HP 3000 Computer Systems

)

FORTRAN /3000

Reference Manual

KA cacianc

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95050

Part No. 30000-90040 Printed in U.S.A. 6/76
Product No. 32102B Update No. 3 Incorporated 5/79

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1979 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a

prior update.

First Edition.
Changed Pages Effective Date
titletoiv., May 1979
XtOX. ..o e e Apr 1978
e Feb 1977
S Z O Feb 1977
O Apr 1978
2-1t02-2. ... e Apr 1978
2-3t024. ... e e e Feb 1977
e Feb 1977
28 . e e e e May 1979
31 . e e Feb 1977
3-2t03-5. e Apr 1978
36 . e e May 1979
3-Tt03-9. e Apr 1978
R Feb 1977
414 L e e May 1979
4-15 L e e Feb 1977
419 L e e Apr 1978
) Feb 1977
B-ltob-la......... .0 ennn. May 1979
58 e e Feb 1977
56t0b5-8. Apr 1978
510to5-12. May 1979
518 . . e e Apr 1978
514 . e e May 1979
516t05-17. e Apr 1978
6-L .. e e e Feb 1977
6-10 . ..o e e Feb 1977
617 e e Feb 1977
618 . . e e May 1979
5 May 1979
e Z Feb 1977
L May 1979
T-17t07-18. e Feb 1977

............. dJun 1976
Changed Pages Effective Date
] Feb 1977
1 Feb 1977
1 May 1979
S Feb 1977
S Feb 1977
8-10 e May 1979
s Feb 1977
9-2t09-3. e Apr 1978
e May 1979
9-4a . .. e e e e Apr 1978
9-7t09-8. e May 1979
T Apr 1978
K Feb 1977
10-2 . .. e May 1979
10-5t0106. e Feb 1977
11-83to114. e e Feb 1977
116tol1l16a........... i .nn Apr 1978
11-8t011-10. oot i Feb 1977
3 1 Apr 1978
1216 ..o e e e e Apr 1978
A e Feb 1977
Ad0. .. e e Feb 1977
B-2toB-3 Apr 1978
) Feb 1977
D-1ltoD-1la. Apr 1978
0 Feb 1977
D17toD-18 e e Apr 1978
FltoF-8 i i Apr 1978
0 o 0 - May 1979
I6 . . Apr 1978
1T May 1979
- Apr 1978

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

First Edition. Junl1976 L L. 32102B.00
Update Package No. 1 Feb1977 32102B.00
Update No. 1 Incorporated May 1977 32102B.00
Update Package No. 2, Aprl1978 32102B.00
Update No. 3 Incorporated May 1979 32102B.00

iv

PREFACE

This publication is the reference manual for the HP 3000
Computer System FORTRAN programming language
(FORTRAN/3000).

The wide range of users of publications such as this was
considered during its preparation and it is hoped that the
needs of all, from the very experienced programmer to
those with little or no experience, have been met. The
cross-reference index at the back of the manual should
allow the experienced user to look up the syntax of the
various statements very quickly. The syntax of all state-
ments is highlighted throughout the manual by greyshad-
ing which, when the referenced page is found, eliminates
the need to search for the necessary information. Simple
(but complete and operational) programs are used to de-
monstrate usage of FORTRAN/3000 statements and con-
cepts.

This publication contains the following sections:

is an introduction to FORTRAN/3000.
The various types of statements are dis-
cussed and simple source programs are
shown in “fixed-field” and “free-field”
formats.

Section I -

Section II - describes FORTRAN/3000 data storage
formats and the concepts of constants
and variables.

Section III - discusses expressions (arithmetic,
character, and logical) and assignment
statements in FORTRAN/3000.

Section IV - describes control statements in
FORTRAN/3000, including GO TO, IF,
DO, CONTINUE, STOP, END, PAUSE,
CALL, and RETURN statements. It also
describes trap handling.

Section V- describes declaration statements. Type,
PARAMETER, DIMENSION,
EQUIVALENCE, COMMON, IM-
PLICIT, EXTERNAL, and DATA state-
ments are discussed. In addition, state-

ment functions are described.

Section VI - discusses inputfoutput statements and
covers READ, WRITE, ACCEPT, and
DISPLAY input and output statements;
DO-implied lists; and the auxiliary
input/output statements REWIND,
BACKSPACE, and ENDFILE.

Section VII - covers FORMAT statements and the use
of the FORTRAN/3000 Formatter.

Apr 1978

Section VIII -

Section IX -

Section X -

Section XI -

Section XII -

Appendix A -

Appendix B -

Appendix C -

Appendix D -

discusses the MPE file system and provides
example programs showing the use of the
file system intrinsics FOPEN, FCLOSE,
and FREAD. Also described are the FOR-
TRAN Logical Unit Table (FLUT), and
the HP 3000 Compiler Library procedures
FSET, FNUM, and UNITCONTROL.

describes the FORTRAN/3000 compiler
commands $CONTROL, $PAGE, $IN-
TEGER*4, $TITLE, $SET, $IF, $EDIT,
and $TRACE.

discusses FORTRAN/3000 intrinsic
functions, basic external functions, and
generic functions.

discusses FORTRAN/3000 main prog-
rams; dummy and actual argument
characteristics; and subroutine, func-
tion, and block data subprograms.

demonstrates how to compile, prepare,
and execute FORTRAN/3000 source
programs. The MPE :JOB, :HELLO,
:FILE, :BUILD, :PURGE, :CONTINUE,
:FORTRAN, :FORTPREP, :FORTGO,
:PREP, :PREPRUN, :RUN, :EOD, :EQJ,
and :BYE commands are discussed. This
section also shows how to create and
maintain relocatable libraries (RL’s) and
segmented libraries (SL’s), and how to call
procedures in these libraries from FOR-
tran/3000 programs.

Additionally, six appendices and one
index are provided, as follows:

discusses non-FORTRAN/3000 program
units and MPE system intrinsics.

outlines differences between
FORTRAN/3000 and the American Na-
tional Standard Institute (ANSI) FOR-
TRAN IV.

lists differences between
FORTRAN/3000 and HP 2100 FOR-
TRAN.

lists and describes error and warning
messages.

Appendix E - contains the American Standard Code
for Information Interchange (ASCID
character set.

Appendix F - contains various techniques to optimize
the use of the FORTRAN compiler.

Index - is a cross-reference index of all topics
covered in this manual.

Other publications which should be available for reference
when using this manual are:

vi

MPE Commands Reference Manual (30000-30009)

MPE Intrinsics Reference Manual (30000-90010)

MPE Segmenter Reference Manual (30000-90011)

Compiler Library Reference Manual (03000-90028)

TRACE/3000 Reference Manual (03000-90015)

EDIT/3000 Reference Manual (03000-90012)

Systems Programming Language Reference Manual (SPL)

(30000-90024)

Apr 1978

CONTENTS

Section I Page
INTRODUCING FORTRAN/3000
What is FORTRAN/3000? 1-1 .
A FORTRAN/3000 Source Program 1-1
FORTRAN/3000 Character Set 1-1
Source Program Content 1-1
Source Program Format 1-3
Fixed-Field Format 1-3
Statements 1-3
Statement Labels 1-3
Comments.............ooiiiiiiiiinaiinnnn... 1-3
Compiler Commands 1-3
Sequencing Information 1-3
Free-Field Format.............................. 1-3
Section II Page
ELEMENTS OF FORTRAN/3000
Data Storage Formats............................. 2-1
Integer Format. 2-1
Double Integer Format 2-1
Real (Floating-Point) Format 2-1
Double Precision Format 2-2
Logical Format 2-2
Complex Format 2-2
Character Format 2-2
Constants 2-2
Integer Constants 2-3
Double Integer Constants 2-3
Real (Floating-Point) Constants 2-4
Double Precision Real Constants 2-4
Complex Constantscoviiieeenea.. 2-5
Logical Constants 2-5
Character Constants............................ 2-5
Composite Numbers 2-5
Number Ranges 2-6
Variables......... 2-6
Simple Variables 2-7
Arrays and Array Names 2-7
Section I Page
WRITING EXPRESSIONS AND ASSIGNMENT
STATEMENTS IN FORTRAN/3000
Expressions e 3-1
Arithmetic Expressions 3-1
Arithmetic Expression Type 3-2
Character Expressions 3-2
Logical Expressions 3-2
Masking Operations 3-4
Partial-Word Designators 3-4
Substring Designators.c.... 3-5
Assignment Statements 3-5
Label Assignment Statements................... 3-7

Section IV Page
WRITING CONTROL STATEMENTS IN
FORTRAN/3000

GO TO Statementsc.cuiiiiiiiinnn. 4-1
Unconditional GO TO Statement 4-1
Computed GO TO Statement.................... 4-1
Assigned GO TO Statement....... 4-4

IF Statements 4-4
Arithmetic IF Statement 4-4
Logical IF Statement 4-7

DO Statement 4-7
Nesting DO Loops. ..., 4-12
Entering and Exiting DO Loops................ 4-12

CONTINUE Statement 4-13

STOP Statementcuiiiiiiiinonnn. 4-14

END Statement i 4-14

PAUSE Statement 4-14

CALL Statementciiiiivrinaenn. 4-15

RETURN Statemento ou.. 4-19

Trap Handling 4-21
Arithmetic Errors 4-21

System Errors 4-22

Basic External Function Errors 4-22
Internal Function Errors 4-22
Format Errors 4-22
Plot Exror 4-26
CONTROL Y ... e 4-26
Abort e e 4-26
Enabling of Traps by User..................... 4-26
Section V Page
WRITING DECLARATION STATEMENTS
IN FORTRAN/3000
Type Statement........................... 5-1
Array Declarators 5-2
PARAMETER Statement 5-3
DIMENSION Statement........................... 5-3
EQUIVALENCE Statement 5-5
Equivalence of Different Types.................. 5.5
Equivalence of Array Elements 5-6
Equivalence Between Arrays of Different
Dimensions 5-8
COMMON Statement 5-8
Labeled Common Blocks 5-8
Character Variables and Arrays in Common
Blockso 5-12
Equivalence in Common Blocks 5-13
IMPLICIT Statement 5-14
EXTERNAL Statement 5-14
DATA Statement 5-16
Equivalence in DATA Statements 5-17
Block Data Subprograms 5-18
Statement Functions 5-18

CONTENTS (continued)

Section VI Page
WRITING INPUT/OUTPUT STATEMENTS
IN FORTRAN/3000

READ Statement 6-1
READ Statement Execution 6-2
READ Statement ERR Parameter 6-10

WRITE Statement 6-10
WRITE Statement Execution 6-10

ACCEPT Statement 6-13

DISPLAY Statement 6-13

DO-Implied Lists iii.. 6-17

Auxiliary Input/Output Statements 6-18

Section VII Page

WRITING FORMAT STATEMENTS IN

FORTRAN/3000

FORMAT Statementscouiinen... 7-1

FORMAT Specifications 7-1
Field Descriptors0 ciiiiiiinnnenan. 7-1

Decimal Numeric Conversions 7-2
Rules for Input 7-3
Octal Numeric Conversion 7-3
Hexadecimal Numeric Conversion 7-3
Logical Conversion 7-4
Alphanumeric Conversions 7-4
Floating-Point Real Numbers................. 7-4
Fixed-Point Real Numbers 7-4
Fixed-Point or Floating-Point Real Numbers .. 7-8
Monetary Form............... 7-10
Numeration Form 7-11
Double Precision Real Numbers 7-12
Integer Numbers 7-14
Octal Integer Numbers 7-16
Hexadecimal Integer Numbers 7-17
Logical (Boolean) Values 7-18

Leftmost ASCII Characters Field Descriptor .. 7-19
Rightmost ASCII Characters Field

Descriptor 7-20
Strings of ASCII Characters Field
Descriptorot 7-22
Scale Factorc..oooi it 7-22
Repeat Specification for Field Descriptors....... 7-25
Edit Specificationscooi i 7-25
Edit Descriptors..........ccciiiii.. 7-25
Fixed ASCII String Edit Descriptor 7-25
Alternate Fixed ASCII String Edit
Descriptor ... 7-26
ASCII String (Modifiable) Edit
Descriptor 7-27
ASCII Blanks Edit Descriptor 7-28
(Tabulate) Edit Descriptor 7-28
Record Terminator Edit Descriptor 7-29
Carriage Control 7-30
Repeat Specification for Edit Descriptors 7-30
Specification Interrelationships 7-30

viii

Nestingo 7-31
Unlimited Groups, 7-31
Free-Field Input/Output 7-31
Free-Field Control Characters 7-31
Free-Field Input 7-31
Data-Item Delimiters 7-32
Decimal Data 7-32
Octal Data 7-32
Character String Data 7-33
Record Terminator 7-33
List Termination 7-33
Free-Field Output 7-33
Data Item Delimiter 7-33
Record Terminators 7-33
Unformatted (Binary) Transfer................. 7-33
Input/Output of Complex Numbers 7-33
Section VIII Page
FORTRAN/3000 FILE FACILITY
Referencing Files 8-1
FORTRAN/3000 Logical Unit Table (FLUT) 8-1
Nominal FORTRAN/3000 File Parameters 8-2
Standard Input and Output Files................ 8-2
Creating and Accessing Files 8-3
Copying Files, 8-3
Changing Standard Attributes of Files 8-3
Direct Intrinsic Calls 8-7
FSET Procedureovvinn... 8.7
FNUM and UNITCONTROL Procedures 8-10
Section IX Page

WRITING COMPILER COMMANDS IN
FORTRAN/3000

Compiler Commands 9-1
$CONTROL Command 9-1
BOUNDS Parameter 9-1
CODE/NOCODE Parameters 9-1
CHECK Parameter 9-1
CROSSREF Parameter 9-4
ERRORS Parameter 9-4
FILE Parameter 9-4
FIXED Parameter 9-4
FREE Parameter 9-4
INIT Parameter 9-4
LABEL/NOLABEL Parameters 9-7
LIST/NOLIST Parameter 9-7
LOCATION/NOLOCATION Parameters 9-7
MAP/NOMAP Parameters.................... 9-7
SEGMENT Parameter 9-7
SOURCE/NOSOURCE Parameters............ 9-7
STAT/NOSTAT Parameters 9-7
USLINIT Parameter 9-8

CONTENTS (continued)

WARN/NOWARN Parameters 9-8
MORECOM Parameter 9-8
$PAGE Command 9-8
$TITLE Command 9-8
SINTEGER*4 Command 9-9
$SET and $IF Commands....................... 9-9
$EDIT Commandccoiiiiiiniunnn.. 9-9
$EDIT Command Parameters 9-10
$TRACE Command 9-11
Section X Page

FORTRAN/3000 INTRINSIC FUNCTIONS
AND BASIC EXTERNAL FUNCTIONS

Function References 10-1
FORTRAN/3000 Intrinsic Functions 10-1
Basic External Functions 10-1
Generic Functions., 10-2
Section XI Page
WRITING MAIN PROGRAMS AND
SUBPROGRAMS IN FORTRAN/3000
Main Programs 11-1
Subprograms 11-1
Dummy and Actual Argument Characteristics .. 11-1
Subroutine Subprograms 11-3
Function Subprograms 11-4
Multiple Entry Points 11-6
Block Data Subprograms 11-8
Statement Functions 11-13
Non-FORTRAN/3000 Language Subprograms 11-13
Section XII Page
COMPILING, PREPARING, AND EXECUTING
SOURCE PROGRAMS IN FORTRAN/3000
MPE/3000 Commandsc...c.ooiv.. 12-1
Specifying Files for Programs 12-2
Specifying Files as Command Parameters 12-2
System-Defined Files 12-2
User Pre-Defined Files 12-3
NewFiles i i 12-3
Old Files........ 12-3
Input-Output Sets 12-3
Specifying Files by Default 12-4
Compiling, Preparing, and Executing
FORTRAN/3000 Source Programs 124
:FORTRAN Command 124
:FORTPREP Command 12-5
:FORTGO Command 12-7
PREP Command 12-7
PREPRUN Command 12-10
RUN Command 12-11
Apr 1978

Using External Procedure Libraries 12-11
Relocatable Libraries 12-11
Creating and Maintaining Relocatable
Libraries, 12-11
Segmented Libraries 12-16
Creating and Maintaining Segmented
Libraries ... 12-16
Appendix A Page
NON-FORTRAN/3000 PROGRAM UNITS
SPL/3000 Programsccoiiieiiiiina.n. A-1
Functions Without Parameters A-2
Data Typeso A-2
System Intrinsics ol A-2
Value Arguments oo A-5
Condition Codes ciiiiine.. A-5
Option Variable A-10
Summary A-10
Appendix B Page
FORTRAN/3000 AND ANSI STANDARD
FORTRANiiiiiiiiiiiiiiieiieneannnnnnaens B-1
Appendix C Page
FORTRAN/3000 AND HP 2100 FORTRAN C-1
Appendix D Page
ERROR AND WARNING MESSAGES
Error Messagesc0iiiiiiiiiii.. D-1
Warning Messages0t D-1
Error Position Indication D-1
Undefined Variable Detection D-1
Appendix E Page
ASCII CHARACTER SETcccvviinniinnnnns E-1
Appendix F Page
PROGRAM OPTIMIZATION
CompilationPhase. F1
ExecutionPhase F1
Minimizing Memory Usage F-2
Minimizing Execution Time. F-2
INDEX . oiiiiiiitiiiietiiiitarenranrenennrennons I-1

ILLUSTRATIONS

Title Page
A FORTRAN/3000 Source Program 1-2
FORTRAN/3000 Source Program Punched on

Cards. ... oot e 14
Coding Examples 1-5
FORTRAN/3000 Source Program in Free-Field

Format 1-7
Internal Representation of Integer Values 2-1
Internal Representation of Double Integer

Values. ... 2-1
Internal Representation of Real Values 2-1
Internal Representation of Double Precision

Values i 2-1
Internal Representation of Logical Values 2-2
Internal Representation of Complex Values 2-2
Internal Representation of Character Values 2-2
Partial-Word Designator Examples 3-5
Example of ASSIGN Statement Usage 3-8
Unconditional GOTO Statement Examples 4-2
Computed GOTO Statement Example 4-3
Assigned GOTO Statement Flowchart Example 4-5
Assigned GOTO Statement Example 4-6
Arithmetic IF Statement Example 4-8
Logical IF Statement Example 4-9
DO Statement Example 4-11
PAUSE Statement Example 4-16
PAUSE Statement with Message Example 4-17
Call Statement Example 4-18
RETURN n Statement Example 4-20
Internal, External Function Error Example 4-23
Format Error Example 4-27
Adjustable Array Declarators and Character

Length Exampleco ... 5-4
COMMON Statement Example 5-9
EXTERNAL Statement Example 5-15
Statement Function Example 5-20
Input Record Example 6-2
READ Statement Example 1 6-4
READ Statement Example 2 6-5
READ Statement Example 3 6-6
Mailing List Example 6-7
Direct READ Example 6-8
Core-to-Core READ Example 6-9
Irrecoverable File Error Example 6-11
READ Statement ERR Parameter Example 6-12
Sequential WRITE Example 6-14
Direct WRITE Example 6-15
Core-to-Core WRITE Example 6-16
Input Data (Example 1) 7-2
Input Data (Example 2) 7-2
Ew.d Format Qutput Example 7-6
Scale Factor Examples 7-24
FORTRAN Logical Unit Table (FLUT) 8-1
Example of a FORTRAN/3000 Program to Create

and Accessa File 8-4
X

Title Page
Example of a FORTRAN/3000 Program to Read a
File ... o 8-5
Example of a FORTRAN/3000 Program to Copy
Information from One File to Another............ 8-6
Example of a FORTRAN/3000 Program to Call
FOPEN, FREAD, and FCLOSE Intrinsics 8-8
FSET Example 8-9
FNUM and UNITCONTROL Example 8-11
Output Resulting from FNUM and UNITCONTROL
Example.... 8-12
$CONTROL Compiler Command Example.......... 9-3
$CONTROL FILE Parameter Example 9-5
$CONTROL FILE LOCATION Parameter Example . 9-6
$CONTROL MAP Parameter Example. 9.7a
Main Program Example. 11.2
Subroutine Subprogram Example. 11-5
Typed Real — Without Parameter. 11-6a
Typed Logical — With Parameter 11-6a
Function Subprogram Example 11-7
Entry Names of the Same Type Example 11-9
Entry Names of Different Type Example 11-10
Subroutine Subprogram and an Entry
Point Exampleo 11-11
Multiple Entry Points Example 11-12
:FORTRAN Command Example 12-6
:FORTPREP Command Example 12-8
:FORTGO Command Example 12-9
Creatinga USL File 12-13
Using the Segmenter to Build a Relocatable
Library File ..., 12-14
Calling a Procedure from a Relocatable Library ..12-15
Adding a Procedure to an SL Library File 12-18
Referencing an SL Library Procedure from a
Program.......... ... i il 12-19
Calling an SPL/3000 Procedure from
FORTRAN/3000 ... i, A-3
Calling an SPL Function that does not Require
Parameters i A4
Example of Condition Code Check A-6
SYSTEM INTRINSIC Statement Example A7
Calling a SYSTEM INTRINSIC Function that
does not Require Parameters...................... A-8
Option Variable SYSTEM INTRINSIC Example. ... A-9
Calling the COMMAND Intrinsic A-11
Undefined Variable Detection Example D-2
COMMON Variables Stack Assignment
in Non-Optimized Order. F-3
COMMON Variables Stack Assignment
inOptimizedOrder F-4
Less Execution Time — No Format Statement F-5
FORMAT Statement (100) Causes
ExternalCalls. F-6
X=Y Generates an Implicit Call to BLANKFIL F-1
Less Run-Time with the Changed Assignment
Statement X[1:2]=Y..................... F-8

Apr 1978

TABLES

Title Page
Composite Numbers............................... 2-6
Number Ranges in FORTRAN/3000................ 2-7
Truth Table for Logical Operators 34
Logical Operations on 16-bit Logical Values 3-4
Substring Designators............................. 3-6
Assignment Statementsl 3-7
Conversion Between Types 3-9
Ewd Output 7-5
EBwdInput 0. 7-7
Fwd Output 7-7
FwdlInput 7-8
Gwd Output 7-9
GwdlInput.......... 7-10
Mw.d Output 7-11
Mw.dInput ... i 7-12
Nw.d Outputcoviiii .. 7-13
NwdlInput...... 7-13
Dwd Output ... 7-14
DwdlInput.........c. i, 7-15
TwOutput 7-15
TwInput 7-16
OwOutput ... i 7-16
OwlInputcoooiiiii i 7-17
Zw Output ... 7-18
ZwlInput ... 7-18
LwOutput 7-19
LwInput.......... 7-19
Aw Output ... 7-20
Awlnput 7-20
Rw Output 7-21

Title Page
Rwlnput......... 7-21
SOutputo 7-22
SInput ... 7-22
Scale Factor for Nested Groups 7-23
Scale Factor for Ew.d OQutput 7-23
Scale Factors for Fw.d and Mw.d Output 7-23
Scale Factor for Input............................ 7-25
“ ... " Edit Descriptor Output 7-26
“...7" Edit Descriptor Input 7-26
¢. .. Edit Descriptor Output 7-26
*. .. Edit Descriptor Input 7-27
nH Edit Descriptor Input and Output 7-27
nX Edit Descriptor Output 7-28
nX Edit Descriptor Input......................... 7-28
Tn Edit Descriptor Input and Qutput 7-29
/ Record Terminator Edit Descriptor Examples7-30
Format Control 7-31
Free-Field Control Characters7-32
Nominal FORTRAN/3000 File Parameters 8-2
Summary of Compiler Commands.................. 9-2
FORTRAN/3000 Intrinsic Functions 10-3
Basic External Functions 10-6
List of Generic Functions 10-7
MPE/3000 Commands 12-1
System-Defined Files 12-2
New Files 12-3
OldFiles ...t 12-3
FORTRAN/3000 Compiler File Designators 12-4

FORTRAN/3000 Warning and ERROR Messages ... D-3

Xi

INTRODUCING FORTRAN/3000

SECTION

1-1. WHAT IS FORTRAN/3000?

Hewlett-Packard FORTRAN/3000 language is based on
the American National Standard Institute’s Standard
FORTRAN (X3.9 - 1966) and is used with the HP 3000
Computer System.

To provide a more powerful programming language,
FORTRAN/3000 extends beyond the Standard FORTRAN.
Some of these extensions are:

e Program entry can occur in a free-field format as well as
a fixed-field format.

o Symbolic names can consist of as many as 15 characters
instead of just six.

e Subprograms written in other programming languages,
notably SPL/3000 (Systems Programming Language for
HP 3000), can be called by FORTRAN/3000 statements.

A complete list of FORTRAN/3000 extensions beyond
Standard FORTRAN (and some minor restrictions to con-
form with the HP 3000 Computer System architecture) is
presented in Appendix B of this manual.

1-2. A FORTRAN/3000 SOURCE
PROGRAM

FORTRAN/3000 code which is entered into the computer
from, for example, a card reader or a terminal,is the source
program.

The source program is translated into internal form (object
program) by the HP 3000 Computer System
FORTRAN/3000 compiler and this object program is stored
on disc. The segmenter subsystem then prepares the object
program into linked code segments, the [oader binds the
segments from the program file to referenced external
segments from a library and creates a process to run the
program, and, finally, the dispatcher schedules the
execution of the program.

A short FORTRAN/3000 source program is shown in figure
1-1 in coded form preparatory to being entered into the
computer. The program increments a value from 1.0 to 10.0
and computes and prints the square root and the reciprocal
of the value.

The four lines following PROGRAM FIXED are
comments. Comments are non-executable and are inserted
in a program to assist in understanding the purpose of the
program. The next two lines (10 and 20) are FORMAT

statements which specify the format of the data to be
printed out. The WRITE statement prints out the head-
ings NUMBER, SQUARE ROOT, and RECIPROCAL in
accordance with the format defined in FORMAT state-
ment number 10. (The other number (6) in parentheses in
the WRITE statement specifies the FORTRAN/3000 logi-
cal unit to be used for the printout.)

The DO statement (DO 30 I = 1,10) causes all executable
statements succeeding it (through statement number 30) to
be executed 10 times. The statement, ROOT = SQRT(A),
calls the external function SQRT to compute the square
root of A. The first time the DO loop is executed, A = 1.0;
and A is incremented each time the DO loop is repeated
until, after 10 iterations, A = 10.0. The statement, RCPL =
1/A, computes the reciprocal of A by dividing it into 1. The
WRITE statement prints the value of A and the square root
and the reciprocal of the value. Statement number 30 in-
crements A by 1.0 and the DO loop then is repeated.

The STOP statement causes termination of program ex-
ecution and the END statement informs the compiler that
there are no more lines of code in this program unit.

1-3. FORTRAN/3000 CHARACTER SET

A FORTRAN/3000 source program is written using al-
phabetic characters A through Z, numeric characters 0
through 9, and any other printing ASCII character. See
Appendix E for a listing of the complete ASCII character
set.

Blanks may be used anywhere within the body of a
FORTRAN/3000 statement. They are ignored by the com-
piler except in Hollerith and string constants, where they
represent blank characters. Those cases where blankshave
special meanings when used outside the body of a
FORTRAN/3000 statement are explained in this manual
where applicable.

1-4. SOURCE PROGRAM CONTENT

FORTRAN/3000 source programs are composed of lines of
code signifying statements, comments, or compiler
commands. The lines of code are arranged into a main
program, and (as necessary)subroutine subprograms, func-
tion subprograms, and block data subprograms. A main
program is a set of FORTRAN/3000 statements and com-
ments not containing a FUNCTION or SUBROUTINE
statement. A subroutine subprogram is defined by
FORTRAN/3000 statements and headed by a SUB-
ROUTINE statement. A function subprogram is defined by

1-1

HEWLETT-PACKARD FORTRAN CODING FORM

T T TPRleflRlms Tefe el T I T T
el [[] 1 T [[1
| |riu[ifs| [elrlofalRalM] |clojmipu|Tiels| [alnlo] Je[r|t[nfris] [riu]e] Islalv]alr]e] Rlofe[r]s

c| ano| [rhe REC!I PIRolciALIS! OF |THE Rleac v[alrve 1]. ¢| ITv|RlV |4i8]. @ ;

i lﬁyFo‘RNA‘T(‘d’,TJJ ‘?‘@%u\nintn"‘,raz, “s|qu alR] :noo}r”‘ TJ27%“’;{ECI‘PRQC
1 [2lg] lelolrblairlc[gl [l2] [Flal.ls[[rls1al Tel7]. 4], Trllel Telzl.TaD] [TTTTT T
1 7T] el ivlelcie], 2eD L L N R L
Tt T T T T NEARREREEN
I DTO 3|9 ‘r=1,1l¢ lL n ‘ j ! : %

Cl | i ; 3 s ‘

| rwel NexT srngzn'sn-r clacelsi Tuel exTleleulad ?@u'c\ﬂ@lu] s qiriv”

[LT EIRRENERENERNNEEN IENARRRENEE

T Relotrl=lswrirfan] [[TT1 TT1 L] LI

BRNGERAEAD [BAREREREREAE! SRRRERRNERRRENARREEE
wr 1 Tle o, 2|6) A RloolT RlcP'L T 1

3¢ A-A+lt. o L

e il e B et e e
e e e el

| !) i ! |

BREERERERNNEEEE N I \ [] [Ty l |

o EER R e

o e ey e i et
] [T ; ‘ ARNEN
EENE AN | | _H

ARASNESANNERN NEARYRNSARNENSARNNRRNE
L il _.__HT‘ Pl f ‘ DA U N S

SSn s i RNNNRAEEREUNASTES Snmwt i
EREBNENENRRE BANNNN l ENINEEN ERENNEEN]
Y | T] 1A Bl NRERNRREN
NERARRRNERN ERERENEE! | [] HARRRANER!
| BEENE 1 | A N AN SRR
‘ ‘. RN BTN 0 ENEI A
0 R N R AN BRRAY FEREY I IR RN ‘

LINE TERMINATED BY ELTRN LINE FEED % LF1
LINE 15 DELETED 8Y R80T BLFORE & LT

50806595

Figure 1-1. A FORTRAN/3000 Source Program

FORTRAN/3000 statements and headed by a FUNCTION
statement. A block data subprogram consists of a BLOCK
DATA statement, and, as necessary, IMPLICIT, COM-
MON, DIMENSION, EQUIVALENCE, Type, and DATA
statements.

The general order of a FORTRAN/3000 source program,
shown punched on cards in figure 1-2, is as follows:

1.

2.

1-2

Compiler commands which direct compiler action.

Declaration (or specification) statements which define
the characteristics of data used in the program. Decla-
ration statements are non-executable and,if used,
must appear before the first executable statement in
each program unit.

Executable statements. Some types of executable
statements are:

ARITHMETIC statements which specify numeric cal-
culations.

LOGICAL statements which specify logical calcula-
tions.

GO TO statements which pass control from one state-
ment to another statement in the same program unit.
IF statements which evaluate an expression and trans-
fer control to other statements depending upon the
result of the evaluation.

DO statements which cause statements to be repeated
a specific number of times.

INPUT/OUTPUT statements which transfer informa-
tion between memory and external files, or between
different locations in memory.

FORMAT statements which, although not executable,
are included in a source program to specify the format
of data to be transferred.

4. Comments, which are non-executable and merely aid
in interpreting the purpose of the program. Comments
may be inserted anywhere in a source program.

5. Subprograms, which are self-contained computational
procedures that require activation by the main prog-
ram or another subprogram, are included in source
programs to perform special functions such as solving a
mathematical problem or performing a sort.

6. END statements. All separately compiled program
units (main programs and subprograms) must be ter-
minated by an END statement.

1-5. SOURCE PROGRAM FORMAT

A line of FORTRAN/3000 code can contain as many as 80
characters (including blanks). The character positions
(columns) are numbered from 1 to 80. Characters placed in
columns 73 through 80 (fixed-field format, see paragraph
1-6) or the characters up through the first blank (free-field
format, see paragraph 1-12) are not part of the program
body (text), but are used by the compiler for sequencing
information.

1-6. FIXED-FIELD FORMAT

In fixed-field format, the characters in FORTRAN/3000
lines of code must be placed in specific column order. (Refer
to the source program shown in figure 1-1.) The purpose of
the columns is explained in the following paragraphs.

1-7. STATEMENTS. A FORTRAN/3000 statement
can be of two types: executable and non-executable.
Executable statements specify action that the program is to
take; non-executable statements contain information such
as the characteristics of operands, types of data, and format
specifications for input/output information.

The body (text) of a FORTRAN/3000 statement in fixed-
field format must start in column 7 and must not extend
beyond column 72. (Columns 73 through 80 can be used for
sequencing information but are not part of the statement
text.) A single statement may consist of from one to 20
lines. The first line of a statement must contain a zero or
blank in column 6. Continuation lines must contain any
character other than blank or zeroin column 6. As with the
first line of a statement, the text for statement continuation
lines must start at column 7 and cannot extend beyond
column 72.

1-8. Statement Labels. A statement can be labeled so
that it can be referred to by other statements in the prog-
ram unit. (See the fourth line of the first example in figure
1-3.) A label consists of a number in the range of from 1 to

FEB 1977

99999 in columns 1 through 5. Embedded blanks and lead-
ing zeros are ignored by the compiler. For example, 00070,
070, 0b070, and 70 can be referenced elsewhere in the
program unit as 00070, 070, or 70.

Note: Where necessary for clarity, blank
characters are denoted by the letter b
throughout this manual.

Only the first line of a multi-line statement is labeled. If a
statement is not labeled, the first five columns of the line
must remain blank.

1-9. COMMENTS. Comments are inserted in a
FORTRAN/3000 source program to aid in interpreting the
purpose of the program. Comments can be included bet-
ween statements or compiler commands but not between
lines of multi-line statements or compiler commands. A
comment line must contain a C in column 1; positions 2
through 72 contain the text of the comment. Each line of a
multi-line comment must contain a C in column 1. The text
of comment lines cannot extend beyond column 72.

1-10. COMPILER COMMANDS. Compiler com-
mands are not part of the program proper, but are included
with the source program to indicate compiler options, such
as suppressing listings or diagnostic messages. A compiler
command starts with a $ in column 1 and columns 2
through 72 are available for the various compiler com-
mands. Commas (plus blanks if desired) separate each in-
dividual option. If a compiler command requires more than
one line, the initial line and each line which must be con-
tinued must end with an ampersand (&) and each line must
begin with a $ in column 1.

1-11. SEQUENCING INFORMATION. Columns 73
through 80 can be used for sequencing information and
may contain any alphanumeric characters. Sequencing in-
formation allows the programmer to keep track of the cor-
rect order of the FORTRAN/3000 source program and is
especially helpful when the source program is on cards.
Sequencing information is ignored by the compiler unless
the $EDIT command is inserted in the program as a com-
piler command. When the $EDIT command is used, the
following editing capabilities are available.

e Merging a correction program with an old program to
produce a new source program for compilation.

o Checking source program sequence for ascending order.
e Bypassing sections of a source program.

A detailed description of the $EDIT command is contained
in Section IX.

1-12. FREE-FIELD FORMAT

When entering a FORTRAN/3000 source program from a
terminal such as a teleprinter, the fixed-field format often
is inconvenient because of the difficulty in determining col-
umn positions. To overcome this problem, FORTRAN/3000

1-3

SUBROUTINE SUBPROGRAM

CONTINUATION
LINES

DECLARATION
STATEMENT

(:EOJ

(:e0D

(END

ﬁETURN

C END OF SUBROUTINE

 #ARRI3,1)"ARR(3,2)"ARRI(3,3}

#ARR(2,1)*ARR(2,2}*ARR(2,3)*

COMMON ARR(3,3),RESULT

CALL

SUBROUTINE SOLVE

— PR“SQENA“\ (RESULT = ARRI(1,1)*ARR(1,2)*ARR(13)*
SUBROUTINE

{enp
(sTop
Dgg;‘;gﬁg&” (WRITE(6,100)RESULT

COMM

(ARR(1Y) - 53
FORMAT
STATEMENT (001504-13
((001501=13
ENTS

((cALL SOLVE
{150 CONTINUE)
\
COMMON ARR(3,3) RESULT] FJF

({100 FORMAT(T10,F124))
C SOURCE PROGRAM ON CARDS)

(C THIS IS AN EXAMPLE OF A FORTRAN/3000

COMPILER
COMMANDS PROGRAM CARDS
l———>($c0NTROL LABEL MAP

(:FORTGO

(:JOB BATCH.JOB

1-4

Figure 1-2. FORTRAN/3000 Source Program Punched on Cards

STATEMENTS

HEWLETT-PACKARD FORTRAN CODING FORM
e Tow o [=
[oidl T2lals] Tyl<s 1
Rieluluiri=[alch], D elal (2] t2) e]ale]s] [s]l+lalc[2] [+ D]elal(]s EARERINCORDRNAN AR
-hich ! hsal¢ il b[-lcla], D lelalds], oD |-l h b= NHORORINIAAIAD
2115 |CONTII NUIE Il s ; | P |] P
1 o A T |
HEWLETT-PACKARD FORTRAN CODING FORM
e o o e @
e alsl Jx eur], afrls! fuulsly] Jelolntr] NA%! elol Julubul [+ vls|a] [vlelr
;’ G ClonTIIVUAIT T loW! 1L IiMElS| olF] Clomimevly! AlLlslol [RiEK]IIRIE
"l 4 + +
L A1 FEREE NSRRI RRENNEEE NN EEN uEn NN
S RERRERERERRRERED T e I - .

COMPILER COMMANDS

HEWLETT-PACKARD FORTRAN CODING FORM
[T oate rrocran k@ or
T T T T T T e — 1
o J Jdsis +W;b
[T L) L i

SEQUENCING INFORMATION

HEWLETT-PACKARD FORTRAN CODING FORM
e = T =
1 4 ol |
Ju 0, o W=t 1]0]
| lclalapol,] slald] o] L] 1h
1120 DEwom (1] I =ARRAY (T [T 1 1100
LU REERRRNARRSEN NN ‘ | T INEN]

Figure 1-3. Coding Examples

FEB 1977

source programs can be entered into the computer in free-
field format. Each line of a source program entered in
free-field format consists of up to 80 characters. Each line
begins with a sequence field (corresponding to positions 73
through 80 in fixed-field format). The sequence field ex-
tends up to (but does not include) the first blank in the line
and cannot exceed eight characters. Sequence fields must
start in position 1. (A blank in position 1 causes the com-
piler totreat the entire sequence field as blank.) A sequence
string of less than eight characters is treated as being right
justified by the compiler. A sequence field longer than eight
characters is truncated from the left.

The remaining positions (starting with the first position
after the blank terminating the sequence string) makeup a
FORTRAN/3000 line in free-field format. If position 1 is
blank, indicating that the sequence field is not used, lines
can start at position 2; however, nomore than 71 characters
may be used for such lines because the compiler treats the
line as if it were started in position 10.

Comment lines are indicated by a hatch mark (#) in the
first position following the sequence field and blank. Com-
ment continuation lines also must contain a # in the first
position following the sequence field and blank. Compiler
commands are indicated by a $ as the first character in the
first position following the sequence field and blank.

Note: The only exception is the compiler com-
mand $CONTROL FREE, which starts in
position 1.

If compiler commands or FORTRAN/3000 statements re-
quire continuation lines, each line except the last (i.e., each
line to be continued) must end with an &. In addition, each
compiler command continuation line must begin with a $§
following the sequence field and blank.

FORTRAN/3000 statements can be labeled in the free-field
format. If the first character following the sequence field
and blank is a numeric character, then this character be-
gins a statement label. The label can be more than five
characters long (including leading zeros and embedded
blanks) but cannot exceed 99999 in value. A blank may be
used between the label and the first character of the state-
ment text. The first non-blank, non-numeric character fol-
lowing the sequence field starts the text of the
FORTRAN/3000 statement.

The source program shown earlier in figure 1-1 is shown in
free-field formatin figure 1-4. Note that the first statement
($CONTROL FREE) is output starting in column 10 by the
compiler. This is merely the way the compiler outputs this
command, the command started in position 1 in the source
program input.

Apr 1978

tFORTGO FTRAN!

PAGE 0001 HP321@2B.20.0

$CONTROL FREE
#
FREE-FIELD FORMAT EXAMPLE
#
THIS PROGRAM COMPUTES AND PRINTS THE SQUARE ROOTS
AND THE RECIPROCALS OF THE REAL VALUES |2 THRU 10.0
#
19 FORMAT('@',T2,"NUMBER",T12,"SQUARE ROOT",T27,"RECIPROCAL'"//)
20 FORMAT(T2,F4¢1,T14,F7e4,T28,F7.4)
WRITE(6,182)
A=] .0
DO 3¢ 1=1.,10
#
THE NEXT STATEMENT CALLS THE EXTERNAL FUNCTION *'SQRT®
#
ROOT=SART(A)
RCPL=1/A
WRITE(6,20)A,R00T,RCPL
38 A=A+1.0
STOP
END

%k Ak GLOBAL STATISTICS kodoke
kA ok NO ERRORS, NO WARNINGS &4k
TOTAL COMPILATION TIME @:sueit|
TOTAL ELAPSED TIME AR RY RIS

END OF COMPILE

END OF PREPARE

NUMBER SQUARE ROOT RECIPROCAL
1.3 1 .0000 1.0200
2.0 1.4142 <5000
3.3 1.7321 3333
4.0 2.0000 2500
5.0 2.2361 «2000
6.0 24495 1667
Te0 2.6458 «1429
8.0 2.8284 «1258
9.2 3.0000 1111

10.0 3.1623 <1009
END OF PROGRAM

Figure 1-4. FORTRAN/3000 Source Program in Free-Field Format

1-7

ELEMENTS OF FORTRAN/3000

SECTION

2-1. DATA STORAGE FORMATS

FORTRAN/3000 processes seven types of data-integer,
double integer, real (floating point), double precision real,
logical, complex, and character.

Each of the seven data types differs in the way it is rep-
resented in memory. The following paragraphs describe
the data types and discuss the manner in which they are
stored in memory.

2-2. INTEGER FORMAT

Integers are whole numbers containing no fractional part.
Integer values are stored in one 16-bit computer word. The
leftmost bit (bit 0) represents the arithmetic sign of the
number (1 = negative, 0 = positive). The other 15 bits
represent the binary value of the number. Integer numbers
arerepresented in two’s complement form and the range of
integer numbers is from -32768 to +32767.

[LTI TT]

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

0
)
Sign Bit —1 e Value

Figure 2-1. Internal Representation of Integer Values

2-3. DOUBLE INTEGER FORMAT

Double integers are represented in memory by 32 bits (two
consecutive 16-bit words). The first one is called the most
significant word (MSW) and the second one is called the
least significant word (LSW). Representation is in two’s
complement form. The range of a double integer number is
from -2147483647 to +2147483646.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.
Sign Bt _tr value "

[LTI TTITTTTTT] wew

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

; Value -

Figure 2-2. Internal Representation of Double Integer
Values.

Apr 1978

2-4, REAL (FLOATING-POINT) FORMAT

Real numbers are represented in memory by 32 bits (two
consecutive 16-bit words) with three fields. These fields are
the sign, the exponent, and the mantissa. The format is that
known as excess 256. Thus, a real number consists of:

Sign (S)
Bit O for the first word. Positive = 0, negative = 1. A

value X and its negative, -X, differ only in the sign
bit.

Exponent (E)

Bits 1 through 9 of the first word. The exponent
ranges from 0 to 777 octal (511 decimal). This number
(E) represents a binary exponent, biased by 400 octal
(256 decimal). The true exponent, therefore is E - 256;
it ranges from -256 to +255.

Fraction (F)

A binary number of the form 1xxx, where xxx is 22
bits, stored in bits 10 through 15 of the first word and
all of the bits of the second word. Note that the 1.0 is
not actually stored, thereis an assumed 1 to the left of
the binary point. Floating-point zero is the only ex-
ception. It is represented by all 32 bits being zero.

The range of non-zero real values is from 0.863617 x 10~7
t0 .1157920x 107, The formula for computing the decimal

value of a floating-point representation is: Decimal value
= (— 1)8 * 2(E~256) * |,

Implied 1 1o Left of Binary POINT ————— s 1
s E F Word 1
of1 2 3 a4 5 8 7 8 offlio 1 12 13 14 15

Binary Point
F Word 2

0 12 3 4 5 6 7 8 9 10 1% 12 13 14 15
0l0 0o 0 0O 0 0 0 O 0|0 0 0 O 0o 0 Word 1
0fj1 2 3 4 5 6 7 8 9110 11 12 13 14 15

Represents

Zero (0}

in Memory
0 ¢ 0 o ¢ 0 0o 0 0 0 0O 0 O O O O Word 2
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 o 6 0 o 0 0 0 O|0C O O 0 O0 O Word 1
0f1v 2 3 4 5 6 7 8 9[10 11 12 13 14 15

Represents

One (1)

in Memory
¢ 0 0 0 0 0 ¢ 0 ¢ 0 0o 0 0 0 0 O Word 2
[2 3 4 5 6 7 8 9 10 1 12 13 14 315

Figure 2-3. Internal Representation of Real Values
21

2-5. DOUBLE PRECISION FORMAT

Double precision values are stored in four consecutive
16-bit computer words and are identical to real (single
precision) values except that the fractional part (man-
tissa) of the number is extended from 22 to 54 binary bits.
The format is that known as excess 256. The range of
non-zero double precision values is from
.8636168555094445x10°77 to 0.1157920892373161x107%,

S E F Word 1

0 1 2 3 a 5 6 7 8 9 |10 11 12 13

=
>

F Word 2

[1 2 3 a 5 6 7 8 9 10 11 12 13

=
I}

£ Word 3

G I 2 3 4 S 6 7 8 9 10 17 12 13 14 s

3 Word 4

Q t 2 2 a 5 6 7 8 9 10 Y 12 13 4 s

Figure 2-4. Internal Representation of Double Precision
Values

2-6. LOGICAL FORMAT

Logical values are stored in one 16-bit computer word.
Normally, only two values are used for logical constants:
.TRUE. and .FALSE. .TRUE. is represented by all 16 bits
being equal to 1; FALSE. isrepresented by all 16 bits being
equal to 0. Testing a logical value for TRUE. or .FALSE.,
however, is performed by examining only bit 15. Any other
pattern of bits (other than all 1's or 0’s) can be used with
logical operators to perform masking operations (see Sec-
tion IID).

F Word 1

olv 2 3 4 5 6 7 8 9110 11 12 13 14 15

Real
Parr

3 Word 2

o 1 2 3 4 5 6 7 8 9 10 11 12 13

=
>

S E F Word 3
E 9

0 11 12 13

=
>

Imag
ary
Part

£ Word 4

[1 2 3 a 5 6 7 8 9 10 11 12 13

=
>

Figure 2-6. Internal Representation of Complex Values

2-8. CHARACTER FORMAT

Character values represent ASCII character strings which
are manipulated using character expressions. (Input/ out-
put statements frequently use character values. See Sec-
tion VI.)

Character values are represented by 8-bit ASCII codes, two
characters packed in one 16-bit computer word. The
number of words used to represent a character value de-
pends on the actual number of characters in the source
representation of the value.

Character values can be specified by an octal number rep-
resenting a character bit pattern. The octal number is fol-
lowed by the letter C. For example,

% 101C represents the character A
% 102C represents character B (the % sign signifies an octal
value).

HENEERNERRE RN

G 1 2 3 a 9 6 7 8 9 10 11 12 13 14 15

}4——————— Logical Vatue _—__———oi

c 1 2 3 a 5 6 7 8 9 10 11 12 13 14 15

One Character — o]

T
i
|
T

[One Characrer

Figure 2-5. Internal Representation of Logical Values

2-7. COMPLEX FORMAT

A complex value consists of an ordered pair of real num-
bers, specifying the real and imaginary parts. Complex
numbers are stored in four consecutive 16-bit computer
words; the first two words are for the real part, the second
two words are for the real number specifying theimaginary
part. The two numbers specifying the complex value must
be real.

2-2

Figure 2-7. Internal Representation of Character Values

2-9. CONSTANTS

A constant is a data element representing one specific
value which remains unchanged throughout the program.
Thus, in the expression A + 4, the numerical quantity 4 isa

constant. (A is a variable and is described in paragraph
2-19.)

A constant can be of several types: integer, double integer,
real (floating point), double precision real, complex, logi-

cal, or character.

Apr 1978

2-10. INTEGER CONSTANTS

Integers are signed whole numbers containing no frac-
tional part. Integers may be specified in four ways: decimal,
octal, ASCII, and composite. Decimal integer constants use
the decimal digits O through 9. They can contain a leading
plus (+) or minus (—-) sign (a number with no leading sign is
positive). The range of a decimal integer constant is from
— 32767 to +32767. The decimal constant — 32768 can be
represented in the machine, but can not be directly rep-
resented in the FORTRAN source code.

For example,

0
+45
-365
4012

Octal integer constants are denoted by the % character.
They may contain up to six octal digits and an optional
leading sign. The number ranges from —100000; to
+77777,. For example,

%4777

+% 605

%17

%177777 (This is -1)
%100000 (this is —32768,,)

ASCII integer constants are used to write one or two ASCII
bit patterns into one 16-bit computer word. ASCII integer
constants are written with the % character followed by the
ASCII characters enclosed in quote marks (also called
string bracket characters) or apostrophes.

For example,

+%"AB”
~%U”
% HI”
%L
~% XY’
+A

If only one ASCII character is specified, the bit pattern
representing that character is placed in the computer word
right-justified, and the left half of the word is filled with
leading zeros. Leading plus and minus signs can be used.
Integer constants also can be specified in composite form.
See paragraph 2-17.

Note: For FORTRAN programs which cur-
rently run on other machines requiring
32 bit integers, an aid has been im-
plemented. Namely the $INTEGER*4
command which will cause the compiler
to treat explicit INTEGER types as 32
bit integers; in addition, all decimal in-
teger constants will be treated as 32 bit
constants. For a more complete descrip-

tion of this facility, see Section IX.

FEB 1977

2-11. DOUBLE INTEGER CONSTANTS

Double integers are signed whole numbers containing no
fractional part. Double integers may be specified in four
ways: decimal, octal, ASCII, and composite. Decimal dou-
ble integer constants use the decimal digits 0 through 9.
They can contain a leading plus (+) or minus (—) sign (a
number with no leading sign is positive). The range of a
double integer constant is from —2147483647 to
+2147483647. The decimal constant — 2147483648 can be
represented in the machine, but cannot be directly rep-
resented in the FORTRAN source code. Except as noted in
Section IX, paragraph 9-23, double integer constants must
be followed by a J.

For example,

1J

—467J
+23456J
8967125J

Octal double integer constants are denoted by the % char-
acter. They may contain up to eleven octal digits and an
optional leading sign. The number ranges from
—200000000005 to +17777777777,.

For example,

%47

+%567J

-%3472J

%4000012J

%20000000000J (this is —2147483648,,)
%377T177777177J (this is ~ 1)

ASCII double integer constants are used to write one to
four ASCII bit patterns into one 32-bit computer word.
ASCII double integer constants are written with the %
character followed by the ASCII characters enclosed in
quote marks (also called string bracket characters) or
apostrophes.

For example,

+%"ABCD”J
- %"EF’J
%"“DEC”J
%“M”J
—%"“HIP"J

If only one ASCII character is specified, the bit pattern
representing that character is placed in the computer
word right-justified, and the left part of the word is filled
with leading zeros. Leading plus and minus signs can be
used. Integer*4 constants also can be specified in compo-
site form. See paragraph 2-17.

2-3

2-12. REAL (FLOATING-POINT)
CONSTANTS

Real constants are represented by an integer part, a deci-
mal point, and a decimal fraction (mantissa) part. A lead-
ing sign may be used. The constant can contain a scale
factor (which represents a power of ten by which the con-
stant is multiplied).

The eleven forms of a real constant are:

n (20.)

n (.2)

n.n (20.5)

n.E+e (2.E+2)

.nE+e (.2E+3)

n.nExe (2.5E+2 or 2.5E-2)
nEzxe (2E+2 or 2E-2)
nEe (2E2)

nEe (.2E2)

n.Ee (2.E2)

n.nEe (2.2E2)

The range of e is from —77 to +78.

The letter n is a decimal integer. The construct E e
stands for 10 +° where e is the power of 10 which is
multiplied by the other part of the number (n., —n,n.n,
etc.). The construct Ee is equivalent to E + e. Examples,

34E -4
-34E4 =

x 107 = .00034
-3.4 x 10 ¢ = —34000

A real constant may be written any number of digits in
length, but the internal representation in memory only
allows six or seven significant decimal digits.

Real constants also can be specified as octal numbers, fol-
lowed by the letter R. The bit pattern specified by the octal
number 1s loaded (rignt justified) into two consecutive
words in memory and is treated as a floating-point number.

For example,

%3775R

ASCII real (right-justified) constants also are allowed.
From one to four 8-bit ASCII patterns are stored in the two
16-bit words.

Examples:

%“ABCD”R
—%“DEF”"R
%;((VHR

+%“SXZ'R

Composite numbers followed by the letter R also can
specify real numbers. See paragraph 2-17.

2-4

2-13. DOUBLE PRECISION REAL
CONSTANTS

Double precision real constants are similar to real (single
precision) constants. Substituting the letter D for the let-
ter E in the scale factor of a real constant gives a double
precision real constant with 16 or 17 significant decimal
digits as opposed to the 6 or 7 significant digits in the
single precision real constant. Double precision constants
can start with an optional sign.

The eight representations of double precision constants
are:

n Dze (2D +2 or 2D —-2)

n Dzxe (.2D +2 or .2D —-2)
n. D=e (2.D +2 0or 2.D -2)
n.n D=xe (2.2D +2 or 2.2D —-2)
nDe (2D2)

n.De (2.D2)

.nDe (2D2)

n.nDe (2.2D2)

The range of e is from —77 to +78.

The real constant forms .n, n., or n.n (those without the
scale factor) are not allowed for double precision constants,
as FORTRAN/3000 has no way of knowing whether the
number should be stored in single or double precision for-
mat.

Double precision numbers can be represented in octal for-
mat. When written, double precision octal numbers are
preceded by % and followed by the letter D.

For example,

—%3776125D
%64333D
% 45D

ASCII double precision real constants also are allowed.
From one to eight 8-bit ASCII patterns are stored in the
four 16-bit words.

Examples:

% “ABCDEF”D
—-%"“A”D

%“TR”D
+%“DFG”D

% “LKJH"D
+%“KLMNOPQS”

Composite double precision real constants also are allowed.
See paragraph 2-17.

FEB 1977

2-14. COMPLEX CONSTANTS

Complex constants are represented by an ordered pair of
real constants enclosed in parentheses and separated by a
comma. The first number represents the real part and sec-
ond number represents the imaginary part of the complex
number.

The real constants of each ordered pair can be represented
as integers, decimal fractions (with or without a scale fac-
tor), octal numbers, or composite numbers.

Double precision constants cannot be used to represent
either the real or the imaginary part of a complex constant.

Examples of complex constants are:

(3.0, —2.5E3)
(%376R, %736R)

2-15. LOGICAL CONSTANTS

Normally, only two values are used for logical constants:
.TRUE. and .FALSE. TRUE. isrepresented by all 16 bits of
the computer word being equalto 1. FALSE. isrepresented
by all 16 bits equal to 0. Any other pattern of 16 bits can be
used with logical operators, however, to perform masking
operations (see Section III).

The actual bit pattern of a mask is specified by an octal
constant, an ASCII character string of up to two ASCII
characters or a composite number followed by an L.

For example,

%177777L
%((AB”L
% 1006L

2-16. CHARACTER CONSTANTS

Character constants represent ASCII character strings
which can be manipulated using character expressions and
input/output statements. String constants are character
values bound by quote marks or apostrophes, called string
bracket characters. All printing ASCII characters can be
used. Blanks are significant characters within a character
string.

For example,

“THIS IS A CHARACTER STRING”

“NOW IS THE TIME”

‘ANOTHER FORM USING APOSTROPHES’
‘HE SAID, “HELLO”’

If a quote mark (”) must be included within a string brack-
eted by quotes, or if an apostrophe (') must be included
within a string bracketed by apostrophes, write the quotes
or apostrophes twice in a row to distinguish them from the

string bracket characters. Apostrophes in strings brack-
eted by quotes and quotes in strings bracketed by apos-
trophes need only be written once.

Examples:
(AB”CD’ “AB(CD)’
((ABC?’((XYZ” (?4XC77 f(D!’
(ABG? (HG) (TYUY (V)

To indicate a null string (a string with no value), write a
pair of string bracket characters with no intervening
characters or blanks.

For example,

e e L)

or

Note: A character string written with one or
more blanks between the string bracket
characters is not the null string, but rep-
resents a string of ASCII blanks.

Hollerith constants are a special format for character
strings. They consist of a decimal integer specifying the
number of characters, followed by the letter H and the
characters (character value).

For example,

HOLLERITH ASCII STRING

19HBLANKS ARE INCLUDED BLANKS ARE ‘NCLUDED BLANKS ARE NCLUDED
7HAB CDFG AB CDFG AB CDFG

Characters can be specified by an octal number represent-
ing a character bit pattern. The octal number is followed by
the letter C. For example,

%101C represents the character A.

%15C represents a carriage return.

The above form is useful for representing non-printing
characters (such as carriage returns) in source programs.
Octal representations of characters are shown in Appendix
E.

2-17. COMPOSITE NUMBERS

Composite numbers are a convenient way of representing
specific bit patterns for any type constant except charac-
ter. A composite number takes the form

% [A/N,,A/N,, .. AJN,] letter
For example,
%[3/7,4/12,2/1] L

A, through A, (the numerals 3, 4, and 2 in the example)
are decimal integers which represent the number of bits in
the bit pattern subfield. N, through N, are the octal or
decimal values set right-justified into the subfields. Un-
specified leading bits are set to zeros. Extra leading bits
are truncated.

25

For example, 3/7 creates a subfield 3 bits long with the
binary value 111, set into it. The numerals 4/7 create a
subfield 4 bits long. The value 7,, = 111, is right-justified
into the 4-bit field and the unspecified leading bit is set to
zero. The resulting subfield is 0111, The data storage
word format for the type of constant is indicated by letter.
Integer composite constants do not have a letter suffix.
Logical is indicated by L, double integer by J, real by R,
and double precision by D. Complex constants consist of an
ordered pair of real numbers, either or both of which can
be real composite numbers. The bit pattern specified in
each subfield is concatenated from left to right and the
result is stored right-justified in the storage space for the
constant type indicated by the letter. Unspecified leading
bits are set to zero. Examples of the different constant
types and bit patterns are shown in table 2-1. The number
of bits in a composite number must be less than or equal to
the number of bits for the data type.

The bit pattern is determined as follows:

%(3/7,4/7]L = 000167,
where L indicates a logical constant.

The two subfields 3/7 = 111, and 4/7 = 0111, are concate-
nated left to right to form the bit pattern 1110111,

This value is placed right-justified in a 16-bit word, with
unspecified leading bits set to zero. The resulting logical
value bit pattern is

2-18. NUMBER RANGES

Numbers represented by FORTRAN/3000 constants and
variables have specific positive and negative ranges which
limit the size of the number represented. Table 2-2 shows
the various number types and their associated ranges.
Complex numbers are not shown; they are represented by
an ordered pair of real numbers.

2-19. VARIABLES

A quantity which appears in a FORTRAN/3000 statement
in numeral form is a constant, while a quantity which
appears in the form of a name is called a variable. A
variable is a symbolic name of from one to 15 al-
phanumeric characters which represent a value. The first
character must be a letter. Each variable can represent
one type of value only: integer, double integer, real (float-
ing point), double precision real, complex, logical, or char-
acter.

The type of value represented by a variable can be estab-
lished through the use of a Type or IMPLICIT statement
(see Section V). If the variable is not specified in a Type or
IMPLICIT statement, the variable type is conveyed to the
compiler implicitly as type integer or real by the first
letter of the variable name. Names starting with the let-
tersI,d, K, L, M, or N are implied type integer. Variable
names starting with any other letter are implied type real.

A variable is given a value through an assignment state-
ment (see Section III), a READ statement (see Section V1),
or a DATA statement (see Section V). The specific value
represented by a variable can be changed during execu-

0000000001110111 tion of a program.
Table 2-1. Composite Numbers
TYPE EXAMPLE BIT PATTERN
Integer %[4/15,6/%13,2/1] (no letter) 0 000 111 100 101 101
Double %[5/12,4/%15,10/192)J 0 000 000 000 000 010
Integer 1 011 010 011 000 000
Logical %[3/7,4/71L 0 000 000 001 110 111
Real %(4/9,16/%1245,10/49]R 0 010 010 000 001 010
1 001 010 000 110 0O1
. 0 000 000 000 000 000
Double Prec ° 9

oY ecision %[35/4775,10/%7771D 0 000 000 000 000 000
0 000 000 001 001 010
1001 110 111 111 1114
Complex (%[15/7771R,%[12/%4444]R) 0 000 000 000 000 000
0 000 001 100 001 001
0 000 000 000 000 000
0 000 100 100 100 100

Table 2-2. Number Ranges in FORTRAN/3000

TYPE BITS RANGE AND ACCURACY

Integer 16 —32,768 to +32,767 (=2 to 2 % —1)

Double 32 — 2147483648 to +2147483647 (—23' t0 23'—1)

integer

Real 32 0.863617x1077t0 1.157921 x 1077 (1 + 272)27%%t0
(2 - 2722)2%% Accuracy is 6.9 significant decimal digits.
Largest accurate integer value expressed to the
units digit is 22 - 1 = 8,388,607

Double 64 8.636168555094445 x 107 to 1.157920892373162 x

Precision 107 (1 4+ 27%3)27%6 to (2 — 2733)2%% Accuracy is 16.5
significant decimal digits. Largest accurate integer
value expressed to the units digit is 2 — 1 =
36,028,797,018,963,967

2-20. SIMPLE VARIABLES

A simple variable is a symbolic name which has only one
value at a time. Examples of simple variables are:

Integer Real

I ABLE

J A
JACK123 ZERO
MAN Q45

NOwW ZEBRAT789

KNLQ1234 BETA

2-21. ARRAYS AND ARRAY NAMES

An array is a collection of several values of the same type,
all of which are represented by an array name. An array
name is a symbolic name and represents all values, or
elements, of the array. In order to designate exactly one
data value, or element, of the array, the symbolic name is
suffixed by subscript.

A group of values arranged in a single dimension is a
one-dimensional array. The elements of such an array are
identified by a single subscript. For example, A(I) refers to
the “Ith” element of array A, and A(1) refers to element 1
of array A.

If two subscripts are used to identify an element of an
array, then this array is two-dimensional. A chess board,
for example, is two-dimensional consisting as it does of 8
horizontal rows, beginning at 1 at the top, and 8 vertical
columns, beginning at 1 on the left.

An array to represent the chess board could be dimen-
sioned as CHESS (8,8). With this dimension statement,
the subscripted variable, CHESS (6,4) could represent the
square at the 6th row, 4th column of the chess board.

FEB 1977

The type of data represented by an array name can be
determined through the use of a Type or IMPLICIT state-
ment (see Section V). If the array name is not mentioned
in a Type or IMPLICIT statement, the array type is de-
termined by the first letter of the variable name. Names
starting with I, J, K, L, M, or N are type integer. Array
names starting with any other letter are type real. An
array, its dimensions, and the number of elements per
dimension (called bounds) must be defined in a DIMEN-
SION, Type, or COMMON statement (see Section V).

Subscripts can consist of constants, variables, or expres-
sions of any type except complex or character (i.e., linear
expressions. See Section III for a discussion of expres-
sions.) Subscript values should not be negative or zero.

As mentioned, subscripts designate a specific element of
an array. An array variable name must contain as many
subscripts as there are dimensions in the array. (The max-
imum number of dimensions allowed in FORTRAN/3000
is 255.) For-example, a one-dimensional array name is of
the form A(1), A(2), A(I), etc; a two-dimensional array
name is A(1,1), A(1,2), Ad,J), etc. In addition, the upper
limit of the subscript value should match the number of
elements per dimension in the array. Thus, a variable for
a one-dimensional array of three elements could have the
form A(1), A(2), A(3) to represent all the elements of the
array. Examples of array variables and subscripts are as
follows:

ARR(1,2) Represents the element 1, 2
of the array ARR. Array ARR is
implied type real because the
name begins with a letter other

than I, J, K, L, M, or N.

CHESS(,J) Subscripts I and J are variables
which represent different ele-
ments of array CHESS, depend-

ing on the value of I and .

2-7

2-8

ARR(I1+4,J-2)

1((3x+1)/4)

Subscripts I+4 and J-2 are ex-
pressions which when evaluated,

represent specific elements of
array ARR.

If X = 3.6 (real), the expression
evaluates to 2.9 (real). Nearest
integer less than the expression
is 2, so the subscripted variable
equals 1(2).

Note:

If an actual subscript value is less than 1
or greater than the maximum value for
elements (bounds) specified in the DI-
MENSION statement, an element out-
side the array will be referenced. You
must guard against this possibility,
since the program does not check for
subscripts to be within bounds. (See the
compiler command, $CONTROL
BOUNDS, in Section IX.)

MAY 1979

WRITING EXPRESSIONS AND ASSIGNMENT
STATEMENTS IN FORTRAN/3000|[1

3-1. EXPRESSIONS

In FORTRAN/3000, an expression can be a single constant,
asingle simple or array variable, or a single function name;
or combinations of the foregoing joined by arithmetic, logi-
cal, and relational operators. All of the following are valid
expressions:

6 Integer constant

I Integer variable

ARR(,J) Array variable

3.456 Real constant

“STRING” Character constant
SQRT(A) Function

A+B+6 The sum of the variables of A,

B, and 6, which are variables
and a constant joined by
arithmetic operators (plus
sign).

In this expression, (A + B)
and (B/C) are subexpressions.

(A + B) + (B/ICO)

Subexpressions may not be type character, thus
("STRING™) + (“CHARACTER”) is not a valid expression.

Expressions are of three main types: arithmetic, logical
and character. Arithmetic expressions return a single
value of type integer, double integer, real, double preci-
sion, or complex. Logical expressions evaluate to either
.TRUE. or .FALSE., or to a 16-bit mask which can be used
in later manipulations (depending on the context of the
expression). Character expressions manipulate character
variables and constants and return character values.

3-2. ARITHMETIC EXPRESSIONS

Arithmetic expressions perform arithmetic operations. An
arithmetic expression may consist of a single constant,
variable, or function name or it may consist of two or more
constants, variables, or function names joined by the fol-
lowing arithmetic operators:

+ Addition

- Subtraction

* Multiplication
Division

ok Exponentiation

The following are valid arithmetic expressions:

A A**2
3.14 (C*4)* (C* 9)
A+3 A+B
SQRT (A)
FEB 1977

Thus, A + B is an arithmetic expression, consisting as it
does of two operands (A, B) which are used to evaluate A
plus B.

Inthe expression (C**4)* (C* 9), the subexpressions (C**4)
and (C * 9) are operands and, once evaluated, are used to
compute the value of the complete expression (C**4) * (C *
9).

The hierarchy of arithmetic operations is:
** Exponentiation

Multiplication and / Division

+ Addition and — Subtraction

*

Exponentiation precedes all arithmetic operations within
an expression, and multiplication and division occur before
addition and subtraction. For example,

A*¥*B+C*D+6
is evaluated in the following order:

1. A ** B is evaluated to form the operand OP1.
2. C * D is evaluated to form the operand OP2.

Note: OP1 and OP2 are intermediate results.

3. OP1 + OP2 + 6 is evaluated to determine the
value of the expression.

The order for evaluating expressions with operators of the
same level of hierarchy (* and / or + and -) is determined
by the data type of the operands. Integer operands are com-
bined first and then converted to the next higher type to
which they are connected by an operator. (See paragraph
3.3). If the associative and commutative laws of mathe-
matics apply to an expression being evaluated, the compiler
may use them. Since they do not apply to integer expres-
sions involving division, such expressions are evaluated from
left to right. Therefore, the expression I * J/K does not
yield the same result as J/K * I. However, the real expres-
sions, R * X/Y and X/Y * R, yield the same result.

When using integer division, it is also important to recall
that integer division provides no remainder. Thus, 2/3
yields the quotient zero; 7/3 yields the quotient 2. Conse-
quently, the value of an integer expression is dependent on
the order of computation, and it is therefore evaluated
from left to right.

Parentheses may be used to control the order of evaluation
of expressions. For example,

A+B+C

is evaluated according to the types assigned to A, B,
C.

31

A+B+0O

evaluates (B + C) first, and then adds it to A while
(A+B)+C

evaluates (A + B) first and then adds it to C.

A+B+C)-(C+D)+X+Y)

In this expression, the evaluation of (A + B + C)
occurs according to the variable types. In ((C + D) + X
+Y), the subexpression (C + D) is evaluated first and
then added to either X or Y depending on the type of X
and Y. Finally, the evaluated result of ((C + D) + X +
Y) is subtracted from the evaluated result of (A + B +
o).

Two arithmeticoperators cannot appear in arow unlessone
of the operators is enclosed in parentheses. For example,
A**_3 ig not allowed by FORTRAN/3000 but A**(-3) is
allowed.

3-3. ARITHMETIC EXPRESSION TYPE. In-
teger, double integer, real, double precision, and complex
operands may be intermixed freely in an arithmetic ex-
pression. Before an arithmetic operation is performed, the
lower type operand is converted to the higher type. The
expression takes on the type of the highest type operand in
the expression. Operand types rank from lowest to highest
in the following order:

Integer Lowest

Double Integer

Real

Double Precision Real

Complex Highest
Note: Some accuracy could be lost in the con-

version from double integer to real, since
real values have only 22 bits of accuracy
compared to the 31 bits of the double
integer. Type conversion from double in-
teger to double precision real can be
forced by using the compiler library
routine DFLOAT.

3-4. CHARACTER EXPRESSIONS

Character expressions define character strings and consist
of character constants, variables, or function references; or
character variables or function references followed by sub-
string designators (see paragraph 3-8). For example,

“THIS IS A STRING” Character constant.

CHAR Character variable.
Note that CHAR has to
be declared type
character in a Type or
IMPLICIT statement
(see Section V).

3-2

A() = FORMS (M) Function reference.
The function FORMS
computes a character
value for the variable
M and assigns this
value to element I of
character array A.

VAR[3:7] Character variable fol-
lowed by substring de-
signator.

VAR[3:7] = ENDLINE(X[3:7]) Function reference

(ENDLINE), followed
by substring desig-
nator.

No arithmetic operators are used in character expressions,
however, character expressions can be used with relational
operators to form logical expressions. (See paragraph 3-5
for a discussion of relational operators.) For example,

IF(NAME.EQ.“"HARRY"GOTO 100

Character expression “HARRY” used with character
variable NAME and relational operator to form logi-
cal IF statement.

Character expressions are compared in one of the following
ways, depending on whether they are equal or unequal in
length.

® FExpressions of Equal Length: The two expressions are
compared character by character, starting from the left.
The comparison continues until a pair of unequal char-
acters is encountered or all the character-pairs have been
compared. Thus, if the first characters are equal, the
second characters are compared. If the second characters
are equal, the third characters are compared, and so forth.
When unequal characters are encountered, the greater of
the two expressions is determined by these characters.

For example, when the two expressions “HARRY” and
“HANDS” are compared, the first expression is consi-
dered greater than the second. This is determined by the
third character, R, which is greater than N in the ASCII
collating sequence.

® [Expressions of Unequal Length: The comparison contin-
ues until a pair of unequal characters is encountered or
all the characters in the shorter expression are found to
be equal to the corresponding characters in the longer
expression. In the latter case, the longer expression is
considered greater.

For example, “Z00” is considered greater than “ZERO”
since O is greater that E in the second pair of characters
compared. For the same reason, “APE” is considered
smaller than “APOCALYPSE”. On the other hand, when
expressions such as “APPLEJUICE” and “APPLE” are
compared, all the characters of the latter expression are
equal to the corresponding characters of the former.
Thus, “APPLEJUICE” is greater than ‘“APPLE”.

Apr 1978

Note: Thelength of a character variable (denot-
ing the number of characters) must be
defined when the variable is declared as
type character. For example, in the ex-
pression A = “HARRY?”, the variable A
must have been declared as type charac-
ter with a length attribute of at least 5.
See Section V for a further discussion of

the length attribute.

Strings of characters and each character in the string can
be manipulated using substring designators (see parag-
raph 3-8).

3-5. LOGICAL EXPRESSIONS

Logical expressions are similar to arithmetic expressions,
but, when evaluated, return a single logical value - either
true or false.

where

operand
is a constant, variable function reference, subexpres-
sion, or an arithmetic or character expression.

relational operator
the relational operators are: .EQ., NE., LT, LE,
.GE,, and .GT. (see below).

A simple logical expression consists of one logical variable,
or two arithmetic or character expressions joined by a
relational operator. These simple logical expressions can be
joined by logical operators (see below) to form more compli-
cated logical expressions.

The relational operators are

EQ. Equality

.NE. Non-equality

.LT. Less than

.LE. Less than or equal
.GT. Greater than

.GE. Greater than or equal

These operators combine with arithmetic expressions or
character expressions to form relations. Each relation is
evaluated and assigned the logical value .TRUE. or
.FALSE. depending on whether the relation between the
two operands is satisfied (TRUE.) or not (FALSE.). Ex-
pressions used as operands in a logical relation may be
integer, double integer, real, or double precision (linear),
complex, or character, but not logical. Types integer, real,
and double precision can be mixed in one logical relation.

Note: A linear expression is an expression of
type integer, double integer, real, or
Apr 1978

double precision; a complex expression is
type complex; and a character expression
is type character.

Complex expressions can be used as operands with .EQ. and
.NE. relational operators only. The concept of “less than” or
“greater than” is not defined for complex numbers. The
following are valid simple logical expressions:

L (where L is type logical)

A LT. I (A real, I integer)

R .GT. 5 (R is type real)

A EQ B } (A and B are real)

A LT.B

CHAR .EQ. “END” (CHAR is type character)
(X +Y).GT. VAL

1(7,4) .NE. 45

IF (LYGOTO 50

The last example shows a logical expression (L) used in an
IF statement. If L evaluates to .TRUE. (bit 15 = 1), the
statement GOTO 50 is executed and control is passed to
statement 50. See Section IV for a discussion of IF state-
ments.

