
Part No. 30000-90028
Product No. 32211D

HP 3000 Computer Systems

Compiler Library
Reference Manual

HEWLETT ift PACKARD

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95050

Printed in U.S.A. 11/76

NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1978 by HEWLETT-PACKARD COMPANY

ii

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updates to that edition. Within
the manual, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page. Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain. No information is incorporated into a reprinting unless it appears as a
prior update.

Pages Effective Date

Title , Nov 1976
ii Jun 1976
iii to iv Nov 1976
v Jun 1976
vii Jun 1976
viii < < < < • < ••••••••••• < ••••••• , Nov 1976
ix to xiii Jun 1976
xv to xvi < • < < •••• < ••••••• < •••••••• Jun 1976
xvii to xxiii .. < ••••••••• < •••••••••••••• < • < •• Nov 1976
1-1 < •••••• < < •• < •••••••• < ••••••••• Jun 1976
1-2 < ••• < ••• < ••••••••••••••••• , Nov 1976
1-3 to 1-4 .. < ••••••••••••••••••••••••••• < •• < • Jun 1976
1-5 to 1-6 .. < •• < •••••• < < < •••••• < •••••••••••• Nov 1976
1-7 to 1-21 < •••••••••••••••••••••••• Jun 1976
1-22 to 1-25 < < ••••••••••••••••••• , Nov 1976
1-26 to 1-27 < • < ••••• < •••••••••••• Jun 1976
1-28 < ••• < •• < •• < •••••••• Nov 1976
1-29 < •• < < •••••••••••••••••••• < • Jun 1976
1-30 < ••••••••••••••• < < •••• < •••••••••••• ' Nov 1976
1-31 < ••••• < •••••••••••••••••••• Jun 1976
1-32 Nov 1976
1-33 to 1-36 < • Jun 1976
1-37 < ••••••••••••••••••• < •••••••••• , Nov 1976
1-38 to 1-40 Jun 1976
1-41 < < ••••••••••••• < •••••••• Nov 1976
1-42 to 1-46 Jun 1976
1-47 to 1-48 < •••••••••••••••••••• < •• < ••• , Nov 1976
1-49 to 1-50 < < < ••••••••••••••••••••• Jun 1976
1-51 to 1-52 < < ••••••••••••••••••••• Nov 1976
1-53 to 1-55 < •• < ••••••••• < •••••••••••••••••• Jun 1976
1-56 Nov 1976
1-57 to 1-58 < < ••••••••••••• < < ••••••• Jun 1976
1-59 . < •••••••••••••••••• < •••••••••••••••••• Nov 1976
1-60 < •••• Jun 1976
1-61 < ••••••••••••••••• < •• < •• , Nov 1976
1-62 to 1-64 < ••••••••••••• < ••• < ••••••• Jun 1976
2-1 to 2-3 < •• < •••• < •••••••••••• < •••••• Jun 1976

Nov 1976

Pages Effective Date

2-4 < •••• < ••••••••••••••••• < ••• Nov 1976
2-5 to 2-6 < •••••••• < ••••• Jun 1976
2-7 < •• < •••••••• < ., •••••••••••••••••• Nov 1976
2-8 to 2-9 < •••••••••••••• Jun 1976
2-10 to 2-13 < < •• < •• < •••••••••• < ••••••••• Nov 1976
2-14 < ••••••••••••••• < • < •••••••••••• Jun 1976
2-15 to 2-17 < •••• < •• < ••••••••••••••• Nov 1976
2-18 . < ••• < ••••••••••••••••••• < •••••••••••••• Jun 1976
2-19 < ••••• < •• < ••••• < < •••••••••••••••• Nov 1976
2-20 to 2-21 ... < •••••••••••••••••• < ••••••••• Jun 1976
2-22 to 2-23 < •• < •••••••••• < • < ••••••••• < ••••• Nov 1976
2-24 to 2-55 < < •••••• < •• < •••• Jun 1976
2-56 to 2-59 < ••••••• < •••••••••••••••••••• Nov 1976
2-60 < < ••••••••••••••••• < •••••• < ••••••• Jun 1976
2-61 to 2-68 < •• < •••••••••••••••••• < < ••• < Nov 1976
2-69 to 2-79 < ••••••••••••••• < <. < •••• < • < ••••• Jun 1976
3-1 to 3-7 < •••••••••• < •• < • < •••••••••••••••••• Jun 1976
3-8 to 3-12 < •• < • < •• < •••••••••• Nov 1976
3-13 to 3-14 < • < • < •••••••••• Jun 1976
3-15 to 3-16 < ••• < ••• Nov 1976
3-17 to 3-18 < ••• Jun 1976
3-19 < • < ••••••••••• < ••• < •• < •• < •••••••••• Nov 1976
3-20 < • < •••••••••••••• < < ••••••• Jun 1976
3-21 < • < ••••••••••• < • < •••••• < •••••• < •• Nov 1976
3-22 to 3-23 < ••••••• < •• < < • < •• < ••• < •••••••••• Jun 1976
3-24 < ••••••••••• < •• < ••••••••• < Nov 1976
3-25 to 3-35 < •••• < •• < < •••• < ••••••••• Jun 1976
3-36 to 3-37 < •••••• < •••• < • < •••••••••• Nov 1976
3-38 to 3-40 < ••••••••••••••••••••••• Jun 1976
3-41 ... < •••••••• < ••• < ••••••••••• < •••••••••• Nov 1976
3-42 to 3-54 < ••••••••••••••••••••• Jun 1976
3-55 to 3-56 < < ••••• < ••••••• < ••••• < •••••••••• Nov 1976
4-1 < • < •••••••••••••••• < •••••••••••••• Nov 1976
4-2 to 4-7 < •••••••••••••••• < Jun 1976
A-I to A-2 Nov 1976
1-1 to 1-5 < • < •• < Nov 1976

iii

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages, which are issued between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edition is reprinted, all the prior updates to the edition
are incorporated. No information is incorporated into a reprinting unless it appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many product updates and fixes do not require manual changes, and
conversely, manual corrections may be done without accompanying product changes. Therefore, do not expect a one to one
correspondence between product updates and manual updates.

First Edition June 1976
Second Edition November 1976

iv Nov 1976

PREFACE

The Compiler Library Reference Manual is the programmer's reference to input/output formatting
and mathematical and utility procedures available to users of Hewlett-Packard HP 3000 software.

The reader should have a working knowledge of the language(s) to be used and the MPE/3000
Operating System or have access to the appropriate reference manuals listed below.

MPE Intrinsics Reference Manual, 30000-90010

Systems Programming Language Reference Manual 30000-90024

FORTRAN/3000 Reference Manual, 30000-90040

System Manager/Supervisor Manual, 30000-90014

HP 3000 supporting software, including the procedures in the Compiler Library, are written in
Hewlett-Packard's Systems Programming Language (SPL/3000). Thus, all procedures in this man-
ual are SPL/3000 procedures.

Purposes of the Library and its relationship to the MPE/3000 Operating Systems are stated in the
Introduction; so are the structural elements of this book. A Function Directory follows, to cate-
gorize each function provided in the Library and point to the description of the procedure. Section
I presents a detailed analysis of the Formatter. Functions and attributes of other procedures are
defined in a standard format, in Section II for Mathematical Procedures and Section III for Utility
Procedures. Section IV outlines the special utilities for Library Errors.

NOTE: A special procedure, HP32211, is included in the HP 3000
Compiler Library, to report version identification for the
Library in use. This procedure can be called, for example,
from a FORTRAN/3000 program:

CALL HP 32211

v

CONTENTS

PREFACE v
INTRODUCTION ix

ORGANIZATION OF THIS BOOK IX

Format for Procedures ix
Parameter Checking for Procedures x
Text Conventions xi
In ternal Represen tations xii

FUNCTION DIRECTORY xv
DATA FORMAT DEFINITIONS xv
DATA EDITING XVI

DATA MANIPULATION XVI

ABSOLUTE VALUES xvii
NUMBER CONVERSION xvii
NUMBER COMPARISON xviii
EXPONENTS, ROOTS, LOGARITHMS xviii
TRIGONOMETRY xix
MATRICES xx
RANDOM NUMBERS xx
DOUBLE INTEGER ARITHMETIC xx
DOUBLE PRECISION ARITHMETIC XXI

COMPLEX ARITHMETIC xxi
DATA PLOTTING xxi
PACKED DECIMAL NUMBERS xxii
MISCELLANEOUS FUNCTIONS xxii

FORMAT SPECIFICATIONS
Field Descriptors
Scale Factor
Repeat Specification-For Field
Descriptors

1-1
1-1
1-2
1-2

1-3
1-3

1-32

SECTION I THE FORMATTER
FORMAT STATEMENTS

READ or WRITE Statements
Disc Input/Output

1-35

vii

EDIT SPECIFICATIONS 1-35
Edit Descriptors 1-35
Repeat Specification-For Edit
Descriptors 1-42

SPECIFICATION INTERRELATIONSHIPS 1-42
Nesting 1-42
Unlimited Groups 1-43

FREE-FIELD INPUT/OUTPUT 1-43
Free-Field Control Characters 1-44
Free-Field Input 1-44
Free-Field Output 1-47

ACCEPT/DISPLAY 1-48
CORE-TO-CORE CONVERSION 1-48
UNFORMATTED (BINARY) TRANSFER 1-49

Matching List Elements 1-50

SPL/3000 CALLING SEQUENCES 1-51
Calling Sequences 1-52
File System Requirements 1-56

FORMATTER ERROR REPORTS 1-58
File Information Display 1-61

SECTION II MATHEMATICAL PROCEDURES 2-1

SECTION III UTILITY PROCEDURES 3-1

SECTION IV LIBRARY ERRORS 4-1

XLIBTRAP 4-2

APPENDIX LIBRARY PROCEDURE NAMES A-I

INDEX 1-1

TABLES

Table 3-1. Plotter Characters/Symbols 3-54
Table 4-1. HP 3000 Compiler Library Errors 4-5

viii Nov 1976

INTRODUCTION

Introduction

HP 3000 Compiler Library routines perform input/output, internal data conversion, mathematical,
data plotting, and error-reporting functions for user programs. The HP 3000 Multiprogramming
Executive (MPE/3000) links each user program to the Compiler Library routines needed.

ORGANIZATION OF THIS BOOK

This book contains a function directory and four sections:

Section I: The Formatter

Section II: Mathematical Procedures

Section III: Utility Procedures

Section IV: Library Errors

Format for Procedures

Most of the procedures in Sections II and III are described in a standard format. The following
items are included in that format, when applicable:

NAME

(at top of page)

The procedure identifier.

FUNCTION: Purpose of the procedure.

Declaration: The parts of the procedure declaration that define the requirements for
actual parameters (arguments) included in a procedure call or calling
sequence. Procedure declarations are defined in the Systems Programming
Language Reference Manual.

Method: A comment on the algorithm for the procedure.

ix

Accuracy: A description of the procedure accuracy, using the following notation:

x true value of the argument(s)

computed value of the argument(s)

true value of the result

computed value of the result

absolute error in the argument(s)

Y

f

g

[x-y]

relative error in the argument(s)

[f--g] = absolute error in the result(s)

If=glf --I f I relative error in the result(s)

ATTRIBUTES:

Parameters: The type(s) and range! of value(s) allowed by the procedure. The FORTRAN
type double precision is identical to the SPL/3000 type LONG (real).

Result(s): The type(s), and range of value(s).

FORTRAN: When applicable, how FORTRAN/3000 uses or calls the procedure.

Error(s): A brief description of the error conditions.

COMMENTS: (When needed, special comments.)

Parameter Checking for Procedures

SPL/3000 procedures declared option external or called as an external procedure by other
programs can include a CHECK option for attributes of the procedure. For SPL/3000 callers,
the CHECK option can be specified in the declaration in the calling program, as described in
the Systems Programming Language Reference Manual under "PROCEDURE
DECLARATION." The CHECK option levels (values) are:

o - no checking

1 - check procedure type only

2 - check procedure type and number of parameters

3 - check procedure type, number of parameters, and type of each parameter.

1 The range and form of internal representations are summarized in text that follows.

x

The following procedures in the HP 3000 Compiler Library do specify, in their declarations,
the CHECK option for level 3:

ALOG DEXP FACTOR TAN
ALOGIO DINVERT INVERT TANH
ATAN DLOG PLOT WHERE
ATAN2 DLOGIO PLOTS
COSH DSIN SIN
DATAN DSQRT SINH
DATAN2 DTAN SQRT
DCOS EXP SYMBOL

One Library procedure specifies, in its declaration, the CHECK option for level 2:

RAND

Text Conventions

The following conventions are used throughout this manual:

1. All numbers are decimal unless otherwise noted.

2. In all examples, a blank space is represented by a delta 6.

3. All appearances of the initials TOS refer to the top-of-stack, as defined in the
Systems Programming Language Reference Manual.

4. The notation := means "is replaced by."

5. Mathematical notation in the text includes the following definitions:

A value x in the range (a,b) means a < x < b

A value x in the range [a,b] means a ~ x ~ b

A value x in the range (a, b] means a < x ~ b

A value x in the range [a,b) means a ~ x <b

xi

Internal Representations

Data Characteristics

Integer:

[-32768,32767] ,
in 1word:

Double Integer:

[-2147483648,2147483647],
in 2 words, concatenated:

Real:

[-1.15792 . 1077
-8.63617 . 10-78] and 0.0 and
[8.63617 . 10-78 ,

1.15792 . 1077] in 2 words,
concatenated (see definitions
on the next page):

where MSB is the most significant
bit and LSB is the least significant
bit.

Internal Representation Format

,0 1 2 3 4 5 6 7 8
I
I
I
I

9 10 11 12 13 14 15\
I
\
I,

LSB--...'
./SIGN

/".___MSB

I ../SIGN
I~~MSB

I I]-- --- ---
LSB---, ,

I
I
I,

I
I
I
I
, »>SIGN (FRACTION)
I ~.....--- MSB LSB--.. MSB

I I FRACTION]EXPONENT ----FRACTION

xii

Data Characteristics Internal Representation Format

I 0 1 2 3 4 5 6 7 8 91011121314151
1 I
1

I
Double Precision; 1

[-1.157920892373162 • 1077 I SIGN (FRACTION)
-8.636168555094445 . 10-78] and I /
0.0 and [8.636168555094445 . 1 /" MSB LSB =:...,..,
10-78,1.157920892373162 . 1077] I I EXPONENT'
in 4 words, concatenated (see _ - - --
definitions below): FRACTION

.....----::: 1\4S B
FRACTION

i
I
I
I
I
I==

I FRACTION
-- - - ----

,= FRACTION
I ------

Logical (Boolean):

[True (odd), False (even)],
in 1 word:

Byte (ASCII character code):

[any 8-bit code] ,
in 11z word: or:

I
I
I
I

LSB ----.....1

1 MSB LSB _
1..---- -.......

7--MSB

Definitions: 8

MSB
LSB
SB

SIGN
EXPONENT

FRACTION

most significant bit
least significant bit
significant bit (all others may be 0 or 1 for other uses)
S = one bit for the sign of FRACTION, 0 for positive, 1 for negative
E = [0,777 sl = [0,511] 0]

F = [0,222 -1] or [0,238_1]

Real and double precision numbers are stored in normalized form with an implied "1." to the
left of the FRACTION MSB. Thus, DECIMAL VALUE =

(_I)s * 2E-256 * (1.+F*2-22)

(-1)s * 2E-256 * (1.+F*2-54)

REAL

DOUBLE PRECISIOW

The exception occurs when S = E = F = 0; the decimal value is 0.0.

NOTE: WhenE=511]o, 2E-256 =2255.

1 In SPLj3000, type LONG real.

XIII

FUNCTION DIRECTORY

Function Directory

The following list identifies each function provided in the HP 3000 Compiler Library and points to
the descriptions in this manual. The functions have been grouped by general categories of functions.
The grouping does not reflect the organization of the manual.

Function

Data Format Definitions

For a double precision 1 number with an exponent
(floating-point) .

For a real number with an exponent (floating-point).

For a real number without an exponent (fixed-point).

For a real number with or without an exponent, according
to the relative size of the number.

For a real number written in monetary (business) form.

For a real number written in numeration form.

For an integer number.

For an octal integer number.

For a hexidecimal integer number

For a logical value.

For the leftmost ASCII alphameric characters
of a variable.

1 In SPL/3000, type LONG real.

xv

Identifier Page

FORMATTER, see 1-7
DW.d Field Descriptor

FORMATTER, see 1-9
Ew.d Field Descriptor.

FORMATTER, see 1-11
Fw.d Field Descriptor.

FORMATTER, see 1-13
Gw.d Field Descriptor.

FORMATTER, see 1-16
Mw.d Field Descriptor.

FORMATTER, see 1-18
Nw.d Field Descriptor.

FORMATTER, see 1-20
Iw Field Descriptor.

FORMATTER, see 1-22
Ow Field Descriptor.

FORMATTER, see 1-24
Zw Field Descriptor

FORMATTER, see 1-26
Lw Field Descriptor.

FORMATTER, see 1-28
Aw Field Descriptor.

Function

Data Format Definitions (cont.)

For the rightmost ASCII alphameric characters
of a variable.

For a string of ASCII alphameric characters.

To modify the effects of various field descriptors.

To repeat one or more field descriptors.

Data Editing

Fix n characters of an edit specification.

Initialize the next n characters of an edit specification.

Skip n positions of an external record.

Position (tabulate) data in an external record.

Terminate the current external record and begin a new
record.

Use the octal number n as a byte character.

Repeat one or more edit descriptors.

Data Manipulation

Input or output data in free-field form.

ACCEPT or DISPLAY data.

Convert data between a user-defined buffer and a list of
variables.

xvi

Identifier Page

FORMATTER, see
Rw Field Descriptor.

1-30

FORMATTER, see
S Field Descriptor.

1-32

FORMATTER, see
Scale Factor.

1-34

FORMATTER, see
Repeat Specification-
For Field Descriptors.

1-37

FORMATTER, see 1-38
" ... "or' ...

, or
Edit Descriptors. 1-39

FORMATTER, see 1-40
nH Edit Descriptor.

FORMATTER, see 1-41
nX Edit Descriptor.

FORMATTER, see 1-42
Tn Edit Descriptor.

FORMATTER, see 1-43
/Edit Descriptor.

FORMATTER, see 1-44
%nC Edit Descriptor.

FORMATTER, see 1-45
Repeat Specification-
For Edit Descriptors.

FORMATTER, see
Free-Field Input/Output.

1-46

FORMATTER, see
ACCEPT /DISPLA Y.

1-51

FORMATTER, see
Core-to-Core Conversion.

1-51

Function

Data Manipulation (cont.)

Transfer data between files and a list of variables
without conversion.

Convert a byte array of ASCII numeric data to an internal
representation.

Convert an internal representation of a number to a byte
array for ASCII numeric data.

Absolute Values

Calculate the absolute value of a double precision 1

number.

Calculate the absolute value of a complex? number.

Calculate the absolute value of one integer number and give
it the sign of a second integer number.

Calculate the absolute value of one double integer number
and give it the sign of a second double integer number.

Calculate the absolute value of one real number and give it
the sign of a second real number.

Calculate the absolute value of one double precision!
number and give it the sign of a second double precision!
number.

Number Conversion

Truncate a real number to an integer number.

Truncate a real number to an integer number (result in real
representation).

Truncate a double precision I number to an integer number
(result in double precision 1 representation).

Truncate a LONG real number to a double-integer number

Convert a double-integer number to a LONG real number

1 In SPL/3000, type LONG real.
2In SPL/3000, a two-element real array.

Nov 1976 xvii

Identifier Page

FORMATTER, see Unfor- 1-52
matted (Binary) Transfer

EXTIN' 3-1

INEXT' 3-4

DABS' 2-1

CABS (or CABS') 2-2

ISIGN' 2-3

JSIGN' 2-4 I
SIGN' 2-5

DSIGN' 2-6

{ INT' 2-7
IFIX' 2-68
AINT' 2-8

DDINT' 2-9

DFIX (or DFIX') 2-10

DFLOAT (or DFLOAT') 2-11

Function Identifier Page

Number Comparison

Calculate the largest (MAXO') or the smallest (MINO') of N MAXO'jMINO' 2-12
integer numbers.

I Calculate the largest (JMAXO') or the smallest (JMINO') of N JMAXO'jJMINO' 2-13
double integer numbers.

Calculate the largest (MAXI') or the smallest (MINI') of N MAXI' jMINl ' 2-14
real numbers (result in integer representation).

I Calculate the largest (JMAXl') or the smallest (JMINl') of N JMAXI ' j JMINI ' 2-16
real numbers (result in double integer representation).

Calculate the largest (AMAXO') or the smallest (AMINO') AMAXO'jAMINO' 2-18
of N integer numbers (result in real representation).

I Calculate the largest (AJMAXO') or the smallest (AJMINO') AJMAXO' jAJMINO' 2-19
of N double integer numbers (result in real representation).

Calculate the largest (AMAXl') or the smallest (AMINI') of AMAXI ' jAMINI' 2-20
N real numbers.

Calculate the largest (DMAXl') or the smallest (DMINl') of DMAXI ' jDMINl ' 2-21
N double precision ' numbers.

Calculate one real number modulus a second real number. AMOD' 2-22
Calculate one double precision 1 number modulus a second DMOD 2-23
double precision! number.

Exponents, Roots, Logarithms

Calculate eX, where x is a real number. EXP (or EXP') 2-24

Calculate eX, where X is a double precision I number. DEXP (or DEXP') 2-25

Calculate eX, where X is a complex 2 number. CEXP (or CEXP') 2-26

Calculate the square root of a real number. SQRT (or SQRT') 2-27

Calculate the square root of a double precision I number. DSQRT (or DSQRT') 2-28

Calculate the square root of a complex- number. CSQRT (or CSQRT') 2-29

Raise an integer number to an integer power. ITOI' 3-8

Raise a double integer number to an integer power. DTOI' 3-9

Raise a double integer number to a double integer power DTOD' 3-10

Raise a real number to an integer power. RTOI' 3-11

Raise a real number to a double integer power. RTOD' 3-12

Raise a real number to a real power. RTOR' 3-13

Raise a real number to a double precision 1power. RTOL' 3-14

1 In SPLj3000, type LONG real.
2 In SPLj 3000, a two-element real array.

xviii Nov 1976

Function Identifier Page

Exponents, Roots, Logarithms (cont.)

Raise a double precision- number to an integer power.

Raise a double precision- number to a double integer power.

Raise a double precision I number to a double precision I

power.

Raise a complex- number to an integer power.

Raise a complex- number to a double integer power.

Calculate the natural logarithm of a positive real number.

Calculate the base 10 logarithm of a positive real number.

Calculate the natural logarithm of a positive double precision!
number.

Calculate the base 10 logarithm of a positive double precision 1

number.

Calculate the natural logarithm of a complex 2 number.

Trigonometry

Calculate the tangent of a real number in radians.

Calculate the sine of a real number in radians.

Calculate the cosine of a real number in radians.

Calculate the tangent of a double precision 1 number in
radians.

Calculate the sine of a double precision 1 number in radians.

Calculate the cosine of a double precision 1 number in radians.

Calculate the tangent of a complex- number.

Calculate the sine of a complex- number.

Calculate the cosine of a complex- number.

Calculate the hyperbolic tangent of a real number.

Calculate the hyperbolic sine of a real number.

I In SPLj 3000, type LONG real.
2 In SPLj 3000, a two-element real. array .

Nov 1976 xix

LTOI' 3-15

LTOD' 3-16

LTOL' 3~17

CTO!' 3-19

CTOD' 3-20

ALOG (or ALOG') 2-31

ALOGI0 2-31

DLOG (or DLOG') 2-32

DLOG10 2-32

CLOG (or CLOG') 2-33

TAN (or TAN') 2-34

SIN (or SIN') 2-35

COS (or COS') 2-36

DTAN (OR DTAN') 2-37

DSIN (or DSIN') 2-38

DCOS (or DCOS') 2-39

CTAN (or CTAN') 2-40

CSIN (or CSIN') 2-41

ccos (or eCOS') 2-42

TANH (or TANH') 2-43

SINH (or SINH') 2-44

Function

Trigonometry (con t.)

Calculate the hyperbolic cosine of a real number.

Calculate the hyperbolic tangent of a double precision 1

number.

Calculate the hyperbolic sine of a double precision 1 number.

Calculate the hyperbolic cosine of a double precision 1

number.

Calculate the hyperbolic tangent of a complex- number.

Calculate the hyperbolic sine of a complex- number.

Calculate the hyperbolic cosine of a complex- number.

Calculate the arctangent of a real number.

Calculate the arctangent of a double precision 1 number.

Calculate the arctangent of the quotient of two real numbers.

Calculate the arctangent of the quotient of two double
precision 1 numbers.

Matrices

Invert a square matrix of real numbers.

Invert a square matrix of double precision I numbers.

Invert a square matrix of complex? numbers.

Random Numbers

Generate a random number, for use as a starting
point for RAND.

I Generate the next element of a sequence of pseudo-
random numbers.

Double Integer Arithmetic

I Calculate the sum of two double integer numbers.

I Calculate the difference between two double integer numbers.

Calculate the product of two double integer numbers.

I In SPLj3000, type LONG real.
2 In SPLj3000. a two-element real array.

xx

Identifier

COSH (or COSH')

DTANH (or DTANH')

DSINH (or DSINH')

DCOSH (or DCOSH')

CTANH (or CTANH')

CSINH (or CSINH')

CCOSH (or CCOSH')

ATAN (or ATAN')

DATAN (or DATAN')

ATAN2 (or ATAN2')

DATAN2

INVERT

DINVERT

CINVERT

RAND1 (or RAND1')

RAND (or RAND')

DADD

DSUB

DMPY (or DMPY')

Page

2-45

2-46

2-47

2-48

2-49

2-50

2-51

2-52

2-53

2-54

2-55

2-56

2-57

2-58

2-59

2-60

2-61

2-62

2-63

Nov 1976

Function Identifier Page

Double Integer Arithmetic (cont.)

Calculate the quotient only of one integer number divided DDIV (or DDIV') 2-64
by another double integer number.

Calculate the remainder only of one double integer DREM (or DREM') 2-65
number divided by another double integer number.

Negate a double integer number. DNEG 2-66 I
Compare two double integer numbers. DCMP 2-67 I

Complex 1 Arithmetic

A collection of procedures and special entry points, to
provide complex 1 arithmetic operations.

Complex Arithmetic 3-22

A procedure with several entry points, to provide complex 1

number negations.
Complex Negate 3-25

A procedure with several entry points, to provide complex 1

number comparisons.
Complex Compare 3-27

Data Plotting

Initialize plotter variables, initialize a user-defined plotter
commands buffer, and open the plotter file.

PLOTS 3-42

Convert X-axis and Y-axis parameters into plotter com-
mands, manage buffering of plotter commands, and close
the plotter file when the plotting sequence is completed.

PLOT 3-46

1 In SPL/3000, a two-element real array.

Nov 1976 xxi

Function

Data Plotting (cont.)

Change the plot factor (the ratio of the plot physical size
to the plot command size).

Return the X-axis and Y-axis coordinates of the present
pen position (with respect to the current origin) and
return the current plot factor.

Write plot annotation in the form of ASCII characters
and special symbols

Packed Decimal Numbers.'

Calculate the product of a Packed Decimal multiplicand and a
Packed Decimal multiplier.

Calculate the quotient, or the quotient and remainder, of a
Packed Decimal dividend and a Packed Decimal divisor.

Unpack a Packed Decimal Number (numeric edit), or do an
alphanumeric only edit.

Miscellaneous Functions

Call the FORMATTER from an SPL/3000 program.

Implement the FORTRAN auxiliary I/O statements:
REWIND, BACKSPACE, and ENDFILE (normally called
only by FORTRAN/3000 compiler-generated code).

Request any of ten actions available for a
• FORTRAN Logical Unit file.

Extract the MPE/3000 file number assigned to a given
FORTRAN Logical Unit Number from the FORTRAN
Logical Unit Table.

Change the MPE/3000 system file number assigned to a given
FORTRAN Logical Unit Number in the FORTRAN Logical
Unit Table.

A collection of procedures called by FORTRAN/3000
compiler-generated code at run-time, to perform various
functions for a user's program.

Specify a user-defined procedure to process library errors.

1In SPL/3000, a BYTE array.

xxii

Identifier

FACTOR

WHERE

SYMBOL

MPYD

DIVD
or

LONGDIVD

R'EDIT

SPL/3000 Calling
Sequences

FTNAUX'

UNITCONTROL

FNUM

FSET

FORTRAN
Run-time
Procedures

XLIBTRAP

Page

3-49

3-50

3-51

2-69

2-71

2-71

2-74

1-54

3-29

3-32

3-34

3-35

3-55

4-2

Nov 1976

Function Identifier Page

Miscellaneous Functions (cont.)

Obtain formatted date and time information

Print a File Information Display on the job list device.

Identify whether Compiler Library in use is a three-word,
extended precision, floating point version or a four-word,
extended precision, floating point version.

Nov 1976 xxiii

DATELINE 3-36 I

PRINTFILEINFO 3-37
(or PRINT' FILE' INFO)

COMPLIBINFO 3-41 I(or COMPLIBINFO')

SECTION I
THE FORMATTER

To find the descriptions for any given feature of the Formatter, see the Function Directory or
Appendix A.

SECTION I
The Formatter

The Formatter is a subroutine called by FORTRAN compiler-generated code or by SPL/3000 user
programs. The FORTRAN/3000 compiler interprets READ or WRITE statements of a FORTRAN
program to generate the calls to the Formatter; an SPL/3000 user must generate the calls himself.
The Formatter can perform the following functions:

1. Convert between external ASCII numeric and/or character records and an internally
represented list of variables. Formatting proceeds according to implicit parameters
derived from a FORTRAN program's FORMAT statements or explicit parameters
written into an SPLj3000 program.

2. Convert free-field external ASCII records to an internally represented list of variables
according to format and/or edit control characters imbedded in the input records.

3. Convert an internally represented list of variables to external ASCII records which are
free-field input-compatible.

4. Convert between an internally represented list of variables and a user-defined ASCII
buffer storage area (core-to-core).

5. Transfer (unformatted and without conversion) between an internally represented list
of variables and external files on disc or tape.

READ and WRITE statements in a FORTRAN program must meet the syntactic requirements of that
language. The Formatter derives format and edit parameters from FORMAT statements or the data.
The SPL/3000 user, however, must code the calls and the parameters by the methods described
under "SPL/3000 Calling Sequences."

FORMAT STATEMENTS

FORMAT statements in a FORTRAN program enclose a series of format and/or edit specifi-
cations in parentheses. The specifications must be separated by commas or record termi-
nators (see "/Edit Descriptor").

1-1

EXAMPLE:

10 FORMAT (I5,A2,5F12.3)/7 ~II· ~I

FORMA T statement identifier Format and/or edit specifications

These format and edit specifications can include another set of format and/or edit specifi-
cations enclosed in parentheses; this is called nesting. The HP 3000 Formatter allows
nesting to a depth of four levels.

EXAMPLE:

20 FORMAT (I3,E12.5,3(D14.3,I6),4HSTOP)

READ or WRITE Statements

Formatted READ or WRITE statements in a FORTRAN program identify the list of variables
that reference a FORMAT statement. (More than one READ or WRITE statement can refer-
ence a given FORMAT statement.)

EXAMPLE:

READ (2,10) INT,LETR,ARRAY

unit numbe~AT~Li,t element,

WRITE (4,20) INT,LETR,ARRA Y

The list of variables can consist of any number of elements (including zero elements); there
need not be a direct relationship to the number of list elements and the number of format
and/or edit specifications. Refer to "Unlimited Groups," in this section.

Disc Input/Output

Two types of access to files on disc devices are available through the MPE/3000 file
system: sequential or direct. Either type can be established through the MPE/3000 file in-
trinsic FOPEN; direct access includes the capability of sequential access.

When formatted/sequential access is used, the READ or WRITE statements of a FORTRAN
program are written as described above, under "READ or WRITE Statements."

I
When formatted/direct access is used, the READ or WRITE statements of a FORTRAN pro-
gram must specify an integer, double integer, real, or double precision simple variable or a
constant for the record identifier.

1-2 Nov 1976

EXAMPLES:

READ (8@IV, 100) list elements

unit number / R~ord ~ FORMAT

\
.
identifier statement
varia ble iden tifier
I ~

WRITE (12@KR, 300) list elements

When the file is opened (through the MPE/3000 file intrinsic FOPEN), the record size can be
left at the system default value 128, or the user can specify a different size.

In sequential access, as many records as needed are used in sequence until the entire list of
variables has been transmitted.

In direct access, only one record is transmitted. If the list elements specified require storage
space greater than the record size of the file device used, the report FORMAT BEYOND
RECORD occurs (see "FORMATTER ERROR REPORTS").

FORMAT SPECIFICATIONS

Format specifications are written as

• A field descriptor

• A scale factor followed by a field descriptor

• A repeat specification followed by a field descriptor

• A scale factor followed by a repeat specification and a field descriptor

A brief discussion of field descriptors follows; detailed descriptions appear later in this section.

Field Descriptors

For output of data, the field descriptor determines the components of a data field into which a
given list element will be written. For input, the field descriptor defines only the field width
from which data can be read into an internal list element.

DECIMAL NUMERIC CONVERSIONS

Seven descriptor forms are provided:

Dw.d

Ew.d

Fw.d

Gw.d

Output in double precision, floating point (with an exponent field) form.

Output in real, floating point (with an exponent field) form.

Output in real, fixed point (with no exponent field) form.

Output in either the Fw.d format or the Ew.d format, depending on the
relative size of the number to be converted.

Mw.d Output in monetary (business) form (real, fixed-point, plus $ and commas),
e.g., $4,376.89.

1-3

Nw.d Output in numeration form (same as the Mw.d format, but without the $),
e.g., 3,267.54.

Output in integer form.Iw

where

w = the length of the external data field, in characters; must be greater than zero.

d = the number of fraction field digits in a floating or fixed point output (see detailed
descriptions on the following pages). On input, it the external data does not include
a decimal point, the integer is multiplied by 10 -d. If the external data does include
a decimal point, this specification has no effect. Where listed above, d must be
stated even if zero.

Rules for Input

All of the field descriptors listed above accept ASCII numeric input in the following
formats.

NOTE: Iw, on input, is interpreted as Fw.O

1. A series of integer number digits with or without a sign

2314 or +56783 or -96

2. Any of the above with an exponent field with or without a sign

2314+2 or +56783E-4 or -96D+4

3. A series of real number digits with or without a sign

2.314 or +567.83 or -.96

4. Any of the above, with an exponent field with or without a sign

2.314+2 or +567.83E-4 or -.96D+4

5. Either of the above items 1 and 3, in monetary (business) form

$234 or $5,678.30 or -.96

6. Either of the above items 1 and 3, in numeration form

2.314 or +5,678.30 or -961,534.873

In summary, the input field can include integer, fraction, and exponent subfields:

Integer field Fraction field Exponent field

~II~I~
±n ... n.n ... nE±ee-:

(Decimal point)

1-4

Rules: 1. The number of characters in the input field, including $ and commas, must
not exceed w in the field descriptor used.

2. The exponent field input can be any of several forms:

+e +ee Ee Eee De Dee

-e -ee E+e

E-e

E+ee D+e

D-e

D+ee

E-ee D-ee

where e is an exponent value digit.

3. Embedded or trailing blanks (to the right of any character read as a value) are
treated as zeros; leading blanks are ignored; a field of all blanks is treated as
zero.

EXAMPLES:

1,0,23= 1023 .2.656LiE+64 == .20560E+04

12.634 = 12.034

-$1,634.M5 = -1034.005

262,645.M3 = 202045.003

2.,0,02-,0,13= 2.002-013

4. The type of the internal storage is independent of either the ASCII numeric
input or the field descriptor used to read the input. The data is stored accord-
ing to the type of the list element (variable) currently using the field descriptor.
The conversion rules are as follows:

• Type INTEGER truncates a fractional input.

