HP 3000 Computer Systems

‘Compiler Library

Reference Manual

HEWLETT {hp

5303 STEVENS CREEK BLVD., SANTA CLARA, CALIFORNIA, 95050

Part No. 30000-20028
Produet No. 322110 Printed in U.S_A. 11/76

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
AL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, Hewlett{-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the usé or reliability of i¢s software on equipment that is
not furnished by Hewlett.Packard.

This document containg proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to ancther program language
without the prior written consent of Hewlett-Packard Company.

Copyright € 1978 by HEWLETT-PACKARD COMPANY

i3

LIST OF EFFECTIVE PAGES

The List of Effective Pages gives the date of the current edition and of any pages changed in updaies to that edition. Within
the manuzl, any page changed since the last edition is indicated by printing the date the changes were made on the bottom
of the page Changes are marked with a vertical bar in the margin. If an update is incorporated when an edition is reprinted,
these bars are removed but the dates remain, No infermation is incorporaled into a reprinting unless if appeats as &
ptior update.

Pages Effective Date Pages Effective Date
Title . e e e s Nov 1976 B e e e ... NoY 1978
Bl et e Jun 1976 2510 26, ..., BN R e Jun 1976
o IV L Mov 1876 0 Nov 1976
L Jun 1974 28t O, e e Jun 1976
T Jun 1976 I to -8 e e e Nov 1276
3 P vere. Nov 1976 o e e e e s Jun 1974
B0 XL L. s Jun 1978 210 80 2-1T e Nov 1976
B EO BVL o e et b Jun 1976 B PR R Jun 1978
wvii b0 XXAIL ... e e Nov 1976 B 1 PN Nov 1976
L-E e e Jun 1978 22000 32l e e Jun 196
0 SR Nov 1976 A2 00 223 Lo Nov 1876
1-340 14 o i Jun 1976 22410 2-B5 .. Jun 1978
1510 36 .. e MNov 1976 2B6 L0 2B e e Moy 1976
I-7 to 1-2) . e e Jun 1876 280 . Jun 1978
122 to 1-B5G e Nov 1976 ZBLI0 268 .. e s ... Mav 1976
-2 b0 1-27 e e Jun 1976 2B H0 T i e e Jun 1976
< S Nov 1976 B-Tto 7. .o Jun 14786
O dun 1976 3840 3-12 .. . Nov 1976
T80 e e Nov 1976 3-13t0 314 ... Jun 19786
3 2 O A Jun 1976 -3 t0 316 i e Nov 1976
. 7/ MNov 1976 T T TP S Jun 1976
330 1-86 ... Jun 1976 T O N Nov 1976

B . MNov 1976 b T Jun 1978
138 ta 140 ... Jun 1976 321 e Nov 1996
5 Nov 1976 32210323 ... IR 19T
142 te 146 Jun 1976 T Nov 1976
1-47to 148 e e Nov 1978 32580335 e Jun 1976
14940 150 Jun 1976 G360 Lo 3-8 e e Nov 1976
181 o 1-B2 . Nov 1976 3238 to 340 e e Jun 1976
153 to 1-B5 e dJun 1976 3l MNov 18976
) D Nov 1976 G420 3-Bd L Jun 1976
157 10 I-BB o e e Jun 196 BB Lo B8 L i e Nov 1976
18 e Nov 1976 A e Nov 1976
T-60 . e Jun 1978 .2t 4V L. R Jun 1978
1-61 e ciiieieae... Nov 1076 At A2 Lo Nov 1276
1-62 1o 1-84 ... e Jun 1976 L to I8 . i i i Nov 1976
el 10 BT e e Jun 1976

Nov 1976 i

PRINTING HISTORY

New editions are complete revisions of the manual. Update paclages, which are issted between editions, contain additional
and replacement pages to be merged into the manual by the customer. The date on the title page and back cover of the
manual changes only when a new edition is published. When an edilion is reprinied, all {he prior updates to the edition
are incorperated. No information is incorperated into a reprinting unless ¥ appears as a prior update. The edition does
not change.

The software product part number printed alongside the date indicates the version and update level of the software product
at the time the manual edition or update was issued. Many produet updates 2nd fixes do not require manual changes, and
conversely, manust corrections may be done wilhout accompanying product changes, Therefore, do not expect a one to one
correspondenee beiween product updates and manugt updates.

First Edition June 1976
Second Edition November 1976

iv Nov 1978

PREFACE

The Compiler Library Reference Manual is the programmer’s reference to input/output formatiing
and mathematical and utility procedures available to users of Hewlett-Packard HP 3000 software.

The reader should have a working knowledge of the language(s) to be used and the MPE/3000
Operating System or have access 1o the appropriate reference manuals listed below,

MPE Intrinsics Reference Manual, 30000-99010

Svystems Programming Longuage Reference Manual 30000-90024
FORTRAN/3000 Reference Manual, 30000-36G040

System Manager/Supervisor Manual, 30000-8001 4

HP 3000 supporting software, inciuding the procedures in the Compiler Library, are written in
Hewleti-Packard’s Systems Programming Language (SPL/30040). Thus, all procedures in this man-
ual are SPL/3000 procedures,

Purposes of the Library and its relationship to the MPE/3000 Operating Systems are stated in the
Introduction; so are the structural elements of this book., A Funetion Directory follows, {0 cate-
gorize each function pravided in the Library and point to the description of the procedure. Section
I presents a detailed analygis of the Formatier. Funetions and attributes of other procedures are
defined in a standard format, in Section II for Mathematical Procedures and Section I for Utility
Procedures. Section IV outlines the special utilities for Library Errors.

NOTE: A specinl procedure, HP32211, is included in the HP 3000
Compiler Library, to report version identification for the
Library in use. This procedure can be called, for example,
from @ FORTRAN/3000 progrem:

CALL HP 32211

CONTENTS

PREFACE v
INFRODUCTION ix
ORGANIZATION OF THIS BOOK ix
Format for Procedures ix
Parameter Checking for Procedures X
Text Conventions xi
Internal Representations xii
FUNCTION DMRECTORY XV
DATA FORMAT DEFINITION XV
DATA EDITING ‘ xvi
DATA MANIPULATION xvi
ABSOLUTE VALUES xvii
MNUMBER CONVERSION xvii
NUMBER COMPARISON xviii
EXPONENTS, ROOTS, LOGARITHMS Vil
TRIGONOMETRY xix
MATRICES €x
RANDOM NUMBERS XX
DOUBLE INTEGER ARITHMETIC X
DOUBLE PRECISION ARITHMETIC xxi
COMPLEX ARITHMETIC xxi
DATA PLOTTING xxi
PACKED DECIMAL NUMBERS xxii
MISCELLANEOUS FUNCTIONS xxil
SECTIONI THE FORMATTER 11
FORMAT STATEMENTS 11
READ or WRITE Statements 1.2
Disc Input/Cutput 1-2
FORMAT SPECIFICATIONS 1-3
Field Descriptors 1-3
Scale Factor 1-32

Repeat Specification—For Field
Descriptors 1-35

vii

EDIT SPECIFICATIONS
Edit Descriptors

Repeat Specification—For Edit
Descriptors

SPECIFICATION INTERRELATIONSHIPS
Nesting
Unlimited Groups

FREE-FIELD INPUT/OUTPUT
Free-Field Control Characters
Free-Field Input
Free-Field Output

ACCEPZT/DISPLAY

CORE-TO-CORE CONVERSION

UNFORMATTED (BINARY) TRANSFER
Matehing List Elements

SPL/300C CALLING SEQUENCES
Calling Sequences
Fite System Reguirements

FORMATTER ERROR REPORTS
File Information Display

SECTION II MATHEMATICAL PROCEDURES
SECTION IiI UTILITY PROCEDURES
SECTION IV LIBRARY ERRORS

XLIBTRAP
APPENDIEX [IBRARY PROCEDURE NAMES

INDEX

TABLES

Table 3-1. Plotter Characters;Symbols
Table 4-1. HP 3000 Compiler Library Errors

vii

1-35
1-35

1-42
142
1-42
1-43
1-43
1-44
1-44
1-47
1-48
1-48
1-49
1-50
1-51
1-52
1-b6
1-58
1-61

2-1

3-1

4-2

Al

I-1

3-H4
4-b

Nov 1976

INTRODUCTION

Introduction

HP 3000 Compiler Library routines perform input/output, internal data conversion, mathematical,
data plotting, and error-reporting functions for user programs. The HP 3000 Multiprogramming
Executive {MPE/3000) links each user program to the Compiler Library routines needed,

ORGANIZATION OF THIS BOOK
This baok contains a function directory and four sections:

Section I: The Formatter

Section H: Mathematical Procedures
Section IIl: Utility Procedures
Section IV: Library Errors

Format for Procedures

Most of the procedures in Sections I and I are described in a standard format. The following
items are included in that format, when applicable:

NAME The procedure identifier.
{at top of page)
FUNCTION: P arpose of the procedure.

Declaration: The parts of the proecedure declaration that define the requirements for
actual parameters {arguments) included in a procedure call or calling
sequence. Pracedure declarations are defined in the Systems Programming
Language Reference Manual.

Method: A comment on the algorithm for the procedure,

Accuracy:

ATTRIBUTES:

Parameters:

Result(s):

FORTRAN:

Error(s):

COMMENTS:

A deseription of the procedure accuracy, using the following notation:

¥ = ftrue value of ihe argument(s}

y = computed value of the argument(s)
f = true value of the result

g = compuied value of the result

Ix—y| = absolute error in the argument(s)

{X—;&* = pelative eyror in the argument{s}

If-g| = absolute error in the resuli(s)

F:i;g' = relative error in the resuli{s)

The type(s) and range’ of value(s) allowed by the procedure, The FORTRAN
type double precision is identical to the SPL/3000 {ype LONG (real}.

The type{s), and range of value(s)},

When applicable, how FORTRAN/30G0 uses or calls the procedure,
A brief description of the error conditions.

(When needed, special comments.}

Parameter Checking for Procedures

SPL/3000 procedures declared option external or called as an external procedure by other
programs can include a CHECK option for attributes of the procedure. For SPL/3000 callers,
the CHECK option can be spacified in the declaration in the calling program, as descrihed in
the Systems Progranuning Language Reference Manugl under “PROCEDURE
DECLARATION.” The CHECK opticon levels (values) are:

0 - no checking

1 — c¢check procedure type only

2 -~ check procedure type and number of parameters

3 — check procedure type, number of parameters, and type of each parameter.

! The range and form of internal representations are summarized in text that follows,

The following procedures in the HP 3000 Coinpiler Library do specify, in their declarations,
the CHECK option for level 3:

ALOG DEXP FACTOR TAN
ALOG10 DINVERT INVERT TANH
ATAN DLOG PLOT WHERE
ATANZ DLOG10 PLOTS

COSH DSIN SIN

DATAN DSQRT SINH

DATAN2 DTAN SQRT

DCOS EXP SYMBOL

One Library procedure specifies, in its declaration, the CHECK option for level 2:
RAND
Text Conventions
The folowing conventions are used throughout this manual:
1. All numbers are decimal unless otherwise noted.

2. In all examples, a blank space is represented by a delia &,

3

. Al appearances of the initials TOS refer to the top-of-stack, as defined in the
Systems Prograrming Language Reference Manual,

4. The notation := means “‘is replaced by."”

5. Mathematical notation in the text includes the following definitions:
A value x in the range (o,b) meansa <<x <\ &
A value x in the range [e,b] meansg=<x< b
A value x in the range (9,b] means ¢ <x < b

A value x in the range [¢,b) means g s x <

xi

Internat Representaiions

Data Characteristics

Tuteger:

[—32768,32167],
in 1 word:

Double Integer:

[-2147483648,21474836471],
in 2 words, concatenated:

Real:

[-1.15792 - 1077
~3.63617 » 10778} and 0.0 and
{8.63617 - 1077%,
115792« 1077} in 2 words,
concatenated {see definitions
on the next page):

where MSEB is the most significant
hit and LSB is the least significant
bit.

Internal Representation Format

™ | 1 I i I
46 1 2 3 4 5 6 17 8 91011121314 15§

SIGHN

)

LSR I

\‘gl

oy e en

I

|
o

SIGN (FRACTION)
o ~MSB LSB-, . - MSB
EXPONENT | FRACTION |

[—

ity s e e
—

FRACTION

I
|
LSB /;
|

xii

Data Characteristics

Internal Representation Format

1 1 I

I
161112

1 1
131415

01 23 4567829
[
| |
I i
Double Precision:? i ;
[-1.157920892378162 - 1077 | < Y e
SIGN (FRACTION
—8.636168555004445 - 10778 and | ,() . |
0.0 and [8.636168555094445 « | &7 o M5B LSB . MSB |
1078, 1.157920892373162 - 10777 EXPONENT | __FRACTION]
in 4 words, conecatenated (see I
definitions below): [FRACTION]
e e e _
| FRACTION |
[e e T T |
! FRACTION
. L8B "
Logical (Boolean): l| |
[True {odd}, False {even)}, | SB~_ |
in 1 word:) "J
[
| |
Byte (ASCII character code): ! |
: | \ f
8-bhit codel, M L5B
]!::T/EWUI';'{JO E] I‘/" SB \\\L i
| C] or ;
l -
: 7 [4:”‘ MSB LSB.__ i
| |
Definitions: I 8 ‘
MSB = most significant bit
LSB = least significant bit
8B = significant bit (all others may be O or 1 for other uses)
SIGN = S = one bit for the sign of FRACTION, 0 for positive, 1 for negative
EXPONENT = E=[0,777,]1 = {0,611,,]
FRACTION = F=[0,2%2?-1] or [0,2°%-1}

Real and double precision numbers are stored in normalized form with an implied “1.” to the

left of the FRACTION MSB. Thus, DECIMAL VALUE =

{__*1}8 P 2‘:’:‘.w256 o (1.+F*2-22)
(<1)5 * 2E 256 & (] 4FA2-54)

REAL

DOUBLE PRECISION'

The exception occurs when 8 = E = F = 0; the decimal value 15 0.0.

NOTE: When E=511;q, 257256 =~ 2255,

'In SPL/3000, type LONG real.

Xii

FUNCTION DIRECTORY

Function Directory

The following list identifies each funetion provided in the HP 3000 Compiler Library and points to
the descripiions in this manual. The functions have been grouped by general categories of functions.

The grouping does not reflect the organization of the manual.

Function

Data Format Definitions

For a double precision' number with an exponent
{floating-point}.

For a real number with an exponent (floating-point).
For a real number without an exponent (fixed-point).
For a real number with or without an exponent, according

to the relative size of the number.

For a real number written in monetary (business) form.

For a real number written in numeration form.

For an mteger number.

For an octal integer number.

For a hexidecimal integer number

For a logical value.

For the lefumost ASCIH alphameric characters
of a variable,

1n SPL/3000, type LONG real.

RV

Identifier

FORMATTER, see
D d Field Descriptor

FOBEMATTER, see

Ew.d Field Descriptor,

FORMATTER, see

Fw. d Field Descriptor.

FORMATTER, see

Gio.d Field Descriptor.

FORMATTER, see

Muw.d Field Descriptor,

FORMATTER, see

Niuw.d Field Descriptor.

FORMATTER, see
Iw Field Descriptor.

FORMATTER, see
Ow Field Descriptor.

FORMATTER, see
Zw Field Descriptor

FORMATTER, see
L Field Descriptor,

FORMATTER, see
Aw Field Pescriptor.

Page

1-7

1-8

1-11

1-13

1-16

1-18

1-20

1-22

1-24

1-26

1-28

Function

Data Format Definitions {cont.)

For the rightmost ASCII alphameric characters
of a variable.
For a string of ASCI alphameric characters,

To modify the effects of various field descriptors.

To repeat one or more {ield descriptors.

Data Editing
Fix n characters of an edit specification.
Initialize the next n characters of an edit specification.
Skip r positions of an external record,
Position (tabulate) datz in an external record.
Terminate the eurrent external record and begin a new
record.

Ize the octal number n as a byte character.

Repeat one or maore edit descripiors.

Data Manipulation

Input or output data in free.field form.

ACCEPT or DISPLAY data.

Convert data between a user-defined buffer and a list of
variables.

xvi

Identifier

FORMATTER, see
R Field Descriptor,

FORMATTER, see
8 Field Descriptor,

FORMATTER, see
Scale Factor,

FORMATTER, see
Repeat Specification—
for Field Descriptors.

FORMATTER, see

i LR] L

A« | S
Bdit Descriptors.

FORMATTER, see
nH Edit Descriptor.

FORMATTER, see
nX Edit Descriptor.

FORMATTER, see
Tn Edit Descriptor.

FORMATTER, see
JEdit Descripior.

FORMATTER, see
%nC Edit Descriptor.

FORMATTER, see

Repeat Specification—
For Edit Descriptors.

FORMATTER, see

Free-Field Input{Cutput.

FORMATTER, see
ACCEPT/DISPLAY.

FORMATTER, see

Core-to-Core Conversion.

Page

1-30

1.32

1.34

1-37

1.38
or
1-39
1-40
1-41
1.42
1-48

1-44

1-45

1-46

1-51

1-561

Function

Data Manipulation (cont.)

Transfer data between files and a list of variables
without conversion.

Convert a byte array of ASCII numeric data to an internal
representation.

Convert an internal representation of a number to a byie
array for ASCII numeric data,

Absolute Values

Calcuiate the absolute value of a double precision’
nurmber.

Calculate the absolute value of a complex? number,

Calculate the absolute value of one integer numbeyr and give
it the gign of a second integer number.

Calculate the absolute value of one double integer number
and give it the sign of a second double integer number,

Caleulate the sbsolute value of one real number and give it
the sign of a second real number.

Caleulate the absolute value of one double precision’
number and give it the sign of a second double precision’
number.

Number Conversion

Trineate a real number to an integer number,

Truncate a real number to an integer number {result in real
representation).

Truncate a double precision' number to an integer number
(result in double precision’ reprasentation).

Truncate a LONG real number to a double-integaer number

Convert a double-integer number to a LONG real number

Hn 8PL/ 3080, type LONG real,
2In 8PL/3000, a two-element real array.

Nov 1976 Xvii

Identifier

FORMATTER, see Unfor-
matted (Binary) Transfer
EXTIN'

INEXT"

DABS'

CABS (or CABSY)

ISIGN’

JEIGN’

SIGN’

DSIGN’

INT”
1IFIX’

AINT’

DDINT”®

DFIX (or DFIX")

DFLOAT (or DFLOAT")

Page

1.52

3-1

3-4

2-1

2-2

2-3

2.4

25

2-6

2-7
2-68
2-8

2-9

2-10

2-11

Function

Number Comparison
Caleulate the largest (MAX®’) or the smallest {MING) of N
integer numbers.
Calculate the largest (IMAXG') or the smallest (JIMINOY) of N
double integer numbers.

Calculate the largest (MAXT’) or the smallest (MIN1y of N
real huimbers (result in integer representation).

Calculate the largest (JMAX1") or the smallest (JMINT’) of N
real numbers (result in double integer representation).

Calculate the largest { AMAXO0’) or the smallest { AMINO™)
of N integer numbers {result in real representation).

Calculate the largest (AJMAXO") or the smallest (AJMINO")
of N double integer numbers {result in real representation).

Calculate the largest (AMAX1’) or the smallest (AMINL’) of
N real numbers.

Calculate the largest (DMAX1’) or the smallest (DMINL") of
N double precision' numbers.

Calculate one real number modulus a second real number.

Calculate one double precision’ number modulus a second
double precision’ number.

Exponenis, Roots, Logarithms

Calculate e®, where x is a real number,

Calculate e®, where x is a double precision' number.
Calculate e*, where x is a complex?® number.

Calculate the square root of a real number,

Calculate the square root of a double precision' number.
Calculate the square root of a complex? number.

Raise an integer number to an integer power.

Raise a double integer numbeyr to an integer power.
Rﬁise a double integer number {0 a double integer power
Raise a veal number o an integer power,

Raise a real number to a double integer power.

Raise a real number to a real power.

Raise a real numbey to a double precision? power.

IIn SPL/3000, type LONG real,
1in SPL/3000, a two-element real array.

xvill

Identifier

MAXY /MING’

JMAXO/IMING

MAX1'/MINT®

JMAXT fIMINY’

AMAXG] AMINO

AJMAXOAIMING

AMAXIVAMINT®

DMAXT /DMINT'

AMOD?
DMOD

EXP (or EXP')
DEXP {or DEXP’)
CEXP (or CEXP"}
SQRT {or SQRT?)

DS@RT (or DBQRTY

CSQRT (or CSQRT")

ITOY
DTOr
DTOD?
RTOI’
BTOon
RTOR’

RTOL’

Page

2-12

2-13

2-14

2-16

2-18

219

2-20

2-21

2-22
2-23

2-24
2-25
2-26
2-27
2-28
2-29
3-8

39

3-10
3-11
3-12
3-13

3-14

Nov 1976

Function

[dentifier

Exponents, Roots, Logarithms (cont.)

Raise a double precision! number to an integer power.
Raise a double precision? number to a double integer power.

Raise a douhle precision' number to a double precision’
power.

Raise a complex® number to an integer power,
Raise 2 complex® number {o a double integer power.

Calculate the natural logarithm of a positive real number.

Calculate the base 10 Jogarithm of a pesitive real number.

Calculate the natural logarithm of a positive double precision’
num ber.

1

Calculate the base 10 logarithm of a positive double precisien
number.

Calculate the natural logarithm of a complex? number.

Frigonometry

Caleuiate the tangent of a real number in radians.
Calculate the sine of a real munber in radians.
Caleulate the cosine of a real number in radians.

Calculate the tangent of a double precision! number in
ratfians.

Calculate the sine of a double precision! number in radians,

Calculate the cosine of a double precision? nuriber in radians.

Calculate the fangent of a complex? number,
Calculate the sine of a complex? number.
Calculate the cosine of a complex? number.
Calculate the hyperbolic tangent of a real number,

Calculate the hyperbolic sine of a real number,

'In SPL/3000, type LONG real.
211 BPL/3000, a two-element real.array.

Nov 1976 xix

LTOY
LTOLY

LTOL’

CTor
CTOD’

ALOG (or ALOG’)

ALOG10
BLOG (or DLOG")

DLOG10

CLOG {or CLOGY

TAN {or TAN")

SIN (or SIN)

COS {or COS™)
DTAN {(OR DTAN")

DSIN (or DSIN"
DCOS (or DCOS")
CTAN (or CTAN’)
CSIN {or CBIN?)
CCOS (or CCOS™)
TANH (or TANH)
SINH {or SINH’)

Page

315
316

317

319
3-20

2-31

2-31
2-32

2-32

2.33

2-34
2-36
2-36
2-37

2-38
2-39
240
2-41
243
2-43
2.44

Fanction

Trigonometry (cont,)

Calculate the hyperbolic cosine of a real number.

Calculate the hyperbolic tangent of a double precision?
number.

Calculate the hyperbolic sine of a double precision? number.

Calculate the hyperbolic cosine of a double precisiont
muimber,

Calculate the hyperbolic tangent of a complex? number.
Calculate the hyperbolic sine of a comples? number,
Calculate the hyperbolic cosine of a complex? nmumber.
Cailcuiate the arctangent of 4 real number.

Calculate the arctangent of a double precision® number.

Calculate the arctangent of the quotient of two real numbers,

Calculate the arctangent of the quotient of two double

precision’ numbers.

Matrices
Invert a square matrix of real numbers,
-Invert a square matrix of double precision! numbers.

Invert a square mainx of complex? numbers,

Random Numbers

Generate a random number, for use as a starting
point for RAND.

Generate the nexi element of a sequence of pseudo-
random numbers.

Double Integer Arithmetic

Calculate the sum of two double integer numbers.

Calculate the difference between two double integer numbers.

Calculate the product of two double integer numbers.

*1In SPL/3000, type LONG real.
21n SPL/3000, a two-element real array.

XX

Identifier

COSH (or COSH')
DTANH (or DTANH")

DSINH (or DSINH’)
DCOSH (or DCOSH?)

CTANH (or CTANH")
CBINH (or CSINHE")
CCOSH (or CCOSH")
ATAN {or ATAN")
DATAN (or DATAN")
ATANZ (or ATAN2?)
DATAN2

INVERT
DINVERT

CINVERT

RANDI (or RAND1Y)

RAND (or RAND

DADD
GsSUB

DMPY (or DMPY?)

Page

2-45

2-46

247

2-48

2-49
2-50
2-51
2-52
2-83
2-04

2-55

2-56
2-b7

2-58

2-59

2-60

2-61
2-62

2-63

Nov 1976

Funciion

Identifier

Double Integer Arithmetic {cont.j

Caiculate the quotient only of one integer number divided
by another double integer number.

Calculate the remainder only of one double integer
number divided by another double integer number.

Negate a double integer number.

Compare two double integer numbers.

Complex' Arithmetie

A goliection of procedures and special entry points, to
provide complex ' arithmetic operations,

A procedure with several entyy points, to provide compiex!
number negations.

A procedure with several entry points, to provide complex’
numbper comparisons.

Data Plotting

Initialize plotter variables, initialize a user-defined plotter
commands buffer, and open the piotter file.

Convert X-axis and Y-axis parameiers into plotter com-
mands, manage buffering of plotier commands, and ¢lose
the plotter file when the plotting sequence is completed.

! In 8PL/3000, a two-element real array.

Nov 1976 xxi

DDIV (or DDIV?)

DREM (or DREM")

DNEG

DCMP

Complex Arithmetic

Complex Negate

Complex Compare

PLOTS

PLOT

Pape

2-64

2-65

2-66

2-67

3-22

3-25

3-27

3-42

3-46

Funetion

Data Plotting (cont. }

Change the plot factor (the ratio of the plot physical size
to the plot command size).

Return the X-axis and Y-axis coordinates of the present
pent position {with respect to the current origin) and
return the current plot factor.

Write plot annotation in the form of ASCI characters
and special symbols

Packed Decimal Numbers!

Calculate the product of a Packed Decimal multiplicand and a
Packed Decimal multiplier.

Calculate the gquotient, or the guctient and remainder, of a
Packed Decimal dividend and a Packed Decimal divisor.

Unpack a Packed Decimal Number {numeric edit), or do an
alphanumeric onky edit.

Miscellaneous Funciions

Call the FORMATTER from an SPL/3008 program.

Implement the FORTRAN auxiliary IO statements:
REWIND, BACKSPACE, and ENDFILE {normally called
only by FORTRAN/3000 compiler-generated code).

Request any of ten actions avatlable for a
FORTRAN Logical Unit file.

Extract the MPE/3000 file number assigned {o a given
FORTRAN Logical Unit Number from the FORTRAN
Logical Unit Tabie.

Change the MPE/3000 system file number assigned to a given
FORTRAN Logical Unit Number in the FORTRAN Logical
Unif Table,

A eollection of procedures calied by FORTRAN/3000
compiler-generated code at run-time, to perform various
functions for a user’s program.

Specify a user-defined procedure to process library errors.

1In SPL/3000, a BYTE array.

xxit

Identifier

FACTOR

WHERE

SYMBOL

MFPYD

DIVD
or
LONGDIVD

R'EDIT

SPL/3000 Calling
Sequences

FINAUX’

UNITCONTROL

FNUM

FSET

FQRTRAN
Run-time
Procedures

XLIBTRAP

Page

3-49

3-60

3-51

2-69

2-71

2-71
2-74

i-54

3-29

3-32

3-34

3-35

3-56

4-2

Nov 1976

Function

Identifier

Miscelianeous Functions (cont.)

Obtain formatted date and time information

Print a File Information Display on the job list device.

Identify whethexr Compiler Library in use is a three-word,
extended precision, floating point version or a four-word,
extended precision, floating point version.

Nov 1876 b6 411

DATELINE

PRINTFILEINFO
{or PRINT FILE'INFO}

COMPLIBINFO
{or COMPLIBINFQO’}

Page

3-36

3-37

3-41

SECTION [
THE FORMATTER

To find the descriptions for any given feature of the Formatter, see the Function Birectory or
Appendix A.

SECTION |
The Formatter

The Formatter is a subroutine called by FORTRAN compiler-generated code or by SPL/3000 user
programs. The FORTRAN/3000 compiler interprets READ or WRITE statements of a FORTRAN
program to generate the calls to the Formatter; an SPL{3000 user must generate the calls himself.
The Formatier can perform fhe folowing functions:

1.

Convert between external ASCII numeric and/or character records and an mternally
represented list of variables. Formatting proceeds according to implicit parameters
detived from a FORTRAN program’s FORMAT statements or explicit parameters
written into an SPL;3000 program.

. Convert free-field external ASCIl records to an internally represented list of variables

according to format and/for edit control characters imbedded in the input records.

Convert an internally represented list of variables to external ASCII records which axe
free-field input-compatible.

Convert between an internally represented list of variables and a user-defined ASCII
buffer storage area (coredo-core),

Transfer {unformatted and without conversion) between an internally represented list
of variables and external files on disc or tape.

READ and WRITE siatements in a FORTR AN progran must meet the syntactic requirements of that
language. The Formatter derives format and edit parameters from FORMAT statements or the data.
The SPL/3000 user, however, must code the calls and the parameters by the methods described

under “SPL/3000 Calling Sequences.”

FORMAT STATEMENTS

FORMAT statements in a FORTRAN program enclose a series of format and/or edit specifi-
cations in parentheses. The specifications must be separated by commas or record termi-
nators (see */Edit Descriptor’).

11

EXAMPLE:

10 FORMA’I: {15,A2,61"12.8)
= B !

FORMAT statement (dentifier Format and/or edit specifivations

These format and edit specifications can include another set of format and/or edit specifi-
cations enclosed in parentheses; this is called nesting. The HP 3000 Formatier allows
nesting to a depth of four levels.

EXAMPLE:
20 FORMAT (13,E12.5,3(D14.3,16) 4HSTOP)
READ or WRITE Statements
Formatted READ or WRITE statements in a FORTR AN program identify the list of variabies

that reference a FORMAT statement. (More than one READ or WRITE statement can refer-
ence a given FORMAT statement,.) '

EXAMPLE:

READ (2,10) INT, LETR,ARRAY
g
unit number FORMAT stafement identifier List elements

WRITE (4,20) INT LETR,ARRAY

The list of variables can consist of any number of elernents (including zero elements); there
need not be a direct relationship to the number of list elements and the number of format
and/or edit specifications. Refer to “Unlimited Groups,” in this section.

Disc Input/Output

Two types of access to files on disc devices are available through the MPE/3000 file
system: sequential or direct, Pither type can be established through the MPEf3000 file in-
trinsic FOPEN,; direct access includes the capability of sequential access.

When formatted/sequential aceess is used, the READ or WRITE statements of a FORTRAN
program are written as described above, under “READ or WRITE Statements.”

When formatted/direct access is used, the READ or WRITE statements of a FORTRAN pro-
gram must specify an integer, double integey, real, or double precision simple variable or a
constant for the record identifier.

1-2 Nav 1976

EXAMPLES:
READ (B@IV, 100) iist elements

unit nuember Record FORMAT
identifier statement
‘varigbie identifier
/

WRITE (12@KR, 300) list elements

When the file is opened {through the MPE/ 200G file intrinsic FOPEN), the record size can be
left at the system default value 128, or the user can specify a different size,

In sequential access, as many records as needed are used in sequence until the entire lst of
variables has been transmitted.

In direct access, only one record is transmitied. If the list elements specified vequire storage
space greater than ihe record size of the file device used, the report FORMAT BEYOND
RECORD occurs {see “FORMATTER EEROR REPORTS™.

FORMAT SPECIFICATIONS
Format specifications are writien as

A field descriptor

.
* A scale factor followed by a field descriptor

* A repeat specification followed by a field descriptor
-

A scale factor followed by a repeat specification and a field descriptor

A brief discussion of fiekd descriptors follows; detailed descriptions appear later in this section.

Field Deseriptors
For output of data, the field descriptor determines the components of a data fieid into which a

given list element wilt be writien. For input, the field descriptor defines only the field width
from which data can be read into an internal list element.

DECIMAL NUMERIC CONVERSIONS

Seven descriptor forms are provided:

D d Output in double precision, floating point {with an exponent field} form.
Ew.d Output in real, floating poini {with an exponent field) form.
Furd Output in real, fixed point (with no exponent field) form.

Gu.d Output in either the Fuw.d format or the Ew.d format, depending on the
relative size of the number {o be converted.

Muw.d QOuiput in monetary (business) form (real, fixed-point, plus § and coramas),
e.g., $4,376.89.

Nw.d Cutput in numeration form {same as the Mw.d format, but without the §),
e.p., 3,267.64.

| {71 QOutput in integer form.

where
w = the length of the external data field, in characters; must be greater than zero,
d = the number of fraction field digits in a floating or fixed point cutput {see detailed

descriptions on the following pages). On input, if the external data does rot include
a decimal point, the integer is multipiied by 107, If the external data does include
a decimal point, this specification has no effect. Where listed above, d must be
stated even if zero.

Rules for lnput

All of the field descriptors listed above accept ASCI numeric input in the following
formats.

NOTE: lw, on input, (s interpreted as Fuw. 0

1. A series of integer number digits with or without a sign
2314 or +56783 or 36

2. Any of the above with an exponent field with or without a sign
231442 or +56783E-4 or -96D+4

3. A series of real number digits with or without a sign
2314 or +567.83 oF -.96

4. Any of the above, with an exponent field with or without a sign
2.314+47% or +567.83E-4 or —96D+4

5, Rither of the above items 1 and 3, in monetary (business} form
$234 or $5,678.30 or -.96

6. Either of the above items 1 and 3, in numeration form
2.314 or +5,678.30 or —961,634.873

In summary, the input field can include integer, {raction, and exponent subfields:

Integer field Fraction field Exponent field

xljt“‘*l |L—»l~¢4
th,..nhn... nEtee

(Decimal point)

14

Rules: 1. The number of characters in the input field, including $ and commas, must
not exceed w in the field descriptor used,

2. The exponent field input can be any of several forms:

+e +ee Ee Eee De Dee
-2 e E+e E+ee DHe Dtee
E— E—ee De Deee

where € is an exponent value digit.

3. Embedded or trailing blanks {to the right of any character read as a value) are
treated as zeros; leading blanks are ignored; a field of all blanks is treated as

ZEr0.
EXAMPLES:
1423 = 1028 2ABELAE+LL = 206G0E04
12.434 = 12,034 202,445 003 = 202045.003
-$1,A34 045 = ~1034.005 24002413 = 2.002-013

4. The type of the internal storage is independent of either the ASCI numeric
mput or the field descriptor used to read the mput. The data is stored aceord-
ing to the type of the list element (variable) currently using the field descriptor.
The conversion rules are as follows:

* Type INTEGER truncates a fractional input.

¢ Type REAL rounds a fractional input.

® Type DOUBLE INTEGER truncates a fractional input.
® Type DOUBLE PRECISION' rounds a fractional input.

OCTAL NUMERIC CONVERSION

One descriptor form is provided:

Qw for octal numbers Q through 17T7T7TTITTTITITTTITTT,

where
t is the length (in characters) of the external data field {must be greater than zero).

This field descriptor accepts ASCH numeric input up to 22 octal digits long. Non-numeric
ar non-octal characters cause a conversion eyror,

n SPL/3000, type LONG real.

Nov 1976 1-5

HEXIDECIMAL NUMERIC CONVERSION
One descriptor form is provided:

Zw for hexidecimal numbers 0 through FFFFFFFFFFFFFFFF 4
where

w is the length (in characters) of the external data field (must be greater than
Zero).

This field descriptor accepts ASCII inputs up to 16 hexidecimai digits long. Non-
hexidecimal characters cause a conversion error,

LOGICAL CONVERSION
One descriptor form is provided:

L for logical values (7 or F followed by any other characters}.

The field descriptor accepts any ASCIH characters input that begins with either T or F.

ALPHAMERIC CONVERSIONS
Three descriptor forms are provided:

Aw for alphameric characters to and from the leftmost bytes of a list element.
R for alphameric characters to and from the rightmost bytes of a list element.

8 for alphameric characters to and from a character string {user-defined character
list element),

Each of the above field descriptors accepts (but provides differing storage of) any ASCII
character’s input, including blanks,

1-6 Nov 1976

D d

Double precision! numbers

FUNCTION: Define a field for a double precision’! number with an exponent (floating-point).

OUTPUT

On output the D field deseriptor causes normalized output of a variable {internal representation
value: integer, double integer, real, or double precision! } in ASCI! character floating-point
form, right-justified. The least significant digit of the output is rounded.

The extemnal field is w positions of the record:

o d —
Decimal point
where
xq...%y = the most significant digits of the value
e¢ = the digits of the exponent value
w = the width of the external field
d = in the number of significant digite allowed in w

~ (minus} s present if the value is negative

The field width w must follow the general rule
w=d+86

to provide positions for the sign of the value, the decimal point, d digits, the letter D, the sign
of the exponent, and the exponent’s two digits, [f w is greater than the number of positions
required for the output value, the output is right-justified in the field with blank spaces to the
left. If w is less than the number of positions required for the value (with the sign, decimal
point, and exponent field), the entive field is filled with #'s.

