispiayed, or deleted.

FORM FILE ACCESS ERROR 34 FORMAINT encountered Refer to Appendix G for

CODE = error number a read or write error when error number meaning listed
accessing your form fite. under FCHECK intrinsic. Cor-

rect grror condition and run
) FORMAINT again.

FORM FILE i85 FULL 3h There is no space available Specify another form file
irt the specified form file 10 contain the new farm
for a new farm. by entering the valid form

file name in the designated
input field and pressing
ENTER.

FORM FILE NAME 34 You entered an invatid Refer to Section | for

INVALID form file name. form file name reguire-

' ments and enter the valid
name of your form file in
the designated input field;
then press ENTER.

FORMAINT MUST HAVE UP- 34 Form file does not aliow Change the actess mode of

DATE ACCESS TO FORMS read/write access. the form file to INGUT

FiLE (read/write).

iNVALID ROW ADDRESS 3.7 Data in form file may be if putput during GISPLAY

310 tnvalid. function, delete and reenter
form. if cutput during Edit
specification, ¢check form by
displaying and delete and re-

. enter if necessary.

FORM NAME REQUIRED 35 You did not enter a form Refer 1o Form Mame in

name. Section il and enter valid
form name in the designa-
ted input field.

LIST FILE CANNOT 8E 3-10 The cutput file for the Refer to MPE Intrinsic

AGCESSED, ERROR form fisting cannot be Reference Manual Tor

CODE=nnnn accessed. Annn is the error code meanings fisted
error code returned to under FCHECK intrinsic.
FORMAINT by the Correct error condition;
FCHECK intrinsic. then enter valid file name

for output file,

NGO FUNCTION SELECTED 3-4 You did not seiect a func- Enter an X in front of the

tion from the list dis-
played.

desired function, and press
ENTER,

10-3

Table 10-1

. Error Messages Genérated ﬁy FORMAINT (continued)

MESSAGE

DISPLAY
FIG#

MEANING

CORRECTIVE ACTION

NC ROOM IN FILE FOR
MODIFY

38

Farm file is too smalt to
accommodate newly
modified form.

Specify angther form file to
contain the new version of the |
form and recreate the form.

SELECT ONE — RANGE
CHECK, FILE LOOK-UP
OR EDIT DEFINED DATA

37

Yau specified more than

one of the following en-

tries for an input field:

1} Range Check

2} Look-up Procedure File
MName

3} Characters {for edit-
defined data}

Select oniy one of tha
entries end enter the

© approgriate information.

10-4

DATA AREA FORMATS

DEL/3000 COMMUNICATIONS AREA

The DEL communications area contains information that enables DEL to keep track of what form your
applications program is currently using, what field of the form is presently being accessed, and what
editing applies to this field.

The communications area contains 128 words of contiguous storage as shown in table A-1. In this
table, the contents of the communication area are described, and the data type of each word is noted.

Although in most programming applications you will be concerned only with word 1, the DEL/3000
status word, there may be special applications where cther words in the communications area are of
importance to your program. If, for instance, you want to read data from a terminal, but have not
displayed a form from the form file on the terminal, you should: .

1. Set word 27 to indicate the number of input (unprotected) fields on the terminal sereen.
2. Set word 28 to indicate the fotal byies to be transferred from the screen. Since there are field

separators for each field, calculate the total hytes by adding the total number of flelds to the total
length of input data characters.

If vou want to coperate in LINE mode, you should set word 3 of the communications area to a
negative value before OPENTERM is executed.

If you want the defaulf values for block mode operation, you should set the first ten words of the
communications area to binary zeros,