• Type REAL rounds a fractional input.

• Type DOUBLE INTEGER truncates a fractional input.

• Type DOUBLE PRECISIONi rounds a fractional input.

OCTAL NUMERIC CONVERSION

One descriptor form is provided:

Ow for octal numbers 0 through 17777777777777777777778 I
where

w is the length (in characters) of the external data field (must be greater than zero).

This field descriptor accepts ASCII numeric input up to 22 octal digits long. Non-numeric I
or non-octal characters cause a conversion error.

i In SPLj3000, type LONG real.

Nov 1976 1-5

HEXIDECIMAL NUMERIC CONVERSION

One descriptor form is provided:

I Zw for hexidecimal numbers 0 through FFFFFFFFFFFFFFFF 16

where

w is the length (in characters) of the external data field (must be greater than
zero).

I This field descriptor accepts ASCII inputs up to 16 hexidecimal digits long. Non-
hexidecimal characters cause a conversion error.

LOGICAL CONVERSION

One descriptor form is provided:

Lw for logical values (T or F followed by any other characters).

The field descriptor accepts any ASCII characters input that begins with either T or F.

ALPHAMERIC CONVERSIONS

Three descriptor forms are provided:

Aw for alphameric characters to and from the leftmost bytes of a list element.

Rw for alphameric characters to and from the rightmost bytes of a list element.

S for alphameric characters to and from a character string (user-defined character
list element).

Each of the above field descriptors accepts (but provides differing storage of) any ASCII
character's input, including blanks.

1-6 Nov 1976

Dw.d

Double precision 1 numbers

FUNCTION: Define a field for a double precision.' number with an exponent (floating-point).

OUTPUT

On output the D field descriptor causes normalized output of a variable (internal representation
value: integer, double integer, real, or double precision") in ASCII character floating-point
form, right-justified. The least significant digit of the output is rounded.

The external field is w positions of the record:

I~w-I

-,X1' . ,xdD±ee

II--d-I
Decimal point

where

the most significant digits of the value

d

the digits of the exponent value

the width of the external field

in the number of significant digits allowed in w

is present if the value is negative

ee

w

- (minus)

The field width w must follow the general rule

w~d + 6

to provide positions for the sign of the value, the decimal point, d digits, the letter D, the sign
of the exponent, and the exponent's two digits. If w is greater than the number of positions
required for the output value, the output is right-justified in the field with blank spaces to the
left. If w is less than the number of positions required for the value (with the sign, decimal
point, and exponent field), the entire field is filled with #'s.

1In SPL/3000, type LONG real.

1-7

Dw.d (cont.)

EXAMPLES:

Internal
Descriptor Value Output

D10.3 +12.342 M.123D+02

D10.3 -12.341 6-.123D+02

D12.4 +12.340 L.M.1234D+02

D12.4 -12.345 M-.1235D+02

D7.3 +12.343 #######
D5.1 +12.344 #####

If rounding of the least significant digit occurs and "rollover" results (for example, 99.99 be-
comes 100.00), the rollover value is normalized and the exponent is adjusted.

EXAMPLES:

Descriptor

D11.5

D11.5

D10.5

Internal
Value

-999.997

+999.996

-99.9995

Output

-.10000D+04

6.10000D+04

##########

INPUT

On input, the D field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list element)
currently using the field descriptor.

All rules for input to decimal numeric conversions (see "Rules for Input") apply.

1-8

Ew.d

Real Numbers

FUNCTION: Define a field for a real number with an exponent (floating-point).

OUTPUT

On output, the E field descriptor causes normalized output of a variable (internal representation
value: integer, double integer, real, or double precision.'} in ASCII character floating-point
form, right-justified. The least significant digit of the output is rounded.

The external field width is w positions in the record:

~ w---:[

-.X l: . ,xdE±ee/l--d_1

Decimal point

where

the most significant digits of the value

d

the digits of the exponent value

the width of the external field

the number of significant digits allowed in w (for output, d must be
greater than zero

is present if the value is negative

ee

w

-(minus)

The field width w must follow the general rule

w~d +6

to provide positions for the sign of the value, the decimal point, d digits, the letter E, the sign of
the exponent, and the exponent's two digits. If w is greater than the number of positions re-
quired for the output value, the output is right-justified in the field with blank spaces to the left.
If w is less than the number of positions required for the value (with the sign, decimal point, and
exponent field), the entire field is filled with #'s.

1 In SPLj 3000, type LONG real.

1-9

EW.d (cont.)

EXAMPLES:

Internal
Descriptor Value Output

E10.3 +12.342 M.123E+02
E10.3 -12.341 6-.123E+02
E12.4 +12.340 L-M.1234E+02
E12.4 -12.345 M-.1235E+02
E7.3 +12.34 #######
E5.1 +12.34 #####

If rounding of the least significant digit occurs and "rollover" results (for example, 99.99 be-
comes 100.00), the rollover value is normalized and the exponent is adjusted.

EXAMPLES:

Descriptor

Ell.5
E11.5

E10.5

Internal
Value

-999.998
999.995

-99.9997

Output

-.10000E+04
6.10000E+04
##########

INPUT

On input, the E field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list ele-
ment) currently using the field descriptor.

All rules for input to decimal numeric conversions (see "Rules for Input") apply.

1-10

Fw.d

Real Numbers

FUNCTION: Define a field for a real number without an exponent (fixed-point).

OUTPUT

On output, the F field descriptor causes output of a variable (internal representation value:
integer, double integer, real, or double precision 1) in ASCII character fixed-point form,
right-justified. The least significant digit of the output is rounded.

The external field width is w positions in the record:

---w---~

where

the integer digits

d

the fraction digits

the width of the external field
the number of fractional digits allowed in w
the number of integer digits
is present if the value is negative.

w

n
- (minus)

The field width w must follow the general rule

w?d+n+3

to provide positions for the sign, n digits, the decimal point, d- digits, and a rollover digit if
needed (see the following examples). If w is greater than the number of positions required
for the output value, the output is right-justified in the field with blank spaces to the left.
If w is less than the number of positions required for the value (with the sign and decimal
point), the entire field is filled with #s.

1In SPL/3000, type LONG real.

1-11

Fw.d [cont.]

EXAMPLES:

Internal
Descriptor Value Output

F10.3 +12.3402 MM12.340

F10.3 -12.3413 ML:.-12.341

F12.3 +12.3434 t\t\t\t\t\t\12.343

F12.3 -12.3456 t\t\t\t\t\ 12.346

F4.3 +12.34 ####
F4.3 +12345.12 ####

If rounding of the least significant digit occurs and "rollover" results (for example, 99.99 be-
comes 100.00), the stated formula for LV provides enough positions for the value,

EXAMPLES:

Descriptor

FS.2
FS.2
F7.2

Internal
Value

+999.997
-999.996
-999.995

Output

.6.1000.00

-1000.00
#######

INPUT

On input, the F field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list ele-
ment) currently using the field descriptor.

All rules for input to decimal numeric conversions (see "Rules for Input") apply.

1-12

Gw.d

Real Numbers

FUNCTION: Define a field for a real number without an exponent (fixed-point) or, if needed, with
an exponent (floating-point).

OUTPUT
On output, the G field descriptor causes output of a variable (internal representation value:
integer, double integer, real, or double precision 1) in ASCII character fixed-point form, or if
needed, floating-point form, right-justified. The least significant digit of the output is rounded.

The external field is w positions in the record:

w-i w----

or
-i1· .. in' fl' .. fdMb.1'c,<,

Decimal point (4 spaces)

where

the integer digits }

the fraction digits
(Fw.d descriptor)

d

the most significant digits of the value (Ew.d descriptor)

the digits of the exponent value (Ew.d descriptor)
the width of the external field
the number of fractional digits allowed in w
the number of integer digits (Fw.d descriptor)
is present if the value is negative

ee

w

n
- (minus)

The Gw.d field descriptor is interpreted as an Fw.d descriptor for fixed-field form or as an
Ew.d descriptor for floating-point form, according to the internal representation absolute
value (N) after rounding. If the number of integer digits in N is> d, or if N < .1, the E
descriptor is used; otherwise the F descriptor is used (see following page).

1In SPL/3000, type LONG real.

1-13

Gw.d (cont.)

IF N<O.l THEN Ew.d;

IF 0.1 ~N<l THEN F(w-4) .d plus 4X (spaces);

IF 1 ~ N < 101 THEN F(w-4) .(d-1) plus 4X;

IF 101 ~ N < 102 THEN F(w-4) .(d-2) plus 4X;

IF 102 ~ N < 103 THEN F(w-4) . (d-3) plus 4X;

IF 10(d-1) ~N'< 10d THEN F(w-4) .0 plus 4X;

IF 10d ~N THEN Ew.d;

EXAMPLES:

G12.6, N = 1234.5: F(w-4). (d-4) = FS.2, 4X: 61234.50~

G13.7, N = 123456.7: F(w-4). (d-6) = F9.l, 4X: 6123456.7MM

G9.2, N = 123.4: Ew.d = E9.2: M.12E+03

The field width w must follow the general rule for the Ew. d descriptor

w);:d+6

to provide positions for the sign of the value, d digits, the decimal point (preceding x 1), and,
if needed, the letter E, the sign of the exponent, and the exponent's two digits. If w is greater
than the number of positions required for the output value, the output is right-justified in the
field with blank spaces to the left. If w is less than the number of positions required for the
value (with the sign, decimal point, and the exponent field-or 4 spaces), the entire field is
filled with #'s.

EXAMPLES:

Internal
Descriptor Value Output

G10.3 (E10.3) +1234 M.123E+04

G10.3 (E10.3) -1234 6-.123E+04
G12.4 (E12.4) +12345 L.M.1235E+05
G12.4 (FS.0,4X) +9999 L.M9999.~
G12.4 (FS.l,4X) -999 M-999.0~
G7.l(E7.1) +.09 6.9E-01
G5.1 (E5.1) -.09 #####

1-14

Gw.d (cont.)

When the E descriptor is used, if rounding of the least significant digit occurs and "rollover"
results (for example, 99.99 becomes 100.00), the rollover value is normalized and the exponent
is adjusted.

EXAMPLES:

Internal
Descriptor Value Output

G12.2 (E12.2) +9999 1\/\1\/\/\.10E+05

G8.2 (E8.2) +999 D..10E+04
G7.2 (E7.2) -999 #######

INPUT

On input, the G field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list ele-
ment) currently using the field descriptor.

All rules for input to decimal numeric conversions (see "Rules for Input") apply.

1-15

Mw.d

Real Numbers

FUNCTION: Define a field for a real number without an exponent (fixed-point) written in monetary
(business) form.

OUTPUT

On output, the M field descriptor causes output of a variable (internal representation value:
int eger, double integer, real, or double precision 1) in ASCII character fixed-point form,
right-justified, with a dollar sign $ and commas. The least significant digit of the output is
rounded.

The external field is w positions in the record:

-----w

-$i1, ... , .. in' h ...fdV l-d-1

Comma(s)
(as needed)

Decimal point

where

d

the integer digits (without commas)

the fraction digits

the number of output commas needed: one to the left of every third
digit left of the decimal point; see general rule for w below.

the number of fractional digits allowed in w

the number of integer digits

the width of the external field

commas = c

n

w

- (minus) is present if the value is negative

Th« field width w must follow the general rule

w;?d+n+c+4

to provide positions for the sign, $, n digits, c commas, the decimal point, d digits, and a rollover
digit if needed (see the following examples). If w is greater than the number of positions re-
quired for the output value, the output is right-justified in the field with blank spaces to the left.

I
In SPL/3000, type LONG real.

1-16

Mw.d (cont.)

If w is less than the number of positions required for the output value (with the sign $,
comma(s), and the decimal point), the entire field is filled with#'s.

EXAMPLES:

Internal
Descriptor Value Output

M10.3 +12.3402 .6.M$12.340

M10.3 -12.3404 M-$12.340
M13.3 +80175.3965 M$80,175.397
M12.2 -80175.396 11-$80,175.40

M12.2 +28705352.563 ############

If rounding of the least significant digit occurs and "rollover" results (for example, 99.99 be-
comes 100.00), the stated formula for w provides enough positions.

EXAMPLES:

Descriptor

M12.2
M12.2
M11.2

Internal
Value

+99999.996
-99999.998
-99999.995

Output

11$100,000.00
-$100,000.00
###########

INPUT

On input, the M field descriptor causes interpretation of the next w positions in an ASCII input
record. The field width is expected (but not required) to have a $ and comma(s) imbedded in
the data as described above for Mw.d outputs; the $ and comma(s) are ignored. The number is
converted to an internal representation value for the variable (list element) currently using the
field descriptor.

All rules for input to decimal numeric conversions (see "Rules for Input") apply.

1-17

Nw.d

Real Numbers

FUNCTION: Define a field for a real number without exponent (fixed-point) written in numeration
form (same as Mw.d but without $ on output).

OUTPUT

On output, the N field descriptor causes output of a variable (internal representation value:
integer, double integer, real, or double precision 1) in ASCII character fixed-point form,
right-justified, with commas. The least significant digit of the output is rounded.

The external field is w positions in the record:

1-4-----w -----1

co~E'··lin~d:'
(as needed)

Decimal point

where

il in

fl· .. ta
the integer digits (without commas)

the fraction digits

the number of output commas needed: one to the left of every third
digit left of the decimal point; see general rule for w below.

the number of fractional digits allowed in w

commas = c

d

n == the number of integer digits

w the width of the external field

- (minus) is present if the value is negative

The field width w must follow the general rule

w>d+n+c+3

to provide positions for the sign, n digits, c commas, the decimal point, d digits, and a rollover
digit if needed (see the following examples). If w is greater than the number of positions re-
quired for the output value, the output is right-justified in the field with blank spaces to the
left. If w is less than the number of positions required for the output value (with the sign,
comma(s), and the decimal point), the entire field is filled with #'s.

1In SPLj3000, type LONG real.

1-18

Nw.d (cont.)

EXAMPLES:

Internal
Descriptor Value Output

N9.3 +12.3402 ~12.340
N9.3 -12.3404 M-12.340
N12.3 +80175.3965 M80,175.397
N11.2 -80175.396 6-80,175.40
N11.2 +28705352.563 ###########

If rounding of the least significant digit occurs and "rollover" results (for example, 99.99 be-
comes 100.00), the stated formula for w provides enough positions.

EXAMPLES:

Descriptor
Internal
Value Output

6100,000.00
-100,000.00
##########

N11.2
N11.2

N10.2

+99999.995
-99999.997
-99999.999

INPUT

On input, the N field descriptor causes interpretation of the next w positions in an ASCII input
record as a real number without exponent (fixed-point). The field width is expected (but not
required) to have comma(s) imbedded in the data as described above for NW.d outputs; the
comma(s) are ignored. The number is converted to an internal representation value for the
variable (list element) currently using the field descriptor.

All rules for input to decimal numeric conversions (see "Rules for Input") apply.

1-19

Iw
Integer Numbers

FUNCTION: Define a field for an integer number.

OUTPUT

On output, the I field descriptor causes output of a variable (internal representation value:
integer, double integer, real, or double precision 1) in ASCII character integer form, right-
justified. If the internal representation is real or double precision, the least significant
digit of the output is rounded.

The external field is w positions of the record:

where

the integer digits

n = the number of significant digits

w the width of the external field

- (minus) is present if the value is negative

The field width w must follow the general rule

w~n + 2

to provide positions for the sign, n digits, and a rollover digit if needed (see the following
examples). If w is greater than the number of positions required for the output value, the
output is right-justified in the field with blank spaces to the left. If w is less than the number
of positions required for the output (all digits of the integer and, when needed, the sign), the
entire field is filled with #'s.

1In SPL/3000, type LONG real.

1-20

Iw (cont.)

EXAMPLES:

Internal
Descriptor Value Output

15 -123 6-123
15 +123 66123
15 +12345 12345
15 -12345 #####
14 +12.4 6612
14 -12.7 6-13
16 -.3765E+03 66-377

If rounding of the least significant digit occurs and "rollover" results (for example, 99.99 be-
comes 100.00),the stated formula for w provides enough positions;

EXAMPLES:

15
15
I4

Internal
Value

-999.8
+999.6
-999.5

Output

-1000
61000
####

Descriptor

INPUT

On input, the I field descriptor functions as an Fw.d descriptor with d = 0; it causes
interpretation of the next w positions in the ASCII input record. The number is converted
to an internal representation value for the variable (list element) currently using the field
descriptor.

All rules for input to decimal numeric conversions (see "Rules for Input") apply.

1-21

Ow

Octal Integer Number

FUNCTION: Define a field for an octal integer number.

OUTPUT

On output, the 0 field descriptor causes output of a variable (internal representation value:
integer, or real, or double integer, or double precision 1) in ASCII-character octal integer form,
righ t-justified.

The external field is w positions of the record:

I-w--l

where

I

the octal integer digits

the number of significant digits
(maximums: 6 for an integer variable,

11 for a real or double integer variable,
22 for a double precision variable)

w the width of the external field

n

I The field width w can be any desired value but should be ~ 6 or ~ 11 or ~ 22, for an
integer or real (or double integer) or double precision variable, respectively, for complete
accuracy. If w is greater than the number of positions required for the output value, the
output is right-justified in the field with blank spaces to the left. If w is less than the
number of positions required for the entire octal integer, only the w least significant
digits are output.

EXAMPLES:

Descriptor
Internal
Value Output

66102077
7321
6666656774532673
45327422113

08
04
016
011

102077
30554677321
56774532673

3435645327422113

I In SPL/3000, type LONG real.

1-22 Nov 1976

Ow (cont.)

INPUT

On input, the 0 field descriptor causes interpretation of the next w positions in the ASCII
input record as an octal integer number. The number is converted to an internal representation
value for the variable (list element) currently using the field descriptor.

The input field can consist of only octal digits: no more than six digits (no larger than 1777778)

for an integer variable, or no more than 11 digits (no larger than 377777777778) for a real or
double integer variable, or no more than 22 digits (no larger than 1777777777777777777777 8) I
for a double precision 1 variable, are interpreted. Any non-octal or non-numeric character (in-
cluding a blank) anywhere in the field will produce a conversion error. If w is less than the
maximum number allowed by the variable using the descriptor, w digits are right-justified in
that variable's internal representation (one or two or four words of memory). •

EXAMPLES:

Descriptor

06
Input

134577
Result

134577
or

00000134577

09 545563274

or
0000000000000000134577
563274

I

013 4367436521051

or
00545563274

or
0000000000000545563274
521051

or
67436521051

I

or
0000000004367436521051 •

I In SPL/3000, type LONG real.

Nov 1976 1-23

Zw

Hexidecimal Integer Number

FUNCTION: Define a field for a hexidecimal integer number.

OUTPUT

On output, the Z field descriptor causes output of a variable (internal representation value:
integer, or real, or double integer, or double precision 1) in ASCII-character hexidecimal
integer form, right-justified.

The external field is w positions of the record:

I-w--I

where

I

the hexidecimal integer digits

the number of significant digits
(maximums: 4 for an integer variable,

8 for a real or double integer variable,
16 for a double precision variable)

the width of the external fieldw

I The field width w can be any desired value but should be > 4 or > 8 or > 16, for an integer
or a real or double integer or a double precision variable, respectively, for complete accuracy.
If w is greater than the number of positions required for the output value, the output is right-
justified in the field with blank spaces to the left. If w is less than the number of positions
required for the entire hexidecimal integer, only the w least significant digits are output.

EXAMPLES:

Internal
Descriptor Value Output

Z6 5AFC M5AFC
Z4 FCD473BE 73BE
Z12 32AB698A MM32AB698A
Z8 9BE84893E6FF 4893E6FF

1 In SPLj3000, type LONG real.

1-24 Nov 1976

Zw (cont.)

INPUT

On input, the Z field descriptor causes interpretation of the next w positions in the ASCII
input record as a hexidecimal integer number. The number is converted to an internal repre-
sentation value for the variable (list element) currently using the field descriptor.

The input field can consist only of hexidecimal digits: no more than four digits (no larger than
FFFF 16) for an integer variable, or no more than eight digits (no larger than FFFFFFFF 16) for
a real variable, or no more than 16 digits (no larger than FFFFFFFFFFFFFFFF 16) for a I
double precision 1 variable, are interpreted. Any non-hexidecimal character (including a blank)
anywhere in the field will produce a conversion error. If w is less than the maximum number
allowed by the variable using the descriptor, w digits are right-justified in that variable's internal
representation (one or two or four words of memory). I

EXAMPLES:

Descriptor Input Result

Z4 lAD6 lAD6

Z6 AB12F6

or
00001AD6

or
0000000000001AD6 •

12F6
or

00AB12F6

Z10 5489BB3A6C

or
0000000000AB12F6

3A6C

I

or
89BB3A6C

or
0000005489BB3A6C I

I In SPLj3000, type LONG real.

Nov 1976 1-25

Lw
Logical (Boolean) Values

FUNCTION: Define a field for a logical value.

OUTPUT

On output, the L field descriptor causes output of a variable (internal representation value:
integer or logical (boolean» in ASCII-character logical value form (T or F).

The external field is w positions of the record:

!-w-!

where

Xl ... Xn w-1 blanks

c either of two logical characters: T (true) or F (false)

n the number of blank spaces to the left of c

w the width of the external field

The field width w can be any value ~ 1.

The logical character c is T if the least significant bit of the internal representation is 1; c is F
if that bit is O.

EXAMPLES:

Descriptor

L1
L13
L5

Internal
Value Output

1020338
32767(77777 8)

+124(1748)

1-26

Lw (cont.)

INPUT

On input, the L field descriptor causes a scan of the next w positions in an ASCII input record
to find a logical character (T or F). All positions to the left of the logical character must be
blank; any other character(s) can follow the logical character. The character T is converted to
-1 (1777778), F is converted to 0 (0000008),

EXAMPLES:

Descriptor

L8
L1

L6

Input

6l'1MTRUE
F

6FALSE

Result

1777778
0000008
0000008

1-27

Aw
Leftmost ASCII Characters

FUNCTION: Define a field for ASCII alphameric characters of a variable.

OUTPUT

On output, the A field descriptor causes output of one or more bytes of a variable in ASCII-
character alphameric form. The maximum number n of bytes (thus, the maximum number of
characters available to a single Aw descriptor) depends on the type of the variable: for logical

I or integer, n = 2; for double integer or real, n = 4; for double precision I, n = 8; for character,
n = the length attribute? of the character variable (any integer in the range [1,255]).

The external field is w positions of the record:

---w---

where

the alphameric characters

n = the number of characters

w the width of the external field

r = any remaining positions not used by n (r = w-n)

sl ... sr = blank spaces (when needed)

The field width w can be any value> 1. If w is> n, the output is right-justified in the field
with w-n blanks to the left. If w is< n, the leftmost w bytes of the variable are output. The
n-w remaining bytes are ignored.

EXAMPLES:

Internal Variable
Descriptor Characters Type (n =) Output

A3 SA Logical or Integer (2) L\SA

A3 SAMB Double Integer or Real (4) SAM

A7 JANETW Double Precision I (8) 6JANETW

A10 BG Logical or Integer (2) 666666MBG

A4 DIXMCG Double Precision! (8) DIXM

A12 LEFTMOST Character? (8) MMLEFTMOST

A6 LEFTMOST Character? (8) LEFTMO

I In SPLj3000, type LONG real
2 As defined in a Type statement such as CHARACTER*8 LOCALE (see FORTRAN/3000
Reference Manual).

1-28 Nov 1976

Aw (cont.)

INPUT

On input, the A field descriptor causes transmittal of w positions in an ASCII input record to n
bytes of the variable (list element) currently using the field descriptor. If w~ n, the first w-n
characters of input are skipped, and n characters are transmitted. If w < n, w characters are
transmitted to the leftmost bytes of the variable, and all remaining n-w bytes are set to blank.

EXAMPLES:

External Variable Internal
Descriptor Characters Type (n =) Result

A3 CAB Integer or Logical (2) AB
A2 CA Integer or Logical (2) CA
A10 COMPLEMENT Integer or Logical (2) NT
A4 REAL Double Precision 1 (8) REALM

A4 REAL Double Integer or Real (4) REAL

A7 PROGRAM Character? (8) PROGRAM6

1 In SPL/3000, type LONG real.
2 As defined in a Type statement such as CHARACTER*8 LOCAL (see FORTRAN/3000
Reference Manual).

1-29

Rw
Rightmost ASCII Characters

FUNCTION: Define a field for ASCII alphameric characters of a variable.

OUTPUT

On output, the R field descriptor causes output of one or more bytes of a variable in ASCII
character alphameric form. The maximum number n of bytes (thus, the maximum number of
characters) available to a single Rw descriptor depends on the type of the variable: for logical or
integer, n = 2; for double integer or real, n = 4; for double precision", n = 8; for character,
n = the length attribute? of the character variable (any integer in the range [1,255]).

I

The external field is w positions of the record:

---w---

where

the alphameric characters

n = the number of characters

w the width of the external field

r = any remaining positions not used by n (r = w-n)

sl ... sr = blank spaces (when needed)

The field width w can be any value> 1. If w is> n, the output is right-justified in the field with
ui--n blanks to the left. If w is < n, the rightmost bytes of the variable are output. The n-w
remaining bytes are ignored.

EXAMPLES:

Internal Variable
Descriptor Characters Type (n =) Output

R3 SA Logical or Integer (2) 6SA

R3 SAMB Double Integer or Real (4) AMB

R7 JANETG Double Precision! (8) 6JANETG

RIO BG Logical or Integer (2) ~MMBG

R4 DIXMCG Double Precision (8) XMCG

R12 RIGHTMOST Character? (9) 6MRIGHTMOST

R6 RIGHTMOST Character2 (9) HTMOST

I In SPL/3000, type LONG real.
2As defined in a Type statement such as CHARACTER*8 LOCAL (see FORTRAN/3000
Reference Manual).

1-30 Nov 1976

Rw (cont.)

INPUT

On input, the R field descriptor causes transmittal of w positions in an ASCII input record to n
bytes of the variable currently using the field descriptor. If w ~ n, the first w-n characters of
input are skipped, and n characters are transmitted. If w < n, w characters are transmitted to
the rightmost bytes of the variable, and all bits of the remaining n-w bytes are set to 0 (ASCII NUll).

EXAMPLE:

External Variable Internal
Descriptor Characters Type (n =) Result

R3 CAB Integer or Logical (2) AB
R2 CA Integer or Logical (2) CA
RIO COMPLEMENT Integer or Logical (2) NT
R4 REAL Double Precision 1 (8) aa REAU
R4 REAL Double Integer or Real (4) REAL

R7 PROGRAM Character:' (8) aPROGRAM2

1 In SPLj3000, type LONG real.
2 a = ASCII Null.
3 As defined in a Type statement such as CHARACTER*8 LOCAL (see FORTRAN/3000
Reference Manual).

1-31

S

Strings of ASCII Characters

I FUNCTION: Define a field for a string of ASCII characters.

OUTPUT

On output, the S field descriptor causes output of a variable! (internal value: character? only)
I in ASCII-character form.

The external field is I positions of the record:

where

I cl ... cn the ASCII characters

n = the number of characters

I = the length attribute of the character variable (list element); thus, the width
of the external field

EXAMPLES:

NAME Internal
Characters Output

JIM

GEORGE

MY NAME IS JIM JONES

MY NAME IS GEORGE JONES

where the list element and length attribute are defined by the Type statement.'
CHARACTER*3 NAME or CHARACTER*6 NAME and edit specifications are

("MY NAME IS ",S," JONES")

! If the variable (list element) is not type character.? the report STRING MISMATCH
occurs (see "FORMATTER ERROR REPORTS").

2 In SPLj3000, type byte.
3 See FORTRAN/3000, Reference Manual.

1-32 Nov 1976

S (cont.)

INPUT

On input, the S field descriptor causes transmittal of l positions in an ASCII input record to
the character variable currently using the field descriptor.

EXAMPLES:

External
Characters

DAY Internal
Result

MONDAY

SATURDAY

MONDAY

SATURD

where the list element and length attribute are defined by the Type statement
CHARACTER*6 DAY and the format and edit specifications are

("TODAY I8",8)

1-33

Scale Factor

The scale factor is a format specification to modify the normalized output of the Dw.d, Ew.d,
and the Gw.d-selected Ew.d1 field descriptors and the fixed-point output of the Fw.d, Mw.d,
and Nw.d field descriptors. It also modifies the fixed-point and integer (no exponent field)
inputs to the Dw.d, Ew.d, Fw.d, Gw.d, Mw.d, and Nw.d field descriptors. The scale factor has
no effect on output of the Gw.d-selected Fw.d1 field descriptor or floating-point (with exponent
field) inputs.

A scale factor is written in one of two forms:

nPf
or

nPrf

where

n == an integer constant or - (minus) followed by an integer constant: the scale value

P the scale factor identifier

f the field descriptor

r a repeat specification-for a field descriptor (described later in this section)

When the Formatter begins to interpret a FORMAT statement, the scale factor is set to zero.
Each time a scale factor specification is encountered in that FORMAT statement, a new value is
set. This scale value remains in effect for all subsequent affected field descriptors or until use of
that FORMAT statement ends.

EXAMPLES:

Format Specifications Comments

(E10.3,F12.4,I9)

(E10.3,2PF12.4,I9)

No scale factor change, previous value remains in effect.

Scale factor for E10.3 unchanged from previous value,
changes to 2 for F12.3, has no effect on 19.

If the FORMAT statement includes one or more nested groups (see "Nesting," this section), the
last scale factor value encountered remains in effect.

1See descriptions for Gw.d.

1-34

EXAMPLE:

Format Specifications

(G9.2,2PF9.4,E7.1,
2(DI0.2,-IPG8.1))

Comments

Scale values resulting are

Descriptor

G9.2
F9.4

E7.1
DI0.2
G8.1
DI0.2
G8.1

OUTPUT

Scale Value

(Unchanged from previous value)
2

2

2

-1

-1
-1

On output, the scale factor affects Dw.d, Ew.d, Fw.d, Mw.d, Nw.d, and Gw.d-selected Ew.d
field descriptors only.

Dw.d and Ew.d

The internal fraction is multiplied by IOn, and the internal exponent value is reduced by n.

• If n ~ 0, the output fraction field has -n leading zeros, followed by d + n significant
digits. The least significant digit is rounded.

• If n > 0, the output has n significant digits in the integer field, and (d - n) + 1 digits in
the fraction field. The least significant digit field is rounded.

• The field width specification w normally required may have to be increased by 1.

EXAMPLES:

Scale Factor! and
Field Descriptor

E12.4
3PE12.4
-3PEI2.4

1 In "Examples," no scale factor stated implies zero.

1-35

Internal
Value Output

6M.1235E+02
MI23.46E-01
6M.0001E+05

+12.345678
+12.345678
+12.345678

Fw.d, Mw.d, and Nw.d

The internal value is multiplied by IOn, then output in the normal manner.

EXAMPLES:

Scale Factor! and
Field Descriptor

Fl1.3

-2PFl1.3
2PFl1.3

IPMll.3

Internal
Value

1234.500
1234.500678
1234.500678
1234.500678

Output

6M1234.500
/\1\1\1\1\12.345

.6123450.068

$12,345.007

Gw.d-selected Ew.d

The effect is exactly as described for Ew.d.

Gw.d-selected Fw.d

The scale factor has no effect.

INPUT

On input, the scale factor effect is the same for integer or fixed-field (no exponent field) inputs
to the Dw.d, Ew.d, Fw.d, Gw.d, Mw.d, and Nw.d field descriptors. The external value is multi-
plied by 1O-n , then converted in the usual manner.

If the input includes an exponent field, the scale factor has no effect.

EXAMPLES:

Scale Factor! and
Field Descriptor

EI0.4

2PDI0.4

-2PGl1.5

-2PEI3.5

External
Value

Internal
Representation

.1239678E+03

.1239678E+Ol

.12396785E+05

.12396785E+06

123.9678
123.9678

123.96785
1239.6785E+02

1In "Examples," no scale factor stated implies zero.

1-36

Repeat Specification-For Field Descriptors

The repeat specification is a positive integer written to the left of the field descriptor it controls.
If a scale factor is also needed, it is written to the left of the repeat specification.

The repeat specification allows one field descriptor to be used for several list elements. It can
also be used for nested (groups of) format specifications.

EXAMPLES:

(4E12.4) = (E12.4,E12.4,E12.4,E12.4)

(-2P3D8.2,216) = (-2PD8.2,-2PD8.2,-2PD8.2,I6,I6)

(E8.2/3F7.1,3(I6,4HLOAD,D12.3))
= (E8.2/F7.1,F7.1,F7.1,I6,4HLOAD,D12.3,I6,4HLOAD,D12.3,I6,4HLOAD,D12.3)

I

(2(M8.2)) = (M8.2,M8.2)

EDIT SPECIFICATIONS

Edit specifications are written as an edit descriptor or a repeat specification followed by an edit
descriptor.

NOTE: The repeat specification cannot be used directly on the nH or nX edit
descriptors. See "Repeat Specification-For Edit Descriptors. "

Edit Descriptors

There are six edit descriptors:

Descriptor

" "
Function

Fix the next n characters of an edit specification.

Fix the next n characters of an edit specification.

Initialize the next n characters of an edit specification.

Skip n positions of the external record.

Select the position in an external record where data input/output is
to begin or resume.

Signal the end of a current record and the beginning of a new record.

Use the octal number n as a byte character.

nH

nX
Tn

/

%nC

Detailed descriptions of each edit descriptor follow.

Nov 1976 1-37

" "
ASCII String (Fixed)

FUNCTION: Fix n characters in the edit specification where n is the number of ASCII characters
enclosed in the quotation marks. Anyone or more of those characters can be a
quotation mark if signaled by an adjacent quotation mark. Any other ASCII charac-
ters, including' (apostrophe), can be used without restriction.

OUTPUT

On output, the" ... " edit descriptor causes n characters to be transmitted to the external
record; any adjacent pair of quotation marks is transmitted as one quotation mark.

EXAMPLES:

Edit Descriptor Output

OUTPUT6."LOAD".

USER'S6.PROGRAM

"OUTPUT6." "LOAD" "."

"USER 'S6.PROGRAM"

INPUT

On input, the" ... " edit descriptor causes n positions of the input record to be skipped. Each
pair of adjacent quotation marks counts as one position.

EXAMPLES:

Edit Descriptor Input

"HEADING6.HERE" THIS6.IS6.THE6.START

Comment

12 positions of the input are
skipped.

13 positions of the input are
skipped.

"HEADING6." "A" "6.." THIS6.IS6.THEl'.IENDl'.IOF

1-38

ASCII String (Fixed)

FUNCTION: Fix n characters in the edit specification, where n is the number of ASCII characters
enclosed in the apostrophes. Anyone or more of those characters can be an apostro-
phe if signaled by an adjacent apostrophe. Any other ASCII characters, including
" (quotation mark), can be used without restriction.

OUTPUT

On output, the' ... ' edit descriptor causes n characters to be transmitted to the external
record; any adjacent pair of apostrophes is transmitted as an apostrophe.

EXAMPLES:

Edit Descriptor

'PRINT6' 'DATA' '.'

Output

PRINT6 'DATA'.

SAM'S6 "SCORE"'SAM' 'S6"SCORE" ,

INPUT

On input, the' ... ' edit descriptor causes n positions of the input record to be skipped. Each
pair of adjacent apostrophes counts as one position.

EXAMPLES:

Edit Descriptor

'COLUMN6HEAD'

Input
BEGIN.6.DATA.6.INPUT

Comment

11 positions of the input are
skipped

14 positions of the input are
skipped.

'ROW6LABEL6' 'B' '.' END6DATA.6.INPUT

1-39

nH
ASCII String (Variable)

FUNCTION: Initialize the next n characters of the edit specification. Any ASCII character is legal.
If written, n must be a positive integer greater than zero (if omitted, its default value
is 1).