Simple logical expressions can be joined by logical
operators to form more complex expressions. The logical
operators are

.NOT. Complc ment (NOT. is a unary
operator, that is, it operates on only
one operand)

AND. AND
.XOR. Exclusive OR
.OR. Inclusive OR

An example of simple logical expressions joined by logical
operators is

IF (A '(EQ. B .AND. C .EQ. D) GOTO 100
(If A equals B and C equals D, control is passed to
statement 100)

The unary operator .NOT. takes the complement of the
logical value of the operand immediately following the
.NOT. operator.

The .AND. operator returns a value of TRUE. if, and only
if, the logical operands on both sides of the .AND. operator
evaluate as .TRUE.

The .XOR. operator (exclusive OR) returns a value of
.TRUE. if, and only if, one (but not both) of the logical
operands on either side of the .XOR. operator is .TRUE.

The .OR. operator (inclusive OR) returns a value of
.TRUE. if one or both of the logical operands on either side
of the .OR. operator are .TRUE. A truth table for the
logical operators is shown in table 3-1.

3-3

Table 3-1. Truth Table for Logical Operators

A B .NOT. A .NOT.B A .AND. B A XOR.B A.OR.B
.TRUE. .TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE.
.TRUE. .FALSE. .FALSE. .TRUE. .FALSE. .TRUE. .TRUE.
.FALSE. .TRUE. .TRUE. .FALSE. .FALSE. .TRUE. .TRUE.
.FALSE. .FALSE. .TRUE. .TRUE. .FALSE. .FALSE. .FALSE.

The hierarchy of logical operations is:

.NOT. Complement
.AND. AND

XOR. Exclusive OR
.OR. Inclusive OR

Thus, .NOT. operations are performed before all other
operations and .OR. operations are performed after all
other operations.

For example,

Given the expression .NOT. A .AND. B, with A and B
both . TRUE., NOT. A is evaluated first Gf A is TRUE.,
then NOT. A is .FALSE.), now the expression would be
FALSE. .AND. B, which would evaluate .FALSE.
.AND. TRUE. (B is .TRUE.). The result is . FALSE. If A
is TRUE. and B is .FALSE,, then the expression NOT.
B .XOR. A .AND. B is evaluated .NOT. B (= .TRUE.)
first, then A .AND. B (= .FALSE.) then .TRUE. XOR.
.FALSE. (= .TRUE.).

Parentheses can be used to direct the order of evaluation
of a logical expression. For example,

If A and B are both .TRUE., then the expression NOT.
(A .AND. B) evaluates A .AND. B (= .TRUE.) first,
then evaluates .NOT. .TRUE. (= .FALSE.).

Without parentheses, the .NOT. operation would be
performed first. If A = TRUE., B = .TRUE,, and C =
.FALSE,, then the expression (A .OR. B) . AND. C .OR.
B evaluates A .OR. B (= .TRUE)) first, then evaluates
.TRUE. .AND. C (= .FALSE.) then evaluates .FALSE.
.OR. B (= .TRUE.).

3-6. MASKING OPERATIONS. Besides returning
values which can be evaluated .TRUE. or FALSE. by
examining bit 15, logical operators can perform bit-by-bit
operations on 16-bit logical values.

The .NOT. operator complements a 16-bit value. The
.AND. operator performs a logical AND on two 16-bit
logical values; the .XOR. operator performs a logical exc-
lusive OR on two 16-bit logical values; and the .OR.
operator performs a logical OR on two 16-bit values.

Table 3-2 shows the results of bit-by-bit operations on the
16-bit logical values L1 and L2.

3-4

Table 3-2. Logical Operations on 16-bit Logical Values

L1 0000000011111 111
L2 6000111100001 111
NOT. L1 1111111100000000

NOT. L2 1111000011110000
L1.AND.L2{ 0000000000001 111
L1 XOR. L2y 0000111111110000
L1 OR L2 |0OOCOCOT1T1T1T1T1T1T111111

Partial-word designators can be used in logical expres-
sions. For complete details, see paragraphs 3-7.

3-7. PARTIAL-WORD DESIGNATORS

A partial-word designator acts as a unary operator (i.e.,
operates on only one operand) which indicates a specific
pattern of bits of the operand it suffixes. A partial-word
designator can be used to extract a bit pattern from the
operand it suffixes and right-justify these bits to form a
new value of the same type. (The operand itself remains
unchanged; a new operand is formed.) Partial-word desig-
nators can be used with integer operands in arithmetic
expressions, and with logical operands in logical expres-
sions.

Note: Brackets [] must be used (instead
of parentheses) with partial-word
designators.

Apr 1978

where

operand
is an integer or logical constant, variable, function
reference or subexpression.

first bit

is an integer constant specifying the beginning bit
position of the bit pattern. The leftmost bit is
number 0, the rightmost bit is number 15.

number of bits

only applies to 1-word quantities and is an integer
constant specifying the length of the bit pattern
(cannot exceed 15). If the number of biis is not
specified, the length is equal to 16 minus first bit.

If number of bits is greater than (16 - first bit), the bit
pattern wraps around (takes bits from 0, 1, etc.). See figure
3-1 for examples.

In the example, VAR [15:3], wrap-around occurred when
number of bits was greater than (16 - first bit). In the
example, K[4], the number of bits was left out so the
default value (16 - first bit) was used. Bits 5 through 15
were extracted from the original value and right-justified
automatically (since bit 15 is the last bit.

3-8. SUBSTRING DESIGNATORS

A substring designator is a unary operator which extracts
specified substrings of characters from a character value
and creates a new value from the extracted substring.

3-9. ASSIGNMENT STATEMENTS

Assignment statements use the replacement operator “ =
”, which means, "is replaced by the value of,” to assign
values to variable or statemnent function names.

where

name - is a variable
expression - isanexpressionofarithmetic,logical or
character type.

Assignment statements are the basic computational tool
of FORTRAN/3000 programs. When an assignment
statement is executed, the expression is evaluated and the
resulting value is assigned to the variable.

0o 1 2 3 4

VAR = %37745= 0 B 1 1 1

BIT POSITION

6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 0 o 1 o 1

\ .

VAR [15:3] =%000004= 0 O 0 0o O
K=%123456= 1 O 1 0o o0
K [4:6] =%000034= 0 O 0 0 o

K {4] =%003456= 0 O 0 o o

K [0:7] =%000123= 0 O c 0 O

N

0 0 O 0o o O 0 1 0 0 New

Binary Number

0o o 0 0o o0 1 1 1 0o O
Extract Bit String, right-Justify

1 1 0 0o 1 0 1 1 1 0
Clear Upper Bits

0 0 o 1 0 1 0o o 1 1
Clear Bits O thru 7, Right-Justify Remaining Bits

Figure 3-1. Partial-Word Designator Examples

Apr 1978

3-5

Table 3-3. Substring Designators

first character
VAR[3:7]
namej number of characters
where
name - a character variable or function reference. (Substring designators cannot be applied to char-
acter constants.)

first character - a linear expression specifying the beginning of the substring. This expression is evaluated and
converted to an integer, if necessary. Its value must range between one and the length of the
character value.

number ofcharacters - a linear expression specifying the length of the extracted substring. This expression is evalu-
ated and converted to an integer, if necessary. Its value must range between zero and (length
of the character value-first character+1). If the number of characters is not specified, the
default value {length of the character value-first character+1) is used.

EXAMPLES

VARI[3:7] When used with a value for VAR such as “THIS IS A STRING", the characters “IS IS A” would be
extracted. (Starting with the third character and extending for six more characters (seven
characters total).)

NEXTCHAR = 6 Integer assignment statement. Integer constant 6 is assigned to variable NEXTCHAR. (To be
used in next example.)

VAR I:NEXTCHAR+3] Expression used in substring designator. When used with present value of VAR (“THIS IS
A STRING™), would extract, "A STRING”, It extracts the substring starting with the ninth char-
acter (NEXTCHAR + 3) and ending with the last character of the value. The number of char-
acters was not specified, so the default value (length of value - first character + 1) was used.

Partial-word designators can be used with integer or logi- X[2:2] = X[1:2] In this example, both the source

cal variables in the name or expression side of an assign- and the destination data are at the

ment statement, and have the effect of replacing the A B same location and are represented

specified part of the variable. For example, by variable X. The substring desig-

. . L C nators move the data character by

J[2:6]= K This statement assigns six bits character from the left. Thus, if X
of K to J (starting at bit 2 of J), Stage I

has the value ABC (stage I), this

leaving all .oth.er bi.ts un- (Initial Stage) assignment statement would first
changed. The six bits assigned to change the data to AAC (stage II)
dJ are the six rightmost bits of K. A A and then to AAA (stage III).

J = K[2:6] This statement assigns six bits C If X and Y have the same initial

from K, starting at bit 2 in K, to
J. The six bits are right justified
in dJ. (Second Char-
acter replaced)

Stage 11 value, ABC, the assignment state-
ment X[2:2] = Y[1:2] would assign
the value AAB to X.

Substring designators can be used with character vari-

ables to assign specific characters to a variable. For exam- A A
ple,

VAR[3:7] = This statement extracts “THIS A

“THIS IS A STRING” IS” from the value “THIS IS A Stage III

STRING” and assigns it to VAR,
starting at character 3 of VAR, (Third Char-
acter replaced)
CHAR = AR[2:5] If the value of AR is “LETbGO”,
then this statement extracts “ETb-
GO” from AR and replaces the left-
most characters of CHAR with these

characters. CHARACTER*10, X,Z*31

Character expression values are truncated on the right if
the defined character variable length is less than the ex-
pression value length. For example,

3-6 MAY 1979

is a Type statement defining the variable X as type
character with a length of 10 and Z as type character with
a length of 31. (See Section V for a discussion of Type
statements.) The assignment statement

Z = “THIS VARIABLE HAS 31 CHARACTERS”

assigns a value with 31 characters to Z. An assignment
statement

X=1Z

would then assign the value “THIS VARIA” to X because
its length is less than that of Z.

Character expression values are left-justified and padded

with blanks on the right if the defined character variable
length is larger than the expression value length.

For example, assuming that X still retains the value
“THIS VARIA”, then

Z=X
would leave the value “THIS VARIA” left-justified in Z.
The remainder of the length of Z would be padded with
blanks. Some examples of assignment statements are
shown in table 3-4.

3-10. LABEL ASSIGNMENT STATEMENTS

Label assignment (ASSIGN) statements are used to assign
statement label values to integer simple variables.

The form of an ASSIGN statement is

ASSIGN statement label TO variable

where

is an integer constant used as a label
value and not as the regular integer
value.

statement label

is an integer or double integer simple
variable.

variable

Some examples of ASSIGN statements are:

ASSIGN 150 TOJACKAL The variable JACKAL

is assigned the state-
ment label 150.

Apr 1978

Table 3-4. Assignment Statements

A=B"6 Arithmetic assignment state-
ment. Arithmetic expressions
may be of type integer, real,
double precision, or complex.
The name need not be of the
same arithmetic type as the ex-
pression. The value of the ex-
pression is converted to the
name type before the value is
assigned. (See table 3-5.)
LOGICAL A,B,C Type statement declaring the
variables A, B, and C as type
logical (so that they may be
used in a logical assignment
statement).
A =B AND.C Logical assignment statement.
A (previously defined as type
logical) will assume a value of
.TRUE. or .FALSE. depending
on whether B and C (previous-
ly defined as type logical) are
both true or if one or both of
them is false. A then could be
used as follows:

IF (A) GOTO 100
If A is .TRUE., the statement
GOTO 100 will be executed and
control will pass to statement
number 100. If A is .FALSE,,
GOTO 100 will not be executed
and control will pass to the
statement following the IF state-
ment. (See Section |V for a
description of IF statements.)

ASSIGN 70 TO ITEM The variable ITEM is
assigned the statermnent

label 70.

ASSIGN statements dynamically assign statement label
values to integer or double integer simple variables dur-
ing program execution. The values thus assigned can be
used only in assigned GOTO statements (see Section IV).

Please bear in mind that the statement label value as-
signed to an integer or double integer simple variable and
its regular integer value are different. Through the AS-
SIGN statement, an integer or double integer simple vari-
able can have two separate values: one of type integer and
one of the pseudotype “label.” These two values are inde-
pendent of each other and can exist simultaneously. The
“label” value is referred to in only two FORTRAN/3000
statements: the label assignment statement which assigns
the “label” value to an integer or double integer simple
variable, and the assigned GOTO statement (see Section
IV) which transfers control to the variable which has been
assigned this “label.” All other references to the variable
are to its integer value.

3-7

tFORTGO FTRAN2

PAGE w01 HP321@2B. 20.0

092001000 PROGRAM ASSIGN

0002002 C

20003000 C ASSIGN STATEMENT EXAMPLE

20004008 C

00005000 REAL INCOME., INTEREST

00206000 INTEGER AGE

20007230 192 FORMAT(TI2,"THE AMOUNT OF TAX IS: ",M12.2)
20008000 ACCEPT AGE, INCOME,RETAX,GASTAX, INTEREST
00235000 IF(AGE.GE.65)G0TO 12

903100082 C

P22211088 C THE NEXT STATEMENT IS AN ASSIGN STATEMENT
ooe120080 C

200213020 ASSIGN 4% TO AGE

2020140920 GOTO 29

200150089 12 ASSIGN 50 TO AGE

2216020 20 ADJGROSS=INCOME-(RETAX+GASTAX+INTEREST)
272217029 302 GOTO AGE

23018000 49 AGE=750

20219220 GOTO 69

20020000 50 AGE=1500

20021000 60 TAX=(ADJGROSS-AGE)* .22

2022292030 WRITE(6,100)TAX

28223007 STOP

20024709 END

*kkk GLOBAL STATISTICS ok dok

Fdke ok NO ERRORS, NO WARNINGS *dkk

TOTAL COMPILATION TIME ©:00:01

TOTAL ELAPSED TIME

END OF

:00:06

COMPILE

END OF PREPARE

?68,2232

1e67,456¢98,234,2764+56

THE AMOUNT OF TAX IS: $4,367.91

END OF PROGRAM

3-8

Figure 3-2. Example of ASSIGN Statement Usage

t FORTGO FTRAN2

22001000
pago2ea8 C
Q22203008 C ASSI
20004020 C
22005009
20286000
222070230 100
20080200
20209000
993102080 C
000211020 C THE
000120030 C
20013020
270140622
0001508069 12
0216330 20
on317020 39
208018000 49
00219200
202020000 50
00021000 60
27222000
00223209
00224200

Kk & GLOBAL
ok ek NO ERRORS,

END OF COMPILE

END OF PREPARE

END OF PROGRAM

PAGE 001 HP32102B.20.0

PROGRAM ASSIGN
GN STATEMENT EXAMPLE

REAL INCOME, INTEREST

INTEGER AGE

FORMAT(TI13.,"THE AMOUNT OF TAX IS: '",MI2.2)
ACCEPT AGE, INCOME,RETAX,GASTAX,INTEREST
IFCAGE.GE.65)G0TO 132

NEXT STATEMENT IS AN ASSIGN STATEMENT

ASSIGN 42 TO AGE

GOTO 20

ASSIGN 52 TO AGE
ADJGROSS=INCOME-(RETAX+GASTAX+INTEREST)
GOTO AGE

AGE=750

GOTO 649

AGE=1590
TAX=(ADJGROSS-AGE)*.22
WRITE(6,1080)TAX

STOP

END

STATISTICS *kdok
NO WARNINGS %k

TOTAL COMPILATION TIME V:00:01
TOTAL ELAPSED TIME P:00106

768,2232]1 467,456.9%,234,276456

THE AMOUNT OF TAX IS: $4,367.91

Apr 1978

Figure 3-2. Example of ASSIGN Statement Usage

3-9

WRITING CONTROL STATEMENTS

|N SECTION
FORTRAN/3000|| v

In FORTRAN/3000, program execution normally proceeds
sequentially from statement to statement. Control state-
ments alter this sequence by transferring control to a
specified statement or by repeating a predetermined group
of statements.

Statements in a program unit to which control is to be
passed are labeled by unsigned integers in the range of 1
through 99999. Embedded blanks and leading zeros in the
label are ignored (1, 01, Ob1, 0001, and 00bb1 are identical
to the compiler). Note that 0100 is interpreted by the
compiler as 100, trailing zeros are not ignored by the
compiler.

4-1. GO TO STATEMENTS

A GO TO statement transfers control to a labeled state-
ment in the same program unit. There are three kinds of
GO TO statements: unconditional, computed, and
assigned.

4-2. UNCONDITIONAL GO TO STATE-
MENT

The unconditional GO TO statement provides for the abso-
lute transfer of control to a given labeled statement.

where

k (30)

is an integer statement label number. Control is passed
to the statement labeled & every time the unconditional
GOTO statement is executed.

Unconditional GOTO statements can be used to bypass
certain statements in a program unit or to cause repetition
of certain statements.

An example of unconditional GOTO statement usage is
shown in figure 4-1. Statement number 20 transfers con-
trol to statement number 60, thus skipping statements 30,
40, and 50. Statement number 50 provides repetition by
transferring control to statement number 10.

4-3. COMPUTED GO TO STATEMENT

In a computed GO TO statement, an index expression is
evaluated and control is passed to one of several labeled
statements depending on the result of the evaluation.

where

label
is the statement number to which control is transferred
when index expression is evaluated

tndex expression

is a test argument and can be an arithmetic expression
of any type except complex. (For example, index expres-
sion can be a simple variable, a subscripted array vari-
able or an arithmetic expression such as A + B.)

The computed GOTO statement is used when it is desira-
ble to pass control to one of several labeled statements,
depending on the result of an evaluation. The index ex-
pression is evaluated and truncated to an integer value
(the index). This integer value, or index, then is used to
select the Ith statement label in the label list. For exam-
ple, if the index is 1, the first label in the list is used and
control passes to the statement whose label is this
number. If the index value is 2, the second label in the list
is used, and so on. If the index expression evaluates to less
than 1, the first label in the label list is used. If the index
expression evaluates to a value greater than the number
of labels in the label list, the last label in the list is used.

An example of the computed GOTO statement is shown in
figure 4-2. I is the index expression. The first time the
GOTO statement is executed, I = 1 and control is transfer-
red to statement 10. The second time the GOTO statement
is executed, I = 2 and control is passed to statement 20.
The third time, control is passed to statement 30.

4-1

¢tFORTGO FTRAN3

PAGE ©@01 HP321@2B. M .0

23391090 PROGRAM GOTO

nA202038 C

773363983 C UNCONDITIONAL GOTO STATEMENT EXAMPLE
"73240083 C

7335000 128 FORMAT('0°',T12,F12.4)
ne3A6330 ACCEPT ALB,C

187002 D=A%2+B*2+C*2
TA208029 10 E=129

22309000 IF(D.LE.E)YGOTO 30

7210209 C

“7A211929% C THE NEXT STATEMENT IS AN UNCONDITIONAL GOTO STATEMENT
TA312009 C

"72130089 29 GOTO 62

*3014009 3@ WRITE(6,1068)D

73215802 42 D=D**2

273160009 50 GOTO 10

"A317000 692 WRITE(6,120)E

"ON18300 STOP
23719003 END
*k kK GLOBAL STATISTICS Fok kok

Kok kk NO ERRORS, NO WARNINGS k%
TOTAL COMPILATION TIME wtp@d:@]
TOTAL ELAPSED TIME D206

END OF COMPILE

END OF PREPARE

21245256

49 .8009

1900.2000
END OF PROGRAM

4-2

Figure 4-1. Unconditional GOTO Statement Example

$FORTGO FTRAN4

PAGE 0@ HP32192B.70.2

0002102020 PROGRAM COMPUTED GOTO

20002008 C

92003009 C COMPUTED GOTO STATEMENT EXAMPLE

00004008 C

00005000 190 FORMAT('2°',T10,"THE SQUARE ROOT OF ",F12.3,

222036200 # IS ",F12.5)
00007230 ACCEPT X,Y,2Z
00008009 DO 49 I=1.,3

00299032 C

92010098 C THE NEXT STATEMENT 1S A COMPUTED GOTO STATEMENT

20211008 C

22012200 GO0T0(19,22,30),1
20013200 10 B=X

00014000 A=SQRT (XD
20015220 GOTO 42

20016000 20 B=Y

A2017002 A=SQRT(Y)
20018020 GOTO 4%
20019020 32 B=Z

22020000 A=SART(Z)
20021000 49 WRITE(6,1002)B,A
20022000 STOP

200230200 END

* %k dok GLOBAL STATISTICS F*kdok

Fkdok NO ERRORS, NO WARNINGS #%ik
TOTAL COMPILATION TIME ©@:00:01
TOTAL ELAPSED TIME B3

END OF COMPILE

END OF PREPARE

72,125,122

THE SQUARE ROOT
THE SQUARE ROOT

THE SQUARE ROOT
END OF PROGRAM

OF 2.000 IS 1.41421
OF 12.090 1S 3.46410
OF 122.090 1S 11.04536

Figure 4-2.

Computed GOTO Statement Example

44, ASSIGNED GOTO STATEMENT

The assigned GOTO statement passes control to a state-
ment label which has been assigned to a given variable.

Note:
The assigned GOTO statement passes
control to whichever label is assigned to
variable. This is different than the
computed GOTO statement which passes
control to one of the labels based on the
result of a computation.

In the assigned GOTO statement,

variable
is an integer or double integer simple variable.

label
is an unsigned integer from 1 to 99999.

In either of the two statement forms (GOTO JACKAL or
GOTO JACKAL(20, 30, 40)), variable must be given a
label value through an ASSIGN statement prior to execu-
tion of the GOTO statement. (See Section III for a discus-
sion of the ASSIGN statement.) When the assigned GOTO
statement is executed, control is transferred to the state-
ment whose label matches the label value of variable.
(Variable, then, has two values, its integer or double in-
teger value and the label value which has been assigned
through an ASSIGN statement.)

The second form of the assigned GOTO statement includes
a list of possible label values that variable might take and
is included in the coding by the programmer merely to
remind him of the places to which control might be trans-
ferred when this particular variable is mentioned in an
assigned GOTO statement. (The computer does not verify
that one of the label values in the list has actually been
assigned to the variable.)

In the statement, GOTO JACKAL(30, 40, 50, 60), the
variable JACKAL will have been assigned the label 30,
40, 50, or 60. Thus, when the statement is executed, con-

4-4

trol will transfer to statement number 30, 40, 50, or 60,

depending on which label value has been assigned to
JACKAL.

The assigned GOTO statement, whereby a variable is re-
ferenced instead of a statement label, is used whenever
there is a chance that decision-making data may have
been used and discarded earlier in the program. For an
example of this type of usage, refer to the flowchart in
figure 4-3 and the program in figure 4-4.

In figure 4-3, the computer reads a card to determine the
sex of a retired person. If the person is female (SEX = 1),
the label 60 is assigned to the variable SEX; if male (SEX
= 2), the label 50 is assigned to SEX. Next, the computer
reads another data item to determine the person’s age. If
the person is over 70 years old and is female, then she is
assigned to a certain medical clinic for medical care. If the
person is over 70 and is male, he is assigned to a different
clinic. All persons under 70 are assigned to still another
clinic. The sex of each retiree, then, must be checked again
after the age has been determined. The sex infomation has
been saved through the use of the ASSIGN statement
which has assigned the label value 60 to the variable SEX
if female, and 50 to SEX if male. When the age is checked,
the assigned GOTO statement (GOTO SEX) passes control
to statement 50 or 60, depending on the sex of the subject,
and, from there to an output statement which prints the
clinic where the retiree can receive medical care in the
future.

4-5. IF STATEMENTS

Two types of IF statements are provided by
FORTRAN/3000 for decision making. An arithmetic IF
statement transfers control to one of three labeled state-
ments depending on whether the expression evaluates to a
negative, zero, or positive value. A logical IF statement
causes execution of a statement if an evaluated expression
is true.

4-6. ARITHMETIC IF STATEMENT

The arithmetic IF statement provides a means of directing
control to one of three possible statements.

FEB 1977

START

Assign 50 M F Assign 60
to Sex to Sex

Go to
Sex

Output
Clinic A

50
Output
Clinic M

60
Output
Clinic F

Figure 4-3. Assigned GOTO Statement Flowchart Example

4-5

tFORTGO FTRANS
PAGE wwul HP32192B. .0
02021000 PROGRAM ASSIGNED GOTO
99222028 C
020223002 C ASSIGNED GOTO STATEMENT EXAMPLE
Q02040200 C
22285000 INTEGER AGE.,SEX
200062020 10¢ FORMAT(12)
20007022 200 FORMAT('2°',T10,"SUBJECT ASSIGNED TO CLINIC A'")
200080002 322 FORMAT('0',T10,"SUBJECT ASSIGNED TO CLINIC M™)
02009000 4900 FORMAT('92',T10,'SUBJECT ASSIGNED TO CLINIC F')
20010000 19 READ(S,189)S5EX
20211009 IF(SEX+ER+1)GOTO 28
00312202 ASSIGN S8 TO SEX
0002130020 GOTO 32
Q001 4200 29 ASSIGN 68 TO SEX
20015000 30 READ(S,122)AGE
P00 6000 IFCAGE.LT.70)>G0TO 40
20017008 C
?0218A2@ C THE NEXT STATEMENT IS AN ASSIGNED GOTO STATEMENT
20219008 C
22020000 GOTO SEX
020021000 49 WRITE(6.,200)
00022000 GOTO 18
90023300 50 WRITE(6,302)
00024000 GOTO 192
0025000 60 WRITE(6,400)
00026000 GOTO 1@
200270220 S@@ STOP
200280020 END
K kdkk GLOBAL STATISTICS Fk Ak
ok Ak NO ERRORS, NO WARNINGS dkd
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME D3
END OF COMPILE

END OF PREPARE

1
78

SUBJECT

ASSIGNED TO CLINIC M

Figure 4-4. Assigned GOTO Statement Example

where

expression
is an arithmetic expression of any type except complex.

label

is an unsigned integer from 1 to 99999 denoting a
statement label number.

The expression is evaluated. If the resulting value is nega-
tive, control is passed to the statement whose label is first
in the list. If the evaluated value is zero, control is passed
to the statement whose label is second in the list. If the
evaluated value is positive, then the last label in the list is
chosen and control passes to this statement number. Two
of the labels in the label list may be the same in which
case control will branch to one of two possible statements,
or all of the labels in the list may be the same and control
will branch to the statement bearing this label number
regardless of the result of the evaluation.

The arithmetic IF statement is used to evaluate argu-
ments and to branch to one of three possible statements
depending on the outcome of the evaluation. For example,
a program to compute income tax could branch to two
different tax tables if the adjusted income is less than
$25,000 or greater than or equal to $25,000 (the arithme-
tic IF statement does not have to branch to three different
statements, two (or more) of the labels in the label list can
be the same).

Figure 4-5 shows an example of arithmetic IF statement
usage. In the sample program, if the expression
(INCOME—25000) evaluates to a negative value or to zero,
control is passed to statement 10. If the expression evalu-

ates to a positive value, control is passed to statement
number 20.

When system intrinsics (such as FOPEN, see Section VIII)
are called by a FORTRAN/3000 statement, a condition
code is returned which tells the program whether the
intrinsic was accessed successfully or not. The condition
returned signifies less than zero, equal to zero, or greater
than zero.

The condition code is used in an arithmetic IF statement
as follows:

IF (.CC.) 30, 40, 50

The program will branch to statement 30 (if CC is less
than zero), 40 (if CC equals zero) or 50 (if CC is greater
than zero).

See Section VIII and Appendix A for a further discussion
of condition codes.

4-7. LOGICAL IF STATEMENT

The logical IF statement evaluates a logical expression
and executes a statement if the result of the evaluated
expression is true.

where

logical expression
is an expression as defined in Section IIL

statement

is any executable statement other than a DO state-
ment. The statement is executed if the logical expres-
sion evaluates true, otherwise the statement is skipped.

The logical IF statement is used as a two-way decision
maker. If the logical expression contained in the IF state-
ment is true when evaluated, then the statement contained
in the IF statement is executed. If the logical expression,
when evaluated, is false, then the statement contained in
the IF statement is not execufed and control passes to the
next sequential statement in the program.

Figure 4-6 shows an example of logical IF statement
usage.

4-8. DO STATEMENT

A DO statement controls execution of a group of state-
ments by causing the statements to be repeated a certain
number of times.

4-7

:FORTGO FTRANG

PAGE 091 HP321@2B.8W .9

20221000 PROGRAM ARITHMETIC IF
20002000 C

2237300@ C ARITHMETIC IF STATEMENT EXAMPLE
292204008 C

2292050002 REAL NETINCOME
200268080 198 FORMAT('@',"THE INCOME TAX IS ",Ml12.2)
223007009 ACCEPT NETINCOME

207208008 C
P2202990@ C THE NEXT STATEMENT IS AN ARITHMETIC IF STATEMENT
29019008 C

203110003 IF(NETINCOME-25022)>16.,10.,22
200120069 19 TAX=NETINCOME=* .32
20013000 GOTO 3¢

20714000 209 TAX=NETINCOMEx*.36
23315200 32 WRITE(6,188)TAX

00016000 STOP
23017000 END
*okkk GLOBAL STATISTICS Kk dok

Fk hk NO ERRORS, NO WARNINGS *addk
TOTAL COMPILATION TIME ©:20:01
TOTAL ELAPSED TIME V25

END OF COMPILE

END OF PREPARE

726457.98

THE INCOME TAX 1S $9,524.87
END OF PROGRAM

Figure 4-5. Arithemtic IF Statement Example
4-8

tFORTGO FTRAN7

PAGE ©wu1 HP32102B.20.0

2220210022 PROGRAM LOGICAL IF

292392000 C

090n30@% C LOGICAL IF STATEMENT EXAMPLE
2000400¢ C

20725229 120 FORMAT(F12.4)

20006037 200 FORMAT('@',T18,'"A AND B ARE ERUAL'™)
200073920 328 FORMAT('Q',Ti@,"B IS LARGER™)
20008020 402 FORMAT('0'.,T12,"A IS LARGER"™)
23029000 READ(S5,102)A

20010300 READ(5,100)B

200119068 C

20912088 C THE NEXT TWO STATEMENTS ARE LOGICAL IF STATEMENTS
200130200 C

29014000 IFCA.EN.B)GOTO 10

22915000 IFCA.LT.B)GOTO 27

23216000 WRITE(6,40%2)

23017000 STOP

20018000 197 WRITE(6,203)

200190600 STOP

200220000 29 WRITE(6,380)

00021000 STOP

200222009 END

* % kk GLOBAL STATISTICS Kk ok

*ok Ak NO ERRORS, NO WARNINGS %k

TOTAL COMPILATION TIME @:00:01
TOTAL ELAPSED TIME VLI A9

END OF COMPILE
END OF PREPARE
32.978
678.9

B IS LARGER
END OF PROGRAM

Figure 4-6. Logical IF Statement Example

49

where

label
is the statement label for the last statement of the
group controlled by the DO statement.

variable

is an integer or double integer simple variable (the
index) which is changed by the amount specified in step
each time the group of statements within the DO loop is
executed.

init
is the initial value given to variable at the start of
execution of the DO statement.

limit
is the termination value for variable.

step
is the increment by which variable is changed after
each execution of the group of statements defined by
label (i.e., up through and including the statement de-
fined by label). Step can be positive or negative, but not
zero.

Init, limit, and step are indexing parameters. All three are
arithmetic expressions of any type except complex, al-
though their values are truncated to integer (or double
integer) whenever they are used by the DO statement. If
step is omitted, as for example, DO 10 I = 1, 10, it is
assumed to be equal to 1. Init and limit can be positive,
negative, or zero.

An example of DO statement usage is shown in figure 4-7.
Note that the initial value of init is 2, and step is in-
cremented by 2 each time the DO loop is executed. Thus, I
(the index variable) assumes the values 2, 4, 6, 8, 10, 12,
14, 16, 18, and 20.

The termination statement of a DO loop may not be a GO
TO statement, arithmetic IF statement, RETURN state-
ment, STOP statement, DO statement, or a logical IF
statement which contains any of the foregoing statements.
A DO statement is used whenever it is necessary to cause
a series of FORTRAN/3000 statements to be repeated. The
DO statement defines this repetition, or loop. The range of
the DO loop is defined as the first statement following the
DO statement, up to and including the terminal statement
referenced by label.

For example,

A=6
DO201 = 1, 10, 1
B = SQRT(A) —————

WRITE (6, 200)B —— Range of DO loop

20A=A+1

When a DO statement is executed, the following steps
oceur:

4-10

1. The control variable (variable in the DO statement) is
assigned the value of init.

2. Control is passed to the first executable statement
after the DO statement and the range is executed.

3. The termination statement (defined by label in the
DO statement) of the range is executed and variable is
incremented by the value of step. If step is not men-
tioned in the DO statement, then variable is in-
cremented by 1.

4. Variable is compared with limit.

o If step is positive, the sequence is repeated if
variable is less than or equal to limit. If variable
exceeds limit, the DO loop is satisfied, and control
transfers to the statement following the termina-
tion statement.

e Ifstep is negative, the sequence is repeated if vari-
able is greater than or equal to limit. If variable is
less than limit, the DO loop is satisfied and control
transfers to the statement following the termina-
tion statement.

Step 4 indicates that two possible cases exist when com-
paring the control variable (variable in the DO statement)
with the limit parameter (/imit in the DO statement).
When step is negative, variable must be less than limit
before the DO loop passes control. When step is positive,
variable must be greater than limit before the DO loop
passes control. If either of the two cases exist when the
loop is first entered, the statements in the range of the DO
loop are executed once only.

Limit and step are computed only when the loop is entered.
Variable can be redefined during execution of the DO loop.

For example,
Jd=1
DO10I=1,20,1
K=2%**]
d=dJd+1
IF (K .GT. 25000)I = 21
10 CONTINUE

In the example, K is checked by the IF statement every
time the DO loop is executed. When K becomes greater
than 25000 the statement I = 21 is executed. The next
time that variable (1) is compared with limit (20), variable
equals 21 and exceeds limit. The DO loop is not repeated
and control passes to the statement following statement
number 10. Thus, variable was redefined during execution
of the DO loop (K would become greater than 25000 after
16 iterations of the DO loop, at which time I would equal
16).

:FORTGO FTRANS

PAGE @091 HP32122B. 2.2

20001000 PROGRAM DO

00002000 C

0003023 C DO STATEMENT EXAMPLE

000240008 C

P20805000 123 FORMAT('@',T6,"NUMBER",T15,"SQUARE ROOT'"//)
20006000 200 FORMAT(TS,F7+4,T17,F7.45)

20007300 WRITE(6,100)

2020802008 C

2002990% C THE NEXT STATEMENT IS A DO STATEMENT

2210208 C

2011200 DO 19 1=2,28,2
20012009 A=l

202130200 B=SART(A)
0314000 10 WRITE(6,208)A,B
20015002 STOP

0316200 END

%ok ok GLOBAL STATISTICS Jok ke

ke k NO ERRORS, NO WARNINGS Hkax
TOTAL COMPILATION TIME 0:90:¢1
TOTAL ELAPSED TIME VPR3

END OF COMPILE

END OF PREPARE

NUMBER SQUARE ROOT

2.00090 1.41421
4.0000 2.90230
6.2020 2.44949
8.2000 2.82843
10.0009 3.16228
12.0009 3+46412
14.2000 3.74166
16.0300 4.20300
18.0000 4.24264
20.0000 4.47214

END OF PROGRAM

Figure 4-7. DO Statement Example

4-11

Examples of DO loops are as follows:
100 FORMAT (I5)
J=0
DO10I=1,10,1
5 Jd=dJd+1
10 K = J*J
WRITE (6,1000K
STOP

END

Statements 5 and 10 will be executed 10 times. Each time
the DO loop is executed, I is incremented by 1.

100 FORMAT (I5)
d=0
DO10I =1, 10,2

5 Jd=J+1

10 K = J**2
WRITE (6,100)K
STOP

END

I will be incremented by 2 each time the preceding DO
loop is executed.

100) FORMAT (I5)
Jd=0
DO10I =1, 10
5 J=Jd+1
10 K = J**2
WRITE (6, 100) K
STOP

END

Step was omitted from the last example. It is assumed to
be 1 and I will be incremented by 1 each time the DO loop
is executed.

4-12

DO 1001 =1, 10, 1

4-9. NESTING DO LOOPS

If a DO loop contains another DO loop, the second (inner)
loop is nested within a first (outer) loop. The last state-
ment of the inner (nested) loop must either be the same as

the last statement of the outer loop, or must occur before
the last statement of the outer loop.

In the following example, the last, or terminating, state-
ment of the innermost loop ocurs before the last statement
of the outer loops.The two outer loops have the same ter-
minating statement.

DO 100 J = a, 10, 2———
DO 90 K = 1, 10, 1——
L = I*J

WRITE (6, 100)L

90 CONTINUE

100 CONTINUE

Control passes statement 100 only after all three loops are
satisfied.

DO loops may be nested to as many levels as desired, as
long as the ranges do not overlap. An example of overlap-
ping ranges is as follows:

DO 1001 = 4 10—

DO 5 %1’ 10— ILLEGAL: THE RANGES

OF THE TWO LOOPS
OVERLAP

100 WV

200 C = A*B

4-10. ENTERING AND EXITING DO LOOPS

A DO loop may be exited at any time, e.g., by a GO TO
statement or a subprogram call, as long as the statement
causing the passing of control out of the DO loop is not the
termination statement of the loop. For example,

DO 501 = 1, 10, 2
A = SQRT (C * D)
WRITE (6, 100)A
GO TO 500

50 CONTINUE
C=C+1
D = C**2

500 D1 =C*D

In this example, control passes out of the DO loop during
the first execution by means of the statement, GO TO 500.

It is possible to pass control into the range of a DO loop,
but only if a transfer out of that same DO loop had occur-

red previously. The following example shows a legal trans-

fer out of the range of a DO loop and back into the same
range.

DO50I=1,10,1
GO TO 70
200 X=Y*V+R
50 CONTINUE
70 VAL = BAN + 6

GO TO 20

Instructions executed after a transfer out of a DO loop can
include other DO statements. The range of any new DO
statements, however, must not contain any means for exit-
ing and reentering the range of the original DO loop be-
fore the limit of the new DO loop is satisfied. The following
is an example of an illegal transfer:

DO100I=1,10,1
Y = Y** 2
GO TO 150

GO TO 170
\Z
30 A=X
S

100 CON&E

150 D%ZSO Jd=1,10,2
B=A*Y
170 IF (B .LE. 6.0) GO TO 30
250 CONTINUE
The loop defined by statements 150 and 250 contains a
possible transfer out of the range of this loop (through
statement 170) and into the range of the original before

the limit of the second loop is satisfied.

When a transfer is made out of the first loop (through the

statement, GO TO 150) and the second DO statement is.

executed, the first DO loop mechanism is altered. An at-
tempt to reenter the first DO loop range before the second
DO loop limits are satisfied might cause unpredictable
results. Thus, transferring from the range of one DO loop
and executing another DO statement is advisable only if
the second DO loop range does not contain possible exit

points other than those that result in normal satisfaction
of the DO loop.

4-11. CONTINUE STATEMENT

A CONTINUE statement creates a reference or junction
point in a FORTRAN/3000 program.

where

label

is a statement label number (an integer value from 1 to
99999). Because it is most always used as a reference or
junction point in a program (such as the termination
statement in a DO loop), a CONTINUE statement usu-
ally is labeled.

The CONTINUE statement usually is used as the last
statement in a DO loop that otherwise would end in a
prohibited statement such as a GO TO instruction. If a
CONTINUE statement is used elsewhere in a program, or
if it is not labeled, it has no function and control passes to
the next statement.
EXAMPLE:
DO 100I =1, 10
20 X=1
Y = SQRT(X)
WRITE (6, 200) Y
IF (X .LT. 25.0) GO TO 100
GO TO 20
100 CONTINUE

The last executable statement of the DO loop in the exam-
ple is a GOTO statement, which is not allowed to be the
last statement in a DO loop. The CONTINUE statement is
used therefore to terminate the loop.

4-13

4-12. STOP STATEMENT

A STOP statement causes termination of program execu-
tion.

where
integer
is an unsigned integer used to identify a specific STOP
and is useful in determining at which point a program
has terminated execution.

“character string”

is a message used to identify a particular stop. One use
might be to state the reason for unexpectedly terminat-
ing execution.

Example 1,

100 FORMAT (2F7.3)
200 FORMAT (T12, “A IS LARGER”)
300 FORMAT (T12, “B IS LARGER”)
READ (5, 100) A, B
IF (A LT. B) GO TO 50
WRITE (6, 200)
STOP 10
50 WRITE (6, 300)
STOP 20

END

In the example, if B is less than A, the program will
terminate at the first STOP. If B equals or is greater than
A, statement 50 will be executed and the program will
terminate at the second STOP.

The STOP statements are followed by unsigned integers.
When execution is terminated, the computer will output a
message signifying the STOP at which program execution
terminated.

4-14

Example 2,

100 FORMAT (2F17.3)

200 FORMAT (T12,"A IS LARGER”)

300 FORMAT (T12, “B IS LARGER”)
READ (5, 100) A, B
IF (A.LT.B) GO TO 50
WRITE (6, 200)
STOP ‘A GREATER THAN OR EQUAL TO B’

50 WRITE (6, 300)

STOP “ A LESS THAN B

END

In the example, if B is less than A, the program will
terminate at the first STOP. If B equals or is greater than
A, statement 50 will be executed and the program will
terminate at the second STOP.

The STOP statements are followed by the character
strings “ A LESS THAN B ” and “A GREATER THAN OR
EQUAL TO B”. When execution is terminated, the compu-
ter will output a message signifying the STOP at which
program execution terminated.

4-13. END STATEMENT

The END statement informs the compiler that the end of
the code for a program unit has been reached. If there are
other program units following, the compiler will progress
to these units. ’

4-14. PAUSE STATEMENT

The PAUSE statement causes a program break if the
program is operating in interactive mode and merely
prints PAUSE (but does not cause a program break) if the
program is operating in batch mode.

where

integer

is an unsigned integer used to identify a specific
PAUSE. A PAUSE statement is used in interactive
sessions whenever it is desirable to cause the program
to break.

“character string”

is a message to be displayed on the job or session list
device. It might be used to inform the user as to the
reason for the pause.

Figure 4-8 is an example of PAUSE statements identified
by integers (PAUSE 10 and PAUSE 20). In the program, if
A is not less than or equal to B, program execution will
pause and the pause number will be printed out on the
terminal along with a prompt character (:). To resume
program execution, type RESUME. For example,

For example,

PAUSE 10 Typed out by the computer (along with
the colon in the next line).
:RESUME When RESUME is typed, the program

will continue to execute.

Note: The above performs the same function as
using the BREAK key, and all
MPE/3000 commands allowed in
BREAK can be used.

Figure 4-9 contains STOP and PAUSE statements which
are followed by character strings. If the first STOP is
executed, the message STOP FOPEN FAILED. REASON
UNKNOWN is displayed. If the PAUSE statement exe-
cutes, the user is asked to create a file.

4-15. CALL STATEMENT

A CALL statement references and transfers control to an
external procedure.

FEB 1977

where

name
identifies the symbolic name of the procedure being
called and must be identical to the name of the proce-
dure.

param
is an actual argument defined by the program unit
containing the CALL statement. Actual arguments
must agree in number, order and type with the dummy
arguments defined in the procedure being called. The
actual arguments may be constants, simple variables,
array names, expressions or function subprogram
names.

label

is a statement label (prefixed with a $). Label identifies
a statement in the calling program to which control
may be returned when the procedure ends. The $ prefix
is necessary to distinguish statement labels from in-
teger constants. Labels must follow all other paramet-
ers (if any) in the parameter list.

CALL statements are not used to transfer control to fune-
tion subprograms. Function subprograms are called
implicitly by being referenced in an expression. For exam-
ple, A = SQRT(B) calls the function subprogram for com-
puting square root. The subprogram is called implicitly
(i.e., merely by being referenced in the expression
SQRT(B)). Thus, CALL statements are used only for
transferring control to subroutine subprograms. When the
subroutine is executed, the actual arguments (param) in
the CALL statement are associated with their equivalent
dummy arguments in the SUBROUTINE statement. The
subroutine is then executed using the actual arguments.
When a RETURN statement is executed (in the sub-
routine), control is returned to the statement following the
CALL statement in the calling program unit. Control also
can be returned to other statements in the calling program
if a RETURN n statement is executed (see paragraph
4-16).

A call statement example is shown in figure 4-10.

In the example shown in figure 4-10, the main program
first loads array JACK with integers from 1 to 10 by
setting JACK(I) = I each time I is incremented. Integer
variable J is assigned the value 6. CALL MULT(J) trans-
fers control from the main program to the subroutine
MULT. In the statement CALL MULT(J), J is the actual
argument that is passed to the subroutine. In the state-

4-15

tFORTGO FTRAN9
PAGE 0281 HP321022B. 7.0

Yt | LBY PROGRAM PAUSE
w2088 C
Yovo3ooy C PAUSE STATEMENT EXAMPLE
poeB4ned C
VYPRYS PN ACCEPT A,B
WOYHE PN IF(A.LE.B)GOTO 5%
1912908 0] PAUSE 12
1VYODB DDA ACCEPT C
VYV IFCA.LE.C)GOTO 50
Vo | DV PAUSE 20
7 ARNGAY ACCEPT D
VEY 1 2 0w X=A%*D
@1 3604 DISPLAY "X = n,
Lo 1400w 59 STOP “SUCCESSFUL COMPLETION®
dud 1 50 END
* %k kk GLOBAL STATISTICS Fokdok
*kkk NO ERRCRS, NO WARNINGS *¥%k
TOTAL COMPILATION TIME Wsuidsil
TOTAL ELAPSED TIME Y22l
END OF COMPILE
END OF PREPARE
?
291865.89,45,32
PAUSE 1v
s RESUME
?
567.45
PAUSE 29
s RESUME
?
5319.67
X = . 158455E+10 STOP SUCCESSFUL COMPLETION

END OF PROGRAM

416

Figure 4-8. PAUSE Statement Example

sFORTGO PAUSEXP

PAGE w@dl HP321028.04.0

VOB VY PROGRAM PAUSE

DBV C

YVYY30Yw C THIS PROGRAM DEMONSTRATES THE PAUSE STATEMENT WITH
VePo4 ey C A MESSAGE. THE SYSTEM INTRINSIC STATEMENT IS
pewY50vw C DESCRIBED LATER IN THE MANUAL.

Vo6 Ly C

BB T VOV SYSTEM INTRINSIC FOPEN,FCHECK

YUBOB VDY CHARACTER*9 FILENAME

VOO GO0 DATA FILENAME/“USERFILE "/

vowl Vs 1w TFNUM=FOPEN(F ILENAME,%3L)

G 11 6w IF(.CC.)201,400, 200

Wus12uvw 20» CALL FCHECK(IFNUM, IFRRNO)

Y 1 3690 IF(IERRNO.EQ.52)G0 TN 30¢

U 14 Qi STOP "FOPEN FAILED. REASONN UNKNOWHN
VUL15¢m 3Wd PAUSE WFOPEN FAILED, NON-EYISTENT FILE. PLZASE CREATEM
S AR GO TO 1o

Vel 70wy 40w STOP "SUCCESSFUL OPEN™

VI | 6300 END

*kk GLOBAL STATISTICS Fok dok

*xk%% N0 ERRORS, NO WARNINGS %k

TOTAL COMPILATION TIME @:@:gl

TOTAL ELAPSED TIME D200z 35

EwD OrF COMPILE

END OF PREPARE

PAUSE FOPEN FAILED,

NOW-EXTSTENT FILE. PLEASE CRFATE

sFILE USERFILE=LP{DEV=FASTLP

s hESUME
S10P

SUCCESSFUL OPEt

END OF PROGRAM

Figure 4-9. PAUSE Statement with Message Example

417

tFORTGO FTRANIO

PAGE ©9v1

220010030
20002000
00023000
220040080
20005000
200036000
200070200
20008030
20009000
oanz1080220
20011020
00012000
20313200
20014000
22015230
20216000
200170020
22018000
00015000

20020030
20021000
20022000
20023000
20024000
20025000
20026009
20027000
20028200

*k kK

HP321@2B. 2.

PROGRAM CALL
c
C CALL STATEMENT EXAMPLE
c
C THIS PROGRAM UNIT 1S THE CALLING PROGRAM
c
128 FORMAT(14)
COMMON INT(C19),JACK(18)
DO 12 I=1,10
12 JACK(I)>=1
J=6

C THE NEXT STATEMENT CALLS THE SUBROUTINE *'MULT®

CALL MULT(J)D
DO 28 I=1.,10
20 WRITE(6,1@8)INT(1)
STOP
END

C THE NEXT PROGRAM UNIT IS THE SUBROUTINE SUBPROGRAM

SUBROUTINE MULT(X)
COMMON INT(1@),JACK(10)
DO 19 1=1,10

10 INT(I)=JACK(I)*K
RETURN
END

GLOBAL STATISTICS ek dok

*hk Kk NO ERRORS, NO WARNINGS dkar
TOTAL COMPILATION TIME Q100101
TOTAL ELAPSED TIME 2:00425

END OF COMPILE

END OF PREPARE

6
12
18
24
30
36
42
48
54
69

END OF PROGRAM

418

Figure 4-10. CALL Statement Example

ment SUBROUTINE MULT(K), K is the dummy
argument. The address in memory where the variable J is
located is passed to the subroutine.The subroutine uses
this address to indirectly reference the actual variable J.

The actual result of calling the subroutine is to multiply
the number stored in each element of array JACK by 6 (J
= 6) and store the result in the corresponding element of
array INT. J is substituted for K whenever K appears in
the subroutine. When the RETURN statement in the sub-
routine is executed, control is passed back to the state-
ment following CALL MULT(J) in the main program.
Since array INT is accessible to both the subroutine and
the main program through COMMON statements, the
main program can use the results of the subroutine com-
putations.

4-16. RETURN STATEMENT

A RETURN statement transfers control from a subprog-
ram back to the calling program unit.

where

n
is a positive integer constant or integer simple variable
with positive value used as an index to point to a
statement label in the label list in a CALL statement.

In a subroutine subprogram, executing a RETURN state-
ment of the first form (without the n) returns program
control to the statement following the CALL statement in
the calling program. For example, in the subroutine
MULT (previous example), the RETURN statement re-
turns control to statement DO 20 M = 1, 10 (the statement
following CALL MULT(J), which is the calling statement)
in the main program.

The second form, RETURN n, is used to return control to a
statement in the calling program unit other than the one
after the CALL statement. An example of RETURN n
statement usage is shown in figure 4-11. In the SUB-
ROUTINE statement, a list of asterisks follows the two
dummy parameters (K, L) to show that alternate return
points exist. In the CALL statement in the main program,
the asterisks are replaced by $10, $20, and $30. (The $
prefix is necessary to distinguish statement labels from
integer constants.) Control is passed to the subroutine by
the CALL statement.

Apr 1978

The addresses in memory of I and J (the actual arguments)
are used by the subroutine to determine the values of K
and L (the dummy arguments). If K and L are equal, I is
set equal to 1 and the RETURN I statement selects the
first label ($10) in the label list. Control returns to state-
ment 10 in the main program. If K is less than L, control is
returned to statement 20; and if K is greater than L,
control is returned to statement 30. If the index (I) is less
than 1 or greater than the number of statement labels
listed in the label list, a compiler diagnostic message re-
sults when index is a constant, and a run error results
when the index is a simple variable.

In a function subprogram, only the first form of the RE-
TURN statement is allowed. When a RETURN statement
is executed in a function subprogram, control is returned
to the statement containing the expression in the calling
program which referenced the function. The value ob-
tained by the function subprogram’s computations is as-
signed to the function name and is used to continue evalu-
ation of the referencing expression.

EXAMPLE:

100 FORMAT (2X, I5)
I=8
J=4

30 K =6+ IDIV{d, Jd)
WRITE (6, 100) K
STOP
END
FUNCTION IDIV(L, M)
IDIV = (L**2) + (M**3)
RETURN

END

The function reference (IDIV) in statement 30 of the main
program passes control to function subprogram IDIV
which computes a value for IDIV. The values of the actual
arguments I and J are used by the dummy arguments L
and M to compute the value of IDIV. The resulting value is
assigned to function name IDIV.

When the RETURN statement is executed, control is pas-
sed back to the calling program and the evaluation of the
expression in statement 30 continues.

If a RETURN statement is encountered in the main pro-
gram, it is treated as a STOP statement. However, it is not
recommended to use the RETURN statement in this fashion
since the execution of the program is terminated at that
stage, rather than transferred to some other point.

4-19

sFORTGO FTRANI11

PAGE 0001 HP321082B.20.0

00001000 PROGRAM RETURN 1

#20020028 C

2300339% C RETURN STATEMENT EXAMPLE

29004000 C

20005029 108 FORMAT('0',TI12,*1 AND J ARE EQUAL')
Po006003 202 FORMAT('0°',T1@,"1 IS LESS THAN J')
0027000 300 FORMAT('@2',T12,*"1 IS LARGER THAN J')
20008000 ACCEPT 1.,J

20009009 CALL LARGE(I.,J,512,%20.,%32)
V0210000 10 WRITE(6,100)

20011000 STOP 102

20012009 20 WRITE(6,200)

20013000 STOP 29

2001 4000 3@ WRITE(6,300)

20015000 STOP 30

220160020 END

20017000 SUBROUTINE LARGE(K,L.,*,%*,%)
20018000 IF(K.EQ.L)I=1

20019000 IF(K.LT.L)1I=2

20020000 IF(K.GT.L)>1=3

00021000 RETURN 1

200220080 END

*kkk GLOBAL STATISTICS Fok otk

ok Aok NO ERRORS, NO WARNINGS **#x

TOTAL COMPILATION TIME ¢:@0:0l

TOTAL ELAPSED TIME

V320204

END OF COMPILE

END OF PREPARE

732,78

STOP 20

1 IS LESS THAN J

END OF PROGRAM

4-20

Figure 4-11. RETURN n Statement Example

4-17. TRAP HANDLING

The trap handling mechanism allows you to write a sub-
routine to which control is transferred if a trap condition is
encountered. Upon exit from the subroutine, execution
continues with the instruction following the one which
was interrupted.

Whenever a major error occurs during the execution of a
hardware instruction, a procedure from the System Li-
brary, or an intrinsic called by the user, normally the
user’s program is aborted and an error message is output.
You can, however avoid an immediate abort by enabling
any of the following software traps:

Arithmetic Trap

System Trap

Basic External Function Trap

Internal Function Trap

Format Trap

Plot Trap

CONTROLY Trap (not actually an error)

N ook o

When an error occurs, the corresponding trap, if enabled,
suppresses output of the normal error message, transfers
control to a trap procedure defined by you, and passes one
or more parameters describing the error to this procedure.
This procedure may attempt to analyze or recover from the
error, or may execute some other programming path
specified by you.

Upon exiting from the trap procedure, control returns to
the instruction following the one that activated the trap.
In the case of the library traps, however, you can specify
that the process be aborted when control exits from the
trap procedure. Trap intrinsics can be invoked from within
trap procedures.

The flow of control must pass through a TRAP statement
before the action specified can occur, since there are some
internal parameters which must be set. In particular, ON
statements may appear only where any executable state-
ment may appear. Once enabled, the condition can only be
disabled by another ON statement which specifies the
same TRAP condition.

FEB 1977

A FORTRAN subroutine containing a TRAP statement
may not be added to the System Library since the Trap
handling mechanism requires a special COMMON to store
the external label of the called subroutine (plabel).

Error conditions described in the following paragraphs are
recognized.

4-18. ARITHMETIC ERRORS

The following syntax is recognized for arithmetic error
conditions.

REAL DIV 0
REAL OVERFLOW
REAL UNDERFLOW
DOUBLE PRECISION DIV 0
DOUBLE PRECISION OVERFLOW
DOUBLE PRECISION UNDERFLOW
INTEGER*2 DIV 0
INTEGER*2 OVERFLOW
INTEGER*4 OVERFLOW

. INTEGER*4 DIV 0

. INTEGER DIV 0
This maps into INTEGER*4 DIV 0 when the
$INTEGER*4 control option has been invoked.
Otherwise this maps into INTEGER*2 DIV 0.

12. INTEGER OVERFLOW
This maps into INTEGER*4 OVERFLOW when the
$INTEGER*4 control option has been invoked.
Otherwise this maps into INTEGER*2 OVERFLOW.

© X NS0 e W

e
- o

In each of the above cases, the corresponding subroutine
requires one reference parameter which is of the same
type as that associated with the error condition. When the
subroutine is called, the parameter will be the result of the
operation which caused the trap to be invoked.

Parameter type checking will be performed by the
segmenter.

Note:
No provision is made for handling com-
mercial instruction traps due to the
diversity of the possible number of ele-
ments in the stack and the nature .of
each of those elements.

Example,

$CONTROL USLINIT
PROGRAM TRAPTEST
C TRAP TESTING EXAMPLE
ACCEPT ILJK,
ON INTEGER*2 DIV 0 CALL DIVZERO
L=1/J+K
WRITE(6,100)L

4-21

100 FORMAT (T5, “THE VALUE OF L I1S”,F10.3)
STOP
END
SUBROUTINE DIVZERO(IRESULT)
INTEGER*2 IRESULT
DISPLAY “DIVIDE BY ZERO ENCOUNTERED”
DISPLAY “RESULT DEFAULTED TO ZERO”
IRESULT=0
RETURN
END

4-19. SYSTEM ERRORS

The syntax for system errors is

SYSTEM ERROR

The subroutine which is called as a result of this kind of
error must have one parameter which is an integer array.
Parameter type checking will be performed by the seg-
menter. The contents of the parameter when the sub-
routine is called will be the array of eight parameters
which are placed there by the system and defined in the
MPE Intrinsics Reference Manual under System Traps.
This parameter group immediately follows the parameters
to the intrinsic in which the error occurred.

4-20. BASIC EXTERNAL FUNCTION
ERRORS

The syntax for basic external function errors is
EXTERNAL ERROR

The subroutine which is called must have four formal
parameters in the following order.

1. Single integer containing the error number (1 to 50)
which is determined by the external function in which
the error occurred. If the error number is set to zero by
the user upon exit from the user-provided subroutine,
then a normal termination sequence will occur with
the standard error message being printed.

2. The result.
3. The first operand.

4. The second operand. (contains garbage for errors 5 to
13; only one argument).

4-22

An external function error is shown in figure 4-12.

Note: The correspondence between error num-
bers and external routines is listed in the
Compiler Library Reference Manual.

4-21. INTERNAL FUNCTION ERRORS

Internal functions are those which are called implicitly by
a user program, such as exponential routines.

The syntax for internal function errors is
INTERNAL ERROR

The subroutine called requires two formal parameters in
the following order.

1. Single integer containing the error number (51 to 99)
which is determined by the internal function in which
the error occurred. If the error number is set to zero by
the user upon exit from the user-provided subroutine,
then a normal termination sequence will occur with
the standard error message being printed.

2. The result.

Note: The correspondence between the error
number and internal routine is listed in
the Compiler Library Reference Manual.

An internal function error is shown in figure 4-12.

4-22. FORMAT ERRORS

Errors occurring during formatting of input or output re-
sult in a call to a subroutine specified by the user if the
format error condition is specified in a trap statement.

The syntax for format errors is

FORMAT ERROR

The subroutine called must have seven formal parameters
in the following order.

1. Single integer containing the error number (101 to
149) which corresponds to a particular format error
(see the Compiler Library Reference Manual for corre-
spondence). If the error number is set to zero by the
user upon exit from the user-provided subroutine then
a normal termination sequence will occur with the
standard error message being printed.

2. The format. (character array)

sFORTGO LIBTRAPX

PAGE 0001

POROS DD
141051135105}
VO TV
000 8 DY
VOR09 VDD
00V | 3000
00d 14000
VD 15000
00016000
000t 7000
00018002
29019000
V020000
BB 21000
200 22 V2D
00024 000
1000 25 DY
VD54 WD
(100510851514}
VOV 15000
POV 16209

(551NN
VA8 VRV
(5%, WAR%5]
DOB8 VLYY
P 811YY
VD82 VLY
VL83V
vpv84 Y0
POA8500%
101651331030}
DYOBT 000
DVLB8 VYD
DV8Y WY
DY vV
P09t B0
D092 00D
DeD93000
1515330417}
V95 LYY
DB I6 00D
PXOTDND
20998 000
200 99 D
120000
20101 00y

HP32

OO0

102B.00.0

PROGRAM STEST

FORCE LIBRARY ERRORS TO DEMONSTRATE TRAP HANDLING

REAL R

COMMON /2711

ACCEPT 11
ON INTERNAL ERROR CALL INTERROR

ON EXTERNAL ERROR CALL EXTERROR

IF (II.GE.®) GO TO 5
IT = -11

ON INTERNAL ERROR ABORT
ON EXTERNAL ERROR ABORT
5 GO TO (1@,160),11
19 CONTINUE

160

$CONTR

112

120
12%%%

R = ATAN2(QEQ,QER)
CONTINUE

R = B.0%k(-.5)
STOP 1

END

OL CHECK=0¢

SUBROUTINE INTERROR(ERRNO,RES)

INTEGER*2 ERRNO

DOUBLE PRECISION RES

REAL PRRES

INTEGER*4 DIRES

INTEGER*2 IRES

EQUIVALENCE (RRES,DIRES,IRES)

COMMON /Z/11

WRITE(6,1) ERRNO

FORMAT ("¢, "*4x INTERNAL ERROR NUMBER ",14)
IF (EPRNO.LT.57.0R.ERRNO.GT.59) GO TC |77
DISPLAY "DOUBLE PRECISION RESULT = ",RES
GO TO 9vny

RRES = RES

IF (EPRNO.NE.56.AND.ERRNO.NE.55) GO TO 110
DISPLAY "REAL RESULT = ",RRES

GO TO 9000

IF (ERRNO.LT.67) GO TO 120

DISPLAY "DOUBLE INTEGER RESULT = ",DIRES
GO TO 9@

DISPLAY "INTEGER RESULT = ",IRES

IF (II.NE.@) ERRNO = 0

RETURN

END

Figure 4-12. Internal, External Function Error Example (Sheet 1 of 3)

4-23

V102 000
W 1w 30YY
W 194 VY
105008
VB 10600V
VYT 0D
10800
W 1090V
11 Bo2n
il v
V112890
v 11 30y
o114 p0d
wo t 15000
Vo 116009
Vo Tvnd
0118000
WY 119VYY
M 20000
20121009
0D 22 VA0
123000
124008
20125000
126000
ot 27006
w1 28000V
VI 29V

%%k Kk

$CONTROL CHECK=©
SUBROUTINE EXTERROR(ERRNO,RES,0P1,0P2)
INTEGER*2 ERRNO
DOUBLE PRECISION RES,OPI1,0P2
REAL FRES,ROP1,ROP2
LOGICAL ONEARG
COMMON 7Z/11
ONEARG = JFALSE.
WRITE(6,1) ERRNO
| FORMAT (¢2# (Waxx EXTERNAL ERROR NUMBER ",14)
IF (EPRNO.GE.5) ONEARG = .TRUR.
IF (EPRNO.EQ.3.0R.ERRNO.EN.4.0R.FRRND.EQ.6.0R.ERRNO,F0.R
.OR.ERRNO.EQ. 1. OR.ERRNO.EQ, 13) GO TN 127
ROP1 = OPI
DISPLAY "EFIRST OPERAND = ",ROPI
IF (ONEARG) GO TO 110
ROP2 = 0P2
DISPLAY "“SECOND OPERAND = “,ROP2
11 RRES = RES
DISPLAY "RESULT = ",RRES
IF (II.NE.9J) ERRNO = 4

RETURN
1920 DISPLAY "FIRST OPERAND = ",0P]|
IF (.NOT.ONEARG) DISPLAY MSECOND OPERAND = " 0p?

DISPLAY "RESULT = ",RES
IF (IT1.NE.¥) ERRNO = @
RETURN

END

GLOBAL STATISTICS *ok dok

*k kk NO ERRORS, NO WARNINGS %%+
TOTAL COMPILATION TIME @:00:(2
TOTAL ELAPSED TIME D22 0R

END OF COMPILE

END OF PREPARE

4-24

Figure 4-12. Internal, External Function Error Example (Sheet 2 of 3)

k EXTERNAL ERROR NUMBER

FIRST OPERAND = . DOPODBE+ 0B
SECOND OPERAND = « DD POODE+0D
RESULT = D ODOBOE+0ON

% INTERNAL ERROR NUMBER 56
REAL RESULT = « DODODIE+ DD
STOP 1

END OF PROGRAM
tRUN SOLDPASS

?
1

*** EXTERNAL ERROR NUMBER 1

FIRST OPERAND = « DBV E+DD
SECOND OPERAND = . DOOVOBE+ 7
RESULT = DO DDE+PA ATAN2t ARGUMENTS ZERO
X= . ADQIAME+DD
Y= « DOV E+ OQ
*okk STACK DISPLAY hkk

S=prRl 44 DL=177602 7=031467
Q=150 P=m)286¢ LCST= SI153 STAT=U,!1,0,L,J,0,CCE

Q=002 37 P=p@4352 LCST= S153 STAT=U,!1,0,L,%,%,CCE
Q=000070 P=pP8735 LCST= S154 STAT=U,1,0,L,0,1,CCG
Q=00Yv51 P=¢eRT714 LCST= 0O® STAT=U,!,1,L,8,1,CCG

ABORT :$OLDPASS...%?.%714:SYSL.%153.,%4354: PROCESS QUIT

ERR 2
¢RUN $OLDPASS
?
-2
RTOR: TLLEGAL ARGUMENTS
X= QOO VADE+DD
Y= —. 5000 E+ 00
*kk STACK DISPLAY *dk
S=0031 39 DL=1776%2 7=001467
Q=0WY134 P=0w2W6®» LCST= S153 STAT=U,I1,1,L,2,0,CCF
Q=00B123 P=p4352 LCST= S153 STAT=U,I1,1,L,9,a,CCE
Q=0YeV54 P=0RB432 LCST= S154 STAT=U,1,!t,L,n,3,CCG
Q=045 p=@00@722 LCST= @o» STAT=U,1,1,L,#,72,CCL
ABORT 2SOLDPASS...%A.%7223SYSL.%153.%4354¢: PROCESS NUIT

ERR 2
:

X=0D 0072

X=0000%)2
X=073 715
X=00007 1

Y= 002N

X=000a27
X=000 030
Y= 00 00A

Figure 4-12. Internal, External Function Error Example (Sheet 3 of 3)

4-25

3. Offset to the location in the format where the error
was detected from the start of the format.

4. The I/O buffer. (character array)

5. Offset to the location in the I/O buffer where the error
was detected from the start of the buffer.

6. Single integer containing the FORTRAN unit
number.

7. Single integer containing the MPE file number.

Figure 4-13 is an example showing a format error.

4-23. PLOT ERROR

Errors occurring during the generation of plots result in a
call to a subroutine specified by the user, if the plotting
error condition is specified in a trap statement.

The syntax for plotting errors is

PLOT ERROR

The subroutine called must have the following formal
parameter.

Single integer containing the error number (150 to 157)
which corresponds to a particular plot error (see the
Compiler Library Reference Manual for correspond-
ence). If the error number is set to zero by the user upon
exit from the user-provided subroutine then a normal
termination sequence will occur with the standard
error message being printed.

4.24, CONTROL Y

If CONTROLY is specified in a trap statement, and you
enter a CONTROLY from the terminal during execution
of the program, then the specified user subroutine is
called.

There are no parameters allowed in the subroutine.

4-26

4-25. ABORT

If ABORT is specified instead of “CALL subroutine” for an
error condition, then when the trap condition is encoun-
tered the contents of the registers S, DL, Z, Q, P, LCST,
and X are listed (DB relative where applicable). A trace
back of stack markers also is made. The program termi-
nates at this point. If you desire more information than
this, a subroutine may be written to call STACKDUMP to
list whatever is required, using the normal mechanism.

An example showing the use of ABORT in an error condi-
tion is shown in figure 4-13.

4-26. ENABLING OF TRAPS BY USER. You can
enable traps by appropriate calls to system intrinsics.

You may not, however, enable a trap explicitly with the
appropriate system intrinsic and have a trap statement in
effect at the same time within a category (see below).
Enabling a trap with an intrinsic disables all trap state-
ments in the same category, and a trap statement disables
any explicitly enabled trap. The feason for this is that
FORTRAN must use the same linkages and intrinsics as
you would use if you set up your trap handlers using
intrinsics described in the MPE Intrinsics Reference
Manual.

Correspondence between MPE intrinsics which enable
traps and trap statements is shown below:

Trap Enabled Trap Statements

XARITRAP Arithmetic Traps
XLIBTRAP External, Internal,
Format, Plot
XSYSTRAP System Traps
XCONTRAP CONTROLY

Note: For more information about traps, see
the MPE Intrinsics Reference Manual.

tFORTGO FMTTRAPX

PAGE w001

X256 000
0257000
BB258 200
20259 000
o0 260 20D
PB261 X0G
00262 000
20263000
20 3 00000
20301 VD
00 302000
20303000
00 330000
20 336 000

00 337 000
00 338 V0
00 33900
340000
V341 000
03342 000
00343000
00 344 000
010345000
08346000
D347 000
0348000
00349000
¥V 350000
0351 600
20352 020
00353000
20 354 000
Y0355000

*kkk
*k hk NO

HP32

220

215

102B.00.0

COMMON /Z/ J
DISPLAY "TEST FORMATTER ERROR RECOVERY"
DISPLAY ©
ACCEPT J
ON FORMAT ERROR CALL FMTERROR
IF (J.GE.#) GO TO 220
==
ON FORMAT ERROR ABORT
=11
DISPLAY “NUMBER OUT OF RANGE ERROR®
READ(5,215) A
FORMAT(E13.6)
STOP
END

$CONTROL CHECK=@

SUBROUTINE FMTERROR(NUM,FMT,FMTLOC,BUF,BUFLOC,UNIT,FNUM)
CHARACTER*10@ FMT,BUF
INTEGER*2 FMTLOC, BUFLOC,NUM,UNIT,FNUM
COMMON /27 K
WRITE(6,1) NUM
FORMAT (" " ,MFORMAT ERROR NUMBER ",14)
WRITE(6,2) UNIT

2 FORMAT(" # MUNIT NUMBER ",14)
WRITE(6,3) FNUM
3 FORMAT(" " ,"MPE FILE NUMBER",14)
IF (NUM.EQ.102.0R.NUM.EQ.113) GO TO 9229
IF (FMTLOC.EQ.2) GO TO 109
DISPLAY "GOOD FORMAT = ",FMT(1:FMTLOC]
1 08 IF (BUFLOC.EQ.2) GO TO 9290
DISPLAY "GOOD DATA = " ,BUF[t:BUFLOC]I
9d IF (K.NE.@) NUM=0
RETURN
END
GLOBAL STATISTICS *kkk

ERRORS, NO WARNINGS Hkd*
TOTAL COMPILATION TIME 0300:02
TOTAL ELAPSED TIME V2002154

END OF COMPILE

END OF PREPARE

TEST FORMATTER ERROR RECOVERY

?
a

NUMBER OUT OF RANGE EPROR 1.2345678E96

Figure 4-13. Format Error Example (Sheet 1 of 2)

4-27

FORMAT ERROR NUMBER 186
UNIT NUMBER 5

MPE FILE NUMBER 4

GOOD FORMAT = (E13.

GOOD DATA = 1.2345678E96

END OF PROGRAM
tRUN SOLDPASS

TEST FORMATTER ERROR RECOVERY

?

|

NUMBER OUT OF RANGE ERROR 1.2345678E96
FORMAT ERROR NUMBER 186

UNIT NUMBER 5

MPE FILE NUMBER 4

GOOD FORMAT = (EI3.

GOOL DATA = 1.2345678E96

1.2345678E£96

NUMBER OUT OF RANGE

*kk STACK DISPLAY Kkk

S=90Mp232 DL=1776492 Z=971467
Q=000 336 P=PY206¥» LCST= Si53 STAT=U,I1,1,L,9,0,CCE

Q=01¥325 P=¢w3174 LCST= SI153 STAT=U,1,1,L,4,0,CCE
Q=00y244 P=0@Q@512 LCST= S114 STAT=U,1,!,L,3,1,CCC
Q=0eRv54 P=ppR427 LCST= ©O@0 STAT=U,!,1,L,0,8,CCG
ABORT :$0LDPASS...%0.%427:SYSL.%153.%3176% PROCESS QUIT
ERR 2
$RUN SOLDPASS

TEST FORMATTER ERROR RECOVERY

?
-1211!
-1

NUMBER OUT OF RANGE ERROR 1.2345678E96
1.2345678E96

NUMBER OUT OF RANGE
Kk STACK DISPLAY ok

S=@p 332 DL=1776@2 7=001467
Q=P00336 P=0V206@ LCST= SI153 STAT=U,!,1,L,d,8,CCE
Q0=0@0325 P=@@3174 LCST= SI53 STAT=U,!,!,L,@,0,CCE
Q0=00@244 P=pPE512 LCST= S114 STAT=U,1,1,L,0,1,CCC
Q=000054 P=000427 LCST= @09 STAT=U,1,1,L,2,08,CCG

ABORT $SOLDPASS...%0.%427t¢SYSL.%153.%3176t PROCESS QUIT

ERR 2

X=P00072

X=000072
X=177777
X=000 220

X=0020072

X=000072
X=1777717
X=000 200

4-28

Figure 4-13. Format Error Example (Sheet 2 of 2)

WRITING DECLARATION STATEMENTS IN

FORTRAN/3000|| v

Declaration statements define the characteristics of data
used in FORTRAN/3000 source programs, and, as such,
are non-executable. When compiled, declaration state-
ments do not. provide instructions in the object program.
Declaration statements must appear before the first ex-
ecutable statement in each program unit (whether main
program or subprogram), and in the following order:

IMPLICIT

DIMENSION
COMMON
EQUIVALENCE
Type statements
EXTERNAL

DATA
Statement functions

} level 1
level 2

level 3

Order within the same level can change.