'In SPL/3009, type LONG real.

1-7

Do d (cont.)

EXAMPLES:
Internal
Bescriptor Value Output
D10.3 +12.342 AN128D+02
D10.3 ~-12.341 A-123D+02
D12.4 +12.340 AANAL1234D+02
D12.4 ~12.345 AH-,31285D+02
D7.3 +12.343 i i
D5.1 +12,344 iR

If rounding of the least significant digit occurs and “rollover” results (for example, 99.99 be-
comes 100.00), the rollover value is normalized and the exponent is adjusted,

EXAMPLES:
Internal
Deseriptor Value Quiput
D116 —-999.997 -.10000D+04
D115 +999.996 A 10000D+04
D105 -99,9996 FRERGHFRAH
INPUT

On input, the D field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list element)
currently using the field descriptor.

All rules for input to deeirnal numeric conversions (see *“Rules for Input”) apply.

1-8

Euw.d
Real Numbers

FUNCTION: Define a field for a real number with an exponent (floating-point}.

QUTPUT
On cutpui, the E field descriptor causes normalized output of a variable (internal representation
value: integer, double integer, real, or double precision’) in ASCIH character floating-point
form, right-justified. The least significant digit of the output is rounded.

The external field width is w positions in the record:

e w {
X .xdEiee

fo— d —+]

Decimal point
where

xq...%q = the most significant digits of the value

ee = the digits of the exponent value
w = the width of the external field

d = the number of significant digits allowed in w {for output, d must be
greater than zero

—(minus) is present if the value is negative

The field width w must follow the general rule
wad+6

to provide positions for the sign of the value, the decimal point, d digits, the letter E, the sign of
the exponent, and the exponent’s two digits, If w is greater than the number of positions re-
quired for the output value, the outpui is right-justified in the field with blank spaces to the left.
If w is less than the number of positions required for the value {with the sign, decimal point, and
exponent field), the entire fiskd is filled with #s.

'Tn SPL/3000, type LONG real.

1-9

Ew.d {cont.)

EXAMPLES:
Internal
Descriptor Value Output
E10.3 +12 342 AN I23E+02
E10.3 -12.341 A= 123E+02
E12.4 +12.340 AN T234E+02
E12.4 ~12.345 Ab-1235E+02
E7.3 +12.34 HEHIHHH
E5.1 +12.84 AR

If rounding of the least significant digit occurs and “rollover’’ resulis (for example, 99.99 be-
comes 100,00), the rollover value is normalized and the exponent is adjusted,

EXAMPLES:
Internal
Descriptor Value Output
E11.5 -309.908 ~.10000E+04
Bll.5 099.995 A T0000E+04
E10.5 ~99.9997 FEEHFEATERH
INPUT

On input, the E field descriptor causes interpretation of the next w posttions in an ASCH input
record. The number is converted to an internal representation value for the variable {list ele-
ment} currently using the field descriptor.

All rules for input to decimal numeric conversions (see “Rules for Input””) apply.

1190

Fuw.d
Real Numbers

FUNCTION: Define a field for a real number without an exponent {fixed-point).

OUTPUT

On output, the F field descriptor causes cutput of a variable (internal representation value:
integer, double integer, real, or double precision ') in ASCII character fixed-point form,
right-justified. The least significant digit of the output is rounded.

The external field width is w positions in the record:

o]
Decimal point

i1 ... I, = theinteger digits
fi-.- fq = the fraction digits
w = the width of the external field

d = the number of fractional digits ailowed in w
= the number of integer digits
- {minus) is present if the value is negdtive.

The field width w must follow the general rule

w=d+n+3

to provide positions for the sign, n digits, the decimal point, d-digits, and a rollover digit if
needed (see the following examples). If w is greater than the number of positions required
for the output value, the output is right-justified in the fieid with blank spaces to the left,
If w is less than the number of positions required for the value (with the sign and decimal

point), the entire field is filled with #s.

10 8PL/3000, type LONG real.

1-1t

Fuw.d (cont,)

EXAMPLES:
Internal
Descriptor Value Qutput

F10.3 +12.3402 ANAAATR 340
¥10.3 -12.3413 AAN-T2. 347
F12.3 +12.3484 AAAANNL2.343
#12.3 -12.3456 AANAN-] 2,846
F4.3 +12.34 BHEH

F4.3 ' +12345.12 HHAH

If rounding of the least significant digit occurs and “rollover’ results (for example, 89.89 be-
comes 100.00), the stated formula for w provides encugh positions for the value.

EXAMPLES:
Internal
Descriptor Value ‘Qutput
Fg.2 +999.997 A1000.00
F8.2 ~599.996 ~-1000.60
F1.2 -999.995 HEHHHH
INPUT

On input, the F field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable {list ele-
ment} currently using the fieid descriptor.

All rules for input to decimal numeric conversions (see “*Rules for Input”™) apply.

1-12

Guw.d
Real Nun:hers

FUNCTION: Pefine a field for a real number without an exponent (fixed-point) or, if needed, with
an exponent (floating-point).

OUTPUT

On output, the G field descriptor causes output of a variable (infernal representation value:
integer, double integer, real, or double precision’} in ASCII character fixed-point form, or if
needed, floating-point form, right-justified. The least significant digit of the output is rounded,

The external field is w positions in the record:

s w I p— w |
~-xq...x Etee —iq ey Fp oo FL0A
.ot
e d —» [Py S~
Decimal point Pecimal point (4 spaces)

where

i1...1, = the integer digits
{Fw.d descriptor)
f1---fq = the fraction digits

Xq...%g = the most significant digits of the value (Ew.d descriptor)

ge = the digits of the exponent value {Fw.d descriptor)
w = the width of the external feld
d = the number of fractional digits allowed in w
n = the number of integer digits (Fw.d descriptor)
—(minus) is present if the value is negative
The Guw.d field deseriptor is interpreted as an Fw. d descriptor for fixed-field form or as an
Ew.d descriptor for floating-point form, according to the internal representation absolute

value (N} after rounding. If the number of integer digits in Nis > d,or N < .1, the E
descriptor is used; otherwise the ¥ descriptor is used (see following page).

'1n SPL/3000, type LONG real.

1-13

Guw.d {cont.}

1F N<01 THEN Euw.d;
iF 0.1 s N<1 THEN F{w-4) .d plus 4X (spaces);
IF 1 <N < 10 THEN F(w-4) (d-1} plus 4X;
iF 10t < N < 102 THEN F(w—4) (d-2) plus 4X;
¥ 10° <N <167 THEN F(w-4) . {(d-3} plus 4X;
10091 <N<10¢ THEN F(w~4) .0 plus 4X;
iF 109 <N THEN Ew.d;

EXAMPLES:

G12.6,N=1234.5: F(w-4).(d-4) = F8.2, 4X: A123450AAAA
G13.7, N = 1234568.7: F(w-4) . (d-6) = FO.L, 4X: A123458.TAAAA
G9.2,N=1234: Ewd=E92 AAI2E+03

The field width w must follow the general rule for the Ew. d descriptor
w=d+6

to provide positions for the sign of the value, d digits, the decimal point {preceding x,), and,
if needed, the letter K, the sign of the exponent, and the exponent’s two digits. If w is greater
than the number of positions required for the output value, the output is rightjustified in the
field with blank spaces to the left. If w is less than the number of positions required for the
value (with the sign, decimal point, and the exponent field—or 4 spaces), the entire field is
filled with f#°g,

EXAMPLES:
Internal

Descriptor © Value Qutput
G10.3(E10.3) +1234 AN 123E+04
G19.3 (E10.3) -1 234 L 123E+04
G12.4(E12.4) +12345 ANA 1235E+05
G12.4 (F8.04X) +9999 AANDI99 AANAA
G124 (F8.1,4X) -899 LL-999.0AANAA
GT.1{ET.1} +.09 AOE-0L
G5.1 (E5.1) -.09 HHEHFH

1.14

Guw.d {cont.)

When the E descriptor is used, if rounding of the least significant digit occurs and “rollover”
results (for example, 99.99 becomes 100.00), the rollover value is normalized and the exponent

is adjusted.
EXAMPLES:
Internal
Descriptor Value Output
G12.2 (E12.2) +9999 AANAAN 1 0E+0D
(8.2 (E8.2) +999 A TOE+04
G1.2 (E7.2) ~-949 HAHIIHH
INPUT

On input, the G field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (st ele-
ment} currently using the field descripior.

Al rules for input to decimal numeric conversions {see “Rules for Input’”) apply.

118

Muw. d
Real Numbers

FUNCTION: Define a field for a real number without an exponent (fixed-point) written in monetary
{business} form.

OUTPUT

On outpui, the M field descriptor causes output of a variable [internal representation value:
infeger, double integer, real, or double precision!) in ASCII character fixed-point form,
righi-justified, with a dollar sign $ and commas. The least significant digit of the oufput is

rounded,

The external field is w positions in the record:

GO = ¢

d
n
w

- {minus)

L

w |
“Biys iy e

==

Commais)
{as rreedecd)

Decimal poini

the integer digits (without commas)

= the fraction digits

the number of output commas needed: one to the left of every third
digit left of the decimal point; see general rule for w below,

the number of fractional digits allowed in w
the number of integer digits
the width of the external field

is present if the value is negative

The field width w must follow the general rule

w=dtn+te+d

to provide positions for the sign, $, n digits, c commas, the decimal point, d digits, and a rollover
digit if needed (see the following exampies). If w is greater than the number of positions re-
quired for the output value, the output is right-justified in the field with blank spaces to the left.

'In SPL/3000, type LONG real.

1-16

Muw.d {(cont.)

If w is less than the number of positicns required for the output value (with the sign $,
comma(s), and the decimal point}, the eniire field is filled with #’s.

EXAMPLES:
Internal
Bescriptor Value Dutput
Mi0.3 - +12.8402 AANE]1 2,340
M10.3 -12,3404 HA-$12.340
M13.3 +80175.3965 ANARR0,175.397
Mi12.2 -80175.896 A-$80,175.40
M12.2 +2870b352.563 BHHFHHRR

If rounding of the least significant digit ocours and “rollover” results (for example, 99.99 be-
comes 160.00), the stated formula for w provides enough positions.

EXAMPLES:
Internal
Desecriptor Value _ Qutput
M12.2 +99999 996 A81006,000.00
M12.2 ~29999 998 —$100,000.00
Mi1.2 -998909.995 BERBREBRUHH
INPUT

On input, the M field descriptor eauses interpretation of the next w positions in an ABSCII input
record, The field width is expected (but not required) to have 2 $ and comma(s) imbedded in
the data as described above for Mw.d outputs; the $§ and comma(s) are ignored. The number is
converted 1o an internal representation value for the variable (list element) currently using the
field deseriptor.

All rules for input to decimal numeric conversions (see “Rules for Input”) apply.

17

Nw.d
Real Numbers

FUNCTION: Define a field for a real number without exponent {fixed-point) written in mumeration
form {(same as Mw.d but without § on output),

QUTPUT
Cn output, the N field descriptor causes output of a variable {internal representation value:
integer, double integer, real or double precision’) in ASCII character fixed-point form,
right-justified, with commas. The least significant digit of the cutput is rounded.

The external field is w positions in the record:

Commafs)
{as needed)

Decimal point

IR i, = the integer digits (without commas)
f1-..fg = the fraction digils

commas =c¢ = the number of output comruas needed: one to the left of every third
digit left of the decimal point; see general rule for w below.

d = the number of fractional digits allowed in w
n = the number of infeger digits
w = the width of the external field

- (mious) is present if the value is negative

The field width w must follow the gensral yule
w=2d+tn+e+3

1o provide positions for the sign, n digits, ¢ commas, the decimal point, d digits, and a rollover
digit if needed (see the following examples). If w is greater than the number of positions re-
quired for the ocutput value, the output is rightjustified in the field with blank spaces to the
left. If w is less than the number of positions required for the output value (with the sign,
comma(s), and the decimal point), the entirve field is filed with #'s,

'1n SPL/3000, type LONG real.

1-18

Nuw.d (cont.)

EXAMPLES:
Internal

Descriptor Value Output
NG.3 +12.3402 ALLATZ.340
NO.3 ~-32.3404 AA-12.340
N12.3 +80175.3965 ANBD, 175,397
Nii.2 -80175,396 AH-80,175.40
N11.2 +28705352.563 HEFRERRETE S

{f rounding of the least significant digit occurs and “rollover” results (for example, 39.99 be-
comes 100,00), the stated formula for w provides enough positions,

EXAMPLES:
Internal
Descriptor Value Output
N11.2 +99999 985 A160,000.00
Nil.2 -99999 997 ~10G,000.00
N10.2 -99499,929 e e e
INPUT

On input, the N field descriptor causes interpretation of the next w positions in an ASCII input
record as a real number without exponent {(fixed-point). The field width is expected {but not
reguired} o have comma(s} imbedded in the data as described above for Nw.d outputs; the
commafs) are ignored. The number is converted to an internal representation value for the
variable (list element} currently using the field descriptor.

All rules for input to decimal numeric conversions {see “Rules for Input”) apply.

1-19

Iy
Integer Numbers

FUNCTION: Define a field for an integer number,

OouUTPUT

On output, the I field descriptor causes output of a variable (internal representation value:
integer, double integer, real, or double precision!) in ASCI] character integer form, right-
justified. If the internal representation is veal or double precision, the leasi significant
digit of the output is rounded.

The external field is w positions of the yecord:

e)]
~lq ey
where
i1 .. .0y = the integer digits
n = the number of significant digits
w = the width of the exfernal fieid

— {rninus} is present if the value is negative

The field width w must follow the general rule
w=n+ 2

to provide positions for the sign, r digits, and a rollover digii if needed {see the following
examples). 1f w is greater than the number of positions required for the output value, the
output is right-justified in the field with blank spaces to the left. If w is less than the number
of positions required for the output (all digits of the integer and, when needed, the sign), the
entire Tield is filled with #’s.

*In SPL/3000, type LONG real.

1-20

{w (cont.)

EXAMPLES:
Internal

Descriptor Value Output
15 ~-123 H-123
15 +123 AA123
15 +12345 12345
15 -12345 YRR
14 +12.4 AAT2
14 -12.7 H-13
16 -, 3760E+03 L3771

1If rounding of the least significant digit cocurs and *“‘roHover” resuits {for example, 99.99 be-
cames 100.00), the stated formula for w provides enough positions:

EXAMPLES:
Tuternal
Descriptor Value Qutput
15 =999 .83 =1060
15 +999.8 41000
Td =994 5 HtH#
INPUT

Cmn input, the [field deseriptor functions as an Fw d descriptor with d = 0; it causes
interpretation of the next w positions in the ASCII input record. The number is converted
to an internal representation vaine for the variable {list element} currently using the field
descriptor,

Al rules for input to decimal numeric conversions (see "“Rules for Input’) apply.

1-21

Ow

Octal Integer Number

FUNCTION: Define a field for an ocial integer number.

oUTPUT
On output, the O field descriptor causes output of a variable (internal representation value:
integer, or real, or double integer, or double precision' } in ASCIl-character octal integer form,

right-justified.

The external field is w positions of the record:

l} . 1}1
where
iy - - - &, = the octal integer digits
= the number of significant digits
(maximums: 6 for an integer variable,

11 for a real or double integer variable,
22 for a double precision variahle)

w = the width of the external field

The field width w can be any desired value but should be 2 6 or 2 11 or 2 22, for an
integer or real {or double integer) or double precision variable, respectively, for complete
accuracy, [T w is greater than the number of positions required for the cutput value, the
autput is right-justified in the field with blank spaces to the left. If w is less than the
number of positions required for the entire octal integer, only the w least significant
digits are output.

EXAMPLES:
Internal
Descriptor Value Output
Q8 102077 ANT02077
04 30554677321 1321
016 56774532675 AAAANBBTTAB32673
011 34356648327422113 45327422113

'1n SPL/3000, type LONG real.

1-22 Nov 1978

Ow (cont.)

INPUT

On input, the O field descriptor causes interpretation of the next w positions in the ASCIY
input record as an octal integer number, The number is converted to an internal repregentation
value for the variable (list element) cusrently using the field descriptor.

The inpui field can consist of only octal digits: no more than six digiis (no larger than 1777775)
for an integer variable, or no more than L1 digits (noe larger than 37777777777,) for a real or
double integer variable, or no more than 22 digits (no larger than 1777777777T17TTTI777177:) |
for a double precision! variable, are interpreted. Any non-octal or non-numeric character (in-
cluding a blank) anywhere in the field will produce a conversion erxor, If w is less than the
maximum number allowed by the variable using the descriptor, w digits are right-justified in

that variable’s internal representation {one or two or four words of memory). |

EXAMPLES:

Descriptor Input Result

06 134577 134577
or
00000134577
or
80000000000000001 34577 [
09 545563274 5683274
Or
00545563274
or
G000000000000545568274 |

013 4367456521051 5210561
' Qr
67436521051
or
GOOG000043674365210561]

YIn SPL/3000, type LONG real.

Nov 1976 1-23

Zw

Hexidecimal Integer Number

FUNCTION: Define a field for a hexidecimal integer number,

QUTPUT
On output, the 2 field descriptor causes output of a variable {internal representaiion value:
integer, or yeal, or double integer, or double precision’ } in ASCII-character hexidecimal
infeger form, right-justified.

The external field is w positions of the record:

where

il

oL the hexidecimal integer digits

n
n = the number of significant digits
fmaximums: 4 for an integer variable,
8 for a real or doubie integer variable,
16 for a douhle precision variable)
w = the width of the external field

The field width w can be any desgired value but should be = 4 or > B or 3 16, for an integer
ot a real or double integer or a double precision variable, respectively, for complete accuracy.
If w is greater than the number of positions required for the output value, the output is right-
justified in the field with blank spaces to the left. I w is less than the number of positions
requrired for the enfire hexidecimal integer, only the w least significant digits are output,

EXAMPLES:
Internal
Deseripior Vaiue Qutput
26 SAFC AABAFC
24 FCD473BE T3BE
212 J2AB698A AANNSZABBORA
Z8 OBEB4893E6FF 4803E6FF

'Tn SPL/3000, type LONG real.

1-24 Nov 1976

Zw (cont.)

INPUT

On input, the Z field descriptor causes inferpretation of the next w positions in the ASCII
Input record as a hexidecimal integer number. The number is converted to an internal repre-
sentation value for the variable (list element) currently using the field descriptor.

The Input field can consist only of hexidecimal digits: no more than four digits {no larger than
FFFF) for an infeger variable, or no more than eight digits {(no larger than FFFFFFFF,,) for
a real variable, or no more than 186 digits (no larger than FFFFFFFFFFFFFFFF () fora
double precision’ variable, are interpreted. Any non-hexidecimal character (including a blank)
anywhere in the field will produce a conversion error. If w is less than the maximum number
allowed hy the variable using the descriptor, w digits are right-justified in that variable’s internal
representation {one or two or four words of memory).

EXAMPLES:

Deseriptor Input Result
Z4 1ADS 1ADS

or
00001ADS
ot

0000000000001 A08

Z6 AB12F& 12F6
or
D0ABl2FG
or
00OD000000AB12FG

Z10 5489BB3ABC JABC
or
89BB3AGC
or

0000005489BB3AGC

‘In SPL/3000, type LONG real.
Nov 1976 1.25

Lw
Logical (Boolean} Values

FUNCTION: Define a field for a logical value.

OUTPUT

On output, the I, field descriptor causes output of a variable (internal representation value:
integer oy logical (boolean)} in ASCIl-character logical value form (T or F).

The external field is w positions of the record:

pa— w —

Xq.. R0
where
Xy -+« Xy = -1 blanks
¢ = either of two logleal characters: T (true) or F {false)
n = the number of blank spaces to the left of ¢
w = the width of the external field

The field width w can be any value == 1.

The logical character ¢ is T if the least significant bit of the internal representation is 1, cis F
if that bit is 0.

EXAMPLES:
internal
Descriptor Value QOutput
L1 102033g T
L13 B2767(7TT77g) FAYAVAVAVAVAVAVAVANAVAVAY §
L5 +124{174g) AANAR

1-26

Lw (cont.)

INPUT

On input, the L field deseriptor causes a scan of the next w positions in an ASCII input record
to find a logical character (T or). Al positions to the left of the logical character must bhe
blank; any other character{s) can follow the logical character. The character T is converted ta
-1 {177771g}, F is converted to 6 {000000g).

EXAMPLES:
Descriptor Input Hesult
L8 AANNTRUE 1777778
L1 P 0600004
L6 AFALSE 060000

1.27

AW
Leftmost ASCII Characters

FUNCTION: Define a field for ASCII alphameric characters of a variable,

OUTPUT

On output, the A field descriptor causes output of one or more bytes of a variable in ASCII-
character alphameric form. The maximum number n of bytes (thus, the maximum number of
characters available to a single Aw descriptor) depends on the type of the variable: for logical
or integer, n = 2; for double integer or real, n = 4; for double precision®, n = 8; for character,
n = the lengih atiribute? of the character variable (any integer in the range [1,255]).

The external field is w positions of the record:

e w -]

51...86‘1...(2

r n
where
¢q...¢, = the alphameric characters
n = the number of characters
w = the width of the sxternal field

—
H

= any remaining positions not used by 2 (# = w-n)

$1 - .. 8, = blank spaces (when needed)

The field width w can be any value 2» 1. If w is > n, the output is right-justified in the field
with w-r blanks to the lefi. If w is <n, the leftmost w bytes of the variable are cutput. The
n—i remaining bytes are ignored,

EXAMPLES:
internal Variable

Descriptor Characters Type (n =) Cuiput
A3 SA Logical or Integer (2} ASA
A3 SAMB Double Integer or Real {4) SAM
AT JANETW Double Precision! (8) AJANETW
AlG BG Logical or Integer (2} AVAVAVAYAYARAYAN 1)
Ad DIXMCG Doubije Precision® (8) DIXM
Al12 LEFTMOST Character® (8) AANMALEFTMOST
AB LEFTMOST Character? (8) LEFTMO

'In 8PL/3000, type LONG real
% As defined in a Type statement such as CHARACTER #8 LOCALE (see FORTRAN/3000
Reference Manuql).
1-98 Nov 1976

Aw {cont.)

INPUT

On input, the A field descriptor causes transmittal of w positions in an ASCII input record ton
bytes of the variable {list element) currently using the field descriptor. 1f w= n, the firsi w-n
characters of input are skipped, and n characters are fransmitted. If w <n, w characters are
transmitted to the leftmost bytes of the variable, and all remaining n—w bytes are set to blank,

EXAMPLES:
External Variahle Internal
Descriptor Characters Typein=) Result
A3 CAB Integer or Logical (2} AB
A2 CA Integer or Logical (2) CA
AlD COMPLEMENT Integer or Logical (2) NT
a4 REAL Double Precision® (8) REALAA
A4 REAL Double Integer or Real (4) REAL
AT PROGRAM Character? {8) PROGRAMA

'In SPL/3000, type LONG real.
? As defined in a Type statement such as CHARACTER*8 LOCAL (see FORTRAN/30G0

Reference Manual).

i-29

Riw
Rightmost ASCH Characters

FUNCTION: Define a field for ASCI] alphameric characters of a variable.

OUTPUT

On ouiput, the R field descriptor causes output of one or more hytes of a variable in ASCII
character alphameric form. The maximum number n of bytes (thus, the maxirmum number of
characters) available to a single Bw descriptor depends on the type of the variabie: for logical or
integer, n = 2; for double integer or real, n = 4; for double precision!, n = §; for character,

n = the length attribute® of the character variable {any integer in the range [1,2565]).

The external field is w positions of the record:
el 77 JE—

Sl..,SC-l,..C

T n
where
¢y ... €, = the alphameric characters
n = the number of characters
w = the width of the external field

..‘
i

any remaining positions not used by n {r= w-n)

1.8 7 blank spaces (when needed}

The field width w can be any value 2 1, If w is 2 n, the output is rightjustified in the field with
w-n blanks to the left. If w is < n, the rightmost bytes of the variable are cutput. The n-w
remaining hytes are ignored,

EXAMPLES:
Internal Variable

Descriptor Characiers Type (n =) Cuiput
R3 SA L.ogical or Integer (2) ABA
R3 SAMB Double Integer or Real (4) AMB
R7 JANETG Double Precision* (&) AJANETG
R10 BG Logical or Integer (2} FAVAVAVAYAVAVAVANC 1@
R4 DIXMCG Double Precision (8) XMCG
R12 RIGHTMOST Character? (9) AALRIGHTMOST
R6 RIGHTMOST Character’ (9) HTMOST

*In SPL/3000, type LONG real.
¥ As defined in a Type stateraent such as CHARACTER*8 LOCAL (see FORTRAN/3000

Reference Manual).

1-3G Nov 1978

Rw {cont.)

INPUT

On input, the R {ield descriptor causes transmittal of w positions in an ASCI{ input record to n

bytes of the variable currently using the field descriptor. If w 2 n, the first w-n characters of

input are skipped, and n characters are transmitted, If w <n, w characters are transmitied to

the rightmost byles of the variable, and all bits of the remaining n-w hytes are set to 0 (ASCII Nudl),

EXAMPLE:
External Variable Internal
Descriptor Characters Type {(n =) Result
B3 CAB Integer or Logical {2) AB
R2 CA Integer or Logical {2) CA
R10 COMPLEMENT Integer or Logical {2) NT
R4 REAL Deouble Precision’ (8) aad REAL?
R4 REAL Double Integer or Real (4) REAL
R7 PROGRAM Character® (8) aPROGRAM?

Fin SPL/3000, type LONG real.
2g = ASCII Null.
3 As defined in a Type statement such as CHARACTER*8 LOCAL (see FORTRAN/3080

Reference Manual}.

1-31

S

Strings of ASCIE Characters

B PUNCTION: Define a field for a string of ASCII characters.

OUTPUT

On output, the S field descriptor causes output of a variable' (infernal value: character® only)
§ in ASCII-character form.

The external field is I positions of the record:

e f
{'!1 P Cn
where
1 ¢4 .. -¢, = the ASCII characters
= the number of characters
! = the length attribute of the character variable (Jist element); thus, the width
of the external field
EXAMPLES:
NAME Intemal
Characters Output
JIM MY NAME IS JiM JONES
GEORGE MY NAME IS GEORGE JONES

where the list element and length attribute are defined by the Type statement?
CHARACTER*3 NAME or CHARACTER*S NAME and edit specifications are

(“MY NAME 1S 7.5, JONES™)

L1f the variable (list element) is not type character,? the report STRING MISMATCH
occurs {see “FORMATTER ERROR REPORTS™}.

21n SPL/3000, type byte.

’ See FORTRAN/3000, Reference Manual.

1-32 Nov 1976

S {cont.)

INPUT

On input, the S field descriptor causes transmittal of ! positions in an ASCII input record to
the character variable currently using the field descriptor.

EXAMPLES:
External DAY Infernal
Characters Result
MONDAY MONDAY
SATURDAY SATURD

where the list elemeni and length atiribute are defined by the Type statement
CHARACTER*6 DAY and the format and edit specifications are

(“PODAY I87,S)

1-33

Seale Factor

The scale factor is a format specification to modify the normalized output of the Dw.d, Ew.d,
and the Gw.d-selected Ew.d! field descriptors and the fixed-point output of the Fu.d, Mw.d,
and Nw.d field descriptors. It also modifies the fized-point and integer (no exponent field)
inputs to the Dw.d, BEw.d, Fw.d, Guw.d, Mw.d, and Nw.d field descriptors. The scale factor has
no effect on output of the Giw.d-selected Fw.d* field descriptor or floating-point (with exponent
field) inputs.

A scale factor is written in one of two forms:

nPf
or
nPrf
where
n = an integer eonstant or - (minus) followed by an integer constant: the scale value
P = the scale factor identifier
{ = the field descriptor

H

r = arepeat specification—for a field descriptor {described later in this section)

When the Formatter begins to interpret a FORMAT statement, the scale factor is set to zero.
Each time a scale factor specification is encountered inn that PORMAT statement, a new value is
set. This scale value remains in effect for all subsequent affected field descriptors or until use of
that FORMAT statement ends.

EXAMPLES:
Format Specifications Comments
(E10.3,F12,4,19) No scale factor change, previous value remains in effect.
{E10.83,2PF12.4.1%) Scale factor for £10.3 unchanged from previous value,

changes to 2 for F12.3, has no effect on 19,

If the FORMAT statement includes one or more nested groups {see “Nesting,” this section), the
Iast scale factor value encountered remains in effect.

YSee descriptions for Guw.d.

1-34

EXAMPLE:

Format Speeifications Comments
(G9.2,2PF9.4,E7.1, .
2(D10.2 ~1PGE.1)) Seale values resulting ave
Descriptor Scale Value
G9.2 {Unchanged from previous value)
F9.4 2
E7.1 2
D10.2 b
GR.1 wl
D10.2 |
8.1 -1
OUTPUT

On outpul, the scale factor affects Dur.d, Ew.d, Fw.d, Mw.d, Nuw.d, and Guw.d-selected Huw.d
field descriptors only.

Duw.d and Ew.d
‘The internal fraction is multiplied by 10, and the internal exponent value is reduced by n.
® Ifn < 0, the output fraction field has —n leading zeros, followed by d + n significant

digits, The least significant digit is rounded.

#® If n > 0, the cutput has n significant digits in the integer field, and {d — n} + 1 digiis in
the fraction field. The least significant digit field is rounded.

& The field width speecification w normally required may have to be increased by 1.

EXAMPLES:
Scale Factor' and Internal
Field Descriptor Value Output
E12.4 +12.345678 LAA1235E+02
3PE1Z2.4 +12.34b678 HA123.46E-01
~-3PE12.4 +12,345678 FAVAVAW 11102 B]!

'In “Examples,” no scale factor stated implies zero.

1-35

Fw.d, Mw.d, and Nw.d

The internal value is multiplied by 10, then output in the normal manner.

EXAMPLES:
Scale Factor! and Internal
Field Descriptor Value
F11.3 1234.500
-2P¥11.3 1234,500678
2FF11.3 1234 500678
1IPM11.3 1234500878

Gi.d-selected Ew.d

The effect is exactly as described for Ew.d,

Gw, d-selected Fu.d

The scale factor has no effect.

INPUT

On input, the scale factor etfect is the same for integer or fixed-field {(no exponent field) inputs
to the Dw.d, Buw.d, Fu.d, Gw.d, Muw.d, and Nw.d field descriptors, The external value is multi-

plied by 107", then converted in the usual manner.

If the input includes an exponent field, the seale factor has no effect,

EXAMPLES:
Scale Factor! and External
Field Descripior Value
E10.4 123.9678
2PD10.4 123.9678
~2PG11.5 123.967858
~2PE13.5 1239.6785E+02

tIn “Examples,” no scale factor stated implies zero.

1-36

Qutput

AAA1234.500
FAVAYAVAVAN BT 1
A123450.068

$12,345.007

Internal
Representation

12398788+ 03
1239673E+01
12396785E4+05
J12396T85E+06

Repeat Specification—For Field Deseriptors

The repeat specification is a positive integer written to the left of the field descriptor it controls.
If a scale factor is also needed, it is written to the left of the repeat specification.

The repeat specification allows one field descriptor to be used for several list elements. It can

glso be used for nested {groups of) format specifications.

EXAMPLES:
(4E12.4) = (F124,E12.4,E12.4,E12.4)
{~2P3D8.2,216) = (-2PD8.2,-2PD8.2,-2PD8. 2,16,16)

(E8.2/3F7.1,3(16,4HLOAD,D12.3))
= (E8.2/F7.1,F7.1,#7.1,16 4HLOAD,D12.3 16 4dHLOAD 1312.3,16,4HLOAD, D12.3)

(2(M8.2)) = (M8.2,M8.2)

EDIT SPECIFICATIONS

Edit specifications are written as an edit descriptor or a repeat specification followed by an edit
descripior.

NOTE.: The repeat specification cannot be used directly on the nH or nX edit
descriptors, See “Repeat Specification—For Edit Descriptors.”

Edit Descriptors

There are six edit descriptors:

Descriptor Function

Lo Fix the next rn characters of an edit specification.

oL Fix the next r characters of an edit specification.
nli Initialize the next n characters of an edit specification.
nXx Skip n positions of the external record.
Trn Select the position in an external record where data input/output is

1o begin or resume.
/ Signal the end of a current record and the beginning of a new record.

FortC Use the octal number 1 as a byte character,

Detailed descriptions of each edit descriptor follow.

Nov 1976 1-37

LY L)

ASCII String (Fixed)

FUNCTION: Pix n characters in the edif specification where n is the number of ASCII characters
enclosed in the quotation marks. Any one or more of those characters can be a
quotation mark if signaled by an adjacent quotation mark. Any other ASCIH charac-
ters, including ' (apostrophe}, can be used without restriction.

CUTPUT

On output, the * . ., » edit descriptor causes n characters to be transmitted to the external
record; any adjacent pair of quotation marks is transmitted as one guotation mark,

EXAMPLES:
Edit Descriptor Qutput
“*QUTPUTA® “LOAD"™ ™. OUTPUTA“LOAD™,
“USERSAPROGRAM” USER’SAPROGRAM
INPUT
On input, the © ... " edit descriptor causes n positions of the input record to be skipped. Fach

pair of adjacent quotation marks counts as one position.

EXAMPLES:
Edit Descriptor Input Comment
“HEADINGAHERE™ THISAISATHEASTART 12 positions of the input are
skipped.
“HEADINGA™ “A” "A” THISAISATHEAENDAOFE 13 positions of the input are
skipped.

1-38

[r
..

ASCII String (Fixed)

FUNCTION: Fix n characters in the edit specification, where n 1s the number of ASCII characters
enclosed in the apostrophes, Any one or more of those characters can be an apostro-
phe if signaled by an adjacent apostrophe. Any other ASCII characters, including
* (quotation mark), can be used without restriction.

OUTPUT

On output, the * . . .’ edit descriptor causes n characters to be fransmitted to the external
record; any adiacent pair of apostrophes is transmitted as an apostrophe.

EXAMPLES:
Edit Descriptor Qutput
‘PRINTA ‘DATA’) PRINTA‘DATA .
‘SAM’ 'SA“SCORE”” SAM'SA “SCORE”
INPUT
On input, the * . . . " edit descriptor causes 1 posttions of the input record o be skipped. Each

pair of adjacent apostrophes counts as one position.

EXAMPLES:
Edit Descriptor Input Comment
COLUMNAHEAD? BEGINADATAAINPUT 11 positions of the input axe
' gkipped
‘ROWALABELA “B? ENDADATANMNPUT 14 positions of the input are
skipped,

1-39

nH
ASCII String {Variable)

FUNCTION: Initialize the next n characters of the edit specification. Any ASCII character is legal.

If written, n must be a positive integer greater than zero (if omitted, its default value
is 1).

OUTPUT

On output, the nH edit descriptor causes the current next n characters in the edif specification
to be transmitied to the external record.

If the edit descriptor has not been referenced by a READ statement (see ‘‘Input”), the ASCIH
characters originally written into the edit descriptor are transmitted,

If the edit descriptor has been referenced by a READ statement, the ASCI characters read last
are transmitted.

EXAMPLES:

Edit Descriptor Input Last Read Ountput
48MULT {None} MULT
THFORTRAN ALGOLAA ALGOLAA
12HPROGRAMADATA BINARYALOADER BINARYALOADE
10HCALCULATED PASSEDAAAA PASSEDAAAA
INFUT

On input, the nH edit descriptor causes the next n characters of the external record to be
transmitted to replace the next n characters in the edit specification.

1-40

nX
ASCII Blanks

FPUNCTION: Skip n positions of the external record, If written, n must be a positive integer greater
than zero; if omitted, the default value is 1.

OUTPUT

On output, the nX edit descriptor causes n positions of the external record to be skipped,
typically to separate fields of data. Those positions skipped are filled with ASCI blanks.

EXAMPLES:
Format/Edit Contents of Numeric
Specifieations List Element(s) Output
{E7.1,4X,“END") 34.1 A JE+OZAANNEND
Fieldg: 7 4
{F8.2,2X.18) b 87,436 DALAD BTAANANAIE
Fields: 8 2 6

NOTE: This descriptor, when used with the Tn edit descriptor {described
later in this section}, may cause prepious charecters to be overlaid.

EXAMPLE:

Format/Edit Specifications Qutput
(“ABCDEFG”, T1, “X”, 2X, “Y") XBCYEFG

INPUT

On input, the nX edit descriptor causes the next n positions of the input record to be skipped.