OUTPUT

On output, the nH edit descriptor causes the current next n characters in the edit specification
to be transmitted to the external record.

If the edit descriptor has not been referenced by a READ statement (see "Input"), the ASCII
characters originally written into the edit descriptor are transmitted.

If the edit descriptor has been referenced by a READ statement, the ASCII characters read last
are transmitted.

EXAMPLES:

Edit Descriptor Input Last Read Output

4HMULT

7HFORTRAN

12HPROGRAM6DATA

10HCALCULATED

(None)

ALGOLM
BINARY6LOADER

PASSED~

MULT

ALGOLM

BINARY6LOADE

PASSED6M6

INPUT

On input, the nH edit descriptor causes the next n characters of the external record to be
transmitted to replace the next n characters in the edit specification.

1-40

nX
ASCII Blanks

FUNCTION: Skip n positions of the external record. If written, n must be a positive integer greater
than zero; if omitted, the default value is 1.

OUTPUT

On output, the nX edit descriptor causes n positions of the external record to be skipped,
typically to separate fields of data. Those positions skipped are filled with ASCII blanks. I

EXAMPLES:

Format/Edit
Specifications

Contents of Numeric
List Element(s) Output

(E7.1,4Xj"END") 34.1 A3E+02MMEND
~

Fields: 7 4

(F8.2,2X,I6) 5.87,436 MM5.87L";MM436
~

Fields: 8 2 6

NOTE: This descriptor, when used with the Tn edit descriptor (described
later in this section), may cause previous characters to be overlaid.

EXAMPLE:

Format/Edit Specifications Output

XBCYEFG("ABCDEFG", Tl, "X", 2X, "Y")

INPUT

On input, the nX edit descriptor causes the next n positions of the input record to be skipped.

EXAMPLES:

Format/Edit
Specifications External Record Input

L";.25E+02END$1,563.79

54321-98.7563814581

Data Transmitted
to List Elements

.25E+02, 1563.79
-.9876538E+02, 14581

(D8.2,3X,M9.2)
(5X,E9.2,I5)

Nov 1976 1-41

Tn
Position (Tabulate) Data

FUNCTION: Select the position (tabulation) in an external record where data input/output is to
begin or resume.

The Tn edit descriptor positions the record pointer to the nth position in the record.

OUTPUT EXAMPLES

1. Format/Edit Specifications
(T10,"DESCRIPTION", T25, "QUANTITY", T1, "PARTL.NO.")

Result
PARTL.NO.L.DESCRIPTIONMMQUANTITY

\ .. #1 \ .. #10 \ .. #25position position position

2. Format/Edit Specifications
(T25,I3,T1,3A2,T10,3A4)

Contents of List Elements
125,HR124A,LOCK-WASHERS

Result
HR124~LOCK-WASHERS~125

\ \ \
position #1 position #10 position #25

INPUT EXAMPLE

Format/Edit Specifications
(T13,E8 .2,T1 ,I4,T24,M12.3)

Input
1325COUNTED~525.78LBSM$4,365.786COST

\ .. #1 \ .. #13 \ .. #24position position position

Results in List Elements
.52578E+03, 1325, .436578E+04

As can be seen in the above examples, the position numbers n need not be given in ascend-
ing order.

NOTE: This descriptor may cause previous characters to be overlaid (see nX
descriptions, earlier in this section).

1-42

I
Record Terminator

FUNCTION: Terminate the current external record and begin a new record (on a line printer or a
keyboard terminal, a new line; on a card device, a new card; etc.).

OUTPUT and INPUT

The / edit descriptor has the same result for both output and input: it terminates the current
record and begins a new record.

If a series of two or more / edit descriptors are written into a FORMAT statement, the effect is
to skip n-1 records, where n is the number of /,s in the series. A series of /,s can be written
by using the repeat specification.

NOTE: If one or more / edit descriptors are the first item(s) in a series of format
specifications, n (not n=I) records are skipped for that series of /'s.

EXAMPLES:

Format Specifications Output

M.32456E+04695
END

Record #
1

2
(E12.5,I3/"END")

(E12.5,I3/ / /"END") M.32456E+04696

END

1
2
3
4

(I5,3HEND,4/"NEW DATA") 43592END 1

2
3
4
5NEW DATA

END

1

2

3

(2/"END")

The / edit descriptor can also be used without a comma to separate it from other format
and/ or edit specifications; it has the same separating effect as a comma.

1-43

%nC
Single Character

FUNCTION: To use an octal number n in the range 0 - 377 as a byte character. The primary
purpose is to represent a carriage control character, especially where a particular
number does not represent a printing ASCII character.

OUTPUT

On output, the %nC edit descriptor causes the character in the edit specification to be
transmitted to the external record. If the character is in the first position of a record to
a device using carriage control, the character will be used as a carriage control character.

If the edit descriptor has not been referenced by a READ statement (See "INPUT"), the
original character is transmitted.

If the edit descriptor has been referenced by a READ statement, the character which was
last read is transmitted.

EXAMPLES:

Edit Descriptor Action Taken If Carriage Control Character

%306C

%301C

%53C

Space 1/4 page

Skip to bottom of the form

Suppress line advance (equivalent to "+")

INPUT

On input, the %nC edit descriptor causes the next character of the external record to be
transmitted to replace the character in the edit specification.

1-44

Repeat Specification-For Edit Descriptors

The repeat specification is a positive integer written to the left of the edit descriptor it controls.
It is written as r" ... " or r' ... ' or r(nH) or r(nX) or r], where r is the repetition value.

NOTE: The forms r(nH) and r(nX) may include other field and/or edit
descriptors within the parentheses.

EXAMPLES:

(E9.2/3F7.1,2(4HDATA)) = (E9.2/F7.1,F7.1,F7.1,4HDATA,4HDATA)

(2(5HABORT2!)) = (5HABORT,//,5HABORTI!)

(G10.3,3("READ"E12.4)) = (G10.3,"READ"E12.4,"READ"E12.4,"READ"E12.4)

SPECIFICATION INTERRELATIONSHIPS

Two or more specifications (E9.3,I6) in a FORMAT statement are concatenated: Data 12.3
and -30303 produces

I A123E+021-30303 I
The nX edit specification (E9.3,4X,I6) can insert blank spaces between fields: The same data
produces

I 6.123E+021~1-303031
Or the / edit specification (E9.3/I6) places each field on a different line: The same data
produces

6.123E+02
-30303

Nesting

The group of format and edit specifications in a FORMAT statement can include one or more
other groups enclosed in parentheses (in this text, called "group(s) at nested level x"). Each
group at nested level 1 can include one or more other group(s) at nested level 2; those at
level 2 can include group(s) at nested level 3; those at level 3 can include group(s) at level 4:

(E9.3,I6,(2X,I4)) One group at nested level 1.

(T12,"PERFORMANCES"3/(E10.3,2(A2,L4))) One group at nested levell,
one at nested level 2.

(T5,5HCOSTS,2(M10.3,(I6,E10.3,(A2,F8.2)))) One group at nested levell,
one at level 2, one at level 3.

A FORTRAN READ or WRITE statement references each element of a series of list elements;
the Formatter scans the corresponding FORMAT statement to find a field descriptor for each
element. As long as a list element and field descriptor pair occurs, normal execution continues.
Formatter execution continues until all list elements have been transmitted.

1-45

Unlimited Groups

If a program does not provide a one-to-one match between list elements and field descriptors,
Formatter execution continues only until all list elements have been transmitted. If there are
fewer written field descriptors than list elements, format specification groups at nested level 1
and deeper are used as "unlimited groups." After the effective rightmost field descriptor in a
FORMAT statement has been referenced (see "Repeat Specifications-For Field Descriptors"),
the Formatter performs three steps:

1. The current record is terminated: on output, the current field is completed, then the
record is transmitted; on input, the rest of the record is ignored.

2. A new record is started.

3. Format control (field descriptor interpretation) is returned to the repeat specification
for the rightmost specification group at nested level 1. Or, if there is no group at levell,
control returns to the first field descriptor (and its repeat specification) in the FORMAT
statement.

NOTE: In any case, the current scale factor is not changed until another scale factor
is encountered (see "Scale Factor").

EXAMPLES:

(I5,2(3X,F8.2,8(I2)))

(I5,2(3X,F8.2,8(12I2)),4X,(I6»

(I5,3X,4F8.2,3X)

("HEADER" j3(EIO.2»

Control returns to 2(3X.F8.2,8(I2»

Control returns to (I6)

Control returns to (I5,3X,4F8.2,3X)

Control returns to 3(E10.2) to produce:

HEADER

EIO.2 ~ E10.2 E10.2
-- EIO.2 -- EIO.2 ----E10.2

EIO.2 EIO.2 E10.2

FREE-FIELD INPUT/OUTPUT

Free-field input/output is formatted conversion according to format and/or edit control charac-
ters imbedded in the data. That is, the Formatter converts data from or to external ASCII
character form without using FORMAT statements. For free-field inputs, format and/or edit
control characters are imbedded in the external data fields. For free-field outputs, predefined
field and edit descriptions are used.

For free-field input/output, FORTRAN READ or WRITE statements are written with an
asterisk instead of a FORMAT statement identifier:

READ (2, *) list elements
/ "-unit number Free-field signal
<; /

WRITE (4, *) list elements

1-46

For free-field input/output to or from disc devices (see "Disc Input/Output," earlier in
this section), READ or WRITE statements in a FORTRAN program are written:

For sequential access: As described on the preceding page for free-field input/output.

For direct access:

READ (9@LM, *) list elements

unit number ~n[r;;r uaria~ Free-field signal (asierish)
------...<, /
WRITE(21@KL, *) list elements

Free-Field Control Characters

Special ASCII characters embedded in the external data fields control free-field input:

Character(s) Function

(Blank space) or , (comma)
or any ASCII character
not part of the data item.

Data item delimiter (terminator)

/ (slash) Record terminator (when not part of a character
string data item)

Sign of data item

Define the beginning of the fraction subfield of
the data item

Define the beginning of the exponent subfield of
the data item

Define the data item as octal (not decimal)

+ (plus) or - (minus)

. (period)

E or + or - or D

% (percent)

" An "enclosed" character string, in quotation marks;
to be input only to a FORTRAN/3000 type charac-
ter variable (or SPL/3000 type byte array)

An "enclosed" character string, in apostrophes;
to be input only to a FORTRAN/3000 type charac-
ter variable (or SPL/3000 type byte array)

A "non-enclosed" character string; to be input
only to a FORTRAN/3000 type character variable
(or SPL/3000 type byte array)

<<. . .» A "comment" character string, enclosed by <<
and»; the characters are a comment only for the
external record; the string and symbols are ignored
on input.

Free-Field Input

Six data types can be input to free-field conversion: octal, integer, double integer,
floating-point (real), double-precision floating point.", and character string. Numeric data I1 In SPL/3000, type LONG real.

Nov 1976 1-47

types can be mixed freely with numeric list elements. For example, an integer data item can
be input to a floating-point list element; the Formatter converts the integer to floating-point
form and stores the double-word result.

All rules for input to numeric and alphameric conversions (~ee "Field Descriptors") apply.

A character string item, however, must be input only to a character string list element; if not,
the report STRING MISMATCH occurs (see "FORMATTER ERROR REPORTS") and
the user's program is aborted.

DATA ITEM DELIMITERS

A data item is any numeric or character string field occurring between data item delimiters. A
data item delimiter is a comma, a blank space, or any ASCII character that is not a part of the
data item. The initial data item need not be preceded by a delimiter; the function of a delimiter
is to signal the end of one data item and the beginning of another.

Two commas with no data item in between indicate that no data item is supplied for the corre-
sponding list element, and the previous contents of that list element are to remain unchanged.
Any other delimiter appearing two or more consecutive times is equivalent to one delimiter.

NOTE: Do not include a "no-data" field in a series of free-field data inputs.
For example, a remark field such as REMARK: 1=1234 IS CORRECT
will not prevent the digits 1234 from being interpreted as a free-field
data item.

DECIMAL DATA

Decimal data items are written in any of the forms described under "Field Descriptors," except
the monetary or the numeration forms. Imbedded commas or the dollar sign are data item
delimiters.

NOTES: 1. Leading, imbedded, or trailing blanks or commas, $, etc., are data
item delimiters.

2. All integer inputs have an implicit decimal point to the right of the last
(least significan t) digit.

3. The exponent field input can be any of several forms:

+e +ee Ee Eee

E+ee

E-ee

De

D+e

D-e

Dee

D+ee

D-ee

-e -ee E+e

E-e
where e is an exponent value digit.

OCTAL DATA

Octal data items are written

where

I
the octal integer digits
the number of octal digits (maximum: 22)

% is the octal data identifier

I Non-octal digits are delimiters. The largest number allowed is 1777777777777777777777 8'

If n is greater than 21, the first (most significant) digit must be 0 or 1.

1-48 Nov 1976

CHARACTER STRING DATA

An "enclosed" character string data item is any series of ASCII characters, including blank
spaces, enclosed either in quotation marks or in apostrophes. Anyone or more of the charac-
ters enclosed in quotation marks can be a quotation mark if signalled by an adjacent quotation
mark; anyone or more of the characters enclosed in apostrophes can be an apostrophe if
signalled by an adjacent apostrophe:

"SETS" "UNIT" " VALUE" transmits SETS "UNIT" VALUE

transmits CLEARS 'OPT' VALUE'CLEARS' 'OPT" VALUE'

A "non-enclosed" character string data item is any series of ASCII characters that does not
begin with:

a comma, or a blank, or
a quotation mark, or an apostrophe, or
two consecutive left symbols <<, or

does not contain a slash [, Otherwise, any ASCII characters are permitted. Such a data item
ends with:

an end-of-record condition, or
when n characters have been transmitted (n is the length attribute of the list

element), or
a slash / (record terminator).

The corresponding list element must be of type CHARACTER in FORTRAN/3000 (or type
BYTE ARRAY in SPL/3000) of a specified string length. If the number of characters in the
data item is greater than the length attribute n of the list element, n characters are transmitted
and the remaining characters are ignored. If there are fewer characters than n, all characters of
the data item are transmitted, left-justified in the list element, followed by trailing blanks.

If an end-of-record condition occurs before the terminating quotation mark or apostrophe of
an "enclosed" character string data item, the Formatter assumes the data item is continued in
the next record and resumes transmission with the first character of the next record.

RECORD TERMINATOR

The character / (slash), if not part of an "enclosed" character data item, terminates the current
record and delimits the current data item. If this occurs before all list elements have been
satisfied, the remainder of the current record is skipped and transmission resumes with the
first character of the next record.

1-49

INPUT EXAMPLES

Given the READ statement READ(5,*)STR,I where STR is declared CHARACTER*10 STR
and I is declared INTEGER I:

External Input STR Result I Result

"ABC" ABCMML:.M unchanged
'ABC"DE' ABC"DEMM unchanged
ABCcr (cr = carriage return) ABCl'IMl'IL:.M unchanged
«COMMENT» ABC123 ABC123MM unchanged
"1234567890123" 1234567890 unchanged
1234567890123 1234567890 123
YES 256 YESl'I256L:.M unchanged*
"YES" 256 YESMMMl'I 256
YES 256 YES!\!\!\!\I\l'Il'I 256
ABCI } ABC/\/\/\/\!\!\!\ 66

*This may not be the desired result, the next example (above) shows a recommended
method.

LIST TERMINATION

If an end-of-record condition occurs without the record terminator I, the effect is to end the
list of variables. Any list elements not satisfied are left unchanged.

Free-field Output

Five data types can be output under free-field conversion: integer, double-integer, floating-
point (real), double precision floating-point,' and character string. All output is compatible
with the requirements of free-field input: it does not require external changes to be input
using free-field conversion.

1. Integer data items are output under the 16 field description.
2. Double-integer data items are output under the III field description.
3. Floating-point data items are output under the G12.6 field description.
4. Double-precision floating-point data items are output under the G22.16 field

description.
5. Character string data items are output under the S field description; all characters

are transmitted without modification, including blanks, quotation marks and
apostrophes.

I In SPL/3000 type LONG real.

1-50

DATA ITEM DELIMITER

Each field in the output record is delimited by one blank space.

RECORD TERMINATORS

If the width of a current numeric data item is too great for the remainder of a current record,
a new record is started with the first character of the data item.

If a character string data item is too long for the current record, the string will continue to be
written, but onto the next record. No record terminator is output.

ACCEPT IDISPLA Y

FORTRAN/3000 ACCEPT and DISPLAY are alternate applications of free-field input and out-
put. They are invoked by program statements such as

ACCEPT INT,ARRA Y,LETR or DISPLAY INT ,ARRAY,LETR

where TNT, ARRAY and LETR are typical list elements. The key words ACCEPT and DISPLAY
are equivalent to READ(5, *) and WRITE(6, *), where 5 is typically the FORTRAN logical unit I
number of the MPE/3000 standard input file $STDIN, and 6 is typically the FORTRAN logical
unit number of the MPE/3000 standard output file $STDLIST, and * (asterisk) is the free-field
signal.

Transmissions by ACCEPT and DISPLAY conform to the descriptions given for free-field
input and output, with one exception: the Formatter determines if the standard output device
to be used is a terminal (such as a teleprinter or a CRT keyboard/display); if the device is such
a terminal, the ACCEPT routine prints a carriage return, a line feed then a prompt character?
before accepting inputs.

CORE-TO-CORE CONVERSION

Conversions between external ASCII records and a list of variables use an input/output (I/O)
buffer allocated to the Formatter. Core-to-core conversions, on the other hand, transfer to
and from user-defined buffers (byte arrays). The user can manipulate the data, transmit it to
or from external records, or return it to the original location or any other location.

To invoke core-to-core conversion FORTRAN READ and WRITE statements are written:

READ (u,{) list elements or WRITE (u,f) list elements

where

u a character simple variable or a character array element

the FORMAT statement identifierf

Nov 1976 1-51

Core-to-core conversions are subject to the same rules, restrictions, and interactions as formatted
or free-field conversions to and from external records, with the following exceptions:

1. Any signal to terminate the current record and start a new record (such as edit specifi-
cation l , or free-field record terminator l , or the end of an unlimited group sequence)
is taken to be an error; the report BUFFER OVERFLOW occurs (see "FORMATTER
ERROR REPORTS").

2. If an end-of-record condition occurs before either a terminating quotation mark (")
or a close comment symbol (») is encountered in free-field data, BUFFER
OVERFLOW occurs (see "FORMATTER ERROR REPORTS").

UNFORMATTED (BINARY) TRANSFER

Data can be transferred to and from disc or tape files in internal representation (binary) form
without any conversion. Such transfers are faster and occupy less space than formatted data
transfers.

Two types of access to files on disc devices are available through the MPEj 3000 file system:
sequential or direct. Either type can be established through the MPEj 3000 file intrinsic
FOPEN.

When binary jsequential access is used, the READ or WRITE statements of a FORTRAN program
are written without a FORMAT statement identifier.

EXAMPLES:

unit number

READ (8) list elements
/
""-

WRITE (12) list elements

I
When binaryjdirect access is used, the READ or WRITE statements of a FORTRAN
program are written with an integer constant or simple variable for the record identifier
and without a FORMAT statement identifier.

EXAMPLES:

READ (8@IV) list elements

unit numbe/ 'Record identifier variable
~ /

WRITE (12@KR) list elements

When the file is opened (through the MPEj3000 file intrinsic FOPEN), the record size can be left
at the system default value 128, or the user can specify a different size.

1-52 Nov 1976

In sequential access, as many records as needed are used in sequence until the entire list of
elements has been transferred.

NOTE: If the storage required exceeds the size of the record, transfer continues
into the next record; this usually leaves part of that next record unused.

In direct access, record access is terminated by the last element in the list. Any unused portion
of the record just terminated is ignored.

If the storage required by all the elements in the list exceeds the record size, the report
DIRECT ACCESS OVERFLOW occurs (see "FORMATTER ERROR REPORTS").

Matching List Elements

The binary transfer user must match list elements between corresponding READ and WRITE
statements of a FORTRAN program. For example, if a list of elements is transferred to a disc,
any corresponding return of the data to internal storage must do so to a list that matches each
element by type and dimensions and by order of appearance in the list. The simplest method
is to use the same element labels for input and output, if possible.

NOTE: Under binary /direct access, the Formatter begins each new list element output
at a word boundary. If the list element is, for example, a byte array of an odd
number of bytes, one byte at the record will not be used.

1-53

SPL/3000 CALLING SEqUENCES

NOTE: The following descriptions assume the reader has a working knowledge of
SPL/3000; see the Systems Programming Language Reference Manual.

To summarize, Formatter executions follow these steps:

1. An initialization call is made (either by a compiler-generated code or by an SPL/3000
program). Parameters are included in the call (for example, a flag indicating input or
output and a pointer to the format and/or edit parameters).

2. If the type of transfer is not to be core-to-core, the Formatter allocates space on the
user's stack for the I/O buffer and working areas and saves the location of the working
area in DB-2. The Q register and the stack marker's 6Q entry are modified to prevent
deallocation of the I/O buffer and working area upon initialization exit. If the direction
of transfer is input, data transmission to the I/O buffer begins at this time, and control
is returned to the user.

3. The user now makes a call for each element in the list of variables. Parameters in the
Formatter's working area can be examined to determine the current positions in the
series of format and/or edit parameters and in the I/O buffer.

Before Call Upon Entry

Q--+

:-----
I/O

Buffer

Working
area

- ---

Stack Conditions for the Formatter

4. When the list of variables has been satisfied, the user must make a termination call. If the
direction of transfer is output, transmission of the last record begins at this time. The Q
register and 6Q in the stack marker are modified to assure deallocation of the I/O buffer
and the working area upon termination exit.

o. When data transmission is complete, the user's stack and location DB-2 are restored to
the conditions existing before the initialization call.

1-54

Calling Sequences

SPL/3000 calling sequences to the Formatter must be based on the Formatter procedure
declarations as defined in the following paragraphs.

INITIALIZATION

Declaration: PROCEDURE FMTINIT' (FORMAT, UNIT, REC, IOTYPE, LAST);
VALUE UNIT, REC, IOTYPE, LAST; INTEGER UNIT, IOTYPE, LAST;
DOUBLE REC; BYTE ARRAY FORMAT;

OPTION EXTERNAL;

Parameters: FORMAT For formatted conversions, a byte array containing format and
edit parameters; or

for free-field conversions or unformatted (binary) transfers,
ignored.

UNIT For transfers to a FORTRAN/3000 logical unit numbered file,
a positive integer in the range [1,99] to specify that unit number
to be used; or

for transfers to a user-defined MPE/3000 file, the negated file
number to be used; or

for core-to-core conversions, the size (a positive integer), in bytes,
of the user's internal buffer.

NOTE: If UNIT is a FORTRAN/3000 logical unit number [1,99J, the Formatter
uses the FORTRAN/3000 Logical Unit Table (FLUT) to open the file.
If UNIT is a negated file number, the user must have previously opened
the file through the MPE/3000 file intrinsic FOPEN.
In either case, see "File System Requirements" later in this section.

REC For direct access to a file, a double integer record number; or

for core-to-core conversions, the second word of REC is a byte
pointer to the user's internal buffer and the first word of REC
is not used.

1-55

IOTYPE = Individual bits of this integer are used as follows:

LAST

LIST ELEMENT TRANSFERS

Function

Clear for output; set for input.

Set for ACCEPT/DISPLAY; clear for any other
function.

13 Clear for sequential access to a file; set for direct

Bit(s)

15

14

access.

12 Clear for formatted or free-field conversions; set for
unformatted (binary) transfers.

11 Clear to call Formatter Error Report routine for
end-of-file errors; set to not call.

10 Clear to call Formatter Error Report routine
for irrecoverable file errors; set to not call.

9 Set for core-to-core conversions; clear for any other
function.

S Set for free-field conversions; clear for any other
function.

7-0 Spares.

Label identifier of the instruction that immediately follows the
Formatter termination call.

Ten entry-point procedures to the Formatter are provided for transfers of various types of list
elements. The procedures' declarations are written as follows:

PROCEDURE IIO' (LaC);
INTEGER LaC;

OPTION EXTERNAL;

PROCEDURE DIO' (LaC);
DOUBLE LaC;

OPTION EXTERNAL;

PROCEDURE RIO' (LaC);
REAL LaC;

OPTION EXTERNAL;

I PROCEDURE LIO' (LaC);
LONG LaC;

OPTION EXTERNAL;

For type integer, logical (boolean), octal,
and two-byte ASCII character.

For type double-integer and four-byte
ASCII character.

For type real (two-word floating point)
and four-byte ASCII character.

For type LONG real (four-word floating
point) and eight-byte ASCII character.

1-56 Nov 1976

PROCEDURE SIO' (SLEN, LOC);
VALUE SLEN;
INTEGER SLEN; BYTE ARRAY LOC;

OPTION EXTERNAL;

For an ASCn character string.

PROCEDURE AnO' (DIM, LOC);
VALUE DIM; INTEGER DIM;
INTEGER ARRAY LOC;

OPTION EXTERNAL;

For an array of the same types as no'.

PROCEDURE ADIO' (DIM, LOC);
VALUE DIM; INTEGER DIM;
DOUBLE ARRAY LOC;

OPTION EXTERNAL;

For an array of the same types as DIO'.

PROCEDURE ARlO' (DIM, LOC);
VALUE DIM; INTEGER DIM;
REAL ARRAY LOC;

OPTION EXTERNAL;

For an array of the same types as RIO'.

PROCEDURE ALIO' (DIM, LOC);
VALUE DIM; INTEGER DIM;
LONG ARRAY LOC;

OPTION EXTERNAL;

For an array of the same types as LIO'.

PROCEDURE ASIO' (SLEN, DIM, LOC);
VALUE SLEN, DIM;
INTEGER SLEN, DIM;
BYTE ARRAY LOC;

OPTION EXTERNAL;

For an array of ASCII character strings.

The parameters are

LOC For a non-array list element, a reference parameter; or
for an array list element, the array identifier.

SLEN A positive integer to specify the string length in bytes.

DIM The number of elements (not words or bytes) in the array.

1-57

TERMINATION

The call is written

TFORM';

LAST: (the next SPL/3000 program statement)

No parameters are required. On output, the data in the Formatter's I/O buffer is transmitted
at this time. Then the user's stack is restored to the conditions existing before the initialization
call. Now the user can check for a CCA error indication. If CCA = CCG, an end-of-file error
occurred; if CCA = CCE, no error occurred; if CCA = CCL, an irrecoverable file error occurred.

EXAMPLE: A Complete Data Transfer

Statement No. The Statement

1 FMTINIT'(FMT,lO,ID,%34,@LAST);
X(O) := A + B;

X(l) := C/D;
ARIO'(2,X);
IIO'(I);
TFORM';

2

3

4

5
6

7
8

LAST:

IF> THEN GO TO EOTERROR;

Description

Statement 1 initializes the Formatter to

• Ignore label FMT

• Use file FTNIO

• Use record number under label ID

• Not call Formatter Error Report routine for end-of-file errors

• Call Formatter Error Report routine for irrecoverable file errors

Statements 2 and 3 demonstrate that computations can be made within a calling sequence,
in this case, to prepare the contents of a two-element real array.

Statement 4 is a call to output the real array. In FORTRAN/3000, this is the method for
output of a type complex quantity.

Statement 5 is a call for output of I (which could be integer, logical, two-byte ASCII
character, or octal).

Statement 6 is the termination call.

Statement 8 is a user-decision to check for end-of-tape error.

1-58

File System Requirements

NOTE: The following descriptions assume the reader has a working knowledge
of MPE/3000; see the MPE Intrinsics Reference Manual.

FORTRAN/3000 LOGICAL UNIT TABLE (FLUT)

For FORTRAN/3000 programs using the Formatter, the MPE/3000 System loader prepares a
FORTRAN Logical Unit Table (FLUT). The SPL/3000 user, however, must prepare a FLUT
in his DB Data Area and initialize location DB-1 to reference the word address of the FLUT:

DB-1 ~ I Ifa~--------------------~
where

Ifa is a positive integer to specify the FLUT word displacement from DB.

The FLUT is written:

~ The terminal entry (required)

where Ira is defined above and

the UNIT numbers (integers in the range [1,99]) in the left byte of each
entry, to be specified in Formatter initialization calls

F1 ... Fn = 0 in the right byte, when the FLUT is prepared

The last U entry must be 255 to signal the end of the FLUT

For the special free-field conversions ACCEPT or DISPLAY, one or the other (or both) of two
U entries must be included in the FLUT: 5 for $STDIN and 6 for $STDLIST. For full details
of these standard file names, including the ability to equate FORTRAN file names FTN05
and FTN06 to other file names, see the MPE Intrinsics Reference Manual. I
When the Formatter is initialized, it must determine if the file to be used has been opened, and
if it has, what the file parameters are (such as the file options, the access options, etc.). Thus,
a global data area is required for storage of the file data.

The Formatter first checks the FLUT for a U entry corresponding to the UNIT specified in the
initialization call. If such an entry does not exist, the Formatter Error Report FILE NOT IN
TABLE FOR UNIT # xx occurs and the user's program is aborted. If one does exist, the F
entry is checked.

Nov 1976 1-59

If the F entry is zero, the file has not been opened and the Formatter makes a call to the
MPE/3000 file intrinsic FOPEN. The nominal FORTRAN/3000 parameters (as described below)
are used in the FOPEN call. These include the file name created by appending the UNIT number
to the ASCII characters FTN. For example, the file name for UNIT 3 is FTN03. The FOPEN
intrinsic returns an integer (stored in the FLUT) as the F entry for the UNIT referenced.

If the F entry is not zero, the file has already been opened and the Formatter calls the MPE/3000
file intrinsic FGETINFO to extract the file parameters and store them in the global data area.
The Formatter also allocates space on the stack for its I/O buffer, according to the size indicated
in the file parameter RECSIZE.

NOMINAL FORTRAN/3000 PARAMETERS

The following parameters can be superseded with an MPE/3000 :FILE command.

formaldesignator FTNdd, where dd is the UNIT number in the FLUT (for example,
FTN03).

{options

Bit(s)

14:2
13:1
10:3

8:2

7:1
6:1
5:1
0:5

aoptions

Bit(s)

12:4
11:1
10:1
8:2
7:1
0:7

Field Name and Setting(s)

Domain: 00, this is a new file.
ASCII/BINARY: 0, this is a BINARY file!.

Default File Designator: 000, the default file designator is the same
as the formal file designator? .

Record Format: 00, fixed-length records for direct-access; or 01,
variable-length records for sequential-access.

Carriage Control: 0, no carriage control character expected.' .
(Reserved for MPE/3000 system use.)
Dissallow File Equation: 0, allow :FILE commands.
(Reserved for MPE/3000 system use.)

Field Name and Setting(s)

Access Type: 0100, input/output access.
Multirecord: 0, non-multirecord mode.
Dynamic Locking: 0, disallow dynamic locking/unlocking.
Exclusive: 00, default value related to Access Type aoption.
Inhibit Buffering: 0, allow normal buffering.
(Reserved for MPE/3000 system use.)

! Except for FTN05 or FTN06: 1, this is an ASCII file.
~Except for FTN05: 100, for $STDIN; or for FTN06: 001, for $STDLIST.
Except for FTN06: 1, carriage control character expected.

1-60

recsize System default value.

device System default: DISC.

formmsg None.

userlabels System default value: O.

blockfactor System default value.

numbuffers System default value: 2.

filesize System default value: 1023.

numextents System default value: 8.

initalloc System default value: 1.

filecode System default value: O.

ACCEPT/DISPLAY OPTION

The ACCEPT/DISPLAY option is assumed to be used with a terminal, such as a teleprinter
or a CRT keyboard/display (devices used for both input reading and output listing). However,
any two separate devices can be used instead by predefining the file parameters for FTN05
and FTN06 (see the preceding subsection"Nominal FORTRAN/3000 Parameters"). When the
Formatter becomes aware (by examination of the file parameters through the FGETINFO
intrinsic) that the device is not a terminal (the device cannot output information), it only reads
inputs; it does not print a carriage return, line feed then a prompt character? before it reads
inputs.

FORMATTER ERROR REPORTS

Errors detected during Formatter execution call the error procedure FMTERROR' in the
Compiler Library. The error is analyzed and control either remains in FMTERROR', to print
reports then abort the user's program, or is passed to a user-defined error procedure (see
Section IV, Library Errors). Reports by FMTERROR' are printed on the standard list device
$STDLIST; starting with an error identifying line and continuing with further information as
described below. The reports end with a "stack trace-back report" that uses the format
specified by the MPE Stack Dump facility. For further information, see MPE Debug/Stack
Dump Reference Manual (HP Part No. 30000-90012).

Nov 1976 1-61

The Formatter error reports are:

BAD INPUT CHARACTER

This message is followed by a portion of the input buffer that includes the had
character, then a caret ", positioned under that bad character.

BUFFER OVERFLOW

Occurs only in a Core-To-Core Conversion that transfers data to a user-defined buffer.
This message is followed by a portion of the input buffer that includes the character
at which overflow was detected, then a caret", positioned under that first overflow
character.

DIRECT ACCESS OVERFLOW

Occurs only in an Unformatted (Binary) Transfer to a file on a direct access device,
when the storage required by all the list elements exceeds the file record size. If the
file is a FORTRAN/3000 logical unit, ON UNIT #xx is appended to the above message.
If the file is a user-defined MPE/3000 file, a File Information Display is printed (a
sample appears at the end of this section).

END OF FILE DETECTED

The file system returned CCA = CCG. If the file is a FORTRAN/3000 logical unit,
ON UNIT #xx is appended to the above message. In any case, a File Information
Display is printed (a sample appears at the end of this section).

NOTE: The user can choose to handle this error another way:

SPL/3000 user: to ignore the error, set bit 11 of parameter IOTYPE for
procedure FMTINIT' (see "SPL/3000 CALLING SEQUENCE").

FORTRAN/3000 user: to transfer program control to another statement,
include END = label in the READ statement or the WRITE statement.

FILE NOT IN TABLE FOR UNIT #xx

The FORTRAN/3000 logical unit accessed has no corresponding entry in the FLUT
(see "File System Requirements").

FILE SYSTEM ERROR

The file system returned CCA = CCL. If the file is a FORTRAN/3000 logical unit,
ON UNIT #xx is appended to the above message. In any case, a File Information
Display is printed (a sample appears at the end of this section).

1-62

NOTE: The user can choose to handle this error in another way:

SPL/3000 user: to ignore the error, set bit 10 of parameter IOTYPE for
procedure FMTINIT' (see "SPL/3000 CALLING SEQUENCES").

FORTRAN/3000 user: to transfer program control to another statement,
include ERR = label in the READ statement or the WRITE statement.

FORMAT BEYOND RECORD

The number of characters required by the list elements exceeds the record length of
the device to be used. For example, if the device is a line printer limited to 132 charac-
ters per line (per record), the number of characters required by the list elements is more
than 132. This message is followed by a portion of the format statement that includes
the specification related to the error, then a caret ", positioned under that invalid
specification.

ILLEGAL FORMAT CHARACTER

This message is followed by a portion of the format statement that includes the illegal
character, then a caret ", positioned under that illegal character.

INVALID FILE NUMBER FOR UNIT #xx

Procedure FSET (see the Function Directory) was called with the parameter NEWFILE
set to a value outside the range [1,254].

NESTING TOO DEEP

This message is followed by a portion of the format statement that includes the start
of the illegally nested group (see "Nesting"), then a caret", positioned under the start
of that illegally nested group.

NUMBER OUT OF RANGE

A value in the input buffer is too small or too large for the ranges representable by the
corresponding list element type (see "Introduction "). This message is followed by a
portion of the input buffer that includes the invalid number, then a caret", positioned
under the last character of that invalid number.

