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PREFACE

This is a hardware reference manual. Conceptually, however, the HP 3000
system is designed as an integrated system of hardware and software. This
manual, therefore, must be regarded as a system description from the hardware
standpoint.

The progress of computer technology inherently increases the complexity of
hardware even as the use of that hardware becomes simpler and more con-
venient. Although the HP 3000 is not a large-scale computer, its hardware is
nonetheless complex. In recognition of this fact, this manual has been made as
conversational and illustrative as possible.

An INDEX OF TERMS is given in the Appendix. A page number refers to the
first time a given term is used or defined in the text; the term is italicized on
that page.
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SYSTEM FEATURES n
The HP 3000 Computer System is a small-scale, disc-based
system with true multiprogramming and multilingual capa-
bilities. It is the first 16-bit computer system to incorporate
such large-system features as a hardware stack architecture
and variable-length code segmentation in a virtual memory
scheme. As a result, the HP 3000 can simultaneously handle
interactive and batch operations - each in more than one
computer language.

These features have been achieved through an integrated
hardware-software approach based on the specific demands
of the multiprogramming environment. Hardware and soft-
ware work together in an interrelated manner, with hard-
ware performing many of the overhead operations that are
conventionally done in software - such as environment
changes on interrupt,

A powerful operating system optimizes multi programmed
operations. System resources such as main memory storage,
processor time, and peripherals are dynamically allocated to

each user as needed. Each user on the system is inde-
pendent and unaware of all other users; each "sees" only
that part of the system required to solve his problem.

Hardware is organized on a modular basis. See figure 1-1
(shows four "modules"). Communication between modules
occurs over a high-speed central data bus. Input/output
data may be transferred directly to or from memory over
the same bus, via a high-speed Selector Channel, or may be
multiplexed via the I/O processor. In both cases the I/O
channels execute I/O programs in parallel with CPU pro-
grams. Direct control of devices on the lOP bus is also
possible by the CPU's direct I/O instructions. The configu-
ration of either the module complement or the peripheral
complement is easily changed to accommodate system
expansions. Up to 7 modules and 253 I/O devices are
possible in the hardware organization.

This section lists and describes the important hardware
features of the HP 3000. Refer to Section II for a summary
of software features.

CENTRAL DATA BUS
1

I
II I

Inputl Memory Memory
SelectorCentral Module Module

Processor I-- Output Channel
f-- Processor

CPU lOP

II Multiplexer
Channel

lOP ~ "

U SELECTBUS
U MULTIPLEXER CHANNEo

o

OR
Lo CHANNEL

BUSo
o BUSo (High Speed 1/0)

Figure 1-1. HP 3000 Modular Organization

1-1
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System Features

CENTRAL PROCESSOR

• Hardware-i mplemented stack
• Separation of code and data
• Non-modifiable, re-entrant code
• Variable-length code segmentation
• Virtual memory for code
• Dynamic relocatability of programs

IMPLEMENTATION ..---
• Microprogrammed CPU
• 175 nanosecond microinstruction time
• Built-in memory protection, parity checking, power-fail/auto restart
• Protection between users
• Central data bus
• Concurrent I/O and CPU operations

INSTRUCTIONS
• 170 powerful instructions
• All instructions 16 bits in length
• 16- and 32-bit integer, 32-bit floating point hardware arithmetic
• Triple-word shifts to aid 48-bit floating point software

ARCHITECTURE

The data for each user is organized as a data stack. In
general, a stack is a storage area where the last item stored
in is always the first item taken out. The stack structure
provides an efficient mechanism for parameter passing,
dynamic allocation of temporary storage, efficient evalu-
ation of arithmetic expressions, and recursive subroutine or
procedure calls. In addition, it enables rapid context switch-
ing - 21 microseconds to establish new environment on
interrupt. In the HP 3000, all features of the stack (includ-
ing checking for overflow and underflow) are implemented
in hardware.

Code and data are maintained in strictly separate domains
and cannot be intermixed (except that program constants
may be present in code segments). This fact, plus the fact
that code is non-modifiable while active in the system,
permits code to be sharable and re-entrant. The two fea-
tures, re-entrancy and stack-structured data, together make
possible program recursion (a program calling itself) which
is essential for efficient compilers and systems software.
Also, since code is non-modifiable, exact copies of all active
code can be retained on the swapping disc, thus allowing
code to be overlayed without having to write it back out on
the disc.

Variable-length segmentation of code and data is used to
facilitate multiprogramming. This system, in comparison
with paging schemes, minimizes "checkerboard" waste of
memory resources due to internal fragmentation. The
location and size of all active code segments is maintained
in a Code Segment Table, known to both hardware and
software. Software uses this table for dynamic memory

1-2

management by the operating system. Hardware uses the
table for procedure entry and exit. A similar table for data
segments is known and managed by the software alone.
Code segments may be up to 16,384 words in length. Data
segments may be up to 32,768 words.

Segments are stored on a swapping disc and brought into
main memory only when needed. This design results in a
virtual memory which appears to be several times larger
than the 65,536-word maximum size of the physical main
memory.

All addressing of code and data is done relative to hardware
address registers. Thus by simply changing the addresses,
programs are dynamically relocatable in memory. The few
instances where absolute addresses are required are privi-
leged operations, handled by the operating system.

IMPLEMENTATION

The entire instruction set of the HP 3000 is micro-
programmed in a microprocessor within the CPU. The
microprocessor executes each HP 3000 instruction by
microprogrammed operations stored in an expandable read-
only memory. By allowing microprogrammed hardware to
execute certain repetitive functions such as moves and byte
scans (normally software-implemented) the amount of code
and total execution times are greatly reduced. In addition
to the instruction set, other system functions have been
microprogrammed, including the interrupt handler and a
cold-start loader. The microprocessor executes its micro-
instructions at a 175-nanosecond rate.
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The micro programmed instructions routinely check for
bounds violation during execution, and automatically inter-
rupt to error handling routines if violations occur, Memory
protection checks are usually overlapped with the operand
fetch and therefore do not slow the execution. Three types
of parity checking are provided: system parity error (checks
validity of module numbers and commands during inter-
module communication), memory address parity error, and
data parity error. Power failure generates an interrupt to a
Power Fail segment, and restoration of power generates an
interrupt to a Power On segment for automatic restart. All
of these features are standard in the HP 3000.

Several features contribute to the absolute privacy of each
user's data and code. These include: microprogram checks
for address bounds, file security guaranteed by the oper-
ating system, non-modifiable code, and uncallable code for
system functions. Not only is each user protected from all
others, but additionally the operating system is protected
from all users.

The basic structure of independent modules organized
around a central data bus permits high-speed internal data
rates. A selector channel can transfer data in or out, via this
bus, at rates up to 1.9 million bytes per second, using the
currently available memory without interleaving. When not
communicating over the bus, each module can run
independently at its own speed. New equipment can also be
added without having to go through a major system
reconfiguration.

System Features

Another advantage of the modular structure is that it
permits concurrent I/O and CPU operations, which are
essential to multiprogramming and its usage of main
memory.

INSTRUCTIONS

There are 170 unique and meaningful instructions in the
HP 3000 instruction set. Many of these have multiple
actions which give a high complexity-to-instruction ratio.
Code compression is achieved through the use of implicit
no-address (stack) instructions, and the use of stack loca-
tions for operand addressing. All instructions except the 63
stack operations are in a 16-bit format; the stack ops may
be packed two per word to further enhance the code
density.

A complete set of arithmetic instructions provide integer
(16-bit two's complement), double integer (32-bit two's
complement), logical (16-bit positive integer), and floating
point (32 bits including 23-bit precision mantissa)
arithmetic. Special instructions like triple normalizing shift
aid software implemented multiple precision floating point
arithmetic.

Other special instructions are designated as privileged,
meaning that they are usable only by the operating system
or by users which the operating system permits to run in
privileged mode.

MEMORY

• Technology independent, speed independent

• One or two modules
• Interleaving provision

• Addressable to 64K words (131,072 bytes)

• 17 bits includes parity bit

Due to the modular construction of the HP 3000, memory
modules are not restricted to specific characteristics, such
as memory cycle time. Synchronous timing is required only
when communicating with other modules over the central
data bus. Thus memories may be of any type: low speed, or
inexpensive, to high speed minimum access time - and may
be mixed in the same system. Any currently offered
memory technology (magnetic core, solid state, etc.) may
be used and intermixed, and system updating is easily
accomplished in the future as the state-of-the-art advances.

One or two memory modules may be used in the system.
Modules are available for 32K, 48K, and 64K word
configurations. In all cases the word length is 17 bits - 16
bits of data (one word or two bytes) and one parity bit. If
two 32K word memory modules are present, two-way inter-
leaving of memory addresses is accomplished by simply
adjusting switches or jumpers within each memory module
and in the CPU. Interleaving is then automatic, entirely
dependent on the value of absolute memory addresses
transmitted over the central data bus.
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System Features

I/O AND PERIPHERALS

GENERAL
• Privileged control of I/O
• Concurrent I/O operations
• Three ways to implement I/O
• Direct memory access by all channels
• Device-independent I/O program execution
• Up to 253 devices
• Independent parameters for flexible I/O

I/O SYSTEM
• Multiplexer channel
• Selector Channel
• Direct I/O

INTERRUPT SYSTEM
• Up to 253 external interrupts
• Independent masking and priority structures
• Microprogrammed environment switching
• Common stack for interrupt processing
• Also 17 internal interrupts plus 7 traps

PERIPHERALS
• Versatile mass storage units
• Card equipment
• Consoles/T erm.inals
• Line printers-- -
• Punched tape equipment
• Data communications interfaces
• Add-oris supplied as complete I/O subsystems

GENERAL

Input/output operations are defined as "privileged" oper-
ations by the HP 3000. Accordingly, I/O is normally per-
formed for the user by the operating system, and the entire
I/O system is not visible to the user. When the user asks to
read a named file, he is only implicitly specifying the actual
disc address of the file; the file system determines the
explicit address for him from a disc file directory and
performs the read. At another level, when a user asks the
file system for a certain type of device by specifying a
device class (e.g., magnetic tape, line printer, etc.), the file
system takes care of allocating an actual device for the user.
Users who must have actual contact with special devices
(such as in teal-time applications) are assigned their own
device channels during system configuration and they by-
pass the file system.

All I/O devices can be operated concurrently (within
system bandwidth). Peripherals that fail are taken off line
by operator command.

There are three distinct means of implementing I/O. This
results in efficient use of data paths in accordance with the
capabilities of different peripheral devices. The three
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methods are described below under the heading "I/O
System". Multiplexer channels are for medium to high
speed synchronous and asynchronous I/O. Selector chan-
nels are for high speed synchronous I/O. Direct I/O is used
for low speed asynchronous devices.

All selector and multiplexer channels have direct memory
access. The CPU simply issues a "Start I/O" instruction to
the device controller and the controller then assumes con-
trol of its own I/O program execution. The I/O program
uses a unique set of commands (not related to the basic
instruction set) to transfer information between memory
and the external device. Note that once the device oper-
ation has been initiated, the CPU is free to continue
processing. Both tasks run concurrently until the appropri-
ate I/O command terminates the device transfer.

Since the initiating instruction, "Start I/O", is consistently
the same for any type of device, programs can be written in
a general, device-independent manner.

Device controllers are identified by a device number which
is used to access the Device Reference Table (DRT). The
DRT is known to both hardware and software. Since there
can be a maximum of 253 entries in this table, the HP 3000
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may have up to 253 devices in its I/O system. (Actual
limitation is the 8·bit I/O address bus.)

In addition to a device number, there are two other charac-
teristic numbers associated with each device. These are:
data service priority and interrupt priority. Each of these
values is completely independent of the others, and none is
related to the physical location of devices or controllers.
This mutual independence of characteristics provides the
following advantages:

1. Device numbers can be assigned consecutively, starting
at number 3 and proceeding up to the last assigned
device in the system. When a new device is added, it is
merely assigned the next higher available number (or
any vacant number).

2. A new device added to the system may have its con-
troller connected anywhere in the priority chain, inde-
pendent of physical location within the cabinet.

3. Since data service priority and interrupt priority are
independent of each other, a device which requires a
high data transfer rate but interrupts infrequently (such
as a disc) may be assigned a high data service priority
but a low interrupt priority. Conversely, a device which
has a low data rate but has an important interrupt
significance (such as an alarm condition) may be con-
figured to a high interrupt priority.

I/O SYSTEM

Multiplexer Channel. Each multiplexer channel handles up
to 16 devices. By multiplexing device inputs, cumulative
data rates of 880,000 bytes per second are possible with the
initial memory offered. Data from the multiplexer channel
is applied directly to the I/O processor for transfer to
memory via the central data bus.

Selector Channel. Selector channel data transfers bypass the
I/O processor completely to provide for very high speed
data transfer or additional I/O bandwidth. Transfer rates up
to 1.9 million bytes per second for a single device are
possible with non-interleaved memory. Up to eight device
controllers can be handled by one selector channel; each
device will complete its block transfer before another can
be selected. The selector channel interface to the central
data bus can accept two channels which can be handled
simultaneously on a multiplexed basis.

Direct I/O. The HP 3000 instruction set includes four
instructions for transferring information directly between

System Features

I/O devices and the top of the stack in the CPU. These are:
RIO (Read I/O), WIO (Write I/O), TIO (Test I/O), and CIO
(Control I/O). Reading and writing is accomplished on a
word-at-a-time basis, and would be used for low speed
asynchronous devices. An Asynchronous Terminal Control-
ler, which uses direct I/O, can handle 16 terminals at
transfer rates up to 2400 baud.

INTERRUPT SYSTEM

The interrupt system provides for up to 253 external inter-
rupt levels. The priority level for each device is hardware
determined when the system is configured. Interrupt
priority is independent of data service priority. Interrupt
priorities are easily changed by clip-on wires which deter-
mine the routing of the interrupt poll.

When interrupts occur, the microprogrammed interrupt
handler automatically identifies each interrupt and grants
control to the highest priority interrupt. Current oper-
ational status is saved by the microprogram, which then sets
up the interrupt processing environment and transfers con-
trol to the interrupt routine. This micro programmed con-
text switching is performed in an average time of 21 micro-
seconds (best case 18 microseconds, worst case 24.5
microseconds).

Interrupt routines operate on a common stack (Interrupt
Control Stack) which is known to both hardware and
software. This feature permits nesting of interrupt routines
in the case of multiple interrupts, and further reduces
environment switching time by about two microseconds if
already operating on the Interrupt Control Stack.

The interrupt system also provides for 17 internal inter-
rupts (for user errors, system violations, hardware faults,
and power fail/restart) plus seven traps for arithmetic errors
and illegal use of instructions.

PERIPHERALS

Mass storage devices include both fixed- and moving-head
disc files. The fixed-head disc files provide an average access
time of only 8.7 milliseconds and a data transfer rate of
496,000 bytes per second. Such high-speed performance
makes this device ideal for swapping disc files. Storage
capacity is 2 or 4 million bytes per unit. For maximum
flexibility and storage capacity, moving-head disc files are
available. These units provide storage capacities from 5 to
50 million bytes and data transfer rates of up to 312,000
bytes per second. On-line storage can be expanded to more
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System Features

than one billion bytes. Low-cost magnetic tape units are
available in 9-channel models. Recording densities are 800
or 1600 bpi at read/write speeds of 45 inches per second.

Two types of card readers operate at 600 and 1200 cards
per minute. Card punches provide speeds of 250 cards per
minute.

Reliable high-speed system communication is provided by
either a 30 character per second (hard-copy output)
terminal or a CRT display terminal. Standard ASR-33
equipment is also available for terminal use. A printer
terminal is supplied as standard equipment for the system
console.

1-6

Line printer output is generated at either 200 or 600 lines
per minute. Both units provide 132-column print lines,
using either 64 or 96 characters.

High-speed punched tape equipment reads at 500 characters
per second. Punched tape output is available as a separate
unit at 75 characters per second. Either paper, plastic, or
mylar tape may be used with all units.

Also available are an asynchronous terminal controller and
synchronous interfaces for data communications.

Hewlett-Packard furnishes available peripherals as complete
I/O subsystems (including the device, interface, cables,
etc.), to facilitate system expansion in the field.

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle



OPERATING ENVIRONMENTS III
The HP 3000 hardware is typically accessible only through
the operating system. Thus the user's operating environ-
ment is the HP 3000 system software.

Major contributions to the power of the HP 3000 system
are provided by:

• A multiple-mode operating system

• A high-level systems programming language

• Standard programming languages

~ Extensive user-aid software.

Because the HP 3000 is a multipurpose system, each user
and function interfaces with the system at a level of
sophistication appropriate to his own task. Each user runs
in a protected environment free from interference by other
users. Program protection is supplied by hardware, and file
security is provided by software.

This section briefly describes the HP 3000 software under
the four general categories. For more in-depth coverage,
refer to the individual software reference manuals.

OPERATING SYSTEM

The Multiprogramming Executive (MPE/3000) is the only
operating system needed for the HP 3000, since it simul-
taneously manages both terminal and batch modes of
operation.

Consistency and compatibility between operating modes
are fundamental concepts of MPE/3000. Batch processing
activities and interactive terminal users access the same
software, and programs developed in the terminal mode
may be utilized under batch mode to take advantage of
available system peripherals.

Uniform access to disc files and standard input/output
devices is accomplished through the File System. Files are
accessed in two modes: sequential, which can have fixed or
variable record lengths, or direct. Files are opened, operated
on, and closed programmatically. Three levels of file
security are selectable by the user.

The Dispatcher function allocates CPU time among pro-
grams in execution. All processes are entered into a master
queue according to their priority. When execution has been
interrupted (I/O, internal interrupt, time interrupt, etc.),

CPU control is granted to the highest priority process ready
to execute in main memory.

The memory management function dynamically allocates
main memory space on a priority basis among contending
users. Several programs can be active in memory con-
currently. When a higher priority program must be serviced,
the executing program is interrupted or overwritten (data is
saved). Programs may be relocated anywhere in main
memory and continue executing from the point of
interru ption.

BATCH MODE. Batch processing is the execution of user
jobs that have been prepared on some input medium such
as punched cards. Each job is self-contained and includes all
necessary commands, programs, data, etc., for the operating
system to use. No further instructions from the pro-
grammer are required during execution.

Several jobs can be submitted from one or more devices
concurrently. Input jobs are organized in scheduling queues
for execution, and when any executing program is sus-
pended temporarily (e.g., waiting for input), MPE/3000
starts up the next highest priority job. Thus the system
continues to operate at peak efficiency.

TERMINAL MODE. A user operating in terminal mode can
be connected to the system either directly or through
telephone lines. The user sitting at a keyboard terminal
interacts with the system and receives immediate responses
to his input. Since multiple terminals can be active at one
time, they are processed through a time slicing technique
(each active terminal is given an equal slice from each time
period). MPE/3000 can continue to execute batch jobs at
the same time as it is handling terminals.

Languages available to terminal users include HP extended
FORTRAN, HP extended BASIC, COBOL, and the HP
Systems Programming Language (SPL/3000).

SYSTEMS PROGRAMMING
LANGUAGE

Instead of the customary assembly language, a unique new
language - developed especially for writing systems pro-
grams - has been designed for the HP 3000. This language
is the Systems Programming Language, or SPL/3000. It is
both a high-level language and a machine-dependent
language, combining the best features of both.
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Operating Environments

The high-level features are provided by a powerful,
procedure-oriented structure that is similar (but not equiva-
lent) to the international language ALGOL. This structure
permits efficient coding which can be written many times
faster than if using standard assembly languages. Finished
programs are self documenting, making programs easier to
read as well as easier to write.

Machine-dependent features permit exact and efficient con-
trol of the hardware when such control is desired. The
programmer can address hardware registers explicitly, ex-
tract and deposit variable bit fields, execute branches based
on hardware status, and directly execute multi-function
machine instructions such as SCAN, MOVE, PUSH and SET
REGISTERS. An assemble statement effectively provides a
built-in assembler.

Using both the high-level and machine-dependent features of
SPL/3000, program execution times are very close to times
achievable by comparable assembly language coding.

STANDARD
PROGRAMMING LANGUAGES

FORTRAN/3000. The FORTRAN compiler for the HP
3000 accepts a powerful extended version of ANSI
standard FORTRAN (x3.9-1966). To support multi-
terminal capabilities, FORTRAN/3000 has been extended
to allow free-form program input from a terminal device.
Other extensions include: full 128-character USASCII 8-bit
character set; character string manipulation with multi-
dimensional string arrays; all MPE/3000 file capabilities;
recursive subroutines with dynamic allocation of temporary
local storage; variable names may contain up to 15 char-
acters; and mixed mode arithmetic.

BASIC/3000. BASIC is a simple language designed
especially for interactive terminal use. The BASIC/3000
version includes all the features of the standard BASIC
language, plus a large number of extensions which exploit
the inherent system capabilities of the HP 3000. The result
is the most powerful version of BASIC available with any
computer system. Although the interpreter is designed
primarily for use from terminals, the inclusion of a
command/program/data file facility makes it usable in
batch mode as well.

COBOL/3000. HP 3000 COBOL is based on the ANSI
Standard COBOL (USAS x3.23-1968) at a level upward
compatible with the highest level of the Federal Govern-
ment Standard. (ECMA COBOL conforms with ANSI
COBOL.) COBOL/3000 is an extremely powerful and
versatile computer language. It is ideal for administrative,
financial, accounting, agency, inventory, warehousing,
distribution and other commercial EDP applications.
COBOL/3000 consists of a basic nucleus and functional
processing modules that provide capabilities for table
handling, sequential or random file access; record sorting,
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program segmentation, and specifying text to be copied
from a library. An additional functional processing module
for interprogram communication provides the capability to
call subprograms written in COBOL/3000 or other HP 3000
languages from COBOL/3000 programs.

USER-AID SUBSYSTEMS

Support software includes several classes of common and
useful subroutines. All are written in SPL/3000.

The HP 3000 Compiler Library is a collection of sub-
routines which provide common functions required by
FORTRAN, SPL/3000, and BASIC programs, such as:
extended precision floating point arithmetic, matrix oper-
ations, complex arithmetic, and trigonometric and mathe-
matical functions.

The EDIT/3000 Text Editor permits the user to create and
edit on-line/batch computer programs and ordinary manu-
script text. It allows the user to manipulate files of upper
and lower case ASCII characters. Lines, strings and charac-
ters can be inserted, deleted, replaced, searched for, etc.
The files to be edited can be source language programs,
such as FORTRAN, SPL, COBOL, etc., or textual material,
such as reports.

TRACE/3000 is a programmable debugging tool for high-
level languages (FORTRAN/3000 and SPL/3000). It allows
the programmer to monitor the execution of a program.
The programmer can use TRACE/3000 to check the state
of the program whenever a variable is changed or a label is
passed. In addition, the programmer can specify selective
conditions for output of information; e.g. print data only
when a variable exceeds a certain value, or when a variable
is changed a specific number of times.

The SORT/3000 Subsystem provides the capability to sort
and/or merge multiple files of sequential records into a
sequential file. This permits users of the HP 3000 Computer
System to arrange large quantities of records (a file) into a
prescribed order. Sorting is based on keys (values of one or
more data fields). Merging forms one sorted sequence of
records by combining one or more previously sorted
sequences of records.

A set of scientifically-oriented software includes an exten-
sive Scientific Library (geometric functions, correlation,
etc.), and a group of interactive Statistical Analysis
Routines (STAR). The Scientific Library routines can be
called by user programs written in FORTRAN/3000,
SPL/3000, or BASIC/3000. Communication with STAR is
done via commands (in batch mode) or questions and
answers (in on-line terminal mode).
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HARDWARE DIAGNOSTICS

The diagnostic software for the HP 3000 hardware is
divided into three levels to cover all possible problem situ-
ations. The System Diagnostic Monitor (SDMj3000) runs
on-line diagnostics under control of the operating system.
Useful work may continue while this diagnostic is being
run. A set of stand-alone diagnostics may also be used,
which runs directly on the central processor without the
operating system. If the problem is such that the stand-
alone diagnostics cannot be run, the microdiagnostics can
be used. These microprograms replace the instruction set
microprograms of the central processor and check the
functions of the hardware from the inside out. The micro-
diagnostic hardware, the hardware maintenance panel, and
the auxiliary control panel may be connected remotely to a
computer over a modem-common carrier line to allow
direct Hewlett-Packard assistance on difficult problems.

Operating Environments

FUNDAMENTAL
OPERATING SOFTWARE

The software listed below is required for operation of the
HP 3000, and is designated as Fundamental Operating Soft-
ware. Other software described above is optional dependent
on system application or configuration. The Fundamental
Operating Software includes:

• MPE/3000 (Multiprogramming Executive)

• SDM/3000 (System Diagnostic Monitor)

• Compiler Library

• File Utilities

• TRACEj3000 (Symbol Trace Facility)

• SPLj3000
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CENTRAL PROCESSOR lID

The Central Processor module determines the basic charac-
teristics of the hardware system. This module includes a
microprocessor, which processes all the machine instruc-
tions, a complement of 20 hardware registers, various
indicators, and the logic for processing interrupts and
input/output functions.

This section describes and defines the component elements
of the Central Processor module, However, since I/O and
interrupts are extensive subjects, they are treated in sepa-
rate sections later in this manual, The discussion here con-
centrates primarily on the CPU registers, their purposes,
and formats. First, for an overall view of the module, the
basic structure will be shown and discussed.

CENTRAL
DATA

Central Processor Unit (CPU) BUS
---. ""._--_. (To Memory)

I Indicators I
t CPU

Registers

F
Data

---...
[ r=Current Micro- .•. ~

Instruction I CIR I processor t::=
---...---...

Register r r ---...
Next

t-- ---...
r: ---...

Instruction I NIR I
Register t Execution...•

Instruction
Module
Control

I/O Processor (lOP) I/O External Unit
Execution Interrupts •.. (MCU)

---- External Interrupts -
I/O Logic

Data

~
Input/

Output

(I/O Devices)

Figure 3-1. Central Processor Module
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MODULE STRUCTURE

Basically, the Central Processor module is divided into three
major component sections. These are: Central Processor
Unit (CPU), I/O Processor (lOP), and Module Control Unit
(MCU). The MCU is shared by the CPU and the lOP. Refer
to figure 3-1.

CENTRAL PROCESSOR UNIT

The CPU accounts for most of the logic circuitry in the
module. Af:, shown in figure 3-1, the major elements are the
microprocessor, the indicators, and the CPU registers
(including the Next and Current Instruction Registers).
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Central Processor

The basic sequence of events for the CPU is as follows: The
microprocessor requests an instruction from memory via
the MCU. When received, the instruction is loaded into the
Next Instruction Register (NIR). When the current instruc-
tion is completely executed, the new instruction is trans-
ferred from NIR to the Current Instruction Register (CIR).
This causes the microprocessor to begin executing a micro-
program stored in its own internal solid-state memory. The
microprogram manipulates and uses the contents of one or
(usually) several CPU registers (see "Execution" arrow),
according to the needs of the machine instruction being
executed. The microprogram may change the state of one
or more of the indicators, during execution, and may also
initiate the transfer of operands or data to or from
memory. At the conclusion of the microprogram, the
desired action (such as a computation between two
registers) will be complete, and the last step of the micro-
program is to load the new NIR contents into CIR for
execution of the next instruction.

I/O PROCESSOR

There are seven 1/0 instructions which, when the CPU
executes their respective microprograms, will cause the 1/0
logic to perform some function. (See "1/0 Execution"
arrow.) The lOP may cause an external device to transfer
data to or from memory (or to or from a CPU register), or
may cause the device to enable or request an interrupt.
When a device interrupts, the lOP sets a bit in one of the
CPU registers.

The hardware logic of the lOP is discussed extensively in
Section VIII, and general input/output operations are
described in Section VI. The interrupt system is discussed
in Section VII. Refer to these sections for detailed informa-
tion on 1/0, interrupts, and the lOP.

MODULE CONTROL UNIT

Most modules require a Module Control Unit (MCU) for
inter-module communication via the central data bus. (The
Selector Channel uses a Port Controller to perform MCU
functions.) The MCU for the Central Processor module
actually consists of two nearly-identical units, one for the
CPU and one for the lOP. The lOP normally has higher
priority in gaining access to the bus; however, when the
CPU is attempting to complete a semi-completed operation
(e.g., wants to transmit data to store in memory), the CPU
takes higher priority.

In general, Central Processor communications via the MCU
would normally be to or from a memory module.
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STACK

One of the fundamental features of the HP 3000 archi-
tecture is the data stack concept. Later, in Section IV, the
operation of the stack will be described in detail. Here, the
method of referring to elements in the stack will be
defined. Refer to figure 3-2.

Figure 3-2 shows a data stack with 22 filled locations, all
containing valid data, and 8 available unfilled locations. The
stack area is delimited by the location defined as DB (Data
Base) and the location defined as S (Stack pointer). The
addresses DB and S are retained in dedicated CPU registers.

The data in the DB location is the oldest element on the
stack. The data in the S location is the most current
element. The location S is also referred to as the "Top of
Stack" or TOS. Conventionally, the "top" is shown in
diagrams "downward" from DB; this corresponds to the
normal progression of writing software programs, which
begins at the top of the page and proceeds downward.

To refer to previously stacked elements of data, "S-minus"
relative addressing is used. Thus S-l is the second element
on the stack, S- 2 is the third, and so on. S-minus relative
addressing is one of the standard addressing conventions, as
will be discussed later in this section.

t

DB-+

--.
~•

TOS -___.

z-+

Undefined
Data
Area

etc_
S-7
S-6

S-5

S-4
Dor S-3
C or S-2

B or s-t
A or S or

Figure 3-2_ Elements in a Data Stack
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Since the top four elements of the stack are the most
frequently used, the letters A, B, C, D are also often used.
With this convention, A is the top of the stack, or S, B is
S-l, C is S- 2, and D is S- 3. There are, in fact, four CPU
registers (TRO through TR3) which are sometimes referred
to by the logical names RA, RB, RC, and RD, and may at
various times contain up to four of the topmost stack
elements. However, these registers are not explicitly
addressable; the S-rninus addressing mode must be used to
access their contents. The A, B, C, D designations are
primarily a documentation convenience.

The area from S+l to Z (the eight shaded locations) are
available for adding more elements to the stack. When a
data word is added to the stack, it is stored into the next
available location and the S pointer is incremented by one
to reflect the new TOS. This process is said to push a word
onto the stack. To delete a word from the stack, the S
pointer is simply decremented by one, thus putting the
word into the undefined area.

FORMATS

DATA
There are six different data formats that are processable by
System/3000 instructions. These are shown in figure 3-3.
(The long floating point format is used primarily in soft-
ware; the TNSL instruction is the only hardware operation
which directly handles this format.)

BYTE FORMAT. Bytes are processed by five of the Move
instructions (CMPB, MVB, MVBW, SCU, SCW), by two
memory reference instructions (LDB and STB), and by the
"byte test" instruction, BTST. Figure 3-3 shows the basic
byte format, which usually contains an eight- bit data
character, and the format for packing two bytes into a
memory word. When bytes are processed by machine in-
structions, the bytes are individually addressed, fetched,
and stored as though memory consisted of a number of
eight-bit locations. (See" Addressing Conventions".) When
consecutive bytes are addressed in memory with ascending
addresses, the high order byte of a packed word is accessed
first and the low order byte (bits 8 through 15) second.

LOGICAL FORMAT. In logical arithmetic, a 16-bit data
word is taken as a positive integer, with an assumed binary
point to the right of bit 15 and an assumed + sign to the
left of bit 0, The range of possible integers is ° through
+65,535, decimal. The instruction set provides six instruc-
tions for logical arithmetic: LCMP, LADD, LSUB, LMPY,

Central Processor

LDIV, and NOT. In addition and subtraction (LADD,
LSUB), the only difference from integer adds and subtracts
is that logical adds and subtracts do not set the Overflow
indicator. In all other respects (16-bit result, Condition
Code, and Carry), the results are the same. For addition,
the Carry bit is set if a carry out of the most significant bit
occurs; if the carry out does not occur, the Carry bit is
cleared. For subtraction (which is accomplished by two's
complementing the subtrahend and adding), Carry is set by
a computation of A - B if B is less than A. Carry is cleared
if B is greater than A. Thus if the Carry bit is set by LADD,
the sum has exceeded +65,535, and if the Carry bit fails to
be set by LSUB, the difference is less than zero. In either
case the result is modulo 216. For multiplication (LMPY),
overflow cannot occur and the Carry bit has a special
meaning (see definition). For division (LDIV), the Overflow
(not Carry) bit is used,· and indicates that the quotient is
too large to be represented in 16 bits; The quotient in this
case will be modulo 216. When the Condition Code is set
by a logical operator, it is set as if the result were a signed
quantity. For example, CCL is set if bit 0 is a "1"
("negative" quantity).

SINGLE FIXED POINT FORMAT. The single-word fixed
point format permits two's complement representation of
both positive and negative integers. Bit 0 is a sign bit, and
the remaining 15 bits define the quantity. The range of
possible integers is -32,768 through +32,767. Bit 0 is a "0"
for positive numbers and a "1" for negative numbers. The
binary point is assumed to be to the right of bit 15. The
instruction set provides 24 instructions for single-length
integer arithmetic. These include various modes of addition,
subtraction, incrementing and decrementing. In addition
and subtraction (ADD, SUB), conventional two's comple-
ment arithmetic is used. Both Overflow and Carry indi-
cators are provided. Overflow indicates that the
computation result required more than 15 bits for the
quantity and consequently overflowed into bit 0, the sign
bit. For valid subtraction and addition, Carry should be set
by SUB, but not by ADD. For multiplication and division,
Carry is not used; Overflow indicates that the result cannot
be contained in 15 bits plus sign.

DOUBLE FIXED POINT FORMAT. The double-word
fixed point format is the same as the single-length format
described in the preceding paragraph except that two words
are linked together to form a 32-bit doubleword quantity.
Bit 0 of the most significant word is the sign bit. The range
of possible integers is approximately - 2 billion to +2
billion. The instruction set provides six instructions for
double-length integer arithmetic: DCMP, DADD, DSUB,
DNEG, MPYL, and DIVL. For multiplication with MPYL,
overflow cannot occur and the Overflow bit is always
cleared; Carry is used for a special purpose (see MPYL
definition). The operands for MPYL and the divisor and
quotient for DIVL are Single-word.

FLOATING POINT FORMAT. In this format, bit o of the
most significant word is the sign bit, bits 1 through 9 are
used to express the exponent, and the remaining bits repre-
sent the fraction. The binary point is assumed to be to the
left of bit 10,
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Central Processor

BYTE
01234567

I 11111111
Packed
Bytes

o 7 8 15

11111111111111111
~

Byte 0 Byte 1
(First) (Second)

LOGICAL FORMAT
o 15

I 111111111111 1111
'-----v------J\

Positive Integer
16 bits

Binary Point

Single Word

o 15

rtlllllllllllllll,
Sign Two's Complement Integer Binary Point

16 bits

FIXEO POINT

Double Word

o 15 0 15

(1111111111111111111111111111111111\

Sign Two's Complement Integer Binary Point
32 bits

FIXEO POINT

FLOATING POINT
012345678910 15 0 15

) IIIIIIIII! 11111111111111111111111

Exponent \ Positive Fraction
Sign (Biased +256) Binary 22 bits

9 bits Point

Long format

012345678910 150 150 15

1111111111 II 1111 1 111111111111111 II 11111111 1111 11111

I Exponent \ Positive Fraction
Sign (Biased +256) Binary 38 bits

9 bits Point

FLOATING POINT

INCREASING ADDRESSES IN MEMORY

Figure 3-3. Data Formats
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The floating point format used by the HP 3000 has some
special features which are illustrated separately in figure
3·4. The important distinction is the use of "sign with
+rnagnitude" representation. In this type of representation,
the fraction is always positive, with the sign bit indicating
the sign of the number. There is an assumed "1" to the left
of the binary point. Thus all floating point numbers, by
definition, exist in normalized form and the mantissa effec-
tively has 23 bits. However, no bit is wasted on the leading
"1", and all fraction bits are significant.

The exception to this convention is that zero is a word
containing all "O"s. For this to be true, the assumed leading
"1" is disregarded.

Central Processor

The exponent for floating point numbers is biased by +256.
Since the nine exponent bits give a range of 0 through 511,
subtracting the bias yields an exponent range of - 256
through +255. Figure 3·4 shows four examples of exponent
calculation. Note that if bit 1 is a "0", exponents are
negative; if bit 1 is a "1", exponents are positive or zero,

Thus the floating point representation of 1.0 is a "I" in bit
1 and "O"s in all other bits. This indicates 1 X 2° .

Figure 3·4 also shows the mathematical equation for corn-
puting the value of a floating point number represented by
the above conventions, (The exception: zero is defined as:
S=E=F=O.)

Mantissa
23 Significant Bits

ASSUMED
LEADING "1"

Exception:
flOATING POINT
"O'l

EXPONENT
BIAS

Binary

1010101010101010101
1 234 5 6 789

1010101010101010111
1 234 5 6 789

1110101010101010101
123456789

1110101010101010111
1 234 5 6 7 8 9

Decimal - Bias Exponent

- 256 -256

- 256 -255

- 256 0

- 256

o

256

257

Therefore:
flOATING POINT
"1.0"

Mathematically:
DECIMAL VALUE = (-1 )S X 2 E-256 X (1 + F X 2-22)

T TT T T T
Sign Exp Bias Leading Fraction Point

"1" Position

Figure 3-4. Floating Point Data Representation
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Central Processor

The instruction set provides ten floating point instructions:
FCMP, FADD, FSUB, FMPY, FDIV, FNEG, FLT, DFLT,
FIXT, FIXR. Overflow indication is provided by the mathe-
matical operations (FADD, FSUB, FMPY, FDIV), and by
the "fix" instructions (FIXT, FIXR). The Carry indication
is not used, except for a special purpose by the FIXT and
FIXR instructions (see definitions).

LONG FLOATING POINT FORMAT. The long floating
point format is the same as the standard format described
above except that 16 fraction bits are added to the right of
the second word. With only this change, the information
given in figure 3-4 is also valid for this format. (Note that
the "point position" modifier in the equation becomes
2-38 instead of 2-22.) Only one instruction, TNSL,
directly uses the triple-length floating point format.

Note: In all cases where more than one word is
used to represent a single unit of data, the
words are stored in memory such that the
least significant word is stored in the
higher address location. For example,
when pushing a doubleword or tripleword
quantity onto the stack, the least signifi-
cant word will be on the TOS.

INSTRUCTIONS

The HP 3000 instruction set has been designed for
maximum efficiency of bit usage in the instruction word.
For this reason, the instruction formats do not necessarily
always fall neatly into rigid field boundaries. There are, in
fact, 23 distinct formats used by the instruction set.

Figure 3-5 shows the primary format in each of the 13
instruction groups. Exceptions are noted and can be
obtained from Section V, where formats are given for each
individual instruction. The following paragraphs briefly
describe the basic formats shown in figure 3-5.

GENERAL FORMAT. The first format in figure 3-5 shows
the general scheme for dividing the instruction word into
code fields. Only the first field is rigidly adhered to. This
field, bits 0 through 3, either defines a specific instruction
code in the memory address group (or the "loop control"
group), or else defines one of the sub-opcode groups. There
are four sub-opcode groups: 1, 2, 3, and "stack ops". The
field for sub-opcodes varies. For sub-opcodes 2 and 3, bits
4, 5, 6, and 7 are used, as shown. For sub-opcode group 1
codes, bits 5 through 9 are used, and for stack ops the
remainder of the word is used. In some cases the sub-
opcode will enable a third field, called a mini-opcode or a
special opcode, in bits 8, 9, 10, and 11. The remainder of
the word has a variety of special uses, and commonly is part
of an "argument field".

STACK OP. The stack op format is defined by four "O"s in
the first four bits. The remaining 12 bits are divided into

3-6

two fields; stack op A and stack op B. Either or both of
these fields may contain any of the 63 stack op instruction
codes. Execution sequence is from left to right (A first,
then B). Interrupts may occur between the execution of A
and B. Also note that indicators (Carry, Overflow, and
Condition Code) are set by the last executed stack op. If
using only one of the two stack op fields, it is more
efficient to use stack op A since the hardware always looks
ahead to see if stack op B is a NOP; this permits the
hardware to ignore the second field, resulting in a time
saving.

SHIFT. The shift instruction group uses about half of the
sub-opcode 1 group of codes. Sub-opcode group 1 is
defined by 0001 in the first four bits. If bit 4, the Index
bit, is a "I", the content of the Index register is added to
the shift count in bits 10 through 15 to specify the number
of places each data bit is shifted. Bits 5 through 9 encode
the specific shift instruction.

BRANCH. The branch instructions account for 11 of the
sub-opcode 1 group of codes. In the branch instruction
format, bit 4 is used as an indirect bit (indirect if bit 4 =

"1"). Bits 5 through 9 encode the specific branch instruc-
tion. Bits 11 through 15 give a P relative displacement (0
through 31), and bit 10 specifies whether the displacement
is + or - relative to P ("0" = +, "I" = -).