EXAMPLES:
Formai/Edit Data Transmitted
Specifieations External Record Input to List Elements
(DR 2,3X M9.2) AZBE+O2ENDE1,563.79 2ZBE+02, 1563.79
(6X,E9.2,15) 54321-98.7563814581 —.9876538E+02, 14581

Nov 1976 1-41

Tn
Position (Tabulate) Data

FUNCTION: Select the position (tabulation) in an external record where data input/output is to
begin or yesume,

The Tn edit deseriptor positions the record pointer to the nth position in the record.

OUTPUT EXAMPLES
1. Format/Edil Specifications
(T10,“DESCRIPTION”, T25, “QUANTITY”, T1, “PARTANO.”}
Result _
PARTANO ADESCRIPTIONANANAAQUANTITY

%
position #1 position #10 position #25
2. Format/Edit Specifications
{126,13,T1,342,T10,3A4)

Contents of List Elements
125 HR124A LOCK-WASHERS

Result
HRI124AANALOCK-WASHERSAAATIZS

position #1 position #10 position #2325

INPUT EXAMPLE

Formai/Edit Specifications
{T13,E8.2,T1 14,724 M12.3)

Input
1325COUNTEDAAABR2S TSLBSANAS4 365 TSACOST
position #1 position #13 position #24

Resulis in List Elements
BH25TEEF03, 13256, 436078E+04

Ag can be seen in the above examples, the position numbers rn need not be given in ascend-
ing order.

NOTE: This descriptor may cause previous characters to be overiaid (see nX
descriptions, earlier in this section).

1-42

/
Record Terminator

FUNCTION: Terminate the current external record and begin a new record {on a line printer or a
keyboard terminal, a new line; on a card device, a new card; eic.).

OUTPUT and INPUT

The / edit descripior has the same result for both output and input: it terminates the current
record and begins a new record.

If a series of two or more / edit descriptors are written into a FORMAT statement, the effect is
to skip n-1 records, where n is the namber of /s in the series. A series of /’s can be written
by using the repeat specification.

NOTE: If one or more [edit descriptors are the first item(s} in a series of format
specifications, n {not n—1) recards are skipped for that series of /'s.

EXAMPLES:
Format Specifications QOutput Record #

{E12.5 13/“END™) AN B2456E+04A35 1
END 2

(B12.5,13///°END™ AN 32456 E+04A96 1
2

3

END 4

{I5,3HEND 4/“NEW DATA") 43592END 1
2

3

4

NEW DATA 5

(ZII“END”) 1
2

END 3

The / edit descriptor ean also be used without a comma to separate it from other format
and/or edit specifications; i has the same separating effect as a comma.

1.43

ZonC
Single Character

FUNCTION: To use an octal number n in the range 0 - 377 as a byte character. The primary
purpose is to represent a carriage control character, especially where a particular
number does not represent a printing ASCII character.

OUTPUT

On cutput, the %nC edit descriptor causes the character in the edit specification to be
transmitted to the external recoxd. [f the character is in the first position of a record to
a device using carriage control, the character will be wsed as a carriage control character.

¥ the edit descriptor has not been referenced by a READ statement (See “INPUT™), the
ornginal character is fransmitted.

If the edit descriptor has been referenced by a READ statement, the character which was
last read is transmitted.

EXAMPLES:
Edit Descriptor Action Taken If Carriage Control Character
%H306C Space 1/4 page
%a01C Skip o bettom of the form
%53C Suppress line advance {equivalent to '+
INPUT

On input, the %nC edit descriptor causes the next character of the external record to be
transmitted to replace the character in the edit specification.

1-44

Repeat Specification—For Edii Descriptors

The repeat specification is a positive integer written to the left of the edit descriptor it controls.
Iis writtenas r** . . . " orv' ... " orr(nH) or r(nX)or r/, where r is the repetition value,

NOTE: The forms r(nH) and r(nX) may include other field and/or edit
descriplors within the parentheses,

EXAMPLES:

(£9.2/3F7.1,2(4HDATA)) = (£9.2/FT7.1,F7.1,F7.1,4HDATA 4HDATA)
(ASHABORT2/)) = (5HABORT,// SHABORT//)
(G10.3,3(“READ”E12.4)) = (G10.3“READ”E12 4, “READ"E12 4 “READ"E12.4)

SPECIFICATION INTERRELATIONSHIPS

Two or more specifications (£9.3,16) in a FORMAT statement are concatenated: Data 12.3
and ~30303 produces

L.123E+021-30303

The nX edit specification {E9.3,4X 16} can insert blank spaces hefween fields: The same data
produces

A 123E+02{AAAA]-30303

Or the / edit specification {E9.3/16) places each field on a different line: The same data

produces
A123E+02
~30303
Nesting

The group of format and edit specifications in a FORMAT gtatement can include one or more
other groups enclosed in parentheses (in this text, called “groupfs) at nested level x’). Each
group at nested level 1 can include one or more other group(s) at nested level 2; those at
level 2 can include group{s) at nested level 3; those at level 8 can include groupis) at level 4:

(E9.3,16,(2X,141) One group at nested level 1,

{T12,“PERFORMANCES”3/(E10.32(A2.L4))) One group at nested level 1,
one at nested level 2.

(F5,6HCOSTS 2(M10.5,(16,E10.3,(A2,F8.2)))) One group at nested level 1,
one at level 2, one at level 3.

A FORTRAN READ or WRITE statement references each element of a series of list elements;
the Formatter scans the corresponding FORMAT statement to find a field descriptor for each
element., As long as a lisi element and field descriptor pair oceurs, normal execution continues.
Formatter execution continues until all list elements have been transmitted.

1-45

Unlimited Groups

If a program does not provide a one-to-one match between list elements and field descriptors,
Formatter execution continues only until all list elements have been transmitted. If there are
fewer written field descriptors than list elements, format specification groups at nested level 1
and deeper are used as ‘‘unlimited groups.” After the effective rightmost field descriptor in a
FORMAT statement has been referenced {see *‘Repeat Specifications—For Field Descriptors™},
the Formatier performs three steps:

1. The current record is terminated: on output, the current field is completed, then the
record is transmitted; on input, the rest of the record is ignored.

2. A new record is started,

3. Format control (field descriptor interpretation) is returned to the repeat specification
for the rightmost specification group at nested Ievel 1. Or, if there is no group at tevel 1,
control returns to the first fleld descriptor {and its repeat specification) in the FORMAT
statement.

NOTE: Inany caose, the current scale factor is not changed until another scale factor
is encountered {see “Scale Factor™),

EXAMPLES:
(15,2{3X F8.2,8(12))) Control returns to 23X . F8.2,3(12))
(15, 2(3X,F8.2 8(1212}),4X,(16)) Contrel returms to (16)
(15,3X,4F8.2.3X) Control returns to {I5,3X 4F8.2 3X)
(“HEADER"” /3(E10.2)) Contro! returns to 3[(E10.2) ta produce:
HEADER
E10.2 E10.2 E16.2
e B0 D e EiG.2 ~ml=—E10.2
Bi10.2 E10.2 E10.2

FREE.FIELD INFUT/QUTPUT

Free-field input/outpul is formatied conversion aecording to format and/or edit control charac-
ters imbedded in the data. That is, the Formatter converts data from or 1o external ASCI{
character form without using FORMAT statements. For free-fieid inputs, format and/or edit
control characters are imbedded in the external data fieids. For free-field outpuis, predefined

field and edii deseriptions are used.

For free-field inputfoutput, FORTRAN READ or WRITE statements are written with an
asterisk instead of a FORMAT statement identifier:

READ (2, *) list elements
unit number PFree-field signol

WRITE (4, *) list elements

1-46

For free-field input/output to or from disc devices (see “Dhsc Input/Ouiput,’” earlier in
this section}, READ or WRITE statements in a FORTRAN program are writien:

For sequential access: As described on the preceding page for free-field input/output.

For direct access:

READ (O@LM, *} list elements
unit numberxggjord identifier variable Free-field signal (asterisk)

"*--_\““ .
WRITE(21@K]L, *) list elements

Free-Field Control Characters

Special ASCII characters embedded in the external data fields control free-field input:
Character(s) Function

{Blank space} or , {comma} Data item delimiter {terminator)
or any ASCII character
not part of the data item.

/ {slash) Record terminator {when not part of a character
string data iiem)

+ {plus} or — {imints) Sign of data item

. (period) Define the beginning of the fraction subfield of
the data item

Eortor-orD Define the beginning of the exponent subfield of
the data item

% {percent) Define the data item as octal {not decirnal)

oL An “enclosed’ character siring, in quotation marks;

10 be input only to a FORTRAN/3000 type charac-
ter variable {or SPL/3000 type byte array)

) An Yenclosed’’ character string, in aposirophes;
to be input only to a FORTRAN/3000 type charac-
ter variable (or SPLJ/3000 type byte array)

A ‘non-enclosed” character string; to be input
only to a FORTRAN/3000 type character variable
{or SPL/300{) type byte array)

<<, 2 A “comment” character string, enclosed by <<
and >>>; the characters are a comment only for the
external record; the string and symbols are ignored
on input.

Free-Field Input

Six data types can be input to free-field conversion: octal, integer, double integer,
floating-point (real), double-precision floating point!, and character string. Numeric data

fIn SPL/B000, type LONG real.

Nov 1976 1-47

types can be mixed freely with numeric list elements. For example, an integer data item can
be input to a floating-point list element,; the Formatter converts the integer to floating-point
form and stores the double-word result.

All rules for input to numerie and alphameric conversions (see *“Field Descriptors™) apply.

A character string item, however, must be input only fo a character string list element; if noi,
the report STRING MISMATCH occurs (see “FORMATTER ERROR REPCORTS™) and
the user’s program 15 aborted.

DATA ITEM DELIMITERS

A data item is any numeric or character string field oceurring between data item delimiters, A
data item delimiter is a comma, ¢ blank space, or any ASCII character that is not a part of the
data item. The initial data ifem need not be preceded by a delimiter; the funetion of a delimiter
is to signal the end of one data item and the beginning of another,

Tweo commas with no data item in between indicate that no data item is supplied for the corre-
sponding list element, and the previous contents of that list element are to remain unchanged.
Any other delimiter appearing two or more consecutive times is equivalent to one delimiter.

NOTE: Do notinclude a “no-data” field in a series of free-field data inpuis.
For example, a remark field such cs REMARK: I=1234 IS CORRECT

will not prevent the digits 1234 from being interpreted as a free-field
data item,

DECIMAL DATA

Decimal data items are written in any of the forms described under “Field Deseriptors,” except
the monetary or the numeration forms. Imbedded commas or the dollar sign are data ifem
delimiters.

NOTES: 1. Leading, imbedded, or trailing blanks or commas, §, etc., are dela
item delimiters, ’

2. All integer inputs have an implicit decimal point to the right of the last
{least significant} digit.

3. The exponent field input can be any of several forms:

e tee Ee Eee De Dee
] —ee E+e E+ee Pte D+ee
E—e E-eg D-e Dee
where ¢ is an exponent value digit.
OCTAL DATA
Ortal data Hlems are written

%1:1 e l'n

where

i1 ... L, = the octal integer digits

i

7l the number of octal digits {maximum: 22)

% is the octal data identifier

Nen-octal digits are delimiters. The largest number allowed is 177777777 TTTTTI777777 75
If n is greater than 21, the first {mos{ significant) digit must be G or 1.

1-48 Nov 1976

CHARACTER STRING DATA

An “enclosed” character string data item is any series of ASCH characters, including blank
spaces, enclosed either in quotation marks or in apostrophes. Any one or more of the charac-
ters enclosed in quolation marks can be a quotation mark if signalled by an adjacent quotation
mark; any one or more of the characters enclosed in apostrophes can be an apostrophe if
signatled by an adjacent apostrophe:

“SETS * “UNIT” 7 VALUE" transmits SETS “UNIT” VALUE
‘CLEARS *OPT? VALUE transmits CLEARS ‘OFT’ VALUER

A “non-enclosed” character string dafa item is any series of ASCII characters that does not
begin with:

8 comina, or a blank, or

a quoiation mark, or an apostrophe, or

two consecutive left symbols <<, or
does noft contain a slash /. Otherwise, any ASCII characiers are permitted. Such a data item
ends with:

an end-of-record condition, or

when n characters have been fransmitied (n is the length attribute of the list
element}, or

& slash / (record terminator),

The corresponding list element must be of type CHARACTER in FORTRAN/3060 for type
BYTE ARRAY in SPL/30800) of a specified string length. If the number of characters in the
data item is greater than the length attribute n of the list element, n characters are transmitted
and the remaining characters are ignored. If there are fewer characters than n, all characters of
the data item are fransmitfed, left-justified in the Hst element, followed by trailing blanks.

if an end-of-record condition occurs before the terminating quotation mark or apostrophe of
an “‘enclosed”’ character string data item, the Formatter assumes the daia ibem is continued in
the next record and reswunes transmission with the first character of the next record,

RECORD TERMINATOR

The character / (slash), if not part of an “enclosed” character data 1tem, terminates the current
record and delimits the current data item. If this oceurs before all list elements have been
satisfied, the remainder of the current record is skipped and transmission resumes with the
first character of the next record.

1-49

INPUT EXAMPLES

Given the

READ statement REAINS *)STR,I where 8TR is declared CHARACTER*10 §TR

and T is declared INTEGER 1;

External Input STR Result I Result
“ABCY ABCALNANLAL unchanged
*ABCHDE’ ABCYDEAAAA unchanged
ABCer {cr = carriage return) ABCAAALANA unchanged
<<COMMENT>>ABC123 ABC1230004 unchanged
“1234567800123” 1234567820 unchanged
1234567890123 1234567890 123
YES 256 YESAZLGANAA unchanged*
“YES 256 YESALANAAN 256
YES 256 YESAAANANN 256
B ABCAAAAAAA 6

*This may not be the desired result, the next example {above) shows a recommended
method.

LIST TERMINATION

If an end-ofrecord condition occurs without the record terminaior /, the effect is to end the
list of variables. Any list elements not satisfied are left unchanged.

Free-field Quiput

Five data types can be output under free-field conversion: integer, double-integer, floating-
point (real}, double precision floating-poing,! and character string. All output is compatible
with the requirements of free-field input: it does not require externsl changes to be input

using free-

1.

2.
3.
4

field conversion.

Integer data items are ouiput under the I8 field description.

Double-integer data ems are output under the 111 field description.
Floating-point data items are cutput under the G12.6 field description.
Double-precision fleating-point data items are output under the G22.16 field
description.

Character siring data items are output under the § field description: all characteys
are transmitted without modification, including blanks, quotation marks and
aposirophes,

'Tn SPL/3000 type LONG real.

1-50

DATA ITEM DELIMITER

Each field in the output record is delimited by one blank space.

RECORD TERMINATORS

If the width of a current numeric data item 1s too great for the remainder of a current record,
a new record is started with the firgi character of the data item.

If a character string data item is too long for the current record, the string will continue (o be
written, but onto the next record. No record terminator is output.

ACCEPT/DISPLAY

FORTRAN/3000 ACCEPT and DISPLAY are alternate applications of free-field input and out-
put, They are invoked by program statements such as

ACCEPT INT ARRAY ,LETR or DISPLAY INT,ARRAY,LETR

where INT, ARRAY and LETR are typical list elements, The key words ACCEPT and DISPLAY

are equivalent to READS,*) and WRITE(6,*), where § is typically the FORTRAN logical unit |
aumber of the MPE/3000 standard input file $STDIN, and 6 is typically the FORTRAN logical

unit number of the MPE/3000 standard output file $8TDLIST, and * (astexisk) is the free-field
signal.

Transmissions by ACCEPT and DISPLAY conform to the descripiions given for free-field
input and output, with one exception: the Formatter determines if the standard output device
to be used is a terminal (such as a teleprinter or & CRT keyvboard/display); if the device is such
a terminal, the ACCEPT routine prints a carviage refurn, a line feed then a prompt charactey ?
before accepting inputs.

CORE-TO-CORE CONVERSION
Conversions between external ASCII records and a list of variables use an input/output (1/0O)
buffer allocated to the Formafter. Core-to-core conversions, on the other hand, transfer to
and from user-defined buffers (byte arrays). The user can manipulate the data, transmit il to
or from extemal records, or return it to the original location or any other jocation.
To invoke core-to-core conversion FORTRAN READ and WRITE statements are written:

BREAD (u.f) list elements ar WRITE (v,f) list elements

where

a character simple variable or a character array element
the FTORMAT statement identifier

il

i

Nov 1976 1-51

Core-to-core conversions are subject to the same rules, restrictions, and interactions as formatted
or free-field conversions to and from external records, with the following exceptions:

1. Any signal to terminate the cumrent record and start a new record (such as edit specifi-
cation /, or free-field record terminator /, or the end of an uniimited group sequence}
is taken to be an error; the report BUFFER OVERFLOW occurs {see “FORMATTER
ERROR REPORTS™).

2. If an end-of-record condition occurs before either a terminating quotation mark {7)
or a close comment symbol {32+ is encountered in free-field data, BUFFER
OVERFLOW occurs {see “FORMATTER ERROR REPORTS™).

UNFORMATTED (BINARY) TRANSFER

Data can be transferred to and from dise or tape files in internat representation (binary} form
without any conversion. Such transfers are faster and occupy less space than {ormatted data

transfers.

Two types of access to files on disc deviees are available through the MPE/3000 file system:
sequential or direct. Either type can be established through the MPE/3000 file mtrinsic

FOPEN,

When binary [sequential access is used, the READ or WRITE statements of a FORTREAN program
are written without a PORMAT statement identifier.

EXAMPLES:

READ (8) list elernents
unit number
WRITE {12} list elements
When binary/direct access is used, the READ or WRITE statements of a FORTRAN

program are written with an integer constant or simple variable for the record identifier
and without a FORMAT statement identifier.

EXAMPLES:

READ (B@IV) list elements
unif number Record identifier variable
WRITE {12@KR) list elernents

When the file is opened {through the MPE/3000 file intrinsic FOPEN), the record size can be left
at the system default value 128, or the user can specify a different size,

1-52 Nov 1976

In sequential access, as many records as needed are used in sequence until the entire list of
elements has been transferved.

NOTE: If the storage required exceeds the size of the record, transfer continues
into the next record; this usually leaves part of that next record unused,

In direct access, record access is terminated by the last element in the list. Any unused portion
of the record just ferminated is ignored.

If the storage required by all the elements in the list exceeds the record size, the report
DIRECT ACCESS OVERFLOW occurs (see “FORMATTER ERROR REPORTSE).

Matching List Elements

The binary transfer user must match list elements between corresponding READ and WRITE
statements of a FORTRAN program. For example, if a list of elements is fransferred to a dise,
any corresponding return of the data to internal storage must do so to a list that matches each
element by fype and dimensions and by order of appearance in the list. The simplest method
is to use the same element labels for input and cutput, i possible.

NOTE: Under binary /direct access, the Formatier begins eqch new list element output
at o word boundary. If the list efement is, for example, a byte array of an odd
number of bytes, one byte of the record will not be used,

1-53

SPL/3000 CALLING SEQUENCES

NOTE: The following descriptions assume the reader has ¢ working Enowledge of
SPL/3000; see the Systems Programming Language Reference Manual,

To summarize, Formatter executions follow these steps:

1. An initialization call is made (either by a compiler-generated code or by an SPL/3000
program}). Parametlers are included in the call (for example, a flag indicating input or
cutput and a pointer to the format and/or edit parameters).

2. If the type of transfer is not to be core-to-core, the Formatter allocates space on the
user’s stack for the I;0 buffer and working areas and saves the location of the working
area in DB-Z. The Q register and the stack marker’s AQ entry are modified to prevent
dealiocation of the 17O buffer and working area upon initialization exit, If the direction
of transfer is input, data transmission to the IO buffer begins at this time, and contral
is returned to the user,

3. The user now makes a call for each element in the itst of variables. Parametfers in the
Formatter’s working area can be examined to determine the current positions in the
series of format and/or edit parametets and in the 17O buffer.

Before Call Upon Entry
@1 . Q—

10O
Buffer

Working
area

Stack Conditions for the Formatter

4. When the list of variables has been satisfied, the user must make a termination call. if the
direction of transfer is ouiput, transmission of the last record begins at this time. The @
register and AQ in the stack marker are modified to assure deallocation of the 1O buffer
and the working area upon termination exit.

5. When data transmission is complete, the user’s stack and location DB-2 are restored to
the conditions existing before the initialization call.

1.54

Calling Sequences

B5P1./3000 calling sequences to the Formatter must be based on the Formatter procedure
declarations as defined in the following paragraphs.

INITIALIZATION

Declaration: PROCEDURE FMTINIT’ (FORMAT, UNIT, REC, IOTYPE, LAST):
VALUE UNIT, REC, JOTYPE, LAST; INTEGER UNIT, IOTYPE, LAST;
DOUBLE REC; BYTE ARRAY FORMAT:
OPTION EXTERNAL;

For formatted conversions, a byte array econtaining format and
edit parameters; or

Parameters: FORMAT

for free-field conversions or unformatted (binary) transfers,
ignored,

For transfers to a FORTR AN/ 3000 logical unit numbered file,
a positive integer in the range [1,991 to specify that unit number
to be used; or

for transfers to a user-defined MPE/3000 {file, the negated file
number to be used; or

UNIT

for core-to-core conversions, the size (a positive integer), in bytes,
of the user’s internal buffer.

NOTE: If UNIT isa FORTRAN/3000 logical unit nmber [1,89], the Formatter
uses the FORTRAN/3000 Logica! Unit Table (FLUT) 10 open the [file.

If UNIT is a negated file number, the user must have previousty opened
the file through the MPE/3000 file intrinsic FOPEN.

In either case, see “File System Requirements” later in this section.

REC = For direct access to a file, a double integer recoard number; or

for core-to-core conversions, the second word of REC is & byte
pointer to the user’s internal buffer and the first word of REC
18 not used,

1-55

IOPYPE = Individual bits of this integer are used as follows:

Bit(s)

15
14

13

12

il

10

70

Function
Clear for output,; set for input.

Set for ACCEPT/DISPLAY : clear for any other
function,

Clear for sequential access to a file; set for direct
ACCRSS,

Clear for formatted or free-field conversions; set for
unformatted (binary) transfers.

Clear to call Formatier Frror Report routine for
end-of-file errors; set to not call.

Clear to call Formatter Error Report routine
for irrecoverable file errors; set to not call.

Set for core-to-core conversions; clear for any other
funetion.

Sat for free-field conversiong; clear for any other
function.

Spares.

LAST = Label identifier of the instruction that immediately follows the
Formatter termination call.

LIST ELEMENT TRANSFERS

Ten entry-point procedures to the Formatter are provided for transfers of various types of list
elements. The procedures” declarations are written as follows:

PROCEDURE IO’ (LOC);
INTEGER LOC;
OPTION EXTERNAL;

PROCEDURE DIO’ (LOC);
DOUBLE LOC;
OPTION EXTERNAL;

PROCEDURE RIO (LOCY;
EEAL LOC;
OPTION EXTERNAL;

PROCEDUR-E LIO’ {LOCY;
LONG LOC;
OPTION EXTERNAL;

For type integer, logical (boolean), octal,
and two-byte ASCII character,

For type double-integer and four-byte
ASCII eharacter.,

For type real {two-word floating point)
and four-byte ASCII character.

For type LONG real (four-word floating
point) and eight-byte ASCIE character,

1-56 Nov 1976

PROCEDURE SIO’ (SLEN, LOC);
VALUE SLEN;
INTEGER SLEN; BYTE ARRAY LOC;
OPTION EXTERNAL;

PROCEDURE AIIO® {DIM, LOC),;
VALUE DIM; INTEGER DIM;
INTEGER ARRAY LOC;

OPTION EXTERNAL;

PROCEDURE ADIO’ (DIM, LOCY;
VALUE DIM; INTEGER DIM;
DOUBLE ARRAY LOC;

OPTION EXTERNAL;

PROCEDURE ARIO® (DIM, LOC);
VALUE DIM; INTEGER DIM;
REAL ARRAY LOC;

OPTION EXTERNAL:

PROCEDURE ALIO’ (DIM, LOC);
VALUE DIM; INTEGER DIM;
LONG ARRAY LOC;

OPTION EXTERNAL;

PROCEDURE ASIO’ (SLEN, DIM, LOC);
VALUE SLEN, DIM;
INTEGER SLEN, DIM;
BYTE ARRAY LOC;
OPTION EXTERNAL;

The parameters are

LGC

For an ASCI1 character string,

For an array of the same types as [0,

For an array of the same types as DIO’,

For an array of the same types as RIO’.

For an array of the same types as LIO".

¥or an array of ASCII character strings.

For a non-array list element, a reference parameter; or

for an array list element, the array identifier.

SLEN = A positive integer to specily the string length in bytes.

DIM

H

1-57

The number of elements (not words or bytes) in the array,

TERMINATION
The call is written

TFORM’;
LAST: (the next SPL/3000 program statement)

No parameters are required. On output, the data in the Formatter’s I/ buffer is transmitted
ab this time. Then the user’s stack is restored to the conditions existing before the initialization
call. Now the user can check for a CCA error indication. If CCA = CCG, an end-of-file error
oceurred; if CCA = CCE| no error occurred; if CCA = CCL, an irrecoverable file error occurred.

EXAMPLE: A Complete Data Transfer

Statemeni No. The Statement
FMTINIT{FMT,10,1D,%34,@LAST);
X(0):= A+ B;

X(1) == ¢/B;
ARION2,X);
TG
TFORM’;

LAST:
iF > THEN GG TO EOTERROR,;

[

Lo -3 5 o LY S

Description
Statement 1 initializes the Formatter to

Ignore label FMT
@ {Ise file FTN1{
® Use record number under label ID

& Not call Formatter Error Report routine for end-of-file errors

¢ Call Formatter Ervor Report routine for irrecoverable file errors

Statermnents 2 and 3 demonstrate that computations can be made within a calling sequence,
in this case, to prepare the contents of a two-element real array.

Statement 4 is a call to output the real array. In FORTRAN/3000, this is the method for
output of 2 type complex quantity.

Statement § is a call for ocutput of I (which could be integer, logical, two-byte ASCII
character, or gctal).

Statement 6 is the {ermination call,

Statement 8 is a user-decision to check for end-of-tape error,

1-68

File System Reguirements

NGTE: The following descriptions gssume the reader has a working knowledge
of MPE/3000; see the MPE Intrinsics Reference Manual,

FORTRAN/3000 LOGICAL UNIT TABLE (FLUT)

For FORTRAN/3000 programs using the Formatter, the MPE/3000 System loader prepares a
FORTRAN Logical Unit Table (FLUT). The SPL/3000 user, however, must prepare a FLUT
in his DB Data Area and initialize location DB-1 {o reference the word address of the FLUT:

DB-1~ | Iy,

where
ifa is a positive integer to specify the FLUT word displacement from DB

The FLUT is written:

DB+ Ifa =1 WU q
Yy Fo
"
U, ¥,
955 ///W <« The terminal entry {required)

where Ifa is defined above and

Uy .o Up = the UNIT numbers (integers in the range [1,99]) in the left byte of each
entry, to be specified in Formatter initiahzation calls
Fl ... Fp = 0in the right byte, when the FLUT is prepared

The last U entry must be 255 to signal the end of the FLUT

For the special free-field conversions ACCEPT or DISPLAY, one or the other {(or both) of two
U enéries must be included in the FLUT: 5 for $8TDIN and 6 for $8TDLIST. For full details
of these standard file names, including the ability to equate FORTRAN file names FTNOS

and FTNOG to other file names, see the MPE Intrinsics Reference Manual.

When the Formatber is initialized, it must determine if the {ile to be used has been opened, and
if it has, what the file parameters are (such as the file options, the access oplions, et¢.}. Thus,
a global data area is required for storage of the file data.

The Formatter first checks the FLUT for a U entry corresponding to the UNIT specified in the
initialization call. If such an entry does not exist, the Formatter Error Report FILE NOT IN
TABLE FOR UNIT # xx occurs and the user’s program is aborted. If one does exist, the F
entry is checked.

Nov 1976 1-59

If the F entry is zero, the file has not been opened and the Formatter makes a call to the
MPE/3000 {file intrinsic FOPEN. The nominal FORTRAN/3000 parameters (as described below)
are used in the FOPEN call. These include the file name created by appending the UNIT number
to the ASCII characters FTN, For exampla, the file name for UNIT 3 is FTN03, The FOPEN
intrinsic returns an integer (stored in the FLUT) as the F entry for the UNIT referenced.

I the ¥ entry is not zero, the file has already been opened and the Formatter calls the MPE/3000
file intrinsie FGETINFO to extract the file parameters and store them in the global data area,
The Formatter also allocates space on the stack for its 170 buffer, according to the size indicated
in the file parameter RECSIZE,

NOMINAL FORTRAN/3000 PARAMETERS

The following parameters can be superseded with an MPE/3000 :FILE command,

formaldesignator FTNdd, where dd is the UNIT number in the FLUT (for example,

FTNO3}.
foptions
Bit(s) Field Name and Setting(s)
14:2 Domain: 00, this is 8 new file.
13:1 ASCII/BINARY: 0, this is a BINARY file!,
10:3 Default File Designator: 000, the default file designator is the same
as the formal file designator®
8:2 Record Format: 00, fixed-length records for direet-access; or {1,
variable-length records for sequential-access.
7 Carriage Control: 0, no carriage control character expected? .
6:1 {Reserved for MPE/3000 system usel)
5:1 Dissallow File Equation: 0, allow :FILE commands.
0:5 (Reserved for MPE/3000 system use.)
aoptions
Bit{s) Field Name and Setting(s)
12:4 Aceess Type: 0100, input/foutput access.
11:3 Muitirecord: 0, non-multirecord mode.
10:1 Dynamie Locking: 0, disallow dynamic locking/untocking.
8:2 Exclusive: 00, default value related to Access Type aoption.
T:1 Inhibit Butfering: (, allow normal buffering.
0:7 {Reserved for MPE/3000 system use.)

;Except for FTNO5 or FTNO6: 1, this is an ASCII file.
3Except for FTNO5: 100, for $STDIN; or for FITNO08: 001, for $STDLIST.
Except for FTN06: 1, carriage control character expected.

1-60

recsize System default value.
device System default: DISC.
formmsg None.

userlabels System default value: 0,
blockfactor Svstem default value.
numbuffers Sysiem default value: 2,
filesize System default value: 1023,
nwmextents System default value: 8.
initalloc System default value: 1.

filecode System default value: 0,

ACCEPT/DISPLAY OPTION

The ACCEPT/DISPLAY option is assumed to be used with 2 terminal, such as a teleprinter

or a CR'T keyhoard/display (devices used for both inpui reading and output listing). However,
any two separate devices can be used instead by predefining the file parameters for FTNOS

and FTNOG {see the preceding subsection*Nominal FORTRAN/3000 Parameters™). When the
Formatter becoines aware {by examination of the file pararneters through the FGETINFO
intrinsic) that the device is not a terminal {ihe device cannot output information), it only reads
inputs; it does not print a carriage retum, line feed then a prompt character ? before it reads
inputs,

FORMATTER ERROR REPORTS

Errors detected during Formatter execution call the error procedure FMTERROR® in the
Compiler Library. The error is analyzed and control either remains in FMTERROR’, to print
reports then abort the user’s program, or is passed to a user-defined erTor procedure {see
Section 1V, Library Errorg). Reports by FMTERROR' are printed on the standard list device
$STDLIST; starting with an errox identifying line and continuing with further information as
described below. The reports end with a “‘stack trace-back report” that uses the format
specified by the MPE Stack Dump facility. For further information, see MPH Debug/Srack
Dump Reference Manual (HP Part No. 30000-86012).

Nov 1976 1.61

The Formatter error reports are:

BAD INPUT CHARACTER

This message is followed by a portion of the input buffer that inciudes the had
character, then a caret A, positioned under that bad character.

BUFFER OVERFLOW

Oceurs only in a Core-To-Core Conversion that transfers data to a user-defined huffer.
This message is followed by a portion of the input buffer that includes the character
at which overflow was detected, then a caret ~, positioned under that first overflow
character.

DIRECT ACCESS OVERFLOW

Ocours only in an Unformatied (Binary) Transfer to a file on a direct access device,
when the storage required by all the list elements exceeds the file record size. If the

file is a FORTRAN/3000 logical unit, ON UNIT #xx is sppended to the above message.
If the file is a user-defined MPE/3000 file, a File Information Dispiay is printed {a
sample appears at the end of this section).

END OF FILE DETECTED

The file system returned CCA = CCG. If the file is a FORTRAN/3000 logical unit,
ON UNIT #xx is appended to the above message. In any case, a File Information
Display is printed (a sample appears at the end of this section).

NOTE: The user can choose to handle this error another way!

SPL/3000 user: to ignore the error, set bit 11 of parameter [OTYPE for
procedure FMTINIT (see “SPL/3G00 CALLING SEQUENCE™).

FORTRAN/360G0 user. to transfer program control fo another statement,
include END = label in the REAIL statement or the WRITE statement.

FILE NOT IN TABLE FOR UNIT #xx

The FORTRAN/3000 logical unit accessed has no corresponding entry in the FLUT
{see “File Bystem Requirements™),

FILE SYSTEM ERROR

The file system returned CCA = CCL, If the file is a FORTRAN/3000 logical unit,
ON UNIT #xx is appended to the above message. In any case, a File Information
Display is printed {a sample appears at the end of this saction).

1-62

NOTE: The user can choose to handle this error in enother way:

SPL/3000 user: to ignore the error, set bit 10 of parameter IGTYPE for
procedure FMTINIT' (see “'SPL/3000 CALLING SEQUENCES”),

FORTRAN/I000 user: to transfer program control to another stutement,
include ERR = label in the READ statement or the WRITE statement.

FORMAT BEYOND RECORD

The number of characters required by the list elements exceeds the record length of

the device to be used. For example, if the device is a line printer limited te 132 charac-
ters per line (per record), the number of characters required by the list elements is more
than 132. This message is followed by a poriion of the formatl statement thaf includes
the specification related to the error, then a caret ~, positioned under that invalid
specification.

JLLEGAL FORMAT CHARACTER

This message is followed by a portion of the format statement that includes the illegal
character, then & caret ., positioned under {hat illegal character.

INVALID FILE NUMBER FOR UNIT #xx

Procedure FSET (see the Function Directory) was called with the parameter NEWFILE
set to a value outside the range [1,254].

NESTING TOO DEEP

This message is followed by a portion of the format statement that includes the start
of the Hlegally nested group (see “Nesting’’}, then a caret ~, positioned under the start
of that illegally nested group.

NUMBER OUT OF RANGE

A value in the input buffer is too small or too large for the ranges representable by the
corresponding list element type {see “Introduction’™). This message is followed by a
portion of the input buffer that includes the invalid number, then a caret ~, positicned
under the last character of that invalid number.

STRING MISMATCH

A character data item is not directed to a FORTRAN/3000 type CHARACTER {or an
SPL;/3600 type BYTE ARRAY) list element. This message is followed by a portion of
the input buffer that includes the misdirected character data item, then a caret A,
positioned under the start of that character data item {(usually a quotation mark or an
apostrophel.

1-83

NOTE: This error is detected for Free-Field Input or ACCEPT only if the
character dala item s “‘enclosed’ {in guotation marks or apostrophes),
Qtherwise, eny group {one or more) of non-numeric characters is
treated gs a delimiter for g numeric data item; any group of numeric
characters is transmitted as a numeric dota ftem.

UNDEFINED OPTION ON UNIT #xx

Procedure UNITCONTROL or FINAUX' (see the Function Directory) was called with
the parameter OPT set to a value outside the yange [-1,8].

Fiie Information Display

As described in the preceding text, certain Formaiter Exror Reporls are followed by a printed
File Information Display. Either one of two possible formats s used;

If access to the MPE/3000 file referenced is blocked, or if that file is
undefined in the MPE/3000 file system in use:

4=Fel-LEr==]«N=F-0=R=M-A=T=1=0-N==-D=I1-S~P-L-A=Y+
! FILE NUMBER # I5 UNDEFINED, |
I ERROR NUMBER: 56 RESIDUE: @ !
| BLOCK NUMBER: @ NUMREC: @ !

st c e e e e S .- P N R R T R

For a file that returned either a CCA = CCG {end-of-file error) or a CCA = CCL
(irrecoverable file error):

#-F=l =L =E==-]-N-F-0-R-MN-A-T-1-0-Ne-=D-I-S=P-L-A-Y+
FILE NAME IS FTNBS

FOPTIONS: NEW,A, $SIDIN,U,N,SL,FEQ
AOPTIONS: INPUT, SREC,NOLOCK ,DEF, NOBUFF
DEVICE TYPE: 16 LU: 17 DRT: 18 UNIT: &

t }
! !
! !
! !
I RECORD SIZE: 72 BLOCK 51ZE: 72 (BYTES) !
! EXTENT S1ZE: © MAX EXTENTIS: & !
! RECPTR: 2 RECLIMIT: @ !
I LOGCOUNT: @ PHYSCOUNT: 8 !
I EOF AT: @ LABEL ADDR: 722108208838 !
| FILE CODE: 2 ID IS ULABELS: @ !
1 FHYSICAL STATUS: 9091900122020200 !
! ERROR NUMBER: © RESIDUE: @ !
t BLOCKX NUMBER: @ NUMREC:) !

