
\

'...

Part No. 30000·90050
Product No. 32206A

HP 3000 Computer Systems

Data Entry Library
Reference Manual

HEWLETT", PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95050

Printed in U.S.A. 5/78

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied. reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT·PACKARD COMPANY

ii

c

(

(

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a
prior update.

Third Edition May 1978

(
\.

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

First Edition Jun 1976 32206A.OO
Second Edition Mar 1977 32206A.OO
Third Edition May 1978 32206A.Ol.07

(

iv

I PREFACE ,.

This manual explains how to use the Data Entry Library (DEL/3000) for the HP 3000. (Operational
differences are noted for MPE-C as required.) Specifically, it shows you how to:

1. create and store on the system, various forms such as purchase orders, billing forms, or accounts
payable/receivable records

2. display, modify or delete the forms

3. write programs that call DEL procedures to display the forms, accept and edit data transferred to
the forms, and optionally store the data in data files on the system.

(
'-.

Your user-written programs can be written in COBOL, FORTRAN, BASIC, or Systems Programming
Language (SPL).

To use this manual, you should understand the fundamental techniques of programming and be
familiar with at least one of the languages described in the following manuals:

Manual Title Part No.

BASIC/3000 Interpreter Reference Manual 30000-90026
BASIC/3000 Compiler Reference Manual 32103-90001
COBOL/3000 Reference Manual 32213-90001
FORTRAN/3000 Reference Manual 30000-90040
Systems Programming Language Manual 30000-90024

You should also be familiar with the HP 3000 Computer System, and the HP 264x terminals as
described in the following documents:

,/

\

\

Manual Title Part No.

HP 3000 Series I MPE Commands Reference Manual 30000-90088
HP 3000 MPE Commands Reference Manual 30000-90009
HP 3000 Series I MPE Intrinsics Reference Manual 30000-90087
HP 3000 MPE Intrinsics Reference Manual 30000-90010
HP 3000 Series I System Manager/System Supervisor

Reference Manual 30000-90089
HP 3000 System Manager/System Supervisor Reference Manual 30000-90014
EDIT /3000 Reference Manual 03000-90012
COBOL/3000 Reference Manual 32213-90001
BASIC Interpreter Reference Manual 30000-90026
Using the HP 3000 - A Guide for the Terminal User 03000-90121
2640A Interactive Display Terminal Owner's Manual 02640-90011
2640B Display Station User's Manual 02640-90109
2641A APL Display Station User's Manual 02641-90001
2641A/2645A/2645S Display Station Reference Manual 02645-90005
2644A Mini DataStation Owner's Manual 02644-90001
2644A Mini DataStation Reference Card 5952-9950
2645A Display Station User's Manual 02645-90001
2645K Display Station User's Manual Supplement 02645-90030
2648A Graphics Terminal User's Manual 02648-90001

v

----.-~.--------

CONVENTIONS USED IN THIS MANUAL I

NOTATION

[]

{ }

italics

underlining .

superscript C

return

linefeed

DESCRIPTION

An element inside brackets is optional. Several elements stacked inside a pair ofbrackets means
the user may select anyone or none of these elements.

Example: [~Juser may select A or B or neither

When several elements are stacked within braces the user must select one of these elements.

Example: { i} user must select A or B or C.

Lowercase italics denote a parameter which must be replaced by a user-supplied variable.

(Example: CALL name
name one to 15 alphanumeric characters.

Dialogue: Where it is necessary to distinguish user input from computer output, the input is
underlined.

Example: NEW NAME? ALPHA1

Control characters are indicated by a superscript C

Example: yc

return in italics indicates a carriage return

linefeed in italics indicates a linefeed

A horizontal ellipsis indicates that a previous bracketed element may be repeated, or that elements
have been omitted.

(

vi

. .CONTENTS
(

Section I
INTRODUCING DATA ENTRY LIBRARY.
Applications
Features.
Using DEL.

Step 1: Designing the Form
Step 2: Creating the Form.
Step 3: Designing and Writing the Data Entry

Entry Program. • . .
Step 4: Testing the Applications.
Step 5: Running the Program for Data Entry

System Requirements

Section II
USING THE TERMINAL
Terminal Requirements. •

Page and Line Modes .
Multipoint Terminals.
Terminal Buffers

Terminal Keyboard Functions
Operating the Terminal .

Section III
DESIGNING AND ENTERING FORMS
Designing the Form.
Creating, Modifying, and Deleting Forms .
Rules for Using FORMAINT Displays
Changing Form File Characteristics .
Creating a New Form . .

Laying Out the Form . .
Specifying Field Editing

Listing Forms in a Form File .
Changing a Form .
Displaying a Form .
Deleting a Form . .
Deleting a Form File
Terminating FORMAINT

Section IV
USING DEL PROCEDURES .
How Procedures are Used. .
Common Procedure Characteristics .

Section V
ACCESSING FORMS FROM PROGRAMS
Opening a Form File
Locating a Form in a Form File. .
Moving a Form to a Program Buffer
Retrieving Next Edit Specifications.
Closing a Form File.

1-1
1-2
1-3
1-3
1-5
1-5

1-5
1-5
1-5
1-5

2-1
2-1
2-1
2-2
2-3
2-3
2-7

3-1
3-1
3-6
3-9
3-9

.3-10

. 3-10

.3-13

.3-16

. 3-17

.3-18

.3-19

.3-19

.3-20

4-1
4-2
4-3

5-1
5-1
5-3
5-4
5-5
5-6

Section VI
ACCESSING TERMINALS FROM PROGRAMS
Opening a Terminal File
Writing Output to a Terminal .
Reading Input from a Terminal

Reading in Page Mode
Multipoint.

Requesting Terminal Status
Closing a Terminal File .

6-1
6-1
6-2
6-3
6-4
6-4
6-5
6-7

Section VII
CALLING EDIT PROCEDURES.
Alphabetic Data Field (ALPHAEDIT). . .
Alphabetic Space-Filled Field (ALPHAFILL)
Alphanumeric Data Field (ANEDIT) .
Numeric Data Field (NUMRCEDIT)
Numeric Zero-Filled Field (ZERO FILL)
Numeric Range Edit (NRANGE)
Modulo 11 Check Digit Create (M11CREATE)
Modulo 11 Check Digit Verify (M11VERIFY)
Summary of DEL Edit Procedures

7-1
7-1
7-2
7-2
7-3
7-4
7-4
7-5
7-5
7-6

Section VIII
USING HIGH-LEVEL INTERFACE PROCEDURES. 8-1
Displaying Form and Reading Input
Editing Next Input Field

8-1
8-2

Section IX
WRITING PROGRAMS
Using DEL Procedures
COBOL Program. .
Preparing Programs .
Executing Programs.
Input/Output Files .
Writing User Procedures
Look-Up Tables . . .
Detecting/Correcting Errors

9-1
9-1
9-2

.9-13

.9-13

.9-13

.9-13

.9-14
·9-14

Section X
CORRECTING ERRORS. 10-1

Appendix A
DATA AREA FORMATS.
DEL/3000 Communications Area
Contents of 3 through 10 .
Editing Specifications Tables. .

A-1
A-I
A-2
A-6

Appendix B
roRMAUroRMll ~

vii

I CONTENTS (continued)

Appendix C
TERMINAL TYPE CODES. C-1

Appendix D
ASCII CHARACTER SET. D-1

Appendix E
DATA ENTRY LIBRARY FORM LAYOUT
SHEET. E-1

Appendix F
DATA ENTRY LIBRARY EDITING SPECIFI-
CATION SHEET. F-1

Appendix G
FCHECK ERROR CODES G-1

Appendix H
DEL STATUS WORD SETTINGS H-1

viii

(

(

ILLUSTRATIONS

Title

Application Program Data Flow .
Using DEL in an Application .
Sales Transaction Form.
Sales Transaction Form Layout Sheet
Transaction Form Editing Specification Sheet
Function Selection Display
Form Creation Display. .
Sales Transaction Report Form as Entered
Editing Specification Display.
Form File Directory Display
Form Modification Display

(-,

Page

1-1
1-4
3-2
3-3
3-5
3-7

· 3-10
· 3·13
· 3-14
· 3-16
· 3-17

Title Page

Form Listing Selection Display
Form Listing Output
Form Deletion Display .
Form File Deletion Verification Display
Procedure Calls in Application Programs
Application Program Procedures in Action
COBOL Program Flowchart . _
COBOL Program Listing
COBOL Program Symbol Table Map

- 3-18
.3-20
.3-22
. 3-22

4-4
5-1
9-3
9-4

.9-11

TABLES

Title Page Title Page

Keyboard Functions 2-4 DEL/3000 Communications Area Format A-2
Form File Characteristics 3-7 Edit Specifications Table Format A-6
Function Selection Display Errors 3-8 Forms File Format B-2
Form Creation Display Errors .3-11 File ID Record Format . B-3
Editing Specification Display Errors · 3-15 Directory Record Format B-3
Summary of Procedure- Parameters 4-5 Form Definition Record Forrnat , B-3
Terminal Status Buffer . 6-6 Input/Edit Description Record Format B-4
Data Characteristics . 7-6 ASCII Code Chart D-1
DEL Edit Procedure Summary 7-6 DEL Status Word Settings. H-2
Error Messages Generated by FORMAINT · 10-2

(

ix

(

INTRODUCING I
'BI'(')t'DATA. ENTRY LIBRARY I I I

The Data Entry Library (DEL/3000) helps you use an HP 264x terminal* to create and maintain
files of formatted data on an HP 3000 Computer System. First, DEL assists you in creating forms
that are stored in form files residing on the system. Then DEL aids you in writing programs that
access both the pre-defined forms and terminals. These programs can be written in COBOL, FOR-
TRAN, BASIC, and Systems Programming Language (SPL). Typically, your program displays a
form selected from a form file onto the terminal screen and allows users to enter data on the form
image. You can use DEL procedures to edit the data, which you may optionally store on a data file
in a format defined by your program. The form image serves as a visible guide or template for enter-
ing data. The form image is moved onto the screen through a program buffer (work area), and the
data entered is transferred to the data file via this or another buffer as shown in figure 1-1.

PROGRAM BUFFER
(Work Area)

TERMINAL
SCREEN

FORM FILE
USER'S
DATA

--
••~ III

~ ;;~

FORM
IMAGE

OUTPUT TO
TERMINAL

------ USERr----+---------~
I INPUT FROM
I TERMINAL
I
I

FORM

FORMATTED
DATA

DATA FILE

Figure 1-1. Application Program Data Flow

DEL consists of:

1. An interactive form-maintenance program (FORMAINT) that enables you to:

• create the forms and store them in the form files,

• display, modify, or delete the forms,

• list all forms in a form file, and

• delete entire form files.

Each form file contains one or more forms that are usually related in some way. Forms of 24 lines
or less, when brought into terminal memory, are stored in one memory page and can be displayed
on the terminal screen in their entirety. Larger forms occupy additional memory pages that are
automatically displayed in sequence as the form data is entered or transmitted. In addition, sets of
related forms can be chained together to permit their display in a given order.

*Note: Whenever the term HP 264x terminal or the word terminal appears in this manual, it applies to the HP 2640A,
HP 2640B, HP 2641A, HP 2644A, HP 2645A, HP 2645K, and HP 2648A, but to no other terminals, unless
otherwise noted.

1-1

2. Form-access procedures that allow your program to:

• open a form file,

• locate any form in that file,

• make the form available to the program by moving it into a buffer, and

• close the form file.

These procedures allow your program read-only access to the form.

3. Terminal-access procedures that provide read/write access to a terminal as an HP 3000 file. They
permit your program to:

• open a terminal as a file,

• write output from the program buffer to the terminal,

• read input from the terminal to this or another buffer,

• request status information about the terminal, and

• close the terminal file.

These functions allow you to call up the form on your terminal screen programmatically.

4. Editing procedures that validate the general content of user input to alphabetic, alphanumeric,
and numeric fields on the forms. Your programs call these procedures, which check the appropriate
input after it is entered, and then return to your program indications of whether the input data
passed this edit check. For instance, if your program calls a procedure to verify that input to a field
is alphabetic, but someone running that program instead enters numeric data, the editing proce-
dure returns an error indication to your program. In addition to these procedures supplied with
DEL, you may also provide your own input editing procedures to interface between your program,
the forms it displays, and the user at the terminal. (Note that these procedures do not edit
Katakana characters.)

(
5. High-level interface procedures that combine some of the form-access and terminal-access opera-

tions described above.

APPLICATIONS

DEL is useful for any application that displays a form or formatted report on a terminal screen, allows
a user to enter or change data on the form, and edits this data as it is entered. In the fields of business
and commerce, for example, applications include:

• Preparation of purchase orders, inventory transactions, invoices, and billing forms.

• Input to accounts payable and receivable systems, employee transactions, journals, and general
ledgers.

1-2

(
• Output from management-inquiry programs.

• Low-volume generation of financial, managerial, and legal statements.

• Centralized data-processing activities in banks.

At all levels of the education field, DEL is useful for applications involving:

• On-line registration of students.

• Maintenance of student and alumni records.

• Generation of grade, progress, and status reports.

• Various payroll and accounting activities.

(

For scientific applications, DEL is valuable in data collection, entry, and retrieval operations. For
example, it could be applied to help technicians enter data on-line into application programs that run
one or more terminals.

In general, DEL is valuable for any applications that require computer interaction with forms.

FEATURES

DEL provides a simple, consistent interface with HP 264x terminals. It is easy to use, displaying
convenient interactive prompts for form creation, modification, and selection of editing routines,
and reducing the burden of transmitting escape codes and other terminal-oriented requirements
when interacting with programs. (The prompts allow you to select various operations much as you
would pick items from a shopping list or menu.) DEL does much of the form creation and mainten-
ance work for you, letting you avoid the details .involved in writing special programs or routines to
accomplish this effort; this is particularly valuable in cases where the forms themselves are changed
frequently.

(
DEL offers many conveniences. First, it incorporates dual-level operations - form creation/
maintenance and data entry/modification - in one software package. This is useful in applications
where the individual who actually uses the forms also designs them, while another person (the
programmer) is concerned only with the data to appear on the forms. Two additional conveniences are
the Form Layout Sheet (a pre-printed matrix on which you may make a preliminary sketch of your
form) and the ability to produce permanent copies of forms on a line-printer. Finally, the basic field
checking and editing procedures allow programs to verify the format of data as it is entered, and to
detect and 'report format errors to the user; this, in turn, may allow him to make any necessary
corrections on-line.

DEL is highly versatile. It provides the ability to call procedures from four different programming
languages - COBOL, FORTRAN, BASIC, and SPL. It also allows you to draw upon all the varied
functions of HP 264x terminals+- protected fields, video high-lighting, insert/delete functions, and
so forth.

i
USING DEL

In using DEL, you typically follow the steps outlined below and illustrated in figure 1-2.

1-3

Figure 1-2. UsingDEl, in an Application

1-4

\

(

(

/

Step 1: Designing the Form

(Analyze the requirements of your form by determining the permanent headings required, the data to
be entered, and how these fields of information can best be arranged and presented. Then sketch the
form on a Form Layout Sheet, indicating where each field is to begin and end.

Step 2: Creating the Form

Run the FORMAINT program to create your form in the system. You may store the form in an existing
form file or create a new file for this purpose. To define the form, transcribe your entries from the Form
Layout Sheet onto the terminal screen via the keyboard. If you make any mistakes, you simply correct
them as you go along, or re-run FORMAINT later for this purpose.

Step 3: Designing and Writing the Data Entry Program

Write a program to interface with the person who will enter data into the formatted data file and keep
it updated. The possible structure and details of such programs are wide and varied. Examples appear
later in this manual.

Step 4: Testing the Application

Once you have created the forms and programs required, your normal application program validation
procedures apply.

Step 5: Running the Program for Data Entry

Your application is ready for data entry use.

SYSTEM REQUIREMENTS

DEL operates on any HP 3000 Computer System with at least one HP 264x terminal. DEL runs
under control of MPE, and can be used with the COBOL, FORTRAN and SPL compilers and the
BASIC interpreter. No other hardware or software is needed.

1-5

(

(

,'UMWIUSING THE TERMINAL .1 II 1

If you have not yet operated an HP 264x terminal, you may read this section of the manual for an
overview of major points and commonly-used functions. To learn the full capabilities and operating
procedures for your terminals, however, be sure to read the appropriate owner's manual:

• HP 2640A Interactive Display Terminal Owner's Manual

• HP 2640B Display Station User's Manual

• HP 2641A APL Display Station User's Manual

• HP 2644A Mini DataStation Owner's Manual

• HP 2645A Display Station User's Manual

• HP 2645K Display Station User's Manual Supplement

• HP 2648A Graphics Terminal User's Manual

TERMINAL REQUIREMENTS

To interface with DEL/3000, your terminal must be:

(

• Equipped for line/FORMAT or page/FORMAT mode. When operating in FORMAT mode, the
terminal transmits information in unprotected fields only, ignores all control characters (except
record-separators (RS) characters) embedded in data entered, and generates a carriage return as
a data-block terminator. (An unprotected field -is a field into which you can enter data; a pro-
tected field is a field that you cannot alter, such as a title or column heading on a form display.)

• Operated in block mode, where the information you enter is transmitted to the computer in lines
or blocks of characters, allowing you to edit this data before transmitting it. (When not in block
mode, the terminal operates in character mode, where each character is transmitted as you
type it.) BLOCK MODEjPAGE is supported on all terminals except the HP2640A and BLOCK
MODE/LINE is supported on all 264x terminals. Only BLOCK MODE/LINE is supported when
using DEL with MPE-C.

• Connected to the computer over an asynchronous terminal controller.

(-

PAGE AND LINE MODES. DEL operates in both BLOCK MODE/PAGE and BLOCK MODE/LINE
depending on the internal configuration of the terminal being used. DEL operates only in BLOCK
MODE/LINE when used with MPE-C.To use BLOCK MODE/PAGE, the D and G strapping options
on the keyboard interface printed circuit board (which is labeled KEYBD I/F) inside the terminal
must be open (strap pulled out). In addition, the F strapping option must be open on 2640B
terminals. Although the HP 2640A has these straps, the G strap has no effect. Therefore, BLOCK
MODE/PAGE is not supported on the HP 2640A. It is supported on all other terminals.

The HP 2641A, 2645A, 2645K, and 2648A terminals have the capability to have the strapping
options and latching keys set programmatically. DEL makes use of this feature by setting the termi-
nal in BLOCK MODE/PAGE mode when the terminal is opened with the OPENTERM procedure
(refer to Section VI). You may suppress this feature by setting a flag in the Terminal Mode Informa-
tion word in the communication area (refer to Appendix A). If the automatic configuration is used,
the normal modes are restored when the terminal is closed using the CLOSETERM procedure.

2-1

Note that FORMAINT programmatically overrides the physical strapping (except when operating
with multipoint) to ensure that it operates in BLOCK MODE/LINE mode.

Multipoint terminals may not operate in BLOCK MODE/LINE mode. (See below.)

During BLOCK MODE/PAGE operation, echo is always off, and the input terminators are DC2
(whose function is a block transfer enable from the terminal) and RS (a record separator). These
ASCII characters replace CR (carriage return) as the input terminators. These codes are automatically
generated by the terminal in block mode. If you are debugging a program with the MPE DEBUG in-
trinsic and the terminal does not respond to a carriage return, or if you have pressed the BREAK
key to interrupt execution of a program that calls DEL procedures.jjy ent~ring CONTI-t()~e~_i-f!,c
which is ASCII DC2) to terminate your input. L~i-achQ-on~ter breaking a program, enter
. ESC.:JEscape colon), or switch the terminal to half duplex until you are ready to resume execution
of the program. Before entering the :RESUME command, .r..!!storeecho-Qff by enterin__!L~§Q;.(Escape (-
semicolon) and be sure the terminal switch is set to full duplex.

When there are many terminals simultaneously transmitting data in BLOCK MODE/PAGE, there is
a small chance that a data overrun error could occur. DEL can detect this when it occurs. Refer to
the READTERM procedure discussion for an explanation of how this situation is handled. When
using BLOCK MODE/PAGE, it is recommended that the number of MPE terminal buffers (TBUF)
be at least 128. The number of buffers is specified by the system supervisor at system configuration
time. (Refer to the System Manager/System Supervisor Reference Manual.)

NOTE

The MPE READ intrinsic which is used by the COBOL
ACCEPT statement cannot be used in BLOCK MODE with a
terminal that is strapped for BLOCKMODE/PAGE operation.
This is due to the input termination characters used by the
terminal in BLOCKMODE/PAGE. c

MULTIPOINT TERMINALS. Multipoint terminals may be used with DEL. The following character-
istics of DEL multipoint operation should be noted:

• Multipoint terminals are always MPE terminal type 14.

• Multipoint terminals operate in BLOCK MODE/PAGE only. A negative value in the Terminal
Information Word of the communications area (refer to Appendix A) has no effect.

• Multipoint terminals require a portion of the terminal memory for the Data Communications
buffer. Therefore, care should be taken that the size of a form does not exceed the available
terminal memory.

• The design of multipoint terminals restricts an individual terminal read to a maxim~m of.2048,
characters. Therefore, forms containing more than 2048 displayable and non-displayable
characters cannot be created or modified on a multipoint terminal. Application programs read-
ing data from forms are limited to 2048 characters of data. (Refer to the description of the
READTERM procedure for more information.)

2-2

TERMINAL BUFFERS. If it is anticipated that many users will be using FORMAINT or the DEL
procedures simultaneously, it is recommended that the system supervisor configure the system with
the maximum number of terminal buffers (255). Refer to the System Manager/System Supervisor
Reference Manual for more information about how to do this.

TERMINAL KEYBOARD FUNCTIONS

The HP 264x terminal keyboard provides keys for a wide variety of operations. Those you are most
likely to use with DEL are summarized in table 2-1, where they are organized as functional groups.
Others are discussed as they are used later in this manual. All are described in detail in the owner's
manual.

NOTE

All discussions of keyboard functions in this manual assume that
you are using the standard HP 264x character set with upper
and lower case letters.

2-3

Table 2-1. Keyboard Functions

KEY GROUP KEY FUNCTION

Character Set Alphabetic (A-Z), Similar to standard typewriter key operations; enters
numeric (0-9), and character selected, in upper or lower case.
special symbols (=. #,
$, and so forth).

ESC Generates ASCII escape character; transfers from normal
operational mode to allow you to enter commands for pro-
grammable terminal functions. (For instance, ESe U pro-
duces a NEXT PAGE command.) See Appendix D for
character set summary and owner's manual for further
details.

CNTL When held down while any alphabetic key or @, L \,
1, -. -, t. {, I.} , --, or DEL key is pressed, con-
verts the character code for that key to an ASCII control
code. (See Appendix D for character set surnrnarv.)

LINE FEED (on HP Moves cursor down one line. If cursor is on last line dis-
2640 or 2641) or played, moves entire display up one line and places cursor
JC (on all terminals) in new last line.

RETURN Returns cursor to beginning of current line. When entered
at end of line, also generates a line-feed.

Numeric and Display t Moves cu rsor up one line. If cursor is in top line of display,
Control wraps cursor around to bottom line.

Note: See owner's
~

Moves cursor down one line. If cursor is in bottom line,
manual for many wraps cursor around to top line.
other keys in this
group. Moves cursor one column to right. If cursor is in last col-

~ umn, wraps cursor around to first column of next line.
If cursor is in last position of display, wraps cursor around
to first position.

Moves cursor one column to left. If cursor is in first column,.- wraps it around to last column of above line. If cursor is
in first position of display, wraps it around to last position.

- '\ Moves cursor to first unprotected (Home) position of
display.

Edit and Control RESET TERMINAL Sets terminal to its initial state when power was turned on:
Group clears display and memory, moves cursor to Home position,

shuts off programmable functions.