5-1. TYPE STATEMENT

Type statements assign an explicit type to symbolic names
representing variables, arrays and function subprograms
which would otherwise have their type implicitly deter-
mined by the first letter of their symbolic names. (See
Section II, paragraph 2-19.)

where

type

may be INTEGER, INTEGER*2, INTEGER*4, REAL,
DOUBLE PRECISION, COMPLEX, LOGICAL,
CHARACTER or CHARACTER*x (*x is the length at-
tribute of the CHARACTER heading and specifies the

length of character variables. If the length attribute is
omitted, the length is assumed to be 1.) If the length at-

tribute is a variable it must be enclosed in parentheses.
INTEGER and INTEGER*2 define single word integers.
INTEGER*4 defines a double integer.

list

is one or more variable names, array names, function
names or array declarators (array names with dimen-
sions). When type is CHARACTER, the variable or array
name may have *x as a suffix to designate the length.

MAY 1979

In addition to being used for assigning explicit types to
symbolic names, the Type statement, by using a complete
array declarator (see paragraph 5-2) in list, may be used to
reserve memory space in the same manner as a DIMEN-
SION statement. (See paragraph 5-4 for a discussion of
DIMENSION statements.)

For example,
INTEGER RN
The above statement specifies that RN is type integer.

REAL ITEM

ITEM is type real.
INTEGER A(5,5,5)

The above statement specifies that array A is type integer
and that it has three dimensions of five elements each.

INTEGER*4 C(4,4)

The above statement specifies that array C is type double
integer and that it has two dimensions of four elements
each.

If a complete array declarator is used in list (see the last
example), the declarator for that array must not be used in
any other declaration statement (such as DIMENSION or
COMMON). If a variable name only is used, then an array
declarator must appear within a DIMENSION or COM-
MON statement (but not both) somewhere within the
same program unit (so that the compiler will recognize the
variable as an array name).

Type character is assigned to symbolic names as follows:
CHARACTER A(3),B(4),C(5)

The above statement specifies that array A is type charac-
ter with 3 elements, array B is type character with 4
elements and array C is type character with 5 elements.
Since the length attribute (*x) was omitted, the number of
characters in each element of each array is assumed to be
one.

CHARACTER*10 A(3), B4), C(5)
The above statement specifies that each element of arrays

A, B, and C has a length of 10 characters (contains 10
characters in each element).

CHARACTER*10 A(3), B*6(3)

This statement specifies that array A is type character

51

with 3 elements and that each element has a length of 10

characters; array B is type character with 3 elements and

each element has a length of 6 characters. Thus, the

length of type character variables can be defined in three

ways:

1. By using the CHARACTER heading only, in which
case the length of each element is implied to be one.

2. Through the length attribute (*x) following the CHAR-
ACTER heading. If the length attribute is a variable it
must be enclosed in parentheses.

5-1a MAY 1979

3. Through individual length attributes following
character symbolic names. For example,
CHARACTER*40 W ,X,Y,Z defines the variable
names W, X, Y and Z as type character, each with a
length of 40. Thus, the length attribute following the
CHARACTER heading specifies the length of all var-
iables not having individual length attributes
specified. Individual variables, however, can have
their length specified. For example, CHARACTER*30
X,Y*20,Z specifies character variables (X and Z) of
length 30, and character variable (Y) of length 20.

Character variables and character array names are the
only data elements which may have length attributes.
Elements in a Type statement /is¢ with any other heading
cannot have length attributes.

A character variable occupies memory space according to
the following rule:

(Character string length) x (number of elements) x
(one-half word)

For example,
CHARACTER*3 CH(3)

The Type statement specifies that CH is a character array
of 3 elements and that each element has a length of 3
characters. Array CH, therefore, would occupy: character
string length (3) x elements (3) x 1/2 = 4-1/2 words of
memory, or 9 bytes (byte = one-half word (8 bits)).

5-2. ARRAY DECLARATORS

Array declarators are used in conjunction with DIMEN-
SION, COMMON and Type statements to define the
number of elements, the type of data to be stored in the
elements, and the arrangement of the elements in an
array. This information is supplied to the computer
through the array declarator.

where

name

is a variable denoting the name of the array. The
array type is specified through a Type statement
(see paragraph 5-1), IMPLICIT statement (see
paragraph 5-13) or through the implicit typing con-
vention of using the first letter of the variable name
to specify the variable type. (The letters [, J, K, L, M
and N specify type integer; variable names starting
with any other letter are type real.)

5-2

by, ... by

are integers and specify the array bounds. The array
bounds indicate the number of dimensions of the
array (the maximum is 255), and the maximum
number of elements in each dimension. The product,
elements x dimensions determines the maximum
number of elements allowed. The absolute maximum
is approximately 30,000; the actual maximum, how-
ever, varies with each installation and is dependent
upon the maximum stack size established at config-
uration time.

The array declarator 1(3,4,5) indicates a three-
dimensional array (signified by the fact that there
are three subscripts (3,4,5) of type integer. The max-
imum subscript (bound) prescribed for each of the
three dimensions is 3, 4, and 5, respectively.

The total number of elements in an array is calculated by
multiplying the array bounds. For example, 1(3,4,5) indi-
cates that array I contains 3 x 4 x 5 = 60 elements. The
number of words of memory needed to store an array is
determined by the number of elements in the array and
the type of data which the elements contain. Integer and
logical arrays store each element of an array in a single
16-bit computer word; double integer arrays store each
element of an array in two words; real arrays store each
element in two words; double precision real arrays and
complex arrays store each element in four words.

If array 1(3,4,5) is type integer, then, it takes 3 x4 x5x 1
= 60 words of memory. Real array A(3.,4,5) takes 3 x4 x5
x 2 = 120 words of memory. Double integer array A(3,4,5)
takes 3 x 4 x 5 x 2 = 120 words of memory.

As mentioned previously, character arrays take one-half
word of memory storage for each character per element.
Character array CH(3,3,3), then, with elements consisting
of 3 characters each (CHARACTER*3) would take 3 x 3 x
3 x 3 x 1/2 = 40-1/2 words of memory storage.

Arrays are stored as one-dimensional arrays in memory
according to the Array Successor Function, described in
paragraph 5-8, Equivalence Between Arrays of Different
Dimensions.

A complete array declarator can be declared only once in a
program unit, while the array name may appear in sev-
eral declaration statements. For example, if the array
declarator is used in a DIMENSION statement, the array
name only (not the complete array declarator) can be used
in a COMMON or Type statement.

If the complete array declarator is used in a COMMON or
Type statement, the array need not be mentioned in a
DIMENSION statement. The array declarator used in the
COMMON or Type statement creates the necessary stor-
age space in memory, just as if the array were mentioned
in a DIMENSION statement.

For example,

INTEGER ARR(4,4)
has the same effect as

INTEGER ARR
DIMENSION ARR(4,4)

or
INTEGER*4 ARR(4,4)

has the same effect as

INTEGER*4 ARR
DIMENSION ARR(4,4)

Normally, array bounds (b, . . ., b,) and character length
are specified by positive integer constants and the bounds
(and length) are fixed by the values of these constants. It is
possible, however, to use adjustable array declarators in
subprograms. In this case, the array bounds (or character
length) are specified by integer simple variables instead of
integer constants. (See Paragraph 11-6 for more infor-
mation.)

Figure 5-1 is an example of adjustable array declarators
and character length. The example declares an array
TARR, and a character variable A, in the main program.
Array IARR has two dimensions of 10 elements each and
A has a length of 10 characters. A subroutine (SB) then is
called to fill array IARR with values and to set A equal to
“THE START.” The variables | and J are set equal to the
array bounds and K is set equal to the character length
and these variables are used as the actual arguments to be
passed to the subroutine. The subroutine dummy argu-
ments L, M, and N assume the values passed to them
- through1, J, and K. These variables (L, M, and N) then are
used in a DIMENSION and Type statement to establish
the bounds for array IVAR and the length for variable Z in
the subroutine. When character length is expressed as a
variable as in CHARACTER Z*(N), the variable must be
enclosed in parentheses. Note that the array bounds were
passed to the subroutine.

Adjustable array declarators cannot be used in COMMON
statements.

5-3. PARAMETER STATEMENT

A PARAMETER statement allows a constant to be given a
symbolic name. All types are allowed, including character.
The name then may appear anywhere a constant may
appear, except in another PARAMETER statement,
FORMAT statement, composite number, or Type state-
ment. The name may not appear where a label value is
required.

FEB 1977

where

name
is the symbolic name given to the constant.

The type is determined solely by the constant and not by
the initial letter of the name.

In the first example the constant is of type double preci-
sion and in the second example the constants are real and
integer, respectively. Thus I is of type double precision, N
is type real and S is type integer.

The name may not be used as part of another constant
except as the real or imaginary part of a complex constant.

A PARAMETER statement must appear before DATA
statements, statement function statements, and executa-
ble statements.

Examples:

PARAMETER I=%3615D double precision
PARAMETER N=3.2E+5,5=1 real, integer

5-4. DIMENSION STATEMENT

A DIMENSION statement defines the dimensions and
bounds of arrays.

where
name(bounds)
is an array declarator:
name(b,, bu).

DIMENSION statements are used to allocate storage
space for arrays specified by array declarators. The DI-
MENSION statement need not be used to define all arrays
in a program unit. An array declarator for each array used
in a program unit must appear only once in the program
unit (either in a DIMENSION, COMMON or Type state-
ment). Using an array declarator in a COMMON or Type
statement is equivalent (in terms of memory space allo-
cated for the array) to using the array declarator in a
DIMENSION statement.

5-3

tFORTGO FTRAN12

PAGE @@l HP32132B.03.0
20221000 PROGRAM ADJUSTABLE
20002008 C
@0003000 C ADJUSTABLE ARRAY DECLARATORS AND
03204608 C CHARACTER LENGTH EXAMPLE
0085000 C
200060020 198 FORMAT('Q°',T8,S//)
00037000 200 FORMAT(TS,1014)
20008000 DIMENSION IARR(C1@,13)
20009002 CHARACTER Ax*10
20010000 1=10
20011009 J=10
23012000 K=10
30213000 CALL SBC(IARR,A,I,J,X)
30014000 WRITE(6,100)A
20016000 WRITE(6,200) IARR
pOG18000 STOP
200190220 END
30220000 SUBROUTINE SBC(IVAR,Z,L,M,N)
200221000 DIMENSION IVARCL,M)
P03022000 CHARACTER Z*(N)
20223000 DO 18 NR=1,L
20024000 DO 12 NC=1,M
20325000 19 IVAR(NR, NC)=NR*NC
20226200 Z="THE START"
20227200 RETURN
2002802080 END

*hAK GLOBAL STATISTICS * Rk
x%%% NO ERRORS, NO WARNINGS kwx
TOTAL COMPILATION TIME Q:¢:@l
TOTAL ELAPSED TIME @100105

END OF COMPILE

END OF PREPARE

THE START
1 2 3 4 5 6 7 8 9 19
2 4 6 g8 18 12 14 16 18 29
3 6 9 12 15 18 21 24 27 3@
4 8 12 16 20 24 28 32 36 40
S 18 1S5S 28 25 39 35 40 45 59
6 12 18 24 390 36 42 48 54 69
7 14 21 28 35 42 49 56 63 79
8 16 24 32 40 48 56 64 172 8@
9 18 27 36 45 54 63 72 81 90
19 20 390 49 SO 690 78 8¢ S0 108
END OF PROGRAM

5-4

Figure 5-1. Adjustable Array Declarators and Character Length Example

For example,

INTEGER ARR

Type statement specifying ARR as type integer. The name
of the array, not the complete array declarator, appears.

DIMENSION ARR(4,4)

DIMENSION statement using the array declarator
(ARR({4,4)) which causes 16 words of memory to be allo-
cated for the array element values. The two previous
statements can be replaced by one statement if, instead of
the array name, the complete array declarator is used in
the Type statement.

For example,

INTEGER ARR4,4) specifies array ARR as type
integer, and because of the complete array de-
clarator, also allocates 16 words in memory for the
array. This one statement has the same effect as the
two previous statements.

or

INTEGER*4 ARR

Type statement specifying ARR as type double integer.
The name of the array, not the complete array declarator,
appears.

DIMENSION ARR(5,5)

DIMENSION statement using the array declarator
(ARR(5,5)) which causes 50 words of memory to be allo-
cated for the array element values. The two previous
statements can be replaced by one statement if, instead of
the array name, the complete array declarator is used in
the Type statement.

For example,

INTEGER*4 ARR(5,5) specifies array ARR as type
double integer, and because of the complete array
declarator, also allocates 50 words in memory for the
array. This one statement has the same effect as the
two previous statements.

5-5. EQUIVALENCE STATEMENT

The EQUIVALENCE statement associates simple vari-
ables and array elements so that they may share all or
part of allocated storage space in the same program unit.

where

list

is two or more simple variables, or subscripted or
unsubscripted array names, all separated by com-
mas. All items in a list share the same storage space.
(In the example, A, B, and C share the same storage
space and ABLE and BETA share the same storage
space.) An array name (without the subscript) starts
the equivalencing at the first element of the array
(element 1 for a one-dimensional array, 1,1 for a
two-dimensional array, and so on).

Function names, subroutine names, dummy variables and
dummy array elements cannot appear in an EQUIVAL-
ENCE statement. A data element occurring in a DATA
statement cannot be put into a common block through an
EQUIVALENCE statement (with the exception of block
data subprograms, see paragraph 5-17). In addition, none
of the following items can occur in an EQUIVALENCE
statement:

e An array with an adjustable declarator.
e A character array of adjustable length.

e A character variable of adjustable length.

The EQUIVALENCE statement can be used to conserve
memory space. For example, an integer array can be di-
mensioned at the beginning of a program and various
other arrays, being manipulated at different times in the
same program, can be equivalenced to this array so that
the same memory space is used. The types of arrays being
equivalenced need not be the same; an array of type in-
teger can be equivalenced to an array of type real (see
paragraph 5-6).

Another application for the EQUIVALENCE statement
(although not considered to be good programming prac-
tice) is in long programs, perhaps written by several prog-
rammers. The different programmers may have inadver-
tently changed variable names such that, for example, A,
B, C, and D all mean the same thing. To overcome this
problem, it is sometimes easier to write an EQUIVAL-
ENCE statement (EQUIVALENCE(A,B,C,D)) than to
search the program and change all the variable names.

5-6. EQUIVALENCE OF DIFFERENT
TYPES

Equivalence between data elements of different types is
allowable in FORTRAN/3000, but care should be taken
when attempting to match data types which store data in
different size storage space. For example, if an integer and
areal value are equivalenced, the integer value will share
the same space as the most significant word of the two-
word real value.

55

For example,

WORD 1 INTEGER

VALUE

REAL VALUE

WORD 2

Equivalencing character variables with other variable
types requires special care. All data values other than
character are stored in multiples of whole 16-bit computer
words. Character values are stored in multiples of 8 bits
(two 8-bit characters (bytes) per word). Character values
may be equivalenced with other data types only if the
resulting group can be allocated so that all noncharacter
data elements begin on a whole-word boundary.

For example,

WORD 1

SN
T
A [CHARA(‘TER 11 CHARACTER 2]
L

WORD 2

lCHARACTER 3 : CHARACTER 4] L Ct1y 5 CHARACTERS
1

WORD 3

B l CHARACTER 5 1 l
§ = e
WORD 4

[|

B CANNOT START ON HALF-WORD BOUNDARY

5-1. EQUIVALENCE OF ARRAY ELE-
MENTS

Array elements can be equivalenced to elements of a dif-
ferent array or to simple variables.

For example,

DIMENSION A(@3),C(5)
EQUIVALENCE (A(2),C(4)

In the preceding example array element A(2) shares the
same storage space as array element C(4). This implies
that:

e A(1) shares storage space with C(3), and A(3) shares
storage space with C(5).

5-6

e No equivalence occurs outside the bounds of any of the
arrays. For example, C(1) and C(2) do not share storage
space with any elements of A. They are outside the
bounds (3) of A.

The following two statements indicate that arrays A and C
are type integer and that each array has four elements
and one dimension. C(1) and C(2) have unique storage
areas and A(3) and A(4) also have unique storage areas.
A(1) shares space with C(3), and A(2) shares storage space
with C(4):

INTEGER A4),C(4)
EQUIVALENCE (A(2),C4)

STORAGE SPACE
ARRAY A WORD NUMBER ARRAY C

1 C

2 C(2)
A 3 C3)
AQ) - ===~ = 4 C4)
A
AM@) 6

In case of double integer, the following two statements
indicate that arrays B and D are type INTEGER*4, and
that each array has 5 elements and one dimension. D(1)
and D(2) have unique storage areas and B(4) B(5) also
have unique storage areas. B(1) shares space with D(3),
B(2) shares space with D(4), and B(3) shares space with
D).

INTEGER*4 B(5),D(5)
EQUIVALENCE (B(3),D(5))

STORAGE SPACE

ARRAYB WORD NUMBER ARRAY D

1,2 D(1)
3,4 D(2)

B(1) 5,6 D(3)

B(2) 7,8 D)

B(3) 9,10 D(5)

B(4) 11,12

B(5) 13,14

Array elements are equivalenced on the basis of storage
elements. If the arrays are not of the same type, they may
not line up element by element.

Example 1,

INTEGER A(4)
REAL IBAR(2)
EQUIVALENCE (A(1),JBAR(1))

Apr 1978

A(1) and A(2) share the two computer words with the real
array element IBAR(1). A(3) and A(4) share the two com-
puter words used to store the value of IBAR(2), as follows:

STORAGE SPACE
ARRAY A WORD NUMBER ARRAY IBAR
A(D 1
IBAR(D
A(2) 2
A@3) 3
IBAR(2)
A4) 4
Example 2,

INTEGER*4 B(2)
REAL JSLASH (2)
EQUIVALENCE (B(2),JSLASH(2))

B(1) shares two computer words with JSLASH(1), and
B(2) shares two computer words with JSLASH(2).

STORAGE SPACE
ARRAY B WORD NUMBER ARRAY JSLASH
1
B(1) 0 } JSLASH(1)
3
B(@)mmmmmmm o o mm e JSLASH(2)

5-8. EQUIVALENCE BETWEEN ARRAYS
OF DIFFERENT DIMENSIONS

To determine equivalence between arrays with different
dimensions, FORTRAN/3000 provides an array successor
function which views all elements of an array in linear
sequence. This means that all arrays, regardless of their
dimension, are stored in memory as one-dimensional ar-
rays.

For example,

Array elements are stored in memory in ascending
sequential order. Each (non-character) element oc-
cupies 1, 2, or 4 words, depending on the array type.

Integer array I(5)
I(D 1(2) I3) I4) I(5)

Integer array J(2,3)
J(L,1) J(2,1) J(1,2) J(2,2)
J(1,3) J(2,3)

Apr 1978

Integer array K(2,2,3)
K(1,1,1) K(2,1,1) K(1,2,1)
K2,2,1) K(1,1,2) K(2,1,2)
K(1,2,2) K(2,2,2) K(1,1,3)
K(2,1,3) K(1,2,3) Ki2,2,3}

General Rule: The first index counts fastest,then
the second index, then the third, etc.

Integer arrays I, J and K show the storage space
used for one-dimensional, two-dimensional and
three-dimensional integer arrays. The principle is
the same for double integer, real, and double preci-
sion arrays except that double integer and real oc-
cupy two words per element, and double precision
arrays occupy four words per element.

A character array also is stored in the same manner;
however, this type of array requires only one byte (8
bits) for each character per element. For example,
CHARACTER*3 A(5) would require 15 bytes; there
are 5 elements of 3 characters each.

EQUIVALENCE statements must avoid contradictory de-
clarations.

For example,

is not allowed because A and B, being equivalenced, can-
not share the same space with C.

Similarly, while unnamed COMMON may be extended by
an EQUIVALENCE statement, it may not be re-ordered.

For example,

is not allowed.

The following statements equivalence array elements
A(2,2,2) and I(3). A is a three-dimensional array and I is
one-dimensional.

For example,

INTEGER A(3,3,3),1(10)
EQUIVALENCE (A(2,2,2),1(3))

5-7

STORAGE WORD
ARRAY A RELATIVE NUMBER ARRAYI

A(1,1,D 1
A2,1,1) 2
A@3,1,D 3
A(1,2,1) 4
A(2,2,1) 5
AG2,1) 6
A(1,3,1) 7
A(2,3,1) 8
A3,3,1) 9
A(1,1,2) 10
A(2,1,2) 11
A@3,1,2) 12 1(1)
A(1,2,2) 13 1(2)
AR22)- - ——— —_——Mde—————— 13)
A(3,2,2) 15 1(4)
A(13,2) 16 1(5)
A(2,3,2) 17 1(6)
A@3,3,2) 18 7
A(1,1,3) 19 1(8)
A(2,1,3) 20 1(9)
A(3,1,3) 21 1(10)
A(1,2,3) 22
A(2,2,3) 23
A(3,2,3) 24
A(1,3,3) 25
A(2,3,3) 26
A@3.,3,3) 27

5-9. COMMON STATEMENT

The COMMON statement reserves a block of storage
space that can be referenced (and used) by several differ-
ent program units, thus allowing variables to be used by
different program units without being passed as explicit
parameters. For example, two variables in different sub-
program units, or in a main program unit and a subprog-
ram unit, can use the same storage space and the value

assigned to one variable automatically becomes the value
of the other.

where

list

is one or more simple variables, array names, or
array declarators. Using an array name only (in-
stead of the complete array declarator) in the list
implies that the array declarator appears in a Type
or DIMENSION statement elsewhere in the same
program unit.

Figure 5-2 is an example of COMMON statement usage.

In the example, the variable A in the main program
shares storage space with X in the subroutine subprog-
ram. When a value for A is determined by the ACCEPT
statement, X automatically shares this value. Similarly, B
and Y also share storage space, as does the variable SIDE
both in the main program and the subprogram.

The subroutine uses the values read in for A and B (which
are shared by X and Y) to compute the length of the
hypotenuse of a right-angled triangle. As can be seen from
the example, the variable names in the two COMMON
statements need not be the same.

Thus, the COMMON statement allows one program unit
to store data in a memory area which can be read, manipu-
lated and stored by the program unit specifying the
COMMON statement and by other program units.

The maximum number of pointers allowed for referencing
the variables (simple variables and/or arrays) in COMMON
is 254. The segmenter uses one or two words in the DB area.
This limits the number of COMMON variables allowed to
254, even though the Primary DB ranges from DB + 0 to
DB + 255. However, if simple variables precede the array
variable in COMMON, it is possible to have more than 254
COMMON variables (see Appendix F for details). Alterna-
tively, use the SCONTROL MORECOM compiler command
(see paragraph 9-20A).

5-10. LABELED COMMON BLOCKS

Common blocks can be labeled by changing the form of the
COMMON statement as follows:

COMMON /blockname/list/blockname/list

Apr 1978

tFORTGO FTRAN13

PAGE vo¢i HP32122B.7¢. 2

PA2021230 PROGRAM COMMON

20002008 C

200232¢¢ C COMMON STATEMENT EXAMPLE
P0234002 C

20025200 COMMON A,B,SIDE
22206000 ACCEPT ALB

Per37807 CALL TRIANGLE

20008000 DISPLAY "“THE THIRD SIDE IS '",SIDE
20209003 STOP

Q02122030 END

20211000 SUBROUTINE TRIANGLE
20012000 COMMON X,Y,SIDE
200132092 SIDE=SQRT((X**2)+(Y*%x2))
272014000 RETURN

820215000 END

*% %k GLOBAL STATISTICS Kk dok

Fk ek NO ERRORS, NO WARNINGS ***x*

TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME 03104

END OF COMPILE

END OF PREPARE

230,40

THE THIRD SIDE IS 502038
END OF PROGRAM

Figure 5-2. COMMON Statement Example

59

where

blockname

is used to identify different common blocks and is an
alphanumeric name of from 1 to 15 characters (the
first character must be a letter). In the example, A,
B and C share block SAM and X, Y and Z share block
ABLE. Different program units reference the same
common block by using the same blockname in their
COMMON statements.

A null block can be signified by two slashes with no
intervening non-blank characters (/). If a null block
is specified, the items in list that follow are assigned
to the unlabeled or general common area. There may
be only one unlabeled (null) common.

list

is one or more simple variables, array names or
array declarators. Using an array name in a COM-
MON statement implies that the array declarator
appears in a Type or DIMENSION statement else-
where in the same program unit.

The double slash, indicating a null or unlabeled common
block, may be omitted if the user desires that the first
common block go unnamed.

For example,
COMMON A,B,C/ABLE/X,Y/BETA/S,T,U

The first common block containing variables A, B and C is
unlabeled. If any block in a COMMON statement other
than the first is to go unlabeled, however, the double slash
must be inserted.

For example,
COMMON /ABLE/A,B,C//X,Y/BETA/S,T,U

The common block containing variables X and Y is un-
labeled. The length of a common block is determined by
the number and type of the items in /ist associated with
that block. The list items are stored contiguously within
their block according to their listed order within the
COMMON statement.

For example,

INTEGER*4 A(3)

Type statement indicating a double integer array, A,
of 3 elements. Area reserved for A= 6 words. (Double
integer data uses two words per value.)

DIMENSION ARR(3)

DIMENSION statement indicating a real array,
ARR, consisting of three elements. Area reserved for
ARR=6 words. (Real data requires two words per
value.)

5-10

COMMON /BLOCKA/B, ARR,A
COMMON statement. Total common area reserved
= 16 words.

If the arrays have their types implied (by the first letter of
the name), a single COMMON statement is sufficient.

For example,

COMMON /BLOCKA/(4),ARR(3)
Array I is implied type integer because the name
begins with the letter I. ARR is implied type real.
Total space reserved = 10 words.

Common block storage is allocated at the time the prog-
ram is loaded into core for execution and is not local to any
one program unit. No dummy variable name, function,
subroutine name, or array with an adjustable array de-
clarator or adjustable length character variable may be
used in a COMMON statement, nor may any of these
elements be put in a common block with an EQUIVAL-
ENCE statement. (See EQUIVALENCE, paragraph 5-5./
No name used in a DATA statement (see paragraph 5-15
may be used in a COMMON statement nor may it be put
in a common block through equivalence, with the excep-
tion of block data subprograms (see paragraph 5-17). Data
space within the common area for the arrays I and ARR
shown in the preceding example is allocated as follows:

WORD COMMON BLOCK
1 I
2 1(2)
3 I(3)
4 I(4)
5
} AAR(1)
6
7
} AAR2)
8
9
ARR(3)
10

Each program unit that uses the common block must in-
clude a COMMON statement which contains the
blockname (if a name was defined). The lis¢ assigned to the
common block by the program unit need not correspond by
name, type, or number of elements with those of any other
program unit. The size of a particular common block refer-
enced in a program unit need not be the same as the size of
the same common block declared in any other program unit.
The largest declared size determines the size of the common
block. For example, if one program unit declares COMMON
A(5) and another, COMMON A(5000), the unlabeled com-
mon block is 10000 words long when A is real. If the
common block is labeled, a warning message appears during
program preparation when the declared size of the block is
different in different program units.

MAY 1979

Example 1, BUFFER is the same size (14 words) in both pro-
gram units. Thus, referencing I(2) in program unit 1
is equivalent to referencing J(1) in program unit 2
since both variables pertain to the same word of the
labeled common block.

In program unit 1:

Integer Real
! it p——
COMMON /BLOCKA/(4)J(6),ALPHA SAM

In program unit 2: PROGRAM 1 COMMON BLOCK PROGRAM 2
REFERENCE WORD NUMBER REFERENCE
Real Integer
,—/‘
COMMON /BLOCKA/GEOQ,L(10),INDIA,JACK (1) 1 } DIV
2
BLOCKA is the same size (14 words) in both prog-
ram units. Thus, referencing [(4) in program unit 1 12 3 JD
is equivalent to referencing L(2) in the program unit 2) 4
2 since both variables pertain to the same word of
the labeled common block. 5
J) 6] J(2)
PROGRAM 1 COMMON BLOCK PROGRAM 2
REFERENCE WORD NUMBER REFERENCE 7
J(2) 8 } J3)
I(H 1
GEO
1(2) 2 9
J(3) J(4)
13 3 L(1) 10
I(4) 4 L(2) 11
J) 5 L(3) SUM 12 } J(6)
J(2) 6 L4)
13
J3 7 L(5) MULT 14 } K
J(4) 8 L(6)
J(5) 9 LM
J(6) 10 L(8)
11 L(9) In the following example, the unlabeled common block is a
ALPHA different length in program unit 2. The last five words of
12 L(10) the common block are not used in program unit 2.
13 INDIA
SAM 14 JACK
PROGRAM 1 COMMON BLOCK PROGRAM 2
REFERENCE WORD NUMBER REFERENCE
Example 2, I(1) 1 JAR(1)
In program unit 1: 12 2 JAR2)
REAL MULT 1@ 3 JARB)
INTEGER*4 1.J I4) 4 JAR4)
Double Integer Real 13 5 JAR()
e 1(6) 6 JAR(6)
COMMON/BUFFER/I(2) , J(3) , SUM, MULT 17 7 JAR(T)
In program unit 2: I(8) 8 Unused
INTEGER*4 J K (9 9 Unused
1(10) 10 Unused
Real Double Integer
Ian 11 Unused
prm——
COMMON/BUFFER/DIV, J(5) , K 1(12) 12 Unused

MAY 1979 5-11

In the following example, the labeled block sizes referenced
by program units 1 and 2 are different. The last four words
referenced by program unit 1 are unused.

In program unit 1:

Integer
“

COMMON /BLOCKA/I(5),d(3)
In program unit 2:

Real Integer

N
COMMON /BLOCKA/ARR(4) K(4)

PROGRAM1 COMMON BLOCK PROGRAM 2
REFERENCE WORD NUMBER REFERENCE
I(1) 1 ARR(1)

I(2) 2 ARR(1)

1(3) 3 ARR(2)

14 4 ARR(2)

1(5) 5 ARR(3)
J() 6 ARR(3)

J(2) 7 ARR®4)
J(3) 8 ARR#)
Unused 9 K()
Unused 10 K@)
Unused 11 K(3)
Unused 12 K4)

Common block elements are each individually pointed to
by a pointer established by the segmenter. These pointers
normally are allocated one per distinct element name,
with a limit of 254 pointers. If a program has so much
common that this limit is exceeded, some optimization can
be achieved by placing simple variables before arrays of
the same type. In this case, the simple variable is treated
as the zero’th element of the array.

For example,

REAL A ,ARR(10)
COMMON ARR,A
will result in 2 pointers, while

REAL A ,ARR(10)
COMMON A ARR

will result in only 1 pointer being allocated.

5-11. CHARACTER VARIABLES AND

ARRAYS IN COMMON BLOCKS

Each type of data element in common starts at the next
word boundary following the preceding data element, ex-

5.12

cept for character values, which start on the next byte.
For example,
INTEGER A(3),BA(3)

CHARACTER*3 CH(3)
COMMON A,CH,BA

PROGRAM COMMON BLOCK
REFERENCE WORD NUMBER

A1) 1
A(2) 2
A(3) 3
CH(1) 4

1 word
CH(1) 4
CH(1) 5

1 word
CH(2) 5
CH(2) 6

1 word
CH(2) 6
CH(3) 7

1 word
CH(3) 7
CH(3) 8

1 word
Unused 8
BA1) 9
BA(2) 10
BA(3) 11

Thus, the least significant half of word 8 is unused since
the integer array AB starts on the first word boundary
after the character array CH.

In the following example, the double integer array BA
occupies six words in the common block. The character
array CH takes four and one-half words in the common
block, and the double integer array DA takes four words in
the common block.

For example,
INTEGER*4 BA(3) ,DA(2)
CHARACTER*3 CH(3)
COMMON BA,CH,DA

MAY 1979

PROGRAM COMMON BLOCK

REFERENCE WORD NUMBER

1
BA(1) 9

3
BA(2) 4

5
BA(3) 6
CH(1) 7
CHQ) 7
CH(1) 8
CH(®2) 8
CH®) 9
CH(2) 9
CH(3) 10
CH(3) 10
CH(®3) 11
Unused 11

12
DAQ1) 13 }

14
DA(©2) 15 }

In the following example, the character array CH takes
four and one-half words in the common block. Character
array BN starts in the least significant half of the fifth
word (starts on a byte boundary).

For example,

CHARACTER*3 CH(3),BN*1(3)
COMMON CH,BN

PROGRAM COMMON BLOCK
REFERENCE WORD NUMBER

CH(1) 1

1 word
CH(1) 1
CH(1) 2

1 word
CH(2) 2
CH(2) 3

1 word
CH(2) 3
CH@3 4

® 1 word
CH(@3) 4
CH@3 5

® 1 word
BN(1) 5
BN(@©2 6

@ 1 word
BN(3) 6

Apr 1978

5-12. EQUIVALENCE IN COMMON
BLOCKS

Data elements may be put into a common block by specify-
ing them as equivalent to data elements mentioned in a
COMMON statement. If one element of an array is
equivalenced to a data element within a common block,
the whole array is placed in the common block with
equivalence maintained for storage units preceding and
following the data element in common. The common block
is always extended, if it is necessary to fit an equivalenced
array into the common block, but no array can be equival-
enced into a common block if storage elements would have
to be prefixed to the common block to contain the entire
array. Equivalences cannot insert storage into the middle
of the common block or rearrange storage within the
block. Since the elements in a common block are stored
contiguously according to the order in which they are
mentioned in the COMMON statement, two elements in
common cannot be equivalenced. In the following exam-
ple, array I is in a common block. Array element J(2) is
equivalent to I(3).

DIMENSION 1(6), J(6)
COMMONTI
EQUIVALENCE (1(3),J(2))

The common block is extended to accommodate
array J as follows:

COMMON BLOCK

ARRAY 1 WORD NUMBER ARRAY J
I(1) 1 Not defined
1(2) 2 J(1)
I(3) 3 J(2)
14) 4 J(3)
I(5) 5 J4)
1(6) 6 J(5)

Not defined 7 J(6)

The equivalence set up by the following example is not
allowed. In order to set array I into the common block, an
extra word must be inserted in front of the common block.

For example,

COMMON BLOCK

ARRAY 1 WORD NUMBER ARRAY J

J(1)
1(0Y) 1 J(2)
1(2) 2 J(3)
I(3) 3 J(4)
14) 4 J(5)
I(5) 5 J(6)
I(6) 6

5-13

Element J(1) would be stored in front of the common
block; thus, EQUIVALENCE (I(1),J(2)) is not al-
lowed.

5-13. IMPLICIT STATEMENT

The IMPLICIT statement overrides or confirms the type
associated with the first letter of a symbolic name (vari-
able). If a symbolic name is not mentioned in a Type
statement, the type of the data element is determined by
the first letter of the symbolic name. As mentioned earlier,
names starting with the letters I, J, K, L, M or N are type
integer; names starting with any other letter are type
real. The IMPLICIT statement can be used to override this
convention (or, although it is not necessary, the IMPLICIT
statement can be used to confirm the first letter conven-

tion).

where

type

can be INTEGER, INTEGER*2, INTEGER*4,
REAL, DOUBLE PRECISION, LOGICAL, COM-
PLEX or CHARACTER (optionally followed by *x,
the length attribute of a character value).

letter

is a letter of the alphabet which assumes the type
specified by the heading preceding it in the IM-
PLICIT statement; letter can be a single letter or a
range of letters — for example, A-C means A, B, C.

The IMPLICIT statement itself can be overridden for
specific symbolic names when these names are used in a
Type statement. For example, IMPLICIT INTEGER (A)
specifies that symbolic names starting with the letter A
are type integer. A Type statement such as REAL ABLE,
however, indicates that the variable ABLE is type real,
overriding the IMPLICIT statement in this case.

5-14. EXTERNAL STATEMENT

EXTERNAL statements identify function subprogram
and subroutine subprogram names which are used as ar-
guments in a CALL or function reference statement in one
program unit but are defined in another (external) prog-
ram unit.

5-14

where

name

is the symbolic name of a function or subroutine
subprogram. The EXTERNAL statement must be
used within a calling program unit to identify the
names of function or subroutine subprograms which
are to be used as arguments.

For example, a CALL statement of the form,
CALL SIDE(X,Y)

passes X and Y as actual arguments to the subroutine
SIDE to be used in its computations.

In an implicit call (such as to an intrinsic function), a
CALL statement does not need to be used. For example, in

A = SQRT(B)

the intrinsic function SQRT is called implicitly merely by
being referenced in the expression SQRT(B). The actual
argument B is passed to SQRT to be used in its computa-
tions.

The EXTERNAL statement provides a means of using the
names of function and subroutine subprograms as actu:|
arguments in a CALL statement. The EXTERNAL statc
ment is necessary to inform the compiler that these names
are function or subroutine subprograms and not variable
or array names.

Figure 5-3 is an example of EXTERNAL statement usage.

In the example, the main program declares HYPOT in an
EXTERNAL statement, which defines it as a function
name.

When the CALL statement is executed, the function name
hypot is passed as an actual argument (along with ADD-
SIDES, A and B) to the function subprogram CIRCUM to
be used in its computations.

First, CIRCUM dummy arguments U and V assume the
values of A and B (which were passed to CIRCUM as
actual arguments by the main program).

Next, U and V are passed as actual arguments to the
function subprogram HYPOT, where their values are as-
sumed by dummy arguments X and Y to compute a value
for HYPOT.

MAY 1979

:FORTGO FTRANI 4

PAGE @0

00931200
20022000
22003000
20004000
20005000
20006000
20207002
230038020
230090200
0120020

20011200
00120020
20213002
0001 4000

20015000
20016300
20217230
20218200

*kdk

HP321@2B. .0

C

Museum

PROGRAM EXTERNAL

C EXTERNAL STATEMENT EXAMPLE

C

30

EXTERNAL HYPOT

ACCEPT A,B

CALL CIRCUM(ADDSIDES,HYPOT,A,B)

DISPLAY "THE CIRCUMFERENCE IS ",ADDSIDES
STOP

END

FUNCTION HYPOT(X,Y)
HYPOT=SQRT((X**%2)+(Y*x*2))
RETURN

END

SUBRUOUTINE CIRCUMCS,T,U»V)
S5=T(U,V)+U+V

RETURN

END

GLOBAL STATISTICS Na——
*k*k NO ERRORS,

NO WARNINGS %%k

TOTAL COMPILATION TIME Q:00:0!1

TOTAL ELAPSED TIME

END OF COMPILE

END OF PREPARE

230,40

THE CIRCUMFERENCE 1S
END OF PROGRAM

2100111

120 .800

Computer

Figure 5-3. EXTERNAL Statement Example

5-15

Finally, statement 10 (S = T(U,V) + U + V) in CIRCUM
computes a value for S using the actual values for
HYPOT, A and B in place of the dummy values T, U, and
V. The value of S is passed back to the main program as
ADDSIDES.

A function or subroutine subprogram name can be used as
an actual argument without being declared in an EX-
TERNAL statement by inserting empty parentheses after
the name. For example, statement 30 in the previous sam-
ple program could be written as follows:

30 CALL CIRCUM(ADDSIDES HYPOT(,A,B)

The blank parentheses following HYPOT identify it as an
external subprogram.

Function subprograms are always called implicitly by
being referenced in a statement (the same as intrinsic
functions).

For example,

100 FORMAT(2F10.4)

200 FORMAT(F10.4)
READ (5,100)A,B

10 S = HYPOT(A,B)

WRITE (6,200)S
STOP
END
FUNCTION HYPOT(X,Y)
HYPOT = SQRT ((X**2) + (Y**2))
RETURN
END

Statement 10 (S = HYPOT(A,B)) calls the function sub-
program HYPOT implicitly by referencing it in the ex-
pression HYPOT(A,B). A and B are actual! arguments
passed to HYPOT to be used in its computations.

5-15. DATA STATEMENT

A DATA statement is used to assign initial values to data
elements. All such data values are set at load time and are
never re-initialized. (Variables declared with DATA
statements in subroutines have their values preserved
from one call to another.)

5-16

where
list
is one or more simple variables, array names or
array elements.

dds, . .., d,

are the actual constants (including Hollerith con-
stants), which are to be assigned to the correspond-
ing items in list.

The values declared in a DATA statement are compiled
into the object program and become the values assumed by
the variables when program execution begins.

For example,
DATA AB,C,D,E/3.0,3.1,2.6,1.09,.2643/

assigns the values 3.0, 3.1, 2.6, 1.09 and .2643 to variables
A, B, C, D and E, respectively.

If the same value is to be assigned to several variables, the
data statement can take the following form:

DATA A,B,C.EX/5%3.6/

The previous statement assigns the value 3.6 to all the
variables in the list.

Mentioning an array name is the same as mentioning all
the elements of the array.

For example,

DIMENSION 1(3)
DATA 1/3*5/

assigns I[(1) = 5,1(2) = 5 and I(3) = 5. Thus, the statement,
DATA I/3*5/

is the same as
DATA I(1y/5/, 1(2)/5/,1(3)/5/

or

DATA I(1),1(2),1(3)/5,5,5/

A DATA statement initializes the value of a particular stor-
age location only once. Incorrect initial values result if the
same storage location is reinitialized.

With two exceptions, the constants in a DATA statement
must be the same type as the variables to which they are
assigned. One exception is that a real variable can be
initialized to a whole number by an integer constant (e.g.,
“20” can be used instead of “20.”). The variable is still
treated as real. Otherwise, integer variables must be in-
itialized by integer constants, real variables by real con-
stants, and so on.

Apr 1978

The second exception is that a string constant can be used
to initialize a variable of any type. For a character vari-
able, the initial value represented by the string character
is the character itself. For any other type variable, the
8-bit ASCII patterns of the constant are stored left-
justified in the storage space reserved for the variable. If
the constant does not fill the entire storage space, the
remaining part of the storage word is padded with the
8-bit ASCII code for blanks. Because one string character
requires only 8 bits of storage, two characters can be
stored in one 16-bit computer word.

For example,

DATA IJ,K, L/2HSA, “SA”, ‘SA’, 2HSA/

2HSA tells the compiler that two Hollerith charac-
ters (SA) follow. I, J, K and L are integer variables.
The ASCII 8-bit patterns for S and A are loaded into
each 16-bit word for I, J, K and L.

It is not necessary to set initial values for all of the vari-
ables listed in a DATA statement.

For example,

REAL IVAR(20)
DATA IVAR/10*8.0/

The statement REAL IVAR(20) sets up 20 elements of
storage for array IVAR. The DATA statement, however,
only initializes the first 10 elements to 8.0. The other 10
elements of IVAR are not given an initial value.

5-16. EQUIVALENCE IN DATA STATE-

MENTS

Variables and array elements can share storage space in
memory with other variables and array elements through
the use of EQUIVALENCE statements. If an array ele-
ment is equivalenced to another element in a DATA
statement, the entire array is allocated to the storage
space. The storage space is extended either at the begin-
ning or the end to accommodate data elements set into the
space through the EQUIVALENCE statement.

Example 1,

INTEGER A(5),B(7)
DATA A/5%0/
EQUIVALENCE (A(1),B(2))

Since the element B(2) is mentioned in the EQUIVAL-
ENCE statement, the entire array will be allocated space
in memory with array A.

Note, however, that the statements INTEGER A(5),B(7)
and DATA A allocated only five words of storage in the
storage area for array A. To accommodate B(1), the stor-
age area is prefixed with one storage word, and extended
one word to accommodate B(7).

Apr 1978

STORAGE SPACE

ARRAY A WORD NUMBER ARRAY B
Unused 1 B(1)
A(D 2 B2)
A2) 3 B(3)
A(3) 4 B4)
A(4) 5 B(5)
A(5) 6 B(6)
Unused 7 B()
Example 2,

INTEGER*4 C(4),D(6)
DATA C/4*1/
EQUIVALENCE (C(1),D(3))

Since the element D(3) is mentioned in the EQUIVA-
LENCE statement, the entire array will be allocated space
in memory with array C.

Note, however, that the statements INTEGER C(4),D(6)
and DATA C allocated only four words of storage in the
storage area for array A. To accommodate D(1), D(2), the
storage area is prefixed with two storage words.

STORAGE SPACE

ARRAY C WORD NUMBER ARRAY D
1

Unused 9 D)
3

Unused 4 D(2)
5

C() 6 D)
7

C(2) 8 D(4)
9

C®3) 10 D(5)
11

C4) 12 D(6)

Equivalence can rearrange the order of storage allocation
in a storage area as long as all arrays remain contiguous
within themselves.

For example,

DIMENSION I(5),d(5),K(10)
DATA 1,d/10*5/
EQUIVALENCE (K(1),J(1)),(K(6),I(1))

5-17

The previous statements produce the result:

STORAGE SPACE ARRAYSI
ARRAY K WORD NUMBER AND J
KD 1 J(1)
K(2) 2 J(2)
K(3) 3 J(3)
K4) 4 J(4)
K(5) 5 J(5)
K(6) 6 I(1)
K 7 I(2)
K(8) 8 I(3)
K(9) 9 I(4)
K(10) 10 I(5)

Normally, a data element occurring in a DATA statement
cannot be put into a common block through the use of an
EQUIVALENCE statement (see Block Data Subprog-
rams, paragraph 5-18 for exceptions). No dummy argu-
ments, or arrays with adjustable declarators, can belong to
a data block. EQUIVALENCE statements cannot be used
if the purpose is to store two elements of the same array
into the same space in memory, or if they destroy the
contiguity of the array elements. Noncharacter values will
be stored starting on a full-word boundary in memory.

5-17. BLOCK DATA SUBPROGRAMS

Block data subprograms are used for the sole purpose of
supplying initial values to elements contained in common
blocks. DATA statements are used in block data subprog-
rams to supply these initial values. Storage space is allo-
cated by COMMON statements,and the initial values are
supplied by the DATA statements. (For a further discus-
sion of block data subprograms, see Section XI.)

5-18. STATEMENT FUNCTIONS

In some programs, relatively simple computations are
used repeatedly. These computational functions may be
used only in one program so there would be no need to set
up a new external function. Instead, a function can be
defined in the program and then used whenever necessary
in that program.

The definition of a statement function must occur before
the first executable statement in the program unit and
after all other declaration statements except DATA
statements.

5-18

where

name
is a symbolic name starting with a letter.

param

is a simple variable used as a dummy argument. No
other symbolic names except simple variable names
may be used.

expression

is an arithmetic or logical expression of constants,
simple variables, array variables, function subprog-
ram references, intrinsic references, and the approp-
riate operators for the type expression.

The statement function name may not be used in an EX-
TERNAL statement. The definition is a single statement
similar to an arithmetic or logical assignment statement.
(See Section D).

The expression defines the actual computational proce-
dure which derives one value. When referenced, this value
is assigned to the function name. The expression must be
either a logical expression or an arithmetic expession; no
character expressions or character-valued function state-
ments are allowed. Any statement function referenced in
the definition of another statement function must be de-
fined before it is used in the definition. Statement functicn
definitions are not recursive, that is, a statement function
cannot reference itself.

The value of any dummy arguments in the expression are
supplied at the time the statement function is referenced.
All other expression elements are local to the program
unit containing the reference and derive their values from
statements in the containing program unit.

The type of statement function is determined by using the
statement function name in a Type statement or by the
first letter of the statement function name (names begin-
ning with I, J, K, L, M or N are type integer, while names
beginning with any other letter are type real). This con-
vention may be altered by using an IMPLICIT statement.

The type of expression in a statement function definition
must be compatible with the defined type of the statement
function’s symbolic name. For example, logical expres-
sions must be used in logical statement functions and
arithmetic expressions in arithmetic statement functions.
The arithmetic expression used in an arithmetic state-
ment function need not be the same arithmetic type as the
statement function symbolic name. (For example, the ex-
pression can be type integer, the statement function name
can be defined as type real.) The expression value is con-
verted to the statement function type at the time it is
assigned to the statement function’s symbolic name. (See
Section III for a discussion of type conversion.) Figure 5-4
shows a program using the statement function DISP to
compute the displacement of internal combustion engines.

The statement function DISP is defined with the dummy
parameters C, R, and H. The engine size is computed by
referencing this function and providing the actual
parameters A, B, and C (which have just been read). The
import tax then is computed using the result (SIZE) of the
statement function’s computations.

The example shown is, of course, too short to warrant
using a statement function inasmuch as it is referenced
once only. Please bear in mind, however, that in actual use
a statement function may be referenced many times in a
much longer program.

5-19

:FORTGO FTRANI1S

PAGE vu01 HP32102B.20.9

0200210800 PROGRAM STATEMENT FUNC

00002000 C

000230088 C STATEMENT FUNCTION EXAMPLE

20004008 C

22005008 199 FORMAT('@',T10,"THE SIZE OF THE ENGINE IS: ",F12.5)
00006000 208 FORMAT('@G',T1@,"THE IMPORT TAX IS: ",M12.2)
00007000 DISP(C,R,H)=C*(3+14159%(R**2)%*H)
POPREBOOD DISPLAY "NUMBER UF CYLINDERS?"
03009000 ACCEPT A

200100002 DISPLAY '"BORE SIZE?"

200119029 ACCEPT B

20012000 DISPLAY 'STROKE?'

20013000 ACCEPT C

209014000 B=B/2

20015922 SI1ZE=DISP(A,B,C)

20016099 TAX=1+5%S1ZE

03017000 WRITE(6,102)SIZE

20018020 WRITE(6,208)TAX

02219000 STOP

29920300 END

Fke ke GLOBAL STATISTICS Fekedede

F % dok NO ERRORS, NO WARNINGS
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME D:100:03

Jok kk

END OF COMPILE

END OF PREPARE
NUMBER OF CYLINDERS?
716

BORE SI1ZE?
?23.216

STROKE?
?72.978

THE SIZE OF THE ENGINE 1IS: 387.084932

THE IMPORT TAX IS:
END OF PROGRAM

$5803 457

Figure 5-4. Statement Function Example

5-20

WRITING INPUT/OUTPUT STATEMENTS IN

FORTRAN/3000 || w

Input/output (I/0) statements transfer information bet-
ween data elements in memory and external devices or
between data elements in memory and other data ele-
ments at other locations in memory.

The FORTRAN/3000 statements which initiate the trans-
fer of data are READ, WRITE, ACCEPT, and DISPLAY.

A READ statement causes data to be transferred from an
external file or a buffer in memory to specified data ele-
ments in a list.

A WRITE statement transfers information from data ele-
ments in a list to an external file or to a buffer in memory.

An ACCEPT statement reads free-field format data from
the standard input file ($STDIN, see Section XII).

A DISPLAY statement is used to output free-field data to
the standard list file ($STDLIST, see Section XII).

An input/output statement can contain a list of names of
simple variables, arrays, or array elements and, for output
only, function subprograms. When an input statement is
executed, the input values from the external file (or other
data buffer in memory) are assigned to the data elements
specified in the list. When an output statement is exe-
cuted, the values assigned to the listed variables are
transferred to the external file or to a buffer in memory.
An input or output step normally requires two statements:
an executable (READ or WRITE) statement and a non-
executable declaration (FORMAT) statement.The FOR-
MAT statement provides information on the external
characteristics of the items to be transferred. See Section
VII for a complete discussion or FORMAT statements.

External files are identified in I/O statements by a FOR-
TRAN unit number. The FORTRAN/3000 file facility then
transfers data to or from the file associated with this unit
number. See Section VIII for a discussion of the
FORTRAN/3000 file facility.

6-1. READ STATEMENT

A READ statement transfers information from an exter-
nal file to specified data elements in a list, or from a
character variable in memory to the element in the list.

FEB 1977

where

source

identifies the data source. It may be an integer con-
stant or integer simple variable. If the variable con-
tains a negative number, that number is assumed to
be the negative of the MPE file number desired. (MPE
file numbers are returned by the FOPEN intrinsic.
See Section VIIL.)

1. Sequential READ.
Positive integer constant or integer simple var-
iable indicates the FORTRAN unit number (1
through 99). For example, if the value is 3, then
file FTNO3 is read.
Example:
READ (3, 200) A

FORTRAN unit no.

2. Direct READ.

Same as above, with @ record appended to the unit
number. Record is a constant or any linear expres-
sion whose integer value is taken as the record
number to be read. This option is restricted to files
on direct access devices such as disc, with fixed-
length records.

Example:

READ (3 @ _18,200) A

Format reference

FORTRAN unit no. @ record

3. Core-to-core READ.
If the source where the data is to be read is a
buffer in memory, then source consists of:
Name, where name is a character simple vari-
able or character array element specifying the
name of the buffer in memory where the data is
located. (See figure 6-7.)
Example:

READ (CARD, 150) A,B,C,D, E, F
name of buffer

6-1

format
specifies the conversion format to be used.

1. Integer constant specifying a FORMAT state-
ment label.

2. Name of a character array, or a simple or sub-
scripted character variable containing the for-
mat specification.

3. Asterisk (*) selects free-field format.

4. If format is omitted, a binary transfer takes
place. (See Section VII, paragraph 7-50 for a
discussion of binary tansfer.)

END = sn,)
enables the program to remain in control when an
end-of-file (EOF) condition is detected on a READ.
sn,is a statement label number. If an EOF condition
is detected, control is transferred to the statement
labeled with the number sn,. If omitted, the program
aborts with the appropriate message.

ERR = sn,

enables the program to remain in control if an ir-
recoverable file error occurs. Control transfers to the
statement label sn,. If omitted, the program aborts
with a message when the READ is attempted. (See
paragraph 6-3 and figures 6-8 and 6-9.)

list

is one or more simple variable names, array names,
array elements, function subprogram names, or
DO-implied lists. (See paragrpah 6-8 for a discussion
of DO-implied lists.) If list is omitted, the file is
moved to the next record without any data transfer.
Exception: a formatted READ without a list will
read characters into Hollerith fields of the FORMAT
statement (see figure 6-3).

6-2. READ STATEMENT EXECUTION

Reading always starts at the beginning of a record from an
external file or a character variable in memory. Reading
stops when the list is satisfied, provided that the format
specifications and the record length are in agreement with
the list. The list may always be shorter than the record
(i.e., it is possible to read part of a record). After the
READ, the external file will be positioned at the begin-
ning of the next record. If the list is longer than the format
specifications, or longer than the record, the following
conditions exist:

1. Unformatted (binary) READ and list longer than re-
cord (list exceeds data). For a sequential READ, suc-
cessive records are read until the list is satisfied. For a
direct READ, the program aborts with message: DI-
RECT BUFFER OVERFLOW.

2. Formatted READ and format specification shorter
than list. When the end of the format specification is
reached, the external file skips to the next record and
reads it using the format specification again. This
proceeds until the list is satisfied. If read is from a
character variable in memory, the program aborts
with message: BUFFER OVERFLOW.

3. Formatted READ and record shorter than list (list
exceeds data). The program aborts with message:
FORMAT BEYOND RECORD.

When a READ statement is executed, data values are
transferred from source to the elements specified in list.
Elements are assigned values left-to-right according to
their positions in list.

Each record in a file can contain several values. For ex-
ample, one card can be thought of as one input record and
a line printed on a line printer can be thought of as one
oulput record.

Figure 6-1 shows a card punched with six integer values.
Each value on the card is assigned to a field of a specific
width (the field width for each value in figure 6-1 is six
columns) but does not have to occupy all the columns in
the field. A FORMAT statement is used to specify the
type(s) of data contained in this one record. The FORMAT
statement for the card shown would be:

100 FORMAT (616)

The letter I specifies that the data is type integer, the
suffix 6 specifies that the field width is six characters, and
the prefix 6 refers to the number of integer values con-
tained in the record. The prefix 6 is used as a shorthand
method of writing the specifications; the statement could
be written as follows:

100 FORMAT (I8, I6, 16, 16, 16, 16)

For a complete discussion of FORMAT statements, see
Section VII.

H =23 232 G| 22« 7F3e
[0 23 a5 6 7 8 9]wn 121548 1516 17 18|19 20 21 22 §3 24 25 2C 27] 28 29 30 31 32 33 34 35 36 37 °
e— 6 6 6 6 6 6 —

111t

oooooolooooooj000000000D0CDO

6000000000000[00000000000000

12345678 31011 1213141516171801920212222 24

IR R R R R R R R R R R R R R AR EREERRE|
©222222222 2222 2 2222222 2227222222221222222121212122

25 26 27 26 29 30|31 32 33 34 35 36837 38 39 40 41 42 43 44 45 46 47 48 49 5(

Figure 6-1. Input Record Example

6-2

A READ statement such as READ (5,100)1,J,K,L, M, N
would read the six values and assign 1 to I, 23 to J, 232 to
K, 456 to L, 23456 to M and 796 to N. A READ statement
with less than six elements in list, such as READ (5, 100)
I, J would read only the first two values from the card. The
remaining values in the record would be ignored because
any subsequent READ statements would read values from
the next record.

Thus, each READ statement begins reading values from a
fresh record of the file, ignoring any values left unread in
records accessed by previous READ statements. If a READ
statement list does not contain any elements, no transfer
of data occurs except as follows: The operation of the
FORTRAN/3000 formatter is such that a format string is
processed up to the point of requiring a list value, then
control is returned to the calling program to provide the
needed list value. Thus, even if the list is empty, format
edit descriptors are executed up to the first field descrip-
tor. (See Section VIL.) In any case, the next record pointer
is advanced to the next record.

Array names appearing in list represent all the elements
in the array (unless the array name is subscripted to
represent a specific element). Values are transferred to
the array elements in accordance with the array successor
function (see Section V).

READ statement examples are shown in figures 6-2
through 6-7. The program in figure 6-2 reads three values
from a single record (the card shown below).

24535,054 426,322 53:4 o3
123 4. 5% 78 9101112131415 61718192021 222324 526272

0000000000000000000000600000000000000

Each value occupies 12 positions in F format. The program
assigns the values as type real to variables A, B, and C. If
the current record of FTNO5 is shorter than 36 characters,
the program aborts with the message: FORMAT
BEYOND RECORD. If file FTNO5 is empty, or is
positioned beyond the last record, an end-of-file condition
occurs and control transfers to statement 300, which calls
the subroutine ENDOF. If a read error occurs, control is
passed to statement 400, which calls the subroutine
ERROR.

The first WRITE statement in the program shown in fig-
ure 6-3 will print HEADLINE. The READ statement

reads a card ((INEWbTITLE) and replaces the characters
in the H field of the FORMAT statement with those read
from the card. The second WRITE statement then prints
NEW TITLE.

In figure 6-4, the FORMAT statement of figure 6-2 (100
FORMAT(3F12.3)) is replaced by 100 FORMAT(F12.3).
Then, instead of reading three values from one record (the
first record shown below), the program reads one value
from each of the three records shown below, (i.e., A is read
from record 1, B is read from record 2, and C is read from
record 3). This is a convenient way of reading several
records with one READ statement. The FORMAT state-
ment also could have been written as 100 FORMAT
(F12.3, F12.3, F12.3)

24536, 054 455, 32T 35:-‘:34. *34

PR - A pngpumprsypayp—— - o

BRI [t

L]

I\ 23 4 5 &6 7 8 9101112131415 617181920 21 2223 24 520272

FEERE SRR EEFENNES

Y 2 3 4 5 6 7 B %01 12131415 6 17 18 13 20 21 2223 24 52¢ 27 2

FEER R

G0000C0000G0000000000 (00000000000000

Figures 6-5 and 6-6 demonstrate a direct read. Figure 6-5
is an example of a mailing list, sorted on first names
within last names, and stored on disc under the file name
MAIL1. The program in figure 6-6 reads record 9 from the
mailing list.

Figure 6-7 is an example of a core-to-core tansfer. The data
to be read into memory is shown below and consists of 72
numerical characters packed on cards.

Position 80 of the card contains a code number which tells
the program if the rest of the data on the card is to be
stored as real or integer values.

All of the data on the card is read into memory and as-
signed to the character variable CARD. Next, the state-
ment, READ (CARD, 100) ICOUNT, reads the code
number and assigns it to variable ICOUNT. The computed
GOTO statement then passes control to one of two core-
to-core READ statements. If ICOUNT = 1, control passes
to statement 400 and the data on the card are converted to
real values and assigned to variables A, B, C, D, E, and F.
If ICOUNT = 2, control passes to statement 500 and the
data on the card are converted to integer values and as-
signed to variables I1, 12, I3, 14, 15, 16, 17, 18, I9, 110, 111,
112, 113, 114, 115, 116, 117, and I18.

73301334387 3301234567 35012 43673301 2343673301234557 333133456?3 L 4= 1
5 TR 9 IR 42 05 14 15 18 7 R 13 20 23 22 23 24 ¢ 20 FO25 2 30 3 32 23 34 35 35 37 33 33 40 ¢ 4L 43 40 65 A6 47 48 42 S0 11 9 53 %4 5L C5 ST Bf 53 tU]
532453246324032453240329032453240329032403 2403245324623 2403240 32403 2
5 o0 10 N 121338 15 18 07 IR 15 2y 21 20 23 24 <5 20 27 18 29 30 3 32 33 34 35 X6 37 25 3y 4D 41 4¢ 63 45 45 16 47 43 49 SO U1 52 33 54 T4 LE G

|

0600CGIGOCGT

TOOMNRYWLRININIIN Iz 252831223334 2

‘DOUC"'UuOOGO"UJUUDUGUOuUCGG

53753304041 2414545404743 43008152828 18

(6 62 63 53 65 66 57 68 69 76 71 72 73 74 75 75 17 18 13 (0]

cGou0000G55400000G000C80C0B00GSC003CH

BSTSLEYLSBI GG BABSETET LRI T I W I s

..

tFORTYGO

PAGE 0091 HP321@2B. %0.0

PROGRAM READ EXAMPLE 1
(o
C READ STATEMENT EXAMPLE
(o

100 FORMAT(3F12.3)

200 FORMAT(F12.3)
READ(S9100¢ENDE300+ERPR=400)A¢8B,C
D=aSQRT (A#R*C)

GOTO Sno

3nn CALL ENDOF
GOTO Snon

40n CALL FRROR

500 WRITE(6,200)D
STOP
END

SURROUTINE ENDOF
100 FORMAT(T10s"END OF FILE®)
WRITE (65100)
RETURN
END

SUBROUTINE ERROR
100 FORMAT (T108"READ ERROR")
WRITE (64100)
RETURN
END

dokodok GLOBAL STATISTICS * kokk
* Kk NO ERRORS, NO WARNINGS kdox
TOTAL COMPILATION TIME ©:00:01
TOTAL ELAPSED TIME 210204

END OF COMRILE

END OF PREPARE

256251,906

END OF PROGRAM
tEOD

IGNORED

tE0J

Figure 6-2. READ Statement Example 1
6-4

tFORTGO

PAGE 0001 HP321@2B.00 .8

PROGRAM READ EXAMPLE 2

READ

(s NeNel

STATEMENT EXAMPLE

100 FORMAT (10H HEADLINE)
WRITE(64100)
READ(S,100)
WRITE(6,100)

STOP
END

*R Ak GLOBAL STATISTICS sk

& ik NO ERRORS,

NO WARNINGS ik

TOTAL COMPILATION TIME 0:00:01

TOTAL ELAPSED TIME

END OF COMPILE

END OF PREPARE

HEADL INE
NEW TITLE

END OF PROGRAM
tEOD

I1GNORED

tEOJ

2100104

Figure 6-3. READ Statement Example 2

6-56

tFORTGO

PAGE oeul HP321@2B.20.02

PROGRAM READ EXAMPLE 3
c
¢ READ STATEMENT EXAMPLF
c
100 FORMAT(F12.3)
READ (54 1009END=300,ERR=400)A4B,C
D=SART (A#R*C)
GNTO Sno
3n0 CALL FNDOF
GOTO 500
400 CALL FRROR
500 WRITE(Ae1N0)D
STOP
END

SUBROUTINE ENDOF
100 FORMAT(T10s"ENN OF FILE"M)
WRITE (64100)
RETURN
END

SUBROUTINE ERROR
100 FORMAT(T108"READ ERROR")
WRITE(64100)
RETURN
END

deddok GLOBAL STATISTICS dekdk
ek NO ERRORS, NO, WARNINGS sk
TOTAL COMPILATION TIME ©:100361
TOTAL ELAPSED TIME G205

FND OF COMPILF

END OF PREPARE

8260073.000

END OF PROGRAM
tE0D

I1GNORED

tEO0Y

6-6

Figure 6-4. READ Statement Example 3

PAGE 1

-
DODNRITNALH DY~

—
N

HEWLETT-PACKARD 372201A.4.01 EDIT/3000

LOTS
KING
ALT
JOHN
KNFF
SWASH
JAMES
JANE
JOHN
JENNA
KARISSA
SPACF

ANYONE
ARTHUR
BARA
RIGTOWN
RUCKLER
BUCKLER
DOF

DOF
DOUGHF
GRANDTR
GRANDTR
MANM

6190 COURT ST

329 EXCALIRUR ST
40 THIEVES WAY
965 APPTAN WAY
974 FISTICUFF DR
497 PLAYACTING CT
4193 ANY ST

3959 TREEWOO0D LN
239 MAIN ST

493 TWENTIETH ST
7917 BROADMOOR WAY
9999 GALAXY WAY

WED,

METROPOLIS
CAMELOT
SESAME
METROPOLIS
PUGILTSY
MOVIETOWN
ANYTOWN
BIGTOWN
HOMETOWN
PROGRESSIVE
BIGTOWN
UNTVERSE

FER 19,

1975,

NY
CA
co
NY
ND
CA
MD
MA
MA
CA
MA
CA

20115
61322
69142
20013
04321
61497
00133
21843
26999
61335
21799
61239

11125 AM

619=732=4997
812-200-0100
NONE

619-407-2314
976-299-2990
NONE

237-408-7100
714=399-4563
T14-411-1123
799-191-9191
713=244-3717
231-999-9999

Figure 6-5. Mailing List Example

¢tFILE FTN29=MAILLIST,OLD
tFORTGO FTRANI1S8

PAGE @021 HP32102B. 20 .7

0001009 SCONTROL FILE=29

00002000 PROGRAM DIRECT READ
90003000 C

90004008 C READ @ RECORD EXAMPLE
00005000 C

20006000 189 FORMAT(S)

02007000 CHARACTER NAMEx*72
20008000 READ(20@9, 103)NAME
000090090 DISPLAY NAME
00010000 STOP

20011000 END

*k ok GLOBAL SIATISTICS Fok Sk

*k kk NO ERRORS, NO WARNINGS *¥ak
TOTAL COMPILATION TIME @iz}
TOTAL ELAPSED TIME w35

END OF COMPILE

END OF PREPARE

J OHN DOUGHE 239 MAIN ST HOMETOWN

END OF PROGRAM

MA 26999 714-411-1123

Figure 6-6. Direct READ Example

1FORTGO

PAGE @@21 HP32182B.80.0
PROGRAM CORETOCORE
c
C CORE=TO=CORE READ FXAMPLF
c
100 FORMAT (TRX112)
150 FORMAT (6F12.3)
2nn FORMAT (1BT4)
CHARACTFR CARD2A0
300 READ(S+#+END=600) CARD
READ(CARN,100) ICOUNT /
GNTO(4n0+500) ICOUNT
400 READ(CARDs150)A+ByCeDsEWF
DISPLAY AsBsCyDoEWF
GOTG 3n0
500 READ(CARD200)I1+12sT13414+15:16417918
W19¢100+1119112+113+1144115¢11651174+118
DISPLAY I11912513¢14415+16+17418419+1104111
#T112+113+7145115,1164117,118
GOTO 300
«nn STOP
END
33 GLOBAL STATISTICS Tk

Rad NO ERRORS,

TOTAL ELAPSED TIME

NO WARNINGS dwox
TOTAL COMPILATION TIME

wrdoedl
e 106

END OF COMPILE

END 0F PRFPARE

«12%5TE*09
2468 2468

«345679F 09
2468 2468

+S56T7RQNE+NY
2468

+789012E+09
2468 2468

»901235€+09
246A 246R

«123457E+09

2468 2468 246AR

END 0F PROGRAM
tE0J

2448

2468

2468

2468

2468

246R

Figure 6-7. Core-to-Core READ Example

6-9

6-3. READ STATEMENT ERR
PARAMETER

Figures 6-8 an 6-9 demonstrate the effect of file read
errors.

In figure 6-8, a non-existent file, MAIL3, is equated to
FTN20 with a :FILE command and a program which tries
to access this file is executed. The program aborts with a
file information display, naming error number 52 (the file
referenced does not exist in the system file domain) as the
cause. The remainder of the program does not execute.

Figure 6-9 demonstrates the use of the ERR parameter to
return control to the program even if a file read error
occurs.

The same non-existent file (MAIL3) is named in the :FILE
command. This time, when the error occurs, control is
passed to statement number 25. Statement number 25
calls the file system intrinsic FCHECK to obtain the error
number and this information, along with the message
“FILE READ ERROR” is output. The remainder of the
program continues to execute. See the MPE Intrinsics
Reference Manual and Section VIII of this manual for a
discussion of file system intrinsics and see Appendix A for
a description of parameters passed by value (use of back
slash).

Note: The error (error number 52) referenced
in figures 6-8 and 6-9 is a file error and is
not covered in Appendix D (Error and
Warning Messages) in this manual.
Refer to Section VI of the MPE Intrinsics
Reference Manual for a discussion of file
€errors.

64. WRITE STATEMENT

A WRITE statement transfers information from specified
data elements in memory to an external file or to a charac-
ter variable in memory.

_ The form of a WRITE statement is

WRITE (destir

destmaswn -

~ WRITE 6, 100, ENT

or -

where

destination

identifies the destination of the data to be transferred.
It may be an integer constant or integer simple variable.
If the variable contains a negative number, that number

6-10

is assumed to be the negative of the MPE file number
desired. (MPE file numbers are returned by the
FOPEN intrinsic. (See Section VIII.)
1. Sequential WRITE

Positive integer constant or integer simple vari-
able indicates the FORTRAN unit number of the
file which is to receive the data. For example, if the
value is 6, then the information is transferred to
FTNOS.

Example:
WRITE (6, 100) A

FORTRAN unit no.

2. Direct WRITE

Same as above, with @ record appended to the unit
number. Record is a constant or any linear expres-
sion whose integer value is taken as the record
number to be written. This option is restricted to
files on direct access devices such as disc, with
fixed length records. FORTRAN references the first
record in the file as record number 1.

Example:

WRITE (6 @ 18, 200) A

format reference

FORTRAN unit no. @ record

3. Core-to-core WRITE.
If the destination where the data is to be written is
a buffer in memory, then destination consists of:
Name, where name is a character simple variable
or character array element specifying the name of
the buffer in memory. (See figure 6-12.)
Example:

WRITE (ZIP, 150)“11256”
name of buffer

format, END,and ERR
are identical to the READ statement parameters
format, END and ERR. See paragraph 6-1.

list

is one or more simple variable names, array names,
array elements, function subprogram names, expres-
sions, character constants, or DO-implied lists. (See
paragraph 6-8 for a discussion of DO-implied lists.)

6-5. WRITE STATEMENT EXECUTION

When a WRITE statement is executed, values are trans-
ferred from the data elements in list to the output file
indicated by unit in the WRITE statement destination
part. Values are transferred left-to-right as the elements
appear in list.

Each WRITE statement begins writing values into a fresh
record of the destination file, ignoring any space left un-
used in records accessed by previous write statements. The
first byte of the output record created under format control

FEB 1977

$FILE FTN2@=MAIL3,0LD
$FORTGO FTRAN4S

PAGE 9001 HP32102B. 20 .90

92021000 SCONTROL FILE=20

20002000 PROGRAM IRRECOVERABLE
20003000 C

P20064008 C IRRECOVERABLE FILE ERROR EXAMPLE
20005000 C

20006000 168 FORMAT(2X,S)

20007000 CHARACTER*72 REC
00008000 10 READ(28, *, END=5S@)REC
202009000 WRITE(6,1008)REC
20010000 GOTO 10

00011000 5@ DO 75 I=1,10
00012000 75 DISPLAY 1

00013000 STOP
00014000 END
ok dk GLOBAL STATISTICS *kkk

*k Ak NO ERRORS, NO WARNINGS %%k
TOTAL COMPILATION TIME @:00101
TOTAL ELAPSED TIME D4

END OF COMPILE
END OF PREPARE
FILE SYSTEM ERROR ON UNIT # 20

+-F-1-L-E---1-N-F-0-R-M-A-T-1-0-N---D-1-S-P-L-A-Y+

! FILE NUMBER =20 1S UNDEFINED. '
!t ERROR NUMBER: 52 RESIDUE: @ !
! BLOCK NUMBER: 0@ NUMREC: @ !
D D T L L T T T +
SEGMENT LOCATION

217 20216

ABORT :SOLDPASS+++%3.%X16:SYSL.%24.23327: PROCESS QUIT

Figure 6-8. Irrecoverable File Error Example

6-11

tFILE FTN20=MAIL3,0LD
tFORTGO FTRAN46

PAGE @1 HP32102B.20.0

P90201098% SCONTROL FILE=28

22002000 PROGRAM ERR EXAMPLE
20003000 C

209049299 C ERR PARAMETER EXAMPLE

2009250089 C CONTROL RETURNS TO THE PROGRAM
220060008 C

20007200 199 FORMAT(2X.,S)

200080020 CHARACTER*72 REC

200090220 10 READ(20.,*, END=50, ERR=25)REC
00010000 WRITE(6,1003)REC

000211000 GOTO 10

P0012000 25 CALL FCHECK(\B\,IERR,3,0.0,3,\232\)
00313000 DISPLAY "FILE READ ERROR"

000! 4200 DISPLAY "ERROR NUMBER = *',l1ERR

P00150060 50 DO 75 1=1,10
00016000 75 DISPLAY 1

60317000 STOP
20018000 END
*kkk GLOBAL STATISTICS dok dok

Fook dek NO ERRORS, NO WARNINGS ¥k
TOTAL COMPILATION TIME 0303301
TOTAL ELAPSED TIME Drx 204

END OF COMPILE

END OF PREPARE

FILE READ ERROR
ERROR NUMBER = 52

VRIOCUN D WD -

10
END OF PROGRAM

Figure 6-9. READ Statement ERR Parameter Example
6-12

is always considered to be a carriage control byte for files
which recognize carriage control (CCTL). As with reads,
the function of the FORTRAN/3000 formatter is to execute
the operations implied by the FORMAT statement until
either a value is required from the list or the end of the
format is encountered. Thus, edit descriptors (such as the
“ . ..” descriptor, see Section VII) will be executed if they
are encountered before one of the above conditions is true.
In any case, after the “write” the next record pointer is
advanced.