BIT TEST. The bit test instructions, also in sub-opcode
group 1, use bits 5 through 9 to specify the instruction. Bits
10 through 15 specify a bit position in the TOS word for
testing. The bit position specified is modified by the addi-
tion of the Index register contents if the Index bit is set (bit
4 = "1").

MOVE. The move group of instructions accounts for eight
of the codes specified by the sub-opcode 2 code 0000.
Sub-opcode group 2 is defined by 0010 in the first four
bits. Bits 8, 9, and 10 of the move instruction format
encode the specific instruction. Bit 11 is used for some
instructions to specify whether the source of the moved
data is PB relative (bit 11 = "0") or DB relative (bit 11 =

"1"). Bit 11 is also used in some cases as an additional code
bit for specifying the instruction. Bits 12 and 13 are not
used. Bits 14 and 15 are used to specify an S-decrement
value to delete, if desired, the move parameters from the
top of the stack.

SPECIAL. The special group uses four mini-opcodes. The
mini-opcode group is also, like the moves, specified by the
sub-opcode 2 code 0000. Bits 8 through 11, plus bit 15,
encode the instruction. Bits 12, 13, and 14 are not used.

IMMEDIATE. The immediate instruction group uses codes
in both sub-opcode group 2 (coded 0010) and sub-opcode
group 3 (coded 0011). Bits 4 through 7 encode the instruc-
tion and bits 8 through 15 are used for the immediate
operand.

FIELD. The format for field deposit and extract instruc-
tions is specified by two of the sub-opcode 2 group of
codes. Bits 4 through 7 specify the instruction and the

Keven
Rectangle

Keven
Rectangle



GENERAL
FORMAT

STACK
OP

o 23456789101112131415

I 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 I
Memory
Opcode

or
Sub-opcode

Group

Sub-opcode Mini-opcode
or

Special
Opcode

Central Processor

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IMMEDIATE 101011 I 0 ( I ; 1 I I I I I I I I
t Sub-opcode 2

FIELD

or: 1 Sub-opcode 3
Immediate
Operand

o 2 3 4 5 6 7 8 9 10 1112131415

101010101 I I I I I I I I I I I I
Stack Op A Stack Op B

0123456 7 8 9 10 11 12 13 14 15

I I I I I I I I I I I I
Sub-opcode 2 J-Field K-Field

0 2 3 4 5 6 7 8 9 10 11121314 15 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SHIFT

10101011 I x[ 1 I I I I I I I
REGISTER

101 011 101 I I I 101 I I I I I I ICONTROL
) Sub-opcode 1 DB OL Z Sta X Q SExcept

Shift XCHD, ADDS, Sub-opcode 2

Index Count SUBS Register

Bit Name

BRANCH
Except
BR, BCC

BIT
TEST

Except
TSBM

MOVE
Except
MVBW

SPECIAL
Except
LLBL

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sub-opcode 1

Indirect
Bit

2 3 4 5 6 7 8 9 10 111213 14 15

Bit Position

Index
Bit

11 12 13

Sub-opcode 2 Move
Opcode

PB/OB
Relative or
Additional
Code Bit

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sub-opcode 2 Mini-
Opcode Additional

Code Bit

PROGRAM
CONTROL

Except
PAUS, HALT
XEQ

o 1 2 3 4 5 6 7 8 9 10 11 121314 15

Sub-opcode 3 N-Field

o 1 2 3 4 5 6 7 8 9 10 11 121314 15

:~OT::~UPTI01 011 11 1 01 0 1 01 0 1 I 1 1 1 1
Sub-opcode 3 Special

Opcode
K-Field
(or not
used)

LOOP
CONTROL

MEMORY
ADDRESS

Except
LDPP,
LDPN

Opcode P Relative
Displacement

+/-
Relative

o 2 3 4 5 6 7 8 9 10 1112 13 14 15

Memory
Opcode Displacement

Index Inditect
Bit !lit

Figure 3-5. Instruction Formats
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Central Processor

remaining eight bits are divided into a J-field and a K-field.
The J-field specifies the starting bit number and the K field
specifies the number of bits.

REGISTER CONTROL. The format for the register control
instructions uses bits 9 through 15 to name a register and
bits 4 through 7 in sub-opcode group 2 to specify the
operation.

PROGRAM CONTROL. The program control instructions
account for four of the sub-opcode 3 codes. Sub-opcode 3
is specified by 0011 in the first four bits. The instruction is
encoded by bits 4 through 7, and the N-field in bits 8
through 15 is used either for a PL- displacement (PCAL
AND SCAL) or to specify a number of parameters to be
deleted on return from a procedure or subroutine (EXIT
and SXIT).

I/O AND INTERRUPT. The I/O and interrupt instructions
use 11 of the special opcodes (bits 8 through 11) defined
by the sub-opcode 3 code of 0000. The K-field, bits 12
through 15, is used by some of the instructions for an S-
displacement to locate a device number given in the stack.

LOOP CONTROL. The loop control instructions are
defined by a special coding of bits 4, 5, and 6 for memory
opcode 05 (which is otherwise defined as the STOR
instruction). Bits 8 through 15 give a P relative displace-
ment for a branch address, and bit 7 specifies whether the
displacement is + (= "0") or - (= "1") relative to P.

MEMORY ADDRESS. The memory address instruction for-
mat uses bits 0, 1, 2, and 3 to encode a specific instruction.
Bits 6 through 15 give both an addressing mode and a
displacement. (Refer to "Addressing Conventions", later in
this section.) Bit 5 is used to specify indirect addressing
(= "1"), if desired, and bit 4 is used to specify indexing
(= "1"), if desired. If both indirect addressing and indexing
are specified, post-indexing will occur.

STATUS WORD

There is a Status word for each code segment in the system.
At all times, the Status word associated with a given process
indicates the machine status following the execution of the
most recent instruction in that segment. The status for the
currently executing segment is resident in the Status
register, and is constantly being updated as each instruction
is executed. For segments that are not current (suspended
by either an interrupt or a procedure call), the Status word
exists in a stack marker in a data stack. (See "Stack Marker
Format" figure in Section IV.)

Figure 3-6 shows the format for the Status word. Note that
bits 8 through 15 indicate the segment number of the
curren tly executing code segment (when the particular
Status word is resident in the Status register). Thus, when a

3-8

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1M' 'T'R'O'C' , , , , , , , , , I
~~------v-------~
Condition

Code
(CC)

Segment
Number

(Currentlv Executing)

M Privileged Mode bit
1 ~ Privileged Mode
o ~ User mode

External Interrupts Enable/Disable
1 Enable
o ~ Disable

T User Traps Enable/Disable
1 ~ Enable
o ee Disable

R Right Stack Op Pending bit
1 ~ Pending (Execution V\ill proceed

with Stack Op B)
o Not Pendi ng

o Overflow bit

C Carry bit

CC Condition Code
00 ~ CCG (Greater)
01 ~ CCL (Less)
10 ~ CCE (Equal)

Figure 3-6. Status Word Format

Status word is pushed into a stack marker by an interrupt
or procedure call, these bits identify the segment that is to
be returned to when execution is resumed later.

The following descriptions of Status bits will assume that
the Status word under discussion is resident in the Status
register. All references to "current" conditions can also be
inferred as "then current" conditions in the case of sus-
pended segments or procedures.

Bit 0, the Privileged Mode bit, indicates that the current
segment is running either in privileged mode (if a "1") or
user mode (if a "0"). The state of this bit cannot be
changed by machine instructions while resident in the
Status register (except in privileged mode), and the PCAL
and EXIT instructions include checks to prevent illegal
mode changes by altering the non-current status Mode bits.

Bit 1 is used to enable or disable external interrupts. This
bit also cannot be changed in user mode while current, and
the EXIT instruction invokes a trap if a non-privileged user
illegally altered the bit while non-current. The state of bit 1
may be changed only in privileged mode. (PCAL and EXIT
disable external interrupts if they transfer control to the
Trace, Absence, or STT Entry Uncallable segments, due to
not being completely executable.)
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Bit 2 is used to enable or disable user traps (parameters 1
through 5 for interrupt segment 17). The state of this bit
may be changed in any mode while current (SETR in-
struction) or non-current (state not affected by EXIT).

Bit 3 is normally used only by the hardware. The computer
hardware will set this bit to a" I" if the right stack opcode
(bits 10 through 15) contain a valid instruction other than
NOP. The hardware requires this information in case an
interrupt occurs between the execution of the left and right
stack ops, The state of bit 3 cannot be changed in user
mode while current.

Bit 4 is the Overflow bit, and is one of the three indicators
(along with Carry and Condition Code) which are set or
cleared as an incidental operation by many of the machine
instructions. (See "Indicators" following each instruction
definition in Section V.) In general, Overflow is used as an
indicator only by signed integer and floating point compu-
tations. If set (= "1"), the indication is that the result of
the computation is too large to be represented in the
available number of bits in the data format. For floating
point, the setting of Overflow could also indicate that the
result is too small to be represented. If the user traps are
enabled (bit 2 set), an interrupt to segment 17 will occur in
lieu of setting the Overflow indicator (except for integer
overflow, which causes both results to happen). This will
permit the system to generate a message to the user, indi-
cating which type of overflow or underflow occurred. All
user traps will set the Overflow indicator if traps are
disabled.

Bit 5 is the Carry bit. The Carry indicator is used primarily
by logical and integer arithmetic, and usually indicates a
carry (= "I") or lack of carry (= "0") out of the most
significant bit during a computation. The Carry bit is also
used by some instructions as an indicator for special
purposes which are stated in the instruction definitions.

Bits 6 and 7 are used for the Condition Code. Although
several instructions make special use of the Condition Code

Table 3-1. Condition Codes

eeA sets ee ccc (00) if operand> a
eel (01) if operand < 0
ccs (10) if operand =0

CCB sets ee eCG (00) if numerical (octal 060-071)
eel (01) if special char (all others)
eeE (10) if alphabetic (upper 101 - 132

lower 141 - 172)

ccc sets ee ccc (00) if operands 1 > 2
eel (01) if operands 1 < 2
eeE (10) if operands 1 = 2

Central Processor

(see definitions), the Condition Code typically indicates the
state of an operand (or a comparison result with two
operands). The operand may be a word, byte, doubleword,
or tripleword, and may be located on the top of the stack,
in the Index register, or in a specified memory location.
Three codings are used: 00, 01, and 10. (The "11" combi-
nation is not used.) Except for the special interpretations,
there are three basic patterns for interpreting these codes.
The three patterns are shown in table 3-1.

The most common Condition Code pattern is pattern A,
designated as CCA. In the CCA pattern, the Condition Code
is set to 00 if the operand is greater than zero, to 01 if the
operand is less than zero, or to 10 if the operand is exactly
zero. Since this usage of the Condition Code is so common,
the three codes 00, 01, and 10 are commonly named to
reflect these meanings. Thus 00 is CCG ("Greater"), 01 is
CCL ("Less"), and 10 is CCE ("Equal"). These names are
primarily used for documentation convenience.

Pattern B for the Condition Code, designated as CCB, is
used with byte oriented instructions. In the CCB pattern,
the Condition Code is set to 00 if the operand byte is an
ASCII numerical character, which would be represented by
octal values 060 through 071. The code is set to 10 if the
byte is an ASCII alphabetic character, which would be
represented by octal values 101 through 132 for upper case
letters, and 141 through 172 for lower case letters. The
code is set to 01 if the byte is an ASCII special character,
represented by the remaining octal values.

Pattern C for the Condition Code, designated as CCC, is
used with comparison instructions. The Condition Code is
set to 00 if operand 1 is greater than operand 2, or to 01 if
operand 1 is less than operand 2, or to 10 if the operands
are equal. In the instruction definitions, the first mentioned
operand is "operand 1". For example, the definition for
CMP reads: "The Condition Code is set to pattern C as a
result of the integer comparison of the second word of the
stack with the TOS." The second word of the stack is
therefore operand 1, and the TOS is operand 2. (The Index
of Instructions also defines this relationship, if the operands
are listed.)

CPU REGISTERS

Since the HP 3000 architecture is structured on code
segments and data segments, most of the CPU registers are
used for defining the segment limits and operating elements
within the segments. As shown in figure 3-7, three of the
CPU registers point to locations in a code segment; the
segment so pointed to is defined as the current code
segment. Six of the registers point to locations in a data
segment; the segment so pointed to is defined as the current
data segment. The following paragraphs define the
functions of the individual registers.
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CODE SEGMENT
POINTING
REGISTERS

1~ PB_'_R_eg_is_t_er__ ~J ~

CODE
SEGMENT

(Program Base)

I P·Register L---'--- __ ~I •...
(Program Counter)

l Pl.-Reqister
(Program Limit)

D INCREASING
ADDRESSES

OTHER CPU
REGISTERS

I ndex Register

3-10

ISR·Reg I ~{
C~_ ••.

Displacement
=0,1,2,3,4

DATA SEGMENT
POINTING
REGISTERS

DATA
SEGMENT

I Dt.-Reqister r ..•.
(Data Limit)

I DB· Register r ".
(Data Base)

I Q·Register ..
(Stack Marker)

'-~ - -

(Top-of-Stack in Memory)

l SM-Register
..•.

r-------.,
L__ ~~n2:r __

(Logical Top-of-Stack]

I Z·Register
l. ...

(Stack Limit)

Status Register Mask Register

Figure 3-7. CPU Registers
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COOE SEGMENT REGISTERS

PB-REGI8TER. The PB-register defines the program base of
the code segment being executed. The register contains a
16-bit absolute address pointing to the first location of the
code segment.

P-REGI8TER. The P-register is the program counter. It
contains a 16-bit absolute address pointing to the location
of the instruction being executed. It can never point to a
location beyond the limits defined by the PB- and PL-
registers. An attempt to do so will invoke a Bounds Viola-
tion interrupt or a PCAL to the operating system.

PL-REGI8TER. The PL-register defines the program limit
of the code segment being executed. The register contains a
16-bit absolute address pointing to the last location of the
code segment.

DATA SEGMENT REGISTERS

DL-REGI8TER. The DL-register defines the data limit of
the current data segment. The register contains a 16-bit
absolute address pointing to the first word of memory
available to the user's data space.

DB-REGI8TER. The DB-register defines the data base of
the current user's stack. The register contains a 16-bit
absolute address pointing to the first location of the
directly addressable global area of the stack.

Q-REGI8TER. The Q-register defines the current stack
marker in the current data segment. The portion of the
stack between Q and 8 represents data that is incurred by
the current procedure or routine. The Q-register contains a
16-bit absolute address pointing to the fourth word of the
current stack marker being used within the stack. The
content of this register may be changed by a SETR instruc-
tion, but since bounds checking is always performed by the
EXIT instruction, the location pointed to must be within
the limits defined by the DB- and Z-registers (except that
privileged mode may move Q below DB).

8M-REGI8TER. The 8M-register defines the last memory
location of the current stack. The register contains a 16-bit
absolute address pointing to the last accessed data location
in memory. Since the 8M-register may not necessarily point
to the logical top of the stack, the 8 pointer, rather than
the 8M-register, is the address of interest for programming
purposes. However, bounds checking is performed on the
8M-register, which must be between the limits defined by
the DB- and Z-registers (except that privileged mode may
move 8 below DB).

Central Processor

8R-REGISTER. The Slt-registerdefines the number of TOS
elements that are in CPU stack registers. The register con-
tains a 3-bit number which can only have one of the
following values: 0, 1, 2, 3, or 4. This number is a positive
displacement which, when added to the address in the
8M-register, indicates the actual (or "logical") top of the
stack.

S-POINTER. The S pointer defines the logical top of the
stack. The S pointer is not a physical register but rather is
logically comprised by adding together the SM- and SR-
register contents.

Note: The principle of using two physical
registers to create the S pointer is em-
ployed for hardware convenience in
achieving fast execution times. For nearly
all programming purposes, the existence
of the SM- and SR-registers may be
ignored, using instead only the value S.

Z-REGISTER. The Z-register defines the stack limit of the
current user's stack. The register contains a 16-bit absolute
address which points to the last location available to the
stack. (Each data segment actually has about 13 locations
beyond Z since bounds checks are made with SM instead of
S, and also to allow space for stack markers due to an
interrupt. )

OTHER CPU REGISTERS

Three CPU registers not associated with code or data seg-
ments are the Index register, the Status register, and the
Mask register. These are described in the following
paragraphs.

INDEX REGISTER. The Index register is a 16-bit register
which contains the index to be used by a machine instruc-
tion if indexing is specified. It may also be used to contain
a parameter or address for other (non-memory addressing)
instructions. The Index register is program accessible.

STATUS REGISTER. The Status register is a 16-bit register
which indicates the current status of the computer hard-
ware, including: the segment number of the currently
executing code segment, the state of the three indicators
(Overflow, Carry, and Condition Code), the current mode
(privileged or user), enable/disable control bits for external
interrupts and user traps, and stack opcode status. (Refer
to "Status Word" format earlier in this section.)
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MASK REGISTER. The Mask register is a Ifi-bit register
which indicates the current mask being used to enable or
disable specified groups of external interrupts. A "1" bit in
any particular position enables the group of external inter-
rupts which are specifically wired to be controlled by that
bit; a "0" bit will disable the group of interrupts. The Mask
register may be loaded from the TOS by the SMSK instruc-
tion (privileged) and may be read to the TOS by the RMSK
instruction (not privileged).

PRIVILEGED MODE

The HP 3000 has the capability of operating in either
privileged mode or user mode, and is capable of switching
dynamically from one mode to the other depending on the
type of operation being executed at a given instant.

Privileged mode is characterized by the ability to execute
the 19 privileged instructions and to call segments that have
been declared "uncallable". In general, the privileged user is
defined to be the operating system, which in most cases will
be the Hewlett-Packard MPE/3000 executive software.
Privileged operations, such as input/output, are performed
by the operating system, operating in privileged mode. For
an unprivileged user to perform such operations, it is neces-
sary to call one of the callable intrinsics of the operating
system, which will in turn call the uncallable intrinsics that
will perform the operation on behalf of the user.

The mode currently in effect in the system is indicated at
all times by bit 0 of the Status register. The state of this bit
may be changed only in privileged mode.

The method of declaring a code segment uncallable involves
the use of an "uncallable bit" in the format of local
program labels. The format and application of program
labels is discussed later, in Section IV.

ADDRESSING CONVENTIONS

MEMORY ADDRESSING

Earlier, in figure 3-5, the format for memory address in-
structions was shown to employ bits 6 through 15 for
"mode and displacement". The following paragraphs ex-
plain and illustrate the six memory addressing modes and
the respective displacement ranges. Refer to figure 3-8.

3-12

The HP 3000 uses relative addressing almost exclusively.
(Only privileged instructions, including the I/O group and
PLDA, PSTA, and LLSH, use absolute addresses.) Address-
ing may be relative to the location pointed to by the
P-register, the DB register, the Q-register, or the S pointer.
As shown in figure 3-8, addressing may be + or - with
respect to P or Q, but only + with respect to DB and - with
respect to S.
Note: When the letters P, Q, DB, etc., are used

alone as in the preceding paragraph, the
letter is interpreted to mean "the location
pointed to by the P-register, Q-register,
DB-register, etc." This convention
simplifies such references in documen-
tation and verbal communications.

The ranges of displacement for the various modes of rela-
tive addressing are also shown in figure 3-8. (These ranges
apply to direct, unindexed addressing; indirect addressing
and indexing are discussed under separate headings.) The
variety of displacement ranges is due to the particular
coding required to specify a given mode. For example only
two bits (6 and 7) are required to specify the P+, P-, and
DB+ relative modes. This leaves bits 8 through 15 for a
displacement, which therefore can be any value from 0
through 255. For Q+ mode, bits 9 through 15 give a
displacement range of 0 through 127. For Q- and S-
modes, bits 10 through 15 give a displacement range of 0
through 63. In order to provide the most efficient usage of
bits, the mode codes are assigned according to respective
needs for displacement range.

Note that the DB+, Q-, Q+, and S- addressing ranges may
overlap. Also, DB+, Q+, and S- may actually address words
currently held in TOS registers; this is automatically taken
care of by the hardware.

P+ and P- addressing modes are typically used for branches
and referencing of literals. The DB+ mode is used for
referencing global variables and pointers (i.e., indirect
addresses). The Q+ and Q- modes are useful for, respec-
tively, local variable storage and passing of procedure
parameters. The S- relative mode is typically used for
accessing parameters in subroutines.

Not all memory address instructions are capable of using all
six modes. The instruction definitions in Section V specify
which modes are applicable to a given instruction. Some vari-
ation from the above outline of relative addressing can be ex-
pected in certain cases. For example, the PCAL, SCAL, and
LLBL instructions (not in the memory address group) use
PL- relative addressing. Also INCM, LDB, STB, and BCC
deviate from this convention in their coding of bit 6.

Throughout this manual and in other HP 3000 docu-
mentation, the terms "displacement", "effective address",
"relative address", and "base" are used in connection with
memory addressing. These terms may be defined as follows:
The displacement is a positive number which is given in the
instruction word and points to a location "plus" or
"minus" that number of locations from a given reference
cell (also named in the instruction word). The location so
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ADDRESS INSTRUCTION BITS
MODE 6 I 7 1 8 I 9 110111 112 113 1 14 1 15

p+ Relative 0 0 Displacement 0: 255
p- Relative 0 Displacement 0: 255
DB+ Relative 0 Displacement 0: 255 •
Q+ Relative 0 Displacement 0 127 •
Q- Relative 0 • Displacement 0: 63 •
$- Relative Displacement 0: 63

CODE
SEGMENTPB ....••.

DATA
SEGMENT

DL ..•..

DB+ Relative

Q- Relative

Q+ Relative

$- Relative

DB

P- Relative } zss
Q

P },~P+ RelatiVe

PL--~~----------~

s

z

Figure 3-8. Memory Addressing Modes

indicated mayor may not be the effective address, which is
the final computed address, after displacement calculation,
indirect addressing (if any), and indexing (if any) have been
resolved. The effective address is always an absolute
address. The relative address, which can be extracted by an
LRA instruction, is obtained by subtracting the base from
the effective address; the base is either the PB address
(program base) or the DB address (data base).

Addressing arithmetic is done "modulo 65K" words (i.e.,
65,536 word addresses).

INDIRECT ADDRESSING

One level of indirect addressing is permitted. Indirect
addressing uses the location referenced by the initial dis-
placement (the "indirect cell") to specify another location
within the same code or data segment. In the case of
program references, the indirect cell contains a self-relative
address. In the case of data references, the indirect cell
contains a DB+ relative address. Refer to figure 3-9.

For memory address instructions, indirect addressing is
specified by bit 5 of the instruction word: "I" indicates
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CODE, Indirect
LOAD P+4, I

PB ..,.

-+ D
P+4 3 I""

J
P+7 -

...•.

Indirect
Cell

LOAD P-4, I
PB --.

P-7 Iw

J
P-4 -3

--- J

~

P

PL

P

PL

DATA, Indirect

LOAD 08+4, I
DB- U

8+4 7

8+7 t-"

-+

o

o

z

3-14

LOAD 0+4, I

DB- I'---

8+7 t-"

--- D,0+4 1

-+

Indirect
Cell

o

Q

z

ndirect
Cell

LOAD 0-4, I
or LOAD S-4, I

DB -+ •.........

8+7 t-"

0-4 7

D-+

5-4 7

D---

-

o

Q

s

z

Indirect
Cell

Indirect
Cell

Indirect
Cell

Figure 3-9. Examples of Indirect Addressing
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indirect to be used. For the branch instructions (excluding
BR), indirect addressing is specified by bit 4. See figure 3·5.

CODE INDIRECT. Figure 3·9 shows both P+ and P- ex·
arnples of the indirect addressing in a code segment. The
first example shows the actions occurring for an assumed
instruction of "LOAD P+4, I". The displacement, +4,
points to the indirect cell at P+4. The indirect cell contains
a self-relative address of +3. This points to a location three
addresses higher, or P+7. It is the content of this location
which will be loaded onto the TOS by the instruction.

The second example illustrates "LOAD P-4, I". The dis-
placement, -4, points to the indirect cell at P-4. This cell
contains a self-relative address of -3, which is 177775 in
octal. (The number can be positive or negative.) This points
to the location at P-7, which is the effective address for the
given instruction.

DATA INDIRECT. The first of the three examples of
indirect addressing in a data segment illustrates "LOAD
DB+4, I". The displacement, +4, points to the indirect cell
at DB+4. This cell contains a DB+ relative address of 7.
(This is not a self-relative address.) Thus the effective
address is at DB+7. Note that it is possible for the effective
address to be below as well as above the indirect cell.

The second data example illustrates "LOAD Q+4, I". The
displacement, +4, points to the location four addresses
above Q, which is the indirect cell. As in all data indirect
cases, the indirect cell contains a DB+ relative address.
Since, in this case, the content is 7, the effective address is
again DB+7.

The third data example illustrates both the S- and the Q-
modes. The displacement is again assumed to be -4, which
points to an indirect cell at S-4 (for LOAD S-4, I) or at
Q-4 (for LOAD Q-4, I). Since the content of the cell, in
both cases, is assumed to be 7, the effective address is again
DB+7.

INDEXING

The content of the Index register is used for indexing, when
specified by the "X" bit of instruction formats that include
indexing capability. When the X bit (bit 4) is a "1", index-
ing is enabled. The memory address instructions use index-
ing to modify an operand address. Shift instructions use
indexing to modify a shift count, and bit test instructions
use indexing to modify a bit position number. The latter
two instances are comparatively simple concepts and do not
apply to memory addressing; the following paragraphs
describe indexing only as it is used in memory addressing.

Figure 3-10 shows some examples of indexing. Unlike
figure 3-9, this figure does not illustrate all combinations of
cases. Figure 3-10 shows indexing when combined with

Central Processor

positive and negative addressing modes (both direct), and
an example of indirect, indexed addressing (positive mode
only). Examples of these cases are given for both code and
data segments. Note that in every case the index is assumed
to be 5; this is established by the "LDXI 5" instruction
which precedes each LOAD instruction used in the ex-
amples. This instruction loads the value 5 into the Index
register.

CODE INDEXING. The first example in figure 3·10 shows
the actions occurring for an assumed instruction "LOAD
P+4, X". The displacement, +4, would by itself point to
location P+4; however, by adding the index of 5 to the
displacement, the location P+11 (octal) is addressed. It is
the content of this location which will be loaded onto the
TOS by the instruction.

The second example illustrates indexing with a negative
addressing mode, P- in this case. The instruction at P
indicates a displacement of 11, which would point at the
P- 11 location. The index of 5 indexes the address in a
positive direction to finally address P-4.

The third code example shows indexing combined with
indirect addressing. In all such cases, "post-indexing" is
used; i.e., the indirect addressing is accomplished first
(whether in a positive or a negative direction), and indexing
proceeds in a positive or negative direction from the loca-
tion so indicated. As shown in the example, the displace-
ment of +4 points to the indirect cell at P+4. The content
of P+4 is a self-relative address of 3, which points to
location P+7; however, indexing adds 5 to this value, thus
pointing at the final effective address at P+14 (octal).

DATA INDEXING. The first data indexing example illus-
trates "LOAD DB+4, X". This displacement, +4, points at
DB+4; this is modified by the index of 5 to point at
DB+11.

The second data indexing example illustrates the S- mode,
which is similar to the P- mode previously described. Since
a positive index is specified, indexing proceeds in a positive
direction from the location indicated by the displacement.

The final example illustrates data indexing combined with
indirect addressing. Again, post-indexing is applied. The
example instruction is "LOAD Q+4, I, X". The displace-
ment, +4, points to the indirect cell at Q+4, which contains
the value 3. Since indirect addresses for data are always
DB+ relative, this points at location DB+3. This is modified
by the addition of the index, 5, thus pointing at the final
effective address DB+10 (octal).

BYTE ADDRESSING

The Load Byte and Store Byte instructions (LDB, STB) and
five of the move instructions (MVB, MVBW, CMPB, seu,
SCW) use the byte addressing convention. Since the
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CODE, Indexed

LDXI 5
LOAD P+4, X

PB

P

(P+4)

X=5

P+111---------1

PL

DATA, Indexed

LDXI 5
LOAD 08+4, X

DB

X=5

(OB+4)

OB+11~ ~

Z -PL- -J

3-16

LDXI 5
LOAD P-11, X

PB --+

-11 ) -- -------- ~--------

P-4

/'--+

--+

t
X=5

+

Figure 3-10. Examples of Indexing
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P
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HP 3000 central processor is not specifically organized as a
byte processor, the byte addressing convention uses the
content of the Index register, an indirect cell, or a stack
word to specify the byte desired. For memory addressing
(LDB, STB), the displacement value remains a word dis-
placement. The byte data label in an indirect cell is an
inflated value (two times the word displacement from DB).
The contents of the Index register and/or an indirect cell
indicate the desired byte in a byte array. For move instruc-
tions, one or two of the top-of-stack locations give a PB+ or
DB+ relative byte index.

The byte addressing range is therefore restricted to 32K
words (15 bits for word address, one for byte number).
This implies restricting the stack size to 32K maximum
range from DL to S.

Figure 3-11 shows the four different cases of byte address-
ing for memory address instructions (LDB and STB):
direct; direct, indexed; indirect; and indirect, indexed. The
convention for move instructions corresponds to the
"direct, indexed" case shown in the figure; the difference is
that the byte index would be obtained from a top-of-stack
word rather than the Index register. The following para-
graphs describe each of the four examples.

DIRECT. For direct, unindexed byte addressing, the dis-
placement value given in the instruction word is strictly a
word displacement and only the left byte of each word is

DIRECT DIRECT, INDEXED

LOXI5
STB OB+7,XSTB OB+7--.+1

+2
Not+3

+4 Access-
ible

+5
+6
+7

--.

DB DB ~
+1
+2
+3
+4
+5
+6
+7 0 1

2 3
4 5

--.ss

Figure 3·11. Examples of Byte Addressing
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addressable. As shown in figure 3-11, a "STB DB+7" in-
struction would store a byte from the TOS into the left
byte of the DB+7 location.

DIRECT, INDEXED. The byte index in the Index register
is assumed to be 5, established by a LDXI 5 instruction.
The "STB DB+7, X" instruction directly addresses location
DB+7, and the index of 5 accesses the sixth byte. (Note
that the byte index starts at 0; all even indexes are left
bytes and all odd indexes are right bytes.)

INDIRECT. In this example the byte index is given in the
indirect cell. As in all indirect data addressing, the indirect
reference is relative to DB. Thus "STB DB+7, I" initially
addresses the indirect cell at DB+7 and the byte index of 46
accesses the 47th byte with respect to DB. This will be the
left byte of DB+23. (Since there are two bytes per word,
divide the byte index by two to identify the word location;
a remainder of 0 indicates the left byte, 1 the right byte.)

INDIRECT, INDEXED. In the indirect, indexed mode, the
displacement points to the indirect cell, the indirect cell
points to the start of a byte array, and the index in the
Index register points to the desired byte in the array. The
example in figure 3-11 illustrates "STB DB+7, I, X". The
index in the Index register is again assumed to be 5. The
displacement points to the indirect cell at DB+7, which
contains the value 40. Dividing this by two gives the
starting word address of the array, location DB+20. Since

INDIRECT INDIRECT, INDEXED

LOXI5
STB OB+7, I, XSTB OB+7,1

DB ~
+1
+2
+3
+4
+5
+6
+7 46

+20 40 41
+21 42 43
+22 44 45
+23 46 47

~ s

DB ~
+1
+2
+3
+4
+5
+6
+7 40

+20 0 1
+21 2 3
+22 4 5

--.s

-- -- -------
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the index is 5, the location accessed is the sixth byte of the
array. In this manner, the Index register acts like a byte
index for ease of stepping through byte strings or byte
arrays.

Refer also to the section on byte addressing under the
heading" Access to DB- Area".

DOUBLEWORD INDEXING

Two memory address type instructions, LDD and STD,
permit doubleword indexing. When indexing is specified for
these instructions, the hardware automatically multiplies
the Index register content by two during computation of
the effective address. Thus an index value of 4 would imply
the fifth doubleword in a doubleword array.

BOUNDS CHECKING

The central processor routinely checks all address refer-
ences and top-of-stack movements to ensure that such
operations remain within legal bounds. Many of the instruc-
tion definitions in Section V define the checks that are
made; however the lack of such mention does not neces-
sarily imply that no checks are made.

The following paragraphs summarize the basic bounds
checks that occur for the applicable instruction types.
Refer to table 3-2 and figure 3-12.

Table 3-2. Bounds Checks

CHECK DEFINITION MODE

Program Transfer PB';;; E';;; PL Privileged, User

Program References PB';;; E';;; PL User only

Data References DL';;; E';;;S User only

--"-StaCKOverflow ~ =SM">Z-- Pr iviIeged;-ose;:--

Stack Underflow SM <DB User only

E = Effective Address of Memory Reference

PROGRAM TRANSFER. Program control cannot be
passed (via PCAL, SCAL, or a branch) to any location
beyond the limits defined by the contents of the PB-register
and the PL-register. This rule applies to both privileged and
user modes. For indirect branches, both the indirect refer-
ence and the direct reference must be within limits. This
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Figure 3-12. Addressing and Stack Bounds
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also applies when branching indirect via the stack {see BR
definition), except that the initial reference must be within
the stack limits (DB,S) rather than within PB and PL. A
bounds violation causes a Bounds Violation interrupt to
segment 11.

PROGRAM REFERENCES. Some of the memory address
instructions, all of the loop control instructions, some of
the move instructions, and a few others, are capable of
addressing locations in the code segment. In privileged
mode, such references may be made without restriction.
However, in user mode, the references (both direct and
indirect) must be within the limits defined by PB and PL. A
bounds violation causes a Bounds Violation interrupt to
segment 11.

DATA REFERENCES. In privileged mode, data references
are not subject to bounds checking. In user mode, data
references (both direct and indirect) must be within the
user's defined data area - that is, between DL and S. A
bounds violation causes a Bounds Violation interrupt to
segment 11.

STACK OVERFLOW. Neither privileged mode nor user
mode may overflow the stack. A stack overflow is defined
as the condition of moving the top-of-stack pointer beyond

WORD
ADDRESSING 0

---.
-10

~

B+4 177770

~
777

LOAD DB+4, I

Dl

DB

DB

o

Central Processor

the stack limit. In a stricter sense, stack overflow occurs
when SM exceeds Z. Since SM is not necessarily the actual
top of the stack (may be coincident with S or up to four
locations lower), and to allow marker space for the remote
possibility of a procedure call and an interrupt while SM is
at Z, there is a zone of about 13 locations beyond Z which
could be filled with stack related data. A stack overflow
causes an interrupt to segment 3, which, under the dis-
cretion of the operating system, may extend the stack limit.

STACK UNDERFLOW. A stack underflow is defined as the
condition of moving the top-of-stack pointer below the
data base or, more strictly, moving SM below DB. Since SM
mayor may not be coincident with S, underflow may occur
even though S may be up to three locations above DB.
Privileged mode is not subject to underflow checking. A
violation in user mode, however, will cause a Stack Under-
flow interrupt to segment 13. Users can access the area
between DL and DB by indirect addressing or indexing, as
long as SM does not become less than DB.

ACCESS TO DB- AREA

Both privileged and user modes have access to the data area
between DB and DL through indirect addressing and index-

BYTE
ADDRESSING 0

--+

"B-4 -10 -7
-6 -5
-4 -3
-2 -1

--+ 0 +1

B+4 177770

---.
---. I

I

7774 --'--r---- ~-l--L----
7777

l

LDB DB+4, I
Dl

o

DB

o

s

z

177 17

08+7

Address Calculations in Octal: WORD DB + 177770 = DB - 10
BYTE DB + (177770';' 2) + 100000 = DB - 10

Figure 3-13. Access to DB- Area

3·19

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle



Central Processor

ing, The privileged mode additionally has direct access by
the privileged move instructions MVBL and MVLB. Figure
3-13 illustrates the technique of indirect addressing to
access this area, using both word and byte examples.

WORD ADDRESSING. The left part of figure 3-13 shows
how to access a word in the DB- area. Assume that we wish
to load the contents of the location at DB-I0 onto the
stack, and that location DB+4 can be used for the indirect
cell. Thus a "LOAD DB+4, I" instruction initially refer-
ences the indirect cell at DB+4. The indirect cell contains,
instead of a positive number, the two's complement of the
desired DB displacement. In octal, the two's complement of
10 is 177770. Remember that the content of an indirect
cell in a data segment is always a DB+ relative displacement.
Thus, since addressing arithmetic is modulo 65K, adding
177770 to DB causes "wrap-around" and addresses the
desired DB-I0 location. (Indexing via the Index register
may be applied from this point.)

BYTE ADDRESSING. The right part of figure 3-13 shows
the technique of accessing a byte in the DB- area. Assume
that we wish to load the DB-I0 byte onto the stack, and
that location DB+4 will again be used as the indirect cell.
The "LDB DB+4, I" instruction initially references DB+4,
which contains, instead of a positive byte number, the
two's complement of the desired byte displacement from
DB. In octal, the two's complement of 10 is 177770.
Remember that byte indexes are converted to word indexes

3-20

by dividing by two. This would indicate location
DB+77774 (left byte), which mayor may not exceed the
upper limit of memory, depending on the current absolute
value of DB.

To allow for byte addressing in additional data segments
where DB may not be between DL and Z, a check for this
condition is made. If DB is not between DL and Z (this
should happen only in privileged mode and is then called
split stack), the byte will then be accessed without further
bounds checking. If, however, DB is between DL and Z,
then in either mode the LDB instruction (or other byte
addressing instruction) tests this address to see if it is within
the required DL to Z range. If the address is not within this
range (which should be the case, whether wrap-around has
already occurred or not), the instruction will add 32K
(100000 in octal) to the DB+77774 value. Assuming that
wrap-around had not yet occurred, this addition would
certainly cause wrap-around and thus address the byte at
byte address DB-lO (left byte in location DB-4).

At this time, a second test is made to see if the effective
address is in the DL to Z range. If the technique has been
applied properly, the test will be affirmative and the byte
will be transferred. However, if the second test fails, the
action taken will depend on the current mode. In user
mode, there will be a Bounds Violation interrupt to seg-
ment 11. In privileged mode, the result of the second test is
ignored; execution continues even if our of bounds, using
the second referenced byte.
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MEMORY SEGMENTATION

As part of its basic architecture, the HP 3000 Computer
System organizes all code and data into variable length
segments which may be swapped in and out of main mem-
ory on demand.

The first half of this section ("Introduction" and "Code
and Data Segments") describes the basic theory of segment-
ation. Since the mechanics described are automatically con-
trolled by operating system software, the information is
presented primarily as background material.

The second half of this section, however, ("Stack Opera-
tion" and "Examples of Stack Usage") focuses on the stack
portion of a data segment. Since an understanding of the
stack concept is essential to the overall system concept,
the latter half of this section illustrates the principles of
stack operation in detail at a fundamental level.

INTRODUCTION
It is the purpose of this introduction to provide a bridge
from the overall "system" viewpoint into the functionings
of the hardware, as regards memory operations. Therefore
no attempt will be made to explain the concepts of jobs
and processes, any more than is necessary for the following
discussions. The reader should refer to separate documenta-
tion for the software systems, if full definitions of these
concepts are required.

First it is necessary to establish what is meant by virtual
memory. As shown in figure 4-1, virtual memory consists of
primary memory (the main memory) plus an area of mass
storage called secondary memory, or the swapping area.
The swapping area, typically on disc or drum memory,
consists of a collection of pieces of code or data, defined as
segments, which are not presently in core but which may be
called in by the executing programs. A segment is the basic
entity for transfers between core memory and the swapping
area. Whether a segment is in main memory or absent (on
disc), it is nevertheless part of the virtual memory. From
the point of view of the user, he is working with a memory
that appears to be many times larger than actual physical
size. In fact, his own program may exceed the 65K-word
maximum of main memory capacity, and still allow space
for many other users on the same machine.

At this point the reader should be visualizing a dynamic
situation in which various segments are being swapped
rapidly between core memory and the swapping area of disc
memory, according to the demands of the executing
programs. Also bear in mind that several users may be on
the machine at a given time, and that each user may have
several segments.

Now the questions arise: where did the segments come
from (i.e., how were they created), and how are they
eventually eliminated? To answer these questions it is
necessary to understand that there are two distinct types of
segments, code segments and data segments. Thus there are
two methods of origin. See figure 4-2.

A code segment consists entirely of information that is not
subject to change during program execution. This includes
the instructions of the program itself, constants, and an
area for interprocedure links. No modifiable data may be
interspersed with the instructions in a code segment, and in
no way is it possible to write into or alter a code segment
(or its formative parts) once it has been compiled. It is this
feature which allows code to be re-entrant, meaning that a
given sequence of instructions can be in simultaneous use
by several users - or, can be entered several times by the
same user, whether or not preceding entries are concluded.
An example at the end of this section (Recursion) will
illustrate a procedure which, after being entered by the
main program, will call itself several times before any exit is
given.