4

The contents of either display are explained in Section 11l of this manual, under
“PRINTFILEINFO.”

1-64

SECTION 1]
MATHEMATICAL PROCEDURES

To find the descriptions for any given procedure in this section, see the Function Directory or
Appendix A,

DABS’

FUNCTION: Calculate the absolute value of a double precision (LONG real) number.

Declaration: LONG PROCEDURE DABS' (Y);
VALUE Y;LONG Y;

OPTION EXTERNAL;
ATTRIBUTES:
Parameter: Any double precision number except the smallest negative number (=27 25¢),
Result: A double precision number,
FORTRAN: Intrinsic Function: DABS (¥).
Errox: The absolute value of the smallest negative number is not representable; the

result is given as zero.

2-1

FUNCTION:

Declaration:

Method:

Acecuracy:

ATTRIBUTES:

Parameter:

Result:

FORTRAN:

Error:

CABS (or CABS")

Calculate the absolute value of a complex number,

REAL PROCEDURE CABS(Y); or CABS(Y);
REAL ARRAY ¥;
OPTION EXTERNAL;

Y Fa+bi
Y{0)= a(real part)
Y(1) = b{imaginary pazt)

2
when lal > bl CABS = lal /1 + [g)

a 2
when |b| > laf, CABS = b /1 + (3)

Depends on accuracy of SQRT.

Any complex number representable in two real numbers, one foxr g and one
for b.

A non-negative real number.
Basiec External Function: CABS (Y.

If ¢ and b are near the overflow threshold (o and & =~ 107 7), the
SOFTERROR’ message CABS: OVERFLOW occurs (see “Library Errors™}.

2-2

ISIGN’

FUNCTION: Calculate the absolute value of a first integer number and give it the sign of a
second integer number.,

Declaration: INTEGER PROCEDURE ISIGN’ (J.K);
VALUE 4, K;INTEGER JK;
OPTION EXTERNAL;

Method: ISIGN? (4,K) = sign of K times |J|

ATTRIBUTES:

Parameters: Both arguments are integer numbers, if the second is zero, the sign is assumed
to be positive.

Result: An integer numbet.
FORTRAN: Intrinsic Function: ISIGN (J,K).

Errorx: None.

2.3

JSIGN'

FUNCTION: Calculaie the absolute value of the first double integer number and give it the
sign of the second double integer number.

Declaration: INTEGER PROCEDURE JSIGN’ (4, K},

VALUE J,KINTEGER JK;
OPTION EXTERNAL;

Method: JSIGN’ (J,K) = sign of K times Ul

ATTRIBUTES:

Parameters: Both arguments are double integer numbers; if the second is zero, the sign is
assumed to be positive.

Resuit: A double integer number,
FORTRAN: Intrinsic Function: 4SIGN {J K}.

Error: None.

2-4 Nov 1976

SIGN'

FUNCTION: Caleulate the absolute value of a first real number and give it the sign of
a second real number.

Declaration: REAL PROCEDURE SIGN’ (Y,Z);
VALUE Y Z;REAL Y Z;
OPTION EXTERNAL;

Method: SIGN’ (Y,Z) = sign of Z times Y]

ATTRIBUTES:

Parameters: Both arguments are real numbers; if the second is zero, the sign is assumed to
be positive.

Result: A real number.

FORTRAN: Intrinsic Function: BIGN (¥, Z).

Error: None,

2-5

DSIGN’

FUNCTION: Calculate the absolute value of a first double precision (LONG real) number
and give it the sign of a second double preciston (LONG realy number.

Declaration: LONG PROCEDURE DSIGN (Y ,2);

VALUE Y, Z;LONG Y,Z;
OPTION EXTERNAL;

Method: DSIGN’(Y,Z} = sign of Z tirnes [Y]

ATTRIBUTES:

Parameters: Both arguments are double precision rumbers; if the second 1s zero, the sign
is assumed to be positive.

Result: A double precision number.
FORTRAN: Intrinsic Function: DSIGN (Y, Z).

Error: None.

26

IN7E"

FUNCTION: Truncate a real number to an integer number.
Declaration: INTEGER PROCEDURE INT(Y);

VALUE Y; REAL Y;
OPTION EXTERNAL;

Method: INT{Y} = sign of Y times largest integer < | Y|

ATTRIBUTES:
Parameter: A representable’ real number in the range [-32768.0, 32787.0].
Result: An integer number.
FORTRAN: Intrinsic Function: INT (Y).

Error: If the real number is outside the range stated, the arithmetic trap
INTEGER OVERFLOW cccurs {if traps are enabled).

! See “Introduction.”

Nov 1976 2.7

PUNCTION:

Declaration:

Method:

ATTRIBUTES:

Parameter:

Resuli:

FORTRAN:

Error:

AINT

Truncate a real number to an integer number in real representation,
REAL PROCEDURE AINT' (Y);

VALURE Y; REAL Y;
OPTION EXTERNAL;

AINT (Y) = sign of Y times largest integer < [Y]

A real number,.
A real number.
Intrinsic Function: AINT (Y).

None.

DDINT’

FUNCTION; Truncate a double precision (LONG real) number to an integer number in
double precision {LONG real) representation,

Declaration: LONG PROCEDURE DDINT’ (Y);
VALUE Y; LONG Y;
OPTION EXTERNAL;

Method: DDINT (Y) = sign of Y times largest integer < [Y|
ATTRIBUTES:

Parameter: A double precision number,

Result: A double precision number,

FORTRAN: Intrinsic Funetion: DDINT (Y.

Error: None.

29

DFiX (or DFIX’}

FUNCTION: Truncate a double precision {LONG real) number to a double integer
mber,

Declaration: DOUBLE PROCEDURE DFIX(Y); or DFIX(Y);
VALUE Y; LONG Y;
OPTION EXTERNAL:

Method: DFIX = sign of ¥ times largest double integer < |Y|

ATTRIBUTES:
Parameter: A LONG real number.
Reasult: A double mteger number,

FORTRAN: Callable as an external funetion:
X =DFIX ¥\
or through use of a SYSTEM INTRINSIC statement as:
X =1FIX ()
Error: If the truncated LONG real number cannot be represented in the two words

of the double integer, arithmetic trap INTEGER OVERFLOW ocours {if
traps are enabled}.

2-10¢ Nov 1976

DFLOAT (or DFLOAT")

FUNCTION: Convert a double integer number to a double precision (LONG real)
number,

Declaration: LONG PROCEDURE DFLOAT(Y); or DFLOAT(Y):
VALUE Y; DOUBLE Y;

OPTION EXTERNAL:
ATTRIBUTES:
Parameter: A double integer number.
Resuli: A LONG real number.

FORTRAN: Callable as an external function:
X = DFLOAT 0¥

ar through use of the SYSTEM INTRINSIC statement as:
X =DFLOAT (V)

Exror: None,

Nov 1976 2-11

MAXO'/MING’

Result
(MAXO)

FUNCTION: Calculate the largest (MAXO0’) or smallest (MINO’) of N integers on
top-of-stack and return that integer in 5~N+1,
Declaration: PROCEDURE MAX0’(N); or MENO(N);
VALUE N; INTEGER N;
OPTION EXTERNAL;
Before Cali Upon Entry After Return
3 3 “S-N-+1- 6 -
) 3] 5]
2 2 2
g 5 6
85— 1 1 5 1
S(N)
Stack
Marker
Q5 7
ATTRIBUTES:
Parameier: An integer number = 2,
Result: An integer number.
FORTRAN: Intrinsic Function: MAX0(A,B.C. ..)or MINO (A ,BC,. . .).
Exror: If the argument (or number of parameters) is less than 2, no action cecurs.
COMMENT: The SPL/3000 caller must cut back the stack after return {for example, use

an ASSEMBLE (SUBS 4); statement),

2-12

Nov 1978

JMAXO [AMIND'

FUNCTION: Caleulate the largest (JMAXG') or smallest {JMINO"} of N double
integers on top-of-stack and return that double integer in 5-2N+1.

Declaraiion: PROCEDURE JMAX('(N); or IMINO(N);
VALUE N; INTEGER N;
OPTION EXTERNAL;

Before Call Upon Entry After Return
5 3 +H5-2N+1-= <Result
' -] T (IMAX0)
p— 2 — oo B e et S—
e —— 6 el T
s] e 1 e e 1 —
S'} S...}
B(N)
rwral
Btack
Marker
QS
ATTRIBUTES:
Parameter: A single precision integer number 2 2.
Resuli: A doubie integer number.

FORTRAN: [Intrinsic Function: JMAXO (4,8.C,...} or JMING (4,B8.C,...).

Error: if the argument {or number of patameters) is less than 2, no aclion oceurs,

COMMENT: The SPL/30G00 caller must cut back the stack after return (for example, use
an ASSEMBLE (SUBS 8); statement).

Nov 1976 2-13

MAXT/MINY

FUNCTION: Calculate the largest (MAX1') or smallest (MIN1") of N real numbers on
top-of-stack and return the integer of that number in 8-2N+1.

Declaration: PROCEDURE MAX1*N); or MIN1’(N);
VALUE N; INTEGER N;
OPTIONAL EXTERNAL;

Before Call Upon Entry After Return
S ON+1-> 6 + Result
l— 36 — b 3.6 - (MAX1)
R T B 5.1 §.1 -
psi DG] 2.9 —— 20
= 6.8 - [8.8 = — 68 —
— 1.4 — —— 1.4 — —— 1,4 =
S_} S__}
5(N)
—
Stack _ |
Marker
Q5
ATTRIBUTES:
Parameter: An integer number = 2.
Resuli: An integer number,

FORTRAN: Intrinsic Function: MAX1 (A B,C,...} or MIN1 (A,B,C,.).

Error: See “Comments.”

2-14

MAXT/MINT {coni.)

COMMENTS: 1. If the argument (or number of parameters) is less than 2, no action occurs.

2. If the largest (or smallest) real number is cutside the range
[—82768.0, 32767.0], the arithmetic trap INTEGER OVERFLOW occurs

(if fraps are enabled).

3. The SPL/3000 caller must cut the stack back after return (for example,
use an ASSEMBLE (SUBS ¢}; statement).

Nov 1976 2-15

JMAX L /IMINY

Calculate the largest (JMAX1") or smallest {JMIN1’) of N real numbers

After Return

6.8

i4

< Result
(JMAX1")

FUNCTION:
on top-of-stack and return the double integer of that number in $-2N+1,
Declaration: PROCEDURE JMAXT1{N); or JMINT(NY;
VALUE N; INTEGER N;
OPTIONAL EXTERNAL;
Before Call Upon Entry
“BIN+]-
36 eem BB e
o 51— — 5.1 ~—
b 99 e 20 s
—- 6.8 — 6.8 -
— 1.4 - 1.4
g 8-
B(N}
Stack
Marker
Q5
ATTRIBUTES:
Parameter: A single precision integer number > 2.
Result: A double integey number.
FORTRAN: Intrinsic Function: JMAX1 (4,8,C,...) or JMINI (4,B,C,...}.
Error: See “Comments.”

2-16

Nov 1978

IMAX1’(JMINT’ (cont.)

COMMENTS: 1. If the argument {or number of parameters) is less than 2, no action occurs.

2. If the largest (or smakest) real number is outside the range
2147483648, 2147483647], the arithmetic trap INTEGER OVERFLOW

occurs (if traps are enabled).

3. The SPL/3000 caller must cut the stack back after retum (for example,
use an ASSEMBLE {(3UBS §); statement).

Nov 1976 2.17

FUNCTION:

Declaration:

Before Cail

AMAX(Y'/AMING

Calculate the largest { AMAXO0) or smallest (AMING') of N integers on
top-of-stack and return that integer in 8-N+1 and $-N+2 in real represen-

tation,

PROCEDURE AMAX0'(N); or AMINO’(N);
VALUE N; INTEGER N;
OPTION EXTERNAL;

[l A= 2 N O LI]

ATTRIBUTES:
Parameter:

Result:

FORTRAN:

Error:

COMMENT:

Q.5

Upon Entry

et | GO | DN] TR D

8(N)

Stack
Marker

An integer number = 2.

A real number,

+~EB-N+1—=
“8-N+2->

After Return

= 6.0

Intrinsic Function: AMAXO0 (A, B,C....) or AMINO (A,B.C,...).

<Result
{AMAX0)

If the argument {or number of parameters) is iess than 2, no action occurs.

The 8P1L/3000 caller must cut the stack back after return (for example, use
an ASSEMBLE (SUBS 3); statement).

2-18

AIMAX0/AIMING'

Nov 1976

FUNCTION: Calculate the largest (AJMAXC') or smallest {AJMING') of N double integers on
top-of-stack and return that double integer in S-2N+1 and S-2N+2 in real repre-
sentation.

Declaration: PROCEDURE AJMAXO(N); or AIDMING(N);
VALUE N; INTEGER N;
OPTION EXTERNAL;
Before Cali Upon Eatry After Return
3 3 ~H BN+ 1 6.0 < Hesult
5 ON+9 . (AJMAXG™Y
e D e b D — 2 —
— 1 — 1 — b— 1
S S
5(N)
Stack
Marker ~ |
Q.5
"ATTRIBUTES:
Parameter: A single precigion integer number = 2.
Result: A real number.
FORTRAN: Intrinsic Funciion: AJMAXO (A,B,C,...} or AJMING (A, B.C,..0).
Error: 1 the argument (or number of parameters) is less than 2, no action eceurs.
COMMENT: The S8PL/3000 caller must cut the stack back aiter reium (for example, use

an ASSEMBLE (SUBS 8); statement).

219

AMAX1'/AMINY

FUNCTION: Calculate the largest (AMAX1) or smallest (AMIN1’} of N real numbers on
top-of-stack and retwrn that resuit in S-2N+1 and S-2N+2.

Declaration PROCEDURE AMAX1’(N); or AMINT’(N);
VALUE N: INTEGER N;

OPTION EXTERNAL:
Before Call Upon Entry ' After Return
26 26 S 2N+1- - “~Result:
. . S_oN+o> : (AMAX1")
— 51 — —— 5.1 = —= 51 —
b 2G e ~— 2.9 — 29
f— 6.8 — e §,8 — 6.8 o~
— 1.4 — — 1.4 — 1.4 -
S 8
S(N)
Stack .
Markex
Q8 B
ATTRIBUTES:
Parameter: An integer number = 2.
Resuli: A real number,

FORTRAN: Intrinsic Function: AMAX1 (A4,B,C,...) or AMIN1 (4,B,C.. .).

Error: If the argument (or number of parameters) is less than 2, no action oecurs,

COMMENT: The 5PL/3000 caller must cut back the stack after return (for example, use an
ASSEMBLE (SUBS 8); statement).

2-20

FUNCTION:

G

Declaration:

Before Call

add.l

add.2

add.d

add.4

add.b

ATTRIBUTES:

Parameters:
Resuli:
FORTRAN:

Error:

COMMENT:

DMAXT/DMINT

Calculate the largest (DMAX1') or smaliest (DMIN1’} of N double precision
{LONG real) numbers addressed in the N words on top-of-stack and return
that result in the address referenced by B.

PROCEDURE DMAX1’ (B,N); or DMIN1’ (B,N};
VALUE N; LONG B; INTEGER N;
OPTION EXTERNAL;

Upon Entry After Retumn
add.l add.1
add.2 add.2
add.3 add.3
add.4 add.4
add.b 5 add.B
add.B <~ Result

5(N) Address
Stack —d
Marker
Q8- B

For N, an integer = 2; for B, a double precision identifier.

A double precision number.
Intrinsic Function: DMAX] (4,8,C,...) or DMINT (A, B, C__}.

If the N argument {or number of parameters) is less than 2, no action oceurs,

The SPL/3000 caller must cut back the stack after refurn (for example, use an
ASSEMBLE (SUBS 5}); statement.)

2-21

AMOD’

FUNCTION: Calculate a first real number moditlus a second real number,
Declaration: REAL PROCEDURE AMOD’ (Y,Z);

VALUE Y,Z; REAL Y,Z;
OPTION EXTERNAL;

Method: X =Y - AINT(Y/Z)*Z

ATTRIBUTES:
Parameters: Both arguments are real numbers, the second must not be zero.
Result: A real number.
FORTRAN: Intrinsic Function: AMOD (Y,Z).

Error: None,

UNDERFLOW, or FLOATING PCINT DIVIDE BY ZERQ muay oceur (if

CAUTION: The grithmetic fraps FLOATING POINT OVERFLOW, FLOATING POINT l
traps are enabled).

Nov 1976 2.22

FUNCTION:

Daclaration:

Method:

ATTRIBUTES:
Parameters:

Result:

FORTRAN:

Error:

DMOD

Calculate a first double precision (LONG real) number modulus & second

double precision (LONG real} number.

LONG PROCEDURE DMOD (Y,Z);

LONG Y Z;

OPTION EXTERNAL;

X =Y - DDINT(Y/Z2y*%

Both arguments are double precision numbers; the second must not be zero.

A double precision number,

Basic External Function: DMOD (¥,2).

MNone.

CAUTION: The arithmetic traps EXTENDED PRECISION OVERFLOW, EXTENDED
PRECISION UNDERFLOW, or EXTENDED PRECISION DIVIDE BY ZERO

may occur (if traps are enabled).

223

Nov 1976

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:
Parameter:

Resuli:

FORTRAN:

Error:

EXP {or EXP’}

Calculate ¢X | where % is a real number,
REAL PROCEDURE EXP (Y); or EXP’ (Y);

REAL Y;
OPTION EXTERNAL;

A minimax approximation,

{Bee “Introduction™):

f_
when| g - yl~ &, maximum "?g}’*e

A representable! real number in the range [-176.7525,176.7525],
A representable! posttive real number, |
Basic External Function: EXP (Y}

I the argument is 2> 176.7526, the result cannot be represented and

SOFTERROR’ message EXP: OVERFLOW occurs (see “Library Errors™).
I# the argument < -176.7526., the result is set to zero.

!See “Introduction.”

2-24

DEXP (or DEXP)

FUNCTION: Calculate e®, where x i5 a double precision (LONG real) number.

Declaration: LONG PROCEDURE DEXP (Y); or DEXP’ (Y);
LONG Y;
OPTION EXTERNAL:

Method: A minimax approximation.
Acecuracy: (See “Introduction™):
] {-g
when|x - y|~ ¢, mazximum ~|e
ATTRIBUTES:
Parameter: A representable’ double precision number in the range
[-176.75253104, 176.7525510473.
Result: A representable! positive double precision number,

FORTRAN: Basic External Function: DEXP (Y).

Error: if the argument is 2 176.75253105, the result cannot be represented and the
SOFTERROR’ message DEXP: GVERFLOW occurs (see “Library Errors™),
If the argument is < -176.7525310%, the result is set to zero,

FSee “Introduction.”

225

FUNCTION:

Declaration:

Method:

Accliracy:

ATTRIBUTES:

Parameter:

Result:

FORTRAN:

Error:

CEXF (or CEXFP")

Caleulate e*, where X is a complex number,
. p

Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part a and one for the

imaginary part &, Thus, compiex numbers occupy four words (see ““Internal
Representation,” in the “Introduction’,

PROCEDURE CEXP (Y); or CEXP' (Y);
REAL ARRAY Y;
OFPTION EXTERNAL;

An SPL/3004 caller must use the statement “TOS := 01, twice, to set two
double integers 0"’ on top-of-stack in four words; then use “CEXP {Y);” to call
the procedure which overlays the result on those four words. {See sample below.)

et 01 = 0@ (o66(B) + £ sin(b))
Y (0) = a {real part)
Y (1} = b {imaginary part)

Depends on accuracy of EXP, COS, and SIN.

Any complex number representable in two representable! real numbers, one
for @ and one for b;a must be in the range [~ 177.4455, 177.4455].

A complex number, stored in 4 words on TOS (for SPL/3000 caller).

Basic External Function: CEXP {Y).

See EXP.

Sample SPL/3000 ealling sequence:

REAL ARRAY Y(0:1};
TOS := 0D
TOS = 0D
CEXP(Y);

'See “Introduction.”

2.26

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:
Parameter:

Result:

FORTRAN:

Frror:

SQRT {or SQRT")

Caleulate the square root of a real number.
REAL PROCEDURE SQRT {Y); or SQRT’ (¥);

REAL Y;
OPTION EXTERNAL;

An appropriate starting point for two Newton iterations is reached through a
minimax approximation.

{See “Introduction™):

f -
when IK Y t'” €, maximumt”—f“g- 'W (1/2v e

Py

A non-negative real number,
A non-negative real number.
Basic FExternal Funetion: SQRT (Y.

SOFTERROR message SQRT: ARGUMENT NEGATIVE oceurs if the
argument is negative (see “Library Errorg™).

2-217

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES;
Parameter:

Result:

FORTRAN:

Error:

DSQRT (or DSQRT’)

Calculate the square root of a double precision (LONG real) number.

LONG PROCEDURE DSQRT (Y); or DSQRT’ (Y);
LONG Y;
OPTION EXTERNAL;

An appropriate starting point for three Newton iterations is reached through
a minimax approximation.

(See “Introduction™):

when x_}-:_z ”‘v €, maximum F"%"g“ ‘“' {1/2) ¢

A non-negative double precision tiumber.
A non-negative double precision number.
Basic External Function: DSQRT (Y.

SOFTERROR message DSQRT: ARGUMENT NEGATIVE accurs if the
argument is negative {see ““Library Errors™).

2-28

FUNCTION:

Declaration:

Method:

Accuraey:

CSQRT (or CSQRT?)

{alculate the square root of a complex mumber.

Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair (a 2-element array) of real numbers, one for the real part @ and one for the
imaginary part b. Thus, complex numbers occeupy four words (see “Internal
Representation’ in the “Introduction™).

PROCEDURE CSQRT (Y); or CSQRT" (Y);

REAL ARRAY ¥;
OPTION EXTERNAL;

An SPL/3000 caller must use the statement “TOS8 = 01 twice te set two double
integers 0" on top-of-stack in four words; then use “CSQRT (YY" to call the
procedure which overlays the result on those four words. {See sample on the next
page.)

Either step 1 or step 2, then sieps 3 and 4:

Yi{0) = a (real part)
Y (1) = & (imaginary part)
CSQRT (a + bi) = x + vi
1. IF |ai > |bl THEN T1 = 1 +v 1+ (bl / la))?;
IF ja| < 27252 THEN T1 = (T1) / 4 ELSE a = lal / 4;
T1=v2 *v/a*T1;
9. BLSET1 = (fal / lbly*v" 1+ {lal 7 bhT;
[F [bj<{ 27232 THEN T1 = (T1}/ 4 ELSE b = ib} / 4;
T1=vV2*/b *T1;
3. T2=b/ (Tt *2),
4. Faz0THENx=Tl;y=T2 ELSE
x=T2 vy =TI,

Depends on aceuracy of SQAT.

2-29

CSQRT (cont.}

ATTRIBUTES:
Parameter: Any complex number representable in two real numbers, one for a and one '
for b.
Result: A complex number, as just defined, left in four words on TOS (for SPL/3000
caller).

FORTRAN: Basic External Function: CSQRT (Y.

Error: See “SQRT.”

Sample SPL/3000 calling sequence:

REAL ARRAY Y{0:1);

TOS = 0D,
TOS = 0D,
CSQRT (Y),

2-30

FUNCTION:

Declaration:

Method:

Accuracy !

ATTRIBUTES:
Parameter:
Resuit:
FORTRAN:

Error:

ALOG {or ALOG'YALOGI0

Calculate the natural { ALOG or ALOG) or the base 10 (ALOG10) logarithm of
a positive real number,

REAL PROCEDURE ALOG (Y); [or ALOG’ (Y);] or ALOGL0 (Y);

REAL Y,
OPTION EXTERNAL;

A minimax approximation.
{See¢ “Introduction™):

- f o
when!ﬁ"it*y“lw €, maximum I—f—gl"' ¢/ ln{xy

A positive real number.

A real number (ALOG10 = ALOG*log, o {e)).

Basic External Function: ALOG {Y) or ALOGLO {Y).

If the argument is negative or zero, SOFTERROR’ message ALCG:

ARGUMENT NOT POSITIVE occurs for either ALOG or ALOG10
(see “Library Errors’™),

2-31

FUNCTION:

Declaration:

Method:

Acecuracy:

ATTRIBUTES:
Paramsteor;

Hesuli:

FORTRAN:

Error:

DLOG (or DLOG YBLOG10

Calceulate the natural {DLOG or BLOG’) or the base 10 (DLOGG10) logarithm
of a positive double precision (LONG real) number.

LONG PROCEDURE DLOG (Y };{or DLOG’ (Y);] or DLOG10 (Y);
LONG Y:
OPTION EXTERNAL;

A minimax approximation.

{See “Introduction™):

when

f
~ ¢, maximum | _?_& I ~ ¢/ |ln{ %)

A representable’ positive double precision numbe‘r.

A double precision number (DLOG10 = DLOG*log, {e)).

Basic External Function: DLOG (Y} or DLOGIO (Y).

If the argument is negative or zero, SOFTERROR’ message DLOG:

ARGUMENT NOT POSITIVE occurs for either DLOG or DLOGLO
{see “Library Errors’’).

' Bee “Introduction.”

2-32

FUNCTION:

Declaration:

Method:

Agcuracy:

ATTRIBUTES:

Parameter:

Result:

FORTRAN:

Brrors:

CLOG {or CLOGY)

Calculate the natural logarithm of a complex number,

Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair {a 2-element array) of real nurebers, ane for the real part a and one for the
imaginary part &. Thus, complex numbers oceupy four words (see "‘Internal
Representation’ in the “Introduction™).

PROCEDURE CLOG (Y); or CLOG (Y);
REAL ARRAY Y;
OPTION EXTERNAL;

An SPL/ 3000 caller must use the statement “T0S ;= 013" twice to set two double
integers **077 on top-of-stack in four words; then use ““CLOG {Y);” to call the
precedure which overlays the result on those four words. {(See sample below.)

CLOG{a + bi}=x + yi
¥ () = ¢ {real part)
Y(1) = b {imagnary part)

where

x = ALOG (CABS (a + bi))
y = ATANZ (D, a)

For a, depends on acceuracy of ALOG and SQRT; accuracy for b depends on
accuracy of ATANZ.

Anv non-zero complex number representabie in two real numbers, one fora
and one for &, both parts must not be zero,

A complex number, left in four words on TOS (for SPL caller).
Basic External Funciien: CLOG (Y.

I 4 and b are zero, SO¥TERROR’ message ALOG: ARGUMENT NOT

POSITIVE occurs. If % undetflows, SOFTERROR’ message

ATAN2: UNDERFLOW accurs (see “Library Errors™).

Sample SPL/3000 calling sequence:

REAL ARRAY Y(0:1);

TOS := 0D:;
TOS = 0D;
CLOG (YY)

2-33

TAN {or TAN")

FUNCTION: Calculate the tangent of a real number in radians.
Declaration: REAL PROCEDURE TAN (Y); or TAN' (Y);

REAL Y;
OPTION EXTERNAL;

Method: A minimax approximation.
Accuracy: {See “Introduction}:

when |x — y| ~ ¢, maximum If - g} ~ € see’x

ATTRIBUTES:
Parameter: A real number in radians.
Result: A real number,

FORTRAN: Basic External Function: TAN (Y)

Error: Let

.
]
x
‘+_
Ped

el
=

L

M=

Where % is any non-negative integer. Then, if

[Iargument} - ME(2723w

SOFTERROR” message TAN: OVERFLOW occurs {see “Library Errors”).

2-34

SIN (or SIN’)

FUNCTION: Calculate the sine of a real number in radians
Declaration: REAL PROCEDURE SIN {Y); or SIN' (Y},

REAL Y;
OPTION EXTERNAL;

+

Mathod: A minimax approximatbion.
Accuracy: {See “Introduction™):

When |x - y| ~ ¢, maximum {f —gl ~ ¢ cos z

ATTRIBUTES:
Parameter: A real number in radians.
Result: A representable’ real number in the range [-1.0, 1.0].

FORTRAN: Basic External Function: SIN {Y).

Eyror: None.

1See “Introduction.”

2-35

COS {or COS’)

FUNCTION: Caleulate the cosine of a real number in radians.

Declaration: REAL PROCEDURE COS (Y}; or COS’ (Y);

REALY;
OPTION EXTERNAL;
Method: A minimax approximation.
Accuracy: {See “Introduction™):

When [x — v} ~ ¢, maximum If —g| ~esin x

ATTRIBRUTES:
Parameter: A real number in radians.
Result: A representable’ real number in the range [-1.0, 1.0].

FORTRAN: Basic External Funetion: COS{Y}.

Error: None,

"See “Introduction.”

2.36

DTAN {or DTAN")

FUNCTION: Calculate the tangent of a double precision {LONG real} number in radians.
Declaration: LONG PROCEDURE DTAN (Y); or DTAN’ (Y};

LONG Y;
OPTION EXTERNAL;

Method: A minimax approximation,
Accuracy: (See “Introduction™}:

When [X - ¥| ~ ¢, maximum |f - g| ~ ¢ sec? x

ATTRIBUTES:
Parameter: A double precision number in radians.
Result: A double precision number.

FORTRAN: Basic External Function: DTAN (¥).
Error: Let
M =t

where & is any non-negative integer. Then, if

largument| — Mj< 2739 « M

SOFTERROR’ message DTAN: OVERFLOW occours {(see *‘Library Excors™).

231

DSIN {or DSIN’}

FUNCTION: Calculate the sine of a double precision (L.ONG real) number in radians.
Declaration: LONG PROCEDURE DSIN (Y); or DSIN’ (Y);

LONG Y,
OPTTON EXTERNAL;

Method: A minimax approximation.
Accuracy: (See “Introduction™)

When |x — v[~ e, maximum |f - g} ~ ¢ cos x

ATTRIBUTES:
Parameter: A double precision number in radians.
Result: A representable! double precision number in the range [-1.0,1.0].

FORTRAN: Basic External Function: DSIN (V),

Error: None.

18ee *Introduction.”

2-38

DCOS (or DCOS?)

FUNCTION: Caieulate the cosine of a double precision (LONG real) number in radians.
Declaration: LONG PROCEDURE DCOS (Y); or DCOS™ {Y);

LONG Y;
OPTION EXTERNAL;

Method: A minimax approximation,
Accuracy: (See “Introducfion’}:

When jx - y! ~ ¢, maximum {f - gl ~ € sin x

ATTRIBUTES:
Parameter: A double precision number in radians,
Result: A representable’ double precision number in the range [-1.0,1.0].

FORTRAN: Basic External Function: BCOS (Y.

Error: None,

1See “Introduction.”

2-39

CTAN (or CTAN')

FUNCTION: Calculate the tangent of a complex number.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an
ordered pair {a 2-element array) of real numbers, one for the real part o
and one for the imaginary part &#. Thus, complex numbers occupy four
waords (see “Internal Representation” in the “Infroduction™).

PROCEDURE CTAN(Y); or CTAN(Y):
REAL ARRAY Y;
OPTION EXTERNAL;

An SPL{3000 caller must use the statement “TOS:= 0D;" twice to set itwo
double integer zeros onto the stack in four words: then use “CTAN{Y}”
to call the proeedure which overlays the result on those four words, (See
sample below.)

Method: CTAN(Y) = sin{Y)
cos(Y}
Accuracy: Depends on aceuracy of CSIN, and CCOS.
ATTRIBUTES:
Parameter: A complex number,
Result: A complex number, left in four words on TOS (for SPL/3000 caller).

FORTRAN: Basic External Function: CTAN(Y),
Lrroy: Underflow, overflow, divide by zero: see DIVCVVR.
Sample SPL{3000 calling sequence:

REAL ARRAY Y{0:1);

TOS: = 0D,
TOD:=0D;
CTAN(Y):

2-40

FUNCTION:

Declaration:

Method:

Acocuracy:

ATTRIBUTES:
Parameter:

Result:

FORTRAN:

Frvor:

CBIN (or CBIN’}

Calculate the sine of a complex number.

Complex numbers in FORTRAN/3000 programs are represenied as an ordered
pair {a 2-element array) of real numbers, one for the real part a and one for the
imaginary part b, Thus, complex numbers occupy four words (see “Internal
Repregentation” in the “'Introduction’™),.

PROCEDURE CSIN (Y); or CSIN' (¥):
REAL ARRAY Y;
OPTION EXTERNAL;

An SPL/3000 caller must use the statement “TOS = 01" {wice to zet two double
integers 0" on top-of-stack in four words; then use “CSIN (¥Y);”" to call the pro-
cedure which overlays the result on those four words. (See sample below.)

CSIN {g + bi) = sin (g} cosh (b} ¥ [cos {¢) sinh (&)
Y{0) = a (real part}
Y{1) = b (imaginary part)

where
If & < 0.5, sinh {#) i5 determined by a minimax approximation.
If b 2> 0.5, sinh (b} = (¢? = e~P) J 2:

cosh (b) = sinh o] + —2
o101

Depends on accuracy of SIN, COS, and EXP,

A complex number.
A complex number, left in four words on TOS (for SPL/3000 caller).
Basic External Function: CSIN({Y].

See EXP.

Sample SPL/3000 calling sequence:

REAL ARRAY ¥{0:1);

TOS = 0D,
TOS = 0D,
CBIN (Y);

2-41

FUNCTION:

Declaration:

Method:

AcCCuracy:

ATTRIBUTES;
Parameter:

Result:

FORTRAN:

Error:

CCOS {or CCOS"H

Calculate the cosine of a complex number,

Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair {a 2-element array) of real numbaers, one for the real part ¢ and one for the
imaginary part #. Thus, complex numbers occupy four words (see “Internal
Representation®™ in the “‘Introduction™).

FROCEDURE CCOB (YY), 0r CCOS’ (Y},
REAL ARRAY Y;
OPTTION EXTERNAL;

An SPL/3080 caller must use the staternent “TOS = 0D;" twice to set two double
integers ‘0" on top-of-stack in four words; then use ““CCOS (Y);” to call the pro-
cedure which overlays the result on those four words, (See sample below,)

CCOS (a + bi} = cos {¢) cosh (B) - i sin {a) sinh {H)
Y(0) = ¢ (real part)
¥(1) =& (imaginary part)

where

If & <C 0.5, sinh {b) is determined by a minimax approximation,
It b > 0.5, sinh (5) = (e¥ — =0y / 2;

cosh (B) = sinh [b] + e
elbl

Depends on acceuracy of SIN, COS8, and EXP.

A complex number.
A complex number, left i [owr words on TOS (for SPL/3000 caller).
Basic External function: CCOS({Y).

Bee EXP.

Sample SPL; 3000 calling sequence:

REAL ARRAY Y(0:1);
TOS = 0I);
TOS := 0D;
CCOS(Y);

2-42

TANH (or TANH’)

FUNCTION: Caleulate the hyperbolic tangent of a real number.

Declaration: REAL PROCEDURE TANH (Y); or TANH’ (¥);
REAL Y,
OPTION EXTERNAL;

e‘:Cr - e‘Y
Method: TANH (Y) = TV
el +e”

approximation is used.

unlesg [Y1<C 0.4812118, In that case, a minimax

Accuracy: {See “Introduction’™)

when {X — yi ~ €, maximum {f ~ g] ~ € sech® x

ATTRIBUTES:
Parameter: A real number.
Result: A representable! real number in the range {0.0, 1.0].

FORTRAN: Basic External Function: TANH (Y).

Error: None.

1See “Introduction.”

2-43

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:

Parameter:

Besult:

FORTRAN:

Error:

SINH (or SINH"}

Calculate the hyperbolic sine of a real number.

REAL PROCEDURE SINH (Y); or SINH (Y);

REAL Y;

OPTION EXTERNAL;

Yy _ Y

SINH (Y) = §---‘2

is used.

(Bee Introduction’’}

unless Y <7 0.5. In that case, a minimax approximation

when |x ~ y{ ~ ¢, maximum |{ — g{ ~ ¢ cosh x

A real number,

A real number,

Bastc External Function: SINH (¥},

See EXP.

2-44

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:
Parameter:

Resuls:

FORTRAN:

Errvor:

CO8H (ox COSH")

Caleulate the hyperbolic cosine of a real number,

REAL PROCEDURE COSH (Y): or COSH® (Y);
REAL Y;
OPTION EXTERNAL;

Y. .Y
COSH (¥) = &35

{See “Introduciion™):

when [x ~ y| ~ e, maximum |[f - gl ~ ¢ sinh x

A rea] number.
A real number.
Basic Exfernal Function: COSH (Y).