If a WRITE statement contains no format reference, a
binary write is initiated. For sequential access
(destination reference = unit), records are written sequen-
tially until the value of the last element in list has been
transferred. For a direct-access file (destination reference
= unit @ record), only one record is written. The destina-
tion file record size must be large enough to accept all the
values indicated in the WRITE statement list. Otherwise,
a run error occurs. An unformatted WRITE statement
must have an element list. If a WRITE statement does
contain a format reference, a formatted write is initiated.
Records are written sequentially until all of the list
element values are transferred, regardless of whether the
file is direct or sequential access (unless an end-of-file or
format beyond record error condition occurs).

Array names appearing in [ist represent all the elements
of the array (unless the array name is subscripted to rep-
resent a specific element). Array element values are trans-
ferred in accordance with the array successor function (see
Section V).

Figures 6-10 through 6-12 are examples of WRITE state-
ment execution. Figure 6-10 demonstrates a sequential
write. The first 19 characters of the file MAIL1 (see figure
6-5) are read and assigned to the character variable
NAME.The WRITE statement then transfers NAME to
FORTRAN unit number 6.

Figure 6-11 illustrates a direct write. A new value is
written into record 9 of the file MAIL1. The REWIND
statement (see paragraph 6-9) then positions the “record
pointer” to record 1 of the file and the second WRITE
statement transfers each record, in sequence, to the output
file. The program in figure 6-12 performs a core-to-core
write. The READ statement reads the zip code from each
record of file MAIL1 and assigns the value to the variable
ZIP and, if it equals “20013” or “20115”, transfers control
to statement 400. The second WRITE statement writes a
new value into ZIP. Note that the value of the zip code in
the file is not changed inasmuch as the write is to the
character variable ZIP and not to FORTRAN unit number
20 (the unit number of the file).

6-6. ACCEPT STATEMENT

An ACCEPT statement is a read statement intended for
free-field format programs which are to be run in interac-
tive mode from a terminal device (such as a teleprinter).
ACCEPT statements are not resticted to interactive mode,
however, and can be used to input free-field data from any
input device.

Data transfers by ACCEPT statements conform to free-
field transfers with one exception: FORTRAN/3000 de-
termines if the standard input device (FTNO5) to be used
is a terminal; if the device is a terminal, a prompt charac-
ter, ?, is printed before the data is accepted.

where

list

is one or more simple variable names, array names,
array elements, function subprogram names, or DO-
implied lists. (See paragraph 6-8 for a discussion of
DO-implied lists.)

Example:

INTEGER A, B, C
ACCEPT A, B, C
STOP

END

When the program executes, it types the prompt charac-
ter, ? (if $STDLIST is a terminal). The user answers, for
example, 35, 455, 733. The commas are used to separate,
or delimit, the three data values. (Other delimiters which
can be used are blank spaces or any ASCII characters
which are not part of the data item.) The program then
assigns 35 to A, 455 to B, and 733 to C.

If the program is not executing from a terminal, the
prompt character would not be printed and the program
would read three values. The ACCEPT statement is equi-
valent to

READ (5%)

(except for the prompt) where 5 represents the unit
number of the standard input file and * specifies
free-field format.

6-7. DISPLAY STATEMENT

A DISPLAY statement is a write statement intended for
(but not restricted to) programs outputting free-field data
in interative mode.

6-13

¢tFILE FTN2@9=MAIL1,O0LD

s FORTGO

PAGE wwvl

20021200
222020020
P222329392
A23B400D
292235200
P2A262392
20027229
Q32383372
22209002
2221202392
22311222
20012000
20013023

* %k ok

%K%k *k NO

FTRAN29
HP32102B. 20.7
SCONTROL FILE=20
PROGRAM SEAQUENTIAL
C
C SEAUENTIAL WRITE EXAMPLE
C
128 FORMAT(S)
20% FORMAT(T12,3%)
CHARACTER*19 NAME
323 READ(27,192%,END=420)NAME
WRITE(6,2%0)NAME
GOTO 392
433 STOP
END
GLOBAL STATISTICS Fk dok
ERRORS, NO WARNINGS ko

TOTAL COMPILATION TIME 0:00:01

TOTAL ELAPSED TIME

END OF

END OF

END OF

COMPILE

PREPARE

LOIS
KING
ALl
JOHN
KNEE
SWASH
JAMES
JANE
JOHN
JENNA
KARISSA
SPACE
PROGRAM

D139

ANYONE
ARTHUR
BABaA
BIGTOWN
BUCKLER
BUCKLER
DOE

DOE
DOUGHE
GRANDTR
GRANDTR
MANN

Figure 6-10. Sequential WRITE Example

:FILE FTN29=MAIL!,O0OLD

: FORTGO

PAGE 9001

72201000
PB232000
200030200
PO024000
2300503@
222736020
200027029
20008000
202395000
200210000
20211000
22212000
20213029
00214290
202150002
2A216000

*k kk

kK kk NO ERRORS,

FTRAN21
HP32102B. 28.2
$CONTROL FILE=20
PROGRAM DIRECT
C
C DIRECT WRITE EXAMPLE
c

120 FORMAT(S)

209 FORMAT(T!2,5)
CHARACTER*]19 NAME
NAME=""SPEEDY RABBIT"
WRITE(20€9,1020)NAME
REWIND 292

30@ READ(20,100,END=423)NAME
WRITE(6,2232)NAME
GOTO 329

499 STOP
END

GLOBAL STATISTICS %k ok

NO WARNINGS &k

TOTAL COMPILATION TIME 03:00:01

TOTAL ELAPSED TIME D006
END OF COMPILE
END OF PREPARE
LOIS ANYONE
KING ARTHUR
ALl BABA
JOHN BIGTOWN
KNEE BUCKLER
SWASH BUCKLER
JAMES DOE
JANE DOE
SPEEDY RABBIT
JENNA GRANDTR
KARISSA GRANDTR
SPACE MANN
END OF PROGRAM

Figure 6-11. Direct WRITE Example

6-15

¢tFILE FTN20=MAILLIST,OLD
1FORTGO FTRAN22

PAGE 0001 HP32102B.00.0
$0001066 SCONTROL FILE=29

$0002000 PROGRAM COREWRITE
00003000 C

$0004808 C CORE-TO-CORE WRITE

$P005088 C

P0006008 108 FORMAT(54X,S)

0087808 156 FORMAT(S)

$0008088 208 FORMAT(//54X,S//)
00009000 CHARACTER*S5 ZIP
$0010606 300 READ(20,100,END=500)ZIP
000211000 WRITE(6,1080)Z1P
00012000 IF(ZIP.EQ."2@0813".0OR.ZIP.EQ."2@115")GOTO 400
30213000 GOTO 300

P0014000 4@ WRITE(ZIP,158)"11256"
20015000 WRITE(6,200)ZIP
20016000 GOTO 300

00017060 508 STOP

90018000 END

—-— GLOBAL STATISTICS ok ok

#kx% NO ERRORS, NO WARNINGS ki

TOTAL COMPILATION TIME ©:@0:01

TOTAL ELAPSED TIME

D100104

END OF COMPILE

END OF PREPARE

20115

11256

61322
69142
20013

11256

94321
61497
20133
21843
26999
61335
21799
61239

END OF PROGRAM

6-16

Figure 6-12. Core-to-Core WRITE Example

where

list

is one or more simple variable names, array names,
array elements, function subprogram names, or DO-
implied lists. (See paragraph 6-8 for a discussion of
DO-implied lists.) An expression of any type also can be
used in list. The expression is evaluated and its value is
transferred to the standard list device (unit number 6
(FTNO086)).

When a DISPLAY statement is executed, the values of the
data elements in list are output in free-field format to the
unit number 6 (such as a teleprinter in interactive mode or
a line printer in batch mode). The DISPLAY statement
creates as many records as needed to output all of the
element values in list.

EXAMPLE:

INTEGER A, B, C
A=7

B =45

C = 7666
DISPLAY A, B, C
STOP

END

When the program is executed, the DISPLAY statement
causes the following output:

7 45 7666
A DISPLAY statement is equivalent to
WRITE (6, *)

where 6 represents the file number of the standard list file
and * specifies free-field format.

6-8. DO-IMPLIED LISTS

READ, WRITE, ACCEPT and DISPLAY statements can
contain DO-implied lists. A DO-implied list contains a list
of data elements to be input (read) or output (written), and
a set of indexing parameters.

FEB 1977

where

list

is one or more simple variable names, array names,
array elements, function subprogram names, expres-
sions, or other DO-implied lists.

variable

is an integer or double integer simple variable used as
an index variable which controls the number of times
the elements in list are read or written.

init
is the initial value given to variable at the start of the
DO-implied list.

limit
is the termination value for variable.

step

is the increment by which variable is changed after
each execution of the DO-implied list. Step can be posi-
tive or negative, but not zero. If step is omitted, it is
assumed to be 1.

Init, limit and step can be arithmetic expressions of any
type except complex. They are converted to integer when
used.

The DO-implied list acts as a DO loop (see Section IV). The
range of the implied DO loop is the list of elements to be
input/output. The implied DO loop can transfer a list of
simple variables or array elements, etc., or any combina-
tion of allowable data elements. The control variable is
assigned the value of init at the start of the loop.

The list of elements is transferred. The control variable is
then incremented by the value of step, or by 1 if step is
omitted. The control variable is compared with [imit. If
step is positive and the control variable is greater than
limit, the implied DO loop terminates; otherwise, the list
is transmitted again.

If step is negative and the control variable is less than
limit, the implied DO loop terminates; otherwise, the list
is transferred again.

For example,

WRITE (6, 100) (A,I = 1,3)

(A,I = 1,3) is a DO-implied list. A is a simple variable of
type real. The effect of the DO-implied list is to write the
value of A three times in succession. If A = 35.6, the
output would consist of one record as follows:

35.6 35.6 35.6

The preceding example is similar to, but more efficient
than:

6-17

DO10I =13
WRITE (6, 100) A
10 CONTINUE

The last example would output three records, as follows:

35.6
35.6
35.6

If the list of an implied DO contains several simple vari-
ables, each of the variables in the list is input/output for
each pass through the loop.

For example,

READ (5, 100) (A, B, C,Jd = 1,2)
is the same as

READ (5,100) A, B, C, A, B, C

A DO-implied list also can transmit arrays and array
elements:

WRITE (6,100) (A (), I = 1,10)
results in the array A being written in the following order:
A(D A(2) A(3) A4) A5) A(B) A(T) A(B) A(9) A(10)

If an unsubscripted array name is used in list, the entire
array is transmitted:

DIMENSION A(5)
WRITE (6, 100) A
STOP
END

The WRITE statement causes output as follows:
A(D) A(2) A(3) A4) A(5)
The result of the following statements:

DIMENSION A(3)

WRITE (6, 100) (A,I = 1,2)
STOP

END

is to write the elements of array A twice as follows:

A1) A(2) A(3) A(D) A(2) A®)

DO-implied lists also can be nested to transmit arrays of
more than one dimension. The form of a nested DO-
implied list is:

6-18

((list, variable, = init, limit, step), variable, = init,
limit, step)

For example,

READ (5, 100) (ARRAYM, N), M = 1,10, 1), N = 1,
10, 1)

The nesting of DO-implied lists follows the same rules as
nested DO loops.

For example,

WRITE (6, 100) (Ad,), I = 1,2),J = 1,2)
produces the following output:

A1, 1) A2, 1) AQ1, 2) A2, 2)

The first, or nested DO loop is satisfied before the outer
DO loop begins its executions. For a complete discussion of
nested DO loops, see Section IV.

6-9. AUXILIARY INPUT/OUTPUT
STATEMENTS

Auxiliary input/output statements consist of the RE-
WIND, BACKSPACE, and ENDFILE commands. These
statements are used for control of magnetic tape and disc
devices. If a referenced device does not have the capa-
bility to perform a request, an error is generated when the
program is executed.

where
unit
is a file reference consisting of a positive integer con-
stant or integer simple variable within the value range
of from 1 through 99.

The REWIND command positions the “record pointer” to
the first record of a referenced file. This command may
invoke a physical rewind of the referenced device, if neces-
sary, to point to the first record.

The BACKSPACE command positions the “record pointer”
to the preceding record. The BACKSPACE statement may
not reference files of variable length records.

ENDFILE writes an end-of-file record. The file can be
reopened and accessed by other I/O statements at a later
time.

For further descriptions of REWIND, BACKSPACE, and
ENDFILE, see UNITCONTROL in Section VIIIL

MAY 1979

WRITING FORMAT STATEMENTS
IN FORTRAN/3000 |[vii

SECTION

FORMAT statements are nonexecutable statements
which describe to the computer how input and output
information is to be arranged. The Formatter is a sub-
routine called by FORTRAN/3000 compiler-generated
code. The FORTRAN/3000 compiler interprets READ,
WRITE, ACCEPT, and DISPLAY statements of a program
to generate the calls to the Formatter.

The Formatter can perform the following functions:

1. Convert between external ASCII records and an in-
ternally represented list of variables. Formatting pro-
ceeds according to parameters derived from the
FORTRAN/3000 program’s FORMAT statements.

2. Convert free-field external ASCII records to an inter-
nally represented list of variables according to pre-
defined formats and/or edit control characters embed-
ded in the input records.

3. Convert an internally represented list of variables to
external ASCII records which are free-field input-
compatible.

4. Convert between an internally represented list of var-
iables and a user-defined ASCII buffer storage area
(core-to-core).

5. Transfer (unformatted and without conversion) bet-
ween an internally represented list of variables and
an external file.

The Formatter derives edit and format parameters from
FORMAT statements or the data itself.

7-1. FORMAT STATEMENTS

FORTRAN/3000 FORMAT statements consist of a state-
ment label and a series of format and/or edit specifications
enclosed in parentheses. The specifications must be sepa-
rated by commas or record terminators (see paragraph
7-32 for a discussion of record terminators). On rare occa-
sions, the FORTRAN/3000 compiler may fail to detect
the absence of these separators, and an error may result
during program execution.

The form of a FORMAT statement is:

V— statement label

10 FORMAT(I3,5F12.3)
N s “em— et

FORMAT _ 4‘ormat andlor edit
statement specifications
identifier

MAY 1979

In the preceding FORMAT statement, the specification I3
specifies an integer number with a field width of 3 (see
paragraph 7-16) and five real numbers, each with a field
width of 12 with three significant digits to the right of the
decimal point (see paragraph 7-11). A READ statement
referencing this FORMAT statement could be of the form:

READ(5,10)ITEM,A B,C,D,E

The input data as it might appear on a card is shown in
figure 7-1.

Format and edit specifications can include another set of
format and/or edit specifications enclosed in parentheses;
this is called nesting. For example, the information shown
on the card in figure 7-2 could be represented in a FOR-
MAT statement as follows:

10 FORMAT(13,F7.4,3(F7.2,13),F12.4)

A READ statement corresponding with the FORMAT
statement could be:

READ(5,10)I,A,B,J.D K,E,LF

The READ statement would read values for I and A, then
repeat the parenthetical statement (F7.2,13) three times to
read values for Band J, D and K, and E and K and, finally,
read a value for F.

FORTRAN/3000 allows nesting to a depth of four levels.
For a further discussion of nesting, see paragraph 7-36.

See paragraph 7-51 for information about input/output of
complex numbers.

7-2. FORMAT SPECIFICATIONS

Format specifications are written as:

o A field descriptor.

e A scale factor followed by a field descriptor.

e A repeat specification followed by a field descriptor.

e A scale factor followed by a repeat specification.

7-3. FIELD DESCRIPTORS

For output of data, a field descriptor specifies the data
field into which the value of a list element will be written.
For input, a field descriptor defines the field frem which
data will be read for assignment to a list element.

7-1

BT LR

307,148 143213257

P

12 12 13 14 15 16 W7 19 20

39 A0 4) 42 43 44 5 46 47148 49 50 51 52 53 4 5% 56|57 59 -

12 12 -— 12

[ﬂ62636465 66 €7|G8 69 70 71 72 73 74 75 76|77 7R

3
bog0od000000000/O0OO0O0O0COD000R000DCC0D0

123[456 7891011121314 15[161718182020 2223242528276 293031 N3 UBXKV

FPTR TR e It 1t 1ttt 1

12

12 12

oopooooD0DOOCOOOOO00CQQQ0C0OG000CON000CRCCI00

2B J9MG 4T 42 43 44 45 46 47 48 49 50 51152 53 54 55 56 57 58 593 6C 61 62 63|64 b5 65 67 58 €5 70 71 72 73 74 15|16

fRiriir ettt et 1t 11t

*222222222222 2222222 22 22222222 222 222222222222222222222222 222222 22 22

Figure 7-1. Input Data (Example 1)

SHIE, L L SRR R T $335.4372

v 2l3 4 5 6 78 9 101 121b 14 19 16 17 18 9 2u|2r 22 §3 24 25 ¢ 27 2 29 3q 31 32 33 34 35 5 37 38 39 40 41 42 43 44 45 46 47 48 49 50
3 7 7 3 7 3 7 3 12 [61 62 63 64 65 66 67 68 69
popoooOOOOO/OOOODOO/DOOIOOCOGO00NDO0[G0O00D0D00C{0O00{000000000000/0000000000000
123(4 56 78 90102130506 1|1 19 2021 222 24 25 26 27)25 28 30f31 32 3334 35 36 5758 39 s0f4r 42 43 44 45,66 47 48 43 50 51 52053 54 5 55 57 S SY B0 Y B2 BI B4 Y
(R R R R R R R R R R R R R R R
402 222222222 2 22 2 22 2222227222222222222222222222 22222222222

Figure 7-2. Input Data (Example 2)

7-4. DECIMAL NUMERIC CONVERSIONS.
Seven field descriptor forms are provided for decimal
numeric conversions, as follows:

1. Dw.d - External representation in double precision,
floating point (with an exponent field) form.
See paragraph 7-15.

2. Ew.d External representation in real, floating
point (with an exponent field) form. See
paragraph 7-10.

3. Fw.d External representation in real, fixed point
(with no exponent field) form. See paragraph
7-11.

4. Gwd
5. Mw.d
6. Nwd
7. Iw

External representation in either the Fw.d
format or the Ew.d format, depending on the
relative size of the number to be converted.
See paragraph 7-12.

External representation in monetary (busi-
ness) form (real, fixed point, including $ and
commas). For example, $4,379.89. See parag-
raph 7-13.

External representation in numeration form
(same as the Mw.d format, but without the
$). For example, 3,267.54. See paragraph
7-14.

External representation in integer form. See
paragraph 7-16.

In the preceding field descriptor forms,

w = thelength of the external data field in characters;w
must be greater than zero.

d = the number of fraction field digits in a floating- or
fixed-point output. On input, if the external data
does not include a decimal point, the integer is mul-
tiplied by 109, If the external data does include a
decimal point, this specification has no effect. In all
the listed field descriptor forms, d must be stated
even if zero.

7-5. RULES FOR INPUT. All of the field descrip-
tors listed in paragraph 7-4 will accept ASCII numeric
input in the following formats:

Note: Iw, on input, is interpreted as Fw.0.

1. A series of integer number digits with or without a
sign.

2314 or +26783 or —96

2. Any of the above with an exponent field with or with-
out a sign.

2314+2 or +26783E—4 or —96D+4

3. A series of real number digits with or without a sign.
2.314 or +267.83 or +.96

4. Any of the items in 3, with an exponent field with or
without a sign.

2.314+2 or +267.83E—4 or —.96D+4

5. Any of the items in 1 or 3, in monetary form.
$2,314 or $2,678.30 or —$.96

6. Any of the items in 1 or 3, in numeration form.
2.314 or +2,678.30 or —961,534,873

In summary, the input field can include integer, fraction,
and exponent subfields:
Fraction field

Integer field Exponent field

} — I - |—>
*n...n . n...nEzxee
Decimal point-—/

Rules:

1. The number of characters in the input field, including
$ and commas, must not exceed w in the field descrip-
tor used.

2. The exponent field input can be any of several forms:

FEB 1977

+e +ee Ee Eee De Dee
—e —ee E+e E+ee D+e D +ee
E-e E-ee D-e D-ee

where e is an exponent value digit.

3. Embedded or trailing blanks (to the right of any
character read as a value) are treated as zeros; lead-
ing blanks are ignored. A field of all blanks is treated
as zero.

EXAMPLES:

1b23 = 1023 .2b56bE+b4 = .20560E+04
12.b34 = 12.034 2b2,b45.bb3 = 202045.003
—$1,b34.bb5 = —1034.005 2.b02-b13 = 2.022-013

4. The type of the internal storage is independent of
either the ASCII numeric input or the field descriptor
used to read the input. The data is stored according to
the type of the list element (variable) currently using
the field descriptor. The conversion rules are as fol-
lows:

¢ Type INTEGER or DOUBLE INTEGER truncates
a fractional input.
e Type REAL rounds a fractional input.

e Type DOUBLE PRECISION rounds a fractional
input.

7-6. OCTAL NUMERIC CONVERSION. One field
descriptor form is provided for octal numeric conversion on
input or output, as follows:

Ow for octal numbers from 0
through 17777777TT7777777T7TTT74

where

w is the length (in characters) of the external
data field (must be greater than zero).

This field descriptor accepts ASCII numeric input up to
twenty-two octal digits long. Non-numeric or non-octal
characters cause a conversion error. For a complete dis-
cussion of this field descriptor, see paragraph 7-17.

7-7. HEXADECIMAL NUMERIC CONVER-
SION. One field descriptor form is provided for hexadeci-
mal numeric conversion on input or output, as follows:

Zw for hexadecimal numbers from 0 through
FFFFFFFFFFFFFFFF,;

where

w is the length (in characters) of the external
data field (must be greater than zero).

7-3

This field descriptor accepts ASCII inputs up to sixteen
hexadecimal digits long. Non-hexadecimal characters
cause a conversion error. For a complete discussion of this
field descriptor, see paragraph 7-18.

7-8. LOGICAL CONVERSION. One field descrip-
tor form is provided for logical conversion for input or
output:

Lw for logical values (T or F followed by any other
characters).

This field descriptor accepts any ASCII characters input
that begins with either T or F. See paragraph 7-19 for a
further discussion of this field descriptor.

7-9. ALPHANUMERIC CONVERSIONS. Three
field descriptor forms are provided for alphanumeric con-
versions:

Aw for alphanumeric characters to and from the
leftmost bytes of a list element. See paragraph
7-20.

Rw for alphanumeric characters to and from the
rightmost bytes of a list element. See parag-
raph 7-21.

S for alphanumeric characters to and from a
character string (user-defined character list
elements). See paragraph 7-22.

Each of these field descriptors accepts (but provides differ-
ing storage of) any ASCII character.

7-10. FLOATING-POINT REAL NUMBERS
(Ew.d). The field descriptor for a floating-point real
number with an exponent is of the form Ew.d.

On output, the Ew.d field descriptor causes normalized
output of a variable (internal representation value: in-
teger, double integer, real or double precision) in ASCII
character floating-point form, right-justified. The least
significant digit of the output is rounded.

The external field width is w positions:

T

—.%x,...x9E=xee

a—

Decimal
point
where

X, ...xq = themostsignificant digits of the value

ee = the digits of the exponent value

w = the width of the external field

d = the number of significant digits al-
lowed in w (for output, d must be grea-
ter than zero)

—(minus) = 1is present if the value is negative.

The field width w must follow the general rule:
w=d + 6

to provide positions for the sign of the value, the decimal
point, d digits, the letter E, the sign of the exponent, and
the exponent’s two digits. If w is greater than the number
of positions required for the output value, the output is
right-justified in the field with blank spaces to the left. If
w is less than the number of positions required for the
value (with the sign, decimal point, and exponent field),
the entire field is filled with #’s.

See table 7-1 and figure 7-3 for examples of Ew.d output.
Note that the program in figure 7-3 is written with multi-
ple FORMAT and WRITE statements merely to illustrate
how the values are output.

On input, the Ew.d field descriptor causes interpretation
of the next w positions in an ASCII input record. The
number is converted to an internal representation value
for the variable (list element) currently using the field
descriptor.

See table 7-2 for Ew.d input.

Placing the decimal point in an input value is optional.
For A and B in table 7-2, the decimal point in the input
value agrees with the value of d (3 in A and 6 in B). C has
no decimal point in the input value so the field descriptor
(E8.2) causes the values +3462E3 to be stored as 34.62 x
103 (it places the decimal point to agree with the field
descriptor). In D, E and F, the decimal point placement in
the input value does not agree with the value of d in the
field descriptor. In these cases, the placement of the deci-
mal point in the actual input value overrides the field
descriptor and the values are stored as they appeared on
input.

If w is less than the number of positions required for an
input value (as in E in table 7-2), the least significant
digits of the input value are not stored.

Trailing blanks are treated as zeros and can cause errors.
For example, the blank after the value read in for F causes
this value to be stored as 3.462 x 10%°, which is incorrect if
the value was intended to be 3.462 x 103,

7-11. FIXED-POINT REAL NUMBERS (Fw.d). The
Fw.d field descriptor defines a field for a real number
without an exponent (fixed-point).

On output, the Fw.d field descriptor causes output of a
variable (internal representation value: integer, double
integer, real, or double precision) in ASCII character
fixed-point form, right-justified. The least significant digit
of the output is rounded.

The external field is w positions:

| w -
+i .. dncfie . fa
Decimal ——/ |<—d—>(

point

where

l;...1l, = the integer digits

fi...fa = the fraction digits

w = the width of the external field

d = the number of fractional digits allowed
inw

n = the number of integer digits

—(minus) = is present if the value is negative.

The field width w must follow the general rule:

w=d +n + 3

to provide positions for the sign, n digits, the decimal
point, d digits, and a rollover digit if needed. If w is greater
than the number of positions required for the output
value, the output is right-justified in the field with blank
spaces to the left. If w is less than the number of positions
required for the value (with the sign and the decimal
point), the entire field is filled with #'s.

Table 7-1.

Note: Rollover digit is the digit that rolls to the

left of a floating point number after
rounding the least significant digit of the
floating point number.

For example, if — 999.996 is the internal
value of a number and F8.2 is the field
descriptor, then by rounding the least
significant digit 6, the digit 1 rolls to the
left of the internal value and gives as
output the number — 1000.00.

See table 7-3 for Fw.d output.

On input, the Fw.d field descriptor causes interpretation
of the next w positions in an ASCII input record. The
number is converted to an internal representation value
for the variable (list element) currently using the field
descriptor.

Only w positions in an input record will be used to obtain
the value.

See table 7-4 for Fw.d input.

Ew.d Output

10 FORMAT(E10.3 E10.3,E12.4E12.4E7.3E5.1)
WRITE(6,10)A,B,C.D.E,F

FIELD

VARIABLE DESCRIPTOR

E10.3
E10.3
E12.4
E12.4
E7.3
E5.1

Mmoo w >

INTERNAL

VALUE OUTPUT

+12.342 bb.123E+02

-12.341 b-.123E+02

+12.340 bbb.1234E+02

~-12.345 bb—.1234E+02
+12.34 HHAHHHHEH
+12.34 #HEH#H

If rounding of the least significant digit occurs and rollover results (for example, 99.99 becomes
100.00), the rollover value is normalized and the exponent is adjusted.

For example,
FIELD INTERNAL
DESCRIPTOR VALUE OUTPUT
E12.5 ~999.998 b—.10000E +04
E11.5 999.996 b.10000E+04
E10.5 ~99.9997 HHHHHHHHHH

7-5

:FORTGO FTRAN23

PAGE 4001 HP32102B. 70,0

2e021099 PROGRAM FORMAT

20002008 C

A29723008 C E FORMAT STATEMENT EXAMPLES
2233340083 C

272285000 19 FORMAT(TIS,E10.3)
27006000 20 FORMAT(TIS,E10.3)
200207000 32 FORMAT(TIS,EI2.4)
0028000 49 FORMAT(TIS,El12.4)
207209000 52 FORMAT(T15,E7.3)
A0010200 60 FORMAT(TIS,ES.1)

2002110200 A=12.342
oPR212200 ==-12.341
22013009 C=12.349
22314000 =-12.345
20015000 E=12.34
220216000 F=12.34
203017220 WRITE(6,12)A
202182300 WRITE(6,27)B
2727219009 WRITE(6,302)C
20229029 WRITE(6,40)D
20021000 WRITE(6,50)>E
202022200 WRITE(6,68)F

228923092 79 FORMAT(TIS,E!12.5)
20024200 8% FORMAT(TIS,Ell.5)
220257900 90 FORMAT(TIS,E13+5)

200260209 G=-999.998
23327033 H=999.996
29028009 X=-99.9997
200299200 WRITE(6,70)G
20030002 WRITE(6,80)>H
29231000 WRITE(6,93)X
23332303 1388 FORMAT(TIS,"1'")
27206332092 119 FORMAT(TS,"POSITION 15')
20n34200 WRITE(6,109)
20035220 WRITE(6,118)
272036220 STO®

33337233 END

*okdk GLOBAL STATISTICS Jok Ak

Fok dok NO ERRORS, NO WARNINGS sk*k
TOTAL COMPILATION TIME @:o0:@l
TOTAL ELAPSED TIME 2100304

END OF COMPILE

END OF PREPARE

«123E+02
-« 123E+22
«1234E+02
~«1234E+02
FRERRAR
FHAFA
~.100QQE+34
«1200QE+034
FOERRRRIRY
1
POSITION 15
END OF PROGRAM

Figure 7-3. Ew.d Format Output Example

Table 7-2. Ew.d Input

10 FORMAT(E9.3,E13.6,E8.2,E9.0,E3.2,E8.2)

READ(5,10)A,B,C.D.E.F

For example,

FIELD
DESCRIPTOR

F8.2
F8.2
F7.2

INPUT FIELD INTERPRETED
CHARACTERS DESCRIPTOR VARIABLE AS
+3.462E03 E9.3 A 3462.00
—7.243242E+02 E13.6 B —724.324
b+3462E3 E8.2 C 34620
—-34.62E-3 E9.0 D —.346200x 107"
3462.E-5 E3.2 E 3.46000
3.462E3b E8.2 F 3.46200 x 10%°
Table 7-3. Fw.d Output
10 FORMAT(F10.3,F10.3,F12.3,F12.3,F4.3,F43.)
WRITE(6,10)AB,.C,D,EF
FIELD INTERNAL
VARIABLE DESCRIPTOR VALUE OUTPUT
A F10.3 +12.3402 bbbb12.340
B F10.3 ~12.3413 bbb - 12.341
C F12.3 +12.3434 bbbbbb12.343
D F12.3 ~12.3456 bbbbb—-12.346
E F4.3 +12.34 ####
F F4.3 +12345.12 #HH##H

If rounding of the least significant digit occurs and rollover results, the stated formula for w provides
enough positions for the value.

INTERNAL

VALUE OUTPUT
+999.997 b1000.00
—999.996 —1000.00
—999.995 ###H#HH#

MAY 1979

Table 7-4. Fw.d Input

10 FORMAT(F8.0,F10.2,F5.3,F10.4,F6.4,F6.1)
READ(5,10)A,B,C,D,E,F

INPUT FIELD INTERPRETED
CHARACTERS DESCRIPTOR VARIABLE AS
bbb+b362 F8.0 A +362
bbbbb—3624 F10.2 B -36.24
b—-.36 F5.3 C -.36
b—-362.4567 F10.4 D —-362.4567
b36240 F6.4 E 3.624
b3.624 F6.1 F 3.624
Placing the decimal point in an input value is optional. f w i
For example, in table 7-4, the value (—3624) to be read for
variable B has no decimal point. The field descriptor -, in-f1...fabbbb
(F10.2) places the decimal point in this case and the inter-
nal representation becomes —36.24. In case the placement I—— d-—F-—!
of the decimal point in the input value and the field de-
scriptor do not agree (as in F in table 7-4), the input value Decimal (4 spaces)
overrides the field descriptor and the value stored inter- point
nally represents the actual value that is read.
where
i,...1, = the integer digits

7-12. FIXED-POINT OR FLOATING-POINT
REAL NUMBERS (Gw.d). The Gw.d field descriptor de-
fines a field for a fixed-point (without an exponent) or a
field for a floating-point (with an exponent) number, as
needed. The list element determines whether a fixed-point
or floating-point transfer will occur.

On output, the Gw.d field descriptor causes output of a
variable (internal representation value: integer, double
integer, real or double precision) in ASCII character
floating-point form, right-justified.

The external field is w positions:

|]
! w |
—.x,...xEx ee

g

Decimal
point

7-8

(Fw.d descriptor)
fi...fa = the fraction digits

X;...%q = the mostsignificant digits of the value
(Ew.d descriptor)

ee = the digits of the exponent value (Ew.d
descriptor)

= the width of the external field

d = the number of fractional digits al-
lowed in w

n = the number of integer digits (Fw.d de-
scriptor)

— (minus) = is present if the value is negative.

The Gw.d field descriptor is interpreted as an Fw.d de-
scriptor for fixed-point form or as an Ew.d descriptor for
floating-point form, according to the internal representa-
tion absolute value (N) after rounding. If the number of
integer digits in N is > d, or if N < .1, the Ew.d field
descriptor is used; otherwise the Fw.d field descriptor is
used.

See table 7-5 for Gw.d output.

.

Table 7-5. Gw.d Output

IF N<0.1 THEN Ew.d
IF 0.1 =N<1 THEN Fw — 4) . d plus 4X (spaces)
IF 1 =N<10! THEN Fw — 4) . (d — 1) plus 4X
IF 10 =N<10? THEN Fw — 4) . (d — 2) plus 4X
\F 102 =N<i03 THEN Fw — 4) . (d — 3) plus 4X
IF 103 =N<104 THEN Fw — 4) . (d — 4) plus 4X
IF 1Q(d = 0 =N<104 THEN Fw — 4) . O plus 4X
IF 104 =N THEN Ew.d
EXAMPLES:

G126N = 12345 Fw — 4). (d — 4) = F8.2,4X: b1234.50bbb

G13.7.N = 123456.7: Fw — 4) . (d — 6) = F9.1,4X: b123456.7bbbb
G9.2N = 123.4: Ew.d = E9.2: bb.12E+03

The field width w must follow the general rule for the Ew.d descriptor:
w=d + 6

to provide positions for the sign of the value, d digits, the decimal point (preceding x,), and, if needed, the
letter E, the sign of the exponent and the exponent'’s two digits. If w is greater than the number of positions
required for the output value, the output is right-justified in the field with blank spaces to the left. If w is less
than the number of positions required for the value (with the sign, the decimal point, and the exponent field
— or 4 spaces), the entire field is filed with #'s.

10 FORMAT(G10.3,G10.3,G12.4,G12.4,G12.4,G7.1,G5.1)
WRITE(6,10)AB,CD,E.F.G

FIELD INTERPRETED INTERNAL

VARIABLE DESCRIPTOR AS VALUE OUTPUT
A G10.3 E10.3 +1234 bb.123E+04
B G10.3 E10.3 -1234 b—.123E+04
C G12.4 E12.4 +12345 bbb.1235E+05
D G124 F8.0,4X +9999 bbb9999.bbbb
E G124 F8.1,4X —999 bb—-999.0bbbb
F G7.1 E7.1 +.09 b.9E-01
G G5.1 ES5.1 -.09 #H#RAH

When the Ew.d descriptor is used, if rounding of the least significant digit occurs and rollover results, the
rollover value is normalized and the exponent is adjusted.

For example,
FIELD INTERNAL
DESCRIPTOR VALUE OUTPUT
G12.1 (E12.2) +9999 bbbbb.10E+05
G8.2 (EB.2) +999 b.10E+04
G7.2 (E7.2) —-999 #H#AA#HH

7-9

On input, the Gw.d field descriptor causes interpretation
of the next w positions in an ASCII input record. The
number is converted to an internal representation value
for the variable (list element) currently using the field
descriptor.

See table 7-6 for examples of Gw.d input.

7-13. MONETARY FORM (Mw.d). The Mw.d field
descriptor defines a field for a real number without an
exponent (fixed-point) written in monetary form.

On output, the Mw.d field descriptor causes output of a
variable (internal representation value: integer, double
integer, real or double precision) in ASCII character
fixed-point form right-justified, with a dollar sign ($) and
commas. The least significant digit of the output is
rounded.

The external field is w positions:

| w |
—8%i,...,... .1 fa
Commaf(s) X‘—-d ——{
(as needed) Decimal
point

Table 7-6.

where

Iy I, the integer digits (without commas)

fi ... fa = the fraction digits

commas =c¢ = the number of output commas
needed: one to the left of every third
digit left of the decimal point; see

general rule for w below.

d = the number of fractional digits al-
lowed in w

n = the number of integer digits

w = the width of the external field

— (minus) is present if the value is negative.

The field width w must follow the general rule:
w=d +n+c+4

to provide positions for the sign, $, n digits, ¢ commas, the
decimal point, d digits, and a rollover digit if needed. If w
is greater than the number of positions required for the
output value, the output is right-justified in the field with
blank spaces to the left. If w is less than the number of
positions required for the output value (with the plus or
minus sign, $ sign, commaf(s), and the decimal point), the
entire field is filled with #’s.

See table 7-7 for Mw.d output.

Gw.d Input

10 FORMAT(G10.3,G10.3,G12.4,G12.4,G12.4,G7.1,G5.1)
READ(5,10)A,B,C,D,E,F

INPUT FIELD INTERPRETED
CHARACTERS DESCRIPTOR AS VARIABLE INTERPRETED AS
bb.123E+04 G10.3 E10.3 A 123 x 10#
b—.123E+04 G10.3 E10.3 B -.123 x 104
bbb.1235E+05 G12.4 E12.4 C .1235 x 108
bbbbbb+9999. G124 F8.0 D 9999.
bbbbbbbb-999 G12.4 F8.1 E 99.9
bbb+.09 G741 E7.1 F .900000 x 107!
b—.09 G541 E51 G —.900000 x 1071

7-10

On input, the Mw.d field descriptor causes interpretation
of the next w positions in an ASCII input record. The field
width is expected (but not required) to have a $ and
comma(s) embedded in the data as described for Mw.d
outputs (the $ and commas are ignored). The number is
converted to an internal representation value for the vari-
able (list element) currently using the field descriptor.

See table 7-8 for Mw.d input.

The external field is w positions:

———

/!«d—»’

Decimal point

_ll)

Comma(s)/

(as needed)

where
Iy ...y = theinteger digits (without commas)
7-14. NUMERATION FORM (Nw.d). The Nw.d field i fa = the fraction digits
descriptor defines a field for a real number without expo-
nent (fixed-point) written in numeration form (same as commas = ¢ = the number of output commas
Muw.d but without $ on output). needed: one to the left of every
third digit left of the decimal point;
see general rule for w below.
On output, the Nw.d field descriptor causes output of a
variable (internal representation value: integer, double d = the number of fractional digits al-
integer, real or double precision) in ASCII character lowed in w
fixed-point form, right-justified, with commas. The least
significant digit is rounded. n = the number of integer digits
Table 7-7. Mw.d Output
10 FORMAT(M10.3,M10.3,M13.3,M12.2,M12.2)
WRITE(6,10)A,B,C.D,E
FIELD INTERNAL
VARIABLE DESCRIPTOR VALUE OUTPUT
A M10.3 +12.3402 bbb$12.340
B M10.3 —12.3404 bb—-$12.340
C M13.3 +80175.3965 bb$80,175.397
D M12.2 —80175.396 b—$80,175.40
E M12.2 +28705352.563 HHHHHHAHHHHH

If rounding of the least significant occurs and rollover results, the stated formula for w provides enough

positions.
For example,
FIELD INTERNAL
DESCRIPTOR VALUE OUTPUT
M12.2 +99999.996 b$100,000.00
M12.2 —99999.998 —$100,000.00
M11.2 —99999.995 HHRRHRHHHHH

w = the width of the external field
— (minus) is present if the value is negative.

The field width w must follow the general rule:
w=d +n+c+3

to provide positions for the sign, n digits, ¢ commas, the
decimal point, d digits, and a rollover digit if needed. If w
is greater than the number of positions required for the
output value, the output is right-justified in the field with
blank spaces to the left. If w is less than the number of
positions required for the output value (with the sign,
commal(s), and the decimal point), the entire field is filled
with #’s.

See table 7-9 for Nw.d output.

On input, the Nw.d field descriptor causes interpretation
of the next w positions in an ASCII input record as a real
number without exponent (fixed-point). The field width is
expected (but not required) to have commaf(s) embedded in
the data as described for Nw.d outputs (the commas are
ignored). The number is converted to an internal rep-
resentation value for the variable (list element) currently
using the field descriptor.

See table 7-10 for Nw.d input.

7-15. DOUBLE PRECISION REAL NUMBERS
(Dw.d). The Dw.d field descriptor defines a field for a
double precision number with an exponent (floating-
point). On output, the Dw.d field descriptor causes nor-
malized output of a variable (internal representation
value: integer, real or double precision) in ASCII charac-
ter floating-point form, right-justified. The least signific-
ant digit of the output is rounded.

The external field is w positions:

e w >
—X; . ..x3D=* ee
i
Decimal
point
where

%, . ..xy = the most significant digits of the value
ee = the digits of the exponent value
w = the width of the external value
d = the number of significant digits al-

lowed in w
-~ (minus) is present if the value is negative.

The field width w must follow the general rule:
w=d + 6

to provide positions for the sign of the value, the decimal
point, d digits, the letter D, the sign of the exponent, and
the exponent’s two digits. If w is greater than the number
of positions required for the output value, the output is
right-justified in the field with blank spaces to the left. If
w is less than the number of positions required for the
value (with the sign, decimal point, and exponent field),
the entire field is filled with #’s.

See table 7-11 for Dw.d output.

Table 7-8. Mw.d Input

INPUT FIELD
CHARACTERS DESCRIPTOR
bbb$12.340 M10.3
bb$12.3402 M10.3
bbbb80175.397 M13.3

—$80,175.397 Mi12.2
bbb99999.996 M12.2

10 FORMAT(M10.3,M10.3,M13.3,M12.2,M12.2)
READ(5.10)A,B,C.D,E

VARIABLE INTERPRETED AS

12.340
12.3402
801756.397
80175.397
99999.996

m OO o >

7-12

Table 7-9. Nw.d Output

10 FORMAT(N9.3,N9.3,N12.3,N11.2,N11.2)
WRITE(6,10)A,B,C D,E

FIELD INTERNAL
VARIABLE DESCRIPTOR VALUE OUTPUT
A N9.3 +12.3402 bbb12.340
B N9.3 —12.3404 bb—12.340
C N12.3 +80175.3965 bb80,175.397
D N11.2 —80175.396 b-80,175.40
E N11.2 +28705352.563 HEFRBFBRFHH

If rounding of the least significant occurs and rollover results, the stated formula for w provides enough
positions.

For example,
FIELD INTERNAL
DESCRIPTOR VALUE OUTPUT
N11.2 +99999.995 b100,000.00
N11.2 —99999.997 —100,000.00
N10.2 —99999.999 HABBHARSHS
Table 7-10. Nw.d Input
10 FORMAT(NS.3,N9.3,N12.3,N11.2,N11.2)
READ(5,10)AB,C.D,E
INPUT FIELD
CHARACTERS DESCRIPTOR VARIABLE INTERPRETED AS
bb12.3402 N9.3 A 12.3402
b-—-12.3404 N9.3 B —12.3404
b+80,175.396 N12.3 C 80175.396
bb-80175.39 N11.2 D —-80175.39
bb99999.996 N11.2 E 99999.996

7-13

Table 7-11. Dw.d Output

FIELD

VARIABLE DESCRIPTOR

D103
D10.3
D12.4
D12.4
D7.3
D5.1

Mmoo O m P

the exponent is adjusted.

10 FORMAT(D10.3,010.3,D012.4,012.4,07.3,D5.1)
WRITE(®,10)A.B.CDE.F

INTERNAL
VALUE OUTPUT
+12.342 bb.123D+02
~12.341 b—.123D+02
+12.340 bbb.1234D+02
~12.345 bb—.1234D+02
+12.343 FHAABRH
+12.344 #EHFH

If rounding of the least significant digit occurs and rollover results, the rollover value is normalized and

For example,
FIELD INTERNAL
DESCRIPTOR VALUE OUTPUT
D115 —-999.997 —.10000D+04
D11.5 +999.996 .10000D+04
D105 —99.9995 HHBHRBHHAH
On input, the Dw.d field descriptor causes interpretation where
of the next w positions in an ASCII input record. The
number is converted to an internal representation value Iy i, = the integer digits
fioer t}}et(\;ariable (list element) currently using the field n = the number of significant digits
scriptor.
w = the width of the external field

See table 7-12 for Dw.d input.

7-16. INTEGER NUMBERS (Iw). The Iw field de-
criptor defines a field for an integer or double integer
number.

On output, the Iw field descriptor causes output of a vari-
able (internal representation value: integer, double in-
teger, real or double precision) in ASCII character integer
form, right-justified. If the internal representation is real
or double precision, the least significant digit of the output
is rounded.

The external field is w positions:

7-14

— (minus) is present if the value is negative.

The field width w must follow the general rule:

w=n + 2

to provide positions for the sign, n digits, and a rollover
digit if needed. If w is greater than the number of positions
required for the output value, the output is right-justified
in the field with blank spaces to the left. If w is less than
the number of positions required for the output (all digits
of the integer, and, when needed, the sign), the entire field
is filled with #'s.

See table 7-13 for Iw output.

Table 7-12. Dw.d Input

10 FORMAT(D10.3,010.3,D012.4,012.4,05.1)
READ(5,10)A,B,C,D,E

INPUT FIELD INTERPRETED
CHARACTERS DESCRIPTOR VARIABLE AS
bb.123D+03 D10.3 A 123
b—.123D+02 D10.3 B -12.3
bb.12345D+02 D124 C 12.345
bb-.1235D+02 D12.4 D -12.35
+.123D+02 D51 E 12

Table 7-13. Iw Output

10 FORMAT(15,15,15,15,14,14,16)
WRITE(6,10)|,J,K,L,M,N,ITEM

FIELD INTERNAL

VARIABLE DESCRIPTOR VALUE OUTPUT
| 15 ~123 b—123
J 15 +123 bb123
K 15 +12345 12345
L I5 —12345 HARAH
M 14 +12.4 bb12
N 4 —12.7 b—13

ITEM 6 — 3765E+03 bb—377

If rounding of the least significant digit occurs and rollover results, the stated formula for w provides
enough positions.

For example,
FIELD INTERNAL
DESCRIPTOR VALUE OUTPUT
15 —999.8 —1000
15 +999.6 , b1000
14 —-999.5 ##H##

7-15

On input, the Iw field descriptor functions as an Fw.d
descriptor with d = 0; it causes interpretation of the next
w positions in the ASCII input record. The number is
converted to an internal representation value for the vari-
able (list element) currently using the field descriptor.

See table 7-14 for Iw input.

7-117. OCTAL INTEGER NUMBERS (Ow). The Ow
field descriptor defines a field for an octal integer number.

On output, the Ow field descriptor causes output of a
variable (internal representation value: integer, double
integer, real, or double precision) in ASCII character octal
integer form, right-justified.

The external field is w positions:

]

where
i, ..., = the octal integer digits

n = the number of significant octal digits
(maximums: 6 for an integer variable,
11 for a real variable or
double integer, or 22 for a
double precision variable)

w = the width of the external field

The field width w can be any desired value but should be
equal to or greater than 6 for an integer variable, equal to
or greater than 11 for a real variable or double integer,
and equal to or greater than 22 for a double precision
variable for complete accuracy. If w is greater than the
number of positions required for the output value, the
output is right-justified in the field with blank spaces to
the left. If w is less than the number of positions required
for the entire octal integer, only the w least significant
digits are output.

See table 7-15 for Ow output.

Table 7-14. Iw Input

10 FORMAT (15,15,15,15,14,14,16)
READ(5,10)I,.J.K,LLM,N,ITEM
INPUT FIELD INTERPRETED
CHARACTERS DESCRIPTOR VARIABLE AS
b—123 15 I -123
bb123 15 J 123
12345 15 K 12345
—12345 15 L —-1234
12.4 14 M 12
—-12.7 t4 N -13
.3765E+03 16 ITEM 377
Table 7-15. Ow Output
10 FORMAT(08,04,016,011) WRITE(6,10)|.J.A.B
FIELD INTERNAL
VARIABLE DESCRIPTOR VALUE OUTPUT
I 08 %102077 bb102077
J 04 %30554677321 7321
A 016 %56774532673 bbbbb56774532673
B 011 %0000003435645327422113 45327422113

7-16

On input, the O field descriptor causes interpretation of
the next w positions in the ASCII input record as an octal
integer number. The number is converted to an internal
representation value for the variable (list element) cur-
rently using the field descriptor.

The input field can consist of octal digits only. No more
than six digits (no larger than 177777;) are interpreted for
an integer variable; no more than 11 digits (no larger than
377777771777,) are interpreted for a double integer varia-
ble; no more than 11 digits (no larger than 37777777777,)
are interpreted for a real variable; and no more than 22
digits (no larger than 1777777777777777777777;) are in-
terpreted for a double precision variable. Any non-octal or
non-numeric character (including a blank) anywhere in
the field will produce a conversion error. If w is less than
the maximum number allowed by the variable using
the descriptor, w digits are right-justified in that vari-
able’s internal representation (one, two, or four words of
memory).

See table 7-16 for Ow input.

7-18. HEXADECIMAL INTEGER NUMBERS
(Zw). The Zw field descriptor defines a field for a hexadec-
imal integer number.

On output, the Zw field descriptor causes output of a vari-
able (internal representation value: integer, double in-
teger, real, or double precision) in ASCII character
hexadecimal integer form, right-justified.

The external field is w positions:
B

Ii...1In

where
i,...1Ip = the hexadecimal integer digits
n =the number of significant hexadecimal
digits
(maximums: 4 for an integer
variable,
8 for a double
integer variable,
8 for a real variable, or
16 for a double precision
variable)
w = the width of the external field

The field width w can be any desired value but should be
equal to or greater than 4 for an integer variable, equal to
or greater than 8 for a double integer, equal to or greater
than 8 for a real variable, and equal to or greater than 16
for a double precision variable for complete accuracy. If w
is greater than the number of positions required for the
output value, the output is right-justified in the field with
blank spaces to the left. If w is less than the number of
positions required for the entire hexadecimal integer, only
the w least significant digits are output.

See table 7-17 for Zw output.

Table 7-16. Ow Input

10 FORMAT(306,309,3013)
READ(I,A,B.J,C,D,KE,F)

INPUT FIELD VARIABLE
CHARACTERS DESCRIPTOR TYPE VARIABLE INTERPRETED AS
134577 06 Integer or logical I %134577
134577 06 Real A %00000134577
134577 06 Double Precision B %0000000000000000134577
545563274 09 Integer or logical J %563274
545563274 09 Real C %00545563274
545563274 09 Double Precision D %0000000000000545563274
4367436521051 013 Integer or logical K %521051
4367436521051 013 Real E %67436521051
4367436521051 013 Double Precision F %0000000004367436521051

FEB 1977

7-17

On input, the Zw field descriptor causes interpretation of
the next w positions in the ASCII input record as a hex-
adecimal integer number. The number is converted to an
internal representation value for the variable (list ele-
ment) currently using the field descriptor.

The input field can consist of hexadecimal digits only. No
more than four digits (no larger than FFFF;) are inter-
preted for an integer variable; no more than eight digits
(no larger than FFFFFFFF,,) are interpreted for a double
integer variable; no more than eight digits (no larger than
FFFFFFFF,;) are interpreted for a real variable;
and no more than 16 digits (no larger than
FFFFFFFFFFFFFFFF,¢) are interpreted for a double pre-
cision variable. Any non-hexadecimal character (includ-
ing a blank except leading blanks, which are ignored)
anywhere in the field will produce a conversion error. If w
is less than the maximum number allowed by the variable
using the descriptor, w digits are right-justified in that
variable’s internal representation (one, two, or four words
of memory).

See table 7-18 for Zw input.

7-19. LOGICAL (BOOLEAN) VALUES (Lw). The
Lw field descriptor defines a field for a logical value.

On output, the Lw field descriptor causes output of a
variable (internal representation value: integer or logical
(boolean)) in ASCII character logical value form (T or F).

The external field is w positions:

o —]

X,... X,
where

X,....X, = w — 1 blanks

¢ = either of two logical characters:
T(true) or F(false)

n = the number of blank spaces to the
left of ¢

w = the width of the external field.

The field width w can be any value = 1.

Table 7-17. Zw Output

10 FORMAT(Z6,24,216,28)
WRITE(I,J,A,B)
FIELD INTERNAL
VARIABLE DESCRIPTOR VALUE OUTPUT
| 76 5AFC bb5AFC
J Z4 FCD473BE 73BE
A 716 32AB698A bbbbbbbb32AB698A
B Z8 9BEB4893E6FF 4893E6FF
Table 7-18. Zw Input
10 FORMAT(324,326,3Z210)
READ(I,A.B,J.C,D,K,E,F)
INPUT FIELD VARIABLE INTERPRETED
CHARACTERS DESCRIPTOR TYPE VARIABLE AS
1AD6 Z4 Integer or logical | 1ADG
1AD6 Z4 Real A 000000001AD6
1AD6 Z4 Double precision B 000000001AD6
AB12F6 6 Integer or logical J 12F6
AB12F6 Z6 Real C 00AB12F6
AB12F6 Z6 Double Precision D 0000000000AB12F6
5489BB3A6C Z10 Integer or logical K 3A6C
5489BB3A6C Z10 Real E 89BB3A6C
5489BB3A6C Z10 Double Precision F 0000005489BB3A6C

7-18

FEB 1977

On input, the Lw field descriptor causes a scan of the next
w positions in an ASCII input record to find a logical
character (T or F). All positions to the left of the logical
character must be blank; any other character(s) can follow
the logical character. The character T is converted to —1
(1777774), F is converted to 0 (000000,).

See table 7-20 for Lw input.

The logical character c is T if the least significant bit of the
internal representation is 1; ¢ is F if that bit is 0.

See table 7-19 for Lw output.

7-20. LEFTMOST ASCII CHARACTERS FIELD
DESCRIPTOR (Aw). The Aw field descriptor defines a
field for ASCII alphanumeric characters.

On output, the Aw field descriptor causes output of w
bytes of a variable in ASCII character alphanumeric form.
The maximum number (n) of bytes (thus, the maximum
number of characters available to a single Aw descriptor)
depends on the type of the variable: for logical or integer, n

= 2; for double integer, n = 4; for real, n = 4; for double
precision, n = 8; for character, n = the length attribute (as
defined in a Type statement such as: CHARACTER*8
CHAR) of the character variable. The length attribute can
be any integer in the range of from 1 to 255.

The external field is w positions, left-justified:

——
S| «...8C....Cph
where
¢y....c, = the alphanumeric characters
n = the number of characters
w = the width of the external field
r = any remaining positions not used by n
r=w-n)
SyS8 = blank spaces

Table 7-19. Lw Output

LOGICAL A,B,C
10 FORMAT(L1,L13,L5)
WRITE(6,10)A,B,C

FIELD INTERNAL
VARIABLE DESCRIPTOR VALUE OUTPUT
A L1 102033, T
B L13 32767(77777¢) bbbbbbbbbbbbT
C L5 +124(174¢) bbbbF
Table 7-20. Lw Input
LOGICAL AB,CD,E
10 FORMAT(L8,L1,L6,L2,L1)
READ(5,10)A,B,.CD.E
FIELD INTERPRETED
VALUE DESCRIPTOR VARIABLE AS
bbbbTRUE L8 A 177777s
F L1 B 0000004
bFALSE L6 C 000000g
75 L2 D 1777774
5 L1 E INVALID

7-19

The field width w can be any value = 1. If w is greater
than n, the output is right-justified in the field withw — n
blanks to the left. If w is less than n, the leftmost w bytes

of the variable are output. The n — w remaining bytes are
ignored.

See table 7-21 for Aw output.

On input, the Aw field descriptor causes transmittal of w
positions in an ASCII input record to n bytes of a variable
(list element) currently using the field descriptor. If w is
greater than n, the first w — n characters of input are
skipped, and n characters are transferred. If w is less than
n, w characters are transferred to the leftmost bytes of the
variable, and all remaining n — w bytes are set to blank.
See table 7-22 for Aw input.

7-21. RIGHTMOST ASCII CHARACTERS FIELD
DESCRIPTOR (Rw). The Rw field descriptor defines a
field for ASCII alphanumeric characters.

On output, the Rw field descriptor causes output of w bytes
of a variable in ASCII character alphanumeric form. The
maximum number (n) of bytes (thus, the maximum
number of characters) available to a single Rw field de-
scriptor depends on the type of the variable: for logical or
integer, n = 2; for double integer, n = 4; for real, n = 4; for
double precision, n = 8; for character, n = the length
attribute (as defined in a Type statement such as CHAR-
ACTER *8 CHAR) of the character variable. The length
attribute can be any integer in the range of from 1 to 255.

Table 7-21. Aw Output

10 FORMAT(A3 A3 A7,A10,A4,A12,A6)
WRITE(6,10)1,A,B,J,.C,CHAR1,CHAR2
FIELD INTERNAL VARIABLE

VARIABLE DESCRIPTOR CHARACTERS TYPE (n =) OUTPUT
I A3 AB Logical or Integer (2) bAB
A A3 ABCD Real (4) ABC
B A7 ABCDEF Double Precision (6) bABCDEF
J A10 AB Logical or Integer (2) bbbbbbbbAB
C A4 ABCDEF Double Precision (8) ABCD

CHARH1 A12 LEFTMOST Character (8) bbbbLEFTMOST
CHAR2 AB LEFTMOST Character (8) LEFTMO
Table 7-22. Aw Input
10 FORMAT(A3,A2,A10,A4 A4 A7)
READ(5,10)1,J,K,A,B,CHAR

FIELD INPUT VARIABLE INTERPRETED

DESCRIPTOR CHARACTERS VARIABLE TYPE (n =) AS
A3 ABC | Integer or Logical (2) BC
A2 AB J Integer or Logical (2) AB
A10 COMPLEMENT K Integer or Logical (2) NT
A4 REAL A Double Precision (8) REALbbbb
A4 REAL B Real (4) REAL
A7 PROGRAM CHAR Character (8) PROGRAMb

7-20

e

The external field is w positions:

The field width w can be any value = 1. If w is greater
than n, the output is right-justified in the field withw — n
blanks to the left. If w is less than n, the rightmost bytes of
the variable are output. The n — w remaining bytes are

1 SrCr.v... Cn ignored.
where See table 7-23 for Rw output.
Crovnn. ¢y, = the alphanumeric characters On input, the Rw field descriptor causes transmittal of w
positions in an ASCII input record to n bytes of the vari-
n = the number of characters able currently using the field descriptor. If w is greater
than n, the first (leftmost) w — n characters of input are
w = the width of the external field skipped, and n characters are transferred. If w is less than
n, w characters are transferred to the rightmost bytes of
r = any remaining positions not used the variable, and all bits of the remaining n — w bytes are
byn(r =w —n) set to 0 (ASCII Null).
Sy s: = blank spaces (when needed) See table 7-24 for Rw input.
Table 7-23. Rw Output
10 FORMAT(R3,R3,R7,R10,R4,R12,R6)
WRITE(6,10)},A,B,J,C.CHAR1,CHAR2
FIELD INTERNAL VARIABLE
VARIABLE DESCRIPTOR CHARACTERS TYPE (n =) OUTPUT
| R3 AB Logical or Integer (2) bAB
A R3 ABCD Real (4) BCD
B R7 ABCDEF Double Precision (6) bABCDEF
J R10 AB Logical or Integer (2) bbbbbbbbAB
C R4 ABCDEF Double Precision (8) CDEF
CHARA1 R12 RIGHTMOST Character (9) bbbRIGHTMOST
CHAR2 R6 RIGHTMOST Character (9) HTMOST
Table 7-24. Rw Input
10 FORMAT(R3,R2,R10,R4,R4,R7)
READ(5,10),J,K,A,B,CHAR
FIELD INPUT VARIABLE INTERPRETED
DESCRIPTOR CHARACTERS VARIABLE TYPE (n =) AS
R3 CAB ! Integer or Logical (2) AB
R2 CA J Integer or Logical (2) CA
R10 COMPLEMENT K Integer or Logical (2) NT
R4 REAL A Double Precision (8) aaaaREAL
R4 REAL B Real (4) REAL
R7 PROGRAM CHAR Character (8) aPROGRAM
NOTE: a = ASCII null

7-21

7-22. STRINGS OF ASCII CHARACTERS FIELD
DESCRIPTOR (S). The S field descriptor defines a field
for a string of ASCII alphanumeric characters.

On output, the S field descriptor causes output of a vari-
able (internal representation value: character only) in
ASCII character alphanumeric form. If the variable (list

element) is not type character, the error message FMT:
STRING MISMATCH occurs.

The external field is / positions:

Crovvvenn Cn
where
Crvevnn. ¢, = the alphanumeric characters
n = the number of characters
l = the length attribute of the

character variable; thus, the
width of the external field.

See table 7-25 for S output.

On input, the S field descriptor causes transmittal of [
positions in an ASCII input record to the character vari-
able currently using the field descriptor.

See table 7-26 for S input.

Table 7-26. S Input

CHARACTER*8 DAY
10 FORMAT(S)
READ(5,10)DAY

INPUT INTERPRETED
CHARACTERS AS
MONDAY MONDAYbb
SATURDAY SATURDAY

7-23. SCALE FACTOR

The scale factor is a format specification which modifies
the normalized output of the Dw.d, Ew.d and the Gw.d -
selected Ew.d field descriptors and the fixed-point output
of the Fw.d, Mw.d and Nw.d field descriptors. The scale
factor also modifies the fixed-point and integer (no expo-
nent field) inputs to the Dw.d, Ew.d, Fw.d, Gw.d, Mw.d
and Nw.d field descriptors. This scale factor has no effect
on output of the Gw.d-selected Fw.d field descriptor or
floating-point (with exponent field) inputs.

A scale factor is written in one of two forms:

nPf
or
nPrf
where
n = an integer constant or — (minus) followed by

an integer constant which is the scale value
P = the scale factor identifier
f = the field descriptor

= arepeat specification for a field descriptor (see
paragraph 7-24).

Table 7-25. S Output

CHARACTER *3 NAME1, NAME2*6

10 FORMAT(" MY NAME IS ".5,“ JONES")
WRITE(6,10)NAME1
WRITE(6,10)NAME2

INTERNAL

VARIABLE CHARACTERS
NAME1 JIM
NAME2 GEORGE

OUTPUT

MY NAME IS JIM JONES
MY NAME 1S GEORGE JONES

7-22

When a FORMAT statement is interpreted, the scale fac-
tor is set to zero. Each time a scale factor specification is
encountered in that FORMAT statement, a new value is
set. This scale value remains in effect for all subsequent
affected field descriptors or until use of that FORMAT
statement ends.

EXAMPLES

FORMAT SPECIFICATIONS COMMENTS

(E10.3,F12.4,19) No scale factor change,
previous value remains in
effect.

(E10.3,2PF12.4,19) Scale factor for E10.3 un-
changed from previous
value, changes to 2 for
F12.4, has no effect on I9.

If the FORMAT statement includes one or more nested
groups (see paragraph 7-36, Nesting), the last scale factor
value encountered remains in effect.

See table 7-27 for nested groups.

Table 7-27. Scale Factor for Nested Groups

10 FORMAT(G9.2,2PF9.4,E7.1,2(D10.2,-1PG8.1))
FIELD
DESCRIPTOR SCALE VALUE

G9.2 Unchanged from previous value
F9.4 2

E7.1 2

D10.2 2

G8.1 -1

D10.2 -1

G8.1 -1

On output, the scale factor affects Dw.d, Ew.d,, Fw.d,
Mw.d, Nw.d and Gw.d-selected Ew.d field descriptors
only.

For Dw.d and Ew.d field descriptors, the scale factor has
the effect of shifting the output number left n places while
reducing the exponent by n (the value of the printed
number remains the same).

e Ifn =<0, the output fraction field has —n leading zeros,
followed by d + n significant digits. The least sig-
nificant digit is rounded.

e If n > 0, the output has n significant digits in the
integer field, and (d — n) digits in the fraction field.
The least significant digit is rounded.

e The field width specification w normally required
may have to be increased by 1.

See table 7-28 and figure 7-4 for Ew.d scale factors.

Table 7-28. Scale Factor for Ew.d Output

SCALE FACTOR

AND FIELD INTERNAL
DESCRIPTOR VALUE OUTPUT
E12.4 +12.345678 bbb.1235E+02
3PE12.4 +12.345678 bb123.46E—01
—-3PE12.4 +12.345678 bbb.0001E+05

For Fw.d, Mw.d and Nw.d, the internal value is multip-
lied by 10", then output in the normal manner.

See table 7-29 and figure 7-4 for Fw.d and Mw.d output.
For Gw.d-selected Ew.d field descriptors, the effect is ex-
actly the same as described for Ew.d scale factors. (See
table 7-28.)

The scale factor has no effect for the Gw.d-selected Fw.d
field descriptor.

Table 7-29. Scale Factors for Fw.d
and Mw.d Output

SCALE FACTOR

AND FIELD INTERNAL
DESCRIPTOR VALUE OUTPUT
F11.3 1234.500 bbb1234.500
—-2PF11.3 1234.500678 bbbbb12.345
2PF11.3 1234.500678 b123450.068
1PM11.3 1234.500678 $12,345.007

7-23

:FORTGO FTRAN24

PAGE @001 HP32182B. 00 .»

23221222
229222228 C
2223308% C SCAL
20074033 C
20035009 122
AAAD 6007 2030
27037329 382
200238007 4030
220329233 562
2310320 620
227211300 700
222120092
20013239
22014820
223153922
2221672202
P2B3170203
AoP18320
20215230
208020039
220210292
32022200
20223020
RPA240002
2A325700
20026200
ne227200

Sk dok GLOBAL S
x%*x NO ERRORS,
TOTAL COMPILATION
TOTAL ELAPSED TIME

END OF COMPILE

END OF PREPARE

«1235E+0@2
123+.46E-21
«BO21E+DS
1234.500
12.345
123450.0873
$12,345.007
END OF PROGRAM

PROGRAM SCALE FACTOR

E FACTOR EXAMPLE

FORMAT(TS,E12.4)
FORMAT(TS, 3PElI2.4)
FORMAT(TS,-3PEl12.4)
FORMAT(TS5,F11.+3)
FORMAT(TS,=-2PF11.3)
FORMAT(TS.2PF11.3)
FORMAT(TS,1PMI13)
A=12.345678
B=12.345678
C=12.345678
D=1234.509
E=1234.502678
F=1234.508678
G=1234.5202678
WRITE(6,122)A
WRITE(6,220)B
WRITE(6,333)C
WRITE(6,492)D
WRITE(6,580)E
WRITE(6,630)F
WRITE(6,732)>G

STOP

END

TATISTICS Fek dok

NO WARNINGS skik
TIME 0:100:01
Pt A4

7-24

Figure 7-4. Scale Factor Examples

On input, the scale factor effect is the same for integer or
fixed-field (no exponent field) inputs to the Dw.d, Ew.d,
Fw.d, Gw.d, Mw.d and Nw.d field descriptors. The exter-
nal value is multiplied by 107", then converted in the
usual manner.

If the input includes an exponent field, the scale factor has
no effect. See table 7-30 for the scale factor effect on input.

Table 7-30. Scale Factor for Input

SCALE FACTOR

AND FIELD INPUT INTERPRETED
DESCRIPTOR VALUE AS

E10.4 bb123.9678 .1239678E+03
2PD10.4 bb123.9678 .1239678E+01
—-2PG11.5 bb123.96785 .12396785E05
—-2PE13.5 1239.6785E+02 .12396785E+06

7-24. REPEAT SPECIFICATION FOR
FIELD DESCRIPTORS

The repeat specification is a positive integer written to the
left of the field descriptor it controls. If a scale factor is
needed also, it is written to the left of the repeat specifica-
tion.

The repeat specification allows one field descriptor to be

used for several list elements. It can also be used for
nested groups of format specifications.

EXAMPLES:
(4E12.4) = (E124,E124,E124E124)
(—-2P3D8.2,216) = (-2PD8.2,D8.2,D8.2,16,16)

(E8.2,3F7.1,3(06,D12.3) = (E8.2,F7.1,F7.116D12.3,
16,D12.3,16,D12.3)

(2(M8.2)) = (M8.2,M8.2)

7-25. EDIT SPECIFICATIONS

Edit specifications are written as an edit descriptor or a
repeat specification followed by an edit descriptor.

Note: The repeat specification cannot be used
directly on the nH or nX edit descriptors.
(See paragraph 7-34.)

7-26. EDIT DESCRIPTORS

There are six edit descriptors, as follows:

DESCRIPTOR FUNCTION

Fix the next n characters of an edit
specification.

Fix the next n characters of an edit
specification.

nH Initialize the next n characters of an
edit specification.

nX Skip n positions of the external record
on input, fill with n blanks on output.

Tn Select the position in an external re-
cord where data input/output is to
begin or resume.

/ Signal the end of a current record and
the beginning of a new record.

9onC Put a one-byte character in the output
buffer.

7-27. FIXED ASCII STRING EDIT DESCRIPTOR
(*...”). The “. . .” edit descriptor fixes n characters in the
edit specification, where n is the number of ASCII char-
acters enclosed in the quotation marks.

The form of the “. . .” edit descriptor is:
“THIS IS A FIXED STRING”

If a quotation mark is to be used as one of the characters,
this must be signaled by an adjacent quotation mark.

For example,
10 FORMAT(ZX, “"OUTPUT ""LOAD”””)
WRITE(6,10)

would cause OUTPUT “LOAD” to be printed.

Any other ASCII characters, including apostrophe (), can
be used without restriction.

On output, the “. . .” edit descriptor causes n characters to
be transmitted to the external record. Any adjacent pair of

quotation marks is transmitted as one quotation mark. A
blank is counted as one character.

See table 7-31 for .. .” output.

7-25

Table 7-31. “...” Edit Descriptor Output

10 FORMAT(2X, “OUTPUT ““LOAD”"")
20 FORMAT(2X, “USER'S PROGRAM")
WRITE(6,10)
WRITE(6,20)

EDIT DESCRIPTOR OUTPUT

"QuUTPUT ““LOAD™""
“USER'S PROGRAM"

OUTPUT “LOAD”
USER'S PROGRAM

On input, the “. . .” edit descriptor causes n positions of the
input record to be skipped. Each pair of adjacent quotation
marks counts as one position and a blank counts as one
position.

See table 7-32 for “. . .” input.

7-28. ALTERNATE FIXED ASCII STRING EDIT
DESCRIPTOR (.. .."). An alternate method of fixing n
number of ASCII characters is through the use of the *. . ’
edit descriptor. The *. . .’ edit descriptor functions the same
as the “. . .” edit descriptor (see paragraph 7-27) except
that n is the number of ASCII characters enclosed in
apostrophes () instead of quotation marks (”). Any one or
more of the characters can be an apostrophe if signaled by

an adjacent apostrophe. Any other ASCII characters, in-
cluding quotation marks, can be used without restriction.

On output, the *. . .’ edit descriptor causes n characters to
be transmitted to the external record. Any adjacent pair of
apostrophes is transmitted as one apostrophe, and counts
as one character. A blank is counted as one character.

See table 7-33 for “. . . edit descriptor output.

Table 7-33. . . . Edit Descriptor Output

10 FORMAT(2X, ‘PRINT “"DATA™)
20 FORMAT(2X, ‘SAM"'S 'SCORE""’)

WRITE(6,10) \
two apostrophes
WRITE(6,20)
EDIT DESCRIPTOR OUTPUT
‘PRINT “"DATA” PRINT ‘DATA’
‘SAM"S “SCORE"” SAM'S "SCORE”
On input, the *. . .’ edit descriptor causes n positions of the

input record to be skipped. Each pair of adjacent apos-
trophes counts as one position and blanks count as one
position.

See table 7-34 for °. . .’ edit descriptor input.

Table 7-32. “...” Edit Descriptor Input

THIS IS THE END OF

CHARACTER* 17 SKIP1,8KiP2*18
10 FORMAT(2X, "HEADING HERE", S)
20 FORMAT(2X, “ENDINGS HERE", S)

READ(5,10)SKIP1

READ(5,10)SKIP2

INPUT EDIT
CHARACTERS DESCRIPTOR INTERPRETED AS
THIS 1S THE START “HEADING HERE" START

“ENDINGS HERE”

(12 positions of the
input are skipped)

END OF
(12 positions of the
input are skipped)

7-26

FEB 1977

7-29. ASCII STRING (MODIFIABLE) EDIT DE-
SCRIPTOR (nH). The nH edit descriptor initializes the
next n characters of the edit specification. Any ASCII
character is permitted. If included, n must be a positive
integer constant greater than zero (if omitted, the default
value of n is 1).

On output, the nH edit descriptor causes the current n
characters in the edit specification to be transferred to the
external record.

For example,
10 FORMAT2X,6HOUTPUT)
WRITE(,10)

would cause OUTPUT to be printed.

If the nH edit descriptor is referenced by a READ state-
ment, then the value read in replaces the characters in the
edit descriptor.

For example,
10 FORMAT(2X,6HOUTPUT)
READ(5,10)
WRITE(6,10)

If the input characters read in by the READ statement
are: INPUT, then, when the WRITE statement is exe-
cuted, these characters will have replaced the original
characters in the nH edit descriptor and the ouput would
be: INPUTb. Thus, on input, the nH edit descriptor causes
the next n characters of an external record to replace the
next n characters in the edit specification.