NOTE

When using this function in a program, use
extreme caution and be sure you accurately
anticipate the resu Its.

BREAK Requests a system break, returning control to MPE.

DISPLAY FUNCTIONS Disables all escape codes and control functions (except
return) entered or received. With 128-character Roman
character set, displays escape codes and control functions

2-4

c

(

Table 2-1. Keyboard Functions (Continued)

,
\

KEY GROUP KEY FUNCTION

(-

associated with an entry as an aid in debugging. (See
owner's manual.)

BLOCK MODE When latched down, places terminal in block mode.

REMOTE When latched down, places terminal in remote (on-line)
operating mode for communicating with the computer.

TAB (In FORMAT mode), moves cursor to start of next unpro-
tected field; disregards normal horizontal tab stops.

ENTER In DEL's FORMAINT Program, sends entire form to form
file.

In response to DEL application program prompts, transfers
all input data in unprotected field to program's input buffer.

ENHANCE DISPLAY
(on HP 2640)

f1c (on all other
terminals)

NOTE

The superscript c indi-
cates the CNTR L func-
tion - thus, you must
hold down the CNTL
key while pressing f1.

When followed by one of the letters A through 0, indicates
display of one of 15 possible combinations of half-bright,
underline, inverse video (black letters on white background),
and blinking characters. When followed by commercial at-
sign (@) entry, cancels previously-selected combination.
The combinations possible are listed in this chart:

@'A B C D E F G H I J K L M N 0
Half
Bright X X X X X X X X
Underline X X X X X X X X
Inverse
Video X X X X X X X X
Blinking X X X X X X X X

START UNPROTECTED
FIELD (on HP 2640)

f2C (on all other
terminals)

In the above chart, X indicates that the feature is displayed.
For example, to start a field of blinking, underlined charac-
ters on the HP 2640, press the ENHANCE DISPLAY key
followed by the E key. To terminate the blinking under-
lined field, press the ENHANCE DISPLAY key followed by
the @ key. You could use these keys to visually distinguish
between protected versus unprotected fields, or to bring
certain fields to the attention of the person entering data
on the form.

NOTE

On other terminals you must hold down CNTL
while pressing the f1 key. Thus, to start a blink-
ing underlined field on that terminal, hold
CNTL down, press f1, release CNTL and strike
E.

Starts an unprotected field. In FORMAT mode, characters
from present cursor position to end of this field or end of
this line are unprotected and can be overwritten. (These
characters are normally spaces.)

2-5

Table 2·1. Keyboard Functions (Continued)

KEY GROUP KEY FUNCTION

END UNPROTECTED Ends an unprotected field. Characters from present cursor
FIELD (on HP 2640) position to end of this line or start of next unprotected

f3c (on all other
field, are protected in FORMAT mode and cannot be over-

terminals) written.

FORMAT MODE (on Places terminal in FORMAT mode (ON) so that only unpro-
HP 2640) tected fields can be altered by either terminal user or com-

puter. (The unprotected fields are specifically defined by
f4c (on all other the START UNPROTECTED FIELD and END UNPRO-
terminals) TECTED FIELD keys. All other fields are protected in

FORMAT mode.)

NOTE

To turn FORMAT mode off on the HP 2640,
unlatch the FORMAT mode key. To do the
same on other terminals, enter ESC X.

BACK SPACE Moves cursor one character to left. If cursor is in first col-
umn, it remains there.

INSERT LINE Rolls down line containing cursor and subsequent lines be-
low this line, inserts blank line before cursor line, and moves
cursor to first column of new blank line. Disabled in FOR-
MAT mode.

DELETE LINE Deletes line containing cursor, rolls upward the following
lines, and places cursor at beginning of first rolled-up line.
Disabled in FORMAT mode.

INSERT CHAR When latched down, allows you to specify characters to be
inserted at present cursor position. In FORMAT mode,
operates on a field-by-field basis.

DELETE CHAR Deletes character at cursor position and moves all succeed-
ing characters leftward by one column. In FORMAT mode,
operates on a field-by-field basis.

fSc (on HP 2640) Special function key that returns you to Function Selection
Display in FORMAINT. When entered on Editing Specifics-

- f8 (on all other tion Display, generates blank edit descriptions for remaining
terminals) unprotected fields on form. (See Section III.)

Additional j\G (Control 1\) Acts as end-of-data indicator.
Functions (Record separator)

ESC k (Clear Line Clears line from cursor position to end of current line or
from Cursor) current unprotected field.

RC (Control R) Acts as end-of-data indicator to terminate input when
(ASCII DC2) in BREAK or DEBUG and BLOCK MODE/PAGE is

set.

2·6

(0

(

(

OPERATING THE TERMINAL

To prepare your terminal for use, follow these steps:

1. Assure that the REMOTE latching key is not depressed; thus, the terminal is set for off-line (local)
operation.

2. Set the A.C. POWER Switch, located on the terminal's rear panel, to the ON position. After a
15-second warm-up period, the terminal enters its initial operating state with the display screen
and memory cleared, the cursor in the upper-left corner (Home position) of the screen, and all
programmable functions turned off.

3. At your option, press the TEST key to validate the operation of the terminal's memory, firmware,
and display. Generally, if the terminal emits an audible "beep" and a test pattern appears that is
similar to those described in the Self-Test section ofyour owner's manual, the terminal is working
properly. This pattern also denotes the character sets available on your terminal. (See owner's
manual.) Press the RESET TERMINAL key to clear the display.

NOTE

If the TEST function does not work properly and the cursor still
does not appear, set the A.C. POWER switch to OFF and call an
HP service representative. Do not try to operate the terminal
again until it has been repaired.

4. Set the following keys and switches as indicated below:

/".

Key/Switch Position

BLOCK MODE OFF (unlatched)
AUTO L.F. (Line Feed) OFF (unlatched)
DUPLEX FULL
PARITY , NONE
BAUD RATE (Speed) Any setting desired

To initiate communication with the computer, latch down the REMOTE key to set your terminal to the
on-line (remote) mode and log-on as directed in either:

• MPE Commands Reference Manual, or

• Using the HP 3000

This procedure requires use of the MPE command :HELLO, discussed in detail in the MPE Commands
Reference Manual.

The terminal type is set to 10 by the DEL OPENTERM procedure unless it is already 10, or it is a
multipoint terminal (type 14) or a Katakana terminal (type 12). The log-on terminal type is re-
stored by CLOSETERM. If you log on to an MPE-C system, it is recommended that you specify
terminal type 10 (using the TERM= parameter of the :HELLO command). The terminal type can-
not be altered programmatically in these systems.

2-7

To terminate communication with the computer, enter the :BYE command as directed it}.the above
manual and summarized in Appendix C.

To shut off your terminal:

1. Press the RESET TERMINAL key to re-initialize the terminal. (To do a hard reset on an HP
2641,2645, or 2648, press the RESET TERMINAL key twice.

2. Set the A.C. POWER switch to the OFF position, turning off the power.

NOTE

It is recommended that you do not use the memory lock
feature of the 264x terminals when using DEL. If the cursor is
positioned in the locked area of the terminal when a read is
executed, a read error will occur.

2-8

(

(

DESIGNING AND ENTERING 1'H2!!.!!·FORMS I III I

The first steps in any DEL/3000 application involve designing and entering the form (or forms) that
the application will use. These steps and those that follow are best illustrated by an example. Suppose,
for instance, that you are preparing an application that enables a clerk in a construction supply store
to interactively enter data onto a sales transaction form using an HP 3000 computer system. The
application program is to display the form on the terminal screen showing the following information:

• Form title: "SALES TRANSACTION"

• Date of transaction

• Transaction number

} (Six-digit numeric code)• Customer identification number
(
\ • Salesman identification number

• Billing recipient

• Product number (four-digit numeric code)

• Product description

• Price per unit

G Quantity sold

DESIGNING THE FORM

If the clerk were manually entering the data upon a paper form for this application, that form would
resemble the one shown in figure 3-1. When you adapt this form for terminal display and enter it in the
computer, you will need to know exactly where each field begins and ends, and what kind of editing
requirements, if any, apply to each unprotected field. (In figure 3-1, the unprotected fields are circled.)
You can determine the precise location of each field by laying out the form on the DELl3000 Form
Layout Sheet provided in Appendix E of this manual. For the sales transaction example, the layout
sheet shown in figure 3-2 might be used. On this sheet, you should enter these elements:

• Form File Name. This is the MPE formal file designator of the file on which your form will reside.
In addition to the file name, it may also include a file lockword, a group name, and an account
name. The names and lockword may each contain up to eight alphanumeric characters, beginning
with a letter. Within the total entry, you must also include any appropriate delimiting periods and
slash-marks. The total entry _must not exceed 35 characters. See MPE Commands Reference
Manual for further information on formal file designators. Examples are:

File name
/ Group name

MYFILE .>
File MYFILE MYGROUP~
name .

MYFILE/MYLOCK.MYGROUP.MY ACCT

/ \ 1 ~
File name Lock

word
Group
name

Account
name

3-1

SALESMAN ID:

Figure 3-1. Sales Transaction Form
-

On the Form Layout Sheet for the sales transaction report, the form file name SALESFIL is used.

• Form Name. This is the name by which DEL will recognize and access your form. This name can
include up to 16 alphanumeric characters, beginning with either a letter or a digit. Within the
form file, this name must be unique. Examples are:

MYFORM
ACCOUNTSREC
ACCOUNTSPAY
GENLEDGER1
FORM22A
3 FORM

On the layout sheet for the Sales Transaction Report, the form name SALESFORM is used.

3-2

'-.

(

4

5

Cf 6

W

a
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

DATA ENTRY LIBRARY FORM LAYOUT SHEET

~.-~:.
Page / of LHEWLETT'; PACKARD

~~~~AME IS1Jik W 151FI , ILl I I I I I I I I I I I I I I I I I I I I I I I I I I I I
~~~~ J~ME I I I I I I I I I I I I I I I I IFORMNAME ISlA liJ£15JFTOlBlnlI l]f1 T]

o 1 2345678 910 111213141616171819202122232425262728293031323334353637383940414243441454647484950515253545556575859606162636465666768697071727374767677787980

D

~~ 1.£~ T't1 lit ~5 ~t II ~~

~~ rre ; tt:~V :z:~Vzlz r~~ ~$~~ /1 ~A1 ~".• Z~ ZZZ~

~~ ~1~ ~ ~Jt ~~ ~ 12Z12:12"2:11: 181~ Le~ 7'~ ~ X'I~~~ rt(~~".-Xt~I~t X~~~ X'I~~
XI~ "It: fl.IXI" ~.~~~ tl~I"~~"I'" I~~

!SAl£~ ,..~~ :z~ - ~"~~ LIL
111:111't{ li'~~j(I" " "It("I(JC Itl:XIX JC
~~"~XX'x. I~" XIX ll~ I.~ 11' ~!. Ill. 11[111.

." ..•. ..."ert- "IN 11'
r~. 11111II!'41'1.•••~,'11 'II. Pi.C /(£ 1I';l"~ MT lITIY

II 11.l(~IWk' X~ ~I\{ 'lI.IV I. :liLt("XXX ~)(KX (IX~X.(~I~ IJiXIX.(Ir I.:l(" 11:.(~ b'7 Ir 17, Z.Z IZ,~~Z1£1"" ,,,"'I.

L,Z ~"~"tx,,~xt !"~~"-"i" .IX r-)l t,)C ~~ ~K Ixlx JlJl~ I-"IxXI! ~ 1)1X x:~)CxIJt 1Z2 Z~ -Z~

i717 72 ~~ ,(~IlllXIXxl~ JIll: IX t/:.:.YJc:IX "Xli: :1':IX1t:1r1X'lx:LX~ ~llIXXIt 11':;I[1I:IAAJ(Ix 1Z'2IzIz. ,z:l.z 17" 17

1"'-~"~J("IXXX !)Cktxx ~~ XX XX ~lI: ~I)Clxlli I}J1C!J/:y I~Ixl)(xix 1\/ J(Jf:](1.1"X"I" 1z2 12 :2" 1z12 7171'7

~~ "I"111:I 1Il1A.vlt(I~\{ V 11I(X)(X.X IIiA ·}\olll.~I" 1~lk V"\lIX1)(IJi"~IV III: ~ 17'1' Iz!7, IZIZ

Figure 3-2. Sales Transaction Form Layout Sheet

• Chain To Form Name. This entry allows you to name any other form to which the form you are
now designing relates. When specified during the form design process, this entry permits your
application program to automatically display the forms sequentially. Because the form for the
sales transaction report is not related to any other form, this entry is left blank in the example.

• Page Number. If your form contains 24 lines or less, it will occupy only one page of terminal
memory and will fit completely onto the terminal screen; in this case, you can indicate "Page 1of
I" in the upper-right corner of the Form Layout Sheet as in the example. If, however, you are
producing a larger form that requires additional memory pages, you may continue it onto one or
more additional layout sheets, indicating the particular page number and total number ofpages in
this entry, such as "Page 2 of 3". When the form is entered and displayed, the terminal automati-
cally presents each successive page on the screen in the sequence required.

Forms containing more than 2048 displayable/non-displayable characters cannot be created or mod-
ified on multipoint terminals. However, you may di.splay a form with as ~ ch~~~s.1&r&.
The maximum number of displayable/non-displayable characters allowed on each line ora form is
600. ~----- ..~
.------
To locate the individual fields for a form, simply enter these fields in the lines and columns desired on
the layout sheet. To indicate the contents ofunprotected fields, you may use any convention you desire.
In the sales transaction report example, Xs are used to show alphanumeric fields and Zs are used for
numeric fields.

Immediately after you enter your form via FORMAINT, you must specify any editing requirements
that apply to the unprotected fields on your form. At that time, it will be helpful if you have all the
editing information for each field already at hand. You can define this information by filling out the
Editing Specification. Sheet provided in Appendix F, listing all requirements that apply to each edited
field. (Editing specifications should not be entered if the data is to be entered in Katakana charac-
ters.) For the sales transaction example, a sample specification sheet appears in figure 3-3. This
sheet allows you to specify the following items:

• Field Name. Enter the name or description of the unprotected field. The first field named in the
example is the "Month" portion of the DATE entry. (

• Length. Enter the length of the unprotected field. In the example, the "Month" entry is two digits
long.

• Edit Type. Enter the type of editing you desire for this field. Youmay wish to specify a combination
of different types. For the "Month" entry in the example, the application requires that numeric
data only appears in the entry, that the data is right-justified and the field is filled with zeros to
the left of the data, and that the data falls within a given numeric range (01 through 12).

• Edit Procedure Name. Enter the name of the procedure that will edit this field when your
application program runs. Youmay name more than one procedure, selecting from those furnished
by DEL, procedures written by yourself, or both. (DEL procedures and the functions they perform
are described in detail in Section VII.) Each procedure name may include up to 15 of any
characters legal in the language used for your application program. In the specification sheet for
the example, the CNRANGE procedure is used for the "Month" entry to provide numericlzero-fill
editing and range-checking.

3-4

~

DATA ENTRY LIBRARY EDITING SPECIFICATION SHEET

w,
CJ1

Edit Range Check Look-up
Field Edit Procedure Test Flag# After Edit "Same as" "Opposite" Low High Procedure
Name Length Type Name Before Edit Set Flag# Flag# Flag# Value Value File Name Characters

1~([tJIWlII) :L W""lEltlC CNIl~£

UIUJ-FILL I

IlIlNG-£- 01 I:L
CII£e.K

DATEU,IIY) 4- N"ME/lI(. CNIl"~£
:t£'IllJ- f/J.L

flON(!E- 01 31
CH£~I<

i>117£(YEAR) z. N"IteIlIC- ~JtI/lAI'I6£
Z£Ilo-Ffu..

~nNE£- 70 79
eOEe/<

TilAN!:ACT/Nf/ 6 NVIIE~/C IcIQn~('atn

IecJSDfta I-€;. " iJr'''~/~tNlA'r1lt'£NT
~.llEs"'_In b WW.E'-IC- 'r-NUrfll{OI1

IPIlbbv('r /YD- 4 WdJlt£II(,: "'IlIJN Ke£I'IJ

UNIT Pllle£ -i /YVI'fBtIC lZEKttFILL
(I>OLl""~S) ju£4J-FiLL

V/Y,r P~/e£ L/ IVtJl'1L:N1'C IeZlElbFILL
(c...:NTS) Z£b-HL.t-

'1V/lNTlTY -4 /IIU"Ollc ~h'''n~(EP'r

Figure 3-3. Transaction Form Editing Specification Sheet

• Test Flag # Before Edit. DEL accesses 16 one-bit flags that are all cleared to zero each time a new
form is accessed. Both DEL and user-supplied edit procedures may set these flags, which may be
tested by your application program to allow conditional editing or logical editing between two or
more fields. These flags are numbered 1 through 16. If the procedure named in the previous
column is to be used conditionally or is to be modified by a previously-invoked edit procedure,
specify the related flag to be tested. (No flags are used in the sales transaction example.)

• After Edit, Set Flag #. If the procedure named is to set one of the flags when it edits the data,
specify which flag this is.

• Same As Flag #. If the result of this edit must be compared with that of a prior edit and a flag is to
be set if the results match, specify which flag this is.

• Opposite Flag #. If the result of this edit must be compared with that of a prior edit and a flag
is to be set if the results do not match, specify which flag this is.

• Range Check, Low Value and High Value. If a range-check applies to this field, enter the lowest
and highest value permitted in the field. Each value may be up to 16 characters long. (

• Look-Up Procedure File Name. If the field is edited by a user-written procedure that looks up
information in a file, enter the name ofthat file. Such a procedure might, for instance, scan a table
to determine a tax percentage or some other factor. The file name entry may be required for
linkage by this procedure, depending on how the procedure is coded. This entry can include file
name and optional lockword, group name, and account name.

• Characters. If the edit procedure does not perform range-checking or a file look-up, you may enter
in this column up to 32 characters of data to be used in any way that your procedure requires.
These characters are written exactly as shown into the record containing the edit specifications on
your form file. You might use this feature, for example, for an edit procedure that verifies that the
data entered is any of eight four-digit account numbers; these numbers could be stored as this set
of 32 characters, making it unnecessary for the editing procedure to perform an extensive file
search for this data.

CREATING, MODIFYING, AND DELETING FORMS
Once you have designed your form and have a clear idea of the editing specifications required, you are
ready to create the form in the system. When the form is created, you can display, modify, or delete it, (
and perform various other operations. For all of these functions, you must run the FORMAINT
program by logging-on and entering:

:RUN FORMAINT,PUB.SYS

If you haveIogged-on at a terminal other than an HP 264x, FORMAINT prints the following mes-
sage and immediately terminates:

INPUT DEVICE IS NOT A 264x
1-'.•...
If you have logged-on to an HP 264x terminal that cannot be set to block mode programmatically,

i FORMAINT prints the message: '

PLEASE PRESS BLOCK MODE KEY AND AUTO LF.

Latch the BLOCK MODE key down, placing the terminal in block mode. FORMAINT now presents
the message "HP 32206A.uu.ff FORM MAINTENANCE" on the terminal screen, followed by the
Function Selection Display shown in figure 3-4. (In this message, uu and ff are digits indicating the
current software update level and fix level, respectively, assigned by HP.)

3-6

Enter the name of your form file in the input field indicated by the present cursor position. If the
file does not exist, FORMAINT will create the form file as a permanent file on disc with the charac-
teristics listed in table 3-1, when the entire screen contents are transmitted to FORMAINT as di-
rected below. If the file name indicates an old (existing) file, FORMAINT will access that file. In
the example in figure 3-4, the name of the new file SALESFIL (indicated on the layout sheet) is
entered.

c

(
\"

Cursor position Figure 3-4. Function Selection Display

Table 3-1. Form File Characteristics

CHARACTERISTIC ASSIGNED VALUE

Record size 64 bytes (characters)

Hecord type Fixed-length, ASC II format

Blockinq factor 8 records per block

File size 10,000 logical records"

Number of extents allowed 10

Number of extents initially allocated 1

Access type Exclusive

"only 1000 records are allocated until more are needed.

NOTE

Because FORMAINT grants a user exclusive access to a form file,
two or more users cannot use FORMAINT to operate on the same
form file simultaneously. For the same reason, no one can run an
application program to enter data via a form file while someone
else is using FORMAINT to operate on that same file.

3-7

Now select the function you desire, as follows:

1. Use the TAB key to move the cursor to the input field that indicates the operation you desire.

2. Enter the character X (upper case only) in the input field.

3. Press the ENTER key to transmit your entries to FORMAINT and begin the function you selected.

In the example in figure 3-4, the function DEFINE A NEW FORM is selected.

If you specified more than one function, the function nearest the top of the display is performed and all
others are ignored.

If you did not make the required entries on the Function Select Display, these errors will be reported to
you when you press ENTER, via the message shown in table 3-2. Following the message output,
FORMAINT waits for you to correct the error and press ENTER again.

NOTE

Several errors that you may encounter when using FORMAINT
are noted throughout this manual; all errors possible are dis-
cussed in detail in Section X. In general, if the error is caused
directly by your input to a particular field, that field will blink on
the display.

Table 3-2. Function Selection Display Errors

MESSAGE CAUSE

FILE NAME REQUIRED You did not enter a form file name.

FORM FILE NAME INVALID You entered an invalid form file name (perhaps not
beginning with a letter or containing too many
characters).

FILE IS NOT A FORMS FILE You specified an existing file that is not a form
file.

FILE IS INACCESSIBLE Another user is presently using the form file.

FILE CANNOT BE OPENED ERROR CODE=nnnn FORMAINT cannot open the form file you speci-
- fied. In this message, nnnn indicates an error code

return through FORMAINT by the FCHECK intrin-
sic, as discussed in MPE Intrinsics Reference Manual
and Appendix G of this manual. See that discussion
for the meaning of this code.

NO FUNCTION SELECTED You did not select any function from the list
displayed.

FORM FI LE ACCESS ERROR CODE = error number FORMAl NT encountered a read or write error when
accessing your form file. Refer to Appendix G for
the meaning of the error number listed under the
FCHECK intrinsic errors.

FORMAl NT MUST HAVE UPDATE ACCESS The form file was not created to allow read/write
TO FORMS FILE access (ACC=INOUT).

3-8

(

(

(RULES FOR USING FORMAINT DISPLAYS

When responding to the prompts for any FORMAINT display, remember these general rules:

• Press the TAB key to skip to a new prompt (input field).

• Press the ENTER key to indicate that you are finished with a display and continue with the
normal progression of a function.

• Press th~(or the f8 key with CNTL depressed on the HP 2640) to exit from any func-
tion and return to the Function Selection Display.

• Reposition the cursor to the beginning of the line and use the DELETE LINE key to correct
an entry.

(In general, if you enter data that equals the length of an input field for a prompt, the cursor skips to
the next input field. The next character you enter appears in this field.

CHANGING FORM FILE CHARACTERISTICS

Although you cannot change the record size, record type, and access type for any form file, you can
re-specify certain other characteristics for new form files. These characteristics are: blocking factor,
file size, number of disc extents allowed, and number of extents initially allocated. You may, for
instance, want to conserve file space by specifying a form file shorter than that normally provided. To
do this, use the MPE :FILE command to specify a new file size, as discussed in MPE Commands
Reference Manual. For instance, to assign a file size of 6,,000 records with a blocking factor of 16
records per block for SALESFIL, saving this file in the MPE permanent file domain, enter:

:FILE SALESFIL;REC=64,16,F,ASCII;DISC=6000;SAVE

It }s usually difficult to predict the file space actually. needed for a particular form file because
many factors apply. Nonetheless, if you wish to alter the size of your file, consider these points:

• One tenth of the' total file space is always allocated for the form file directory that contains the
~ionn)t-tru:r~orms-irt- the file. Thus, a.~fITeieqUires}OOO directory
entries and contains a maximum of 100 fongs. Since the form file size can not be expanded~Tt'" t:__ -- ~ .
is recommended that you estimate the maximum number of forms you intend to define and
create a form file large enough to contain them.