STRING MISMATCH

A character data item is not directed to a FORTRAN/3000 type CHARACTER (or an
SPL/3000 type BYTE ARRAY) list element. This message is followed by a portion of
the input buffer that includes the misdirected character data item, then a caret ",
positioned under the start of that character data item (usually a quotation mark or an
apostrophe).

1-63

NOTE: This error is detected for Free-Field Input or ACCEPT only if the
character data item is "enclosed" (in quotation marks or apostrophes).
Otherwise, any group (one or more) of non-numeric characters is
treated as a delimiter for a numeric data item; any group of numeric
characters is transmitted as a numeric data item.

UNDEFINED OPTION ON UNIT #xx

Procedure UNITCONTROL or FTNAUX' (see the Function Directory) was called with
the parameter OPT set to a value outside the range [-1,8].

File Information Display

As described in the preceding text, certain Formatter Error Reports are followed by a printed
File Information Display. Either one of two possible formats is used;

If access to the MPEj 3000 file referenced is blocked, or if that file is
undefined in the MPE/3000 file system in use:

+-F-I-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y+
! FILE NUMBER * IS UNDEFINED. !
! ERROR NUMBER: 56 RESIDUE: 0 !
! BLOCK NUMBER: 0 NUMREC: 0 !
+--+

For a file that returned either a CCA = CCG (end-of-file error) or a CCA = CCL
(irrecoverable file error):

+-F-I-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y+
! FILE NAME IS FTN05 • !
I FOPT10NS: NEW,A, $STDIN,U,N,SL,FEQ I
! AOPTIONS: INPU1,91EC,NOLOCK,DEF,NOBUFF !
I DEVICE TYPE: 16 LU: 11 DRT: 18 UNIT: 6 !
! RECORD SIZE: 72 BLOCK sr ZE: 72 (B yTES) !
! EXTENT SIZE: 0 MAX EXTENTS: 0 !
! RECPTR: 0 RECLIMIT: 0 !
! LOGCOUNT: 0 PHYSCOUNT: 0 !
! EOF AT: 0 LABEL ADDR: 7.02100000000 !
! FILE CODE: 0 10 IS ULABELS: 0 !
! PHYSICAL STATUS: 0001000100000000 !
! ERROR NUMBER: 0 RES I DUE: e !
! BLOCK NUMBER: 0 NUMREC: 1 !+--+

The contents of either display are explained in Section III of this manual, under
"PRINTFILEINFO. "

1-64

SECTION II
MATHEMATICAL PROCEDURES

To find the descriptions for any given procedure in this section, see the Function Directory or
Appendix A.

(

DABS'

FUNCTION: Calculate the absolute value of a double precision (LONG real) number.

Declaration: LONG PROCEDURE DABS' (Y);
VALUE Y;LONG Y;

OPTION EXTERNAL;

ATTRIBUTES:

Parameter: Any double precision number except the smallest negative number (_2-256).

Result: A double precision number.

FORTRAN: Intrinsic Function: DABS (Y).

Error: The absolute value of the smallest negative number is not representable; the
result is given as zero.

2-1

CABS (or CABS')

FUNCTION: Calculate the absolute value of a complex number.

Declaration: REAL PROCEDURE CABS(Y); or CABS'(Y);
REAL ARRAY Y;

OPTION EXTERNAL;

Method: Y = a + bi
Y(O)= a(real part)
Y(1) = b (imaginary part)

when lal > Ibl, CABS = lal~

when Ibl > lal, CABS = Ibl)l + (~ r
Accuracy: Depends on accuracy of SQRT.

ATTRIBUTES:

Parameter: Any complex number representable in two real numbers, one for a and one
for b.

Result: A non-negative real number.

FORTRAN: Basic External Function: CABS (Y).

Error: If a and b are near the overflow threshold (a and b ~ 1077), the
SOFTERROR' message CABS: OVERFLOW occurs (see "Library Errors").

2-2

ISIGN'

FUNCTION: Calculate the absolute value of a first integer number and give it the sign of a
second integer number.

Declaration: INTEGER PROCEDURE ISIGN' (J,K);
VALUE J,K;INTEGER J,K;

OPTION EXTERNAL;

Method: ISIGN' (J,K) = sign of K times IJI

ATTRIBUTES:

Parameters: Both arguments are integer numbers, if the second is zero, the sign is assumed
to be positive.

Result: An integer number.

FORTRAN: Intrinsic Function: ISIGN (J,K).

Error: None.

2-3

JSIGN'

FUNCTION: Calculate the absolute value of the first double integer number and give it the
sign of the second double integer number.

Declaration: INTEGER PROCEDURE JSIGN' (J,K),
VALUE J,K;INTEGER J,K;

OPTION EXTERNAL;

Method: JSIGN' (J,K) = sign of K times IJI

ATTRIBUTES:

Parameters: Both arguments are double integer numbers; if the second is zero, the sign is
assumed to be positive.

Result: A double integer number.

FORTRAN: Intrinsic Function: JSIGN (J,K).

Error: None.

2-4 Nov 1976

SIGN'

FUNCTION: Calculate the absolute value of a first real number and give it the sign of
a second real number.

Declaration: REAL PROCEDURE SIGN' (Y,Z);
VALUE Y,Z;REAL Y,Z;

OPTION EXTERNAL;

Method: SIGN' (Y,Z) == sign of Z times IYI

ATTRIBUTES:

Parameters: Both arguments are real numbers; if the second is zero, the sign is assumed to
be positive.

Result: A real number.

FORTRAN: Intrinsic Function: SIGN (Y,Z).

Error: None.

2-5

DSIGN'

FUNCTION: Calculate the absolute value of a first double precision (LONG real) number
and give it the sign of a second double precision (LONG real) number.

Declaration: LONG PROCEDURE DSIGN' (Y,Z);
VALUE Y,Z;LONG Y,Z;

OPTION EXTERNAL;

Method: DSIGN'(Y,Z) = sign of Z times IYI

ATTRIBUTES:

Parameters: Both arguments are double precision numbers; if the second is zero, the sign
is assumed to be positive.

Result: A double precision number.

FORTRAN: Intrinsic Function: DSIGN (Y,Z).

Error: None.

2-6

INT'

FUNCTION: Truncate a real number to an integer number.

Declaration: INTEGER PROCEDURE INT'(Y);
VALUE Y; REAL Y;

OPTION EXTERNAL;

Method: INT'(Y) = sign of Y times largest integer ~ IYI

ATTRIBUTES:

Parameter: A representable 1 real number in the range [-32768.0,32767.0] .

Result: An integer number.

FORTRAN: Intrinsic Function: INT (Y).

Error: If the real number is outside the range stated, the arithmetic trap
INTEGER OVERFLOW occurs (if traps are enabled).

1See "Introduction."

Nov 1976 2-7

I

AINT'

FUNCTION: Truncate a real number to an integer number in real representation.

Declaration: REAL PROCEDURE AINT' (Y);
VALUE Y; REAL Y;

OPTION EXTERNAL;

Method: AINT' (Y) = sign of Y times largest integer ~ IYI

ATTRIBUTES:

Parameter: A real number.

Result: A real number.

FORTRAN: Intrinsic Function: AINT (Y).

Error: None.

2-8

DDINT'

FUNCTION: Truncate a double precision (LONG real) number to an integer number in
double precision (LONG real) representation.

Declaration: LONG PROCEDURE DDINT' (Y);
VALUE Y; LONG Y;

OPTION EXTERNAL;

Method: DDINT' (Y) = sign of Y times largest integer <; IYI

ATTRIBUTES:

Parameter: A double precision number.

Result: A double precision number.

FORTRAN: Intrinsic Function: DDINT (Y).

Error: None.

2-9

DFIX (or DFIX')

FUNCTION: Truncate a double precision (LONG real) number to a double integer
number.

Declaration: DOUBLE PROCEDURE DFIX(Y); or DFIX'(Y);
VALUE Y; LONG Y;

OPTION EXTERNAL;

Method: DFIX = sign of Y times largest double integer ~ IYI

ATTRIBUTES:

Parameter: A LONG real number.

Result: A double integer number.

FORTRAN: Callable as an external function:

x = DFIX (\y\)

or through use of a SYSTEM INTRINSIC statement as:

x = DFIX (Y)

I
Error: If the truncated LONG real number cannot be represented in the two words

of the double integer, arithmetic trap INTEGER OVERFLOW occurs (if
traps are enabled).

2-10 Nov 1976

DFLOAT (or DFLOAT')

FUNCTION: Convert a double integer number to a double precision (LONG real)
number.

Declaration: LONG PROCEDURE DFLOAT(Y); or DFLOAT'(Y);
VALUE Y; DOUBLE Y;

OPTION EXTERNAL;

ATTRIBUTES:

Parameter: A double integer number.

Result: A LONG real number.

FORTRAN: Callable as an external function:

x = DFLOAT (\y\)

or through use of the SYSTEM INTRINSIC statement as:

x = DFLOAT (Y)

Error: None.

Nov 1976 2-11

MAXO'/MINO'

FUNCTION: Calculate the largest (MAXO') or smallest (MINO') of N integers on
top-of-stack and return that integer in S-N+ 1.

Declaration: PROCEDURE MAXO'(N); or MINO'(N);
VALUE N; INTEGER N;

OPTION EXTERNAL;

Before Call

I 3

5

2

6

S-7 1

ATTRIBUTES:

Upon Entry After Return

3

5

2

6

1

5(N)

-
Stack -
Marker

-Q,S-7

1-7 6

5

2

6
S-7 1

+- Result
(MAXO')

+-S-N+

Parameter: An integer number> 2.

Result: An integer number.

FORTRAN: Intrinsic Function: MAXO (A,B,C, ...) or MINO (A,B,C, ...).

Error: If the argument (or number of parameters) is less than 2, no action occurs.

COMMENT: The SPL/3000 caller must cut back the stack after return (for example, use
an ASSEMBLE (SUBS 4); statement).

2-12 Nov 1976

JMAXO'/JMINO'

FUNCTION: Calculate the largest (JMAXO') or smallest (JMINO') of N double
integers on top-of-stack and return that double integer in S-2N+1.

Declaration: PROCEDURE JMAXO'(N); or JMINO'(N);
VALUE N; INTEGER N;

OPTION EXTERNAL;

Before Call

3

5

2

6

1

ATTRIBUTES:

Upon Entry

- 3 -

I-- 5 -

I-- 2 -

I-- 6 -

I-- 1 -

5(N)

-
Stack -
Marker _

Q,S-+

+-S-2N+l-+

Parameter: A single precision integer number> 2.

Result: A double integer number.

After Return

6

5

2

6

1

FORTRAN: Intrinsic Function: JMAXO (A,B,C, ...) or JMINO (A,B,C, ...).

+-Result
(JMAXO')

Error: If the argument (or number of parameters) is less than 2, no action occurs.

COMMENT: The SPL/3000 caller must cut back the stack after return (for example, use
an ASSEMBLE (SUBS 8); statement).

Nov 1976 2-13

MAXI'/MINl'

FUNCTION: Calculate the largest (MAX1') or smallest (MIN1') of N real numbers on
top-of-stack and return the integer of that number in S-2N+1.

Declaration: PROCEDURE MAX1'(N); or MIN1'(N);
VALUE N; INTEGER N;

OPTIONAL EXTERNAL;

Before Call Upon Entry After Return

*-S-2N+1-+ 6 *- Result
3.6 3.6 (MAX1')

5.1 5.1 5.1

2.9 2.9 2.9

6.8 6.8 6.8

1.4 1.4 1.4
S-+ S-+

5(N)

Stack
Marker

Q,S-+

ATTRIBUTES:

Parameter: An integer number> 2.

Result: An integer number.

FORTRAN: Intrinsic Function: MAX1 (A,B,C, ...) or MIN1 (A,B,C, ...).

Error: See "Comments."

2-14

COMMENTS:

Nov 1976

MAX1'/MIN1' (cont.)

1. If the argument (or number of parameters) is less than 2, no action occurs.

2. If the largest (or smallest) real number is outside the range
[-32768.0,32767.0], the arithmetic trap INTEGER OVERFLOW occurs I
(if traps are enabled).

3. The SPLj3000 caller must cut the stack back after return (for example,
use an ASSEMBLE (SUBS 9); statement).

2-15

JMAX1'jJMIN1'

FUNCTION: Calculate the largest (JMAX1') or smallest (JMIN1') of N real numbers
on top-of-stack and return the double integer of that number in S-2N +1.

Declaration: PROCEDURE JMAX1'(N); or JMIN1'(N);
VALUE N; INTEGER N;

OPTIONAL EXTERNAL;

Before Call Upon Entry After Return

~S-2N+1--7 -+- Result
3.6 3.6 6 (JMAX1')

5.1 5.1 5.1

2.9 2.9 2.9

6.8 6.8 6.8

1.4 1.4 1.4
S--7 8->

5(N)

Stack
Marker

Q,S-7

ATTRIBUTES:

Parameter: A single precision integer number> 2.

Result: A double integer number.

FORTRAN: Intrinsic Function: JMAX1 (A,B,C, ...) or JMIN1 (A,B,C, ...).

Error: See "Comments."

2-16 Nov 1976

COMMENTS:

Nov 1976

JMAX1'/JMIN1' (cont.)

1. If the argument (or number of parameters) is less than 2, no action occurs.

2. If the largest (or smallest) real number is outside the range
[-2147483648,2147483647], the arithmetic trap INTEGER OVERFLOW
occurs (if traps are enabled).

3. The SPL/3000 caller must cut the stack back after return (for example,
use an ASSEMBLE (SUBS 8); statement).

2-17

AMAXO' / AMINO'

FUNCTION: Calculate the largest (AMAXO') or smallest (AMINO') of N integers on
top-of-stack and return that integer in S-N+ 1 and S-N+2 in real represen-
tation.

Declaration: PROCEDURE AMAXO'(N); or AMINO'(N);
VALUE N; INTEGER N;

OPTION EXTERNAL;

Before Call

3

5

2

6
S--7 1

ATTRIBUTES:

Upon Entry

3

5

2

6

1

5(N)

-
Stack -
Marker

-
Q,S-+

Parameter: An integer number> 2.

Result: A real number.

After Return

-+
t-- 6.0 -

-+

2

6
S--7 1

+--S-N+1

+--S-N+2

+--Result
(AMAXO')

FORTRAN: Intrinsic Function: AMAXO (A,B,C,...) or AMINO (A,B,C, ...).

Error: If the argument (or number of parameters) is less than 2, no action occurs.

COMMENT: The SPL/3000 caller must cut the stack back after return (for example, use
an ASSEMBLE (SUBS 3); statement).

2-18

AJMAXO'jAJMINO'

FUNCTION: Calculate the largest (AJMAXO') or smallest (AJMINO') of N double integers on
top-of-stack and return that double integer in S-2N +1 and S-2N +2 in real repre-
sentation.

Declaration: PROCEDURE AJMAXO'(N); or AJMINO'(N);
VALUE N; INTEGER N;

OPTION EXTERNAL;

Before Call Upon Entry After Return

+-S-2N+l~ +-Result
3 3 6.0 (AJMAXO')+-S-2N+2~

5 5 5

2 2 2

6 6 6

1 1 1
S-7 S~

5(N)

Stack
Marker

Q,S-7

, ATTRIBUTES:

Parameter: A single precision integer num ber > 2.

Result: A real number.

FORTRAN: Intrinsic Function: AJMAXO (A,B,C, ...) or AJMINO (A,B,C, ...).

Error: If the argument (or number of parameters) is less than 2, no action occurs.

COMMENT: The SPLj3000 caller must cut the stack back after return (for example, use
an ASSEMBLE (SUBS 8); statement).

Nov1976 ~19

AMAX1'/AMIN1'

FUNCTION: Calculate the largest (AMAXl') or smallest (AMINI') of N real numbers on
top-of-stack and return that result in S-2N+l and S-2N+2.

Declaration PROCEDURE AMAXl'(N); or AMINl'(N);
VALUE N; INTEGER N;

OPTION EXTERNAL;

Before Call Upon Entry After Return

+-S-2N+l-+ +Result:
3.6 3.6 6.8 (AMAXl')+-S-2N+2-+

5.1 5.1 5.1

2.9 2.9 2.9

6.8 6.8 6.8

1.4 1.4 1.4
S-+ S-+

5(N)

Stack
Marker

Q,S-+

ATTRIBUTES:

Parameter: An integer number ~ 2.

Result: A real number.

FORTRAN: Intrinsic Function: AMAXI (A,B,C, ...) or AMINI (A,B,C, ...).

Error: If the argument (or number of parameters) is less than 2, no action occurs.

COMMENT: The SPL/3000 caller must cut back the stack after return (for example, use an
ASSEMBLE (SUBS 8); statement).

2-20

DMAX1'/DMIN1'

FUNCTION: Calculate the largest (DMAXl ') or smallest (DMINl ') of N double precision
(LONG real) numbers addressed in the N words on top-of-stack and return
that result in the address referenced by B.

Declaration: PROCEDURE DMAX1' (B,N); or DMIN1' (B,N);
VALUE N; LONG B; INTEGER N;

OPTION EXTERNAL;

Before Call

add.l

add.2

add.3

add.4

S--+ add.5

ATTRIBUTES:

Upon Entry

add.l

add.2

add.3

add.4

add.5

add.B

5(N)

-
Stack _
Marker

-Q,S--+

After Return

add.l

add.2

add.3

add.4
S--+ add.5

+-Result
Address

Parameters: For N, an integer> 2; for B, a double precision identifier.

Result: A double precision number.

FORTRAN: Intrinsic Function: DMAXl (A,B,C, ...) or DMINl (A,B,C, ...).

Error: If the N argument (or number of parameters) is less than 2, no action occurs.

COMMENT: The SPL/3000 caller must cut back the stack after return (for example, use an
ASSEMBLE (SUBS 5); statement.)

2-21

AMOD'

FUNCTION: Calculate a first real number modulus a second real number.

Declaration: REAL PROCEDURE AMOD' (Y,Z);
VALUE Y,Z; REAL Y,Z;

OPTION EXTERNAL;

Method: X'= Y - AINT(Y/Z)*Z

ATTRIBUTES:

Parameters: Both arguments are real numbers, the second must not be zero.

Result: A real number.

FORTRAN: Intrinsic Function: AMOD (Y,Z).

Error: None.

CAUTION: The arithmetic traps FLOATING POINT OVERFLOW, FLOATING POINT I
UNDERFLOW, or FLOATING POINT DIVIDE BY ZERO may occur (it
traps are enabled).

Nov 1976 2-22

DMOD

FUNCTION: Calculate a first double precision (LONG real) number modulus a second
double precision (LONG real) number.

Declaration: LONG PROCEDURE DMOD (Y,Z);
LONGY,Z;

OPTION EXTERNAL;

Method: X = Y - DDINT(Y /Z)*Z

ATTRIBUTES:

Parameters: Both arguments are double precision numbers; the second must not be zero.

Result: A double precision number.

FORTRAN: Basic External Function: DMOD (Y,Z).

Error: None.

I CAUTION: The arithmetic traps EXTENDED PRECISION OVERFLOW, EXTENDED
PRECISION UNDERFLOW, or EXTENDED PRECISION DIVIDE BY ZERO
may occur (if traps are enabled).

2-23 Nov 1976

EXP (or EXP')

FUl\CTION: Calculate eX , where x is a real number.

Declaration: REAL PROCEDURE EXP (Y); or EXP' (Y);
REAL Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

, If - glwhen Ix - yl ~ E, maximum ~f- r--;» E

ATTRIBUTES:

Parameter: A representable! real number in the range [-176.7525,176.7525].

Result: A representable! positive real number.

FORTRAN: Basic External Function: EXP (Y).

Error: If the argument is ~ 176.7526, the result cannot be represented and
SOFTERROR' message EXP: OVERFLOW occurs (see "Library Errors").
If the argument < -176.7526" the result is set to zero.

!See "Introduction."

2-24

DEXP (or DEXP')

FUNCTION: Calculate eX, where X is a double precision (LONG real) number.

Declaration: LONG PROCEDURE DEXP (Y); or DEXP' (Y);
LONGY;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

If - g Iwhen Ix - y I ~ E, maximum -f- ~ E

ATTRIBUTES:

Parameter: A representable' double precision number in the range
[-176.75253104,176.75253104] .

Result: A representable! positive double precision number.

FORTRAN: Basic External Function: DEXP (Y).

Error: If the argument is> 176.75253105, the result cannot be represented and the
SOFTERROR' message DEXP: OVERFLOW occurs (see "Library Errors").
If the argument is < -176.75253105, the result is set to zero.

1See "Introduction."

2-25

CEXP (or CEXP')

FUNCTION: Calculate eX, where X is a complex number.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation," in the "Introduction").

PROCEDURE CEXP (Y); or CEXP' (Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPL/3000 caller must use the statement "TOS := OD," twice, to set two
double integers "0" on top-of-stack in four words; then use "CEXP (Y);" to call
the procedure which overlays the result on those four words. (See sample below.)

Method: ea + bi = ea (cos(b) + i sineb»
Y (0) = a (real part)
Y (1) = b (imaginary part)

Accuracy: Depends on accuracy of EXP, COS, and SIN.

ATTRIBUTES:

Parameter: Any complex number representable in two representable! real numbers, one
for a and one for b; a must be in the range [- 177.4455, 177.4455] .

Result: A complex number, stored in 4 words on TOS (for SPL/3000 caller).

FORTRAN: Basic External Function: CEXP (Y).

Error: See EXP.

Sample SPL/3000 calling sequence:

REAL ARRAY Y(O:l);
TOS := OD;
TOS := OD;
CEXP(Y);

! See "Introduction."

2-26

SQRT (or SQRT')

FUNCTION: Calculate the square root of a real number.

Declaration: REAL PROCEDURE SQRT (Y); or SQRT' (Y);
REAL Y;

OPTION EXTERNAL;

Method: An appropriate starting point for two Newton iterations is reached through a
minimax approximation.

Accuracy: (See "Introduction"):

!x-
y! If-g Iwhen -x- ~ E, maximum -f- ~ (1/2) E

ATTRIBUTES:

Parameter: A non-negative real number.

Result: A non-negative real number.

FORTRAN: Basic External Function: SQRT (Y).

Error: SOFTERROR' message SQRT: ARGUMENT NEGATIVE occurs if the
argument is negative (see "Library Errors").

2-27

DSQRT (or DSQRT')

FUNCTION: Calculate the square root of a double precision (LONG real) number.

Declaration: LONG PROCEDURE DSQRT (Y); or DSQRT' (Y);
LONG Y;

OPTION EXTERNAL;

Method: An appropriate starting point for three Newton iterations is reached through
a minimax approximation.

Accuracy: (See "Introduction"):

lx-yl If-g Iwhen -f- ~ E, maximum -f- ~ (1/2) E

ATTRIBUTES:

Parameter: A non-negative double precision number.

Result: A non-negative double precision number.

FORTRAN: Basic External Function: DSQRT (Y).

Error: SOFTERROR' message DSQRT: ARGUMENT NEGATIVE occurs if the
argument is negative (see "Library Errors").

2-28

CSQRT (or CSQRT')

FUNCTION: Calculate the square root of a complex number.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

PROCEDURE CSQRT (Y); or CSQRT' (Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPL/3000 caller must use the statement "TOS := OD;" twice to set two double
integers "0" on top-of-stack in four words; then use "CSQRT (Y);" to call the
procedure which overlays the result on those four words. (See sample on the next
page.)

Method: Either step 1 or step 2, then steps 3 and 4:

Y(O) = a (real part)

Y(1) = b (imaginary part)

CSQRT (a + bi) = x + yi

1. IF [a] ~ Ibl THEN Tl = 1+V 1+ (Ibl / lal)2;

IF tal< 2-252 THEN Tl = (Tl) /4 ELSE a = tal / 4;

Tl =\1'2 *Va * Tl;

2. ELSE Tl = (la] / [b])+V 1 + (la] / Ib1)2;

IF [b] < 2-252 THEN Tl = (Tl) / 4 ELSE b = [b] / 4;

Tl =\1'2 *Vb * Tl;

3. T2=b/(Tl*2);

4. IF a ~ 0 THEN x = Tl; y = T2 ELSE

x = T2; y = Tl;

Accuracy: Depends on accuracy of SQRT.

2-29

CSQRT (cont.)

ATTRIBUTES:

Parameter: Any complex number representable in two real numbers, one for a and one
for b.

Result: A complex number, as just defined, left in four words on TOS (for SPL/3000
caller).

FORTRAN: Basic External Function: CSQRT (Y).

Error: See "SQRT."

Sample SPL/3000 calling sequence:

REAL ARRAY Y(O:l);
TOS .= OD;
TOS .= OD;
CSQRT (Y);

2-30

ALOG (or ALOG')/ALOGIO

FUNCTION: Calculate the natural (ALOG or ALOG') or the base 10 (ALOGI0) logarithm of
a positive real number.

Declaration: REAL PROCEDURE ALOG (Y); [or ALOG' (Y);] or ALOGI0 (Y);
REALY;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

when Ix ; y I~ E, maximum If ; g I~ E / Iln(x)I

ATTRIBUTES:

Parameter: A positive real number.

Result: A real number (ALOG10 = ALOG*loglo(e)).

FORTRAN: Basic External Function: ALOG (Y) or ALOGI0 (Y).

Error: If the argument is negative or zero, SOFTERROR' message ALOG:
ARGUMENT NOT POSITIVE occurs for either ALOG or ALOG10
(see "Library Errors").

2-31

DLOG (or DLOG')/DLOGIO

FUNCTION: Calculate the natural (DLOG or DLOG') or the base 10 (DLOG10) logarithm
of a positive double precision (LONG real) number.

Declaration: LONG PROCEDURE DLOG (Y);[or DLOG' (Y);] or DLOGIO (Y);
LONG Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

Ix-yl If-glwhen -x- ~ E, maximum -f - .~ E / Iln(x)1

ATTRIBUTES:

Parameter: A representable I positive double precision number.

Result: A double precision number (DLOG10 = D'l.O'Gvlog, 0 (e)).

FORTRAN: Basic External Function: DLOG (Y) or DLOG10 (Y).

Error: If the argument is negative or zero, SOFTERROR' message DLOG:
ARGUMENT NOT POSITIVE occurs for either DLOG or DLOG10
(see "Library Errors").

ISee "Introduction."

2-32

CLOG (or CLOG')

FUNCTION: Calculate the natural logarithm of a complex number.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

PROCEDURE CLOG (Y); or CLOG' (Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPL/3000 caller must use the statement "TOS := OD;" twice to set two double
integers "0" on top-of-stack in four words; then use "CLOG (Y);" to call the
procedure which overlays the result on those four words. (See sample below.)

Method: CLOG (a + bi) = x + yi
Y(O) = a (real part)
Y(1) = b (imaginary part)

where

x = ALOG (CABS (a + bi))
y = ATAN2 (b, a)

Accuracy: For a, depends on accuracy of ALOG and SQRT; accuracy for b depends on
accuracy of ATAN2.

ATTRIBUTES:

Parameter: Any non-zero complex number representable in two real numbers, one for a
and one for b; both parts must not be zero.

Result: A complex number, left in four words on TOS (for SPL caller).

FORTRAN: Basic External Function: CLOG (Y).

Errors: If a and b are zero, SOFTERROR' message ALOG: ARGUMENT NOT

POSITIVE occurs. If min \a, ~\ underflows, SOFTERROR' messagemax a,
ATAN2: UNDERFLOW occurs (see "Library Errors").

Sample SPLj 3000 calling sequence:

REAL ARRAY Y(O:l);
TOS:= OD;
TOS := OD;
CLOG (Y);

2-33

TAN (or TAN')

FUNCTION: Calculate the tangent of a real number in radians.

Declaration: REAL PROCEDURE TAN (Y); or TAN' (Y);
REAL Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

when [x - yl ~ E, maximum If - g] ~ E sec ' x

ATTRIBUTES:

Parameter: A real number in radians.

Result: A real number.

FOR TRAN: Basic External Function: TAN (y)

Error: Let

M = (2k + l)Jr
2

where k is any non-negative integer. Then, if

Ilargumentl - M/< 2-23 * M

SOFTERROR' message TAN: OVERFLOW occurs (see "Library Errors").

2-34

SIN (or SIN')

FUNCTION: Calculate the sine of a real number in radians

Declaration: REAL PROCEDURE SIN (Y); or SIN' (Y);
REAL Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

When [x - vl ~ E, maximum If - sl ~ E COS X

ATTRIBUTES:

Parameter: A real number in radians.

Result: A representable! real number in the range [-1.0,1.0].

FORTRAN: Basic External Function: SIN (Y).

Error: None.

i See "Introduction."

2-35

COS (or COS')

FUNCTION: Calculate the cosine of a real number in radians.

Declaration: REAL PROCEDURE COS (Y); or COS' (Y);
REAL Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

When [x - v ~ E, maximum If - gl ~ E sin x

ATTRIBUTES:

Parameter: A real number in radians.

Result: A representable! real number in the range [-1.0,1.0].

FORTRAN: Basic External Function: COS (Y).

Error: None.

! See "Introduction."

2-36

DTAN (or DTAN')

FUNCTION: Calculate the tangent of a double precision (LONG real) number in radians.

Declaration: LONG PROCEDURE DTAN (Y); or DTAN' (Y);
LONG Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

When [x - vl ~ E, maximum If - g] ~ E sec' x

ATTRIBUTES:

Parameter: A double precision number in radians.

Result: A double precision number.

FORTRAN: Basic External Function: DTAN (Y).

Error: Let
M = ~(2_k_+_l---'.-)_1f

2

where k is any non-negative integer. Then, if

/Iargumentl - MI< 2-39 * M

SOFTERROR' message DTAN: OVERFLOW occurs (see "Library Errors").

2-37

DSIN (or DSIN')

FUNCTION: Calculate the sine of a double precision (LONG real) number in radians.

Declaration: LONG PROCEDURE DSIN (Y); or DSIN' (Y);
LONG Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction")

When !x - vl ~ E, maximum If - g] ~ E COS X

ATTRIBUTES:

Parameter: A double precision number in radians.

Result: A representable! double precision number in the range [-1.0,1.0] .

FORTRAN: Basic External Function: DSIN (Y).

Error: None.

! See "Introduction."

2-38

DCOS (or DCOS')

FUNCTION: Calculate the cosine of a double precision (LONG real) number in radians.

Declaration: LONG PROCEDURE DCOS (Y); or DCOS' (Y);
LONG Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

When [x - yl ~ E, maximum If - gl ~ E sin x

ATTRIBUTES:

Parameter: A double precision number in radians.

Result: A representable.' double precision number in the range [-1.0,1.0].

FORTRAN: Basic External Function: DCOS (Y).

Error: None.

1 See "Introduction."

2-39

CTAN (or CTAN')

FUNCTION: Calculate the tangent of a complex number.

Declaration: Complex numbers in FORTRANj3000 programs are represented as an
ordered pair (a 2-element array) of real numbers, one for the real part a
and one for the imaginary part b. Thus, complex numbers occupy four
words (see "Internal Representation" in the "Introduction").

PROCEDURE CTAN(Y); or CTAN'(Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPL/3000 caller must use the statement "TOS: = OD;" twice to set two
double integer zeros onto the stack in four words; then use "CTAN(Y);"
to call the procedure which overlays the result on those four words. (See
sample below.)

Method: CTAN(Y) = sin(Y)
cos(Y)

Accuracy: Depends on accuracy of CSIN, and CCOS.

ATTRIBUTES:

Parameter: A complex number.

Result: A complex number, left in four words on TOS (for SPL/3000 caller).

FORTRAN: Basic External Function: CTAN(Y).

Error: Underflow, overflow, divide by zero; see DIVCVVR.

Sample SPLj 3000 calling sequence:

REAL ARRAY Y(O:l);
TOS:= OD;
TOD:=OD;
CTAN(Y);

2-40

CSIN (or CSIN')

FUNCTION: Calculate the sine of a complex number.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

PROCEDURE CSIN (Y); or CSIN' (Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPL/3000 caller must use the statement "TOS := OD;" twice to set two double
integers "0" on top-of-stack in four words; then use "CSIN (Y);" to call the pro-
cedure which overlays the result on those four words. (See sample below.)

Method: CSIN (a + bi) = sin (a) cosh (b) + i cos (a) sinh (b)
Y(O) = a (real part)
Y (1) = b (imaginary part)

where

If b < 0.5, sinh (b) is determined by a minimax approximation.

If b ? 0.5, sinh (b) = (eb - e-b) / 2;

cosh (b) = sinh Ib I + --Tz;r
e

Accuracy: Depends on accuracy of SIN, COS, and EXP.

ATTRIBUTES:

Parameter: A complex number.

Result: A complex number, left in four words on TOS (for SPL/3000 caller).

FORTRAN: Basic External Function: CSIN (Y).

Error: See EXP.

Sample SPL/3000 calling sequence:

REAL ARRAY Y(O:l);
TOS := OD;
TOS := OD;
CSIN (Y);

2-41

CCOS (or CCOS')

FUNCTION: Calculate the cosine of a complex number.

Declaration: Complex numbers in FORTRANj3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

PROCEDURE CCOS (Y); or CCOS' (Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPLj3000 caller must use the statement "TOS := OD;" twice to set two double
integers "0" on top-of-stack in four words; then use "CCOS (Y);" to call the pro-
cedure which overlays the result on those four words. (See sample below.)

Method: CCOS (a + bi) = cos (a) cosh (b) - i sin (a) sinh (b)
Y(O) = a (real part)
Y(l) = b (imaginary part)

where

If b < 0.5, sinh (b) is determined by a minimax approximation.

If b > 0.5, sinh (b) = (eb - e-b) j 2;

cosh (b) = sinh 1171 + el~1

Accuracy: Depends on accuracy of SIN, COS, and EXP.

ATTRIBUTES:

Parameter: A complex number.

Result: A complex number, left in four words on TOS (for SPLj3000 caller).

FORTRAN: Basic External Function: CCOS (Y).

Error: See EXP.

Sample SPL/3000 calling sequence:

REAL ARRAY Y(O:l);
TOS := OD;
TOS:= OD;
CCOS(Y);

2-42

TANH (or TANH')

FUNCTION: Calculate the hyperbolic tangent of a real number.

Declaration: REAL PROCEDURE TANH (Y); or TANH' (Y);
REAL Y;

OPTION EXTERNAL;

Method:
eY - e-Y

TANH (Y) = Y _Y unless IYi< 0.4812118. In that case, a minimax
e +e

approximation is used.

Accuracy: (See "Introduction")

when [x - yl ~ €, maximum If - g] ~ € sech ' x

ATTRIBUTES:

Parameter: A real number.

Result: A representable I real number in the range [0.0,1.0] .

FORTRAN: Basic External Function: TANH (Y).

Error: None.

ISee "Introduction."

2-43

SINH (or SINH')

FUNCTION: Calculate the hyperbolic sine of a real number.

Declaration: REAL PROCEDURE SINH (Y); or SINH' (Y);
REAL Y;

OPTION EXTERNAL;

Method:
eY -e-YSINH (Y) = 2 unless Y < 0.5. In that case, a minimax approximation

is used.

Accuracy: (See "Introduction")

when [x - yl ~ E, maximum If - gl ~ E cosh x

ATTRIBUTES:

Parameter: A real number.

Result: A real number.

FORTRAN: Basic External Function: SINH (Y).

Error: See EXP.

2-44

COSH (or COSH')

FUNCTION: Calculate the hyperbolic cosine of a real number.

Declaration: REAL PROCEDURE COSH (Y); or COSH' (Y);
REAL Y;

OPTION EXTERNAL;

Method:
Y + -Y

COSH (Y) = e e
2

Accuracy: (See "Introduction"):

when [x - yl ~ E, maximum If - gl ~ E sinh x

ATTRIBUTES:

Parameter: A real number.

Result: A real number.

FOR TRAN: Basic External Function: COSH (Y).

Error: See EXP.

2-45

DTANH (or DTANH')

FUNCTION: Calculate the hyperbolic tangent of a double precision number.