Table 7-35 shows some examples.

Table 7-34. ‘. .. Edit Descriptor Input

READ(5,10)IN1
READ(5,20)IN2

INPUT

EDIT DESCRIPTOR CHARACTERS

‘COLUMN HEAD’

'‘ROW LABEL END DATA INPUT

CHARACTER™16 IN1, IN2*14
10 FORMAT(2X, 'COLUMN HEAD', S)
20 FORMAT(2X, '‘ROW LABEL', S)

BEGIN DATA INPUT

VARIABLE INTERPRETED AS
IN1 INPUT

(11 positions of the

input are skipped)
IN2 INPUT

(9 positions of the
input are skipped)

Table 7-35. nH Edit Descriptor Input and Output

EDIT DESCRIPTOR INPUT LAST READ OUTPUT
4AHMULT (None) MULT
7HFORTRAN ALGOLbb ALGOLbb
12HPROGRAM DATA BINARY LOADER BINARY LOADE
10HCALCULATED PASSEDbb PASSEDbbbb

7-27

7-30. ASCII BLANKS EDIT DESCRIPTOR (nX).
The nX edit descriptor causes n positions of a record to be
skipped. If included, n must be a positive integer constant
greater than zero; if omitted, the default value of n is 1.

On output, the nX edit descriptor causes n positions of the
external record to be filled with blanks.

See table 7-36 for nX output.

Table 7-36. nX Edit Descriptor Output

10 FORMAT(E7.1,4X,"END")

20 FORMAT(F8.2,2X,13)
WRITE(6,10)A
WRITE(6,20)A.J

The nX edit descriptor, when used with the Tn edit de-
scriptor (see paragraph 7-31), may cause previous charac-
ters to be overlaid.

For example,
(“ABCDEFG”,T1,M”,2X,“N”)

would produce
MbbNEFG

On input, the nX edit descriptor causes the next n posi-
tions of the input record to be skipped.

See table 7-37 for nX edit descriptor input.

7-31. TABULATE EDIT DESCRIPTOR (Tn). The
Tn edit descriptor provides a means of tabulating an ex-

FORMAT/EDIT S INTERNAL UTPUT ternal record in order to select the position where data
SPECIFICATION VALUE 0 input/output is to begin or resume. The Tr edit descriptor
positions the record pointer to the nth position in the
E7.1,4X,“END” 34.1 b3E+02bbbbEND record.
F8.2,2X,13 5.87,436 bbbb5.87bb436
See table 7-38 for examples.
Table 7-37. nX Edit Descriptor Input
10 FORMAT(D8.2,3X,M9.2)
20 FORMAT(5X,E9.2,15)
READ(5,10)A,B
READ(5,20)A,J
FORMAT/EDIT INPUT
SPECIFICATIONS CHARACTERS INTERPRETED AS

(D8.2,3X,M9.2)
(5X,E9.2,15)

b.25E+02END$1,563.79
54321-98.7563814581

.25E+02, 1563.79
—.9876538E+02, 14581

7-28

As can be seen from table 7-38, the position numbers n
need not be given in ascending order.

Note: The Tn edit descriptor may cause pre-
vious characters to be overlaid.

7-32. RECORD TERMINATOR EDIT DESCRIP-
TOR (/). The / edit descriptor terminates the current ex-
ternal record and begins a new record (such as a new line
on a line printer or a keyboard terminal or a new card on a
card device). The / edit descriptor has the same result for
both input and output: it terminates the current record
and begins a new record. (On output, a new line is printed,;
on input, a new line or a new card is read.)

Table 7-38. Tn Edit Descriptor Input and Output

If a series of two or more / edit descriptors are written into
a FORMAT statement, the effect is to skip n — 1 records,
where n is the number of /s in the series. A series of /'s can
be written by using the repeat specification. (Note that a
single slash (/) causes one record to be skipped.)

Note: If one or more / edit descriptors are the
first item(s) in a series of format specifi-
cations, n (not n — 1) records are skipped
for that series of /’s.

The / edit descriptor also can be used without a comma to
separate it from other format and/or edit specifications; it
has the same effect as a comma.

WRITE(6,10)

Output:

\—position 2\-—

WRITE(6,10)J
(Internal Value for J: 125)
Output:

position 1

READ(5,10)A.J,B

position 1

Results:

VARIABLE
A
J
B

10 FORMAT(T11,"DESCRIPTION", T26,"QUANTITY,T2,“PART NO.")

PART NO.bDESCRIPTIONbbbbQUANTITY

position 11

10 FORMAT(T25,13,T1,"HR124A", T10,"LOCK-WASHERS")

HR124AbbbLOCK-WASHERSbbb 125

position 10 Lposition 25

10 FORMAT(T13,E8.2,T1,14,T24,M12.3)

Input: 1325COUNTEDbbD525.78L.BSbb$4,365.78COST

position 13

\—position 26

position 24

INTERPRETED AS
.52578E+-03

1325

.436578E+04

7-29

7-33. CARRIAGE CONTROL. The first character in
a FORMAT statement is interpreted as a carriage control
character. Carriage control characters and their meanings
are as follows:

Blank = single space

0 = double space
1 = page eject (form feed)
+ = no space (suppress space)

Additionally, a FORMAT statement may contain an octal
number in the range 0 to 377, which will be treated as
being equivalent to a byte character. The primary func-
tion served is that of a carriage-control character, espe-
cially where a particular number does not represent an
available ASCII character. The octal number must be dis-
tinguished by a preceding percent sign and a trailing “C”
(for uniformity with the compiler).

For example:
FORMAT(%306C,5HHELLO,L5)
The %306C gives a space of 1/4 of a page.

See the MPE Intrinsics Reference Manual for additional
carriage control characters which may be used with
FORTRAN/3000.

When the first character is interpreted, the spacing action
requested by the character is performed and the remainder
of the record is then printed. This is true unless the file is
explicitly opened by the FOPEN intrinsic (see Section 8-8)
and the spacing action then depends on the parameters
passed to FOPEN.

7.34. REPEAT SPECIFICATION FOR EDIT

DESCRIPTORS

The repeat specification is a positive integer written to the
left of the edit descriptor it controls.

The repeat specification is written as: r". . .7, r". . ., r(nX),
r(nH) or r/, where r is the repetition value.

Note: The forms r(zH) and r(nX) may include
other field and/or edit descriptors within
the parentheses.

EXAMPLES:

(E9.2/3F7.1,2(4HDATA)) =
(E9.2/F7.1,F7.1, F7.14HDATA 4HDATA)

(26HABORTZ2/)) = (5HABORT,//,5SHABORT//)

(G10.3,3(“READ”,E124)) =
(G10.3,"READ”,E12.4,"READ” E12.4,"READ”,E12 4)

7-35. SPECIFICATION INTERRELATION-
SHIPS

Two or more specifications (E9.3,16) in a FORMAT state-
ment cause the data to be concatenated.

For example,
Data 12.3 and —30303 produces:
b.123E+02-30303

Table 7-39. / Record Terminator Edit Descriptor Examples

EDIT/FORMAT

SPECIFICATIONS VALUES

(E12.5,13/"END”)

(E12.5,13///"END")

(15,3HEND,4/"NEW DATA") 43592

(2/"END™)

INTERNAL

.32456E+04, 95

.32456E+04, 96

RECORD
OUTPUT NO.
bb.32456E +04b35 1
END 2
bb.32456E+04b396 1
2
3
END 4
43592END 1
2
3
4
NEW DATA 5
1
2
END 3

7-30

MAY 1979

The nX edit descriptor (E9.3,4X,I6) can insert blank
spaces between fields. For example, the same data as be-
fore produces:

b.123E+02bbbb—-30303

The / edit descriptor (E9.3/16) places each field on a dif-
ferent line. For example, the same data produces:

b.123E +02
-30303

7-36. NESTING

The group of format and edit specifications in a FORMAT
statement can include one or more other groups enclosed
in parentheses (called “group(s) at nested level x”). Each
group at nested level 1 can include one or more other
groups at nested level 2; those at level 2 can include
groups at nested level 3; those at level 3 can include
groups at level 4.

For example,
(E9.3,16,(2X,14))
One group at nested level 1.

(T12,"PERFORMANCES”3/(E10.3,2(A2,L4)))

One group at nested level 1, one at nested level 2.

(T5,5HCOSTS,2(M10.3,(16,E10.3,(A2,F8.2))))

One group at nested level 1, one at level 2, one at
level 3.

A FORTRAN/3000 READ or WRITE statement references
each element of a series of list elements and the corres-
ponding FORMAT statement is scanned to find a field
descriptor for each list element. As long as a list element
and field descriptor pair occurs, normal execution con-
tinues.

7-37. UNLIMITED GROUPS

If a program does not provide a one-to-one match between
list elements and field descriptors, execution continues
only until all list elements have been transmitted. If there
are fewer field descriptors than list elements, format
specification groups at nested level 1 and deeper are used
as “unlimited groups”. After the effective rightmost field
descriptor in a FORMAT statement has been referenced,
three steps are performed:

1. The current record is terminated: on output, the cur-
rent field is completed, then the record is terminated,
on input, the rest of the record is ignored.

2. A new record is started.

3. Format control (field descriptor interpretation) is re-
turned to the repeat specification for the rightmost
specification group at nested level 1. Or, if there is no
group at level 1, control returns to the first field de-
scriptor in the FORMAT statement.

MAY 1979

Note: In any case, the current scale factor is
not changed until another scale factor is
encountered. (See paragraph 7-23.)

Table 7-40 shows examples of format control.

Table 7-40. Format Control

(15,2(3X,F8.2,8(12))) Control returns to

(3X,F8.2,8(12))
(15,3X,4F8.2,3X) Control returns to
(15,3X,4F8.2,3X)

If A equals .32E+04 these statements:
WRITE(6, 100) AAAAA
100 FORMAT (* HEADER"/3(E10.2}))

Yield this result:
HEADER
bbb.32E+04bbb.32E+04bbb.32E+04
bbb.32E+04bbb.32E+04

7-38. FREE-FIELD INPUT/OUTPUT

Free-field input/output is format converted according to
the data itself. That is, data are converted from or to
external ASCII character form without using FORMAT
statements.

For free-field input/output, FORTRAN/3000 READ and
WRITE statements are written with an asterisk in-
stead of a FORMAT statement identifier.

For example,

READ(5,%)A,B,C

Source () Free-field identifier

WRITE(6,%)A,B,C

7-39. FREE-FIELD CONTROL
CHARACTERS

Special ASCII characters embedded in the external
data fields are used to control free-field input. These
characters are shown in table 7-41. Predefined field and edit
descriptions are used and a carriage control character gets
embedded as the first character of every output record to
control the format of free-field output. For example, in
the case of character string data, the embedded carriage
control character designates single spacing.

7-40. FREE-FIELD INPUT

Six data types can be input to free-field conversion: octal,
integer, double integer, floating-point real, double-
precision floating-point and character string. Numeric
data types can be mixed freely with numeric list elements.
For example, an integer data item can be input to a
floating-point list element; the integer is converted to
floating-point form and the double-word result is stored.

7-31

All rules for input to numeric and alphanumeric con-
versions apply. (See paragraph 7-5.) A character string
item, however, must be input only to a character vari-
able; if not, SOFTERROR’ message FMT: STRING
MISMATCH occurs and execution is terminated.

7-41. DATA ITEM DELIMITERS

A data item is any numeric or character string field occur-
ring between data item delimiters. A data item delimiter
is a comma, a blank space, or any ASCII character that is
not part of the data item. The initial data item need not be
preceded by a delimiter; the function of a delimiter is to
signal the end of one data item and the beginning of
another. Two commas with no data item in between indi-
cate that no data item is supplied for the corresponding
variable, and the previous contents of that variable are to
remain unchanged. Any other delimiter appearing two or
more consecutive times is equivalent to one delimiter.

7-42. DECIMAL DATA. Decimal data items are
written in any of the field descriptor forms described for
formatted data except the monetary or the numeration
forms. Embedded commas and dollar signs are data item
delimiters in free-field data transfers and, therefore, can-
not be part of the data.

Notes: 1. Leading, embedded, or trailing
blanks or commas, $, or any ASCII
character that is not a part of the
data item are data item delimiters.

2. All integer inputs have an implicit
decimal point to the right of the last
(least significant) digit.

3. The exponent field input can be any
of several forms, as follows:
+e +ee Ee Eee De Dee
—e —ee E+e E+ee D+e D+ee
E-e¢ E—ee D—-e D-ee

where e is an exponent value digit.

7-43. OCTAL DATA. Octal data items are written:

Dot, .. .1,
where

i;. .., = the octal integer digits

n = the number of significant digits
(maximums: 6 for an integer variable,
11 for a double integer,
11 for a real variable, or
22 for a double precision
variable)

% = the octal data identifier

On input, the data item is interpreted as an octal integer
number. The number is converted to an internal represen-
tation value for the variable (list element) currently being
referenced.

Table 7-41. Free-Field Control Characters

CHARACTER(S)

FUNCTION

Blank space or comma or any ASCII
character not part of the data item.
/ {(slash)

+ (plus) or — (minus)

. (period)

Eor+or—orD

% (percent)

O

Data item delimiter (terminator).

Record terminator (when not part of a character string data
item).

Sign of data item.

Defines the beginning of the fraction subfield of the data
item.

Define the beginning of the exponent subfield of the data
item.

Defines the data item as octal (not decimal).

A character string enclosed by quotation marks to be input
to a FORTRAN/3000 character type variable.

A character string enclosed by ((and)) signifies that the
characters are a comment only for the external record; the
string and symbols are ignored on input.

7-32

The input field can consist of octal digits only. No more
than six digits (no larger than 177777;) are interpreted for
an integer variable; no more than 11 digits (no larger than
377777771777,) are interpreted for a real or double integer
variable; and no more than 22 digits (no larger than
1777777777777777777777,) are interpreted for a double
precision variable. Any non-octal or non-numeric charac-
ter (including a blank) anywhere in the field will produce
a conversion error. If the number of digits in the data item
is less than the maximum number allowed by that type
of variable, the digits are right-justified in that vari-
able’s internal representation (one, two, or four words of
memory).

7-44. CHARACTER STRING DATA. A character
string data item is any series of ASCII characters, includ-
ing blank spaces, usually enclosed in quotation marks.
Any one or more of these characters can be a quotation
mark if signaled by an adjacent quotation mark.

The corresponding variable must be of type CHARACTER
of a specified string length. If the number of characters in
the data item is greater than the length attribute n of the
variable, n characters are transferred and the remaining
characters are ignored. If there are fewer characters than
n, all characters of the data item are transferred, left-
justified, in the variable, followed by trailing blanks.

If an end-of-record condition occurs before the terminating
edit descriptor of a character string data item,
FORTRAN/3000 assumes that the data item is continued
in the next record and resumes transfer with the first
character of the next record.

7-45. RECORD TERMINATOR. The character /
(slash), if not part of a character data item, terminates the
current record and delimits the current data item. If this
occurs before all list elements have been satisfied, the
remainder of the current record is skipped and transfer
resumes with the first character of the next record.

7-46. LIST TERMINATION. If an end-of-record oc-
curs without the record terminator /, the effect is to end
the list of variables (list elements). Any list elements not
satisfied are left unchanged.

7-47. FREE-FIELD OUTPUT

Six data types can be output under free-field conversion:
integer, floating-point real, double-precision floating-
point, logical, complex and character string.

e Integer data items are output under the I6 field de-
scriptor.

¢ Double integer data items are output under the 111
field descriptor.

e Floating-point data items are output under the G12.6
field descriptor.

e Double-precision floating-point data items are output
under the G23.17 field descriptor.

e Character string data items are output under the “. .
.” edit descriptor. The adjacent quotation rule is used
(if a quotation mark is to be included in the output
string, double quotation marks must be used).

7-48. DATA ITEM DELIMITER. Each field in the
ouput record is delimited by one blank space.

7-49. RECORD TERMINATORS. If the width of a
current numeric data item is too great for the remainder of
a current record, a record terminator character (/) is out-
put, and a new record is started with the next character of
the data item.

If a character string data item overlaps record boundaries,
subsequent records are output (without record terminator
slashes) until the entire character string has been trans-
ferred.

7-50. UNFORMATTED (BINARY)
TRANSFER

Data can be transferred to and from files in internal rep-
resentation (binary) form without any conversion. Such
transfers are faster than formatted data transfers.

Note: Every value transmitted, including
character strings of odd length, will
begin on a word boundary; transmission
of a character string of odd length may
thus leave a byte unused and unusable.

Two types of access to files on disc devices are available
through the MPE/3000 file system: sequential or direct.
When binary transfer is used, the READ or WRITE
statements of a FORTRAN/3000 program are written
without a FORMAT statement identifier.

For example, statements could be as follows for sequential
access:

READ(9A,B,C

Device file
number

WRITE(12)A,B,C

When direct access is used, the READ or WRITE state-
ments of a FORTRAN/3000 program are written with an
integer simple variable for the record identifier and with-
out a FORMAT statement identifier.

For example,
READB@IV)A,B,C

Device file Record identifier variable

number

WRITE(12@KR)A,B,C

7-33

In sequential access, as many records as needed are used
in sequence until the entire list of elements has been
transferred.

Note: Ifthe storage required exceeds the size of
the record, transfer continues into the
next record; this usually leaves part of
that next record unused.

In direct access, record access is terminated by the last ele-
ment in the list. Any unused portion of the record just ter-
minated is ignored since only one record may be accessed
for any given WRITE statement. If the storage required by
all the list elements exceeds the record size, error message
FMT: DIRECT ACCESS OVERFLOW occurs.

Section VIII contains a discussion of the way files are cre-
ated initially.

7-51. INPUT/OUTPUT OF COMPLEX NUM-
BERS

The format specification for a complex number consists of
two field descriptors. The first one is used to interpret the
real part of the complex number and the second to inter-
pret the imaginary part. Formatted or free field input/
output can be performed. The Formatter applies the same
formatting rules to the real and imaginary parts of a
complex number as it does to other types of numbers.

The following example illustrates formatted input of two
complex numbers:

COMPLEX AB

READ(5,500) A,B
500 FORMAT (2F10.2,G12.4,G10.2)

7-34

Both the real and imaginary parts of the complex variable
A will be read according to the F10.2 edit descriptor. The
real part of B will be read with the G12.4 edit descriptor
and the imaginary part with the G10.2 descriptor.

An example of formatted output of complex numbers is:

COMPLEX A

WRITE(6,600) A
600 FORMAT (A = ”F10.2, F8.2)

The real part of A is printed according to the F10.2 de-
scriptor and the imaginary part according to the F8.2
descriptor.

When a complex number is entered in free field format,
parentheses may be placed around the pair of values rep-
resenting the real and imaginary parts but they are not
required and are ignored by the Formatter.

COMPLEX A,B
READ (5,%) AB

accepts the following input:
3.7, 4.2, (6.1, 8.2)

The complex number A will equal (3.7,4.2) and the com-
plex number B will equal (6.1,8.2).

When free field output is used for complex numbers, the

Formatter displays the real part and then the imaginary
part under the 2G12.6 format specification.

FEB 1977

FORTRAN/3000 FILE FACILITY

SECTION .

Viil

Every peripheral input/output or storage device is linked
to a file through the file facility of the MPE/3000 Operat-
ing System. Each file takes on the attributes of the hard-
ware device associated with it. See the MPE Intrinsics
Reference Manual for a discussion of the file facility.

FORTRAN/3000 input or output statements reference
specific hardware devices (such as teleprinters or card
readers) by referencing a FORTRAN Logical Unit
Number associated with the device. The FORTRAN/3000
compiler then translates the input/output statements into
requests for manipulations of the file referenced by this
unit number. For example, an input statement of the form:
READ(5,100)A,B tells the FORTRAN/3000 compiler that
two values are to be read from the file whose FORTRAN
unit number is 5, formatted in accordance with specifica-
tions contained in statement number 100, and assigned to
variables A and B.

8-1. REFERENCING FILES

Files are referenced in FORTRAN/3000 input/output
statements by using integer constants or integer simple
variables with values in the range of 1 to 99, inclusive.
The same number can be used in more than one
input/output statement; however, the same file is refer-
enced in each case. The FORTRAN/3000 compiler as-
sumes that any file specifically referenced by an integer
constant in an input/output statement has been defined.
For example, if the statement READ(10,100)A,B were
used in a program, the compiler assumes that a file has
been defined for FORTRAN unit number 10. If the unit
reference of an input/output statement appears as an in-
teger simple variable, the FORTRAN unit number rep-
resented by the variable must appear in a $CONTROL
FILE = n compiler command in the program and the
integer simple variable must be set equal to this unit
number. (See Section IX for a discussion of compiler com-
mands.)

8-2. FORTRAN/3000
TABLE (FLUT)

LOGICAL UNIT

The MPE/3000 Operating System Segmenter prepares a
FORTRAN Logical Unit Table (FLUT) for
FORTRAN/3000 programs which use the Formatter.

Note:
The discussion of the FLUT is provided
for reference only. The FLUT is not exp-
licitly manipulated by the FORTRAN/
3000 programmer.

The structure of the FLUT is shown in figure 8-1.

U1 Fq

U2 Fa

Un Fn

Where

Ug ...U, =the UNIT numbers (integers in the range (1,991}
in the left byte of each entry, to be specified in
Formatter initialization calls

F1...Fp = 0 in the right byte, when the FLUT is prepared

Figure 8-1. FORTRAN Logical Unit Table (FLUT)

Reference to a specific FORTRAN logical unit either in a
$CONTROL FILE = statement (see Section IX) or any
other FORTRAN/3000 statement will result in that unit
number being included in the FLUT as one of the UNIT
numbers (U, through U,). Failure to so define every unit
required by a program will result in no entry for the unit
and will cause an error when the unit is referenced.

F, through F, (n is from 1 to 99 and is the number of
entries in the FLUT) in the right byte of each word in the
FLUT is the MPE/3000 file number assigned to the logical
unit when the file was last opened by the MPE/3000 file
intrinsic FOPEN. Thus the FLUT provides the necessary
correspondence between FORTRAN unit numbers and
MPE/3000 file numbers required by the MPE/3000 file
system. (See the MPE Intrinsics Reference Manual for a
discussion of the FOPEN intrinsic.)

When the Formatter is called by a FORTRAN/3000
statement, it must determine if the file to be used has been
opened, and if it has, what the file parameters (such as the
file options, access options, etc.) are. See paragraph 8-7 for
a discussion of these options.

The Formatter first checks the FLUT for a U entry corres-
ponding to the unit specified in the FORTRAN/3000
statement which initiated the call to the Formatter. If
such an entry does not exist, the error message: FILE

NOT IN TABLE FOR UNIT # xx occurs and the program
aborts. If a U entry exists, the F entry is checked.

81

If the F entry is zero, the file has not been opened and the
Formatter makes a call to the MPE/3000 file intrinsic
FOPEN. The nominal FORTRAN/3000 parameters (see
paragraph 8-3) are used in the FOPEN call. These include
the file name created by appending the unit number to the
ASCII characters FTN. For example, the file name for unit
3 is FTN03. The FOPEN intrinsic returns an integer
which is stored in the FLUT as the F entry for the unit
referenced.

If the file entry is not zero, the file has been opened and
the Formatter calls the MPE/3000 file intrinsic
FGETINFO which extracts the file parameters for that
file. The Formatter also allocates space for an I/O buffer to
be used in the input/output operation.

8-3. NOMINAL FORTRAN/3000 FILE
PARAMETERS

Table 8-1 shows the nominal FORTRAN/3000 file
parameters used in an FOPEN call. These parameters can
be superseded with an MPE/3000 :FILE command (see

paragraph 8-7.)

Table 8-1. Nominal FORTRAN/3000 File Parameters

FILEDESIGNATOR

FOPTIONS

AOPTIONS

FTNdd, where dd is the UNIT
number in the FLUT (for ex-
ample, FTNQO3).

Bits are set or cleared for the
following file options: Domain
(bits 15 and 14 clear): NEW
BINARY file (bit 13 clear)'

Default File Designator (bits
12, 11, 10): 0002

Record Format (bits 9 and 8):
If sequential, then VARIABLE
(bits 9 and 8 = 01), else (di-
rect) FIXED (bits 9 and 8 =
00).

Carriage Control (bit 7 clear):
none?

Disallow File Equation (bit 5
clear): allow :FILE

(Bits 4 through O are spares.)
Access Type: READ/WRITE
No Multirecord

No Dynamic Locking

8-2

Exciusive Access: Default
Buffered
RECSIZE System default value:
128 words.
DEVICE System default: DISC.
FORMMSG None.
USERLABELS System default: 0
BLOCKFACTOR System default value:
128/physical record size
NUMBUFFERS System default:
OUTPRI = 8
COPIES =1
BUFFERS = 2
FILESIZE System default:
1023 records
NUMEXTENTS System default: 8 extents
INITIALLOC System default value:
1 extent
FILECODE System default: 0.

'Except for FTNO5 or FTNO6: ASCII file (bit 13 set).
2Except for FTNO5: 100 for $STDIN, and FTNO6: 001
for $STDLIST.

3Except for FTNO6: yes (bit 7 set).

8-4. STANDARD INPUT AND OUTPUT
FILES

The integer values used for FORTRAN logical unit
number references in a source program are converted to
file names recognizable to the MPE/3000 operating system
file facility. As discussed in paragraph 8-2, the name for
any file is created by joining the characters FTN with the
two-digit FORTRAN logical unit number. For example,
file 8 is FTNOS, file 10 is FTN10, etc.

The FORTRAN logical unit number 5 is assigned by de-
fault to the standard input file (usually a card reader file
in batch mode or a teleprinter file in interactive mode),
and 6 is assigned to the standard list (or output) file
(usually a line printer file in batch mode or a teleprinter
file in interactive mode).

The DISPLAY statement (intended for free-field output in
interactive mode) implicitly declares and references FOR-
TRAN unit number 6. The ACCEPT statement (intended
for free-field input in interactive mode) implicitly refer-
ences $STDLIST for prompting and unit 5 for the user’s
response.

8-5. CREATING AND ACCESSING FILES

Permanent files for the storage of data can be created and
accessed through MPE/3000 system commands external to
a FORTRAN/3000 program or through the use of system
intrinsic calls within the program. MPE/3000 commands
and intrinsics are described in detail in the MPE Com-
mands Reference Manual and the MPE Intrinsics Refer-
ence Manual respectively.

A new file can be created, and its characteristics
specified,by using the MPE/3000 system :BUILD com-
mand. The :BUILD command is written in the following
format:

:BUILD filereference

_ For example,

:BUILD ITEM

where

filereference
is the name of the file to be opened.

The file may be defined further by using additional op-
tional parameters, as follows:

:BUILD ITEM;DISC=100;REC=-72
where, for example,

DISC=100

specifies the device as disc with a total maximum
file capacity of 100 records. The default value is 1023
records.

REC=-72

specifies the size of each record in the file. The nega-
tive number (—72) represents bytes. (A positive
number represents words.) The default values gen-
erally specified by the system are:

Disc = 128 (words)
Tape = 128 (words)
Printer = =132 (bytes)
Card reader = —80 (bytes)
Card punch = —80 (bytes)
Terminal = ~72 (bytes)

Of course, these values may vary from device to device and
installation to installation. See your system management
for your current default record sizes.

For a complete description of the :BUILD command, in-
cluding additional optional parameters, see the MPE
Commands Reference Manual.

A simple example using the :BUILD command is shown in
figure 8-2.

The :BUILD command creates an empty file named
TEST1. The :FILE command tells the operating system
that FORTRAN unit number FTNO2 is equated to the file
named TEST1 and that TEST1 is an old file (it has been
created by the :BUILD command and will not be created
within the program). (See paragraph 8-7 for a discussion of
the :FILE command.)

Within the program, the compiler command $CONTROL
FILE = 2 tells the compiler that the file FTN0O2 may be
accessed and the statement IN= 2 sets the variable IN
(used in the WRITE statement) equal to 2. Thus, when the
WRITE statement is executed, information will be written
into TEST1, which has been equated to FORTRAN unit
number 2 by the :FILE command.

The program outputs a prompt character (?) on the termi-
nal (the program was run in interactive mode) and writes
whatever is typed in into file TEST1.

Figure 8-3 shows a simple program to read the data con-
tained in file TEST1. The integer simple variable, IOUT,
used in the READ statement in the program, is set equal
to 2.

8-6. COPYING FILES

The information contained in a file can be copied into
another file in several ways using MPE/3000 system in-
trinsics and commands. A simple method of copying one
file into another using the :BUILD and :FILE commands
is shown in figure 8-4.

The file from which the information is to be copied
(TEST1) is equated to FORTRAN unit number FTNO2
with a :FILE command; the file into which the information
is to be copied is created with a :BUILD command and
equated to FORTRAN unit number FTN03 with a :FILE
command.

In the program, the integer simple variable OLD (used in
statement 10 to read the old file) is set equal to 2 and
integer simple variable NEW is set equal to 3.

8-1. CHANGING STANDARD ATTRI-
BUTES OF FILES

The standard attributes of files used by a FORTRAN/3000
program can be modified through the use of the MPE/3000
:FILE command.

83

¢+ BMIIILD TESTI
+FILE FTN22=TESTI1,0LD
:FORTGO FTRAN34

PAGE 0001 HP321@2B.2¥ .0

723217288 $CONTROL FILE=2

AAAA2AID PROGRAM CREATE FILE

2AZA3IAAE C

AAGFALAAA C EXAMPLE PROGRAM TO CREATE FILE
22322532% C

DACGNEARR CHARACTERXx72 INFILE

2A%3T229 IN=2

22AAKADD 13 ACCEPT INFILE

AQ209020 IFCINFILECL]1:31.EQ."ZND")GOTO 37
20212299 WRITECIN, %, END=223)INFILE
222119329 GOTO 13

20312273 29 DISPLAY "FILE FULL"
2A%13223 3% STO?
2221 473727 END

Yok dek GLOBAL STATISTICS * dekok
*kdok NO ERRORS, NO WARNINGS *%¥k
TOTAL COMPILATION TIME ©30d:01
TOTAL ELAPSED TIME Ds M)t n4

END OF COMPILE

END OF PREPARE

?THIS IS RECORD | OF FILE "TESTI1™
?THIS IS RECORD 2

?RECORD 3

74

?7ETC

?END

END OF PROGRAM

8-4

Figure 8-2. Example of a FORTRAN/3000 Program
to Create and Access a File

sFILE FT

N@2=TEST1,0LD

:FORTGO FTRAN3I1

PAGE @m31 HP32102B.00.0
02021088 $CONTROL FILE=2
00002000 PROGRAM READ FILE
22003200 C
@2004082 C FILE READ EXAMPLE
#3005000 C
02026000 CHARACTER*72 OUTFILE
@030 7370 10UT=2
90208089 18 READ(IOUT,*, END=2%, ERR=3%)0UTFILE
320095029 DISPLAY OUTFILE
23017020 GOTO 1@
9311863 28 DISPLAY "END OF FILE"
PB12029 STOP
73013938 3@ DISPLAY "“FILE READ ERROR"
22014920 STOP
200152807 END
ok ok GLOBAL STATISTICS okokok
*%%k NO ERRORS, NO WARNINGS %k
TOTAL COMPILATION TIME @:0@:0]
TOTAL ELAPSED TIME D103

END OF COMPILE

END OF PREPARE
THIS 1S RECORD | OF FILE "TESTI"
THIS 1S RECORD 2
RECORD 3
4
ETC

END OF FILE

END OF PRQGRAM

Figure 8-3. Example of a FORTRAN/3000 Program to Read a File

8-5

sBUILD TEST2
tFILE FTN@2=TEST1,0LD
sFILE FTN@3=TEST2,0LD

tFORTGO FTRAN32

PAGE 9p0!

P00210200
22022002
222232092
2223342033
22235000
N22A 620D
220073303
2022833492
AP2B39227
2001022002
2702112202
AB3122382
220130229
2021 4220
208150200
2721 6020
22217200
GA18829
227219039
2AR2A037
200221229

* %k kk

ok ok NO ERRORS,

HP3210@2B. ™ .8

$CONTROL FILE=2,FILE=3
PROGRAM FILE COPY
C
C FILE COPY EXAMPLE
C
CHARACTER*72 DATA
INTEGER OLD
OLD=2
NEW=3
12 READ(OLD, *, END=20, ERR=32)DATA
WRITE(NEW, *, END=40, ERR=503)DATA
GOTO 19
20 DISPLAY "FILE COPIED"
STOP
39 DISPLAY "ERROR OCCURRED ON INPUT FILE"
STOP
49 DISPLAY "OUTPUT FILE TOO SMALL FOR COMPLETE COPRPY"
STOP
S2 DISPLAY *ERROR OCCURRED ON OUTPUT FILE"
STOP
END
GLOBAL STATISTICS F*kkk

NO WARNINGS % %¥*

TOTAL COMPILATION TIME @s#:01

TOTAL ELAPSED TIME

END OF COMPILE

END OF PREPARE

FILE COPIED

END OF PROGRAM

s sd3

8-6

Figure 8-4. Example of a FORTRAN/3000 Program to Copy Information

From One File to Another

Note: Read the discussion of files in the MPE
Commands Reference Manual before at-
tempting to change file attributes with
the :FILE command.

The specifications in a :FILE command do not take effect
until the compiled program is running and opens the file
referenced. The :FILE command specifications hold
throughout the entire program unless superseded (by
another :FILE command) or revoked by a :RESET com-
mand. At job (batch) or session (interactive) termination,
however, all :FILE commands are cancelled.

When two (or more) :FILE commands referencing the
same file appear in a job or session, the last command
takes precedence.

8-8. DIRECT INTRINSIC CALLS

Since a FORTRAN/3000 user can write and execute
non-FORTRAN/3000 language programs, it is possible to
access files directly. This is accomplished by writing direct
calls to MPE/3000 operating system intrinsics which man-
ipulate the indicated files.

The calls may require actual arguments passed by value
(see Appendix A). Direct intrinsic calls may be used en-
tirely by themselves or in conjunction with :FILE com-
mands.

An example of the use of the FOPEN, FREAD, and
FCLOSE intrinsics is shown in figure 8-5. (See appendix A
for an explanation of the back slash and .CC. logical
operator.)

Note: These examples could be considerably
simplified if the SYSTEM INTRINSIC
statement had been used. (See Appen-
dix A)

The program shown in figure 8-5 uses the intrinsic
FOPEN to open the file “MAILLIST” and the intrinsic
FREAD to read the file. The FOPEN intrinsic procedure
contains thirteen parameters. The file name (MAILLIST)
is passed to the FOPEN intrinsic in the character variable
FILENAME. A 1 is passed for the foptions parameter,
specifying that the file is an old permanent file and that
the system file domain should be searched for the file. The
default values are taken for the remainder of the foptions.
Octal 105 is passed as the aoptions parameter, specifying
that all file intrinsics, including FUPDATE, can be issued
for the file and that, once the file is opened, other FOPEN
requests against this file will be denied until the file is
closed or the program terminates. Default values are
taken for the remainder of the aoptions. Zeros are passed
(as dummy parameters) to the FOPEN intrinsic for all
remaining parameters.

The last parameter in the call to FOPEN (% 16000) is an
octal value used as a “bit map” to inform the intrinsic
being called which parameters are being passed values
and which are being passed dummy parameters.

FEB 1977

When the file is opened, the FOPEN intrinsic returns an
integer value to the variable FILENUMBER. A fileread is
performed on this file number by the FREAD intrinsic and
the value that is obtained from the read is assigned to the
logical variable LBUFFER. The WRITE statement prints
the first 19 characters of this value (LBUFFER and BUF-
FER have been equivalenced).

Finally, the FCLOSE intrinsic is called to close the file
MAILLIST.

Note: The MPE/3000 file number returned by
FOPEN (as the value of FILENUMBER)
can be made negative, assigned to a sim-
ple variable such as I, and then used in
the unit part of a FORTRAN/3000 in-
put/output statement (for example, I=
-FOPEN (....)). This number then is
passed to the formatter as the file num-
ber on which I/O is to be performed,
effectively bypassing the FLUT.

8-9. FSET PROCEDURE

The FSET procedure is an entry point to the HP 3000
Compiler Library procedure FTNAUX’ (see the Compiler
Library Reference Manual) and is used to change the
MPE/3000 operating system file number assigned to a
given FORTRAN logical unit number in the FLUT.

where

UNIT
is a positive single integer in the range of 1 to 99 to
specify the FLUT entry for which the change is to be
made.

NEWFILE

is a positive single integer in the range of 1 to 254, or
an integer variable, to specify the new MPE/3000
file number which is to be assigned to the UNIT
specified above.

OLDFILE

is a variable to which the procedure returns the old
value of the file number that was assigned to the
UNIT specified above.

A program using the FSET procedure is shown in figure
8-6. See appendix A for an explanation of the back slash
and .CC. logical operator.

When the call to FSET is executed, the MPE/3000 file
number assigned to the variable FILENUMBER by the
FOPEN intrinsic call is assigned to unit number 5 in the
FLUT. Thus, when the READ statement (referencing
FORTRAN unit number 5) is executed, a record from the
file MAILLIST is read and assigned to character variable
BUFFER.

8-7

s FORTGO FTRAN33

PAGE o201 HP32102B.80 .0

000731000 PROGRAM INTRINSICS

2@002022 C

2200239222 C FOPEN, FREAD, AND FCLOSE EXAMPLE
07004008 C

00305000 128 FORMAT(T2,S)

23026000 CHARACTER*72 BUFFER, FILENAMEx*] 6
000072092 LOGICAL LBUFFER(36)

29208080 INTEGER FILENUMBER, FOPEN, FREAD
2000992089 EQUIVALENCE (LBUFFER,BUFFER)
22010000 FILENAME="MAILLIST"

30011000 C
200120902 C THE NEXT STATEMENT CALLS THE FOPEN INTRINSIC
2313000 C

2032140020 FILENUMBER=FQPEN(FILENAME,\1\,\%1235\,0,0,0,0,0,0,\3.2\,
20215000 #3,2,3,\%16883\)

22216022 IFCeCCe)d0,12,40

23317332 19 DISPLAY "FILENUMBER = ',FILENUMBER

2201820202

c
29219209 C THE NEXT STATEMENT CALLS THE FREAD INTRINSIC
20220298 C

29021000 29 N=FREADC(\FILENUMBER\,LBUFFER,\36\)

772322000 IF(<CC¢>52,372,69
202230009 39 WRITE(6,182)BUFFER[1:19]
20324000 GOTO 20 -

PPB25200 492 DISPLAY "FOPEN FAILURE"
223026000 STOP

20227200 59 DISPLAY "FREAD ERROR"
20728000 STOP

oG@2%5902 C

20032230 C THE NEXT STATEMENT CALLS THE FCLOSE INTRINSIC
20231088 C

22032000 63 CALL FCLOSE(N\FILENUMBER\,\1\,\2\)

2273330030 IF(+CCe)72,82,79

22034000 73 DISPLAY "FCLOSE FAILURE"

20235000 STOP

20336000 80 DISPLAY "FILE CLOSED SUCCESSFULLY"
20937200 STOP

22038002 END

*ok ok GLOBAL STATISTICS ok dk

ok ke NO ERRORS, NO WARNINGS dokdex
TOTAL COMPILATION TIME Q300101
TOTAL ELAPSED TIME Draso6

END OF COMPILE

END OF PREPARE

FILENUMBER = 1
JOHN BIGTOWN
LOIS ANYONE
ALl BABA
JAMES DOE
JANE DOE
JOHN DOUGHE
SPACE MANN
KING ARTHUR
JENNA GRANDTR
KARIS5A GRANDTR
SWASH BUCKLER
KNEE BUCKLER

FILE CLOSED SUCCESSFULLY
END OF PROGRAM

8-8

Figure 8-5. Example of a FORTRAN/3000 Program to Call FOPEN,
FREAD, and FCLOSE Intrinsics.

¢t FORTGO FTRAN34

PAGE w1 HP321022B.71.2

200210292 PROGRAM FSET

20002002 C

22723908 C FOPEN, FSET, AND FCLOSE EXAMPLE
60004098 C

22005000 199 FORMAT(T2,5)

P00B 6020 CHARACTER*72 BUFFER, FILENAME*16

20207000 INTEGER FILENUMBER.,FOPEN, OLDNUM

200028000 FILENAME="MAILLIST"

22209003 C

22212228 C THE NEXT STATEMENT CALLS THE FOPEN INTRINSIC
aeo11000 C

20012000 FILENUMBER=FQPEN(FILENAME,\I\s\Z105\,0,0,9,8,0,3,\2.3\,
22013003 #0,2,8,\72160820\)

23230140092 IF(«CC+>30,192,30

22215220 C

202167993 C THE NEXT STATEMENT CALLS THE COMPILER LIBRARY
220170620 C PROCEDURE FSET TO ASSIGN FORTRAN UNIT NUMBER 5
200218922 C TO FILENUMBER

22919222 C

2273262372 10 CALL FSET(5,FILENUMBER,OLDNUM)

272021000 DISPLAY 'OLD FILE NUMBER = ', OLDNUM
20022002 DISPLAY "FOPEN NUMBER = *',FILENUMBER
3223000 22 READ(S5,END=42)3UFFER

20224009 WRITE(S,182)BUFFER[]1:191]

20025000 GOTO 20

3226000 39 DISPLAY *'FOPEN FAILURE"

292227030 STOP

39328002 C

29929229 C THE NEXT STATEMENT CALLS THE FCLOSE INTRINSIC
32232222 C

20231000 49 CALL FCLOSEC\FILENUMBERN,\1\,\3\)

20032003 IF(«CCe)50,60,59

20033000 50 DISPLAY "FCLOSE FAILURE"

20034900 STOP

22350929 69 DISPLAY "FILE CLOSED SUCCESSFULLY"
2036000 STOP

d0@837000 END

hk ok GLOBAL STATISTICS ek dok

sk Ak NO ERRORS, NO WARNINGS sexak
TOTAL COMPILATION TIME @s0@:31
TOTAL ELAPSED TIME D3100:04

END OF COMPILE

END OF PREPARE

OLD FILE NUMBER = 4]
FOPEN NUMBER = 1
JOHN BIGTOWN
LOIS ANYONE

ALI BABA

JAMES DOE

JANE DOE

J OHN DOUGHE
SPACE MANN

KING ARTHUR
JENNA GRANDTR
KARISSA GRANDTR
SWASH BUCKLER
KNEE BUCKLER

FILE CLOSED SUCCESSFULLY
END OF PROGRAM

Figure 8-6. FSET Example

8-10. FNUM AND UNITCONTROL PRO-
CEDURES

The FNUM and UNITCONTROL procedures are HP 3000
Compiler Library procedures that can be called from
FORTRAN/3000 programs.

The FNUM procedure enables a FORTRAN/3000 program
to extract the MPE/3000 system file number assigned to a
given FORTRAN logical unit number from the FLUT.

where
UNIT
is a positive single integer in the range of 1 to 99 to

specify the FLUT entry for which the MPE/3000
system file is to be extracted.

Note: FNUM must be declared type integer.

The TUNITCONTROL procedure enables a
FORTRAN/3000 program to request several actions (see
below) for any FORTRAN logical unit.

where

UNIT
is a positive single integer in the range of 1 to 99 to
specify the FLUT entry of the file to be used.

OPT
is a single integer to specify one of the following
options:

—1: REWIND (but don’t close the file)
BACKSPACE

ENDFILE(write an EOF mark)

: SKIP BACKWARD TO A TAPE MARK

: SKIP FORWARD TO A TAPE MARK
UNLOAD TAPE AND CLOSE THE FILE
: LEAVE TAPE AND CLOSE THE FILE

: CONVERT FILE TO PRE-SPACING*

: CONVERT FILE TO POST-SPACING*

: CLOSE FILE

@

W=D T AW~

Note: If no file is open for the specified unit,
FNUM and UNITCONTROL will open
one (as does a READ or WRITE state-
ment).

8-10

*See “Directing File Control Operations” in the MPE In-

trinsics Reference Manual.

A program using FNUM and UNITCONTROL is shown in
figure 8-7 and the output resulting from the program is
shown in figure 8-8.

The BACKSPACE statement must not reference files of
variable length records, otherwise the program terminates
abnormally with the following message:

FILE SYSTEM ERROR ON UNIT #XX

In order to call the MERGE procedure (which merges two
or more sorted input files into one sorted output file), the
MPE/3000 system file numbers must be specified in an
integer array. The FNUM external function is used to
assign the file numbers for FTN20 and FTN21 to INFILES
elements 1 and 2. In addition, the parameter FNUM(22) is
passed to the MERGE procedure to specify the output file
number.

Three calls to UNITCONTROL are made at the end of the
program to close the three files.

Note: The UNITCONTROL procedure closes files
under FCLOSE disposition 0 (no change).
Thus, the file remains as it was before the
file was opened. If the file is NEW (as is
FTN22), it is deleted; otherwise it is as-
signed to the domain to which it belonged
previously. See the MPE Intrinsics Refer-
ence Manual for a discussion of the
FCLOSE disposition parameter.

Figure 8-8 shows the output resulting from the program in
figure 8-7.

Note: The MAXDATA = 4000 parameter is
appended to the :PREP command to pro-
vide the MERGE procedure with suffi-
cient stack space for its operation and is

of no other concern to the
FORTRAN/3000 programmer.

MAY 1979

s FORTRAN FTRAN35

PAGE 02001

20001000
00002020
00233222
00004033
200850083
27036203
30A3a7332
20208000
ACAB9000
N0310000
20311000
00212009
20013000
30314330
2720215029
BRG160200
22217009
Q2218000
223219022
202200273
PRB217300
N2022020
ARR23233
22242302
203250020
22326072
22027000
223280730
20629030
2020320092
20331000
22032020
20233000
Q203403a
722335000
220360320
22037000
200338000
372339300
20042003
22041200
200342000
202043200
23244000
20045000
02046020
oe04702020
03480292

Fw kk

HP32102B.20.9

$

aaoaaaaa

aaa aaaa

aaa

aaoaaaQ

CONTROL FILE=20,FILE=21,FILE=22
PROGRAM PROCEDURES

182 FORMAT(T2,S5)
CHARACTER BUFFERx*72
INTEGER KEYS(6),FNUM, INFILES(2)
LOGICAL FAILURE

MERGE TWO SORTED FILES (MAIL1 (FTN2@)> AND MAIL2 (FTN21))

INTO A THIRD FILE (MAIL3 (FTN22))

ESTABLISH KEYS FOR SORT - MAJOR AT 11 FOR 9 BYTES
(LAST NAME) AND MINOR AT | FOR 12 BYTES (FIRST NAME)

KEYS(1)=11
KEYS(2)=9
KEYS(3) =@
KEYS(4)=1
KEYS(5)=12
KEYS(6)=0

ESTABLISH MPE/30A? FILENUMBERS FOR INPUT FILES
(MAIL1 AND MAIL2) BY REFERENCING FNUM PROCEDURE

INFILES(1)=FNUM(23)
INFILES(2)=FNUM(21)

CALL MERGE PROCEDURE
CALL MERGE(\2\, INFILES,\FNUM(22)\,\a\,\2\,KEYS,
FNONLNDBNLNBN\L\DO\L\B\, FAILURE,\27321\)
IF(FAILURE)STOP 12

READ AND WRITE OUTPUT FILE (FORTRAN UNIT NO. 22)

REWIND 22

29 READ(22, END=30)BUFFER

WRITE(6,100)BUFFERI1:54]
GO TO 20

THE FOLLOWING STATEMENTS CALL THE COMPILER LIBRARY
PROCEDURE UNITCONTROL TO CLOSE FILES FTN22.,
FTN21, AND FTN22

32 CALL UNITCONTROL(22,8)
CALL UNITCONTROL(21,8)
CALL UNITCONTROL(22,8)
STOP
END

GLOBAL STATISTICS Fok dk
Yoy Rk NO ERRORS,

NO WARNINGS #¥ik

TOTAL COMPILATION TIME ©:00:01

TOTAL ELAPSED TIME

B100:05

END OF COMPILE

Figure 8-7. FNUM and UNITCONTROL Example

8-11

¢tBUILD PROGTEST3;CODE=PROG

¢+FILE FTN29=MAIL1,O0OLD

:FILE FTN21=MAIL2,0LD

:FILE FTN22=MAIL3,NEW

tPREP SO0LDPASS,PROGTESTIMAXDATA=4300

END OF PREPARE
:RUN PROGTEST

PLAINS ANTELOPE
LOIS ANYONE
KING ARTHUR
ALl BABA
BLACK BEAR

J OHN BIGTOWN
KNEE BUCKLER
SWASH BUCKLER
ANIMAL CRACKERS
MULE DEER
WHITETAIL DEER
JAMES DOE
JANE DOE
PRAIRIE DOG

J OHN DOUGHE
MALLARD DUCK
JENNA GRANDTR
KARISSA GRANDTR
SNOWSHOE HARE
MOUNTAIN LION
SPACE MANN
SWAMP RABBIT
NASTY RATTLER
BIGHORN SHEEP
GREY SQUIRREL

END OF PROGRAM

221 OPENSPACE AVE
6193 COURT ST

329 EXCALIBUR ST
4% THIEVES WAY

47 ALLOVER DR

965 APPIAN WAY
974 FISTICUFF DR
497 PLAYACTING CT
1022 ANYWHERE PL
963 FOREST PL

34 WOODSY PL

4193 ANY ST

3959 TREEWOOD LN

493 ROLLINGHILLS DR

239 MAIN ST
79 MARSH PL
493 TWENTIETH ST

7917 BROADMOOR WAY

742 FRIGID WAY
796 KING DR

9999 GALAXY WAY
4444 DAMPLACE RD
243 DANGER AVE
999 MOUNTAIN DR
432 PLEASANT DR

BIGCOUNTRY
METROPOLIS
CAMELOT
SESAME
ANYWHERE
METROPOLIS
PUGILIST
MOUVIETOWN
ALLOVER
HIGHCOUNTRY
BACKCOUNTRY
ANYTOWN
BIGTOWN
OPENSPACE
HOMETOWN
PUDDLEDUCK
PROGRESSIVE
BIGTOWN
COLDSPOT
THICKET
UNIVERSE
BAYOU
DESERTVILLE
HIGHPLACE
FALLCOLORS

wy
NY
CA
CcO
175
NY
ND
ca
us
Ca
ME
MD
MA
ND
MA
CA
ca
MA
MN
NM
ca
LO
Ca
Co
MA

8-12

Figure 8-8. Output Resulting from FNUM and UNITCONTROL Example

WRITING COMPILER COMMANDS
IN FORTRAN/3000|| ix

SECTION

9-1. COMPILER COMMANDS

Compiler commands are inserted in a source program to
inform the compiler that an output listing is required, that
statements in the program are in free-field format, or that
various other compilation options are in effect.

The FORTRAN/3000 compiler is accessed with an
MPE/3000 :FORTRAN, :FORTPREP, or :FORTGO com-
mand. See Section XII for a description of these commands
and of the files (textfile, uslfile, listfile, masterfile, and
newfile) associated with the commands.

Table 9-1 contains a summary of compiler commands and
their parameters. The following paragraphs describe the
commands (and parameters).

The $ sign must be the first character in the line and must
be followed immediately by the command name (i.e.,
CONTROL in the example above). In free-field format the
$ sign must be preceded by a blank. If more than one
parameter is included in parameter list, the parameters
must be separated from each other by commas. Blanks
may be inserted freely between parameters in the list.

A command line can be continued for as many as 19
additional lines if the last non-blank character in each
line to be continued is an ampersand (&) and the first
character of each continuation line is $. Words (command
names or parameters) must not be broken by the $.

9-2. $CONTROL COMMAND

The $CONTROL command specifies compilation options
during source program compilation.

FEB 1977

An example of a $CONTROL command with the paramet-
ers CODE, LABEL, and MAP is shown in figure 9-1.

9-3. BOUNDS PARAMETER. The BOUNDS
parameter of the SCONTROL command has the form
$CONTROL BOUNDS and can appear at the beginning of
program units only.

The BOUNDS parameter requests the compiler to gener-
ate code which will dynamically validate array bounds.
The compiler will check fixed-bound arrays, adjustable-
bound arrays, and dummy arrays by verifying the infor-
mation contained in DIMENSION declaration statements
against any dynamic attributes associated with the arrays
during execution.

It should be noted that this parameter generates a substan-
tial amount of code which must be executed each time an
array is referenced.

The BOUNDS parameter is cleared by default if not
specified.

9-4. CODE/NOCODE PARAMETERS. The
CODE/NOCODE parameters have the form $CONTROL
CODE or $CONTROL NOCODE and can appear any-
where in a program unit. These parameters take effect at
the end of the program unit.

The CODE parameter causes an octal listing of the
machine instruction code which has been generated to be
output to the user’s listfile (see figure 9-1 for the code
dump).

The NOCODE parameter clears the CODE parameter. If
the CODE parameter is not specified, the default is
NOCODE.

9-5. CHECK PARAMETER. The CHECK parame-
ter has the form $CONTROL CHECK=n (where
n=0,1,2,3), and can appear at the beginning of program
units only.

9-1

Table 9-1. Summary of Compiler Commands

COMMAND FORM PARAMETERS DEFAULT
$CONTROL $CONTROL parameter list BOUNDS Clear
CHECK= number CHECK= 3
CODE (NOCODE) NOCODE
CROSSREF No crossref
CROSSREF ALL No crossref
ERRORS= number 50 severe
errors
FILE= number
FILE= number — number
FIXED FIXED
FREE
INIT Clear
LABEL (NOLABEL) NOLABEL
LIST (NOLIST) LIST
LOCATION NOLOCATION
MAP (NOMAP) NOMAP
SEGMENT= name SEG
SOURCE (NOSOURCE) SOURCE
(Batch)
NOSOURCE
(Interactive)
STAT (NOSTAT) NOSTAT
USLINIT Clear
WARN (NOWARN) WARN
MORECOM CLEAR
SEDIT SEDIT parameter list
FIXED
FREE
INC= number
NOSEQ
SEQNUM = sequence number
VOID = sequence number
ON
SIF SIFXn =
OFF
SINTEGER* 4 SINTEGER#*4
$PAGE SPAGE
or
SPAGE character string list
_ON _ON _ON _ON _ON _ON
$SET $SET XO_OFF’ SET X1 = OFE’ ** SET Xn = oFg ° $SET X0 = OFF’ X1= OFE’ ™ XN =~ OFF
$TITLE STITLE character string list
$TRACE $TRACE program unit; identifier, identifier, . . . ,identifier

Apr 1978

:FORTGO FTRANZ2S5
PAGE ¢l HP32172R. 1.0
00001000 SCONTROL CODE,LABEL
00002000 PROGRAM CONTROL
00003000 C
00004000 C CONTROL PARAMETER EXAMPLE
00005000 C
00006000 100 FORMAT(TS,5F12,4)
00007000 DIMENSION ARR(5,5)
00008000 Do 10 I=1,5
00009000 DO 10 J=1,5
00010000 RzIwd
00011000 B=SGRT(A)
00012000 10 ARR(I,J)=B
00013000 WRITE(6,100)ARR
00014000 STOP
00015000 END
SYMBOL MAP
NAME TYPE STRUCTURE ADDRESS
A REAL SIMPLE VAR 2+ 6
ARR REAL ARRAY a+ 1,1
B REAL SIMPLE VAR Q+ 4
I INTEGER SIMPLE VAR N+ 2
J INTEGER SIMPLE VAR @Q+ 3
SART REAL FUNCTION
CODE DUMP
00000 024124 032454 032506 030462 027064 024400 035010
00010 051401 035061 021001 051402 171402 021001 021005
00020 051403 171403 021001 021005 0414 111402 004700
00030 000700 171406 000000 161404 041403 003400
00040 071402 004300 167401 052417 (052425 035006 171705
00050 170450 021006 020003 010201 /021006 000706 170007
00060 021031 041401 022402 000000/ 000000 035406 000000
LABEL MAP
STATEMENT CODE STATEMENT CODE STATEMENT CODE
LABEL OFFSET LABEL OFFSET LABEL OFFSET
10 (G4) 10C FMT 0
ey GLOBAL STATISTICS LA A
" NO ERRORS, NO WARNINGS ##x»
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME 0:00:03
END OF COMPILE
END OF PREPARE
1.0000 1.4142 1.7321 2,0000 2,2361
1.4142 2.0000 2.4495 2.8284 3.1623
1.,7321 2.4495 3.,0000 3.4641 3.8730
2,0000 2,5284 3.4641 4,0000 4,4721
242361 3.1623 3,8730 4.4721 5.0000
END OF PRGGRAM

171702
021001
161406
023405
004500
000000

Apr 1978

Figure 9-1. $CONTROL Compiler Command Example

The CHECK parameter allows you to set the level of check-
ing of all calls to the subroutine it immediately precedes. If
not specified, it is set to 3 by default. This parameter does
not affect the checking level of calls to other subroutines
from this one. The checking level for FORTRAN program
units is always established by the called program unit.

The significance of each level is as follows:

0 No checking.
1 Checking of function type.

2 Checking of function type and number of
parameters.

3 Checking of function type, number of parameters,
parameter type and parameter structure. (See
paragraph 11-3.)

9-6. CROSSREF PARAMETER. The CROSSREF
parameter of the $CONTROL command has the form
$CONTROL CROSSREF or $CONTROL CROSSREF
ALL.

The CROSSREF parameter requests the compiler to pro-
vide a cross reference listing. At the end of each program
unit, a listing of all symbolic names, in alphabetic order,
and all statement labels will be made with all sequence
numbers. This listing will appear immediately following
each name or label. Except as noted below, this option is
effective only at the beginning of a program unit and is
only effective for the program unit it precedes. The default
is no cross reference. This option is disabled if the LOCA-
TION parameter is also used and an error exists in the
program unit.

The use of “ALL” specifies that a CROSSREF is desired for
all program units in the program. In addition, at the end of
the entire compilation, a listing will be produced, cross
referencing common block names, program units, and re-
ferences to program units. This option is only effective at
the beginning of a compilation and supersedes any
CROSSREF requests at the beginning of each program
unit.

9-7. ERRORS PARAMETER. The ERRORS
parameter has the form $CONTROL ERRORS = n (where
n is between 0 and 999) and can appear anywhere in a
program unit. The ERRORS parameter takes effect im-
mediately.

The ERRORS parameter sets a maximum of severe errors
allowable before the compiler terminates compilation of
the program unit. This parameter is useful for correcting
long programs which may have many errors; the compiler
will output all error messages in one pass. These errors
then can be corrected and the program resubmitted for
compilation.

If omitted, the compiler sets the maximum number of
severe errors at 50 by default for each program unit.

9-4

9-8. FILE PARAMETER. The FILE parameter has
the form $CONTROL FILE = n or $CONTROL FILE = n,
—ny, or SCONTROL FILE= n,FILE=n,,...,FILE=n,
(where n is between 1 and 99) and can appear anywhere in
a program unit. The form $CONTROL FILE = n,~n, is
equivalent to the form $CONTROL FILE = n,, FILE = n,,
...... FILE = n,. That is, a range may be specified.

The compiler command $CONTROL FILE=n in a program
defines the file for the FORTRAN Logical Unit Table
(FLUT, see Section VIII). The FLUT is used by the FOR-
TRAN/3000 Formatter subsystem for file system access
during program execution. If a file is referenced as a con-
stant FORTRAN unit number in an input/output state-
ment, it need not be included as a FILE parameter in a
$CONTROL command. However, if it is referenced only as
a variable, it must be included.

Figure 9-2 contains an example of the FILE parameter. The
FORTRAN unit number in the READ statement is refer-
enced by the variable IPU, and the FORTRAN unit number
in the WRITE statement by the constant 6. Only FOR-
TRAN unit number 20, the value assigned to IPU, need be
included as a FILE parameter $CONTROL command. The
MPE :FILE command equates the formal file designator
FTN20 to the actual designator MAILLIST. (See the
MPE Commands Reference Manual for a discussion of the
:FILE command.) When the READ statement is executed,
file MAILLIST is read.

See Section VIII for a further discussion of the
FORTRAN/3000 file facility.

9-9. FIXED PARAMETER. The FIXED parameter
has the form $CONTROL FIXED and can appear any-
where in a program unit. The FIXED parameter takes
immediate effect.

The FIXED parameter specifies that subsequent state-
ments in the program unit are in fixed-field format (see
Section I). The FIXED parameter is set by default unless
changed by the FREE parameter.

9-10. FREE PARAMETER. The FREE parameter
has the form $CONTROL FREE and can appear anywhere
in a program unit. The FREE parameter takes immediate
effect.

The FREE parameter informs the compiler that subse-
quent statements are in the free-field format (see Section
I). The FREE parameter clears the FIXED parameter.

9-11. INIT PARAMETER. The INIT parameter has
the form $CONTROL INIT and can appear only at the
beginning of program units. It applies only to the program
unit which immediately follows it.

The INIT parameter requests the compiler to generate
code to initialize all local variables for the program unit.

Arithmetic variables are initialized to zero, logical vari-
ables to .FALSE., and character variables to all null
characters.

The $CONTROL INIT command initializes each word of a
character variable to %000000, which represents two null

MAY 1979

characters. This is different from putting blanks (or spaces) The INIT parameter is honored only at the beginning of
in the character variable, since a word containing 2 blanks program units and is cleared by default if not specified.
is specified by %020040,

Apr 1978 9-4a

¢tFILE FTN2¢=MAILLIST,OLD
t FORTGO FTRANZ26

PAGE wudt

pon) oY
QU2 LY
LoDl 3089
5101592 301919]
VYD S 00D
ROV Y
PR T8
141419 5353541
1ty aeliaaly)
Db | oy
Vv 110w
vl 2000
W 3000

ok kok
*k Kk NO

HP321028.¢9.9

$CONTROL FILE=24d
PROGRAM FILE

c

c CONTRCL FILE PARAMETER EXAMPLE

C

(%1% FORMAT (T5,53)
CHARACTER*19 MNAME
1PU=20

14 READ(IPU,END=244) NAME
WRITE(O, 1 BINAMEL1319]
GO TO 1@

2 STOP
END

GLOBAL STATISTICS Fokkk

ERRORS, NO WARNINGS *d#x

TOTAL COMPILATION TIME @:om:01
TOTAL ELAPSED TIME BDr0319

END OF COMPILE

END OF PREPARE

JOHN BIGTOWN
LOIS ANYONE
ALI BABA
JAMES DOE
JANE DOE
JOHN DOUGHE
SPACE MANN
KING ARTHUR
JENNA GRANDTR
KARISSA GRANDTR
SWASH BUCKLER
KNEE BUCKLER

END OF PROGRAM

Figure 9-2. $CONTROL FILE Parameter Example

9-5

tFILE FTN28=MAILLIST,OLD
:FORTGO FTRAN25

PAGE wwyi HP321928. % .0

VYl ePw $CONTROL FILE=20,LOCATION

povly wddg 2806 PROGRAM FILE
Vel d3vmw C
PRLIO VWAL C CONTROL FILE PARAMETER EXAMPLE

Bovly vuxdseds C
o1 N I 7141% YoY% R 7] FORMAT (T5,5)

K1Y PYINS TR0 CHARACTER*19 NAME
P bl 8owd IPU=20

bewl2 VOB 1Y READ(IPU, END=200)NAME
LPV2T VUL BV WRITE(6, 12)INAMELT1 219]
VYYSY VY1 1O GO TO 10

PLYST VORI 20VD 200 STOP

652 VoY1 39y END

*k kk GLOBAL STATISTICS * kokk

ke dok NO ERRORS, HO WARNINGS didox

TOTAL COMPILATION TIME 0:00:01

TOTAL ELAPSED TIME s 25

END OF COMPILE
END OF PREPARE

JOHN BIGTOWN
LO1S ANYONE
ALI BABA
JAMES DOE
JANE DOE
JOHN DOUGHE
SPACE MANN
KING ARTHUR
JENNA GRANDTR
KARISSA GRANDTR
SWASH BUCKLER
KNEE BYJCKLER

ZND OF PROGRAM

Figure 9-3. SCONTROL FILE LOCATION Parameter Example

9-12. LABEL/NOLABEL PARAMETERS. The
LABEL/NOLABEL parameters have the form
$CONTROL LABEL or $CONTROL NOLABEL and can
appear anywhere in a program unit. These parameters
take effect at the end of the program unit. See figure 9-1
for a label map example. All statement labels are printed,
along with a CODE OFFSET column. The code offset list-
ing informs the user where the first machine instruction
for that statement begins. For example, statement
number 10 has a code offset of 35 (octal), which means that
the first machine instruction for this statement is at loca-
tion 35 (octal) in the label map (see the circled instruction
in figure 9-1). The label map is helpful when correcting a
program, in that it allows the user to observe the machine
instructions for any labelled statement. The NOLABEL
parameter clears the LABEL parameter (if it is on). The
NOLABEL parameter is set by default.

9-13. LIST/NOLIST PARAMETERS. The
LIST/NOLIST parameters have the form $CONTROL
LIST or $CONTROL NOLIST and can appear anywhere in
a program unit. These parameters take immediate effect.

The LIST parameter is set by default and all compilations
will produce listings of all statements, symbol maps (if
specified), label maps (if specified), etc., during compila-
tion. If the NOLIST parameter is set, however, no listings
will occur during compilation.

9-14. LOCATION/NOLOCATION PARAME-
TERS. The LOCATION parameter of the $SCONTROL
command has the form $CONTROL LOCATION, and can
appear anywhere in the program unit.

The LOCATION parameter requests the compiler to list
the P-relative address offset from the beginning of a pro-
gram unit for each statement. This feature is useful with
certain modes of debugging programs.

This option may appear only before a program unit and
will be in effect until reset by NOLOCATION.

The P-relative address within the program unit will be
listed on the left side of the listing. The default is NO-
LOCATION. This feature is disabled by errors because no
code is generated. If the LOCATION parameter is used, any
existing error(s) also disable the CROSSREF and LABEL
options.

9-15. MAP/NOMAP PARAMETERS. The MAP/
NOMAP parameters have the form $CONTROL MAP or
$CONTROL NOMAP and can appear anywhere in a pro-
gram unit. These parameters take effect at the end of the
program unit.

If the MAP parameter is included in the compiler command,
the output listing shows all the symbolic names and their
structures, such as simple variable, array, function, subrou-
tine and so forth. The listing also shows the various types,
such as integer, character, or real. The addresses are listed
in octal form. Character variables do not always start on
word boundaries and therefore are referred to by their byte
addresses. All other variables have word addresses.

MAY 1979

Figure 9-1 presents a listing of real and integer variables.
Character variables appear in the symbol map shown in
Figure 9-4. Variables which are grouped in a common block
are referred to by addresses relative to the beginning of the
common block.

The NOMAP parameter clears the MAP parameter (if it is
on). The NOMAP parameter is set by default.

9-16. SEGMENT PARAMETER. The SEGMENT
parameter has the form $SCONTROL SEGMENT = name,
where name can be any symbolic name (up to 15 charac-
ters). The SEGMENT parameter can appear only at the

beginning of a program unit. The name is reset to SEG’ at
the end of each program unit.

By using the SEGMENT parameter, different segment
names can be assigned to program units. When the com-
plete source program is compiled, all program units hav-
ing the same segment name are compiled into one seg-
ment. The various segments then are combined into one
complete executable program. (All program units having
no segment name are compiled into the segment contain-
ing the default name SEG’.)

See the MPE Intrinsics Reference Manual for a complete
discussion of segmentation.

9-17. SOURCE/NOSOURCE PARAMETERS. The
SOURCE/NOSOURCE parameters have the form
$CONTROL SOURCE or $CONTROL NOSOURCE and
can appear anywhere in a program unit. These paramet-
ers take immediate effect.

The SOURCE parameter is set by default in all the cases
except in direct interactive mode when $STDIN and
$STDLIST are same. Refer to figure 12-1 where $STDIN
is the source file and is not listed during compilation.

The SOURCE parameter causes all source program
statements to be listed during compilation.

If the NOSOURCE parameter is specified, the source
program statements are not listed during compilation, but
symbol maps, label maps, etc. (if specified) are listed. This
parameter differs from the NOLIST parameter (see parag-
raph 9-13) which suppresses all listings.

9-18. STAT/NOSTAT PARAMETERS. The STAT/
NOSTAT parameters have the form $CONTROL STAT or
$CONTROL NOSTAT and can appear anywhere in a pro-
gram unit. These parameters take immediate effect. Their
function is to control the listing of compilation time statis-
tics for each program unit.

If STAT and LIST are both defined, the following is listed
on $STDLIST and the list file (if a list file is specified).
1. Number of errors and warnings.

2. Name and disposition of program unit.

3. Segment name if the program unit was successfully
compiled.

9-7

2 FORTRAN

PAGZ 201

S
[2R A
2
K190
YA
VB Y A
PN

VUEAB
Coua s

A A e
Cov S8 Cvie

g) v A
OV S
Lwgl 26 e
el 3a0v
cal avigd
OHAYE B GF]
SOl oy
e) 02Uk
Cueloley
Ol oddv:
wall ool
VAN bl
AV RS 51]
302 Cwidio
A2 1wl

SYVMBOL
NAXE
AuULTS
CHILDK=N
CumPuicir
FIRSTHAME
boaoliiio
LASTHAME
MENBERSHI

COMKON
NAME

Coxs

PIUGRAM U

MAPI
HP321028, 20
SCUONTROL MAP
PRUGRAM MAP

COHTROL MAP PARAETER EXAMPLE

C

ChARACTER=1S FIRSTHAME,LASTNAME

CHARACTER=7 HEADING
INTEGER ADJLTS,CHILDREN , (a2 MBERSHIP

EXTERNAL COMPUTEPRICE

COMMUN FFIRSTHAMC, LASTNAME, MEKBERSHIP

DIs2LAY #0ils5 RUJTING SiHALL DETERMINE THE TOTAL®
DISPLAY "p]1Co OF YUUR COUCERT OR DANCE TICKETS®
LISELAY "pLlASE =liTeE 2CONCERTZ OR “DANCE’®
ACCEPT HzaADING

DISFLAY YLASTRAMEZ®

ACCEPT LASTNAsE

DISFLAY “MEMBERSHIPZ®

ACCLEPT MeMBERSKIP

DISPLAY “iUlZER OF ADULTS?Y

ACCEPT ADULTS

DISPLAY “HUMBER OF CHILDR:EN?Y

ACCERT CHILDREN

DISPLAY HEADING,“TICKZTS"

CALL COMPUTEZRICE(ADULTS,CHILDREN)

STopP

END

MAP

TYPE STRUCTURE ADDEESS
INTEGER SIMPLE VAR Q+3]
INTEGER SIMPLE VAR Q+32

ICe SUBROUTIHE
CHARACTER SINMPL: VAR E1%
CEARACTER SIMPLE VAR 2+43 1]
CHARACTER SIMPLE VAR AN COMMON

p INTEGER SIMPLE VAR 3N COMMON

CUMMOR

ELOCKS
LENGTH

o

NIT MAP COMPILED

%% %ok GLCEAL STATISTICS Tk
halalel L0 EPRORS, NO WARNINGS #%kx
FOTAL COMPILATION Tidse @100l

TOTAL £LA

&N OF CO

crsle)

pPazl TIME

WPILE

Apr 1978

Figure 9-4. SCONTROL MAP Parameter Example.

9-Ta

4. Amount of code generated.

5. A rough estimate of the fixed stack required by the
program unit.

6. CPU time.
7. Elapsed time.

If NOSTAT or NOLIST is defined, and a list file is
specified, the following is listed on the list file:

1. Number of errors and warnings, if any.

2. Name and disposition of program unit.

If any errors or warnings were detected, then the above
also is listed on $STDLIST.

If NOSTAT or NOLIST is defined, and a list file is not
specified, then nothing is listed unless an error or warning
is detected. In that case the following is listed:

1. Number of errors and warnings, if any.

2. Name and disposition of program unit.

NOSTAT is the default option

9-19. USLINIT PARAMETER. The USLINIT pa-
rameter initializes the uslfile (see Section XII) by deleting
all existing contents. This ensures that the file receiving
the output from the compiler is initialized to an empty
condition before compilation starts. The USLINIT param-
eter must appear before the start of the first program unit
(if it is used). Otherwise it is ignored.

9-20. WARN/NOWARN PARAMETERS. The
WARN/NOWARN parameters have the form $CONTROL
WARN or $CONTROL NOWARN and can appear any-
where in a program unit. These parameters take im-
mediate effect.

The WARN parameter is set by default and causes the
compiler to list all warning messages during compilation.

The NOWARN parameter clears the WARN parameter
and suppresses all warning messages.

9-20A MORECOM PARAMETER

As noted in paragraph 5-9, the maximum number of
pointers allowed for referencing the variables (simple vari-
ables and/or arrays) in COMMON is 254. This limit exists
because only 254 variable cells are available for separate
pointers in the primary DB area of memory. If your pro-
gram exceeds this limit, the segmenter prints

TOO MANY DATA LABELS

In such a situation, you may override this limit by using the
MORECOM parameter of the $CONTROL command to

9-8

provide an alternative method for addressing COMMON
variables. This method can increase COMMON storage up
to 254 COMMON blocks, with one primary DB location
assigned to each block. This removes the restriction on the
number of variables, but also decreases the program’s
efficiency because it produces more code. When the $CON-
TROL MORECOM is used, the primary limiting factor on
the number of variables allowed is the size of the stack.
$CONTROL MORECOM can appear only at the beginning
of the source program. However, if multiple compilations
are combined in the same USL file, this parameter must
appear in the beginning of the main program and each
subprogram unit. Sometimes it is possible to have more
than 254 COMMON variables without using the MORECOM
parameter. See Appendix F for explanation.

9-21. $PAGE COMMAND

The $PAGE command is used to start a new page for the
listing output to [listfile.

Normally, the listfile will start a new page based on the
number of lines that have been printed on the current
page. The $PAGE command, however, may appear any-
where in a source program and will cause the output
listing to start on a new page.

Thus, the $SPAGE command ejects the current page of
listfile to the top of the next page and prints a heading (if
one has been included in character string list) followed by
two blank lines.