" Fable A-1. DEI/3000 Communicatisns Area Format

WORD DATA
NUMBER TYPE CONTENTS
1 Binary DEL/3000 status word
2 Binary MPE fite identifier for the terminal file
3 Binary Terminal mode {line/page)
4 Binary Terminal allocation information
5 Binary Data overryn fogging
& Binary Read timeout ioaging
7 Binary Cther data error logging
8 Binary ‘Maximum number of retries
g Binary Suppress rmessagas in OPENTERM and CLOSETERM and enable
: autoread feature in READTERM
10 Birary Environment information
11 Binary Reserved
12 Binary MPE file identifier for tha forms file
13-20 Character Current form name
21-22 Binary First record number of form definition
23 Binary Length of form definition
24-25 Binary First record number of edit specifications
26 Binary Number of edit specifications
27 Binary MNumber of input figlds in form
28 Binary Length of input data -+ H kb of Relds
29-38 Character Mext form name
37-40 Binary Reserved for GETFGRM
41-42 Binary Beginning record number of next block of form 10 be deliverad by
GETFORM
43 Binary Length of farm definition not yet delivered by GETFORM
Wihen zero, ail of form has been displayed.
44-45 Binary Number of record containing current edit specificatians
48 Binary Nu mber of edits specitied for this form
47 Binary Numtier of input fields still to be processed for this form
48 Binary Number of edits not yet executed for this field
49 Binary Number of forms in the file
50-58 Binary Reserved for the forms fite procadures
59 Binary Edit procedure flags
60-128 Binary Available for user-written input edit procedures

CONTENTS OF 3 THROUGH 10

A detailed description of the way in which DEL uses words 3 through 10 of the communications
area is provided below. You may want to modify cerfain bits in these words if you do not want the
default terminal modes that DEL provides.

A-2

L

TERMINAL MODE INFORMATION (WORD 3)

X

bifs:

0 1 2 3] 4 & 6 7 8 91 10 11 12413 114

P E F x | TERMTYPE 0=2640A B G-

from logon 1=26408
2=2644A
3=2645A
3=2645K
3-2641A
J=2648

O=altow 2641, 2645, 2648 programmatic switch settings {positive);
1=use 2684x physical switch settings (negative)

O=echo was on before GPENTERM, now off;
1=echa was off

D="DEV=. . ." used in file equate, nat $STDIN;
1=file is SSTDIN/SSTOLIST

1=Block Made key down at last status request in OQPENTERM;
0=Block Mode key up.

1=strap G out {required for block mode/page)
O=gtrap G in {required for block modefline}

O=strap D out {required for block mode/page)
1=strap D in (required for block mode/line}.

reserved

If this word is negative when OPENTERM is called, the automatic setting of the BLOCK MODE key
and BLOCK MODE/PAGE straps is bypassed {the physical switch setlings are used, ne programmatic
settings are done) If you want {0 use the programmatic feajures, you should set this word to zero or
a positive value before OPENTERM is called.

The only portion of this word that is controllable by the user program is the sign bit (P, above).
All the other bits are set by OPENTERM after it is called. READTERM and CLOSETERM meke
use of these values. OPENTERM sets the devicefile TERMTYPE (terminal type) to 10, uniess it iz
alveady set to 10 or it is a multipoint terminal (terminal type 14) or Katakana terminal (terminal
type 12). Upon normal termination of CLOSETERM, the ECHOQ, MPE SETMSG, and log-on MPE
TERMTYPE values are restored if the {erminal devicefile ig $STDIN/SSTDIIST.

TERMINAL ALLOCATION INFORMATION (WORD 4}

hits;

15

TYPE SPEED

0 i 2 3 4 5 6 7 8 S 10 11 2 13 14

TYPE is the MPE TERMTYPE for a terminal allocated by OPENTERM, SPEED is the input/output
speed (in characters per second) for a terminal allocated by OPENTERM. If TYPE or SPEED is
zero when OPENTERM is called, then the default values (TYPE = 10 and SPEED = 240) are used.
TYPE and SPEED are applicable only when the terminal devicefile is something other than $STDIN/
$STDLIST and :DATA has not been used. In other words, they are uged only when you have speci-
fied a :FILE command using the DEV= parameter to define the terminal.

DATA QOVERRUN LOGGING (WORD 5}

bits:
a] 2 3 4 5 3] 7 8 g 10 1N 12 13 14 1%

reserverd OVERRUN COLNT

OVERRUN COUNT is the number of data overruns that were encountered in the previous call to READ-
TERM.

HEAD TIMEQUT LOGGING (WORD B}

bits:
0 1 2 3 4 5 6 7 8 G 1% 11 12 13 14 15

reserved TIMEQUT COUNT

TIMEOUT COUNT is the number of read timeouts that were encountered in the previcus call to READTERM.