SWAPPING AREA
OF

DISC MEMORY

I I
Segment /" ~I I

I I
~l J
I I
I I

I~
MAIN

MEMORY •. I
I Ir

I I I
I I•.
I I I

Figure 4-1. Virtual Memory
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Memory Segmentation

DISC
FILE AREA

}
USL
File

CD
PREPARE

1
COMPILE

4
EXECUTE

MAIN
MEMORY

DATA
FILE

DATA
SOURCE

Figure 4-2. Sources of Segments

As shown in figure 4-2, user code entered into the com-
puter exists in one of four states at various points in time.
Initially, the user programs exist as source-language code.
Then (step 1 in figure 4-2), the programs are translated into
binary form by a process executing a compiler, and stored
in the file area of disc memory. Each compiled program or
subprogram exists in the file area as a relocatable binary
module (RBM); the set of RBM's that result from compi-
lation of a user's program onto disc make up a user sub-
program library (USL) file.

The USL is not executable, however. Instead, it must be
"prepared" for running (step 2 in figure 4-2). During prepa-
ration, the operating system binds the RBM's from the USL
into linked code segments arranged in a program file. Each
segment contains machine instructions produced from the
user's program, plus linkages to other segments.

The next step (3, in figure 4-2) is to allocate the program
when the user gives the command to run his program. In
allocation, the operating system links the code segments to
the Code Segment Table. Every allocated segment has an
entry in the Code Segment Table, which is a set of reserved
locations in main memory that tells both the hardware and
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the software exactly where each code segment is located.
The table lists a memory address if the segment is main-
memory resident, or a disc address if disc resident, plus the
segment length. It is maintained by the operating system.

During allocation, the operating system also binds the
segments from the program file to referenced external seg-
ments from a library. Once the segments are allocated, the
USL becomes part of the virtual memory, and execution
can begin. The operating system creates a process to run the
program and individual segments are swapped into main
memory for execution (step 4 in figure 4-2).

The data segment, also shown in figure 4-2, consists only of
data. Like the code segment, a data segment is fully pro-
tected. No user (more strictly, no process) may have access
to the data segment of another user (or process). Generally
speaking, each process defined by a user causes a data
segment to be created. Initially, when the code segments
are allocated, the data segment contains no actual data, but
consists only of an initial stack having some initializing
information. (Stack is defined later.) But at least the data
segment is allocated - that is, a place for data is
established.

Like code segments, data segments have entries in a table,
called the Data Segment Table, which keeps track of where
each data segment is located. Unlike the Code Segment
Table, however, the Data Segment Table's location is
known only to the operating system software.

As execution progresses, data will enter and leave the data
segment - perhaps as the result of various computations, or
perhaps via an external data source.

Eventually the last instruction in a given process will be
executed. At that time the operating system will deallocate
all segments associated exclusively with that process. That
is, they will lose their entries in the Code Segment Table
and the Data Segment Table, and the respective code and
data will be overlaid by other segments coming into the
system. For a time, of course, the old code and data will
physically continue to exist in the virtual memory, but
there is no means by which this information can be
retrieved. Thus if there is some information to be saved as
the result of process execution, the process itself must save
such information in the file area.

Referring back to figure 4-1, the reader should at this point
be able to visualize not only the swapping of segments in
and out of main memory, but also the creation and elimina-
tion of various segments as new user processes come into
the system and other processes come to an end. Obviously
the areas occupied by segments in both main memory and
disc memory will dynamically shrink and expand according
to demands placed on the system. (To maintain optimum
efficiency, the operating system has a timer and method of
keeping usage statistics, so that the less important or less
frequently used segments are most eligible for temporary
swapping out to the disc.)
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Now that the basic concept of a segment has been
introduced, it is possible to show how the segment fits into
the overall scheme of things.

Figure 4-3 is an overview of the major system elements.
This figure shows the software that might exist in the
hardware at a given instant of time. It does not attempt to
show the possible links between elements, nor the relation-
ships that can exist among various processes. It is simply a
snapshot view of elements, showing location and consti-
tution. Note that the software exists either (or both) in
main memory or in mass storage.

The following paragraphs describe each of the elements
shown in figure 4-3.

RESERVED MEMORY

Only 12 memory locations are "reserved" in the strictest
sense - i.e., having a known, fixed address. These are the
first 12 addresses. See table 4-1. In addition, however, there
is also a permanent table which is reserved in the sense that,
once established, each entry has a permanent allocation.
The upper limit of the table, however, is flexible, depending
on how many entries there are in the table. This table is the
Device Reference Table (to be defined and discussed in a
later section). It begins at octal location 14 and uses four
locations for each device existent in the system.

The 12 fixed memory allocations can be divided into three
groups of four locations each. In the first group, location 0
contains the Code Segment Table Pointer, which is the
absolute address of the first entry in the Code Segment
Table. Location 1 contains the Data Segment Table Pointer,
location 2 contains the Process Control Block Table
Pointer, and location 3 contains the System Global Pointer.
(Note: these are dynamic assignments; for cold load opera-
tions, the hardware expects a cold-load value for the
P-register in location 1.)

The second and third groups each apply to separate proces-
sors, if a dual-processor system is used. Locations 4 through
7 provide a Current Process Control Block pointer, two
interrupt stack pointers, and an interrupt reference counter
for processor 1. Octal locations 10 through 13 provide the
same for processor 2. The Current Process Control Block
pointers will be discussed in this section under the heading
"Data Segments", and the interrupt stack pointers and
counters will be discussed in the section on interrupt
processing.

Memory Segmentation

Table 4-1. Fixed Memory Allocations

CONTENTSLOCATION 1
0
1
2
3
4
5
6
7

10
11-12
13
14
15
16
17

Code Segment Table Pointer
Data Segment Table Pointer
Process Control Block Table Pointer
System Global Pointer
CPCB Pointer 1
01 1
ZI 1
Interrupt Counter 1
CPCB Pointer 2
012
ZI2
Interrupt Counter 2

}

First Entry
Device Reference

Table
(Device #3)

SEGMENTED LIBRARY

A segmented library is a flexible means of sharing fre-
quently used routines among many users. In addition to
standard library routines, the user may enter and delete
routines of his own in the libraries.

A library might be one procedure in a segment, a set of
procedures in a segment, or a set of segments. As shown in
figure 4-3, some segments which contain certain library
routines are permanently allocated, That is, they have
entries in the Code Segment Table. Other library segments
remain in the file area until such time that a user makes a
request for one of its routines. At that time the operating
system will load the affected segments, create entries in the
Code Segment Table, and provide appropriate links for the
user to access the desired routine.

OPERATING SYSTEM

The operating system is the master supervisory program,
overseeing the allocation of memory, controlling the loader,
swapping user segments in and out of main memory, desig-
nating time to individual users, and so on. The standard
operating system for HP 3000 is the Multiprogramming
Executive (MPE/3000)_ It consists of a number of separate
programs and many procedures in the system segmented
library file.

As indicated in figure 4-3, not all parts of the operating
system need to be permanently resident in main memory.
Certain modules may be retained in the file area, and be
allocated on a requirement basis.

4-3
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IN PRIMARY MEMORY IN MASS STORAGE

I I~ ---,.,-.,., . ~,I RESERVED CORE

OPERATING SYSTEM
I Permanent Routines Operating SystemL_________

Allocatable Routines

SEGMENTED LIBRARIES
I Permanent Routines System Segmented Library.

Allocatable Routines~--------- I~
COMPILER(S) I

I COMPILER(S)
USER ALLOCATIONS

ONE USER'S JOB

PROCESS SWAPPING AREA FILE AREA

PROGRAM

PROGRAM USER
l CODE SEGMENT J FILE SUBPROGRAM

~ LIBRARY
lCODE SEGMENTJ Copy of all (USL)

Code Segments
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SEGMENTED LIBRARY

I
ILIBRARY CODE: I SEGMENTED USLLIBRARY

DATA

I I STACK I
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DATA SEGMENTS
~

DATA
(This Used FILES

PROCESS

PROGRAM
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OTHER USER(S) ~ --
PROGRAM

PROCESS FILE r---- USL
(Other User)~

PROCESS ABSENT DATA DATA FILES

Figure 4-3. Software Elements in Hardware
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COMPILERS

Several language compilers are available. If only one
compiler is used on a system, it might be designated to be
permanently allocated. For a multicompiler system, how-
ever, it is more efficient to retain the permanent copy of
each compiler in the file area, and to allocate the compiler
in virtual memory only when required. Due to the
re-entrant feature for all programs run on this computer,
only one copy of a compiler needs to be present in main
memory, regardless of how many users may be simultane-
ously compiling. The operating system keeps a count of
how many users are using a given compiler, and when this
count reaches zero, the compiler is deallocated.

USER ALLOCATIONS

As shown in figure 4-3, the remaining space (after alloca-
tions for reserved memory, library, operating system, and
compilers) is available for users. This space includes both
main memory space and disc space. Bear in mind that the
relative block sizes in figure 4-3 do not indicate compara-
tive sizes of space; the file and swapping areas, for example,
may be many times the size of any allocation in main
memory.

USER .JOB.When a user logs into the system, he establishes
a job. During the course of his job he will execute one or
more programs upon information contained in separate and
distinct data domains. The user's data domain consists of all
data that is used or generated during the course of a job.

PROCESS. A program is executed on the basis of individual
processes, A process is not a program itself, but the unique
execution of a program by a particular user at a particular
time. Therefore, if the same program is run by several users,
or more than once by the same user, it is used in several
distinct processes.

The process is the basic executable entity in the system. It
consists of a Process Control Block that defines and
monitors the state of the process, a dynamically-changing
set of code segments and a data area (stack) upon which
these segments operate. The code segments used by a pro-
cess can be shared with other processes, but its data stack is
private (though the operating system does provide for com-
munication of data between related processes).

Processes will again be mentioned under the headings of
"Code Segments" and "Data Segments", but further details
regarding their relationships, substates, priorities, means of
data communication, queuing, dispatching, etc., are
extraneous to the present discussion. Refer to the operating
system documentation for this type of information.

Memory Segmentation

CODE SEGMENT. Code segments were defined earlier as
consisting primarily of instruction code, and being the basic
entity for transfers of code between main memory and the
swapping area. As shown in figure 4-3, a program may
consist of several code segments.

One important point to note about code segments is that,
since code cannot be changed after it is compiled, the copy
of a segment in the swapping area is identical with any copy
that has been transferred into core. Thus when the oper-
ating system decides to swap out a code segment, no actual
transfer needs to take place. The operating system simply
makes note that the segment is now absent, and may then
overlay the core area occupied by that segment. This is
unlike the data segment which, being constantly subject to
change, must be physically transferred to disc if swapping is
required. (Note unidirectional arrows for code segment
swapping and bidirectional arrows for data segment
swapping in figure 4-3.)

CODE AND DATA SEGMENTS

The preceding introduction provided a bridge between the
external aspects of the system and the inner workings of
the hardware, which now follow. Attention is to be focused
on main memory, regarding the swapping area only as a
place where segments can be sent when main memory
becomes too crowded.

At first, memory will be viewed as a whole, as a repository
for some number of segments - whether they be code or
data - with perhaps some spaces between. It will be shown
how space is managed in an orderly and efficient manner.
Following this, code segments and their interrelationship
during execution will be discussed, followed finally by data
segments and the stack concept.

SEGMENTS IN MEMORY

Figure 4-4 shows four segments being present in memory.
These are "assigned" segments. There are also three blank
or "free" segments. In each case, whether assigned or free,
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Figure 4-4. Main Memory Links

the first eight locations of the segment comprise an S-word
link header, and the last location of the segment gives the
size of that segment, divided by four. (The last word of the
segment effectively points back to its header, and specifies
the type of the preceding area - i.e., assigned or free.)

To assist the operating system in its task of filling memory
with variable sized segments, the memory is threaded with
two major systems of links. These are the assigned memory
links and the free space links. The assigned memory links
consist of pointers within the link headers of each assigned
segment, which link all assigned segments. Similarly, the
free space links consist of pointers within the link headers
of each free segment, thus linking all free segments.

Linking pointers are given for both the forward direction
and the backward direction. That is, one word in the header
points ahead to the next assigned link (or next free link, as
the case may be), and another word points back to the
previous assigned link (or last free link). Note, as shown in
the figure, that the links are not arranged in sequence of
ascending memory addresses, but rather weave through
memory in seemingly random manner. Actually, the
assigned links are arranged according to usage statistics, so
that the least used segments are at the head of the list and
are thus most susceptible to overlay. The links are updated
for this purpose each time an overlay is performed.

Other information given in the link headers includes: seg-
ment type, disc address, segment size, and process number.
All of this information is used in memory management.

In typical operation, if the currently executing code <c:>

requests an absent segment, the operating system will first
obtain the size of the called segment from the Code Seg-
ment Table. It will then use the LLSH instruction to search
through the free space list to see if there is a large enough
free segment to accept the called segment. If this search
fails, one or more assigned segments are selected for
overlay.

For clarity, figure 4-4 shows only the next-assigned-link
structure for the assigned list (and the pointer to the head
of the free list). The free list links and the previous-
assigned-link structure of the assigned list are not shown.
The segment numbers shown are for reference purposes
only; e.g., assigned segment number 0 points to assigned
segment number 1, and so on. However, the pointers
consist of absolute addresses, not segment numbers.

CODE SEGMENTS

During the execution of one user's process, there will typi-
cally be several code segments in memory and a single data
segment. Assume that the current process presently has two
code segments in memory, as shown in figure 4-5. (The data
segment, not shown, will be discussed later.)
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Figure 4-5. Procedure Calls Within and Between Code Segments
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The purpose of figure 4-5 is to show how the system keeps
track of where code segments are, and how references may
be made from one segment to another. Although the figure
illustrates hardware, it remains the responsibility of the
operating system to control the actions shown here.

The Code Segment Table and the CST Pointer have both
been mentioned before. In summary, it was explained that
the CST Pointer is permanently resident in location 0, and
that it contains an absolute address pointing (1) to the
starting location of the Code Segment Table. This table tells
where each code segment (present or absent) is located.

Each entry in the Code Segment Table has a unique
number, called the code segment number, which identifies a
particular segment. Each entry consists of a doubleword
descriptor which includes the absolute address of the
related segment and its length. (The format of CST entries
is given in figure 4-6.) Entry number 0 in the table is unique
in that it simply points (2) to the final entry in the table;
this defines the length of the table for the benefit of the
operating system in allocating core space for the table itself.
Segment number 0 does not exist.

The example Code Segment Table in figure 4-5 presumably
has 212 entries for all code segments of all users currently
on the machine. Assume that one user is executing a
process which requires code segments 22 through 25.
Segments 22 and 23 are in core, since there has been a
reference that has caused them to be brought in, whereas
segments 24 and 25 are not presently needed and so are
absent on disc.

The process is currently executing instructions in
segment 23. This means that the address value contained in
the second word of CST entry 23 has been loaded into the
PB-register. Thus the PB-register is pointing (3) at PB(a).
The PL-register, using a value derived from the segment
length, is pointing at PLea). The P-register is advancing from
PB(a) toward PLea).

The last nine locations of segment 23 are not part of the
segment's code, but were added by the operating system
when the segment was loaded into the virtual memory. This
is the Segment Transfer Table, which contains linking refer-
ences for every procedure call in the segment. A procedure
call is an instruction which references a set of instructions
elsewhere in the code segment; that set of instructions is
structured as a procedure, to perform a standardized oper-
ation or computation and then return control to the
instruction immediately succeeding the call instruction.

Note that entries in the Segment Transfer Table are num-
bered from the end back towards the code. Entry number 0
gives the Segment Transfer Table length (see STT Length
word format in figure 4-6). This indicates (4) the number of
the last STT entry, so that the hardware can make validity
checks on procedure call references; for example a call to
entry number 9 would be invalid. (If a call from within the
segment is made to entry 0, the reference will be taken
from the top of the stack instead of from the Segment
Transfer Table. A call from outside a segment to entry 0
starts execution at the P = PB after checking the U bit.)

4-8

When the execution sequence reaches the first PCAL
instruction, a reference is made (5) to the fourth entry of
the Segment Transfer Table; i.e., since the PCAL instruc-
tion uses PL- addressing, the instruction references cell
PL- 4. This location contains a local program label (see
format in figure 4-6), which implies that the called pro-
cedure is located within the same segment. The reference is
a PB relative address pointing (6) to the beginning of a
procedure or block.

After some preparatory operations, which include saving
the return address on the stack, the PCAL instruction
transfers control to the procedure. Upon encountering an
EXIT instruction in the procedure, control returns to the
instruction immediately following the first PCAL.

In this example there were no references outside the
current segment. In the following example an external
reference is made.

When the execution sequence reaches the second PCAL,
another call is made (7) to the Segment Transfer Table. The
call requests the fifth entry in the table, which happens to
be an external program label, indicated by a "1" in bit 0
(see format in figure 4-6). This implies that the called
procedure is in some other segment. The contents of the
label tells which segment, and also gives the STT number in
that segment which must contain the local reference.

The PCAL instruction, after the usual preparatory oper-
ations (which include bringing the segment into main
memory if it is absent), transfers control to the called
procedure as follows. The segment number given in the
external program label points (8) to a specific entry in the
Code Segment Table; this is assumed to be entry number
22. A value for PB is picked up in the second word of this
entry, and is loaded into the PB-register. This causes the
PB-register to point (9) to the starting location of code
segment 22 (PB(b». The limit (PL(b» is also established.
Meanwhile, the STT value given in the external program
label is pointing (10) to entry number 4 of the Segment
Transfer Table. This causes a PB relative address to be
picked up for the P-register. The P-register now points (11)
to the starting address of the procedure or block, and
execution begins. (If an STT number of 0 is given, exe-
cution would start at PB(b).)

Calling procedures outside of the segment in this manner is
subject to a number of rules, checks, and safeguards. These
ensure that the call is allowable, and that other users are
fully protected from deliberate or accidental invasions of
privacy. The way in which the operating system sets up the
Segment Transfer Tables ensures that all transfers are legal
for that process. Even if the user transfers via the top-of-
stack reference into another user's code segment (assuming
that it is callable) he can do no worse than execute part of
that other segment. He will certainly render his own stack
data meaningless, and furthermore can in no way read or
relocate the other user's code or data. His end result is
completely unpredictable, but would likely eventually
invoke one of many possible error traps.
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COOE SEGMENT TABLE Doubleword

0 1 2 3 4 5 617 8 9110 11 12[13 14 15

IA MITIR LENGTH

I ADDRESS

A Absence bit (= 1 if segment is absent)
M Mode bit (= 1 if privileged mode)
T Trace bit (=1 to call Trace routine)
R Reference bit (for statistical use by

operating system, set to 1 when accessed)

LENGTH This value times 4 (max = 16,380)
ADDRESS Absolute memory address (for PS)

or low order 16 bits of absolute disc address
if absent

SEGMENT TRANSFER TABLE Words

STT Length
o

LENGTH

2 31 4

10 ulo 0 0 o 0 01

U Uncallable bit
LENGTH Maximum = 255 (Calls from external

segments may reference only the first 128
entries, PL thru PL-127.)

Local Program Label

o
ADDRESSL0 vl

U Uncallable bit
ADDRESS PB relative, + only

External Program Label

o 23[4561789[10 11 12[131415

11 STT :;; I SEG :;;

STT::t STT entry number in target segment,
maximum = 127

SEG::t Target segment

STATUS Word

0 1 2 3 4 5 61 7 8 9110 11 12113 14 15

1M I I T 1 R ole 1 cc 1 SEGMENT z:

M Mode bit (=1 for privileged mode)
I Interrupt enable (1 )/disable(O), external
T Traps enable( 1)/disable(O), user
R Right Stack Opcode bit (pending = 1)
o Overflow bit
C Carry bit
CC Condition Code
SEGMENT:;; currently executing

Figure 4-6_ Formats Associated with Code Segments

Memory Segmentation

In addition, if the operating system ascertains that a local
reference in a segment is of a category that will not
normally have external references to it, the operating
system will set the uncallable bit in the STT entry.When
this bit is set, no external references in user mode may be
made to that procedure or block. One typical application of
this bit is to prohibit direct user access to the uncallable
intrinsics of the operating system - i.e., those operations
that the operating system will perform on behalf of a user,
but cannot be directly accessed by the user.

At the conclusion of the called procedure, control is
returned to the original segment by the EXIT instruction.
This instruction restores the Status register, which gives the
segment number of the caller (see format in figure 4-6), and
thus (12) returns the PB-register value back to PB(a). The
saved P relative address on the stack re-establishes the
return point, and execution continues at the location
immediately following the second PCAL instruction.

DATA SEGMENTS

In the introductory paragraph under "Code Segments" it
was stated that one user's process typically has several code
segments, but only one data segment. The following few
pages deal with the data segment, particularly concentrating
on the stack area of that segment.

As a beginning point of reference, figure 4-7 shows how the
operating system establishes and keeps track of a particular
data segment. As indicated by a note in the figure, this is
accomplished by tables maintained by _. and known only
to - the operating system.

Assuming we are working with processor number 1 of a
single- or dual-processor system, core location 4 contains
the Current Process Control Block pointer. In the example
shown, this pointer (1) has selected process number 31 by
pointing to that particular block in the Process Control
Block table. This means that process number 31 is currently
being executed on the machine.

The Process Control Block contains considerable infor-
mation pertaining to the control of that process, such as
priority, queue pointers, wait flags, and so on. In addition,
there is other information, such as saved stack register
values (2), which is actually contained within the segment.
This area of the segment is the Process Control Block
Extension.

However, relevant to the present discussion, the most signi-
ficant information is the data segment number. The data
segment number points (3) to a doubleword descriptor in
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the operating system Addresses

Figure 4-7_ Locating the Stack for One Process

the Data Segment 'I'able. Assuming that the data segment
for this process is number 27, entry number 27 in the Data
Segment Table will be pointed to. The second word of this
entry will give an absolute address pointing (4) to the
beginning location of the segment.

The data segment itself includes two separate areas, one of
which is the PCB Extension already mentioned. The second
area is the stack area, beginning at the hardware-known
location DL. The stack is where all dynamic computational
operations take place, and it is the next major subject of
discussion. The study of the stack, its operation and effects,
will occupy the remaining portion of this section.

4·10

STACK OPERATION

The stack can be defined as a linear list of data in which the
last element added to the list is in the prime position for
computational operations (comparable to an accumulator),
and is the first element to be removed when the program
needs data from the stack. This type of data structure is
also more strictly identified as a "LIFO" (last in, first out)
stack, since data is removed from the stack in the reverse
order from which it was added.

Although many instructions can reference elements within
the stack, it is the element currently on the top of the stack
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Figure 1-8_ Stt Registers and One Stack

which is of greatest Significance. Note that the top element
of the stack will be a di ferent word, occupying a different
physical location, each time data is added to or deleted
from the stack. Howeve , that top element has an identity,
to both hardware and Joftware, and is termed the top-of-
stack element. It is alsoII known by its acronym, T08, and
loosely as the top of the stack.

Figure 4-8 shows the basic construction of the stack area
and the way stack registers in the CPU delimit the various
parts. Remember that there will normally be several stacks
in memory, one for e~ch process, but only one will be
active at a given time. The stack registers point to the
currently active stack.

The stack area is bounded at the low end by the DL-register
and at the high end by the Z-register. A major division into

Memory Segmentation

two parts is delimited by the DB-register, which points to
the base location of the stack. The area between the DB
and DL locations is not part of the stack itself, but is
closely associated with the stack by providing a dynamic
area for such applications as dynamic arrays, symbol tables,
etc. Since this area is not particularly relevant to the pre-
sent discussion, it will be ignored in the following dis-
cussions. Its existence, however, should be acknowledged.

Just as the DB-register points to the base location of the
stack, so the 8M-register points to the current top-of-stack
location (in memory). The convention of drawing stack
diagrams corresponds to the manner in which code is
written (or any written language), beginning at the top of
the page and proceeding to the bottom. Thus the stack
appears inverted, with the last entry (top-of-stack) toward
the bottom of the diagram. Addresses increase in a down-
ward direction.

Whereas the DB-register and Z-register contents are static,
the 8M-register content is constantly changing as the pro-
gram progresses, moving up and down the stack area. At all
times, the area between DB and 8M is filled with valid data,
while the area between 8M and Z is available for additional
data. Should the quantity of data exceed the available
space, the attempt to move 8M past Z will invoke an inter-
rupt to the operating system, which may grant additional
space (new Z value), one or more times-within certain
limits.

Unlike the fluid cell-at-a-time movement of the 8M pointer,
the Q-register value moves sporadically in jumps. It is the
purpose of the Q-register to retain the starting point of data
relating to the current procedure. Thus when a new pro-
cedure begins, the Q pointer jumps ahead to establish a new
starting point at the current top of the stack. Conversely,
when a procedure ends, the Q pointer jumps back to the
place it had marked earlier for the preceding procedure.
This action will be illustrated shortly.

As far as the current procedure is concerned, its stack data
consists of the locations from a "base" of Q to the current
top of the stack.

In the foregoing discussion of basic stack structure, the
8M-register was assumed to point at the absolute top of the
stack. This is true only for the portion of the stack "in
memory". In actual fact, provision is made to allow a few
top words of the stack (maximum of four) to "spill over"
into hardware registers in the CPU. This is shown in
figure 4-9, where the three topmost words are actually in
the CPU. The 8M-register points to the last stack element in
memory, but the actual top-of-stack is in the third CPU
register. The actual top of the stack is designated as 8.

The four registers in the CPU reserved for receiving top
stack elements are scratch pad registers employed only by
the CPU hardware. They may not be addressed externally.
Externally, the programmer is interested only in the 8 loca-
tion contents. The hardware defines the address for him to
be at (in this example) the 8M-register value plus 3. The
value 3 is retained in the SR-register, a three-bit register,
which will never indicate a value higher than 4.

4-11
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CPU MEMORY

Stack

I O-Register

I SM-Register

l
SR-Register ,,~ ~

~~
(L._______.J

S (SM) + (SR)
=

Address Address + 3

Figure 4-9. Top-of-Stack in the CPU

The address value S obtained by adding the SR-register
contents to the 8M-register contents is a completely valid
address. In fact, when the CPU registers must be cleared for
some other operation (e.g., a new procedure or an inter-
rupt), the register contents are physically transferred to the
numerically corresponding memory locations. In this
example, the SM pointer would move up by three locations,
and the SR-register content would become O.

Again it must be stressed that the user is not usually aware
of these registers. The reason for their existence is speed.
For example, it is possible to perform computations on the
four top elements of the stack without making a single
memory fetch. A programmer may wish to optimize his
code by watching the availability of operands in the regis-
ters as his algorithm progresses.

Since the actual top of the stack (S) is the value of interest,
and since S is a valid address, the separate existence of SM
and SR values is commonly disregarded, as in the following
discussions.

The action of the Q-register in marking the starting location
for each procedure's data is shown in figure 4-10.

This figure will be discussed in detail, but briefly, what has
occurred in the example shown is the following. The
currently executing code segment was working with data in
the temporary storage area immediately following the "first
Q" location. At that time, the Q-register was pointing at
"first Q", S was indicating the top of the stack, and the
Z-register was pointing to the end of the data segment. If
the executing code segment never called a procedure, the
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stack picture would never get more complicated. However,
at some point the code called a procedure (perhaps a
lengthy mathematical routine) by means of a PCAL in-
struction. This caused additions to the stack as indicated
(procedure A). New data was incurred as the procedure
began, and S pointed to the top of that data as it was
generated. Then procedure A called procedure B (perhaps a
frequently used equation), which resulted in new additions
to the stack, as shown. Then still later, procedure B called
procedure C (perhaps a library routine for a trigonometrical
function), resulting in a final picture of the stack as shown.

What will happen next is that procedure C will end, saving
its answer in a convenient place for procedure B to access,
and issuing an EXIT instruction. Then all the other stack
additions due to procedure C will be eliminated (by moving
the Sand Q pointers back), and procedure B will continue
its computations on its own stack data. Likewise, pro-
cedure B will come to an end, save its data, and exit,
resulting in the elimination of the procedure B stack data.
And finally procedure A will do the same, returning the net
answer to the new top of the stack, on the main temporary
storage area.

It is obvious from this brief outline of events that each time
control is returned from the called procedure to the caller's
procedure - within the code segment - the stack registers
also return to the caller's data area. Thus the stack mark
chain virtually eliminates system overhead in keeping track
of lexicographical levels (nesting of procedures). For
example, the simple return sequence described above, C-to-
B-to-A-to main program, is not imperative. Procedure C
could have been called again before the return to the main
program was complete. Or other procedures (D,E,F, etc.)
could enter the picture. But the return for both code and
data will always remain perfectly in step - from the called
to the caller.

Now the details. Beginning at the top of figure 4-10, note
that the area between DB and the first Q is the global data
area. The locations in this area are reserved by the process
for variables (possibly arrays) which it has declared to be
global for all procedures called by that process. That is, any
procedure using this particular data segment may reference
the variables in this area.

The individual locations in the global data area may contain
an actual value, or may contain an indirect address pointing
to some other location. (That other location either will
contain the value or will be the start of an array.) Since DB
relative addressing is limited to a maximum of DB+255,
only the first 256 locations of this area may be addressed
directly. These locations are denoted as the primary global
data area. If the number of entries exceeds 256, indirect
addressing must be used. Locations in this area (convenient
for arrays) are denoted as the secondary global data area.

When the operating system finishes assigning space for the
global variables, it points the Q-register at the next
succeeding location (first Q). This is the actual start of the
stack proper. Initially the S pointer is also pointed at this
location, since there is as yet no data on the stack. As the
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executing code segment proceeds to obtain, manipulate,
and generate data for the stack, the S pointer moves away
from Q, indicating at all times the top of such data.
(Examples of typical operations will be given under the
next major heading, "Examples of Stack Operation".)

Then at some time during execution of the code segment, it
is assumed that Procedure A is called. Accompanying the
call are a set of procedure parameters which are placed on
the stack just prior to issuance of the PCAL instruction.
These are actual parameters, to be substituted for formal
parameters in the procedure, and are referenced by Q-
addressing.

Calling the procedure causes a four-word stack marker to be
placed on the stack. The format of this marker is shown in
figure 4-11. The first word saves the current contents of the
Xvregister. The second word saves the return address for the
code segment- i.e., the P·register address (plus one) relative
to the Pls-reglster contents. The third word saves the Status
register contents, which includes the code segment number
of the caller, in case the called procedure is external to the
current code segment. (This was described earlier under
"Code Segments".) The fourth word is the one of most
interest to the present discussion. This word contains the
delta Q value, which tells how far back it is to the previous
location to which Q was pointing. In this case, delta Q is
pointing to "first Q". The Q.register now points at this
delta Q location.

The sequence of events described in the preceding two para-
graphs is repeated when procedures Band C are called.
Each time, the Q.register will point to the delta Q location
of the current stack marker, and the contents of that
location will point back to the previous setting of Q. Thus
it is seen that when procedure C is executing, there will be a
chain of delta Q stack marks linking the present Q setting
back to the first Q.

Just as the links are established as the procedures are called,
so are they used and eliminated as the procedures are
exited. When procedure C ends, the EXIT instruction
returns S to equal Q, essentially placing the delta Q value
temporarily on the top of the stack. This allows the EXIT
instruction to compute a new value for the Q.register

011 2 314 5 61 7 8 9110 11 12113 14 15

X-Register Contents

PB Relative Return Address for P-Reg

MI'ITIRIOICI CC I Code Segment =
Delta Q

Figure 4-11. Stack Marker Format
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("previous Q"), and it appropriately moves Q back. The
EXIT instruction causes S to decrement step-by-step
through the stack marker, restoring Status, po, and X-
register contents for procedure B.

Lastly, S is moved back to eliminate the unwanted param-
eters of procedure C. Presumably one or more parameters
will be computed answers resulting from procedure C, and
so S is only moved back so far as to preserve those desired
answers (which are now on the top of the stack). This
ability to move S back selectively is one of the functions of
the EXIT instruction (refer to instruction definition).

Once again, the sequence of events described in the
preceding two paragraphs are repeated, until all procedure
data and stack marks are eliminated, and only the final
answer is on the top of the stack.

As a final note, observe the breakdown of allocations for
one procedure (procedure C illustrated). As shown, the pro-
cedure parameters and stack marker are allocations due to
calling the procedure. The remaining locations are allo-
cations local to the procedure, which are further broken
down into an area for local variables and an area for
temporary storage.

EXAMPLES OF STACK USAGE

Up to now, the mechanics of the stack have been examined
without the application of specific values or problems. To
conclude this section, various examples of stack operation
will be given. The examples are progressively instructive
and, in each case, the advantages of this type of archi-
tecture over the register structured computer will be
illustrated.

The examples do not necessarily show all the advantages of
a stack machine. In fact one of the major advantages has
already been shown - that of preserving code and data
conditions by marking the stack. This facilitates rapid
environment changes (e.g., swapping users), saves overhead
for unlimited nesting of procedures, and helps to make
code re-entrant. Another major advantage, that it allows
fast interrupt handling, will be covered in a later section.
The following examples are primarily designed to aid in
understanding the stack concept.

BASIC ARITHMETIC

Figure 4-12 shows a sequence of basic instructions being
executed on some data which is presumed to exist in the
stack. The upper row shows the most elementary method
of adding and removing data to and from the stack, via load
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and delete instructions. The lower row shows the effects of
four arithmetic instructions.

As shown for the initial stack condition (A), the data
consists of six numbers in six consecutive locations. The
Q-register points to the oldest element of the group, and S
points to the element currently on the top of the stack. A
Delete instruction (DEL), executed between A and B,
causes the number 44 to be removed from the stack; this is
accomplished by simply decrementing the S pointer by one.
Then, between Band C, a LOAD instruction causes the
number 37 to be loaded onto the stack; this is accom-
plished by storing the number 37 (from another memory
location) into the location formerly occupied by the
number 44, and then incrementing the S pointer by one.

Between C and D, an ADD instruction is executed. This
instruction adds the two top elements of the stack together,
deletes both from the stack, places the answer (100) on the
top of the stack, and points S at the answer.

Note

As mentioned previously, up to four of
the top stack elements may exist in CPU
registers. Obviously, to execute the ADD
instruction, at least the two top elements
must exist in the CPU. To ensure that this
is the case, the hardware checks the
content of the SR-register. If the number
contained therein is not at least 2, one or
more memory fetches are made so that
the instruction can be carried out.

Between D and E, a Multiply instruction (MPY) is
executed. This instruction multiplies the two top elements
of the stack together, deletes both from the stack, places
the answer (700) on the top of the stack, and points S at
the answer.

To subtract (SUB), the top element is subtracted from the
next-to-top element. Thus the answer at F is the result of
500-700, or -200. (As before, only the answer remains
after computation is performed.) Finally, at G, negation is
performed. This simply reverses the sign of the number on
the top of the stack; in binary form a two's complement
operation is performed.

Although the sequence A through G in figure 4-12 is a very
simple series of operations, it does illustrate the advantages
of the stack technique in computation. First, note that
regardless of how many elements of data there are or what
memory cells they occupy, the operand for each instruction
is consistently the same - the top of the stack. This permits
implicit addressing; i.e., since the operand is understood to
be the top of the stack, it is not necessary to give an
operand address in the instruction word. Thus (except for
LOAD, which must specify a relative address to load from),
the instruction can simply say "add", or "multiply", etc.
The immediate benefit of this is that it allows code com-
pression. Two instructions can be given in a single word.
The sequence D through G, for example, can be given in
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After Delete
Instruction

After Load
Instruction

Q -----+ 1
11
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7---. 63
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7
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---- 37
s

s

After Su btract
Instruction

After Negate
Instruction

Q ---. 1
11---. -200 s

Q ~ 1
11

~ 200s

o
Figure 4-12. Basic Arithmetic Stack Operations

two instruction words. Since this reduces the number of
memory fetches, the speed of computation is considerably
increased.

A second point to note is that temporary storage of inter-
mediate results is automatically provided. For example,
once the parameters 63 and 37 (at C) have been added,
they are no longer required and so are thrown away. But
the answer, which is substituted on the top of the stack, is
automatically in position (adjacent to 7) for the ensuing
multiplication. Thus there is no need to provide a dedicated
location to save the temporary quantity 100 (or any of the
other intermediate results).

It is apparent that the order of placing elements on the
stack is very important. However, it is one of the compiler's
functions to provide the correct order, and (except in
assembly mode) this is of little concern to the programmer.

PROCEDURE CALLS

Figures 4-13 and 4-14 illustrate the operations involved in a
procedure call. Figure 4-13 shows programmatically how a

procedure is set up and called, and figure 4-14 shows what
happens to the stack when the procedure is called and
executed.

The purpose of this example is to demonstrate the ease and
simplicity of parameter passing - i.e., the means by which a
program can substitute actual parameters for the formal
parameters declared in a procedure. In this example (see
bottom block in figure 4-13), the formal parameters are J
and K, and the actual parameters to be passed to the pro-
cedure are 25 and 10, respectively.

As shown in the bottom block of figure 4-13, the calling of
a procedure has an equivalency in mathematical terms. That
is, a procedure is like a predetermined equation, in this case
"ANSWER = J/K". Calling the procedure is like a request
to solve the equation for the specific values of 25 for J and
10 for K. Executing the procedure is to perform the
computation, in this case getting an answer of 2. (To keep
things simple, the example procedure will be made to work
strictly with integer numbers; thus the fractional remainder
5/10 will automatically be discarded.)

The upper two boxes in figure 4-13 list two forms of the
program that will accomplish the example procedure. The

4-15
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SOURCE LANGUAGE

2 INTEGER PROCEDURE QUOTIENT (J,K);

3 VALUE J,K;

Pro- 4 INTEGER J,K;
cedure 5 BEGIN

6 QUOTIENT - J/K;

7 END;

Call 8 ANSWER - QUOTIENT (25,10);

9 END:

MACHINE LANGUAGE
Assembly Octal

10 lOAD Q-5 041605

11 lOAD Q-4 041604
Pro- 12 DIV, DEL 002340
cedure

13 STOR Q-6 051606

14 EXIT,2 031402

15 ZERO,NOP 000600

16 lDI,31 021031

Call 17 lDI,12 021012

18 PCAl,20 031020

19 STOR DB+O 051000

MATHEMATICAL LANGUAGE
Procedure: ANSWER = J/K

Call: Solve ANSWER for
J = 25 and K = 10

Execution: ANSWER = 25/10
= 2, remainder 5

Note: Decimal 25 = Octal 31
Deci mall 0 = Octal 12

Figure 4-13_ Declaring and Calling a Procedure

top box shows how the program would be written in the
source programming language. The middle box shows the
machine language code that would be emitted by the
compiler. The machine language code is shown both in
assembly (or mnemonic) form, and in an octal form of the
actual binary machine code.

Both the source and machine language versions of the
program will now be considered on a line by line basis.
First, the source language program.

4-16

Line 1 begins the program block, just as line 9 ends it.
Although the entire program consists only of one procedure
and a call to that procedure, it nevertheless remains
necessary to enclose the program between a BEGIN state-
ment and an END statement. These statements define a
program. ANSWER is declared to be a global variable for
this program by giving its name within the BEGIN state-
merit. This will cause the variable ANSWER to reside in the
global data area, and thus allow its access by another pro-
cedure - such as an output routine to print out the result.
The type declaration INTEGER specifies that ANSWER
will always be an integer, and tells the compiler to reserve
one word for the result (rather than two or three}. ANSWER
is allocated the word at DB+O_

Lines 2 through 7 comprise the procedure declaration,
which includes the procedure head (lines 2, 3,4) and the
procedure body (lines 5, 6, 7)_ The procedure declaration in
a program cannot cause execution by itself; it must be
called before any execution can take place, Thus the pro-
cedure declaration is always separate and distinct from the
procedure calL They need not be immediately adjacent, as
in this example.

Line 2 gives the procedure name, QUOTIENT, and declares
that the procedure is of type INTEGER, which means that
the result will be in integer form. It also gives the names of
the formal parameters, J and K. Line 3 is the value part of
the procedure declaration. Declaring J and K as values
means that a value (rather than a pointer) will be passed as
a procedure parameter, in both cases. This permits working
with a copy and eliminates any need to change the actual
parameter. Line 4 declares that actual parameters for J and
K must be integers; if any other type is given (floating
point, for example), a compilation error will result,

Line 5 begins the procedure body. Actually, since this pro-
cedure consists of only one statement, the BEGIN state-
ment and END statement (line 7) are superfluous, They are
included here, however, to illustrate the common form for
a procedure (normally involving a compound statement).
Line 6 is the procedure statement, the executable part of
the procedure body. It is this statement which will cause
the division of J by K, and will temporarily store the
quotient as a procedure result, identified by the procedure
name QUOTIENT.

The call to the procedure is given at line 8_ This is an
executable statement, as opposed to a procedure decla-
ration. When this statement is encountered in a program, it
will cause the procedure named QUOTIENT to be
executed, passing actual parameters of 25 and 10 to the
procedure, and will cause the global variable ANSWER to
assume the value of the result. At this point (line 9) the
program is complete.

Lines 10 through 19 show the machine language code
which the compiler emits for the two executable statements
in the program. That is, line 6 causes lines 10 through 14 to
be generated, and line 8 causes lines 15 through 19 to be
generated.
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In order to explain the operation of the program in
machine language, it is necessary to examine what is
happening on the stack. Figure 4-14 will therefore be
referred to in the following discussions. Furthermore, to aid
in visualizing the operations, they will be described in
chronological order; i.e., the machine language program will
begin to execute at line 15.