See BEXP,

245

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:
Parameter:

RHesult:

FORTRAN:

Brror;

DTANH (or DTANH’)

Calculate the hyperbolic fangent of a double precision number,
LONG PROCEDURE DTANH(Y); or DTANH(Y);

LONG Y:
OPTION EXTERNAL;

DTANH(Y) = 5(%{%

(Bee “Introduction™)

when |x - vyl ~ ¢, maximum if - gi ~ ¢ sech’ x

A double precision number.
A representable' double precision number in the range {0.0,1.01.
Basic External Punction: DTANH({Y).

See DSINH and DCOSH.

'See “Introduction.”

2-46

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:
Parameter:

Result:

FORTRAN:

Error:

DSINH (or DSINH’)

Calculate the hyperbolic sine of a double precision number,
LONG PROCEDURE DSINH(Y); or DSINHY}:

LONG Y;
OPTION EXTERNAL;

JY
DSINH(Y) = 2-—¢

unless Y <C 0.1. In that case, a minimax approximation is used,
{See “Introduction™}

when |8 - yl ~ ¢, maximum {f - g} ~ ¢ cosh x

A double precision number.
A double precision numbey.
Basic External Function: DSINH(Y).

See DEXP,

2-47

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:
Parameter:

Result:

FORTRAN:

Error:

DCGSH (or DCOSH")

Calculate the hyperbolic cosine of a double precision number.
LONG PROCEBURE DCOSH(Y); or DCOSH(Y);

LONG Y,
OPTION EXTERNAL;

¥, -Y
DCOSH(Y) = i——*fm-

(See “Infroduction’™)

when {x - y| ~ &, maximum {f - g} ~ ¢ sinh x

A double precision number.
A double precision number,
Bagic Extermal Fungtion: DCOSH(Y 3.

See DEXP.

2-48

CTANH (or CTANH’)

FUNCTION: Calculate the hyperbolic tangent of a complex number.

Declaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair {a Z-element array} of real numbers, one for the real part ¢ and one for the
imaginary part &. Thus, complex numbers cccupy four words (see “Internal
Representation” in the “Introduction™).

PROCEDURE CTANH(Y); or CTANH(Y);
REAL ARBAY Y;
OPTION EXTERNAL;

An SPL/3000 caller must use the statement “TOS:= 0D, twice to set two
double integer zeros onto the stack in four words; then use “CTANH{Y};”
to cali the procedure which overlays the result on thase four words. (See

sample helow.}

sinh{Y)

Accuracy: Depends on accuracy of SIN, COS, COSH, and SINH,

ATTRIBUTES:
Parameter: A complex number,
Resuit: A complex number, left in four words on TOS (for SPL/3000 caller;.

FORTRAN: Basic Bxternal Function: CTANH(Y).
Error: None.
Sampile SPL/3000 cailing sequence:

REAL ARRAY Y(0:1),

TOS:=0D;
TOS:=0D;
CTANH(Y)

2-49

CSINH {or CSINH"}

FUNCTION: Calculate the hyperbolic sine of a complex number.

Beclaration: Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair {a 2-element array} of real numbers, one for the real part 2 and one for the
imaginary part . Thus, complex numbers occupy four words {see “Internal
Representation® in the “Introduction™).

PROCEDURE CSINH(Y); or CSINH(Y);
REAL ARRAY Y;
OPTION EXTERNAL;

An SPL/3000 caller must use the statement ““TO8 = 0D twice to set two
double integer zeros onto the stack in four words; then use “CSINH({Y);"
to call the procedure which overlays the result on those four words. (See
sample below.)

Method: CSINH{a + bi) = sinh{a) cos{b) + { coshia) sin(#)
Y{() = a {real part)
Y(1) = b (imaginary part)

Accuracy: Depends on accuracy of 8IN, CO8, COS8H, and SINH.
ATTRIBUTES:

Parameter: A complex number.

Result: A complex number, left in four words on TOS (for SPL/3000 caller).

FORTRAN: Basic External Function: CSINH{Y).
Error: None.
Sample SPL/3000 calling sequence:

REAL ARRAY Y({0:13;

TOS:= 0D;
TOS:= 0D;
CSINH(Y);

2-50

CCOSH {or CCOSH")

FUNCTION: Caleulate the hyperbolic cosine of a complex number.

Declaration: Complex niumbers in FORTR AN/3000 programs are represented as an ordered
pair {a 2-element array) of real numbers, one for the real part o and one for the
imaginary part b. Thus, complex numbers occupy four words (see “Internal
Representation™ in the “Introduction™}.

PROCEDURE CCOSH(Y); or CCOSH(Y);
REAL ARRAY Y;
OPTION EXTERNAL:

An SPL{3000 caller must use the statement “TOS:= 0D twice to set two
double integer zeros onto the stack in four words; then use “CCOSH(Y}Y;”
to call the procedure which overlays the result on those four words. {See
sample below.)

Method: CCOSH{e + i) = cosh(a) cos{b) + ginhia) sin{b}
Y{0) = a (real part}
Y1) = b {imaginary part)

Accuracy: Depends on aceuracy of S3IN, COS, SINH, and COSH,
ATTRIBUTES:

Parameter: A complex number.

Result: A complex number, left in four words on TOS {for SPL./3000 caller),

FORTRAN: Basic External Function: CCOSH({Y).
Error: None.
Sample SPL/3000 calling sequence:

REAL ARRAY Y({0:1};

TOS.= 0D;
TOS:= 00
CCOBH(Y)Y

2-51

FUNCTION:

Declaration:

Method:

Accuraey:

ATTRIBUTES:
Parameter:

Result:

FORTRAN:

Rrror:

ATAN {or ATAN’)

Calculate the arctangent of a real number.
REAL PROCEDURE ATAN {Y); or ATAN’ (Y};

REAL Y;
GPTION EXTERNAL;

A minimax approximation.

{See “‘Infroduction™}

when |x - y] ~ &, maximum |f - g] ~ T

A real number,
A representable! real number in therange [-7/ 2, 7 / 2]
Basic External Function: ATAN {Y).

None.

tSee “Introduction.”

2-52

FUNCTION:

Declaration:

Method:

Aecuracy:

ATTRIBUTES:
Parameter:

Resuli:

FORTRAN:

Error:

DATAN (or DATAN")

Caleulate the arctangent of a double precision { LONG real) number.
LONG PROCEDURE DATAN (Y); or DATAN (Y},

LONG Y,
OPTION EXTERNAL;

A minimex approximation.

{See “Introduction™):

when {x — v| ~ &, maximum |f - g} ~ Th 5

A dcuble precision number,
A representable! double preeision number in the range [-7/ 2,7 / 2].
Basic External Function: DATAN {Y}.

MNone,

t See “Introduction.”

2-53

FUNCTION:

Declaration:

Method:

Agcuracy:

ATTRIBUTES:
Parameters:

Result:

FORTRAN:

Error:

ATANZ (or ATAN2)

Calculate the arctaﬁgent of the quotient of two real numbers.

REAL PROCEDURE ATAN2 (Y,Z); or ATAN2’ (Y,2);
REAL Y,Z;
OPTION EXTERNAL;

Calls ATAN (Imin {Y,Z2} / max (Y,Z)]), then determines the proper guandrant.

(See “Introduction™):

3¢
1+ w?

when {x - ¥yl ~ ¢, maximum {f - gf ~

where
w=min {Y,4) f max {Y,Z)

Beal numbers. Both must not be zero.

A representable’ real number in one of the following ranges:

Z20 7 <0
Y=0 [0,7/2] (w/2,7]
Y <0 [-7/2,0) (-m,-n{2}

Bagic External Function: ATANZ2 (V,Z)

SOFTERROR’ message ATANZ: ARGUMENTS ZERQ occurs if both
arguments are zero: SOFTERROR’ message ATANZ: UNDERFLOW
eceurs if all the conditions below occur:

lsmaller axgument| / [larger argument]

causes underflow and Y>> 0and Z= 0 and Y < Z.
Bee Section IV, Library Errors.

!See “Introduction.”

2-54

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:
Parameters:

Result:

FORTRAN:

Error:

DATAN2

Calculate the arctangent of the quotlient of two double precision (LONG geal)
numbers.

LONG PROCEDURE DATAN2 (Y, 2);

LONG Y Z;
OPTION EXTERNAL;

Calls DATAN {Imin (Y,2) / max (Y,Z)]}, then determines the proper quadrant.

(See “Introduction’™
_ 3¢

when {x — y| ~ ¢, maximum {f - g| ~
1+w?

where

w = min (Y,2Z) / max (Y,Z}

Double precision numbers, Both must not be zero,

A representable! double preciston number in one of the following ranges:

Z =0 L <0
Y=0 [0,7/2] {mf2,m]
Y0 f-m12,0) (-,-w{2}

Basic External Function: DATANZ (Y.Z)

SOFTERROR. message DATANZ: ARGUMENTS ZERO occurs if both
arguments are zero;, SOFTERROR’ message DATANZ: UNDERFLOW
occurs if all the conditions below oceur:

lsmaller argument} [|larger argument|

causes underflow and Y =0 and Z 2 0 and ¥ < 7.
See Section 1V, Library Errors.

'See “Introduction.”

2-56

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:

Results:

FORTRAN:

Erroy:

INVERT

Invert a square matrix containing real numbers stored by rows; the resulting
inverse is stored over the input matiix. {Required hy BASIC/3000.)

FROCEDURE INVERT (N, A, SFLG);

VALUE N; INTEGER N, SFLG; REAL ARRAY A;
OPTION EXTERNAL;

For N, an integer for the order of the matrix; for A, a real identifiex
of the matrix; for SFLG, an integer identifier.

Inverse replaces original matrix, and SFLG is 1 if the matrix is nonsingular
or 0 if the matrix is singular,

Callable as an external subroutine:
CALL INVERT (\\,C.K)

or through use of the SYSTEM INTRINSIC statement.

None.

CAUTION: If the matrix is singular (SFLG is 6}, all or part of the matrix

is overlaid with undefined resulis,

2-56 Nov 1976

DINVERT

FUNCTION: Invert a square matrix containing double precision {LONG yeal} numbers,
stored by rows; the resulting inverse is stored over the input matrix. {Re-
guired by BASIC/3000.)

Declaration: PROCEDURE DINVERT (N, A, SFLG):
VALUE N; INTEGER N, SFLG; LONG ARRAY A;
OPTION EXTERNAL;

ATTRIBUTES:
Parameters: For N, an integer for the order of the matrix; for A, a double precision
identifier of the matyix; for SFLG, an integer identifier.
Results: Inverse replaces original matrix, and S8FLG is 1 if the matrix s nonsingular

or 0 if the matrix is singular,

FORTRAN: Callable as an exfernal subroutine:
CALL DINVERT ("\WADLE)

or through use of the SYSTEM INTRINSIC statement,

Error: None.

CAUTION. If the matrix is singular (SFLG is 8), all or part of the matrix
i$ overlaid with undefined resulis.

Nov 1978 2-57

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:

Resulis:

FORTRAN:

Error:

CINVERT

Invert a square mairix contalning complex elements (pairs of real elements)
stored veal part ¢ then imsaginavy part b, by rows; the resulting inverse is
stored over the input matrix, {Required by BASIC/3004.)

PROCEDURE CINVERT (N, A, SFLG);

VALUE N; INTEGER N, SFLG; REAL ARRAY A;
OPTION EXTERNAL;

For N, an integer for the crder of the matrix; for A, a real identifier
of the matrix; for SFLG, an integer identifier.

Inverse replaces original matrix, and SFL.G is 1 if the matrix is nonsingular
or 0 if the matrix is singular,

Callable as an external subroutine:

CALL CINVERT (\K\,E, M)
ot through use of the SYSTEM INTRINSIC statement.

None.

CAUTION: If the matrix is singular (SFLG is 0), all or part of the matrix

s overiaid with undefined resuits.

2-58 Nov 1978

FUNCTION:

Deciaration:

ATTRIBUTES:
Parameter:

Result:

FORTRAN:

Error:

COMMENT:

Nov 1976

RAND1 (or RAND1")

Generate a random number, which may be used as the staréing point for
RAND. {Required by BASIC{SOQO.}

REAL PROCEDURE RAND1; or RAND1;
OPTION EXTERNAL;

or

DOUBLE PROCEDURE RANDI,
QOPTION EXTERNAL;

None.

A 32.bit gquantity, which can be identified as either a real number or 2 double
integer number.

Callable through use of the SYSTEM INTRINSIC staiernent,

None.

This random vaiue is derwved from the 31-bit logical quantity changed every
millisecond by the MPE/ 3000 system timer.

2-59

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:

Results:

FORTRAN:

Error:

COMMENTS:

RAND (or RAND’)

Generate the next element of a sequence of pseudo-random numbers
{see Comment). {Requived by BASIC/30600.)

REAL PROCEDURE RAND (X); or RAND’ (X};
REAL X;
OPTICN EXTERNAL;

Or

DOUBLE PROCEDURE RAND (X);
DOUBLE X;
OPTION EXTERNAL;

Either a real number or a double integer number.

A representable! real number in the range (0.0, 1.0) returned as the value of the
routine, and a 32-bit quantity replacing the original value of the parameter
(see Comment).

Callable as an external function: ¥ = RAND (Z)

None,

The parameter value at the inmtial call to RAND completely determines a
sequence of pseudo-random numbers, Each time EAND returns a new value
to the calling program, it also sets a new 32-bit value in place of the param-
eter. To continue the pseudo-random sequence thus initiated, that 32-hit
value must be used as the parameter in the next call to RAND.

' See “Introduction.”

2-60

DADD

FUNCTION: Calculate the sum of two double integer numbers, |

Declaration: DOUBLE PROCEDURE DADB(ID1,D2);
DOUBLE D1,DZ;
OPTION EXTERNAL;

ATTRIBUTES:

Parameters: Double integer numbers,

Resull: A double integer number.

FORTRAN: Callable as an external function: X = DADIXY,Z)

Rrrors: If the result cannot be represented in the two words of a double integer,
arithmetic trap INTEGER OVERFLOW occurs (if traps are enabled).

NOTE: This procedure s mainiained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

Nov 1976 2-61

DSUB

FUNCTION: Calculate the difference between two double integer numbers,

Declaration: DOUBLE PROCEDURE DSUB(D1,D2);

DOUBLE D1,D2;
OPTION EXTERNAL;

ATTRIBUTES:

Parameters: Double integer number.

Resuli: A double integer number,

FORTRAN: Callable as an external function: X = DSUB (V. Z)

Errors: If the result cannot be represented in the two words of a double integer,

arithmetic trap INTEGER OVERFLOW occurs (if traps are enabled).

NOTE: This pracedure is maintained in the Compiler Library only for compatibility

with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

2-62 Nov 1976

DMPY (or DMPY’)

FUNCTION: Caleulate the product of two double integer numbers.
Declaration: DOUBLE PROCEDURE DMPY{(D1,12)};
DOUBLE D1,D2;
OQPTION EXTERNAL;
or
PROCEDURE DMPY’ (DL1,22); {see Comment)
VALUE D1,D2;
OPTION EXTERNAL;
ATTRIBUTES:
Parameters: Double infeger numbers.
Resuilt: A double integer number (the result from DMPY' replaces parameter D1 on
TOSB, as in the hardware instruction DADD).
FORTRAN: Callable as an external function: X = DMPY(V 2)
Error: If the resulf cannot be represented in the two words of a double integer,
arithmetic trap INTEGER OVERFLOW occurs (if traps are enabled).
COMMENT: A sample SPL{3000 caliing sequence:
DOUBLE A,B,C;
TOS = A;
TOS = B;
DMPY*(**);
C = TOS;
which is equivalent to C 1= A*B; in double integer form.
NOTE: This procedure is maintoined in the Compiler Library only for compatibility

with previous versions of the FORTRAN/3000 Compiler which did not
recagnize double integers.

Nov 1976

263

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:

Result:

FORTRAN:

Brror:

COMMENT:

DDIV {or DDIV’)

Caleulate the quotient only of one double integer number divided by another
double integer number. See procedure DREM (or DREM’) for the remainder,

DOUBLE PROCEDURE BDIV(D1.D2},
DGUBLE D1,D2;
OPTION EXTERNAL;

or

PROCEDURE DDIV' (D1.D2); {see Comment}
VALUE D1,D2: DOUBLE D1,D2;
OPTION EXTERNAL;

Double integer numbers.

A double integer number, the quotient only {the result from DDIV’ replaces
parameter D1 on TOS, as in the hardware instruction DADD}

Callable as an external function: X = DDIV(Y.Z)

If parameter D2 = 0, the arithmetic trap INTEGER DIVIDE BY ZERO
oceurs (if traps are enabled).

A sample SPL/3000 calling sequence:
DOUBLE ARB,C;

TOS = A;

TOS = B;

DDIV'(**);

C = TOS;

which is equivalent to C = A/B; in double integer form.

NOTE: This procedure is maintained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recogrize double integers,

2-64 Nov 1976

DREM {(or DREM’)

FUNCTION: Calculate the vernainder only of one double integer number divided by another
double integer number. See procedure DDIV {or DDIVY) for the quotient.

Declaration: DOUBLE PROCEDURE DREM(D1,D2);
DOUBLE D1,D2;
OPTION EXTERNAL;

or

PROCEDURE DREEM'(D1,D2); {see Comment)
VALUE D1,D2; DOUBLE D1,D2;
OPTION EXTERNAL;

ATTRIBUTES:
Parameters; Pouble integer numbers,

Result: A double integer number, the remainder only (the result from DREM’
replaces parameter D1 on TOS, as in the hardware instruction DADD),

FORTRAN: Callable as an external function: X = DREM(Y.Z)
where X = ¥ MOD Z in double integer form,

Error: If parameter D2 = 0, the arithmetic frap INTEGER DIVIDE BY ZERO
accurs (if traps are enabled).

COMMENT: A sample 3PL/3000 calling sequence;
DOUBLE AB,C;

TOS = A;

TOS = B;
DREM’(*,*};
C = TOS;

which is equivalent to € = A MOD B; in double integer form.

NOTE: This procedure is mainiained in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recognize double integers.

Nov 1976 2-65

FUNCTION:

Declaration:

DNEG

Negate a double integer number.

DOUBLE PROCEDURE DNEG{D},
DOUBLE Dy
OPTION EXTERNAL;

ATTRIBUTES:
Parzmeter: A double integer number.
Result: The double integer number with the opposite sign,
FORTRAN: Callable as an external function: X = DNEG(Y)
Error: None.
NOTE: This procedure is maintained in the Compiler Library only for compatibility

with previous versions of the FORTRAN/3000 Compiler whieh did not
recognize double integers.

2-66 Nov 1976

DCMP

FUNCTION: Compare two double integer numbers.

Declaration: INTEGER PROCEDURE DCMP(D1,D2);
DPOUBLE D1,D2;
OPTION EXTERNAL;

ATTRIBUTES:
Parameters: Double integer numbers.

Result: -1if D1 < D2
D1 =D2
1 D1 > D2

FORTRAN: Callable as an external function: I = DCMP(X, Y) for use in, for example, an
arithmetic IF statement:

IF (1) 10,20,30
to direct the program as follows:

goto10if X <Y
goto 20ifX =Y
goto 30X >Y

Error: MNone.

NOTE: This procedure is mainteined in the Compiler Library only for compatibility
with previous versions of the FORTRAN/3000 Compiler which did not
recogrize double integers,

Nov 1978 2.67

FUNCTION:

Declaration:

Method:

ATTRIBUTES:
Parameter:

Result:

FORTRAN:

Error:

IFIX?

Truncate a real number to an integer number,
INTEGER PROCEDURE IFIX’(Y);

VALUEY; REAL Y;
OPTION EXTERNAL;

IFIX(Y) = sign of Y times largest integer << | Y|

A representable! real number in the range {-82768.0, 32767.0).
An integer number.
Intrinsic Function: IFIX{Y).

If the real number is ouiside the range stated, the arithmetic trap INTEGER
OVERFLOW occurs (if traps are enabled).

1 See “Introduction.”

2-68 Nov 1976

MPYD

FUNCTION: Calculate the product of a decimal multiplicand and a decimal multiplier,
such as those of RPG/3000 or COBOL/ 3000 Packed Decirnal Numbers.
See COMMENT.

This procedure is called normally only by code emitied hy a compiler. However,
this procedure can be called explicitly by a user’s program.

Declaration: PROCEDURE MPYD(OP2,0P2DIGS,0P1,0P1DIGS,SDEC);
VALUE OP1DIGS,0P2DIGS SDEC;
BYTE ARRAY OP1,0P2:
INTEGER OP1DIGS,0P2DIGS,SDEC;
OPTION EXTERNAL;

Method: Both operands are converted to multi-word binary integers then multiplied;
the product is converled back 1o a Packed Decimal Number, [f the signs of
the operands do not match and the product is not zevo, the sign of the result
is set to - (minus).

The result includes the product and the sign. The result overlays QOP2,
the multiplier.

ATTRIBUTES:

Parameters
(Enput): OP1 = The multiplicand decimal value, including its sign, in a byte
array; 1 te 28 digits and sign. See COMMENT.

QF2 = The multiplier decimal value, including its sign, in a byte array;
1 to 28 digifs and sign. See COMMENT and OP2DIGE.

OP1BIGE = The number of digits in decimal multiplicand OP1; a positive
integer.

OP2DIGS = The number of digits in decimal multiplier OP2 and in the result
overlaying OP2. This positive integer must provide enough digits
for the largest possible product.

SDEC = The calling program's request for TOS Fop-0f-8tack condition
after the procedure returns control, in the two lowest order bits
of an integer:

0 requests: leave both byte array pointers OP1 and OP2, and
both integers OP1DMGS and OF2DIGS on TGOS,

1 reguests; leave only OP2 and OP2DIGS on TOS.

2 or 3 request: clear TOS of all residue from this procedure,

2-69

MPYD (cont.)

Parameter
(Output): OP2 = The decimal result, overlaying the multiplier OP2 byte array;
OP2DIGS digit and sign,
Results: A decimal product and sign; and
Condition code:
CCE, product = 0
CCG, produce is + (plus);
CCL,product is — {minus),
Errors: Either OP1DIGS or OPZDIGS = (1; Only the SDEC request is answered
fOP2 then remains the multiplier and is not overlaid by the result).
Either GPIDIGS or OP2DIGS << 0 or 2> 28 arithmetic trap INVALID
DECIMAL OPERAND LENGTH occurs.
A non-decimel numeric character in the numeric digits of either array OF1 or
OP2: arithmetic trap INVALID DECIMAL DIGIT occurs.
The result number of digits > 28; arithmetic trap DECIMAL OVERFLOW
occurs; the result is meaningless,
The result number of digits > OP2DIGS but =< 28; arithmetic trap
DBECIMAL OVERFLOW oceurs, but anly the result MSI’s {Most Significant
Digits) are fruncated,
COMMENT: Packed Decimal Numbers are byie arrays:

BYTEL ! [FIRST N SECOND N oy, % LAST - 3N LAST)
BIFS: [G-7 b D=7 N oren N 0=7 N g=7]
MAY CONTAINGD BREHE\BBLINGBBANSHBEN ... \BbHBA\BBB3I\NSHBRASSSS
For DECIMaL: O ND N DB ND N e NN D NN DN
AS THE: MSDNZMSDNIMSDNSMBDN o, \3LSDN2LSDN LSDASIGN
OR N O N O N UR N .0 N URON OR A AY
LN LL N LZ N L2 N wae NV LEL N LZ N N\

wWwhHERE
RREE = ANY HINARY #aTTERN 000N THRUUOGH 1801ls WEIGHTED Bed=2-1

D = ANY DECIMAL DIGIT :’} THROLGH G
MSD = MOST SEGMIFLICANT DIGIT
LS = LEAST SIGNLIFICANT IRl
LZ = LEADING trO
S855 =5 1101 FOR - (MINUSHT ALl ELSE = « {PLUS)

2-70

FUNCTION:

LONGDIVD and DIVD

Calculate the guotient, or the quotient and remainder, of a decimal dividend
and a decimal divisor, such as those of RPG/3000 or COBOL/ 3000 Packed
Decimal Numbers, See COMMENT,

Two eniry poinis are provided: The main entry, LONGDIVD, aliows a
dividend of up to 36 digits for COBOL/3000. The secondary entry, DIVD,
allows a dividend of up to 28 digits for RPG/3000 or COBOL/3000.

The divisor can never exceed 28 digits.

This procedure is called normally only by code emitted by a compiler. Or this
procedure can be called explicitly by a user’s program.

Declaration:

Method:

NOTE:

PROCEDURE LONGDIVD{OP1,0P2DIGS,0P1,0P1DIGS,SDEC);
or
PROCEDURE DIVIXOP2,0PZDIGS,0P1,0P1DIGS SDEC);
VALUE OP1DIGS,0P2DIGS SDEC;
BYTE ARRAY OF1, OP2;
INTEGER OP1DIGS,OF2DIGS 8DEC;
OPTION EXTERNAL;

Both operands are converted to multi-word binary integers then divided; then
the quotient is - or the guotient and the remainder are — converted back to a
Packed Decimal Number(s). If the signs of the operands do not match and the
gquotient, or the guotient and the remainder, are not zero, the sign of the re-
suli is set to — {minus).

When OP2DIGS 15 a positive integer, the result includes only the quotient and
the sign. The result overlays QF2, the divisor,

When OPZDIGS is a negative infeger, the result includes the quotient valne
and sign and the remainder value and sign. The quotient and sign overlay OP2,
the divisor. The remainder and sign are appended to the original array QP2

in OP1DIGS more bytes (higher addresses).

A user’s program to calculate a quotient and remainder must allocate
space beyond the Least Significant Digit of array OP2. See COMMENT.

2-71

ATTRIBUTES:

Parameters
(Input):

Parameter
{Output):

OP1

QF2

OP1DIGS

QP2DIGS

SDEC

OoP2

LONGDIVD and DIVD (cont.)

The dividend decimal value, including its sign, in a byte array:
For entry LONGDIVD: 1 to 36 digits and sign;

For entry DIVD: I to 28 digits and sign.

See COMMENT,

The divisor decimal value, including its sign, in a byte array:
1 to 28 digits and sign.
See COMMENT.

The number of digits in decimal dividend OP1 and, if OP2ZDIGS
is negative, in the remainder to be appended to array OP2
{See OP2DIGS}.

The number of digits in decimal divisor OP2 and in the quotient
overlaying OP2:

A positive integer to direct the procedure to return only the
gquotient and sign.

A negative integer to direct the procedure to return the quotient
and sign and the rernainder and sign.

The ealling program’'s request for TOS Top-Of-Stack condition

after the procedure returns control, in the two lowest order bits

of an integer:

0O requests: leave hoth byte array pointers OP1 and OP2, and
both integers OP1DEGS and OP2DIGS on TOS.

1 requests: leave only OP2 and QP2DIGS on TOS,

2 or 3 request: clear TOS of all residue from this procedure.

Either one of two results possible:

TFhe quotient only result, overlaying the divisor byte array
OP2: OPZDIGS digits and sign.

Fhe quotient and remaindex result, overlaving the divisor
array OP2 (the quotient and sign) then OP1DIGS more array
digits appended to QP2 (the remainder and sign), in higher
aderesses.

212

LONGDIVD and DIVD (cont.}

Results: A decimal guotient and sign, or a decimal quotient and sign and a decimal
remainder and sign; and
Condition code:
CCE, quotient = 0;
CCG, guotient is + (plus);
CCL, guotientis — (minus).

Errors: Either OP1DIGS or OP2DIGS = Q; Only the SDEC request is answerad
{OP2 then remains the divisor and is not overlaid by the quotient).

QP2 = (4 arithmetic trap DECIMAL DIVIDE BY ZERO occurs.

Entry DIVD tests for OP1DIGS < 0, or for OP1DIGS or OP2DIGS > 28

arithmetic trap INVALID BECIMAL OPERAND LENGTH occurs. Entry

LONGDIVD does not test OP1DIGS or OP2DIGS because it expects to be
used only by COBQL/3000.

A non-decimal numeric character in the numeric digits of either array OP1 or
OP2: arithmetic trap INVALID DECIMAL DIGIT cceurs.

The result number of digits > 28: arithmetic trap DECIMAL OVERFLOW
necurs; the result is meaningless.

Reference: Knuth, Donald B. *“The Classical Algerithms’ Chapier 4.3.1, The Art of
Computer Programming, Vol. 2., Reading, Mass. : Addison-Wesley Publishing
Cao,, 19692,

COMMENT: Pucked Decimal Numbers are byte arrays:

RYTE: € FIRST N SECUMD N w,s \ LAST = I\ LAST 3}
BITS: € 0«7 N 09=7 N eas N O=7 N 0=7]}
MAY COMTAIN: HBHRANHBBES\BBRB\BAEEN ... \HHBR\BBB3\BBHB\55S5S
Fnp pECIMAL: B N D NP O AD N ... ND ND ND N
88 THE: MEDNZMIONIMSDNGMSDN .0 \3LSD\ZLSD\ LSDA\SIGN
O N UR N OR \ Ok \ aas N OR \ OR \ \
EZ N L4 N LZ N LZ N wey N LZ N Z N \

WrE HME 3
Pkl = AMY BINAHY HATTERN (000 THRHOUGH 100ly NEIGHMTED B=Ge~2~=]

b= ANY DECIMap DIOGIT n THROUGH 3

Mylro= OST STeonIFluaN DIGLY
tab = LEAST SEOGNIFICANT olGlT
L = [LEADENG FErO

S3%S = LGl FOR o« (MINUSHT ALL ELSE = + (PLUS)

2-78

R’EIIT

FUNCTION: Either one of two possible:

NUMERIC EDIT: unpack a SOURCE array containing a Packed Decimal
Number of an RPG/3000 program, That is, copy numeric digits and the sign
from the SOURCE array, and copy alphanumeric characters from an

EDITARRAY array, into a RESULT array of ASCEH characters. See COMMENT.

ALPHANUMERIC EDIT: copy alphanumerie characters from a SOURCE
array containing only ASCI charactersinto a RESULT array of ASCII characters,

This procedure is called normally only by code emiited by the RPG/3000
compiter for an EDIT WORD. However, this procedure can be called explicitly
by & user's program. '

Declaration: PROCEDURE R'EDIT(RESULT SOURCE EDITARRAY DIGCOUNT);
VALUE DIGCOGUNT,
INTEGER DIGCOUNT;
BYTE ARRAY RESULT SOURCEEDITARRAY;
OPTION EXTERNAL;

ATTRIBUTES:
Parameters
(Input): SOQURCE = Numeric Edit: a Packed Decimal Number byte array.
Alphanumeric Edit: a byée array of ASCII characters.
EDITARRAY = Numeric or Alphanumeric Edit: a byte array of REDIT
commands and, when needed, ASCII characters.
Details are given later, under DESCRIPTION.
DIGCOUNT = Numeric Edit: the integer number of digits in the SOURCE
array Packed Decimal Number.
Alphanumeric Edit: 0 to signal the SOURCE array con-
fains only ASCI characters,
Parameters
{Output): RESULT = a byte array of ASCI characters.
Result: A byte array of ASCI characters, RESULT,
Errors: See DESCRIPTION.

2-74

R'EDAT {cont.}

COMMENT: Packed Decimal Numbers are byte arrays:

HYTE [FIRST N SECOMD N , .8 N LAST = %N LAST }

HITS: [g=7 N g7 N e N Q=7 Y G-7 1

May CONTALIN: BEBHAEEBENBIRENGBAEY oo NHHBBABBBSN\RBER\SSSS
Frr pECIMAL: D ND NP v D N s VD NB O OND N

AS THE: MSONZMOELANIMIDNGMEDN 5, NILSDNZLSDON LEUNSIGN

OR N U N DRN O N Lo N OR SN RN A"
L2 N L2 N L2 N L7 N wee VLN LZ N N\
WHFRE $
RAAE = ANY mINMAarRY PATIoHN GGGo THIFOUGH 1001y wFEIGHTED Hegeg=]
{v o= AnY GECImAL DIG]T 0 PG 3
MELD = MOST SToNIFICanT LUislT

Lot = LEAST SIOGMIFRCARY Gl6LT
LZ = LEADING 2B
6855 101 #UR = (MINUSIs ALL ELSE = « (PLUS)

"

DESCRIPTION: Assurne an array labelled PDN contains a2 Packed Decimal number
0057426+
that is to be unpacked by the RPG/3000 EDIT WORD
Db, B0b. bb&CR
into an array labelled TARGET. The number of digits in array PDN is
reported by an integer PDNCNT.

The corapiler then constructs a hyte array that might be labelled
EDCONTROQL to contain R'EDIT commands and ASCIE characters:

N 0 $31100N : hY 1 Ji00FN 0 10711 1 11081\ 0 +J000N>>
»2% 1 101N 1 rl000N 4 rlAiloN oz rOlIan C \ H W
=2\ 0 10000\

from the R'EDIT command set listed later and from the standard ASCII
character set. In this example, bytes are shown delimited by a | {vertical bar),
a : (colon) signals each of ten R'BEDIT commands, and three ASCII characters
are inciuded: 8, Cand R,

Then the compiler emits a calling sequence to procedure R'EDIT:
PROCEDURE R’EDIT(TARGET, PDN EDCONTROL PDNCNT);

to obtain the step-by-step execution of R'EDIT shown after the R'EDIT
Command Set.

B’EDIT {cont.)

Procedure R'EDIT sets one internal flag when it begins:

The Significant Digit flag, set FALSE if the DIGCOUNT integer < > 0 o call
Numeric Edit. Later, this flag is set TRUE when R'EDIT detects a significant
digit in the SOURCE array, or by an explicit R’EDIT command defined later,

Or, the Significant Digit flag is set TRUE if the DIGCOUNT integer = 0 to calil
Alphanumeric Edit.

Procedure R’EDIT also sets two special characters when it begins:

The Fill character, sei to ASCIF {SPACE} and reset to any ASCII character
by the R'EDIT command 0110 described later.

The Float character, set to ASCII (SPACE} and reset to any ASCII character
by the R'EDIT command 1100 described later.

R’EDIT Command Set

The compiete command set for procedure B°EDIT includes 13 commands.
Each command sceupies & full byte of the EDITARRAY : the left-most four
bits (0-3) contain a REPEAT integer, and the right-most bits (4-7) are the
R’EDIT command field;

Command
Field
Content Command Name, R'EDIT Action

0000 TERMINATE EDIT
Numeric Edit:
1f the current Float character is not ASCIT (SPACE), replace
the last non-significant digit in the RESULT array with the
Float character, Then, unconditionally terminate R*EDIT.
Alphanumeric Edit:
Terminate R'EDIT; do nothing else.

G001 COPY EDITARRAY BYTES
Numeric or Alphanumeric Edit:
Copy the next REPEAT + 1 bytes of the EDITARRAY into
the RESULT array, unconditionally .

5010 SET SIGNIFICANCE

Intended for Numeric Edit only:

Set the Significant Digit flag, subject to the REPEAT integer
and the first significant digit in the SOURCE array:

If REPEAT = 1, set {or leave) the Significant [hgit flag TRUE
and save the current byte pointer to the RESULT mrray as the
destination for the Float character, regardless of the SOURCE
content,

2-76

Command
Field
Content

0010
{cont)

0011

0100

0101

0116

0111

R’EDIT (cont.}

Command Name, R'EDIT Action

If REPEAT < >> 1 and the Significant Digit flag is FALSE and
the SOURCE content is a nen-zero decimal number, respond as
if REPEAT = 1 defined above. But if any one of these three
eonditions does not exist, do nothing,

COPY CHARACTERS SELECTED

Intended for Numeric Edit only:

Copy REFPEAT + 1 characters into the RESULT array, subject
to the Significant Digit flag:

[f the Significant Digit flag is TRUL, copy the next REPEAT +
1 bytes of the EDITARRAY.

If the Significant Digit flag is FALSE, copy the current Fill
Character REPEAT + 1 times,

COPY ONE EDITARRAY BYTE

Numerie or Alphanumeric Edit:

Copy the next byte of the EDITARRAY into the RESULT
array REPEAT + 1 times.

COPY ONE CHARACTER

Intended for Numeric Edit only:

Copy a single ASCII character, subject to the Significant Digit
flag:

If the Significant Digit flag is TRUE, copy the next byte of
the EDITARRAY REPEAT + 1 times.

if the Significant Digit Mlag is FALSE, copy the Fill character
REPEAT + 1 times.

CHANGE FILL CHARACTER

Intended for Numeric Edit only:

Change the Fill character to a copy of the next EDITARRAY
by fe.

COPY SIGN CHARACTER

intended for Numeric Edit only: Copy one or two ASCIL
characters into the RESULT array, subject to the signh of the
Packed Decimal Number and the REPEAT inieger:

When the SOURCE array sign is ~ {minus):

H REPEAT = 0 or 1, copy the next byte in the EDITARRAY
once. ‘
IEREPEAT = 2, copy the next two bytes in the EDITARRAY
onee.

211

Command
Field
Content

011t
{cont)

1000

1601

1010

1411

R’EDIT {cont.)