If the optional character string list is included in the com-
mand, a title will be printed for the new page and all
subsequent pages until changed by another $PAGE com-
mand or a $TITLE command (see paragraph|9-22).

Character string list consists of one or more character
strings separated by commas (each string is enclosed in
quotation marks). When the list is printed, the quote
marks, separating commas and any blanks between
strings are deleted and the character strings are concate-
nated and placed in the heading. One character string in
the list cannot be continued from one line to the next, but
a new individual string in the list can be started on a
continuation line. Any line to be continued must end with
an & and the new line must begin with a $.

MAY 1979

No page eject occurs if the NOLIST parameter of the
$CONTROL command is specified since no listing will be
printed. No page eject takes place if the $PAGE command
is within the range of an unsatisfied $IF command (see
paragraph 9-24).

9-22. $TITLE COMMAND

The $TITLE command is used to print a page heading
whenever the top of the page is encountered in listfile.

Apr 1978

The character string list is used for subsequent page head-
ings until another $TITLE or $PAGE command is encoun-
tered. If no character string list is included with a $TITLE
command, the command has no effect.

Character string list is the same as that defined for the
$PAGE command in paragraph 9-21.

9-23. SINTEGER*4 COMMAND

The $INTEGER*4 command is used to cause the compiler
to treat explicit and implicit INTEGER types as 32-bit
integers instead of as 16-bit integers.

9-8a

When this compiler command is used, it must appear before
the first source statement.

Double integers (INTEGER*4) may appear in any specifi-
cation statement in which single integers may appear. All
decimal integer constants will be treated as 32-bit con-
stants. In this case, the use of INTEGER*2 is available for
explicit typing, or in an IMPLICIT statement to force
variables to be 16-bit integers. Composite, ASCII, and
octal constants still require the trailing “J”. The following
intrinsics will accept and/or return 32-bit integers in place
of their normal 16-bit integer values:
BOOL,MOD,IDIM,IABS,IFIX,INT,FLOAT, MAX0,MAX1,
MINO,MIN1,AMAX0,AMINO,ISIGN,IDINT.

Note: A double integer may appear anywhere

an integer may appear. However, using
double integer as loop parameters in a
DO statement is considerably less effi-
cient than using single integers.

It is important to note that $INTEGER*4 forces all
decimal integers to double integers. Therefore, it
may be necessary to force parameters of external
procedures back to single integer for correct opera-
tion. Intrinsic IJINT will perform this function.
Examples of external procedures for which this must
be done are FNUM, UNITCONTROL, and FOPEN
(unless these are defined in a system intrinsic
statement).

9-24. $SET AND $IF COMMANDS

It is possible to set conditions in a FORTRAN/3000 source
program which will cause certain portions of the program
to be ignored (except for listing) during compilation. This
function is helpful for unusually long programs or for
programs which use several subprograms. (It may be de-
sirable to compile and correct portions of the program. The
$SET and $IF commands can be used for this purpose.)

where n varies from 0 to 9, inclusive.

Note: {} denotes that one of the parameters,

but not both, must be included.

Apr 1978

The $SET command sets or clears condition n. If more
than one parameter is specified, each parameter must be
separated from the next by a comma. All conditions begin
the compilation in the cleared (OFF) state.

where n varies from 0 to 9, inclusive.

The $SET command sets the condition and the $IF com-
mand checks the condition. If the condition specified by the
$IF command is true, the succeeding source program
statements (until the next $IF command) are compiled.

If the specified condition is false, the succeeding source
program statements are ignored by the compiler (except
for listing) until the next $IF command is encountered.
The only command not ignored is the $EDIT command
(see paragraph 9-25).

An $IF command with no parameters merely terminates
the preceding $IF command. Its form is $IF.

9-25. S$EDIT COMMAND

The $EDIT command provides the following editing
capabilities:

e Merging correction statements (textfile) with an old
master source program (masterfile) to produce a new

program source file (newfile) for compilation.

e Checking source record sequence numbers for ascending
order.

e Bypassing sections of source programs.

o Renumbering source record sequence numbers.

where any of the following parameters may be specified:

VOID = sequence number
SEQNUM = sequence number
NOSEQ

INC = number

FIXED
FREE

For example,
$EDIT VOID = 100, SEQNUM = 90

Use of the $EDIT command depends on the parameters
specified (see paragraph 9-26) and the files specified in the
MPE/3000 :FORTRAN command (see Section XII).

If the :-FORTRAN command specifies both masterfile and
textfile, source statements from both files are merged, and
the statement sequence numbers are checked for ascend-
ing order. Each sequence number in columns 73 to 80 of
the record unit must either be all blank or greater than
the previous sequence number. In merging masterfile with
textfile, one record is read from each file and their sequ-
ence numbers are compared. The record with the lower
sequence number is compiled. If newfile was specified, this
record is passed to newfile. If the sequence numbers are
identical, the record from textfile is compiled and passed to
newfile (if newfile was specified in the :FORTRAN com-
mand). Sequence numbers can be specified as numeric
only.

By default, records sent to newfile are sent with un-
changed sequence numbers. To renumber sequence num-
bers, use the SEQNUM parameter of the $EDIT com-
mand. Sequence numbers are checked by the compiler for
proper order only if masterfile is specified in the :FOR-
TRAN command. If textfile is specified and masterfile is
not specified, sequence numbers are not checked by the
compiler.

The first line of a $EDIT command can contain a sequence
number to indicate placement in the textfile, but continua-
tion lines must have blank sequence fields.

9-26. $EDIT COMMAND PARAMETERS. $EDIT
command parameters and their meanings appear in the
following paragraphs.

When the VOID parameter appears in a $EDIT command,
the compiler bypasses all masterfile records with a
sequence number less than or equal to the sequence
number in the VOID parameter. The sequence number can
be specified either as a number or as a character string. If
the number is less than eight digits, the compiler left-fills
the number with zeros to achieve eight digits. If a charac-
ter string is used and it is less than eight characters, the
compiler strips the quote marks and left-fills the field with
blank characters to achieve eight characters.

9-10

The SEQNUM parameter renumbers succeeding source
records sent to newfile starting with the sequence number
specified in SEQNUM. If the INC parameter (see below) is
specified, each subsequent source record sequence number
is incremented by the value associated with INC. IfFINC is
not specified, sequence number is incremented by the de-
fault value 1000 for each succeeding record.

The NOSEQ parameter indicates that succeeding sequ-
ence numbers retain their current sequence numbers. If
SEQNUM = sequence number is not specified, the NOSEQ
condition occurs regardless of whether NOSEQ is
specified.

where number indicates the value by which each source
record sequence number is incremented when the SEQ-
NUM parameter is specified. INC is ignored if newfile is
not specified in the :FORTRAN command or if the last
SEQNUM parameter was overridden by a NOSEQ
parameter.

The FIXED parameter following a $EDIT command in-
forms the compiler that the source records in the textfile
are in fixed-field format (sequence field is located in col-
umns 73 through 80 of the source record).

The FREE parameter informs the compiler that the source
records in the textfile are in free-field format (sequence
field is located in columns 1 through 8 of the source re-
cord).

When a record is read from the textfile, the computer must
locate the sequence field to determine when the record is
to be merged with the masterfile. At the beginning of
compilation or after a $EDIT command specifying FIXED,
the compiler takes characters 73 through 80 of the record
as the sequence field. Following a $EDIT command
specifying FREE, the compiler takes the sequence field to
be the first character of the record up to (but not including)
the first blank. The compiler uses only the last eight
characters of this field and prefixes the sequence string
with ASCII zero characters if the field is less than eight. A
blank in column one indicates an all blank sequence field.

When a record from the textfile is merged with the
masterfile, if the mode (FIXED or FREE) is the same as
the mode of the record in the masterfile, then the textfile
record is used as is. If the mode differs, the textfile record is
converted to the masterfile mode. A line read as FIXED is
converted to FREE (if the masterfile mode is FREE) by
moving the sequence field (columns 73 through 80) to the
beginning of the line, inserting a blank following the se-
quence field, and following that with the characters origi-
nally in columns 1 through 71 of the line. Column 72 of the
line is lost since free-field records contain a maximum of
71 characters following the sequence field.

A line read as FREE is converted to FIXED (if the
masterfile mode is FIXED) by moving the last eight
characters of the sequence field (remember the blank is
not part of the field) to columns 73 through 80.

Note that statements and comments in textfile which are
to be converted should be written in the mode of the
masterfile except for the sequence field. For example,
comment lines merged into a fixed-field program must use
the letter C (in the appropriate place in the line) instead of
#, which is the sign for a comment line in free-field mode.

9-27. $TRACE COMMAND

The $TRACE command specifies variables, arrays, labels,
and other program elements (identifiers) to be monitored
by the HP 3000 Symbol Trace program (TRACE/3000)
during program execution. For further information on the
TRACE/3000 program, consult the Trace/3000 Reference
Manual.

where

program unit

is the name of the program unit to which the
identifiers belong. If program unit is omitted from
the command, the compiler uses the name MAIN’.

identifier

can be a variable within the referenced program
unit, or an array, a statement label, or a subroutine
or function subprogram within the referenced
program unit.

The compiler will generate code to invoke the TRACE
subsystem within the program unit whenever it encoun-
ters a line of code with ARRAY, AJAX, A or B in it.

$TRACE commands must appear before the first
FORTRAN/3000 statement of the program unit referenced
in the $TRACE command. For a multiprogram unit com-
pilation, $TRACE commands can appear before any pro-
gram unit preceding the affected one,thus allowing all
$TRACE commands to be grouped before the first program
unit in the multiunit compilation.

9-11

FORTRAN/3000 INTRINSIC FUNCTIONS AND
BASIC EXTERNAL FUNCTIONS|| x

SECTION

FORTRAN/3000 program units can call FORTRAN/3000
intrinsic functions and basic external functions by re-
ferencing these functions in FORTRAN/3000 statements.

A reference to a FORTRAN/3000 intrinsic function gener-
ates code to perform an indicated function (such as con-
verting a real value to an integer value) or generates a call to
a procedure (written in SPL/3000) to perform the function.

Note: FORTRAN/3000 intrinsic functions can
be called from FORTRAN/3000 prog-
rams only and should not be confused
with HP 3000 system intrinsics (such as
FOPEN, ASCII, etc.) which can be called
from FORTRAN/3000 and other pro-
gramming languages. See the MPE In-
trinsics Reference Manual for definitions
of HP 3000 system intrinsics.

Basic external functions are written in SPL/3000 and can
be called by FORTRAN/3000 program units by referenc-
ing the name of the function.

10-1. FUNCTION REFERENCES

A function reference is a symbolic name from one to 15
alphanumeric characters (the first of which must be al-
phabetic) followed by a list of arguments. The symbolic
name references a computational process (defined else-
where) which is designed to return a value to the function
symbolic name.

where

name
is the symbolic name of the FORTRAN/3000 intrin-
sic function or basic external function.

param

is a variable name, constant, array name, array
element, function subprogram name (see Section
XI), subroutine subprogram name (see Section XI),
Hollerith constant, or expression. (See Section XI for
a discussion of actual and dummy arguments.)

FEB 1977

The above statement calls the basic external function
SQRT to compute the square root of 6.5, which is the
param, or actual arguinent, passed to the function.

A function reference returns a specific value of the type
associated with the function and is equivalent in usage to
a variable reference of the same type. In the previous
example, a real number is returned as the value of
SQRT(6.5). When a function reference is encountered dur-
ing the evaluation of an expression (e.g., A = SQRT(6.5)),
control is passed to the referenced function. The function
is executed using the actual arguments listed in the func-
tion reference. The function name is assigned a value and
passed back to the referencing expression, which con-
tinues its evaluation.

10-2. FORTRAN/3000 INTRINSIC FUNC-
TIONS

A FORTRAN/3000 intrinsic function is a computational
process which performs an operation such as converting
aninteger value to areal value. To perform this operation,
the intrinsic function may be generated code or it may
generate a call to a procedure (already written). In either
case, the process is invisible to the user and the intrinsic
can be used merely by writing a function reference {(along
with the appropriate arguments). FORTRAN/3000 intrin-
sic functions are predefined to the FORTRAN/3000 com-
piler and the function reference will call the correct pro-
cess.

For example,
J = IFIX(A)
converts the value of variable A from real to integer.

A list of all FORTRAN/3000 intrinsics and their uses and
arguments is presented in table 10-1.

10-3. BASIC EXTERNAL FUNCTIONS

Some basic computational procedures (such as taking the
square root of a number) are defined in FORTRAN/3000
as basic external functions. These functions are written in
SPL/3000 but can be referenced and used by
FORTRAN/3000. To use a basic external function, the
function name, along with the appropriate arguments,
must appear in a function reference.

101

For example,
A = SQRT(B)

where SQRT is the name of the basic external function for
computing the square root of a value and B is the value (or
argument) for which the square root will be computed.

Basic external functions available to FORTRAN/3000 are
shown in table 10-2. Also included are the definitions of
the functions, the number of arguments allowed for each
function, the types of arguments that are allowed, and the
function types.

To use a basic external function of type other than real or
integer, the function must be declared in a Type statement
or an IMPLICIT statement in the calling program.

For example, if it were necessary to use the basic external
function DSQRT (which is type double precision) to com-
pute the square root of A, then the function (DSQRT) and
the argument to be passed to it (A) must both be declared
in a Type or IMPLICIT statement, as follows:

DOUBLE PRECISION DSQRT,A
or
IMPLICIT DOUBLE PRECISION (A,D)

The last statement informs the compiler that all variables
beginning with the letters A and D are double precision,
thus DSQRT is typed as double precision.

When the basic external function is referenced, the actual
arguments passed to it are checked for proper type. The
basic external function type as defined is associated with
the result.

A function subprogram (see Section XI) can be defined
with the same name as a basic external function. For
example, you may write your own procedure to compute
square root, name it SQRT, and reference it in your prog-
rams. The new function takes the place of the system-
defined basic external function in the program unit which
defined the new function and in any other program unit
which references it.

10-4. GENERIC FUNCTIONS

Generic names simplify the referencing of intrinsic and
basic external functions because the same name may be
used with more than one type argument.

10-2

The result of the function is determined by the type of
argument(s), as shown in table 10-3. If a particular func-
tion, such as MOD, requires more than one argument,
then all arguments in a particular call must have the
same type.

For example, the following is illegal:

INTEGER 1
REAL A
I=MOD(,A)

If a generic name appears as a dummy argument, then
that name does not identify an intrinsic function in that
program unit.

If a specific name that is also a generic name appears in a
Type statement confirming the type of the specific func-
tion, the function is available for referencing in the pro-
gram unit only with the type of argument required with
the specific name of the function. That is, the generic
property of that function is disabled.

For example, the following is illegal:

INTEGER MOD
REAL A,B
A=MOD(A,B)

If a Type statement specifies some other type for a specific
function name, that name is not available for referencing
that pre-defined function. For example, redefinition of
IABS as real will make the pre-defined function IABS
unavailable, although ABS will still be generic for real
and double precision numbers. Stated simply, redefinition
in any way of a generic function name results in the loss of
the generic property of that name. Changing the type of a
specific function name results in the inability to reference
that pre-defined function either directly or generically.

Note: If the main program references a function
subprogram, a statement function, or a
basic external function, the type informa-
tion of the respective functions must be
included either explicitly or implicitly;
otherwise an error results during program
execution. The type information is not
necessary when generic functions or
FORTRAN/3000 intrinsic functions are
referenced. Refer to Section A-4 for
information on HP 3000 system intrinsics.

MAY 1979

Table 10-1. FORTRAN/3000 Intrinsic Functions

INTRINSIC NUMBER OF FUNCTION TYPE OF TYPE OF
FUNCTION DEFINITION ARGUMENTS REFERENCE ARGUMENT FUNCTION
Absolute Value E] 1 ABS(a) Real Real
|ABS(a) Integer Integer
JABS(a) Double Double
Integer Integer
DABS(a) Double Double
Precision Precision
Truncation sign of a times 1 AINT(a) Real Real
Ijrgest Integer INT(a) Real or Integer
< |a| Logical
IJINT(a) Double Integer
Integer
JINT(a) Real Double
Integer
JIINT(a) Integer Double
Integer
IDINT(a) Double Integer
Precision
JDINT(a) Double Double
Precision Integer
DDINT(a) Double Loubie
Precision Precision
Remaindering a, (mod a,) 2 AMOD(a,, a,) Real Real
MODya,, a,) Integer Integer
"JMOD(a,, &) Double Double
Integer integer
Choosing largest MAX (a,, @z . . . at least 2 AMAXO0 Integer Real
value (81, 8y .., an)
AMAX1 Real Real
(ay, @z ..., a,)
MAXO0 Integer Integer
(@, @ ..., an)
MAXA Real Integer
(a1r a21 an)
DMAX1 Double Double
(ay, a,, . . ., a,)
AJMAXO0 Double Real
Integer
JMAXO Double Double
(ay, @, . . ., an) Integer Integer
JMAX1 Real Double
(ayaz ..., ap) Integer

10-3

Table 10-1. FORTRAN/3000 Intrinsic Functions (Continued)

INTRINSIC NUMBER OF FUNCTION TYPE OF TYPE OF
FUNCTION DEFINITION ARGUMENTS REFERENCE ARGUMENT FUNCTION
Choosing smallest Min (a,, @, . . .) at least 2 AMINO Integer Real
value (@, @z .. ., an)
AMIN1 Real Real
(ay, a, ..., an)
MINO Integer Integer
(ay, @, an)
MIN1 Real Integer
(a1r a2 """ an)
DMIN+ Double Double
(ay, @, .. ., a,) Precision Precision
AJMINO Double Real
(as, ap ..., a,) Integer
JMINO Double Double
(as, @ .- -, a,) Integer Integer
JMIN1 Real Double
(a,, @y .. ., ay,) Integer
Float Conversion from 1 FLOAT (a) Integer Real
integer to real
FLOATJ (a,) Double Real
Integer
Fix Conversion from 1 IFiX(a) Real Integer
real to integer JFIX(a) Real Double
Integer
Transfer of Sign Sign of a, 2 SIGN(a,, a,) Real Real
times |a, | ISIGN(a,, a,) Integer Integer
DSIGN(a,, a,) Double Double
Precision Precision
JSIGN(a,, a,) Double Double
Integer Integer
Positive Difference a, — Min(a,, a,) 2 DIM(a,, a,) Real Real
IDIM(a,, a,) Integer Integer
JDIM(a,, a,) Double Double
Integer Integer
Obtain most signifi- 1 SNGL(a) Double Real
cant part of double Precision
precision argument
Obtain real part of 1 REAL(a) Complex Real
complex argument
Obtain imaginary 1 AIMAG(a) Complex Real

part of complex
argument

10-4

Table 10-1. FORTRAN/3000 Intrinsic Functions (Continued)

INTRINSIC NUMBER OF FUNCTION TYPE OF TYPE OF
FUNCTION DEFINITION ARGUMENTS REFERENCE ARGUMENT FUNCTION

Express single pre- 1 DBLE(a) Real Double

cision argument Precision

in double precision

form

Express two real a, +aVv -1 2 CMPLX(a,, az) Real Complex

arguments in com-

plex form

Obtain conjugate 1 CONJG(a) Complex Complex

of a complex

argument

Obtain the position INDEX 2 INDEX(a,, a,/ Character Integer

of the character in

the first argument

which begins the

substring which

matches the second

argument

Convert character INUM 1 INUM(a) Character Integer

expression o inte- JNUM 1 JNUM(a) Character Double

ger (INUM), double integer

integer (JNUM), real

(RNUM), or double RNUM 1 RNUM(a) Character Real

precision (DNUM) DNUM 1 DNUM(a) Character Double
Precision

Convert an arithme- STR 2 STR(a,, a,) Integer, Real, | Character

tic expression (al) of ifa,is Conversion Double Pre-

any type except , format is: cision. or

complex o a string ‘Ejr(?g(‘:e Integer :: DOUb'é

of length a,. Reai Ga.6 Integer

a, must be integer Double Precision Ga,. 17

constant.

Convert integer ex- BOOL BOOL(a) Integer Logical

pression to type
logical

FEB 1977

10-5

Table 10-2. Basic External Functions

BASIC EXTERNAL NUMBER OF FUNCTION TYPE OF TYPE OF
FUNCTION DEFINITION ARGUMENTS REFERENCE ARGUMENT FUNCTION
Exponential ed 1 EXP(a) Real Real
1 DEXP(a) Double Precision | Double Precision
1 CEXP(a) Complex Complex
Natural Logarithm Log, @) 1 ALOG(a) Real Real
1 DLOG(a) Double Precision | Double Precision
1 CLOG(a) Complex Complex
Common Logarithm Log,, (a) 1 ALOG10(a) Real Real
1 DLOG10(a) Double Precision | Double Precision
Trigonometric Sine Sin (a) 1 SIN(a) Real Real
1 DSiN(a) Double Precision | Double Precision
1 CSIN(a) Complex Complex
Trigonometric Cosine Cos (a) 1 COS(a) Real Real
1 DCOS(a) Double Precision | Double Precision
1 CCOS(a) Complex Complex
Trigonometric Tangent Tan (a) 1 TAN(a) Real Real
DTAN(a) Double Precision | Double Precision
CTAN(a) Complex Complex
Square root (a)* 1 SQRT(a) Real Real
1 DSQRT(a) Double Precision | Double Precision
1 CSQRT(a) Complex Complex
Arctangent Arctan (a) 1 ATAN(a) Real Real
1 DATAN(a) Double Precision | Double Precision
Arctan (a,/ay) 2 ATANZ2(a,, a,) Real Real
2 DATANZ2(a,, a,) | Double Precision Double Precision
Remaindering a, (mod a,) 2 DMOD(a,, ay) Double Precision Double Precision
Modulus 1 CABS(a) Complex Real
Hyperbolic Sine Sinh (a) 1 SINH(a) Real Real
1 DSINH(a) Double Precision Double Precision
1 CSINH(a) Complex Complex
Hyperbolic Cosine Cosh (a) 1 COSH(a) Real Real
1 DCOSH(a) Double Precision Double Precision
1 CCOSH(a) Complex Complex
Hyperbolic Tangent Tanh (a) 1 TANH (a) Real Real
1 DTANH(a) Double Precision | Double Precision
1 CTANH(a) Complex Compilex

10-6

FEB 1977

Table 10-3. List of Generic Functions

GENERIC SPECIFIC TYPE OF TYPE OF
GENERIC FUNCTION NAME NAME ARGUMENT RESULT

Absolute value ABS ABS Real Real

IABS integer Integer

DABS Double Precision | Double Precision

CABS Complex Complex

JABS Double Integer Double Integer
Truncation to integer if SINTEGER*4 is not invoked INT INT Real or Logical integer

IFIX Real Integer

IDINT Double Precision | Integer

IJINT Double integer Integer
Truncation to integer if $INTEGER*4 is invoked JINT Real Double Integer

JDINT Double Precision | Double Integer

JFIX Real Double integer

JINT Integer Double Integer
Conversion to double integer JINT JINT Real Double Integer

JDINT Double Precision | Double Integer

JFIX Real Double integer

JUNT integer Double Integer
Conversion of data item to real REAL FLOAT Integer Real

SNGL Double Precision | Real

REAL Complex Real

FLOATY Double Integer Real
Remaindering MOD MOD Integer Integer

AMOD Real Real

DMOD Double Precision | Double Precision

JMOD Double Integer Double integer
Sign Transfer SIGN SIGN Real Real

ISIGN Integer Integer

DSIGN Double Precision | Double Precision

JSIGN Double integer Double Integer
Difference in magnitude DIM DIM Real Real

IDIM integer Integer

JDIM Double Integer Double Integer
Select largest value from a list MAX MAXO0 Integer Integer

AMAXA1 Real Real

DMAX1 Double Precision | Double Precision

JMAXO Double Integer Double integer

10-7

Table 10-3. List of Generic Functions (Continued)

GENERIC SPECIFIC TYPE OF TYPE OF
GENERIC FUNCTION NAME NAME ARGUMENT RESULT

Seiect smaliest value from a list MIN MINO Integer Integer

AMIN1 Real Real

DMIN1 Double Precision | Double Precision

JMINO Double Integer Double Integer
Sqguare Root SQRT SQRT Real Real

DSQRT Double Precision | Double Precision

CSQRT Complex Complex
Exponential EXP EXP Real Real

DEXP Double Precision Double Precision

CEXP Complex Complex
Natural Logarithm LOG ALOG Real Reatl

DLOG Double Precision | Double Precision

CLOG Complex Complex
Trignometric Sine SIN SIN Real Real

DSIN Double Precision | Double Precision

CSIN Complex Complex
Trignometric Cosine COSs COoS Real Real

DCOS Double Precision | Double Precision

CCOS Complex Complex
Trignometric Tangent TAN TAN Real Real

DTAN Double Precision | Double Precision

CTAN Complex Complex
Arc Tangent ATAN ATAN Real Real

DATAN Double Precision Double Precision

ATAN2 Real Real

DATAN2 Double Precision | Double Precision
Hyperbolic Sine SINH SINH Real Real

DSINH Double Precision Double Precision

CSINH Complex Complex
Hyperbolic Cosine COSH COSH Real Real

DCOSH Double Precision | Double Precision

CCOSH Complex Complex
Hyperbolic Tangent TANH TANH Real Real

DTANH Double Precision | Double Precision

CTANH Complex Complex

10-8

WRITING MAIN PROGRAMS AND
SUBPROGRAMS IN FORTRAN/3000|[xi

SECTION

An executable FORTRAN/3000 program consists of prog-
ram units made up of a main program and any necessary
subprograms. Subprograms are subroutine subprograms,
function subprograms, or block data subprograms (written
in FORTRAN/3000 and compiled by the FORTRAN/3000
compiler), or procedure subprograms (written in a lan-
guage other than FORTRAN/3000, usually SPL/3000
(Systems Programming Language for the HP 3000) and
compiled by the appropriate compiler) which can be called
from a FORTRAN/3000 program. This section discusses
the writing of main programs and subprograms and Sec-
tion XII explains how to compile and execute these prog-
rams on the HP 3000 Computer System.

11-1. MAIN PROGRAMS

A main program consists of any necessary non-executable
statements (such as FORMAT and declaration state-
ments), one or more executable statements (assignment,
control, or input/output), and an END statement. The
main program can be assigned a symbolic name by using a
PROGRAM statement as the first line of the program. The
PROGRAM statement has the form

where

name
is an alphanumeric string from one to fifteen charac-
ters (the first character must be a letter).

Any main program not headed by a PROGRAM statement
is assigned the special name MAIN’ by the
FORTRAN/3000 compiler.

An example of a short main program is shown in figure
11-1.

11-2. SUBPROGRAMS

As discussed earlier, there are four basic types of subprog-
rams which can be called from FORTRAN/3000 program
units:

e Subroutine subprograms, which may perform a compu-
tation and pass one or more values back to the calling
program, or a subroutine may perform a computational
process such as a sort.

e Function subprograms, which perform a computation
and return a value through its name, and may pass one
or more values back to the calling program through its
arguments.

e Block data subprograms, which provide initial values
for simple variables or array elements in labeled com-
mon blocks.

e Procedure subprograms, which are written in a lan-
guage other than FORTRAN/3000 (usually SPL/3000)
and can be called from a FORTRAN/3000 program.

11-3. DUMMY AND ACTUAL ARGUMENT
CHARACTERISTICS

In the manipulation of subprograms, the calling program
unit may pass arguments to the subprogram to be used in
the computation.

The arguments passed by the calling program are called
actual arguments. The subprogram, which is structured
with dummy arguments, uses the actual arguments pas-
sed to it to replace the dummy arguments and perform the
computation.

For example,

A =65

B =83

M = RFUNC(A,B) * 3.14159
When the call is made to the function subprogram, the
addresses of the actual values A and B are passed to the
subprogram. The subprogram could be as follows:

FUNCTION RFUNC(C,D)

RFUNC = (C ** 2) + (D ** 3)

RETURN

END
The subprogram uses the addresses of A and B(passed to it
from the calling program) to indirectly reference these
variables. Thus, in effect, the variables C and D, which are
dummy arguments, assume the values of the actual ar-

guments (A and B) used in the referencing expression (in
this case, 6.5 for C and 8.3 for D).

11-1

:FORTGO FTRAN27

PAGE 9001 HP32102B.2¢ .0

ABOD122D PROGRAM MAIN

23302823 C

aR332332% C MAIN PROGRAM EXAMPLE

anBA4283 C

DA3359N3 193 FORMAT('Z',TIA,"X",T15,"X SAUARED",T28,"X CU3ED"//)
3326003 208 FORMAT(T9,I2,T18,13,T3%,14)

AA3BTTAA WRITE(6,198)
ARBARARA DO 12 I=1,19
2002950030 K=T%%2

BAALABBD L=1%%3

N@A112392 12 WRITE(6,287)1,KsL
282122069 STOP

2379132320 END

sk ek GLOBAL STATISTICS dek ok

Kk Aok NO ERRORS, NO WARNINGS *&xk
TOTAL COMPILATION TIME Q2:s20:01
TOTAL ELAPSED TIME Va4

END OF COMPILE

END OF PREPARE »
X X SHOUARED % CUBED
1 1 1
2 4 g
3 Ei 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
S g1 729
13 189 1000

END OF PROGRAM

11-2

Figure 11-1. Main Program Example

Actual arguments in a subroutine call or function reference
must agree in number, order, type (INTEGER, REAL, and
so forth) and structure with the dummy arguments they
replace. The structure must be either a simple variable,
array, function or subroutine name. (A constant is treated
as a simple variable.) One exception to the above rule is
that an array element, for example, A(4), used as an actual
argument may correspond to a dummy argument that is a
simple variable or an array.

Note: A function is called implicitly by being
referenced in a FORTRAN/3000 state-
ment. A subroutine is called explicitly
through the use of a CALL statement
(CALL statements are described in Sec-
tion IV). A further difference between a
function and a subroutine is that a func-
tion performs a computation and can re-
turn values to the calling program
through its arguments and it can assign
a resulting single value to the function
name, which then is passed back to the
calling program unit. A subroutine, on
the other hand, cannot assign a com-
puted value to its name. Instead, it may
return one or more values to the calliag
program unit through actual arguments
supplied in the CALL statement, or it
may perform some other computational
process, such as sorting a list of charac-
ters, which define, or redefine, many
values.

Within subprograms, dummy arguments may consist of
simple variables, array names, subroutine names, or func-
tion names. All variable names are local to the program
unit which defined them, and, similarly, dummy argu-
ments are local to the subprogram unit or statement func-
tion containing them. Thus, they can be the same as
names appearing elsewhere in another program unit. No
element of a dummy argument list can occur in a COM-
MON, EQUIVALENCE, or DATA statement. When an
array name is used as a dummy argument, the dummy
array name must be dimensioned in a DIMENSION or
Type statement within the body of the subprogram.

In subroutine subprograms, a list of asterisks (*) may
follow the list of dummy arguments. When the subprog-
ram is called using actual arguments, statement labels
(prefixed by $’s) are substituted for the asterisks to indi-
cate optional return points in the calling program. The
method of choosing optional return points is described in
paragraph 11-4. The types of actual arguments which may
appear in subroutine calls or function references are
shown below, with examples.

Constants: CALL SUBR(6.43,9.56)
Variable names: CALL SUBR(A,B)
Array names: CALL SUBR(ARR1, ARR2)

Array elements: CALL SUBR(ARR(1,2),
ARR(9,9))

FEB 1977

Expressions: CALL SUBR(X+Y,X/Y)
Subroutine names: CALL SUBR(SUB1,SUB2)

Function subprogram names: CALL SUBR
(FUNC1,FUNC2)

Note: When subroutine or function subprog-
ram names are used as actual argu-
ments, they must be declared in an EX-
TERNAL statement (see Section V) or be
followed by empty parentheses.

When a subroutine name is used as an actual argument, it
does not pass a value as do other actual arguments. In-
stead, it passes the name itself to the referenced sub-
routine or function subprogram.

A statement function name (see paragraph 11-7) or intrin-
sic function name (see Section X) cannot be used as an
actual argument, although an expression used as an ac-
tual argument can contain a reference to them as part of
the expression.

For example,

CALL SUM(A,B,ABS) not allowed

CALL SUM(A,B,ABS(A)) allowed

11-4. SUBROUTINE SUBPROGRAMS

A subroutine is a computational procedure which may
pass one or more values back to the calling program unit
or perform some other type of computational process such
as a sort.

where

name

is an alphanumeric string from one to fifteen charac-
ters (the first character must be alphabetic). No type
is associated with the name of a subroutine.

11-3

param

is a dummy argument of the subroutine. Param can
be a simple variable, array name, subroutine name, or
function subprogram name. The dummy argument
must be the same type and structure as the actual
argument which was passed to it. (See paragraph
11-3.)

the asterisks are used to show that alternate return
points exist. In the CALL statement (see Section IV)
in the main or other calling program, the asterisks
are replaced by statement labels. The subroutine
will return to one of these labeled statements de-
pending upon the results of an evaluation in the
subroutine.

Examples of SUBROUTINE statements are:
SUBROUTINE LARGE
SUBROUTINE LARGE (A,B)

SUBROUTINE LARGE (A,B**¥)

A subroutine subprogram can contain any statement ex-
cept another SUBROUTINE statement, or FUNCTION,
PROGRAM, or BLOCK DATA statements. A subroutine
is re-entrant, that is, it can contain a CALL statement
which references, or calls, itself either directly or indi-
rectly. (Care should be taken, of course, to ensure that this
type of call does not result in an endless loop.)

The last line of a subroutine must be an END statement.
One or more RETURN statements can be included to re-
turn control to the calling program unit. If no RETURN
statement is included in the subroutine, the END state-
ment will return control to the calling program unit. It is
recommended, however, that the RETURN statement be
used for this purpose.

An example of a main program and subroutine subprog-
rams is shown in figure 11-2.

When statement 20 in the main program is executed, it
calls SUM and passes the array names X and Y, the
simple variable Z, and the name MIN to the SUM sub-
routine subprogram.

In the subroutine SUM, statement 10 substitutes the
name MIN for MINMAX and calls subroutine MIN. Sub-
routine MIN compares two elements, one from each array,
and returns the smaller value to SUM. When the DO-loop
in SUM has been executed ten times, the ten smallest
values of each of the ten pairs have been summed and this
value is returned to the main program through W.

When statement 30 in the main program is executed, the
name MAX is passed to SUM. This time SUM calls MAX
and the ten largest values of each of the ten pairs of X and
Y are summed.

114

11-5. FUNCTION SUBPROGRAMS

A function subprogram is a computational procedure
which returns a single value through its name. As with
subroutine subprograms, however, a function subprogram
also may return one or more values through its argu-
ments.

where

name

is an alphanumeric character string from one to
fifteen characters (the first character must be al-
phabetic).

param

a dummy argument of the function. It can be a sim-
ple variable, array name, subroutine name, or a func-
tion subprogram name. The dummy argument must
be the same type and structure as the actual argument
that is passed to it.

type

either LOGICAL, INTEGER, INTEGER*2, INTEG-
ER*4, REAL, DOUBLE PRECISION, COMPLEX or
CHARACTER*n (where n is a positive integer con-
stant specifying the length of the character function
value. If *n is omitted, the length of the character
function is assumed to be 1).

Examples of FUNCTION statements are:
FUNCTION IDIV(A,B,C)
REAL FUNCTION IDIV(A B,C)
CHARACTER *10 FUNCTION NEXTWORD(B,C)

The type associated with the function name is determined

in one of three ways:

1. If the type is mentioned as the first part of the
FUNCTION statement, the function name is assigned
that type.

2. If the type is not mentioned in the FUNCTION state-

ment, the function name can be mentioned in a Type
statement within the function subprogram.

FEB 1977

tFORTGO FTRAN28

PAGE ©ud1 HP32192B.04.0

2737221007 PROGRAM SUBROUTINE .
29002233 C

20073838 C SUBROUTINE SYUBPROGRAM EXAMPLE

287324002 C

2023235229 123 FORMAT(TS,"THE S'UM OF THE 14 SMALLEST VALUES IS ".Fl4.5)
22NN 6362 2392 FORMAT(TS,"THE SUM OF THE 18 LARGEST VALUJES IS ",F14.5)

72370072 DIMENSION X(12),Y(13)

27328328 C

228739208 C THE NEXT STATEMENT IS AN EXTERNAL STATEMENT
@0010893% C AND DECLARES THAT THE A®GUMENTS MIN AND MAX
22311082 C ARE SUBRQUTINE NAMES TO BE 'ISED AS ACTUAL ARGTMENTS
272012222 C

2032132302 EXTERNAL MIN,MAX

20914020 DO 12 I=1,17

203315020 X(I)=I%3.14159

70216020 e YCl1=-1I)=X(I)
20217302 27 CALL SUM(X,Y,Z,MIN)

22718309 WRITE(6,102)2
20019200 33 CALL SUM(X,Y.,Z,MAX)
2092237920 VRITE(6,20M)2
22221202 STOP

239322009 END

23023309 SU3ROUTINE SIUMCAL,B,S,MINMAY)
202249927 DIMENSION AC12),B(12)
22825202 S=2

220263073 DO 27 I=1,17

22227207 12 CALL MINMAXCACI)L,BC(I),W)
ana28a02 29 S=S+W

AFA29073 "ETURN

22933232 END

23331923 SUBRONTINE MINCD,E,F)
202332000 F=D

20333002 IF(D.GT«E)F=E
200342272 RETURN

33335239 END

20936000 SUBROUTINE MAX(®,1,R)
22237029 r=D

23238207 IF(P.LT.Q)IR=1
232395000 RETURN

0242000 END

Fok Aok GLOBAL STATISTICS * kdck

ok dox NO ERRORS, NO WARNINGS *xax
TOTAL COMPILATION TIME ©:00:101
TOTAL ELAPSED TIME D:OD104

END OF COMWILE
END OF PREPARE
THE SUM OF THE 12 SMALLEST VALUES IS 94424773

THE SUM OF THE 1@ LARGEST VALYUES IS 251.32721
END QOF PROGRAM

Figure 11-2. Subroutine Subprogram Example
115

3. If the function name is not mentioned in a Type
statement or the type is not included in the FUNC-
TION statement itself, the type is assigned implicitly
according to the first letter of the name, Names start-
ing withI,J, K, L, Mor N are type integer, and names
starting with any other letter are type real. (This
convention may be modified by an IMPLICIT state-
ment, see Section V)

To associate a value with the function subprogram name,
the name must be used within the function subprogram as
a simple variable in one or more of the following ways:

1. The left side of an assignment statement.

2. An element of an input list in a READ statement.

3. An actual parameter of a function or subroutine sub-
program. Examples of these three methods of deter-
mining a value for a function subprogram name are as

follows:

FUNCTION DIV(A,B)

DIV = A/B
RETURN
END

FUNCTION DIV(A,B)

100 FORMAT(F12.5)
READ(5,100)DIV(A,B)
RETURN

END

FUNCTION DIV(A,B)
DIMENSION A(10,10)
DO10I = 1,10
DO 10J = 1,10

10 AQd) =1+
CALL SUM(A,DIV)
RETURN

END

The value last assigned to the name of the function at the
time a RETURN statement is executed within the sub-
program is the value retained by the function name.

11-6

Note: The RETURN statement form RETURN
n, where n is an integer constant or sim-
ple variable, is not allowed in function
subprograms.

A function subprogram may contain a direct or indirect
reference to itself (recursive call).

An example of a calling program unit and a function
subprogram is shown in figure 11-3.

The function subprogram DISP is called implicitly (a
CALL statement is not used) by the main program. The
actual arguments C,D, E, A, B, and T are passed to DISP.

The function subprogram computes a value for the dis-
placement of the vehicle’s engine using the values passed
to it by the actual arguments C, D, and E and assigns this
value to the function name DISP.

Transportation charges are computed using actual argu-
ments A (WEIGHT) and B (DISTANCE). This value is
assigned to TRANSCHG and then passed back to the cal-
ling program through T.

Note that the function subprogram computes a value
which is assigned to its name and computes and passes
another value back through the argument T.

Whenever a function subprogram is defined, at least one
parameter must be included in the declaration.

Fig. 11-2A references the Function Subprogram AFFIRM
without any parameter. The function name fails to be typed
Integer in the symbolic map. It is typed Real by default,
even though it is defined as an integer. In Fig. 11-2B, the
parameter IDUM is included and hence the function name
is typed Integer.

11-6. MULTIPLE ENTRY POINTS

Multiple entry points allow you to begin execution of a
subprogram at different locations. The name specified in a
FUNCTION or SUBROUTINE statement is the primary
entry point, and the names used in ENTRY statements
are secondary entry points. In each case, calling a subpro-
gram results in the transfer of control to the first executa-
ble statement following the entry name (primary or
secondary) by which the subprogram was called.

Apr 1978

where

entryname
is an alphanumeric character string from one to
fifteen characters (the first character must be al-

parameter name

is a dummy argument of the function. It can be a
simple variable, array name, subroutine name, or a
function subprogram name. If it is necessary to type
these parameters, they should be included in the type

phabetic). statements which follow the primary entry point.
PAGE 0001 HP32102B.00,08 FORTRAN/3y00 (C) HEWLETT=PACKARD CL, 1976 TUE, APR 11, 1978, 3:53 PM
SCONTFOL SEGMENT=TMN1,MAP
c
c
LOGICAL FUMCTION AFETRM
INTEGEP REALLINE
CHARACTER ANSWR(S5),ANSK
EGUIVALENCE (ANSWR,ANSR)
ANSWR(1)="N"
IGUMSREADLINE (ANSWR,~5)
AFFIRMZANSP .EG, "Y" ,OR, ANSR ,EG, "Y"
%% ERROR 15% ##a NON-AKITHMETIC PRIMARY WHERE ARLTHMETIC EAPECTED
KETUKRN
END
SYMBUL MAP
NAME TYPE STRUCTURE ADDRESS NAME TYPE STRUCTURE ADDRESS
AFFIRN REAL SIMPLE VAk ANSR CHARACTER SIMPLE VAR
ANSWR CHARACTEK ARRAY FUNCTIONAFFIRM LOGICAL NULL
IDUM INTEGER SIMELE yAp READLINE INTEGER FUNCTION
I T2 2] 1 ERROK, NU WARNINGS »aan
PROGRAM UNIT MALNT FLUSHED
P GLOBAL STATISTICS L
T T] 1 EKFOK, FJ WARNINGS #xn®
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME 0:06:03
Figure 11-2a. Typed Real — Without Parameter
PAGE 0001 HP32102B,00.08 FORTRAN/300C (C) HEWLEIT-PACKAPD CC. 1976 TUE, APR 11, 1978, 4:14 PM
SCONTRUL SEGMENTSTMN{,MAF
C
c
LGGICAL FUNCTIUN AFFIRM (L1DUM)
c
INTEGEK READLINE
CHARACTEK ANSWR(5),ANSR
FQUIVALENCE (ANSWR, ANSR)
C
ANSWR(1)="N"
IDUM = KEADLINE (ANSWR,=5)
AFFIRM =ANSK ,EG, "Y* DR, ANSR ,EG, "Y*
RETURN
END
SYMBOL MAP
NAME TYPE STRUCTURF, ~ ADDRESS NAME TYPE STRUCTURE ADDRESS
AFFIRM LOGICAL SIMPLE VAR G-%5 AFFIRM LOGICAL FUNCTION
ANSR CHARACTEK SIMPLE VAR Qe%2 I ANSWR CHARACTER ARRAY G+%1 L1
1DUM INTEGER SIMPLE VAK Q=%4 ,1 READLINE INTEGER FUNCTION
PROGRAM UNIT AFFIRM COMPILED
LT e GLOBAUL STATISTICS 122
HRER NQ ERRORS, NO WARNINGS s%#w
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME 0:00:02

Figure 11-2b. Typed Logical — With Parameter

Apr 1978

11-6a

:tFORTGO FTRAN29

PAGE cudi

20071000
99002000
20003009
200040993
2%ansSeeyd
00206222
203037909
20008002
00039200
20012209
200311000
20012209
292313202
P0314000
00301580803
"2216200
Ge31 7827
22018009
23019200
220200030
22021002
20222000
eee23e20
20024000
22225000
00226000
20227200
AAB28329%
PAA2907%2
30230200
293312292
300832200

7232330800
230340030
203350922
A2036020
23037000

*hFk

HP3219¥2B. 0.2

c

PROGRAM FUNCTION

C FUNCTION SUBPROGRAM EXAMPLE

c
120
200
300

C THE

FOPMAT(TS,*"DISPLACEMENT OF THIS VEHICLE 1S ",F14.5)
FORMAT(TS,TOTAL COST IS5 *",M12.2)
FORMAT(TS,"REGISTRATION COST IS ",M12.2//7)
DISPLAY "WEIGHT?"

ACCE®PT A

DISPLAY “DISTANCE?"

ACCE®PT B

DISPLAY 'CQST?2"

ACCE®PT COST

DISPLAY "NO. CYLINDERS?"

ACCEPT C

DISPLAY *“BORE?'

ACCEPT D

DISPLAY *STROKE?"

ACCEPT E

D=D/s2

NEXT STATEMENT CALLS THE FUNCTION DISP IMPLICITLY

DIS®L=DISP(C,D,E,A,B.,T)
WHOLECOST=COST+T
TAX=1.5%DISPL
QEGISTRATION=SART(DISPL)*6.5
WRITE(6,128)DISPL
WRITE(6,209)WHOLECOST
WRITE(6,30%)REGISTRPATION
STO®

END

FUUNCTION DIS®P(CYL,RAD,HGT,WEIGHT,DISTANCE, TRANSCHG)
DISP=CYL*(3.14159%(RAD**2)*HGT)
TRANSCHG=WEIGHT+DISTANCE*.0019

RETURN

END

GLOBAL STATISTICS Fok ok
ok kk NO ERRORS, NO WARNINGS kkx
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME Georsi

END OF COMPILE

END 7F PREPARE

WEIGHT?
73742

DISTANCE?

76567

cosT?
28769.89

NO. CYLINDERS?

76

BORE?
?3.798

STROKE?
?3.243

DISPLACEMENT OF THIS VEHICLE 1S 220 .44366

TOTAL COST IS

$12,524.37

REGISTRATION COST 1S $96.51

END OF PROGRAM

Figure 11-3. Function Subprogram Example

117

Examples of ENTRY statements are:

ENTRY ISUM
ENTRY ISUM(A,B,C)

An entryname in a subroutine identifies the name as a
subroutine.

An entryname in a function identifies the name as a
function.

One or more ENTRY statements are allowed, and all
entry points are reentrant (the subroutine or function can
call itself through this entry point).

An ENTRY statement may appear anywhere an exe-
cutable statement may appear. It is not allowed in the
range of a DO statement.

A subprogram may not contain both an ENTRY statement
and an EXTERNAL statement referencing the same
entryname.

If dynamic array bounds are used in a subprogram which
contains secondary entry points, the dynamic bounds must
be passed in each entry point even though the code being
executed does not access the array. This is because the
space must be allocated for the array even if it is not used.
Since the compiler does not check to make sure that the
bounds are passed at each entry point, failure to do so
causes the program to abort with a bounds violation in the
subprogram’s initialization code when the calling program
makes an entry at one of the points that does not include
the necessary dynamic bounds variables.

A function entry name, like a function name, has a type
associated with it. The type may be integer, double integer,
real, double precision real, complex, logical or character
and is determined as follows:

1. The entry name may appear in a type statement
following the primary entry point of the function
subprogram.

2. The type may be assigned implicitly according to
the first letter of the name. Unless maodified by an
IMPLICIT statement, names starting with I, J, K,
L, M, or N are type integer and names starting
with any other letter are type real.

Note that the word ENTRY in an ENTRY statement may
not be preceded by a type attribute.

Different entries in a function subprogram may be of
different types. Since entries of the same type share the
same memory location for returning the function’s value
to the calling program, the entry names can be used inter-
changeably in the function code. Figure 11-4 illustrates
the use of multiple entries of the same type in a function.
The main entry D1 and the secondary entries D2 and D3
share the same two words in memory in which a real
number is stored. Therefore, D1 may be used regardless
of where entry is made.

Use of an entry name of a different type than that by
which entry was made will result in unpredictable conse-
quences. This is also true if the entry name is used as any-
thing other than a function call. Figure 11-4 illustrates the

11-8

incorrect use of the entry name, A, when entry is made
through an entry point, DI, of a different type.

Figure 11-6 is an example of a subroutine subprogram and
an entry point.

When statement number six in the main program is exe-
cuted, it calls entry point MULT and passes the variables
A,B,C to the MULT entry point.

The entry point MULT calculates the product of A,B, and
C and displays this product.

Figure 11-7 is an example of multiple entry points.

When statement number six in the main program is exe-
cuted, it calls entry point MULT1 and passes the variables
A and C to the MULT1 entry point.

The entry point MULT1 calculates the product of A and C
and displays this product.

When statement number seven in the main program is
reached, it calls entry point SUM2 and passes the varia-
bles A and C to the SUM2 entry point.

The entry point SUM2 calculates the sum of A and C and
displays this sum.

When statement number eight in the main program is
reached, it calls entry point MULTZ2 and passes the varia-
bles B and D to the MULT2 entry point.

The entry point MULT2 calculates the product of B and D
and displays this product.

Only those parameters which are associated with the
entry through which entry was made are defined. Any
attempt to access formal parameters different from the
parameters in the entry will result in unpredictable
consequences.

Since all entry points in figure 11-7 are of different types,
any reference to an entry name other than the one
through which entry was made is illegal, unless it is a
recursive call to the program unit. In the example of figure
11-7, the names B and D are defined only for the entries
SUM1 and MULTZ2, thus they must not be referenced if
entry was made through MULT1 or SUM2. In the same
example, the names A and C are defined for the entries
MULT1 and SUMZ2, thus they must not be referenced if
entry was made through MULT2 or SUM1.

11-7. BLOCK DATA SUBPROGRAMS

As you recall from Section V, blocks of storage space can
be reserved for use by several different program units
through the use of a COMMON statement. These common
blocks can be labeled so that the program units can refer-
ence the block by its blockname. Block data subprograms
provide initial values for simple variables and array ele-
ments in these labeled common blocks. A block data sub-
program consists of a BLOCK DATA statement and IM-
PLICIT, COMMON, DIMENSION, EQUIVALENCE,
Type and DATA statements. EXTERNAL statements and
executable statements are not allowed in block data sub-
programs. A block data subprogram must contain an END
statement as the last line of the subprogram.

FEB 1977

tFORTGO DISCNT

PAGE 06001 HP32102B.20 .S (C) HEWLETT-PACKARD CO. 1976

PROGRAM DISCOUNT
INTEGER QNTY
DISPLAY “ENTER QUANTITY"
ACCEPT AQNTY
DISPLAY "ENTER PRICE"™
ACCEPT °RICE
IF (ONTY-590) 10.,10.,49
18 IF (ONTY-1292) 20,280,308
2@ TOTAL = D3 (ANTY,PRICE)
GO TO 50
38 TOTAL = D2 (QNTY,PRICE)
GO TO 5@
4@ TOTAL = D1 (QNTY,PRICE)
5@ WRITE(6,63) ANTY, PRICE, TOTAL
6@ FORMAT (119,2X,M18.2,2X,M10.2)
sSTOP
END

FUNCTION SUBPROGRAM WITH MULTIPLE ENTRY POINTS

an

FUNCTION D1 (R,°)
INTEGER A
Dl = P*.90
GO TO 179

SECONDARY ENTRY D2

aaaoa

ENTRY D2 (N,P)
Dl = Px*.95
GO TO 19@

SECONDARY ENTRY D3

aaaoa

ENTRY D3 (A,
Dl = P*x.97
169 D1 = Dl *1.06 * Q
RETURN
END

ek ok ok GLOBAL STATISTICS *okokok
>k KK NO ERRORS., NO WARNINGS #kwk
TOTAL COMPILATION TIME 9:00:02

TOTAL ELAPSED TIME A:B4:31

END OF COMPILE

END OF PREPARE

ENTER QUANTITY ?159
ENTER PRICE ?5.040
159 $5.00 $755.25

END 7F »® JGRAM

FEB 1977

Figure 11-4. Entry Names of the Same Type Example

tFORTGO FTEST!

DAGE 09291 HP32132B.20 .35 (C)> HEWLETT-PACKARD CO.
770310730 PROGRAM FUNCTIONA
2A231100 INTEGER DI

293A20033 DISPLAY "ENTER VALUE"
0P0A3330 ACCEPT X

BAARADDA Y = DI(X)

AABR5AAD DIS®PLAY Y

20936200 STOP

PBARTARD END

nP228000 C

nPFBOAAD o} FUNCTION SUBPROGRAM
AGN10300 C

272311000 FUNCTION DI(R)
22011122 INTEGER DI

22012323 100 A=R/2.34S

260130372 DI=Ax100

22031 4307 RETURN

73215200 [of

23316023 C REAL ENTRY

P0217000 [of

20@182292 ENTRY A(R)

26219032 GO TO 100

29220330 END

ok ok GLOBAL STATISTICS * Rk k

ok ok ok NO ERRQRS. NO WARNINGS *%x*
TOTAL COMPILATION TIME ©:09:01

TOTAL ELA®PSED TIME 2:02:06

END OF COMPILE

END OF PREPARE

ENTER VALUE ?4.3

ABORT :$0LDPASS+.+.%Z0.%243
PROGRAM ERROR #24: BOUNDS VIOLATION

ERR 2

1976

11-10

Figure 11-5. Entry Names of Different Type Example

FEB 1977

$FOKTRAN TEST

PAGE 0001 HP32102E,00.08 (C) HEWLETT=-PACKARD CO, 1976

SCONTROL USLINIT
PROGRAM ENTRYSUB

C ENTRY SUBKOUTINE SUBPROGRAM EXAMPLE
ACCEPT A,B.C
I¥ (A,EG.0 .CR, B.,EQG,0) CALL SUM(A,B,C)
CALL MULT (A,B,C)
STOP
END

PROGRAM UNIT ENTRYSUB COMPILED
SUBROUTINE SUM(A,B,C)
100 FCRMAT(TS,"THE SUM OF A,B,C IS",F14.5)
200 FORMAT(TS,"THE PRODUCT OF A,B,C I5",F15,5)
S=Rh+B+C
WRITE (6,100)S
RETURN
EN1RY MULT(A,B,C)
F=A%BxC
WRITE(6,200)P
RETURN
END

PROGRAM UNIT SUM CUMPILED

%% % GLOBAL STATISTICS ¥
R NO ERRORS, NO WARNINGS ###
TOTAL COMPILATION TIME 0Q:0C:01

TOTAL ELAPSED TIME 0:00:05

END QF COMPILE

¢ SAVE SOLDPASS,P1

tPREP P1,P4

END OF PREPARE
tRUN P4

25+7,9
THE PRODUCT OF A,B,C IS 315.00000

END OF PROGRAM
$RUN P4

20,12,15

THE SUM OF A,B,C IS 27.00000
THE PRODUCT OF A,B,C 1S 00000

END OF PROGRAM

Apr 1978

Figure 11-6. Subroutine Subprogram and an Entry Point Example

11-11

tFORTGO ENF4

PAGE 0@21 HP32102B. @0 .

00YY 1 we@ SCONTROL USLINIT

VU200 PROGRAM ENTRYFUNCTION

PUOO3 oY C

VORI C MULTIPLE ENTRY POINTS EXAMPLE
Vo5 Ve0 C

YOMIEDDD ACCEPT A,B,C,D

QOB T 9D IF(A.EQ.¢ .OR. C.EQ.?) CALL SUMI(B,D)
P08 BB CALL MULTI(A,C)

QA9VDY IF(B.EQ.# .OR. D.EQ.@) CALL SUM2(A,C)
VY1 BB CALL MULT2(B,D)

VY1 PBY STOP

VoY1 2080 END

9813008 C

PUB14006 C THE FOLLOWING PROGRAM IS A SUBROUTINE SUBPROGRAM
PUVIS5ECY C WITH ENTRY POINTS

00016900 C

Vol 130 SUBROUTINE SUH1(B,D)

VYV 1860 S1=B+D

VYO 1 9 YAV WRITE(6,100)SI

D60 20001 RETURN

V0021 LY ENTRY MULTI(A,C)

200 22 Q2w P1=A%C

Q0023000 WRITE(6,200)P1

QVV24 PV RETURN

DVV25 DY ENTRY SUM2(A,C)

VOB 26080 S2=A+C

V027000 WRITE(6,302)S2

300 28004 RETURN

0029601 ENTRY MULT2(B,D)

0LV 30000 p2=B*D

20031 9o WRITE(6,400) P2

00 320 RETURN

Wb 330k 1 W FORMAT(T5,%THE SUM OF B,D IS",F10.3)
Lo 3400 200 FORMAT(TS,"THE PRODUCT OF A,C IS",F12.4)
Wwo3s5uns 300 FORMAT(T5,"THE SUM OF A,C IS",F12.3)

W36 VVY AW FORMAT(T5,"THE PRODUCT OF B,D IS",Fl12.4)
V37 VY END

Rk ok GLOBAL STATISTICS Fkdok
Rk ek NO ERRORS, NO WARNINGS ¥k ¥k
TOTAL COMPILATION TIME @:00:02
TOTAL ELAPSED TIME B3B3

END OF COMPILE
END OF PREPARE

?
0,0,5,8

THez SUM OF B,D IS 8.000¢
THE PRODUCT OF A,C IS « D000
THE SUM OF A,C IS 5. 000
THE PRODUCT OF B,D IS « D000

END OF PROGRAM

11-12

Figure 11-7. Multiple Entry Points Example

where

name

is an alphanumeric string from one to fifteen charac-
ters (the first character must be alphabetic). The
name may be included to identify the subprogram.

Block data subprograms use DATA statements to supply
initial values to variables and array elements in labeled
common blocks. The common blocks must be fully
specified in a COMMON statement. EQUIVALENCE,
DIMENSION and Type statements also can be used for
defining the variables in the common blocks. The DATA
statements indicate which variables mentioned in the
COMMON statement will have initial values and what
those values will be. No variable should be included in a
DATA statement in a block data subprogram unless it is
included in a COMMON statement. Not all variables
mentioned in the COMMON statement need be mentioned
inthe DATA statement however, only those data elements
which are to have initial values assigned need be men-
tioned in the DATA statement. DATA statements do not
affect the storage allocation of any of the variables in
block data subprograms. More than one common block can
be initialized in a single block data subprogram. For ex-
ample,

BLOCK DATA BL1

COMMON /COM11,J K/(COM2/L,M,N
REAL [,J,K,LM,N

DIMENSION I(20)

DATA [LK/20 * 1.0,34.0/M,N/-4.3,67.9/

END

The preceding block data subprogram describes two com-
mon blocks, COM1 and COM2. COM1 contains a real
array, I, of 20 elements and two simple real variables J
and K. COM2 contains simple real variables L, M, and N.
The DATA statement supplies initial values for all 20
elements of array I and variables K, M, and N. Note that
initial values are not supplied for variables J or L, even
though they are included in the COMMON statement.

11-8. STATEMENT FUNCTIONS

Another form of computational procedure that can be used
in FORTRAN/3000 programs is a statement function. A
statement function is a relatively simple computational
procedure which is defined in a single statement and
which may be referenced only in the program unit that
defined it.

where

name
is a symbolic name starting with a letter.

param

is a simple variable used as a dummy argument. No
other symbolic names except simple variable names
may be used.

expression

is an arithmetic or logical expression of constants,
simple variables, array variables, function subprog-
ram reference, intrinsic functions, and the approp-
riate operators for the type expression.

See Section V, paragraph 5-18 for a complete discussion of
statement functions.

11-9. NON-FORTRAN/3000 LANGUAGE
SUBPROGRAMS

Procedure subprograms written in a language other than
FORTRAN/3000 can be used as long as the calling sequ-
ence and the effect of execution are consistent with
FORTRAN/3000. Consult Appendix A for details on the
use of non-FORTRAN/3000 language subprograms.

11-13

COMPILING, PREPARING, AND EXECUTING
SOURCE PROGRAMS IN FORTRAN/3000 [xi

FORTRAN/3000 operates under control of the MPE/3000
Operating System.

12-1. MPE/3000 COMMANDS
Communication with MPE/3000 is initiated through
commands. Commands are requests issued to MPE/3000
to perform various functions external to a
FORTRAN/3000 source program. For example, commands
are used to initiate and terminate batch jobs and interac-
tive sessions, compile and execute source programs, call
various MPE/3000 subsystems, and obtain job/session
status information. Commands can be entered through
any standard input file such as a card reader file or a
terminal file. Commands that you will use most often are
summarized in table 12-1. The commands listed in table
12-1 are those in effect with the MPE/3000C Operating
System and are subject to enhancement or redefinition as
later versions of the operating system are made available.
Be sure to check the latest MPE Commands Reference
Manual to verify the use of these commands.

A command consists of:

1. Acolon (:) used as a command identifier. If in interac-
tive mode, the colon is prompted by MPE/3000; in
batch mode the colon must be provided in position 1 of
the command record.

2. A command name. The command name requests
MPE/3000 to perform some specific function.

3. A parameter list. The parameter list can contain zero,
one, or more parameters that signify conditions for
the command. The end of each parameter in a list is
signified by a delimiter. (Delimiter is a name used for
a character that separates, or delimits, one item from
another.) Delimiters consist of commas, semicolons,
equal signs, or other punctuation marks.

A command, then, could appear as follows:

:FORTRAN MYFILE,USLFILE,LISTF

%;‘ delimiters

In the preceding example, a blank space delimits the
command name from the start of the parameter list.

Table 12-1. MPE/3000 Commands

COMMAND FUNCTION

JOB Initiates a batch job

HELLO Initiates an interactive session

:FILE Specifies characteristics of a file

:BUILD Creates a new file

:PURGE Deletes a file from the system

:CONTINUE Disregards batch job error condition

‘FORTRAN Compiles a FORTRAN/3000 source
program

:FORTPREP Compiles and prepares a FORTRAN/3000
source program

‘FORTGO Compiles, prepares, and executes a
FORTRAN/3000 source program

‘PREP Prepares a compiled program

'PREPRUN Prepares and executes a compiled
program

‘RUN Executes a prepared program

EQOD Signifies the end of data

EQJ Terminates a job

‘BYE Terminates a session

The meanings of parameters in some commands are de-
termined by their positions in the parameter list. For
example, in a FORTRAN command:

:FORTRAN textfile,uslfile listfile,masterfile,newfile
the parameters are positional and their positions in the
list designate their meanings. The omission of an optional
positional parameter from a parameter list is signified by
adjacent delimiters, as follows:

:FORTRAN textfile, listfile

uslfile is omitted

12-1

When parameters are omitted from the end of a list, no
adjacent delimiters are required, as shown in the example
by the omission of masterfile and neufile.

Commands are explained in greater detail in the MPE
Commands Reference Manual.

12-2. SPECIFYING FILES FOR PROG-
RAMS

Both the FORTRAN/3000 compiler and the MPE/3000
Operating System read input from and write output to
files handled through the file facility of MPE/3000. For
example, the compiler reads source code from a textfile,
writes object code to an objectfile (uslfile), produces list-
ings to a listfile, and performs merging and editing opera-
tions using an old masterfile for input and a newfile for
output. Each file has a formal file designator (a name by
which the file is known to MPE/3000 and the
FORTRAN/3000 compiler). For files used by the compiler
or referenced by MPE/3000 commands, you equate these
formal file designators to actual file designators (the actual
names of the files to be used for input/output) through
either of two methods:

1. By naming the files as positional parameters (actual
file designators) in the compilation, preparation, or
execution commands.

2. By omitting optional parameters from the compila-
tion, preparation, or execution command, thus allow-
ing FORTRAN/3000 to assign standard default file
designators for input or output files.

Because of the importance of file references as command
parameters, some of the rules for specifying files are in-
troduced before the compilation, preparation, and execu-
tion commands themselves. The complete rules concern-
ing files are discussed in the MPE Commands Reference
Manual and in Section VIII of this manual.

You can equate formal file designators to actual file de-
signators through the MPE/3000 :FILE command. You
also can use this command to override any actual or de-
fault file designators specified in compilation, prepara-
tion, and execution commands, and to specify various file
characteristics. See Section VIII for a discussion of the
MPE/3000 :FILE command.

12-3. SPECIFYING FILES AS COMMAND
PARAMETERS

You can name the following types of files as parameters in
a compilation, preparation, or execution command:

System-Defined Files
User-Defined Files
New Files

Old Files

12-4. SYSTEM-DEFINED FILES. System-defined
file designators indicate those files that MPE/3000 uni-
quely identifies as standard input/output files for a
job/session. These files are shown in table 12-2.

Table 12-2. System-Defined Files

A filename indicating the standard job or session input file (from which the job or session is
initiated). For a job, this is typically a card reader; for a session this typically indicates a
terminal. input data records in the $STDIN file should not contain a colon in position one, since
this indicates the end of the source input. Use the :EOD command to indicate the physical end
of a source program. (The same command is used to indicate the end of a data file.)

Equivalent to $STDIN, except that MPE/3000 command records (those with a colon in position
one) encountered in a data file are read without indicating the end of data. (However, the
commands :JOB, :DATA, :EQJ, and :EOD are exceptions that always indicate the end of data

A filename indicating the standard job or session listing file corresponding to the particular job
or session input device being used. (For each potential job/session input device, a user with
MPE/3000 System Supervisor capability designates a corresponding job/session listing de-
vice during system configuration.) The job or session listing device is customarily a printer for

The name of a non-existent “ghost” file that is always treated as an empty file. When
referenced as an input file by a program, that program receives only an end of data indication
upon first access. When referenced as an output file, the associated write request is accepted
by MPE/3000 but no physical output is actually performed. Thus, $NULL can be used to

ACTUAL FILE
DESIGNATOR DEVICE/FILE REFERENCED
$STDIN
$STDINX
and are never read as data.)
$STDLIST
a batch job and a terminal for a session.
SNULL
discard unneeded output from an executing program.

12.2

12-5. USER PRE-DEFINED FILES. A user pre-
defined file is any file that was previously defined or
redefined in a :FILE command as discussed in the
MPE Commands Reference Manual and Section VIII of
this manual. In other words, it is a back-reference to that
:FILE command. In compilation, preparation, or execution
commands, the actual file designator of this file is the
formal file designator preceded by an asterisk (to indicate
that it was previously defined).

12-6. NEW FILES. New files are files that have not
yvet been created, and are being created for the first time
by the current batch job or interactive session. New files
can have actual file designators as shown in table 12-3.

12-7. OLD FILES. Old files are existing files in the
system. They may be named by the designators shown in
table 12-4.

Table 12-3. New Files

A temporary disc file that can be passed automatically to any succeeding MPE/3000 com-
mand within the same job or session which references it by the filename $OLDPASS. (Passing
is explained in the compilation, preparation, and execution command exampies.) Only one
such file can exist in the job or session at any one time. (When SNEWPASS is closed, its name
is changed to $OLDPASS automatically, and any previous file named $OLDPASS is deleted.)

Any other new file to which you have access. Unless you specify otherwise, this is a temporary
file, residing on disc, that is destroyed upon termination of the program. If no :FILE command
specifies otherwise, any such FORTRAN/3000 files are closed as job/session temporary files,
saved until the end of the job/session, and then are purged. If closed as permanent files (by
specifying SAVE in a :FILE command), they are saved until you purge them. Typically, this
format consists of a file name containing up to eight alphanumeric characters, beginning with
a letter. In addition, other elements (such as a group name, account name, or lockword) can
be specified. The complete rules governing the filereference format are contained in the

ACTUAL FILE
DESIGNATOR FILE REFERENCED.
SNEWPASS
filereference

MPE Commands Reference Manual.

Table 12-4. Old Files

ACTUAL FILE
DESIGNATOR FILE REFERENCED .
SOLDPASS The name of the temporary file last closed as SNEWPASS.
filereference

Any other old file to which you have access. It may be a job/session temporary file created in
the current or a previous program in the current job/session, or a permanent file saved by any
program in any job/session. The format is the same as filereference, noted in table 12-3.

12-8. INPUT/OUTPUT SETS. All of the preceding $OLDPASS The last file passed.
actual file designators can be classified as those used as
input parameters (input set) and those used as output $NULL A constantly-empty file that

parameters (output set). These sets are defined as follows:

INPUT SET
$STDIN The job/session input file.
$STDINX The job/session input file with

commands allowed.

will produce an end-of-file con-
dition whenever it is read.

*formaldesignator A back-reference to a
previously-defined file.

A file name, and perhaps ac-
count and group names and a
lockword.

filereference

123

OUTPUT SET

$STDLIST The job/session listing file.

$OLDPASS The last file passed.

$NEWPASS A new temporary file to be pas-
sed.

$NULL A constantly-empty file.

*formaldesignator A back-reference to a
previously-defined file.

filereference A file name, and perhaps ac-
count and group names and a
lockword.
12-9. SPECIFYING FILES BY DEFAULT

When you omit an optional file parameter from a compila-
tion, preparation, or execution command, MPE/3000 as-
signs one of the members of the input or output set by
default. The file designator assigned depends on the
specific command, parameter, and operating mode, as
noted later in this section. The default file designators are
shown in table 12-5.

12-10. COMPILING, PREPARING, AND
EXECUTING FORTRAN/3000
SOURCE PROGRAMS

The commands used for compilation, preparation, and ex-
ecution of FORTRAN/3000 source programs are:

‘FORTPREP compiles and prepares a source prog-
ram.

:FORTGO compiles, prepares, and executes a
source program.

:PREP prepares source programs that have
been compiled into a USL file.

:RUN executes programs that have been
compiled and prepared
(and,therefore, exist on program
files).

:PREPRUN prepares and executes programs com-
piled into USL files.

12-11. :FORTRAN COMMAND

The :FORTRAN command compiles a FORTRAN/3000
source program.

 The form of a :PORTRAN command is

 FORTRAN fextfile, usifile, listfile, masterfile,

textfile

is the name of an input file from which the source
program is to be read. If omitted, the program will he
read from the standard input file to which
MPE/3000 will assign the default file name $STDIN.
Do not use the designator FTNTEXT for this

:FORTRAN compiles a source program. parameter.
Table 12-5. FORTRAN/3000 Compiler File Designators
FORMAL FILE DEFAULTFILE
FILE PURPOSE DESIGNATOR DESIGNATOR
Textfile Contains source program, correction text to be merged, FTNTEXT $STDIN
and/or compiler subsystem commands.
Listfile Destination of listing output. FTNLIST $STDLIST
Uslfile Destination of object program code. FTNUSL SNEWPASS
Masterfile Old source program to be merged and edited with new FTNMAST SNULL
text input from textfile.
Newfile New source program resulting from (optional) merging FTNNEW SNULL
of textfile and masterfile.
Progfile Destination of executable object program. None SNEWPASS

124

uslfile

is the name of the USL file on which the object
program is to be written. If this parameter is in-
cluded in a :FORTRAN command, it must indicate a
file previously created in one of two ways:

1. By saving a USL file with the :SAVE command
from a previous compilation.

2. By creating a new file with the :BUILD command
and designating it as a USL file with a filecode of
1024 or USL. For example,

:BUILD USLF;CODE=1024
or

:BUILD USLF;CODE=USL

If you specify a USL file, and that file does not exist, then a
file will be opened with the specified name as the USL file
and will be closed with a save disposition at the conclusion
of the compilation.

listfile

the name of the file to which the program listing is
to be generated. If omitted, the default file
$STDLIST (typically the terminal in a session or the
line printer in batch) is assigned. Do not use the
designator FTNLIST for this parameter.

masterfile

the name of a file to be optionally merged with
textfile and written onto a file named newfile. If
masterfile is omitted, no merging takes place. Do not
use the designator FTNMAST for this parameter.

newfile

the name of a file on which the (re-sequenced) re-
cords from fextfile and masterfile are optionally
merged. When newfile is omitted, no newfile is
created. Do not use the designator FTNNEW for this
parameter.

All parameters for the :FORTRAN command are optional.

Figure 12-1, shows a program entered from a terminal.

Note: Direct interactive input is not recommended.
Typing error recovery is impossible once a car-
riage return is pressed. To create source files, use
the HP 3000 Text Editor. (See the EDIT/3000
Reference Manual.)

All parameters are omitted from the :FORTRAN com-
mand. The compiler will use the default file $STDIN
(meaning the program is to be read from the standard
input file) for the parameter textfile. Omitting the uslfile
parameter causes the compiler to write the object program
on the default file $OLDPASS. When listfile is omitted,
the program listing will occur on $STDLIST (which is the
terminal in the example). No merging will occur and no
newfile will be created when the masterfile and newfile
parameters are omitted.

When the compiler encounters an END line in the prog-
ram, it compiles the program unit containing the END
line and outputs another prompt character (if in interac-
tive mode). If this is the last program unit to be compiled,
the :EOD command is used to exit from :FORTRAN.

The program is now compiled and a temporary USL file
has been created during compilation. To prepare the prog-
ram, a :PREP command could be entered as follows:

:PREP $OLDPASS,TEST

The temporary file created during compilation
($NEWPASS) is passed automatically to the preparation
mechanism and renamed $OLDPASS. The non-existent
file TEST is used for the progfile parameter (required
parameter, see paragraph 12-12). A file of the correct size
and type will be created by the Segmenter. After prepara-
tion, the program could be run by using a :RUN command
as follows:

:RUN TEST

Note that TEST is a temporary file and will not be saved
when the session is terminated unless the MPE/3000
:SAVE command is used.

12-12. :FORTPREP COMMAND

The :FORTPREP command compiles and prepares a
FORTRAN/3000 source program.

where
textfile, listfile, masterfile, newfile
have the same meanings as described under the
:FORTRAN command.

progfile

is the name of the file on which the prepared prog-
ram is to be written. If this parameter is included, it
must reference a file created in one of two ways:

1. By specifying a non-existent file in the parame-
ter, in which case a temporary file of the correct
size and type will be created. This method is re-
commended for optimal disc usage. Use the SAVE
command to save the temporary file.