Declaration: LONG PROCEDURE DTANH(Y); or DTANH'(Y);
LONG Y;

OPTION EXTERNAL;

Method: DTANH(Y) = sinh(Y)
cosh(Y)

Accuracy: (See "Introduction")

when [x - yl ~ f, maximum If - g] ~ f sech ' x

ATTRIBUTES:

Parameter: A double precision number.

Result: A representable I double precision number in the range [0.0,1.0].

FORTRAN: Basic External Function: DTANH(Y).

Error: See DSINH and DCOSH.

I See "Introduction."

2-46

DSINH (or DSINH')

FUNCTION: Calculate the hyperbolic sine of a double precision number.

Declaration: LONG PROCEDURE DSINH(Y); or DSINH'(Y);
LONG Y;

OPTION EXTERNAL;

Method:
eY -e-Y

DSINH(Y) = 2

unless Y < 0.1. In that case, a minimax approximation is used.

Accuracy: (See "Introduction")

when [x - yl ~ E, maximum If - gl ~ E cosh x

ATTRIBUTES:

Parameter: A double precision number.

Result: A double precision number.

FORTRAN: Basic External Function: DSINH(Y).

Error: See DEXP.

2-47

DCOSH (or DCOSH')

FUNCTION: Calculate the hyperbolic cosine of a double precision number.

Declaration: LONG PROCEDURE DCOSH(Y); or DCOSH'(Y);
LONG Y;

OPTION EXTERNAL;

Method:
eY +e-Y

DCOSH(Y) = 2

Accuracy: (See "Introduction")

when lx - yl ~ f, maximum If - gl ~ f sinh x

ATTRIBUTES:

Parameter: A double precision number.

Result: A double precision number.

FORTRAN: Basic External Function: DCOSH(Y).

Error: See DEXP.

2-48

CTANH (or CTANH')

FUNCTION: Calculate the hyperbolic tangent of a complex number.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one forthe real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

PROCEDURE CTANH(Y); or CTANH'(Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPL/3000 caller must use the statement "TOS:= OD;" twice to set two
double integer zeros onto the stack in four words; then use "CTANH(Y);"
to call the procedure which overlays the result on those four words. (See
sample below.)

Method: CTANH(Y) = sinh(Y)
cosh(Y)

Accuracy: Depends on accuracy of SIN, COS, COSH, and SINH.

ATTRIBUTES:

Parameter: A complex number.

Result: A complex number, left in four words on TOS (for SPL/3000 caller).

FORTRAN: Basic External Function: CTANH(Y).

Error: None.

Sample SPL/3000 calling sequence:

REAL ARRAY Y(O:l);
TOS:=OD;
TOS:=OD;
CTANH(Y);

2-49

CSINH (or CSINH')

FUNCTION: Calculate the hyperbolic sine of a complex number.

Declaration: Complex numbers in FORTRAN /3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

PROCEDURE CSINH(Y); or CSINH'(Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPL/3000 caller must use the statement "TOS:= OD;" twice to set two
double integer zeros onto the stack in four words; then use "CSINH(Y);"
to call the procedure which overlays the result on those four words. (See
sample below.)

Method: CSINH(a + bi) = sinh(a) cos(b) + i cosh(a) sin(b)
Y(O) = a (real part)
Y(l) = b (imaginary part)

Accuracy: Depends on accuracy of SIN, COS, COSH, and SINH.

ATTRIBUTES:

Parameter: A complex number.

Result: A complex number, left in four words on TOS (for SPL/3000 caller).

FORTRAN: Basic External Function: CSINH(Y).

Error: None.

Sample SPL/3000 calling sequence:

REAL ARRAY Y(O:l);
TOS:=OD;
TOS:= OD;
CSINH(Y);

2-50

CCOSH (or CCOSH')

FUNCTION: Calculate the hyperbolic cosine of a complex number.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

PROCEDURE CCOSH(Y); or CCOSH'(Y);
REAL ARRAY Y;

OPTION EXTERNAL;

An SPL/3000 caller must use the statement "TOS:= OD;" twice to set two
double integer zeros onto the stack in four words; then use "CCOSH(Y);"
to call the procedure which overlays the result on those four words. (See
sample below.)

Method: CCOSH(a + bi) = cosh(a) cos(b) + sinh(a) sin(b)
Y(O) = a (real part)
Y(l) = b (imaginary part)

Accuracy: Depends on accuracy of SIN, COS, SINH, and COSH.

ATTRIBUTES:

Parameter: A complex number.

Result: A complex number, left in four words on TOS (for SPL/3000 caller).

FORTRAN: Basic External Function: CCOSH(Y).

Error: None.

Sample SPL/3000 calling sequence:

REAL ARRAY Y(O:l);
TOS:= OD;
TOS:= OD;
CCOSH(Y);

2-51

ATAN (or ATAN')
;
~,

FUNCTION: Calculate the arctangent of a real number.

Declaration: REAL PROCEDURE ATAN (Y); or ATAN' (Y);
REAL Y;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction")

when [x - vl ~ E,maximum If - gl ~ _E-2
1+ x

ATTRIBUTES:

Parameter: A real number.

Result: A representable] real number in the range [- 1f / 2, n / 2].

FORTRAN: Basic External Function: ATAN (Y).

Error: None.

] See "Introduction."

2-52

DATAN (or DATAN')

FUNCTION: Calculate the arctangent of a double precision (LONG real) number.

Declaration: LONG PROCEDURE DATAN (Y); or DATAN' (Y);
LONGY;

OPTION EXTERNAL;

Method: A minimax approximation.

Accuracy: (See "Introduction"):

when [x - yl ~ E, maximum If - gl ~ ~l+x

ATTRIBUTES:

Parameter: A double precision number.

Result: A representable! double precision number in the range [- 7r / 2, 7r / 2] .

FORTRAN: Basic External Function: DATAN (Y).

Error: None.

1See "Introduction."

2-53

ATAN2 (or ATAN2')

FUNCTION: Calculate the arctangent of the quotient of two real numbers.

Declaration: REAL PROCEDURE ATAN2 (Y,Z); or ATAN2' (Y,Z);
REAL Y,Z;

OPTION EXTERNAL;

Method: Calls ATAN (lmin (Y,Z) / max (Y,Z)I), then determines the proper quandrant.

Accuracy: (See "Introduction"):

when [x - yl ~ e, maximum If - g] ~ ~
1+w

where

w = min (Y,Z) / max (Y,Z)

ATTRIBUTES:

Parameters: Real numbers. Both must not be zero.

Result: A representable 1 real number in one of the following ranges:

z>o z<o
y>o [O,1T/2]

Y<o [-1T/2,O) (-1T,-1T/2)

FORTRAN: Basic External Function: ATAN2 (Y,Z)

Error: SOFTERROR' message ATAN2: ARGUMENTS ZERO occurs if both
arguments are zero: SOFTERROR' message ATAN2: UNDERFLOW
occurs if all the conditions below occur:

[smaller argument I/ [larger argument I

causes underflow and Y> ° and Z > ° and Y < Z.
See Section IV, Library Errors.

1See "Introduction."

2-54

DATAN2

FUNCTION: Calculate the arctangent of the quotient of two double precision (LONG real)
numbers.

Declaration: LONG PROCEDURE DATAN2 (Y,Z);
LONG Y,Z;

OPTION EXTERNAL;

Method: Calls DATAN (lmin (Y,Z) / max (Y,Z)I), then determines the proper quadrant.

Accuracy: (See "Introduction")

3Ewhen [x - vl ~ E, maximum If - g] ~ ---=-=---
1+ w2

where

w = min (Y,Z) / max (Y,Z)

ATTRIBUTES:

Parameters: Double precision numbers. Both must not be zero.

Result: A representable! double precision number in one of the following ranges:

z~o z<o

y<o [-71"/2,0) (-1T,-1T/2)

[0,1T/2] (1T/2,1T]

FORTRAN: Basic External Function: DATAN2 (Y,Z)

Error: SOFTERROR' message DATAN2: ARGUMENTS ZERO occurs if both
arguments are zero; SOFTERROR' message DATAN2: UNDERFLOW
occurs if all the conditions below occur:

[smaller argument I / [larger argument I

causes underflow and Y ~ ° and Z ~ ° and Y < Z.
See Section IV, Library Errors.

1See "Introduction."

2-55

INVERT

FUNCTION: Invert a square matrix containing real numbers stored by rows; the resulting
inverse is stored over the input matrix. (Required by BASICj3000.)

Declaration: PROCEDURE INVERT (N, A, SFLG);
VALUE N; INTEGER N, SFLG; REAL ARRAY A;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: For N, an integer for the order of the matrix; for A, a real identifier
of the matrix; for SFLG, an integer identifier.

Results: Inverse replaces original matrix, and SFLG is 1 if the matrix is nonsingular
or 0 if the matrix is singular.

, FORTRAN: Callable as an external subroutine:

CALL INVERT (\1\, C,K)

or through use of the SYSTEM INTRINSIC statement.

Error: None.

CAUTION: If the matrix is singular (SFLG is 0), all or part of the matrix
is overlaid with undefined results.

2-56 Nov 1976

DINVERT

FUNCTION: Invert a square matrix containing double precision (LONG real) numbers,
stored by rows; the resulting inverse is stored over the input matrix. (Re-
quired by BASICj3000.)

Declaration: PROCEDURE DINVERT (N, A, SFLG);
VALUE N; INTEGER N, SFLG; LONG ARRAY A;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: For N, an integer for the order of the matrix; for A, a double precision
identifier of the matrix; for SFLG, an integer identifier.

Results: Inverse replaces original matrix, and SFLG is 1 if the matrix is nonsingular
or 0 if the matrix is singular.

FORTRAN: Callable as an external subroutine:

CALL DINVERT (\J\,D,L)

or through use of the SYSTEM INTRINSIC statement.

Error: None.

CA UTION: If the matrix is singular (SFLG is 0), all or part of the matrix
is overlaid with undefined results.

Nov 1976 2-57

I

CINVERT

FUNCTION: Invert a square matrix containing complex elements (pairs of real elements)
stored real part a then imaginary part b, by rows; the resulting inverse is
stored over the input matrix. (Required by BASIC/3000.)

Declaration: PROCEDURE CINVERT (N, A, SFLG);
VALUE N; INTEGER N, SFLG; REAL ARRAY A;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: For N, an integer for the order of the matrix; for A, a real identifier
of the matrix; for SFLG, an integer identifier.

Results: Inverse replaces original matrix, and SFLG is 1 if the matrix is nonsingular
or 0 if the matrix is singular.

I FORTRAN: Callable as an external subroutine:

CALL CINVERT (\K\,E,M)

or through use of the SYSTEM INTRINSIC statement.

Error: None.

CA UTION: If the matrix is singular (SFLG is 0), all or part of the matrix
is overlaid with undefined results.

2-58 Nov 1976

RAND1 (or RAND1')

FUNCTION: Generate a random number, which may be used as the starting point for
RAND. (Required by BASIC/3000.)

Declaration: REAL PROCEDURE RANDl; or RANDl';
OPTION EXTERNAL;

or

DOUBLE PROCEDURE RANDl;
OPTION EXTERNAL;

ATTRIBUTES:

Parameter: None.

Result: A 32-bit quantity, which can be identified as either a real number or a double
integer number.

FORTRAN: Callable through use of the SYSTEM INTRINSIC statement. I
Error: None.

COMMENT: This random value is derived from the 3l-bit logical quantity changed every
millisecond by the MPE/3000 system timer.

Nov 1976 2-59

RAND (or RAND')

FUNCTION: Generate the next element of a sequence of pseudo-random numbers
(see Comment). (Required by BASICj3000.)

Declaration: REAL PROCEDURE RAND (X); or RAND' (X);
REAL X;

OPTION EXTERNAL;

or

DOUBLE PROCEDURE RAND (X);
DOUBLE X;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: Either a real number or a double integer number.

Results: A representable] real number in the range (0.0, 1.0) returned as the value of the
routine, and a 32-bit quantity replacing the original value of the parameter
(see Comment).

FORTRAN: Callable as an external function: Y = RAND (Z)

Error: None.

COMMENTS: The parameter value at the initial call to RAND completely determines a
sequence of pseudo-random numbers. Each time RAND returns a new value
to the calling program, it also sets a new 32-bit value in place of the param-
eter. To continue the pseudo-random sequence thus initiated, that 32-bit
value must be used as the parameter in the next call to RAND.

]See "Introduction."

2-60

DADD

FUNCTION: Calculate the sum of two double integer numbers. I

Declaration: DOUBLE PROCEDURE DADD(D1,D2);
DOUBLE D1,D2;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: Double integer numbers.

Result: A double integer number.

FORTRAN: Callable as an external function: X = DADD(Y,Z)

Errors: If the result cannot be represented in the two words of a double integer, I
arithmetic trap INTEGER OVERFLOW occurs (if traps are enabled).

NOTE: This procedure is maintained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

Nov 1976 2-61

DSUB

I FUNCTION: Calculate the difference between two double integer numbers.

Declaration: DOUBLE PROCEDURE D8UB(Dl,D2);
DOUBLE Dl,D2;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: Double integer number.

Result: A double integer number.

FORTRAN: Callable as an external function: X = DSUB (Y,Z)

Errors: If the result cannot be represented in the two words of a double integer,
arithmetic trap INTEGER OVERFLOW occurs (if traps are enabled).I

NOTE: This procedure is maintained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

2-62 Nov 1976

DMPY (or DMPY')

FUNCTION: Calculate the product of two double integer numbers.

Declaration: DOUBLE PROCEDURE DMPY(Dl,D2);
DOUBLE Dl,D2;

OPTION EXTERNAL;

or

PROCEDURE DMPY' (Dl,D2);
VALUE Dl,D2;

OPTION EXTERNAL;

(see Comment)

ATTRIBUTES:

Parameters: Double integer numbers.

Result: A double integer number (the result from DMPY' replaces parameter Dl on
TOS, as in the hardware instruction DADD).

FORTRAN: Callable as an external function: X = DMPY(Y,Z)

Error: If the result cannot be represented in the two words of a double integer,
arithmetic trap INTEGER OVERFLOW occurs (if traps are enabled). I

COMMENT: A sample SPL/3000 calling sequence:

DOUBLE A,B,C;

TOS:= A;
TOS := B;
DMPY'(* ,*);
C := TOS;
which is equivalent to C := A*B; in double integer form.

NOTE: This procedure is maintained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

Nov 1976 2-63

DDIV (or DDIV')

FUNCTION: Calculate the quotient only of one double integer number divided by another
double integer number. See procedure DREM (or DREM') for the remainder.I

Declaration: DOUBLE PROCEDURE DDIV(Dl,D2);
DOUBLE Dl,D2;

OPTION EXTERNAL;

or

PROCEDURE DDIV' (Dl,D2);
VALUE Dl,D2: DOUBLE Dl,D2;

OPTION EXTERNAL;

(see Comment)

ATTRIBUTES;

Parameters; Double integer numbers.

Result; A double integer number, the quotient only (the result from DDIV' replaces
parameter Dl on TOS, as in the hardware instruction DADD).

FORTRAN; Callable as an external function; X = DDIV(Y,Z)

I Error: If parameter D2 = 0, the arithmetic trap INTEGER DIVIDE BY ZERO
occurs (if traps are enabled).

COMMENT; A sample SPLj3000 calling sequence;

DOUBLE A,B,C;

TOS;= A;
TOS := B;
DDIV'(*,*);
C ;= TOS;
which is equivalent to C ;= AjB; in double integer form.

NOTE: This procedure is maintained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

2-64 Nov 1976

DREM (or DREM')

FUNCTION: Calculate the remainder only of one double integer number divided by another
double integer number. See procedure DDIV (or DDIV') for the quotient.

Declaration: DOUBLE PROCEDURE DREM(Dl,D2);
DOUBLE Dl,D2;

OPTION EXTERNAL;

or

PROCEDURE DREM'(Dl,D2);
VALUE Dl,D2; DOUBLE Dl,D2;

OPTION EXTERNAL;

(see Comment)

ATTRIBUTES:

Parameters: Double integer numbers.

Result: A double integer number, the remainder only (the result from DREM'
replaces parameter Dl on TOS, as in the hardware instruction DADD).

FORTRAN: Callable as an external function: X = DREM(Y,Z)
where X = Y MOD Z in double integer form.

Error: If parameter D2 = 0, the arithmetic trap INTEGER DIVIDE BY ZERO
occurs (if traps are enabled).

I

COMMENT: A sample SPL/3000 calling sequence;

DOUBLE A,B,C;

TOS:= A;
TOS := B;
DREM'(*,*);
C := TOS;
which is equivalent to C := A MOD B; in double integer form.

NOTE: This procedure is maintained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

Nov 1976 2-65

DNEG

I FUNCTION: Negate a double integer number.

Declaration: DOUBLE PROCEDURE DNEG(D);
DOUBLE D;

OPTION EXTERNAL;

ATTRIBUTES:

Parameter: A double integer number.

Result: The double integer number with the opposite sign.

FORTRAN: Callable as an external function: X = DNEG(Y)

Error: None.

NOTE: This procedure is maintained in the Compiler Library only tor compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

2-66 Nov 1976

DCMP

FUNCTION: Compare two double integer numbers. I

Declaration: INTEGER PROCEDURE DCMP(D1,D2);
DOUBLE D1,D2;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: Double integer numbers.

Result: -1 if D1 < D2
o if D1 = D2
1 if D1 > D2

FORTRAN: Callable as an external function: 1= DCMP(X,Y) for use in, for example, an
arithmetic IF statement:

IF (I) 10,20,30

to direct the program as follows:

go to 10 if X < Y
go to 20 if X = Y
go to 30 if X > Y

Error: None.

NOTE: This procedure is maintained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

Nov 1976 2-67

IFIX'

FUNCTION: Truncate a real number to an integer number.

Declaration: INTEGER PROCEDURE IFIX'(Y);
VALUE Y; REAL Y;

OPTION EXTERNAL;

Method: IFIX'(Y) = sign of Y times largest integer <; IYI

ATTRIBUTES:

Parameter: A representable! real number in the range [-32768.0,32767.0].

Result: An integer number.

FORTRAN: Intrinsic Function: IFIX(Y).

I
Error: If the real number is outside the range stated, the arithmetic trap INTEGER

OVERFLOW occurs (if traps are enabled).

1See "Introduction."

2-68 Nov 1976

MPYD

Calculate the product of a decimal multiplicand and a decimal multiplier,
such as those of RPGj3000 or COBOLj3000 Packed Decimal Numbers.
See COMMENT.

FUNCTION:

This procedure is called normally only by code emitted by a compiler. However,
this procedure can be called explicitly by a user's program.

Declaration: PROCEDURE MPYD(OP2,OP2DlGS,OPl,OPlDlGS,SDEC);
VALUE OPIDIGS,OP2DIGS,SDEC;

BYTE ARRAY OPl,OP2;
INTEGER OPIDIGS,OP2DlGS,SDEC;

OPTION EXTERNAL;

Method: Both operands are converted to multi-word binary integers then multiplied;
the product is converted back to a Packed Decimal Num ber. If the signs of
the operands do not match and the product is not zero, the sign of the result
is set to -(minus).

The result includes the product and the sign. The result overlays OP2,
the multiplier.

ATTRIBUTES:

Parameters
(Input): OPI

OP2

OPIDlGS

OP2DlGS

SDEC

The multiplicand decimal value, including its sign, in a byte
array; 1 to 28 digits and sign. See COMMENT.

The multiplier decimal value, including its sign, in a byte array;
1 to 28 digits and sign. See COMMENT and OP2DIGS.

The number of digits in decimal multiplicand OPl; a positive
integer.

The number of digits in decimal multiplier OP2 and in the result
overlaying OP2. This positive integer must provide enough digits
for the largest possible product.

The calling program's request for TOS Top-Of-Stack condition
after the procedure returns control, in the two lowest order bits
of an integer:
o requests: leave both byte array pointers OPI and OP2, and
both integers OPIDlGS and OP2DlGS on TOS.

1 requests: leave only OP2 and OP2DIGS on TOS.
2 or 3 request: clear TOS of all residue from this procedure.

2-69

MPYD (cont.)

Parameter
(Output): OP2 The decimal result, overlaying the multiplier OP2 byte array;

OP2DIGS digit and sign.

Results: A decimal product and sign; and
Condition code:

CCE, product = 0
CCG, produce is + (plus);
CCL,product is - (minus).

Errors: Either OPIDIGS or OP2DIGS = 0; Only the SDEC request is answered
(OP2 then remains the multiplier and is not overlaid by the result).

Either OPIDIGS or OP2DIGS < 0 or> 28: arithmetic trap INVALID
DECIMAL OPERAND LENGTH occurs.

A non-decimal numeric character in the numeric digits of either array OPI or
OP2: arithmetic trap INVALID DECIMAL DIGIT occurs.

The result number of digits> 28: arithmetic trap DECIMAL OVERFLOW
occurs; the result is meaningless.

The result number of digits> OP2DIGS but =< 28: arithmetic trap
DECIMAL OVERFLOW occurs, but only the result MSD's (Most Significant
Digits) are truncated.

COMMENT: Packed Decimal Numbers are byte arrays:

BYTE.:
BITS:

MAY CONTAIN:
F0R D!::.ert-·,Al:

AS THE:

[fIRST \ SECO~D \
(0-1 \ 0-7 \
8HHH\~8b~\888R\rlH8H\
[) \ 0 \ U \ U \
MSO\2MSU\3MSO\4MSO\
OR \ Ut-< \ OR \ UR \
lL \ II \ LZ \ lZ \

••• \ LAST - 1\ LAST
\ 0-7 \ 0-7)
\BbH8\BH83\BBBR\SSSS
\ LJ \ () \ [) \
\3lS0\2LS)\ LSO\SIGN
\ OR \ OR \ \
\ LL \ LZ \ \

• ••
•••
•••
•••
•• •
• ••

ivHERF:
Rq88 = ANY bINAH) ~ATTI::.RN oonn THkUUGH 1001, wEIGHTED ~-4-2-1

[) = ANY D!::.CINAL OIGIT [) THkOUGH
MSD = MOST SI(;NH ICANT DIu1J
LSD = LI::.AST S1GNl~ICANT DIGIl
LZ - LEADING ltkO

S S S S = 1 1 0 1 FOR - (M 11-1US); f..L L E L S [= • (Pi...US)

2-70

LONGDIVD and DIVD

FUNCTION: Calculate the quotient, or the quotient and remainder, of a decimal dividend
and a decimal divisor, such as those of RPG/3000 or COBOL/3000 Packed
Decimal Numbers. See COMMENT.

Two entry points are provided: The main entry, LONGDIVD, allows a
dividend of up to 36 digits for COBOL/3000. The secondary entry, DIVD,
allows a dividend of up to 28 digits for RPGj3000 or COBOL/3000.

The divisor can never exceed 28 digits.

This procedure is called normally only by code emitted by a compiler. Or this
procedure can be called explicitly by a user's program.

Declaration: PROCEDURE LONGDIVD(OPl ,OP2DIGS,OPl ,OP1DIGS,SDEC);
or

PROCEDURE DIVD(OP2,OP2DIGS,OP1,OP1DIGS,SDEC);
VALUE OP1DIGS,OP2DIGS,SDEC;

BYTE ARRAY OP1, OP2;
INTEGER OP1DIGS,OP2DIGS,SDEC;

OPTION EXTERNAL;

Method: Both operands are converted to multi-word binary integers then divided; then
the quotient is - or the quotient and the remainder are - converted back to a
Packed Decimal Number(s). If the signs of the operands do not match and the
quotient, or the quotient and the remainder, are not zero, the sign of the re-
sult is set to - (minus).

When OP2DIGS is a positive integer, the result includes only the quotient and
the sign. The result overlays OP2, the divisor.

When OP2DIGS is a negative integer, the result includes the quotient value
and sign and the remainder value and sign. The quotient and sign overlay OP2,
the divisor. The remainder and sign are appended to the original array OP2,
in OP1DIGS more bytes (higher addresses).

NOTE: A user's program to calculate a quotient and remainder must allocate
space beyond the Least Significant Digit of array OP2. See COMMENT.

2-71

ATTRIBUTES:

Parameters
(Input) :

Parameter
(Output) :

OPl

OP2

OPlDIGS

OP2DIGS

SDEC

OP2

LONGDIVD and DIVD (cont.)

The dividend decimal value, including its sign, in a byte array:
For entry LONGDIVD: 1 to 36 digits and sign;
For entry DIVD: 1to 28 digits and sign.
See COMMENT.

The divisor decimal value, including its sign, in a byte array:
1 to 28 digits and sign.
See COMMENT.

The number of digits in decimal dividend OPl and, if OP2DIGS
is negative, in the remainder to be appended to array OP2
(See OP2DIGS).

The number of digits in decimal divisor OP2 and in the quotient
overlaying OP2:
A positive integer to direct the procedure to return only the
quotient and sign.
A negative integer to direct the procedure to return the quotient
and sign and the remainder and sign.

The calling program's request for TOS Top-Of-Stack condition
after the procedure returns control, in the two lowest order bits
of an integer:
o requests: leave both byte array pointers OPl and OP2, and
both integers OPlDIGS and OP2DIGS on TOS.

1 requests: leave only OP2 and OP2DIGS on TOS.
2 or 3 request: clear TOS of all residue from this procedure.

Either one of two results possible:
The quotient only result, overlaying the divisor byte array
OP2: OP2DIGS digits and sign.
The quotient and remainder result, overlaying the divisor
array OP2 (the quotient and sign) then OPlDIGS more array
digits appended to OP2 (the remainder and sign), in higher
addresses.

2-72

LONGDIVD and DIVD (cont.)

Results: A decimal quotient and sign, or a decimal quotient and sign and a decimal
remainder and sign; and
Condition code:

CCE, quotient = 0;
CCG, quotient is + (plus);
CCL, quotient is - (minus).

Either OP1DIGS or OP2DIGS = 0; Only the SDEC request is answered
(OP2 then remains the divisor and is not overlaid by the quotient).

Errors:

OP2 = 0: arithmetic trap DECIMAL DIVIDE BY ZERO occurs.

Entry DIVD tests for OP1DIGS < 0, or for OP1DIGS or OP2DIGS > 28:
arithmetic trap INVALID DECIMAL OPERAND LENGTH occurs. Entry
LONGDIVD does not test OP1DIGS or OP2DIGS because it expects to be
used only by COBOLj3000.

A non-decimal numeric character in the numeric digits of either array OP1 or
OP2: arithmetic trap INVALID DECIMAL DIGIT occurs.

The result number of digits> 28: arithmetic trap DECIMAL OVERFLOW
occurs; the result is meaningless.

Reference: Knuth, Donald E. "The Classical Algorithms" Chapter 4.3.1, The Art of
Computer Programming, Vol. 2., Reading, Mass. : Addison-Wesley Publishing
Co., 1969.

COMMENT: Packed Decimal Numbers are byte arrays:

f3Y TE:
bITS:

MAY CONTAIN:
F()P DEC I rv1AL:

AS hiE:

[FlkST \ SlCO~D \
(0-7 \ 0-7 \
HHHR\888d\BHAB\ddbb\
D \ U \ [) \ 0 \
MSD\2MSO\3MSD\4MSD\
OR \ OR \ OR \ O~ \
LZ \ LL \ LZ \ LZ \

• •• \ l.AST - 1\ LAST
\ 0-7 \ 0-7 J
\RbBB\BBB3\BBBB\SSSS
\ 0 \ 0 \ [J \

\3LSO\2LSD\ LSO\SIGN
\ OR \ OR \ \
\ LZ \ I.Z \ \

• ••
• ••
• ••
• ••
•••
• ••

Wit R~ :
P..J h K ~ r\ I'l'r h I 1\ 1-1tn ~A T H. I-<N (I 0 (l (\ THRutJ GH 10 0 1, WE I GH TED 8 - 4 - 2 - 1

L) :: ANY Dt.CIMAL DIGIT (\ THROUGH
~-1~ U = 110 S T 5 I (,I'IJ 1f 1C{i1\) I II I G 11

L:,i) = LtAST SIGNIF l(04l\lT 01G1 T

L I = L E:(\ [) i I'ibit KU

C;SSS = 1101 F\}H - (MHJU~)' ALL ELSE:: + (PLUS)

2-73

R'EDIT

FUNCTION: Either one of two possible:

NUMERIC EDIT: unpack a SOURCE array containing a Packed Decimal
Number of an RPGj3000 program. That is, copy numeric digits and the sign
from the SOURCE array, and copy alphanumeric characters from an
EDIT ARRA Y array, into a RESULT array of ASCII characters. See COMMENT.

ALPHANUMERIC EDIT: copy alphanumeric characters from a SOURCE
array containing only ASCII characters into a RESULT array of ASCII characters.

This procedure is called normally only by code emitted by the RPGj3000
compiler for an EDIT WORD. However, this procedure can be called explicitly
by a user's program.

Declaration: PROCEDURE R'EDIT(RESULT,SOURCE,EDITARRAY,DIGCOUNT);
VALUE DIGCOUNT;

INTEGER DIGCOUNT;
BYTE ARRAY RESULT,SOURCE,EDITARRAY;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters
(Input) : SOURCE Numeric Edit: a Packed Decimal Number byte array.

Alphanumeric Edit: a byte array of ASCII characters.

EDITARRAY Numeric or Alphanumeric Edit: a byte array of R'EDIT
commands and, when needed, ASCII characters.
Details are given later, under DESCRIPTION.

DIGCOUNT Numeric Edit: the integer number of digits in the SOURCE
array Packed Decimal Number.
Alphanumeric Edit: 0 to signal the SOURCE array con-
tains only ASCII characters.

Parameters
(Output): RESULT = a byte array of ASCII characters.

Result: A byte array of ASCII characters, RESULT.

Errors: See DESCRIPTION.

2-74

R'EDIT (cont.)

COMMENT: Packed Decimal Numbers are byte arrays:

8YTE: (FI~ST \ Sf:COf':[j \ • ••
HITS: (0-7 \ U-7 \ • ••

f'-1!\y CONTAIN: 88HH\dHb~\Hd~R\db~H' • ••
F (")R DECIMAL: D \ 0 \ Ll , o \ • ••

AS lHt.: ~SU\2MSU\3MSU\4MS0\ •••
OR \ UI-< \ U~ \ Or< \ •• •
Ll \ Ll \ LZ \ L7 \ • • •

\ LAST - J\ LAST
\ 0-7 \ 0-7
\~HHH\B~H~\R~B~\SSSS
\ D \ [) \ D \
\3LSD\2LSD\ LSG\SIGN
\ OR \ OR \ \
\ LZ \ LZ \ \

,,;HFRt:
r;lqfH<::: AI'li rlPJA~Y P!~Tlck;'i OOO!} lH!~UlJGH 1001. wEIGHTED e-4-i-l

[I ::: A/''-iY utCIHM, DIGIT n 9

M') U .• "'1 iJS 1 S I GN I r: 1 C 1\ i-.J T U i b I r
L::iU :: Lt'AST :,lbi\ilf-lCA:\'l i)lhi T

Ll :::LlAUI~G Lt.~O
c.;c:,C;~ = llr)l ~CR - (·I<jli\lUSJ' ALL t-.,-st :: + (PLUS)

DESCRIPTION: Assume an array labelled PDN contains a Packed Decimal number
0057426+

that is to be unpacked by the RPG/3000 EDIT WORD
"bb,$Ob.bb&CR"

into an array labelled TARGET. The number of digits in array PDN is
reported by an integer PDNCNT.

The compiler then constructs a byte array that might be labelled
EDCONTROL to contain R 'EDIT commands and ASCII characters:

\
»\
»\

o :II00\
1 : 1010\
o :0000\

If) \

1 :1000\
1 :1001\
4 :l~lO\

o :1011\
'2 :0111\

1 !l001\
C \

o '1000\»
k \»

from the R'EDIT command set listed later and from the standard ASCII
character set. In this example, bytes are shown delimited by a I (vertical bar),
a : (colon) signals each of ten R 'EDIT commands, and three ASCII characters
are included: $, C and R.

Then the compiler emits a calling sequence to procedure R 'EDIT:

PROCEDURE R 'EDIT(T ARGET ,PDN,EDCONTROL ,PDNCNT);

to obtain the step-by-step execution of R 'EDIT shown after the R 'EDIT
Command Set.

2-75

R'EDIT (cont.)

Procedure R 'EDIT sets one internal flag when it begins:
The Significant Digit flag, set FALSE if the DIGCOUNT integer <> 0 to call
Numeric Edit. Later, this flag is set TRUE when R'EDIT detects a significant
digit in the SOURCE array, or by an explicit R'EDIT command defined later.

Or, the Significant Digit flag is set TRUE if the DIGCOUNT integer = 0 to call
Alphanumeric Edit.

Procedure R 'EDIT also sets two special characters when it begins:

The Fill character, set to ASCII (SPACE) and reset to any ASCII character
by the R'EDIT command 0110 described later.

The Float character, set to ASCII (SPACE) and reset to any ASCII character
by the R'EDIT command 1100 described later.

R'EDIT Command Set

The complete command set for procedure R'EDIT includes 13 commands.
Each command occupies a full byte of the EDITARRA Y: the left-most four
bits (0-3) contain a REPEAT integer, and the right-most bits (4-7) are the
R'EDIT command field:

Command
Field

Content

0000

Command Name, R'EDIT Action

TERMINATE EDIT
Numeric Edit:
If the current Float character is not ASCII (SPACE), replace
the last non-significant digit in the RESULT array with the
Float character. Then, unconditionally terminate R 'EDIT.

Alphanumeric Edit:
Terminate R'EDIT; do nothing else.

0001 COpy EDITARRA Y BYTES
Numeric or Alphanumeric Edit:
Copy the next REPEAT + 1 bytes of the EDITARRA Y into
the RESULT array, unconditionally.

0010 SET SIGNIFICANCE
Intended for Numeric Edit only:
Set the Significant Digit flag, subject to the REPEAT integer
and the first significant digit in the SOURCE array:

If REPEAT = 1, set (or leave) the Significant Digit flag TRUE
and save the current byte pointer to the RESULT array as the
destination for the Float character, regardless of the SOURCE
content.

2-76

R'EDIT (cont.)

Command
Field

Content Command Name, R'EDIT Action

0010
(cont)

If REPEAT <> 1 and the Significant Digit flag is FALSE and
the SOURCE content is a non-zero decimal number, respond as
if REPEAT = 1 defined above. But if anyone of these three
conditions does not exist, do nothing.

0011 COpy CHARACTERS SELECTED
Intended for Numeric Edit only:
Copy REPEAT + 1 characters into the RESULT array, subject
to the Significant Digit flag:

If the Significant Digit flag is TRUE, copy the next REPEAT +
1 bytes of the EDITARRAY.

If the Significant Digit flag is FALSE, copy the current Fill
Character REPEAT + 1 times.

0100 COpy ONE EDITARRAY BYTE
Numeric or Alphanumeric Edit:
Copy the next byte of the EDITARRAY into the RESULT
array REPEAT + 1 times.

0101 COpy ONE CHARACTER
Intended for Numeric Edit only:
Copy a single ASCII character, subject to the Significant Digit
flag:

If the Significant Digit flag is TRUE, copy the next byte of
the EDIT ARRA Y REPEAT + 1 times.

If the Significant Digit flag is FALSE, copy the Fill character
REPEAT + 1 times.

0110 CHANGE FILL CHARACTER
Intended for Numeric Edit only:
Change the Fill character to a copy of the next EDITARRAY
byte.

0111 COpy SIGN CHARACTER
Intended for Numeric Edit only: Copy one or two ASCII
characters into the RESULT array, subject to the sign of the
Packed Decimal Number and the REPEAT integer:

When the SOURCE array sign is - (minus):

If REPEAT = 0 or 1, copy the next byte in the EDIT ARRAY
once.

If REPEAT = 2, copy the next two bytes in the EDIT ARRAY
once.