First of all, it is assumed that the user has logged onto the
system, has compiled the program, and is ready to run (or is
running a program that will shortly encounter the state-
ment in line 8). Loading the program has caused space to be
allocated for the one global variable, ANSWER, which is at
DB+O (see A in figure 4-14). Since there are no other global
variables, Q and S initially point at the immediately
following location. (The content of that location will never
be significant; in essence it is a dummy delta Q location.) It
may be instructive to refer back to figures 4-10 and 4-8.

Additionally, during program loading, the operating system
has evaluated the program in order to set the Z-register
appropriately for an initial estimated stack size. Also, since
no dynamic own arrays are declared, DL is set coincident
with DB.

Now it is assumed that the user issues a system command to
run the program or, in other words, to execute the pro-
cedure call given in line 8 of figure 4-13. This causes control
to be passed to line 15 in the machine language program,
where the sequence to call the procedure begins.

The first instruction is a ZERO, NOP. Executing this in-
struction puts a 0 on the stack and increments the S pointer
(see A in figure 4-14). This reserves a location for the pro-
cedure result.

Next (B and C; lines 16 and 17), the parameter values 31
and 12 are passed directly from the instruction words to
the stack (area reserved for procedure parameters). Octal
notation is used for these values.

Then (D, and line 18) a procedure call instruction, PCAL,
causes a four-word stack marker to be placed on the stack.
The Sand Q pointers point to the delta Q location of the
marker, which now indicates 7 (the number of locations
back to the initial Q location). It is assumed that entry
number 20 in the Segment Transfer Table will direct the
call to the correct procedure starting point.

Now execution of the procedure begins (line 10). The first
two instructions (lines 10 and 11) load copies of the pro-
cedure parameters onto the top of the stack (E and F),
using Q- relative addressing. The next instruction (line 12)
divides the top-of-stack parameter into the next-to-top
parameter, and substitutes the quotient (2) and the
remainder (5) on the top of the stack, as shown at G. The
second half of the same instruction (DEL) discards the
remainder word by decrementing S, as shown at H.

To save the result, the STOR Q-6 (line 13) first copies the
top-of-stack into the location reserved for the procedure
result, formerly occupied by a 0, as shown at 1. Then it is
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possible to exit from the procedure. The EXIT instruction
(line 14) restores Q to its initial setting, and the "2"
included with the instruction causes S to move back two
locations past the stack marker. As shown at J, this leaves
the result, 2, in the location reserved for QUOTIENT -now
on the top of the stack. The EXIT instruction also returns
program control to line 19, which causes the content for
QUOTIENT to be stored in the location for ANSWER in
the global data area. This produces the final result shown
at K.

Finally (line 20), a procedure cali to the system returns
control back to the system.

RECURSION

The last example in this series demonstrates the stack
principles involved in a recursive procedure. A recursive
procedure is one which calls itself one or more times during
execution.

Recursion is a powerful programming technique which
derives from the re-entrant capability of the code. The
advantages and other considerations of this technique are
beyond the scope of this manual, and the example to be
given does not necessarily illustrate the niceties of the
technique. Rather the example is intended to show only
how recursion is accomplished on the stack.

The example chosen is purposely kept simple in order to
provide continuity with the preceding example. (Note that
the form of the source language program for this example,
in table 4-2, is nearly identical to that of the preceding ex-
ample in figure 4-13.) The procedure simply computes N!
(N factorial), where N is the formal parameter. The pro-
cedure will be called with an actual parameter of 4, so that
computation of 4! will be: 1 X 2 X 3 X 4 = 24.

In essence, this problem consists of repetitively multiplying
the previous product by a parameter which is incremented
by one on each repetition. To provide a starting point
(initial "previous product"), the value 1 is automatically
given. The procedure is designed to perform this multipli-
cation sequence by repetitively calling itself, after it has
been called once by the main program. Thus for any N, the
procedure will be called N+1 times. In this example there
will be one call by the main program and four recursive
calls.

Table 4-2 lists the source and machine language forms of a
program block to solve this problem. Since the source
language program is so similar to the preceding example, it
need not be discussed at this point. The machine language
form has been slightly changed to more closely resemble an
actual program listing. Some assumed PB relative addresses
are given for each instruction, beginning at address 00114.
The assumption here is that this program block is
embedded in a larger "main" program. (Note that the
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Table 4-2. Recursive Program

SOURCE LANGUAGE

···
BEGIN INTEGER Y;

INTEGER PROCEDURE FACTORIAL (N);
VALUE N;
INTEGER N;

FACTORIAL := IF N = o THEN 1 ELSE N * FACTORIAL (N-1);
Y := FACTORIAL (4)

END; ··-- - -- -- -. · -. -- -- -- - - - - - - -- - - -

MACHINE LANGUAGE

PB Relative Octal
Addresses Instructions Code Comments

00114 LOAD Q- 004 041604 Load parameter
00115 CMPI,OOO 022000 Test it for zero
00116 BNE P+ 003 141503 If not zero, branch to 00121
00117 LDI, 001 021001 If zero, load 1 as initial multiplicand
00120 BR 006 140006 Branch to 00126 (to Exit loops)
00121 ZERO,NOP 000600 Save space for intermediate product
00122 LOAD Q- 004 041604 Load parameter
00123 SUBI,OOl 023001 Decrement for use as new parameter
00124 PCAL,026 031026 Recursive call
00125 MPYM Q- 004 111604 Multiply parameter by TOS
00126 STOR Q- 005 051605 Store th is recursion's product

- - 0012.7 - _EXn,.OOJ - -- -- .. Q3H01 .. -. .SalLethe product and e]<it.

00130 ZERO,NOP 000600 Save space for final product
00131 LDI,004 021004 Load initial actual parameter
00132 PCAL,026 031026 Main program's call to the procedure
00133 STOR DB 015 051015 Save final product in global area
00134 PCAL, XXX 031xxx Return to system

assigned STT entry for this procedure is assumed to be 026,
and the global assignment for Y is DB+15.) The starting
point for execution is at address 00130.

Figure 4-15 illustrates the program in flowchart form.
Box 1 in the diagram calls the procedure (boxes 2 through
9), box 10 saves the result, and then control reverts to the
main program at box 11. The procedure consists of two
phases. The call phase begins when the procedure is called
by the program, and is repeated four times. Briefly, what
happens in this phase is that a succession of N values are
placed on the stack, along with a space for intermediate
answers. The N values are decremented to zero and then the
exit phase begins. This phase successively multiplies an
accumulating product by each of the N values loaded on
the stack in the call phase - in the reverse order. On each
loop unneeded stack information is deleted, saving only the
answer for that loop, until only the final answer is left. At
that time (box 9) the final EXIT instruction finds that its

return address points back to the calling block, and so the
final answer is stored in the global area and control reverts
to the main program.

As will be shown in the following detailed discussion, the
return address check at box 9 is not literally a test for a
specific address. Rather it specifies a return to the address
given in each stack marker. Obviously the last return (first
one placed on the stack) will be a return to the outer block.

Figures 4-16 and 4-17 show the overall process of building
up the stack by recursive calls, and then paring it down
with recursive exits. These two figures will be used in the
following discussions. Also the machine language program
in table 4-2 will be referred to; individual lines will be
identified by PB relative address, omitting the leading zeros.

MAIN PROGRAM CALL. As before, the main program has
already reserved global space for the final answer (Y) before
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Figure 4·15. Example of Recursive Procedure

the procedure is called. When the call is given, the ZERO,
NOP instruction at address 130 reserves space for the pro-
cedure result, FACTORIAL. (Compare stack pictures A and
Z.) This is the first stack addition due to caIling the
procedure.

Next, the actual parameter 4 is loaded on (B), and then the
PCAL instruction is issued. This causes the first stack
marker to be loaded (C). This marker differs from the ones
which will follow in that it contains return information to
the outer block which called the present procedure. That is,
the "return P" word is a P relative address for return to the
caller in the code segment, and delta Q points back to the Q
value that the caller was using earlier in the stack. Now, S
and Q are both pointing at the last word of the first marker
for this procedure.

TEST FOR ZERO. At addresses 114 and 115 (stack
pictures D and E), the procedure parameter is first tested
for zero. This is done by copying it onto the top of the
stack (LOAD Q-4) and giving a CMPIO instruction. This
instruction sets the condition code according to comparison
results and deletes the tested word (E). Since the first test is
non-zero (Le.,4), the branch instruction at line 116
transfers control to address 121 (i.e., P+4). This test and
branch will be repeated in each of the following recursion
loops until the parameter has become zero.

FIRST RECURSIVE CALL. The branch to address 121
causes the procedure to call itself. As usual, the first action
of the call is to load the procedure parameters onto the
stack. The parameters in this case are the variable
FACTORIAL and a decremented form of the original
passed parameter. Thus the ZERO, NOP instruction
reserves a location for FACTORIAL (see F), strictly for use
by this recursion (i.e., distinct from the final FACTORIAL
location reserved at A); then (G,H) the new parameter is
obtained by copying the preceding value to the top of the
stack (LOAD Q-4) and decrementing with a SUBI 1
instruction.

After loading parameters for the new call, another PCAL
instruction is issued. This causes a new stack marker (see I)
and, via the Segment Transfer Table, transfers control back
to the starting point of the procedure, address 114. The
new stack marker gives as its return P value the address
immediately following the PCAL, which is 125. (This will
be important to remember when the exit sequence is
discussed.) Also, the delta Q value is 6, since the previous
delta Q was six locations back.

SUCCESSIVE RECURSIONS. Now all of the steps
described in the preceding three paragraphs are repeated,
beginning with the parameter test for zero. Since the
parameter is 3 on the second recursion, the branch to
address 121 again occurs. The first actions, again, are to
reserve a location for this recursion's answer (J) and to load
a decremented parameter value of 2 (K and L). After this,
the procedure call back to the beginning is again made,
resulting in another stack marker (M) which is identical to
the one generated on the first recursion.
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The third and fourth recursions repeat the entire process
again, loading parameters of 1 and 0 followed each time by
a stack marker. Thus when the final LOAD Q-4 occurs in
preparation for the zero test, the stack appears as shown
at N.

FIRST EXIT. The check at address 115 now finds that the
parameter is zero. The checked copy of the parameter is
deleted from the stack (P in figure 4-17) and the branch at
address 116 transfers control to address 117 (rather than
121).

As mentioned earlier (fourth paragraph under the
Recursion heading), an assumed value of 1 is necessary as
an initial "previous product" in order to begin the multipli-
cation loops. This is accomplished by a LDI 1 instruction
(address 117), which puts a 1 on the top of the stack
(see Q).

Then an unconditional branch at address 120 transfers
control to address 126, where the "1" on the top of the
stack is stored into the location reserved for this recursion's
answer, as shown at R. The next instruction is then the
EXIT 1 instruction at address 127. This causes Q to move
back six locations (delta Q = 6) and S five locations
(EXIT 1 deletes one of the two parameters), as shown at S.
The return address for the P-register, as will be remembered
from five paragraphs back, is the MPYM Q-4 instruction at
address 125. This causes the parameter at Q-4 (1) to be
multiplied by the 1 on the top of the stack, leaving the
answer as the new top-of-stack element. Since 1 X 1 = 1
there is no apparent change from S to T, but in fact a multi-
plication has occurred.

Memory Segmentation

FIRST RECURSIVE EXIT. The answer of the first multi-
plication is now stored in the location reserved for it (Q-5)
as shown at U, by the STOR Q-5 instruction at
address 126. The next instruction, at 127, is again the
EXIT 1 instruction, which peels back the stack as shown at
V and returns the P-register to the MPYM Q-4 instruction
at address 125. The parameter for multiplication (at Q-4) is
now 2, so the multiplication result at W is 2. Again, this is
stored back in the location reserved for it (Q- 5) as shown
at X.

SUCCESSIVE EXITS. After saving the result, the next
EXIT 1 is again encountered, causing the Sand Q stack
pointers to move back to the next marker, leaving the
answer 2 on the top of the stack. The return for the P-
register is again 125, so the MPYM Q-4 instruction multi-
plies 2 X 3, and the following STOR Q-5 puts the answer 6
into the reserved location as shown at Y.

Likewise, the last recursive exit causes the value 6 to be left
on the top of the stack when the last return to address 125
is made. Then the final multiplication multiplies 6 X 4, and
the last STOR Q-5 instruction puts the answer 24 into the
location originally reserved for the end result FACTORIAL.

The last EXIT instruction finds the return for the Q-register
(delta Q) pointing back to the origin of an earlier pro-
cedure, and so is no longer shown in the stack diagram at Z.
However, since one parameter is saved, the final answer
remains on the top of the stack, as shown. The P-register,
meanwhile, returns to the next instruction in the outer
block, which is the STOR DB 15 instruction at address 133_
This saves the answer in the global area, and a final PCAL
returns control to the system.
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INSTRUCTION SET

This section defines each of the 170 machine instructions in the
HP 3000 instruction set. Where additional information would be
helpful in understanding the operation of a particular instruction, an
Instruction Commentary reference is given following the definition.
In such cases, refer to the corresponding number under the heading,
"Instruction Commentary", at the end of this section.

Unless specifically mentioned, the indicators (Condition Code, Over-
flow, and Carry) are unaffected by instruction execution.

STACK OP INSTRUCTIONS

Alternate
Position

Alternate
Position

Alternate
Position

Alternate
Position

Alternate
Position

Alternate
Position

NO OP INSTRUCTION

NOP No operation. The user's program space and data space
remain unchanged.
Stack opcode: 00
Indicators: unaffected

DUPLICATE AND DELETE INSTRUCTIONS

DELB Delete B. The second word of the stack is deleted and the
stack is compressed. The content of the TOS is unchanged.
Stack opcode: 01
Indicators: unaffected

DDEL Double delete. The top two words of the stack are deleted.
Stack opcode: 02
Ind icators: unaffected

DEL Delete A. The top word of the stack is deleted.
Stack opcode: 40
Ind icators: unaffected

DUP Duplicate A. The top word of the stack is duplicated by
pushing a copy of the TOS onto the stack.
Stack opcode: 45
Indicators: CCA

DDUP Double duplicate. The double word in the top two words of
the stack is duplicated by pushing a copy of it onto the
stack.
Stack opcode: 46
Indicators: CCA on new TOS double word

5-1
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Instruction Set

ZERO INSTRUCTIONS

ZROX Zero X. The content of the Index register is replaced by
zero.
Stack opcode: 03
Indicators: unaffected

ZERO Push zero. A zero word is pushed onto the stack.
Stack opcode: 06
Indica tors: unaffected

DZRO Push double zero. Two words containing all zeros are
pushed onto the stack.
Stack opcode: 07
Indicators: unaffected

ZROB Zero B. The second word of the stack is replaced by zero.
The TOS is unaffected.
Stack opcode: 41
Indicators: unaffected

INCREMENT/DECREMENT INSTRUCTIONS

INCX Increment X. The content of the Index register is incre-
mented by one in integer form.
Stack opcode: 04
Indicators: CCA, Carry, Overflow

DECX Decrement X. The content of the Index register is decre-
mented by one in integer form.
Stack opcode: 05
Indicators: CCA, Carry, Overflow

INCA Increment A. The TOS is incremented by one in integer
form.
Stack opcode: 33
Indicators: CCA, Carry, Overflow

DECA Decrement A. The TOS is decremented by one in integer
form.
Stack opcode: 34
Indicators: CCI\, Carry, Overflow

INCB Increment B. The second word of the stack is incremented
by one in integer form. The TOS is unaffected.
Stack opcode: 73
Indicators: CCA, Carry, Overflow

DECB Decrement B. The second word of the stack is decremented
by one in integer form. The TOS is unaffected.
Stack opcode: 74
Indicators: CCA, Carry, Overflow

5-2
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Position

Alternate
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Alternate
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Alternate
Position

Instruction Set

DOUBLE INTEGER INSTRUCTIONS

DCMP Double compare. The Condition Code is set to pattern C as
a result of the doubleword integer comparison of D,C and
B,A. The two double words are deleted from the stack.
Stack opcode: 10
Indicators: CCC

DADD Double add. The two doubleword integers contained in the
top four elements of the stack are added in double length
integer form (D,C + B,A) and they are deleted. The double-
word integer sum is pushed onto the stack (B,A).
Stack opcode: 11
Indicators: CCA, Carry, Overflow

DSUB Double subtract. The doubleword integer contained in the
top two words of the stack is subtracted from the double-
word integer contained in the third and fourth words of the
stack (D,C - B,A). The top four words of the stack are
deleted and the doubleword integer result is pushed onto
the stack (B,A).
Stack opcode: 12
Indicators: CCA, Carry, Overflow

MPYL Multiply long. The top two words of the stack are multi-
plied in integer form. The words are replaced by the double
length product, with the least significant half on the TOS.
Overflow is cleared. Carry is cleared if the low order 16 bits
represent the true result (i.e., if the high order 17 bits are
either all zeros or all ones); otherwise, Carry is set.
Instruction Commentary 1.
Stack opcode: 13
Indicators: CCA, Carry, Overflow

DIVL Divide long. The doubleword integer in the second and
third elements of the stack is divided by the integer in the
TOS (C,B -;- A). The three words are deleted, and the
quotient and remainder are pushed onto the stack (quotient
in B, remainder in A).
Stack opcode: 14
Indicators: CCA, Overflow

DNEG Double negate. The doubleword integer contained in the
top two words of the stack is negated (two's comple-
mented) and replaces the original doubleword integer.
Stack opcode: 15
Indicators: CCA, Overflow

INTEGER INSTRUCTIONS

CMP Compare. The Condition Code is set to pattern C as a result
of the integer comparison of the second word of the stack
with the TOS. Both words are deleted.
Stack opcode: 17
Indicators: CCC
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Instruction Set

ADD Add. The top two words of the stack are added in integer
form and are then deleted. The resulting sum is pushed
onto the stack.
Stack opcode: 20
Indicators: CCA, Carry, Overflow

SUB Subtract. The TOS is subtracted in integer form from the
second word of the stack and both words are then deleted.
The resulting difference is then pushed onto the stack.
Stack opcode: 21
Indicators: CCA, Carry, Overflow

MPY Multiply. The top two words of the stack are multiplied in
integer form. The two words are deleted and the least
significant word of the double length product is pushed
onto the stack. If the high order 17 bits of the double
length product (including the sign bit of the second word)
are not all zeros or all ones, Overflow is set.
Instruction Commentary 1.
Stack opcode: 22
Indicators: CCA, Overflow

DIV Divide. The integer in the second word of the stack is
divided by the integer on the TOS. The second word is
replaced by the quotient, and the top word is replaced by
the remainder.
Stack opcode: 23
Ind icators: CCA on quotient, Overflow

NEG Negate. The integer in the TOS is replaced by its two's
complement.
Stack opcode: 24
Indicators: CCA, Overflow, Carry

TEST INSTRUCTIONS

TEST Test TOS. The condition code is set to pattern A according
to the content of the TOS word.
Slack opcode: 25
Indicators: CCA

DTST Test double word on TOS. The condition code is set to
pattern A according to the contents of the top two words
of the stack. Also, Carry is cleared if the low order 16 bits
of the doubleword result (TOS) represent the true integer
value (i.e., if the high order 17 bits are either all zeros or all
ones); otherwise, Carry is set.
Instruction Commentary 1.
Stack opcode: 27
Indicators: CCA, Carry
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Instruction Set

BTST Test byte on TOS. The Condition Code is set to pattern B
according to the contents of the byte contained in the eight
least significant bits of the TOS word (bits 8-15).
Stack opcode: 31
Indicators: CCB

EXCHANGE INSTRUCTIONS

DXCH Double exchange. The top two doubleword pairs are inter-
changed on the stack.
Stack opcode: 16
Indicators: CCA on the new TOS double word

XCH Exchange A and B. The top two words of the stack are
interchanged.
Stack opcode: 32
Indicators: CCA on the new TOS

XAX Exchange A and X. The content of the TOS and the Index
register are interchanged.
Stack opcode: 35
Indicators: CCA on the new TOS

CAB Rotate A,B,C. The third word of the stack is removed from
the stack, the two top words are compressed onto the rest
of the stack, and the original third word is pushed onto the
stack.
Stack opcode: 56
Indicators: CCA on the new TOS

XBX Exchange Band X. The second word of the stack is inter-
changed with the content of the Index register.
Stack opcode: 75
Indicators: unaffected

INDEX INSTRUCTIONS

STBX Store B into X. The second word of the stack replaces the
content of the Index register.
Stack opcode: 26
Indicators: CCA on the new X

ADAX Add A to X. The TOS is added in integer form to the
content of the Index register. The sum replaces the content
of the Index register, and the TOS is deleted.
Stack opcode: 36
Indicators: CCA on the new X, Carry, Overflow

ADXA Add X to A. The content of the Index register is added to
the TOS, and the sum replaces the TOS.
Stack opcode: 37
Indicators: CCA on the new TOS, Carry, Overflow
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Instruction Set

LDXB Load X into B. The second word of the stack is replaced by
the content of the Index register. The TOS is unaffected.
Stack opcode: 42
Indicators: CCA on the new B

STAX Store A into X. The TOS replaces the content of the Index
register, and TOS is deleted from the stack.
Stack opcode: 43
Indicators: CCA on the new X

LDXA Load X onto stack. The content of the Index register is
pushed onto the stack.
Stack opcode: 44
Indicators: CCA on the new TOS

ADBX Add B to X. The second word of the stack is added in
integer form to the content of the Index register, and the
result replaces the content of the Index register.
Stack opcode: 76
Indicators: CCA on the new X, Carry, Overflow

ADXB Add X to B. The content of the Index register is added in
integer form to the second word of the stack, and the sum
replaces the second word of the stack.
Stack opcode: 77
Indicators: CCA on the new B, Carry, Overflow

FLOATING POINT INSTRUCTIONS

DFLT Double float. Converts the doubleword integer contained in
the top two words of the stack to a floating point number
with rounding.
Instruction Commentary 2.
Stack opcode: 30
Indicators: CCA

FLT Float. Converts the integer on the TOS to a 32-bit floating
point number with rounding. The TOS is deleted and the
doubleword floating point result is pushed onto the stack.
Instruction Commentary 2.
Stack opcode: 47
Indica tors: CCA

FCMP Floating compare. The Condition Code is set to pattern C
as a result of the floating point comparison of D,C with
B,A. The two floating point double words are deleted.
Stack opcode: 50
Indicators: CCC
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Instruction Set

FADD Floating add. The two floating point numbers contained in
the top four words of the stack are added in floating point
form. The top four words of the stack are deleted and the
two-word sum is pushed onto the stack.
Instruction Commentary 2.
Stack opcode: 51
Indicators: CCA, Overflow

FSUB Floating subtract. The floating point number contained in
the top two words of the stack is subtracted in floating
point form from the floating point number contained in the
third and fourth words of the stack. The top four words of
the stack are deleted and the two-word difference is pushed
onto the stack.
Instruction Commentary 2.
Stack opcode: 52
Indicators: CCA, Overflow

FMPY Floating multiply. The two floating point numbers con-
tained in the top four words of the stack are multiplied in
floating point form. The top four words of the stack are
deleted and the two-word result is pushed onto the stack.
Instruction Commentary 2.
Stack opcode: 53
Indicators: CCA, Overflow

FDIV Floating divide. The floating point number contained in the
third and fourth words of the stack is divided by the
floating point number contained in the top two words of
the stack. The top four words of the stack are deleted and
the two-word quotient is pushed onto the stack.
Instruction Commentary 2.
Stack opcode: 54
Indicators: CCA, Overflow

FNEG Floating negate. The floating point number contained in
the top two words of the stack is negated in floating point
form.
Stack opcode: 55
Indicators: CCA

FIXR Fix and round. The floating point number contained in the
top two words of the stack is converted to fixed point
form and rounded. Carry is cleared if the low order 16 bits
of the doubleword result (TOS) represent the true integer
value (i.e., if the high order 17 bits are either all zeros or all
ones); otherwise, Carry is set.
Instruction Commentaries 1 and 2.
Stack opcode: 70
Indicators: CCA, Carry, Overflow
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Instruction Set

FIXT Fix and truncate. The floating point number contained in
the top two words of the stack is converted to fixed point
form and truncated. Carry is cleared if the low order 16 bits
of the doubleword result (TOS) represent the true integer
value (i.e., if the high order 17 bits are either all zeros or all
ones); otherwise, Carry is set.
Instruction Commentaries 1 and 2.
Stack opcode: 71
Indicators: CCA, Carry, Overflow

LOGICAL INSTRUCTIONS

LCMP Logical compare. The Condition Code is set to pattern C as
a result of the comparison of the second word of the stack
with the TOS. The two words are then deleted from the
stack.
Stack opcode: 57
Indicators: CCC

LADD Logical add. The top two words of the stack are added as
Lfi-bit positive integers, and they are deleted from the
stack. The resulting sum is pushed onto the stack.
Stack opcode: 60
Indicators: CCA (as a 2's complement result), Carry

LSUB Logical subtract. The top word of the stack is subtracted in
logical form from the second word and they are deleted.
The resulting difference is pushed onto the stack.
Stack opcode: 61
Indicators: CCA (as a 2's complement result), Carry

LMPY Logical multiply. The top two words of the stack are
multiplied as Ib-bit positive integers. The words are
replaced by the double length product with the least signi-
ficant half on the TOS. Carry is cleared if the TOS word of
the result represents the true integer value (i.e., if the high
order 16 bits are all zeros); otherwise, Carry is set.
Instruction Commentary 1.
Stack opcode: 62
Indicators: CCA (as a 2's complement result), Carry

LDIV Logical divide. The 32·bit positive integer in the second and
third words of the stack is divided by the Ib-bit positive
integer on the TOS (C,B 7 A). The top three words are
deleted. The quotient is pushed onto the stack (B) and then
the remainder (A). If overflow occurs, the quotient will be
modulo 216

Stack opcode: 63
Indicators: CCA on quotient (as a 2's complement result),

Carry

NOT One's complement. The top word of the stack is converted
to its one's complement.
Stack opcode: 64
Indicators: CCA
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BOOLEAN INSTRUCTIONS
OR Logical OR. The top two words of the stack are merged by

a logical inclusive-OR. The two words are deleted and the
result is pushed onto the stack.
Stack opcode: 65
Indicators: CCA on the new TOS

XOR Logical exclusive-OR. The top two words of the stack are
combined by a logical exclusive-OR. The two words are
deleted and the result is pushed onto the stack.
Stack opcode: 66
Indicators: CCA on the new TOS

AND Logical AND. The top two words of the stack are combined
by a logical AND. The two words are deleted and the result
is pushed onto the stack.
Stack opcode: 67
Indicators: CCA on the new TOS

SINGLE WORD SHIFT
INSTRUCTIONS

Shift
Count

Shift
Count

Shift
Count

Shift
Count

All single word shift instructions: Instruction Commentary 3.

ASL Arithmetic shift left. The TOS is shifted left n bits, pre-
serving the sign bit. The value of n (modulo 64) is the
number specified in the argument field plus, if X is speci-
fied (bit 4), the content of the Index register.
Sub-opcode 1: 00
Indicators: CCA

ASR Arithmetic shift right. The TOS is shifted right n places,
propagating the sign bit. The value of n (modulo 64) is the
number specified in the argument field plus, if X is speci-
fied, the content of the Index register.
Sub-opcode 1: 01
Indicators: CCA

LSL Logical shift left. The TOS is shifted left n bits logically.
The value of n (modulo 64) is the number specified in the
argument field plus, if X is specified, the content of the
Index register.
Sub-opcode 1: 02
Indicators: CCA

LSR Logical shift right. The TOS is shifted right n bits logically.
The value of n (modulo 64) is the number specified in the
argument field plus, if X is specified, the content of the
Index register.
Sub-opcode 1: 03
Indicators: CCA
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Instruction Set

CSL Circular shift left. The TOS is shifted left n bits circularly.
The value of n (modulo 64) is the number specified in the
argument field plus, if X is specified, the content of the
Index register.
Sub-opcode 1: 04
Indicators: CCA

CSR Circular shift right. The TOS is shifted right n bits circu-
larly. The value of n (modulo 64) is the number specified in
the argument field plus, if X is specified, the content of
the Index register.
Sub-opcode 1: 05
Indicators: CCA

Shift
Count

Shift
Count

DOUBLE WORD SHIFT
INSTRUCTIONS

All double word shift instructions: Instruction Commentaries
3 and 4.

DASL Double arithmetic shift left. The double word contained in
the top two words of the stack is shifted left n bits,
preserving the sign bit (bit 0 of B). The value of n (modulo
64) is the number specified in the argument field plus, if X
is specified, the content of the Index register.
Sub-opcode 1: 20
Indicators: CCA

DASR Double arithmetic shift right. The double word contained
in the top two words of the stack is shifted right n bits,
propagating the sign bit (bit 0 of B). The value of n
(modulo 64) is the number specified in the argument field
plus, if X is specified, the content of the Index register.
Sub-opcode 1: 21
Indicators: CCA

DLSL Double logical shift left. The double word contained in the
top two words of the stack is shifted left n bits logically.
The value of n (modulo 64) is the number specified in the
argument field plus, if X is specified, the content of the
Index register.
Su b-opcode 1: 22
Indicators: CCA

DLSR Double logical shift right. The double word contained in
the top two words of the stack is shifted right n bits
logically. The value of n (modulo 64) is the number speci-
fied in the argument field plus, if X is specified, the content
of the Index register.
Sub-opcode 1: 23
Indicators: CCA
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mstruction Set

DCSL Double circular shift left. The double word contained in the
top two words of the stack is shifted left n bits circularly.
The value of n (modulo 64) is the number specified in the

Shift argument field plus, if X is specified, the content of the
Count Index register.

Su b-opcode 1: 24
Indicators: CCA

Shift
Count

DCSR Double circular shift right. The double word contained in
the top two words of the stack is shifted right n bits
circularly. The value of n (modulo 64) is the number
specified in the argument field plus, if X is specified, the
content of the Index register.
Sub-opcode 1: 25
Indicators: CCA

TRIPLE WORD SHIFT
INSTRUCTIONS

Shift Count

Shift Count

Reserved

All triple word shift instructions: Instruction Commentaries 3
and 5.

TASL Triple arithmetic shift left. The triple word integer con-
tained in the top three words of the stack is shifted
left n bits, preserving the sign bit (bit 0 of C). The value
of n (modulo 64) is the number specified in the argument
field plus, if X is specified, the content of the Index
register.
Subopcode 1: 10
Indicators: CCA on the new TOS triple word

TASR Triple arithmetic shift right. The triple word integer con-
tained in the top three words of the stack is shifted
right n bits, propagating the sign bit (bit 0 of C). The
value of n (modulo 64) is the number specified in the
argument field plus, if X is specified, the content of the
Index register.
Sub-opcode 1: 11
Indicators: CCA on the new TOS triple word

TNSL Triple normalizing shift left. The top three words of the
stack are shifted left arithmetically until bit 6 of C is
a "1". Bits 0 through 5 of C are cleared ("0"). The
shift count is stored in the Index register. The instruction
initially clears the Index register unless X is specified ("1"
in bit 4 of the instruction).
Sub-opcode 1: 16
Indicators: CCA on final value of top three words
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Instruction Set

BRANCH INSTRUCTIONS

IABZ Increment A, branch if zero. The TOS is incremented. If
the result is then zero, control is transferred to P ± displace-
ment; otherwise to P+1.
Su b-opcode 1: 07
Indicators: CCA, Carry, Overflow
Addressing modes: P relative (+/-)

Direct or indirect

IXBZ Increment X, branch if zero. The Index register is incre-
mented. If the result is then zero, control is transferred to P
± displacement; otherwise to P+ 1.
Sub-opcode 1: 12
Indicators: CCA, Carry, Overflow
Addressing modes: P relative (+/-)

Direct or indirect

DXBZ Decrement X, branch if zero. The Index register is decre-
mented. If the result is then zero, control is transferred to P
± displacement; otherwise to P+ 1.
Sub-opcode 1: 13
Indicators: CCA, Carry, Overflow
Addressing modes: P relative (+/-)

Direct or indirect

BCY Branch on carry. If the Carry bit of the Status register is set
("1"), control is transferred to P ± displacement; otherwise
to P+1.
Su b-opcode 1: 14
Indicators: Carry cleared
Addressing modes: P relative (+/-)

Direct or indirect

BNCY Branch on no carry. If the Carry bit of the Status register is
clear ("0"), control is transferred to P ± displacement;
otherwise to P+ 1.
Sub-opcode 1: 15
Indicators: Carry cleared
Addressing modes: P relative (+/-)

Direct or indirect

CPRB Compare range and branch. The integer in the Index reg-
ister is tested to determine if it is within the interval
defined by the upper bound integer on the TOS and the
lower bound integer in the second word of the stack. The
Condition Code is set by the comparison to a special
pattern: CCE if within range, CCL if below range, CCG if
above range. If the integer in the Index register is within the
specified range, control is then transferred to P ± displace-
ment; otherwise to P+ 1. The top two elements of the stack
are deleted in either case.
Sub-opcode 1: 26
Indicators: CCE, CCl, CCG
Addressing modes: P relative (+/-)

Direct or indirect

5-12

Displacement

Displacement

~
Displacement

Displacement

Displacement

'---v----'
Displacement

Keven
Rectangle

Keven
Rectangle



Displacement

'-----v--------
D isp lacement

'-----v--------
Displacement

~
Displacement

Displacement

Displacement
P Relative

h Displacement
DB+

: I"0+ :0-
$-

1 0 I:
1 1 I

Instruction Set

DABZ Decrement A, branch if zero. The TOS is decremented. If
the result is then zero, control is transferred to P ± displace-
ment; otherwise to P+1.
Sub-opcode 1: 27
Indicators: CCA, Carry, Overflow
Addressing modes: P relative (+/-)

Direct or indirect

BOV Branch on overflow. If the Overflow bit of the Status
register is set ("1 "), control is transferred to P ± displace-
ment; otherwise to P+1.
Sub-opcode 1: 30
Indicators: Overflow cleared
Addressing modes: P relative (+/-)

Direct or indirect

BNOV Branch on no overflow. If the Overflow bit of the Status
register is clear ("0"), control is transferred to P ± displace-
ment; otherwise to P+1.
Sub-opcode 1: 31
Indicators: Overflow cleared
Addressing modes: P relative (+/-)

Direct or indirect

BRO Branch on TOS odd. If the TOS is odd (bit 15 = 1), control
is transferred to P ± displacement; otherwise to P+1. The
TOS is deleted.
Sub-opcode 1: 36
Indicators: unaffected
Addressing modes: P relative (+/-)

Direct or indirect

BRE Branch on TOS even. If the TOS is even (bit 15 = 0),
control is transferred to P ± displacement; otherwise to
P+1. The TOS is deleted.
Sub-opcode 1: 37
Indicators: unaffected
Addressing modes: P relative (+/-)

Direct or indirect

BR Branch unconditionally. For P relative mode, control is
transferred unconditionally to P ± displacement, plus (if
specified) the value in X; may be indirect. For DB, Q, and S
relative modes, control is transferred indirectly (only) via
the location specified by DB, Q, or S ± the displacement;
the content of the location so specified is added to PB (plus
post-indexing if X is specified) to obtain the effective
address for P.
Instruction Commentary 6.
Memory opcode: 14, bits 5,6 = 00,10, or 11
Indicators: unaffected
Addressing modes: P relative (+/-), direct or indirect

DB+ relative, indirect
Q+ relative, indirect
Q- relative, indirect
S- relative, indirect
Indexing available

5-13

-----

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle



Instruction Set

BCC Branch on Condition Code. The Condition Code in the
Status register is compared with conditions named in the
CCF field of the instruction. If the named conditions are
met, control is transferred to P ± displacement; otherwise
to P+1. The displacement is limited to ±31. Control is
transferred to the branch address under the following con-
ditions:

If CCF = 0, never branch
= 1, branch if CC = CCL
= 2, branch if CC = CCE
= 3, branch if CC = CCL or CCE
= 4, branch if CC = CCG
= 5, branch if CC = CCG or CCL
= 6, branch if CC = CCG or CCE
= 7, always branch

Memory opcode: 14, bits 5,6 = 01
Indicators: unaffected
Addressing modes: P relative (+/-)

Direct or indirect

~ '---.,----J
CCF Displacement

BIT TEST INSTRUCTIONS

SCAN Scan bits. The TOS is shifted left until bit 0 contains a "I",
then is shifted left one more bit. The shift count is left in
the Index register, indicating the bit position which con-
tained the "1". The instruction normally sets the Index
register to -1 before beginning the shifts. However, if X is
specified, the shift count adds on to the existing Index
register content. If TOS is all zeros, the count will be 16 if
unindexed, or X + 16 if indexed.
Sub-opcode 1: 06
Indicators: CCA on final TOS

TBC Test bit and set Condition Code. One bit of the TOS word
is tested and the Condition Code is set to a special pattern
depending on the state of the bit. The bit position to be
tested is specified by the argument field of the instruction
plus, if X is specified, the content of the Index register. If
the number specified exceeds 15, the bit position indicated
is modulo 16; e.g., bit 0 is tested for counts of 0, 16, 32,
48, etc.
Sub-opcode 1: 32
Indicators: CCE if the bit was "0"

CCl or CCG if the bit was "1 "

TRBC Test and reset bit, set Condition Code. The operation of
this instruction is identical to that of TBC except that the
tested bit is reset to "0" after the test.
Sub-opcode 1: 33
Indicators: CCE if the bit was "0"

CCl or CCG if the bit was "1 "
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TSBC Test and set bit, set Condition Code. The operation of this
instruction is identical to that of TBC except that the
tested bit is set to "1" after the test.
Sub-opcode 1: 34
Ind icators: CCE if the bit was "0"

CCl or CCG if the bit was "1 "

TCBC Test and complement bit, set Condition Code. The opera-
tion of this instruction is identical to that of TBC except
that the tested bit is complemented after the test.
Sub-opcode 1: 35
Indicators: CCE if the bit was "0"

CCl or CCG if the bit was "1 "

TSBM Test and set bits in memory, set Condition Code. A mask
word on the TOS is compared by logical AND with the
contents of the memory location specified by DB + dis-
placement; the result replaces the TOS and sets the Condi-
tion Code to pattern A. At the same time, the mask word is
merged (logical OR) with the content of the specified
location and this result is stored back in the memory cell.
Displacement range is 0 through +255. (The memory loca-
tion is set to all "Is" during execution until the merged
result is stored back in the cell; solves the hardware
"semaphore" problem with dual CPU configurations.)
Instruction Commentary 7.
Sub-opcode 3: 14
Indicators: CCA on the new TOS
Addressing mode: DB+ relative

MOVE INSTRUCTIONS

SDEC

Note: All Move instructions are interruptable
after each word (or byte) transfer and
will continue from the point of interrupt
when control is returned to the
instruction.