OTHER DATA ERROR LOGGING (WORD 7}

bits:
1o 1 2 3 4 5 4] 7 8 9 1 11 12 13 14 15

reserved DATA ERROR COUNT

DATA ERROR COUNT is the number of recoverable errors other than data overruns and read timeouts that
ware encountered in the previous call to READTERM.

MAXIMUM NUMBER OF RETRIES (WORD 8)

value= 0 : use defaudt value {4 retries)
value > 0 : use this value as maximum
value << 0 : do not perform any ratries

{!p to the given number of data overruns, read timeouts, and other errors may occur with automatic recovery.
After the last retry, the approgpriste MPE file error number is returned in the STATUS ward in COMMAREA.
I the retry recovery attempt(s) were successful, the value returned in the STATUS word is O if no other errors
were detected, and the number of retries are reported in COMMAREA({4}, COMMAREA(G}, and COMMAREA

{6} {zero-origin},

A

SUPPRESS MESBAGES IN OPENTERM AND CLOSETERM, AND ENABLE AUTOREAD FEATURE IN
READTERM (WORD 9

bits:
4] 1 2 3 4 5 6 7 8 8 10 11 12t13 14118

reserved R M

M: Q=display mode messages.
1=suppress mode messages.

R: 0Ossuppress AUTOREAD special feature.
Ol=enable AUTOREAD special feature.
{This feature is used internatly by DEL.}

If this value is odd (M=1) when CLOSETERM is executed, the message “REMEMBER TO UN-
LATCH THE BLOCK MODE XEY.” is not given by CLOSETERM. If this value is even (M=0) when
CLOSETERM is executed and BLOCKX MODE is not cleared programmatically, the message is dis-
played.

If this value is odd (M=1) when OPENTERM is executed, the mode set message is not given by
OPENTERM. If this value is even (M=0Q) when OPENTERM is executed, the message is dispiayed.
The mode set message will be either “BLOCK MODE/PAGE IS SET.” or “BLOCK MODE/LINE I8
SET.". '

If R is binary 01 when READTERM is executed, the AUTOREAD feature is used by READTERM;
otherwise, the normal data entry mode is uged. The AUTOREAD feature causes READTERM to
send an “ESC d” to the terminal instead of waiting for the ENTER key o be pressed. This feature
allows for performance measurements to be taken.

To invoke the default conditions, set this word to zero. The upper bits of this word are reserved for future use
and should always be set to zero. Examples: B=> M=0,R=0_ 1 => M=1, B=0. 2 => M=0, R=01. 3 => M=1,
R=01.

ENVIRONMENT INFORMATION (WORD 10)

bits:
a 1 2 3 4 5 6 7 B g w0 N 12 113 314 15

reserved GPU

CPU: 0=MPE-C, 1=non-MPE-C

EDITING SPECIFICATIONS TABLES

The DEL Editing Specifications Table (table A-2) denotes the editing to be performed on each
unprotected field of the current form. DEL creates a separate table, in the format shown, for each
instance where an editing procedure is called by an applications program. If no editing procedures
apply to a field, one Editing Specifications Table is created for that field with bytes 15 through 16 set to
zero and bytes 17 through 72 remaining blank. The information in this table is placed in the pro-
gram buffer specified by the editdef paramster when calling NEXTEDIT, ALPRAEDIT, or EDIT-
FIELD.

Table A-2. Edit Specifications Table Format

BYTE
NUMBER CONTENTS
13 Field location {row number)
4.6 Field location {column number}
7-10 Field tocation {offset from beginning of input record)
11-14 Fieid length
15-18 Number of edits for this field
17.32 Edit procedure name
33-34 Test flag number
3536 Set flag number
37-38 “Same as” fiag number
39-40 “Opposite from™ flag number
l41—56] Range {low value}
57-72 Range (high value)
or
{41—72 } File look-up {file name}
. or
{41~72 J Procedure defined data

FORM FILE FORMAT

The form file is a direct access file containing definitions for each form in the file. The format of the file
is described in table B.1,

As shown in the table, the first record (record 0) is set aside as a file I, or identification record,
containing data about the entire file. DEL uses this record to verify that the file is & form file.