• .QE~~J:'J}1 ~~ltr~Q.rQ)s required for every edit procedure named for every edited field.

• Blank areas on the form that exceed seven characters are removed when the form specifica-
tions are stored.

3-9

CREATING A NEW FORM

To create a new form, enter an X beside the DEFINE A NEW FORM entry in the Function Selection "<.

Display and press ENTER. In response, FORMAINT presents the Form Creation Display shown in
figure 3-5.

Respond to the first prompt in this display by entering the name you wish to assign your new form.
You may copy this from your Form Layout Sheet. No other form of this name is permitted in this form
file. The name SALESFORM is entered in response to this prompt in figure 3-5.

If you wish to relate (chain) this form to any other form, respond to the second prompt by entering the
name of the other form; this will enable your application program to automatically display both forms
in sequence. Otherwise, skip this prompt.

Press ENTER to transmit your responses to FORMAINT. At this point, FORMAINT clears the screen,
permitting you to layout the form on the screen. If you have made an error in any response, it is
reported to you by one of the messages in table 3-3. e-
LAYING OUT THE FORM. To layout the form on the terminal screen, simply enter characters
where you wish them to appear, using the Form Layout Sheet as a guide. Use the cursor-positioning
keys to skip rapidly about the form. llse the enhance-displ~_ capabilities..toJndicate areas of ~m
~filled-in by the person running your application program. Use the terminal's line-drawing set, if
available,--to-Include any horizontal or vertical lines or boxes on the form.

Present cursor position; '.'
press TAB to skip to next
prompt (if desired).

Figure 3-5. Form Creation Display

3-10

(

Table 3-3. Form Creation Display Errors

\ MESSAGE CAUSE

FORM FI LE IS FULL No space is available in the form file for the new form. FOR·
MAINT returns to the Function Selection Display, allowing
you to specify a new form file or function.

FORM ALREADY EXISTS IN filename You specified a form that already exists in the form file named
filename. FORMAINT waits for you to enter a new form
name.

FORM NAME REQUIRED You failed to enter a form name. FORMAINT waits for you
to enter a name.

NOTE
If you are not certain what graphic capabilities are furnished
with your terminal, press the TEST key and examine the result-
ing test pattern display. (See Section II.) (All terminals are
equipped with the inverse-video capability.)

When the terminal is placed in Format Mode all character positions on the screen are protected
except those fields that have been specifically defined as unprotected or transmit only. @~'§'P.1.i.L
.2E!Y...liel9s are available only on HP 2641, 2645, and 2648 terminals.) For a definition of these
types of ficldSrererto'The2ii41A/2645A/2648A Display Station Reference Manual.

When entering your form, use the following guide lines:

1. To define an unprotected field:
-"

a. Press the START UNPROTECTED FIELD key (on the HP 2640) or enter@(on other
terminals) to begin the field.

b. Enter the characters in the field; these are typically blanks (spaces)..)

c. Press the END UNPROTECTED FIELD key (on the HP 2640) or enter/f§J (on other
'--terminals) to terminate the field.

NOTE

FORMAINT does not allow unprotected fields that extend beyond
the end of a line. If you attempt to continue such a field onto a
second line, FORMAINT converts it into two separate fields.

2. To use the display enhancement features with an unprotected field:
,,----\

a. Press the ENHANCE DISPLAY key (on the HP 2640) or enter({~d (on other terminals, and
then press the key for the enhancement you wish (blinking field, inverse video, or so forth)
to begin the enhancement. (See Section II.)

/")~-':
b. Press the START UNPROTECTED FIELD key (on HP 2640) or enter ~Q (on other termi-

nals to begin the field. 1...,/

c. Enter the characters in the field. (Blanks are usually used.)

d. Press the END UNPROTECTED FIELD key (on HP 2640) or enter f3c (on other terminals)
to terminate the field.

e. Press the ENHANCE DISPLAY key (on the HP 2640) or enter fIc (on other terminals),
and then press the @ (commercial at-sign) key to turn-off the enhancement.

3-11

NOTE

To help keep track of where each unprotected field begins, users
often start a display enhancement for an unprotected field at the
same time they start that field. Similarly, they typically termi-
nate the display enhancement and unprotected field simultane-
ously. For instance, on an HP 2640, a user might begin a field by
pressing the ENHANCE DISPLAY key followed by the key for
his desired enhancement, and then pressing the START UN-
PROTECTED FIELD key. He could then observe the spaces mak-
ing up this field on the screen as he enters them.

3. To define a transmit only field:
(

a. Position the cursor to the beginning of the transmit only field.

b. Press the ESe (Escape) key and left brac{07

c. Move the cursor to the column following the end of the transmit only field being defined.

,/:" \
d. Press the ESC (Escape) key and right brackel

....:.'---

c"""'---\
Ir--,,'

4. To indicate that the form is complete, enter the IX.) (CONTROL/'\.) key, producing a record-
separator. This indicates the end of the form and:/on most terminals, displays the following
characters on your screen:

Rs

(
FORMAINT arbitrarily terminates the form after encountering a sequence of twenty consecutive
blank lines. Any information appearing after such a sequence is ignored.

5. To transmit the form to your form file, press ENTER.

For the Sales Transaction Report in the continuing example, you could enter the form as shown in
figure 3-6. The unprotected fields are indicated by the inverse video (white on black) entries. The
unprotected area labeled BILLED TO: is actually composed of four one-line unprotected fields for the
mailing address of the person billed. Five unprotected fields appear under each of the headings
PRODUCT NO., DESCRIPTION, UNIT PRICE, and QUANTITY to allow for recording the sale of
five items.

3-12

/

Figure 3-6. Sales Transaction Report Form As Entered

SPECIFYING FIELD EDITING. When the form is stored in the form file, FORMAINT scans the
form for unprotected input fields. As the first unprotected field is located, the line containing it and the
most recently preceding non-blank line are displayed at the top of the screen, with an arrow pointing
to the field. Below these two lines, FORMAINT presents the Editing Specification Display (as shown
in figure 3-7).

• If you do not want to edit any unprotected fields on the form, press the f8 key on the terminal
(f8c keys on the HP 2640) to terminate the form-creation function and return the Function
Selection Display to the screen.

• If you do not plan to edit the current field but wish to edit others, ~ at the first prompt in the
display and press ENTER to move the field-indicating arrow to the next unprotected field;
continue this procedure until the field to be edited is reached.

• If you want to edit the current field, use the TAB key to skip to the applicable prompts. These
prompts allow you to enter the following options, in the order they appear on your Editing
Specifications Sheet: Edit Procedure Name, Test Flag # Before Edit, After Edit Set Flag # J Same
As Flag #, Opposite Flag #, Range Check Low and High Value, Look-Up Procedure File Name, and
Characters. To request editing, you must supply an Edit Procedure Name; you may enter or omit
any of the other options according to your editing requirements. To transmit the current screen
contents to FORMAINT, press ENTER. This returns the cursor to the beginning of the Editing
Specification Display, allowing you to optionally specify additional procedures for this field. When

3-13

Arrow indicating
field to be edited

Figure 3-7. Editing Specification Display

you have specified all editing for this field, enter X at the first prompt and press ENTER to move to
the next unprotected field. When you wish to terminate entry ofediting specifications, press the f8
key (enter fSe on the HP 2640). When you have defined the last edit specification for the last
unprotected field on the form, this termination occurs automatically. At this time, all edit
specifications are copied to the form file, and the Function Selection Display returns to the
screen with the current form file name appearing at the prompt that requests entry of a form
file name. You may now select another function for this file. Alternatively, you may select
another form me by entering its name; in this case, FORMAINT closes the current file as the
form file name and opens the new one.

NOTE
When you press the ENTER key, all entries or responses to
prompts presently appearing on your screen are transmitted to
FORMAINT. Thus, if you are specifying a second editing proce-
dure for a field and old entries for the first procedure still appear
on your screen following the cursor, clear these old entries if you
do not want them to apply to the second procedure. Do this by
pressing the CLEAR DISPLAY key after the last entry you do
wish to apply. Then, press ENTER to transmit the entries on the
screen.

3-14

(

(

When you terminate the editing process, FORMAINT detects any erroneous entries and reports them
as indicated in table 3-4.

Table 3-4. Editing Specification Display Errors

(
\.

MESSAGE CAUSE

FORM DEFINITION EXCEEDS SYSTEM CAPA- You defined a form which contains more than 216
BI LlTY (MPE-C message) characters on one line. This exceeds MPE-C system

capability. (If the form is defined on a non-MPE-C
System, however, it will be acceptable to MPE-C.)

EDIT PROCEDURE NAME IS INVALID You entered an edit procedure name that does not
begin with a letter or that contains a special character,
or you omitted a procedure name where one is re-
quired. The cursor returns to the beginning of the
Editing Specifications Display, allowing you to cor-
rect the error.

FLAG # IS INVALID You entered a number other than 1 through 16 or a
blank in response to a prompt for a flag. FORMAINT
causes the invalid entry to blink and waits for you to
correct the error.

INVALID ROW ADDRESS Form file may be invalid, Check form with DISPLAY
function. If error, delete and reenter form.

SELECT ONE - RANGE CHECK, FILE LOOK- You specified more than one of the following entries
UP OR EDIT DEFINED DATA for an input field:

Range Check, Look-Up Procedure File Name,
or Characters (for edit-defined data).

FORMAINT waits for you to correct the error.

(
\

3-15

LISTING FORMS IN A FORM FILE

Each form file contains a directory that indicates the names of all forms residing in that file, plus other
information about these forms that must be maintained and used by DEL. The standard content and
format of form file directories is described in Appendix B. You can request FORMAINT to display the
names of the forms appearing in the directory for the current form file, plus the date and time these
forms were created. To do this, enter X beside the LIST FORM FILE DIRECTORY prompt in the
Function Selection Display and press ENTER. The directory display appears as shown in figure 3-8;
this example, requested for the file named SALESFIL, shows that this file contains two forms,
SALESFORM and COSTFORM.

To clear the screen and return to the Function Selection Display, press ENTER; alternatively, you
may press f8 on the terminal (or f8e on the HP 2640).

Figure 3-8. Form File Directory Display

3-16

<,

(

(
CHANGING A FORM

To change a form already defined in a form file, enter X at the MODIFY AN EXISTING FORM entry
in the Function Selection Display and press ENTER. FORMAINT presents the Form Modification
Display as shown in figure 3-9, allowing you to specify this form. If the form is chained to another form,
and you wish to chain it to a different form, enter the name of the new second form in the second
prompt.

CAUTION

WHEN YOU REQUEST THE MODIFY OPERATION, ALL
EDITING SPECIFICATIONS THAT APPLY TO THE CUR-
RENT FORM ARE AUTOMATICALLY DESTROYED. BEAR
THIS IN MIND BEFORE REQUESTING THIS FUNCTION.

Transmit your responses to FORMAINT by pressing ENTER. FORMAINT then clears the screen and
displays the form to be modified, allowing you to alter any entries you desire and to create new ones.
Use the same methods you employed when first creating the form.

NOTE

The Rs notation, indicating the end of the form, is not displayed.

If you specified the name of a form that does not reside in the form file, the following message appears
when you press ENTER and FORMAINT waits for you to enter a correct form name:

FORM DOES NOT EXIST IN filename

Figure 3-9. Form Modification Display

3-17

When you have made all necessary changes to the form, press ENTER. If the form contains unpro-
tected fields, the Editing Specification Display (figure 3-7) appears, requiring you to re-specify all
editing desired.

NOTE

In addition to entering new or altered editing specifications, you
must also re-enter any old, unchanged specifications that you
wish to retain for the form.

To restore the form and editing specifications to the form file and return to the Function Selection
Display, press ENTER.

DISPLAYING A FORM
You can display any form in the form file on your terminal. Alternatively, you can copy this form, plus
any editing specifications for the form and other descriptive information, to an output device other
than the terminal. To do this, enter X at the DISPLAY AN EXISTING FORM prompt and press
ENTER. In response, FORMAINT presents the Form Listing Selection Display (figure 3-10). At the
first prompt, enter the name of the form you wish displayed. If you also want to list the descriptive
information and editing specifications, specify (at the second prompt) the name ofanother file/device to
which this data can be transmitted; your terminal cannot be used for this purpose because it does not
include enough memory to hold all of the information to be transmitted. The output file/device is
typically a line printer, but other devices such as a disc or magnetic tape unit can be used. If you want
to use a device other than a disc for the output, you must specify its file and device class names in an
MPE :FILE command prior to running FORMAINT, as follows:

File name of output file.
:FILE PRNTR;DEV= LP= __----------- Device class name of output
:RUN FORMAINT.PUB.SYS device (a printer).

Figure 3-10. Form Listing Selection Display

3-18

(

(

\.

When you enter the name of a non-disc file in the Form Listing Selection Display, you must also
precede that name with an asterisk to indicate a back-reference to the :FILE command, as shown in
figure 3-10. See MPE Commands Reference Manual for a discussion of back-referencing files.

Press ENTER to transmit the entries in the Form Listing Selection Display to FORMAINT.

You can request the display of all forms in the form file by entering a commercial-at sign (@) in
response to the first prompt in the Form Listing Selection Display. If the listing device is your
terminal, press ENTER after each form appears to display the next form, or enter f8 (or fScon HP
2640) to terminate the display. If the listing device is another device, all forms are listed in sequence
automatically; you cannot terminate this operation prematurely.

The display outputiswritten as_12Q:byt.eA~CILrecords. If, however, you entered the name of a form
-fllaIdoesnotexist in the form file, FORMAINT presents the following message and waits for you to
enter a new form name:

\ FORM DOES NOT EXIST IN filename

If the output file for the form listing cannot be accessed, FORMAINT prints the following message and
waits for you to enter a new file name. In this message, nnnn is the error code returned by the
FCHECK intrinsic as discussed in MPE Intrinsics Reference Manual, and Appendix G of this
manual.

LIST FILE CANNOT BE ACCESSED, ERROR CODE= nrinri

If FORMAINT displayed the form on your screen, press ENTER to clear the screen and return the
Function Selection Display. If the form was writt~n to another file, FORMAINT returns the Function
Selection Display automatically. An output listing for the form SALESFORM, transmitted to a line
printer, appears in figure 3-11.

DELETING A FORM

To delete a form from a form file, enter X at the DELETE AN EXISTING FORM prompt in the
Function Selection Display and press ENTER. FORMAINT presents the Form Deletion Display (figure
3-12). Enter the form name at the prompt and press ENTER. The form is removed from the system
immediately. If,_however, you entered the name of a form that does not exist in the form file,
FORMAINT prints the following message and waits for you to enter a correct name:

FORM -DOESNOT EXIST IN filename

When the form is deleted, FORMAINT returns the Function Selection Display to the screen.

DELETING A FORM FILE

To delete an entire form file from the system, enter X at the DELETE THE FORM FILE prompt in the
Function Selection Display and press ENTER. Because this action is irrevocable, FORMAINT outputs
a Form File Deletion Verification prompt (figure 3-13) to ensure that you really want this file removed.
To delete the file, enter YES; to keep it, enter NO. In either case, FORMAINT returns the Function
Selection Display to the screen.

3-19

DESCRIPTIVE INFORMATION

fORM NAME IS SALESfORH CREATED 5/10/76 17:00
THIS fORM CONTAINS 35 INPUT FIELDS, TOTAL INPUT LENGTH IS 423 BYTES.
THERE ARE 23 EDITS SPECIFIED.

FORM

SALES TRANSACTION

DATE: / / TRANSACTION NO.

CUSTOMER ID: HT.LLED TO:

SALES"IAN TO:

UNIT
PRICE

PRODUCT
NO. OllANTITYDESCRIPTION

Figure 3-11. Form Listing Output

TERMINATING FORMAINT

To terminate FORMAINT, closing all files accessed by it, enter X at the EXIT FORMAINT prompt
in the Function Selection Display, and press ENTER. If block mode was not set programmatically,
FORMAINT prints the message:

REMEMBER TO UNLATCH THE BLOCK MODE KEY.

In this case, remove the terminal from block mode by releasing the BLOCK MODE key. MPE re-
sumes control, printing the message shown below and prompting you for a new command:

END OF PROGRAM
------prompt fornewMPEcommand.

3-20

(

EDITING SPECIFICATIONS

f IEIJD LOCflTION' f n:T.D NUMBF.R
ROW COL IN INPUT LENGTH Of EDITS

3 11 1 2' 1
PROCEDURE r-JAf.lE fLAGS TEST SET SAMF: OPPOSITE PROCEDURE DATA.
CNRl\NGF.: 0 0 0 0 01 12

fIELD LflCATION fTELD NUMBER
ROW COL IN TNPUT L~:NGTH Of EDITS

3 14 3 2 t
PROCE;nURE '"A jIolF. F'LAGS TEST SET SAME OPPOSITE PROCEDURE DATA
CfIlkAN(~E 0 0 0 0 01 31

fIELD LOCATTUN r r zr.c NU~IBF.R
ROW COL pT 'J t"~PUT [,ENGTH OF' EDITS

3 17 5 2 1
PROCEflURt: N~"IF: F'LAGS 11::ST SET SAME OPPOSITE.PROCEDURE DATA
CNRAI.JGE () 0 0 0 70 79

fIELD LOCATT.ll1l1 r'IEt.D N[J~I3ER
\ ROW COl. IN TNPUT LF;NGTH OF' EDITS

3 59' 7 6 1
PRorEDl'PE NI'tME' F'LAGS TEST SET SAME OPPOSITE PROCEDURE DATA·
cNUMRn:D IT 0 0 0 0

F'TETJD LOCATTIIN f TEIJD NUt.4HF':R
ROW COL HJ Tl'iPUT JJr.!'IGTH OF' EDITS

5 1d 1 3 6 1
pPLlc~nURE NArJ.E FLAGS n:ST SET SAME OPPOSITE PROCEDlTRE DATA
CNl/M;:lCEDIT 0 () 0 0

~- F'tt:LD LnCfI rJ[J1I) f T r:r.o NUMHF.R
ROW COL I 'J INPUT LFNGTH OF ED r rs

') '14 1 Q 23 0
fTELD LOCflTItlN nELD NUMBER

P rli.J 2r"JL U! Jr~PUT LF.NGTH OF EDITS
h 54 17. 23 0

fH~L[) LrJCJI.TIlHl FIELD NUMBER
ROi-J C:OL IN TNPUT LENGTH Of EDITS

7 18 65 6 1
PROCEnUPE: fH.r,,": FLAGS TEST SET SAME OPPOSITE PROCEDURE DI'\TA
CP-JUt-1RCEDTT 0 0 0 0

\
r r ct.o L"Cf\TTO~! f"TELD NUMAER·

RDW COL {tv I r~PUT, IJF.:NGTH Or EDTTS
7 '54 7t 23 0

fIELD LOCII.TTUtI F'Tzt.o NUMBER
pm! COlT IN Tt-JPUT LENGTH Or Et)[TS

R 54 94 23 0
fTELD·LOCII.TION fH:TJD NUMHER

ROW COL IN HIPUT LENGTH Ur EDITS
14 5 117 4 0
f IElJD t.nc T1'rl DN fTI::LI) NU~lflER '; -.

'.
. .

ROW ::OL IN TNPUT LENGTH Of F.UITS -..
14 18 121 39 0
fI Er,[) LnCflTHIN. FIELD NUMBF:R.

ROi\' CO L' [~J T;~PUT LE:~GTH Or EDITS
14 1F! 160 41 0
FJELD LOClITTmJ FIET,D NUMBER

ROW COL PJ I:.lPlIT r,E,~GTH Or E0IT1'
/" 14 60 701 4 1(PROr.E DATA

Figure 3-11. Form Listing Output (Continued)

3-21

--~ ----- ---------

Figure 3-12. Form Deletion Display

Name of file specified in
function selection display.

Figure 3-13. Form File Deletion Verification Display

3-22

(

1

""'[,':'USING DEL PROCEDURES I IV Ic
Once you have entered your form into the system, you are ready to write the application program that
will access the form and interface with the user at the terminal. To do this, your program must call
various procedures supplied by DEL. (You may also optionally supply additional specialized proce-
dures that you write yourself for your DEL application. These procedures need not be written in the
same language as your main program. In fact, you may write them in languages other than COBOL,
FORTRAN, SPL and BASIC, as long as your program provides for any peculiarities involved in calling
procedures in such languages.)

NOTE

If you use your own procedures as well as the DEL procedures
to manipulate the terminal, you must make sure that the com-
munications area (refer to Appendix A) is left in the state
that DEL expects and that any escape sequences you transmit
to the terminal leave the terminal in a state that DEL expects.
The latter point is also true if you use escape sequences with the
DEL procedures.

The DEL procedures fall into four basic functional categories, and are discussed in this order in
Sections V through VIII:

• Form access procedures (Section V) that access the form file, including:

OPENFORM to open a form file.

FINDFORM to locate a form in the form file.

GETFORM to move a form into a program buffer (work area) called the form buffer.

NEXTEDIT to move the next edit specification into a program buffer called the edit buffer.

CLOSEFORM to close the form file.

• Terminal access procedures (Section VI) that access the terminal as a file, including:

OPENTERM to open the terminal as a file.

WRITETERM to write output from a program buffer to the terminal. (This output is typically the
form moved into the form buffer by GETFORM.)

READTERM to read input from the terminal into a program buffer called the data buffer. (This
input is the data entered by the person running the application program; at your option, the data
buffer may occupy the same area of storage as the form buffer.)

(
TERMSTATUS to request status information about the terminal.

CLOSETERM to close the terminal file.

4-1

• Editing procedures (Section VII) that validate the general contents of input fields read from the
terminal:

ALPHAEDIT to verify that the input field contains alphabetic characters (the letters A through Z)
only.

ALPHAFILL to verify that the input field contains alphabetic characters only, with the last
alphabetic character optionally followed to the right by blanks (spaces);no blanks, however, can be
embedded within the alphabetic character string.

ANEDIT to verify that the input field contains alphanumeric characters (the letters A through Z),
the digits 0 through 9, or spaces.

NUMRCEDIT to verify that the input field contains numeric data (the digits 0 through 9) only.
.

ZEROFILL to verify that the input field contains a leading plus or minus and numeric data only,
with the numeric string optionally preceded and/or followed by blanks. ZEROFILL also right- (
justifies this field and fills it to the left with zeros following the sign. No blanks, however, can
appear within the numeric string.

NRANGE to ensure that the input field contains numeric data that falls within a specified range.
The numeric string may be optionally preceded and/or followed by blanks, but may not contain
blanks. This procedure, like ZEROFILL, right-justifies this field and fills it to the left with zeros,
following the sign.

MllCREATE to ensure that the input field contains numeric data only, generate a modulo-ll
check digit, and insert this digit as the right-most digit of the input field.

Mll VERIFY to ensure that the input field contains numeric data only, generate a modulo-ll
check digit, and compare this with the right-most digit of the input field.

• High-level procedures (Section VIII) that combine some of the above procedures:

SHOWFORM to combine the FINDFORM, GETFORM, WRITETERM, and READTERM opera-
tions noted above in sequence; in essence, to locate and access a form, display the form on terminal
screen, and read the user's input from terminal.

(

EDITFIELD-to combine the NEXTEDIT and editing-procedure operations; effectively, to obtain
the next editing procedure and then execute that procedure.