Coemmand Name, R'EDIT Action

When the SOURCE array sign is + (plus):
If REPEAT = 0, copy a + {plus) once.
ITREPEAT = 1,copya (SPACE} once.
If REPEAT = 2, copy a (SPACE} twice.

COPY SOURCE ARRAY DIGITS

Numeric Edit;

Copy the next REPEAT + 1 bytes of the SOURCE array into
the RESULT array then set {or leave) the Significant Digit flag
TRUE. '
Alphanumeric Edit:

Copy the next REPEAT + 1 bytes of the SOURCE array into
the RESULT array. do nothing else.

COPY SOURCE ARRAY DIGITS, SET SIGNIFICANCE
Intended for Numeric Edit only:

Copy REPEAT + 1 bytes from the SOURCE array into the
RESULT array. If the Significant Digit is FALSE, replace any
leading zeroes with the current Fill character, If a significant
digit is found in the SOQURCE array during this function, set.
the Significant Digit flag TRUE.

COPY PUNCTUATION

Intended for Numeric Edit only:

Set {or leave) the Significant Digit flag TRUE, then copy one
punciuation character into the RESULT array, subject to the
REFPEAT integer:

H REPEAT = 0, copy a, comma.

HREPEAT =1, copy a . period.

lf REFPEAT = 2, copy a f stash.

If REPEAT = 3, copy a ~ {minus).

If REPEAT = 4, copy a (SPACE).

COPY PUNCTUATION SELECTED

Intended for Numeric Edit only:

Copy one punctuation character into the RESULT array,
subject to the Significant Digit flag:

If the Significant Digit fiag s TRUE, respond as if the R°EDIT
command was 1010,

If the Significant Digit flag is FALSE, copy the current Fill
character.

278

Command

Field
Content

1100

1101
1110
1111

R’EDIT (cent.}

Commiand Name, R'EDIT Action

CHANGE FLOAT CHARACTER

Intended for Numeric Edit only:

Change the Float character subject to the REPEAT integer and
the sign inn the SOURCE array:

When REPEAT = 0, copy the next byte of the EDITARRAY
regardless of the SOURCE content,

When the SOURCE arvay sign is - {minus):

If REPEAT = 1, copy a — {minus}.

I REPEAT = 2, copy the next EDITARRAY byte.

If REPEAT > 2, respond as if it = 2.

When the SOURCE array sign is + {plus}:

1f REPEAT = 1, copy the next EDITARKAY byte.
If REPEAT = 2, copy a + (plus),

H REPEAT > 2, respond as if it = 2,

**[3 NOT USE. RESERVED FOR REDIT.
**DO NOT USE. RESERVED FOR R'EDIT.

#DO NOT USE. RESERVED FOR REDIT.

Returning now to the exampies assumed earhier, step-hy-step execution of
procedure REDIT is:

EDCONTROL

or
EDITARRAY
Content

:1100
1001
1011
;1001
(1000
11010
11000
11010
0111
;0000

o O B == R e B U

8

CR

PDN TARGET
or Significant o

SOURCE Digit flag RESULT
Content, Before/ After Content

n/u FALSE/FALSE {empiy)

00 FALSE/FALSE bb

n/u FALSE/FALSE bhb

BT FALSE/TRUE bbh57

4 TRUE/TRUE bbbb74

nfw TRUE/TRUE bbbb74.

26 TRUIE/TRURE bbb574.26

nfu TRUE/TRUE bbb574.26b

nju TRUE/TRUE bbbb74 26bbb

nfu TRUE/TRUE bb$574.26hbb

b means ASCII (SPACE)
nfu means “not used.”

2-79

SECTION 1]
UTILITY PROCEDURES

To find the deseriptions for any given procedure in this section, see the Function Directory or
Appendix A.

EXTIN’

FUNCTION: Convert a byte array containing an input string of ASCII digits (see **‘Comments’)
into one of four internal representations:

1. Integer,

2. Real

3. Double integer
4. LONG real

Declaration: PROCEDURE EXTIN® (STRING,W. D, TYPE,SCALE BLANKS,
RESULT,ERROR);
VALUE D, TYPE,SCALE BLANKS,RESULT;

BYTE ARRAY STRING;

INTEGER WD,/ TYPE,SCALE,ERROR;

INTEGER POINTER RESULT;

LOGICAL BLANKS;
OPTION EXTERNAL;

ATTRIBUTES:

Parameters
(Input): STRING = Pointer to the first byte of the byte array to be converted.

W = Upon entry, the field width w of the ASCI input string including
all special characters (see Comment 1).

DD = The number of digits d to be interpreted as fraction digits (multiply
the integer field by 104 if the input string does not include a
decimal point {see Comment 1). If a decimal point is included in
the input string, this parameter has no effect, ¥ D is given as < 0,
the procedure assumes D is 0. £ TYPE is 0 or -1, this parameter
is ignored,

TYPE = The internal representation desired:
(3 = infeger |
1 =real
-1 = double integer
-2 = LONG real

SCALE = The scale factor (see “Comments”). Ignored if TYPE = ((integer)
or —1 {double integer).

BLANKS = Treatment of imbedded blanks, a dollar sign! and commas® in
the input:

18ee “Mw.d”” and “Nw.d” in Section L.

3-1

EXTIN’ {cont.)

False: $ and/or commas and/or imbedded blanks are delimiters.

True: Imbedded blanks are treated as zeros; & $ and/or a comma
to the left of every third digit to the left of the decimal
point are allowed,

Parameters
(Output}: RESULT

It

Pointer to the first word of result storage (in 1, 2, or 3 words)
according to the TYPE specified.

ERROR = Error indicator (see “‘Comiments’):
0 = Valid result, no error
i = An ilegal character was delected (see Comment 6)
2 = No integer or fraction value was detected (see Comment 6)

-2 = Resulting number > largest representable value of TYPE
{see “Introduction’™)

-4 = Resulting number < smallest representable value of TYPE
{see “Introduction’™)}

~1 = Number > largest representable gnd illegal character
-3 = Number <smallest representable and illegal character
W = Upon exit, the number of string characters (see Comment 5) used
to compute the result,
Results: See “Parameters (Output).”

FORTRAN: Not callable.

Errors: See “Parameters (OQutput)”

COMMENTS: 1. The external form of the input is a string of ASCII digits which can include
integer, fraction, and exponent subfields:

Inieger field Fraction field Exponent field

H sl | i

In...nn...nEtee

(Decimal point)

2,

[y

EXTIN (cont.)

NOTES: 1. A $§and comma{s} (for monetary or numeration form} in the
input are ignored, but must be provided for in parameter W,

2. The exponent field input can be anv of several forms:

+¢ +ee Ee Eee De Dee
-2 —ce E+e E+ee D+te Dee
E—p E—ce D-e Dree

where e is an exponent valite digit.

SCALE has no effect if the input string includes an exponent field. Otherwise,
a SCALE of n sets the result to the input string value * 1077

EXAMPLES:

STRING Array SCALE RESULT
4398.76 3 4.39876
43,21 -3 543210.

. The type of the result is independent of the input string format. For example,

the input 4398,76 can be converted Lo integer form, The conversion rules are
as follows:

Integer (TYPE = () truncates a fractional input,

Real (TYPE = 1) rounds a fractional input,

Double integer (TYPE = -1} fruncates a fractional input.
LONG real {TYPE = ~2) rounds a fractional input.

. Leading bianks in the input string are ignored; if BLANK is true, trailing bianks

are treated as Os.

I ERROR is set to anr odd value, an iHegal character was input; if ERROR is

odd and negative, an illegal character and illegal value was detected. The
RESBULT is computed from the inputi string characters that preceded the de-
limiting digit or illegal character. Parameter W can be used as an index inio
STRING to locate that delimiter or illegal character. Here are two exampies
of illegal character inputs:

+1.345A4 (A is illegal).
7543CUP (C, U, and P are illegal)

.If ERROR is set to 2, no mteger or fraction value was detected. Thus, no

result can be computed. Here are two examples of non-value inputs:
+ E5 {the exponent ES has no base)

-4 {no base, no exponent)

3-3

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters
(Input):

INEXT”’

Coavert a number in storage (in one of four internal representations) to a byte
array for an outpul string of ASCII digits {see “Comments™), The four internal
representations are as follows:

. Integer
. Real
. Double integer

i
2
3
4. LONG real
PROCEDURE INEXT’ (N, TYPE,W D KIND SCALE STRING,TROUBLE)
VALUE N TYPE W DKIND SCALE:

INTEGER POINTER N:

INTEGER TYPE,W.D,KIND SCALE;

BYTE ARRAY STRING;

LOGICAL TROUBLE:

OPTION EXTERNAL;

N = Pointer to the first word (in 1, 2, or 4 words) of tha internal
representation o be converted.

TYPE = The type of internal representation:
0 = integer
1 = real
-1 = deuble integer
—2 = LONG real
W = Hield width w of the ASCII string, including all special characters
(see KINT),

NOTE: Set W ito at least D + 6 to allow for special characters when
KIND = 3 {Gw.d format) or= 2 {Dw.d format) or = 1
{Ew. d format). If a positive scale factor is also used, set W
at least D+ 7.

B = The number of fractional digits d in the ABCIT string. If D is given
as 0, no fractional digits are included in the ouiput, even theugh a
decimal point is included, I W < 0 or B <7 §, an error is implied
and TROUBLE 1s set TRUE.

.

3-4

Parametors
{Output):

Results:

FORTRAN:

Error:

COMMENTS:

INEXT® (cont.)

KIND = The kind of conversion desired:

3 for the Gw.d format: {see “"Comments”’)
2 for the Bw. d format: 12345D+04
1 for the Ew.d format: 12345E+04
{ for the [w format: 1234
-1 for the Nw. d format: 1,234.5
-2 for the Mw.d format: £1,234.5
-3 for the Fuw.d format: 12345
SCALE = The scale factor (see “Comments’).
STRING = Pointer to the first byte array for the ASCIH! string output. The

resuit occupies the first W characters {hytes) in this array,

TROUBLE = TRUE if the field width W is 100 small for the result in the speci-
fied KIND, if D <0, or if W < 0; the byte array is filled with #s,
FALSE if result is valid.

See “‘Parameters (Output).”

Not eallable,

BSee “Parameters (Output).”

1. The result STRING is an array of ASCII digits; STRING can also include the
sign character —, a decimal point, and an exponent field, for KIND = 1 or 2
(Ew.d or Dw.d formats). The exponent field always includes the letter § or
D followed by a signed two-digit integer. Or, STRING can include a sign

character —, a doilar sign for KIND = -2 {Mw.d format) and/or commas for
KIND = -2 or =3 (Mw.d or Nw.d formats).

NOTE: w = the parameter W and d = the parameter D,

3-8

INEXT’ (cont.)

2. Touse KIND = 3 (Gw.d format}, set I to the number of significant digits and
set Wto D + 8 io allow for special characters, Then KIND = 3 is used as
KIND = -3 or 1 (Fuw.d or Ew.d format), according to the absolute value of the
internal representation value N;

IF N<0.1 THEN Euw.d;

iF 01 = N<1 THEN F(w-4) . d plus 4X (spaces);
IFo1 <N<10' THEN F(w-4) . (d-1) plus 4X;

F 10 <SN<10® THEN F(w-4) . (d-2) plus 4X;

IF 102 SN<10° THEN Fli-4) . (d=3) plus 4X;
w109 <n<10? THEN Bw-d) . 0 plus 4X;

w 10° <N THEN Ew.d;

In general, if the number of integer digits in N is > Dor= 0, KIND =1
(the Ew.d format) is used,

EXAMPLES:

G12.6.N = 1234.5:F(w-4) . (d-4) = F8.2 4X:A1234 50AAAA
G13.7,N = 123456.7:F(w-4) . (d-4) = F9.1,4X:A123456 TAAAA
G2.2.N = 123.4:Ew.d = E9.2:AA 1 2E+03

3. SCALE does not affect KIND = O
When KIND = 2 or 1,
the result STRING uses these factors:

a. The internal representation N fraction is multiplied by 105 (where s is
SCALE).

b. The internal representation N exponent is reduced by SCALE.

. When SCALE is == 0, the STRING fraction has -SCAILE leading Os
followed by Id + SCALE significant digits,

d. When SCALE ig > 0, STRING has SCALE significant digits left of the
decimal point and {D ~ SCALE) + 1 significant digits right of the
decimal point.

2. The least significant digit in STRING is rounded.

3-6

INEXT’ (cont.)

EXAMPLES:

Foreach, N=12345 KIND=1,W=11,D=3
SCALE =90, STRING=AM1Z3E+04
SCALE = -2, STRING = AAN001E+06
SCALE =2, STRING = AA12.35E+0G2

When KIND = -3 or -2 or -1,
the result STRING is the internal representation N multiplied by 10°
{where s is SCALE) then convertad. '

EXAMPLES:

For each, N=1234.5, KIND=-3,W=11,D=23
SCALE =0, BSTRING = 04AA1234.500
SCALE = -2, STRING = ALAAALZ.345
SCALE =2, STRING = A123450.000

When KIND = 3 {see Comment 2),
HKIND = 3 (Gw.d) is used as KIND = -3 (Fw.d}, SCALE has no effect.

H KIND = 3 is used as KIND = 1 (Ew.d), SCALE affects STRING as
described above for KIND = 2 or 1.

3-7

ITOY

FUNCTION: Raise an integer number base to an integer number power.

Declaration: PROCEDURE ITOI;
OPTION EXTERNAL;

An integer number B is raised to an integer power P, Use the SPL/3000
statement *“TO8:=B;" to put the value of B onto the top of the stack in
one word. Use “T08:=P;"” to put the value of P onto the top of the stack
in one more word, The integer result overlays the first word and the re-
maining word is deleted from the stack,

Method: P is factored into powers of Z; then the result is obilained by successive
mulitiplications.

EXAMPLE:

R =R!'B'BY = BLBE(Bl}z

ATTRIBUTES:
Yalues: B =0, P = any integer number = 0, o
B = any integer number # 0, P = any integer number
(B is the base, P is the power).
Result: AR integer number.

FORTRAN: Not callable.

Eryor: IfB=0and P < 0, SOFTERROR message: ITOI’: ILLEGAL ARGUMENTS
occurs {see “Library Errors’).

CAUTION: If the resuit exceeds the range of integer numbers [-32768, 32767] | the
arithmetic trap INTEGER OVERFLOW may oceur (if traps are enabled).

3-8 Nov 1976

FUNCTION:

Declaration:

Method:

ATTRIBUTES:

Values:

Resuit:

FORTRAN:

Error:

DTOP

Raise a doubie integer number base to an integer number power,

PROCEDURE DTOL;
OPTION EXTERNAL;

A double integer number B is raised to an integer power P. Use the
SPL/3000 statement ““TO5:=8;" to put the value of B onto the top of
the stack in two words. Use ““TO8:=P;" to put the value of P onte the
top of the stack in one more word. The double integer result overlays
the first two words and the remaining word is deleted from the stack.

P is factored into powers of 2; then the result is obtained by successive
muldtiplications.

EXAMPLE:

B‘} =B1B284 an BEBB{Bz)z

B = 0D, P = any integer number > 0, oy

B = any double integer number # (, P = any integer number
(B is the base, P is the power).

A double integer number.

Not callable.

If B =0and P < 0, SOFTERROR’ message: DTOI": ILLEGAL ARGUMENTS
occurs (see “‘Library Errors™}.

CAUTION: If the result exceeds the range of double integer numbers [-2147483648,

Nov 1976

2147483647], the arithmetic trap INTEGER OVERFLOW may occur
(if traps are enabled).

392

DTOD”

FUNCTION: Raise a double integer number base te a double integer number power.

Declarationn: PROCEDURE DTOD’;
OPTION EXTEHMNAL:

A double integer number B is raised to a double integer power P. Use the
SPL/3000 statement “TOS:=8;" to put the value of B onto the top of the
stack in two words. Use “TOS :=P;” to put the value of P onto the top of
the stack in two more words, The double integer result overlays the first
two words and the remaining two words are deleled from the stack,

Method: P is factored into powers of 2; then the resulf is obtained by successive
multiplications.

EXAMPLE:

B‘,T - B]BIB‘ - BIBZ(BE)Q

ATTRIBUTES:
Values: B =8 D, P = any double integer number > G, or
B = any double integer number #+ 0, P = any double integer number
(B is the base, P is the power).
Resuit: A double integer number.

FORTRAN: Not callable.

Error: HB=0and P< 0, 30FTERROR’ message: DTOD". ILLEGAL ARGUMENTS
oceurs (see “‘Library Errors™).

CAUTION: If the result exceeds the range of double integer numbers [-3147483648,
2147483647], the arithmetic trap INTEGER OVERFLOW may occur
(if traps are enabled}.

3-10 Nov 1978

RTOD

FUNCTION: Raise a real number base to an integer number power.

Declaration; PROCEDURE RTOI';
QPFION EXTERNAL;

A real number B is raised to an integer power P, Use the SPL/3000
statement “TOS:=B;” to put the value of B onto the top of the stack
in two words, Use *"TOS:=P;" to put the value of P onto the top of
the stack in one more word, The real result overlays the first two
words and the remaining word is deleted from the stack.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:

B’ = B'B*B' = B'B*(B?)

ATTRIBUTES:
Values: B =0.G, P = any integer number = {, or
B = any real number # (.0, P = any integer number
(B is the base, Pis the power).
Resuli: A real number.

FORTRAN: Not callable.

Error: If B=0.0and P < 0, SOFTERROR’ message: RTOV: ILLEGAL ARGUMENTS
occurs (see ‘Library Exrors™).

CAUTION: If the result is outside the range of real numbers (see “Introduction),

the arithmetic traps FLOATING PCGINT OVERFLOW or FLOATING
POINT UNDERFLOW may occur (if traps are enabled).

Nov 1976 311

FUNCTION:

Declaxation:

Method:

ATTRIBUTES:

Values:

Result:

FGRTRAN:

Error:

RTOD’

Raise a real number base to a double integer number power.

PROCEDURE RTOD’;
OPTION EXTERNAL;,

A real number B is raised to a double integer power P, Use the SPL/3000
statement “TO8:=8;" to put the value of B onto the top of the stack in
two words. Use “TOS:=P;" to put the value of P onto the top of the stack
in two more words. The real result overlays the first two words and the
rematning two words are deleled from the stack. '

P is factored into powsers of 2; then the result is obtained hy successive
mulfiplications.

EXAMPLE:

B? - B!BEB@% = BIBZ(BQ)2

B = 0.0, F = any double integer number > §, or

B = any real number # 0.0, P = any double integer number
(B i5 the base, P is the power).

A real number.

Not catlable.

B =00and P <0, 30FTERROR’ message: RTOI: ILLEGAL
ABRGUMENTS occurs (see “Library Errors™).

CAUTION: If the result is outside the range of real numbers (see “Introduction”),

the arithmetic traps FLOATING POINT OVERFLOW or FLOATING
POINT UNDERFLOW may occur (if traps are enabled),

3-12 Nov 1976

FUNCTION:

Declaration:

Method:

Accuracy:

ATTRIBUTES:

Values:

Result:

FORTRAN:

Brror:

RTOR’

Raise a real number base to a real number power.

PROCEDURE RTOF,
OPTION EXTERNATL;

A real number B is raised to a real power P, Use the SPL/3000 statement
“FO8:=8B;" to put the value of B onio the top of the stack in two words.
Use “TOS:=P;” to put the value of P onto the top of the stack in two
more words. The real result overlays the first two words and the remain-
ing two words are deleted from the stack.

One of three methods s used;
.HB=00 and P> 0.0, theresultisset to 0.0,
2, HB>» 0.0 and P~ 0.0, theresultissetto 1.0
B> 0.0 and P+ 0.0, result=EXP(P+ALOG(B).

See EXP and ALOG.

B = (.8, P = any real number = 0.0, or
B > 0.0, P = any real number
{B is the base, P is the power).

A non-negative real number.
Not callable.

fB=00and P <00 or if B< 0.0, 30FTERROR’ message RTOR:
ILLEGAL ARGUMENTS cccurs (see “Library Brrors™}; or see EXP
and ALOG.

313

RTOL’

FUNCTION: Raise a real number base to a LONG real number power and return the result
as a2 LONG real number.

Declarations: LONG real numbers in S8PL/3000 programs are represented in four words
{see “‘Internal Representation™ in the “Introduction™). A real number B is
raised to a LONG real power P by one of two procedures called by compiler-
generated code. Each of the procedures is declared in the following format,
to allow P to be call-by-reference or cali-by-value:

PROCEDURE RTOLf;
OPTION EXTERNAL,;

where
[= VorR, for the second parameter (P):

V = call-by-value; use SPL/3000 statement “T0OS (= B;" toset B
value on top-of-stack in two words, use “TOS ;= P;" toset P
value on top-of-stack in four more words, overlay the result
on the first four words, then delete the remaining two words

frorn the stack,

R = call-by-reference; use SPL/3000 statement “TOS := B;" toset B
value on top-of-stack in two words, use “TOS (= @P; {oset P
reference address on top-of-stack in one more word. Use
“T08 = 0;” to put an integer zero onto the stack in one more
word. The result overlays these four words,

Method: One of three methods is used:
1. If B = 0.0 and P > 0.0, the result is set to 0.0.
2. B = 0.0 and P = 0.0, the result is set to 1.0,
3. If B> 0.0 and P # 0.0, resuit = DEXP(P*DLOG(LONG(BW).

Accuracy: See EXP and ALOG.

ATTRIBUTES:

Parameters: B=0.0,P > 0.0, or
B> 0.0, P = any LONG real number (B is the base, P is the power).

Result: A non-negative LONG real number.
FORTRAN: Not callabie.

Errors: IEB=00and P < 0.0,0rif B<0.0, SOFTERROR’ message RTOL’: ILLEGAL
ARGUMENTS occurs (see **Library Brrors'). Or, see EXP and ALOG.

314

LTOTr

FUNCTION: Raise a LONG real number base to an integer number power.

Declarations: LONG real numbers in SP1./3000 programs are represented in four words
{see “Internal Representation™ in the “Introduction”). A LONG real base B
is ratsed to an integer power P by one of two procedures called by compilet-
generated code, Each of the procedures is declared in the following format
to allow B to ke call-by-reference or call-hy-value:

PROCEDURE LTOH";
OPTION EXTERNAL;

where

f = V or R for the first parameter B:

V = call-by-value; use the SPL/3000 statement “TOS:=B;"” to
put the value of B onto the top of the stack in four words.
Use “TOS:=P;" to put the value of P onto the top of the
stack in one more word. The result overlays the fivst four
words and the remaining word s deleted from the stack,

R = call-by-reference; use the SPL/3000 statement “TOS,=@81;”
to put the address of B onto the top of the stack in one word.
Use “TOG8:=P;" to put the value of F onto the top of the stack
in one more word. Use “TOS := 013, 1o put a double integer “*0”
onte the top of the stack in two more words. The result overlays
these four words.

Method: P is factored into powers of 2; then the result is obtained by successive
multiplications. .

EXAMPLE:
B'f = B}B?B-‘l = B]B2 (Bfl }2

ATTRIBUTES:
Values: B = 00L, P = any integer number = 0, or
B = any LONG real number = 0.6, P = any integer number
(B is the base, P is the power}.
Result: A LONG real number,

FORTRAN: Not callable.

Errors: IfB = 0.0 and P< 0, SOFTERROR’ message LTOD: ILLEGAL
ARGUBMENTS occurs (see “Library Errors™}.

CAUTION: If the result is outside the range of LONG real numbers {see “Introduction™),

the grithmetic iraps EXTENDED PRECISION OVERFLOW or EXTENDED
PRECISION UNDERFLOW may occur (if traps are enabled).

3-15

Nov 1976

FUNCTION:

Declarations:

Method:

ATTRIBUTES:

Values:

R esult:
FORTRAN:

Errors:

LTOD

Raise a LONG real number base to a double integer number power.

LONG real numbers in SPL/3000 programs are represented in four words
(see “Internal Representation’ in the “Introduction”). A LONG real base B
is raised to a double integer power P by one of two procedures called by
compiler-generated code. Each of the procedures is declared in the following
format to allow B to be call-by-reference or call-hy-value:

PROCEDURE LTODf’;
OPTION EXTERNAL,

where
f = V orR for the first parameter B;

V = call-by-value; use {he SPL/3000 statement “TOS:=B:;” to
put the value of B onto the top of the stack in four words.
Use “TO8:=P;” to put the value of P onto the top of the
stack in two more words, The result overlays the first four
words and the remaining two words are deleted from the stack.
R = call-by-reference; uge the SPL/ 3000 statement “TO8 =@B;”
to put the address of B onto the top of the stack in one word.
Use *'TOS =P;” to put the value of P onto the top of the stack
in two more words. Use *“TOS := 07 to put an integer zero
onfo the stack in one more word. The result overlays these
four words,
P 1s factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:
B” = B'B!B* = B'B?(B!)

B = 0.0L, P = any double integer number = 0, or
B = any LONG real number #+ 0.0, P = any double integer number
(B s the base, Fis the power).

A LONG real number.
Not callable.

B = 0.0and P < 0, SOFTERROR’ message LTOD" ILLEGAL
ARGUMENTS cccurs (see “Library Errors’).

CAUTION: If the result is outside the range of LONG real numbers (see “Introduction™},

the grithmetic traps EXTENDED PRECISION OVERFLOW or EXTENDED
PRECISION UNDERFLOW may occur (if traps are enabled),

3-16 Nov 1976

FUNCTION:

Declarations:

LTOL’

Rajse a LONG real number base to 2 LONG real number power,

LONG real numbers in SPL/3000 programs are represented in four words

{see “Internal Representation” in the “Introducticn’}. A LONG real base B

is raised to a LONG real power P by one of four procedures called by compiler-
generated code. Each of the procedures is declared in the following forenat to
aliow any combination of call-by-reference or call-by-value parameters:

PROCEDURE LTOLf 7,
OPTION EXTERNAL;

where

1]

/i

fa=

V or R for the first parameter B:

V = call-by-value; uge SPL/3000 statement “TOS = B;" 1o set B
value on top-of-stack in four words.

R = call-by-reference; use 5PL/3000 statement “TOS := @B;” to
set B reference address on fop-of-stack in one word,

V or R, for second parameter P:
V = call-by-value:

i. Iff, is R, one word is on top-of-stack, use SPL/3000 state-

ment “TOS := P;” to set P value on top-ofstack in four more

words (five words total}, overlay result on the first four
words, then delete the remaining word from the stack.

I, is V, four words are on top-of-stack, use SPL/3000 state-

ment “FTOR = P;” fo set P value on top-of-siack in four more
words (eight words {otal), overlay result on the first four words
then delete the remaining four words from the stack.

1

R = call-by-reference:

. If £, is R, one word is on top-of-stack, use SPL/3000 statement

“TOS 1= @P;” 1o set P reference address on top-of-stack in
one word, ase ““TOS = 0D;” {o set a double integer 0" on
the fop-of-stack in two more words {four words total), then
overlay the yesult on those four words.

CH f, is V, four words are on {op-of-stack, use SPL/3000

statement “TOS = @P:” to set P reference address on
top-of-stack in one more word {five words total), overlay
result on the first four words, then delete the remaining
word from the stack.

317

Method:

Agcuracy:

ATTRIBUTES:

Parameters:

Result:

FORTRAN:

Frrors:

LTOL’ (cont.}

One of three methods is used:

1. ILEB=~=0.0andP >0.0,the result is set to 0.0.
2. HB>0.0and?P =00, the result is set to 1.0.
3. IFB>0.0and P+ 0.0, result = DEXP{P*DLOG(B)).

See DEXP and DLOG.

B=0.0,7> 0.0 or
B> 0.0, P=any LONG real number (B is the base, P is the power).

A LONG real number.
Not callable,
HB=00and P< 0.0, orif B< 0.0, SOFTERROR’ message LTOL:

ILLEGAL ARGUMENTS oeecurs {see “Library Evrors”). Or, see DEXP
and DLOG.

3-18

FUNCTION:

Declaration:

Method:

ATTRIBUTES:

Values:

Besult:
FORTRAN:

Errors:

CcTor

Raise a complex number base to an integer number power.

Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair {a 2-element array) of real nurnbers, one for the real part ¢ and one for the
imaginary part b. Thus, complex numbers occupy four words (see “Internal
Representation” in the “Introduction™).

A complex base B is raised to an integer power P by ene of two procedures
called by compiler-generated code. Each of the procedures is declared in the
following format to allow B to be call-by-reference or call-by-value:

PROCEDURE CTOlf,
OPTION EXTERNAL;

where
f = V or R for the first parameter B:

V = call-by-value; use the SPL /3000 staternent “TOS=RB(0};" to
puf the value of the real part of B onto the top of the stack in
two words. Use “TOS:=B(1);” to put the imaginary part of B
onto the top of the stack in two more words. Use “"TOS =P
to put the value of P onto the top of the stack in one more word.
The result overlays the first four words and the remaining word
i8 deleted from the stack.

R = call-by-reference; use the 8P1./3000 statement “TOS:=@R;"” to
put the address of B onic the top of the stack in one word.
Use “TOS:=P;” to put the value of P onto the top of the stack
in one more word. Use “TO8:= 01" to put a double integer
“0” onto the tep of the stack in two more words. The result
overlays these four words.

P is factored into powers of 2; then the resulf is obtained by successive
mujtiplications,

EXAMPLE:
BT - Bl BZB*I 2 Bl B? {B2)2

B = a complex number = 0.0 {g = b = 0.0}, P = any integer = 0, or

B = any complex number representable in two real numbers, one for g and
one for b, a and b are not hoth 0.0, P = any integer number

(B is the base, P is the power).

A complex number,
Not callable.

Haand b of B=0.0and P < , SOFPTERROR’ message CTOI’:ILLEGAL
ARGUMENTS occurs (see “Library Errors™).

CAUTION: If a or b of the result is outside the range of real numbers (see “Introduction’),

Nov 1976

the grithmetic traps FLOATING POINT GVERFLOW or FLOATING POINT
UNDERFLOW may occur {if traps are enabled).

3-19

FUNCTION:

Declaration:

Method:

ATTRIBUTES:

YValues:

Resuli:

FORTRAN:

CTOD’

Raise a complex number base to a double integer number power.

Complex numbers in FORTRAN/3000 programs are represented as an ordered
pair {a 2-element array) of real numbers, one for the real part ¢ and one for the
mmaginary part &. Thus, complex numbers occupy four words {see “Internai
Representation™ in the “Introduction™).

A comptlex base B is raised to a double integer power P by one of two pro-
cedures called by compiler-generated code. Each of the procedures is declared
in the fellowing format to allow B £6 be call-by-reference or call-by-value:

FROCEDURE CTOD{”;
OPTION EXTERNAL;

where
f = VorR for the first parameter B;

V = call-by-value; use the SPL/ 3000 statement ““TO5:=8B(0),” to
put the value of the real part of B onto the top of the stack in
two words. Use “T0O8:=B(1};" to put the imaginary part of B
onto the fop of the stack in two more words. Use “TOS:=P;"
te pui the value of P onto the top of the stack in two more
words. The resuit overlays the first four words and the remain.
ing two words are deleted from the siack,

R = call-by-reference; use the §PL/ 3000 statement “TOS:=@B;"” to
put the address of B onto the top of the stack in one word. Use
“TOS:=P;” to put the value of P onto the top of the stack in
two more words. Use “T'OS8:=0;" to put an integer *'0" onto
the top of the stack in one more word. The result overlays
these four words,

P is factored into powers of 2; then the result is obtained by successive
multiplications.

EXAMPLE:
BT = BIBZBd = B!BZ{BZ)2

B = a complex number = 0.0 (¢ = & = 0,0}, P = any double integer > 0, or
B = any complex number representable in two real numbers, one for ¢ and
one for b, a and b are not both 0.0, P = any double integer number
{B is the base, P is the power),

A complex number.

Not caliable.

3-20

CTOD (cont.)

Errors: Haand bof B=002and P < 0,80FTERROR’ message CTOD’: ILLEGAIL
ARGUMENTS occurs (see “Library Errors™).

CAUTION: If e or b of the resuit is cutside the range of real numbers (see “Introduction”™),

the arithmetic traps FLOATING POQINT OQVERFLOW or FLOATING POINT l
UNDERFLOW may cecur {if traps are enabled).

Nov 1976 3-21

Complex Arithmetie

Complex numbers in FORTRAN/3000 programs are represented as an ordered pair {a two-element
array} of real numbers, one for the real part ¢ and one for the imaginary part . Thus, complex
numbers occupy four words {see “Internal Representation” in the “Introduction’™).

Complex expressions (for example, X := Y + Z) are evaluated through primary complex.arithmetic
procedures: ADDC. ., SUBC., ’, MLTC. .’ and DIVC, . called by compiler-generated code,

Deelaration

For each of the arithmetic operations there are sight entry point procedures to allow any com-
bination of cali-by-reference or call-by-value parameters. Each of the entry-point procedures
is declared as follows:

PROCEDURE ADDCS, f.f3’
OPTION EXTERNAL:

or
PROCEDURE SUBCF, 213 7;
OPTION EXTERNAL:
or
PROCEDURE MLTC/ f2fs "
OPTION EXTERNAL;
or
PROCEDURE DIVCS, fy fs’;
OPTION EXTERNAL;
where
fi = V or R, for firet parameter {(subtraction minuend or division dividend):

V = call-by-value; use SPL/3000 statement ““TOS := Y{0};” to set Y real-part value on
top-of-stack in two words, then use “TOS = Y{1};"" to set Y imaginary-part
value on top-of-stack in two more words (four words total}.

R = call-by-reference; use SPL/3000 statement “TOS = @Y;” to set Y reference
address on top-of-stack in one word.

f: = V or R, for second parameter {subtraction subtrahend or division divisor):

V = call-by-value; use SPL/3000 statement “TOS := Z{(0);” to set Z real-part value
on top-oi-stack in two words, then use “TOS := Z{1};” to set Z imaginary-part
value on top-of-stack in two more words (four words total).

R = call-by-reference; use SPL{3000 statement “TOS = @2Z;” to set Z reference
address on top-of-stack in one word.

3-22

Complex Arithmetic (cont.)

f3 = Vor R, for result parameter:

V = call-by-value:

EXAMPLES (of three of eight possible combinations):

aopCRRV’

NQTE:

aop = ADD or
SUB or
MLT or
D1y

aopCVVV’

aopCBRR’

Upon Entry After Return
(Y address)
_ — X {realp}) —
(4 address)
e oD — |~ X(imgnry p} -
- Y {realp) =~ [~ X{realp} —

= Y (imgnry p) -~

~ X {imgnry p) -

-~ Z{realp} -

e — —— e e o

- Z{imgnry p) —

(Y address)

{Z address)

(X address)

3-23

1. If f; and f, are R, two words are on top-of-stack; use SPL/8000 statement
*TOS = 0D;” to set the double integer “*0”" on top-of-stack in two more
words, then overlay the result vahre on those four words.

. Hfior fyis V, five or more words are on top-of-stack; overlay the result value
on the first four words, then delete the remaining word{s) from the stack,

call-by-reference; use SPL/3000 statement “TOS ;= @X;” to set resulf reference
address on top-of-stack in one word, return result to that address, then delete
the address and all of the first and second parameters from the stack.

{Coverlays ¥ ,Z address
ahd GD}

(Ouverlays Y, Z)

Complex Arithmetic {cont.)

ATTRIBUTES:
Parameters: Any complex number representable in two real numbers, one for a and one
for b.
Resuit: Any complex number representable in two veal numbers, one for ¢ and one
for b.

FORTRAN: Not callable,

Error: None.

CAUTION: The arithmetic traps FLOATING POINT OVERFLOW, FLOATING POINT
UNDERFLOW, or FLOATING POINT DIVIDE BY ZER QO may occur (if
traps are enabled }.

3.24 Nov 1976

Complex Negate

Complex numbers in FORTRAN/3000 programs are represented as an ordered pair {a two-element
array) of real part ¢ and one for the imaginary part b. Thus, complex numbers occupy four words
(see “Internal Representation” in the “Introduction’™).

Complex negate operations {for example, X = Y} are evaluated through one of four procedures
called by compiler-generated code,
Declaration

Each of these procedures is deelared in the following format, to allow any combination of
call-byreference or call-by-value parameters:

PROCEDURE NEGCY. 1, s
OPTION EXTERNAL;

where

1 = V or R, for the first parameter:

V = call-by-vatue; use SPL/3000 statement “TOS = Y{0);” set Y real-part value on
top-of-stack in two words, then use “TOS 1= Y{(1};” to set Y imaginary-part value
on top-of-stack in {wo more words (four words total},

R = calb-by.reference; use SPL/3000 statement “T'OS = @Y ;" to set Y reference
address on top-of-stack in one word.

f» = V or &, for the result parameter:
V = call-by-value:

1. Iff, is R, one word is on top-ofstack; use SPL/3000 statement “TO§ := (D"
to set the double integer 0"’ on top-of-stack in two more words, use
“TOS := 07 to set the integer “0” on top-of-stack in one more word, then
overlay the result on those four words.