The following records (records one through n) are directory records containing data on each form in the
file; n is determined by dividing the file capacity by 100

The remaining records are form definition records and input/edit description records. The file contains
at least one form definition recerd for each form in the file, and an input/edit description record for
each unprotected field in the form. The input/edit description records are used to create the Edit
Specifications Tables as described in Appendix A. If no editing procedures apply to a field, bytes 9
through 10 are set to zero and bytes 11 through 62 are left blank in the input/edit description record. -
Tables B-2 through B-5 show the record format of each record in the form file:

Tabie B-2 describes the format of Record 0, the file II} record.

Table B-3 describes the format of Records 1 through n, the directory records.

Table B-4 describes the format of the form definition records.

Table B-5 describes the format of the edit specifications records.

B-1

Table B-1. Forms File Fo"rmat

BECORD N{, CONTENTS
Hecord O File |D Record
Becords 1 Directory Records

through »

m=tile capacity /100

Remaining Records

Form Definition Record
Form Definition Record
Input/Edit Deseription Record

%

Input/Edit Description Record Form 1
Form Definition Record ‘
Input/Edit Description Record
. L Form 2
)
Form Definition Record
Input/Edit Description Record
, . Form 3
input{Edit Description Record
Input/Edit Description Record J
) Additiona
Forms

* Atleast one form definition record for each form in the fila.
**One input/edit description record for gach input field in each form.

B-2

N

Tsble B-2. File ID Record Format

BYTE BATA
NUMBER TYPE CONTENTS
1-28 Character Fully qualified file designator {filename.groupname. accountname)
29-32 Binary First availabie record
33-36 Binary Number of available records
37-38 Binary Number of forms in file
38-40 Binary Number of directory records in file
41-44 Binary First available divectory record
45-47 Binary MNot used
48-64 Character File 1D} character string
Table B-3. Directory BRecord Format
BYTE DATA
NUMBER TYPE CONTENTS
1-16 Character Form name
17-20 Binary ARecord number of first form definition record
21-22 Binary Length of form definition
2328 Binary Record number of first edit specification record
27-28 Binary Mumber of edit specifications
23-30 Binary Number of input fields in form
31-32 Binary Eength of input data + number of fields
3348 Character Next form name {if this form [s chained t§ another form}
44-52 Binary Date and time created or modified
53-84 Binary Number of records occupied by this form definition
55-64 Binary Mot used
Table B-4. Form Definition Record Formas
BYTE DATA
NUMBER TYPE CONTENTS
1-64 Character 64 characters of form {blanks deleted where practical)

B-3

Table B-5. Input/Edit Descripiion Record Format

BYTE DATA
NUMBER TYPE CONTENTS
1-2 Binary Field location {row number)
34 Binary Field tocation {selumn number)
5-6 Binary Field focation {offset from beginning of input record)
7-8 Binary Field length
g-10 Binary Number of edits for this field
11-26 Character £dit procedure name
27 Binary Test flag number
28 Binary Set fiag number
26 Binary *Same as” flag number
30 Binary “Cpposite from” flag number
I 31-46 } Character Ronge {low value)
47-62 Chatacter Range (high vaiue)
or
{31-62} Character | File iook-up (file name)
ar
{31—62, Character Procedure defined data

B4

ST

TERMINAL TYPE CODES

The termtype parameter of the :HELLO command is used by MPE to determine device-dependent .
characteristics such as delay factors for carriage returns. The only terminal types allowed when run-
ning FORMAINT or programs caling DEL procedures are 10, 12, and 14, If you enter any other
terminal type, OPENTERM changes the termtype to 10%. Here are the definitions of these terminal
types:

10 HP 2640A/B, HP 2641A, HP 2644A, HP 26454, or HP 2648A (when used predominantly in
character mode.) {(10-240 ¢ps). - '

12 HP 2645K (Katakana/Roman) Data Terminal.
14 Multi-point terminal.

#If you operating with MPE-C, you should specify terminal type 10. It is not programmatically set
on these systems.

N

ASCII CHARACTER SET

APPENDIX

The ASCII Character Set/Collating Sequence is shown in table D-1 for your reference.