HOW PROCEDURES ARE USED

In your application program, the order in which you use the procedures depends partly on the
application and partly upon your own preference. Typically, however, a program:

1. Initializes the required data areas and then opens the form file (OPENFORM) and terminal file
(OPENTERM).

2. Locates the form (FINDFORM) and moves it into the form buffer (GETFORM).

3. Displays the form on the terminal (WRITETERM).

4-2

4. Reads the data that the user enters on the displayed form into the data buffer (READTERM).

5. Moves an editing specification into the edit buffer (NEXTEDIT).

6. Executes the editing procedure (ALPHAEDIT, NUMRCEDIT, and so forth).

7. Repeats steps 5 and 6, as applicable to the current input field.

8. Writes the user's data from the data buffer to a data file, using statements in the host program
language. (The host language is that in which the application program is written.)

9. Chains to another form, if applicable.

10. Closes the form file (CLOSEFORM) and terminal file (CLOSETERM) when through.

/
r

After executing each procedure, the application program normally checks the status of the procedure
to determine whether the procedure was executed successfully. (The status is reported in a special
status word, discussed below.) The typical order of procedure calls is summarized in figure 4-1, where
it is also compared with a sequence of calls that combines some operations by invoking SHOWFORM
and EDITFIELD.

COMMON PROCEDURE CHARACTERISTICS
All DEL procedures can be accessed from programs written in COBOL, FORTRAN, BASIC, and SPL.
The same name is used for each procedure in FORTRAN, BASIC, and SPL programs. For instance, in
all three languages, you invoke the procedure that opens your form file by using the procedure name
OPENFORM. In COBOL programs, however, you must prefix the standard procedure name with the
letter C; this denotes an alternate entry-point for the procedure that must be used by COBOL
programs because these programs pass parameters somewhat differently than FORTRAN, BASIC,
and SPL programs. Thus, to open the form file in a COBOL program, you would invoke the OPEN-
FORM procedure by using the name COPENFORM.

\

All procedures require at least one parameter: the name of the DEL communication area (comrnarea),
a global storage area in memory used by DEL to maintain information about the form file and
terminal that the application program is using. This information includes the file numbers that
identify these files to the MPE File Management System, information about the currently-used form,
data regarding the editing procedures for the form, and various pointers to areas on the form and other
data. This area occupies 128 contiguous words of memory, the first of which is the status word. When
each procedure terminates, it sets the status word with a value that indicates whether the procedure
succeeded or failed. For FORTRAN, BASIC, and SPL programs, this value is designated as type
INTEGER. For COBOL programs, it is designated as USAGE COMPoWhen a procedure returns the
value zero to this word, this indicates successful (normal) completion. When it returns any other value,
an abnormal condition occurred; the specific meaning of a value depends both upon the type of
abnormality encountered and the procedure that returned the value.

The remaining 127 words in the communication area are used by DEL. The format of the entire
communication area is summarized in Appendix A.

Various DEL procedures may refer to any of the parameters defined in table 4-1 and noted throughout
this manual. Those parameters defined as type CHARACTER are assumed to reference data whose
first byte (character) is located at the beginning of a memory word. When you define a data item or
area referenced by one of these parameters in your application program, make certain that you assign
it the characteristics specified for it in table 4-1. For instance, always assign the form buffer tformbuf-
fer parameter) a minimum length of 64 bytes, and specify it as a data item of type CHARACTER. For
further information, see the program example in Section IX.

4-3

PROGRAM WITHOUT COMBINED OPERATIONS PROGRAM WITH COMBINED OPERATIONS

"OPEN FORM" "OPEN FORM"
(CHECK STATUS) (CHECK STATUS)
"OPENTERM" "OPENTERM"
(CHECK STATUS) (CHECK STATUS)

(A) "FINDFORM"
(CH ECK STATUS)

"GETFORM"
"SHOWFORM"

(CHECK STATUS)
(CHECK STATUS)

"WRITETERM"
(CHECK STATUS)

(B) "READTERM"
(CHECK STATUS)

"NEXTEDIT"

}(CHECK STATUS) "EDITFIELD"
"NUM RCED IT" (CHECK STATUS)
(CHECK STATUS)

"NEXTEDIT"

}(CHECK STATUS) "EDITFIELD"
"ALPHAED IT" (CHECKSTATUS)
(CHECK STATUS)

SAME FORM? GO TO (B)·

NEW FORM? GO TO (A)

"CLOSEFORM" "CLOSEFORM"
(CHECK STATUS) (CHECK STATUS)
"CLOSETERM" "CLOSETERM"
(CHECK STATUS) (CHECK STATUS)

* I f it is necessary to clear the screen (clear unprotected fields), it can be done at this point.

Figure 4-1. Procedure Calls in Application Programs

4-4

(

(

Table 4-1. Summary of Procedure Parameters

DATA ITEM AREA!VARIABLE
PARAMETER MEANING TYPE LENGTH

commarea Name of DEL communication area used INTEGER 128 words exactly
for your program. This is a 128-word
area whose first entry is status word
that can be interrogated by your pro-
gram to determine if last procedure
called was executed successfully. The
status word is a Ifi-bit numeric quantity
that must be declared as usage COMP
for COBOL programs and type INTE-
G ER for all other programs. The re-
maining 127-words are used for global
storage by DEL.

databuffer Name of program buffer used for input CHARACTER Length depends upon
of user data from terminal. number of input characters

expected plus number of
fields plus one.

datalength Name of variable used to specify length INTEGER 2 bytes (1 word)
~ -

of databuffer; DEL also returns length exactly.
of data actually read to this variable. (If
you use for more than one call, you must!
reset the length since 0 E L changes it.)

editdef Name of program buffer to hold speci- CHARACTER 72 bytes (characters)
fications for edit procedures.

fbufferlength Name of variable containing length of INTEGER 2 bytes (1 word)
form buffer; Some DEL procedures also exactly.
return actual length of form and its
allied information to this buffer.

formbuffer Name of program buffer to which form CHARACTER 64 bytes minimum.
is moved from form fi le, and from
which form is written to terminal.

form file Name of area containing MPE formal CHARACTER 35 bytes (characters)
file designator of current form file. maximum. If less than 8

characters, must be termi-
nated by a blank.

formlength Name of variable to which length of INTEGER 2 bytes (1 word)
current form is returned. exactly.

formname Name of area containing identity of CHARACTER 16 bytes (characters)
current form. exactly.

nextform Name of area to which name of next CHARACTER 16 bytes (characters)
form in a chained series is returned. exactly.
(You can move to formname to re-
quest next form in chain.)

statbuffer Name of buffer to which status of ter- CHARACTER 28 bytes minimum.
m inal is retu rned.

termfile Name of area containing MPE formal CHARACTER 8 bytes (characters)
file designator of terminal file. (De- maximum. If less than 8
fault $STDIN/$STDLIST). characters, must be termi-

nated by a blank.

Note: All parameters must begin on a word boundary.

4-5

(

(

f
I

I I
In;I[IL"

ACCESSING FORMS FROM PROGRAMS I v I

Using the procedures discussed in this section, your program can obtain read-only access to the form
file. One of these procedures, GETFORM, enables your program to copy a form residing in the form file
into a program buffer. Then, by calling the WRITETERM procedure, discussed in Section VI, the
program can display the form on the terminal screen. After the user at the terminal enters data on the
form, your program can read this data into a program buffer by calling the READTERM procedure,
also discussed in Section VI. This buffer can be the same one used by the GETFORM procedure, or it
can be a different one. (Subsequently, the program may transfer the data to a data file, using its own
host-language statements.) These steps, which generally form the heart of most DEL application
programs, are illustrated in figure 5-1. An explicit example of these steps appears in the sample
program in Section IX.

OPENING A FORM FILE

Before your application program can select a form, it must initiate access to (open) the form file that
contains the form. To open the form file, call the OPENFORM procedure. If successful, this procedure
returns the value zero to the status word in the DEL communication area. If the file is not a form file
created by FORMAINT, this procedure sets the status word to minus one. If the file cannot be opened,
the procedure returns an FCHECK error code (a value greater than zero) to the status word. See the
discussion of the FCHECK intrinsic in the MPE Intrinsics Reference Manual or the FCHECK error
code summary in Appendix G of this manual for the meaning of this code.

The calling sequence for the OPENFORM procedure appears below, as entered III the COBOL,
FORTRAN, SPL, and BASIC languages. In this sequence and those for all other DEL procedures,
entries in UPPER-CASE CHARACTERS must be written exactly as shown. Entries in lower-case

PROGRAM BUFFER
(Work Area)

TERMINAL
SCREEN- GETFORM

FORM FilE call moves
form toE :3 buffer.

WRITETERM
call moves form
to terminal.

USER'S
DATA

--..~ •.
~ ;~~

• - - - - - - - +-----+-1 USERr----++---------~
I
I
I
I

READTERM
call moves users
data to buffer.

FORM

Host-Language
statement (or FWRITE call)
moves data to data file.

DATA FilE

Figure 5-1. Application Program Procedures in Action

5-1

italics are user-defined variables that you must supply. All parameters shown are required and cannot
be omitted. Unless the host language allows embedded blanks in procedure calls as a generality, do not
include them in these DEL procedure calls. Examples of calls also appear below.

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "COPEN FORM" USING commarea form file.

Example: CALL "COPEN FORM" USING MYCOMM MYFORMFL.

FORTRAN CALL OPEN FORM(commarea,formfile)

Example: CALL OPENFORM(MYCOMM,MYFORMFL)

SPL OPEN FORM (commarea,formfile);

Example: OPENFORM(MYCOMM,MYFORMFL);

BASIC CALL OPENFORM(c(1)/$)

Example: CALL OPENFORM(C1(l),F$)
(

The parameters in the OPENFORM calling sequence indicate the following:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. This area is a 128-word

c integer data item whose first entry is the status word that can be interrogated by your pro-
gram to determine if this and other procedures executed successfully. The status word is
a 16-bit numeric quantity that must be declared as usage COMP for COBOL programs and
type INTEGER for all other programs. The remaining 127 words of the communications
area are used for global storage by DEL.

form file The name of the area containing the MPE formal file designator that identifies the form
f$ file. This is a character data item with a maximum length of 35 bytes.

(

Before using the above parameters in procedure calls, you should define them within your program
and initialize the areas they reference. The DEL communication area, for instance, cannot be used by
any procedure unless it is defined as an integer data item with the status word declared as usage
COMP for COBOL programs and type INTEGER for all others. The area referenced by formfile must
be defined as a character data item, and should already contain the form file designator when you
reference it in any procedure call. This kind of rule applies to all parameters referenced by all
procedures discussed in this manual.

NO'I'E

You must call OPENFORM before you can call any other proce-
dure described in this section.

5-2

LOCATING A FORM IN A FORM FILE

Before your program can perform any operation on a form, it must locate that form in the form file. To
do this, the program calls the FINDFORM procedure, which places current informaton about the form
in the DEL communication area for use by subsequent procedures, clears any edit flags by re-setting
them to zero, and returns the length of the form and the name of the next (chained) form, if any, to
areas established by your program. If these operations are successful, the procedure sets the status
word to zero; if the form is not stored in the form file, the procedure sets the status word to minus 1; if
the form file cannot be read, the procedure sets the status word to the appropriate FCHECK error code.

NOTE

Before your program can issue any calls to FINDFORM, it must
have issued an OPENFORM call to open the form file.

The calling sequence for FINDFORM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CFINDFORM" USING commarea formname form length nextform.

Example: CALL "CFINoFORM" USING MYCOMM MYFORM LENF NEXTF.

FORTRAN CALL FI NO FO RM (commarea,formname,formlength,nextform)

Example: CALL FINoFORM(MYCOMM,MYFORM,LENF,NEXTF)

SPL FIN 0 FO RM (commarea,formname,formlength,nextform);

Example: FINoFORM(MYCOMM,MYFORM,LENF,NEXTF);

BASIC CALL FINoFORM(c(l)/1$,l,f2$)

Example: FINoFORM(C1 m.r is.L,F2$)

The parameters in this calling sequence indicate:

/
I

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (See OPEN FORM pro-
c cedure discussion.)

formname The name of the area that contains the name of your form. This area is a CHARACTER
f1$ data item that must be exactly 16 bytes (characters) long.

formlength The name of a variable to which FINoFORM returns the length of the form accessed. This
I is a one-word INTEGER data item. This item must be declared usage COMP in COBOL

programs.

nextform The name of the area to which FINoFORM returns the name of the next form in the
f2$ chained series, if the current form belongs to such a series. This is a CHARACTER data

item that must be exactly 16 bytes long. To request the next form, this name must be
moved to formname and another call to FINoFORM must be executed.

5-3

MOVING A FORM TO A PROGRAM BUFFER

When your program is ready to move a form from the current form file into a buffer, it calls the
GETFORM procedure. Thi.s procedure also transfers terminal control characters to the buffer; these
characters are used to clear the terminal screen, lock the keyboard, set format mode, and perform
other functions needed when your program later displays the form on the terminal screen. (See Section
VI.) If the program buffer is too small to hold the entire form, GETFORM updates current information
in the communication area so that your program can retrieve the remainder of the form by issuing a
second GETFORM call. When the complete form has been delivered to the program buffer, word 43
of the communications area (refer to Appendix A) is set to zero. If the GETFORM operation is
successful, this procedure sets the status word to zero. If the form file cannot be read, the proce-
dure sets the status word to the appropriate FCHECK error code. If the program buffer is less than
64 bytes, the status word is set to -4.

NOTE

Before your program can call GETFORM, it must have called
OPENFORM to open the form file and FINDFORM to locate the
form.

The calling sequence for GETFORM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CGETFORM" USING commarea formbuffer fby!ferlengtb.

Example: CALL "CGETFORM" USING MYCOMM MYFBUF LENB.

FORTRAN CA L L GET FORM (commarea,formbuffer,fbu fferlength)

Example: CALL GETFORM(MYCOMM,MYFBUF,LENB}

SPL GETFO RM (commarea,formbuffer,fbufferlength);

Example: GETFORM(MYCOMM,MYFBUF, LENB);

BASIC CALL GETFORM(c(l),b$,l)

Example: CALL GETFORM(Cl (1),BO$,LO}
(

The parameters in this calling sequence are:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (SeeOPEN FORM pro-
c cedure discussion.)

formbuffer The name of the program buffer to which GETFORM copies the form and its allied infor-
b$ mation. This must be a CHARACTER data item with a minimum length of 64 bytes.

fbu fferlength The name of a variable that contains the length of your program buffer, and to which
I GETFORM returns the actual length of the form and its allied information. This must

be a one-word INTEGER data item.

5-4

NOTE

" The fbufferlength parameter for this procedure should typically
specify a different area than the formlength parameter for
FINDFORM, to avoid overwriting the information returned by
FINDFORM.

RETRIEVING NEXT EDIT SPECIFICATIONS

After your program has moved the form into its buffer (GETFORM procedure), displayed it upon the
terminal screen (WRITETERM procedure, Section VI), and read the user's data (READTERM proce-
dure, also Section VI), the program should then apply any editing specifications necessary to the data
read. Before the program can call the procedures for these specifications, however, it must move each
of them in sequence into a program buffer. This is done through the NEXTEDIT procedure, which also
updates the appropriate editing pointers in the DEL communication area. For example, if your
program is to use two editing procedures in sequence, ANEDIT and NRANGE, it would:

1. Call NEXTEDIT to move the ANEDIT specifications into the buffer.

2. Call ANEDIT to perform an alphanumeric edit check.

3. Call NEXTEDIT to move the NRANGE specification into the buffer.

4. Call NRANGE to perform a numeric range check on the data.

If the last edit specification has already been accessed when NEXTEDIT is called, the status word is
set to minus one, the program buffer is unchanged, and the communication area is reset to indicate the
first edit specification. If the next editing specification cannot be read from the form file, NEXTEDIT
sets the status word to the appropriate FCHECK error code.

NOTE
7-

Before your program can call NEXTEDIT, it must have called
FINDFORM to locate the form and its editing specifications.

The calling sequence for NEXTEDIT is:

/

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CNEXTEDIT" USI NG commarea editdef.

Example: CALL "CNEXTEDIT" USING MYCOMM MYEDEF.

FORTRAN CALL NEXTEDIT(commarea,editdef)

Example: CALL NEXTEDIT(MYCOMM,MYEDEF)

SPL NEXTEDIT(commarea,editdef);

Example: NEXTEDIT(MYCOMM,MYEDEF);

BASIC CALL NEXTEDJT(c(l),e$)

Example: CALL NEXTEDIT(Cl (1),E5)

5-5

The parameters in the calling sequence are:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (See OPEN FORM pro-
c cedure discussion.)

editdef The name of the program buffer to which NEXTEDIT copies the next editing specifica-
e$ tion. This must be a CHARACTER data item with a minimum length of 72 bytes.

NOTE

The editdef parameter for this procedure should always specify a
different area from the databuffer parameter of the READTERM
procedure to avoid overwriting the information returned by
READTERM. READTERM reads the user's data (refer to
Section VI).

CLOSING A FORM FILE

When your program has finished using the form file, it closes it by calling the CLOSEFORM
procedure. If this operation fails, CLOSEFORM sets the status word to the appropriate FCHECK error
code. The CLOSEFORM calling sequence is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CCLOSEFORM" USING commarea.

Example: CALL "CCLOSEFORM" USING MYCOMM.

FORTRAN CALL CLOSEFORM(commarea)

Example: CALL CLOSEFORM(MYCOMM)

SPL CLOSEFORM(commarea) ;

Example: CLOSEFORM(MYCOMM);

BASIC CALL CLOSEFORM(c(1))

Example: CALL CLOSEFORM(C1 (1))

(

The only parameter in this calling sequence is:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (See OPEN FORM
c procedure definition.)

5-6

ACCESSING TERMINALS ,niU":'
FROM PROGRAMS I VI I

With the procedures discussed in this section, your program can obtain read/write access to the
terminal as an MPE file. Thus, your program can call the WRITETERM procedure to copy a form from
its program buffer (jormbuffer) onto the terminal screen. The program can also call the READTERM
procedure to move the data that the user at the terminal enters into a program buffer (databuffer). The
formbuffer and databuffer can occupy a common area ofmemory, or they can be defined as two distinct
areas. Other procedures are also available for use in support of WRITETERM and READTERM.

OPENING A TERMINAL FILE

Just as your application program must open the form file before it can select a form (Section V), it
must open the user's terminal as an MPE file before it can access that terminal. To open the termi-
nal/file and verify that the terminal is an HP 264x terminal, the program calls the OPENTERM
procedure. If successful, this procedure returns the value zero to the status word in the DEL com-
munication area. If the terminal is not a 264x, the procedure sets the status word to minus one. If
the terminal/file cannot be opened, the procedure returns an FCHECK error code (a value greater
than zero) to the status word. The calling sequence for OPENTERM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "COPENTERM" USING commarea termfi/e.

Example: CALL "COPENTERM" USING MYCOMM MYTERMFL.

FORTRAN CALL OPENTERM{commarea,termfi/e)

Example: CALL OPENTERM{MYCOMM,MYTERMFL)

SPL OPENTERM{commarea,termfi/e);

Example: OPENTERM{MYCOMM,MYTERMFL);

BASIC CALL OPENTERM{c{1)).t$

Example: CALL OPENTERM{C1 (1),T$

The parameters for OPENTERM are:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (See OPEN FORM
c procedure discussion in Section V.)

termfi/e The name of the area containing the MPE formal file designator that identifies the termi-
t$ nal file. This is a character data item with a maximum length of 8 bytes. If less than 8

characters are specified, the name must be terminated with a blank. If the area contains
all blanks (no name is specified) the default designator is $STDI N.

NOTE
You must call OPENTERM before you can call any other termi-
nal access procedure described in this section.

6-1

If you want to open a terminal devicefile other than $STDIN/$STDLIST (the session defaults for
your terminal), you can use a :FILE command to define some devicefile characteristics. The name
passed to OPENTERM in the term file parameter should be used as the formal file designator. The
:FILE command DEV= parameter should be used to specify the logical device number of the termi-
nal to be opened; for example, :FILE TERM264X,NEW; DEV=36. If an MPE :DATA command has
been entered on the terminal to be opened, the terminal is opened as an old (existing) file and only
the device class or logical device number need be defined. Only $STDIN/$STDLIST may be used
with the MPE-C operating system.

If the terminal is not $STDIN/$STDLIST, or the :DATA command is not used, and the terminal is
to operate at a speed other than 240 characters per second (2400 baud), or at a speed other than its
configured default speed, use the Terminal Allocation word in the communications area (refer to
Appendix A) to specify the speed. If the configuration value is non-zero and the Terminal Alloca-
tion word is zero, the configuration value will override the OPENTERM default of 240 cps.

If the amount of data to be read from any form displayed by the application program is greater
than 2000 bytes, you must use a :FILE command REC= parameter to specify the maximum input
record size in bytes. For example, if the formal file designator for the terminal is ATERM and the
maximum amount of data to be read is 3500 bytes, the file equation should be :FILE ATERM;
REC=-3500.

(

If you want the default values for block mode terminal usage, the communications area should be
set to binary zeros before OPENTERM is called. (Refer to Appendix A). If you are using a 2641A,
2645A, 2645K, or 2648A terminal, OPENTERM will set the BLOCK MODE and BLOCK MODE/
PAGE strapping programmatically. If you want to suppress this feature, set the Terminal Mode In-
formation word in the communications area to a negative value. If your applications program may
be run on an HP 2641, 2645, or 2648 with the MPE-C operating system, be sure that the Terminal
Mode Information word is set to a negative value before calling OPENTERM.

WRITING OUTPUT TO A TERMINAL (

When your program is ready to display a form onto a terminal, it calls the WRITETERM procedure.
This procedure transfers the entire contents of the specified form buffer to the user's terminal. If
the procedure succeeds, it sets the DEL status word to zero. If the write operation fails, the proce-
dure sets the status word to the appropriate FCHECK error code. Only the characters in the buffer
are transmitted to the terminal. These include escape sequences to control normal forms display.
However, if you want to execute any special escape sequences for terminal control, they must be
included in the buffer. You are responsible for insuring that the terminal is in the state that DEL
expects it to be when WRITETERM completes execution.

NOTE

Before your program can call WRITETERM, it must have
opened the terminal as a file by calling OPENTERM.

6-2

(The calling sequence for WRITETERM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CWRITETERM" USING commarea formbuffer fbufferlength.

Example: CALL "CWR ITETERM" USING MYCOMM MYFBUF LENB.

FORTRAN CA L L WRITET ERM (commarea,formbuffer, fbufferiength)

Example: CALL WRITETERM(MYCOMM,MYFBUF,LENB)

SPL WR ITETE RM (commareaJormbufferJbufferlength);

Example: WRITETERM(MYCOMM,MYFBUF,LENB);

BASIC CALL WRITETERM(c(l),b$,l)

Example: CALL WR ITETERM(Cl (1),BO$,LO)

The parameters in this calling sequence are:

PARAMETER MEANING

commarea The name of the 0 EL communication area used for your program. (See OPEN FORM
c procedure discussion in Section V.)

formbuffer The name of the program buffer from which WR ITETERM copies the form. This must
b$ be a CHARACTER data item with a minimum length of 64 bytes.

fbufferlength The name of a variable that contains the length of the data to be transferred from the
I buffer. This must be a one-word !NTEGER data item. No value is returned.

NOTE

If commarea is placed in the DL to DB area by an SPL pro-
gram, the formbuffer program buffer must also be in that
area.

DEL prevents messages sent using the MPE :TELL command
from being displayed onto forms.