2, Iff, is V, four words are on top-of-stack; overlay the result value on those
four words.

R = call-by-reference; use SPL/3000 statement “TOS := @X;” to set the resuit refer-
ence address on top-of-stack in one word, retum result to that address, then
delete the address and all of the first parameter from the stack.

3-25

Complex Negate {cont.}

EXAMPLES {of three of four possible combinations):

NEGCRV'

NEGCVV’

NEGCRR’

ATTRIBUTES:

Pararnseter:

Razult:

FORTRAN:

Error:

COMMENT:

Upon Entry After Return
(Y address}
— X i{realp) {Overlays Y address
i oD I R and 0D and 0)
5 —— X (imgnry p) —
— Y {vealp) — — X (real p} — {Overlays Y}
~— Y (imgnry p} — — X {imgnry p} —
L |
(Y address)
{X address)

Any complex number representable in two real numbers, one for g and one
for b.

Any complex number in which neither the real part a nor the imaginary part b
is -27%5% ; that value is internally represented by a 1 followed by 47 0’s; there
is no positive counterpart. (See “Infernal Representation™ in the
“Introduection™).

Not callable.

None.

Indicator is CCA.

3-26

Complex Compare

Complex numbers in FORTRAN/ 3000 programs are represented as an ordered pair {a two-element
array) of real numbers, one for the real part ¢ and one for the imaginary part b. Thus, complex
numbers cccupy four words {see “‘Internal Representation” in the “Introduction™).

Complex compare operations {for example, X:Y) are evaluated through one of four procedures called
by compiler-generated code.

Declaration

Each of the procedures is declared in the folowing format, to aliow any combination of
cali-by-reference or call-by-value parameters;

PROCEDURE CMPCY, 7, ;
OPTION EXTERNAL;

whete
fi1 = V or R, for the first parameter:

YV = call-by-value; use SPL/300{ statement “TOS ;= Y{0);” to set ¥ real-part value on
top-of-stack in two words, then use “TO8 = Y{1);” to set Y imaginary-part value
on top-of-stack in two more words {four words {otal),

R = call-by-reference; use SPL{3000 statement “TOS := @Y;” ta set Y reference
address on top-of-stack in one word.

f» = V or R, for the second parameter:

V = call-byvalue; use 8PL/3000 statement. “¥TOS 1= X(0);” to set X real-part value
on top-of-stack in two words, then use “TOS = X(1};" to set X imaginary-part
value on top-of-stack in two more words (four words total).

R = call-by-reference; use SPL/3000 statement ““TOS := @X;" o set X reference
address on top-of-stack in one word.

NOTE: Al words of the first and second parameters are deleted from the stack
after the resuif is set as defined in “Attributes.™

ATTRIBUTES:

Parameters: Any complex numbers each representable in two real numbers, one for ¢ and
one for .

3-27

Complex Compare {cont.)

Rasult: Condition code:

If X{0) < Y{0), CC = CCL
IfX =Y, CC=CCE
If X(0) > Y(0), CC = CCG

FORTRAN: Not callable,

Error: None,

3-28

FTNAUX’

FUNCTION: NormgHy called only by FORTR AN/3000 compiler generated code to
implement the FORTRAN auxiliary I/O statements REWIND, BACKSPACE,
and ENDFILE. A FORTRAN/3000 program can request other actions too,
through the procedure UNITCONTROL described later in this section.

Declaration: PROCEDURE FTNAUX’ (OPT,UNIT);
VALUE OPT,UNITiINTEGER OPT,UNIT;
OPTION EXTERNAL;

ATTRIBUTES:

Parameters: QPT: An integer to specify the action:

REWIND {but don’t close the file}
BACKSPACE

ENDFILE {(write an EOF mark)

SKIP BACKWARD TO A TAPE MARK
SKIP FORWARD TO A TAPE MARK
UNLOAD TAPE AND CLOSE THE FILE
LEAVE TAPE AND CLOSE THE FILE
CONVERT FILE TO PRE-SPACING*
CONVERT FILE TO POST-SPACING*
CLOSE FILE

e S B we I

UNIT: A positive integer in the range {1,99] to specify the FORTRAN
Logical Unit Table {FLUT) entry (see “Comments™} or a negated
MPE 3000 file numbey (SPL/3000 eallers only).

Result: See “Commaents.”

FORTRAN: Implicitly called through the auxiliary 1/0 statements REWIND, BACKSPACE

and ENDFILE.
Errors: See “‘Comments.””
COMMENTS: 1. The following comments refer to descriptions in the MPE Intrinsics
Reference Manual and the Systems Programming Language Keference
Manual.

2. If the FORTRAN/3000 compiler generates the call to FTNAUX’ (from
the FORTRAN auxiliary 1/O statements REWIND, BACKSPACE and
ENDFILE), the parameter OPT is set to -1, 0 or 1, respectively. Further,
a FORTRAN Logical Unit Table (FLUT) is prepared in the user’s DB
Data Area by the MPE/36068 system loader.

*See the discussion of file control operations in the MPE I'ntrinsics Reference Manual.

3-29

FTNAUX’ (cont.)

SPL/3000 users can call FTNAUX' directly, if desived. If UNIT is a
negated file number, that file number must have been cpened by use of
the MPE/3000 file intrinsic FOPEN, If UNIT is a positive integer in the
range [1,99] {(a FORTRAN Logical Unit), the 8PL/3000 user must have
creatad a FLUT, as deseribed in Section I, “File System Requirements.”

If UNIT = 0 or UNIT > 99, the report FILE NOT IN TABLE FOR
UNIT #xx occurs {see Section I, “PORMATTER ERROR REPORTS)
and the user's program is aborted.

If UNIT is a positive integer in the range {1,998}, FITNAUX' checks the
FLUT for that UNIT number. If there is no corresponding U entry, the
Formatter error report FILE NOT IN TABLE FOR UNIT #xx oceurs.
If a corresponding U entry is found and the ¥ entry for that is 0, an
MPE/3000 file intrinsic FOPEN call is made with nominal FORTRAN
file parameters {(see Section I, “File System Requirements’), Those
parameters include the file name built by appending the UNIT number
to the ASCIH characters FIN. For example, the file name for UNIT 3 is
FTNQO3. There are two exceptions to the construction of file names:
FORTRAN/3000 defines UNIT 5 to be 83TDIN and UNIT 6 to be
$STDLIST. If the FOPEN intrinsic is not successful {indicated by con-
ditien code CCL), the Formatter Error Report FILE SYSTEM ERROR
OCCuTS,

Three other entries to this procedure FTNAUX’ are available to
FORTRAN/3G00 users:

UNITCONTROL provides any of the actions described under
parameter OPT,

FNUM returns the MPE/3000 system file number assigned to a
given FORTRAN Logical Unit Number.

PSET enables the user o change the MPE/3000 system file
number assigned to a given FORTRAN Logical TInit Number,

For further details, see procedures UNITCONTROL, FNUM and FSET,
later in this section.

REWIND and BACKSPACE actions are provided, historically, for control
of magnetic tape files. If the device referenced has no physical capability
corresponding fo the OPT {action) reqguest, no action occurs.

For the OPT value -1, an MPE/3000 file intrinsic FCONTROL calt is

made with coriroleode = 5. This may invoke a physical operation on the
device referenced.

3-30

10.

11.

12,

13.

FTNAUX’ (cont.)

For the OPT value 0, an MPE/3000 file intrinsic FSPACE call is made
with displacement =-1. This may invoke a physical operation on the
device referenced.

For the OPT value 1, an MFE/3000 file intringic FCONTROL call is
made with confrolcode = 6.

For the OPT values listed below, MPE/3000 file intrinsic FCONTROL
calls are made with controleode only or controlcode and param set as
follows:

orr controlcode param
2 7 (not used)
3 g {not used)
8 4014
7 1 4040

For the OPT values listed below, MPE/3000 file intrinsic FCLOSE calls
are made with disposition set to:

OPT disposition
4 1
§ 3
3 0

If OPT is a value outside the range [-1,8], the Formatter Error Report
UNDEFINED OPTION ON UNIT #xx oceurs.

Either of the Formatter Exror Reports FILE SYSTEM ERROR ON UNIT

#xx or END OF FILE ERROR ON UNIT #xx egn occur.

3-31

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:

Result:

FORTRAN:

Errors:

COMMENT'S:

UNITCONTROL

A secondary entry point to procedure FTNAUX, UNITCONTROL enables
a FORTRAN/3000 program to request any of the actions listed below under
OPT for any FORTRAN Logical Unit.

PROCEDURE UNITCONTROI(UNIT,OPTY;
INTEGER UNIT,OPT;
OPTION EXTERNAL;

UNITF: A positive integer in the range [1,99] to specify the FORTRAN
Logical Unit Table (FLUT) entry (see “Comments’) of the file
device to be used,

OPrE: An integer to speeify the action:

-1: REWIND (but don’t close the file)

0: BACKSPACE

1: ENDFILE (write an EOF mark)
SKIFP BACKWARD TO A TAPE MARK
3: SKIP FORWARD TO A TAPE MARK
UNLOAD TAPE AND CLOSE THE FILE
LEAVE TAPE AND CLOSE THE FILE
CONVERT FILE TO PRE-SPACING#*
CONVERT FILE TO POST-SPACING*
CLOSE FILE

]

OO—-J?}‘:U%..-:L

See “Comments.™

Callable as an external subroutine:

CALL UNITCONTROL({12,6)

See “Comments.”

1. HUNIT <0 or UNIT 2> 99, the report FILE NOT IN TABLE FOR
LINIT #xx occurs (see Section I, “FORMATTER EREOR BREPORTS™)
and the user’s program is aborted.

If UNIT is in the range required, UNITCONTROL checks the FLUT {see
Section I, *File System Requirements”) for that UNIT number. If there
is no corresponding U entry, the Formatter Error Report FILE NOT IN
TABLE FOR UNIT #xx occurs and the user’s program is aborted. If a

*5ee the discussion of file control operations in the MPE Inirinsics Reference Maniial,

3-32

UNITCONTROL (cont.)

corresponding U entry is found and the F entry for that is 0, an
MPE/30060 file intrinsic FOPEN call is made, as described in Comment 4
for FTNAUX’,

For each of the actions available through this procedure, one or another
MPE/3000 file intrinsic is called, as described in Comments 7 through 11
for FTNAUX",

If OFPT is a value outside the range [-1,8], the Formatier Error Report
UNDEFINED OPTION ON UNIT #xx occurs and the user’s program is
aborted.

Either of the Formatter Errar Reporis FILE SYSTEM ERROR ON
UNIT #xx or END OF FILE ON UNIT #xx can occur,

3.33

FNUM

FUNCTION: A secondary entry point to procedure FTNAUX’. FNUM enables a
FORTRAN/3CG00 program to extract the MPE/3000 system file number
asstgned 10 a given FORTRAN Logical Unit Number from the FORTRAN
Logical Unit Table. See “FTNAUX’ ** in this section.

Declaration: INTEGER PROCEDURE FNUM{UNIT};
INTEGER UNIT;
OPTION EXTERNAL;

ATTRIBUTES:
Parameter: UNIT, a positive integer in the range [1,99] to specily the FORTRAN
Logical Unit Table (FLUT) entry (see “‘Comments’ for procedure FTNAUX")
to be used.
Result: An integer number, the MPE/3000 system {ile number for the UNIT specified.
FORTRAN: Callable as an external function: { = FNUM(UNIT)

NOTE: FNUM must be declared an
INTEGER FUNCTION.,

Brrors: If UNIT is not in the range required, or if there is no corresponding U entry in

the FLUT, the report FILE NOT IN TABLE FOR UNIT #xx (see Section 1,
“FORMATTER ERROR REPORTSE™) occurs and the user’s program is aborted.

8.34

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:
{input)

Parameter:
(oatput)

Resuit:

FORTRAN:

Erxrors:

COMMENTS:

FSET

A secondary entry point to procedure FTNAUX’. FSET enables a FORTRAN/
3000 program o change the MPE/3000 system file number assigned to a given
FORTRAN Logical Unit Number in the FORTRE AN Logical Unit Table. See
“FTNAUX® > in this section.

PROCEDURE FSET(UNIT NEWFILE OLDFILE),
INTEGER UNIT,NEWFILE,OLDFILE;
OFTION EXTERNAL;

UNIT, a positive integer in the range [1,991 to specify the FORTRAN Logical
Unit Table (FLUT) entry (see “Comments™ for procedure FTNAUX™ for which
the change is to be made.

NEWFILE, a positive integer in the range [1,254] to specify the new MPE/
3000 system file number to be assigned to the UNIT specified above.

OLDFILE, a positive integer; the previous MPE/3000 system file number
assigned to the UNIT specified above.

See “‘Parameter {output),” above.

Callable as an external subroutine:

CALL FSET{3, FNUMB,QLD}
See “Comments.”

1. If UNIT is not in the range reguired, or if there is no corresponding U
entry in the FLUT, the report FILE NOT IN TPABLE FOR UNIT #axx
(see Section I, “FORMATTER EREOR REPORTS) occurs and the
user’s program is aborted.

2. I NEWFILE is not in the range required, the Formatter Error Report
INVALID FILE NUMBER FOR UNIT #xx occurs and the user’s
program is aborted.

3. If the value returned to OLDFILE is 0, that file was not open and
remains unopened,

3-35

FUNCTION:

Declaration:

ATTHIBUTES:

Parametoy:

Result:

FORTEAN:

Frror:

COMMENTS:

DATELINE

Fill 2 byte array with formatted date and time information.

PROCEDURE DATELINE(BUF);
BYTE ARRAY BUF;
OPTION EXTERNAL;

A pointer to the fizst byte of the array.

The byte array is filled as described in Comment 1.

Callable as an external subroutine, as described in Comment 2.

None.

1. The byte array must be af least 27 bytes (characters) long; the first 27
bytes are filled as foliows:

Byte{s}

1-3
45
6—8

9
10—11
1213
1417
18—1¢
20—21
22
23~-24
2B
26—27

Caontaings)

Day of the week (SUN MON,TUE,WED, THU ,FRI,SAT)

A comma and a blank (,A)

Month of the year (JAN,FEB,MAR,APE MAY JUN,
JULLAUG SEP,OCT,NOV DEC)

A blank (A}

Day of the month (41 through 31)

A comina and a blank (,A)

The vear

A comma and a blank {,A)

The hour (41 through 12)

A colon (0}

The minute (00 through 59)

A blank (A)

AM or PM

2. A sample FORTRAN use:
CHARACTER 8%27

CALL DATELINE(S)
DISPLAY $[6:11]

which displays the month, day and year only.

3-36 Nov 1976

PRINTFILEINFCG {or PRINT ‘FILE' INFO)

FUNCTION: Print a File Information Display on the job or session list device $STDLIST.

This procedure is called normally only by an MPE/3000 subsystem or an
MPE/ 3000 utility program. However, this procedure can be called explicitly
by a user’s program.

Declaration: PROCEDURE PRINTFILEINFO{FNUM);
or
PROCEDURE PRINT ‘FILE" INFO{FNUM);
VALUE FNUM,; INTEGER FMNUM,
OPTION EXTERNAL;

ATTRIBUTES:
Parameter: Any MPE/3000 file number currently availabie to the calling program,
Result: A File Information Display in either of two formats deseribed under Comment.

FORTRAN: Callable as an exiernal subroutine:
CALL PRINTFILEINFO{\FILENUM\)

where:

FILENUM is the MPE/3000 file number, and
NN (the two backslashes) tell FORTR AN/3000 to pass this parameter by
value rather than by reference,

Also callable through use of the SYSTEM INTRINSIC statement.
Eyror: None,
COMMENT: A short display of only two or three lines oceurs if access to the MPE/3000
file number (FNUM or FILENUM) is blocked or if that file number is
undefined in the MPE/3000 file system in use,

twf el whwme] =pwfFwjmp=Mep=Te]e(mimma)~ [=GmfPlel afmY+

Iidnel — ! FILE wNijmpgne o 15 LNDEFInNED. l§
Line 2 =~ v ERROR NUMBER: &K HESIDUE: O {
Line 3 =+ 1 BLOCK NUMEERD U MUMREC ! () !

A A - T s A e v S W mm E - - - P et

where lines 1 through 3 are explained on the next page.

Nov 1976 3-37

Line 1
Line 2
Line 3
Line 4
Line b
Line 6
Line 7
Line 8
Line 9
Line 10
Line 11
Line 12
Line 13
Line 14

PRINTFILEINFO (or PRINT ‘FILE' INFO) (cont.)

Line 1 iz not included if access to the file is biocked, However, line 1 does
report the file number if that number is undefined in the MPE/3000 file
system in use.

Line 2 reports an ERROR NUMBER that is explained in the MPE Intrinsics
Reference Manual, and a RESIDUE integer number of bytes not transmitted
for an inputf/output request (in this case, no input/outpui request was made,
hence RESIDUE: 0).

Line 3 reports the BLOCK NUMBER of the physical record and the RECNUM
{number of logical records) in the current block of the file (not opened, hence
both integers are { {o signal “unknown’’).

For files opened but a CCG (end-of-file error} or a CCL (irrecoverable file error)
condition cade oceurred or an explicit call to this procedure was made by a user’s
program, a display of 14 lines oceurs:

vopmlo| wfmamfaNofufimdoe e el w(jmNeaw|}n [==pu] mfuY+
FILE NAME IS FINgS

— 1 !
- ! FURTIONS? SYSede BSTUINSLIsMaFEQ !
-3 FOAUPTIONS! INPU T s SHECeNDLOCK «DEF a NORUFF ¢
-y 1 OOFVICE TrPo: in UEVICE SUsTYRED 0 {
-~ ! LREv: 1t UHT L i85 UNIT: !
-3 I WECGROD SL2Et1 T2 BLoCk S1ZEs T2 {(BYTES)
- 1T BEXTENT SLJ2E: MAR FXTERTS: 9 !
> !OKRECHETH: { HECLIMITE O {
- bOLLGCoOUNT: O PRYSCUUNT: O !
— YRR AT g LAGEL aAhLRK: %01300000000 !
= 1 FILE CODE! 0 D I8 U ASELS: O !
- P ORHYSICAL STATUST #0a0101100000000 !
-3 P OERMUOR NUMSER! O RESTDUE: © H
i POREOCK MUMBER: D NUMREC!: 1 !

o - - - g e T e TN e s e R e T -
where:

Line 1 reports the name of the file,

Line 2 reports the FOPTIONS in effect:

Domain:

NEW = anew file, or

5¥YS = the system file domain, or

JOB = the job temporary domain, or

ALL = bhoth system and job temporary domains.
Type:

A = an ASCII file, or

B = a binary file.

3-38

PRINTFILEINFO {or PRINT ‘FILE’ INFQ) (cont.)

Line 2 {cont,)

Defauit file designator:

FORMAL = the actual file designator ks the same as the formal file
designator.

Record Format:

F = fixed length, or

= vartable length, or

= undefined length, or
unknown format.

IR

il

Carriage conirol:

N = none, or
C = carriage control character expected.

H

File equation option:

FEQ 'FILE (the MPE/3000 command) allowed, or
DEQ :FILE disallowed.

1l

H

Line 3 reports the AOPTIONS in effect:

Access type:
INPUT = read access, oy

OUTPUT = write access, or

OUTKEEY = wrile-only access, without deleting, or
APPEND = append access, or

IN/OGUT = input and output aecess, or

UPDATE = update access.

Multi-record option:
SREC = single record access, or
MREC = multi-record access,

#

Dynamic locking option:
NOLOCK = no locking permitted, or
LOCK = locking permitied.

Exclusive access option:

DEF = default specification, or
EXC = exclusive access allowed, or
SEA = semi-exclusive access allowed, or

SHR = sharable file,

Buffering:
BUFFER = automatic buffering, or
NOBUFF = iphibit buffering.

3-39

PRINTFILEINFO {or PRINT ‘FILE’ INFO) {cont.)

Lines 4 and 5 report the DEVICE TYPE, the DEVICE SUB-TYPE, the LDEV
{logical device number}, the DRT (device reference table entry number}, and
the UNIT number of the device on which the file resides,

Line 6 reports the RECORD S12E and the BLOCK SI1ZE of the current
record.

Line 7 reports the EXTENT SIZE of the current extent and the MAX EXTENTS
(maximum number of extents) allowed.

Line 8 reports the RECPTR (the eurrent record pointer) and the RECLIMIT
{limit on the number of records).

Line 9 reports the LOGCOUNT (present count of logical records) and the
PHYSCOUNT (present count of physical records),

Line 10 reports the EOF AT (location of the current end-of -file} and the
LABEL ADDR (location of the header tabel).

Line 11 reports the FILE CODE and 1D (identity for the user who created the
file) and ULABELS {the number of user-defined labels).

Line 12 reports the PHYSICAL STATUS code {bit pattern).

Line 13 reporis an ERROR NUMBER that is explained in the MPFE [ntrinsics
Reference Manual, and a RESIDUE integer number of bytes not transmitted
for an input/output reguest (in this case, no input/ocutput request was made,

henee RESIDUE: 0).

Line 14 reports the BLOCK NUMBER of the physical record and the
RECNUM {(number of logical records) in the current block of the file.

3-40

FUNCTION:

Declaration:

ATTRIBUTES:

Result:

FORTRAN:

Error:

Nov 1976

COMPLIBINFO (or COMPLIBINF(Q’)

Identify whether the Compiler Library in use is a three-word, extended
precision, floating point version or a four-word, extended precision,
tloating point version. (Used primarily by compilers.)

PROCEDURE COMPLIBINFO (INFOWORD); or COMPLIBINFO’ (INFOWORD);

LOGICAL INFOWORD;
OPTION EXTERNAL

Bit16=0 implies 3-word
Bitis=1 irnplies 4-word
Bits 0 through 14 reserved

Callable as an external subroufine.

None.

3-41

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:

FORTRAN:

Errors:

PLOTS

initialize plotter variables, initialize a user-defined plot commands buffer, and
use the MPE/3000 file intrinsic FOPEN! to open the plotter file.

PROCEDURE PLOTS{BUFF BUFFSIZE},

INTEGER ARRAY BUFF; INTEGER BUFFSIZE;
OPTION EXTERNAL;

BUFE: A pointer to the first word of the user-defined plot butfer.
BUFESIZE: The size, in words, of BUFF.

Callable as an external subroutiine:

CALL PLOTS(JBUFF 560)

1. SOFTERROR' message PLOTS: INVALID BUFFER SIZE occurs if the

BUFFSIZE parameter is not large enough.

2. PLOTS can report one of four errors, After any one, a File Information

Display (see PRINT'FILEINF¥O in this section) is printed and the program

is aboried:

##xEERROR ON PLOT FILE OPEN##%*

The FOPEN intrinsic was unahle to open the plotter file,

HOERINVALID PLOTTER SUBTYPE**#%

The FCONTROL intrinsic obtained an undefined sub-type value (see
Comment §).

+r¥PLOTS: FCONTROL ERROR**#%

The FCONTROL intringic encountered an error (see Comment 6),

+¥PLOTS: FGETINFO ERROR¥*%*

The FGETINFO intrinsic encountered an error or an undefined device
type integer (see Comment 5},

| See MPE Intrinsics Reference Manual.

3-42

COMMENTS:

1.

PLOTS (Cont.}

The integer array BUFF must be defined before PLOTS is called:

In an SPL/3000 program, use an array declaration:

INTEGER ARRAY [BUFF(G:500)

In a FORTRBAN/3000 program, use a DIMENSION statement:
DIMENSION IBUFF{500)

The size of BUFF must provide for storage of plot information between
suceessive calls to the PLOT procedure {(described later in this section) as
well as a series of plotier commands, Typically, parameter BUFFSIZE
should be given a value of at least 100 words and agree with the size
gpecified in the array declaration, Zip mode plotting is more efficient
for large values of the BUFFSIZE parameter,

PLOTS should be called only once during a given plotting sequence and
before any other plotter procedures are called. A plotting sequence is
terminated by a call to the procedure PLOT with parameter PEN = 093,
Any call to PLOTS after the first call and before the terminating call to
procedure PLOT is ignored,

To epen the plotter file, the MPE/3(000 file infrinsic FOPEN is used with
its parameters set as follows (these settings can be superceded by an
MPE/3000 file command :FILE}

formaldesignator PLOTFILE
foptions
Bit{s) Field Name and Setting(s)
i4:2 Domain: 00, this is a new file.
13:1 ASCII/BINARY: 0, thisis a BINARY file.
10:3 Default File Designator: 000, the default file designator

is the same as the formal file designator.

8:2 Record Format: 10, undefined-length records,

71 Carriage Control: 0, no carriage confrol character
expected.

6:1 {Beserved for MPE/3000 system use.)

5:1 Disallow File Equation: 0, allow FILE commands.

G:5 {Reserved for MPE/3000 system use.)

3-43

aaptions
Bit(s)
12:4
11:1
10:1
B:2
7:1

0:7

device

PLOTS (Cont.)

Field Name and Setting(s)

Access Type: 0001, write access only,

Muitirecord: 0, non-multirecord mode.

Diynamic Locking: 0, disallow dynamie focking/unlocking.
Exciusive: 01, exclusive aceess,

Inhibit Buffering: 0, allow normal buffering.

{Reserved for MPE/3000C system use.)

= PLOTTER

{ A3l other parameters assume the default vaiue.)

The increment (i.c., the minimum pen movement) of any given plotter is
determined by the device itself. When the device is added to the MPE/(
3000 system, its software interface is configured by the procedures
described i the System Manager/Supervisor Manual. The device

type and device sub-type are set as follows:

Cal Comp Plotter Device Device
Series Type Increment Sub-Type
500 35 016”7 0
600 36 005" 1
T00 317 00257 2
00125~ 3
002”7 4
1 mm o
06 mm 5}
025 mm 7

NOTE:

If the increment is not one of the values listed above, PLOTS
must be re-compiled with the EQUATE statemaent for variable
INCR changed to specify the number of pen movements per
inch of total displacement. For example, INCR equated to
1600 impiies an increment of .Q01". In such a case, the non-
zero (equated) value of INCE takes precedence over the sub-
type vaine fo determine the increment gize.

344

PLOTS (Cont.)

When PLOTS executes, it interrogates the software interface through the
MPE/3000 file intrinsics FGETINFO (to obtain the device type) and
FCONTROL {with controlcode = 0, to obtain the plotter sub-type and
therefore the increment size),

1f the device type is not 35 or 36 or 37, the plotter commands are to be written
onto a dise or magnetic tape for later read-back to a plotier. In such a case,
the sub-type is not examined. Rather, either a default inerement of 017

or an equated value of the vanable INCR (see the note above) is used.

In either case, FACTOR (described later in this section} can be called to
produce plot commands in the correct proportions for the plotter that

will ultimately produce the plots.

3-45

PLOT

FUNCTION: Convert general X-axis and Y.axis coordinates into distinct plotter commands,
manage buffering of the plotter commands and close the plotter file when the
plotting sequence is complete,

Declaration: PROCEDURE PLOT(X,Y ,PEN);

REAL X.Y; INTEGER PEN;
OFTION EXTERNAL;
ATTRIBUTES:
Parameters: X The X-axis position, in intiches from the curvent origin, where the pen

is to be moved.

Y: The Y-axis position, in inches from the current origin, where the pen
is to be moved.

PEN: An integer, to specify pen down/pen up staius, use of ihe plot com-
mand buffer, origin definition, and termination of the plotting sequence:

2, pen down during movement, aceumulate plot commands in
the buffer.

3, pen up during movement, accumulate plot commands in the
buffer.

= .2, pen down during movement, transmit all plot commands
accumulated from prior calls and this call, define the terminal
pen position 1o be the new origin for subsequent calls,

= -8, pen up during movement, transmit all plot commands accumu-
lated from prior calls and this call, define the ferminal pen
position to be the new origin for subsequent calls.

= 12, pen down during mevement, transmit all plot commands
accumulated from prior calls and this call.

= 13, pen up during movement, transmit all plot commands ac-
curaulated from pricor calls and this cail,

H

~-12, same as 12, plus define the terminal pen position as the new
origin for subsequent calls,

I

-13, same as 13, plus define the {erminal pen position as the new
crigin for subsequent calls.

3-46

FORTRAN:

Frrors:

COMMENTS:

PLOT (Cont.)

= 999, terminate the plotiing sequence: pen up during movement,
transmit all ploi commands aceumalated from prier calls and
this cail, define the terminal pen position as the new origin for
subsequent calls, then close the plotter file.

Callable as an external subroutine:

CALL PLOT(XAXIS, YAXIS,IPEN)

SOFTERROR' message PLOT: PLOTS NOT CALLED cceurs if the
PLOTS procedure has not been called before PLOT is calied.

SOFTERROR’ message PLOT: INVALID PEN PARAMETER oceurs if
the PEN value is not one of those listed under “ATTRIBUTES.”

PLOT can report one of wo errors. After either one, a File Information
Display (see PRINT'FILE INFO in this section) is printed and the pro-
gram: is aborted:

F#24PLOTTER WRITE ERROR®#+%
The MPE/3000 file intrinsic FWRITE (calied by PLOT) found an error.
F#RAFERROR ON PLOT FILE CLOSE®# =%

The FCLOSE intrinsic found an error {see Comment 5).

The PLOTS procedure must be called before any call can be made to
PLOT.

1f the plot buffer BUFF (see PLOTS in this section) is filed by a series
of calls to PLOT with PEN = 2 or 3, all plot commands accumulated
up to that point are transmitted to the plotter file. Then accumulation
resummes at the beginning of the bufier,

PEN values 12, 13, -12, and -13 are provided for interactive use, such
as testing the accuracy of individual PLOT calls before accumulating a
sexies of calls,

Any negalive value legal to PEN includes the specification “‘define the
terminai position of the pen as the new origin for subsequent X and Y
values,” That is, at that position, the logical X and Y coordinates are
sot to 0.0. Thus, ali plotter commands accumulated up to and including
the call with a negative PEN value are transmitied to the plotter file
before the new origin is defined.

3-47

PLOT {Cont.}

The PEN value 999 is identical to the value -3, plus the specification
‘“close the plotter file by use of the MPE/3000 file intrinsic FCLOSE
with disposition = 0",

The PEN value 999 can be used only once during a plotting sequencs;

it terminates the sequence, To begin another sequence, the PLOTS
procedure must be called firss.

3-48

FUNCTION:

Declaration:

ATTRIBUTES:

Parameter:

FORTRAN:

Errors:

COMMENTS:

FACTOR

Change the plot factor (the ratio of the plot physical size to the plot command
size).

PROCEDURE FACTOR(FACTY;

REAL FACT;
OPTION EXTERNAL;

FACT: The desired plot factor,

Caliable as an external subroutine:

CALL FACTOR(RATIO)

I. SOFTERROR’ message FACTOR: PLOTS NOT CALLED occurs if
procedure PLO'TS has not been called before FACTOR is called.

2. SOFTERROR message FACTOR: INVALID FACTOR occurs if the
value of FACT is less than or egual to Q.

1. The procedure PLOTS initializes the factor to 1.0, the normal plot
ratia.

2. If FACT = 2, all physical pen movements are twice the distance
specified by parameters X and Y in procedure PLOT, Conversely,
if FACT = 5, all physical pen movements are half those distances
specified.

349

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:

Results:

FORTRAN:

Brror:

WHERE
Return the current X-axis and Y-axis posifions, in inches from the current
origin, of the present pen iocation and return the current plot factor.
PROCEDURE WHERE(RXPAGE,RYPAGE RFACTY;

REAL RXPAGE RYPAGE RFACT;
OFTION EXTERNAL;

BRXPAGE: A real identifier.
RYPAGE: A real identifier.
RFACT: A real identifier,

RXPAGE and RYPAGE and RFACT, real numbers.

Callable a5 an external subroutine:

CALL WHERE(XPOSIT, YPOSIT PLTFCT)

SOFTERROR’ message WHERE: PLOTS NOT CALLED oceurs if the PLOTS
procedure has not been called before WHERE is ealled.

3-50

FUNCTION:

Declaration:

ATTRIBUTES:

Parameters:

SYMBOL

Write plot annotation in the form of ASCEH characters and special symbols

Hsted in Table 3-1,

PROCEDURE SYMBOL(XPAGE YPAGE HEIGHT IBCD ANGLE NCHAR):
REAL XPAGE YPAGE HEIGHT ,ANGLE; ARRAY IBCD; INTEGER NCHAR;
OPTION EXTERNAL;

XPAGE and YPAGE: Real numbers, the position before rotation {see ANGLE},

HEIGHT:

IBCD:

ANGLE:

NCHAR:

in inches from the current origin, where writing of the
character(s) is to begin. See Comment 1 for further
details.

The height in inches, for the character(s) to be wrilten,
See Comment 2 for further details.

A pointer to the storage area that contains either a
symbol code integer or an ASCIT character siring. See
Comment 3 for further details.

The rotation angle in counter-clockwise degrees from
the X-axis, for the base line of the character(s} to be
written, 1f ANGLE = 0.0, the bage line will be paraliel
to the X-axis and the character(s) will be rightside-up.

If ANGLE = 180.0, the character{s) will be upside-down.

An integer, the number of characters to be written,
from those in array IBCD:

I£ NCHAR > 0, an ASCII character string is to be
wyitten; the fivst character is the first one in IBCD.

T NCHAR = Q, only one (or the only) character in
IBCD is to be written.

¥ NCHAR < 0, a special gymboel is to be writlen;
that symbol is selected by an integer in the first
(or only) word of IBCD.

See Comment 4 for further details,

3-81

FORTRAN:

Errors:

COMMENTS:

SYMBOL (Cont.)

Callable as an external subroutine:

1.

CALL SYMBOL{ATX ATY HIGH IANN, DEGREES, ICHARS)

SOFTERROR’ message SYMBOL: PLOTS NOT CALLED occurs if
the PLOTS procedure has not been called before SYMBOL is called.

SOFTERROR’ megsage SYMBOL: INVALID CHARACTER OR
SYMBOL occurs if an ASCIE charactar or special symbol infeger not
listed in Table 3-1 is specified in IBCD.

NOTE: If g user-written error procedure is furnished to override
the normal function of SOFTERRCR’ and return con-
irol to SYMBQOL {see Section IV}, an error symbol will
be written in place of o legitimate symbol. That error
symbol is ¥ (o question mark ? superimposed on an
exclamation mark !).

XPAGE and YPAGE specify the position of the first or only character
to be written, according to the value of NCHAR.:

If NCHAR < 0 and the special symbol is a centered one {see Table 3-1),
the position is that of the center of the symbol. If the special symbol
is not a centered one, the position is that of the lower left corner.

1f NCHAR = 0, the position is that of the lower left corner of the first
{or only} character to be written.

Further, XPAGE and/or YPAGE can be set to 998.0 to specify that the
position is that at which a next character would start. This special value
9929.0 can be used for both XPAGFE and YPAGE or for either one inde-

pendentiy of the other,

For best results from HEIGHT, for non-centered symbols {see Table 3-1)
specify a multiple of seven times the plotier increment. For centered
symbols specify a multiple of four times the plotter increment,

EXAMPLE:
To write the character A approximately 1/2 high {tali},

with a plotter increment of .010”, specify HEIGHT = 049
(=.010*7*7},

3-52

SYMBOL (Cont.)

The array IBCD must contain one of three types of data, according to
the value of NCHAR:

If NCHAR > 0, IBCD must contain an ABCH character séring left.
justified in the array (starting in the left byte of the first word).

If NCHAR = 0, IBCD must contain the desired ASCII characier right-
justified in the first (or only) word {i.e., in the right byte}.

1f NCHAR < 0, IBCD must contain an integer listed in Table 3-1 for
the desired special character in the first {or only) word.

NCHAR, in addition to its affect on XPAGE, YPAGE, and IBCD
{see Comments 1 and 3), controls the pen during movement:

If NCHAR = 0, the pen is up during movement to the starting position
of the first character,

If NCHAR = -1, the pen is up during the move to the starting position,
after which the special character is writien,

If NCHAR << -}, the pen is down during the move to the starting posi-
tion, afteér which the special character is written,

Table 3-1 appears on the following page.