Table D-1 ASCH Code Chart

COMTROL BHEPLAYABLE
CHARACTERS CHARACTERS ESCAPE SEQUENCES
o @ o la 11 |2 | 21 |0 [} * % 1 1
/T * ¢ B TEviofafafargl 1 i 9 i 1
. 1 af 3 o 1 o 11 & 1] % o 1
=X P B 3 [.
D063 splejeir| §n DELETE
M, MLE SRACE FRIMNT CHMAF 1
Fn =8 ! b A] a
200t tleia|nlaja 1 INSERT
SoH [eed 5ET GHAR CURSOA
TAR ON SEWSE ty
5. o ¥ 2 El R b
oey1a BEI L 1 INSERT
STx Doz CLEAR CHAR WEYBOARD
1 Fan CIFE ENABLE 1
£, £ * 3 o 3 \SA
o1 *131C|8le]s . ROLL KEYBOAR
ETx fatie] F] SABLE 1.
& o, X 4 3] T
oD Spa]D[Tiaft - ROLL
EGT DC4 PBOWN ENTE| y
Fa ' B E 3]
k] %I S5i{E(U|eju RESET NEXT
[ENG NAK TERAMINAL | PAGE A
] .3 v
o119 atsire|vie] v|rama

METER

>
A S
g

Y
R
\
M
FSEQUENCE PACE Iy
Ea ’ 7 G W g
(SRR 7iGa|wlgl|w - FOBEAT
EEL 1At CLRIDA WODE
RETURN O fa
By w { H 1] Iy
10 (1Bl]« . FORMAT
=] CAN MODE
OFF
He - i Y '
Wht AR EEE AR HORAE- DISFLAY
HT Bt DEF M ZOMTAL FUNCTIONS
SET TAR O
L J 2 7
Hig I T 4 DHSELAY
LF 34 GLEAR FUNCTIONS
TEPLY OFF TEST
- My L4 K
0t - ¥liyp k]t ERMEE STAAT
i E5 TGO ERD UNPROTECT
DF LINE FELD
- F. 4
1100 HAELECRY

T
Tt
"
x

NZERT

A A

LENE il
M
16t ~t=tMEY @ ENMD IAERACIRY
= 8 CELETE unpanTECT NLOCK
LE EIELG e

P

1114

]
R

STATLS

AA A L A AL

A A

1131

AN AANANAA A A AAAA A AA

AAAAAA A A A AL

A A A AL
pApA
A

PAVAD A

1]
=
I

s

DATA ENTRY LIBRARY
FORM LAYOUT SHEET

APPENDIX

E

On the next page is a sampie Form Layout Sheet that can be duplicated and used as a worksheet in

laying out your DEL forms.

E-1

it}

0w - - o -~ E -

B Y 23458 7 8880 1112131464517 1810 26 ¥t 22 33 24 25 26 27 2

DATA ENTRY LIBRARY FORM LAYOUT SHEET

HEWLETT w PACKARD : Page of

e | L L LT LD P LT LTI PRI TP T
eonwave | [[][] T [T {1 E LT[et (T I T T T T I T I TTIT 1]

g
A

gggs_tggsaua_saea?gglggaau 42 43 44 A5 46 47 48 40 50 51 T2 53 54 %595?53_52605562635‘ E5ECEYBEE IO y2 137416 M 7T IR D

1

DATA ENTRY LIBRARY EDITING
SPECIFIGATION SHEET|[F

On the next page is a Data Entry Library Editing Specification Sheet that can be duplicated and used
as a worksheet for DEL edit specifications. '

Pl

(A

DATA ENTRY LIBRARY EDITING SPECIFICATION SHEET

Edit Range Check Lonkup

Field Edit Procedura Test Flagh Alfter Edit "Same as" "Opposite” Low High Procerture

Mame Length Type Name Defore Tdit Set Fiag#F Flag# Flag# Value Value File Narme Characters
1

FCHECK ERROR CODES

APPENBIX

G

As indicated in Section X, many DEL error messages include error codes returned by the MPE
FCHECK intrinsic. The following list shows the error codes and indieates what kind of error occurred

to generate the code.

Code
{ Deeimal}

0
1
2
8

20

21

22

23

24

26

26

27

28

29

30

31

32

33

34

35

36

37

38 .

39

40

4

42

43

44
45
46
47

48
49

Meaning

End of file.

Hlegal DB register setting (typically, a request in split-stack mode when

it is illegal).

Tllegal capability
Nlegal parameter value,
Invalid operation.
Daia parity error.
Saftware time-out.
End of tape.

Unit not ready.