READING INPUT FROM A TERMINAL

/

When your program is ready to accept the data a user entered at the terminal, it calls the READTERM
procedure. This procedure reads the data from all unprotected areas on the screen and copies it to the
designated program buffer. This buffer may be the same one used by the GETFORM and
WRITETERM procedures, or it may be another buffer. It must not, however, be the same buffer used
by any NEXTEDIT procedure called to edit the input data - otherwise, the editing specifications

(

6-3

-----~~~

needed for this edit will overwrite the input data. The READTERM procedure also sets the one-word
variable datalength to indicate the length ofthe data actually read from the terminal. If READTERM
executes successfully, it sets the DEL status word to zero. If the procedure fails, it sets the status word
to the appropriate FCHECK error code. If one of the function keys (fl through f8) is pressed while
READTERM is waiting for input, the status word will be set to the negative function key number
(-1 through -8).

NOTE

Before your program can call READTERM, it must have called
OPENTERM to open the terminal/file.

During a BLOCK MODE/PAGE read when the G strap is open, the actual transfer of data from a
terminal to the computer by READTERM is timed. A data overrun or timeout error occurs if the
duration of a read exceeds a computed value. When READTERM detects this condition, it auto-
matically retries the read operation. The number of error recovery retries that READTERM attempts
is recorded in words 5, 6, and 7 of the communications area. The default limit to the number of re- (
tries is 4, although the transient nature of these errors usually necessitates only one or two retries. If
you do not want to use this feature, you can set the Maximum Number of Retries (Word 8 of the
communications area) to a negative value.

NOTE

Before your program can call READTERM, it must have called
OPENTERM to open the terminal/file. The buffer lengt.hmust
be at least equal to the number of input data characters plus
the number of fields on the screen (to allow for the field
separators) plus one (to allow for the record separator).

READING IN PAGE MODE. Note that if you are using READTERM in BLOCK MODE/PAGE,
all the fields will be read since READTERM must encounter the record separator at the end of the
form to complete the read successfully.

MULTIPOINT. If your application program is running on a multipoint terminal, the maximum num- ('
ber of characters that can be read as data from the unprotected fields of a form is 2048 minus the
number of fields minus one.

The calling sequence for READTERM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CREADTERM" USING commarea databuffer datalength.

Example: CALL "CREADTERM" USING MYCOMM MYDElUF LENDB.

FORTRAN CALL READTERM(commarea,databuffer,datalength)

Example: CALL READTERM(MYCOMM,MYDBUF,LENDB)

SPL READTE RM (commarea,da tabu ffer, da talength);

Example: READTERM(MYCOMM,MYDBUF,LENDB);

BASIC CALL READTERM(c(1),b$,l)

Example: CALL READTERM(Cl (1),Bl$,L 1)

6-4

The READTERM parameters are:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program . . (See OPEN FORM
c procedure discussion in Section V.)

databu ffer The name of the program buffer to receive the user's input from the terminal. The length
b$ of this buffer must be at least equal to the number of characters expected in the data

entered plus the number of fields plus one. It must be a CHARACTER type data item.

datalength The name of a variable specifying the actual length of the data buffer; when READTERM
I is executed, the procedure returns to this variable the actual length of the data read. This

must be a one-word INTEGER type variable. If you are using the same variable for data
length in more than one call, you must reset the length since DEL changes it.

REQUESTING TERMINAL STATUS
From time to time, a program might require information about the operating status of the terminal
from which the user enters his data. For example, you might wish your program to periodically
determine that the terminal is still in block mode while the user is entering his data. Other useful
information might include terminal memory size, strapping options in effect, latching key status
(latched/unlatched), input/output transfers pending, error conditions, or other data. (See the owner's
manual for your terminal for further details on what particular information is maintained.) To obtain
this information, the program calls the TERMSTATUS procedure, which writes the status information
into a buffer defined by the program. The first six bytes of the buffer receive the terminal memory
size, reported in decimal digits; the remaining bytes receive the Primary Terminal Status flag settings,
reported as ASCII 0 (for OFF) and ASCII 1 (for ON). Table 6-1 illustrates how bytes in the terminal
status buffer correspond to bits in the Primary Terminal Status bytes described in the terminal
owner and programming reference manuals. The HP 2640 (A or B) maintains 18 error flags, while
all other terminals maintain 22. Because the procedure returns the maximum number of bytes pos-
sible with either type of terminal, the program buffer should be at least 28 bytes long. If the status
information is written to the buffer, the procedure sets the DEL status word to zero. If the status
information is not written, it returns the appropriate FCHECK code to the DEL status word.

NOTE
Before your program can call the TERMSTATUS procedure, it
must have called the OPENTERM procedure to open the
terminal/file.

The TERMSTATUS calling sequence is:

LANGUA.GE CALLING SEQUENCE/EXAMPLE

~COBOL CALL "CTERMSTATUS" USING commarea statbuffer.

Example: CALL "CTERMSTATUS" USING MYCOMM MYSTATUS.

FORTRAN CALL TERMSTATUS(commarea,statbuffer)

Example: CALL TERMSTATUS(MYCOMM,MYSTATUS)

SPL TERMST ATUS(commarea,statbuffer);

Example: TERMSTATUS(MYCOMM,MYSTATUS);

BASIC CALL TERMSTATUS(c(l),s$)

Example: CALL TERMSTATUS(Cl(l),Sl$)

6-5

The TERMSTATUS parameters are:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (See OPEN FORM
c procedure discussion in Section V.)

statbuffer Name of buffer to which terminal memory size and status-flag settings are returned. This
s$ must be a CHARACTER type data item at least 28 bytes long.

Table 6-1. Terminal Status Buffer

PTS Byte 0 PTS Byte 1 Key- PTS Byte 2 Key-
board Interface board Interface

Terminal Switches (A-D, Switches (E-H,
Memory Size Lower Straps) Higher Straps) (

PTS Bits 4 3 2 4 3 2

TSB Bytes 2 3 4 5 6 I 7
1

8 9 10 11 12 13 1141

PTS Byte 3 PTS Byte 4 PTS Byte 5 PTS Byte 6
Transfer Device Transfer

Latching Pending Error Pending
Keys Flags Flags Flags

PTS Bits 3 2 3 2 4 3 2 4 3 2

TSB Bytes 114 I 16 17 18 19 20 21 22 23 24 25 26 27
1
28

1

PTS: Primary Terminal Status
TSB: Terminal Status Buffer
Note: PTS Byte 6 does not apply to 2640A and 2640B. (

6-6

c CLOSING A TERMINAL FILE

When your program has finished using the terminal file, it must close this file by calling the CLOSE-
TERM procedure. If this procedure executes successfully, it sets the DEL status word to zero. If
this procedure cannot close the file, it sets the status word to the appropriate FCHECK error code.
The CLOSETERM calling sequence is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CCLOSETERM" USING commarea.

Example: CALL "CCLOSETERM" USING MYCOMM.

FORTRAN CALL CLOSETERM(commarea)

Example: CALL CLOSETERM(MYCOMM)

SPL CLOSETER M(commarea);

Example: CLOSETERM(MYCOMM);

BASIC CALL CLOSETERM(c(l))

Example: CALL CLOSETERM(Cl (1))

The CLOSETERM parameters are:

/
PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (See OPEN FORM
c procedure definition in Section V.)

CLOSETERM returns an HP 2641A, 2645A, 2645K, or 2648A terminal to the state in which it
existed before OPENTERM was called. For example, it may reset the terminal to Character Mode.
It also returns the $STDIN/$STDLIST devicefile characteristics such as terminal type to their ori-
ginal conditions.

fr,7

(

(

CALLING I·UN11'EDIT PROCEDURES .1 VII I

DEL provides eight procedures that perform editing functions on data entered at any terminal ex-
cept an HP 2645K. (Katakana characters cannot be edited with these procedures.) Edit procedures
are called from your programs by first calling the NEXTEDIT procedure described in Section V,
and then calling the desired edit function. After performing the edit function, a pass/fail indication
is returned to the first word (status word) or the DEL communications area. If the input data fails
the edit procedure that was called, the status word is set to minus one; if the input data passes the
edit, the status word is set to zero.

Your program should read the status word to determine whether the data passed or failed the edit, and
then take whatever appropriate action you desire. The DEL edit procedures do not interact with the
terminal operator, since the system does not keep sufficient information about the current contents of
the terminal memory to select an unoccupied area of the screen for displaying an error message. If
your application requires error messages and interaction with the terminal operator, you must provide
the additional programming to accomplish this.

The eight DEL edit procedures listed below are described in the following pages.
Alphabetic data field (ALPHAEDIT)
Alphabetic space-filled field (ALPHAFILL)
Alphanumeric data field (ANEDIT)
Numeric data field (NUMRCEDIT)
Numeric zero-filled field (ZEROFILL)
Numeric range edit (NRANGE)
Modulo 11 check digit create (MIl CREATE)
Modulo 11 check digit verify (MIl VERIFY)

ALPHABETIC DATA FIELD (ALPHAEDIT)
ALPHAEDIT checks the data in the input field to determine if all of the characters are alphabetic. The
procedure scans the input field; if any character is not one of the letters A through Z, the data fails the
edit, and the status word in the DEL communication area is set to minus one. If the data passes the
edit, the status word is set to zero. No spaces, numbers or special characters are allowed.

The calling sequence for the ALPHAEDIT edit procedure appears below, as entered in the COBOL,
FORTRAN, SPL, and BASIC languages. As described in Section V, entries in UPPER-CASE
CHARACTERS _must be written exactly as shown, and entries in lower-case italics are user-defined
variables that you must supply. Examples of each calling procedure are included below.

LANGuAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CALPHAEDIT" USING commarea editdef databuffer.

Example: CALL "CALPHAEDIT" USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL ALPHAEDIT(commarea,editdef,databuffer)

Example: CALL ALPHAEDIT(MYCOMM,MYEDEF,MYDBUFF)

SPL ALPHAE D IT (commarea,editdef,databuffer);

Example: ALPHAEDIT(MYCOMM,MYEDEF,MYDBUFF);

BASIC CALL ALPHAEDIT(c(l),e$,bS)

Example: CALL ALPHAEDIT(Cl (1),ES,Bl $)

7-1

-------~-------~~---------~--~ ----

The parameters in the ALPHAEDIT calling sequence indicate the following:

PARAMETER MEANING

commarea The name of the 0 EL communication area, a 128-word integer data item whose first
c entry is the status word that can be interrogated by your program to determine if this

and other procedures executed successfully.

editdef The name of a CHARACTER-type data item containing the edit specifications as
e$ returned by NEXTEDIT. This item must be 72 bytes (characters) long.

databuffer The name of a CHARACTER-type data item containing the data from the terminal as
b$ returned by READTERM. This item can be any length, depending on the number of

input characters expected plus the number of fields plus one.

ALPHABETIC SPACE-FILLED FIELD (ALPHAFILL)

ALPHAFILL allows you to check the data in the input field to determine if the data consists of
alphabetic characters and spaces to the right of the last alphabetic character. The procedure scans the
input field; the characters must be one of the letters A through Z,or any number of spaces to the right
of the last alphabetic character. If the input data fails the edit, the status word is set to minus one; if
the data passes the edit, the status word is set to zero. No embedded spaces, numbers or special
characters are allowed.

('

The calling sequence for the ALPHAFILL edit procedure appears below, as entered in the COBOL,
FORTRAN, SPL, and BASIC languages.

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CALPHAFI LL" USING commarea editdef databuffer.

Example: CALL "CALPHAFI LL" USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL ALPHAFI LL(commarea,editdef,databuffer)

Example: CALL ALPHAFILL(MYCOMM,MYEDEF,MYDBUFF)

SPL ALPHAF ILL(commarea,editdef,databuffer);

Example: ALPHAFI LL(MYCOMM,MYEDEF,MYDBUFF);
-

BASIC CALL ALPHAFILL(c(l),e$,b$)

Example: CALL ALPHAFILL(C1 (1),E$,B1$)

(

The parameters (commarea, cl, editdef, e$, databuffer, b$) as described for the ALPHAEDIT calling
sequence are the same for all eight DEL edit procedures.

ALPHANUMERIC DATA FIELD (ANEDIT)

ANEDIT allows you to check the data in the input field to determine if all characters are alphabetic
characters, numeric digits, or spaces. The procedure scans the input field; if any character is not one of
the letters A through Z,or one of the digits 0 through 9, or a space, the status word is set to minus one.
If the data passes the edit, the status word is set to zero. No special characters (except spaces) are
allowed.

7-2

NOTE

This is the only DEL editing procedure that permits embedded
spaces.

The calling sequence of the ANEDIT procedure appears below.

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CANEDIT" USING commarea editdefdatabuffer.

Example: CALL "CANEDIT" USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL AN ED IT(commarea,editdef,databuffer)

Example: CALL ANEDIT(MYCOMM,MYEDEF,MYDBUFF)

SPL AN ED IT (commarea,editdef,databuffer);

Example: ANEDIT(MYCOMM,MYEDEF,MYDBUFF);

BASIC CALL ANEDIT(c(1),e$,b$)

Example: CALL ANEDIT(C1 (1),E$,B1$)

NUMERIC DATA FIELD (NUMRCEDIT)

NUMRCEDIT allows you to check the data in the input field to determine if all of the characters are
numeric digits. The procedure scans the field; if any character is not one of the digits 0 through 9, the
status word is set to minus one. If the data passes the-edit, the status word is set to zero. No spaces,
alphabetic characters or special characters are allowed.

The calling sequence of the NUMRCEDIT edit procedure is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CNUMRCEDIT" USING commarea editdef databuffer.

Example: CALL "CNUMRCEDIT" USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL NUM RCED IT(commarea,editdef,databuffer)

Example: CALL NUMRCEDIT(MYCOMM,MYEDEF,MYDBUFF)

SPL NUMRCEO IT tcommsree.editdet.ds tabuffer) ;

Example: NUMRCEDIT(MYCOMM,MYEDEF,MYDBUFF);

BASIC CALL NUMRCEDIT(c(1 },e$,b$)

Example: CALL NUMRCEDIT(C1 (1),E$,81$)

7-3

NUMERIC ZERO~FILLED FIELD (ZEROFILL)
ZEROFILL allows you to check the data in the input field to determine if the data consists of only
numeric digits a leading plus or minus sign, and/or spaces. The spaces can appear before and/or
after the numeric digits, but the edit does not allow embedded spaces. As part of the ZEROFILL
edit procedure all spaces are stripped from the numeric digits, the digits are right-justified, and the
field is filled with zeros to the left of the digits following the sign. The procedure then scans the
input field; if any character is not a leading plus or minus sign or a digit, 0 through 9, the data is
considered failed, and the status word is set to minus one. If the data passes the edit, the DEL status
word is set to zero. No embedded spaces, alphabetic characters or special characters other than +
or - are allowed.

The calling sequence of the ZEROFILL edit procedure is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CZEROFI LL" USI NG commarea editdef databuffer.

Example: CALL "CZEROFILL" USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CA L L ZE RO FIL L(commarea,editdef,databuffer)

Example: CALL ZEROFI LL(MYCOMM,MYEDEF,MYDBUFF)

SPL ZEROFI LL(commarea,editdef,databuffer);

Example: ZEROFILL(MYCOMM,MYEDEF,MYDBUFF);

BASIC CALL ZEROFI LL(c(1),e$,bS)

Example: CALL ZEROFI LL(C1 (1),E$,B1$)

NUMER~C RANGE EDIT (NRANGE)

NRANGE allows you to check the data in the input field to determine if the data is numeric, and falls
within a range that you have specified in the edit specifications table. The procedure scans the input
field and calls the ZEROFILL edit procedure to ensure that all the data is numeric. If the data fails the
ZEROFILL edit, the status word is set to minus one, and the edit is complete. If the data passes the
ZEROFILL edit, it is then compared with the contents of the low range and high range fields in the
edit specifications table. The data must be greater than, or equal to the low range, and less than, or
equal to the high range. If both these conditions are not met, the status word is set to minus one. Ifboth
conditions are met, the status word is set to zero.

The calling sequence of the NRANGE edit procedure is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CNRANGE" USING commarea editdef databu ffer.

Example: CALL "CNRANGE" USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CA LL NRANG E(commarea,editdef,databuffer)

Example: CALL NRANGE(MYCOMM,MYEDEF,MYDBUFF)

SPL NRAN GE(commarea,editdef,databuffer);

Example: N RANGE(MYCOMM,MYEDEF,MYDBUFF);

BASIC CALL NRANGE(c(ll,e$,b$)

Example: CALL NRANGE(C1 (1),ES,Bl$)

7-4

-,

(

(

MODULO 11 CHECK DIGIT CREATE (M11CREATE)
MllCREATE checks the data in the input field to ensure that the data is numeric, and then creates a
modulo eleven check digit. The modulo eleven check digit is a value computed by DEL from the
numeric value in the input field. It is used in the modulo eleven check digit verify procedure to check
the accuracy of the data entered to the terminal. The procedure scans the input field and calls the
ZEROFILL edit procedure to ensure that all the data is numeric. If the data fails the ZEROFILL edit,
the status word is set to minus one, and the edit is terminated. If the data passes the ZEROFILL edit,
an attempt is made to generate a modulo eleven check digit.

If the check digit is generated, it is inserted as the right-most digit of the input field. If a check digit
cannot be generated, the status word is set to minus one.

The calling sequence of the MllCREATE edit procedure is:

(

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CM11CREATE" USING commarea editdef databuffer.

Example: CALL "CM11CREATE" USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL M11CR EATE(commarea,editdef,databuffer)

Example: CALL M1.1CREATE(MYCOMM,MYEDEF,MYDBUFF)

SPL M11CREA TE (commarea,editdef,databuffer);

Example: M11CREATE(MYCOMM,MYEDEF,MYDBUFF);

BASIC CALL M11CREATE(c(l),e$,b$)

Example: CALL M11CREATE(C1 (ll.E$,B 1$)

MODULO 11 CHECK DIGIT VERIFY (M11VERIFY)
Mll VERIFY checks the data in the input field to ensure the data is numeric, generate a modulo
eleven check digit, and compare the check digit to the right-most digit of the input data. The procedure
calls the ZEROFILL edit procedure to ensure that all the data is numeric. If the data fails the
ZEROFILL edit, the status word is set to minus one, and the edit is terminated. If the data passes the
ZEROFILL edit, a modulo eleven check digit is generated and compared with the right-most digit of
the input data. If the check digits are not equal, the status word is set to minus one. If the check digits
are equal, the status word is set to zero.

The calling sequence of the Mll VERIFY edit procedure is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CM11 VERI FY" USING commarea editdef databuffer.

Example: CALL "CM11VERI FY" USING MYCOMM MYEDEF MYDBUFF.

FORTRAN CALL M11VERIFY(commarea,editdef,databuffer)

Example: CALL M11 VERI FY(MYCOMM,MYEDEF,MYDBUFF)

SPL M 11V ER I FY (commarea,editdef,databuffer);

Example: M11 VERI FY(MYCOMM,MYEDEF,MYDBUFF);

BASIC CALL M 11VER IFY(c(l),e$,b$)

Example: M 11VERI FY(C1 (1),E$,B1S)

7-5

SUMMARY OF DEL EDIT PROCEDURES

Tables 7-1 and 7-2 show the combinations of data editing that can be performed and the DEL
procedures that can be used to check for these data characteristics.

Table 7-1. Data Characteristics

-,

A Alphabetic characters

B Numeric characters

C Spaces (anywhere in data, including embedded spaces)

D Spaces (to right of data only)

E Spaces (before and/or after data only, not embedded)

F Numeric range (numeric data only)

G Modulo 11 check digit create (numeric data only)

H Modulo 11 check digit verify (numeric data only)

Table 7-2. DEL Edit Procedure Summary

To check for: Use DEL edit procedure:

A ALPHAEDIT

A,D ALPHAFILL

A,B,C ANEDIT

B NUMRCEDIT

B,E ZEROFI LL

F NRANGE

G M11CREATE

H M11VERIFY

7-6

(

USING HIGH-LEVEL (1",[.1:'
INTERFACE PROCEDURES I VIII I

To simplify coding in many applications, DEL provides higher-level procedures that combine some of
the form-access procedures (discussed in Section V), terminal-access procedures (discussed in Section
VI), and editing procedures (discussed in Section VII). These procedures allow your program to
perform the following tasks, each with a single request:

• Display a form on the terminal screen and read the input entered on the form by the terminal user.

• Edit the input data.

DISPLAYING FORM AND READING INPUT

Your application program can display a form on the terminal screen and read data entered by the user
on that form with a single call to the SHOWFORM procedure. This procedure, in turn, implicitly calls:

• FINDFORM, to locate the form in the form file.

• GETFORM, to move the form into a program buffer.

• WRITETERM, to write the form to the terminal, and

• READTERM, to read the user's input data into the same program buffer used by
GETFORMJWRITETERM.

To minimize coding in your application program, you could use SHOWFORM in place of the above
procedures to move a form into the program buffer, display it, and read the user's data the first time
this sequence of operations is required. Then, for subsequent data-entry operations, you could use
READTERM calls.

If SHOWFORM executes successfully, it sets the DEL status word to zero. If a file-access error occurs
during WRITETERM or READTERM execution, SHOWFORM sets the status word to the appropriate
FCHECK error code; if a file-access error occurs during FIND FORM or GETFORM execution, how-
ever, SHOWFORM sets the status word to the sum of the FCHECK error code plus the value 1000. (In
this way, DEL distinguishes between errors on the terminal file and those on the form file.) If the form
cannot be located in the form file, SHOWFORM sets the status word to minus one.

NOTE

Before calling SHOWFORM, you must call OPENFORM and
OPENTERM, to open the form file and terminal files,
respectively.

8-1

---~"----

The calling sequence for SHOWFORM is:

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CSHOWFORM" USING commarea formname nextform formdatabuffer
fdlength.

Example: CALL "CSHOWFORM" USING MYCOMM MYFORM MYFORMN
MYFDBUF LENFD.

FORTRAN CAL L SHOWFO RM(commarea,formname,nextform,formdatabuffer,fdlength)

Example: CALL SHOWFORM(MYCOMM,MYFORM,MYFORMN,MYFDBUF,LENFD)

SPL SHOWFO RM(commarea,formname,nextform,formdatabuffer,fdlength);

Example: SHOWFORM(MYCOMM,MYFORM,MYFORMN,MYFDBUF,LENFD);

BASIC CALL SHOWFORM(c(l),fl$,f2$,b$,1)

Example: CALL SHOWFORM(C1 (1),F 1$,F2$,B$,L) (

The parameters for SHOWFORM are:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (See OPEN FORM
c procedure discussion in Section V.)

formname The name of the area that contains the identity of the current form. This is a CHARAC-
flS TE R data item exactly 16 bytes long.

nextform The name of the area in which SHOWFORM will place the name of the next form if it is
f2S accessing a chained sequence of forms. This is a CHARACTER data item exactly 16 bytes

long.

formda tabuffer The name of the program buffer to which the form is copied from the form file, and to
bS which the user's data is returned from the terminal. This must be a CHARACTER data

item with a minimum length equal to the number of characters plus the number of fields
plus one, a greater length may be required, depending on the size of the screen to be
displayed. Must be on word boundary.

fdlength The name of a variable that contains the length of the program buffer formdatabuffer.
I - When SHOWFORM executes, it overwrites this buffer length with the length of the data

actually read from the terminal. This must be a one-word numeric data item.

(

EDITING NEXT INPUT FIELD
After your application calls FINDFORM to locate a form (and initialize the DEL communication area
with data pertinent to that form), and calls READTERM to read data from the terminal, it can edit the
current input field with a single call to the EDITFIELD procedure. (Alternatively, FINDFORM and
READTERM may have been called implicitly by SHOWFORM.) EDITFIELD implicitly calls
NEXTEDIT (Section VII) to retrieve the edit specifications for the input field, and then calls the
appropriate DEL editing procedures to accomplish the editing. This effectively replaces two explicit
procedure calls with one.