2. By using the :BUILD command with a filecode of
1029 or PROG. For example,

:BUILD PROGF;CODE=1029;DISC=numrec,1,1
or

:BUILD PROGF;CODE=PROG;DISC=num-

rec,1,1
If numrec is omitted, the default is 1024 records.

125

tFORTRAN

PAGE 609 HP321@2B. M .0

>$CON1TROL FREE

19 FORMAT(T6, "NUMBER",T15,"SQUARE ROOT"//)
20 FORMAT(T7,E4.1,T18,F7.5)
WRITE(6,12)

A=1,¢

DO 50 I=1,10

B=SORT(A)

WRITE(6,20)A,B

50 A=A+1.0

STOP

END

VVVVVVVVYVY

>t EQD

Fox Kk GLOBAL STATISTICS *kkk
*dkk NO ERRORS, NO WARNINGS — sk
TOTAL COMPILATION TIME @:00:031
TOTAL ELAPSED TIME D432

END OF COMPILE

Figure 12-1. :FORTRAN Command Example
12-6

If omitted, the default file NEWPASS is assigned.
(This file is renamed $OLDPASS upon completion.)

All :FORTPREP parameters are optional.
Figure 12-2 shows a program entered from cards for com-

pilation and preparation using the :FORTPREP com-
mand.

12-13. :FORTGO COMMAND

The :FORTGO command compiles, prepares, and executes
a FORTRAN/3000 source program.

where

textfile, listfile, masterfile, newfile
all have the same meanings as described under the
:FORTRAN command.

All :FORTGO parameters are optional.
Figure 12-3 is an example of the :FORTGO command used

to compile, prepare, and execute a source program which
has been stored on disc under the file name “FTRAN36.”

12-14. :PREP COMMAND

The :PREP command prepares source programs that have
been compiled into a USL file.

where

uslfile
is the name of the USL file onto which the program
has been compiled.

progfile

is the name of the program file onto which the pre-
pared program is to be written. This file must be
created in one of two ways:

1. By specifying a non-existent file in this parame-
ter, in which case a temporary file of the correct
size and type will be created. This method is re-
commended for optimal disc usage. Use the SAVE
command to save the temporary file.

2. By creating a new file with the :BUILD command
using a filecode of 1029 or PROG, as follows:

:BUILD PROGF;CODE=1029;DISC=numrec,1,1
or

:BUILD PROGF;CODE=PROG;DISC=num-
rec,1,1

If omitted, numrec is 1024 records by default.

Both parameters are required in a :PREP command.

Other (optional) parameters, called keyword
parameters, that can be used with the :PREP com-
mand are summarized below. These (and all other
keyword parameters) are discussed in the MPE/3000
Operating System Reference Manual and are sum-
marized here for reference only.

,ZERODB
;,PMAP
yMAXDATA = segsize
;STACK = stacksize
;DL = dlsize
JCAP = caplist
;RL = filename
where

ZERODB

is a request to set the initially defined DL-DB and
DB-Q (initial) areas to zero. Default: DL-DB and
DB-Q (initial) not set.

PMAP
is a request to list certain information about the
prepared program. Default: no listing.

segsize

maximum stack area (Z - DL) size permitted, in
words, normally estimated by Segmenter at prep-
aration. This parameter allows you to override the
Segmenter estimate. Default: MPE/3000 assumes
stack will remain same size.

stacksize

When a process is created by the system, the user is
allocated MAXDATA words of virtual memory but
only stacksize words in main memory. The main
memory space is expanded as required. This
parameter allows you to override the Segmenter es-
timate. Default: estimated by the Segmenter for
each individual program.

disize
the DL-DB area size to be assigned initially to the
stack. Default: estimated by MPE/3000 for each

program.

12-7

HNIals HAL ., GOODWIN, PUR

PRI= NS} INPRI= 133 TIME= 2
JOB NUMRER = #J16

THUW. MAR fe 1975, 12:54 PM
HP3200NCsF0,.51

tFORTPRFP

PAGE ©p91 HP32122B, 00.9

PROGRAM FORTPRFP
¢
€ THIS IS AN FXAMPLF OF A FORTRAN/3000
C SOURCE PRNGRAM COMPILED AND PREPARED
C USING THF :FORTPREP COMMAND

100 FORMAT(TINsF12,4)
COMMON ARP (343) sRFSULT
NO 150 T=193
00 150 J=193
APP (14J) =643

180 COMTIMUF

Ca1l. SOLVF

WRITE (A¢100}RESULT
S10P

FND

SURROUTINF SOLVF
COMMON ARR(343)4RESULT
RFSULT=ARR (1411 #ARR(1,2) #ARR(1,43)®
HARR (24 1) 8ARR (2 ,2) #ARR(2,3)®
HARR(3,]1)#AKK(3,2) *ARR (3,3)

C END OF SUBRNUTINE

RETURN

END
Kk kK GLOBAL STATISTICS Fok Aok
* K kk NO ERRORS, NO WARNINGS sk
TOTAL COMPILATION TIME (:00:01
TOTAL ELAPSED TIME B:00:10

END OF COMPILE

END OF PREPARE
1E0J

CPU (SEr) =9
ELAPSED (MIN) = 2

THUs MAR &+ 1975, 12155 PM
END OF 0B

Figure 12-2. :FORTPREP Command Example
12-8

s FORTGO

FT2AND6

PAGE sl HP32122B.%9.8

22AN| AA
ABAADAAN
ARAIIARD
ARCALARG
ANARSAAA
ANAFEIRY
AARATANA
ARFARAAD
AAARF2RR
2271722372
ARAL | AAR
BAF|DAAR
A1 37322
23314303
mANS2AZ
AN 6AAK
AANDLTAAN
AARIRIAD
AAAL O3
AAN2ADAR
203212720
AAGR2ARD
AAA2339A
AAA24AAN
2AN2523 R
AAR260A7
AA3272%9
ARA2 AT
AARNGAAN
AaAAIARA7
TANA AR
mATIDARDA
2ARIIANA
AAATLAAR
AAA3SANA
2%AAEAN
caAITEAR
7AZIKAAB
A2733932%
ARALANY A
AARLLAAD
AAANO AT
AAAL3ANG
AARLLAA
2ARBS302

*kkk

»2JG7AM FORTSO0

(o]

C EVAMPLE OF :FORTGO COMMAND

CHAPACTER*S CHEX(8,%),BL,IN,CP,PP, FRAMEx4]

DI 122 1=1,3.,2

DO 92 J=2,8,2
93 CHEY(I,J)=CP
1232 CONTINVJE

DO 112 J=1,7,2
112 CHEX(2,J)=CP

DO 137 [=6,8,2

DO 122 J=1,7,
1272 CHEX(I,J)="P
137 CONTINUE

DO 147 J=2,%,2
147 CHEX(7,J)=P?

DO 1632 I=1,7,2

DO 1572 J=1,7,2
157 CHEX(I,J)=IN

vl

167 CONTINUE

DJ 182 I=2,%,2

DO 1772 J=2,8,2
172 CHEX(I,J)=IN
182 CONTINIE

DO 197 J=1,7,2

127 CHEY(4,J)=8L
20 227 J=72,3,2
277 CHEX(S5,4d)=3L

32% FORMATCTLIZ 1", 4L 2, 4, "3, &M, 4, 4X, 5"

o LT, A, T, A, g
472? FORXAT(T17,9)
539 T(T6,12,T17,8%)

FRAMES b ommmfemm o omm e fmofme e o e) e

WMPITEC(S, 323)
DO /27 I=1,%
WO ITE(S, 4%7)FRANME
677 WOITE(K,S53A)1,(CHEX(I,J},J=1,8)
WRITECGE, 477) FRAME
<To”
END

GLOBAL STATISTICS Fkdk

Fok ok NO EFRRCRS, NO WARNINGS *%x¥x
TOTAL COMPILATION TIME ©0:¢0:01

TOTAL ELAPSED TIME 0:00:09
ZND OF COMPILE
END OF ©uEDARE
1 2 3 4 S 6 7 8

[R Ty ey N

*% 1 BL t *x ! BL ! *x ' BL

*x 1 BL

R Rl R B R I i el

BL ! %% 1 BL t &% ! BL 1 %% { BL 1 *x%

*x 1 BL

x 1 BL ! %% t BL ! ==x t BL

)

'

]

'

)

t

R e R e RS EEL LS Py
! [T [T 1 oxx | [
e e e B e R
[T [T LIS *x

1

1

1]

1

)

]

R IR EEE LR PT PEERY EE

WH ! %= ' WH 1 %% | WH ! *x | WH ! *xx

R R R T R By e B RS

*k 1 WH t k% U WH ! xx ! YWH ! *xx ! WH

B R e R e Rt

*%x ! WH ! xx ! WH ! *xx ¢ WH 1 *xx

PROGRAM

Figure 12-3. :FORTGO Command Example

129

caplist

the capability-class attributes associated with your
program. Default: BA, IA (standard batch and in-
teractive access).

filename

the name of a relocatable procedure library to be
searched to satisfy external references during prog-
ram preparation. Default: no library searched.

12-15. :PREPRUN COMMAND

The :PREPRUN command prepares and executes programs
that have been compiled into USL files.

where

uslfile
is the name of the USL file on which the program
has been compiled. (Required parameter.)

The (optional) keyword parameters that can be used.

with the :PREPRUN command are summarized below.
These (and all other keyword) parameters are discussed in
the MPE Commands Reference Manual and are sum-
marized here for reference only.

;NOPRIV

,PMAP

J,DEBUG

;,LMAP

,ZERODB
;JMAXDATA = segsize
;PARM = parameternum
;STACK = stacksize
;DL = dlsize

;RL = filename

;LIB = library
;NOCB

;CAP = caplist

where

NOPRIV

is a request to place a privileged program in non-
privileged mode. Default: privileged program exe-
cutes in privileged mode.

12-10

PMAP
a request to list certain information about the pre-
pared program. Default: no listing.

DEBUG

a request to set a breakpoint on the first executable
instruction of the program. Default: no breakpoint
set.

LMAP .
arequest to list certain information about the loaded
program. Default: no listing.

ZERODB

a request to set the initially defined DL-DB and
DB-Q (initial) areas to zero. Default: DL-DB and
DB-Q (initial) not set.

segsize

maximum stack area (Z-DL) size permitted, in
words, normally estimated by Segmenter at prep-
aration. This parameter allows you to override the
Segmenter estimate. Default: MPE/3000 assumes
stack will remain same size.

parameternum

a value that can be passed to your program as a
general parameter for control or other purposes. De-
fault: value is set to zero.

stacksize

When a process is created by the system, the user is
allocated MAXDATA words of virtual memory but
only stacksize words in main memory. The main
memory space is expanded as required. This
parameter allows you to override the Segmenter es-
timate. Default: estimated by the Segmenter for
each individual program.

dlsize
the DL-DB area size to be assigned initially to the
stack. Default: estimated by MPE/3000.

filename

the name of a relocatable procedure library to be
searched to satisfy external references during prog-
ram preparation. Default: no library searched.

library

the order in which segmented procedure libraries
are to be searched to satisfy external references dur-
ing segmentation. Default: S (system library
searched).

NOCB

a request that file system not use stack segment
(PCBX) for its control blocks, even if sufficient space
is available. Use only if program absolutely requires
largest stack possible.

caplist

the capability-class attributes associated with your
program. Default: BA, IA (standard batch and in-
teractive access only).

12-16. :RUN COMMAND

The :RUN command executes a program that has been
compiled and prepared into a program file.

where

progfile
is the name of the compiled and prepared program to
be executed.

The progfile parameter is required in a :RUN command.

The following (optional) keyword parameters can be used
with the :RUN command:

;NOPRIV

;,LMAP

;,DEBUG

SMAXDATA = segsize
;PARM = parameternum
;STACK = stacksize

;DL = dlsize
;,LIB = library

:NOCB

The above parameters are the same as those summarized
for the :PREPRUN command. (See paragraph 12-15.)

12-17. USING EXTERNAL PROCEDURE
LIBRARIES

Compiled FORTRAN/3000 programs are stored in files
called User Subprogram Libraries (USL’s) that reside on
disc. In any particular USL, each compiled program unit
exists as a Relocatable Binary Module (RBM). To prepare a
program (and any program units it references) for execu-
tion, the MPE/3000 Segmenter selects the appropriate
RBM'’s from the USL and binds them into linked segments
written on a program file. For more information on the
Segmenter, USL’s and RBM’s refer to the MPE Segmenter

Reference Manual.

When you prepare and run programs in FORTRAN/3000,
it is possible to reference external procedures from
procedure libraries. You can build,modify, and maintain
two types of procedure libraries within your log-on group
and account: Relocatable Libraries and Segmented Lib-
raries.

12-18. RELOCATABLE LIBRARIES

A Relocatable Library (RL) is a specially-formatted file
that is searched at program preparation time to satisfy
references to external procedures called by your program.
Within such libraries, these procedures exist in RBM form
(as they would on a USL). When a program is prepared,
these procedures are placed in a single segment and linked
to your program in the resulting program file.

For example, to specify that an RL named RLPROC be
searched during preparation of a program from the USL
file USL1 to the program file PROG1, you would enter the
following :PREP command:

PREP USL1,PROG1; RL=RLPROG

12-19. CREATING AND MAINTAINING RE-
LOCATABLE LIBRARIES. To create and maintain re-
locatable libraries, you first must access the Segmenter by
entering the MPE/3000 :SEGMENTER command.

where

listfile

is an ASCII file from the output set (formal desig-
nator SEGLIST) to which is written any listable
output generated by the Segmenter subsystem
commands. (The designator SEGLIST should not be
used as the actual file designator.) If listfile is omit-
ted, the standard job/session list device ($STDLIST)
is assigned by default. (Optional parameter.)

If in interactive session, the Segmenter will prompt with a
dash (—). Once the Segmenter is accessed, the following
commands are used to create and maintain an RL:

—-BUILDRL
creates a permanent, formatted RL file.

-USL
references the USL file from which the procedure is
to be obtained.

-RL
identifies an existing RL.

—ADDRL
adds a procedure to the currently identified RL.

12-11

—PURGERL
deletes a procedure from an RL.

—LISTRL
lists information concerning the currently identified
RL.

The form of a ~BUILDRL command is -

 ~BUILDRL filereference, records. exzants e

where

filereference

is the filename of the new RL (optionally including
group and account identifiers). (Required parame-
ter.)

records

is the total maximum capacity of the file, specified in
terms of 128-word, binary logical records. (Required
parameter.)

extents

the total number of disc extents that can be dynami-
cally allocated to the file as logical records are writ-
ten to it. The size of each extent is determined by the
records parameter value divided by the extents
parameter value. The extents value must be an entry
from 1 to 16. (Required parameter.)

Theformofa ~USL commandis

—USL ﬁ.!eréference

where

filereference
is the name (and optional group and account names)
of the USL file to be manipulated. (Required
parameter.)

The form of an ~RL camman& is

' ~—RL ﬁlereference

where
filereference
is the name (and optional group and account names)
of the RL to be modified. (Required parameter.)
Tﬁe form of an —ADBRL esmmmd zs -

(, —-ADDRL name {) meiex)
12-12

where

name

is the name of the procedure to be added to the RL.
This name is called the primary entry point of the
RBM containing the procecure. (Required parame-
ter.)

index

is an integer further identifying the RBM. The index
may be used when the currently-managed USL con-
tains more than one active RBM of the same name.
If index is omitted, a value of 0 is assigned by de-
fault. (Optional parameter.)

The féﬁ;& ofa VV”PURGERL command is
- ~PURGERL rlspec, nanme

where

rispec

is UNIT, to delete the procedure identified by name;
or ENTRY, to delete the entry point identified by
name. The default parameter is ENTRY. (Optional
parameter.)

name

if rispec is UNIT, name is the name of the procedure
to be deleted. If rispec is ENTRY, name is the name
of the entry point to be deleted. (Required parame-
ter.)

 The form of a ~LISTRL command is

See the MPE Segmenter Reference Manual (Section VII)
for further discussions of these Segmenter commands.

Figures 12-4 through 12-6 demonstrate how to compile a
procedure into a USL, build an RL file and add the proce-
dure to this RL, and, finally, how to run a program re-
ferencing this external procedure.

In figure 12-4, USL file USL1 is created using the
MPE/3000 :BUILD command. The text file FTRAN37
then is compiled into this USL using the :FORTRAN
command.

In figure 12-5, the Segmenter is accessed with the
MPE/3000 :SEGMENTER command. Once accessed, the
Segmenter command —BUILDRL is used to create the RL
file RLPROC (consisting of 300 records maximum and one
disc extent); the —USL command identifies the USL file
(USL1) which contains the procedure; and the —~ADDRL
command adds the procedure START to RLPROX.

: BUILD USL1; CODEsUSL
:FORTRAN FTRAN37,USL1

PAGE @01 HP32102B.00 .9

223301293 SUBROUTINE START

Naa32000 CHARACTER*S CHEX(R,8),BL, 1IN, CP, PP, FRAME*4]
02330008 BL=""! '

BABALA0D IN="1 %%

2A3ISOAA Cp="!' EBL "

22306002 pp="t1 WUH "

PR0AT 333 DO 129 1I=1,23,2

AA2ABBG02 DO 90 J=2,%,2

70009000 93 CHEX(I,dJ)=CP
ZoA1B200 122 CONTINUE

202110233 DO 119 Jd=1,7,2
gR3122930 113 CHEX(2,J)>=CP

33313322 DO 130 1=6,8,2
AAC1LBGD DO 122 J=1,7.,2

AAB15383 128 CHEX(I1,J)=PP
20216330 139 CONTINUE

PAR1TACD DO 148 J=2,8,2
23218230 142 CHEX(7,J)=PP

APB19232 DO 163 1I=1,7,2
38320208 DO 153 J=1,7,2

272321209 15 CHEX(I,J)=IN
30022200 163 CONTINUE
202237230 DO 180 I=2,8,2
BAR2403G DO 1773 J=2,%,2
ABB25229 178 CHEX(I,J)=IN
0B226d047 [8% CONTINUE

30327337 DO 199 J=1,7,2
260328333 19@ CHEX(4,J)=8L
32923802 DO 283 J=2,8,2

20030262 2383 CHEX(S,J)=EL

ABB3102002 338 FORIATCTIZ, "1, 4%, "2, 4Xs "3y 4K, "4, 4%, 5"
A3A32209 #s 4K, 6", 4%, T, 4% 8™

AP233230 493 FORMAT(T1%,5)

232342920 509 FORMAT(T6,12,T18,8S5)

P0235020 FRAME="|=we=lccecw leccelevrn loveelerec lecreleeaa1n
PAA3I6BOD WRITE(6, 328>

@00370200 DO 663 1=1,8

ae3382092 WVRITE(6, 490)FRAME

p0A39009 608 WRITE(6,5@2)1, (CHEX(1,dJ)»dJd=1,8)

QBA408020 WRITE(6, 433)FRAME

20041000 RETURN

2342000 END

*k ok GLOBAL STATISTICS *dokok

* ¥k NO ERRORS, NO WARNINGS %%¥k
TOTAL COMPILATION TIME @:20:01
TOTAL ELAPSED TIME D10D206

END OF COMPILE

Figure 12-4. Creating a USL File

12-13

: SEGUENTER

SEGUENTER SUBSYSTEY (Ce?)
-BUILCEL TLPROC, 3729, 1
-Usi, USsLi

-ADDRL START

-LISTRL

L FILE FLPROC.PUR.GOODYIW
* ENTRY POINTS x

START 3 59

* EXTERNALS x*
TFORI?
FATINIT?

110"
SIO!

2NN

N AN

497

AVAILABLE

111399

12-14

Figure 12-5. Using the Segmenter to Build a Relocatable Library File

:FTORTRAN

PAGE 0091

22212272
AARA2AREG
AARA3 A2
A33340939
22235230
BAFACAAD
32337329

Jok ok

FTRAN3S

HP32102B.00 .0

C

PROGRA1 RELOCATABLE

C THIS PROGRAT CALLS THE RL LIEPARY PROCEDURE STANT

C
13

GLOBAL

CALL START
STOP
END

STATISTICS

*kdok NO ERRORS, NO WARNINGS
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME 0200208

=D OF

=D OF PREPARE

1 RUN PRO

END OF

COMPILE
:UILD PRIGL; CODE=PROG
: PTLEP $0LDPASS, PROGILS RL=1RLPROC

Gl

1
===~
Tokx !
ISR
! BL !
et~
1okx 1
tem=m 1
! !
[iataadadl Rt
! okx !
el
! WH !
oot
T okx !
lwmeet=
! WH !
===

PROGRAM

2 3 4

- - !_..—- !____
Bl ' %% ! EBL
- - e !---- !--—-.
*x%k 1 BL 1 *%x
- !__-.. !...._..
BL ' %% ' BL
- om - !-___ !..._....
ok 1 1 k%
- - !___.. !____

L S S

k% 1 WH 1 okok

WH t *xx ! WH
- !_.._.. !..___
*k 1 WH ! *x%

EE R

Jodkdk

)

1 okok

! BL

!_..__
1 okx
!_—--
!

1 koK
!_..-_
! WH
!_--_
1 koK
!____
!t WH

6 7 2
el bl Bl d b
! DL ! k% v BL
temmmlemem e
Toxx ! BL 1 ok
lemee e femmm
! BL ! x*x ! PL
R el bl
1 okk ! vk
e LR Ll
! 1o okk !

Uk 1 OWH 1 ok

t WH t %%k t WH

!okk 1 WH ! okx

e e bt

Figure 12-6. Calling a Procedure from a Relocatable Library

12-15

Note: A FORTRAN/3000 main program or
BLOCK DATA subprogram cannot be
added to an RL file as a procedure. Such
procedures must be subroutine or func-
tion subprograms.

Figure 12-6 demonstrates how to compile the text file
FTRANS3S8 into a USL using the :FORTRAN command,
prepare this USL ($OLDPASS) into the temporary prog-
ram file PROG using the :PREP command (note the refer-
ence to the RL file RLPROX with the RL = filename
keyword parameter), and execute the program using the
:RUN command. Statement 10 in the program of figure
12-6 calls the procedure START (which is the procedure
contained in the RL library).

See the MPE Segmenter Reference Manual for further
discussions of Segmenter commands and user library
management.

12-20. SEGMENTED LIBRARIES

Segmented libraries (SL’s) are specially formatted files
that are searched at program run time to satisfy refer-
ences to external procedures. These libraries, like prog-
ram files, contain procedures in segmented (prepared)
form. An individual procedure may be the only procedure
in its segment, or it may exist in a segment containing
many other procedures. When a procedure is referenced,
the segment containing it is loaded with your program.
Since the segmentation is not altered when different prog-
rams reference procedures in an SL, these procedures may
be shared concurrently by other programs.

To specify that an SL file be searched in your group ac-
count, add the keyword parameter LIB = library in the
:RUN command as follows:

:RUN PROGL,LIB = G

12-21. CREATING AND MAINTAINING SEG-
MENTED LIBRARIES. To create and maintain seg-
mented libraries, you first must access the Segmenter by
entering the MPE/3000 :SEGMENTER command.

where

listfile

is an ASCII file from the output set (formal desig-
nator SEGLIST) to which is written any listable
output generated by the Segmenter subsystem
commands. (The designator SEGLIST should rot be
used as the actual file designator.) If listfile is omit-
ted, the standard job/session list device ($STDLIST)
is assigned by default. (Optional parameter.)

12-16

If in interactive session, the Segmenter will prompt with a
dash (—). Once the Segmenter is accessed, the following
commands are used to create and maintain an SL:

—BUILDSL
creates a permanent, formatted SL file.

-SL
identifies an existing SL file.

—ADDSL
adds a procedure to the SL file being managed cur-
rently.

—-PURGESL
purges an entry-point from a segment in an SL, or
the entire segment from the SL.

—LISTSL
lists the procedures in the currently-managed SL
file.

In addition, the —USL and —LISTUSL Segmenter com-
mands can be used (see figure 12-7).

The form of a —BUILDSL command is

BUILDSL filereference, records, extents

where

filereference
is a file whose local name is SL (and optional group
and account names).

Note: You can create an SL file with a local
name other than SL, but such a file can-
not be searched by the :RUN command.
(Required parameter.)

records

is the total maximum file capacity, specified in
terms of 128-word binary logical records. (Required
parameter.)

extents

the total number of disc extents that can be dynami-
cally allocated to the file as logical records are writ-
ten to it. The size of each extent is determined by the
records parameter value divided by the extents
parameter value. The extents value must be an in-
teger from 1 to 16. (Required parameter.)

The form of an —SL command is

—SL filereference

Apr 1978

where

filereference
is the name of the SL to be modified (and optional
group and account name). (Required parameter.)

where

name
is the name of the segment to be added to the SL.
(Required parameter.)

PMAP

is an indication that a listing describing the pre-
pared segment will be produced on the device
specified in the :SEGMENTER command parameter
listfile. If omitted, the prepared segment is not
listed. (Optional parameter.)

where

unitspec

is ENTRY, to delete the entry-point identified by
name; or SEGMENT, to delete the segment iden-
tified by name. (Optional parameter.)

The default parameter is ENTRY.

name
is the name of the entry point or segment to be
deleted. (Required parameter.)

For further descriptions of these Segmenter commands,
see the MPE Segmenter Reference Manual.

Figures 12-7 and 12-8 demonstrate how to build an SL file,
add a function procedure to this file, and run a program
that references the procedure. In figure 12-7, a USL file
(USL1) is created and the function subprogram DISP is
compiled into this file.

Note: A FORTRAN/3000 main program
cannot be added to an SL file as a proce-
dure. Such procedures must be sub-
routine or function subprograms. In ad-
dition, FORTRAN/3000 procedures in an
SL library cannot contain DATA,
COMMON, labeled COMMON, or
TRACE variables, or references to
FORTRAN/3000 logical units.

The Segmenter command —BUILDSL is used to create an
SL file named SEARCH, with 300 records maximum and
one disc extent. The —USL command is used to identify
the USL file (USL1) containing the procedure which is to
be added to the SL file.

The —LISTUSL command causes a listing which shows
the segment name of the segment containing the proce-
dure to be added to the SL file.

(Note: The —LISTUSL command was used for
demonstrative purposes only inasmuch
as there is only one segment (SEG) in
USL file USL1.)

The segment is added to the SL file using the ~ADDSL
command.

In figure 12-8, a program file (PROG1) is created with a
:BUILD command and the calling program (FTRAN40) is
compiled and prepared into this file using the
:FORTPREP command.

The :RENAME command is used to rename the SL file
SEARCH to SL (recall that the SL file must have the local
name SL in order to be searched by a :RUN command).

The LIB = G parameter appended to the :RUN command

specifies that the Group library is to be searched first for
the referenced procedure.

12-17

:BUILD USL13;CODE=USL
:FORTRAN FTRAN39,JSL1

PAGE ©@vi HP32102B.04 .2

BR521909 FIINCTION DISP(CYL,FAD,HGT,WEIGHT,DISTANCE, TRANSCHG)
23032030 DISP=CYL*%(314159% (RAD**2)*HGT)

TRAB3IFLD TPANSCHG=WEIGHT+DISTANCE*.2019

2B3407%3 RETJRN

28025273 =D

Fk Jk GLOBAL STATISTICS Fe etk

Fdedok NO ERRORS, NO WARNINGS k¥t
TOTAL COMPILATION TIME ©:00301
TOTAL ELAPSED TIME G2 104

END OF COMPILE
: SEGMENTER

SEGMENTER SUBSYSTEM (Ce0)
~BIJILDSL SEARCH, 3772,
~-USL USLI

~LISTUSL

UJSL FILE USL!.PUB.GOODWIN

SEG'

DISP 24 P A CNR
FILE SIZE 377622
DIRe. USED 37 INFO USED 24
DIR. GARR. 2 INFO GAR3-. 2
DIR. AVAIL. 37541 INFO AVAIL. 337554
-ADDSL SEG'
-EXIT

END OF SUBSYSTEM

Figure 12-7. Adding a Procedure to an SL Library File
12-18

1BUILD PROGI13CODE=PROG
s FORTPREP FTRANA47,PROGI

PAGE @e21 HP32102B. % .0

22031022 PROGRAM SL LI1BRARY

222927293 C

2797302% C EXAMPLE PROGRAM TO CALL SL LIBRARY PROCZDURE

22224923 C

200058239 123 FORMAT(TS,"DISPLACEMENT OF THIS VEHICLE IS
IN306229 222 FORMAT(TS,"TOTAL COST IS ',M12.2)
29327323 338 FORMAT(TS,"REGISTRATION COST IS5 ",N12.2//)

2920825309 DISPLAY "WEIGHT?"
22339330 ACCEPT A

22210000 DISPLAY "DISTANCE?"
222112022 ACCEPT B

20912000 DISPLAY "COST?"
293130309 ACCEPT COST
23714023 DISPLAY **NO. CYLINDERS?"
202152902 ACCEPT C

23216009 DISPLAY "BORE?"
Q3317222 ACCEPT D

273318822 DISPLAY "STROKE?"
AAB19372% ACCEPT E

23220793 D=D/2

fnan21202% C

29322233 C THE NEXT STATEMENT CALLS
200232083 C LIBRARY PROCEDURE "DISP™

309242329 C

THE SL

237925209 DISPL=DISP(C,DsEsA,3,T)

22226093 YHOLECJOST=COST+T

25027323 TAX=1«5%DISPL

Can28000 REGISTRATION=SART(DISPL)*5.5
20229800 WRITE(6.,122)DISPL

200332060 WRITE(S,2722)WHOLECOST

202331200 WRITE(6,328)REGISTRATION

72032%292 STOP
27333000 END

Kok ko GLOBAL STATISTICS

dok ok NO ERRORS, NO WARNINGS
TOTAL COMPILATION TIME @:209:81
TOTAL ELAPSED TIME D100:33

END OF COMPILE
END OF PREPARE

tRENAME SEARCH.,SL
$RUN PROGI3LIB=G

WEIGHT?
24512

DISTANCE?
73463

cosT?
27645432

NJ+ CYLINDERS?
?6

BORE?
244647

STROKE?
234549

*kdkk
L2 224

~ DISPLACEMENT OF THIS VEHICLE IS5

TOTAL COST IS $12,163.90

REGISTRATION COST 1S $123.53

END OF PROGRAM

361.15375

“",Fl14.3)

Figure 12-8. Referencing an SL Library Procedure from a Program

12-19

NON-FORTRAN/3000 PROGRAM UNITS

APPENDIX

A

Any non-FORTRAN/3000 language program unit may be
used as part of an executable FORTRAN/3000 program,
provided the program unit has a calling sequence and
method of execution compatible with FORTRAN/3000. In
addition, a FORTRAN/3000 subprogram can be used by a
program written in some other language, as long as its use
is compatible with the calling program’s requirements.

All arguments of a subprogram written in
FORTRAN/3000 are passed by reference. This means that
the address where the value is located is passed instead of
the actual value of the argument. Thus, a FORTRAN/3000
subprogram expects a list of addresses for the formal ar-
guments passed to it, one for each argument and in the
order given by the dummy argument list contained within
the subprogram.

A function reference or CALL statement prepares a list of
addresses for the actual arguments associated with the
call. In a function subprogram, space is allocated im-
mediately before the address list for the value associated
(returned) with the function name after execution. A sub-
program written in FORTRAN/3000 deletes the actual
argument addresses from its data space after it is exe-
cuted. Any FORTRAN/3000 program referencing a
non-FORTRAN/3000 language subprogram expects that
subprogram to delete its actual parameter addresses.

Although values normally are passed by reference, or
indirectly, they can be passed by value, or directly, in order
to facilitate invoking non-FORTRAN/3000 language pro-
cedures which allow passing of arguments by value. To
accomplish this, the expressions used as actual arguments
are enclosed in back slashes (\). This tells the
FORTRAN/3000 compiler to pass the actual value instead
of the address where the value is located.

For example,

CALL SUBR (\6.4\,\8.7\)
CALL SUBR (\A\,\B\,\CY)

In both examples above, the actual values are passed to
the referenced procedure SUBR.

A-1. SPL/3000 PROGRAMS

SPL/3000 (Systems Programming Language for the HP
3000 Computer System) will be the language used most
frequently for non-FORTRAN/3000 external procedures.
SPL/3000 procedures may be invoked by FORTRAN/3000
in the same manner as function and subroutine subprog-
rams written in FORTRAN/3000, except that actual ar-

guments may be passed by value.

SPL/3000 programs do not accept complex values as do
FORTRAN/3000 programs. Double precision real num-
bers in FORTRAN/3000 are called long in SPL/3000 al-
though their use is compatible. FORTRAN/3000 state-
ment labels are not useful to an SPL/3000 program, and
SPL/3000 labels are not allowed in FORTRAN/3000; they
cannot be passed as actual arguments between one lan-
guage and the other.

Note that SPL/3000 supports one-dimensional arrays, so
that multi-dimensional arrays passed by FORTRAN/3000
will be linearized (see Section V, paragraph 5-8,
Equivalence Between Arrays of Different Dimensions).
Arrays are passed between SPL/3000 and
FORTRAN/3000 programs by supplying an array element
as the actual parameter by reference (address). The ad-
dress of the first element of an SPL/3000 array points to
the zeroth value, while the address of the first element of a
FORTRAN/3000 array points to the first value. Note also
that a FORTRAN/3000 character value of length n corres-
ponds to an SPL/3000 byte array of n elements.

The form of the SPL/3000 procedure SORTINITIAL is
shown below:

PROCEDURE SORTINITIALINPUTFILE,
OUTPUTFILE,QUTPUTOPTION,RECLEN,
NUMRECS,NUMKEYS,KEYS,ERRORPROC,
KEYCOMPARE,STATISTICS,FAILURE);

VALUE INPUTFILE,OUTPUTFILE,
OUTPUTOPTION,RECLEN,NUMKEYS;

DOUBLE NUMRECS;

ARRAY KEYS,STATISTICS;

PROCEDURE ERRORPROC;

LOGICAL PROCEDURE KEYCOMPARE;

LOGICAL FAILURE;

OPTION VARIABLE,EXTERNAL;

Note: SORTINITIAL is part of the SORT/3000
subsystem and as such can be called
using the SYSTEM INTRINSIC declara-
tion as described in paragraph A-4. It is
used here merely because it illustrates
most of the problems encountered when
calling SPL/3000 procedures from
FORTRAN/3000.

The SORTINITIAL procedure above is specified as being
OPTION VARIABLE. This means that some parameters

need not be supplied. Since this feature does not exist in
FORTRAN/3000, you must supply an extra logical value

A-l

argument, which is appended to the complete argument
list. This value consists of one or more 16-bit parameter
mask words. This extra parameter serves as a “bit map,”
with each unique bit representing a parameter in the
parameter list. The rightmost bit represents the last
parameter in the list, the second rightmost bit the next-
to-last parameter, etc. Each “on” bit (bit = 1) indicates a
required parameter to SORTINITIAL and each “off” bit
(bit = 0) represents a parameter that is being supplied a
dummy value. For example, the following statement calls

SORTINITIAL, which is OPTION VARIABLE, and whose
parameter list contains eleven parameters.

CALL SORTINITIAL (\IN\, \oUT\,\o\,\ 0\,
\o.0\,\1\, KEYS, \o\, \o\,\ 0\, F\%3061\)

Values are supplied for the first, second, sixth, seventh,
and eleventh parameters and dummy values (zeros) are
supplied for the third, fourth, fifth, eight, ninth, and tenth
parameters. For one parameter (NUMRECS), a double
value is required, so the dummy value \0.0\ is furnished.
SORTINITIAL must be told which parameters are being
passed and so the octal value 3061 is appended to the
parameter list as the mask word. Thus, the mask word

Bits | 0(1[2]3|4(5]|6({7|8(9]|10{11]|12|13]14 |15

0/0/0[0|011]1|0(0)0j 1] 1|0 O0}O |1

b3 Lot 6 1 1 |

| 1 | | l
informs the SORTINITIAL procedure that values are being
passed for parameters INPUTFILE, OUTPUTFILE, NUM-
KEYS, KEYS, and FAILURE in the SORTINITIAL call
and that dummy parameters (zeros) are being passed for
the remaining parameters. Note that KEYS and FAILURE
(F) are passed by reference (no back slashes).

If more than 16 arguments are specified by a procedure,
then two or more words are required for this masking.
Again, the last bit represents the rightmost argument.

Figure A-1 is an example of calling the sortinitial proce-
dure to sort a file (MAILLIST) and write the sorted file
into another file (NEWLIST).

Note: A composite number may be used to rep-
resent the bit map. All arguments are
positional and space must be allocated in
the argument list according to the data
type required, i.e., a real variable needs
two words, an integer one word. Argu-
ments passed by reference require only
one word.

A-2. FUNCTIONS WITHOUT
PARAMETERS

When a non-FORTRAN/3000 language procedure is a
function which does not require parameters, then its use
in FORTRAN/3000 requires special consideration because
FORTRAN/3000 requires that a parameter be included in
a function call.

A-2

If a dummy parameter is specified, the function will exe-
cute. The result of executing this procedure, however, is
that an extra value will be placed on the stack. If such a
procedure is called from within a DO loop, the program
can abort. To take care of this extra value on the stack, a
function call to a procedure that does not require paramet-
ers should be made from a subroutine. The subroutine’s
return clears the extra stack value.

See figure A-2 for an example of calling an SPL function
which does not require parameters. (Any non-
FORTRAN/3000 language function procedure which does
not require parameters should be called in the same
manner.)

A-3. DATA TYPES

The following data types are available in
FORTRAN/3000, with SPL/3000 correspondence, as fol-
lows:

FORTRAN/3000 SPL/3000
REAL REAL
DOUBLE PRECISION LONG
CHARACTER BYTE
LOGICAL LOGICAL
INTEGER INTEGER
DOUBLE INTEGER DOUBLE INTEGER
COMPLEX TWO ELEMENT

REAL ARRAY

It is important to note that the FORTRAN types CHAR-
ACTER and COMPLEX are not the same as the SPL types
BYTE and TWO ELEMENT REAL ARRAY but the corres-
pondence is possible since the compilers implement such
types similarly. When passing parameters requiring the
correspondence of CHARACTER to BYTE or COMPLEX
to TWO ELEMENT REAL ARRAY from a FORTRAN
procedure to an SPL procedure, do not use OPTION
CHECK 3 in the called SPL procedure. This option directs
the Segmenter to check the procedure type, number of
parameters, and type of each parameter for exact corres-
pondence. Since the types COMPLEX and CHARACTER
are not available in SPL, the use of OPTION CHECK 3
results in a Segmenter error. To avoid this problem use a
CHECK number of 2 or less.

A-4. SYSTEM INTRINSICS

The MPE file SPLINTR.PUB.SYS contains information
concerning the attributes of a set of subprograms. These
subprograms are usually, but not always, user-callable
system subprograms, such as FOPEN. In particular, all
intrinsics mentioned in the MPE manuals may be acces-
sed through this facility. The information about a specific
subprogram includes such items as the number and type of
parameters, whether parameters are by value or by refer-
ence, and whether the subroutine is SPL OPTION VARI-
ABLE. (See the SPL Reference Manual for a discussion of
OPTION VARIABLE). FORTRAN/3000 will read the
SPLINTR file for specially designated subprograms and
will generate the indicated code sequences.

FEB 1977

:FORTRAN FTRANA4]

PAGE wudl HP32102B.00.0

2808812028 SCONTROL INIT,FILE=2),FILE=22

20802280 PROGRAM SPL32638 CALL

203003002 C

23024203 C EXAMYPLE PROGRAM TO CALL SPL/32972 PROCEDURE
22835233 C

207306000 CHARACTEFP*72 BUF

Q2027 AAD INTEGER KEYS(6), FNU

2202082048 LOGICAL FAILURE

2¢009002 C

@AA133@@ C SORT THE FILE MAILLIST (FTN21> INTO NEWLIST (FTN22)
320011@2@ C SORT ON PHONE NUMBERS WITHIN STATES
23312703 C

2033132922 C ESTABLISH THE KEYS - MAJOR AT 52 FOR 2 RYTES (STATE)
2A814332 C 4INOR AT 61 FOR 12 BYTES (PHONE NO)
33315223 C

28216220 KEYS(1)=52

27e1723a KEYS(2)=2

ABA182303 KEYS(3>=0a

32419022 KEYS(4)=61

2438237307 KEYS(S)=12

232217302 KEYS(6)=2

aap22982 C

32233023 C CALL SOFTIWITIAL TO START S0RT PROG A
13224239 C

AAR2E5A22 CALL SORTINITIAL(NFNUIC2IIN,\FRIIC22)\, NN, \NON\,\ 2 2N\,
232269208 ANO\LKEYS, N2\ \NO\L N\, FAILURE,\NZ3261\)
39927042 IF(FAILURE)STOP 10

aea280@3 C

03299822 C CALL SORTEND WHEN SORT 1S COMPLETE
29339022 C

20331009 CALL SORTEND

300232003 IF(FAILURE)STOP 28

aAA339023 C

A233430@ C READ AND DISPLAY OUTPUT FILE

33335834 C

22236232 REWIND 22

2a2370720 37 READ(22, END=199%) BUF
332380232 Se FORMAT(T2, 5)

3BA39EHE WRITE(6, 53)BUF
A2BABADA GO TO 32

22041030 1g¢ STOP

26242002 END

ok kk GLOBAL STATISTICS Frkdk

hk Kk NO ERRORS, NO WARNINGS %%
TOTAL COMPILATION TIME 02:00:01
TOTAL ELAPSED TIME ©:00:03

tND OF COMPILE

: BUILD PROG1;COLE=PROG
: PREP $OLDPASS, PROG13MAXDATA= 4207
END OF PREPARE

sFILE FTN21=4AILLIST,0LD
:FILE FTN22=NEWLIST,OLD

: RUN PROGI

SPACE 1ANN 9999 GALAXY WAY UNIVERSE CA 61239 231-999-9999
JENNA GRANDTR 493 TWENTIETH ST PROGRESSIVE CA 61335 799-191-9191
KING ARTHUR 329 EXCALIBUR ST CAMELOT CA 61322 812-2a2-21a3n
SWASH BUCKLER 497 PLAYACTING CT MOVIETOWN CA 61497 NONE

ALI BABA 49 THIEVES WAY SESAME CO 69142 NONE
KARISSA GRANDTR 7917 BROAIMOOR WAY BIGTOWN MA 21799 713-244-3717
JANE DOE 3959 TREEWOOD LN BIGTOWN MA 21843 714-399-4563
JOHN DOUGHE 239 MAIN ST HOMETOWN MA 26999 Tl4-411-1123
JAMES DOE 4193 ANY ST ANYTOWN MD 90133 237-408-7190
KNEE BUCKLER 974 FISTICUFF DR PUGILIST ND @4321 976-299-2992
JOHN BIGTOWN 965 APPIAN WAY METROPOLIS NY 22013 619-407-2314
LOIS ANYONE 6198 COURT ST METROPOLIS NY 28115 619-732-4997
BLACK BEAR 47 ALLOVER DR ANYWHERE US 2@111 NONE

END OF PROGRAM

Figure A-1. Calling an SPL/3000 Procedure from FORTRAN/3000

A3

$FORTGO NOPARMS3

PAGE «0l

VLA Vv
VBB 2 voY
VO 300
VYVLAY DY
VYL BY
W 608
VYY1 VYI
NoLOB N
Vo8 1 A
©VYYVB 2 VY
OIS VYY
VBV V3
VYO | D
vt 1 vud

VOB 2004
W1 30
VY4000
VL1508
VoY 600
D1 T0B8
VOV 18vILY
VY| 28Yd
Y2 000d
VY21 VY
VY22 LY

%k hk

HP32192B.79.0

PROGRAM NOPARMSI

C
C THIS PROGRAM CALLS THE SPL PROCEDURE GETJCW
C WHICH DOES NOT REQUIRE ANY PARAMETERS. THE
C PROCEDURE IS CALLED FROM A SUBROUTINF SO THAT
C AN EXTRA VALUE IS NOT LEFT ON THE STACK.
C

LOGICAL JCW

JCHW=. TRUE.

DISPLAY "JCW IS ",JCW

CALL FORTGETJCW(JCW)

DISPLAY #JCwW 1S “,JCW

STOP

END

SUBROUTINE FORTGETJCW (JCW)

LOGICAL JCW,GETJCW
C
C THE \¢\ IN THE NEXT STATEMENT IS A
C DUMMY PARAMETER USED TO FAKE OUT THE
C FORTRAN CNMPILER. THF PRCBLEM IS THAT
C FORTRAN REQUIRES ALL FUNCTIONS TO HAVE DARAMETERS
C

JCH=GETJCW\UI\)

RETURN

END
GLOBAL STATISTICS ok kk

*k kK NO ERRORS, NO WARNINGS *%dx
TOTAL COMPILATION TIME Ps0@:01
TOTAL ELAPSED TIME Pr0243

END OF COMPILE

END OF PREPARE

JCW IS
JCW IS

-1
4

END OF PROGRAM

A-4

Figure A-2. Calling an SPL Function that does not Require Parameters

The appearance of “SYSTEM INTRINSIC” followed by a
list of system intrinsics separated by commas implies the
SPLINTR file is to be searched for names appearing in the
list. If no such name can be found, an error message is
displayed. The SYSTEM INTRINSIC statement must ap-
pear before any executable statements in a program.

Use of this facility provides three main conveniences over
the usual way of accessing external subprograms:

1. Convenient access to SPL OPTION VARIABLE
routines is provided. For each such subprogram, the
list of actual parameters need not be complete and
may not include the mask word(s) that signify which
parameters are present. Missing parameters are indi-
cated by commas or a right parenthesis. The occur-
rence of a right parenthesis before the formal param-
eter list is exhausted implies the rest of the parame-
ters are missing. The parameter presence mask
word(s) are automatically generated by the compiler
from the actual parameter list.

2. The value or reference attribute of a formal parame-
ter is recognized and the appropriate code is gener-
ated automatically to stack actual parameters for the
call. The use of “/” to specify value parameters will be
ignored if the parameter is actually passed by value.
If the parameter is actually passed by reference, the
“/” is ignored and a warning message is generated.
Parameter checking is done at the highest level.

3. Automatic typing of SPLINTR file functions. Thus,
SYSTEM INTRINSIC FOPEN, BINARY will result
in FOPEN being typed as integer and BINARY being
typed as logical.

For example,
The source

SYSTEM INTRINSIC FCHECK
INTEGER ERRCODE
CALL FCHECK(0,ERRCODE)

would result in the following code

ZERO

LRA ERRCODE

DZRO,ZERO

LDI %30 << OPTION VARIABLE MASK>>
PCAL FCHECK

The source

SYSTEM INTRINSIC BINARY
LOGICAL RESULT

INTEGER LENGTH
CHARACTER*8 STRING

RESULT= BINARY(STRING,LENGTH)
would result in the following code

ZERO

LRA STRING
LOAD LENGTH
PCAL BINARY
STOR RESULT

Compare the examples shown in figures A-3 and A-4. Note
that the back slashes were not necessary for the call to
PRINTOP in figure A-4. The FORTRAN/3000 compiler
still passed the value parameters by value.

Now compare the examples shown in figures A-5 and A-6.
Note that in figure A-5, GETJCW was automatically
typed logical and the stack was adjusted automatically by
the compiler to take into account the fact that function
GETJCW has no parameter.

In figure A-6, note that FOPEN is typed integer; parame-
ter 2, parameter 4 and all succeeding parameters are mis-
sing; and three of FCHECK’S optional parameters are
missing.

A-5. VALUE ARGUMENTS

Whenever an argument is specified by value, and the
argument is not an argument of a system intrinsic, the
value or variable must be enclosed in back slashes, e.g.,
\. VAR or\ 25\ . The argument must also be of the
correct length according to the argument’s type.

A-6. CONDITION CODES

Frequently, condition codes are returned to a FORTRAN/
3000 program by system intrinsics. These condition codes
have the following general meanings. (Specific meanings
depend on each individual intrinsic. Refer to the MPE
Intrinsics Reference Manual for condition codes for specific
intrinsics.)

A-b

tFORTGO0 FTRAN4Z

PAGE wwdl

20321000
0o2020879
B2233002
Co324000
33305023
RNABR6Aa7
03037080
aAAA82002
32292023
Z0212003
v2011002
20812020
200130682
BAB14223

%k kk

HP32192B.00 .0

PROGRAM PRINTOP

EXAMPLE PROGRAM TO CALL SYSTE! INTRINSIC PRINTOP

eNeNe]

CHARACTER MESSAGE*14
LOGICAL LMESSAGE(T)
EQUIVALENCE(LMESSAGE,MESSAGE)
DATA MESSAGE/"THIS IS A TEST'/
CALL PRINTOP(LMESSAGE, \=14\s\2\)
IF(.CC+)2%, 12,27
12 STOP
20 DISPLAY “INTRINSIC RETURNED BAD CONDITION CODE"
STOP
END

GLOBAL STATISTICS % Jdk

Kk Kk NO ERRORS, NO WARNINGS *k¥ok
TOTAL COMPILATION TIME 0:00:01
TOTAL ELAPSED TIME P:X0:04

END OF COMPILE

END OF PREPARE

END OF PROGRAH4

A-6

Figure A-3. Example of Condition Code Check

FRGE 0001

QOO 000

non
(LR
ann Xy
001 on0a
ooninog
nonta2oon
OOL =000
nnoe1donn

*ee e

s HO ERROR=

HF22102B. 00,0

FROSFEAM FRINTOFZ

E<AMFLE FPROGREAM TO CHLL EYETEM INTRINZIC PRIMTOP

CHAFEACTER MEZZAGEel4

LOGICAL LMEZERGE (T

EVETEM INTRINZIC FRINTOF
EQLIVALEMIE CLMESSAGE s MESEZRGED
DATA MEZSAGE-"THIZ 1Z A TEXT"~
CAHLL FRINTOFCLMEZEZRAGEs—14s 09

IF LT a20e 1020

10 ZTOF “ZUCCEZEFUL WRITE™

=41 ZTOF "INTRINZIC RETURNED BART COWLDITION CODE™
EMD

GLOBAL ZTRTIZTICE seee

HO WARNINGZ eeee

TOTAHL COMPILATION TIME 0200803
TOTAL ELAFIED TIME e nn:ssn

EMD OF F

$FREFRLIN

EMD OF F

=TOrF AR

EHD OF F

FOGRAM
FOLDPAEZZSVLIE=3

FEFRFE
CEZIZFUL WRITE

FOGFEHM

Figure A-4. SYSTEM INTRINSIC Statement Example

AT

tFORTGO NOPARMSZ2

PAGE voul HP321722B., M .0

W | VvY PROGRAM NOPARMSZ2

boRdweuws C

Bonw3vvw C EXAMPLE OF A PROGRAM CALLING A SYSTEM
bovvapwy C INTRINSIC WITH NO PARAMETERS.
VousYYY C

VYLV 6 VN SYSTEM INTRINSIC GCETJCW
BnoY 1 Wi LOGICAL JCW

VYYLB VYV JCW=.TRUE.

VYYD VB DISPLAY ®JCW IS ",JCW

VoY 1 BHBY JCwW=GETJCW

A ARRN%, DISPLAY "JCW IS ",JCW
wov12vne STOP

VY1 3vd END

%k KKk GLOBAL STATISTICS * kK

*% ko NO ERRORS, NO WARNINGS *xx*
TOTAL COMPILATION TIME @:00:0l
TOTAL ELAPSED TINE P @Ae 3
END OF COMPILE
END OF PREPARE
JCW IS -1
JCAW IS]

END OF PROGRAM

A-8

Fi;ure A-5. Calling a SYSTEM INTRINSIC Function that does not Require Parameters

FRZE

ool oo

00010000
ool aacd
aooIZong
Doo13000
pao1g40n0n
O0O1IS 00
oonlannn
oLy onn
O0OL=00nn
oooinnn

== o

ZYMEOL
“FME

FOHECE
FHAME

F L
FOFEH
IEFFRCODE

>0

el ad MO ERREORZ.
TOTAL COMFILATION TIME
TOTHL ELAFZED TIME

HF2Z102R. 00. 0

FCONTROL MAF
PRDGRHw OPENFILE

[N

 THIZ EXAMPLE SHOWS THE UISE OF FOPEM IN A ZVETEM

o INTRIMSZIC ZTATEMENT. IM FARTICULAR THIS ILLUSTRATES
= THE HANMDLING OF MISSING PARAMETERS AND THE AUTOMATIC
o TYERIMG OF SPL FUMCTION NAMES.

i

ZYETEM IMTRINMSIC FIHECK
Z7ZTEM INTRINZIC FOFEN
ESEReZ FNUM
CHARARZTER S FMAME

DARTA FHAME-"TEMFFILE" -~
FHLUM=FOFEMN CFNAME » s 13013

IFC,CC.210a20. 1)
10 DIZFLAY "OPEN FRILED”

CALL FOHECK SFHUM» TERRECODED
DIZPLAY "FCHECK ERROR CODE WAE " TERRCULUOE

=T0OFR
= ODIZFLAY "MPE FILE NHUMEER WR=Z"«FNUM
ZTOF “0OFEMN SUNCCEZZFUL S
EMHI
MHP
TYFE TTRUCTURE ADIREZT
ZIUBROUTINE
CHARRERCTER ZIMPLE YRR 04+ is1
IMTERER ZIMRFLE YRR O+ 3
IMTERER FIUHCTION
IMNTEGEFR ZIMFLE YHR 2+ =
GLOBARL ZTARATIZTICE *o00

MO WAENIHGE eeee
n:on:ng
neniess3

eMD OF FROGFAM

tFREFRUA

TOLTPREE

EMI OF PREFARE

MFE FILE MUMEBER WAZ 1

ZTOR DOFEM ZUCCEEE

EMT OF FROGEAM

Figure A-6. Option Variable SYSTEM INTRINSIC Example

CONDITION CODE MEANING

CCE Condition code is zero. This
generally indicates that the
request was granted.

CCG Condition code is greater
than zero. A special con-
dition occurred but may not
have affected the execution
of therequest. (For example,
the request was executed,
but default values were
assumed as intrinsic call
parameters.)

CCL Condition code is less than
zero. The request was not
granted, but the error con-
dition may be recoverable.
Beyond this condition code,
some instrinsics return
further error information to
the calling program through
their return values.

The condition code is checked by an arithmetic IF state-
ment in the FORTRAN/3000 calling program. The special
argument, .CC., is used. Branching occurs to the approp-
riate statement label on the conditions less than, equal, or
greater than.

Note: If the procedure is a function and the
returned value is to an array element,
the condition code will not be valid be-
cause of the intermediate instruction
necessary to handle the array subscripts.
This invalidity applies also if the value
is used in an arithmetic expression.

The intrinsic PRINTOP was shown in figure A-3. This
intrinsic called through FORTRAN/3000 uses arguments
passed by value. The sample program also illustrates the
condition code check.

A-10

Note that in the PRINTOP intrinsic procedure, the
parameter MESSAGE is a word (16 bit) array. When the
parameter MESSAGE is used in the FORTRAN/3000 cal-
ling program, it is declared as Type CHARACTER with a
length of 14, which assigns it a length of 14 bytes. The
statement,

LOGICAL LMESSAGE(T)

declares a logical variable with a length of 7 words, and
this variable and MESSAGE are equivalenced so that a
word value of the proper length will be passed to the
intrinsic.

Note: Most MPE/3000 intrinsics do not check
the type or number of arguments.

A-1. OPTION VARIABLE

When OPTION VARIABLE (meaning that certain
parameters in an intrinsic are optional) is specified by an
intrinsic, an extra logical value argument is appended to
the complete argument list. See paragraph A-1 for a
description of this argument.

+

A-8. SUMMARY

The following items should be checked, then, when calling
system intrinsics from FORTRAN/3000:

DATA TYPES

VALUE LENGTHS

OPTION VARIABLE

FUNCTIONS WITHOUT ARGUMENTS
CONDITION CODE SETTINGS

Figure A-7 shows a FORTRAN/3000 program which calls
the system intrinsic COMMAND.

See the MPE Intrinsics Reference Manual for more informa-
tion about the COMMAND intrinsic.

FEB 1977

tFORTGO FTRAN44

PAGE 0001 HP321028.00.0

AANB10BD2 PROGRAM COMMAND
a%23%203% C

222232322 C THIS IS AN EXAMPLE OF U
30424390 C TO SET UP A FILE COMMAN
2AAASARA C

SING THE COMMAND INTRINSIC
D

2302623233 INTEGER RECNUM

2ARAT BAR CHARACTER*72 BUFFER, UPDATE

A3AIBAAR BUFFER="FILE FTN2@=4AILLIST,OLD} ACCsUPDATE"
339390972 BUFFERC35:11=%15C

AZA10A22 CALL COMAAND(BUFFER, 1 ERP, IPART)

27011234 IF(.CC.>1723, 12,107

337212823 19 DISPLAY "INPUT RECO
3313330 29 ACCEPT RECWNUM

20214292 DISPLAY "INPUT UPDA
230315200 ACCEPT UPDATE
ARF16033 IF(UPDATEC(1: 31 «EQ."
22217087 VRITE(228RECNUM, ERR
300189222 READ(2943RECNUA1, ERR=
GBA19AAA DISPLAY "THE HEW RE
z3n222092 DISPLAY UPDATE
AAA21A4739 DISPLAY "HNEXT RECOR
ApN220a% GOTO 22

ABG23INNG 49 DISPLAY "WRITE ERRO
ANR24302 STOP

23325002 59 DISPLAY "FILE FULL"
AIN26A39 STOP

33827290 67 DISPLAY '"READ ERROPR
23292347 STOP

AAA29ARA 7% DISPLAY "ENC OF FIL
3a3322a9 STOP

10031207 127 DISPLAY "INTRIWNSIC
23332239 152 STOP
472933230 END

s dr GLOBAL STATISTICS bebodeil
*kkk NO ERRORS, NO WARNINGS ks
TOTAL COMPILATION TIME ©:44:01
TOTAL ELAPSED TIME Qs D804

ZND OF COMPILE

EJD OF PRLEPARE

I.1PUT RECORD NUMRER TO START UPDATE

71

INRPUT UPDATE INFORMATION
? FPEDDIE JOHNSONE

THE JEW RECORD ISt
FREDDIE JOHNSONE

JEYT RECORD TO UPDATE?
75

I1NPUT UPDATE INFORMATION
THMATY MEEK

THE WNEW RECORD IS:
MARY MEEK

WEXT RECORD TO UPDATE?
71

INPUT UPDATE INFO®MATION
?END

END OF PROGRAM

RD NUMBER TO START UPDATE"
TE INFORIATION™

END")YGOTO 154

=47, END=52)UPDATE

63, END=73)UPDATE

CORD 15:"

D TO UPDATE?"

e

E*

RETURNED PAD COMNDITION CODE"

Figure A-7

. Calling the COMMAND Intrinsic

A-11

TRAN

FORTRAN/3000 AND ANSI STANDARD FOR-

APPENDIX

FORTRAN/3000 conforms to the American National
Standard Institute’s (ANSI) Standard for FORTRAN
(X3.9 - 1966). To provide a more powerful programming
tool, FORTRAN/3000 extends beyond the Standard and,
in some minor cases, places restrictions on the Standard to
conform with the HP 3000 Computer System architecture.
A brief description of each extension or restriction appears
below. Numbers in the "Standard Reference” column are
references to the appropriate text in the Standard (X3.9 -
1966).

Standard
Reference Comments

3. Program preparation can occur in a-
free-field format as well as a fixed-
field format.

3.1 FORTRAN/3000 uses a 128-character
USACII 8-bit standard character set.
All printing characters can appear in
Hollerith and string values. Some of
the control characters are reserved for
special purposes (such as carriage
return or line feed).

3.2 End lines can appear with a statement
label preceding.

3.5 Symbolic names consist of as many as
15 characters instead of just 6.

4. Character-type data can be used in
FORTRAN/3000 programs to facili-
tate string manipulation. A double
integer data type also is available.

4.2 Logical data can be manipulated as
16-bit binary masks in addition to
their function as true/false data.

5.1.1 Constants of all types can be specified
in more than one way by using octal
values, partial-word designators, etc.
Character constants in the form of
string or Hollerith values can also be
used. Double integer constants may
be specified.

5.1.3 FORTRAN/3000 allows arrays of up
to 255 dimensions instead of just three
dimensions allowed by the Standard.
Subscript expressions are any linear
expressions.

Standard
Reference

5.3

6.1

6.3

7.1.1

Comments

The IMPLICIT statement can be used
to generalize the data type associated
with the first letter of an identifier to
include integer, double integer, real,
double precision, complex, or charac-
ter. Function subprograms can de-
termine their type through a Type
statement within the subprogram de-
fining unit.

Expressions of type character can be
used to facilitate the use of character
data.

Expressions can be created using
primaries of different types. In assign-
ment statements, the resulting ex-
pression value type is converted to the
type of the identifier on the left side of
the assignment indicator.

In exponentiation, constructs such as
A¥*B**B are allowed (without the
need for parentheses) and can use
powers and bases of differing types. No
base can be raised to a complex power,
however.

Partial-word designators allow man-
ipulation of the subparts of integer or
logical values.

FORTRAN/3000 includes an “exclu-
sive OR” operator. The other rela-
tional operators are generalized. Ex-
pressions of type integer, double in-
teger, real, or double precision can
appear on one side of a relational
operator with an expression of type
integer, double integer, real, or dou-
ble precision on the other side. Com-
plex expressions can appear between
equal (EQ.) or not equal (NE) signs
only.

The identifier to the left of the assign-
ment operator in an assignment state-
ment need not be of the same type as
the expression on the right of the oper-
ator. The expression value type is con-
verted to the identifier type prior to

B1

Standard
Reference

7.1.2

7.1.2.1

7.1.24

7.12.5

7.1.2.7

7.128

7.1.3

7.2.11

Comments

assignment. Partial-word designators
can be used to assign parts of integer
or logical variables. Character-type
assignment statements can be used
providing the left and right-hand
parts are of type character.

Label data and integer data are
mutually exclusive. A variable of the
same name can be assigned values of
both types without ambiguity.

Additional control statements are the
TRAP statement and the ENTRY
statement.

The assigned GO TO statement does
not require a list of labels. The com-
puted GO TO can use a linear express-
ion for its index for selecting the trans-
fer statement.

A label can be used as an actual argu-
ment in a CALL statement to allow
alternative return points following
execution of the subroutine refer-
enced by CALL.

An optional exit label can be included
in the RETURN statement to return
to one of the calling program unit’s
statements whose label appears as an
actual argument to the subroutine
containing the RETURN.

STOP or PAUSE statements use a
decimal integer or a character string
for identification rather than an octal
integer.

FORTRAN/3000 supports an ex-
tended concept of DO ranges as dis-
cussed in this manual.

Direct-access files can be referenced
in FORTRAN/3000 input/output
statements. These statements allow
extended format and error recovery
capabilities.

Adjustable array declarators can be
used for local arrays in subprograms
to select different size arrays for each
activation of a subprogram.

Standard
Reference

7.2.1.3

7.2.1.6

7.2.2

7.2.3

8.1

8.2

8.3

8.3.3

Comments

Since FORTRAN/3000 executes on a
16-bit word machine, integer and log-
ical values require one word of com-
puter memory, double integer values
two, real values two, double precision
four, complex four. Character data
uses half-word storage units. The maxi-
mum number of pointers allowed for
referencing variables (simple variables
and/for arrays) allowed in COMMON is
254. However, with the $SCONTROL
MORECOM option, this limit can be
increased to 254 common blocks. The
number of variables in each common
block has no upper limit except for the
user’s stack constraints.

Type statements for types character
and double integer are available.

The DATA statement in FORTRAN/
3000 extends beyond the Standard as
described in this manual. The
FORTRAN/3000 PARAMETER

statement does not exist in ANSI
FORTRAN.

Additional editing types other than
those described in the Standard are
available in FORMAT statements.

FORTRAN/3000 provides secondary
entry point statements.

The defining statement of a state-
ment function can be any expression
of the appropriate type. The ex-
pression can include array elements.

FORTRAN/3000 includes a larger set
of intrinsic functions than listed in
the Standard. FORTRAN/3000
supports generic naming of most
intrinsics.

Recursion in function subprogram
definition is allowed. The type of
actual arguments in a function refer-
ence has been expanded. Arguments
are all passed by reference rather than
value.

The HP 3000 includes a larger set of
basic external functions than listed in
the standard. FORTRAN/3000 sup-
ports generic naming of most basic
external functions.

Apr 1978

Standard
Reference

8.4

8.5

Apr 1978

Comments

Subroutines can be defined recur-
sively and can be called with the same
actual argument types as function
subprograms.

Block data subprograms can be given
a name.

Main program units can be given a
name.

Standard
Reference

10.2

Comments

A variable that is defined is always
available on the first and second level.
For instance, an integer simple vari-
able that is used for both label values
and integer values. FORTRAN/3000
never confuses the two values. Any
variable appearing in a DATA or
COMMUON statement remains defined
until it is explicitly redefined.

FORTRAN/3000 AND HP 2100 FORTRAN

C

FORTRAN/3000 attempts to correspond to other versions
of Hewlett-Packard FORTRAN whenever possible. Differ-
ences between the 2100 family and the 3000 family of
computers, however, require that some differences exist in
these two versions of FORTRAN. The following differ-
ences are deletions of certain aspects of HP 2100 FOR-
TRAN.

o Octal constants are no longer represented by a B suffix
following the constant but are prefixed with %.

e Array variables must explicitly reference all sub-
scripts. Previously, 2100 FORTRAN filled in any
omitted subscripts with 1’s.

e An array declarator for the same array may not ap-
pear in both a DIMENSION and COMMON statement
within the same program unit.

e An arithmetic IF statement must always include
three statement labels, not just two.

o The logical IF statement cannot be followed by a pair
of statement labels in place of an executable state-
ment.

An END line can contain no other non blank charac-
ters other than a statement label followed by the
characters E, N, and D.

Index expressions such as subscripts and computed
GO TO indices cannot evaluate to a complex value.

Hollerith constants cannot be used in place of integer
constants or expressions.

Statement function names and intrinsic function
names cannot be passed as actual arguments for a
dummy function name.

Comments cannot separate a continuation line from
its predecessor.

The following differences constitute modifications of vari-
ous 2100 FORTRAN aspects.

Intrinsics cannot be passed as actual arguments while
Basic External Functions can.

The @ and K format editing phrases are supplanted
by the O editing phrase.

Character strings appearing as free-field data are en-
closed in double quotes () or apostrophes ().

C1

ERROR AND WARNING MESSAGES

APPENDIX

During compilation of FORTRAN/3000 source programs,
the compiler prints error messages to indicate conditions
such as illegal syntax, or warning messages to warn of
marginal conditions which may cause improper execution
of the source program. When one of the above conditions
occurs, the compiler prints a message which includes the
error or warning number and a brief explanatory message.

D-1. ERROR MESSAGES

If an error condition occurs, the compiler outputs a mes-
sage of the following form:

#*ERROR nnn*** message text

where nnn is the message number and message text is a
brief description of the error condition (the program con-
tinues to compile). Error conditions (as opposed to warn-
ings) are fatal to the program unit. The compiler deletes
any object code generated for the current program unit
and attempts to compile the next program unit. If a
:FORTPREP or :FORTGO command is being used, the
preparation (and execution stage for :FORTGO) stage is
suppressed.

D-2. WARNING MESSAGES

If a warning condition occurs, the compiler outputs a mes-
sage of the following form:

*WARNING nnn** message text

where nnn is the message number and message text is a
brief description of the warning condition. Warnings do
not inhibit successful compilation of a program unit or the
generation of object code by the compiler. If not corrected,
however, the conditions indicated by the message can
cause program execution errors. The warning condition
should be corrected and the program unit should be recom-
piled.

D-3. ERROR POSITION INDICATION

Error and warning messages relate to the source code in
several ways, depending on the type of message at the
time the compiler prints the message.

During syntax scanning, the compiler usually prints an up
arrow (1) or caret (A) at or to the right of the error position
in the line. If the compiler is not producing a source list-
ing, the last line examined is printed before the error
message is printed.

Some error messages do not refer to any particular part of
the program (e.g., TOO MANY TRACE SYMBOLS) and
have no error indication other than the message. (The
solution is not tied to one symbol or statement.) In some
cases, such as solving equivalences, the compiler prints an
error message after reading the entire program unit. The
compiler indicates which statement is being processed by
printing the message:

AT statement number + offset

where statement number is the label of the offending
statement or the closest preceding statement label if the
offending statement is not labeled. Offset is a count of the
number of statements the offending statement is from the
label preceding it. These messages also include the name
of the variable being processed when the compiler notices
the error.

Error messages such as TRACE SYMBOL NOT FOUND
include a variable name or a label name to indicate the
area of the program in error since the error depends upon
omitted statements or statement parts.

Table D-1 lists errors and warnings, indicated by E and W,
and the compiler action.

D-4. UNDEFINED VARIABLE DETECTION

A warning message is displayed if a variable appears in
one or more of the following:

1. On the right hand side of an assignment statement.
2. As a value parameter to a subprogram.
3. Asalist element in a WRITE or DISPLAY statement.

and if the same variable does not appear in one or more of
the following:

On the left hand side of an assignment statement.
As a list element in a READ statement.

In a DATA statement.

As a formal parameter.

As a reference parameter to a subprogram.

In an EQUIVALENCE statement.

In a COMMON statement.

N e oA W e

The warning will appear at the end of each program unit.

Figure D-1 is an example of undefined variable detection.

D-1

$FORTGO ENF2

PAGE ¢l HP32102B.00.0

ool My $SCONTROL USLINIT

VYV 2 VY PROGRAM SUBPRFUNCTIOHN
o3y C UNDEFINED VARIABLE DETECTION EXAMPLE
il 4 WYY INTEGFR FACTORIAL

W 53 G ACCEPT L

W6 LYY IFACT=FACTORIAL(L)

V0T 0 STOP

i 8 b END

DRV WY INTEGER FUNCTION FACTORIAL(N)
Do | YD IF(N=-1) 20,208,173

RO VI 1Y FACTORIAL=M*FACTORIAL(N=1)
W1 200w RETURN

WO 3008 2d FACTORIAL=I

W 1 4040 RETURN

Ve 1 5008 END

*% WARNING 226 *% REFERENCED VARIABLE NOT DEFINED

**x%kx NO ERRORS, 1 WARNING Fok *k
PROGRAM UNIT FACTORIAL COMPILED

Fk ek GLOBAL STATISTICS * Kk
* ok kok NO ERRORS, I WARNING *kokk
TUOTAL COMPILATION TIME ©:0030]
TOTAL ELAPSED TIME Di10ds 33

END OF COMPILE

END OF PREPARE

-15

END OF PROGRAM
s

B

D-2

Figure D-1. Undefined Variable Detection Example

Table 3-3. FORTRAN Compiler Warning & Error Messages

NO. | TYPE MESSAGE MEANING ACTION

0 E COMPILATION TERMINATED An error has occurred which aborts the Examine listing. Fix
compilation. Compiler appends cause all errors and recom-
of termination as part of message. pile.

1 w NON-DIGIT IN LABEL FIELD Label can consist only of numbers. Correct label and
Compiler ignores label field. other references to it

in program.

2 w CONTINUATION LINE IN Continuation line text entered in fixed Correct position of

LABEL FIELD format begins before column 7. Com- text in line.
piler ignores text in label field.
3 W SYMBOLIC NAME EXCEEDS A symbolic variable name exceeds 15 Check all references
15 CHARACTERS characters. Compiler truncates name to symbolic name
to 15 characters. and make sure they
are consistent.

4 W/E | EXPECTED A COMMA Compiler detected a.missing comma. None if warning;

f warning, compilation continues comma can be includ-

as if comma included; if error, comma ed for future compi-

required. lations. If error, comma
must be inserted.

5 W EXTRANEOUS COMMA Compiler detected an unnecessary None required. Can
comma and ignored it. correct for future

compilations by de-
leting comma.

7 W UNEXPECTED CHARACTER Compiler detected an unexpected Examine statement
character and ignored it. format and delete

extra character.

8 W UNEXPECTED ‘' Compiler detected an unexpected Check statement to
hyphen or minus sign in a FORMAT determine whether '’
statement. Unchanged statement is necessary. If not,
is passed to the Formatter. remove it.

9 W UNEXPECTED COMMA Compiler detected an unexpected Check statement to
comma in FORMAT statement. determine whether
Unchanged statement is passed to comma is necessary
the Formatter. If not, remove it.

10 W UNEXPECTED ‘)’ Compiler detected an unexpected right Check statement to
parentheses in FORMAT statement. determine whether
Unchanged statement is passed to ‘)" is necessary. If
Formatter. not, remove.it.

1 W/E | EXPECTED AN INTEGER Compiler expected to find an integer Check statement to

in FORMAT statement. Unchanged
statement is passed to Formatter. If
compiler control statement caused
warning, unrecognized item ignored.
If error, integer required.

determine whether in-
teger is necessary, If
so, insert appropriate
integer. If error, in-
teger must be included
and program recom-
piled.

D-3

Table 3-3. FORTRAN Conpiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION

12 W/E | EXPECTED A" If warning, compiler expected decimal Check statement to
point in FORMAT statement; unchanged determine whether
statement is passed to Formatter. If decimal point is
error reserved token such as .OR. necessary. If so, insert
requires trailing period. it.

13 w EXPECTED A ‘P’ Compiler expected a scale factor iden- Check statement to
tifier in FORMAT statement. Unchanged | determine whether
statement is passed to Formatter. §ca|e factor identifier

is necessary. If so,
insert it.

14 w UNEXPECTED ‘P’ Compiler encountered an unexpected Check statement to
scale factor identifier in FORMAT determine whether
statement. Unchanged statement scale factor identifier
is passed to Formatter. is necessary. If not,

remove it.

15 W NESTING EXCEEDS 5 LEVELS A group of format and edit specifications | Revise statement so
in a FORMAT statement includes groups that no group includes
at a level greater than 4, making the total more than 4 levels of
number of levels greater than 5. other groups.

16 E EXTRANEQUS SOURCE Compiler encountered symbol that is not | Examine statement
logically part of statement. Since preced- format and make
ing part of statement is logically com- necessary change.
plete, compiler deleted synbol and follow-
ing text, compiled text preceding symbol.