No write ring on tape.
Transmission error.

Input/output time-out.

Timing error or data overrun,
Start input/output (510} failure.
Unit failure,

End of line (special character terminator).
Software abort of input/output operation,

Data lost.

Unit not on line.

Data set not ready.

Invalid disc address.

Invalid memory address.

Tape parity error.

Recovered tape error.

Operation inconsistent with access type.
Operation inconsistent with record type.
Operation inconsistent with device type.

The tcount parameter value exceeded the recsize parameter, but the
multirecord access aoption was not specified when the file was opened.
The FUPDATE intringic was called, bub the file was positioned at
record zerc. (FUPDATE must reference the last record read, but no

previous record was read.)
Privileged file violation.

File space on ail discs in the device class specified is insufficient to

satisfy this request,
Input/output error on a file label.

Invalid operation due to multiple file access.

TInimplementad function.

(-1

Code
- (Decimal)

50
51
52

53
54
66
56
Y
&8

5%
60
61
&2
63
64
66
67
a8
69
71
72
73
71
T8
79
80

81
82
83
B4

85

86
81
89
90

21

92
93
94
95
96

Meaning

The account referenced does not exist.

The group referenced does not exist.

The referenced file does not exist in the system (permanent) file
daomain,

The referenced f{ile does not exist in the job temporary file domain,

The file reference is invalid.

The referenced device is not available.

The device specification is invalid or undefined.

Virtual memory is not sufficient for the file specified.

The file was not passed (typically, a request for $OLDPASS when there
is no $OQLDPASS).

Standard label violation.

Glabal RIN net available.

Group disc file space exceeded,

Account disc file space exceeded.

Non-sharable device (ND) capabilily required but not assigned.

Muitiple RIN (MR) capability required but not assigned.

Plotter limit switch reached,

Paper tape error.

System intemnal ertor. |

Miscellanecus (ATTACHIO) input/output error.

Tco many files opened for process,

Invalid file number.

Bounds check viclation.

NO-WAIT input/output operation is pending. (Series II only)

There is no NO-WAIT input/output for any file. (Series II only)

There is no NO-WAIT input/output for file specified. (Sexies I only)
Configured maximum number of spooifile sectors would be exceeded
by this output recuest. -

No SPOOL class defined in system.

Insufficient space in SPOCGH, class to honor this inputfoutput request.
Extent size exceeds maximum allowable.

The next extent in this spoolfile resides on 3 device which is unavailable
to the system (i.e., the device is =DOWN).

Operation inconsistent with spooling; e.g., attempt to read hardware
status. .

8pool process intemal error.

Offset to data is greater than 255 sectors.

Power faiture.

The calling process requested exclusive access to a file to which another
process has access.

The calling process requested access to a file to which another process
has execlusive access.

Lockward violation.

Security violation,

Creator conflict in use of FRENAME intrinsic (user is not the creator).
“BROKEN" terminal read.

Miscellaneous disc input/output error (device may require HP Customer
Engineer attention).

G-2

Code
{Becimal)

97
98
89

100
101
102
103
104
1G5
106
1079
108
7 108
W 110

Eamiiat

Meaning

CONTROL Y processing requested but no CONTROL Y PIN exists.
Input/output read time has overflowed.

Magnetic tape error. Beginning of tape (BOT) found while requesting a
backspace record {BSR) or a backspace file (BSF}.

Puplicate file name in the system file directory,

Duplicate file name in the job temporary file directory.

Directory input/output error.

System directory overfiow.

dab temporary directory overflow.

IHegal vartable block structure.

Extent size exceeds maximum allowable,

Offset to data is greater than 255 sectors.

inacecessible file due to a bad file label.

Itlegal carriage control aption.

The intrinsic attempted to save a system file in the job temparary file
directory.

G-3

DEL STATUS WORD SETTINGS

Table H-1 lists DEL procedures and shows the meaning of the values returned to the DEL status word.

H-1

Table H-1. DEL Status Word Settings

PROCEDURE

VALUE RETURNED
TO STATUS WORD

MEANING

Forms Access Procedures
UOPENFORM

FINDFORM

GETFORM

NEXTEDIT

CLOSEFORM

Terminal Access Procedures
QPENTERM

WRITETERM

READTERM

-1
=0

-1
=0

=0

-1
>0

=0

>0
-1002

~2006

=0

>0
-1t0-8

-1001

QOperation successful,
Not a form file.
Errer code from "FOHECK"™,

Operation successful,
Forr not in form file,
Error code from “FCHECK".