NOTE

The EDITFIELD procedure cannot be used to call user-supplied
editing procedures.

8-2

(
If any required procedure is not a DEL editing procedure (as defined in Section VII), EDITFIELD sets
the status word to minus 3. If the user's input data fails any edit check, EDITFIELD sets the status
word to minus 1 and writes the edit specifications that apply to the current input field into the data
area editde]. After detecting an error in a field, you cannot call EDITFIELD to edit the same field
again since it will call NEXTEDIT and advance to the next field.

If the last edit specification for last input field has already been accessed, EDITFIELD sets the status
word to minus 2, leaves editdef unchanged, and re-sets the communication area to reflect the first
unprotected field on the form; thus, the form is ready for the entry of new data at its beginning. If
EDITFIELD cannot access the form file, the status word is set to the appropriate FCHECK error
code.

NOTE
Before calling EDITFIELD, you must have opened the form file
and terminal file (with OPENFORM and OPENTERM), located
the form and initialized the communication area (with
FINDFORM or SHOWFORM), and read the data from the termi-
nal (READTERM or SHOWFORM).

The EDITFIELD calling sequence is:

(

LANGUAGE CALLING SEQUENCE/EXAMPLE

COBOL CALL "CEOITFIELO" USING commarea editdef databuffer.

Example: CALL "CEDITFIELO" USING MYCOMM MYEDEF MYOBUF.

FORTRAN CALL EOITFI ELO(commarea,editdef,databuffer)

Example: CALL EDITFI ELD(MYCOMM,MYEOEF,MYDBUF)

SPL EDITF IE LO (commarea,editdef,databuffer);

Example: EDITFIELD(MYCOMM,MYEDEF,MYDBUF);

BASIC CALL EOITFIELD(c(l),e$,bS)

Example: CALL EDITFIELO(C1 (1),E$,BS)

The EDITFIELD parameters are:

PARAMETER MEANING

commarea The name of the DEL communication area used for your program. (See OPEN FORM
c discussion in Section V.)

editdef The name of the area to which EDITFIELO returns the edit specifications for an input
e$ field that fails edit-checking. This must be a CHARACTE R data item that is 72 bytes

long.

da tabu ffer The name of the program buffer to receive the user's input from the terminal (via
bS REAOTERM). This buffer can be any length, depending on the number of input char-

acters expected plus the number of fields plus one. It must be a CHARACTER data item.

8-3

/
t

(

WRITING I'BiiMiPROGRAMS .1 IX 1

DEL application programs can be written in COBOL, FORTRAN, BASIC, or SPL to serve a variety
of data-entry applications. Examples of calling DEL procedures in the various languages have been
provided in previous sections. In this section, the typical flow of a program using DEL procedures is
illustrated. An example of a COBOL application program is provided to illustrate some of the pro-
gramming techniques used for interfacing with DEL.

USING DEL PROCEDURES

The diagram below charts the typical order in which DEL procedures are called by an application
program.

Open terminal devicefile.

Open form file.

Locate desired form in form file.

Move form to program buffer.

Display form on terminal.

Read input from terminal.

no Close form file.

Close terminal file.

End of program

The SHOWFORM procedure may be called to perform the functions of FINDFORM, GETFORM,
WRITETERM, and READTERM with one procedure call.

9-1

-~~--~-

If editing procedures are to be executed, the NEXTEDIT procedure and a specific editing procedure
may be called after READTERM, or the EDITFIELD procedure may be called. \

It is important to remember that all DEL procedure parameters must begin on word boundaries.

COBOL PROGRAM

The following COBOL program runs the SALES TRANSACTION application introduced in Sec-
tion III and uses the form shown as an example in that section. The program locates the form
(named SALESFORM) in the form file (names SALESFIL), writes the form to the terminal screen,
and reads the data entered by the user at the terminal keyboard. If the user enters "XX" in the first
input field, the program terminates. But, if he enters any other characters in that field, the program
continues. When the user has entered all data on the form and pressed the ENTER key, the program
edits all input fields. If any editing procedure fails, the program produces an audible "beeping"
sound at the terminal and causes the first erroneous field to blink. When the user corrects the data
in this field, the program reads and edits this data again. If any other field contains an error, the
same beeping/blinking takes place again for that field. When the user has corrected all erroneous
fields, the program writes the valid record to a data file (named MYDATA-FILE) and clears the in-
put fields on the form. When the user enters the next data, the program performs the same reading/
editing as before. The program continues until the user enters "XX" in the first input field on the
form.

(

\

A flow-chart showing the major steps in the application program appears in figure 9-1. Certain error-
checking steps, such as file or terminal-access error detection, are omitted from the chart so that the
primary logic is clearly emphasized. All steps, however, appear in the listing of the compiled pro-
gram shown in Figure 9-2. A symbol table map for this program appears in Figure 9-3.

The program was entered into the system with the Editor subsystem (EDIT/3000) and compiled
with the COBOL/3000 compiler. For further information about using these subsystems, please see:

(

• EDIT/3000 Reference Manual

• COBOL/3000 Reference Manual

9-2

Yes
Close all files.

Read data
from terminal.

Define files,

initialize
storage areas.

Open data file
(MYDATA FILE),

form file
(SALESFIL),

and terminal.

Display form
(SALESFORM),
read data.

Read
corrected data,
turn off blinking.

Edit input field.

Beep and
blink field
with failure.

Yes

Write valid
record to
MYDATA-FILE.

Display
"DATA ENTRY
TERMINATED".

Clear input
fields on form.

Figure 9-1. COBOL Program Flowchart

9-3

.- ..--------- ..- ...---.-.--.-----------------~

PAGE 0001

PAGE 0002

HEWLETT-PACKARD 32213C.02.00 COBOL/3000 ~ED, JAN 18, 1978, 9:18 AM

000100SCONTROL USLINIT,MAP «INITIALIZES OBJECT FILE, REQUESTS MAP.»
000200.
000300*
000400* * * * * * * * * * * * * • * •• * • * * * * * * * * * * * * •
000500* IDENTIFICATION DIVISION NAMES PROGRAM AND DATE WRITTEN. •
000600* * * * * * * * * • * • * * • * • * •• * * * • * •• * * * • *
000700*
000800.
000900 IDENTIFICATION DIVISION.
001000 PROGRAM-ID. SALESPRG.
001100 DATE-WRITTEN. JAN 15, 1978.
001200*
001300*

SALESPRG

001500* * * • * * * * * • * • * • * • * ••• * • * • * • * •••••
001600.
001700.
001800. * •••• * • * ••••••• * * • * •••• * • * * • * • *
001900*
002000*
002100 ENVIRONMENT DIVISION.
002200 CONFIGURATION SECTION.
002300 SOURCE-COMPUTER.
002400 HP-3000.
002500 OBJECT-COMPUTER.
002600 HP-3000.
002700 INPUT-OUTPUT SECTION.
002800 FILE-CONTROL.
002900.
003000**** DEFINES DATA FILE TO CONTAIN USER'S INPUT DATA.
003100**** DEL AUTOMATICALLY DEFINES fOR~ FILE AND TERMINAL FILE.
003200 SELECT MYDATA-fILE ASSIGN TO "DATAFILE".
003300*
003400*

ENVIRONMENT DIVISION NAMES SOURCE AND OBJECT COMPUTERS
AND INPUT/OUTPUT FILES USED BY PROGRAM.

(

Figure 9-2. COBOL Program Listing

9-4

PAGE 0003 SALESPRG

003600"
003700*
003800"
003900" "

* * .• * • * + • * + * * * • • * + * * * • * * * .• * * * * * .• •
DATA DIVISION DESCRIBES fILES, RECORDS, BUffERS, AND OTHER "
STORAGE AREAS USED BY PROGRAM. "

* • + • * * * * * • * * * • * .• .• * * * * * • + • " " + .• .• .•
004000"
004100"
004200 DATA DIVISION.
004300 fILE SECTION,
004400*
004500*""* DEFINE RECORDS FOR DATA fILE.
004600 fD MYDATA-fILE
004700 RECORD CONTAINS 423 CHARACTERS
004800 LABEL RECORD IS OMITTED
004900 DATA RECORD IS MYDATA-REC,
005000 01 MYDATA-REC PIC X(423).
005100 WORKING-STORAGE SECTIO~.
005200"
005300**** DEFINE FORM FILE NAME (USED IN "OPENTERM"),
005400 77 MYFORMfL PIC X(35) VALUE SPACES.
005500*
005600**** DEFINE fORM NAME (USED IN "CSHOWfORM"I"CfINDfORM").
005700 77 MYFORM PIC X(16) VALUE SPACES.
005800"
005900"**" DEFINE NEXT FORM NAME (USED IN "CSHOWFORM"I"CFINDFORM").
006000**** THIS IS A "DUMMY PARAMETER" SINCE NO OTHER FORM IS USED,
006100 77 NEXTF PIC X(16) VALUE SPACES.
006200*
006300**** DEFINE TERMINAL FILE (USED IN "COPENFORM").
006400 77 MYTERMFL PIC XeS) VALUE SPACES.
006500*
006600**** DEFINE BUFFER LENGTHS (USED IN "CSHOWfORM"I"CREADTERM"1
006700 ••** ·CWRITETERM"I"CFINDfORM"),
006800 77 LENFD PIC S9999 USAGE COMP.
006900.
007000 77 LENERRBUF PIC S9999 USAGE COMPo
007100*
007200 77 LENFORM PIC S9999 USAGE COMPo
007300.
007400 ••** DEFINE DATA-ITEM TO CONTAIN FCHECK ERROR CODE FOR OUTPUT,
007500 77 ERROR-CODE PIC -9999,
00T600.
007700 •••• DEfINE FORM BUFFER.
007800 01 MYFBUF PIC X(450).
007900*

Figure 9-2. COBOL Program Listing (Continued)

9-5

PAGE 0004 SALESPRG

008100· ••• DEfINE DATA BUffER.
008200 •••• PROGRAM ASSUMES THAT INPUT WILL BE ENTERED
008300* ••• IN ALL fIELDS ON THE fORM, AND THAT A TOTAL Of fIVE
008400·· •• TRANSACTIONS PER fORM WILL BE ENTERED.
008500 01 MYDBUF REDEFINES MYFBUF.
008600 05 DB-MO PIC X(2) •
008700 05 DB-DA PIC X(2) •
008800 05 DB-YR PIC X(2) •
008900 05 TRANS-NO PIC X(6) •
009000 05 CUST-ID PIC X(6). (009100 05 BILLED-NAME PIC X(2S).
009200 05 BILLED-COMP PIC X(25) •
009300 05 SALES-ID PIC X(6).
009400 05 BILLED-STREET PIC X(2S).
009500 05 BILLED-CITY PIC X(25) •
009600 05 PRODNO-l PIC X(4) •
009700 05 DESCRIP-1 PIC X(45) •
009800 05 PRICEDOLS-l PIC 9999.
009900 05 PRICECNTS-l PIC 99.
010000 05 QUANTITY-l PIC X(4) •
010100 05 PRODNO-2 PIC X(4).
010200 05 DESCRIP-2 PIC X(45).
010300 05 PRICEDOLS-2 PIC 9999.
010400 05 PRICECNTS-2 PIC 99.
010500 05 QUANTITY·2 PIC X(4) •
010600 05 PRODNO-3 PIC X(4) •
010700 05 DESCRIP-3 .PIC X(45) •
010800 05 PRICEDOLS-3 PIC 9999.
010900 05 PRICECNTS-3 PIC 99.
011000 05 QUANTITY-3 PIC X(4) •
011100 05 PRODNO-4 PIC X(4) •
011200 05 DESCRIP-4 PIC X(45) •
011300 05 PRICEDOLS-4 PIC 9999.
011400 05 PRICECNTS-4 PIC 99.
011500 05 QUANTITY-4 PIC X(4) • (011600 05 PRODNO-5 PIC X(4) •
011700 05 DESCIHP-5 PIC X(45) •
011800 05 PRICEDOLS-5 PIC 9999.
011900 05 PRICECNTS-5 PIC 99.

_012000 05 QUANTITY-5 PIC X(4) •
012100.
012200*

Figure 9-2. COBOL Program Listing (Continued)

9-6

(

PAGE 0005 SALESPRG

012400 •.•••
012500 01
012600
012700
012800.
012900 ••.•.•
013000.**"
013100*·".
013200".".
013300**."
013400 ••••
013500 01
013600
013700
013800
013900
014000
014100
014200
014300.
014400* ••"
014500 01
014600
014700
014800
014900"
015000"

PIC
PIC
PIC
PIC
PIC
PIC
PIC

DEfINE DEL COMMUNICATION AREA.
MYCOMM.
05 STATUS-WORD PIC S999 USAGE COMPo
05 fILLER PIC X(254).

DEfINE EDITING ERROR-SIGNAL OUTPUT BUfFER.
WHERE BLANKS APPEAR IN VALUE ITEMS, EITHER
ESCAPE OR CONTROL CHARACTERS ARE ENTERED.
THESE ARE NON-PRINTING CHARACTERS. (FIRST
RfILLERR CONTAINS RESC&AR, "BELLSR CON-
TAINS THREE CONTROL-G·S.)
ERROR-OUTPUT,
05 FILLER
05 ROW
05 FILLER
05 COL
05 fILLEIl
05 BLINKER
05 BELLS

X(3)
X(3) •
X(1)
X (3) •
XC 1)
X(4).
X(3)

VALUE IS

VALUE IS fir".

DEfINE EDITING-ERROR
MYEDEF.
05 MYROW
05 MYCOL
05 FILLER

VALUE IS "C",

VALUE IS "

LOCATION DATA.

PIC X(),
PIC X(3).
PIC X(66) VALUE SPACES.

Figure 9-2. COBOL Program Listing (Continued)

9-7

PAGE 0006 SALESPRG

015200* * * * * * * * * * ••* * ••* * * •••••• * * •••• * * * * * *
015300*
015400* * * * * * * * •••• * * * * ••••• * ••• * * * * * * * * * ••
015500*
015600*
015100 PROCEDURE DIVISION.
015800*
015900 ••• * OPEN ALL fILES USED BY THE PROGRAM.
016000 010-0PEN-fILES.
016100 OPEN OUTPUT MYDATA-fILE.
016200 -MOVE "SALESfIL" TO MYfORMfL.
016300 CALL "COPENfORM" USING MYCOMM MYfORMfL.
016400 If STATUS-WORD = 0 GO TO 025-CHECK-TERM.
016500 If STATUS-WORD NOT = 0 GO TO 090-ffILE-ERRA.
016600 025-CHECK-TERM.
016800 CALL "COPENTERM" USING MYCOMM MYTERMfL.
016900*
011000 ••••
011100
011200
011300
011400
017500
011600
011100
011800.
011900.*.* DISPLAY FORM AND READ DATA, fIRST TIME.
018000 030-DISPLAY-ANO-REAO.
018100*
018200**.*
018300
018400
018500
018600.
018700*.*. CHECK TERMINAL STATUS AGAIN.
018800 035-STATUS-CHECK.
018900* * * * * * * * • * • * * * * * * * * * * •••••••••• * * * ••
019000. " X H J" IN DISPLAY STATEMENT IS ESCAPE SEQUENCE THAT ••
019100* TURNS OFf fORMAT MODE, MOVES CURSOR TO "HOME" POSITION *
019200* AND CLEARS SCREEN. (THE ESC KEY IS A NON-PRINTING CHAR- •
0..19300*ACTER.) *
019400* * * ••* * * * * * * * * * * ••* ••* * * * ••* * * ••* •••
019500 If STATUS-WORD = 0 GO TO 040-EDIT-INPUT.
019600 If STATUS-WORD = -1
019700 DISPLAY " X ~ JfILE " MYFORMfL
019800 " DOES NOT CONTAIN " MYfORM
019900 GO TO 075-SHUTDOWN.
020000 If STATUS-WORD < 1000 GO TO 095-TERM-ERRA.
020100 IF STATUS-WORD > 0 MOVE STATUS-WORD TO ERROR-CODE
020200 DISPLAY " X H JCANNOT READ fORM FILE"
020300 MYfORMfL
020400 GO TO 075-SHUTDOWN.
020500*

PROCEDURE DIVISION SPECIfIES PROGRAM OPERATIONS. •

(

c

CHECK TERMINAL STATUS.
IF STATUS-WORD = 0 GO TO 030-DISPLAY-AND-READ.
If STATUS-WORD = -1 DISPLAY "TERMINAL NOT 264X."

GO TO 015-SHUTDOWN.
If STATUS-WORD> 0 MOVE STATUS-wORD TO ERROR-CODE

DISPLAY "TERMINAL ACCESS ERROR"
ERROR-CODE
GO TO 015-SHUTDOWN.

SET fORM NAME AND BUffER LENGTH.
MOVE "SALESFORM" TO MYfORM.
MOVE 450 TO LENfD.
CALL "CSHOWfORM" USING MYCOMM MYfORM NEXTf MYfBUf LENFO.

Figure 9-2. COBOL Program Listing (Continued)

9-8

\

(

(

(
\

PAGE 0007 SALESPRG

020700.
020800 •••• BEGIN EDITING FIELDS.
020900 040-EDIT-INPUT.
021000.
021100 •••• IF USER ENTERS ·XX" IN FIRST FIELD, END PROGRAM.
021200 IF DB-MO = "XX· GO TO 07S-SHUTDOWN.
021300·
021400 •••*
021500
021600
021700
021800
021900
022000
022100
022200
022300
022400*
022500**.* BEEt'
022600 MOVE
022700 MOVE
022800 MOVE
022900 MOVE
023000 CALL
023100*
023200****
023300****
023400
023500
023600
023700.
023800 ••••
023900
024000
024100
024200
024300.
024400 060-VALID-RECORD.
024500*
024600* .•.••
024700
024800
624900"
025000 ••"" DISPLAY ANOTHER FORM, READ NEXT INt'UT RECORD.
025100 065-0ISPLAY-READ-LOOP.
025200*
025300*.". TURN
025400 MOVE
025500 MOVE
025600 CUL
025700 IF
025800 MOVE
025900*

PROCEED WITH EDIT.
CALL "CEDITFIELD" USING MYCOHM MYEDEF MYDBUF.
IF STATUS-WORD = 0

GO TO 040-EDIT-INPUT.
IF STATUS-WORD = -2

GO TO 060-VALIO-RECORD.
IF STATUS-WORD = -3

GO TO 200-INVALID-PROCNAME.
IF STATUS-WORD) 0

GO TO 100-FF-READFAIL.

AND BLINK FIELDS THAT FAIL EDIT CHECK.
MYPOW TO ROW.
!IIYCOLTO COL.
" &dC" TO BLINKER.
18 TO LENERRBUF.
"CWRITETERM" USING MYCOHM ERROR-OUTPUT LENERRBUF.

READ CORRECTED INt'UT, RE-SET EDIT SPECS, AND
CONTINUE EDIT CHECKING.
MOVE 450 TO LENFD.
CALL "CREADTERM" USING MYCOMM MYDBUF LENFD.
CALL "CFINDFORM" USING HYCOMM MYFORM LENFORM NEXTF.

TURN OFF BLINKING FIELD.
MOVE 15 TO LENERRBUF.
MOVE " &dB" TO BLINKER.
CALL "CWRITETERM" USING
GO TO 040-EDIT-INPUT.

MYCOMM ERROR-OUTPUT LENERRBUF.

SEND VALID RECORD TO DATA FILE.
MOVE MYDBUF TO MYDATA-REC.
WRITE MYDATA-REC.

ON FORMAT MODE, HOME CURSOR, AND CLEAR INPUT FIELDS.
" W H J" TO MYFBUF.
6 TO LENFD.
"CWRITETERM" USING MYCOMM MYDBUf LENFD.
STATUS-WORD NOT = 0 GO TO 095-TERM-ERRA.
450 TO LENFD.

Figure 9-2. COBOL Program Listing (Continued)

9-9

PAGE 0008 SALESPRG

026100 ••••
026200
026300
026400
026500.
026600 •••* CLOSE ALL fILES USED BY THE PROGRAM,
026700 075-SHUTDOWN.
026800 CALL "CCLOSEFORM" USING MYCOMM.
026900 CALL "CCLOSETERM" USING MYCOMM.
027000 CLOSE MYDATA-FILE.
027100*
027200**** DISPLAY TERMINATION MESSAGES
027300 DISPLAY "DATA ENTRY TERMINATED."
027400*
027500**** TERMINATE PROGRAM.
027600 STOP RUN.
027700*
027800**** ERROR-HANDLING.
027900*
028000.*.* IF PROGRAM CANNOT OPEN fORM FILE, TRANSMIT APPRO-
028100***. PRIATE MESSAGE.
028200 090-FFILE-ERRA.
028300 IF STATUS-WORD < 0 DISPLAY" X H J" MYFORMfL
028400 " IS NOT A fORM fILE".
028500 GO TO 075-SHUTDOWN.
028600 IF STATUS-WORD > 0 MOVE STATUS-WORD TO ERROR-CODE
028700 DISPLAY " H X JOPEN fAILURE " ERROR-CODE
028800 GO TO 07S~SHUTDOWN.
028900.
029000.*.* IF PROGRAM CANNOT OPEN TERMINAL FILE, TRANSMIT
029100***. MESSAGE.
029200 095-TERM-ERRA.
029300 MOVE STATUS-WORD TO ERROR-CODE.
029400 DISPLAY " X H JTERMINAL ACCESS ERROR" ERROR-CODE
029500 GO TO 075-SHUTDOWN.
029600.
029700**** IF PROGRAM CANNOT READ FORM fILE, TRANSMIT MESSAGE.
029800 100-FF-READFAIL.
029900 MOVE STATUS-WORD TO ERROR-CODE.
030000 DISPLAY" X H JCANNOT READ FORM FILE"
030100 MYFORMFL
030200 GO TO 07S-SHUTDOWN.
030300.
030400 •••* If EDIT PROCEDURE NAME IS NOT VALID, TRANSMIT
030500** •• MESSAGE.
030600 200-INVALID-PROCNAME.
030700 DISPLAY • X H UINVALID DEL PROCEDURE NAME W"
030800 GO TO 075-SHUTDOWN.

READ NEXT INPUT RECORD
CALL "CREADTERM" USING MYCOMM MYDBUF LENFD.
IF STATUS-WORD> 0 GO TO'09S-TERM-ERRA.
GO TO 03S-STATUS-CHECK.

Figure 9-2. COBOL Program Listing (Continued)

9-10

(

(

(\.