MOVE Move words. This instruction transfers a specified number
of words from one area of primary memory to another. The
instruction expects a signed word count in A, a DB or PB
relative displacement for a source address in B, and a DB
relative displacement for a target address in C. As long as
the word count in A has not been counted to zero, the
transferring of data will continue as follows: The content of
the memory location specified by DB + B or PB + B is
transferred to the location specified by DB + C. If the word
count in A is positive, the source and target displacement
values in Band Care incremented by one on each transfer,
and the word count is decremented by one. If the word
count in A is negative, the source and target displacement
values in Band C are decremented by one on each transfer,
and the word count is incremented by one. Note that the
word count is always changed by one toward zero. On
completion of the block transfer, the instruction deletes
from the stack the number of words specified by the SDEC
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Instruction Set

(S decrement) field of the instruction; the range of this
field is 0 through 3.
Instruction Commentary 8.
Move opcode: 0
Indicator s: unaffected
Addressing modes: DB+ or PB+ for source

DB+ for target

MVB Move bytes. The MVB instruction transfers a specified
number of bytes from one area of primary memory to
another. The instruction expects a signed byte count in A, a
DB or PB relative displacement for a source byte address in
B, and a DB relative displacement for a target byte address
in C. As long as the word count in A has not been counted
to zero, the transferring of data will continue as follows:
The content of the byte address location specified by
DB + B or PB + B is transferred to the byte address location
specified by DB + C. If the byte count in A is positive, the
source and target displacement values in Band Care incre-
mented by one on each transfer, and the byte count is
decremented by one. If the byte count in A is negative, the
source and target displacement values in Band C are decre-
mented by one on each transfer, and the byte count is
incremented by one. Note that the byte count is always
changed by one toward zero. On completion of the block
transfer, the instruction deletes from the stack the number
of words (0, 1, 2, or 3) specified by the SDEC field of the
instruction. This instruction can use split stack.
Instruction Commentary 8.
Move opcode: 1
Indicators: unaffected
Addressing modes: Byte addressing

DB+ or PB+ for source
DB+ for target

Move words from DB+ to DL+. This instruction transfers a
MVBL specified number of words from the DB+ area of the data

segment to the DL+ area. The instruction expects a signed
word count in A, a DB relative displacement for a source
address in B, and a DL relative displacement for a target
address in C. As long as the word count in A has not been
counted to zero, the transferring of data will continue as
follows: The contents of the memory location specified by
DB + B is transferred to the location specified by DL + C. If
the word count in A is positive, the source and target
displacement values in Band Care incremented by one on
each transfer, and the word count is decremented by one. If
the word count in A is negative, the source and target
displacement values in Band C are decremented by one on
each transfer, and the word count is incremented by one.
Note that the word count is always changed by one toward
zero. On completion of the block transfer, the instruction
deletes from the stack the number of words (0, 1, 2, or 3)
specified by the SDEC field of the instruction. This instruc-
tion can use split stack.
Instruction Commentary 9.
Move opcode: 2, bit 11 = 0
Indicators: unaffected
Addressing modes: DB+ for source

DL+ for target
This is a privileged instruction.
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scw Scan while memory bytes equal test byte. The SCW instruc-
tion expects the TOS to contain a test character in the right
byte and a terminal character in the left byte. The second
word of the stack contains a DB relative displacement for a
source byte address. The source byte is tested against the
test character. If they are equal the source byte address is
incremented and the next byte is tested. This continues
until a source byte is found that is not the same as the test
character. If the last character scanned is the same as the
terminal character, the Carry bit is set; if not, the Carry bit
is cleared. On completion of the scan, the instruction
deletes from the stack the number of words (0, 1, 2, or 3)
specified in the SDEC field of the instruction. This instruc-
tion can use split stack.
Move opcode: 2, bit 11 = 1
Indicators: Carry

CCB an the last character scanned
Addressing mode: Byte addressing, DB+

MVLB Move words from DL+ to DB+. This instruction transfers a
specified number of words from the DL+ area of the data
segment to the DB+ area. The instruction expects a signed

SDEC word count in A, a DL relative displacement for a source
address in B, and a DB relative displacement for a target
address in C. As long as the word count in A has not been
counted to zero, the transferring of data will continue as
follows: The contents of the memory location specified by
DL + B is transferred to the location specified by DB + C. If
the word count in A is positive, the source and target
displacement values in Band Care incremented by one on
each transfer, and the word count is decremented by one. If
the word count in A is negative, the source and target
displacement values in Band C are decremented by one on
each transfer, and the word count is incremented by one.
Note that the word count is always changed by one toward
zero. On completion of the block transfer, the instruction
deletes from the stack the number of words (0, 1, 2, or 3)
specified by the SDEC field of the instruction.
Instruction Commentary 9.
Move opcode: 3, bit 11 = 0
Indicators: unaffected
Addressing modes: DL + for source

DB+ for target
This is a privileged instruction.

SDEC

SCD Scan until memory byte equals test byte or terminal byte.
The SCD instruction expects the TOS to contain a test
character in the right byte and a terminal character in the
left byte. The second word of the stack contains a DB
relative displacement for a source byte address. The source
byte is tested against the test and terminal characters. If the
source byte differs from both of these characters, the byte
address is incremented and the next byte is tested. This
continues until either the test character or the terminal
character is encountered. The address of the character
remains in the second word of the stack. If the last char-
acter scanned was the same as the test character, the Carry
bit is cleared; if it was the same as the terminal character,
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Instruction Set

Carry is set. On completion of the scan, the instruction
deletes from the stack the number of words (0, 1,2, or 3)
specified in the SDEC field of the instruction.
Move opcode: 3, bit 11 = 1
Indicators: Carry
Addressing mode: byte addressing, DB+

MVBW Move bytes while of specified type. This instruction trans-
fers an unspecified number of bytes from one area of
primary memory to another. The instruction expects a
source byte address in the TOS and a DB relative displace-
ment for a target byte address in the second word of the
stack. AB long as the source byte is of the type specified in
the CCF field, it is moved to the target area. The target
displacement value in B is incremented by one on each
transfer. If the byte to be moved is a lower case letter and
the upshift bit is on, the target byte will be an upshifted
copy of the source byte. Byte transfers continue until the
source byte is not of the proper type. On completion of the
block transfer, the instruction deletes from the stack the
number of words (0, 1,2, or 3) specified by the SDEC field
of the instruction. This instruction can use split stack.
Instruction Commentary 8.
Move opcode: 4
Indicators: CCB on the last character scanned
Addressing mode: Byte addressing, DB+

CMPB Compare bytes. This instruction scans .two byte strings
simultaneously until the compared bytes are unequal or
until a specified number of comparisons have been made.
CMPB expects a signed byte count in A, a DB or PB relative
displacement for a source byte address in B, and a DB
relative displacement for a target byte address in C. As long
as the word count in A has not been counted to zero, the
comparison proceeds as follows: The content of the byte
address location specified by DB + B or PB + B is compared
with the content of the byte address location specified by
DB + C. If the byte count in A is positive, the source and
target displacement values in Band Care incremented by
one after each comparison, and the byte count is decre-
mented by one. If the byte count in A is negative, the
source and target displacement values in Band C are decre-
mented by one after each comparison, and the byte count
is incremented by one. Note that the byte count is always
changed by one toward zero. The instruction terminates
when either a comparison fails or the byte count in the
TOS reaches zero. The Condition Code is set to a special
pattern to indicate the terminating condition. On termina-
tion, the instruction deletes from the stack the number of
words (0, 1, 2, or 3) specified by the SDEC field of the
instruction. This instruction can use split stack.
Instruction Commentary 8.
Move opcode: 5
Indicators: CCE if byte count = 0

CCG if target byte> source byte (final)
CCl if target byte < source byte (final)

Addressi ng modes: Byte addressi ng
DB+ or PB+ for source
oB+ for target
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SPECIAL INSTRUCTIONS

o ispiacement
PL-

RSW Read Switch register. The content of the Switch register is
pushed onto the stack.
Mlni-opcode: 14, bit 15 = 0
Indicators: CCA

LLSH Linked List Search. This instruction searches through a
linked list in memory, comparing a test word with a target
word, until either: a target word is found that is equal to or
greater than the test word, or a target word is all ones, or
the specified count has been counted to zero. The instruc-
tion expects a positive count value in the Index register.
Also, A must contain an absolute pointer into the linked
list, B must contain the test word, and C is an offset
which indicates the position, relative to each link, of the
target location. At each step, the test word is compared
to the content of the target location. If the target content
is logically greater than or equal to the test word, or if
the target content is all ones, the instruction terminates.
Otherwise, the next link replaces the current link in
A, the count in the Index register is decremented, and
the instruction repeats until the count becomes zero.
Instruction Commentary 10.
Mini-opcode: 14, bit 15 = 1
Indicators: Cel if terminated by X = 0

CCE if terminated by target > B
CCG if terminated by target = 216 - 1

Addressing mode: absolute ± offset
This is a privileged instruction.

PLDA Privileged load from absolute address. The content of the
Index register is a 16-bit absolute address; the content of
this address is pushed onto the stack.
Mini-opcode: 15, bit 15 = 0
Indicators: CCA
Addressing mode: absolute
This is a privileged instruction.

PSTA Privileged store into absolute address. The content of the
Index register is a 16-bit absolute address; the top word of
the stack is stored into memory at that address, and then
deleted from the stack.
Mini-opcode: 15, bit 15 = 1
Indicators: unaffected
Addressing mode: absolute
This is a privileged instruction.

LLBL Load label. The label in the Segment Transfer Table (STT)
at PL-N is loaded onto the TOS. The value N is a displace-
ment given in the argument field of the instruction. If the
label is local, it is converted to external type when loaded.
To be valid, the value N must point to a location which is
actually in the STT (i.e., N ,,;; STTL) in all cases; addi-
tionally, in the case of local labels, N must not exceed octal
177 (decimal 127), since this is the maximum range for
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external labels. An invalid value of N will invoke a STT
Violation trap.
Instruction Commentary 11.
Sub-opcode 3: 07
Indicators: unaffected
Addressing mode: PL-

IMMEDIATE INSTRUCTIONS

LDI Load immediate. The immediate operand N is pushed onto
the stack. The value of N is given in the argument field of
the instruction, and is expressed as a positive integer in the
range 0 through 255.
Sub-opcode 2: 02
Indicators: CCA on the new TOS

LDXI Load X immediate. The Index register is loaded with the
immediate operand N. The value of N is given in the
argument field of the instruction, and is expressed as a
positive integer in the range 0 through 255.
Sub-opcode 2: 03
Indicators: unaffected

CMPI Compare immediate. The Condition Code is set to pattern
C as a result of the comparison of the TOS with the
immediate operand N. The value of N is given in the
argument field of the instruction, and is expressed as a
positive integer in the range 0 through 255. The TOS is
deleted.
Sub-opcode 2: 04
Indicators: CCC

ADDI Add immediate. The immediate operand N is added to the
TOS in integer form, and the sum replaces the TOS. The
value of N is given in the argument field of the instruction,
and is expressed as a positive integer in the range 0 through
255.
Sub-opcode 2: 05
Indicators: CCA on the new TOS, Carry, Overflow

sum Subtract immediate. The immediate operand N is sub-
tracted from the TOS in integer form, and the result
replaces the TOS. The value of N is given in the argument
field of the instruction, and is expressed as a positive
integer in the range 0 through 255.
Sub-opcode 2: 06
Indicators: CCA on the new TOS, Carry, Overflow

MPYI Multiply immediate. The immediate operand N is multi-
plied with the TOS in integer form; the 1S-bit integer result
replaces the TOS. The value of N is expressed as a positive
integer in the range 0 through 255.
Sub-opcode 2: 07
Indicators: CCA on the new TOS, Overflow
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Instruction Set

DIVI Divide immediate. The immediate operand N is divided into
the TOS in integer form; the 16-bit integer quotient
replaces the TOS. The value of N is expressed as a positive
integer in the range 0 through 255.
Sub-opcode 2: 10
Indicators: CCA on the new TOS

LDNI Load negative immediate. The immediate operand N is
two's complemented and pushed onto the stack as a nega-
tive integer. The value of N is expressed as a positive integer
in the range 0 through 255.
Sub-opcode 2: 12
Indicators: CCA on the new TOS, Overflow

LDXN Load X negative immediate. The Index register is loaded
with the 16-bit two's complement of the immediate oper-
and N. The value of N is expressed as a positive integer in
the range 0 through 255.
Sub-opcode 2: 13
Indicators: unaffected

CMPN Compare negative immediate. The Condition Code is set to
pattern C as a result of the comparison of the TOS with the
two's complement of the immediate operand N. The value
of N is expressed as a positive integer in the range 0 through
255. The TOS is deleted.
Sub-opcode 2: 14
Indicators: CCC

ADXI Add immediate to X. The immediate operand N is added to
the content of the Index register in integer form. The sum
replaces the Index register content. The value of N is
expressed as a positive integer in the range 0 through 255.
Sub-opcode 3: 05
Indicators: CCA on X

SEXI Subtract immediate from X. The immediate operand N is
subtracted from the content of the Index register in integer
form. The result replaces the Index register content. The
value of N is expressed as a positive integer in the range 0
through 255.
Sub-opcode 3: 06
Indicators: CCA on X

ORI Logical OR immediate. The immediate operand N is
expanded to 16 bits with high order zeros and merged
(inclusive OR) with the TOS; the result replaces the TOS.
The value of N is expressed as a positive integer in the range
o through 255.
Sub-opcode 3: 15
Indicators: CCA
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Instruction Set

XORI Logical exclusive OR immediate. The immediate operand N
is expanded to 16 bits with high order zeros and is com-
bined by exclusive OR with the TOS; the result replaces the
TOS. The value of N is expressed as a positive integer in the
range 0 through 255.
Su b-opcode 3: 16
Indicators: CCA

ANDI Logical AND immediate. The immediate operand N is
expanded to 16 bits with high order zeros and is combined
by logical AND with the TOS; the result replaces the TOS.
The value of N is expressed as a positive integer in the range
o through 255.
Sub-opcode 3: 17
Ind ica tors: CCA

Immediate Operand

Immediate Operand

FIELD INSTRUCTIONS

EXF Extract field. A specified set of bits in the TOS are
extracted and right justified, and the result, with high order
zeros, replaces the TOS. The J field specifies the starting
(leftmost) bit number in the source field, and the K field
specifies the number of bits to be extracted.
Instruction Commentary 12.
Sub-opcode 2: 15
Indicators: CCA on the new TOS

DPF Deposit field. A specified number of the least significant
bits of the TOS are deposited in the second word of the
stack, beginning at the bit number specified by the J field;
the remaining bits of the second word of the stack are
unchanged. The K field specifies the number of bits to be
deposited. The source operand is deleted from the stack.
Instruction Commentary 12.
Sub-opcode 2: 16
Indicators: CCA on the new TOS

I~I~I~1~I~1 ~ 1:1 ~ \8191101111121131141151
~

J K
Starting
Bit #

Number
of bits

1~I~1 ~ 1~I~1 ~ 1 ~ 1 ~ j8191101111121131141151
~

K
Starting
Bit #

Number
of bits

REGISTER CONTROL INSTRUCTIONS

PSHR Push registers. The content of a register (or the displace-
ment it represents) specified by any bit 9 through 15 is
pushed onto the stack. If more than one register (or dis-
placement) is specified, the contents will be stacked in the
order shown below, such that if all seven were specified, DB
would be on the TOS after execution, DL - DB next, etc.
Note that when S-DB is pushed, the value stacked will be
as it existed before the execution of this instruction. Stack
overflow occurs if S+7 exceeds Z, regardless of the number
of registers pushed.

If bit 15 = 1, push S-DB
If bit 14 = 1, push Q-DB
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If bit 13 = 1, push Index register
If bit 12 = 1, push Status register
If bit 11 = 1, push Z-DB
If bit 10 = 1, push DL-DB
If bit 9 = 1, push DB register

Su b-opcode 2: 11
Indicators: unaffected

SETR Set registers. The registers specified by bits 9 through 15 of
the instruction are filled by an absolute value from the TOS
for the Index, Status, and DB registers, and an absolute
value computed by adding DB to the TOS (displacement
value) for the others. If more than one register (or dis-
placement) is specified, the registers will be loaded in the
order shown below, such that if all seven were specified, the
DB-register would receive the first TOS and the value for S
would be computed from the seventh TOS. The TOS is
deleted after each register is set. If the Z-register is set to
ZI, the Interrupt Stack flag is set to "1"; otherwise it is
cleared. The Dispatcher flag is always cleared on setting Z.
SETR is a privileged instruction except for setting the
Index register, Q, S, and bits 2 and 4 through 7 of the
Status register (user traps enable/disable, Overflow, Carry,
and Condition Code).

*If bit 9 = 1, load DB from TOS
*If bit 10 = 1, load DL from (DB+TOS)
*If bit 11 = 1, load Z from (DB+TOS)
*If bit 12 = 1, load Status reg from TOS
If bit 12 = 1, and not privileged mode: load Status

bits 2, 4 thru 7 from same bits of TOS
If bit 13 = 1, load Index register from TOS
If bit 14 = 1, load Q from (DB + TOS)
If bit 15 = 1, load S from (DB + TOS)

Sub-opcode 2: 17
Indicators: unaffected (may be changed if bit 12 = "1 ")
"These are privileged operations.

XCHD Exchange DB and TOS. This instruction expects a new DB
value on the TOS. The current DB replaces that value on
the TOS while the new value is placed in the DB register.
Bits 12 through 15 are ignored.
Special opcode: 03
Indicators: unaffected
This is a privileged instruction.

ADDS Add to S. The immediate operand N is added to Sunless N
is zero; if N is zero, the TOS content, minus one, is added
to S instead.
Instruction Commentary 13.
Sub-opcode 3:12
Indicators: unaffected

SUBS Subtract from S. The immediate operand N is subtracted
from Sunless N is zero; if N is zero, the TOS content,
minus one, is subtracted from S instead.
Instruction Commentary 13.
Sub-opcode 3: 13
Indicators: unaffected
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Instruction Set

PROGRAM CONTROL INSTRUCTIONS

PADS Pause. The computer hardware pauses; interrupts may
occur. Bits 12 through 15 are ignored.
Specialopcode: 01
Indicators: unaffected
This is a privileged instruction.

XEQ Execute stack word. The content of the word in the stack
at S- K is placed in the Current Instruction Register to be
executed. After execution, control is returned to the
instruction after the XEQ unless a transfer of control was
executed (branch, PCAL, etc.). If the word to be executed
is a Stack Op, only the first position (bits 4 through 9) may
be used; bits 10 through 15 must be a NOP. The value of K
is 0 through 15 (decimal).
Instruction Commentary 14.
Special opcode: 06
Indicators: set by the executed instruction

HALT The computer hardware halts; interrupts may not occur and
manual intervention is required to restart the computer.
Bits 12 through 15 are ignored.
Special opcode: 17
Indicators: unaffected
This is a privileged instruction.

SCAL Subroutine call. Control is transferred to the location
pointed to by the evaluation of the local label at PL-N,
unless N is zero; if N is zero the local label is taken from the
TOS and then deleted. The return address is then pushed
onto the stack. Only local labels are allowed; non-local label
gives STT Violation trap.
Instruction Commentary 15.
Sub-opcode 3: 01
Indicators: unaffected
Addressing modes:

Indirect via: PL - N (if N *- 0)
TOS (if N = 0)

Local Label: PB+

PCAL Procedure call. Control is transferred to the location
pointed to by the evaluation of the program label at PL -
N, unless N is zero; if N is zero, the program label is taken
from the TOS and then deleted. Then a four word stack
marker is placed on the stack, and Q and S are updated to
point at this new marker. The program label may be local
or external. If the Trace bit is on in the target CST entry,
the PCAL will be made to the Trace segment. If a privileged
user is calling a user segment, it will run in privileged mode.
Instruction Commentary 16.
Su b-opcode 3: 02
Indicators: unaffected
Addressing modes:

Indirect via: PL - N (if N *- 0)
TOS (if N = 0)

Local Label: PB+
External Label: via CST to local label in target segment
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EXIT Exit from routine. This instruction is used to return from a
routine called by the PCAL instruction or by an interrupt.
A normal exit occurs by restoring the return address to P,
restoring the previous contents of the Index and Status
registers, and deleting all stack variables incurred by the
called routine, plus its marker, plus N number of procedure
parameters. The value of N may be any number from 0
through 255 for exits from PCAL routines; it must be 0 for
exits from interrupt routines. An interrupt routine exits
normally to the calling routine except when: a) exiting
from the last routine to use the Interrupt Control Stack, or
b) exiting from an external interrupt routine and there is
another external interrupt pending. In case "a", the system
automatically exits to the Dispatcher. In case "b", the new
device number replaces the old device number on the stack
(without changing the existing stack marker), and the new
external interrupt is then processed. If the exit is from an
external interrupt routine, EXIT clears the device's
interrupt-active logic. If bit 0 of the return-P marker word
is a "1", control is transferred to the Trace segment. If the
return segment is absent, control is transferred to the
Absence segment.
Instruction Commentary 16.
Sub-opcode 3: 03
Ind ica tors: unaffected

SXIT Exit from subroutine. This instruction is used to return
from a subroutine called by the SCAL instruction. The
SXIT instruction assumes that the return address is on the
TOS, and returns program control to this address. The TOS
is then deleted, plus N number of subroutine parameters.
The value of N may be any number from 0 through 255.
Instruction Commentary 15.
Sub-opco de 3: 04
Indicators: unaffected

I/O AND INTERRUPT INSTRUCTIONS

DIE

SED Set "enable/disable external interrupts" bit. The inter-
rupt system is enabled or disabled according to the
least significant bit (bit 15) of the instruction. If bit
15 is a "1", bit 1 of the Status register is set, thus
enabling external interrupts. If bit 15 is a "0", bit 1
of the Status register is cleared, thus disabling external
interrupts. Bits 12, 13, and 14 of the instruction are
ignored.
Special opcode: 02
Indicators: unaffected
This is a privileged instruction.
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Instruction Set

SMSK Set mask. The SMSK instruction assumes that the TOS
contains the mask word and transmits this word to all
device controllers. Each "1" bit in the mask word sets each
Mask flip-flop in the group of device controllers which are
specifically wired to be controlled by that bit. Each "0" bit
in the mask clears each Mask flip-flop in its group. If there
is an I/O error (no acknowledgement), it means that the
external interrupt system is in an unknown state. In this
case, the SMSK instruction sets CCL Condition Code,
and leaves the mask on the TOS. If there is no I/O
error, the SMSK instruction deletes the mask from the
stack and sets the Condition Code to CCE.
Special opcode: 04
Indicators: CCE if no error

CCl if error
This is a privileged instruction.

RMSK Read mask. This instruction transfers the 16-bit mask word
from the Mask register to the TOS.
Special opcode: 05
Indicators: unaffected

SIO Start I/O. The SIO instruction expects the absolute starting
address of an I/O program to be on the TOS, and a device
number to be in the stack at S-K. The instruction first
checks if the device is ready by checking bit 0 of the device
controller's Status register. If it is ready (bit = "1"), the
TOS is stored into the first word location of the DRT entry
for the device specified at S-K; an SIO command is then
issued to the device controller to begin execution of its I/O
program, the TOS is deleted, and the Condition Code is set
to CCE. If the device is not ready (bit 0 of device status =

"0"), the content of the device controller's Status register is
pushed onto the stack and the Condition Code is set to
CCG. If the device controller does not respond to the
readiness test, the Condition Code is set to CCL and the
instruction is terminated.
Special opcode: 07
Indicators: CCl = non-responding device controller

CCE = device ready
CCG = device not ready

This is a privileged instruction.

RIO Read I/O. This instruction expects a device number to be
given in the stack at S- K. RIO first checks if the device is
ready by checking bit 1 of the device controller's Status
register. If it is ready (bit = "1"), the 16-bit direct data
word from the device is pushed onto the stack and the
Condition Code is set to CCE. If it is not ready (bit = "0"),
the content of the device controller's Status register is
pushed onto the stack and the Condition Code is set to
CCG. If the device controller does not respond to the
readiness test, the Condition Code is set to CCL and the
instruction is terminated.
Special opcode: 10
Indicators: CCl = non-responding device controller

CCE = device ready
CCG = device not ready

This is a privileged instruction.
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WIO Write I/O. This instruction assumes that the TOS con-
tains a direct data word and expects a device number to
be given in the stack at S-K. WIO first checks if the
device is ready by checking bit 1 of the device con-
troller's Status register. If it is ready (bit = "1"), the
word is transmitted to the specified device and then
deleted from the stack; the Condition Code is set to
CCE. If it is not ready (bit = "0"), the content of the device
controller's Status register is pushed onto the stack and the
Condition Code is set to CCG. If the device controller does
not respond to the readiness test, the Condition Code is set
to CCL and the instruction is terminated.
Special opcode: 11
Indicators: CCl = non-responding device controller

CCE = device ready
CCG = device not ready

This is a privileged instruction.

TIO Test I/O. This instruction expects a device number to be
given in the stack at S- K. TIO obtains a copy of the device
status word from the device controller, pushes it onto the
stack, and sets the Condition Code to CCE. If the
device controller does not respond, the Condition Code
is set to CCL and the instruction is terminated.
Special opcode: 12
Indicators: CCE = responding device controller

CCl = non-responding device controller
This is a privileged instruction.

CIO Control I/O. This instruction assumes that the TOS con-
tains a control word and expects a device number to be
given in the stack at S-K. CIO transmits the TOS to the
specified device controller, along with a CIO signal. If the
device controller acknowledges receiving the word, the TOS
is deleted and the Condition Code is set to CCE. If the
device controller does not respond, the Condition Code is
set to CCL and the instruction is terminated.
Special opcode: 13
Indicators: CCE = responding device controller

CCl = non-responding device controller
This is a privileged instruction.

CMD Command. This instruction assumes that the TOS contains
a 16-bit data word to be sent to a system hardware module
and expects a command word in the stack at S-K. Bits 13
through 15 of the command word specify the module
number, and bits 10 and 11 are used to specify a module
command. (The four possible commands depend upon
application and do not form a part of this instruction's
definition.) CMD sends the 16-bit data word and 2-bit
command over the central data bus to the specified module,
and then deletes the TOS. (Note: if the destination module
is not ready, the CPU will not proceed until that module
becomes ready; see "To Command a Module" in Section
VIII.)
Special opcode: 14
Indicators: unaffected
This is a privileged instruction.
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Instruction Set

SIRF Set external Interrupt Reference Flag. This instruction
expects a device number to be given in the stack at S-K.
SIRF sets the IRF bit for the specified device to "0" and
increments the Interrupt Counter by one. (The IRF bit is
bit 0 of the fourth word of the Device Reference Table
entry for a device. The Interrupt Counter is fixed memory
location 78 for processor 1 and fixed memory location 138
for processor 2.) If the IRF bit is already a "0", the
Interrupt Counter is not incremented.
Special opcode: 15
Indicators: unaffected
This is a privileged instruction.

SIN Set interrupt. This instruction expects a device number to
be given in the stack at S-K. SIN sets the Interrupt Request
flip-flop in the specified device controller and sets the
Condition Code to CCE. If the device controller does not
respond, the Condition Code is set to CCL and the instruc-
tion is terminated.
Special opcode: 16
Indicators: CCE = responding device controller

CCl = non-responding device controller
This is a privileged instruction.

K

LOOP CONTROL INSTRUCTIONS

TBA Test and branch, limit in A. This instruction expects the
top three elements of the stack to be initialized as follows:
A contains a limit, B contains a step size, and C contains a
DB+ relative displacement for the address of a variable.
TBA tests the variable against the limit. If the limit is not
exceeded, control is transferred to the branch address at
P ± displacement. If the limit is exceeded, the top three
elements of the stack are deleted and execution continues
at P + 1.
Instruction Commentary 17.
Memory opcode: OS, bits 4,5,6 = 000
Indicators: unaffected
Addressing mode: P relative (+/-)

MTBA Modify variable, test and branch, limit in A. This instruc-
tion expects the top three elements of the stack to be
initialized as follows: A contains a limit, B contains a
modifying step size, and C contains a DB+ relative displace-
ment for the address of a variable. MTBA adds the step size
to the variable in integer form, replaces the old variable
with this new sum, and tests the new sum against the limit.
If the limit is not exceeded, control is transferred to the
branch address at P ± displacement. If the limit is exceeded,
the top three elements of the stack are deleted and execu-
tion continues at P+1.
Instruction Commentary 17.
Memory opcode: OS, bits 4,5,6 = 010
Indicators: unaffected
Addressing mode: P relative (+/-)
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TBX Test and branch, variable in X. This instruction requires
that the Index register contains the variable and that the
top two elements of the stack are initialized as follows: A
contains a limit and B contains a step size. TBX tests the
variable in X against the limit. If the limit is not exceeded,
control is transferred to the branch address at P ± displace-
ment. If the limit is exceeded, the top two elements of the
stack are deleted and execution continues at P + 1.
Instruction Commentary 17.
Memoryopcode: OS, bits 4,5,6 = 100
Indicators: unaffected
Addressing mode: P relative (+/- )

MTBX Modify variable in X, test and branch. This instruction
requires that the Index register contains the variable and
that the top two elements of the stack are initialized as
follows: A contains a limit and B contains a modifying step
size. MTBX adds the step size to the variable in integer form,
replaces the old Index register contents with this new sum,
and tests the new sum against the limit. If the limit is not
exceeded, control is transferred to the branch address at
P ± displacement. If the limit is exceeded, the top two
elements of the stack are deleted and execution continues
at P + 1.
Instruction Commentary 17.
Memory opcode: OS, bits 4,5,6 = 110
Indicators: unaffected
Addressing mode: P relative (+/- )

MEMORY ADDRESS INSTRUCTIONS

P+ Displacement

P- Displacement

Mode and Displacement

LDPP Load double from program, positive. The double word
contained at P+N is pushed onto the stack. An attempt to
load from beyond the limit defined by PL will cause a
Bounds Violation interrupt to segment 11.
Sub-opcode 3: 10
Indicators: CCA
Addressing mode: P+ relative

LDPN Load double from program, negative. The double word
contained at P-N is pushed onto the stack. An attempt to
load from beyond the limit defined by PB will cause a
Bounds Violation interrupt to segment 11.
Sub-opcode 3: 11
Indicators: CCA
Addressing mode: P- relative

LOAD Load word onto stack. The content of the effective address
location is pushed onto the stack. An attempt to load from
beyond the limits defined by PB and PL or (in user mode
only) DL and S will cause a Bounds Violation interrupt to
segment 11.
Memory opcode: 04
Indicators: CCA
Addressing modes: P+, P- , DB+, Q+, Q-, S- relative

Direct or indirect
Indexing available
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Instruction Set

STOR Store TOS into memory. The content of the TOS is stored
into the effective address memory location, and is then
deleted from the stack. In user mode, an attempt to store
beyond the limits defined by DL and S will cause a Bounds
Violation interrupt to segment II.
Memory opcode: 05, bit 6 = 1
Indica tors: unaffected
Addressing modes: 08+, Q+, Q- ,S- relative

Direct or indirect
Indexing available

CMPM Compare TOS with memory. The Condition Code is set to
pattern C as a result of the comparison of the TOS with the
content of the effective address location. The TOS is then
deleted. An attempt to reference a location beyond the
limits defined by PB and PL or (in user mode only) DL and
S will cause a Bounds Violation interrupt to segment II.
Memory opcode: 06
Indicators: CCC
Addressing modes: P+, P- ,08+, Q+, Q- ,S- relative

Direct or indirect
Indexing available

ADDM Add memory to TOS. The content of the effective address
memory location is added in integer form to the TOS. The
result replaces the operand on the TOS. An attempt to
reference a location beyond the limits defined by PB and
PL or (in user mode only) DL and S will cause a Bounds
Violation interrupt to segment 1I.
Memory opcode: 07
Indicators: CCA, Carry, Overflow
Addressing modes: P+, P- , 08+, Q+, Q- ,S- relative

Direct or indirect
Indexing available

SUBM Subtract memory from TOS. The content of the effective
address memory location is subtracted in integer form from
the TOS. The result replaces the operand on the TOS. An
attempt to reference a location beyond the limits defined
by PB and PL or (in user mode only) DL and S will cause a
Bounds Violation interrupt to segment II.
Memory opcode: 10
Indicators: CCA, Carry, Overflow
Addressing modes: P+, P- , 08+, Q+, Q- ,S- relative

Direct or indirect
Indexing available

MPYM Multiply TOS by memory. The TOS is multiplied in integer
form by the content of the effective address memory loca-
tion. The least significant word of the result replaces the
operand on the TOS. An attempt to reference a location
beyond the limits defined by PB and PL or (in user mode
only) DL and S will cause a Bounds Violation interrupt to
segment II.
Memory opcode: 11
Indicators: CCA, Overflow
Addressing modes: P+, P- , 08+, Q+, Q- ,5- relative

Direct or indirect
Indexing available
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INCM Increment memory. The content of the effective address
memory location is incremented by one in integer form. In
user mode, an attempt to reference a location beyond the
limits defined by DL and S will cause a Bounds Violation
interrupt to segment 1I.
Memory opcode: 12, bit 6 = 0
Indicators: CCA, Carry, Overflow
Addressing modes: DB+, Q+, Q- ,S- relative

Direct or indirect
Indexing available

DECM Decrement memory. The content of the effective address
memory location is decremented by one in integer form. In
user mode, an attempt to reference a location beyond the
limits defined by DL and S will cause a Bounds Violation
interrupt to segment 1I.
Memory opcode: 12, bit 6 = 1
Indicators: CCA, Carry, Overflow
Addressing modes: DB+, Q+, Q- ,S- relative

Direct or indirect
Indexing available

LDX Load Index. The content of the effective address memory
location is loaded into the Index register. An attempt to
load from beyond the limits defined by PB and PL or (in
user mode only) DL and S will cause a Bounds Violation
interrupt to segment 1I.
Memory opcode: 13
Indicators: CCA
Addressing modes: P+, P- , DB+, Q+, Q- ,S- relative

Direct or indirect
Indexing available

LDB Load byte. The content of the effective byte address mem-
ory location is loaded into the right half of the TOS. If
indirect addressing is used, the word referenced by the
initial address (base + displacement) contains a DB+ relative
byte address. If indexing is used, the effective byte address
is obtained by adding the byte index in the Index register
to the relative byte address. In user mode, an attempt to
load from beyond the limits defined by DL and S will cause
a Bounds Violation interrupt to segment 1I.
Memory opcode: 15, bit 6 = 0
Indicators: CCB
Addressing modes: Byte addressing

DB+, Q+, Q- ,S- relative
Direct or indirect
(for final indirect: DB+ only)

Byte indexing available

LDD Load double. The contents of the effective address memory
location (E) and the succeeding location (E + 1) are pushed
onto the stack. The content of E, the most significant
word, is loaded into B; the content of E + 1, the least
significant word, is loaded into A. If indirect addressing is
used, the word referenced by the initial address (base +
displacement) contains a DB+ relative word address. If
indexing is used, the effective address is obtained by adding
the doubleword index in the Index register to the relative
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Instruction Set

word address. In user mode, an attempt to load from
beyond the limits defined by DL and S will cause a Bounds
Violation interrupt to segment 11.
Memory opcode: 15, bit 6 = 1
Indicators: CCA
Addressing modes: DB+, Q+, Q- ,5- relative

Direct or indirect
(for final indirect: DB+ only)

Doubleword indexing available

STB Store byte. The right byte (bits 8 through 15) of the TOS is
stored into the effective byte address memory location and
the TOS is deleted. If indirect addressing is used, the word
referenced by the initial address (base + displacement)
contains a DB+ relative byte address. If indexing is used,
the effective byte address is obtained by adding the byte
index in the Index register to the relative byte address. In
user mode, an attempt to store beyond the limits defined
by DL and S will cause a Bounds Violation interrupt to
segment 11.
Memory opcode: 16, bit 6 = 0
Indicators: unaffected
Addressing modes: Byte addressing

DB+, Q+, Q- , 5- relative
Direct or indirect
(for final indirect: DB+ only)

Byte indexing available

STD Store double. The top two words of the stack are stored
into the effective address memory location (E) and the
succeeding location (E + 1), and are then deleted from the
stack. The content of B, the most significant word, is stored
into E; the content of A, the least significant word, is
stored into E + 1. If indirect addressing is used, the word
referenced by the initial address (base + displacement)
contains a DB+ relative word address. If indexing is used,
the effective. address is obtained by adding the doubleword
index in the Index register to the relative word address. In
user mode, an attempt to store beyond the limits defined
by DL and S will cause a Bounds Violation interrupt to
segment 11.
Memory opcode: 16, bit 6 = 1
Indicators: unaffected
Addressing modes: DB+, Q+, Q- , 5- relative

Direct or indirect
(for final indirect: DB+ only)

Doubleword indexing available

LRA Load relative address. The effective address is computed,
then subtracted from the appropriate base register (PB for
P± addressing or DB for DB+, Q±, and S- addressing). The
resulting relative address is pushed onto the stack. An
attempt to load from beyond the limits defined by PB and
PL or (in user mode only) DL and S will cause a Bounds
Violation interrupt to segment 11.
Memory opcode: 17
Indicators: unaffected
Addressing modes: P+, P- , DB+, Q+, Q-, 5- relative

Direct or indirect
Indexing available
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INSTRUCTION COMMENTARY

1 MPYL, MPY, DTST, FIXR, FIXT, LMPY. These six
instructions provide for the deletion of the most significant
word of a doubleword result. The assumption is that the
result of the instruction (e.g., multiplication product) does
not require more than 16 bits to represent it. The MPY
instruction deletes automatically during execution; the
remaining five instructions simply test the result and pro-
vide an indication (Carry bit) to note whether or not the
low order word fully represents the true result. Thus, for
these five, the programmer may choose to insert a delete
sequence (see figure 5-1) to delete the high order word if it
is insignificant.

For MPYL, DTST, FIXR, FIXT, and LMPY, the Carry bit
is cleared if the high order 17 bits are all zeros or all ones.
This test ensures that the sign bit of the single-length result
will be the same as the sign of the double-length result. If

Instruction Set

Sign of a Sign of a
Double-length Single-length
Integer Integer

/ /
o 15 0 15nll~I~lnl~I~I~lrlrl~lrol 'Irl'l~I II I I I I I I I I I I I I I I I I
OOOOOOOOOOOOOOOOOX--------------X
11111111111111111X--------------X

High Order Significant
17 Bits Data Bits

Example delete sequence:

MPYL;
Bey *+2;
DELB;

Figure 5-1. Deleting a High Order Word

ROUNDING

I I I I
110 151 0 151

:1011121314151617 18 19 20 2122232425262728293031:(32)
, ', :

1. '+--------------- Fraction ---------------..-

Decimal
Examples: +1.X - - - - - - - - 1 50 - - -

+1.X - - - - - - - - 1 49 - - -
-1.X--------150---

-1.X--------149---

---+ +1.X--------2

---+ +1.X--------l
---+ -1.X--------2

---+ -l.X - - - - - - - - 1

0
+1 A

1..J

0 0
+1 B0....)

TRUNCATION
Truncate

+

1010 0 010 0 010 0 010 0 010 0 01

Exp = 1 Mantissa = 1.11

VALUE=11.1 (or 3)',)

Lt

~Truncate

Figure 5-2. Rounding and Truncation
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Instruction Set

BINARY REPRESENTATION
VALUE

(Mantissa) Exponent S Exponent Fraction
Decimal Binary

OVERFLOW
+00

(too large
(2)2255 +257to represent) <,

f---- +256

1.1579 X 1077 (2_T22)2255/
0 +255 111111111 1111111111111111111111

! r
Decimal

(~)

0 +255 111111111 0000000000000000000000

+127

RANGE OF
POSITIVE NUMBERS +63

+31
+1- 0 0 100000000 0000000000000000000000

-32

-64

-128

(~ -256
Decimal (1+2-22)2-256

8.6362 X 10-78 <, 0 000000000 0000000000000000000001

UNDERFLOW (1)2-256 /

(too small -256

to represent) -257
------ ~---- --- - - -' =-- -~

ZERO 0- 0 000000000 0000000000000000000000

UNDERFLOW -257
(too small -256
to represent) ( 1)T256- '-......

-8.6362 X 10-78 (-1-2-22)T256,/'
1 000000000 0000000000000000000001

Decimal
(~ -256

-128

-64

-32
RANGE OF -1- 1 0 100000000 0000000000000000000000
NEGATIVE NUMBERS +31

+63

+127

1 +255 111111111 0000000000000000000000

(~ I 1Decimal _(2_2-22)2255 "<,
-1.1579 X 1077 1 +255 11 1111111 1111111111111111111111

(-2)2255 /
+256

OVERFLOW +257
(too large
to represent)

-00

Figure 5-3. Ranges of Floating Point Numbers
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this is not the case, Carry is set, and the most significant
word should not be deleted. For MPY, Overflow will be set
if the test fails, meaning that MPYL should have been used
instead of MPY.

2 DFLT, FLT, FADD, FSUB, FMPY, FDIV, FIXR,
FIXT. These eight floating point instructions use rounding
or truncation in computing a final result and except for
DFLT and FLT, are subject to both overflow and under-
flow. The following paragraphs explain these conditions as
they apply to the HP 3000.

Rounding and Truncation. Figure 5-2 illustrates both
rounding and truncation. Rounding is a simple matter of
adding a "1" to whatever is in bit position 32. If bit 32 is a
"1" (case A in the figure), adding "1" will cause a carry
into bit 31, thus incrementing the representable value. If bit
32 is a "0" (case B), adding "1" will not cause a carry, and
the representable value is unchanged.

Truncation is used only by the FIXT instruction and con-
sists of discarding all fractional bits after computing the
effective binary point position. This is shown in the lower
part of figure 5-2, which illustrates the case of truncating
the decimal number 3.5 to 3. The biased exponent (octal
401) represents an exponent of 1. The fraction, as stored, is
.11 which, when combined with the assumed leading 1 gives
a resultant mantissa of 1.11. The positive exponent of 1
implies that the effective binary point position is one place
to the right. Thus the true binary value represented is 11.1,
which is 3.5 in decimal. Therefore, in this case, truncation
of the fraction consists of discarding all low order bits from
11 through 31.

Overflow and Underflow. Figure 5-3 illustrates overflow
and underflow for floating point instructions. Overflow is
caused by these instructions when the computed result
(either positive or negative) is too large to be represented.
Underflow is caused when the computed result is too small
to be represented. The limits are defined in figure 5-3.

When user traps are enabled, an overflow or underflow trap
will occur to indicate which type of error resulted. If the
traps are not enabled, the Overflow bit will be set on either
type of error.

It is possible to reconstruct correct answers from overflow
or underflow results. If the exponent and fraction are both
zero and there is an underflow, the result should be taken
as +/- (depending on sign bit) 2-256• In all other cases, test
bit 1 (most significant bit of exponent). If this bit is 0, add
512 (decimal) to the exponent; if it is 1, subtract 512 from
the exponent.