17 w MULTIPLE SEGMENT NAMES Segment names not the same when more None.
than one $SEGMENT command without
intervening program unit is specified.

Compiler uses last observed segment name.
18 w SYMBOLIC NAME REDUNDANT- | Symbolic name assigned the same type Remove redundant
LY TYPED more than once. Compiler takes no type declaration.
action. Current compila-
tion unaffected.
19 W SYMBOLIC NAME REDUNDANT- | Symbolic name appears in more than Remove name from
LY EXTERNALLED one EXTERNAL statement. Compiler extra EXTERNAL
takes no action statement later. Cur-
rent compilation un-
affected.

20 W EXTRANEOUS EQUATE GROUP | One of the list parameters of an Insert two or more
EQUIVALENCE statement contains variable names which
only one item. share same storage

in EQUIVALENCE
list parameter {equate
group).

22 w EXTRA INITIAL VALUES DATA statement contains more Check statement and
values than variables. either add missing

variable or delete
extra value.

D-4

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION

23 W EXTRANEQOUS DATA ITEM Compiler discovered variable name in a Check both DATA
DATA statement in a BLOCK DATA sub-{ and COMMON state-
program which is not also in a ment for consistent
COMMON block. variable names.

24 w NO INITIAL VALUES Compiler discovered a BLOCK DATA Check both DATA
subprogram that did not specify initial and COMMON state-
values for a labeled COMMON block. ment for consistent

variable names.

25 W INITIAL VALUE TRUNCATED Compiler truncated an initial value that Determine correct
was too large for its type. value and replace exist-

ing one in DATA
statement.

26 W STATEMENT FUNCTION A dunmmy argument in a statement func-

DUMMY USED AS NON-SIMPLE tion is referenced elsewhere in subpro-
VARIABLE gram as a non-simple variable, for exam-
ple, as an array or procedure,
27 W EXPRESSION VS. NON- Compiler discovered inconsistency be-
EXPRESSION ARGUMENT tween argument structure in this pro-
cedure call and previous procedure call Review calling pro-
in this program unit. gram unit to deter-
28 w SUBPROGRAM VS. NON- Compiler discovered inconsistency be- mine nature of in-
SUBPROGRAM ARGUMENT tween this and previous subprogram call .
in this program unit, such as subprogram consistency, make
name passed in one but not the other. any necessary
changes, and re-
29 W SUBROUTINE VS. FUNCTION Compiler discovered inconsistency be- compile.
ARGUMENT tween actual arguments in two sub-
program calls in this program unit.
30 W ARGUMENT TYPE INCON- Calls made to the same subroutine ref-
SISTENT erence the same dummy argument with
actual arguments of different types.
31 w SUBPROGRAM NAME NOT Compiler discovered a subprogram name Add EXTERNAL
EXTERNALLED not mentioned in an EXTERNAL state- statement to calling
ment. program, and recompile.
32 W ARGUMENTS OF NESTED Compiler discovered a recursive call in None.
REFERENCE NOT the actual argument list of procedure
CHECKED call and informed user that only the
actual arguments of initial call (not
recursive call) are checked.
33 W INTRINSIC NAME CON- Compiler converted an intrinsic-name None.
VERTED TO SIMPLE VARIABLE | to asimple variable. Name cannot
refer to intrinsic in remainder of sub-
program.
34 W STATEMENT CANNOT BE Compiler discovered statement that Check program logic

REACHED

cannot be reached (for example, an
unlabeled statement following a
RETURN statement).

and add statement
number if necessary.

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION
36 W RETURN OR STOP INSERTED Compiler inserted a RETURN or STOP None. STOP or RE-
statement because an unlabeled END TURN can be added
statement was not preceded by an un- if desired.
conditional transfer of control.
37 w BLANK LINE ILLEGAL Statement consisting of a blank line None. Blank lines
is illegal under ANSI standard. (All should be deleted.
statements must have a keyword.) In
general, compiler ignores blank line.
if it follows END statement, compiler
is reinitialized and ready to compile
next program of which blank line is
first statement.
38 E TOO MANY CONTINUATION Statement consists of too many contin- Alter program logic as
LINES uation lines. Compiler deletes entire needed and recompile.
statement.
39 W EXPECTED CONTINUATION Compiler expected a continuation Check source for
LINE line and did not find one. possible missing text.
40 W EXPECTED COMPILER Compiler discovered missing key- Make changes as
CONTROL KEYWORD word, unrecognized keyword, or necessary and recom-
incomplete parameter. Compiler pile.
skipped past the next comma and con-
tinued to compile.
1 E EXPECTED SYMBOLIC NAME Compiler did not find symbolic name Alter source code and
where one was required for proper reconpile.
statement form. Compiler deleted
statement.
42 W NOT ACCEPTABLE AT Compiler control command appeared Move compiler com-
THIS POINT too late in program; compiler ignored mand if necessary
command. and recompile.
43 E IMPROPER STATEMENT LABEL Compiler discovered improper state- Alter source code
ment label and ignored it. and recompile.
44 w TRACE SYMBOL NOT FOUND Compiler could not find symbol men- Alter STRACE com-
tioned in TRACE command. mand and recompile.
45 W INTRINSIC IN TRACE RECORD Compiler discovered intrinsic name Alter $TRACE com-
in TRACE command. Intrinsic mand if desired.
will not be traced.
46 W EXPECTED A '=' Compiler expected an = sign in com- Alter command and
piler control command and skipped recompile.
to next comma.
47 E SEQUENCE FIELD TOO LONG In free field format or in compiler con- None. Check source
trol command, sequence number > 8 code for validity.
characters; compiler truncated to 8
characters.

D-6

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION
48 W OUT OF SEQUENCE Statement containing sequence number Check source code
is out of sequence. Statement compiled for validity and re-
as if it were next in sequence. compile if necessary.
49 w TITLE TOO LONG Title specified in $TITLE command ex- Check $STITLE
ceeds 52 characters, Compiler truncated command.
the title.
50 E PROGRAM UNIT ABORTED — Compiler terminated the program unit Fix problem as indi-
message qualifier being compiled but continues to com- cated by message
pile succeeding program units. qualifier and recom-
pile.
51 E EXPECTED A ‘(’ Compiler expected left parenthesis. Alter source code
Statement deleted. and recompile.
52 E EXPECTED A ')’ Compiler expected right parenthesis. Alter source code
Statement deleted. and recompile.
53 E EXTRANEOQUS ‘)’ Compiler ignored an extra right Alter source code
parenthesis. and recompile.
13) E EXPECTED A ‘]’ Compiler expected right bracket. Alter source code
Statement deleted. and recompile.
56 E EXPECTED A ‘[’ Compiler expected left bracket. Alter source code
Statement deleted. and recompile,
58 E EXPECTED ASSIGNMENT Compiler expected an = sign. Alter source code
OPERATOR Statement deleted. and recompile.
59 E EXPECTED A /' Compiler expected a (/) and deleted Alter source code
the statement. and recompile.
60 E EXPECTED A QUOTE Compiler expected a string delimiter Alter source code
() or (). Statement deleted. and recompile.
61 E EXPECTED A‘\ ’ Compiler expected a back slash {\) in Alter source code
a parameter list. Statement deleted. and recompite.
o3 E IMPOSSIBLE CONTEXT Compiler found a period which did Alter source code
FOR .’ not logically fit into the statement and recompile.
syntax and ignored it.
64 E IMPOSSIBLE CONTEXT Compiler found a percent sign (%) Alter source code
FOR ‘%’ which did not logically fit into the and recompile.
statement syntax and ignored it.
65 E IMPOSSIBLE CONTEXT Compiler found a dollar sign ($) out Alter source code
FOR ‘$’ of context and ignored it. and recompile.
67 E SYMBOLIC NAME EXCEEDS Compiler found a symbolic name ex- Alter source code
255 CHARACTERS ceeding 255 characters and deleted and recompile.
the statement containing the name,
68 E NUMBER EXCEEDS 255 Compiler found a number exceeding Alter source code
CHARACTERS 255 characters and deleted the and recompile.
statement containing the number.
69 E STRING LITERAL EXCEEDS Compiler found a string literal ex- Alter source code
255 CHARACTERS ceeding 255 characters and deleted and recompile.
the statement containing the string.
FEB 1977

D-7

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO.

TYPE

MESSAGE

|

MEANING

ACTION

70

71

72

73

74

75

76

77

78

79

80

81

84

E/W

HOLLERITH LITERAL EXCEEDS
255 CHARACTERS

HOLLERITH LITERAL TOO
SHORT

NON-OCTAL DIGIT

EXPECTED FIELD WIDTH

EXPECTED FIELD VALUE

PACKED NUMBER OVERFLOW

INTEGER CANNOT BE 0

INTEGER EXCEEDS CON-
TEXTUAL LIMITS

INTEGER OVERFLOW

EXPECTED EXPONENT VALUE

FLOATING LITERAL UNDER/
OVERFLOW

IMPROPER COMPLEX
LITERAL

MISSING END LINE

Compiler found a Hollerith literal ex-
ceeding 255 characters and deleted

the statement.

Compiler found a Hollerith literal short-
er than that specified by the length ele-
ment of the literal and deleted the state-
ment containing the literal.

Compiler found a non-octal digit in an
octal value and ignored the octal number.

Compiler expected field width in com-
posite number, and deleted the state-
ment when no field width was found.

Compiler expected field value in com-
posite number, and deleted the state-
ment when no field value was found.

Composite or ASCIHI number overflow-
ed; compiler used arbitrary value con-
tained in the data space.

Compiler encountered an integer
value which cannot be 0 and changed
itto 1.

Absolute value of integer is too large
in statement context; compiler sets
value to 1,

Integer overflow occurred and com-
piler used whatever arbitrary value
was contained in the data space.

Expected exponent value was incor-
rect or not supplied and compiler
deleted the statement.

Floating-point literal caused under
or overflow and compiler used what-
ever arbitrary value was contained in
the data space.

Compiler found an improper complex
literal and deleted statement con-
taining it.

Conpiler expected an END statement
at this point and supplied one.

Alter source code
and recompile.

Alter source code
and recompile.

Alter source code
and recompile.

Alter source code
and recompile.

Alter source code
and recompile.

Check program logic,
alter source code if
necessary and recom-
pile.

Check program logic,
alter source code if
necessary and recom-
pile.

Check program logic,
alter source code if
necessary and re-
compile.

Check program logic,
alter source code if
necessary and re-
compile.

Alter source code -
check data types and
constants - recompile.

Change floating-point,
literal to number with-
in acceptable range,
recompile.

Change complex
literal to correct
format - recompile.

Insert END statement
before compile pro-
gram again. Current
compilation not
affected.

D-8

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION
85 E UNEXPECTED CONTINUATION Compiler did not expect a continuation Alter source code
LINE line to be used and deleted the entire and recompile.
statement up to (but not including) the
next non-continuation line.
87 E RESERVED TOKEN NOT Compiler expected a reserved symbol Alter source code
RECOGNIZED such as .OR. or .TRUE. and did not and recompile.
find one.
88 E CANNOT RECOGNIZE Compiler expected FORTRAN/3000 Alter source code
KEYWORD keyword such as INTEGER or REAL and recompile.
or END and deleted statement when
keyword was not recognized.
89 E CANNOT CLASSIFY Statement possibly did not begin with Alter source code
STATEMENT a letter or is missing a right parenthe- and recompile.
sis so that compiler is totally unable
to recognize statement.
91 E STATEMENT OUT OF Compiler found declaration statement Alter source code
POSITION following an executable statement or and recompile.
declaration out of order relative to
other declaration statements; statement
deleted.

92 E DUMMY NAME NOT UNIQUE Compiler found dummy parameter name Alter source code
not unique to program unit where it and recompile.
appears.

93 E IMPROPER DUMMY Compiler found improper dummy argu- Alter source code

ARGUMENT ment and stopped checking argument and recompile.
list.

94 E ARGUMENT ADDRESSIBILITY Compiler found more than 54 argu- Refer to Section XI

EXCEEDED ments in subroutine or function or of FORTRAN/3000
too many arguments in statement reference manual
function (in statement function, num- for rules; alter source
ber of arguments allowed depends on code accordingly and
type and conplexity of expression). recompile.

95 E TOO MANY ALTERNATE Compiler found too many alternate Refer to Section XI

RETURNS return points specified in subprogram. of FORTRAN/3000
reference manual
for rules; alter source
code accordingly and
reconpile.

96 E IMPROPER TYPE CONSTRUCT Compiler has found incorrect type Alter source code
construct and deleted statement. and recompile.

97 E IMPROPER INITIAL LETTER Format of letter construct in IMPLI- Correct IMPLICIT

CONSTRUCT CIT statement is incorrect; statement statement and re-
is deleted. compile.

a9 E SUBROUTINE CANNOT BE Compiler has found subroutine sub- Alter source code

TYPED

program with type explicitly
declared.

and recompile.

D-9

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION
100 E SYMBOLIC NAME TYPED IN- Compiler has found symbolic name whose | Alter source code
CONSISTENTLY type was declared in a manner inconsistent | and recompile.
with a previous declaration.
102 E DYNAMIC BOUND Compiler has found a dynamic bound de- } Alter source code
DIMENSIONED fined in DIMENSION statement. Within and recompile.
subprogram, bound must be passed
parameter.
103 E PROCEDURE DIMENSIONED Compiler found procedure name in Alter source code
DIMENSION statement. and recompile.
104 E ARRAY REDUNDANTLY Compiler found an array whose dimen- Alter source code
DIMENSIONED sions were defined more than once in and recompile.
same program unit.
105 E EXPECTED BOUND Compiler expected an array bound and Alter source code
deleted the statement. and recompile,
106 E ARRAY EXCEEDS 32767 Compiler found an array defined with Alter source code
ELEMENTS more than 32767 elements. and recompile.
107 E NUMBER OF BOUNDS Compiler found an array with more Alter source code
EXCEEDS 255 than 255 bounds. and reconpile.
108 E DYNAMIC STRUCTURE IN Compiler found a dynamically-defined Alter source code
COMMON array in COMMON statement. and recompile.
109 E DUMMY NAME IN COMMON Compiler found dummy parameter Alter source code
name in COMMON statement. and recompile.
110 E ITEM IN COMMON TWICE Compiler found item appearing in Alter source code
COMMON statement twice. and recompile.
1111 E COMMON BLOCK NAME ALSO Compiler found name used as a Alter source code
PROCEDURE NAME COMMON block name and as name and recompile.
of a procedure.
112 E PROCEDURE NAME IN Compiler found procedure name Alter source code
COMMON appearing in COMMON statement. and recompile.
113 E CHARACTER FUNCTION HAS Compiler found character function Alter source code
DYNAMIC LENGTH defined with dynamic length (using and recompile.
a variable length specification}.
114 E SIMPLE VARIABLE OR Compiler found simple variable Alter source code
ARRAY EXTERNALLED or array name used in an EXTERNAL and recompile.
statement.
116 E DYNAMIC STRUCTURE IN Compiler found a dynamic array Alter source code
EQUATE {(defined with variable memory allo- and reconpile.
cation) used in EQUIVALENCE
statement.
117 E DUMMY NAME IN EQUATE Compiler found dummy parameter name Alter source code
in EQUIVALENCE statement. and recompile.
118 E PROCEDURE NAME IN Compiler found procedure name in Alter source code
EQUATE EQUIVALENCE statement. and recompile.

D-10

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. TYPE MESSAGE MEANING ACTION
120 E DYNAMIC STRUCTURE IN Compiler found a dynamic structure in Alter source code
DATA DATA statement. and recompile.

121 E DUMMY NAME IN DATA Compiler found dummy parameter Alter source code
name in DATA statement, and recompile.

122 E PROCEDURE NAME IN DATA Compiler found procedure name in Alter source code
DATA statement. and recompile.

123 E COMMON ITEM IN DATA Initialization of COMMON data items is Alter source code

ALLOWED ONLY IN BLOCK valid only in the BLOCK DATA. The and recompile.
DATA item may not appear in the Data
statement.

124 E EXPECTED INITIAL VALUE Compiler expected an initial value for Alter source code
data element. Statement deleted when and recompile.
none was found.

125 E INITIAL VALUE TYPE Compiler found initial value not coin- Alter source code

IMPROPER ciding with defined data element type. and recompile.

126 E UNARY SIGN REQUIRES Compiler found minus or plus sign Alter source code

ARITHMETIC LITERAL with no constant following. and recompile.
127 E NUMBER OF SUBSCRIPTS Compiler found array element with a Alter source code
<>NUMBER OF BOUNDS different number of elements than were and recompile.
specified for the array in the array
declaration.
128 E ARRAY EXCEEDS 32767 Compiler found array that occupies Alter source code
WORDS more than 32767 words of memory. and recompile.
129 E SUBSCRIPT VALUE NOT IN Compiler found array element sub- Alter source code
ARRAY script that indicates memory loca- and recompile.
tion outside defined bounds of array.

131 E LOCAL ADDRESSIBILITY Compiler was unable to address all of Alter source code

EXCEEDED the local variables in program unit. and recompile.

132 E DYNAMIC BOUND NOT Compiler found dynamic bound Alter source code

DUMMY INTEGER not represented by dummy integer. and recompile.

134 E DATA BLOCK TOO LARGE Compiler found data block larger Alter source code
than 32767 words. and recompile.

135 E COMMON BLOCK TOO LARGE Compiler found common block Alter source code
larger than 32767 words. and recompile.

136 E COMMON EXTENDED FORWARD| Compiler found EQUIVALENCE Alter source code
statement that has attempted to and recompile.
extend common data space from be-
ginning instead of from the end.

137 E EQUATE BLOCK TOO LARGE Compiler found group of EQUIVA- Alter source code
LENCE statements which equiva- and recompile.
lence too large a block of data (more
than 32767 words).

Apr 1978

D-11

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION
140 E WORD STRUCTURE ALIGNED Compiler found data vaiue aligned by Alter source code
ON BYTE BOUNDARY an EQUIVALENCE statement on a and recompile.
half-word {byte)} boundary instead
of full-word boundary.
Apr 1978

D-11a

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION
141 E DATA BLOCK ITEM EQUATED Element defined in data block was il- Alter source code
TO COMMON BLOCK ITEM legally used in 2 common block; should and recompile.
have been in block data subprogram.

142 E TWO COMMON BLOCKS Compiler found two common blocks Alter source code

EQUATED whose elements are equated through and recompile.
EQUIVALENCE statement.

143 E INCONSISTENT EQUATE Array elements in EQUIVALENCE Alter source code
statement cause other elements of and recompile.
arrays to equate improperly; or two
elements are equated that require
unique data space (label values).

144 E SIMPLE VARIABLE HAS Compiler found simple variable with Alter source code

SUBSCRIPT a subscript. and recompile.

145 E EXPECTED STATEMENT Compiler expected statement label and Alter source code

LABEL deleted statement when no label was and recompile.
found.

147 E DUPLICATE LABEL Compiler found duplicate statement Alter source code
label and ignored the second occur- and recompile.
rence.

148 E UNRESOLVED LABEL Compiler found label referenced in Alter source code

REFERENCE statement but never found statement and recompile.
prefixed by that label. Referenced
label ignored.
149 E FORMAT REFERENCE TO Compiler found statement label refer- Alter source code
NON-FORMAT ence to a non-FORMAT statement when and reconpile.
a FORMAT statement was expected.
150 E EXECUTABLE REFERENCE Compiler found statement label Alter source code
TO NON-EXECUTABLE reference to a non-executable and recompile.
STATEMENT statement.
153 E SUBROUTINE USED AS Compiler found subroutine name Alter source code
PRIMARY used as a primary. and recompile.
154 E EXPECTED ARITHMETIC Compiler expected to find an arith- Alter source code
PRIMARY metic primary and deleted the state- and recompile.
ment when no primary was found.
155 E NON-ARITHMETIC PRIMARY Compiler found non-arithmetic primary | Alter source code
WHERE ARITHMETIC such as a Iogical variable when it ex- and recompile.
EXPECTED pected an arithmetic primary and de-
leted statement.
166 E NON-LOGICAL OPERAND Compiler expected to find a logical Alter source code
WHERE LOGICAL EXPECTED operand and deleted statement when and reconpile.
non-logical operand was found.

157 E RELATIONAL OPERAND Compiler found logical operand in Alter source code

HAS LOGICAL TYPE arithmetic relation. Statement and recompile.
deleted.

D-12

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION
158 E CHARACTER VS. ARITHMETIC Compiler expected arithmetic relation Alter source code
RELATION and deleted statement when character and recompile.
relation was found,
159 E ILLEGAL RELATION FOR Compiler found illegal relational opera- Alter source code
COMPLEX OPERANDS tor between two complex values. and recompile.
160 E OPERAND OF .NOT. NOT Compiler found non-logical operand Alter source code
LOGICAL following a .NOT. operator and de- and recompile.
leted statement.
161 E IMPROPER STRING Compiler discovered substring desig- Alter source code
DESIGNATOR nator in improper form and deleted and recompile.
statement.
162 E COMPLEX POWER Compiler found number raised to a Alter source code
complex power. and recompile.
163 E COMPLEX BASE TO NON- Compiler found complex number Alter source code
INTEGER POWER raised to non-integer power. and recompile.
164 E STRING EXPRESSION IN Compiler found string expression in Alter source code
PARENTHESIS parenthesis when it expected arith- and recompile.
metic expression and deleted state-
ment.
165 E PARTIAL-WORD EXCEEDS Compiler found partial-word desig- Alter source code
15 BITS nator that specifies more than 15 and recompile.
bits.
166 E IMPROPER TYPE FOR PARTIAL- | Compiler found partial-word desig- Alter source code
WORD DESIGNATOR nator operating on data item of improper | and recompile.
type.
167 E COMPLEX INDEX EXPRESSION Compiler found index expression of type | Alter source code
complex. and recompile.
168 E COMPLEX SUBSCRIPT Compiler found subscript value of type Alter source code
complex. and recompile.
169 E RECURSIVE STATEMENT Compiler found a recursively defined Alter source code
FUNCTION statement function and deleted the and recompile.
statement.
170 E SUBROUTINE MISSING Compiler found subroutine call with Alter source code
ARGUMENTS with improper number of arguments. and recompile.
171 E FUNCTION MISSING Compiler found function definition Alter source code
ARGUMENTS with no arguments. and recompile.
172 E REDEFINITION OF USED Compiler found intrinsic that had been Alter source code
INTRINSIC redefined to a simple variable after and recompile.
being called; statement deleted.
173 E MISSING SUBSCRIPT Compiler found missing subscript for Alter source code

an array name and deleted statement.

and recompile.

D-13

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. TYPE MESSAGE MEANING ACTION
174 E ILLEGAL ARGUMENT FOR Compiler found illegal argument for Alter source code
INTRINSIC intrinsic and deleted statement. and recompile.

176 E TOO FEW ARGUMENTS Compiler found procedure with too Alter source code
few arguments compared with pre- and reconpile.
vious usage.

177 E TOO MANY ARGUMENTS Compiler found procedure with too Alter source code
many arguments compared with pre- and recompile,
vious usage.

178 E VALUE VS. REFERENCE Argument passed by value when pre- Alter source code

ARGUMENT vious usage caused compiler to ex- and recompile.
pect argument passed by reference.

179 E CHARACTER ARGUMENT BY Compiler found character argument Alter source code

VALUE being passed by value. and recompile.

180 E NO LIMIT PARAMETER Conpiler found missing limit parameter Alter source code

- in DO statement or implied-DO in an and recompile.
/O statement.
181 E TERMINAL LABEL PRECEDES Compiler found DO-loop terminal Alter source code
DO STATEMENT jabel preceding DO-loop DO statement. and recompile.
DO statement skipped.
182 E IMPROPERLY NESTED DO Compiler found improperly nested Alter source code
STATEMENTS (overlapping) DO statements. Current and recompile.
DO statement skipped or DO loop
closed early.
183 E INTEGER SIMPLE VARIABLE Compiler expected integer simple vari- Alter source code
EXPECTED able but did not find one. and recompile.
184 E IMPROPER TERMINAL Compiler found an improper termi- Refer to manual for
STATEMENT nation statement in a DO loop. restrictions on DO
loop termination
statements. Alter
source code and
recompile.

185 E UNDECLARED ARRAY NAME Compiler found symbolic name used Alter source code
as array but not defined as such. State- and recompile.
ment deleted.

186 E LEFT-HAND IS FUNCTION OR Compiler found function or subrou- Alter source code

SUBROUTINE tine on left side of assignment opera- and recompile.
tor and deleted statement.

188 E RIGHT AND LEFT-HAND Compiler found incompatible types in Alter source code

TYPES INCOMPATIBLE left and right sides of assignment state- and recompile.
ment.

189 E DUMMY HAS TYPE CHARACTER | Compiler found dummy parameter to Alter source code
a statement function that is type and recompile,
character.

D-14

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. TYPE MESSAGE MEANING ACTION
191 E CHARACTER STATEMENT Compiler found character-type statement | Alter source code
FUNCTION function and deleted statement. and recompile.
194 E UNABLE TO CLASSIFY GOTO Conpiler was unable to classify a GO Alter source code
TO statement as one of the three allow- and recompile.
able types and deleted statement.
196 E IMPROPER ASSIGN Compiler found an improper ASSIGN Alter source code
statement and deleted statement. and recompile.
197 E EXPECTED LOGICAL Compiler expected logical expression Alter source code
EXPRESSION but none was found. and recompile.
198 E IMPROPER LOGICAL CLAUSE Compiler found improper logical clause Alter source code
and deleted statement. and recompile.
199 E IMPROPER DEPENDENT Compiler found improper dependent Alter source code
STATEMENT statement in |IF statement. and recompile.
200 E ALTERNATE RETURN IN Compiler found alternate RETURN Alter source code
NON-SUBROUTINE statement in a function, main program, and recompile.
or block data subprogram.
201 E LABEL ARGUMENTS OUT Compiler found label arguments appear- Alter source code
OF POSITION ing elsewhere than at the end of the and recompile.
subroutine argument list. Statement
deleted.
202 E SYMBOL NOT SUBROUTINE Compiler encountered symbolic name Alter source code
NAME where subroutine name expected. and recompile.
Statement deleted.
203 E EXPRESSION IN INPUT LIST Compiler found expression in 1/0 Alter source code
input list. and recompile.
204 E IMPROPER 1/0 LIST ITEM Compiler found improper 1/0 list Alter source code
item in 1/O statement and deleted and recompile.
statement.
205 E EXPECTED 1/O LIST Compiler expected I/0 list and none Alter source code
was found. Statement deleted. and recompile.
206 E IMPROPER UNIT REFERENCE Compiler found improper unit Alter source code
reference in 1/O statement. Statement and recompile.
deleted.
207 E EXPECTED CHARACTER Compiler expected character variable Alter source code
VARIABLE for core-to-core 1/Q operation. State- and reconpile.
ment deleted.
208 E EXPECTED FORMAT Compiler expected format reference Alter source code
REFERENCE in 1/0 statement and none was and reconpile.
found. Statement deleted.
209 E EXPECTED ACTION LABEL Compiler expected action label in Alter source code

/O statement and none was found.
Statement deleted.

and recompile.

D-15

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. TYPE MESSAGE MEANING ACTION

210 E DUPLICATE ACTION LABEL Compiler found duplicate action label. Alter source code

and recompile.

211 E TOO MANY TRACE SYMBOLS TRACE/3000 symbol table overflowed. Alter source code

and recompile.

212 E DATA SPACE OVERFLOW The program stack size required exceeds Decrease array sizes,
32767 words. or variables used,

and recompile.

213 E CODE SPACE OVERFLOW Program code space overflowed. Alter source code

and recompile.

214 E OUT OF STACK FOR GLOBAL Global cross reference processor If system-wide MAX-

CROSS REFERENCE cannot fit its tables in stack space DATA limit is less
available. No global cross reference than 32767, have
is produced. System Manager

raise limit and re-
compile.

215 E EXPECTED AN INTEGER Argument to STOP or PAUSE state- Alter source code

OR STRING ment could not be identified. Argu- and recompile.
ment is ignored.

216 E TRAP TYPE KEYWORD NOT String of characters following “ON" in Alter source code

RECOGNIZED trap statement did not match any of and recompile.
trap types allowed. Statement deleted.

217 E ENTRY STRUCTURE MIS- ENTRY statement name used as func- Alter source code

MATCH tion in subroutine or vice versa. Rest and recompile.
of statement ignored.

218 E REDUNDANT ENTRY Previous ENTRY statement has already Alter source code
appeared with name identifier. Rest and recompile.
of statement ignored.

219 E DUMMY USED AS ENTRY Formal parameter appears as entry name Alter source code
in ENTRY statement. Rest of statement and recompile.
is ignored.

220 E STATEMENT FUNCTION OR Name used as entry is statement function | Alter source code

INTRINSIC NAME or intrinsic. Rest of statement ignored. and recompile.

221 E ENTRY IN RANGE OF DO ENTRY statement appears in range of Alter source code
a DO loop. Rest of statement is analyzed and recompile.
by the compiler.

222 E NAME NOT UNIQUE Name appearing in SYSTEM INTRINSIC | Alter source code
statement has been specified with some and recompile.
other structure. Rest of statement is
ignored.

223 E NAME NOT ON FILE Name appearing in SYSTEM INTRINSIC | Alter source code
statement cannot be found in the and recompile.
SPLINTR file. Rest of statement is
ignored.

224 E INCORRECT DIGIT INTEGER™2 or INTEGER™4 declaration | Alter source code
has a number other than 2 or 4, INTE- and recompile
GER™2 is assumed.

D-16

FEB 1977

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. TYPE MESSAGE MEANING ACTION

225 E EXPECTED DIGIT INTEGER*2 or INTEGER ™4 declaration | Alter source code
has a non-numeric character following the | and recompile.

*. INTEGER®2 is assumed.
226 W REFERENCED VARIABLE Variable listed with the message is un- Alter source code
NOT DEFINED initialized. Compilation not affected. and recompile.
227 E PARAMETER IDENTIFIER Name given to a parameter constant was Alter source code
NOT UNIQUE not unique. Compiler attempted to ana- and recompile.
lyze the rest of the statement.

228 E EXPECTED PARAMETER VALUE | Whatever was found following the equal Alter source code
signs in a parameter definition was not and recompile.
recognized as a valid constant. Conpiler
attempted to analyze the rest of the
statement.

229 E ENTRY IN MAIN PROGRAM ENTRY statement may only appear in Alter source code
subprogram. The rest of statement is and recompile.
ignored.

230 E ITEM IN DATA REDUNDANTLY | The same variable is initialized twice Alter source code

INITIALIZED through a DATA statement. and recompile.
231 w COMPILER BRANCH The compiler has generated bad branch Try to break condi-
GENERATION ERROR code for a very large or very complex tional statement into
conditional expression. Incorrect oper- several less complex
ation may result. statements.

232 E ATTEMPT TO STORE INTO A symbolic name assigned a value in a Alter source code

PARAMETER PARAMETER statement has been assign- | and reconpile.
ed a value otherwise; it may only have
value assigned in PARAMETER state-
ment.

233 E COMPILER ERROR Compiler detected an irrecoverable Document error and

internal error. submit with bug re-
port.
234 W LOCATION DISALLOWED FOR When in interactive mode, the compiler Remove the LO-
INTERACTIVE TEXT AND cannot list code locations CATION option
LIST FILES from the $CON-
TROL compiler
subsystem com-
mands
235 w COMMON VARIABLE MAY Cannot trace a common variable Remove any com-
NOT BE TRACED WITH when the MORECOM option of mon variables
MORECOM the $CONTROL compiler subsystem from the TRACE
command is set; the results are statement
invalid

Apr 1978

D-17

Table 3-3. FORTRAN Compiler Warning & Error Messages (Continued)

NO. | TYPE MESSAGE MEANING ACTION
236 w MORE THAN ONE OUTER The compiler encountered an END Take out the
BLOCK ACTIVE statement followed by executable extra END state-
statements and began to compile ment
another main program unit

D-18 Apr 1978

ASCII CHARACTER SET

APPENDIX

E

ASCH
Character

First Character
Octal Equivalent

Second Character
Octal Equivalent

N<XXS<K<CHWIINUVOZZrXRe—IOTMOO®>

NX XS <«<cC~~»-0TOD3 —x—-—Ta ~oQo0Tao

OO LdONdWN=O

NUL
SOH
STX
ETX
EOT
ENQ

040400
041000
041400
042000
042400
043000
043400
044000
044400
045000
045400
046000
046400
047000
047400
050000
050400
051000
051400
052000
052400
053000
053400
054000
054400
055000

060400
061000
061400
062000
062400
063000
063400
064000
064400
065000
065400
066000
066400
067000
067400
070000
070400
071000
071400
072000
072400
073000
073400
074000
074400
075000

030000
030400
031000
031400
032000
032400
033000
033400
034000
034400

000000
000400
001000
001400
002000
002400

000101
000102
000103
000104
000105
000106
000107
000110
000111
000112
000113
000114
000115
000116
000117
000120
000121
000122
000123
000124
000125
000126
000127
000130
000131
000132

000141
000142
000143
000144
000145
000146
000147
000150
000151
000152
000153
000154
000155
000156
000157
000160
000161
000162
000163
000164
000165
000166
000167
000170
000171
000172

000060
000061
000062
000063
000064
000065
000066
000067
000070
000071

000000
000001
000002
000003
000004
000005

ASCIH First Character Second Character

Character Octal Equivalent Octal Equivalent
ACK 003000 000006
BEL 003400 000007
BS 004000 000010
HT 004400 000011
LF 005000 000012
vT 005400 000013
FF 006000 000014
CR 006400 000015
SO 007000 000016
SI 007400 000017
DLE 010000 000020
DC1 010400 000021
DC2 011000 000022
DC3 011400 000023
DCc4 012000 000024
NAK 012400 000025
SYN 013000 000026
ETB 013400 000027
CAN 014000 000030
EM 014400 000031
suB 015000 000032
ESC 015400 000033
FS 016000 000034
GS 016400 000035
RS 017000 000036
us 017400 000037
SPACE 020000 000040
! 020400 000041
. 021000 000042
= 021400 000043
% 022000 000044
% 022400 000045
& 023000 000046
) 023400 000047
(024000 000050
) 024400 000051
N 025000 000052
+ 025400 000053
026000 000054
- 026400 000055
. 027000 000056

/ 027400 000057 _

- 035000 000072
; 035400 000073
< 036000 000074
= 036400 000075
> 037000 000076
? 037400 000077
@ 040000 000100
[055400 000133
\ 056000 000134
) 056400 000135
A 057000 000136
— 057400 000137
{' 060000 000140
075400 000173
\ 076000 000174
} 076400 000175
~ 077000 000176
DEL 077400 000177

— =KD

First Character

A

Second Character

A

N

OREE

4 IS lG 7i Bjji 10l11[12

13]14!15]

E-1

PROGRAM OPTIMIZATION

F

Optimizing the use of the FORTRAN compiler involves
minimizing memory usage during compilation and execu-
tion of a program, and minimizing the total run-time.
An understanding of the way the compiler uses memory
helps you to make effective use of the system. Run-time
efficiency can be improved by avoiding unnecessary calls to
the COMPILER LIBRARY. The following recommendations
may aid you in making the data area of a large program
smaller, or help you in decreasing the CPU usuage of a
program. These recommendations should not be necessary
for the average FORTRAN program under normal use.

F-1. COMPILATION PHASE

The FORTRAN compiler uses a portion of the DATA
stack as a working storage area, called the compiler symbol
table. Control over memory usage during compilation can
be accomplished by keeping the symbol table small. The
compiler uses 13 bits to link entries within the symbol
table. This limits the size of the symbol table to 8191
words. The compiler initializes (or reuses) this area in
memory for each program unit (main program, function
subprogram or subroutine).

Some of the uses of the symbol table are the following:

1. [Each subroutine, system intrinsic, or function subpro-
gram, whether in a program unit or in an external state-
ment, requires a table entry (the length of each entry
is 4 words + number of characters in variable name).

2

2. All simple variables and arrays require an entry, whether

in Local Storage or in COMMON.

3. The table is also used for control entries (DO loops and
STATEMENT labels).

4. It is used for compiler options such as CROSSREF,
LOCATION, and MAP.

If a particular program unit is very large, and therefore uses
a lot of symbol table storage, the compiler issues the message:
SYMBOL TABLE OVERFLOW (compiler error #51).

Table overflow can be avoided if the program is laid out
in a modular fashion, that is, using several subroutines and
functions. Programs designed using standard structured
programming techniques should not encounter symbol
table overflow situations. However, if you already have a

Apr 1978

large program unit written and you get the symbol table
overflow error message, the symbol table requirements can
be reduced by applying the following techniques:

1. Minimize the length of the variable and array names.
Less memory space is needed for storage if these sym-
bolic names are short.

2. Combine several variables into an array since only one
symbol table entry is required for an array, whereas
separate variables require one entry each.

3. Avoid compiler command options such as CROSSREF,
LOCATION, MAP, etc., as they require more storage
space. For example, CROSSREF uses one extra word
in each symbol table entry for linking purposes.

4. Divide larage program units into smaller units. It is
easier to maintain smaller program units than large
program units. Smaller program units improve the sup-
portability and readability of the program.

Note: In many cases, the readability and the sup-
portability of a particular program can be
adversely affected by the use of short var-
iable names. If a variable name is too
short, it is difficult to know its meaning
and distinguish it from other variables.
For example, a single letter G does not
properly describe and identify a variable
which may otherwise be represented by
the symbolic name GRADE. It is not
advisable to combine variables to form a
single array without giving due considera-
tion to their individual characteristics. For
example, if variable names such as SAL-
ARY, DEDUCTIONS, GROSS, NETIN-
COME are changed into names such as
ATARR (1), AIARR (2), AIARR (3),
ATARR (4), elements of the array
ATARR, it is difficult to identify the var-
iables which are represented by these
names.

F-2. EXECUTION PHASE

Run-time optimization involves the minimizing of memory
usage and total run-time. You can employ some or all of
the following techniques to achieve these goals:

F-1

MINIMIZING MEMORY USAGE

Avoid using COMMON storage for those variables that
are used only within a program unit. COMMON vari-
ables use a portion of the data stack throughout the
program execution, whereas local storage is active only
when the program unit (main program, function or
subroutine) is active.

Save stack space by changing the order of COMMON
variables. Each COMMON block element normally
has one pointer established by the segmenter. The
maximum number of pointers allowed is 254, unless
the MORECOM option is used. A rearrangement of
simple variables and arrays helps in reducing memory
usage, provided the variables are of the same type. For
example, a program with the following variables would
have a stack assignment as shown in Fig. F-1:

COMMON C(3),A,B
INTEGER A B,CD.E

However, if the order of the COMMON variables is
changed to A,B,C(3) (the simple variables preceding
the array variable), only two pointers are required
(Fig. F-2) instead of three. Thus, it is possible to have
more than 254 COMMON variables without having to
use the less efficient MORECOM option. The fact
that there are two variables, C(0) and B, having the
same DB location and the same pointer may cause con-
fusion when looking at the symbol map. Since the
zero’th element of an array does not exist in FOR-
TRAN, the two variables can use the same pointer,
and save memotry.

MINIMIZING EXECUTION TIME

Avoid mixed-mode expressions. For example, the
assignment statement X=1+X, where X is real, requires
conversion of the integer one to the real number one
during execution, and the compiler must generate
extra code for this conversion. A more efficient
assignment statement would be X=1.+X.

Avoid using FORMAT statements whenever possible,
as they cause more external calls to the FORMATTER.
FORMAT statements also require storage in the code
segment of a program. Figs. F-3 and F-4 demonstrate
the difference in run-time when a FORMAT statement
is not used, compared to when it is used. If a FORMAT
statement is used (Fig. F-4), the program takes about
twice as long to run as when the FORMAT statement
is not used (Fig, F-3).

Avoid unnecessary external procedure calls (PCAL’s).
For example, the statement X=Y**2 explicitly requires
a PCAL to an exponential function procedure. Re-
writing this statement as X=Y*Y avoids the PCAL.

Certain constructs can implicitly cause PCAL’s. In Fig.
F-5, the assignment X=Y, where X and Y are character
variables, generates a call to BLANKFILL, which fills
the remainder of X with blanks, starting with the third
character from the left. However, if the assignment
statement is changed to X [1:2] =Y (Fig. F-6),only the
first two leftmost positions are assigned the value of Y
and the rest of X remains undefined. This does not
generate a PCAL to BLANKFIL and hence saves run-
time.

Use SPL for certain specific tasks if it can save run-
time. For example, an SPL MOVE operation can be
used instead of a FORTRAN DO loop initialization.
When the number of words to be moved exceeds 50,
the FORTRAN routine requires more CPU time, com-
pared to the time used by SPL.

Note: The programs shown in Figs. F-3 through

F-6 were run on the same HP 3000 com-
puter system operating under identical
conditions. The run-time shown will vary
among different machines and different
operating conditions. They are included
here for relative comparison purposes
only.

Apr 1978

COMMON
INTEGER
INTEGER

DL

DB

NOTE: points to
non-existant zero
element of C.

C(3),A,B
AB.C
D,E

@clo)

@A

(C(0) and @B

c(1)

c(2)

C(3)

A

B

FLUT TABLE

User Stack
Starts Here

128 words — some
of which are used
by the system

PRIMARY DB

SECONDARY DB

stack

marker

storage for variables
in main program

Apr 1978

Figure F-1. COMMON Variabies Stack Assignment in Non-Optimized Order

F-3

COMMON
INTEGER
INTEGER

DL

DB

Note: points to
non-existant zero
element of C

AB,C (3)
A,B,C
D,E

@A

@C(0)and @B

A

B and C(0)

c{n

c{2)

C(3)

FLUT TABLE

User Stack
Starts Here

128 words — some of
which are used by
the system

PRIMARY DB

SECONDARY DB

stack

marker

storage for variables
in main program

F-4

Figure F-2. COMMON Variables Stack Assignment in Optimized Order

Apr 1978

PAGE 0001

NAME

I

L
PROCTIME
TIME

HP32102B,00,09 FORTRAN/3000 (C) HEWLETT~PACKARD CO. 1976 MON,

27, 1978, 9:44 AM

SYMBOL MAP

TYPE STRUCTURE ADDRESS
INTEGER STMPLE VAR Q+%3
INTEGER ARRAY o+%1 ,1
INTEGER*4 FUNCTION

INTEGER*4 ARRAY Q+%2 ,1

¥xxx NO ERRORS, NO WARNINGS *¥xx

PROGRAM UNIT FORMATTER COMPILED, SEGMENT = SEG’
STACK ESTIMATE = %11 WORDS OF CODE = %144
COMPILATION TIME 1.543 SECONDS ELAPSED TIME

1500 MILLISECONDS

2500 MILLI

00001000 SCONTROL USLINIT,MAP,LOCATION,STAT 100 MILLISECONDS
00006 00002000 PROGRAM FORMATTER

00006 00003000 DIMENSION L(16)

00006 00004000 INTEGER*4 TIME(3)

00006 00005000 SYSTEM INTRINSIC PROCTIME
00006 00006000 DATA L/16%55/

00006 00007000 WRITE(1@1) L

00023 00008000 REWIND 1

00026 00009000 TIME(1)=PROCTIME

00032 00010000 DO 1 I=1,100

00037 00011000 WRITE(1) L

00052 00012000 1 CONTINUE

00053 00013000 TIME(2)=PROCTINME

00057 00014000 REWIND 1

00062 00015000 DO 2 1=1,100

00067 00016000 READ(1) L

00102 00017000 2 CONTINUE

00103 00018000 TIME(3)=PROCTIME

00107 00019000 DISPLAY " TIMES(MSEC) = ",TIME
00143 00020000 STOP

00144 00021000 END

22.038 SECONDS

FEB

SECONDS

Apr 1978

Figure F-3. Less Execution Time — No Format Statement

F-5

PAGE 0001 HP32102B.00.09 FORTRAN/3000 (C) HEWLETT-PACKARD CO,
27, 1978, 9:37 AM

00001000 $CONTROL USLINIT,MAP,LOCATION,STAT

00011 00002000 PROGRAM FORMATTER

00011 00003000 DIMENSION L(16) 100 MILLISECONDS

P0011 00004000 INTEGER*4 TIME(3)

00011 00005000 SYSTEM INTRINSIC PROCTIME

POO11 00007000 WRITE(1€1) L

00026 00008000 REWIND 1

00031 00009000 TIME(1)=PROCTIME v

00035 00010000 bO 1 I=1,100

00042 00011000 WRITE(1,100) L

00063 000120060 1 CONTINUE

00064 00013000 TIME(2)=PROCTIME Y

00070 00014000 REWIND 1

00073 00015000 DO 2 I=1,100

00100 00016000 KEAD(1,100) L

00122 00017000 2 CONTINUE

00123 00018000 TIME (3)=PROCTIME

00127 00019000 DISPLAY " TIMES(MSEC) = ",TLlME

00163 00019100 100 FORMAT(16I2)

00163 00020000 STOP

00164 00021000 END

SYMBUL MAP

NAME TYPE STRUCTURE ADDRESS

I INTEGER SIMPLE VAR (+%3

L INTEGER ARRAY a+31 L1

PRUCTIME INTEGER*4 FUNCTION

TIME INTEGER*4 ARKAY Q+x2 1

#s%x NG ERROWS, NO WARNINGS *%#x

PROGRAM UNIT FOKMATTER COMPILED, SEGMENT = SEG*

STACKR FSTIMATE = %11 wORDS OF CODE = %164

COMPILATION TIME 1.656 SECUNDS ELAPSED TIME 14.833 SECONDS

1976 MON, FEB

5400 MILLISECONDS

F-6

Figure F-4. FORMAT Statement (100) Causes External Calls

Apr 1978

PAGE 0001 HP32102B.00.09 FORTRAN/3000 (C) HEWLETT-PACKARD CO, 1976 MON, FEB
27, 1978, 9:19 AM
00001000 SCONTROL USLINIT,LABEL,MAP,LOCATION,STAT
00010 00002000 PROGRAM BLANK
00010 00003000 SYSTEM INTRINSIC PROCTIME
00010 00004000 INTEGER*4 CPU1,CPU2
00010 00005000 CHARACTER*20 X
00010 00006000 CHARACTER*2 Y
00010 00007000 CPU1=PROCTIME
00013 00008000 y="yy"
00022 00009000 DO 100 I=1,2000
00027 00010000 X=Y
00035 00011000 100 CONTINUE
00036 00012000 CPU2=PROCTIME
00041 00013000 DISPLAY " CPUTIME =", (CPU2=-CPU1),"MILLISEC"
00110 00014000 STOP
00111 00015000 END
SYMBOL MAP

NAME TYPE STRUCTURE ADDRESS
CpPU1 INTEGER*4 SIMPLE VAR Q+%2
CPU2 INTEGER*4 STMPLE VAR Q+%4
I INTEGER SIMPLE VAR Q+%1
PROCTIME INTEGER¥4 FUNCTION
X CHARACTER SIMPLE VAR Q+%6 ,I
b § CHARACTER SIMPLE VAR Q+%7 ,I

LABEL MAP

STATEMENT CODE STATEMENT CODE STATEMENT CODE STATEMENT CODE

LABEL OFFSET LABEL OFFSET LABEL OFFSET LABEL OFFSET
100 3s
¥xx¥ NO ERRORS, NO WARNINGS *%¥xx
PROGRAM UNIT BLANK COMPILED, SEGMENT = SEG*
STACK ESTIMATE = %22 WORDS OF CODE %111
COMPILATION TIME 1,330 SECONDS ELAPSED TIME 26.853 SECONDS
Figure F-5. X=Y Generates an Implicit Call to BLANKFIL
Apr 1978 F-7

PAGE 0001 HP321028.00,.09 FORTKAN/3000 (C) HEWLETT-PACKAKD CO. 1976
27, 1978, 9:42 AM

00001000 SCONTKOL USLINIT,LABEL,MAP,LOCATION,STAT

00010 00002000 PROGRAM BLANK

00010 00003000 SYSTEM INTRINSIC PROCTIME

00010 00004000 INTEGER*4 CPU1,CPU2

00010 00005000 CHARACTER%*20 X

00010 00006000 CHARACTER*2 Y

00010 00007000 CPU1=PROCTIME

00013 000086000 Yy="yy"

00022 00009000 DU 100 1I=1,2000

00027 00010000 Xx{1:2)=Y

00033 00011000 100 CONTINUE

00034 00012000 CPU2=PRUCTINME

00037 00013000 DISPLAY " CPUTIME =", (CPU2-CPUL),"MILLISEC"

00106 00014000 STOP

00107 00015000 END

SYMBUL MAP

NAME TYPE STRUCTURE ADDRESS

CpPU1 INTEGER*4 SIMPLE VAR Q+%2

CPU?2 INTEGER*4 SIMPLE VAR Q+%4

1 INTEGER SIMPLE VAR Q+%1

PROCTIME INTEGER*4 FUNCTION

X CHARACTER SIMPLE VAR Q+%6 ,I

Y ChARACTER SIMPLF VAR Q+%7 ,I

LABEL MAP
STATEMENT CODE STATEMENT CODE STATEMENT CODE STATEMENT
LABFL OFFSET LABEL OFFSET LABFEL UFFSET LABEL
100 33

*x%x NO ERRORS, NO WARNINGS ***x

PROGRAM UNIT BLANK COMPILED, SEGMENT = SEG’

STACK ESTIMATE = %22 WORDS OF CODE = %107

COMPILATION TIME

1.244 SECONDS ELAPSED TIME 9,099 SECONDS

MON, FEB

CODE
OFFSET

F-8

Figure F-6. Less Run-Time With the Changed Assignment Statement X[1:2]=Y

Apr 1978

INDEX

Abort, 4-26
ACCEPT statement, 6-13
Accessing files, 8-3
Actual arguments, 11-1
Addition, 3-1
ADDRL Segmenter command, 12-11
ADDSL Segmenter command, 12-16
Adjustable array declarators, 5-3
Alphanumeric conversions, 7-4
Alternate fixed ASCII string (*. . .") edit descriptor, 7-26
Alternate return points, 11-4
.AND. logical operator, 3-3
‘. .. edit descriptor, 7-26
Arguments
actual, 11-1
dummy, 11-1
passing by reference, A-1
passing by value, A-1
Type, A-5
value, A-5
Arithmetic errors, 4-21
Arithmetic expressions, 3-1
Arithmetic expression type, 3-2
Arithmetic IF statement, 4-4
Arithmetic operators, 3-1
Arrays
adjustable array declarators, 5-3
bounds, 2-7, 5-2
byte array, A-1
character arrays in common blocks, 5-12
declarators, 5-2
description, 2-7
dimensions, 2-7
equivalence between arrays of different types, 5-6
equivalence of array elements, 5-6
names, 1-6
subscripts, 2-7
variables, 2-7
ASCII blanks (nX) edit descriptor, 7-28
ASCII characters (S) field descriptor, 7-22
ASCII character set, E-1
ASCII string (nH) edit descriptor, 7-27
ASCII string (" . . ") edit descriptor, 7-26
ASCII string (“ . . .”) edit descriptor, 7-25
Assigned GOTO statement, 4-4
Assignment statements, 3-5
ASSIGN statement, 3-7
Associating a value with a function name, 11-6
Auxiliary input/output statements, 6-18
Aw field descriptor, 7-19

B
- Back referencing files, 12-3

Back slash, A-1, A-5
BACKSPACE statement, 6-18, 8-10

MAY 1979

Basic external functions, 10-1

Errors, 4-22
Binary (unformatted) transfer, 7-33
BLANKFIL, F-2, F-7
Bit map, A-1
BLOCK DATA statement, 11-13
Block data subprograms,5-18, 11-12
Blockname, 5-10
Bounds (array), 5-2
BOUNDS parameter ($SCONTROL command), 9-1
BREAK key, 4-15
:BUILD command, 8-3
Building an RL file, 12-12
Building an SL file, 12-16
BUILDRL Segmenter command, 12-11
BUILDSL Segmenter command, 12-16
:BYE command, 12-1
Byte array, A-1
Bytes, 5-6

CALL statement, 4-15
Carriage control, 7-30
.CC. logical operator, A-10
Changing standard attributes of files, 8-3
Character constants, 2-5
Character expressions, 3-2
Character format, 2-2
Character length attribute, 5-1
Character string data, free-field, 7-33
Character strings, 3-2
Character variables and arrays in common blocks, 5-12
CHECK parameter, 9-1
CODE/NOCODE parameters (SCONTROL command), 9-1
Coding examples, 1-5
COMMAND intrinsic, A-10, A-11
Comments, 1-3
Common blocks, 5-8, 5-10
COMMON statement
character variables and arrays in common blocks, 5-12
common blocks, 5-8, 5-10
description, 5-8
equivalence in common blocks, 5-13
example, 5-9
form, 5-8
null block, 5-10
storage space, 5-8
Common storage space, 5-8
COMMON Variables, 5-8, 9-8, B-2, F-2
COMMON Variables Stack Assignment, F-3
Compiler commands
$CONTROL, 9-1
$EDIT, 9-9
$IF, 9-9
$INTEGER*4, 9-9
$PAGE, 9-8
$SET, 9-9
$TITLE, 9-8
$TRACE, 9-11

I11

Compiler library, 8-10, F-1
Compiler Symbol Table, F-1
Compiling source programs, 12-4
Complex constants, 2-5
Complex expressions, 3-2
Complex format, 2-2
Composite numbers, 2-5
Computed GOTO statement, 4-1
Condition codes, A-5
Constants
character, 2-5
complex, 2-5
description, 2-2
double integer, 2-3
double precision, 2-4
integer, 2-3
logical, 2-5
real, 2-4
:CONTINUE command, 12-1
CONTINUE statement, 4-13
$CONTROL command
BOUNDS parameter, 9-1
CODE/NOCODE parameters, 9-1
description, 9-1
ERRORS parameter, 9-4
FILE parameter, 9-4
FIXED parameter, 9-4
FREE parameter, 9-4
INIT parameter, 9-4
LABEIL/NOLABEL parameters, 9-7
LIST/NOLIST parameters, 9-7
MAP/NOMAP parameters, 9-7
MORECOM parameter, 9-8

SEGMENT parameter, 9-7
SOURCE/NOSOURCE parameters, 9-7
USLINIT parameter, 9-8
WARN/NOWARN parameters, 9-8
Control statements, 4-1
CONTROLY Error, 4-26
Conversion between number types, 3-9
Copying files, 8-3
Core-to-core READ, 6-3
Core-to-core WRITE, 6-13
Creating and maintaining relocatable libraries, 12-11
Creating and maintaining segmented libraries, 12-16
Creating files, 8-3
CROSSREF parameter, 9-4

D

Data item delimiters, 7-32
DATA statement, 5-1, 5-16
Data storage formats

character, 2-2

complex, 2-2

double precision, 2-2

integer, 2-1

logical, 2-2

real, 2-1

I-2

Data types in FORTRAN/3000 and SPL/3000, A-2
Decimal data, free-field, 7-32
Decimal numeric conversions, 7-2
Declaration statements, 5-1
Delimiters

data item, 7-32

parameters, 12-1
Designators

partial-word, 3-4

substring, 3-5
DIMENSION statement, 5-1, 5-3
Direct interactive mode, 9-7
Direct intrinsic calls, 8-7
Direct READ, 6-1
Direct WRITE, 6-13
DISPLAY statement, 6-13
Division, 3-1
DO-implied lists, 6-17
DO statement

description, 4-7

DO-implied lists, 6-17

entering and exiting, 4-12

example, 4-11

form,4-7

nesting, 4-12

range, 4-12
Double integer constants, 2-3
Double integer format, 2-1
Double precision constants, 2-4
Double precision expressions, 3-2
Double precision format, 2-2

Double precision real numbers (Dw.d) field descriptor,

7-12

Double space carriage control, 7-30
Double value, A-2

Dummy arguments, 11-1

Dummy parameters, A-2

Dummy array size, 11-3

Dummy values, A-2

Duw.d field descriptor, 7-12

Dynamie bounds, 5-3, 11-6

$EDIT command, 9-9
Edit descriptors
alternate fixed ASCII string (.. .), 7-26
ASCII blanks (nX), 7-28
ASCII string (modifiable) (nH), 7-27
carriage control, 7-30
fixed ASCII string (. . "), 7-25
nesting, 7-31
record terminator (/), 7-29
repeat specification, 7-30
tabulate (Tn), 7-28
Edit specifications, 7-25
Enabling of traps by user, 4-26
ENDFILE statement, 6-18
End-of-file, 6-2, 6-11
END parameter (READ and WRITE statements), 6-2
END statement, 4-14

MAY 1979

Entering DO loops, 4-12
ENTRY statement, 11-6
Entry points, multiple, 11-6, 12-10
:EOD command, 12-1
:EQJ command, 12-1
.EQ. relational operator, 3-3
Equating formal file designator to actual file
designator, 12-2
Equivalence between arrays of different types, 5-6
Equivalence in DATA statements, 5-17
Equivalence in common blocks, 5-13
Equivalence of array elements, 5-6
Equivalence of different types, 5-5
EQUIVALENCE statement, 5-1, 5-5
Error and warning messages, D-1
Error position indication, D-1
ERRORS parameter (SCONTROL command), 9-4
Errors, trap handling, 4-21
ERR parameter (READ and WRITE statements), 6-2, 6-10
Ew.d field descriptor, 7-4
Executing source programs, 12-7
Executable statements, 1-3
Exiting DO loops, 4-12
Exponentiation, 3-1
Expressions

arithmetic, 3-1

character, 3-2

complex, 3-2

double precision, 3-2

integer, 3-2

linear, 3-3

logical, 3-2

real, 3-2

subexpressions, 3-1
External Procedure Calls (PCAL’s), F-2, F-6
External procedure libraries, 12-11
EXTERNAL statement, 5-1, 5-14

F

FCLOSE intrinsic, 8-7

Field descriptors
alphanumeric conversions, 7-4
control, 7-31
decimal numeric conversions, 7-2
description, 7-1
double precision real numbers (Dw.d), 7-12
fixed-point or floating-point real numbers (Gw.d), 7-8
fixed-point real numbers (Fw.d), 7-4
floating-point real numbers (Ew.d), 7-4
hexadecimal integer numbers (Zw), 7-17
hexadecimal numeric conversion, 7-3
integer numbers (Iw), 7-14
interrelationships, 7-30
leftmost ASCII characters (Aw), 7-19
logical (Boolean) values (Lw), 7-18
logical conversion, 7-4
monetary form (Mw.d), 7-10

MAY 1979

numeration form (Nw.d), 7-11
octal integer numbers (Ow), 7-16
octal numeric conversion, 7-3
repeat specification, 7-25
rightmost ASCII characters (Rw), 7-20
rules for input, 7-3
strings of ASCII characters (S), 7-22
unlimited groups, 7-31
:FILE command, 8-3
File error, 6-10
FILE parameter (SCONTROL command), 9-4
File parameters, 8-2
Files
accessing, 8-3
back referencing, 12-3
:BUILD command, 8-3
changing standard attributes, 8-3
copying, 8-3
creating, 8-3
default designators, 12-2
default parameters, 8-2
equating formal designator to actual designator, 12-2
:FILE command, 8-7
FILE parameter (JCONTROL command), 9-4
filereference,12-3
FLUT, 8-1
FNUM procedure, 8-10
FOPEN intrinsic, 8-7
FORTRAN/3000 file facility, 8-1
FREAD intrinsic, 8-7
FSET procedure, 8-7
input/output sets, 12-3
listfile, 12-4
masterfile, 12-4
new, 12-3
newfile, 12-4
$NEWPASS, 12-3
nominal FORTRAN/3000 parameters, 8-2
$NULL, 12-2
numbers, 8-7
old, 12-3
$OLDPASS, 12-3
parameters, 8-2
progfile, 12-4
reading, 8-5
referencing, 8-1
:SAVE command, 12-5
specifying as command parameters, 12-2
specifying by default, 12-4
specifying for programs, 12-2
standard input and output files, 8-2
$STDIN, 12-2
$STDINX, 12-2
$STDLIST, 12-2
system-defined, 12-2
temporary, 12-3
textfile, 12-4
UNITCONTROL procedure, 8-10

user-predefined, 12-3

uslfile, 12-4
Fixed ASCII string (. . ") edit descriptor, 7-26
Fixed ASCII string (“. . .”) edit descriptor, 7-25
FIXED parameter ($CONTROL command), 9-4
FIXED parameter (3EDIT command), 9-10
Fixed-point or floating-point real numbers (Gw.d)
field descriptor, 7-8
Fixed-point real numbers (Fw.d) field descriptor, 7-4
Fixed-field format, 1-3
Floating-point real numbers (Ew.d) field descriptor, 7-4
Flowchart example, 4-5
FLUT, 8-1,F-3
FNUM procedure, 8-10
FOPEN intrinsic, 8-7
Format control, 7-31
Format errors, 4-22
Format specifications, 7-1
FORMAT statement, 7-1
Form feed carriage control, 7-30
‘FORTGO command, 12-7
:FORTPREP command, 12-5
:FORTRAN command, 12-4
FORTRAN DO Loop Initialization, F-2
FORTRAN unit number, 6-1

FORTRAN/3000
character set, 1-1

description, 1-1

differences between FORTRAN/3000 and ANSI stan-
dard FORTRAN, B-1

differences between FORTRAN/3000 and HP 2100

FORTRAN, C-1
error messages, D-1, D-3

file facility, 8-1
file parameters, 8-2
fixed-field format example, 1-2
free-field format example, 1-7
intrinsic functions, 10-1
logical unit table (FLUT), 8-1
optimization, F-1
statements (see “Statements”)
source program description, 1-1
source program punched on cards, 1-4
warning messages, D-1, D-3
FREAD intrinsic, 8-7
Free-field control characters, 7-31
Free-field input/output, 7-31
Free-field format, 1-3
FREE parameter ($CONTROL command), 9-4
FREE parameter ($EDIT command), 9-10
FSET procedure, 8-7
Functions
basic external, 10-1
FORTRAN/3000, 10-1
functions without parameters, A-6
references, 10-1
subprograms, 11-4
typing, 10-2

14

FUNCTION statement, 11-4
Function subprograms, 11-4
Fw.d field descriptor, 7-4

G

.GE. relational operator, 3-3
Generic functions, 10-2
GOTO statements
assigned, 4-4
computed, 4-1
unconditional, 4-1
.GT. relational operator, 3-3
Guw.d field descriptor, 7-8

H edit descriptor, 7-27

:HELLO command, 12-1

Hexadecimal integer numbers (Zw) field descriptor, 7-17
Hexadecimal numeric conversion, 7-3

$IF command, 9-9
IF statement
arithmetic, 4-4
logical, 4-7
INC parameter (3EDIT command), 9-10
Index expression (GOTO statement), 4-1
INIT parameter ($CONTROL command), 9-4
Initialization
variables in DATA Statements, 5-16
COMMON in BLOCKDATA, 5-18
$INTEGER*4 Command, 9-9
Integer constants, 2-3
Integer expressions, 3-2
Integer format, 2-1
Integer numbers (Iw) field descriptor, 7-14
Implicit calls, 4-15
IMPLICIT statement, 5-1, 5-14
Implicit typing, 2-6
Input file set, 12-3
Input/output statements, 6-1
Input records, 6-2
Internal Function Errors, 4-22
Interrelationships, specification, 7-30
Intrinsic calls, 8-7
Intrinsic functions, 10-1
Irrecoverable file error, 6-11
Iw field descriptor, 7-14

:JOB command, 12-1

MAY 1979

Label assignment statements, 3-7
Labeled common blocks, 5-8
LABEL/NOLABEL parameters (fSCONTROL command),
9-7
Label value, 3-7
Leftmost ASCII characters (Aw) field descriptor, 7-19
Length attribute, 5-1
.LE. relational operator, 3-3
Libraries
relocatable, 12-11
segmented, 12-16
Limit, DO statement, 4-10
Listfile, 12-4
LIST/NOLIST parameters ($CONTROL command), 9-7
LISTRL Segmenter command, 12-12
LISTSL Segmenter command, 12-16
List termination, 7-33
LOCATION/NOLOCATION Parameter, 9-4, 9-7
Logical (Boolean) values (Lw) field descriptor, 7-18
Logical constants, 2-4
Logical conversion, 7-4
Logical expressions, 3-2
Logical format, 2-2
Logical IF statement, 4-7
Logical operations, 3-4
Logical operators, 3-3
Logical unit table (FLUT), 8-1
.LT. relational operator, 3-3
Lw field descriptor, 7-18

M

Main programs, 11-1
Maintaining relocatable libraries, 12-11
Maintaining segmented libraries, 12-16
MAP/NOMAP parameters (SCONTROL command), 9-5
Masterfile, 12-4
MERGE procedure, 8-10
Modifiable ASCII string (nH) edit descriptor, 7-27
Monetary form (Mw.d) field descriptor, 7-10
MORECOM Parameter, 9-2, 9-8, B-2, F-2
MPE/3000 commands

:BUILD, 12-5

:BYE, 12-1

:CONTINUE, 12-1

:EOD, 12-1

:EQJ, 12-1

:FILE, 8-7

:FORTGO, 12-7

:FORTPREP, 12-5

:FORTRAN, 12-4

:HELLO, 12-1

:JOB, 12-1

MAY 1979

:PREP, 12-7
:PREPRUN, 12-10
:PURGE, 12-1
:RESUME, 4-15
:RUN, 12-10
:SEGMENTER, 12-11
MPE/3000 intrinsics
COMMAND, A-11
FCLOSE, 8-7
FOPEN, 8-7
FREAD, 8-7
PRINTOP, A-10
Multiple compilations, 9-8
Multiple entry points, 11-6
Multiplication, 3-1
'"Mw.d field descriptor, 7-10

N

.NE. relational operator, 3-3
Nesting

DO loops, 4-12

format and edit specifications, 7-31
Neuwfile, 12-4
SNEWPASS, 12-3
nH edit descriptor, 7-27
NOCODE parameter ($CONTROL command), 9-1
NOLABEL parameter (SCONTROL command), 9-7
NOLOCATION parameter, 9-7
NOLIST parameter ($CONTROL command), 9-7
NOMAP parameter (SCONTROL command), 9-7
Nominal FORTRAN/3000 file parameters, 8-2
Non-executable statements, 1-3
Non-FORTRAN/3000 program units, A-1
NOSEQ parameter ($EDIT command), 9-10
NOSOURCE parameter ($CONTROL command), 9-7
No space carriage control, 7-30
NOSTAT parameter, 9-7
.NOT. logical operator, 3-3
NOWARN parameter ($CONTROL command), 9-8
Null block, 5-10
Null Character, 9-4
$NULL file, 12-2
Number ranges, 2-1, 2-6
Numeration form (Nw.d) field descriptor, 7-11
Nw.d field descriptor, 7-11
nX edit descriptor, 7-28

o

Octal data, free-field, 7-32

Octal numeric conversion, 7-3

Octal integer numbers (Ow) field descriptor, 7-16
$OLDPASS, 12-3

Operands, 3-2

I-5

Option variable, A-1
.OR. logical operator, 3-3
Output file set, 12-4
Output statements, 6-1
Ow field descriptor, 7-16

$PAGE command, 9-8

Page eject carriage control, 7-30
Parameter mask word, A-1

Parameters, structure of, 11-3
PARAMETER statement, 5-3
Partial-word designators, 3-4
Passing arguments, A-1

PAUSE statement, 4-14

Plot error, 4-26

:PREP command, 12-7

:PREPRUN command, 12-10
PRIMARY DB, F-3

PRINTOP intrinsic, A-10

Procedure libraries, 12-11

Progfile, 12-4

Program Optimization, F-1
PROGRAM statement, 11-1

:PURGE command, 12-1

PURGERL Segmenter command, 12-12
PURGESL Segmenter command, 12-16

Q

“...” edit descriptor, 7-25

RBM, 12-11

READ error, 6-10

Reading files, 8-5

READ statement, 6-1

READ statement END parameter, 6-2
READ statement ERR parameter, 6-2

Real expressions, 3-2

Real (fixed-point) field descriptor (Fw.d), 7-4
Real (floating-point) constants, 2-4

Real (floating-point) field descriptor (Ew.d), 7-4
Real (floating-point) format, 2-1

Record terminator, free-field, 7-33

Record terminator (/) edit descriptor, 7-29
Re-entrant, 11-4

Referencing files, 8-1

Relational operators, 3-3

Relocatable binary module (RBM), 12-11
Relocatable libraries, 12-11

Repeat specification for edit descriptors, 7-30

16

Repeat specification for field descriptors, 7-25
Replacement operator, 3-5

:RESUME command, 4-15

RETURN statement, 4-19

REWIND statement, 6-18

Rightmost ASCII characters (Rw) field descriptor, 7-20
RL Segmenter command, 12-11

Rules for input, field descriptors, 7-3

:RUN command, 12-11

Ruw field descriptor, 7-20

Scale factor, 7-23
SECONDARY DB, F-3
Secondary entry points, 11-6
Segmenter, 12-11
SEGMENTER command, 12-11
Segmenter commands

-ADDRL, 12-11

-ADDSL, 12-16

-BUILDRL, 12-11

-BUILDSL, 12-16

-LISTRL, 12-12

-LISTSL, 12-16

-PURGERL, 12-12

-PURGESL, 12-16

-RL, 12-11

-SL, 12-16

-USL, 12-11
SEGMENT parameter ($CONTROL command), 9-7
SEQNUM parameter ($EDIT command), 9-10
Sequencing information, 1-3
Sequential READ, 6-1
Sequential WRITE, 6-13
$SET command, 9-9
S field descriptor, 7-22
Simple variables, 2-7
Single space carriage control, 7-30
/ edit descriptor, 7-29
SL Segmenter command, 12-16
SORTINITIAL procedure, A-1
SOURCE/NOSOURCE parameters ($CONTROL com-
mand), 9-7
Source program

comments, 1-3

compiler commands, 9-1

compiling, 12-4

description, 1-1

executing, 12-7

fixed-field example, 1-2

free-field example, 1-7

preparing, 12-7

statements (see “Statements™
Specification interrelationships, 7-30
Specifying files as command parameters, 12-2
Specifying files by default, 124

Apr 1978

Specifying files for programs, 12-2
SPL/3000 programs, A-1
SPL MOVE Operation, F-2
Standard attributes of files, 8-3
Standard input and output files, 8-2
Statement functions, 5-1, 5-18
Statement labels, 1-3
Statement label value, 3-7
Statements
ACCEPT, 6-13
arithmetic assignment, 3-4
arithmetic IF, 4-4
ASSIGN, 3-7
assigned GOTO, 4-4
assignment, 3-4
BACKSPACE, 6-18, 8-10
BLOCK DATA, 11-13
CALL, 4-14
COMMON, 5-1, 5-8
computed GOTO, 4-1
CONTINUE, 4-13
$CONTROL, 9-1
DATA, 5-1, 5-16
Declaration, 5-1
DIMENSION, 5-1, 5-3
DISPLAY, 6-13
DO, 4-7
$EDIT, 9-9
END, 4-14
ENDFILE, 6-18
EQUIVALENCE, 5-1, 5-5
EXTERNAL, 5-1, 5-14
executable, 1-3
FORMAT, 7-1
FUNCTION, 11-4
GOTO
assigned GOTO, 4-4
computed GOTO, 4-1
unconditional GOTO, 4-1
IF
arithmetic IF, 4-4
logical IF, 4-7
$IF, 9-9
IMPLICIT, 5-1, 5-14
input, 6-1
$INTEGER*4, 9-9
logical IF, 4-7
non-executable, 1-3
output, 6-1
$PAGE, 9-8
PARAMETER, 5-3
PAUSE, 4-14
PROGRAM, 11-1
READ, 6-1
RETURN, 4-19
REWIND, 6-18
$SET, 9-9
STOP, 4-14, 4-19
SUBROUTINE, 11-3

MAY 1979

$TITLE, 9-8

$TRACE, 9-11

Type, 5-1

unconditional GOTO, 4-1

WRITE, 6-10
STAT/NOSTAT parameters, 9-7
$STDIN file, 12-2
$STDINX file, 12-2
$STDLIST file, 12-2
STOP statement, 4-14,4-19
Storage space, 5-8
Strings, 3-2

Strings of ASCII characters (S) field descriptor, 7-22

Structure of parameters, 11-3
Subscripts, array, 2-7
Subexpressions, 3-1
Subprograms

block data, 11-8

description, 11-1

function, 11-4

non-FORTRAN/3000, A-1

subroutine, 11-3
SUBROUTINE statement, 11-3
Subroutine subprogram, 11-3
Substring designators, 3-5
Subtraction, 3-1

Summary of compiler commands, 9-2
Suppress space carriage control, 7-30

SYMBOL TABLE OVERFLOW, F-1
System-defined files, 12-2
System errors, 4-22
System intrinsics, A-2 T
Tabulate (Tn) edit descriptor, 7-28
Temporary files, 12-3

Terminator, free-field, 7-33
Terminator (/) edit descriptor, 7-29
Textfile, 12-4

$TITLE command, 9-8

Tn edit descriptor, 7-28

$TRACE command, 9-11

Trap handling, 4-21

Truth table for logical operators, 3-4

Type statement, 5-1, 10-2

Unary operator, 3-4

Unconditional GOTO statement, 4-1

Undefined variable detection, D-1

Unformatted (binary) transfer, 7-33

UNITCONTROL procedure, 8-10
Unlabeled common blocks, 5-11
Unlimited groups, 7-31

User subprogram library (USL), 12-11
Using external procedure libraries, 12-11

USL, 12-11

1-7

USLINIT parameter (SCONTROL command), 9-8 Wrap-around, 3-4

Uslfile, 124 WRITE statement, 6-10
USL Segmenter command, 12-11

Variables, 2-6 X edit descriptor, 7-28
’ .XOR. logical operator, 3-3

w

Warning messages, D-1, D-3
WARN/NOWARN parameters (JCONTROL command),
9-8 Zw field descriptor, 7-17

I-8

Part No. 30000-90040
Printed in U.S.A. 6/76
Update #3 Incorporated 5/79
3FORTN.320.30000-90040

A

HEWLETT
PACKARD

-