PAGE 0009 SALESPRG SYMBOL TABLE MAP

LVL SOURCE NAME BASE DISPL SHE USAGE CATEGORY ROD J 8Z

FILE SECTION

FD MYDATA-FILE SEQ
01 MYDATA-REC DB 000106 000647 DISP AN

WORKING-STORAGE SECTION

77 MYFORMF'L DB 000756 000043 DISP AN
77 MY1"ORM DB 001022 000020 DIS? AN
77 NEXTF DB 001042 000020 DISP AN
77 MYTERMFL DB 001062 000010 DISP AN
77 LENFD DB 001072 000002 CO!olP N
77 LENERRBUF DB 001074 000002 COMP N
77 LEHFORM DB 001076 000002 COMP N
77 ERROR-CODE DB 001100 000005 DISP NE
01 MHBUF DB 001106 000702 DISP AN
01 MYDBU1" DB 001106 000643 GROUP R
05 DB-MO DB 001106 000002 DISP AN
05 DB-OA DB 001110 000002 DISP AN
05 DB-YR DB 001112 000002 DISP AN
05 TRANS-NO DB 001114 000006 DISP AN
05 CUST-ID DB 001122 000006 DISP AN
05 BILLED-NAME DB 001130 000031 DISP AN
05 BILLED-COMP DB 001161 000031 DISP AN
05 SALES-ID DB 001212 000006 DISP AN
05 BILLED-STREET DB 001220 000031 DISP AN
05 BILLED-CITY DB 001251 000031 DISP AN
05 PRODNO-1 DB 001302 000004 DISP AN
05 DESCRIP-1 DB 001306 000055 DIS? AN
05 PRICEDOLS-1 DB 001363 000004 DISP DISP-N
05 PRICECNTS-1 DB 001367 000002 DISP DISP-N
05 QUANTITY-1 DB 001371 000004 DISP AN
05 PRODNO-2 DB 0.01375 000004 DISP AN
OS DESCRIP-2 DB 001401 00005S DISP AN
05 PRICEDOLS-2 DB 001456 000004 DISP DISP-N
05 PRICECNTS-2 DB 001462 000002 OIS? DISP-N
OS aUANTITY-2 DB 001464 000004 DISP AN
05 PRODNO-3_ DB 001470 000004 DISP AN
05 DESCRIP-3 DB 001474 000055 DISP AN
05 PRICEDOLS-3 DB 001551 000004 DISP OISP-N
OS PRICECNTS-3 DB 001555 000002 DISP DISP-N
05 QUANTITY-3 DB 001557 000004 DISP AN
05 PRODNO-4 DB 001563 000004 DISP AN
05 DESCRIP-4 DB 001567 000055 DISP AN
OS PRICEDOLS-4 DB 001644 000004 DISP DISP-N
05 PRICECNTS-4 DB 001650 000002 DISP DISP-N
05 QUANTITY-4 DB 001652 000004 DISP AN
05 PRODNO-5 DB 001656 000004 DISP AN
05 DESCRIP-5 DB 001662 000055 DISP AN
05 PRICEDOLS-5 DB 001737 000004 DISP DISP-N
OS PRICECNTS-5 08 001743 000002 DISP DISP-N

c

Figure 9-3. COBOL Program Symbol Table Map

9-11

DATA AREA IS \001742 WORDS.
CPU TIME = 0:00:11. WALL TIME = 0:00:26.

END COBOL/3000 COMPILATION. NO ERRORS. NO WARNINGS.

PAGE 0010 SALESPRG SYMBOL TABLE MAP

LVL SOURCE NAME BASE DISPL SIZE USAGE CATEGORY ROD J BZ

05 GlUANTITY-5 DB 001745 000004 DISP AN
01 MYCOMM DB 002010 000400 GROUP
05 STATUS-WORD DB 002010 000002 COMP N
05 FILLER DB 002012 000376 DISP AN
01 ERROR-OUTPUT DB 002410 000022 GROUP
05 FILLER DB 002410 000003 DISP AN
05 ROW DB 002413 000003 DISP AN
05 FILLER DB 002416 000001 DISP AN
05 COL DB 002417 000003 DISP AN
05 FILLER DB 002422 000001 DISP AN ,--
OS BLINKER DB 002423 000004 DISP AN (OS BELLS DB 002427 000003 DISP AN
01 MYEDEF DB 002432 000110 GROUP
OS MYROW DB 002432 000003-DISP AN
05 MYCOL DB 002435 000003 DISP AN
05 FILLER DB 002440 000102 DISP AN

PAGE 0011 SALESPRG SYMBOL TABLE MAP

SOURCE NAME SIP INTERNAL NA/oIE PB-RELATIVE LOC PRIORITY NO. e
010-0PEN-FILES P 01OOPENFI LESOO' 000003 0
02S-CHECl(-TERM P 000101 0
030-0ISPLAY-ANO-REAO P 000277 0
035-STATUS-CHECK P 000353 0
040-EOIT-INPUT P 000616 0
060-VALID-RECORD P 001104 0
065-DISPLAY-READ-LOOP P 001133 0
07S-SHUTDOWN P 001253 0
090-fFILE-ERRA P 001323 0
095-TERM-ERRA P 001516 0
100-ff-READFAIL P 001610 0
200-INVALID-PROCNAME P 001702 0

Figure 9-3. COBOL Program Symbol Table Map (continued)

9-12

PREPARING PROGRAMS

When you prepare a DEL application program prior to execution, it is advisable to specify a maxi-
mum stack (Z-DL) area size of at least 10,000 words. (If you fail to do this at the preparation
stage, the user must do it at the execution stage.) As an example, to prepare the compiled program
text in the user subprogram library (USL) file SALESUSL into the program file SALESPRG,
specifying a stack area size of 10,000 words, enter the following MPE :PREP command:

:PREP SALESUSL,SALESPRG; MAXDATA=10000

Optionally, you can save the program file permanently in the system by entering:

:SAVE SALESPRG

EXECUTING PROGRAMS

When executing a DEL application program, the user enters the MPE :RUN command as follows:

:RUN SALESPRG

If you did not specify a maximum stack area size of 10000 words when you prepared the program,
the user must do so at execution time as follows:

:RUN SALESPRG; MAXDATA=10000

The user must run the program in BLOCK MODE. If he does not, he will be prompted by the fol-
lowing message when the program begins execution:

DEPRESS BLOCK MODE KEY

INPUT/OUTPUT FILES

You may use an MPE :FILE command to equate the formal file designator (name used in your pro-
gram) for the form file to any actual file designator you desire. However, no :FILE command is
necessary for the terminal file, since DEL handles the assignment of this file automatically.

WRITING USER PROCEDURES

When writing your own procedures for use with DEL, remember that any editing information
established for the form file is available for these procedures to use in any way you desire. In
addition, words 60 through 128 of the DEL communication area, though not used by DEL, are
available for user procedures. (See Appendix A.)

9-13

LOOK-UP TABLES
In the Editing Specification Display produced by FORMAINT (described in Section III), you are
prompted for the name of any file that contains one or more tables to be searched by your appli-
cation program. This linkage is provided for your convenience. Implementation of the table-
search, however, is the responsibility of your program. The linkage is valuable in cases where
many edits require split ranges of values, such as:

1000-2000
2500-2699
5000-5133

If this data was stored in a file named PRODMAST, you would enter that file name in response to
the prompt as indicated by the underlined entry below:

_--- File nameFor file look-up procedures the file name is PRODMAST

The file name is then stored in the edit specifications record (Bytes 41 through 72), and is access-
ible to the calling program.

c,-
In summary, the table look-up manipulation is up to your application program and should be
handled in the best manner suitable for that program.

DETECTING/CORRECTING ERRORS
Detection and correction of errors is also the responsibility of your application program. You must
consider many variables before selecting the best method for doing this. Two possible methods are
presented below; both require enhancing display of the field in error. The WRITETERM procedure
should be used to send escape codes and messages.

The first method involves reserving, on the screen, a line for any error messages sent by the applica-
tion program. A specific line within each screen is preferred but sometimes difficult to maintain
between applications. The second method involves inserting a line below the field in error. The
escape codes used in both methods appear below. Note that any technique you use to add a line of
data to the screen, however temporarily that line may be displayed, risks loss of some information
from terminal memory if the memory is full.

(To enhance the display of a field that contains an error, enter the line of code shown below:

column display field length
row ~ enhancement i

ESC&a t r - C ESC&d !ESC&a+ - C ESCX ESC&d@ ESCW~ -~ -..-- ---...- ---....--- --..--
g- gg g g-Ct1g2 2 2"
ss, 0. 0. ~ . ~"~" 0.::; ::; ::;

~ S, g:::J :::J < g a a a
c ..., -, n ("') (t) -,::::: ~ ::J
-. a 0 (1) !:; -0 0 0.""o ~-.:; o~-.O' '" a
-. I»~-O -'!:C"~3 -0 3
I» 0.0.1» 1»0 0.1» I» I»
§.: ~~ -c §.::::J ~ •..•3 :: e-e-3
..., ('t) V't -, ::l V't " •••
(i) VI V'I CD t.n ::l 0
~" '" 5" ~"(1Q 5" 8. ~ 0.
:::J O'Q :::J 0'Q(1) :::J (1)
(1Q (1Q n

'"3
(1)

:::J....

'=•.
In the above example, row, column, and field length are available in the DEL Edit Specifications
Table. (See Appendix A.)

9-14

To display a message on Line 23, enter the function requests shown below:

Function Entry

Lock the Keyboard Esec

Turn off Format Mode EscX

Cursor Addressing Esc&a23rOC
/

Error Message " "

Turn on Format Mode EseW

Unlock Keyboard Eseb

When you turn on format mode, this automatically returns the cursor to the home position. To move
the cursor to the appropriate field automatically, you must specify the necessary row/column posi-
tioning. (The terminal user could also use the TAB key to position the cursor.)

To insert an error message on the line below the filled-in error, enter the function requests shown
below:

Function Entry

Lock Keyboard Esec

Turn off Format Mode Ese X

Cursor Down EseB

Insert Line EseL (positioned at beginning of line.)

Error Message " "

Turn on Format Mode EseW

Unlock Keyboard Eseb
-

The application program would use the READTERM procedure to return the data back into the
buffer. READTERM reads the entire screen. The program could maintain a separate buffer and
pick up only the field in error, move it to the original buffer, and continue with the normal pro-
gram edit cycle.

If the terminal user might also see additional errors (logically-related fields) and correct them, the
application program should re-edit the entire buffer contents.

NOTE

A display enhancement that indicates a field in error should be turned off after the
editing is complete, a related message should be blanked out, and any inserted line
should be deleted. The escape codes would be very similar to those indicated above.

9-15

· C\

(

c-

(

CORRECTING ER "mIM.RORS I x I

All error messages appearing on your screen from DEL are generated by the program FORMAINT. If
an error is caused by incorrect data that you entered, the field containing the data blinks (if your
terminal has the blinking feature). FORMAINT waits for you to correct and re-enter the data.

Table 10-1 lists the DEL error messages, their meanings and probable causes, and the corrective
action you should take. There is also a column indicating which DEL display presents the error
message.

There are two messages that may appear before you select any FORMAINT function:

(1. INPUT DEVICE IS NOT A 264X

FORMAINT checks the input device, which must be an HP 264x terminal. If you are not using
one of these terminals, the above error message appears and the program terminates.

2. CANNOT OPEN INPUT DEVICE
SYSTEM ERROR CODE = nnnri

If FORMAINT cannot open your terminal as an input file, the above message appears on the
screen and FORMAINT terminates. The nnnn parameter indicates an error code returned to
FORMAINT by the MPE intrinsic FCHECK. Refer toMPE Intrinsics Reference Manual, (part no.
30000-90010) for meanings of error codes listed under the FCHECK intrinsic.

The message listed below may appear at any time you are using the terminal.

UNRECOVERED TERMINAL ERROR, CODE=nnnn.ABORT?

An unrecoverable terminal error occurred. The nnnn parameter indicates an error code returned
by the MPE intrinsic FCHECK. Refer to MPE Intrinsics Reference Manual for meanings of error
codes listed under the FCHECK intrinsic. If you enter a YES in response to the prompt
ABORT?, FORMAINT aborts the current operation you are performing and returns to the
Function Selection Display (figure 3-4). You must then restart the operation that was inter-
rupted by the above error message. If you enter any response other than YES to the ABORT?
prompt, FORMAINT attempts to continue the current operation, ignoring the terminal error.

Table 10-1. Error MessagesGenerated by FORMAINT

MESSAGE DISPLAY MEANING CORRECTIVE ACTION
FIG#

BOTH D AND G STRAPS MUST - In order to operate in line Put straps in
BE CLOSED mode, FORMAINT requires and rerun FORMAl NT.

that the D and G straps be
closed on 2640A, 2640B
and 2644A terminals.

10-1

-----'------- ----------- ------~- ----------~---- --~.'-'---'-.-----.--.---------

Table 10-1. Error Messages Generated by FORMAINT (continued)

DISPLAY
MESSAGE FIG. # MEANING CORRECTIVE ACTION

EDIT PROCEDURE NAME 3-7 You entered an edit proce- Refer to Edit Procedure
IS INVALID dure name that does not Name in Section III and

begin with an alphabetic enter valid edit procedure
character, or that contains name.
a special character; or you
omitted a procedure name
where one is required.

FILE IS INACCESSIBLE 3-4 Another user is presently When file becomes access-
accessing the form file. ible, enter the val id name
FORMAINT opens the of your form file in the
form file for exclusive designated input field and
access by one user at a press ENTER.
time.

NOTE: Many users, how-
ever, may access the form
file for data entry through
application programs.

FILE CANNOT BE OPENED 3-4 FORMAINT cannot open Refer to Appendix G for
ERROR CODE=nnnn the form file you specified. error code meanings listed

nnnn parameter indicates under FCHECK intrinsic.
an error code returned by Correct error condition,
the FCHECK intrinsic. then enter the valid name

of your form file in the
designated input field and
press ENTER.

FILE IS NOT A FORMS 3-4 You specified an existing The file may be another
FILE file that is not a form file. program/data file on the

FORMAINT operates on system. Check accuracy of
form files only so that data file name, enter the valid
in another file is not de- name of your form file in
stroyed by accident. the designated input field,

and press ENTER.

FILE NAME REQUIRED 3-4 You did not enter a form Enter the valid name of
file name. your form file in the

designated input field and
- press ENTER.

FLAG # IS INVALID 3-7 You entered a number Refer to Test Flag # Be-
other than 1 through 16 fore Edit in Section III. If
or a blank in response to a flag is required, enter a
a prompt for a flag. number from 1 through 16.

Otherwise, enter a blank.

FORM ALREADY EXISTS 3-5 You specified a form that Check accuracy of form
IN filename already exists in the form name and enter valid form

file. name in the designated in-
put field. To select another
function, press fSc (on
2640) or fS.
Function Selection Dis-
play will appear on
terminal.

10-2

(

Table 10-1. Error Messages Generated by FORMAINT (continued)

DISPLAY
MESSAGE FIG. # MEANING CORRECTIVE ACTION

FORM DEFINITION EXCEEDS 3-7 Form contains one or more Decreasethe size of the line
SYSTEM CAPABILITY lines that exceed 216 char- and reenter the form.

acters in length. (Limitation
on MPE-C operating system.)

FORM DOES NOT EXIST 3-9 You specified the name of Check accuracy of form
IN filename 3-10 a form that does not re- name and enter valid

3-12 side in the form file. name of form to be modi-
fied, displayed, or deleted.

FORM FI LE ACCESS ERROR 3-4 FORMAINT encountered Refer to Appendix G for
CODE = error number a read or write error when error number meaning listed

accessing your form file. under FCHECK intrinsic. Cor-
rect error condition and run- FORMAINT again.

FORM FILE IS FULL 3-5 There is no space available Specify another form file
in the specified form file to contain the new form
for a new form. by entering the valid form

file name in the designated
input field and pressing
ENTER.

FORM FI LE NAME 3-4 You entered an inval id Refer to Section III for
INVALID form file name. form file name require-

ments and enter the val id
name of your form file in
the designated input field;
then press ENTER.

FORMAl NT MUST HAVE UP- 3-4 Form file-does not allow Change the accessmode of
DATE ACCESS TO FORMS read/write access. the form file to INOUT
FILE (read/wri te).

INVALID ROW ADDRESS 3-7 Data in form file may be If output during DISPLAY
3·10 invalid. function, delete and reenter

form. If output during Edit
specification, check form by
displaying and delete and reo

- enter if necessary.

FORM NAME REQUIRED 3-5 You did not enter a form Refer to Form Name in
name. Section III and enter valid

form name in the designa-
ted input field.

LIST FILE CANNOT BE 3-10 The output file for the Refer to MPE Intrinsic
ACCESSED, ERROR form listing cannot be Reference Manual for
CODE=nnnn accessed.nnnn is the error code meanings listed

error code returned to under FCH ECK intrinsic.
FORMAINT by the Correct error condition;
FCHECK intrinsic. then enter valid file name

for output file.

NO FUNCTION SELECTED 3-4 You did not select a func- Enter an X in front of the
tion from the list dis- desired function, and press
played. ENTER.

10-3

--------------~.--~-- ...-..-------.--.-----------.---

Table 10-1. Error MessagesGenerated by FORMAINT (continued)

MESSAGE DISPLAY MEANING CORRECTIVE ACTION
FIG#

NO ROOM IN FILE FOR 3·9 Form file is too small to Specify another form file to
MODIFY accommodate newly contain the new version of the

modified form. form and recreate the form.

SELECT ONE - RANGE 3·7 You specified more than Select only one of the
CHECK, FILE LOOK·UP one of the following en- entries and enter the
OR EDIT DEFINED DATA tries for an input field: appropriate information.

1) Range Check
2) Look-up Procedure File

Name
3) Characters (for edit-

defined data)

(

10-4

DA.TA AREA FORMATS IUHlIH5.. I A J,
\

DEL/3000 COMMUNICATIONS AREA
J

The DEL communications area contains information that enables DEL to keep track ofwhat form your
applications program is currently using, what field of the form is presently being accessed, and what
editing applies to this field.

The communications area contains 128 words of contiguous storage as shown in table A-I. In this
table, the contents of the communication area are described, and the data type of each word is noted.

(
Although in most programming applications you will be concerned only with word 1, the DELl3000
status word, there may be special applications where other words in the communications area are of
importance to your program. If, for instance, you want to read data from a terminal, but have not
displayed a form from the form file on the terminal, you should: .

1. Set word 27 to indicate the number of input (unprotected) fields on the terminal screen.

2. Set word 28 to indicate the total bytes to be transferred from the screen. Since there are field
separators for each field, calculate the total bytes by adding the total number of fields to the total
length of input data characters.

If you want to operate in LINE mode, you should set word 3 of the communications area to a
negative value before OPENTERM is executed.

If you want the default values for block mode operation, you should set the first ten words of the
communications area to binary zeros.

A-I

Table A-I. DEL/3000 Communications Area Format

WORD DATA
NUMBER TYPE CONTENTS

1 Binary DELi3000 status word

2 Binary MPE file identifier for the terminal file

3 Binary Terminal mode (line/page)

4 Binary Terminal allocation information

5 Binary Data overrun logging

6 Binary Read timeout logging

7 Binary Other data error logging

8 Binary Maximum number of retries

9 Binary Suppressmessagesin OPENTERM and CLOSETERM and enable
autoread feature in READTERM

10 Binary Environment information

11 Binary Reserved

12 Binary MPE file identifier for the forms file

13-20 Character Current form name

21-22 Binary First record number of form definition

23 Binary Length of form definition

24-25 Binary First record number of edit specifications

26 Binary Number of edit specifications

27 Binary Number of input fields in form

28 Binary Length of input data -t fJ "J...-t--.-.(h~Us

29-36 Character Next form name

37-40 Binary Reserved for GETFORM

41-42 Binary Beginning record number of next block of form to be delivered by
GETFORM

43 Binary Length of form definition not yet delivered by GETFORM
When zero, all of form has been displayed.

44-45 Binary Number of record containing current edit specifications

46 Binary Number of edits specified for this form-
47 Binary Number of input fields still to be processed for this form

48 Binary Number of edits not yet executed for this field

49 Binary Number of forms in the file

50-58 Binary Reserved for the forms file procedures

59 Binary Edit procedure flags

60-128 Binary Available for user-written input edit procedures

("

CONTENTS OF 3 THROUGH 10

A detailed description of the way in which DEL uses words 3 through 10 of the communications
area is provided below. You may want to modify certain bits in these words if you do not want the
default terminal modes that DEL provides.

A-2

TERMINAL MODE INFORMATION (WORD 3)

bits:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P E F x TERMTYPE 0=2640A 8 G· D
from logon 1=26408

2=2644A
3=2645A
3=2645K
3-2641 A
3=2648

P: O=allow 2641,2645,2648 programmatic switch settings (positive);
1=use 264x physical switch settings (negative)

E: O=echo was on before OPENTERM, now off;
1=echo was off

F: O="DEV= ... " used in file equate, not $STDIN;
1=file is $STDIN/$STDLlST

8: 1=Block Mode key down at last status request in OPENTERM;
O=Block Mode key up.

G: 1=strap G out (required for block mode/page)
O=strap G in (required for block mode/line)

D: O=strap D out (required for block mode/page)
1=strap D in (required for block mode/line).

x: reserved

If this word is negative when OPENTERM is called, the automatic setting of the BLOCK MODE key
and BLOCK MODE/PAGE straps is bypassed (the physical switch settings are used, no programmatic
settings are done ~If you want to use the programmatic features, you should set this word to zero or
a positive value before OPENTERM is called_

The only portion of this word that is controllable by the user program is the sign bit (P, above).
All the other bits are set by OPENTERM after it is called. READTERM and CLOSETERM make
use of these values. OPENTERM sets the devicefile TERMTYPE (terminal type) to 10, unless it is
already set to 10 or it is a multipoint terminal (terminal type 14) or Katakana terminal (terminal
type 12). Upon normal termination of CLOSETERM, the ECHO, MPE SETMSG, and log-on MPE
TERMTYPE values are restored if the terminal devicefile is $STDIN/$STDLIST.

TERMINAL ALLOCATION INFORMATION (WORD 4)

bits:
2 3 4 5 6 7 8 9 10 11 12 13 14 15

TYPE SPEED

A-3

TYPE is the MPE TERMTYPE for a terminal allocated by OPENTERM. SPEED is the input/output
speed (in characters per second) for a terminal allocated by OPENTERM. If TYPE or SPEED is
zero when OPENTERM is called, then the default values (TYPE = 10 and SPEED = 240) are used.
TYPE and SPEED are applicable only when the terminal devicefile is something other than $STDIN /
$STDLIST and :DATA has not been used. In other words, they are used only when you have speci-
fied a :FILE command using the DEV= parameter to define the terminal.

DATA OVERRUN LOGGING (WORD 5)

bits'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

reserved OVERRUN COUNT

OVER RUN COUNT is the number of data overruns that were encountered in the previous call to READ·
TERM. (

READ TIMEOUT LOGGING (WORD 6)

bits'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

reserved TIMEOUT COUNT

TIMEOUT COUNT is the number of read tirneouts that were encountered in the previous call to READTERM.

OTHER DATA ERROR LOGGING (WORD 7)

bits'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

reserved DATA ERROR COUNT
(

DATA ERROR COUNT is the number of recoverable errors other than data overruns and read timeouts that
were encountered in the previous call to READTERM.

MAXIMUM NUMBER OF RETRIES (WORD 8)

value = 0
value> 0
value < 0

use default value (4 retries)
use this value as maximum
do not perform any retries

Up to the given number -of data overruns, read timeouts, and other errors may occur with automatic recovery.
After the last retry, the appropriate MPE file error number is returned in the STATUS word in COMMAREA.
If the retry recovery artemptls) were successful, the value returned in the STATUS word is 0 if no other errors
were detected, and the number of retries are reported in COMMAREA(4), COMMAREA(5), and COMMAREA
(6) (zero-origin).

A-4

SUPPRESS MESSAGES IN OPENTERM AND CLOSETERM, AND ENABLE AUTOREAD FEATURE IN
READTERM (WORD 9)

bits'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

reserved R M

M: O=display mode messages.
1=suppress mode messages.

R: OO=suppress AUTOREAD special feature.
01=enable AUTOREAD special feature.
(This feature is used internally by DEL.)

If this value is odd (M=l) when CLOSETERM is executed, the message "REMEMBER TO UN-
LATCH THE BLOCK MODE KEY." is not given by CLOSETERM. If this value is even (M=O)when
CLOSETERM is executed and BLOCK MODE is not cleared programmatically, the message is dis-
played.

If this value is odd (M=l) when OPENTERM is executed, the mode set message is not given by
OPENTERM. If this value is even (M=O)when OPENTERM is executed, the message is displayed.
The mode set message will be either "BLOCK MODE/PAGE IS SET." or "BLOCK MODE/LINE IS
SET.".