2-77

R'EDIT (cont.)

Command
Field

Content Command Name, R 'EDIT Action

0111
(cont)

When the SOURCE array sign is + (plus):

If REPEAT = 0, copy a + (plus) once.

If REPEAT = 1, copy a (SPACE) once.

If REPEAT = 2, copy a (SPACE) twice.

1000 COPY SOURCE ARRAY DIGITS
Numeric Edit:
Copy the next REPEAT + 1 bytes of the SOURCE array into
the RESULT array then set (or leave) the Significant Digit flag
TRUE.

Alphanumeric Edit:
Copy the next REPEAT + 1 bytes of the SOURCE array into
the RESULT array; do nothing else.

1001 COPY SOURCE ARRAY DIGITS, SET SIGNIFICANCE
Intended for Numeric Edit only:
Copy REPEAT + 1 bytes from the SOURCE array into the
RESULT array. If the Significant Digit is FALSE, replace any
leading zeroes with the current Fill character. If a significant
digit is found in the SOURCE array during this function, set
the Significant Digit flag TRUE.

1010 COpy PUNCTUATION
Intended for Numeric Edit only:
Set (or leave) the Significant Digit flag TRUE, then copy one
punctuation character into the RESULT array, subject to the
REPEAT integer:

If REPEAT = 0, copy a ,comma.
If REPEAT = I, copy a . period.
If REPEAT = 2, copy a / slash.
If REPEAT = 3, copy a - (minus).
If REPEAT = 4, copy a (SPACE).

1011 COpy PUNCTUATION SELECTED
Intended for Numeric Edit only:
Copy one punctuation character into the RESULT array,
subject to the Significant Digit flag:

If the Significant Digit flag is TRUE, respond as if the R'EDIT
command was 1010.

If the Significant Digit flag is FALSE, copy the current Fill
character.

2-78

R'EDIT (cont.)

Command
Field

Content Command Name, R'EDIT Action

1100 CHANGE FLOAT CHARACTER
Intended for Numeric Edit only:
Change the Float character subject to the REPEAT integer and
the sign in the SOURCE array:

When REPEAT = 0, copy the next byte of the EDIT ARRA Y
regardless of the SOURCE content.

When the SOURCE array sign is - (minus):
If REPEAT = 1, copy a - (minus).
If REPEAT = 2, copy the next EDIT ARRA Y byte.
If REPEAT> 2, respond as if it = 2.

When the SOURCE array sign is + (plus):
If REPEAT = 1, copy the next EDITARRA Y byte.
If REPEAT = 2, copy a + (plus).
If REPEAT> 2, respond as if it = 2.

1101 **DO NOT USE. RESERVED FOR R'EDIT.

1110 **DO NOT USE. RESERVED FOR R'EDIT.

1111 **DO NOT USE. RESERVED FOR R'EDIT.

Returning now to the examples assumed earlier, step-by-step execution of
procedure R'EDIT is:
EOCONTROL PDN TARGET

or or Significant or
EDITARRAY SOURCE Digit flag RESULT

Content Content Before/ After Content

0 :1100 $ n/u FALSE/F ALSE (empty)
1 :1001 00 FALSE/F ALSE bb
0 :1011 n/u FALSE/F ALSE bbb
1 :1001 57 FALSE/TRUE bbb57
0 :1000 4 TRUE/TRUE bbb574
1 :1010 n/u TRUE/TRUE bbb574.
1 :1000 26 TRUE/TRUE bbb574.26
4 :1010 n/u TRUE/TRUE bbb574.26b
2 :0111 CR n/u TRUE/TRUE bbb574.26bbb
0 :0000 n/u TRUE/TRUE bb$574.26bbb

b means ASCII (SPACE)
n/u means "not used."

2-79

SECTION III
UTILITY PROCEDURES

To find the descriptions for any given procedure in this section, see the Function Directory or
Appendix A.

FUNCTION:

EXTIN'

Convert a byte array containing an input string of ASCII digits (see "Comments")
into one of four internal representations:

1. Integer.

2. Real

3. Double integer

4. LONG real

Declaration: PROCEDURE EXTIN' (STRING,W,D,TYPE,SCALE,BLANKS,
RESULT,ERROR);

VALUE D,TYPE,SCALE,BLANKS,RESULT;
BYTE ARRAY STRING;
INTEGER W,D,TYPE,SCALE,ERROR;
INTEGER POINTER RESULT;
LOGICAL BLANKS;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters
(Input): STRING = Pointer to the first byte of the byte array to be converted.

W = Upon entry, the field width w of the ASCII input string including
all special characters (see Comment 1).

D = The number of digits d to be interpreted as fraction digits (multiply
the integer field by 10-d if the input string does not include a
decimal point (see Comment 1). If a decimal point is included in
the input string, this parameter has no effect. If D is given as < O.
the procedure assumes D is O. If TYPE is 0 or -1, this parameter
is ignored.

TYPE = The internal representation desired:

0= integer

1 = real

-1 = double integer

-2 = LONG real

SCALE = The scale factor (see "Comments"). Ignored if TYPE = 0 (integer)
or -1 (double integer).

BLANKS = Treatment of imbedded blanks, a dollar sign,' and commas I in
the input:

1See "Mw.d" and "Nw.d" in Section 1.

3-1

Parameters
(Output): RESULT

ERROR

EXTIN' (cont.)

False: $ and/or commas and/or imbedded blanks are delimiters.

True: Imbedded blanks are treated as zeros; a $ and/or a comma
to the left of every third digit to the left of the decimal
point are allowed.

Pointer to the first word of result storage (in 1, 2, or 3 words)
according to the TYPE specified.

Error indicator (see "Comments"):

o Valid result, no error

1 An illegal character was detected (see Comment 5)

2 No integer or fraction value was detected (see Comment 6)

-2 Resulting number> largest representable value of TYPE
(see "Introduction")

-4 Resulting number < smallest representable value of TYPE
(see "Introduction")

-1 Number> largest representable and illegal character

-3 Number < smallest representable and illegal character

W Upon exit, the number of string characters (see Comment 5) used
to compute the result.

FORTRAN: Not callable.

Results: See "Parameters (Output)."

Errors: See "Parameters (Output)."

COMMENTS: 1. The external form of the input is a string of ASCII digits which can include
integer, fraction, and exponent subfields:

Integer field ~ Fraction field Exponent field
I~!~J---L
±n ... n.n ... nE±ee

I
(Decimal point)

3-2

EXTIN' (cont.)

NOTES: 1. A $ and comma(s) (for monetary or numeration form) in the
input are ignored, but must be provided for in parameter W.

2. The exponent field input can be any of several forms:

+e +ee Ee Eee De Dee

-e -ee E+e

E-e

E+ee D+e D+ee

E-ee D-e D-ee

where e is an exponent value digit.

2. SCALE has no effect if the input string includes an exponent field. Otherwise,
a SCALE of n sets the result to the input string value * 10-n
EXAMPLES:

STRING Array

4398.76

543.21

SCALE

3

-3

RESULT

4.39876

543210.

3. The type of the result is independent of the input string format. For example,
the input 4398.76 can be converted to integer form. The conversion rules are
as follows:

Integer (TYPE = 0) truncates a fractional input.

Real (TYPE = 1) rounds a fractional input.

Double integer (TYPE = -1) truncates a fractional input.

LONG real (TYPE = -2) rounds a fractional input.

4. Leading blanks in the input string are ignored; if BLANK is true, trailing blanks
are treated as Os.

5. If ERROR is set to an odd value, an illegal character was input; if ERROR is
odd and negative, an illegal character and illegal value was detected. The
RESULT is computed from the input string characters that preceded the de-
limiting digit or illegal character Parameter W can be used as an index into
STRING to locate that delimiter or illegal character. Here are two examples
of illegal character inputs:

+1.345A (A is illegal).

7543CUP (C, U, and P are illegal)

6. If ERROR is set to 2, no integer or fraction value was detected. Thus, no
result can be computed. Here are two examples of non-value inputs:

+.E5 (the exponent E5 has no base)

-.A (no base, no exponent)

3-3

INEXT'

FUNCTION: Convert a number in storage (in one of four internal representations) to a byte
array for an output string of ASCII digits (see "Comments"). The four internal
representations are as follows:

1. Integer

2. Real

3. Double integer

4. LONG real

Declaration: PROCEDURE INEXT' (N ,TYPE ,W,D,KIND ,SCALE,STRING ,TROUBLE);
VALUE N,TYPE,W,D,KIND,SCALE;

INTEGER POINTER N;
INTEGER TYPE,W,D,KIND,SCALE;
BYTE ARRAY STRING;
LOGICAL TROUBLE;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters
(Input): N = Pointer to the first word (in 1, 2, or 4 words) of the internal

representation to be converted.

TYPE = The type of internal representation:

° = integer

1 = real

-1 = double integer

-2 = LONG real

W = Field width w of the ASCII string, including all special characters
(see KIND).

NOTE: Set W to at least D + 6 to allow for special characters when
KIND = 3 (Gw.d format) or = 2 (Dw.d format) or = 1
(Ew.d format). If a positive scale factor is also used, set W
at least D + 7.

D = The number of fractional digits d in the ASCII string. If D is given
as 0, no fractional digits are included in the output, even though a
decimal point is included. If W ~ 0 or D < 0, an error is implied
and TROUBLE is set TRUE.

3-4

INEXT' (cont.)

KIND The kind of conversion desired:

3 for the Gw.d format:

2 for the Dw.d format:

1 for the Ew.d format:

o for the Iw format:

-1 for the Nw.d format:

-2 for the Mw.d format:

-3 for the Fw.d format:

(see "Comments")

.12345D+04

.12345E+04

1234

1,234.5

$1,234.5

1234.5

SCALE The scale factor (see "Comments").

Parameters
(Output): STRING Pointer to the first byte array for the ASCII string output. The

result occupies the first W characters (bytes) in this array.

TRUE if the field width W is too small for the result in the speci-
fied KIND, if D < 0, or if W~ 0; the byte array is filled with #'s.
FALSE if result is valid.

TROUBLE

Results: See "Parameters (Output)."

FORTRAN: Not callable.

Error: See "Parameters (Output)."

=:;OMMENTS: 1. The result STRING is an array of ASCII digits; STRING can also include the
sign character -, a decimal point, and an exponent field, for KIND = 1 or 2
(Ew.d or Dw.d formats). The exponent field always includes the letter E or
D followed by a signed two-digit integer. Or, STRING can include a sign
character -, a dollar sign for KIND = -2 (Mw.d format) and/or commas for
KIND = -2 or -3 (Mw.d or Nw.d formats).

NOTE: w = the parameter Wand d = the parameter D.

3-5

INEXT' (cont.)

2. To use KIND = 3 (Gw.d format), set D to the number of significant digits and
set W to D + 6 to allow for special characters. Then KIND = 3 is used as
KIND = -3 or 1 (Fw.d or Ew.d format), according to the absolute value of the
internal representation value N:

IF N<O.l THEN Ew.d;

IF 0.1 <N<l THEN F(w-4) . d plus 4X (spaces);

IF 1 <N < 101 THEN F(w-4) . (d-1) plus 4X;

IF 101 < N < 102 THEN F(w-4) . (d-2) plus 4X;

IF 102 < N < 103 THEN F(w-4) . (d-3) plus 4X;

IF 10(d-1) <N < 10d THEN F(w-4) .0 plus 4X;

IF 10d <N THEN Ew.d;

In general, if the number of integer digits in N is> D or = 0, KIND = 1
(the Ew.d format) is used.

EXAMPLES:

G12.6,N = 1234.5:F(w-4) . (d-4) = F8.2,4X:61234.50L,.M6

G13.7,N = 123456.7:F(w-4) . (d-4) = F9.1,4X:6123456.7M66

G9.2,N = 123.4:Ew.d = E9.2:M.12E+03

3. SCALE does not affect KIND = 0:

When KIND = 2 or 1,

the result STRING uses these factors:

a. The internal representation N fraction is multiplied by 10s (where s is
SCALE).

b. The internal representation N exponent is reduced by SCALE.

c. When SCALE is < 0, the STRING fraction has -SCALE leading Os
followed by D + SCALE significant digits.

d. When SCALE is> 0, STRING has SCALE significant digits left of the
decimal point and (D - SCALE) + 1 significant digits right of the
decimal point.

e. The least significant digit in STRING is rounded.

3-6

INEXT' (cont.)

EXAMPLES:

For each, N = 1234.5, KIND = 1, W = 11, D = 3

SCALE = 0, STRING = .6.L::.L..123E+04

SCALE = -2, STRING = .6.L::.L..001E+06

SCALE = 2, STRING = M12.35E+02

When KIND = -3 or -2 or -1,

the result STRING is the internal representation N multiplied by lOs
(where s is SCALE) then converted.

EXAMPLES:

For each, N = 1234.5, KIND = -3, W = 11, D = 3

SCALE = 0, STRING = .6.L::.L.1234.500

SCALE = -2, STRING = MM612.345

SCALE = 2, STRING = ,0,123450.000

When KIND = 3 (see Comment 2),

if KIND = 3 (Gw.d) is used asKIND = -3 (Fw.d), SCALE has no effect.

If KIND = 3 is used as KIND = 1 (Ew.d), SCALE affects STRING as
described above for KIND = 2 or 1.

3-7

ITO!'

FUNCTION: Raise an integer number base to an integer number power.

Declaration: PROCEDURE ITOI';
OPTION EXTERNAL;

An integer number B is raised to an integer power P. Use the SPLj3000
statement "TOS:=B;" to put the value of B onto the top of the stack in
one word. Use "TOS:=P;" to put the value of P onto the top of the stack
in one more word. The integer result overlays the first word and the re-
maining word is deleted from the stack.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

ATTRIBUTES:

Values: B = 0, P = any integer number ~ 0, or
B = any integer number =F 0, P = any integer number
(B is the base, P is the power).

Result: An integer number.

FORTRAN: Not callable.

Error: If B = ° and P < 0, SOFTERROR' message: ITOI': ILLEGAL ARGUMENTS
occurs (see "Library Errors").

I
CA UTION: If the result exceeds the range of integer numbers [-32768, 32767J, the

arithmetic trap INTEGER OVERFLOW may occur (if traps are enabled).

3-8 Nov 1976

DTOI'

FUNCTION: Raise a double integer number base to an integer number power.

Declaration: PROCEDURE DTOI';
OPTION EXTERNAL;

A double integer number B is raised to an integer power P. Use the
SPL/3000 statement "TOS :=B;" to put the value of B onto the top of
the stack in two words. Use "TOS:=P;" to put the value of P onto the
top of the stack in one more word. The double integer result overlays
the first two words and the remaining word is deleted from the stack.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

ATTRIBUTES:

Values: B = °D, P = any integer number ,> 0, or
B = any double integer number *- 0, P = any integer number
(B is the base, P is the power).

Result: A double integer number.

FORTRAN: Not callable.

Error: If B = ° and P < 0, SOFTERROR' message: DTOI': ILLEGAL ARGUMENTS
occurs (see "Library Errors").

CAUTION: If the result exceeds the range of double integer numbers [-2147483648,
2147483647], the arithmetic trap INTEGER OVERFLOW may occur I
(if traps are enabled).

Nov 1976 3-9

DTOD'

FUNCTION: Raise a double integer number base to a double integer number power.

Declaration: PROCEDURE DTOD';
OPTION EXTERNAL;

A double integer number B is raised to a double integer power P. Use the
SPL/3000 statement "TOS:=B;" to put the value of B onto the top of the
stack in two words. Use "TOS :=P;" to put the value of P onto the top of
the stack in two more words. The double integer result overlays the first
two words and the remaining two words are deleted from the stack.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE: .

ATTRIBUTES:

Values: B = 0 D, P = any double integer number > 0, or
B = any double integer number *' 0, P = any double integer number
(B is the base, P is the power).

Result: A double integer number.

FORTRAN: Not callable.

Error: If B = 0 and P < 0, SOFTERROR' message: DTOD': ILLEGAL ARGUMENTS
occurs (see "Library Errors").

I
CAUTION: If the result exceeds the range of double integer numbers [-2147483648,

2147483647J, the arithmetic trap INTEGER OVERFLOW may occur
(if traps are enabled).

3-10 Nov 1976

RTOI'

FUNCTION: Raise a real number base to an integer number power.

Declaration: PROCEDURE RTOI';
OPTION EXTERNAL;

A real number B is raised to an integer power P. Use the SPLj3000
statement "TOS:=B;" to put the value of B onto the top of the stack
in two words. Use "TOS:=P;" to put the value of P onto the top of
the stack in one more word. The real result overlays the first two
words and the remaining word is deleted from the stack.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

ATTRIBUTES:

Values: B = 0.0, P = any integer number > 0, or
B = any real number =1= 0.0, P = any integer number
(B is the base, P is the power).

Result: A real number.

FORTRAN: Not callable.

Error: If B = 0.0 and P < 0, SOFTERROR' message: RTOI': ILLEGAL ARGUMENTS
occurs (see "Library Errors").

CA UTION: If the result is outside the range of real num bers (see "Introduction "),
the arithmetic traps FLOATING POINT OVERFLOW or FLOATING
POINT UNDERFLOW may occur (if traps are enabled). I

Nov 1976 3-11

RTOD'

FUNCTION: Raise a real number base to a double integer number power.

Declaration: PROCEDURE RTOD';
OPTION EXTERNAL;

A real number B is raised to a double integer power P. Use the SPL/3000
statement "TOS:=B;" to put the value of B onto the top of the stack in
two words. Use "TOS :=P;" to put the value of P onto the top of the stack
in two more words. The real result overlays the first two words and the
remaining two words are deleted from the stack.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

ATTRIBUTES:

Values: B = 0.0, P = any double integer number> 0, or
B = any real nurnber s= 0.0, P = any double integer number
(B is the base, P is the power).

Result: A real number.

FORTRAN: Not callable.

Error: If B = 0.0 and P < 0, SOFTERROR' message: RTOD': ILLEGAL
ARGUMENTS occurs (see "Library Errors").

I
CA UTION: If the result is outside the range of real num bers (see "Introduction "),

the arithmetic traps FLOATING POINT OVERFLOW or FLOATING
POINT UNDERFLOW may occur (if traps are enabled).

3-12 Nov 1976

RTOR'

FUNCTION: Raise a real number base to a real number power.

Declaration: PROCEDURE RTOI';
OPTION EXTERNAL;

A real number B is raised to a real power P. Use the SPL/3000 statement
"TOS:=B;" to put the value of B onto the top of the stack in two words.
Use "TOS :=P;" to put the value of P onto the top of the stack in two
more words. The real result overlays the first two words and the remain-
ing two words are deleted from the stack.

Method: One of three methods is used:

1. If B = 0.0 and P> 0.0, the result is set to 0.0.
2. If B ~ 0.0 and P = 0.0, the result is set to 1.0.
3. If B > 0.0 and P =I=- 0.0, result = EXP(P*ALOG(B)).

Accuracy: See EXP and ALOG.

ATTRIBUTES:

Values: B = 0.0, P = any real number ~ 0.0, or
B > 0.0, P = any real number
(B is the base, P is the power).

Result: A non-negative real number.

FORTRAN: Not callable.

Error: If B = 0.0 and P < 0.0 or if B < 0.0, SOFTERROR' message RTOR':
ILLEGAL ARGUMENTS occurs (see "Library Errors"); or see EXP
and ALOG.

3-13

RTOL'

FUNCTION: Raise a real number base to a LONG real number power and return the result
as a LONG real number.

Declarations: LONG real numbers in SPLj3000 programs are represented in four words
(see "Internal Representation" in the "Introduction"). A real number B is
raised to a LONG real power P by one of two procedures called by compiler-
generated code. Each of the procedures is declared in the following format,
to allow P to be call-by-reference or call-by-value:

PROCEDURE RTOLf';
OPTION EXTERNAL;

where

f V or R, for the second parameter (P):

Method:

V = call-by-value; use SPLj3000 statement "TOS := B;" to set B
value on top-of-stack in two words, use "TOS := P;" to set P
value on top-of-stack in four more words, overlay the result
on the first four words, then delete the remaining two words
from the stack.

R = call-by-reference; use SPLj3000 statement "TOS := B;" to set B
value on top-of-stack in two words, use "TOS := @P;" to set P
reference address on top-of-stack in one more word. Use
"TOS := 0;" to put an integer zero onto the stack in one more
word. The result overlays these four words.

One of three methods is used:

1. If B = 0.0 and P> 0.0, the result is set to 0.0.

2. If B ;;;,0.0 and P = 0.0, the result is set to 1.0.

3. If B > 0.0 and P =F 0.0, result = DEXP(P*DLOG(LONG(B))).

Accuracy: See EXP and ALOG.

ATTRIBUTES:

Parameters: B = 0.0, P ;;;,0.0, or

B> 0.0, P = any LONG real number (B is the base,P is the power).

Result: A non-negative LONG real number.

FORTRAN: Not callable.

Errors: If B = 0.0 and P < 0.0, or if B< 0.0, SOFTERROR' message RTOL': ILLEGAL
ARGUMENTS occurs (see "Library Errors"). Or, see EXP and ALOG.

3-14

LTOI'

FUNCTION: Raise a LONG real number base to an integer number power.

Declarations: LONG real numbers in SPL/3000 programs are represented in four words
(see "Internal Representation" in the "Introduction"). A LONG real base B
is raised to an integer power P by one of two procedures called by compiler-
generated code. Each of the procedures is declared in the following format
to allow B to be call-by-reference or call-by-value:

PROCEDURE LTOIf';
OPTION EXTERNAL;

where

f V or R for the first parameter B:

V = call-by-value; use the SPL/3000 statement "TOS :=B;" to
put the value of B onto the top of the stack in four words.
Use "TOS :=P;" to put the value of P onto the top of the
stack in one more word. The result overlays the first four
words and the remaining word is deleted from the stack.

R = call-by-reference; use the SPL/3000 statement "TOS :=@B;"
to put the address of B onto the top of the stack in one word.
Use "TOS :=P;" to put the value of P onto the top of the stack
in one more word. Use "TOS := OD;" to put a double integer "0"
onto the top of the stack in two more words. The result overlays
these four words.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

ATTRIBUTES:

Values: B = O.OL, P = any integer number> 0, or
B = any LONG real number *- 0.0, P = any integer number
(B is the base, P is the power).

Result: A LONG real number.

FORTRAN: Not callable.

Errors: If B = 0.0 and P < 0, SOFTERROR' message LTOD': ILLEGAL
ARGUMENTS occurs (see "Library Errors").

CA UTION: If the result is outside the range of LONG real numbers (see "Introduction "),
the arithmetic traps EXTENDED PRECISION OVERFLOW or EXTENDED
PRECISION UNDERFLOW may occur (if traps are enabled). I

3-15

Nov 1976

LTOD'

FUNCTION: Raise a LONG real number base to a double integer number power.

Declarations: LONG real numbers in SPL/3000 programs are represented in four words
(see "Internal Representation" in the "Introduction"). ~Il.LONG real base B
is raised to a double integer power P by one of two procedures called by
compiler-generated code. Each of the procedures is declared in the following
format to allow B to be call-by-reference or call-by-value:

PROCEDURE LTODf';
OPTION EXTERNAL;

where

Method:

f V or R for the first parameter B:

V ==call-by-value; use the SPL/3000 statement "TOS :==B;"to
put the value of B onto the top of the stack in four words.
Use "TOS:==P;" to put the value of P onto the top of the
stack in two more words. The result overlays the first four
words and the remaining two words are deleted from the stack.

R ==call-by-reference; use the SPL/3000 statement "TOS :==@B;"
to put the address of B onto the top of the stack in one word.
Use "TOS :==P;"to put the value of P onto the top of the stack
in two more words. Use "TOS .= 0;" to put an integer zero
onto the stack in one more word. The result overlays these
four words.

P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

ATTRIBUTES:

Values: B ==O.OL, P ==any double integer numbsr > 0, or
B ==any LONG real number '* 0.0, P ==any double integer number
(B is the base, P is the power).

Result: A LONG real number.

FORTRAN: Not callable.

Errors: If B ==0.0 and P < 0, SOFTERROR' message LTOD': ILLEGAL
ARGUMENTS occurs (see "Library Errors").

I
CAUTION: If the result is outside the range of LONG real numbers (see "Introduction"),

the arithmetic traps EXTENDED PRECISION OVERFLOW or EXTENDED
PRECISION UNDERFLOW may occur (if traps are enabled).

3-16 Nov 1976

LTOL'

FUNCTION: Raise a LONG real number base to a LONG real number power.

Declarations: LONG real numbers in SPL/3000 programs are represented in four words
(see "Internal Representation" in the "Introduction"). A LONG real base B
is raised to a LONG real power P by one of four procedures called by compiler-
generated code. Each of the procedures is declared in the following format to
allow any combination of call-by-reference or call-by-value parameters:

PROCEDURE LTOLfd2 ';
OPTION EXTERNAL;

where

f t = V or R for the first parameter B:

V = call-by-value; use SPL/3000 statement "TOS := B;" to set B
value on top-of-stack in four words.

R = call-by-reference; use SPL/3000 statement "TOS := @B;" to
set B reference address on top-of-stack in one word.

f2 = V or R, for second parameter P:

V = call-by-value:

1. If t, is R, one word is on top-of-stack, use SPL/3000 state-
ment "TOS := P;" to set P value on top-of-stack in four more
words (five words total), overlay result on the first four
words, then delete the remaining word from the stack.

2. If t, is V, four words are on top-of-stack, use SPL/3000 state-
ment "TOS := P;" to set P value on top-of-stack in four more
words (eight words total), overlay result on the first four words,
then delete the remaining four words from the stack.

R = call-by-reference:

1. If t, is R, one word is on top-of-stack, use SPL/3000 statement
"TOS := @P;" to set P reference address on top-of-stack in
one word, use "TOS := OD;" to set a double integer "0" on
the top-of-stack in two more words (four words total), then
overlay the result on those four words.

2. If t, is V, four words are on top-of-stack, use SPL/3000
statement "TOS := @P;" to set P reference address on
top-of-stack in one more word (five words total), overlay
result on the first four words, then delete the remaining
word from the stack.

3-17

LTOL' (cont.)

Method: One of three methods is used:

1. If B = 0.0 and P> 0.0, the result is set to 0.0.

2. If B ;;;.0.0 and P = 0.0, the result is set to 1.0.

3. If B > 0.0 and P =1= 0.0, result = DEXP(P*DLOG(B)).

Accuracy: See DEXP and DLOG.

ATTRIBUTES:

Parameters: B = 0.0, P ;;;.0.0 or

B> 0.0, P = any LONG real number (B is the base, P is the power).

Result: A LONG real number.

FORTRAN: Not callable.

Errors: If B = 0.0 and P < 0.0, or if B < 0.0, SOFTERROR' message LTOL':
ILLEGAL ARGUMENTS occurs (see "Library Errors"). Or, see DEXP
and DLOG.

3-18

CTOI'

FUNCTION: Raise a complex number base to an integer number power.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

A complex base B is raised to an integer power P by one of two procedures
called by compiler-generated code. Each of the procedures is declared in the
following format to allow B to be call-by-reference or call-by-value:

PROCEDURE CTOIf';
OPTION EXTERNAL;

where

f V or R for the first parameter B:

V = call-by-value; use the SPL/3000 statement "TOS:=B(O);" to
put the value of the real part of B onto the top of the stack in
two words. Use "TOS:=B(l);" to put the imaginary part of B
onto the top of the stack in two more words. Use "TOS:=P;"
to put the value of P onto the top of the stack in one more word.
The result overlays the first four words and the remaining word
is deleted from the stack.

R = call-by-reference; use the SPL/3000 statement "TOS:=@B;" to
put the address of B onto the top of the stack in one word.
Use "TOS :=P;" to put the value of P onto the top of the stack
in one more word. Use "TOS:= OD;" to put a double integer
"0" onto the top of the stack in two more words. The result
overlays these four words.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

ATTRIBUTES:

Values: B = a complex number = 0.0 (a = b = 0.0), P = any integer ~ 0, or
B = any complex number representable in two real numbers, one for a and

one for b; a and b are not both 0.0, P = any integer number
(B is the base, P is the power).

Result: A complex number.

FORTRAN: Not callable.

Errors: If a and b of B = 0.0 and P < 0, SOFTERROR' message CTOI ':ILLEGAL
ARGUMENTS occurs (see "Library Errors").

CAUTION: If a or b of the result is outside the range of real numbers (see "Introduction"),
the arithmetic traps FLOA TING POINT 0VERFLO W or FLOA TING POINT
UNDERFLOW may occur (if traps are enabled). I

Nov 1976 3-19

CTOD'

FUNCTION: Raise a complex number base to a double integer number power.

Declaration: Complex numbers in FORTRANj3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b. Thus, complex numbers occupy four words (see "Internal
Representation" in the "Introduction").

A complex base B is raised to a double integer power P by one of two pro-
cedures called by compiler-generated code. Each of the procedures is declared
in the following format to allow B to be call-by-reference or call-by-value:

PROCEDURE CTODf';
OPTION EXTERNAL;

where

f V or R for the first parameter B:

V = call-by-value; use the SPLj3000 statement "TOS:=B(O);" to
put the value of the real part of B onto the top of the stack in
two words. Use "TOS:=B(l);" to put the imaginary part of B
onto the top of the stack in two more words. Use "TOS:=P;"
to put the value of P onto the top of the stack in two more
words. The result overlays the first four words and the remain-
ing two words are deleted from the stack.

R = call-by-reference; use the SPLj3000 statement "TOS:=@B;" to
put the address of B onto the top of the stack in one word. Use
"TOS:=P;" to put the value of P onto the top of the stack in
two more words. Use "TOS:=O;" to put an integer "0" onto
the top of the stack in one more word. The result overlays
these four words.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

ATTRIBUTES:

Values: B = a complex number = 0.0 (a = b = 0.0), P = any double integer? 0, or
B = any complex number representable in two real numbers, one for a and

one for b; a and b are not both 0.0, P = any double integer number
(B is the base, P is the power).

Result: A complex number.

FORTRAN: Not callable.

3-20

CTOD' (cont.)

Errors: If a and b of B = 0.0 and P < 0, SOFTERROR' message CTOD': ILLEGAL
ARGUMENTS occurs (see "Library Errors").

CA UTION: If a or b of the result is outside the range of real numbers (see "Introduction "),
the arithmetic traps FLOATING POINT OVERFLOW or FLOATING POINT
UNDERFLOW may occur (if traps are enabled).

Nov 1976 3-21

I

Complex Arithmetic

Complex numbers in FORTRAN/3000 programs are represented as an ordered pair (a two-element
array) of real numbers, one for the real part a and one for the imaginary part b. Thus, complex
numbers occupy four words (see "Internal Representation" in the "Introduction").

Complex expressions (for example, X := Y + Z) are evaluated through primary complex-arithmetic
procedures: ADDC .. .', SUBC.. .', MLTC .. .', and DIVC .. .' called by compiler-generated code.

Declaration

For each of the arithmetic operations there are eight entry point procedures to allow any com-
bination of call-by-reference or call-by-value parameters. Each of the entry-point procedures
is declared as follows:

PROCEDURE ADDCf 1 f2 f 3'
OPTION EXTERNAL;

or

PROCEDURE SUBCfl t.t,';
OPTION EXTERNAL;

or

PROCEDURE MLTCfd2f3';
OPTION EXTERNAL;

or

PROCEDURE DIVCfd2f3 ';
OPTION EXTERNAL;

where

t, = V or R, for first parameter (subtraction minuend or division dividend):

V = call-by-value; use SPL/3000 statement "TOS := Y(O);" to set Y real-part value on
top-of-stack in two words, then use "TOS := Y(l);" to set Y imaginary-part
value on top-of-stack in two more words (four words total).

R = call-by-reference; use SPLj3000 statement "TOS := @Y;" to set Y reference
address on top-of-stack in one word.

f2 = V or R, for second parameter (subtraction subtrahend or division divisor):

V = call-by-value; use SPL/3000 statement "TOS := Z(O);" to set Z real-part value
on top-of-stack in two words, then use "TOS := Z(l);" to set Z imaginary-part
value on top-of-stack in two more words (four words total).

R = call-by-reference; use SPLj3000 statement "TOS := @Z;" to set Z reference
address on top-of-stack in one word.

3-22

Complex Arithmetic (cont.)

f3 = V or R, for result parameter:

V = call-by-value:

1. If t, and f2 are R, two words are on top-of-stack; use SPL/3000 statement
"TOS := OD;" to set the double integer "0" on top-of-stack in two more
words, then overlay the result value on those four words.

2. If t,or f2 is V, five or more words are on top-of-stack; overlay the result value
on the first four words, then delete the remaining word(s) from the stack.

R = call-by-reference; use SPL/3000 statement "TOS :=@X;" to set result reference
address on top-of-stack in one word, return result to that address, then delete
the address and all of the first and second parameters from the stack.

EXAMPLES (of three of eight possible combinations):

aopCRRV'

NOTE:
aop = ADD or

SUB or
MLTor
DIV

aopCVVV'

aopCRRR'

Upon Entry

(Yaddress)

(Z address)

- OD -

Y (real p)

Y (irngnry p)

Z (real p)

Z(imgnry p)

(Yaddress)

(Z address)

(X address)

After Return

(Overlays Y,Z address
and OD)

r- X (real p) -

1-------
r- X(imgnry p) -

X (real p) (Overlays Y,Z)

X (imgnry p)

3-23

Complex Arithmetic (cont.)

ATTRIBUTES:

Parameters: Any complex number representable in two real numbers, one for a and one
for b.

Result: Any complex number representable in two real numbers, one for a and one
for b.

FORTRAN: Not callable.

Error: None.

I
CA UTION: The arithmetic traps FLOATING POINT OVERFLOW, FLOATING POINT

UNDERFLOW, or FLOATING POINT DIVIDE BY ZERO may occur (if
traps are enabled).

3-24 Nov 1976

Complex Negate

Complex numbers in FORTRAN/3000 programs are represented as an ordered pair (a two-element
array) of real part a and one for the imaginary part b. Thus, complex numbers occupy four words
(see "Internal Representation" in the "Introduction").

Complex negate operations (for example, X :== - Y) are evaluated through one of four procedures
called by compiler-generated code.

Declaration

Each of these procedures is declared in the following format, to allow any combination of
call-by-reference or call-by-value parameters:

PROCEDURE NEGCfd2 ';
OPTION EXTERNAL;

where

t, == V or R, for the first parameter:

V == call-by-value; use SPL/3000 statement "TOS .= Y(O);" set Y real-part value on
top-of-stack in two words, then use "TOS := Y(l);" to set Y imaginary-part value
on top-of-stack in two more words (four words total).

R == call-by-reference; use SPL/3000 statement "TOS .= @Y;" to set Y reference
address on top-of-stack in one word.

t, == V or R, for the result parameter:

V == call-by-value:

1. If t, is R, one word is on top-of-stack; use SPL/3000 statement "TOS .= OD;"
to set the double integer "0" on top-of-stack in two more words, use
"TOS .= 0;" to set the integer "0" on top-of-stack in one more word, then
overlay the result on those four words.

2. If t, is V, four words are on top-of-stack; overlay the result value on those
four words.

R == call-by-reference; use SPL/3000 statement "TOS .= @X;" to set the result refer-
ence address on top-of-stack in one word, return result to that address, then
delete the address and all of the first parameter from the stack.

3-25

Complex Negate (cont.)

EXAMPLES (of three of four possible combinations):

Upon Entry

NEGCRV' (Yaddress)

I-- OD -

0

NEGCVV' Y (real p) -

1-------

I-- Y (imgnry p) -

NEGCRR'

(X address)

(Yaddress)

ATTRIBUTES:

After Return

r- X (real p) - (Overlays Yaddress
and OD and 0)r-.-----

r-- X (imgnry p) -

(Overlays Y)I-- X (real p) -

1--- - ---

- X (imgnry p) -

Parameter: Any complex number representable in two real numbers, one for a and one
for b.