3-53

Table 3-1. Plotter Characters/Symbols

ASCII Characters

1. space 26, g 51. R 76. k
2. 27. 52. S 77,
3. 7 28. 53. T 78. m
4 # 2. < 54, U 79 n
5. $ 30. = 55. vV 80, 0
8. % 31, > 56, W 81.
7. & 32. 7 §7. X 82. @
8 33 @ 58. Y 83, r
9. 34, A 9. Z 84, s
10,) 35. B 50. [85, t
1. * 3. C 61. 86. u
12. + 37. D 62, 1 87. v
13. 38. E 63. A 88. w
14, - 39, F 64. — 88. x
15. . 40, G 65, ~ 90. vy
6. / 41. H 6. a 31, 2
17. O 42, | 87. b a2,
18. 1 43. 68. ¢ 93. |
19. 2 a4, K 69. d 94. 1}
20. 3 45 1. 70. e 95. A~
71. 4 46. M 71, f
22. 5 47. N 72. g
23. 6 48. 0 73. h
24, 7 49. P 74, i
2. 8 5O. O 75
Special Symbols
Integer Symbol Integer Symbol Integer Symbol Integer Symbol
0 4 Y ¥ 21 5 31 il
1 & 12 = 22 > 32 T
2 a 13 r 23 a 33 I
3 +- 14 £x 24 =
4 > 15 — 25 +
5 & 16] 26 -
6 P 17 | 27 1
7 X 18 < 28 §
8 yal 19 = 29 H
g hd 20 - 30 %
10 =

Special symbols 0-14 are centered symbols,

3-b4

FORTRAN Run-time Procedures

Procedures from the following list are called by FORTRAN/3000 compiler-generated code
at run time to perform the functions listed for users’ programs.

CAUTION: The operation and calling sequences of these procedures are optimized
for the code generation needs of the FORTRAN compiler and should
not be used explicitly by any other user program,

Procedure(s)

Identifier Function

ACHRLL’ Assigns a character string. The different entry points

ACHRLS? are for long (1) and short {8) target or source strings,

ACHRSE’ “Long” means substring parameters are included.

ACHRSS’ SUBSTR’ and BLANKFILL’ may be cailed,

ACHRLPB® Assigns a character string. The source siring is a PB

ACHRBPB’ string, the target string may be long (L) ot short {8).
BLANKFILL' is called if the target is longer than
source, the stack s set up to do a MOVE PB after
return,

BCA'1 Checks, when a program executes, the declaration sub-

BCA2 script bounds fora 1, 2 or 8 (and more) dimension

BCA’S loesl array {if the BOUNDS option is used},

BFA™1 Checks, when a program executes, the declaration sub-

BFA’2 seript bounds for a 1, 2 or 3 (and more) dimension

BFA’S formal {(dummy) array (if the BOUNDS option is used).

BLANKFILLE” Blankfills a string in character assignment when the
target string is longer than the source string.

BNDCHEKY Checks, when a program executes, ah assignment or [/O

BNDCHK?2’ statement for subseript within bounds fora 1, 2 or 3

BNDCHKS’ dimension array. An infeger procedure that returns the
index in the array. Parameters are the array bounds and
subscript values,

BNDICHKN’ Checks, when a program executes, an assignment or 1O
staternent for subseript within bounds for multidimen-
sional {i.e. more than 3) arrays. An integer procedure
that returns the index in the array. Paramelers arve the
array bounds, the subscript values and the number of
subscripts.

CCHRLPB? Compares character sirings where source string is 2 PB
string. The stack is set up for a CMPB PB.

CCHRLLS Compares character strings. Ditferent entry points are

CCHRLS’ for long (1.} and short (S} strings, “Long®”’ means sub-

CCHRSL" string parameters are included.

CCHRSS’

Nov 1976 3-6b

Procedure(s)

Identifier Function
DFIXRT’ Fixes and fruncates a double precision nurober toa
DFIXT double integer number.
DBFLOATT? Converts a double integer number to a double
DFLT precision number.
F'SYSTRAP Handles run-time details of FORTRAN trap handling
F'LIBTRAFP statements.
FCONTRAP
F’ARITRAP
F'SYSTRAFPPROC
F’CONTRAPPROC
F'ARITRAPPROC
FTIBTRAPPROC
INUM? Converts a character expression into an integer, real or
RNUM' double precision value. Procedure EXTIN® {see “Function
JNUM’ Directory™) is called with parameters set as follows:
DNUM’
Procedure W b TYPE
INUM Field width w 0 Q {integer)
RNUM’ Field width w Q 1 (real)
JNUM? Field width w 0 -1 (double integer)
DNUM’ Field width w 0 -2 (LONG! real)
IFIXT Fixes and truncates a real value to an integer value. Used
for index expressions.
INDEX’ Searches a tirst argument, a character variable, for a sub-
part matching its second argument, a character expression.
Returns 0 if not found, or returns the position of the
first character of the matching subpart {integer value).
OVFL' Generates integer overflow for invalid type transfers.
STR’ Converts z iinear expression to a string of length specified
by the second argument (integer constant).
SUBSTR’ Generates a byte address of a substring in a character

string. Procedure also checks to see if a substring is
contained in the source string.

1Tn SPL/3000; same as FORTRAN type double precision.

3-56 Nov 1978

SECTION IV
LIBRARY ERRORS

SECTION IV
Library Errors

Many routines in the Compiler Library, especially some mathematical routines and the Formatter,
can detect error{s) in the data processed. Those routines, when error detection cocurs, call one of
two library error routines: SOFTERROR or FMTERROR’. The normal function of either error
routine is to repori the error conditions and abort the user’s program. All error messages are listed
in Table 4-1, in this section; further details of the Formatter error messages (from FMTERROR™"
are given in Section I, under *Formatter Error Reports.”

All SOFTERROR’ messages are followed by one or two additional reports: an “‘illegal parameter
value{s) report” {if needed) then a “‘stack trace-back report.” The former cccurs for most brary
procedures that find such an error. '

The SOFTERROR’ message format 15 (see Table 4-1}:
procedure name: message
The illegal parameter value{s) report format is:

X = first or orly parameter value

Y

#

second parameter value (this line is omitted if not needed)

NOTE: If either or both values are complex, two values are reporied for each,
the first value is the real part, the second value is the imaginary port.

The stack trace-back report, which also occurs after any Formatter Exror Report, uses the same

format as is provided by the MPE Stack Dump facility. For further information, see MPE Debug/
Stach Dump Reference Manuagl (HP Part No. 30000-90012}).

Nov 1876 41

XLIBTRAP

The user can override the normal functicns of SOFTERROR' {(or FMTERROR') and specify
his own error procedure(s). To do so, the MPE/3000 intrinsic function XLIBTRAP is used.
That function is declared:

PROCEDURE XLIBTRAP (PLABEL,OLDPLABEL);

VALUE PLABEL;
INTEGER PLABEL,OLDPLABEL;

OPTION EXTERNAL;

where
PLABEL = external label of the user-written error procedure or { to disarm
the library trap mechanism. If 0, control is not passed 1o a user’s
error procedure.
OLDPLABEL = griginal PLABEL, returned to permit the user to return to the

previous conditions.

Execution proceeds as follows:

1.

A library procedure finds an ervor and calls SOFTERROR’, or the Formatter finds
an error and calts FMTERROR",

SOFTERROR’ or FMTERROR' checks for a user-writien error procedure.

If no user-written error procedure has been specified, the appropriate error report
is produced and the current program is aborted. If a user-written error procedure
has been specified, the library trap mechanism is disarmed then the user-written
procedure is called.

When the user-written error procedure retums control to SOFTERROR or
FMTERROR’, the library trap mechanism is re-armed.

As defined below, the user-written error procedure must also set a flag, QUIT, to

divect SOFTERROR’ or FMTERROR' to abort the current program or to refurn
control to the procedure that found the error.

4-2

The user-written error procedure (in this example, the hypothetieal name ERROR) should
be declared:

PROCEDURE ERROR(MARKER,ERRORNUM,QUIT);
LOGICAL ARRAY MARKER;;INTEGER ERRORNUM;

LOGICAL QUIT;
where
MARKER = is a four-word array containing the stack marker created for the library
erroy routing that detected the error. Thus, MARKER (1} is the PB
relative address in the user program where the error occurred.
ERRORNUM = indicates which error cecurred {zee the list at the end of this section).

QUIT

i

is a flag set by the user-wrilten procedure ERROR. If QUIT = FALSE,
SOFTERROR’ or FMTERROR' will return to the user program with-
out printing an error message; if QUIT = TRUE, SOFTERROR’ oy
FMTERROR’ will abort the user program.

EXAMPLE: XLIBTRAP USE

Assume that in the procedure USER, the user-written errox procedurs MINE is to be called
from SOFTERROR’ (or FMTERROR") whenever an error is detected. A program might be
written as shown on the following page.

4-3

BEGIN <<MAIN PROGEAM>2>
{declarations)

PROCEDURE XLIBTRAP(NEW. OLD);VALUE NEW,LOGICAL NEW,OLD;
OPTION EXTERNAL;
PROCEDURE MINE(MARK, ERNUM,QUIT);
LOGICAL ARRAY MARK;INTEGER ERNUM,;
LOGICAL QUIT;
BEGIN

END;<<MINE>>
PROCEDURE USER;
BEGIN
LOGICAL OLD;
XLIBTRAP(MINE,OLD};

XLIBTRAP(OLD,OLD},<<RESTORE INITIAL PROCEDURE>>>
END;<<IJSER>> :

END: <<M AIN PROGRAM>>

4-4

Table 4-1, HP 3000 Compiler Library Errors

Library
Error routine
e ber name Error description Message
1 ATANZ {or ATANZ'} Both arquments = 0 ATAN2: ARGUMENTS ZERO
2 ATANZ2 (or ATANZ’) Underflow when argumernts ATANZ: UNDERFLOW
divided
3 DATANZ Both arguments =0 DATANZ: ARGUMENTS ZERO
4 DATANZ Underflow when arguments DATANZ: UNDERFLOW
divided
<) EXP {or EXP} Result overflow EXP: OVERFLOW
& DEXP {or DEXF') Result overflow DEXP: OVERFLOW
7 ALQOG (or ALOG} Argument <0 ALOG: ARGUMENT NOT
POSITIVE
8 DLOG {or DLOG) Argument = 0 DLOG: ARGUMENT NOT
POSITIVE
9 CABS {or CARSY) Result overflow CARS: OVERFLOW
10 SQRT for SORT"} Argurment <.0 SQRT: ARGUMENT NEGATIVE
11 DSQRT dor DSQART) Argument <20 DSQRT: ARGUMENT NEGATIVE
, {26 + 1)
12 TAN for TAN') Drgurnend r 5 TAN: OVERFLOW
{5 10xE)
|26 + 1w
13 CTAN (or DTAN Argumnent naear - 57 DTAN: OVERFLOW
{set text) '

i4
53
54

55
86

57
58
59

€0

{Unasstgred)

ITor
RTOI
RTOR’

RTOL’
LTON
LTOL

cTov

Base = 0 and power < U
Base = 0 and power <

Base = 0 ang power <. 0 or
base < 0

Base = 0 and power < 0
Base = 0 and power < (}

Base = (¢ and power < 0 or
base << 0

Base = 0 and power <{ 0

ETOF: ILLEGAL ARGUMENTS
RTOI ILLEGAL ARGUMENTS
RTOR": ILLEGAL ARGUMENTS

RTOL: [ILLEGAL ARGUMENTS
LTOI: ILLEGAL ARGUMENTS
LTOL: ILLEGAL ARGUMENTS

CTOV: [LLEGAL ARGUMENTS

4-5

Table 4-1. HP 3000 Compiter Library Errors {cont.}

Library
Error rautine
number name Error deseription Message
61 ENLIM® Hiegal characier in string being NUM: {LLEGAL CHARACTER
RNUM’ converted.
JNUM?
DNUN'
62 ENLIM" Number out of representable NUM: NUMBER OUT OF RANGE
RMUM’ range (see “Introductian™).
JNUM”
DNUM
63 INURM” {both of the above) NUM: RANGE AND CHAR ERROR
RMUM’
JNUM®
DNUM’
B4 fany} thegal EXIT labet. INVALID EXIT ON RETURN
514] BNDCHKx" Subscript out of range {not INVALID SUBSCRIPT VALUE
BCA'x deiected uniess SCONTROL
BFA'x BOUNDS is requested}.
66 SUBRSTR' Designator defines a substring ENVALID SUBSTRING DESIG-
nat containgd in the source siring. NATOR
67 oTonr Base = 0 and power <. § DTOI: ILLEGAL ARGUMENTS
68 Dron” Base = 0 and power < 0 DTOO: ILLEGAL ARGUMENTS
69 RTQD” Base = O and power < 0 ROTD": ILLEGAL ARGUMENTS
7a LTOD’ Base = 0 and power <. { LTOD": HLLEGAL ARGUMENTS
71 cToD’ Base = 0 and power <0 CTOD ILLEGAL ARGUMENTS
72
; {Unassigned}
100
101 Farmatter Hiegal format character ILLEGAL FORMAT CHARACTER
102 UNITCONTROL Farameter OPT is quiside the UNDEFINED OPTION ON
or range [-1.8]. UNFT #ax
FTNALXS
103 Farmatter Specification group{s) nested NESTING TOD DEEP
deeper than level 4.
104 Formatter List and character string speci- STRING MIGMATCH
fication do not match.
105 Farmatier IHegat character i input field, 8AD INPUT CHARACTER
106 Farmatter Mumeric mput feld unrepresentable. NUMBER OQUT OF RANGE
107 Formatter Formiat specification exceeds FORMAT BEYOND RECORD

record length,

4-6

Table 4-1. HP 3000 Compiler Library Errors {cont.)

Library
Error routine
number nams Error description Maessage
108 Farmatter Core-to-care conversioh exceeds BUFFER GVERFLOW
user-defined buffer.
108 Formatter Binary direct access exceeds CIRECT ACCESS QVERFLOW
recird length. ON UNIT stxx
11G Formatter File name not in FLUT. FILENOT IN TABLE FOR
UMNIT #xx
11% Farmatter Fite access problem, FILE SYSTEM ERROR ON
UMNIT
12 Farmatter File access problem, END QF FILE DETECTED ON
UNIT #xx
113 FSET Parameter NEWFILE is cutside INVALID FILE NUMBER FOR
the range {1,254], UNIT #xx
114
' {Unassignad}
149
160 PLOTS Invatid piot buffer size. PLOTS: INVALID BUFFER SI1ZE
151 PLOT PLOTS procedure has not been PLOT: PLOTS NOT CALLED
calted,
162 PLOT Unrecognized PEN value. PLOT: iNVALID PEN PARAM-
ETER
163 FACTOR PLOTS procedure hias not been FACTOR: PLOTS NOT CALLED
calied.
154 FACTOR invalid ptot factor (FACT =.0) FACTOR: INVALID FACTOR
165 WHERE PLOTS procedure has not been WHERE: PLOTS NOT CALLED
catied.
156 SYMBOL PLOTS procedure has not been SYMBO: PLOTS NOT CALLED
called.
147 SYMBOL Unrecognized input symbol. SYMBOL: INVALID CHARAC-

TER OR SYMBOL

4-7

Name Page
ACHRLE 3-556
ACHRIPE38
ACHRLS ... 3-h5
ACRHREL 3-00
ACHRSPE L, 355
ACHRSS 355
ADDCRRR 3-22
ADDCRRY . 3-22
ADDCRVR e 3-22
ADDCRVY e5-22
ADDCVRE e 3-22
ADDCVRY 3-22
ADDCVV R e 3-22

A ., e e 1-57
ABHO e e e 1-57
AN 2.8
AIMAX D 2-19
ATMING 2-19
ALY e 1-5%
ALOG {or ALOG"Y o e e i 2-31
ALOGIO . e 2.1
AMA X e 218
AMAX1 2201
AMING 2-18
AMINT e e e e 2.20
AMOLY 222
AR e 1-57
AL L e 1-57
ATAN (or ATANY . . 2-62
ATAN2 (or ATANDZ) .. . 2-54
BOA™L 3-55
B A Y e 3-55
B A e e 3-55
B A e 3-85
8 - N0 S 3-55
BRA S e 3-55%
BLANKPFILL . . . 3-55
BNDCHEY 3-55
BNDOCHK? e 3-55
BNDCHKS ... 3-55
BNDCHKN o 3-55
CABS (or CABSY . . e 2-2
COHRLL . e 3-55
CCHRBL P . i e e 3-85
COHBLS .. . 3-55
COH RS L o e e e 3-55

Nov 1976

APPENDIX A
Lihrary Procedure Names

Name Page
COHRSE e 3-55
CCOS tor CCOS Y .. i e 2.42
CCOSH (or CCOSHY. 2-61
CEXPor CEXP) ... i 2-26
CINVER T .. e 2-58
CLOG (ar CLOGY .. i 2-33
M P R . i e e e 3-27
CMBPCRN e 3.97
MOV 3-27
CMP OV . 3.27
COMPLIBINFO {(or COMPLIBINFO, ... 3-41
COS for COBY .. 2-36
COSH (or COSH™Y .. i 2-45
CSIN for CSINTY . o 2-41
CSINH for CIINH} 2-50
CSQRT for CBEETY ... i e 229
CTAN (or CTANY (.. . .. 2.40
CTANH or CTANHDY ... 2-49
DR . e e 3-20
CTODV R 3-20
6) AU 3-19
CTGINT i e 3-19
DA B e 2-1
DADDY ... e 2-61
DATAN (ar BATANY . . . 2-53
DATANZ {or DATANZY 2-55
DATELINTE . 3-36
M e e 2-67
DCOS tor DCOS) .. 2-39
DCOSH (or DOOSHY 2-48
DN e e 2-9
DIV (or DDIVY .. 2-b4
DEXP(or BEXP)Y . . e 2.25
DFI (or DFEX™Y .. 210
I 3, 8 3 3-66
DRI 3-56
DFLOAT {or DFLOAT) oL 2-11
DFELOATT ... 3-56
) 0 3-56
DINVERE . 2-57
DI e e e e 1-56
DIVCRRER . . e i 322
DIV CRRY e e e 3-22
DIVORVER e 3.22
DIVCRVY 3-22
DIVOVRR .. i 3-22
DIVCV RV e 3-22

A-l

Name Page
DIV VR e e e e e 3-22
B L T 3.22
Y e e 2-71
DEOG (or DLOGY) oo e e v ieianrens 2-32
DLOGIO e 2-32
DMAX D e 2.21
DI e e e 2-21
DMOD . e e, R 223
DMPY {or DM P Y) .. e e e 2.63
INEG . e e e e e s 2-66
DNUM . e e 3.56
DREM (or DREM™ o . 2.565
LG . e e e e RN 26
TiN for DSINYY e 2.38
DuiNFE or BSINEDY ..o 247
DBQRT for DSQRT Y ..o et v e 2-28
F0 {1 = 2 262
DTAN {(or DTAN ... e e eeen s 2-37
DPANH (or DTANHY s 2-46
1 3-10
5 5) 3-8
E P or BEP . e it e e 2-24
0 & s 3-1
FACTOR . el 3-49
BTN e e 1-5&
BN M e e 3-34
i3 0 3-35
I NAT R i e e s 3-29
P AR TR AL . e 3.56
FARITRAPPROC ey AU 3-56
FCONTRAP . e i 3-56
FCONTRAPPROC . i 3-56
FLIBTRAP . se...B3-80
FLIBTRAPPROC . o i e e e ininn s 3-56
F Y ST RAP e 3.56
F'EYSTRAPPROC ... 3-56
B B8 . i e e e v
T e 2-68
3 5% | 3-56
T 1-56
N e 3.56
INE KT 3-4
1 2.7
N M 3-56
INVER T . i i i e e e 2-H6
IRIGIN 2-3
1) 3-8
SN A XD 2-33
dMAK L z.16
MY e 2-13
B 3 A0 A 2-16
JNUM 3.56
FEIGN e 2-4
LI e 1-58
LONGIIVD . s 2-71
LT DR . 3-16
A Y 3-16
L R 3.15
LTOIV 3.15

Name Page
LTOLRE . o i e e 3-17
L oL R e 3-17
LIOLVR e 3-17
LTOLVY, e 3-17
MAXG e e 2-12
MAX Y e 2-14
MIN e 2-12
MIN Y e 2-14
MLTCRER s 3-22
ML O RRY . e o 3-22
MLTCRVR e 3.22
MLTCRVY 3-22
MLTCVRR . 3-22
MILTCOVRVY e 3-22
MLTCVVR i 3-22
ML T VYV e 3-22
MPYD . e 2.69
NEGCRR ... i 3-25
NEGCRV i 3-25
NEGCVER ... 3-25
NEGOVV 3-25
OVE L o 3-56
PLO T . e 3-46
PLOT S e 3-42
PRINTFILEINFO, 3-37
PRINTFILEINFOl 3-37
RAND (or RANDY ... s 2-60
BANDI (or RANDIY. .o e 2-59
REY e 1.56
RN M e e e e 3-56
RTOD L e i e s 3-12
BT e 3-11
REOLER .. e 3-14
R OL Y . e 3-14
RTOR 3.13
REDIT ... e 2-74
] L P 2-5
SIN (or BINT ... 2-35
SINH for SINH . ..o 2-44
SO e e 1-57
SBQRT {or SQRT} 2-27
3 3-56
SUBCRER s 3.22
SUBCRRY ... 3-22
SUBCRVE . . i e 3-22
SUBCRVYY . 3.22
BUBCVRR e, 3-22
SUBCVRV 3-22
BUBCVVR 3-22
BBV e 3-22
U BSETR vt e e 3-56
Y MBI, e e 3-51
TAN (or TANY .. o 2-34
TANH (or TANH) e 2-43
TFORM e 1-5&
UNITCONTROLo . 3-32
WHERE .. e e 3-50
KBTI RAL e 4.2

Nov 1976

A, xi

oL 147

*. . .” edit descriptor, 1-37, 1-38, 1-45
#,1-7-—-1-12, 1-14, 1-15, 1-17--1-21, 5-6
§ and commas, 1-3, 1§, 1-16, 3-1—3-3,3-5
$STDIN, 1-51, 1-59, 1-60, 3.20
SSTDLIST, 1-561, 1-59, 1-680, 3-30

4, 1-47, 1-48, 1-58

o C edit descriptor, 1-37, 1-44

Lo 147

.0 edit descriptor, 1-37, 1-39, 1-45
(w.f), 1-51

*, 1-46, 147, 1-50, 1-51

4, 1-47

, (defined), 1.47

~ (defined), 1-47

_2—‘25:.!3r 2_1

. {defined), 1.47

... {defined), 1-47

f, 147

fedit descriptor, 1-37, 1-43, 1-45
frecord terminator, 1-37, 1-43, 1-47
2% w1, xini

23~ 1, xiif

23 wiil

25 xifE

=k

<<, L, =, 1.47

@, 1-3, 1.47, 1-52, 1-58

SN, the two backslashes, 3-37

A

absolute error in the argument(s), x
absolute error in the result(s), x
absolute value, 2-1—2-6
ABSOLUTE VALUES, xvii
ACCEPT/OESPLAY, 1-51

accuracy, x

adjacent apostrophe, 1-39, 1.49
adjacent guetation mark, 1-38, 1-48

Nov 1978

E-1

Index

alphameriec characters, 1-6, 1-28—1-31

ALPHAMERIC CONVERSIONS, 1-6

Alphanumeric Edit, 2-T4--2-79

apostrophes, 1-39, 1-47, 1-49

arctangeni, 2-51---2-54

arguments, ix

arithmeatic trap(s}, 2-7, 2-10, 2-15, 2.22, 2.23,
2-61--2.68, 2.68, 3.-70, 2.73, 3.8—3-12, 3-15—3-21,
3-24

ASCII blanks, 1-41

ASBCII character sirings, 1-32, 1-38—1-40, 1-47--1-49,
1.57, 8.1, 3-4, $-51

ASCII characters, 1-32, 1.381.40, 1.47—1-49,
1-56—1-68, 3-51

ASCII digits, 3-1, 3.4

ASCII input record, 1-8, 1-10, 1-12, 1-15, 1-17, 1-1%,
1-2%, 1-23, 1-25, 1-27, 1-2¢, 1-31, 1-33

ASCII nuli, 1-81

ABCII numeric input, -4, 1-5

ASCII records, 1-1

ASCE! siring (fixed), 1-38, 1-39

ASCH string (variable), 1-40

assemble statement, 2-12, 2.13, 2.15, 2.17-2-21

ATTRIBUTES, x

Aw output, 1-28

B

BACKSPACE, 3.29, 3.30, 3.32
base (B}, 3-8—3-21

base 10 logarithm, 2-31, 2-32
BASIC/30400, 2-56—--2-60
binary pattern, 2.70, 2-73, 2-75
blanks, vi, 1-5, 1-41, 1-47—1-49
blocked, 3-37, 3-38

hoolean, xiif, 1-26

business form, 1-3, 1-4, 1-16
by reference, 3-37

byte, xiii

byte array, 3-1, 3.4

by value, 3-37

C

call-by-reference, 3.14...3-17, 3-19, 3-20, 3-22, 3-23,
3-25, 3-27

call-by-value, 3-14—3-17, 3-19, 3-20, 3-22, 3.23
3-25, 3-27

CCA, 1.88, 1-62, 1-64, 3-26

character string, 1-8, 1-32, 1.47-1-51, 1-57,
3-565, 3-b6

CHECK option for lavel 2, xi

CHECK option for level 3, xi

CHECK option levels, z

COBQL/3000, 2-69, 2-71

commas, -1, 1-3—1.5, 1-16—1-19, 1-43, 1-47--1-49

comments, x

compiler-generated code, 1-1, 1-54, 3-14—3-17, 3-18,
3-20, 3-22, 3-25, 3-29, 3-58

COMPLEX ARITHMETIC, 3-22

complex compare, 3-27

complex negate, 3-25

complex number 2-2, 2-26, 2-29, 2-30, 2-33,
2-40—2.42, 2-40 2.5, 3-19--3-28

computed value of the arguments(s), x

computed value of the result, x

conversion rules, 1-B, 3-3

convert a byte array, 3-1

convert an internal representation, 3-4

CORE-TO-CORE CONVERBION, 1-51

n

I, 1-47

DATA EDITING, xui

DATA FORMAT DEFINITIONS, x»
data itern delmiters, 1-48

DATA MANIPULATION, xui

date and time information, 3-36
decimal digit, 2-70, 2-73, 2-75
decimal dividend, 2-71

decimal divisor, 2-71

decimal multiplicand, 2-82

decimal multipiier, 2-69

decimal product, 2-70

decimal quotient, 2-73

decimal remainder, 2-73

decimal resuit, 2-70

decimal value, xii

display of 14 lines, 3-38

domain, 3-38

double integer, xix

DOUBLE INTEGER ARITHMETIC, xx
double precision, xiii

DOURBLE PRECISION ARITHMETIC, xx:
doultle precision numbers, 1-7

Dw.d output, 1-3, 1-7

i-2

E

E, xi, 1-47
Edit Descriptors, 1-37
EDIT SPECIFICATIONS, 1-37
Edit Deseriptors, 1-37
Repeat Specification-For Edit Descriptors, 1-45
entry peints, 3-22, 3-32, 3-34, 3-35
Faw d output, 1-3, 1-8
e®, 2.24.—3-26
exponent, xif
expenent field, 1-4, 1-5, 1-47, 3-%
EXPONENTS, ROOTS, LOGARITHMS, xviii

F, xiii
false, xifi, 1.26, 1-27
Field Descriptors, 1-3
field width w, 1-7, 1-9, 1-11, }-14, 1-16, 1-15, 1-20,
1-22, 1-24, 1-26, 1.28, 1-30, 3-1, 3-4
File Information Display, 1-64, 3.37
floating point divide by zero, 2-22, 2-23, 3-24
floating point overflow, 2-22, 2.23, 2-11, 3-12, 3-15,
3-18, 3-19, 3.21, 3.24
floating point underflow, 2-22, 2-23, 3-11, 8-12, 3-15,
3-18, 3-19, 3-21, 3-24
FLUT, 1-55, 1-89, 1.60, 1-82, 3.29, 3-30, 3-32,
334, 3.35
FMTERROR’, 1-61, 4-1
FORMAT SPECIFICATIONS, 1-3
Field Descriptors, 1-3
DECIMAL NUMERIC CONVERSIONS, 1-3
Rules for Input, 1-4
OCTAL NUMERIC CONVERSION, 1-5
LOGICAL CONVERSION, 1-6
ALPHANUMERIC CONVERSIONS, 1-6
Scale Facter, 1-54
QUTPUT, 1-35
Dw.d and Bw.d, 1-35
Fuw.d, Muw.d, and Nuw.d,; 1-36
Gae.d-selected Fuw.d, 1-36
(. d-selected Fu.d, 1-36
INPUT, 1-36
Repeat Specification-for Field Descriptors, 1-37
FORMAT STATEMENTS, 1.1
READ or WRITE Statements, 1-2
BDise Input/Ouiput, 1-2
formatted conversion, 1-55
FORMATTER, SECTION |
FORMATTER ERROR REPORTS, 1.61, 4-1
File Information Display, 1-64
Formatter Error Report routine, 1-36, 1-58
Formatter /O Buffer, 1-58

Nov 1976

PORTRAN, it;, 1-1
FORTRAN auxiliary YO statements, 3-29
FORTRAN logical unit, 1-565, 1-59, 1-62, 3-29, 3-30
8.32, 3-34, 3-85
fraetion, xiii
fraction field, 1-4, 3-2
fraction field digits &, 1-4, 3.1, 3-4
Free-Field Control Characters, 1-47
FREE-FIELD INPUT/OUTPUT, 1-46
Free-Field Control Charaeters, 1-47
Free-Field Input, 1-47
DATA ITEM DELIMITERS, 1-48
DECIMAL DATA, 1.48
OCTAL DATA, 1-48
CHARACTER STRING DATA, 1-49
RECORD TERMINATOR, 1-48
INPUT EXAMPLES, 1-50
LIST TERMINATION, 1-50
Free-Field Ontput, 1.50
DATA ITEM DELIMITER, 1-51
RECORD TERMINATORS, 1-51
FUNCTION, ix
FUNCTION DIRECTORY, xv
Fuw.d output, 1-3, 1-11

G

Guwd output, 1-3, 1-13

H

hexidecimal integer rumber, 1-24
HEXIDECIMAL NUMERIC CONVERSION, 1-6
hyperbolic cosine, 2-45, 2-48, 2-51

hyperholie sine, 2-44, 247, 2.50

hyperbelic tangent, 2-43, 2-46, 2-49

I
illegal parameter value(s) report, 4-1
in the range { ., .), x{f
in the range[., .1, xi
in the range { ., .l xi
in the rangef ., .) at

integer divide by zero, 2-64, 2-65

integer field, 1-4, 3-2

integer numbers, 1-20

integer overflow, 2-16, 2-61—2-63, 2-68, 3-8—3-10
internal exponent, 1-35, 3-6

Internal Representations, xii, xiii
INTRODUCTION, ix

L output, 1-20

Neav 1976

I.3

L

largest/smallest number, xviii

lgading blanks, 1.5, 3-3

least significant bit, xiii

leftmost ASCII characters, 1-28

LIBRARY ERRCRS, SECTION IV

Library Procedure Names, A-1

list elements, 1.2, 1-3, 1.5, 1-6, 1.8, 1-10, 1-12, 1-15,
1-17, 1-19, 1-21, 1-23, 1-29, £-32, 1-37, 1-45—1-53,
1-62, 1-63

iist of varisbles, 1-1—1-3, 1-50, 1-581, 1-54

list termination, 1-50

logical, xi, 1-6, 1-27

logical {boolean) values, 1-28

LOGICAL CONVERSION, 1-6

long real, xii, 3-14—3-18

LSB, xui

Lew output, 1-26

M

magnetic tape fies, 3.30

mathematical notation, xi{
MATHEMATICAL PROCEDURES, SECTION 1¥
MATRICES, xx

matrlx, 2-06—2-08

method, ix

MISCELLANEOUS FUNCTIONS, xxi
monetary {business) form, 1-3, 1.4, 1-16
MPE/3000 operating system, v

MBB, xiii

Mer.d outpug, 1-3, 1-16

N

N, 118, 1-14, 3-4, 3-6
name, x

natural logarithm, 2-31--2-33

nested level, 1.45, 1.46

nesting, 1-2, 1-34, 1-45, 1-46, 1-63
Newton iteration, 2-27, 2-28

nH edit descriptor, 1-37, 1.40

nominal FORTRAN/300¢ parameters, 1-60
normalized output, 1-7, 1.9, 1.34
NUMBER COMPARISON, xviii

NUMBER CONVERSION, xvii
numeration form, I-4, 1-18

Numeri¢ Edit, 2-74, 2-76—2-79

Nw.d output, 1-4, 1.18

nX edit descriptor, 1-37, 1-41, 1-42

0

oetal, £-5, 1-22, 1-23, 1-44, 1-47, 1-48, 1-56, 1.58
octal integer numbers, 1-22
OCTAL NUMERIC CONVERSION, 1-5
ORGANIZATION OF THIS BOOK, ix

Format for procedures, fx

Parameter Checking for Procedures, ix

Text Conventions, xi

Internal Representations, xii
output fraction, 1-35
Ow output, 1-22

P

P o134 1.37

Packed Decimal Number, 2-60--2-71, 2-73-.2-75,
2-77

parameter, x

Plotter, 3-42, 3.45, 8.54

Flotter Characters/Symbols, 3-54

position (tabulate) data, 1-42

procedurs identifier, ix

prompt character 7, 1-51, 1-61

purpose, ix

Q

guotation marks, 1.38, 1-47, 1-49
quotient, 2-54, 2-55, 2-64

R

R, 3-14---3-17, 3-19, 320, 3-22, 3-23, 3-25, 3-27

radians, 2-34—2.39

raise g base to a power, 3-8-3-21

RANDOM NUMBER, 2-59, 2-60

RANDOM NUMBERS, xx

ranges, x, xi, 2-7, 2-15, 2-17, 2-24—2-26, 2-35,
2-36, 2-38, 2.39, 2-43, 2-48, 2-52—3-55,
2.60, 2.68, 3-8—3-16, 3-19, 3.20, 3-28—3.35, 4-6

REDIT Command Set, 2-76

READ or WRITE Statementa, 1-1, 1.2, 1-45..1-47,
1-531—1-53, 1-62, 1-63

real, xi, xfii

real numbers, 1-9, 1-11, 1-13, 1-16, 1-18

record terminator, 1-43 .

record terminator!, 1-37, 1-43, 1-45, 1-47, 1-49, 1-50

relative error in argument(s), x

relative error in result(s), x

remainder, 2-65

Repeat Specification - for Edit Descriptors, 1-45

Repeat Specification - for Field Descriptors, 1-37
rightmest ASCIT characters, 1-30

rollover, 1-8, 1-10, 1-18, 1-15, 1-17, 1-18, 1-21
rounds, 1-5, 3-3

RPG/3000 EDFT WORD, 2-75

RPG/3000, 2-69, 2-71, 2-74, 2-75

Rules for Input, 1-4

Hee output, 1.31

]

8, xifi, 1-32, 1.33
S output, 1-33
S=EB=F=0, xiii
8B, xiki

Scale Factor, 1-34
short display, 3-37

sign, xi, 1-4, 1.7, 1-9, 1.11, 1.14, 1.16, 1-18, 1-20, 1-47

significant bit, xiii
sine, 2-356, 2-38, 2-11
singular matrix, 2-56-2.58
SOFTERRCR, 4-1
SPECIFICATION INTERRELATIONSHIPS, 1-45
Nesting, 1-45
Unlimited Groups, 1-46
special procedure, v
SPL/A3000, v
SPLs3000 calling sequences, 1-54
Calling Beguences, 1-55
INTTIALIZATION, 1-55
LIST ELEMENT TRANSFERS, 1-58
TERMINATION, 1-58
File System Requirements, 1-59
FORTRAN/3000 LOGICAL UNIT TABLE
{FLUT}, 1-39
NOMINAL FORTRAN/IOO) PARAMETERS,
1-80
ACCEPT/DISPLAY OPTION, 1.81
SPL/3000 type long (real), xiii
square matrix, 2-56—2-58
square root, 2-27—2.29
stack copditions, 1-04, 2-12--2.21, 3-23, 3-28
stack marker, 1-54, 2-12—2-14, 2-1§, 2-18..2.21
gtack trace-back report, 1-61, 4-1
strings of ASCIE characters, 1-32

T

Table 3-1, 3-54

Table 4-1, 4-5—4-7
tangent, 2-34, 2.37, 2-40
terminal, 1-51, 1-61
text conventions, xi

Nov 1976

Tn edit descriptor, 1-37, 1-41, 1-42

TOS, xi, 2-26, 2.29, 2.33, 2-41, 2-63—2-65,
2-70, 2-13, 3-8—3-17, 3-19, 3.20, .22, 3-23,
3.25, 8.27, 4-4

TRIGONOMETRY, xix

true, xtii, 1-26, 1.27

true value of the argoment{s), x

true value of the resualt, x

truncaies, 1-5

U

undefined, 3-38

UNFORMATTED (BINARY) TRANSFER, 1-52
Matehing List Elements, 1-53

Undimited Groups, 1.2, 1-46

unpack . . . a Packed Decimal Number, 2-74

UTILITY PROCEDURES, SECTION III

Nov 1976

v
V, 3-14—3-17, 3-19, 3.20, 3-22, 3.23, 3.25,
3-27
X
L= ,4.1
XLIBTRAP, 4.2
Y

¥ =, 41

Z

Lw output, 1.24