3 ASL, ASR, LSL, LSR, CSL, CSR. The actions of the
six single word shift instructions are shown in figure 5-4. It
is assumed that the shift count, specified in the argument

Instruction Set

Arithmetic Shift Left ASL 3

~::::::::~~o
Arithmetic Shift Right ASR 3

:1::%: : : : : : ::~-
Logical Shift Left LSL 3

~:::::::: :zo~o
Logical Shift Right LSR 3

o~~:::::::::~
Circular Shift Left CSL 3

Circular Shift Right CSR 3

Figure 5-4. Single Word Shifts
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Instruction Set

TOS - 1 I TOS

Double Arithmetic Shift Left DASL 3

~:::::::::Z::::::::::2o~o
Double Arithmetic Shift Right DASR 3

:ts::::::::: :s::::::::: :~
Double Logical Shift Left DLSL 3

:£::::::::: :z::::::::: :zo~o
, Double Logical Shift Right DLSR 3

, o~o;s::::::::::~: :::::::::~
Double Circular Shift Left DCSL 3C%: :::::::::~~: ::--.--.--.--.--.:::::..,......,.....::z<~
Double Circular Shift Right DCSR 3

;<;£::::::::::~.........,.....=:::~:::::~::S;~
Figure 5-5_ Double Word Shifts
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field of the instruction, is 3 in each case. The before and
after conditions of the TOS word are shown for each
example.

In the case of arithmetic shifts, the sign bit is always
preserved. When shifting left, the bits shifted out of bit 1
(most significant bit next to the sign bit) are lost; zeros are
filled into the vacated low order bit positions. When
shifting right, the sign bit is copied into the vacated high
order bit positions, and bits shifted out of bit 15 (least
significant bit) are lost.

In the case of logical shifts, all bits are shifted. Bits are lost
out of the high end when shifting left and out of the low
end when shifting right. Zeros are filled into the vacated bit
positions.

In the case of circular shifts, no bits are lost. Bits shifted
out of the high end when shifting left are filled into the
vacated low order bit positions. When shifting right, bits
shifted out of the low end are filled into the vacated high
order bit positions.

Note that, for all shift instructions, the number of shifts is
determined either by the value specified in the argument
field of the instruction or, if X is specified ("I" in bit 4),
by adding the argument field value to the Index register
contents. This permits the number of shifts to be computed
as well as explicitly specified.

All shift instructions except TNSL use the shift count in a
modulo 64 manner. Thus if the final shift count is 100
octal (64 decimal), the data is not shifted at all. Further-
more, if the number of shifts equals or exceeds the number
of magnitude bits (whether single, double, or triple word),
the following will occur: for left arithmetic shifts and all
logical shifts, the magnitude will be all-zero; for right arith-
metic shifts, all magnitude bits will be the same as the sign
bit; for circular shifts, the circular shifting will continue
until the specified number of shifts (up to 63) have been
achieved.

Except for TNSL (see Instruction Commentary 5) the exe-
cution of shift instructions does not alter the content of the
Index register.

4 DASL, DASR, DLSL, DLSR, DCSL, DCSR. The
actions of the six double word shift instructions are shown
in figure 5-5. The shift count, specified in the argument
field of the instruction, is assumed to be 3 in each case. The
before and after conditions of the two top words of the
stack are given in each example. The TOS contains the least
significant half of double word integers, and the second
word (B, or TOS-1) contains the most significant half.

Instruction Set

Double word arithmetic, logical, and circular shifts are the
same as the corresponding single word shifts described
.above under Instruction Commentary 3 except for the
word length. This means that, when shifting left, bits
shifted out of the high end of the low order word are filled
into the low end of the high order word. When shifting
right, bits shifted out of the low end of the high order word
are filled into the high end of the low order word. Simi-
larly, on circular shifts, bits shifted out of one end of the
double word are filled into the opposite end of the double
word.

5 TASL, TASR, TNSL. Figure 5-6 illustrates the
actions of the three triple word shift instructions. Two of
these, the arithmetic shifts, are the same as the single and
double word shift instructions previously described in
Instruction Commentaries 3 and 4, except that three words
are shifted. The TOS contains the least significant word, B
(or TOS·1) contains the middle word, and C (or TOS-2)
contains the most significant word.

The TNSL (Triple Normalizing Shift Left) instruction is a
special case. Instead of specifying a shift count, TNSL shifts
left arithmetically until a "1" is shifted into bit 6 of the
most significant word, and the number of shifts is counted
in the Index register. The argument field is ignored. Bits a
through 5 of the most significant word are cleared.

The TNSL instruction clears the Index register before
beginning to shift unless X is specified in bit 4 of the
instruction. If X is specified, the shift count adds on to the
existing contents of the Index register. If bit 6 of C and all
lower order bits are zero, a "1" cannot be shifted into bit 6
of C. TNSL initially tests for this condition and, if true,
bypasses the shift operations and simply puts 42 into (or
adds 42 to) the Index register. This is the value that would
exist if the shifts were actually executed.

The purpose of the TNSL instruction is to normalize a
triple word floating point number. Such a number has a
42-bit mantissa consisting of: a leading "1", 38 represent-
able fraction bits, a rounding bit, and two guard bits at the
least significant end. TNSL assumes that the number has
previously been left-shifted three places in order to include
the rounding and guard bits in the least significant word.
Thus the leading "1", instead of being assumed to exist in
the bit 9 position of C (see figure 5-6) is now moved to the
bit 6 position.

6 BR. The P relative mode of BR, the unconditional
branch instruction, is a conventional P relative branch
except for the indexing capability and the extended dis-
placement range. Bits 8 through 15 are available to specify
displacement, which therefore can be up to ±255.

5·37

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle



Instruction Set

TOS - 2 TOSTOS - 1

Triple Arithmetic Shift Left TASl3

r%':::::::: :~:::::::::::: :~::::::::::: :z~o
Triple Arithmetic Shift Right T ASR 3

:[$:::: ::::::~:::::::::::::~::::::::::~-
Triple Normalizing Shift Left TNSL

::::::~:::~::::::::~~o
Figure 5-6. Triple Word Shifts

The DB, Q, and S relative modes, however, are unconven-
tional in that they permit indirect branches through the
data stack. (It is both illegal and impossible to have a direct
branch to the stack; the coding of "01" for bits 5 and 6
encodes the Bee instruction.)

Figure 5-7 shows an example of the S- relative mode.
Assume that the instruction in location P specifies the S-
relative mode, with a displacement of 4, and indexing. This
causes an indirect branch to S-4 in the data stack. The
content of S-4 is then added to PB, thus pointing at
location "a" in the code segment. Since indexing is spec-
ified, the value contained in the Index register is also added
to the address being computed. Thus the ultimate effective
address for the branch (next P) is location "a" displaced by
the index value.

Note particularly that the indirect address given in the stack
is relative to the program base, PB, not to P as is usually the
case. Also note that the displacement is relative to a loca-

5-38

tion in the stack (DB, Q, or S), and that indexing is applied
after the indirect addressing has been accomplished.

The displacement range for the DB, Q, and S modes
depends on which mode is selected. For DB+, bits 8
through 15 provide a range of 0 through +255. For Q+, bits
9 through 15 provide a range of 0 through +127. For Q-
and S-, bits 10 through 15 provide a range of 0 through
-63.

7 TSBM. This instruction is primarily intended to refer-
ence a software lock word. Typical application would be in
multiprogramming systems. When one process attempts to
use a given critical portion of code, it will set a certain
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DB
PB + (S-4)

~ PB + (S-4) + X

Q

s-J
S t -

CODE

/

PB

a

Next P

P

Instruction Set

DATA

Displacement
-4

Figure 5-7. Indirect Branch via Stack

combination of bits in the lock word to "1", using the OR
function of the TSBM instruction. Since there is the pos-
sibility that another process may already be using the code,
the TSBM instruction also tests to see if any of the bits it
has set to "1" already were in the "I" state. This is
accomplished by the AND function. If any bits in the TOS
word are "I" following the execution of TSBM, which can
be checked by testing the Condition Code, the indication is
that the code is currently in use. On completion of the
routine or subroutine, the appropriate bits of the lock word
would be cleared.

To preserve the lock mechanism in a dual-processor system
(where the second processor could read the lock word in
memory while the first processor is in the midst of changing
its copy of the word for re-storage), the hardware auto-
matically sets the memory cell to all "1"s until the first
processor re-stores the modified lock word. Thus, no matter
which bits the second processor tests, it can only assume
that the code is currently in use.

8 MOVE, MVB, MVBW, CMPB. These four instructions
are members of the move group, and as such deal with
strings of words or bytes. The first three physically move a
word or byte string from one block of locations in primary
memory to another. The CMPB instruction does not move

data, but compares the data in two complete strings, byte
by byte. The following paragraphs explain and compare the
significant features of all four instructions. Refer to figure
5-8.

SOURCES. The MOVE, MVB, and CMPB instructions may
take source data from either the code segment or the data
segment. (For reference purposes, "source" and "target"
terminology is retained for CMPB, even though there is no
move operation.) If bit 11 of the instruction is a "0",
source addresses are PB+ relative - i.e., from the code
segment. If bit 11 is a "I", source addresses are DB+
relative - i.e., from the data segment. Figure 5-8 illustrates
both cases. Note that the target for either case is in the DB+
area. (Disregard move-direction arrows for CMPB.) The
MVBW instruction, however, may not use the PB relative
source; sources for MVBW are DB relative only. The target
need not be "higher" than the source; figure 5-8 shows
examples only.

ASCENDING/DESCENDING ADDRESSES. The MOVE,
MVB, and CMPB instructions have the capability of gen-
erating ascending or descending addresses for source and
target locations. The direction is established by the sign of
the count word, which is bit 0 of A, as shown in figure 5-8.
If this bit is a "0", the sign is "+", and successive addresses
are ascending (B and C incremented). If this bit is a "1" the
sign is "-", and successive addresses are descending (B and
C decremented). Note the +Count and -Count arrows in
figure 5·8. The MVBW instruction uses only ascending
addresses; this instruction does not use a count word, and
the source and target words are given in A and B instead of
Band C.
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PB Relative Source

DB Relative Source

Target

CODE
SEGMENT

PB t=========1

PL

PI=====~

INCREASING (+) (-)

ADDRESSES Incr Deer C

~

Incr Deer B
Deer Incr A

Z

Figure 5-8. Examples of Moves

METHOD OF TERMINATION. The MOVE and MVB
instructions are terminated only when the word or byte
count becomes zero. The MVBW instruction is terminated
only when a character of a specified type, either alphabetic
or numeric, is encountered. The CMPB instruction has two
methods of termination: when the byte count becomes
zero, or when any two bytes being compared are unequal.

SPECIAL FEATURES. The MVBW instruction includes an
"upshift" bit (bit 13). This bit, when set ("1"), will trans-
pose any lower case source characters to upper case during
the transfer. If not set ("0"), the source characters are
unaltered by the instruction.

MOVES BEYOND TOS. In the event that the source or
target of any move instruction advances into the top-of-
stack area (A, B, C, D) or beyond, the count, source, and
target words contained in A, B, and C will not be affected
since these values are contained in top-of-stack registers.
The memory locations directly corresponding to these reg-
isters will be used for the move (or comparison). The move
instructions, incidentally, are the only ones which in any

5-40

DATA
SEGMENT

DL

(-Count),
•(+Count)

(-Count)

+
•(+Count)

Target
Source

+1 Count

DB

way distinguish between top-of-stack in memory and top-
of-stack in the CPU. However, situations which encounter
this distinction will be rare, since the area between TOS and
Z is undefined, thus indicating a probable software error.

INTERRUPTS. All Move instructions are interruptable and
will continue their operation after return from the inter-
rupt. To do this, the count, source, and target addresses are
kept updated in the TOS registers, which are pushed into
memory upon interrupt.

9 MVBL, MVLB. These two instructions have many
characteristics of the other move instructions described
above (Instruction Commentary 8). However, since they
move data into or out of the data area between DL and DB,
MVBL and MVLB are privileged instructions. The following
paragraphs summarize the actions of these two instructions.
Refer to figure 5-9.
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DL

MVBL MVLB

tTarget Source

DB

Source Target

(+) (- )

Incr Decr C
Incr Deer B

INCREASING Deer Incr A
ADDRESSES

~
Z

(-Count)

t
t

(+Count)

(- Count)

t
t

(+Count)

Target
Source

!I Count

Figure 5-9_ Examples of MVBL, MVLB

For MVBL, source data is taken from the DB+ area and the
target is in the DL+ area. (A large enough displacement
could put the target in the DB+ area.) For MVLB, source
data is taken from the DL+ area and the target is in the
DB+ area. Addresses for both instructions can be ascending
or descending, depending on the state of the count sign. If
this bit is a "0", the sign is "+", and successive addresses are
ascending (B and C incremented). If this bit is a "1", the
sign is "-", and successive addresses are descending (B and
C decremented).

Both MVBL and MVLB are terminated when the word
count becomes zero. The comment on "Moves Beyond
TOS" under Instruction Commentary 8 also applies to
these two instructions.

Instruction Set

10 LLSH. A typical application of the LLSH instruction
was given in Section IV (see "Segments in Memory").
Basically, the intent in that case was to find a segment of
primary memory at least as large as the segment size speci-
fied by the test word. Since the software knows how many
links exist, it can load this value into the Index register for
counting purposes. (Note that the list may have a termin-
ator word consisting of all ones.)

Figure 5-10 illustrates the basic operation of the LLSH
instruction. As shown, the top-of-stack (A) contains the
link pointer. At all times, in successive fashion, this location
contains the absolute address of the link word in the

Stack
Memory

Segment 1

C
B
A

Link

,----- Target

r-t-,
: Compare l

Target Offset
L_._-I

Test Word ---- I

Link Pointer -

Memory
Segment 2

'----+ Link

Target

Memory
Segment 3

~ Link

Target

Figure 5-10. LLSH Operation

} Offset

} Offset

} Offset
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Instruction Set

segment currently being tested. Location B in the stack is
the test word, which would typically be a 16-bit number
indicating the size of the segment which is to be loaded by
the software. Location C is an offset indicating how far the
target word is from the link word. Thus as shown, the
comparison is between the test word and each target word.

On termination of the instruction, location A of the stack
contains the absolute address of the searched-for segment,
and a Condition Code of CCE indicates that the search was
successful. If the search is not successful, Condition Code
CCL or CCG will indicate the cause of termination.

11 LLBL. The LLBL instruction will convert a local
label to external type if it is not already of this type. The
conversion is accomplished by forcing bit 0 of the TOS to
the "1" state, loading bits 1 through 7 with the value of N
(which is the STT entry number), and loading bits 8
through 15 with the corresponding bits of the Status reg-
ister (i.e., the number of the currently executing code
segment).

12 EXF, DPF. Figure 5-11 compares the operations of
EXF and DPF. In the case of EXF, only the TOS word is
affected. Assuming values of 2 for J and 8 for K, bits 2
through 9 will be extracted and moved to bits 8 through 15
(i.e., right-justified). Bits 0 through 7, in this example, are
filled with zeros. In the case of DPF, the two top words of
the stack are affected. The second word of the stack (S-l)
is assumed to contain a word that is arbitrarily represented
here by the letters "a" through "p". Assuming values of 4
for J and 6 for K, the six least significant bits of the TOS
word are deposited into the second word, beginning at bit 4
and ending at bit 9. The remaining bits of the second word
are unchanged, and the combined result becomes the new
TOS. Note that since the J and K fields each have four bits,
they may specify values from 0 through 15 (decimal). The
field may wrap around the end of the word; i.e., bit 15 is
one bit to the left of bit O.

13 ADDS, SUBS. The reason for the "minus one" when
using the TOS content to modify S is to delete the modi-
fying parameter. A typical application of the ADDS instruc-
tion is to reserve a block of stack locations for procedure

BEFORE AFTER

EXF Extract Field
J 2
K = 8

Extract

DPF Deposit Field
J 4
K = 6

10 11 12 13 14 15

Deposit

I IL ~
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5-42

Figure 5-11. EXF and DPF Operation
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variables. The number of locations so reserved may be
either explicitly given in the instruction's operand field, or
computed and accessed via the TOS. The effect of the
instruction is simply to advance the top-of-stack pointer a
given number of locations without specifying any contents.
The SUBS instruction, conversely, deletes a specified
number of stack locations.

14XEQ. The reason why the use of a second stack
opcode (bits 10 through 15) is illegal is that there is no
guarantee that iL will be executed. If there should be an
interrupt between the execution of the two stack opera-
tions, the program counter (P) will move on to the next
instruction past XEQ. There is no provision to decrement P
in order to go back to XEQ for the second stack operation.
However, if no intervening interrupt does occur (for
example, if the interrupt system is off), both stack opcodes
can be executed. Also, possibly, a simple test can be pro-
grammed to check for an intervening interrupt. The indi-
cators would be set according to the last executed stack
operation.

15 SCAL, SXIT. Figure 5-12 illustrates the operations
for calling and exiting from a subroutine. Since only local
labels may be used, operation is entirely within the current

seAL

Code Stack
PB

j/ scAi. N

Subroutine <
-,
PL }N

/
(
I __ --...
I "
I ,j---------~_~
I S ~
I I
I I
I I

1 } ~~;~~~: :
I Table I
I I~ ~ J

If N = 0

'Store p+ 1 in TOS

Instruction Set

code segment. Assume that the system is executing instruc-
tions in the code segment shown in figure 5-12. At some
point, P will encounter the "SCAL N" instruction, where N
is some value 0 through 255. If the value of N is not 0, e.g.,
8, this value will be subtracted from PL (i.e., PL-8), thus
pointing at the ninth cell counting backward from PL. This
must be within the Segment Transfer Table, whose first
entry is PL-l. The eighth entry, in this case, contains a
local program label (bit 0 = 0), which is a PB relative
address pointing to the start of the subroutine. This address
is converted to absolute (add to PB) and is loaded into the
P-register, while the former value of P, plus one, is stored in
the TOS as the return address. However, if N were 0, it
would be assumed that the TOS contains the local label
(subroutine starting address). This address, then, (made
absolute) would be loaded into the P-register, while the
former value of P, plus one, replaces the label on the TOS
as the return address. In either case, once the P-register has
its new address, the location so indicated will be fetched
and subroutine execution begins.

The final instruction of the subroutine is SXIT. At this time
the return address, pushed onto the stack by SCAL, is
assumed to be on the top of the stack. It is the responsi-
bility of the subroutine to provide this condition, which
normally means deleting all variables incurred by the sub-
routine. The SXIT instruction simply takes the address
contained in the TOS and puts it in the P-register, thus
effecting a return to the calling routine. As a final step,
SXIT deletes the TOS, since the return address is no longer
needed, and may additionally move S back some number of
locations specified by N. This would typically be used for
deleting some of the parameters passed to the subroutine.

SXIT

Code Stack
PB

P

'-!{SSXIT
Return P I------

PL

Figure 5-12. Subroutine Call and Exit
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16 PCAL, EXIT. These two instructions perform basi-
cally the same function as the SeAL and SXIT instructions
described above (Instruction Commentary 15). That is, to
call a routine and return from it to the point where it was
called. However; since the routines in the case of PCAL!
EXIT may be external to the current segment, possibly not
even present in main memory, the operation is somewhat
more complex. Furthermore, EXIT also has the capability
of providing a return from various kinds of interrupt
routines (not called by PCAL).

It would be redundant to explain here the mechanics of
procedure calls and exits, since a detailed discussion was
given earlier in Section IV (see "Code Segments" and "Data
Segments"). If the mechanics are not thoroughly under-
stood, read that section again, particularly with reference to
figures 4-5 and 4-10. For interrupt concepts used by the
EXIT instruction, refer also to Section VII, Interrupt
System.

The following paragraphs describe the operations of PCAL
and EXIT on a step-by-step basis, referring to flowcharts. It
will frequently be assumed that the reader has a working
knowledge of the intents and purposes of the various steps.

PCAL Sequence. Figure 5-13 illustrates the operations of
the PCAL instruction. If the call is within the current
segment (local label), only the steps shown on the left side
of the diagram are performed. For calls outside the current
segment, the steps on the right side are added.

The first step is to fetch the program label. From the PCAL
instruction definition, we see that the label can be obtained
from one of two places: from the TOS if N is zero, or from
PL-N if N is not zero. This operation can be seen in the
SCAL operation of figure 5-12, where the label is fetched
from either the Segment Transfer Table, at PL- N, or from
the TOS. The only difference is that PCAL puts the fetched
label into temporary storage in the CPU, instead of directly
into the P-register.

Thus, referring to figure 5-13, PCAL initially checks N to
see if the label is on the TOS. If not (block 1), the label is
fetched from PL-N and a check is made to see if that
location is actually within the bounds of the Segment
Transfer table. (N must be .;::;;STTL value in the PL loca-
tion.) If out of STT bounds, an STT violation interrupt to
segment 13 is incurred; otherwise, the PCAL sequence
continues. If the label is on the TOS (block 2), the label is
put into temporary storage in the CPU and S is decre-
mented to delete the label from the stack. At this time, the
CPU has the label but does not know whether it is local or
external, or if it is valid.

The next step is to place a standard four-word stack marker
onto the stack (block 3) and update the Q pointer by
loading it with the content of S (block 4). Both Q and S are
now pointing at the last word (delta Q) of the new stack
marker.
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Now the label is checked to see if it is a local label (bit 0 =

0). If it is, the sequence goes directly to block 11 (skip next
seven paragraphs).

If the label is external (bit 0 = 1), bits 8 through 15 are
checked to see if the segment number specified is valid. If
the segment number does not have an entry in the Code
Segment Table (two times segment number must be .;::;;CST
Length, in first location of CST), or if the segment number
specified is 0 (segment 0 is callable only by external inter-
rupts), a CST violation interrupt to segment 13 is incurred.
Otherwise, the PCAL sequence continues.

Next, absolute addresses for PB and PL are calculated from
the CST entry and loaded into these two registers (block 5).
The CST entry is fetched from CSTP + 2* segment number
(bits 8 through 15 of the label). The second word of the
two-word CST entry is an absolute address for PB (could be
a secondary memory address if the segment is absent from
primary memory). The first word contains the length (74)
of the called segment in bits 4 through 15. The value for PL
is calculated by adding PB + 4* length -1. The P-register is
initially set equal to PB at this time; as explained later,
execution may begin at this value of P.

Block 6 sets the privileged mode bit in the Status register if
the mode bit in the CST entry indicates privileged mode, or
if the caller was executing in privileged mode (i.e., if the
privileged mode bit in Status already was set). (Although
not shown, the Reference bit in the CST is set at this time,
for statistical purposes.)

Block 7 stores bits 8 through 15 of the label into bits 8
through 15 of the Status register. This indicates to the
system that we are now operating in the called segment.

A check is then made to see if the called segment is absent,
by checking bit 0 of the first word of the CST entry. If it is
absent, a four-word stack marker is pushed onto the stack,
then the label; external interrupts are disabled; PB, PL, and
P are established from the CST entry for segment 14, and
Status is updated accordingly. This starts execution of the
Absence segment (block 8). Otherwise, a similar test is
made on the trace bit in the CST entry. Likewise, a stack
marker and the label are pushed onto the stack, external
interrupts are disabled, and control is transferred to seg-
ment 16, the Trace segment (block 9). If neither of these
tests is affirmative, PCAL execution continues.

The next check is to see if bits 1 through 7 of the label are
O. These bits specify which STT entry in the target segment
contains the desired local label. Since a value of 0 would
point at the STTL word in PL, the value of 0 is specially
defined to indicate that P should start at PB (as set four
paragraphs back). Thus only one more check is necessary
before execution of the procedure may begin, and that is to
see if the segment is callable (bit 1 of the STTL word in the
PL location must be 0); if it is uncallable, control is trans-
ferred to segment 15, the STT Entry Uncallable segment
(block 10). Control is transferred by pushing the label onto
the stack, disabling external interrupts, establishing PB, P,
and PL from the CST entry for segment 15, and updating
the Status register.
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Assuming that bits 1 through 7 of the external label are not
0, the value so indicated will point to one entry in the
Segment Transfer Table. If it does not (i.e., if the value
exceeds the STTL value), or if the entry pointed to is not a
local label (i.e., if bit 0 = 1), there will be an STT Violation
interrupt to segment 13. But if the label is valid, it is then
checked to see if the procedure is callable by checking bit 1
(must be 0). If it is not callable, control is transferred to
segment 15, the STT Entry Uncallable segment (block 10).
If the local label indicates that the procedure is callable, the
PCAL sequence continues.

Block 11 sets the Psregister to the starting address of the
procedure. The CPU at this point has a local label, whether
it is in the same segment as the peAL or in a segment
external to the calling segment. The value for P is calculated
by adding the contents of bits 2 through 15 of the local
label to the contents of PE. As a final check, this value for
P is checked to see that it does not exceed PL (Bounds
Violation interrupt to segment 11 if it does). The resultant
absolute value is then loaded into the Pvregister, and the
location so indicated is fetched and execution of the pro-
cedure begins.

EXIT Sequence. Figure 5-14 illustrates the operations of
the EXIT instruction. The diagram breaks down into three
major functional sequences as follows: 1) Only the opera-
tions down the left side of the diagram are used when the
exit occurs on any stack except the Interrupt Control
Stack, and when the return is not to another segment. 2) A
major branch to blocks 3 through 6 occurs if exiting from a
routine that uses the Interrupt Control Stack. 3) A major
branch to block 7 occurs if the return is to some segment
other than the current one. The detailed sequence follows.

The first step is to check if the new values for Q and S are
within bounds. In all cases, the new value for Q must be less
than or equal to the Z-register content; otherwise there will
be a Stack Overflow interrupt to segment 3. For user mode
(but not privileged mode), Q must also be greater than or
equal to the DB-register content; otherwise there will be a
Stack Underflow interrupt to segment 13. Likewise, the
new value for S must always be less than or equal to Z and,
for user mode only, must also be greater than or equal to
DB. The new value for S is Q-N-4, computed from the old
Q. The new values for Q and S are saved temporarily within
the CPU (block 1).

Next, two checks are made for illegal operations in user
mode. The first check assures that an unprivileged user
cannot accidentally or deliberately exit to the privileged
mode. A Mode Violation trap to segment 17 is incurred if
Status register bit 0 is a "0" (meaning, exit from user
mode) and the corresponding bit in the status word of the
stack marker does not match. The second check incurs the
same trap if the user has changed the state of bit 1 (Enable/
Disable External Interrupts) in the status word of the
marker. Neither of these checks is made in privileged mode.

Assuming that no errors have occurred to this point, the
sequence now restores the Index value from the stack

Instruction Set

marker to the Index register (block 2). Following this, a
check is made to see if the current stack is the Interrupt
Control Stack (ICS). If it is not, the sequence skips the next
four paragraphs.

When exiting from a routine that has been using the ICS,
the first check is to determine if the routine was for an
external interrupt. This check is "yes" if the Segment
Number field of the status register indicates Segment O. If
this field is not 0, the sequence skips the rest of this
paragraph. For any external interrupt routine exit, the
active state of the device's interrupt logic must be reset,
since we can now assume that the request has been serviced.
Thus an RIL (Reset Interrupt Level) signal is sent to the
device (block 3) and a check is made to see if the device's
Interrupt Active flip-flop actually did reset. If it did not, a
serious I/O error is indicated and the system will halt, with
the SYSTEM HALT light on and all interrupts disabled.
Otherwise, the next check is made which determines if any
other external interrupts are pending. If so, the device
number of the highest priority interrupt request is put on
the stack in place of the former device number, and proc-
essing of this new interrupt begins; the existing stack
marker is not changed. If no other external interrupts are
pending, the EXIT sequence continues.

Bit 0 of 6Q is now checked to see if it is a 1, which in
effect asks if the Dispatcher was interrupted. If not, the
remainder of this paragraph is skipped. If the check is
affirmative, bit 0 of the Interrupt Counter (fixed location
7) is checked to see if it is a 1, which in effect asks if the
routine being exited has requested a Dispatcher abort. If
the answer is yes, Q is set to QI and the sequence goes back
to block 1. Otherwise the sequence continues to the next
paragraph.

A check is then made to see if we are exiting from the last
routine to use the ICS. In such a case, control must be
passed to the Dispatcher. This condition is tested by
checking the content of the delta Q word of the stack
marker. If the word is all zero, the Dispatcher Flag is set
(block 4), indicating a return to the Dispatcher. The Dis-
patcher DB value from Q+1 is loaded into the DB-register
(block 5). The next check determines whether the current
segment is one which could have altered DB (segments 0
through 7). If this test is affirmative, the appropriate DB
value from Q+1 is loaded into the DB-register (block 5).

If we are returning to a partly completed external interrupt
routine, PB and PL are returned to their respective extreme
values (block 6), with PB = 0 and PL = 216 -1. The
sequence would then proceed directly to block 8 (skip next
two paragraphs.) Otherwise, the sequence continues with
the following paragraph.

A check is now made to see if the return is to some segment
other than the current one. If not, several checks involved
in changing segments can be bypassed (remainder of this
paragraph). If a return to segment 0 is indicated, there will
be a CST Violation interrupt to segment 13, since segment
o is undefined. Assuming this error does not exist, the next
step (block 7) is to use the Status information in the stack
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marker to fetch the CST entry for the segment we are
returning to. The CST entry gives both an absolute value for
PB (second word of the entry) and a PB+ displacement for
computing an absolute value for PL. These values are loaded
into the PB-register and PL-register respectively. Next, a
check is made to see if a user mode exit is attempting to re-
turn to an uncallable segment (bit 1 of its CST entry is a "1").
If so, there will be a Mode Violation trap to segment 17.
Otherwise, bit 0 of the CST entry is then tested. If this bit is
a "1", the segment being returned to is absent. In this case,
the N parameter from the EXIT instruction is pushed onto
the stack, external interrupts are disabled and control is trans-
ferred to segment 14, the Absence segment. If the absence-
test is negative, the trace bit (bit 0) in the return-P word of
the current stack marker is checked to see if it is a "1". If so,
the parameter N from the EXIT instruction is pushed onto
the stack, external interrupts are disabled and control is trans-
ferred to segment 16, the Trace segment. Otherwise, the
EXIT sequence continues.

The final check determines that the new value for P (which
is calculated by adding the PB relative displacement from
the old stack marker to the PB-register content) does not
exceed the PL value. If it does, there will be a Bounds
Violation interrupt to segment 1I.

The sequence finishes by loading the values for P, Q, S, and
Status into their respective registers (block 8). The next
instruction pointed to by P is fetched for execution.

17TBA, MTBA, TBX, MTBX. These four instructions per-
form essentially the same function, and that is to provide a
simple mechanism for loop repetition, loop counting, and
loop exit, all in one instruction. The differences are that:

a. For TBA and MTBA, the variable is located in the
stack; for TBX and MTBX the variable is located in
the Index register.

b. For TBA and TBX, modification of the variable is
assumed to have been done earlier in the loop, where-
as MTBA and MTBX automatically modify the var-
iable as part of their execution function.

With these differences understood, one of the instructions
may be taken as a typical example for discussion. Figure 5-15
illustrates one use of MTBA, which is to execute the SPLI
3000 FOR statement. As shown, the intent is to vary the
value I from 1 to 10 while repeating a certain procedure ten
times. (The TBA at the beginning is used to test if the
loop is to be executed zero times in the general FOR
statement.)

In assembly form, three instructions would be used to
initialize the stack. The LRA I instruction puts the DB+
displacement for the variable onto the stack (C), and LDI 1
and LDI 10 push the values 1 and 10 (or octal 12) onto the
stack to specify the step increment (B) and limit (A)
respectively. The loop is then entered. (If the loop control
instruction at the end were TBA or TBX, one of the
instructions in the loop would add B to the variable.)
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SPL/3000

FOR 1 STEP 1 UNTIL 10 DO'-.-
BEGIN

END;

ASSEMBLY

LRA
LDI
LDI
TBA
BR

[MTBA

I
1
10
*+2
*+6

*-4

STACK
DB

..--+ Variable

'-- C DB+ Displacement
B Step (1)

A Limit (10)

Displacement

Figure 5-15. Example of Loop Control with MTBA

The last instruction of the loop is MTBA, which checks to
see if the variable has exceeded the limit. If it has not,
control is transferred back (four locations in this example)
to the beginning of the loop. The range is P ± 255. At the
end of the final loop, MTBA increments the variable to 11,
thus exceeding the limit and causing the next instruction in
line to be fetched. The three words on the TOS relating to
this loop are automatically deleted. The FOR statement has
now been executed.

Values for the limit, step, and variable may be negative
(two's complement) as well as positive. If step is negative
(bit 0 = 1), exit from the loop will occur when the variable
becomes smaller (more negative) than the limit, which may
be either a positive or a negative number.
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INPUT/OUTPUT SYSTEM II
I/O SYSTEM OVERVIEW

The purpose of the I/O system is to perform actual physical
input/output operations for the file system of the MPE/
3000 operating system. The user normally does not interact
directly with the I/O system - only indirectly via the file
system. Thus all I/O operations are normally invisible to the
user. However, privileged users may access the I/O system
directly, and users with real-time capability may bypass
both the file system and the I/O system for direct access to
specific devices. See figure 6-1.

This section of the manual presents a generalized descrip-
tion of the I/O system as accessed via the file system. Direct
access by privileged or real-time users requires a deeper level
of familiarity than is presented here.

FILE SYSTEM OPERATION

Figure 6·2 illustrates the function of the I/O system in the
overall handling of files. Hardware elements are shown on
the right and software elements are shown on the left. The
I/O system, as shown, is part hardware and part software.

FILE SYSTEM I/O

PROCESS

Several peripheral devices are shown connected to the I/O
system, each of which has some capability for handling files
- entering files, storing files, or both. Of particular interest
in this discussion are the files stored on disc. (Several
physical disc units might be used.) Each disc file is broken
up into one or more extents, which in turn are composed of
some number of blocks. When the file system causes the
I/O system to transfer data to or from the disc, it does so
one block at a time. The blocks are further subdivided into
records and then into individual words. When the file sys-
tem processes user file requests, it does so on the basis of
records.

The memory management routine is also shown in figure
6-2 (dotted line) since it frequently makes its own requests
to the I/O system. Memory management calls I/O in order
to make drivers and code segments present in main memory.

In typical operation, the user's process might make a file
request such as FREAD to the file system (1). The file
system reads the record named in the request (2) and
transfers the record to the stack associated with the user's
process (3). Note that in this example, no input/output has
taken place. This is because the named record is already
present in a buffer in main memory.

FILE
SYSTEM

I/O
SYSTEM

PRIVIl.EGED I/O

REAL-TIME I/O

I/O
SYSTEM

User-Supplied
Driver

Figure 6·1. Basic I/O Access Methods
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PROCESS

3

Stack

FILESYSTEMFile
Request

Memory
Management

I'----,
I
I
I

A

BUFFER 0 BUFFER 1

DISC
EXTENT

I/OSYSTEM Disc

SOFTWARE HARDWARE

Figure 6-2. File System Basic Operation

Assume another case in which the requested record is not
present. In this case, the file system makes a request to the
I/O system (A) to read the block containing the particular
record. The I/O system accordingly reads this block from
the disc (B) and loads it into one of the buffers allocated to
the named file (C). (When a user opens a file, he specifies
how many buffers should be allocated for that file; however
he cannot access the buffers directly - only by naming
records within files.) The file system can now complete the
request by reading the requested record to the stack.

Note that in none of the preceding operations did the user's
process specify a device. An actual I/O operation mayor
may not have occurred, and the user is completely unaware
of such occurrence. However, as described in the MPE/3000
Reference Manual, the operating system does permit de-
vices to be specified, either as a class name or a logical
device number. This would permit, for example, inputting
or outputting files via a specific terminal, card reader, or
line printer.

6-2

DEFINITION OF TERMS

The preceding discussion presented a broad overview to
show the relationship of the I/O system to the file system
and peripheral devices. The following descriptions will con-
centrate on the block labeled "I/O System" in figure 6-2,
explaining this area in greater detail.

Figure 6-3 illustrates some of the important elements of the
I/O. system. This picture is by no means complete, but
rather is intended to define the chain of linkages that are
basic to the I/O system.

As shown in figure 6-3, a device controller is the hardware
I/O interface, typically consisting of one or two interface
cards. Depending on particular controllers, the device con-
troller may drive only one peripheral (such as a terminal) or
may be capable of driving several peripherals (such as disc
units).
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Figure 6-3. Fundamental Elements of I/O System

For each device controller there is a four-word entry in the
Device Reference Table. (The Device Reference Table will
be defined shortly.) The third word of this table entry
contains a pointer to a data area uniquely associated with
that table entry.

The data area consists of an I/O Queue Head (IOQH), one
or more Device Information Tables (depending on how
many units the device controller is driving), and an I/O
program area. The IOQH contains CST and STT values for
defining the location of the driver routines associated with
that particular device controller. Along with various other
information, the IOQH also defines how many Device
Information Tables are present, and how long each one is.

The Device Information Table contains information rele-
vant to one physical I/O device, and is differently con-
figured for each type of device. In each case, however, the
first word of this table points to an entry in the I/O Queue
(IOQ) when a request is being made.

The I/O Queue is a single table (only one in the system)
containing a fixed number of entries having a fixed number
of words per entry. If there are no I/O requests pending in
the system, none of the Device Information Table entries
will be pointing to the IOQ. In this case, all elements of the
IOQ are unused, and the first word of each element points
to the first word of the next element. Thus, all unused

elements are linked together. Assume, then, that the file
system makes a request to use unit 1 of the device con-
troller shown in figure 6-3. The I/O system will unlink the
first free element in the IOQ and fill it with information
pertaining to the request (including buffer address and
logical device number).

Figure 6-3 assumes that the next request is for unit 2 (uses
the next available element), followed by a second request
for unit 1. This second request for unit 1 causes the first
word of the initial request to point to the next unused
element, which is then filled with information pertaining to
the second request. Thus it can be seen that eventually the
IOQ will contain a queue of requests for unit 1, a separate
queue for unit 2, and so on, plus a linked list of free
elements.

Then an I/O process is dispatched to execute the request.
An I/O program will then be run on a device, using the
request parameters given in the IOQ. When the request is
fulfilled, the IOQ element is returned to the free list.

Note that the IOQ only establishes the priority of requests
for each device, on a first-in first-out basis. Questions of
priority in dispatching I/O processes (i.e., which queue) are
resolved by the Dispatcher. Once several device controllers
are running I/O programs, priority conflicts are resolved by
hardware service priority.

6-3
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Figure 6-4 illustrates the Device Reference Table (DRT).
The DRT consists of a number of four-word entries corre-
sponding to the number of device controllers present in the
system. It is located in fixed memory locations beginning at
octal address 14. (Locations 0 through 13 are allocated to
other purposes; see table 4-1.) The upper limit for the table
is location 1777, which thus limits the maximum number
of four-word entries to 253 (decimal).

Since each DRT entry is always four words in length, it is
convenient for the hardware to map device numbers to
DRT addresses simply by multiplying by four. (Left-shift
device number two binary places.) Thus the entry for
device number 3 begins at octal location 14 (i.e., 38 x 4 =

148)' Since the DRT begins at location 14, device number 3
is the lowest device number. Devices 0, 1, and 2 do not
exist.

Device
Controller
#3

Device
Controller
#4

Device
Controller
#5

Device
Controller
#377,

6-4

Octal
Memory~i:: I--_D_R_T--IV-. 3, X4 •.. 15 I------i

~~!~------~U 4, X 4 •.. 211-- -i

,~!~------~
25261-----1

271_------~
301-- -i
311- -1
321- -1

------~~I-------~FORMAT

I/O Program Pointer

PI Address

OBI Address

~ (Reserved)

••

~~/

~// 1------;
/~

Interrupt
Reference
Flag

I
I

I I

1774~1775
1776
1777

Figure 6·4. Device Reference Table

Note: The device number associated with a par-
ticular DRT entry defines a device con-
troller or multiplexer channel, and not
necessarily an actual device. Remember
also that some controllers, identified by
one "device number", are capable of
driving several physical units. Individual
identification of actual devices is made by
logical device numbers. The logical device
number is the value used by the file sys-
tem in requesting I/O, and the I/O system
software performs the logical to physical
device number translation.

The format of a DRT entry is also shown in figure 6-4. The
first three words are absolute addresses and the fourth word
contains a bit for use as an interrupt flag. The first word is
the I/O Program Pointer, which initially points to the first
word of the I/O program for the associated controller, and
(for multiplexed channel devices) is updated to point at the
next program word as the I/O program progresses. The
second word (PI) points to the starting address of the
interrupt program for the associated controller. (Interrupts
are discussed in Section VII.) The third word (DBI) points
to the data area for the associated controller. The Interrupt
Reference Flag (fourth word) is discussed in Section VII,
Interrupt System; it is primarily a user feature and is not
used by the I/O system.

I/O INSTRUCTIONS

There are five I/O instructions in the HP 3000 instruction
set. These are:

SIO Start I/O
RIO Read I/O
WIO Write I/O
TIO Test I/O
CIO Control I/O

These instructions are fully defined in Section V under the
heading "I/O and Interrupt Instructions". The distinction
to note here is that the SIO instruction is used in conjunc-
tion with an I/O program, and the remaining four are not.
That is, the SIO instruction commands a device controller
to begin executing its associated I/O program, which effects
a block transfer of data between an I/O device and
memory. This is termed an "SIO transfer" mode. The other
four instructions, on the other hand, transfer only one
word per instruction, between the device and the top-of-
stack in the CPU. This is a "direct transfer" mode, and is
used primarily with terminal devices. In this manual, direct
I/O is usually treated separately from normal SIO
operations, due to these differences.