Operation successful.
Error eods from “"FCHECK",
Buffer length is less than 64 bytes long.

Operation successful.
Last edit specification has already been accessed.
Error code from “FOHECK".

Operation successful,
Error code from “"FCHECK",

Operation succassful.

Terminal not a 2640/41/44/45/48, or terminal
strapping.

Error code fram “FOHECK”,

Terminal is ineorrectly strapped. §f connected
ta HP 3000 with MPE-C operating system, ter-
minal must not be strapped for 8LOCK MODE/
PAGE and Terminal Mode Information in com-
munications area must be ser to negative value
before OPENTERM is calfed. H strap may not
be removed. {f D strap is removed, it is regcom-
mended that G strap also be removed.

Praogrammatic MPE command :SETMSG has
failed,

Operation successful,
Error code from “ECHECK™.

Operation succassful.
Error oode from “FCHECK",

-1 through ~8 indicate corresponding function
keys T1 through B have been pressed.

Lenagth of buffer for READTERM data is in-
sufficient for BLOCK MODRE/PAGE read.
Minimum length is number of characters plus
number of fields plus ons. Increase buffer size
ar se1 Terminal Maode Information in commurti-
cations area 1o negative value if BLOCK MODE/
LINE desired.

H-2

A~

Tabie H-1. DEL Status Word Settings (continued)

VALUE RETURNED

Pl

PROCEDURE TO STATUS WORD MEANING
-1003 Status request sent 1o 264x terminal before
READTERM was called. Do not send ESCAA
{terminal status reqyest) before calling READ-
TERM. Use TERMSTATUS to obtain terminal
status information,
~1004 X On MPE-C operating system, requested read
length exceeds 218 characters.
-2001 X During a BLOCK MODE/PAGE read in READ-
TERM, s DC? character was expected but some
other character was received {264x problem},
_gooz}(After BLOCK MODE/PAGE read in READ-
TERM, 2 BLOCK TERMINATION character
was expected but some other character was
received {284x problem).,
2003 Afger BLOCK MODE/PAGE read in READ.
TERM, the number of FIELD SEPARATION
characters received was not number expected
{264x problem}.
-2004 After BLOCK MODE/PAGE read in READ-
TERM, the number of characters received
was not number expected (264x problem).
..gggs}(During STATUS read in TERMSTATUS, a
DCZ character was expected but some other
character was received (264x prablem).
2007 Invalid escape sequence received in READ-
TERM [264% problem).
TERMSTATUS Q Operation successful,
=0 Error code fram “FCHECK".
CLOSETERM ¢ Cperation successful,
=G Error code from "FCHECK".
Enput Edit Procedures g Data passed edit,
-1 Data failed edit.
High-Leve! interface
Procedures
SHOWFQORM 0 Operation successful.
~1 Farm cannot be located.
0,5 599 Error code from “FCHECK” {WRITETERM or
READTERM).
> 1000 Error code from “"FCHECK™ {FINDFORM or
GETFORMI.
EDITHFIELD 0 Operation successtul,
-3 Required edit not one of DEL procedures.
-2 Last edit spacification has been accessed.
-1 Failed edit check.
>0 Error code from “FCHECK™.

H-3

e

INDEX

A

After Bdit, Set Flag #, 3-6
Alphabetic Data Field, 7-1
Alphabetic Space-Filled Field, 7-2
ALPHAEDIT, 7-1

ALPHAFILL, 7-2

Alphanumeric Data Field, 7-2
ANEDIY, 7-2

Applications of DEL, 1-2

ASCII Character Sef, -1

B

BLOCK MODE{PAGE, 2.1, 3-8
Buffers Terminal, 2-2
Length, 6-4

C

Chain to Form Name, 3-4
CLOSEFORM, 56
CLOSETERM, &7
Closing a Form File, 5-6
Closing a Terminal File, 6-7
COBOL Program, 9-2
Communications area, A-1
Use of, 4-1

b

Data Area Formats, A-1
Data error logging, A-4
Data overrun logging, A4
DEL Procedures, 4-1