If R is binary 01 when READTERM is executed, the AUTOREAD feature is used by READTERM;
otherwise, the normal data entry mode is used. The AUTOREAD feature causes READTERM to
send an "ESC d" to the terminal instead of waiting for the ENTER key to be pressed. This feature
allows for performance measurements to be taken.

To invoke the default conditions, set this word to zero. The upper bits of this word are reserved for future use
and should always be set to zero. Examples: 0=> M=O, R=O. 1 => M=l, R=O. 2 => M=O, R=Ol. 3 => M=l,
R=01.

ENVI RONMENT INFORMATION (WORD 10)

bits'
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

reserved CPU

CPU: O=MPE-C, l=non-MPE-C

A-5

EDITING SPECIFICATIONS TABLES

The DEL Editing Specifications Table (table A-2) denotes the editing to be performed on each
unprotected field of the current form. DEL creates a separate table, in the format shown, for each
instance where an editing procedure is called by an applications program. If no editing procedures
apply to a field, one Editing Specifications Table is created for that field with bytes 15 through 16 set to
zero and bytes 17 through 72 remaining blank. The information in this table is placed in the pro-
gram buffer specified by the editdef parameter when calling NEXTEDIT, ALPHAEDIT, or EDIT-
FIELD.

T~ble A-2. Edit Specifications Table Format

BYTE
NUMBER CONTENTS

1-3 Field location (row number)

4-6 Field location (column number)

7-10 Field location (offset from beginning of input record)

11-14 Field length

15-16 Number of edits for this field

17-32 Edit procedure name

33-34 Test flag number

35-36 Set flag number

37-38 "Same as" flag number

39-40 "Opposite from" flag number

{41-56} Range (low value)
57-72 Range (high value)

or

{41-72} File look-up (file name)

- or
{41-72 } Procedure defined data

(

A-6

The form file is a direct access file containing definitions for each form in the file. The format of the file
is described in table B-l.

As shown in the table, the first record (record 0) is set aside as a file ID, or identification record,
containing data about the entire file. DEL uses this record to verify that the file is a form file.

The following records (records one through n) are directory records containing data on each form in the
file; n is determined by dividing the file capacity by 100.

The remaining records are form definition records and input/edit description records. The file contains
at least one form definition record for each form in the file, and an input/edit description record for
each unprotected field in the form. The input/edit description records are used to create the Edit
Specifications Tables as described in Appendix A. If no editing procedures apply to a field, bytes 9
through 10 are set to zero and bytes 11 through 62 are left blank in the input/edit description record.

Tables B-2 through B-5 show the record format of each record in the form file:

Table B-2 describes the format of Record 0, the file ID record.

\ Table B-3 describes the format of Records 1 through n, the directory records.

Table B-4 describes the format of the form definition records.

Table B-5 describes the format of the edit specifications records.

{.

B-1

--~.------~~--------

Table B·lo Forms File Format

RECORD NO. CONTENTS

Record a File ID Record

Records 1 Directory Records
through n

n=file capacity/lOa

Remaining Records Form Definition Record *

Form Definition Record

Input/Edit Description Record **

Input/Edit Description Record Form 1

·
·

Form Definition Record

Input/Edit Description Record

· Form 2

·
·

Form Definition Record

}Input/Edit Description Record
Form 3

Input/Edit Description Record

Input/Edit Description Record

· Additional
Forms

·

* At least one form definition record for each form in the file.
**One input/edit description record for each input field in each form.

B·2

(

\:•.

(

Table B-2. File ID Record Format

I

''-" BYTE DATA
NUMBER TYPE CONTENTS

1-28 Character Fully qual ified file designator (filename.groupname.accountname)

29-32 Binary First available record

33-36 Binary Number of available records

37-38 Binary Number of forms in file

39-40 Binary Number of directory records in file

41-44 Binary First available directory record

45-47 Binary Not used

48-64 Character File ID character string

(
\, Table B-3. Directory Record Format

BYTE DATA
NUMBER TYPE CONTENTS

1-16 Character Form name

17-20 Binary Record number of first form definition record

21-22 Binary Length of form definition

23-26 Binary Record number of first edit specification record

27-28 Binary Number of edit specifications

29-30 Binary Number of input fields in form

31-32 Binary Lenqthof input data + numb" of fi"d'i
33-48 Character Next form name (if this form is chained t another form)

49-52 Binary Date and time created or modified

53-54 Binary Number of records occupied by this form definition

55-64 Binary Not used

Table B-4. Form Definition Record Format

BYTE DATA
NUMBER TYPE CONTENTS

1-64 Character 64 characters of form (blanks deleted where practical)

B-3

Table B-5. Input/Edit Description Record Format

BYTE DATA
NUMBER TYPE CONTENTS

1-2 Binary Field location (row number)

3-4 Binary Field location (column number)

5-6 Binary Field location (offset from beginning of input record)

7-8 Binary Field length

9-10 Binary Number of edits for this field

11-26 Character Edit procedure name

27 Binary Test flag number

28 Binary Set flag number

29 Binary "Same as" flag number

30 Binary "Opposite from" flag number

{ 31-46} Character Range (low value)
47-62 Character Range (high value)

or
{31-62 } Character File look-up (file name)

or
{31-62 } Character Procedure defined data

(

c

B-4

TERMINAL TYPE CODES Iflithi,

The termtype parameter of the :HELLO command is used by MPE to determine device-dependent
characteristics such as delay factors for carriage returns. The only terminal types allowed when run-
ning FORMAINT or programs calling DEL procedures are 10, 12, and 14. If you enter any other
terminal type, OPENTERM changes the termtype to 10*. Here are the definitions of these terminal
types:

10 HP 2640A/B, HP 2641A, HP 2644A, HP 2645A, or HP 2648A (when used predominantly in
character mode.) (10-240 cps).

12 HP 2645K (Katakana/Roman) Data Terminal.

14 Multi-point terminal.

*If you operating with MPE-C, you should specify terminal type 10. It is not programmatically set
on these systems.

C-1

(

(

'-.

The ASCII Character Set/Collating Sequence is shown in table D-l for your reference.

Table D-l ASCII Code Chart

CONTROL DISPLAYABLE
CHARACTERS CHARACTERS ESCAPE SEQUENCES

7 0 0 0 0 1 1 1 1 0 0 1 1 1 1

BIT. 0 0 1 1 0 0 1 1 1 1 0 0 1 1

4321
5 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0000
NU~ DLE~

SP o «i P ~ PRINT "Z
"" DELETE~ <; "Z

P SPACE CHAR I,

(0001 ~ ."Z, , 1 A Q • Q ~ ""1 ~ INSERT "Z

CURSO~

"'Z

SOH DCl SET CHAR

~ ..
TAB ON SENSE I,

0010
.~ ~ 2 B R b r ~ CLEAR "'Z j

"'(
INSERT""

KEYBO~
~

STX DC2 CHAR
I TAB OFF ENABLE f,

0011

ET~ DC:Z .. 3 C S C 5 ~ ~- "'Z
ROLL "Z, KEYBOA~ ~
UP DISABLE f.

E,

DC~
~ ~- ~ ROLL "Z

ENTER"Z r, ~0100 s 4 D T d t
EOT DOWN

0101

~N~ NA~
"'/0 5 E U e u ~

"'Z
RESE:~

NEXT "Z
"'Z

~
TERMINAL PAGE

"
\ 0110

~C~ SY~
& 6 F v f v PARA-~ ~

"'(
PREV ~

~ ~-,
METER
SEQUENCE PAGE I,

0111 ~
ET~

7 G W 9 w -, ~
CURS~

FORMA~ ~ '<~EL MOOE
RETURN ON I,

1000
,~

CA~
(8 H X h x -. ~\ ~ FORMA~ ~ ~~ MOOE

OFF

1001
-~ EM'\ I 9 I Y I Y

DEFIN~
~ HORI-~ OISPLAX ~ ~

p,T ZONTAL FUNCTIONS
SET TAB ON

~ SU~
-. -, .~

OtSPLA;"'~ ~ ~1010 J Z I I

F CLEAR FUNCTIONS
OSPlY OFF TEST

1011
-"'Z

ESC~
. K I k f

<, -.ERASE,~ STAAT ~~ ~ ~r TO END UN PROTECT
OF LINE FIELD

1100
FF~ FS~

c L \ I "" ~
INSERT~

~ "E"OR~ <;
LOCK

LINE ON

FR~ GS~ ~ ~
OELETE~ ~ "EMOR~ ~1101 - : .. I m I END

UNPROTECT LOCK

LINE FIELD OFF

'110
~O~ ~ > N 1\ n - -, ~ ~ STATUS~ ~ ~AS

1111
"Z

US~ I
, o _ 0 DEL ~ '< "'Z

~ ~ ~t:;1

D-l

(

\

(

DATA ENTRY LIBRARY ChWi.'fi
FORM LAYOUT SHEET I E I

On the next page is a sample Form Layout Sheet that can be duplicated and used as a worksheet in
laying out your DEL forms.

E-l

HEWLETTj PACKARD

10

13

14

15

o

FORM
FILE NAME

DATA ENTRY LIBRARY FORM LAYOUT SHEET

[11111111 11111 II I II I11111111 I I I I I I I I I
I

FORM NAME r I-IT I I 1 I I 1 n-n=r--I]

f{ /""",\

Page

~~~~ J2ME I I 1 I I 1 1 1 I I 1 1 1 I 1 1 I

/'( .~

!

of _

o 1 234 56 789 10 111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879
i Iii i Iii i i ill i i I I Iii i i t Iii i I r Iii i i i I i Iii i i i i Iii i Iii i i i Iii i i Iii i i i i i i i Iii I I I i I I i

~ 6""""""""""""""""""""" I , I , I I I I , I I , I , I I , I , I I I I , , I I , , I I , , I I , , I I

II, I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I , I I I I , I I I I I , I I , , I I I , , I , , , I
12

16, I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
17\ \ I I I \ I I I I \ I I I I \ I I I I I I I I I \ I I I I \ I I I I \ I I I I \ I I I I \ I I I I \ I I I I I I \ I I \ I I I I \ I I I I \ \ I I I \ \ I I I I
18 \ \ I I I \ I I I \ I \ I I I I \ I \ I I I I I I \ I I I I I I I I I I I I I I \ I I I I I I I I I I I I I I I I I I I \ I I I I \ I I I I \ I I I I I I I I I I
19, I I I I I I I I , I I I I I I I I I I I I I I I I I I I I I I I I I I I I i \ I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I \ \ I

~IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11111111111111111111111111111

/i



DATA ENTRY LIBRARY EDITING r;q;Mj.]t:i
SPECIFICATION SHEET I F I

On the next page is a Data Entry Library Editing Specification Sheet that can be duplicated and used
as a worksheet for DEL edit specifications.

,.
(

\

F-l



DATA ENTRY LIBRARY EDITING SPECIFICATION SHEET

Edit Range Check Look-up
Field Edit Procedure Test Flag# After Edit "Same as" "Opposite" Low High Procedure
Name Length Type Name Before Edit Set Flag# Flag# Flag# Value Value File Name Characters

I

I.--

~
I

tv

(i .~ "..., ,~
\ !'1



FCHECK ERROR CODES IrU!iIU1
As indicated in Section X, many DEL error messages include error codes returned by the MPE
FCHECK intrinsic. The following list shows the error codes and indicates what kind of error occurred
to generate the code.

Code
(Decimal)

0
1

2
8

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

I 35
! 36

37
38
39
40
41
42
43

44

45
46

\. 47
48
49

Meaning

End of file.
Illegal DB register setting (typically, a request in split-stack mode when
it is illegal).
Illegal capability
Illegal parameter value.
Invalid operation.
Data parity error.
Software time-out.
End of tape.
Unit not ready.
No write ring on tape.
Transmission error.
Input/output time-out.
Timing error or data overrun.
Start input/output (SIO) failure.
Unit failure.
End of line (special character terminator).
Software abort of input/output operation.
Data lost.
Unit not on line.
Data set not ready.
Invalid disc address.
Invalid memory address.
Tape parity error.
Recovered tape error.
Operation inconsistent with access type.
Operation inconsistent with record type.
Operation inconsistent with device type.
The tcount parameter value exceeded the recsize parameter, but the
multirecord access aoption was not specified when the file was opened.
The FUPDATE intrinsic was called, but the file was positioned at
record zero. "(FUPDATE must reference the last record read, but no
previous record was read.)
Privileged file violation.
File space on all discs in the device class specified is insufficient to
satisfy this request.
Input/output error on a file label.
Invalid operation due to multiple file access.
Unimplemented function.

G-1



Code
(Decimal)

50
51
52

53
54
55
56
57
58

59
60
61
62
63
64
66
67
68
69
71
72
73
77
78
79
80

81
82
83
84

85

86-
87
89
90

91

92
93
94
95
96

Meaning

The account referenced does not exist.
The group referenced does not exist.
The referenced file does not exist in the system (permanent) file
domain.
The referenced file does not exist in the job temporary file domain.
The file reference is invalid.
The referenced device is not available.
The device specification is invalid or undefined.
Virtual memory is not sufficient for the file specified.
The file was not passed (typically, a request for $0 LDPASS when there
is no $OLDPASS).
Standard label violation.
Global RIN not available.
Group disc file space exceeded.
Account disc file space exceeded.
Non-sharable device (ND) capability required but not assigned.
Multiple RIN (MR) capability required but not assigned.
Plotter limit switch reached.
Paper tape error.
System internal error.
Miscellaneous (ATTACHIO) input/output error.
Too many files opened for process.
Invalid file number.
Bounds check violation.
NO-WAIT input/output operation is pending. (Series II only)
There is no NO-WAIT input/output for any file. (Series II only)
There is no NO-WAIT input/output for file specified. (Series II only)
Configured maximum number of spoolfile sectors would be exceeded
by this output request.
No SPOOL class defined in system.
Insufficient space in SPOOL class to honor this input/output request.
Extent size exceeds maximum allowable.
The next extent in this spoolfile resides on a device which is unavailable
to the system (i.e., the device is =DOWN).
Operation inconsistent with spooling; e.g., attempt to read hardware
status.
Spool process internal error.
Offset to data is greater than 255 sectors.
Power failure.
The calling process requested exclusive access to a file to which another
process has access.
The calling process requested access to a file to which another process
has exclusive access.
Lockword violation.
Security violation.
Creator conflict in use of FRENAME intrinsic (user is not the creator).
"BROKEN" terminal read.
Miscellaneous disc input/output error (device may require HP Customer
Engineer attention).

(

(

G-2



Code
(Decimal)

97
98
99

100
101
102
103
104
105
106
107
108
109
110

\

Meaning

CONTROL Y processing requested but no CONTROL Y PIN exists.
Input/output read time has overflowed.
Magnetic tape error. Beginning of tape (BOT) found while requesting a
backspace record (BSR) or a backspace file (BSF).
Duplicate file name in the system file directory.
Duplicate file name in the job temporary file directory.
Directory input/output error.
System directory overflow.
Job temporary directory overflow.
Illegal variable block structure.
Extent size exceeds maximum allowable.
Offset to data is greater than 255 sectors.
Inaccessible file due to a bad file label.
Illegal carriage control option.
The intrinsic attempted to save a system file in the job temporary file
directory.

G-3



(



DEL STATUS WORD SETTINGS \rUtH'1

Table H-llists DEL procedures and shows the meaning of the values returned to the DEL status word.

/
\"

/

"

H-l



PROCEDURE

Table H-l. DEL Status Word Settings

VALUE RETURNED
TO STATUS WORD MEANING

Forms Access Procedures

OPENFORM

FINDFORM

GETFORM

NEXTEDIT

CLOSEFORM

Terminal Access Procedures

OPENTERM

WRITETERM

READTERM

0 Operation successful.
-1 Not a form file.
>0 Error code from "FCHECK".

0 Operation successful.
-1 Form not in form file.
>0 Error code from "FCHECK".

0 Operation successful.
>0 Error code from "FCHECK".
-4 Buffer length is less than 64 bytes long.

0 Operation successful.

(-1 Last edit specification has already been accessed.
>0 Error code from "FCHECK".

0 Operation successful.
>0 Error code from "FCHECK".

o
-1

Operation successful.
Terminal not a 2640/41/44/45/48,or terminal
strapping.

Error code from "FCHECK".

Terminal is incorrectly strapped. If connected

to HP 3000 with MPE-C operating system, ter-
minal must not be strapped for BLOCK MODE/
PAGE and Terminal Mode Information in com-
munications area must be set to negative value
before OPENTERM is called. H strap may not
be removed. If D strap is removed, it is recorn-
mended that G strap also be removed. (

>0
-1002

-2006 Programmatic MPE command :SETMSG has
failed.

Operation successful.
Error code from "FCHECK".

o
>0

o
>0

-1 to -8

Operation successful.
Error code from "FCHECK".

-1 through -8 indicate corresponding function
keys fl through f8 have been pressed.

-1001 Length of buffer for READTERM data is in-
sufficient for BLOCK MODE/PAGE read.
Minimum length is number of characters plus
number of fields plus one. Increase buffer size
or set Terminal Mode Information in communi-
cations area to negative value if BLOCK MODE/
LINE desired.

H-2



Table H-l. DEL Status Word Settings (continued)

(

PROCEDURE
VALUE RETURNED

MEANINGTO STATUS WORD

-1003 Status request sent to 264x terminal before
READTERM was called. Do not send ESCA
(terminal status request) before calling READ·
TERM. Use TERMSTATUS to obtain terminal
status information.

-1004 X On MPE-C operating system, requested read
length exceeds 218 characters.

-2001 X During a BLOCK MODE/PAGE read in READ·
TERM, a DC2 character was expected but some
other character was received (264x problem).

-2002 X After BLOCK MODE/PAGE read in READ·
TERM, a BLOCK TERMINATION character
was expected but some other character was
received (264x problem).

-2003 After BLOCK MODE/PAGE read in READ·
TERM, the number of FIELD SEPARATION
characters received was not number expected
(264x problem).

-2004 After BLOCK MODE/PAGE read in READ·
TE RM, the number of characters received
was not number expected (264x problem).

-2005)( During STATUS read in TERMSTATUS, a
DC2 character was expected but some other
character was received (264x problem).

-2007 Invalid escape sequence received in READ·
TERM (264x problem).

TERMSTATUS 0 Operation successful.
>0 Error code from "FCHECK".

CLOSETERM 0 Operation successful.
>0 Error code from "FCHECK".

-
Input Edit Procedures 0 Data passed edit.

-1 Data failed edit.

Hiqh-Level Interface
Procedures

SHOWFORM 0 Operation successful.
-1 Form cannot be located.

>0,<>:999 Error code from "FCHECK" (WR ITETERM or
READTERM).

>1000 Error code from "FCHECK" (FINDFORM or
GETFORM).

EDITFIELD 0 Operation successful.
-3 Required edit not one of DEL procedures.
-2 Last edit specification has been accessed.
-1 Fai led edit check.
>0 Error code from "FCHECK".

'-.

H-3



(

(



INDEX

\
A Environment information, A-5

Error Messages, 10-1
Escape sequences, special, 6-2After Edit, Set Flag #, 3-6

Alphabetic Data Field, 7--1
Alphabetic Space-Filled Field, 7-2
ALPHA EDIT, 7-1
ALPHAFILL, 7-2
Alphanumeric Data Field, 7-2
ANEDIT, 7-2
Applications of DEL, 1-2
ASCII Character Set, D-1

F

o

FCHECK Error Codes, G-1
Features of DEL, 1-3
Field Editing, 3-13
Field Name, 3-4
File ID Record Format, B-3
FIND FORM, 5-3
Form Creation Display, 3-10
Form Definition Record Format, B-3
Form File

Closing, 5-6
Creation, 3-6
Format, B-1
Opening, 5-1

Form File Characteristics, 3-7
Changing of, 3-9
File space, 3·9

Form File Name, 3-1
Form Layout Sheet, 3-3

Sample, E-2
Form Name, 3-2
FORMAINT

Using, 3-6
Terminating, 3-20

Format of Form File, B-1
Forms

Changing, 3-17
Creating, 3-10
Deleting, 3-19
Designing, 3-1
Displaying, 3-18
Listing, 3-16
Locating, 5-3
Moving to a Program Buffer, 5-4

Function Selection Display, 3-7
Function Selection Display Errors, 3-8

B

BLOCK MODE/PAGE, 2-1, 3-6
Buffers Terminal, 2-2

Length, 6-4

c
Chain to Form Name, 3-4
CLOSEFORM, 5-6
CLOSETERM, 6-7
Closing a Form File, 5-6
Closing a Terminal File, 6-7
COBOL Program, 9-2
Communications area, A-I

Use of, 4-1

\-,

Data Area Formats, A-1
Data error logging, A-4
Data overrun logging, A-4
DEL Procedures, 4-1

Using, 9-1
DEL Status Word Settings, H-2
DEL/3000 Communications Area, A-I
Deleting a Form File, 3-19
Detecting/Correcting Errors, 9-14
Device file, terminal, 6-2
Directory Record Format, B-3
Display Enhancement Features, 3-11 G

GETFORM, 5-4
E

Echo on/off, 2-2
EDITFIELD, 8-3
Editing Fields, 3-13, 8-2
Edit Procedure Name, 3-4
Edit

Procedures, 7-1
Summary, 7-6

Edit Type, 3-4
Editing Specification Sheet, 3-5, F-2
Editing Specifications Tables, A-6
ENHANCE DISPLAY key, 3-11

H

High-Level Interface Procedures, 8-1

I

Interface Procedures, 8-1
Input/Edit Description Record Format, B-4
Input/Output Files, 9-13
Input record size, 6-2

1-1



K R

Katakana
editing, 1·2

Keyboard Functions, 2·3

L

Read timeout logging, A·4
Reading in page mode, 6·4
Reading Input from a Terminal, 6·3
READTERM, 6·4
Record size, input, 6·2
Requesting Terminal Status, 6·5
Retries, maximum number, A·4
Rules for using FORMAINT displays, 3·9

'Length of Unprotected Field, 3·4
Line mode, 2·1, A·1
Locating a Form, 5·3
Look·Up Tables, 9·14 s

M Sales Transaction Forms, 3·2, 3·13
SHOWFORM, 8·2
Strapping, 2·2
System Requirements, 1·5

M11CREATE, 7·5
M11VERIFY, 7·5
Maximum number of retries, A·4
Modulo 11 Check Digit Create, 7·5
Modulo 11 Check Digit Verify, 7·5
Moving a Form to a Program Buffer, 5·4
Multipoint terminals, 2·2,6·4

T

N

Terminal allocation information, A·3
Terminal buffers, 2·2, 2·3
Terminal devicefile, 6·2
Terminal File

Closing, 6·7
Opening, 6·1

Terminal Keyboard Functions, 2·3
Terminal mode information, A·3
Terminal Operation, 2·7
Terminal Requirements, 2·1
Terminal status buffer, 6·6
Terminal strapping, 2·2
Terminal types, 2·7, C·1
Terminating FORMAINT, 3·20
TERMSTATUS,6·5
Test Flag # Before Edit, 3·6
Timeout, 6·4
Transmit only fields, 3·12 (

NEXTEDIT, 5·5
NRANGE, 7·4
Numeric Data Field, 7·3
Numeric Range Edit, 7·4
Numeric Zero·Filled Field, 7·4
NUMRCEDIT, 7-3

o
OPENFORM, 5-1
Opening a Form File, 5-1
Opening a Terminal File, 6-1
OPENTERM, 6-1

p w
Page mode, 2-.1, 6-4
Page Number, 3-4
Parameters, 4-5
Primary terminal status, 6-6
Programs

Executing, 9-13
Preparing, 9-13
Writing, 9·1

WRITETERM, 6·3
Writing Output to a Terminal, 6-2
Writing Programs, 9·1

z
ZEROFILL, 7-4

c

1·2