For additional information on transfer modes, refer to the
"Transfer Modes" heading in Section VIII.
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Section VI continues on the following page.
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GENERAL I/O OPERATION

Figure 6-5 is a general overview of the operations of the I/O
system. (Does not apply to direct I/O devices.) To provide a
complete sequence of operations, it will be assumed that
the file request will result in a need for physical I/O to be
performed; as stated earlier, this will not always be the case.
The sequence of operations is as follows.

CD An executing user process generates a file request to
the file system.

® The file system tests the validity of the request and
calls the A ttach I/O (ATTIO) intrinsic. This is the
entry point to the I/O system, implied by the first and
second examples of figure 6-1.

® Attach I/O inserts the request parameters in the I/O
Queue for the requested device.

oWhen all earlier requests for the device have been
completed, and when the I/O Monitor Process has
highest priority among all other processes, the I/O
Monitor Process begins execution for this request.

® The I/O Monitor process ensures that the data buffer
for the file is present and frozen in memory. It then
issues a PCAL to the initiator section of the device
driver, passing the request parameters to that routine.

Note: A device driver normally consists of three
parts: an initiator section, a completion
section, and a data area. With multiple
data areas, one driver may drive several
devices.

® The initiator section assembles the I/O program (using
the request parameters), issues an SIO instruction to
the device controller, and exits back to the I/O
Monitor Process. The SIO instruction initializes the
DRT to point at the starting location of the I/O
program.

(}) The I/O program issues commands via a multiplexer or® selector channel to the device controller, on demand
by the channel.

® The device controller, on receiving a read or write
command from the I/O program, transfers a block of
data to or from the data buffer. The length of the
block is specified by the I/O command.

@ On completion of the data transfer, the I/O program
commands the device controller to request an interrupt.
The I/O program then ends.

Input/Output System

@ The device controller causes a CPU interrupt to an
interrupt routine, which tells the I/O Monitor Process
that an interrupt has occurred.

Note: There are currently two interrupt rou-
tines for external interrupts. One is the
General Interrupt Processor (GIP) for all
types of devices except terminals, and the
other is the Terminal Interrupt Processor
(TIP). Other interrupt routines may exist,
depending on the requirements of newly
developed interfaces.

@ The interrupt routine (or the last routine to use the
Interrupt Control Stack - see les definition in Section
VII) exits to the Dispatcher. It also may awaken the
related I/O process if necessary.

@ When the I/O Monitor Process is again dispatched, it
recognizes that an interrupt has occurred and accord-
ingly calls the completion section of the device driver.

@ The completion section checks the results of the trans-
fer. If necessary, it may initiate additional transfers by
telling the I/O Monitor Process to call the initiator
section again. Otherwise, it updates the I/O Control
Block with information regarding results of the original
request. The file system may then check these results.
The I/O Control Block is a table of doubleword entries,
with one entry for each I/O request. Each entry con-
tains a transmission log (number of words or bytes
transferred), logical I/O status, and the process number
of the process to activate upon I/O completion.

@ When the user process is again dispatched, return is
made to a point following the file request, depending
on whether blocked or unblocked I/O was specified.
(Refer to discussion on blocked/ unblocked I/O later in
this section.)

DIRECT I/O OPERATION

The operations for direct I/O involve considerably more
software overhead than the operations for the SIO transfer
mode. This is due to the varied nature of the terminal
devices that use direct I/O, and also to the fact that the
system must respond to commands entered via the terminal
as well as to file requests affecting that terminal.

In addition, the operation is complicated by such factors as
speed sensing, error sensing, whether the device is synchron-
ous or asynchronous, whether the device is capable of
reading or writing or both, what controls exist, and which
mode or modes the device is capable of. Also, the log-on
sequence is handled by an entirely different set of routines
than those used for data handling.

Thus, the sequences described in the following paragraphs
present only a broad generalization of direct I/O terminal
operations. The sequences given should not be construed as

6·7
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representing any particular device or even a "typical" de-
vice. It will be assumed that the log-on sequence has been
accom plished.

Figures 6-6 and 6-7 illustrate the handling of data via direct
I/O terminal devices. Figure 6-6 shows input (read) opera-
tions and figure 6-7 shows output (write) operations.

In comparison with figure 6-5, note that there is no I/O
program in the data area; instead, the interrupt routine
performs the functions of an I/O program. The interrupt
routine, in this case, is part of the device driver.

Note also that direct read uses no initiation section and
direct write uses no completion section. Also: no multi-
plexer or selector channel is involved.

One element not previously present is the line butter. The
line buffer consists of a number of butter tanks, which are
pointed to by address words in the Device Information
Table for a particular terminal. A sufficient number of
these tanks is used to accommodate the line or record
length of the associated device. Data is transferred between
the line buffer and the device (via the Interrupt Control
Stack) on a character-by-character basis. Data is transferred
between the line buffer and the data buffer on a record
basis. This scheme conserves main memory space by
allowing the data buffer to be absent on disc while the
comparatively slow terminal device is transferring individual
characters.

DIRECT READ. The sequence of operations for direct
read, illustrated in figure 6-6, is as follows. Again, it will be
assumed that the file request does require a physical read
from the terminal.

G) The executing user process generates a file request to
the file system.

® The file system tests the validity of the request and
calls the Attach I/O intrinsic.

@) Attach I/O inserts the request parameters in the I/O
Queue for the requested device. Unlike the general
(SIO) case, which uses a first-in/first-out queue for the
requests, terminal requests are analyzed for relative
importance and are then inserted into an appropriate
place in the queue. The factors involved in assessing
request importance are: mode (standard, escape, break,
and console), and request type (standard, soft, and
hard).

o When all higher priority requests for the terminal have
been completed, and when the TERM process has
highest priority among all other processes, the TERM
process begins execution for this request. (There is one
TERM process for each terminal device controller.)

® The TERM process enables interrupts and links to-
gether a sufficient number of buffer tanks to accom-
modate the request. It then issues a CIO (Control I/O)

Input/Output System

instruction directly to the device controller to enable
read interrupt. TERM then exits to the dispatcher.

® The device controller enables the device to read a
character. When a key is pressed, the device returns the
character to the controller.

(j) On receipt of the character, the device controller
causes the CPU to interrupt to the interrupt routine for
terminals, TIP (Terminal Interrupt Processor).

® TIP issues an RIO instruction to the device controller.
This causes the character to be loaded onto the Inter-
rupt Control Stack, and also causes a command to be
issued to the device to read the next character. TIP
now checks the character on the ICS to see if it is a
data character or a control character.

® If the character on the ICS is a data character, it is
transferred by TIP to the line buffer. If it is a control
character, TIP performs the appropriate control func-
tion.

@ TIP exits to the Dispatcher and the sequence repeats
back to step 7 untilthe entire record has been read.

@ When TIP detects a CR character (Carriage Return),
TIP sets a bit in the Device Information Table to
signify that the record is complete, then exits back to
the TERM process.

@ The TERM process, after checking the Device
Information Table, issues a PCAL to the completion
section of the device driver.

@ The completion section" transfers the content of the
line buffer to the data buffer. Then the transmission
log in the I/O Control Block is updated and the com-
pletion section exits back to the TERM process.

@ TERM releases the buffer tanks and goes to sleep. The
Dispatcher then returns control to the user process. To
read another record, the file system must make another
I/O request to Attach I/O.

DIRECT WRITE. The sequence of operations for direct
write, illustrated in figure 6-7, is as follows:

G) The execu ting user process generates a file request to
the file system.

® The file system tests the validity of the request
and calls the Attach I/O intrinsic.

@) Attach I/O inserts the request parameters in the I/O
Queue for the requested device.

o When all higher priority requests for the terminal have
been completed, and when the TERM process has
highest priority among all other processes, the TERM
process begins execution for this request.
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® The TERM process enables interrupts and links to-
gether a sufficient number of buffer tanks to accom-
modate the request. TERM then issues a PCAL to the
initiator section of the device driver.

® The initiator transfers one line (maximum of 132
bytes) from the data buffer to the line buffer.

(j) The initiator issues a CIO (Control I/O) instruction to
the device controller to enable write interrupt and exits
back to the TERM process.

® The device controller causes the CPU to interrupt to
TIP, the Terminal Interrupt Processor.

® TIP transfers a byte to the ICS. If the byte is a control
character, TIP does the control function and gets the
next byte from the line buffer. If it is a data character,
proceed to 10.

@ TIP executes a WIO instruction, transferring the
character from the ICS to the device controller.

@ TIP then exits to the Dispatcher, while hardware takes
control from this point.

@ The device controller writes the character out to the
device.

BLOCKED I/O

USER
PROCESS

10CB

WAIT

ATTIO

100

_________ 1

Continue
USER

PROCESS

Input/Output System

@ On completion of the write, the device controller gen-
erates another interrupt to TIP. The sequence repeats
back to step 9 until all characters in the record have
been written out to the terminal.

@ When TIP detects a CR character (Carriage Return) in
step 9, TIP checks a counter to see if this was the last
line. If not, TIP calls the initiator again repeating back
to step 6. If this was the last line, TIP exits back to the
TERM process, which disables interrupts, releases the
buffer tanks, and goes to sleep.

@ The Dispatcher then returns control to the user
process.

BLOCKED/UNBLOCKED I/O

At the conclusion of all three of the preceding operating se-
quences (general I/O, direct read, and direct write), control
is returned to the user process on completion of 1/0. While
the 1/0 operation was in progress, the user process may have
been suspended at that point to await 1/0 completion
(blocked I/O), or may have continued to execute while peri-
odically checking for 1/0 completion (unblocked I/O). The
choice of blocked or unblocked 1/0 is made in the call to
ATTIO. (The file system nearly always uses unblocked 1/0.)

UNBLOCKED I/O

USER
PROCESS

10CB

Continue

ATTIO

I

--------j

WAIT

(User
Option)

I
I
I
I
I
I
I
I
I
1,,.-- ---'

Continue
USER

PROCESS

Figure 6-8. Blocked and Unblocked 1/0
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Input/Output System

The following paragraphs discuss the characteristics of
blocked and unblocked I/O. Refer to figure 6-8. ("User"
implies privileged user.)

BLOCKED I/O. As shown in figure 6-8, the user process
goes into an I/O wait substate as soon as the I/O request is
given. Since an I/O Control Block will be provided auto-
matically, it is not the user's responsibility to provide one.

The user process remains in the wait substate while the I/O
operations proceed. The ATTIO intrinsic creates an I/O
Control Block entry for this request. Then the request is
entered into the I/O Queue and is ultimately processed via
the hardware I/O system. At the end of the I/O operation,
the results of the transfer are entered into the IOCE.
Control is then returned to the user process, along with the
contents of the IOCB (to the top of the stack). ATTIO then
deletes the IOCB entry for this request.

The user process now continues to execute from the point
following the I/O request.

UNBLOCKED I/O. In the case of unblocked I/O, also
illustrated in figure 6-8, the user process must initially
provide the I/O Control Block. (Privileged capability is
assumed.) The process must also specify the action to be
taken on completion of I/O: either no action or awaken the
process if in an I/O wait substate. This specification (like
the blocked/unblocked I/O choice) is made in the call to
ATTIO.

The process may then, after calling ATTIO, continue to
execute, and may generate other unblocked I/O requests. It
is the responsibility of the process to synchronize all un-
blocked requests and to check the contents of the asso-
ciated IOCB entries for I/O completion. The process also
has the capability to put itself into the I/O wait substate,
and to change the I/O completion action for any unblocked
request at any time. Obviously, however, the process should
not specify "no action" for all unblocked requests and then
go into the I/O wait substate; there is no way to recover
from this hanging situation. At least one request must
specify "awaken process".

While the process continues to execute, ATTIO enters the
request into the I/O queue, and hardware processing of the
request begins. At the end of the I/O operation, the results
of the transfer are entered into the user-provided IOCE.
Then the completion action bit is examined. If "awaken
process" is specified, the process will be awakened if it has
put itself into the I/O wait substate, as shown in figure 6-8.
If "no action" is specified, presumably the process has
continued to execute without any wait, or will be awak-
ened by some other process. In any case, the process checks
for I/O completion by checking the contents of the IOCE.

6-12

HARDWARE I/O SYSTEM

As evident from the preceding overview of I/O operations,
the hardware portion of the I/O system bears a large meas-
ure of the responsibility in the execution of an I/O request.
That is, when software passes control to hardware, the
hardware assumes full control from that point while the
software goes on to other business.

The remainder of this section describes the hardware I/O
system. (For a more detailed explanation of the hardware
logic, refer to Section VIII.)

HARDWARE ELEMENTS
Separately identifiable hardware elements are: the I/O Proc-
essor (lOP), multiplexer channel, selector channel, device
controller, and peripheral device. With reference to figure
6-9, the following paragraphs define the basic functions of
each of these elements.

The I/O Processor has three basic functions, relating to the
three different transfer modes illustrated in figure 6-9. In
the case of direct I/O, the lOP executes the direct I/O
instructions (RIO, WIO, TIO, CIO, SIN and SMSK), trans-
ferring data, device status, and control information between
the CPU and a device controller. In the case of programmed
I/O via a multiplexer channel, the lOP transfers I/O pro-
gram words between memory and the multiplexer channel,
and data between memory and the controller. In the case of
programmed I/O via a selector channel, the lOP passes
initialization information to the device controller; the lOP
does not become involved in any part of the I/O program
execution. The lOP also interrupts the CPU on behalf of
the device controllers.

The multiplexer channel acts as a switch to enable one of
16 device controllers to transfer one word of data to or
from memory via the lOP, then to allow another controller
.,....based on priority - to perform its transfer. At all times,
the multiplexer channel contains the current I/O program
word for each of the 16 device controllers. To accomplish
this, the multiplexer channel has a 16-location solid-state
memory to contain the 16 I/O program words, and is
responsible for updating the contents and fetching the next
I/O program word when necessary.

The selector channel also acts as a switch but in a manner
different from a multiplexer channel. Whereas the multi-
plexer switches between controllers on demand, based on
hardware priority, the selector channel maintains the con-
nection for one controller until it has completed the I/O
program. Thus only one I/O program is current at a given
time for one channel. Another major difference, as shown
in figure 6-9, is that the selector channel accesses memory
directly for data and I/O program word transfers, rather
than indirectly through the I/O Processor. These features
permit a very high speed data transfer rate.
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Figure 6-9. Hardware I/O Elements

The device controller is the interface between a peripheral
device and the computer system. Its primary function is to
translate programmed I/O commands from a multiplexer or
selector channel (or direct I/O commands from the I/O
Processor) to the unique signals required to control a par-
ticular device. When an I/O program is in execution, the
device controller responds to and requests service from the
channel. The device controller also generates interrupts
when required by some device condition or by direct or
programmed command.

The peripheral device receives output data for storage or
display, or supplies input data to the computer. In general,
one device controller controls one peripheral device;
however, some controllers are capable of controlling several
devices.

I/O PROGRAMMING

The I/O program, as shown earlier in figure 6-5, is a part of
a device driver and is uniquely assembled for each I/O
request from the file system. Once the driver issues an SIO

instruction to the requested device controller, the hardware
I/O system begins to execute the I/O program
independently of the CPU. The CPU is then free to
continue processing in parallel with the I/O operations.

The following paragraphs define the elements of an I/O
program and describe the actions occurring after the SIO
instruction is issued to the hardware.

I/O PROGRAM WORD. Figure 6-10 illustrates the format
of the I/O program word. Two computer words are used to
accommodate the 32-bit word length. The first word is
designated as the I/O Command Word, or IOCW, and the
second word is designated as the I/O Address Word, or
10AW. The 10AW does not necessarily always contain an
address, as indicated in the figure.

Data chaining occurs for WRITE and READ orders if bit 0
of the IOCW is a "1". This bit may be a "1" for a WRITE
order followed by a WRITE or for a READ order followed
by a READ. This will permit the hardware to treat the
counts of each order as a continuous chained count, with-
out reinitializing for each order. The DC bit should be "0"
for all other orders.
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o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

loew IDc10RDERI

IOAW L- ~

COUNT

*Data Address for WRITE
READ

JUMP*Jump Address for

*Control Information for CONTROL

*Device Status for SENSE
END

*Residue Count for RETURN RESIDUE

*Unused for INTERRUPT

DC Data Chain
ORDER = I/O command code
COUNT = Word Count

ORDER CODES

000 JUMP, Conditional if IOCW(4) = 1
Unconditional if IOCW(4) = 0

001 RETURN RESIDUE

010 INTERRUPT

011 END, with interrupt if IOCW(4) = 1
without interrupt if IOCW(4) = 0

100 CONTROL

101 SENSE

110 WRITE

111 READ

Figure 6-10. I/O Program Word Format

The count field of the IOCW contains a two's complement
negative count value for WRITE and READ orders. The
count is a word count, independent of the particular re-
cording format (bytes, words, or records). For a CONTROL
order, these 12 bits are used for control information in
addition to the 16 control bits in the lOAW (a total of 28
bits).

The eight I/O orders are defined as follows:

JUMP. If bit 4 of the IOCW is a "1", a conditional jump of
I/O program control is made to the address given by the
IOAW at the discretion of the device controller. If bit 4 of
the IOCW is a "0", an unconditional jump is made.

RETURN RESIDUE. This causes the residue of the count
to be returned to the IOAW. The residue is obtained from
the multiplexer or selector channel.

6·14

INTERRUPT. This causes the device controller to interrupt
the CPU.

END. End of the I/O program. If bit 4 of the IOCW is a
"I", the device controller also interrupts the CPU. Returns
device status to the lOAW.

CONTROL. This causes transfer of a 16-bit control word in
the IOAW to the device controller, as well as the 12-bit
count field.

SENSE. This causes transfer of a 16-bit status word from
the device controller to the IOAW.

WRITE. This causes "count" words of data to be trans-
ferred between main memory and the device, starting at the
address given by the lOAW.

READ. This causes "count" words of data to be transferred
between the device and main memory, starting at the
address given by the IOAW.

TYPICAL I/O PROGRAM OPERATION. Figure 6-11
shows the sequence of operations occurring as the result of
an SIO instruction. The sequence is as follows.

CD The SIO instruction, decoded by the CPU, fetches the
@ device number given at S-K in the stack, and puts the

TOS into the first word of the DRT as the I/O program
pointer.

® SIO then loads the device number into the eight least
® significant bits of the lOP Control Register, and loads

an SIO command into bits 1, 2, and 3.

® The I/O Processor issues the SID command to the
device controller, and execution by the hardware
begins. The CPU is now free to continue execution
elsewhere.

® On demand from the multiplexer channel, the I/O
Processor obtains the program pointer from the Device
Reference Table. (The selector channel obtains the
program pointer directly, not via the lOP.) As shown
earlier (figure 6-4), the address is obtained by multi-
plying the device number by four. The program pointer
is the first word of the four-word DRT entry.

(j) The program pointer points to the first double word of
the I/O program. The pointer is updated to point at
each I/O program double word as the program pro-
gresses. (The selector channel, to minimize memory
fetches, copies the pointer value into a register and
updates the pointer internally; the multiplexer channel,
however, updates the pointer directly in the DRT.)
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Figure 6·11. I/O Program Operation

® The sample I/O program is assumed to operate as
follows. The first double word contains a CONTROL
order which enables the hardware I/O subsystem for
this device number. The second double word contains a
READ order, which causes the subsystem to read
4096 words (or 8192 bytes) into the data buffer whose
starting location is given in the IOAW word. Since the
data chaining bit is on, the next (third) double word is
also a READ order, which specifies the remaining
count required to fulfill the I/O request. (Additional
READ orders could be given for larger requests.) The
10AW may specify a buffer area contiguous to the first
4096·word buffer if desired, or in another part of
memory if a scatter read is desired.

DATA
BUFFER

4096
Words

Remainder

When the transfer is complete, the fourth double word,
a CONTROL order, turns off the I/O subsystem. The
final double word contains an END order, which ob-
tains the result of the transfer (device status) and loads
it into the 10AW; the END order then generates an
interrupt to inform the software that the transfer is
complete.

At the completion of an I/O program, the selector
channel returns the current program pointer value to
the DRT. The multiplexer does not take any special
action since it updates the DRT after each order fetch.
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INTERRUPT SYSTEM •

The interrupt system is designed to conform with the basic
architectural scheme of the HP 3000. Thus, interrupt
routines are called and exited in a manner resembling the
way that procedures are called and exited. An interrupt is
therefore an implicit PCAL (vs. explicit PCAL instruction).
Also, code and data domains are kept separate.

The primary difference is that the calling operations are
performed by a micro programmed Interrupt Handler rather
than by the PCAL instruction. For exit, however, the same
EXIT machine instruction is used as for exiting from a
procedure.

The first 16 entries in the Code Segment Table (CST) are
always devoted to defining the code domains of interrupts.
CST entries 1 through 16 define the code for internal inter-
rupts and CST entry 0 is the default segment number for
external interrupts. Table 7-1 lists all interrupts according
to code segment numbers.

Code segmentation for external interrupts is performed by
the Device Reference Table. The default segment number
of 0 is retained in the Segment Number field of the Status
register while processing external interrupts. This tells both
hardware and software that an external interrupt is being
processed.

The "parameter" is a value that is derived by the Interrupt
Handler, and passes to the interrupt routine relevant infor-
mation about the interrupt - such as to identify the source
or type of an error.

Before discussing the various interrupt types, the Interrupt
Control Stack will first be defined, since it will be referred
to frequently throughout the succeeding descriptions.

INTERRUPT CONTROL STACK

The Interrupt Control Stack (ICS) is a single stack, unique
to one CPU, which is used in common by all external inter-
rupts and some of the internal interrupts ("ICS type").
When only minimal data is to be handled by an interrupt
routine, the data is processed on the ICS. (Otherwise, the
separate data area defined in the DRT must be used for
data.) Use of a common stack also permits efficient nesting
of interrupt routines, via stack markers.

The ICS has a permanent stack marker (set up by the oper-
ating system) which is used for exiting to the Dispatcher.
This guarantees that the final routine to use the ICS will
always exit to the Dispatcher. Figure 7-1 illustrates the
format of the Dispatcher marker on the ICS.

Note that, unlike the standard four-word stack marker, the
Dispatcher marker contains five words. As will be explained
later, all markers on the ICS (as well as the marker left on
the previous stack before switching to the ICS) include a
fifth word to save the current value of DB. The reason for
saving DB is that all external interrupts automatically alter
DB (to the DEI value); also, interrupt routines for ICS-type
internal interrupts may also change DB. The EXIT instruc-
tion restores DB.

The delta Q location of the Dispatcher marker always con-
tains a "0" word. Since the Dispatcher does not change Q
until a new process is dispatched, a specific value for Q is
not needed. Instead, the "0" value tells the hardware not to
delete the marker when exiting from the ICS, and to set the
Dispatcher Flag in the CPU. The Dispatcher Flag is set
whenever an exit is made from the ICS to the Dispatcher,
and remains set while the Dispatcher is executing. It is
cleared when the Dispatcher completes its execution, or is
aborted by another interrupt.

The segment-number field of the Status word permanently
points to the CST entry for the Dispatcher, and the "P -
PB" word permanently points to the starting point in the
Dispatcher code segment. The EXIT instruction uses these
values for transferring control to the Dispatcher.

The locations preceding the Dispatcher marker comprise
the ICS global area, which contains operating system infor-
mation set up or to be acknowledged by the Dispatcher.
The location following the Dispatcher marker is used for
the parameter by those interrupts that do pass a parameter
(refer to table 7-1). Note that since ICS-type interrupts use
a five-word marker, the parameter is found in location Q+2,
rather than the usual Q+1 location.

INTERRUPT
CONTROL

STACK

z

Disp X
Disp P - PB
Disp Status....• 0
Disp DB

...

}
Permanent
MarkerQ

Figure 7-1. Dispatcher Marker on ICS
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Interrupt System

Table 7-1. Interrupts and Traps

~~G()9f~ =--.- -~ -.-,-,=-,-.~

SEG TYPE PARAMETER

0 External Interrupts (via DRT) Device No.
- 1- - - -~ ~~
,- ~

1 Power Fail
,

2 Power On
On ICS

Internal at 0+2
3 Stack Overflow

ICS-type
4 Module Interrupt Module No.

5 Console Interrupt CPU No.

6 Cold load
~. -.~ -
.~

7 Unassigned

10 Unassigned

11 Module Error
Illegal Address 1000*

Bounds Violation 2000

Non-responding Module 4000

12 Parity Error
Data Parity Error 10000
Memory Address Parity Error 20000

System Parity Error 40000

13 Miscellaneous Error
Stack Underflow 1

- CST violation ____2_-, ~ .-. .~ ~ -

STT violation 3

On Current
14 Code Segment Absence Stack at 0+1

If PCAl label

If EXIT N

15 STT Entry Uncallable label

16 Trace
If PCAl label

If EXIT N
I~ I~ A - I~---,~

17 Traps
Integer Overflow 1 1

I"'~ Eloati ngJ~_ojD.LOj.lerflow l::J-s-er-- 2

Floating Point Underflow Traps
3

Integer divide by 0

J
4

Floating Point divide by 0 5

Mode violation ) System 6
Unimplemented instruction Traps 7

"Octal numbers

7-2

Keven
Rectangle

Keven
Rectangle



A hardware ICS Flag is set in the CPU whenever a switch is
made to the ICS from any other stack. The ICS Flag
remains set until another process is dispatched and the ICS
is no longer the current stack.

Figure 7-1 also shows the delimiting of the ICS by QI and
ZI ("interrupt" Q and Z). These values are given in fixed
memory locations 5 and 6 for CPU number 1 or loca-
tions 11 and 12 (octal) for CPU number 2, if used. The QI
value points to the delta Q location of the Dispatcher
marker on the ICS. The ZI value points to the ICS stack
limit.

Privileged software may gain access to the ICS by loading
an absolute value into the Z-register which is equal to ZI.
This is accomplished by a SETR Z instruction with a
ZI - DB relative value on the top of the stack. (SETR Z will
add DB to the relative value before checking if the result is
equal to Z1.) This action will set the ICS Flag. Note: Sand
Q must also be set to appropriate ICS values by the same
SETR instruction, or a stack overflow is likely to occur.

INTERRUPT TYPES

Interrupts may be divided into two basic types: external
interrupts, which are controlled signals from the I/O
system, and internal interrupts, which typically are unex-
pected signals caused by certain hardware conditions or
programming violations.

The HP 3000 system characteristics necessitate splitting
each of these two basic types, resulting in the following
four types:

• External interrupts (from standard I/O devices)

• IRF-type external interrupts (from non-standard I/O
devices, using Interrupt Reference Flag)

• ICS-type internal interrupts (using Interrupt Control
Stack)

• Non-ICS internal interrupts

A standard device is one which is known to, and control-
lable by, the file system of the MPE/3000 operating system.
A non-standard device is independent of the file system
(such as a real-time device), and uses the Interrupt Refer-
ence Flag (IRF) to make its interrupt known to the
operating system.

Figure 7-2 compares the overall operations of all four inter-
rupt types. Taking a general view of this figure, note that
operations proceed mostly left-to-right. For example,
external interrupts begin by triggering some actions in hard-

Interrupt System

ware, then the interrupt processing environment is set up in
software, and finally there is an exit to the Dispatcher. The
Dispatcher is the part of the operating system which
schedules the execution of processes.

Note that three of the four types of interrupts exit to the
Dispatcher. (The same three use the Interrupt Control
Stack for a data domain.) The action of exiting to the Dis-
patcher, instead of returning to the point of interrupt, per-
mits the operating system to re-evaluate process priorities.
Remember that in the case of external interrupts (refer
back to figure 6-2), the process that caused the I/O request
has been inactive while the hardware 1/0 system is trans-
ferring data. Another process would be running at the time
of the interrupt. The interrupt essentially means: re-activate
the monitor process so the 1/0 request can be completed.
Since the Dispatcher decides which process is activated
next, the Dispatcher is the logical point of return.

Note: It is assumed here that only one interrupt
is being processed. As will be shown later,
interrupt routines can be interrupted by
other interrupts, and the exit to the Dis-
patcher occurs only when making the
final exit on the Interrupt Control Stack.

For IRF-type interrupts, the meaning of the interrupt is
even simpler - i.e., activate a certain process (via the
Dispatcher). For ICS-type internal interrupts, the Dis-
patcher return is still necessary, since the priorities of pro-
cesses may have changed while operating on the Interrupt
Control Stack, as a consequence of functions performed
thereon.

One of the important features of the Dispatcher is that it
can be aborted at any time during its operation. Thus if a
new interrupt arrives while the Dispatcher is in operation,
the new interrupt can immediately be handled without
having to restore any particular conditions. This feature
maintains the fast interrupt response of the system in multi-
interrupt situations.

For non-ICS internal interrupts, an exit to the Dispatcher is
not necessary since these operate on the current user's
stack. The exit can be made directly back to the point of
interrupt.

Figure 7-2 also shows that the interrupt routine code is
accessed via the Device Reference Table for external inter-
rupts (both types) and via the Code Segment Table for
internal interrupts (both types). This is because internal
interrupts are processed by specifically assigned code
segments which must always be present in main memory
(or the system will halt). External interrupts, on the other
hand, are device-related and so code segmentation is done
by the Device Reference Table. Accordingly, an internal
interrupt routine is an interrupt code segment and an
external interrupt routine is called the interrupt receiver
code.

All external interrupt routines, by definition, execute in
privileged mode. The Interrupt Handler automatically sets
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Figure 7-2. Interrupt System Overview
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the Mode bit in the Status register to the privileged mode
state before transferring control to the interrupt routine.
For internal interrupts, however, the mode bit in the CST
entry determines which mode is to be used during
execution.

All external interrupt routines are entered with the external
interrupt system enabled. All internal interrupt routines are
entered with the external interrupt system disabled.

The following paragraphs individually describe each of the
four interrupt types. Only a brief introductory description
is given at this point. Detailed operating sequences are given
later in this section.

EXTERNAL INTERRUPTS
External interrupts interface external events to software
processes. Referring to figure 7-2 (top example), the overall
operation is as follows:

CD At or near the end of an I/O program, the device con-
troller decodes a SET INT (Set Interrupt) command,
which causes the controller to set its Interrupt Re-
quest flip-flop. This action corresponds to step 10 in
the I/O System Overview, figure 6-5.

Note: The device controller's Interrupt Request
flip-flop can also be set by an SIN instruc-
tion decoded by the CPU. However, such
action is more commonly used in diag-
nostic routines than in conventional I/O
operations.

(3) The setting of the Interrupt Request flip-flop causes
the device controller to issue an INTREQ (Interrupt
Request) signal to the I/O Processor - provided that a
previously issued mask permits requests from this
controller. (Masks will be discussed later.)

o The I/O Processor issues a poll (INTPOLL) to activate
the highest-priority request. (There may be more than
one request.)

o The device controller returns an acknowledgement
(INT ACK), along with its device number.

® The lOP requests the CPU to set up the interrupt
environment. The initial steps are to set lip the data
segment registers to point at the Interrupt Control
Stack (after saving the user's environment on his own
stack) and to fetch the device's DRT entry.

® The address in the second word of the DRT entry is
loaded into the P-register, thus transferring control to
the interrupt receiver code.

o The information in the data area for this device
(pointed to by the third word of the DRT) is updated

Interrupt System

by the interrupt receiver. This information will tell the
I/O monitor process that the initiator section of the
device driver has done its work, and the completion
section should be called.

® The interrupt receiver exits to the Dispatcher. This
action corresponds to step 12 in the I/O System
Overview, figure 6-5.

IRF EXTERNAL INTERRUPTS

IRF-type external interrupts provide an external means of
activating a process. One action of this interrupt is to set
the Interrupt Reference Flag associated with a particular
device controller. It is then up to the operating system to
connect the process to the device and begin execution.
Referring to the second example in figure 7-2, the overall
operation is as follows:

CD An external event sets the Interrupt Request flip-flop
in the device controller. This could be as simple as a
contact closure.

(3) The device controller issues an Interrupt Request to
the I/O Processor, provided that a previously issued
mask permits requests from this controller.

o The I/O Processor issues an interrupt poll to activate
the highest-priority request.

o The device controller returns an acknowledgement
along with its device number.

® The lOP causes the CPU to switch to the ICS (after
saving the user's environment on his own stack), and
to fetch the device's DRT entry.

® The address in the second word of the DRT entry is
loaded into the P-register, thus transferring control to
the interrupt receiver code.

(j) An SIRF (Set Interrupt Reference Flag) instruction in
the interrupt receiver sets the IRF bit (bit 0) of the
fourth word in the DRT entry.

® The interrupt receiver exits to the Dispatcher. (The
association of the external interrupt and a specified
process is performed by the Dispatcher, using software
table information and the SIRF bit of the DRT.)

ICS INTERNAL INTERRUPTS

ICS-type internal interrupts operate on the Interrupt Con-
trol Stack, and the interrupt code for each separate inter-
rupt is permanently allocated in code segments 1 through 7
(see table 7-1). Referring to the third example in figure 7-2,
the overall operation is as follows:
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CD An internal hardware condition (due to power failure,
stack overflow, module interrupt, or console inter-
rupt) causes the CPU to switch to the ICS (after saving
the user's environment on his own stack), and to fetch
the Code Segment Table entry for the specific inter-
rupt (1 through 7).

® The absolute address in the second word of the CST
entry is loaded into the PB-register, and execution
begins with P = PB. This transfers control to the
appropriate segment.

® After processing the interrupt, the code segment exits
to the Dispatcher.

NON-ICS INTERNAL INTERRUPTS

The non-ICS type interrupts operate on the current user's
stack. The interrupts caused by this type are generally
caused by errors in a user's process, or by the system while
executing a user's process. Code segments 10 through 17
are permanently allocated for processing these interrupts.
Referring to figure 7-2, the overall operation is as follows:

CD An error in the execution of a user's process causes the
CPU to save the user's environment on his own stack
and to fetch the CST entry for the specific interrupt
(10 through 17).

The absolute address in the second word of the CST
entry is loaded into the P-register, thus transferring
control to the interrupt segment.

After processing the interrupt, the code segment exits
back to the point of interrupt in the user's process. In
the case of serious errors, another procedure may be
called to abort the offending process, or, for irrecover-
able errors, a system halt will occur.

EXTERNAL INTERRUPT
PROCESSING

Before discussing the sequence of operations for external
interrupts, there are three important factors that need to be
considered. These are: interrupt priorities, the interrupt
mask, and interrupt program pointers.

7-6

INTERRUPT PRIORITIES

Servicing of external interrupts is done in descending order
of priority. That is, the highest priority interrupt is serviced
first. A higher priority interrupt can always interrupt the
processing of a lower one.

The interrupt priority of a device is completely inde-
pendent of the device number and interrupt masking. It is
determined by the device's logical proximity to the IOP on
the interrupt poll line. The interrupt poll is wired at system
configuration time from one device controller to another,
using twisted-pair clip-on wires. An illustration of how an
interrupt poll might be wired is shown in a later section
(figure 8-7). The routing of the interrupt poll is determined
by the desired interrupt priorities of the device controllers,
and is completely independent of other parameters.

Each device controller therefore has a distinct priority level
in relation to all other controllers. The maximum number
of controllers, and hence interrupt levels, is 253.

INTERRUPT MASK

The mask is a word of 16 bits which, when transmitted to
the 110 system, will enable or disable the interrupt request
logic of certain groups of device controllers, according to
the bit pattern of the word. A logic "1" in a given bit
position will enable the corresponding group of interrupts;
a logic "0" will disable the group.

The mask is originally created as a word on the top of the
stack. From there it is transmitted to all device controllers
simultaneously by a SMSK (Set Mask) instruction. Each
device controller is wired (at system configuration time) to
respond to one particular bit in the mask word. Thus when
the mask is transmitted by SMSK, the Mask flip-flop in
each device controller will either set or reset according to
the value of the bit to which the controller is sensitive.

Assuming that all controllers do accept the new mask, the
SMSK instruction will also load the mask word into the
Mask register in the CPU. This makes it possible to check
the value of the existing mask at any time by reading it to
the top of the stack by a RMSK (Read Mask) instruction.
Note that RMSK is actually reading a copy of all the mask
bits and not the real Mask bits in all the devices. RMSK is a
non-privileged instruction; SMSK, however, is a privileged
instruction.

If there is a hardware failure on the Power Bus Terminator
card and it does not issue a Mask Return signal, then the
mask word is retained on the TOS, the Condition Code is
set to CCL to indicate an 110 error, and the external inter-
rupt system is disabled. Note that the state of the individual
Mask flip-flops on the device controllers are in an unknown
state in this case.

Figure 7-3 illustrates an example of interrupt masking. In
this example, if bit 2 of the transmitted mask word is a
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o 1 .~2~3-r4-r~5~6-r7-r_8~9-r1_0r1_1~12,-1_3r1_4T1-,5
MASK[J]
Device:

No :

3 ~
4 f%
5 f%
6 r%
7 f%

10 ~
11 ~
12 ~
13 ~
14 ~
15 ~
16 ~
17 f%l
20
21
etc.

+

Figure 7 -3. Interrupt Masking

logic "1", interrupts will be permitted from devices 3
and 11; if bit 2 is a "0", devices 3 and 11 will not be able to
make interrupt requests. Similarly, bit 3 controls the inter-
rupts from devices 4 and 12, bit 5 controls the interrupts
from devices 5 and 13, and so on.

INTERRUPT PROGRAM POINTER

The Device Reference Table was defined in Section VI. As
stated then, the second word of each DRT entry contains
the interrupt program pointer. This is an absolute address
pointing to the start of the interrupt routine associated
with a particular device controller. See figure 7-4. Note that
several controllers could point to the same routine.

DRT 1Entry
for

One
Device

(PS = OJ
(PL = 00)

P
PI Interrupt

Receiver
Code

Figure 7-4. Interrupt Program Pointer
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SE~UENCE OF OPERATIONS

Figures 7-5 and 7-6 illustrate the sequence of operations for
processing external interrupts. Basically, we are narrowing
the scope of the overall 1/0 operation to focus on just the
portion that establishes the interrupt processing environ-
ment on receipt of an external interrupt. In previous
figures, this corresponds to steps 11 and 12 in figure 6-5,
and to steps 5, 6 and 7 in figure 7 -2.

Figure 7-5 shows how control is transferred from the point
of interrupt in a user's code segment to the start of the
interrupt receiver code. Also shown is the transfer of the
data domain from the current user's stack to the interrupt
control stack. Figure 7·6 shows how a second interrupt is
handled and how exit is made from the interrupt routines.

The following paragraphs describe the sequence of
operations, step by step. Note first the Dispatcher marker
in the Interrupt Control Stack; the contents are not
detailed since they were discussed under a previous heading.
Note also that all operations are under control of the
hardware-implemented Interrupt Handler until control is
transferred to the interrupt receiver code in software.

The initial assumption is that the current process is
operating at point P in some user's code when the CPU
recognizes an external interrupt. The CPU thereupon passes
control to the Interrupt Handler.

CD The first action of the Interrupt Handler is to push
into memory any TOS elements of the current user's
data that are in CPU registers. This takes a maximum
of four memory cycles if all four registers are full.

Next, a normal four-word stack marker is pushed onto
the user's stack, plus the absolute value of DB that is
currently in use. (DB may not necessarily point to a
location within the stack, such as if a system intrinsic
had been called at the time of the interrupt.) This
action preserves most of the user's environment; the
current value of S will be preserved later (refer to
step 5). Incidentally, DL is never changed by an
interrupt.

The Interrupt Handler now goes to location 5
(assuming CPU #1) and loads the QI value into the
Q-register. This points Q at the delta Q location of the
permanent Dispatcher marker. (As explained previ-
ously, this location contains a value of 0.)

o The content of location 6 is next fetched and the
value of ZI is loaded into the Z-register. This estab-
lishes the stack limit for the Interrupt Control Stack.
(The ICS Flag is also set by this action in hardware.)

® The user's current absolute value of S is stored into
location Q-5 on the Interrupt Control Stack. (Of
course, S will by this time be pointing at the top word
of the marker on the user's stack.) Later, when control
is passed to the Dispatcher in step 18, the Dispatcher
will convert S to a relative value by subtracting the DB
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value of the user's stack, and will store the result in
the user's environment. (The "stack DB" is always
saved in ICS location Q-4 by the Dispatcher, prior to
launching a process - in case DB is altered during the
process.) This action will complete the preservation of
the user's pre-interrupt environment.

® The S pointer is set to point at location Q+2, and the
device number of the interrupting device is stored into
this location. The CPU obtains this number from the
Interrupt Address register in the I/O Processor. At this
point, the Interrupt Control Stack is fully delimited
by register values, and is ready for handling interrupt
data.

(}) The Interrupt Handler now uses the device number on
the ICS to form an address for fetching the second
word of the DRT entry for that device. The content of
that location (PI) is loaded into the P-register, thus
pointing to the start of the interrupt receiver code.

® The PB- and PL-registers are set to their respective
extreme values (PB = 0, PL = 216 - 1) since they are
not used for delimiting interrupt code.

® Bit 0 of the Status register is set to a "I" so that, as
required, the interrupt receiver code will execute in
privileged mode.