{sing, 9-1
DEL Status Woxd Settings, H-2
DEL/3000 Communications Area, A-1
Deleting a Form Fde, 3-19
DetectingfCorrecting Errors, 9.14
Device file, terminal, 6-2
Directory Record Format, B-3
Display Enhancement Features, 3-11

B

Echo on/off, 2-2
EDITFIELD, 8-3
Editing Fields, 3-13, 8-2
Edit Procedure Name, 3-4
Edit-

Procedures, 7-1

Summary, 7-6
Edit Type, 3-4
Egiting Specification Sheet, 3.5, F-2
Editing Specifications Tables, A-6
ENHANCE DISPLAY key, 3-.11

1

Environment information, A-5
Error Messages, 10-1
Eseape sequences, special, 6-2

F

FCHECK Etrotr Codes, G-1
Features of DEL, 1-3
Field Editing, 313
Field Name, 3-4
Fite 11} Recoxd Format, B-2
FINDFORM, 5-3
Form Creation Display, 3-10
Form Definition Reeord Format, B-3
Form File
Closing, 56
Creation, 36
Format, B-1
Cpening, 5-1
Form File Characteristics, 3-7
Changing of, 3-9
File space, 3-9
Form File Name, 3.1
Form Layout Sheet, 3-3
Sample, B-2
¥orm Name, 3-2
FORMAINT
Using, 3-8
Terminating, 3-20
Format of Form File, B-1
Forms
Changing, 3-17
Creating, 3-10
Deleting, 3-1%
Designing, -1
Displaying, 3-18
Listing, 3-16
Locating, 5-3
Moving to a Program Buffer, 54
Function Selection Display, 3-7
Function Selection Display Errors, 3-8

G

GETFORM, 54

H
High-Level Interface Procedures, 8.1
1

Interface Procedures, 81

Input/Edit Description Record Format, B-4
Input/Output Files, 9-13

fnput record size, 8-2

K ' R
Katakana

editing, 1.2
Keyboard Fenctions, 2-3

Read timeout logging, A4

Heading in page mode, 6-4

Reading {nput from a Terminal, 6-3
READNTERM, 6.4

L Record size, input, 6-2
Requesting Terminal Status, 6-b
Leugtt of Unprotected Field, 3-4 Retries, maximum number, A-4
Line mode, 2.1, 4.1 Raules for using FORMAINT displays, 3-9

TLocating a Form, 5-3
Look-Up Tables, 9-14

s
M Sales Transaction Forms, 3.2, 3-13
SHOWFORM, 82
M1LICREATE, 7-5 Strapping, 2.2
MIIVERIFY, 7-5 System Requirements, 1-5
Maximum number of retries, A-4
Mecdulo 11 Cheek Bigit Create, 7-5
Medute 11 Cheek Digit Verify, 7-5 T
ﬁgf:;i?nf?gngﬁggﬁga&gum?r’ 54 Terminal allecation information, A-3
Terminat buffers, 2.2, 2.3
Terminat devicefile, 6-2
N Texminal File
Closing, 6.7
NEXTEDIT, 5-5 Opening, 6-1
NRANGE, 7.4 Terminal Keyhoard Functions, 2-3
Numeric Data Field, 7-3 Terminal mode information, A-3
Numeric Range Edit, 7.4 Terminal Operation, 2.7
Numerie Zero-Filled Field, 7-4 Terminal Requirements, 2.1
NUMRCEDIT, 7-3 Terminal status buffer, 6-6
Terminal strapping, 2-2
Terminal types, 2.7, C-1
o Terminating FORMAINT, 3-20
TERMSTATUS, 6-5
OPENFORM, 5.1 Test Flag # Before Edit, 3-6
Opening a Form File, 5-1 Timeout, 6-4
Cpening & Terminal File, 6-1 i .
GPENTERM, 6.1 . Transmit only fields, 3-12
P - W
Page mode, 2-‘1, 6-4 WRITETERM, 6-3
Page Number, 3-4 Writing Ouiput to a Terminal, 6-2
Parameters, 4-5 Writing Programs, 9.1
Primary terminal status, -6 '
Programs
Fxecuting, 9-13 z
Preparing, 9-13 :
Writing, 91 ZEROQFILL, T4

2