Result: Any complex number in which neither the real part a nor the imaginary part b
is _T2S6; that value is internally represented by a 1 followed by 47 O's; there
is no positive counterpart. (See "Internal Representation" in the
"Introduction") .

FORTRAN: Not callable.

Error: None.

COMMENT: Indicator is CCA.

3-26

Complex Compare

Complex numbers in FORTRAN/3000 programs are represented as an ordered pair (a two-element
array) of real numbers, one for the real part a and one for the imaginary part b. Thus, complex
numbers occupy four words (see "Internal Representation" in the "Introduction").

Complex compare operations (for example, X:Y) are evaluated through one of four procedures called
by compiler-generated code.

Declaration

Each of the procedures is declared in the following format, to allow any combination of
call-by-reference or call-by-value parameters:

PROCEDURE CMPCflf2 ';
OPTION EXTERNAL;

where

t, = V or R, for the first parameter:

V = call-by-value; use SPL/3000 statement "TOS := Y(O);" to set Y real-part value on
top-of-stack in two words, then use "TOS := Y(l);" to set Y imaginary-part value
on top-of-stack in two more words (four words total).

R = call-by-reference; use SPL/3000 statement "TOS := @Y;" to set Y reference
address on top-of-stack in one word.

f2 = V or R, for the second parameter:

V = call-by-value; use SPL/3000 statement "TOS := X(O);" to set X real-part value
on top-of-stack in two words, then use "TOS := X(l);" to set X imaginary-part
value on top-of-stack in two more words (four words total).

R = call-by-reference; use SPL/3000 statement "TOS := @X;" to set X reference
address on top-of-stack in one word.

NOTE: All words of the first and second parameters are deleted from the stack
after the result is set as defined in "Attributes."

ATTRIBUTES:

Parameters: Any complex numbers each representable in two real numbers, one for a and
one for b.

3-27

Complex Compare (cont.)

Result: Condition code:

If X(O) < Y(O), CC = CCL

If X = Y, CC = CCE

If X(O) > Y(O), CC = CCG

FORTRAN: Not callable.

Error: None.

3-28

FTNAUX'

FUNCTION: Normally called only by FORTRAN/3000 compiler generated code to
implement the FORTRAN auxiliary I/O statements REWIND, BACKSPACE,
and ENDFILE. A FORTRAN/3000 program can request other actions too,
through the procedure UNITCONTROL described later in this section.

Declaration' PROCEDURE FTNAUX' (OPT,UNIT);
VALUE OPT,UNIT;INTEGER OPT,UNIT;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: OPT: An integer to specify the action:

-1 : REWIND (but don't close the file)
0: BACKSPACE
1: ENDFILE (write an EOF mark)
2: SKIP BACKWARD TO A TAPE MARK
3: SKIP FORWARD TO A TAPE MARK
4: UNLOAD TAPE AND CLOSE THE FILE
5: LEAVE TAPE AND CLOSE THE FILE
6: CONVERT FILE TO PRE-SPACING*
7: CONVERT FILE TO POST-SPACING*
8: CLOSE FILE

UNIT: A positive integer in the range [1,99] to specify the FORTRAN
Logical Unit Table (FLUT) entry (see "Comments") or a negated
MPE/3000 file number (SPL/3000 callers only).

Result: See "Comments."

FORTRAN: Implicitly called through the auxiliary I/O statements REWIND, BACKSPACE
and ENDFILE.

Errors: See "Comments."

COMMENTS: 1. The following comments refer to descriptions in the MPE Intrinsics
Reference Manual and the Systems Programming Language Reference
Manual.

2. If the FORTRAN/3000 compiler generates the call to FTNAUX' (from
the FORTRAN auxiliary I/O statements REWIND, BACKSPACE and
ENDFILE), the parameter OPT is set to -1, 0 or 1, respectively. Further,
a FORTRAN Logical Unit Table (FLUT) is prepared in the user's DB
Data Area by the MPE/3000 system loader.

*See the discussion of file control operations in the MPE Intrinsics Reference Manual.

3-29

FTNAUX' (cont.)

3. SPL/3000 users can call FTNAUX' directly, if desired. If UNIT is a
negated file number, that file number must have been opened by use of
the MPE/3000 file intrinsic FOPEN. If UNIT is a positive integer in the
range [1,99] (a FORTRAN Logical Unit), the SPL/3000 user must have
created a FLUT, as described in Section I, "File System Requirements."

4. If UNIT = 0 or UNIT> 99, the report FILE NOT IN TABLE FOR
UNIT #xx occurs (see Section I, "FORMATTER ERROR REPORTS")
and the user's program is aborted.

If UNIT is a positive integer in the range [1,99], FTNAUX' checks the
FLUT for that UNIT number. If there is no corresponding U entry, the
Formatter error report FILE NOT IN TABLE FOR UNIT #xx occurs.
If a corresponding U entry is found and the F entry for that is 0, an
MPE/3000 file intrinsic FOPEN call is made with nominal FORTRAN
file parameters (see Section I, "File System Requirements"). Those
parameters include the file name built by appending the UNIT number
to the ASCII characters FTN. For example, the file name for UNIT 3 is
FTN03. There are two exceptions to the construction of file names:
FORTRAN/3000 defines UNIT 5 to be $STDIN and UNIT 6 to be
$STDLIST. If the FOPEN intrinsic is not successful (indicated by con-
dition code CCL), the Formatter Error Report FILE SYSTEM ERROR
occurs.

5. Three other entries to this procedure FTNAUX' are available to
FORTRAN/3000 users:

UNITCONTROL provides any of the actions described under
parameter OPT.

FNUM returns the MPE/3000 system file number assigned to a
given FORTRAN Logical Unit Number.

FSET enables the user to change the MPE/3000 system file
number assigned to a given FORTRAN Logical Unit Number.

For further details, see procedures UNITCONTROL, FNUM and FSET,
later in this section.

6. REWIND and BACKSPACE actions are provided, historically, for control
of magnetic tape files. If the device referenced has no physical capability
corresponding to the OPT (action) request, no action occurs.

7. For the OPT value -1, an MPE/3000 file intrinsic FCONTROL call is
made with controlcode = 5. This may invoke a physical operation on the
device referenced.

3-30

FTNAUX' (cont.)

8. For the OPT value 0, an MPE/3000 file intrinsic FSPACE call is made
with displacement == -1. This may invoke a physical operation on the
device referenced.

9. For the OPT value 1, an MPE/3000 file intrinsic FCONTROL call is
made with controlcode = 6.

10. For the OPT values listed below, MPE/3000 file intrinsic FCONTROL
calls are made with controlcode only or controlcode and param set as
follows:

OPT controlcode param

2 7 (not used)
3 8 (not used)
6 1 4018
7 1 4008

11. For the OPT values listed below, MPE/3000 file intrinsic FCLOSE calls
are made with disposition set to:

OPT

4
5
8

disposition

1
3
o

12. If OPT is a value outside the range [-1,8], the Formatter Error Report
UNDEFINED OPTION ON UNIT #xx occurs.

13. Either of the Formatter Error Reports FILE SYSTEM ERROR ON UNIT
#xx or END OF FILE ERROR ON UNIT #xx can occur.

3-31

UNITCONTROL

FUNCTION: A secondary entry point to procedure FTNAUX'. UNITCONTROL enables
a FORTRAN/3000 program to request any of the actions listed below under
OPT for any FORTRAN Logical Unit.

Declaration: PROCEDURE UNITCONTROL(UNIT,OPT);
INTEGER UNIT,OPT;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: UNIT: A positive integer in the range [1,99] to specify the FORTRAN
Logical Unit Table (FLUT) entry (see "Comments") of the file
device to be used.

OPT: An integer to specify the action:

-1: REWIND (but don't close the file)
0; BACKSPACE
1: ENDFILE (write an EOF mark)
2: SKIP BACKWARD TO A TAPE MARK
3: SKIP FORWARD TO A TAPE MARK
4: UNLOAD TAPE AND CLOSE THE FILE
5: LEAVE TAPE AND CLOSE THE FILE
6: CONVERT FILE TO PRE-SPACING*
7: CONVERT FILE TO POST-SPACING*
8: CLOSE FILE

Result: See "Comments."

FORTRAN: Callable as an external subroutine:

CALL UNITCONTROL(12,6)

Errors: See "Comments."

COMMENTS: 1. If UNIT ~ 0 or UNIT> 99, the report FILE NOT IN TABLE FOR
UNIT #xx occurs (see Section I, "FORMATTER ERROR REPORTS")
and the user's program is aborted.

If UNIT is in the range required, UNITCONTROL checks the FLUT (see
Section I, "File System Requirements") for that UNIT number. If there
is no corresponding U entry, the Formatter Error Report FILE NOT IN
TABLE FOR UNIT #xx occurs and the user's program is aborted. If a

*See the discussion of file control operations in the MPE Intrinsics Reference Manual.

3-32

UNITCONTROL (cont.)

corresponding U entry is found and the F entry for that is 0, an
MPE/3000 file intrinsic FOPEN call is made, as described in Comment 4
for FTNAUX'.

2. For each of the actions available through this procedure, one or another
MPE/3000 file intrinsic is called, as described in Comments 7 through 11
for FTNAUX'.

3. If OPT is a value outside the range [-1,8] , the Formatter Error Report
UNDEFINED OPTION ON UNIT #xx occurs and the user's program is
aborted.

4. Either of the Formatter Error Reports FILE SYSTEM ERROR ON
UNIT #xx or END OF FILE ON UNIT #xx can occur.

3-33

FNUM

FUNCTION: A secondary entry point to procedure FTNAUX'. FNUM enables a
FORTRAN/3000 program to extract the MPE/3000 system file number
assigned to a given FORTRAN Logical Unit Number from the FORTRAN
Logical Unit Table. See "FTNAUX' " in this section.

Declaration: INTEGER PROCEDURE FNUM(UNIT);
INTEGER UNIT;

OPTION EXTERNAL;

ATTRIBUTES:

Parameter: UNIT, a positive integer in the range [1,99] to specify the FORTRAN
Logical Unit Table (FLUT) entry (see "Comments" for procedure FTNAUX')
to be used.

Result: An integer number, the MPE/3000 system file number for the UNIT specified.

FORTRAN: Callable as an external function: I = FNUM(UNIT)

NOTE: FNUM must be declared an
INTEGER FUNCTION

Errors: If UNIT is not in the range required, or if there is no corresponding U entry in
the FLUT, the report FILE NOT IN TABLE FOR UNIT #xx (see Section I,
"FORMATTER ERROR REPORTS") occurs and the user's program is aborted.

3-34

FUNCTION:

FSET

A secondary entry point to procedure FTNAUX'. FSET enables a FORTRAN!
3000 program to change the MPE!3000 system file number assigned to a given
FORTRAN Logical Unit Number in the FORTRAN Logical Unit Table. See
"FTNAUX' "in this section.

Declaration: PROCEDURE FSET(UNIT,NEWFILE,OLDFILE);
INTEGER UNIT,NEWFILE,OLDFILE;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters:
(input)

Parameter:
(output)

Result:

FORTRAN:

Errors:

COMMENTS:

UNIT, a positive integer in the range [1,99] to specify the FORTRAN Logical
Unit Table (FLUT) entry (see "Comments" for procedure FTNAUX') for which
the change is to be made.

NEWFILE, a positive integer in the range [1,254] to specify the new MPE!
3000 system file number to be assigned to the UNIT specified above.

OLDFILE, a positive integer; the previous MPE!3000 system file number
assigned to the UNIT specified above.

See "Parameter (output)," above.

Callable as an external subroutine:

CALL FSET(3,FNUMB,OLD)

See "Comments."

1. If UNIT is not in the range required, or if there is no corresponding U
entry in the FLUT, the report FILE NOT IN TABLE FOR UNIT #xx
(see Section I, "FORMATTER ERROR REPORTS") occurs and the
user's program is aborted.

2. If NEWFILE is not in the range required, the Formatter Error Report
INVALID FILE NUMBER FOR UNIT #xx occurs and the user's
program is aborted.

3. If the value returned to OLDFILE is 0, that file was not open and
remains unopened.

3-35

I FUNCTION:

DATELINE

Fill a byte array with formatted date and time information.

Declaration: PROCEDURE DATELINE(BUF);
BYTE ARRAY BUF;

OPTION EXTERNAL;

iH' '1ES:

Parameter: A pointer to the first byte of the array.

Result: The byte array is filled as described in Comment 1.

FORTRAN: Callable as an external subroutine, as described in Comment 2.

Error: None.

COMMENTS: 1. The byte array must be at least 27 bytes (characters) long; the first 27
bytes are filled as follows:

Byte(s)

1-3
4-5
6-8

9
10-11
12-13
14-17
18-19
20-21
22
23-24
25
26-27

Contain(s)

Day of the week (SUN,MON,TUE,WED,THU,FRI,SAT)
A comma and a blank (,6)
Month of the year (JAN,FEB,MAR,APR,MAY,JUN,

JUL,AUG,SEP,OCT,NOV,DEC)
A blank (6)
Day of the month (61 through 31)
A comma and a blank (,6)
The year
A comma and a blank (,6)
The hour (61 through 12)
A colon (:)
The minute (00 through 59)
A blank (6)
AM or PM

2. A sample FORTRAN use:
CHARACTER S*27

CALL DATELINE(S)
DISPLAY 8[6:11]

which displays the month, day and year only.

3-36 Nov 1976

PRINTFILEINFO (or PRINT 'FILE' INFO)

FUNCTION: Print a File Information Display on the job or session list device $STDLIST.

This procedure is called normally only by an MPE/3000 subsystem or an
MPE/3000 utility program. However, this procedure can be called explicitly
by a user's program.

Declaration: PROCEDURE PRINTFILEINFO(FNUM);
or

PROCEDURE PRINT 'FILE' INFO(FNUM);
VALUE FNUM; INTEGER FNUM;

OPTION EXTERNAL;

ATTRIBUTES:

Parameter: Any MPE/3000 file number currently available to the calling program.

Result: A File Information Display in either of two formats described under Comment.

FORTRAN: Callable as an external subroutine:

CALL PRINTFILEINFO(\FILENUM\)

where:
FILENUM is the MPE/3000 file number, and
\ \ (the two backslashes) tell FORTRAN/3000 to pass this parameter by
value rather than by reference.

Also callable through use of the SYSTEM INTRINSIC statement. I
Error: None.

COMMENT: A short display of only two or three lines occurs if access to the MPEj3000
file number (FNUM or FILENUM) is blocked or if that file number is
undefined in the MPE/3000 file system in use.

+ - F - I - L - F. - - - I - r\J - F - (j - k - [\1- A - T - 1 - o - i\j - - - f) - I - S - P - L - A - Y +
Line 1 --7 f-IU: '\JUMt:kt--i ;4 l~ l!Nt)t:FIi'JlL).
Line 2 --7 ERROR NUtv1t1lR: "if; I-H.:' I 'JUE: ()
Line 3 --7 t:3L 0 C K 1'.1U 1v1 t.-> t:. R: U N lJ M k t C: 0

+ ••------------------~----------------------------+
where lines 1 through 3 are explained on the next page.

Nov 1976 3-37

PRINTFILEINFO (or PRINT 'FILE' INFO) (cont.)

Line 1 is not included if access to the file is blocked. However, line 1 does
report the file number if that number is undefined in the MPE/3000 file
system in use.

Line 2 reports an ERROR NUMBER that is explained in the MPE Intrinsics
Reference Manual, and a RESIDUE integer number of bytes not transmitted
for an input/output request (in this case, no input/output request was made,
hence RESIDUE: 0).

Line 3 reports the BLOCK NUMBER of the physical record and the RECNUM
(number of logical records) in the current block of the file (not opened, hence
both integers are 0 to signal "unknown").

For files opened but a CCG (end-of-file error) or a CCL (irrecoverable file error)
condition code occurred or an explicit call to this procedure was made by a user's
program, a display of 14 lines occurs:

Line 1 -7

Line 2 -7

Line 3 -7

Line 4 -7

Line 5 -7

Line 6 -7

Line 7 -7

Line 8 -7

Line 9 -7

Line 10 -7

Line 11 -7

Line 12 -7

Line 13 -7

Line 14 -7

where:

.-~-l-L-E---l-N-f-O-~-M-A-r-I-()-N---D-I-S-P-L-A-Y+
F rL [I\J A tH: 1S ~ q~0 ~ !
F (j P T I [) N S: S y S • A , 1>S T () 1 N •lit j\l , F t Q I
AOPTIONS: INPUf,~~EC'NOLOCK.{)EF,N03~FF !
OF-Viet: Tri-'t.: It) UEvICE SUt:iTYPt: 0 I
LUrV: 11 u~T: Ib ~NIT: 0
r:fCORD Sl!.L: -(2 BLuCl', SIZE: 72 (BYTES)
tXTlNT SILt: 0 MAX EXTENTS: 0
kECPTH: 0 HECLIMlr: u
LOGCOUNT: 0 P~YSCUUNT: 0
t.UF AT: 0 LABEL Ar)UR: %01300000000
FILE COUE: 0 1D IS ULA3ELS: 0
PHYSICt.lL STATUS: IJUnUll!llOOOOOOOO
ERROR NU~dfR: U kFSIOUf: 0
RLOCK NU~bEH: 0 NU~REC: 1+--~-----+

Line 1 reports the name of the file.

Line 2 reports the FOPTIONS in effect:

Domain:
NEW
SYS
JOB
ALL

Type:
A
B

a new file, or
the system file domain, or
the job temporary domain, or
both system and job temporary domains.

an ASCII file, or
a binary file.

3-38

PRINTFILEINFO (or PRINT 'FILE' INFO) (cont.)

Line 2 (cont.)

Default file designator:

FORMAL the actual file designator is the same as the formal file
designator.

Record Format:

F = fixed length, or
V = variable length, or
U = undefined length, or
? = unknown format.

Carriage control:

N = none, or
C = carriage control character expected.

File equation option:

FEQ :FILE (the MPEj3000 command) allowed, or
DEQ = :FILE disallowed.

Line 3 reports the AOPTIONS in effect:

Access type:
INPUT
OUTPUT
OUTKEEP
APPEND
IN/OUT
UPDATE

read access, or
write access, or
write-only access, without deleting, or
append access, or
input and output access, or
update access.

Multi-record option:
SREC single record access, or
MREC = multi-record access.

Dynamic locking option:
NOLOCK no locking permitted, or
LOCK = locking permitted.

Exclusive access option:
DEF default specification, or
EXC
SEA
SHR

Buffering:
BUFFER
NOBUFF

exclusive access allowed, or
semi-exclusive access allowed, or
sharable file.

automatic buffering, or
inhibit buffering.

3-39

PRINTFILEINFO (or PRINT 'FILE' INFO) (cont.)

Lines 4 and 5 report the DEVICE TYPE, the DEVICE SUB-TYPE, the LDEV
(logical device number), the DRT (device reference table entry number), and
the UNIT number of the device on which the file resides.

Line 6 reports the RECORD SIZE and the BLOCK SIZE of the current
record.

Line 7 reports the EXTENT SIZE of the current extent and the MAX EXTENTS
(maximum number of extents) allowed.

Line 8 reports the RECPTR (the current record pointer) and the RECLIMIT
(limit on the number of records).

Line 9 reports the LOGCOUNT (present count of logical records) and the
PHYSCOUNT (present count of physical records).

Line 10 reports the EOF AT (location of the current end-of-file) and the
LABEL ADDR (location of the header label).

Line 11 reports the FILE CODE and ID (identity for the user who created the
file) and ULABELS (the num ber of user-defined labels).

Line 12 reports the PHYSICAL STATUS code (bit pattern).

Line 13 reports an ERROR NUMBER that is explained in the MPE Intrinsics
Reference Manual, and a RESIDUE integer number of bytes not transmitted
for an input/output request (in this case, no input/output request was made,
hence RESIDUE: 0).

Line 14 reports the BLOCK NUMBER of the physical record and the
RECNUM (number of logical records) in the current block of the file.

3-40

COMPLIBINFO (or COMPLIBINFO')

FUNCTION: Identify whether the Compiler Library in use is a three-word, extended
precision, floating point version or a four-word, extended precision,
floating point version. (Used primarily by compilers.)

Declaration: PROCEDURE COMPLIBINFO (INFOWORD); or COMPLIBINFO' (INFOWORD);
LOGICAL INFOWORD;

OPTION EXTERNAL

ATTRIBUTES:

Result: Bit 15 = 0
Bit 15 = 1
Bits 0 through 14

implies 3-word
implies 4-word
reserved

FORTRAN: Callable as an external subroutine.

Error: None.

Nov 1976 3-41

PLOTS

FUNCTION: Initialize plotter variables, initialize a user-defined plot commands buffer, and
use the MPE/3000 file intrinsic FOPEN' to open the plotter file.

Declaration: PROCEDURE PLOTS(BUFF ,BUFFSIZE);
INTEGER ARRAY BUFF; INTEGER BUFFSIZE;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: BUFF: A pointer to the first word of the user-defined plot buffer.

BUFFSIZE: The size, in words, of BUFF.

FORTRAN: Callable as an external subroutine:

CALL PLOTS(IBUFF,500)

Errors: 1. SOFTERROR' message PLOTS: INVALID BUFFER SIZE occurs if the
BUFFSIZE parameter is not large enough.

2. PLOTS can report one of four errors. After anyone, a File Information
Display (see PRINT'FILE'INFO in this section) is printed and the program
is aborted:

****ERROR ON PLOT FILE OPEN****

The FOPEN intrinsic was unable to open the plotter file.

****INV ALID PLOTTER SUBTYPE****

The FCONTROL intrinsic obtained an undefined sub-type value (see
Comment 6).

****PLOTS: FCONTROL ERROR****

The FCONTROL intrinsic encountered an error (see Comment 6).

****PLOTS: FGETINFO ERROR****

The FGETINFO intrinsic encountered an error or an undefined device
type integer (see Comment 5).

1See MPE Intrinsics Reference Manual.

3-42

PLOTS (Cont.)

COMMENTS: 1. The integer array BUFF must be defined before PLOTS is called:

In an SPL/3000 program, use an array declaration:

INTEGER ARRAY IBUFF(O:500)

In a FORTRAN/3000 program, use a DIMENSION statement:

DIMENSION IBUFF(500)

2. The size of BUFF must provide for storage of plot information between
successive calls to the PLOT procedure (described later in this section) as
well as a series of plotter commands. Typically, parameter BUFFSIZE
should be given a value of at least 100 words and agree with the size
specified in the array declaration. Zip mode plotting is more efficient
for large values of the BUFFSIZE parameter.

3. PLOTS should be called only once during a given plotting sequence and
before any other plotter procedures are called. A plotting sequence is
terminated by a call to the procedure PLOT with parameter PEN = 999.
Any call to PLOTS after the first call and before the terminating call to
procedure PLOT is ignored.

4. To open the plotter file, the MPE/3000 file intrinsic FOPEN is used with
its parameters set as follows (these settings can be superceded by an
MPE/3000 file command :FILE):

{ormaldesignator PLOTFILE

(options

Bit(s) Field Name and Setting(s)

14:2 Domain: 00, this is a new file.

13:1 ASCII/BINARY: 0, this is a BINARY file.

10:3 Default File Designator: 000, the default file designator
is the same as the formal file designator.

8:2 Record Format: 10, undefined-length records.

7: 1 Carriage Control: 0, no carriage control character
expected.

6:1 (Reserved for MPEj3000 system use.)

5: 1 Disallow File Equation: 0, allow :FILE commands.

0:5 (Reserved for MPEj3000 system use.)

3-43

PLOTS (Cont.)

aoptions

Bit(s) Field Name and Setting(s)

12:4 Access Type: 0001, write access only.

11:1 Multirecord: 0, non-multirecord mode.

10:1 Dynamic Locking: 0, disallow dynamic locking/unlocking.

8:2 Exclusive: 01, exclusive access.

7: 1 Inhibit Buffering: 0, allow normal buffering.

0:7 (Reserved for MPE/3000 system use.)

device = PLOTTER

(All other parameters assume the default value.)

5. The increment (i.e., the minimum pen movement) of any given plotter is
determined by the device itself. When the device is added to the MPE/
3000 system, its software interface is configured by the procedures
described in the System Manager/Supervisor Manual. The device
type and device sub-type are set as follows:

Cal Camp Plotter Device
Series Type Increment

500 35
600 36
700 37

.010"

.005"

.0025"

.00125"

.002"

.1mm

.05mm

.025 mm

Device
Sub-Type

o
1
2
3
4
5
6
7

NOTE: If the increment is not one of the values listed above, PLOTS
must be re-compiled with the EQUATE statement for variable
INCR changed to specify the number of pen movements per
inch of total displacement. For example, INCR equated to
1000 implies an increment of .001". In such a case, the non-
zero (equated) value of INCR takes precedence over the sub-
type value to determine the increment size.

3-44

PLOTS (Cont.)

6. When PLOTS executes, it interrogates the software interface through the
MPE/3000 file intrinsics FGETINFO (to obtain the device type) and
FCONTROL (with controlcode = 0, to obtain the plotter sub-type and
therefore the increment size).

If the device type is not 35 or 36 or 37, the plotter commands are to be written
onto a disc or magnetic tape for later read-back to a plotter. In such a case,
the sub-type is not examined. Rather, either a default increment of .01"
or an equated value of the variable INCR (see the note above) is used.
In either case, FACTOR (described later in this section) can be called to
produce plot commands in the correct proportions for the plotter that
will ultimately produce the plots.

3-45

PLOT

FUNCTION: Convert general X-axis and Y-axis coordinates into distinct plotter commands,
manage buffering of the plotter commands and close the plotter file when the
plotting sequence is complete.

Declaration: PROCEDURE PLOT(X,Y,PEN);
REAL X,Y; INTEGER PEN;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: X: The X-axis position, in inches from the current origin, where the pen
is to be moved.

Y: The Y-axis position, in inches from the current origin, where the pen
is to be moved.

PEN: An integer, to specify pen down/pen up status, use of the plot com-
mand buffer, origin definition, and termination of the plotting sequence:

2, pen down during movement, accumulate plot commands in
the buffer.

3, pen up during movement, accumulate plot commands in the
buffer.

-2, pen down during movement, transmit all plot commands
accumulated from prior calls and this call, define the terminal
pen position to be the new origin for subsequent calls.

-3, pen up during movement, transmit all plot commands accumu-
lated from prior calls and this call, define the terminal pen
position to be the new origin for subsequent calls.

12, pen down during movement, transmit all plot commands
accumulated from prior calls and this call.

13, pen up during movement, transmit all plot commands ac-
cumulated from prior calls and this call.

-12, same as 12, plus define the terminal pen position as the new
origin for subsequent calls.

-13, same as 13, plus define the terminal pen position as the new
origin for subsequent calls.

3-46

PLOT (Cont.)

999, terminate the plotting sequence: pen up during movement,
transmit all plot commands accumulated from prior calls and
this call, define the terminal pen position as the new origin for
subsequent calls, then close the plotter file.

FORTRAN: Callable as an external subroutine:

CALL PLOT(XAXIS, YAXIS,IPEN)

Errors: 1. SOFTERROR' message PLOT: PLOTS NOT CALLED occurs if the
PLOTS procedure has not been called before PLOT is called.

2. SOFTERROR' message PLOT: INVALID PEN PARAMETER occurs if
the PEN value is not one of those listed under "ATTRIBUTES."

3. PLOT can report one of two errors. After either one, a File Information
Display (see PRINT'FILE'INFO in this section) is printed and the pro-
gram is aborted:

****PLOTTER WRITE ERROR****

The MPEj3000 file intrinsic FWRITE (called by PLOT) found an error.

****ERROR ON PLOT FILE CLOSE****

The FCLOSE intrinsic found an error (see Comment 5).

COMMENTS: 1. The PLOTS procedure must be called before any call can be made to
PLOT.

2. If the plot buffer BUFF (see PLOTS in this section) is filled by a series
of calls to PLOT with PEN = 2 or 3, all plot commands accumulated
up to that point are transmitted to the plotter file. Then accumulation
resumes at the beginning of the buffer.

3. PEN values 12, 13, -12, and -13 are provided for interactive use, such
as testing the accuracy of individual PLOT calls before accumulating a
series of calls.

4. Any negative value legal to PEN includes the specification "define the
terminal position of the pen as the new origin for subsequent X and Y
values." That is, at that position, the logical X and Y coordinates are
set to 0.0. Thus, all plotter commands accumulated up to and including
the call with a negative PEN value are transmitted to the plotter file
before the new origin is defined.

3-47

PLOT (Cont.)

5. The PEN value 999 is identical to the value -3, plus the specification
"close the plotter file by use of the MPE/3000 file intrinsic FCLOSE
with disposition = 0".

6. The PEN value 999 can be used only once during a plotting sequence;
it terminates the sequence. To begin another sequence, the PLOTS
procedure must be called first.

3-48

FACTOR

FUNCTION: Change the plot factor (the ratio of the plot physical size to the plot command
size).

Declaration: PROCEDURE FACTOR(FACT);
REAL FACT;

OPTION EXTERNAL;

ATTRIBUTES:

Parameter: FACT: The desired plot factor.

FORTRAN: Callable as an external subroutine:

CALL FACTOR(RATIO)

Errors: 1. SOFTERROR' message FACTOR: PLOTS NOT CALLED occurs if
procedure PLOTS has not been called before FACTOR is called.

2. SOFTERROR' message FACTOR: INVALID FACTOR occurs if the
value of FACT is less than or equal to O.

COMMENTS: 1. The procedure PLOTS initializes the factor to 1.0, the normal plot
ratio.

2. If FACT = 2, all physical pen movements are twice the distance
specified by parameters X and Y in procedure PLOT. Conversely,
if FACT = .5, all physical pen movements are half those distances
specified.

3-49

WHERE

FUNCTION: Return the current X-axis and Y-axis positions, in inches from the current
origin, of the present pen location and return the current plot factor.

Declaration: PROCEDURE WHERE(RXPAGE,RYPAGE,RFACT);
REAL RXPAGE,RYPAGE,RFACT;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: RXPAGE: A real identifier.

RYPAGE: A real identifier.

RFACT: A real identifier.

Results: RXPAGE and RYPAGE and RFACT, real numbers.

FORTRAN: Callable as an external subroutine:

CALL WHERE(XPOSIT, YPOSIT,PLTFCT)

Error: SOFTERROR' message WHERE: PLOTS NOT CALLED occurs if the PLOTS
procedure has not been called before WHERE is called.

3-50

SYMBOL

FUNCTION: Write plot annotation in the form of ASCII characters and special symbols
listed in Table 3-1.

Declaration: PROCEDURE SYMBOL(XPAGE,YPAGE,HEIGHT,IBCD,ANGLE,NCHAR);
REAL XPAGE,YPAGE,HEIGHT,ANGLE; ARRAY IBCD; INTEGER NCHAR;

OPTION EXTERNAL;

ATTRIBUTES:

Parameters: XPAGE and YPAGE: Real numbers, the position before rotation (see ANGLE),
in inches from the current origin, where writing of the
character(s) is to begin. See Comment 1 for further
details.

HEIGHT: The height in inches, for the character(s) to be written.
See Comment 2 for further details.

IBCD: A pointer to the storage area that contains either a
symbol code integer or an ASCII character string. See
Comment 3 for further details.

ANGLE: The rotation angle in counter-clockwise degrees from
the X-axis, for the base line of the character(s) to be
written. If ANGLE = 0.0, the base line will be parallel
to the X-axis and the character(s) will be rightside-up.
If ANGLE = 180.0, the character(s) will be upside-down.

NCHAR: An integer, the number of characters to be written,
from those in array IBCD:

If NCHAR> 0, an ASCII character string is to be
written; the first character is the first one in IBCD.

If NCHAR = 0, only one (or the only) character in
IBCD is to be written.

If NCHAR< 0, a special symbol is to be written;
that symbol is selected by an integer in the first
(or only) word of !BCD.

See Comment 4 for further details.

3-51

SYMBOL (Cont.)

FORTRAN: Callable as an external subroutine:

CALL SYMBOL(A TX,A TY,HIGH,IANN,DEGREES,ICHARS)

Errors: 1. SOFTERROR' message SYMBOL: PLOTS NOT CALLED occurs if
the PLOTS procedure has not been called before SYMBOL is called.

2. SOFTERROR' message SYMBOL: INVALID CHARACTER OR
SYMBOL occurs if an ASCII character or special symbol integer not
listed in Table 3-1 is specified in !BCD.

NOTE: If a user-written error procedure is furnished to override
the normal function of SOFTERROR' and return con-
trol to SYMBOL (see Section IV), an error symbol will
be written in place of a legitimate symbol. That error
symbol is !(a question mark ? superimposed on an
exclamation mark!).

COMMENTS: 1. XPAGE and YPAGE specify the position of the first or only character
to be written, according to the value of NCHAR:

If NCHAR < 0 and the special symbol is a centered one (see Table 3-1),
the position is that of the center of the symbol. If the special symbol
is not a centered one, the position is that of the lower left corner.

If NCHAR ;;;.0, the position is that of the lower left comer of the first
(or only) character to be written.

Further, XPAGE and/or YPAGE can be set to 999.0 to specify that the
position is that at which a next character would start. This special value
999.0 can be used for both XPAGE and YPAGE or for either one inde-
pendently of the other.

2. For best results from HEIGHT, for non-centered symbols (see Table 3-1)
specify a multiple of seven times the plotter increment. For centered
symbols specify a multiple of four times the plotter increment.

EXAMPLE:

To write the character A approximately 1/2" high (tall),
with a plotter increment of .010", specify HEIGHT = .049
(= .010 * 7 * 7).

3-52

SYMBOL (Cont.)

3. The array IBCD must contain one of three types of data, according to
the value of NCHAR:

If NCHAR> 0, IBCD must contain an ASCII character string left-
justified in the array (starting in the left byte of the first word).

If NCHAR = 0, IBCD must contain the desired ASCII character right-
justified in the first (or only) word (i.e., in the right byte).

If NCHAR < 0, IBCD must contain an integer listed in Table 3-1 for
the desired special character in the first (or only) word.

4. NCHAR, in addition to its affect on XPAGE, YPAGE, and IBCD
(see Comments 1 and 3), controls the pen during movement:

If NCHAR > 0, the pen is up during movement to the starting position
of the first character.

If NCHAR = -1, the pen is up during the move to the starting position,
after which the special character is written.

If NCHAR < -1, the pen is down during the move to the starting posi-
tion, after which the special character is written.

5. Table 3-1 appears on the following page.

3-53

Table 3-1. Plotter Characters/Symbols

ASC II Characters

1. space 26. 9 51. R 76. k
2. ! 27. 52. S 77.
3. 28. 53. T 78. m
4. # 29. < 54. U 79. n
5. $ 30. 55. V 80. 0
6. % 31. > 56. W 81. p
7. & 32. ? 57. X 82. q
8. 33. @ 58. Y 83. r
9. 34. A 59. Z 84. s

10. 35. B 60. [85. t
11. * 36. C 61. \ 86. u
12. + 37. D 62.] 87. v
13. 38. E 63. "'- 88. w
14. 39. F 64. 89. x
15. 40. G 65. 90. y
16. / 41. H 66. a 91. z
17. 0 42. 67. b 92. {
18. 1 43. J 68. c 93. I
19. 2 44. K 69. d 94. }
20. 3 45. L 70. e 95. 'V

21. 4 46. M 71. f
22. 5 47. N 72. 9
23. 6 48. 0 73. h
24. 7 49. P 74.
25. 8 50. Q 75.

Special Symbols

Integer Symbol Integer Symbol Integer Symbol Integer Symbol

0 0 11 * 21 L 31 J
1 CJ 12 Z 22 2: 32 ct
2 8 13 I 23 D. 33 1>

3 + 14 $ 24 z:
4 X 15 25 ±
5 <!> 16 26 •...

6 4' 17 27 i
7)\ 18 < 28 ~
8 Z 19 - 29 n-

9 Y 20 30 0

10 A

Special symbols 0·14 are centered symbols.

3-54

FORTRAN Run-time Procedures

Procedures from the following list are called by FORTRAN/3000 compiler-generated code
at run time to perform the functions listed for users' programs.

CA UTION: The operation and calling sequences of these procedures are optimized
for the code generation needs of the FORTRAN compiler and should
not be used explicitly by any other user program.

Procedure(s)
Identifier Function

ACHRLL'
ACHRLS'
ACHRSL'
ACHRSS'

Assigns a character string. The different entry points
are for long (L) and short (S) target or source strings.
"Long" means substring parameters are included.
SUBSTR' and BLANKFILL' may be called.

ACHRLPB'
ACHRSPB'

Assigns a character string. The source string is a PB
string, the target string may be long (L) or short (S).
BLANKFILL' is called if the target is longer than
source, the stack is set up to do a MOVE PB after
return.

BCA'l
BCA'2
BCA'3

Checks, when a program executes, the declaration sub-
script bounds for a L, 2 or 3 (and more) dimension
local array (if the BOUNDS option is used).

BFA'l
BFA'2
BFA'3

Checks, when a program executes, the declaration sub-
script bounds for a L, 2 or 3 (and more) dimension
formal (dummy) array (if the BOUNDS option is used).

BLANKFILL' Blankfills a string in character assignment when the
target string is longer than the source string.

BNDCHK1'
BNDCHK2'
BNDCHK3'

Checks, when a program executes, an assignment or I/O
statement for subscript within bounds for a 1, 2 or 3
dimension array. An integer procedure that returns the
index in the array. Parameters are the array bounds and
subscript values.

BNDCHKN' Checks, when a program executes, an assignment or I/O
statement for subscript within bounds for multidimen-
sional (i.e. more than 3) arrays. An integer procedure
that returns the index in the array. Parameters are the
array bounds, the subscript values and the number of
subscripts.

CCHRLPB' Compares character strings where source string is a PB
string. The stack is set up for a CMPBPB.

CCHRLL'
CCHRLS'
CCHRSL'
CCHRSS'

Compares character strings. Different entry points are
for long (L) and short (S) strings. "Long" means sub-
string parameters are included.

Nov 1976 3-55

I

I

Procedure(s)
Identifier

I
DFIXRT'
DFIXT'

DFLOATT'
DFLT'

F'SYSTRAP
F'LIBTRAP
F'CONTRAP
F'ARITRAP
F'SYSTRAPPROC
F'CONTRAPPROC
F'ARITRAPPROC
F'LIBTRAPPROC

INUM'
RNUM'
JNUM'
DNUM'

IFIXT'

INDEX'

OVFL'

STR'

SUBSTR'

Function

Fixes and truncates a double precision number to a
double integer number.

Converts a double integer number to a double
precision number.

Handles run-time details of FORTRAN trap handling
statements.

Converts a character expression into an integer, real or
double precision value. Procedure EXTIN' (see "Function
Directory") is called with parameters set as follows:

Procedure W D TYPE

INUM' Field width w 0 o (integer)

RNUM' Field width w 0 1(real)

JNUM' Field width w 0 -1 (double integer)

DNUM' Field width w 0 - 2 (LONGl real)

Fixes and truncates a real value to an integer value. Used
for index expressions.

Searches a first argument, a character variable, for a sub-
part matching its second argument, a character expression.
Returns 0 if not found, or returns the position of the
first character of the matching subpart (integer value).

Generates integer overflow for invalid type transfers.

Converts a linear expression to a string of length specified
by the second argument (integer constant).

Generates a byte address of a substring in a character
string. Procedure also checks to see if a substring is
contained in the source string.

lIn SPL/3000; same as FORTRAN type double precision.

3-56 Nov 1976

SECTION IV
LIBRARY ERRORS

SECTION IV
library Errors

Many routines in the Compiler Library, especially some mathematical routines and the Formatter,
can detect error(s) in the data processed. Those routines, when error detection occurs, call one of
two library error routines: SOFTERROR' or FMTERROR'. The normal function of either error
routine is to report the error conditions and abort the user's program. All error messages are listed
in Table 4-1, in this section; further details of the Formatter error messages (from FMTERROR')
are given in Section I, under "Formatter Error Reports."

All SOFTERROR' messages are followed by one or two additional reports: an "illegal parameter
value(s) report" (if needed) then a "stack trace-back report." The former occurs for most library
procedures that find such an error.

The SOFTERROR' message format is (see Table 4-1):

procedure name: message

The illegal parameter value(s) report format is:

x = first or only parameter value

Y = second parameter value (this line is omitted if not needed)

NOTE: If either or both values are complex, two values are reported for each;
the first value is the real part, the second value is the imaginary part.

The stack trace-back report, which also occurs after any Formatter Error Report, uses the same
format as is provided by the MPE Stack Dump facility. For further information, see MPE Debug/
Stack Dump Reference Manual (HP Part No. 30000-90012).

Nov 1976 4-1

XLIBTRAP

The user can override the normal functions of SOFTERROR' (or FMTERROR') and specify
his own error procedure(s). To do so, the MPE/3000 intrinsic function XLIBTRAP is used.
That function is declared:

PROCEDURE XLIBTRAP (PLABEL,OLDPLABEL);
VALUE PLABEL;
INTEGER PLABEL,OLDPLABEL;

OPTION EXTERNAL;

where

PLABEL external label of the user-written error procedure or 0 to disarm
the library trap mechanism. If 0, control is not passed to a user's
error procedure.

original PLABEL, returned to permit the user to return to the
previous conditions.

OLDPLABEL

Execution proceeds as follows:

1. A library procedure finds an error and calls SOFTERROR', or the Formatter finds
an error and calls FMTERROR'.

2. SOFTERROR' or FMTERROR' checks for a user-written error procedure.

3. If no user-written error procedure has been specified, the appropriate error report
is produced and the current program is aborted. If a user-written error procedure
has been specified, the library trap mechanism is disarmed then the user-written
procedure is called.

4. When the user-written error procedure returns control to SOFTERROR' or
FMTERROR', the library trap mechanism is re-armed.

5. As defined below, the user-written error procedure must also set a flag, QUIT, to
direct SOFTERROR' or FMTERROR' to abort the current program or to return
control to the procedure that found the error.

4-2

The user-written error procedure (in this example, the hypothetical name ERROR) should
be declared:

PROCEDURE ERROR(MARKER,ERRORNUM,QUIT);
LOGICAL ARRAY MARKER;INTEGER ERRORNUM;

LOGICAL QUIT;

where

MARKER is a four-word array containing the stack marker created for the library
error routine that detected the error. Thus, MARKER (1) is the PB
relative address in the user program where the error occurred.

ERRORNUM indicates which error occurred (see the list at the end of this section).

QUIT is a flag set by the user-written procedure ERROR. If QUIT = FALSE,
SOFTERROR' or FMTERROR' will return to the user program with-
out printing an error message; if QUIT = TRUE, SOFTERROR' or
FMTERROR' will abort the user program.

EXAMPLE: XLIBTRAP USE

Assume that in the procedure USER, the user-written error procedure MINE is to be called
from SOFTERROR' (or FMTERROR') whenever an error is detected. A program might be
written as shown on the following page.

4-3

BEGIN
(declarations)

<<MAIN PROGRAM»

PROCEDURE XLIBTRAP(NEW,OLD);VALUE NEW;LOGICAL NEW,OLD;
OPTION EXTERNAL;

PROCEDURE MINE(MARK,ERNUM,QUIT);
LOGICAL ARRAY MARK;INTEGER ERNUM;
LOGICAL QUIT;

BEGIN

END;<<MINE»
PROCEDURE USER;

BEGIN
LOGICAL OLD;
XLIBTRAP(MINE,OLD);

XLIBTRAP(OLD,OLD);«RESTORE INITIAL PROCEDURE»
END;< <USER»

END: <<MAIN PROGRAM»

4-4

Table 4-1. HP 3000 Compiler Library Errors

Library
Error routine

number name Error description Message

ATAN2 (or ATAN2') Both arguments = 0 ATAN2:ARGUMENTSZERO

2 ATAN2 (or ATAN2') Underflow when arguments ATAN2: UNDERFLOW
divided

3 DATAN2 Both arguments = 0 DATAN2:ARGUMENTSZERO

4 DATAN2 Underflow when arguments DATAN2:UNDERFlOW
divided

5 EXP(or EXP') Result overflow EXP: OVERFLOW

6 DEXP (or DEXP') Result overflow DEXP: OVERFLOW

7 ALOG (or AlOG') Argument <0 AlOG: ARGUMENT NOT
POSITIVE

8 DlOG (or DlOG') Argument <0 DlOG: ARGUMENT NOT
POSITIVE

9 CABS (or CABS') Result overflow CABS: OVERFLOW

10 SORT (or SORT') Argument <0 SORT: ARGUMENT NEGATIVE

11 DSORT (or DSQRT') Argument <0 DSORT: ARGUMENT NEGATIVE

12 TAN (or TAN')
(2k + l)IT

TAN: OVERFLOWArqumel1t near
2

(5(;" tux t l

13 DTAN (or DTAN')
(2k + 1)71

DTAN: OVERFLOWArqurneru near -"-" 2 - -
(se(; t cx t)

14
1
f

(Unassigned)

53

54 ITOI' Base = 0 and power < 0 ITOI' I LLEGAL ARGUMENTS

55 RTOI' Base = 0 and power < 0 RTOI': I lLEGAl ARGUMENTS

56 RTOR' Base = 0 and power < 0 or RTOR': I llEGAl ARGUMENTS
base< 0

57 RTOl' Base = 0 and power < 0 RTOl': I lLEGAl ARGUMENTS

58 lTOI' Base = 0 and power < 0 LTOI': ILLEGAL ARGUMENTS

59 lTOl' Base = 0 and power < 0 or l TOl': I lLEGAl ARGUMENTS
base< 0

60 CTOI' Base = 0 and power < 0 CTOI': IllEGAL ARGUMENTS

4-5

Table 4-1. HP 3000 Compiler Library Errors (cont.)

Library
Error routine

number name

61 INUM'
RNUM'
JNUM'
DNUM'

62 INUM'
RNUM'
JNUM'
DNUM'

63 INUM'
RNUM'
JNUM'
DNUM'

64 (any)

65 BNDCHKx'
BCA'x
BFA'x

66 SUBSTR'

67 DTOI'

68 DTOD'

69 RTOD'

70 LTOD'

71 CTOD'

72

(Unassigned)

100
101
102

103

104

105
106
107

Formatter

UNITCONTROL
or

FTNAUX'

Formatter

Formatter

Formatter

Formatter

Formatter

Error description

Illegal character in string being
converted.

Number out of representable
range (see "Introduction").

(both of the above)

Illegal EXIT label.

Subscript out of range (not
detected unless $CONTROL
BOUNDS is requested).

Designator defines a substring
not contained in the source string.

Base = 0 and power < 0

Base = 0 and power < 0

Base = 0 and power < 0

Base = 0 and power < 0

Base = 0 and power < 0

Illegal format character

Parameter OPT is outside the
range [-1,8].

Specification group(s) nested
deeper than level 4.

List and character string speci-
fication do not match.

Message

NUM: ILLEGAL CHARACTER

NUM: NUMBER OUT OF RANGE

NUM: RANGE AND CHAR ERROR

INVALID EXIT ON RETURN

INVALID SUBSCRIPT VALUE

INVALID SUBSTRING DESIG-
NATOR

DTOI': I LLEGAL ARGUMENTS

DTOD': ILLEGAL ARGUMENTS

ROTD': I LLEGAL ARGUMENTS

LTOO': I LLEGAL ARGUMENTS

CTOD': I LLEGAL ARGUMENTS

I LLEGAL FORMAT CHARACTER

UNDEFI NED OPTION ON
UNIT ¢t:xx

NESTING TOO DEEP

STRING MISMATCH

Illegal character in input field. BAD INPUT CHARACTER

Numeric input field unrepresentable. NUMBER OUT OF RANGE

Format specification exceeds FORMAT BEYOND RECORD
record length.

4-6

Table 4-1. HP 3000 Compiler Library Errors (cont.)

Library
Error routine

number name Error description Message

108 Formatter Core-to-core conversion exceeds BUFFER OVERFLOW
user-defined buffer.

109 Formatter Binary direct access exceeds 01 RECT ACCESS OVE RFLOW
record length. ON UNIT #xx

110 Formatter File name not in FLUT. FILE NOT IN TABLE FOR
UNIT #xx

111 Formatter File access problem. FILE SYSTEM ERROR ON
UNIT #Xx

112 Formatter Fi Ie access problem. END OF FILE DETECTED ON
UNIT #xx

113 FSET Parameter NEWF I LE is outside INVALID FILE NUMBER FOR
the range [1,254 J . UNIT #xx

114

} (Unassigned)

149

150 PLOTS Invalid plot buffer size. PLOTS: INVALID BUFFER SIZE

151 PLOT PLOTS procedure has not been PLOT: PLOTS NOT CALLED
called.

152 PLOT Unrecognized PEN value. PLOT: INVALID PEN PARAM-
ETER

153 FACTOR PLOTS procedure has not been FACTOR: PLOTS NOT CALLED
called.

154 FACTOR Invalid plot factor (FACT <0) FACTOR: INVALID FACTOR

155 WHERE PLOTS procedure has not been WHERE: PLOTS NOT CALLED
called.

156 SYMBOL PLOTS procedure has not been SYMBOL: PLOTS NOT CALLED
called.

157 SYMBOL Unrecognized input symbol. SYMBOL: INVALID CHARAC-
TER OR SYMBOL

4-7

APPENDIX A
library Procedure Names

Name Page

I

ACHRLL' 3-55
ACHRLPB' 3-55
ACHRLS' 3-55
ACHRSL' 3-55
ACHRSPB' 3-55
ACHRSS' 3-55
ADDCRRR' 3-22
ADDCRRV' 3-22
ADDCRVR' 3-22
ADDCRVV' 3-22
ADDCVRR' 3-22
ADDCVRV' 3-22
ADDCVVR' 3-22
ADDCVVV' 3-22
ADIO' 1-57
AlIO' 1-57
AINT' 2-8
AJMAXO' 2-19
AJMINO' 2-19
ALIO' 1-57
ALOG (or ALOG') 2-31
ALOGlO 2-31
AMAXO' 2-18
AMAX1' 2-20
AMINO' 2-18
AMINI' 2-20
AMOD' 2-22
ARlO' " 1-57
ASIO' 1-57
ATAN (or ATAN') 2-52
ATAN2 (or ATAN2') 2-54
BCA'l 3-55
BCA'2 3-55
BCA'3 3-55
BFA'I 3-55
BFA'2 3-55
BFA'3 3-55
BLANK FILL' 3-55
BNDCHK1' 3-55
BNDCHK2' 3-55
BNDCHK3' 3-55
BNDCHKN' 3-55
CABS (or CABS') 2-2
CCHRLL' 3-55
CCHRLPB' 3-55
CCHRLS' 3-55
CCHRSL' 3-55

Nov 1976

Name Page

CCHRSS' 3-55
CCOS (or CCOS') 2-42
CCOSH (or CCOSH') 2-51
CEXP (or CEXP') 2-26
CINVERT 2-58
CLOG (or CLOG') 2-33
CMPCRR' 3-27
CMPCRV' 3-27
CMPCVR' 3-27
CMPCVV' 3-27
COMPLIBINFO (or COMPLIBINFO') 3-41
COS (or COS') ' 2-36
COSH (or COSH') 2-45
CSIN (or CSIN') 2-41
CSINH (or CSINH') 2-50
CSQRT (or CSQRT') 2-29
CTAN (or CTAN') 2-40
CTANH (or CTANH') 2-49
CTODR' 3-20
CTODV' 3-20
CTOIR' 3-19
CTOIV' 3-19
DABS' 2-1
DADD 2-61
DATAN (or DATAN') 2-53
DATAN2 (or DATAN2') 2-55
DATELINE 3-36
DCMP 2-67
DCOS (or DCOS') 2-39
DCOSH (or DCOSH') 2-48
DDINT' 2-9
DDIV (or DDIV') 2-64
DEXP (or DEXP') 2-25
DFIX (or DFIX') 2-10
DFIXRT' 3-56
DFIXT' 3-56
DFLOAT (or DFLOAT') 2-11
DFLOATT' 3-56
DFLT' 3-56
DINVERT 2-57
DIO' 1-56
DIVCRRR' 3-22
DIVCRRV' 3-22
DIVCRVR' 3-22
DIVCRVV' 3-22
DIVCVRR' 3-22
DIVCVRV' 3-22

I

I
I

A-I

Name Page
DIVCVVR' 3-22
DIVCVVV' 3-22
DIVD 2-71
DLOG (or DLOG') 2-32
DLOG 10 2-32
DMAXl' 2-21
DMINl' 2-21
DMOD 2-23
DMPY (or DMPY') 2-63
DNEG 2-66
DNUM' 3-56
DREM (or DREM') 2-65
DSIGN' 2-6
IX<IN (or DSIN') 2-38
D;:,lNH (or DSINH') 2-47
DSQRT (or DSQRT') 2-28
DSUB 2-62
DTAN (or DTAN') 2-37
DTANH (or DTANH') 2-46
DTOD' 3-10
DTOI' 3-9
EXP (or EXP') 2-24
EXTIN' 3-1
FACTOR 3-49
FMTINIT' 1-55
FNUM 3-34
FSET 3-35
FTNAUX' 3-29
F'ARITRAP 3-56
F' ARITRAPPROC 3-56
F'CONTRAP 3-56
F'CONTRAPPROC 3-56
F'LIBTRAP 3-56
F'LIBTRAPPROC 3-56
F'SYSTRAP 3-56
F'SYSTRAPPROC 3-56
HP 32211 v
IFIX' " 2-68
IFIXT' 3-56
no' " 1-56
INDEX' ., 3-56
INEXT' 3-4
INT' 2-7
INUM' 3-56
INVERT 2-56
ISIGN' 2-3
ITOI' " 3-8

I JMAXO' 2-13
JMAXl' 2-16
JMINO' 2-13
JMINl' 2-16
JNUM' 3-56

I JSIGN'. 2-4
LIO' 1-56
LONGDIVD 2-71
LTODR' 3-16
LTODV' 3-16
LTOIR' 3-15
LTOIV' 3-15

Name Page
LTOLRR' 3-17
LTOLRV' 3-17
LTOLVR' 3-17
LTOLVV' 3-17
MAXO' 2-12
MAXI' 2-14
MINO' 2-12
MINI' : 2-14
MLTCRRR' 3-22
MLTCRRV' 3-22
MLTCRVR' 3-22
MLTCRVV' 3-22
MLTCVRR' 3-22
MLTCVRV' 3-22
MLTCVVR' 3-22
MLTCVVV' 3-22
MPYD 2-69
NEGCRR' 3-25
NEGCRV' 3-25
NEGCVR' 3-25
NEGCVV' 3-25
OVFL' 3-56
PLOT 3-46
PLOTS 3-42
PRINTFILEINFO 3-37
PRINT'FILE'INFO 3-37
RAND (or RAND') 2-60
RANDI (or RAND 1') 2-59
RIO' 1-56
RNUM' 3-56
RTOD' 3-12
RTOI' 3-11
RTOLR' 3-14
RTOLV' 3-14
RTOR' 3-13
R'EDIT 2-74
SIGN' 2-5
SIN (or SIN') 2-35
SINH (or SINH') 2-44
SIO' 1-57
SQRT (or SQRT') 2-27
STR' 3-56
SUBCRRR' 3-22
SUBCRRV' 3-22
SUBCRVR' 3-22
SUBCRVV' 3-22
SUBCVRR' 3-22
SUBCVRV' 3-22
SUBCVVR' 3-22
SUBCVVV' 3-22
SUBSTR' 3-56
SYMBOL 3-51
TAN (or TAN') 2-34 I
TANH (or TANH') 2-43
TFORM' 1-58
UNITCONTROL 3-32
WHERE 3-50
XLIBTRAP 4-2

A-2 Nov 1976

Il, xi
ee ••• ", 1-47
"... " edit descriptor, 1-37, 1-38, 1-45
#, 1-7-1-12, 1-14, 1-15, 1-17-1-21, 3-5
$ and commas, 1-3, 1-5, 1-16, 3-1-3-3,3-5
$STDIN, 1-51, 1-59, 1-60, 3-30
$STDLIST, 1-51, 1-59, 1-60, 3-30
%, 1-47, 1-48, 1-58
%n C edit descriptor, 1-37, 1-44
e •• .', 1-47
e ••• ' edit descriptor, 1-37, 1-39, 1-45
(V,j) , 1-51
*,1-46,1-47,1-50, 1-51
+, 1-47
, (defined), 1-47
- (defined), 1-47
- 2-256, 2-1
. (defined), 1-47
... (defined), 1-47
/, 1-47
/edit descriptor, 1-37, 1-43, 1-45
/record terminator, 1-37, 1-43, 1-47
222 - 1, xiii
254

- 1, xiii
2255

, xiii
2E-256, xiii
:=, xi
« ... » , 1-47
@, 1-3, 1-47, 1-52, 1-58
'" '" the two backslashes, 3-37

A

absolute error in the argument(s), x
absolute error in the result(s), x
absolute value, 2-1-2-6
ABSOLUTE VALUES, xvii
ACCEPT/DISPLAY, 1-51
accuracy, x
adjacent apostrophe, 1-39, 1-49
adjacent quotation mark, 1-38, 1-49

Nov 1976

Index

alphameric characters, 1-6, 1-28-1-31
ALPHAMERIC CONVERSIONS, 1-6
Alphanumeric Edit, 2-74-2-79
apostrophes, 1-39, 1-47, 1-49
arctangent, 2-51-2-54
arguments, ix
arithmetic trap(s), 2-7, 2-10, 2-15, 2-22, 2-23,
2-61-2-65,2-68,2-70, 2-73, 3-8-3-12, 3-15-3-21,
3-24

ASCII blanks, 1-41
ASCII character strings, 1-32, 1-38-1-40, 1-47-1-49,
1-57, 3-1, 3-4, 3-51

ASCII characters, 1-32, 1-38-1-40, 1-47-1-49,
1-56-1-58, 3-51

ASCII digits, 3-1, 3-4
ASCII input record, 1-8, 1-10, 1-12, 1-15, 1-17, 1-19,
1-21, 1-23, 1-25, 1-27, 1-29, 1-31, 1-33

ASCII null, 1-31
ASCII numeric input, 1-4, 1-5
ASCII records, 1-1
ASCII string (fixed), 1-38, 1-39
ASCII string (variable), 1-40
assemble statement, 2-12, 2-13, 2-15, 2-17-2-21
ATTRIBUTES, x
Aw output, 1-28

B

BACKSPACE, 3-29, 3-30, 3-32
base (B), 3-8-3-21
base 10 logarithm, 2-31, 2-32
BASIC/3000, 2-56-2-60
binary pattern, 2-70, 2-73, 2-75
blanks, xi, 1-5, 1-41, 1-47-1-49
blocked, 3-37, 3-38
boolean, xiii , 1-26
business form, 1-3, 1-4, 1-16
by reference, 3-37
byte, xiii
byte array, 3-1, 3-4
by value, 3-37

I-I

c
call-by-reference, 3-14-3-17, 3-19, 3-20, 3-22, 3-23,
3-25, 3-27

call-by-value, 3-14-3-17, 3-19, 3-20, 3-22, 3-23
3-25, 3-27

CCA, 1-58, 1-62, 1-64, 3-26
character string, 1-6, 1-32, 1-47-1-51, 1-57,
3-55, 3-56

CHECK option for level 2, xi
CHECK option for level 3, xi
CHECK option levels, x
COBOL/3000, 2-69, 2-71
commas, 1-1, 1-3-1-5, 1-16-1-19, 1-43, 1-47-1-49
comments, x
compiler-generated code, 1-1, 1-54, 3-14-3-17, 3-19,
3-20, 3-22, 3-25, 3-29, 3-55

COMPLEX ARITHMETIC, 3-22
complex compare, 3-27
complex negate, 3-25
complex number 2-2, 2-26, 2-29, 2-30, 2-33,
2-40-2-42, 2-49, 2-51, 3-19-3-28

computed value of the arguments(s), x
computed value of the result, x
conversion rules, 1-5, 3-3
convert a byte array, 3-1
convert an internal representation, 3-4
CORE-TO-CORE CONVERSION, 1-51

D

D, 1-47
DATA EDITING, xvi
DATA FORMAT DEFINITIONS, xv
data item delimiters, 1-48
DATA MANIPULATION, xvi
date and time information, 3-36
decimal digit, 2-70, 2-73, 2-75
decimal dividend, 2-71
decimal divisor, 2-71
decimal multiplicand, 2-69
decimal multiplier, 2-69
decimal product, 2-70
decimal quotient, 2-73
decimal remainder, 2-73
decimal result, 2-70
decimal value, xiii
display of 14 lines, 3-38
domain, 3-38
double integer, xii
DOUBLE INTEGER ARITHMETIC, xx
double precision, xiii
DOUBLE PRECISION ARITHMETIC, xxi
double precision numbers, 1-7
Dw.d output, 1-3, 1-7

E

E, xiii, 1-47
Edit Descriptors, 1-37
EDIT SPECIFICATIONS, 1-37

Edit Descriptors, 1-37
Repeat Specification-For Edit Descriptors, 1-45

entry points, 3-22, 3-32, 3-34, 3-35
Ew.d output, 1-3, 1-9
eX, 2-24-2-26
exponent, xiii
exponent field, 1-4, 1-5, 1-47,3-2
EXPONENTS, ROOTS, LOGARITHMS, xoiii

F

F, xiii
false, xiii, 1-26, 1-27
Field Descriptors, 1-3
field width w, 1-7, 1-9, 1-11, 1-14, 1-16, 1-18, 1-20,
1-22, 1-24, 1-26, 1-28, 1-30, 3-1, 3-4

File Information Display, 1-64, 3-37
floating point divide by zero, 2-22, 2-23, 3-24
floating point overflow, 2-22, 2-23, 3-11, 3-12, 3-15,
3-16, 3-19, 3-21, 3-24

floating point underflow, 2-22, 2-23, 3-11, 3-12, 3-15,
3-16, 3-19, 3-21, 3-24

FLUT, 1-55, 1-59, 1-60, 1-62, 3-29, 3-30, 3-32,
3-34, 3-35

FMTERROR', 1-61, 4-1
FORMAT SPECIFICATIONS, 1-3

Field Descriptors, 1-3
DECIMAL NUMERIC CONVERSIONS, 1-3

Rules for Input, 1-4
OCTAL NUMERIC CONVERSION, 1-5
LOGICAL CONVERSION, 1-6
ALPHANUMERIC CONVERSIONS, 1-6

Scale Factor, 1-34
OUTPUT, 1-35

Dw.d and Ew.d, 1-35
Fw.d, Mw.d, and Nw.d, 1-36
Gw.d-selected Ew.d, 1-36
Gw.d-selected Fw.d, 1-36

INPUT, 1-36
Repeat Specification-for Field Descriptors, 1-37

FORMAT STATEMENTS, 1-1
READ or WRITE Statements, 1-2
Disc Input/Output, 1-2

formatted conversion, 1-55
FORMATTER, SECTION I
FORMATTER ERROR REPORTS, 1-61, 4-1

File Information Display, 1-64
Formatter Error Report routine, 1-56, 1-58
Formatter I/O Buffer, 1-58

1-2 Nov 1976

FORTRAN, iii, 1-1
FORTRAN auxiliary I/O statements,' 3-29
FORTRAN logical unit, 1-55, 1-59, 1-62, 3-29, 3-30

3-32, 3-34, 3-35
fraction, xiii
fraction field, 1-4, 3-2
fraction field digits d, 1-4, 3-1, 3-4
Free-Field Control Characters, 1-47
FREE-FIELD INPUT/OUTPUT, 1-46

Free-Field Control Characters, 1-47
Free-Field Input, 1-47

DATA ITEM DELIMITERS, 1-48
DECIMAL DATA, 1-48
OCTAL DATA, 1-48
CHARACTER STRING DATA, 1-49
RECORD TERMINATOR, 1-49
INPUT EXAMPLES, 1-50
LIST TERMINATION, 1-50

Free-Field Output, 1-50
DATA ITEM DELIMITER, 1-51
RECORD TERMINATORS, 1-51

FUNCTION, ix
FUNCTION DIRECTORY, xv
Fw.d output, 1-3, 1-11

G

Gw.d output, 1-3, 1-13

H

hexidecimal integer number, 1-24
HEXIDECIMAL NUMERIC CONVERSION, 1-6
hyperbolic cosine, 2-45, 2-48, 2-51
hyperbolic sine, 2-44, 2-47, 2-50
hyperbolic tangent, 2-43, 2-46, 2-49

I

illegal parameter valuers) report, 4-1
in the range (. , .), xi
in the range [. , .], xi
in the range (. , .], xi
in the range [. , .), xi
integer divide by zero, 2-64, 2-65
integer field, 1-4, 3-2
integer numbers, 1-20
integer overflow, 2-15, 2-61-2-63, 2-68, 3-8-3-10
internal exponent, 1-35, 3-6
Internal Representations, xii, xiii
INTRODUCTION, ix
Iw output, 1-20

Nov 1976

L

largest/smallest number, xviii
leading blanks, 1-5, 3-3
least significant bit, xiii
leftmost ASCII characters, 1-28
LIBRARY ERRORS, SECTION IV
Library Procedure Names, A-I
list elements, 1-2, 1-3, 1-5, 1-6, 1-8, 1-10, 1-12, 1-15,

1-17, 1-19, 1-21, 1-23, 1-29, 1-32, 1-37, 1-45-1-53,
1-62, 1-63

list of variables, 1-1-1-3, 1-50, 1-51, 1-54
list termination, 1-50
logical, xi, 1-6, 1-27
logical (boolean) values, 1-26
LOGICAL CONVERSION, 1-6
long real, xiii, 3-14-3-18
LSB, xiii
Lw output, 1-26

M

magnetic tape files, 3-30
mathematical notation, xi
MATHEMATICAL PROCEDURES, SECTION II
MATRICES, xx
matrix, 2-56-2-58
method, ix
MISCELLANEOUS FUNCTIONS, xxi
monetary (business) form, 1-3, 1-4, 1-16
MPE/3000 operating system, v
MSB, xiii
Mw.d output, 1-3, 1-16

N

N, 1-13, 1-14, 3-4, 3-6
name, x
natural logarithm, 2-31-2-33
nested level, 1-45, 1-46
nesting, 1-2, 1-34, 1-45, 1-46, 1-63
Newton iteration, 2-27, 2-28
nH edit descriptor, 1-37, 1-40
nominal FORTRAN/3000 parameters, 1-60
normalized output, 1-7, 1-9, 1-34
NUMBER COMPARISON, xviii
NUMBER CONVERSION, xvii
numeration form, 1-4, 1-18
Numeric Edit, 2-74, 2-76-2-79
Nw.d output, 1-4, 1-18
nX edit descriptor, 1-37, 1-41, 1-42

1-3

o
octal, 1-5, 1-22, 1-23, 1-44, 1-47, 1-48, 1-56, 1-58
octal integer numbers, 1-22
OCTAL NUMERIC CONVERSION, 1-5
ORGANIZATION OF THIS BOOK, ix

Format for procedures, ix
Parameter Checking for Procedures, ix
Text Conventions, xi
Internal Representations, xii

output fraction, 1-35
Ow output, 1-22

p

P, 1-34-1-37
Packed Decimal Number, 2-69-2-71, 2-73-2-75,

2-77
parameter, x
Plotter, 3-42, 3-45, 3-54
Plotter Characters/Symbols, 3-54
position (tabulate) data, 1-42
procedure identifier, ix
prompt character ?, 1-51, 1-61
purpose, ix

Q

quotation marks, 1-38, 1-47, 1-49
quotient, 2-54, 2-55, 2-64

R

R, 3-14-3-17, 3-19, 3-20, 3-22, 3-23, 3-25, 3-27
radians, 2-34~2-39
raise a base to a power, 3-8-3-21
RANDOM NUMBER, 2-59, 2-60
RANDOM NUMBERS, xx
ranges, x, xi, 2-7,2-15,2-17,2-24-2-26,2-35,
2-36, 2-38, 2-39, 2-43, 2-46, 2-52-2-55,
2-60, 2-68, 3-8-3-16, 3-19, 3-20, 3-29-3-35, 4-6

R'EDIT Command Set, 2-76
READ or WRITE Statements, 1-1, 1-2, 1-45-1-47,
1-51-1-53, 1-62, 1-63

real, xii, xiii
real numbers, 1-9, 1-11, 1-13, 1-16, 1-18
record terminator, 1-43 ..
record terminator/, 1-37, 1-43, 1-45, 1-47, 1-49, 1-50
relative error in argument(s), x
relative error in result(s), x
remainder, 2-65
Repeat Specification - for Edit Descriptors, 1-45

Repeat Specification - for Field Descriptors, 1-37
rightmost ASCII characters, 1-30
rollover, 1-8, 1-10, 1-12, 1-15, 1-17, 1-19, 1-21
rounds, 1-5, 3-3
RPG/3000 EDIT WORD, 2-75
RPG/3000, 2-69, 2-71, 2-74, 2-75
Rules for Input, 1-4
Rw output, 1-31

S

S, xiii, 1-32, 1-33
S output, 1-33
S= E= F= 0, xiii
SB, xiii
Scale Factor, 1-34
short display, 3-37
sign, xi, 1-4,1-7, 1-9, 1-11, 1-14, 1-16, 1-18, 1-20, 1-47
significant bit, xiii
sine, 2-35, 2-38, 2-41
singular matrix, 2-56-2-58
SOFTERROR', 4-1
SPECIFICATION INTERRELATIONSHIPS, 1-45

Nesting, 1-45
Unlimited Groups, 1-46

special procedure, v
SPL/3000, v
SPL!3000 calling sequences, 1-54

Calling Sequences, 1-55
INITIALIZATION, 1-55
LIST ELEMENT TRANSFERS, 156
TERMINATION,1"58

File System Requirements, 1-59
FORTRAN/3000 LOGICAL UNIT TABLE

(FLUT), 1-59
NOMINAL FORTRAN/3000 PARAMETERS,

1-60
ACCEPT/DISPLAY OPTION, 1-61

SPL!3000 type long (real), xiii
square matrix, 2-56-2-58
square root, 2-27-2-29
stack conditions, 1-54, 2-12-2-21, 3-23, 3-26
stack marker, 1-54, 2-12-2-14, 2-16, 2-18-2-21
stack trace-back report, 1-61, 4-1
strings of ASCII characters, 1-32

T

Table 3-1, 3-54
Table 4-1, 4-5--4-7
tangent, 2-34, 2-37, 2-40
terminal, 1-51, 1-61
text conventions, xi

1-4 Nov 1976

Tn edit descriptor, 1-37, 1-41, 1-42
TOS, xi, 2-26, 2-29, 2-33, 2-41,12-63-2-65,
2-70,2-73,3-8-3-17,3-19,3-20,3-22,3-23,
3-25, 3-27, 4-4

TRIGONOMETRY, xix
true, xiii, 1-26, 1-27
true value of the argument(s), x
true value of the result, x
truncates, 1-5

v
V, 3-14-3-17, 3-19, 3-20, 3-22, 3-23, 3-25,

3-27

x

x = ,4-1
XLIBTRAP, 4-2

U Y

undefined, 3-38
UNFORMATTED (BINARY) TRANSFER, 1-52

Matching List Elements, 1-53
Unlimited Groups, 1-2, 1-46
unpack ... a Packed Decimal Number, 2-74
UTILITY PROCEDURES, SECTION III

Y = ,4-1

z
Zw output, 1-24

Nov 1976 1-5