@ The DB-register is set to the value of DBI, the third
word in the device's DRT entry.

@ The CPU now fetches the instruction at P and begins
executing the interrupt receiver code.

The following steps, relating to figure 7-6, list the actions
occurring if a second interrupt (of higher priority, of
course) is received while processing the first interrupt.
Assuming a still higher priority, another interrupt could
interrupt the second routine in the same manner as
described below. This example shows how several levels of
interrupts can be nested on the Interrupt Control Stack.
Since the ICS is common to all external interrupts, no
further switching of environments is necessary for addi-
tional interrupts. As mentioned in Section I, this reduces
the interrupt response time by about two microseconds.

If, however, the second interrupt did not occur before com-
pleting the processing of the first interrupt, the sequence of
operations would skip from this point (step 11) to step 19.
The sequence continues as follows:

@ The CPU recognizes a second interrupt while exe-
cuting the interrupt receiver code for the first
interrupt. The CPU therefore again passes control to
the Interrupt Handler.

@ The Interrupt Handler pushes into memory any TOS
elements that are in CPU registers, and pushes the
usual five-word marker onto the ICS. The fifth word
of this marker is the DB value that is currently in the
DB-register at the time of interrupt.

7-10

@ The Q-register is updated to point at the delta Q word
of the new marker. The delta Q value is the number of
locations back to the delta Q word of the Dispatcher
marker.

Note: Unlike the first interrupt, subsequent inter-
rupts do not store S into Q-5 at this point
(see step 5). Such action would overlay one
of the variables associated with the previous
interrupt.

@ The S-register is updated to point at location Q+2, and
the device number of the second interrupting device is
stored into that location.

@ The Interrupt Handler uses the device number to fetch
the second word of the DRT entry for that device.
The content of that location (PI) is loaded into the
P-register, thus pointing to the start of the interrupt
receiver code for the second device. Also (not shown),
the DBI value from the new DRT entry is loaded into
the DB-register.

@ The CPU now fetches the instruction at P and begins
executing the interrupt receiver code.

@ Assuming there are no other higher priority interrupts,
the interrupt routine for the second device runs to
completion and then exits to the point of interrupt in
the interrupt routine for the first device. The exit, as
usual, is made via the stack marker. Note that since
PE = 0 while operating on the ICS, the "return P"
(second word) of the marker is an absolute as well as a
relative address value. The Q value is restored to the
previous setting, pointing to the delta Q word of the
Dispatcher marker. The S pointer is moved back to the
location just preceding the second stack marker. The
N field of the EXIT instruction must always be 0 for
exiting from interrupt routines, so that none of the
variables associated with the previous routine will be
deleted by the act of moving S back. One of the
actions of the EXIT instruction is to issue a Reset
Interrupt command to the interrupting device con-
troller, which clears the interrupt active condition and
unblocks the interrupt poll line to lower priority
devices. (The device number is obtained from location
Q+2.)

@ The interrupt receiver code for the first interrupt now
runs to completion and an exit is made to the Dis-
patcher. Again, the EXIT instruction issues a Reset
Interrupt command to the device controller. In this
case, however, the stack marker is not deleted, and the
hardware sets the Dispatcher Flag to signify that the
Dispatcher is now executing. This completes the
sequence of operations.

If another external interrupt should occur while the Dis-
patcher is executing, the interrupt is treated in a slightly
different way. If the CPU recognizes an interrupt while the
Dispatcher Flag is set (from step 19), the sequence effec-
tively repeats steps 12 through 17 with the added actions
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that, in step 14, bit 0 of L1Q is set to 1 (indicating a
Dispatcher interrupt) and the Dispatcher Flag is cleared.
Then the interrupt receiver code can optionally set bit 0 of
the Interrupt Counter (fixed location 7) to a 0 if no
processing is required (e.g., in the case of character inter-
rupts from a terminal, which should not require aborting
the Dispatcher), or to a 1 if it wishes to process the
interrupt (such as for a carriage return interrupt). In either
case, when the EXIT instruction is given, the sequence goes
to step 19. As explained in the EXIT instruction commen-
tary, EXIT will allow the Dispatcher to continue execution
from the point of interrupt if bit 0 of the Interrupt Counter
is clear, or aborts the Dispatcher (Le., eliminates progress
made prior to the interrupt by setting Q = QI, thus elimi-
nating the interrupt stack marker and all Dispatcher data) if
bit 0 of the Interrupt Counter is a 1. In the latter case, the
Dispatcher will be restarted.

If, however, the Dispatcher is allowed to run to completion,
the CPU will clear the Dispatcher Flag when the Dispatcher
sets the Z-register to some value other than Z1. (This is one
of the last actions of the Dispatcher.)

IRF INTERRUPT PROCESSING

Normally, a process calls I/O which in turn causes inter-
rupts. IRF interrupts, however, reverse the situation - that
is, the interrupt calls a process. This is necessary because
the devices that use the Interrupt Reference Flag are not
known to the file system, which normally handles all I/O
requests. Thus the IRF interrupt must inform the
Dispatcher of its occurrence, so that the Dispatcher can
activate the process which is associated with the inter-
rupting device. That process may then use the device
directly, bypassing the file system.

FIXED
MEMORY

Interrupt System

In order to maintain some control over non-standard
devices, the operating system has control of "arming" the
IRF bits in the DRT entries.

The operating sequence for an IRF interrupt begins as a
normal external interrupt, subject to priority and masking.
Thus the first eleven steps are exactly the same as described
for external interrupt processing (Le., all of the steps shown
in figure 7-5). That part of the sequence takes the operation
up to the point of beginning the execution of the interrupt
receiver code. The sequence then continues as follows, with
reference to figure 7-7.

@ An SIRF instruction in the interrupt receiver code sets
(to logic "0") the IRF bit in the DRT entry for the
interrupting device controller. If the bit already was in
the "0" state, the SIRF instruction is treated as a
NOP; the next instruction (EXIT) causes an exit to the
Dispatcher with no further effects.

@ Assuming that the IRF bit was previously armed
(i.e., in the "1" state), the SIRF execution continues
by incrementing the Interrupt Counter in location 7
(assuming CPU #1). At a later time, this counter will
tell the Dispatcher how many IRF interrupts are
pending.

@ An EXIT instruction resets the Interrupt Active flip-
flop of the interrupting device controller, and causes
an exit to the Dispatcher via the Dispatcher marker on
the ICS.

@ The Dispatcher checks the content of the Interrupt
Counter and, if non-zero, activates each process corre-
sponding to the DRT's which have the IRF bit reset.
The IRF bits are then set again to the" 1" state.

@
INTERRUPT
RECEIVER PROCESS

CODE ,.
P-.•II SIRF f--< DISPATCHERPI --------'

EXIT
~

I I
I I (3)

(j2)

7
(Interrupt
Counter)

DRT
Entry

Figure 7-7. IRF Interrupt Processing
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Interrupt System

INTERNAL INTERRUPT
PROCESSING

As listed earlier in table 7-1, there are 25 internal inter-
rupts, including seven user-related traps. These 25 inter-
rupts are processed by the first 15 dedicated code segments
(numbered 1 through 17 octally). Several of the segments
process more than one specific interrupt; two of the seg-
ments are presently unassigned. Note that all of the user
and system traps enter one code segment, number 17.

When internal interrupts are being processed, all external
interrupts are disabled. Internal interrupts therefore have
higher "priority". Among internal interrupts, however,
there is no priority structure (except in the case of simul-
taneous interrupts); any internal interrupt may interrupt
the processing of any other. If multiple interrupts occur
simultaneously, they stack their markers in the following
order, and are therefore serviced in the reverse order:
integer overflow, system parity error, memory address
parity error, data parity error, non-responding module,
bounds violation, illegal address, module interrupt, external
interrupt, console interrupt, and power fail.

A module error interrupt while processing a module error,
or a parity error interrupt while processing a parity error,
are considered to be irrecoverable errors, resulting in a
system halt.

In most cases, the Interrupt Handler loads a parameter onto
the stack. The parameter (listed in table 7-1) passes infor-
mation regarding the interrupt from the hardware to the
interrupt processing software. In some cases, the parameter
is simply an interrupt identification number; in other cases,
the parameter gives specific information, such as a program
label, to the interrupt routine.

GENERAL DESCRIPTIONS

POWER FAIL. Code segment 1 does the interrupt pro-
cessing for the Power Fail interrupt. This routine saves the
software status in a format suitable for automatic restart,
making use of the finite time between the detection of a
power failure and the loss of usable power (approximately
10 milliseconds).

POWER ON. The Power On segment (code segment 2) is
entered either by an initial power turn-on, or by an auto-
matic restart following a power failure - if automatic
restart is enabled by a panel switch. (The computer will halt
on restoration of power if automatic restart is disabled.)
Assuming that automatic restart is enabled, the Power On
segment will set up the software environment and pass con-
trol to the operating system.

STACK OVERFLOW. A stack overflow results from
attempting to stack more data than can be contained on the
current stack (SM> Z). This condition will result in an
interrupt to segment 3, which processes the interrupt. The
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system makes the decision whether to abort the current
process or to expand the stack.

MODULE INTERRUPT. A module interrupt occurs when
a CPU receives a transmission from a system module
(hardware) from which it is not expecting a transmission.
The offending module number (FROM code) is passed to
segment 4 as a parameter. The interrupt routine may then
attempt to identify the source of the error and take
appropriate action. The interrupt is disabled if external
interrupts are also disabled (by bit 1 of Status = 0).

CONSOLE INTERRUPT. The console interrupt is the con-
sole operator's method of getting the attention of the
operating system prior to entering an operator command.
Segment 5 processes this interrupt, and passes the CPU
number as a parameter. In order to protect the Dispatcher
from random console interrupts during its final SETR,
EXIT sequence, console interrupts are disabled when the
Dispatcher Flag is set and the external interrupts are dis-
abled (by bit 1 of Status = 0). Console interrupts are also
disabled during system halt and power fail.

COLD LOAD. The cold load operation does not use an
internal interrupt. It is therefore an exception to the
present general discussion of internal interrupts. A "cold
load interrupt" is listed as the sixth internal interrupt only
in order to obtain a dedicated code segment number (6) for
the routine which "brings up" the operating system. But,
here again, the designation, code segment 6, is largely
fictitious, since the CST entry for that segment has no
significance and is not used. Instead, PB is set to 0, PL is set
to 216 -1, and P is indicated by fixed memory location 1.
The way cold load operates is roughly as follows: Pressing
the COLD LOAD switch causes the CPU to start its cold
load microprogram, which begins by reading the operator-
set switches on the panel. The switches will have been set to
indicate the cold load device number and an 8-bit control
byte. The microprogram generates a five-word 1/0 program
beginning at the DRT entry locations for the specified
device, and then issues an SIO instruction to that device
and goes into a waiting loop to wait for an external inter-
rupt from that device. Meanwhile the 1/0 Processor causes
the device controller to begin executing the five-word 1/0
program. This program reads in a 32-word bootstrap loader
(a larger 1/0 program), which in turn reads in still larger
blocks (e.g., 128 words) which eventually accomplish the
loading of all required fixed memory locations. This
includes overlaying the previously used DRT locations with
normal DRT entries. Finally, the I/O program causes the
device controller to generate the external interrupt that the
CPU has been waiting for, and ends. The CPU then pro-
ceeds to initialize the registers for execution of code
segment 6, with the res as the data domain. (PB, DB, and
DL all set to 0, PL to 216_1, Z to ZI, Q to QI, S to Q+l,
and P to the content of fixed memory location 1.) The
Status register is set to 140006, octal, to indicate privileged
mode, enable external interrupts, and indicate segment
number 6. The CPU then halts. When RUN is pressed,
segment 6 will execute, setting up the operating conditions
for the operating system (software tables, linkages, etc.)
Once this is complete, the system is in full operation.
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MODULE ERROR. Segment 11 processes three different
module errors: illegal address, bounds violation, and non-
responding module. An identification number (1000,2000,
or 4000, octal) is passed to the routine to identify which
type of error occurred. An illegal address is caused by
attempting to address a memory location beyond the limit
of the physical main memory. A bounds violation interrupt
is caused by attempting to address locations outside of a
specified program domain or data domain; refer to "Bounds
Checking" in Section III. A non-responding module inter-
rupt occurs when the CPU requests information from some
other module and that information is not received in a
reasonable length of time (a preset time in the order of 4.6
milliseconds) .

PARITY ERROR. Segment 12 processes three different
parity errors: data parity error, memory address parity
error, and system parity error. These are indicated by the
parameters 10000, 20000, and 40000 (octal) respectively.
In general, parity checking is done by the receiving module;
there are exceptions, however. Also, only those parity
errors that result in an interrupt will be discussed here.
(Parity checking is also performed on transmissions
between an lOP or Selector Channel and memory; any
errors, however, result in a transfer error signal to the
affected device controller, rather than a CPU interrupt.) A
data parity error interrupt is caused only by the CPU on
receiving a data word from memory that has erroneous
parity. (Parity should be odd.) A memory address parity
error interrupt is caused only by a memory module on
receiving an address word from the CPU that has erroneous
parity. (Memory will ignore any read or write request
accompanying the erroneous address word.) A system
parity error interrupt is caused by either the CPU or a
memory module on receiving a combination of FROM bits,
TO bits, and MOP bits (total of nine bits, including parity)
that produces erroneous parity.

MISCELLANEOUS ERRORS. Three different kinds of
errors are processed by segment 13. These are: stack under-
flow, CST violation, and STT violation, indicated by
parameter values 1, 2, and 3 respectively. A stack under-
flow interrupt is caused by an attempt to move SM below
DB. This might result from deleting too much information
from the stack, or from using the SETR or SUBS instruc-
tions incorrectly. (See definition under "Bounds Checking"
in Section III.) A CST (Code Segment Table) violation
interrupt is caused by calling a non-existent code segment,
or by attempting to exit to a non-existent code segment.
An STT (Segment Transfer Table) violation interrupt is
caused by attempting to call a procedure in an external seg-
ment or the local segment through a non-existent STT
entry, or if the STT entry in a called external segment is
not a local label.

CODE SEGMENT ABSENCE. An interrupt to segment 14
is generated whenever an attempt is made to call or return
to a segment that is not present in main memory. The
PCAL and EXIT instructions perform the appropriate tests,
by checking bit 0 of the first word in the CST entry for the
external segment. Segment 14 invokes the memory manage-
ment part of MPE/3000, which is then responsible for

Interrupt System

making the absent segment present in main memory. For
PCAL, the parameter passed to the segment 14 routine is
the external program label, so that the routine will know
which segment to make present from the disc. For EXIT,
the parameter is the value N, since the EXIT instruction is
not fully executed when the interrupt to segment 14
occurs; thus segment 14 must preserve the N value so that S
can be pointed at the correct location when execution
resumes. (The absence segment is not invoked by inter-
rupts; the absence of an interrupt segment will cause a
system halt if that interrupt occurs. The halt also occurs if
any segment with a CST number less than octal 20 is
absent.)

STT ENTRY UNCALLABLE. An interrupt to segment 15
is generated by a PCAL instruction if attempting to call a
segment which has been declared to be uncallable. A seg-
ment is uncallable if bit 1 of the STTL word in its PL loca-
tion is a logic "I".

TRACE. An interrupt to segment 16 is generated by a
PCAL instruction when calling an external segment whose
CST entry has the Trace bit set ("1"). The interrupt is also
generated by an EXIT instruction when exiting via a stack
marker in which the Trace bit (bit 0 of the return-P word)
is set. Thus the Trace segment can collect information on
calls outside of the local segment, such as the time taken to
execute code segments, etc. (Note: trace interrupts do not
occur for interrupts or on exiting from external interrupt
routines.)

TRAPS. Segment 17 handles the processing of seven traps.
Five of these are user traps, which are caused by arithmetic
errors, and two are system traps, which are caused by
attempted illegal use of privileged mode or unimplemented
instructions. Each trap is identified by a parameter which is
placed on the stack by the Interrupt Handler; see table 7-1.
The five user traps are controlled by the "User Traps
Enable/Disable" bit (bit 2) in the Status register; see
figure 3-6 in Section III. If the traps are disabled by this bit
when an error occurs, the Overflow bit in Status will be set
in lieu of the trap; no explicit error identification is given.
If, however, the traps are enabled, the interrupt to segment
17 will occur.

The two system traps, on the other hand, are always
active - i.e., not subject to the enable/disable bit in the
Status register. The mode violation trap includes illegal use
of privileged instructions, user exit to privileged mode, and
any alteration of the "External Interrupts Enable/Disable"
bit (bit 1) of the Status word (checked during EXIT). The
unimplemented instruction trap is incurred by any attempt
to execute an instruction for which there is no valid code in
the machine instruction set.

SEQUENCE FOR ICS TYPE

Figure 7-8 illustrates the sequence of operations for
processing ICS type internal interrupts. The figure shows
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how control is transferred from the point of interrupt in
the user's code to the start of the interrupt code segment,
and how the data domain is switched from the user's stack
to the Interrupt Control Stack.

The initial assumption is that the current process is exe-
cuting at point P in the user's code when an interrupt
condition occurs. The CPU then passes control to the Inter-
rupt Handler. The sequence is then as follows:

G) The Interrupt Handler pushes into memory any TOS
elements that are in CPU registers. This takes a maxi-
mum of four memory cycles if all four registers are
full.

@ Next, a normal four-word stack marker is pushed onto
the user's stack, plus the value of DB that is currently
in use.

® The QI value is fetched from location 5 and is loaded
into the Q-register. This points Q at the delta Q
location of the permanent Dispatcher marker.

o The ZI value is fetched from location 6 and is loaded
into the Z-register. This establishes the stack limit for
the Interrupt Control Stack.

® The user's current value of S is stored into location
Q-5 on the ICS. (Up to this point the operation has
been identical to the sequence of operations for ex-
ternal interrupts, described earlier; the actions now
begin to differ.)

® A parameter, if any, is now pushed onto the ICS. Only
the Module and Console interrupts use a parameter.

(}) External interrupts are disabled by clearing ("0") bit 1
of the Status register.

® The Interrupt Handler next fetches the Code Segment
Table Pointer from fixed memory location O. Using
this value, indexed by two times the code segment
number of the specific "interrupt, the Interrupt
Handler then fetches the relevant CST entry.

® The absolute address in the second word of the
fetched CST entry is loaded into the P- and PB-
registers. (Unlike external interrupts, which set PB
to 0, an internal interrupt provides a value for PB and
starts P at that location - as does PCAL.)

@ Using the code segment length value in the first word
of the CST entry, PL is established relative to PB.

@ The mode bit in the CST entry (bit 1 of the first
word) is transferred into the mode bit (bit 0) of the
Status register. This determines the mode of execution
for the segment, privileged mode or user mode. Also,
external interrupts and user traps are disabled.

@ The code segment number is loaded into the Status
register to indicate which segment is executing.

Interrupt System

@ Lastly, the CPU fetches the instruction at P and begins
executing the interrupt code segment.

Additional ICS type internal interrupts could occur before
exiting from the interrupt code segment, and they would be
stacked on the ICS in a manner similar to that shown in
figure 7-6. If there are any external interrupts, either sus-
pended on the ICS or waiting for priority, they will be
processed after all internal interrupts have been processed.
(However, external interrupts can interrupt internal inter-
rupt routines if the software re-enables the external inter-
rupt system.) After all internal and external interrupts using
the ICS have been processed, an exit to the Dispatcher will
occur, as described for steps 17 and 18 of figure 7-6.

SEGUENCE FOR NON-ICS TYPE

Figure 7-9 illustrates the processing of non-ICS type inter-
nal interrupts. As shown in the figure, the Interrupt Control
Stack is not used; the interrupt code segment will operate
on the user's stack.

Assume that the user is executing at point P when an inter-
rupt condition occurs. The CPU passes control to the
Interrupt Handler, and the sequence is then as follows:

G) Any TOS elements that are in CPU registers are
pushed into memory.

® A normal four-word stack marker is pushed onto the
user's stack.

® The parameter is pushed onto the stack.

o External interrupts are disabled by clearing ("0") bit 1
of the Status register.

® The Interrupt Handler next fetches the Code Segment
Table Pointer from fixed memory location O. Using
this value, indexed by two times the code segment
number of the specific interrupt, the Interrupt
Handler then fetches the relevant CST entry.

® The absolute address in the second word of the
fetched CST entry is loaded into the P- and PB-
registers.

(j) Using the code segment length value in the first word
of the CST entry, PL is established relative to PE.

® The mode bit in the CST entry (bit 1 of the first
word) is transferred into the mode bit (bit 0) of the
Status register. This determines the mode of execution
for the segment, privileged mode or user mode.

® The code segment number is loaded into the Status
register to indicate which segment is executing.
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@ The CPU fetches the instruction at P and begins exe-
cuting the interrupt code segment.

If an ICS type internal interrupt should interrupt the
processing of a non-ICS type, control will not revert to the
non-ICS routine until there is an exit to the Dispatcher
from the ICS. The user's process, in that case, will have to
contend with other processes for priority.

INTERRUPT HANDLER

The Interrupt Handler is a microprogram (actually a set of
microprograms) permanently stored within a read-only
memory in the CPU. The CPU periodically checks for the
existence of a waiting interrupt condition, which is stored
in one of several bit positions in a dedicated CPU register
(CPX1 or CPX2), and then transfers control to the Inter-
rupt Handler.

The purpose of the Interrupt Handler is to save the inter-
rupted environment and transfer control to the interrupt
routine in software. The suspended environment is saved in
a format that is ready to resume execution.

The descriptions which follow are essentially a summary of
the preceding portion of this section. A flowchart will be
used as a basis for discussion, with the assumption that the
reader understands the physical operations that have been
previously described.

Figures 7-10 and 7-11 illustrate the operations performed
by the Interrupt Handler. Generally, the sequence begins
with the START block at the top left comer and ends with
the EXECUTE block at the bottom right comer. There are
exceptions for cold load, power on (if automatic restart is
disabled), the "run" interrupt, halt mode interrupts (mostly
single-cycle operations), parity errors or module errors
while executing the respective parity error or module error
routines, and disabled traps.

As shown proceeding down the left side of figure 7-10 (A
through F), a series of tests is made to identify the basic
type of error. Sub-tests G through K provide further identi-
fication. (Note that tests for Absence, Trace, and STT
Entry Uncallable interrupts are not included, since the
EXIT and PCAL microprograms handle those three
interrupts.) The following descriptions are given in the
sequence of basic tests, A through F.

Interrupt System

ICS TYPE

If the waiting interrupt is determined to be of the ICS
type (A), an additional test (G) is made to see if it is a
Power-On interrupt. If not, skip the remainder of this
paragraph. If so, a further check is made to see if auto-
restart is enabled. If not, the microprogram jumps to the
halt loop. If auto-restart is enabled, the data segment regis-
ters are set up for operation on the ICS (block 1). That is,
Q is set to QI, Z to ZI, and S to the content of QI-5 (where
S was saved by the power fail interrupt). The DB- and DL-
registers are initially cleared. Many of these register settings
are largely arbitrary, simply to provide standardized initial
conditions for the Power On routine. Once this is done, the
operation proceeds to the "Transfer Control" sequence
(refer to that heading).

Assuming that the interrupt is not a Power-On, the se-
quence continues as follows (referring to blocks 2, 3, 4,
and 5). First (block 2), a standard four-word stack marker
is pushed onto the current stack. Next (block 3), the cur-
rent DB value is pushed onto the stack. This is followed by
a test to see if the interrupt occurred while operating on the
ICS.1f not, the user's value of S is saved in location QI-5 of
the ICS (block 4), and the operation proceeds to block 5; if
so, block 4 is bypassed and an additional test is made to see
if the interrupt occurred while executing in the Dispatcher.
If so, the Dispatcher is aborted by establishing the ICS
again (Q = QI, Z = ZI, and S = QI + 1), as set by block 5.
Otherwise block 5 is bypassed, since the registers are
already set for ICS operation. In any case, the operation
now proceeds to the "Transfer Control" sequence (refer to
that heading).

MISCelLANEOUS ERROR

If the waiting interrupt is determined to be a miscellaneous
error (B), the only operation to occur before the "Transfer
Control" sequence is to push a standard four-word stack
marker onto the current stack (block 6). Miscellaneous
errors include stack underflow, CST violation and STT
violation.

TRAPS

If the waiting interrupt is the result of a trap (C), it is tested
to see if it is an arithmetic trap (H). If not, (i.e., a system
trap), the remainder of this paragraph is skipped, since
system traps are not subject to the enable/disable bit. For
arithmetic traps, the state of the enable/disable bit in the
Status register is checked. If traps are enabled, the re-
mainder of this paragraph is skipped. If disabled, the Over-
flow bit in Status is set (block 7), and the next instruction
is fetched and executed; no further interrupt handling
operations occur.

The next action is to push a standard four-word stack
marker onto the current stack (block 6). Following this, the
"Transfer Control" sequence begins.
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MODULE ERROR

If the waiting interrupt is a module error (D), a test is made
to see if the error occurred while executing in the Module
Error segment. If not, the remainder of this paragraph is
skipped. If the error did occur while executing in the
Module Error segment, the error will halt the computer. All
run-mode interrupts are disabled (block 8), meaning that
the CPU will respond only to those interrupts caused by
pressing operator panel switches. The Halt flip-flop is set
and the SYSTEM HALT light on the panel is lit (block 9).
The CPU then enters the halt loop.

If the error did not occur while in the Module Error
segment, a standard four-word stack marker is pushed onto
the current stack (block 6), and the operation proceeds to
the "Transfer Control" sequence.

PARITY ERROR

If the waiting interrupt is a parity error (E), a test is made
to see if the error occurred while executing in the Parity
Error segment. If not, the remainder of this paragraph is
skipped. If so, the error will halt the computer. All run-
mode interrupts are disabled (block 8), the Halt flip-flop is
set, and the SYSTEM HALT light is lit (block 9). The CPU
then enters the halt loop.

If the error did not occur while in the Parity Error segment,
a standard four-word stack marker is pushed onto the cur-
rent stack (block 6), and the operation proceeds to the
"Transfer Control" sequence.

TRANSFER CONTROL

The "Transfer Control" sequence completes most of the
operations described above. Basically, this sequence simply
transfers control to the appropriate interrupt routine
software.

The first action is to test whether any parameter is to be
passed to the routine. If so, the appropriate parameter (see
table 7-1) is pushed onto the current stack (block 10).
(Depending on how this sequence was entered, the current
stack is either the ICS or a user stack.) If no parameter is
required, block 10 is bypassed.

Next, all external interrupts are disabled while the code seg-
ment registers are being set up (block 11). In the case of
internal interrupts, the external interrupts will remain
disabled on completion of this sequence; the interrupt
routine software will eventually re-enable the external
interrupts.

Next a test is made to see if the interrupt is an external
interrupt (K). If not, the remainder of this paragraph is
skipped. For external interrupts (block 12), P is set to 0, PL
to 216 -1, and P to the PI value given in the DRT entry for
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the interrupting device. Also DB is set to the DBI value.
Next (block 13), the mode bit in the Status register is set to
privileged mode and external interrupts are re-enabled, The
sequence for external interrupts skips the following
paragraph.

For internal interrupts (block 14), PB and PL are set from
the values given in the CST entry for the appropriate inter-
rupt code segment; P is set equal to PB. Next (block 15),
the Reference bit in the CST entry is set if it has not
already been set. The Status register is updated (block 16)
by setting the mode bit to the same state as the mode bit in
the CST entry, and loading the segment number of the
interrupt code segment into bit positions 8 through 15.

Finally (block 17), the instruction in the location pointed
to by P is fetched, and execution of the software routine
begins.

RUN/LOAD/HALT

If the interrupt is none of the run-mode interrupts men-
tioned above, it is a halt-mode interrupt - i.e., one caused
by pressing a switch on the operator panel. The first check
(F) tests if the RUN pushbutton was pressed. If so, the CPU
fetches the instruction in the location specified by the cur-
rent address in the P-register (block 18), and begins
execution.

If the interrupt is not due to the RUN switch, the next
check (I) tests if the COLD LOAD pushbutton was pressed.
If not, the remainder of this paragraph is skipped. The cold
load sequence is represented by blocks 19 through 23. The
first action (block 19) is to read the manually-set content
of the Switch register; this will consist of an eight-bit device
number and an eight-bit control byte. Next (block 20), a
five-word I/O program is loaded into the memory locations
beginning at the DRT locations for the input device. (This
is an arbitrary starting point for beginning the bootstrap
loading operation; the DRT locations will be overlaid with
correct DRT information at a later time by the loading
software.) Next (block 21), external interrupts are enabled
and an SIO command is issued to the input device. The
device controller then begins executing the five word I/O
program, which includes a command to read 32 words com-
prising a bootstrap loader (block 22). On completion of the
five-word program, the device controller continues exe-
cuting into the 32-word program, while the CPU waits for
an interrupt from the device. One of the commands in the
I/O program will be an interrupt command. This will cause
the device controller to generate an external interrupt, and
the sequence then continues to block 23. Block 23 ini-
tializes the data segment registers to operate on the ICS
(Q = QI, Z = ZI, S = QI + 1) and sets P to the content of
location 1. Location 1 will by this time have a cold-load
address for P, and locations 2 and 3 will be used during the
cold load operation; all three of these locations will later be
overlaid with correct system information as indicated in an
earlier section (table 4-1). The CPU now goes into the halt
loop and waits for RUN to be pressed.
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If the interrupt was not due to RUN or COLD LOAD being
pressed, the Interrupt Handler checks what other halt-mode
interrupt occurred. Examples are: single instruction switch,
load register switch, display memory switch, etc. The
appropriate operation is performed (block 24), and the
CPU goes into the halt loop. The halt loop is also entered if

Interrupt System

no cause is found.

The halt loop consists of displaying the registers (block 25),
and checking for any interrupt to occur. When an interrupt
does occur, control is transferred to the start of the Inter-
rupt Handler.

7·21
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FUNCTIONAL OPERATION 1m
This section describes the logic operation of the system
hardware. The complexity of the hardware precludes any
detailed discussion of logic cards in this reference manual.
Instead, the descriptions given here are highly simplified,
based mostly on block diagrams. If further details are
required, the reader must refer to the maintenance
documentation.

Brief descriptions of the following units are given:

a. the bus system
b. the Central Processor Unit (CPU)
c. the Module Control Unit (MCU)
d. a typical memory module
e. the Input/Output Processor (IOP)
f. the Multiplexer Channel
g. the Selector Channel

In addition, sequences of operations for CPU transfers to
and from memory are given, as well as I/O transfers by way
of both the Multiplexer Channel and the Selector Channel.

As much as possible, correct nomenclature has been
applied. A list of mnemonics and abbreviations used in this
section is given in table 8-1, at the end of this section.

BUS SYSTEM

The bus system is a network of data and control lines which
are necessary to effect the transfer of data between
modules and between I/O devices and memory. Figures 8-1
and 8-2 show, respectively, the electrical and physical
configuration of the system buses. Figure 8-1 represents a
four-module system, consisting of a CPU/IOP module, two
primary memory modules, and a high-speed channel
module. The I/O system includes two Multiplexer Channels,
although there may be any practical number; each Multi-
plexer Channel can accommodate up to 16 device control-
lers. The Port Controller is shown with two Selector Chan-
nels, each of which can accommodate up to eight device
controllers. There may be additional Port Controllers, each
of which will be assigned a module number.

CENTRAL DATA BUS. All communications and transfers
of data between modules occur by way of the central data
bus. This bus consists of a 50-conductor flat cable which
connects together each Module Control Unit (MCU) and
each Port Controller in the system. See both figures 8-1
and 8-2. (Figure 8-2 does not illustrate the central data bus
terminator cards, which are attached to each end of the
bus.)

IOP BUS. The I/O Processor (IOP) is connected to every
device controller in the system by the fOP bus. As ex-
plained later, Multiplexer Channels are also connected to
this bus. The IOP bus provides the means for the IOP (in
one direction) to send control signals and control words to
any device controller and (in the reverse direction) to
accept interrupts from the device controllers. For multi-
plexed SIO devices, all data transmissions also occur via the
lOP bus. For high-speed devices on a selector channel, data
transmissions occur via the lOP bus only for the direct I/O
instructions (RIO, WIO, CIO, and TIO).

SELECTOR CHANNEL BUS. The selector channel bus
(one per Selector Channel) provides the communication
path for a Selector Channel to select one of up to eight
devices for transmission. Data transmissions on the channel
bus, occurring as a result of an SIO instruction, are by
block transfer (data burst). Only one device on any channel
can be selected at a time, and it will monopolize the
channel until the device's I/O program is finished. The Port
Controller, however, can service all four channels simultane-
ously, on a word-by-word basis.

MULTIPLEXER CHANNEL BUS. With a few minor differ-
ences in signal nomenclatures, the multiplexer channel bus
is virtually identical to the selector channel bus. This allows
certain device controllers, such as high-speed discs, to be
connected interchangeably to either bus. The difference is
that data transmissions are under control of the Multiplexer
Channel instead of a Selector Channel. All data trans-
missions, in this case, are via the lOP bus and are multi-
plexed among the devices on a word-by-word basis. (The
equivalent data lines on the channel bus are used as service
request lines on the multiplexer channel bus.)

POWER BUS. The power bus, unlike the flat cable signal
buses discussed above, is a rigid printed circuit board.
Terminal strips on the right side of each board (in fig-
ure 8-2) accept the power wires from the power supply,
which is mounted to the rear of the cabinet. However, some
I/O bus lines and the system clock are also routed along the
power bus, as indicated by the small flat cables shown
attached to the power bus in the figure.

8-1
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Functional Operation

MULTIPLEXER CHANNEL BUS 2

Device

SELECTOR CHANNEL BUS 1

SELECTOR CHANNEL BUS 2

Figure 8-1. The Bus System

CENTRAL PROCESSOR UNIT

The CPU portion of the CPU/IOP module logically consists
of three sections, as shown in figure 8-3. The Instruction
Decoder receives an instruction word from memory and
translates it into a microprogram starting address; the
microprogram is then read out of ROM (read-only memory)
and is decoded into a set sequence of control signals. The
Processor Registers include 20 flip-flop registers that can be
loaded from the U-bus (i.e., output of Arithmetic Logic)

8-2

CENTRALDATA
BUS

Memory M "1---.•.•o C •...•
U

Memory M "1---.1 C •...•
U

Selector
Channel

Selector
Channel

Central
Processor

Unit

I/O
Processor

M
C 14---,~.
U

M
C
U

and read onto the R-bus and/or S-bus (inputs to Arithmetic
Logic). The Arithmetic Logic basically executes various
functions (add, subtract, etc.) on the R- and S-bus inputs,
with or without a shift, and outputs the result to either the
CPU Output Register (for transmission out of the module)
or the U-bus (for storage in one of the internal registers).

CPU elements identified in figure 8-3 are briefly described
in the following paragraphs. (Figure 8-4, shown facing
figure 8-3 in order to show MCU interconnections, will be
discussed later.)
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CPU/IOP Module

Memory Module {

Memory Module {

Port Controller ---+

Selector Channel {

High-Speed Device Controller {

High-Speed Device Controller {

MUltiplexer Channel ---+

D,,;~ Controllers {

INSTRUCTION DECODER

Functional Operation

Device
Cable

o

CENTRAL
DAT.A _
BUS

o

i
POWER
BUS

•••

tJ-
'21-

MUL TIPLEXER
CHANNEL

BUS

SELECTOR
CHANNEL

BUS

Figure 8-2. System Buses, Rear View

rently being executed. It is loaded from the Next Instruc-
tion Register by a NEXT signal from the microprogram.
The reason for having two instruction registers is so that
one instruction can be executing while another is being
fetched from memory.

NEXT INSTRUCTION REGISTER. The Next Instruction
Register is loaded with an instruction from memory by a
procedure which is described under the heading, Central
Data Bus Transmissions.

CURRENT INSTRUCTION REGISTER. The Current
Instruction Register contains the instruction that is cur-

LOOK-UP TABLE. The Look-Up Table, together with a
preliminary address generator, provides two stages of
decoding to produce a microprogram starting address from
the instruction bits in the Current Instruction Register.

8-3
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Functional Operation
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Figure 8-3. Central Processor Unit
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ROM ADDRESS REGISTER. The ROM Address Register
(RAR) supplies the address of each microprogram word to
the Read-Only Memory. It is given a starting address from
the Look-Up Table and is thereafter automatically incre-
mented every 175 nanoseconds until the end of the micro-
program for that instruction is reached. However, during
the execution of a microprogram, the RAR contents may
be forced to some other address value, such as for a micro-
program jump or jump-to-subroutine. Although not shown
in figure 8-3, the ROM Address Register can be loaded from
the ROM Output Registers, the U-bus, and the Hardware
Maintenance Panel. When the microprogram does a jump-
to-subroutine, the current ROM address is saved in the Save
ROM Address Register; upon return from the subroutine,
the saved value is loaded back into the ROM Address
Register.

READ-ONLY MEMORY. The Read-Only Memory (ROM)
accepts 12-bit addresses from RAR and outputs the 32-bit
microinstruction words of a microprogram to the ROM
Output Registers. There is at least one microprogram in
ROM for each machine instruction. For example, instruc-
tions which affect the top-of-stack will first call a micro-
program routine to check that there are enough filled or
vacant top-of-stack registers to carry out the operation;

Functional Operation

then, after possibly one or more memory transfers to adjust
the stack, the microprogram for the instruction may begin.

ROM OUTPUT REGISTERS. There are two ROM Output
Registers (ROR), numbered 1 and 2. The 32-bit output
from ROM is loaded into ROR1 on each clock cycle (175
nanoseconds). On the next clock cycle, five of the seven
fields of the microinstruction word are transferred from
ROR1 to ROR2 (while ROR1 is receiving the next micro-
instruction word). Thus it takes two cycles to initially "fill
the pipeline", but thereafter ROR2 receives a new micro-
instruction word on each successive cycle. The reason for
having two ROM Output Registers is so that the Sand R
fields can be decoded in advance of the rest of the word.
Thus S- and R-bus selection will have occurred, and the
selected data will be ready and waiting at the S- and R-bus
Register outputs by the time the rest of the word is
decoded from ROR2.

ROM OUTPUT DECODERS. Each field of the ROM out-
put word is separately decoded. The S-bus field selects one
of 31 registers (or sets of lines) to be loaded into the S-bus
Register. (Only 22 are shown in figure 8-3.) The Store field
selects one of 22 registers (not all shown) in which to store
the U-bus data. In addition, the PUSH and central data bus

MCUD
17
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I 6 SEL - (Interrupt) -
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"- FROMTO CRL 666 J J--. •.. 3
2 0
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Figure 8-4. CPU Module Control Unit
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Functional Operation

request signals also come from this field. The Function field
specifies the function that the Arithmetic Logic Unit is to
perform on the two operands in the R- and S-bus Registers.
The Skip field determines what condition shall be tested for
a possible skip; if the condition is met (e.g., U-bus positive/
negative, odd/even, zero/non-zero, overflow set, etc.).
ROR2 is caused to execute a NOP (no operation), effec-
tively skipping one microinstruction word. Other signals,
such as NEXT, also come from the Skip field. The Shift
field specifies how the T-bus data will be shifted onto the
U-bus (right one, left one, straight through, etc.). The
Special field has many varied uses including the generation
of POP and memory opcode signals. The R-bus field selects
one of 15 processor registers (or the U-bus) for loading into
the R-bus Register.

PROCESSOR REGISTERS

There are 22 processor registers, as shown in figure 8-3.
These registers may be selectively loaded from the U-bus
(except the Operand register, which is loaded from the
central data bus, and the interrupt condition registers
CPX1 and CPX2), and selectively read into the R- and/or
S-bus Registers. Figure 8-3 groups together those registers
that are similarly read out. For example, the X-, Z-, PL-,
SPO, and SR-registers may be read out only to the R-bus
Register. TRO through TR3 and SP1 registers may be read
out to either the R- or S-bus Registers. The po, PB-, (etc.)
through OPND Registers may be read out only to the S-bus
Register.

The purposes of most of the processor registers are more
appropriately discussed elsewhere in this manual, and so
will not be discussed here. However, a few of these registers
are not accessible from outside the CPU, and so are shown
nowhere else except in figure 8-3. For example, the four
scratch pad registers, SPO, SP1, SP2, and SP3, are used only
by the ROM microprograms. These registers are available to
the microprograms for holding temporary values, such as to
contain the middle word during triple-word shifts (while
the R- and S-bus Registers contain the most and least
significant words, respectively).

The logic consisting of the namer, two mappers, the four
TR registers (TRO through TR3) and the SR-register, is
designated as the Top-of-stack Register Renamer, or simply
the renamer. This logic permits fast access to the top-of-
stack elements by renaming the registers when stack ele-
ments are added or deleted (rather than transferring data
from register to register). The ROM microprograms know
the top-of-stack elements (when in the CPU) only by the
names RA (top), RB, RC, and RD. The namer includes a
two-bit naming register to tell the mappers which of the
four Top-of-stack Registers (TRO through TR3) is "RA",
and "RB", etc. This two-bit naming register is decremented
each time a stack element is added (PUSH) and incre-
mented each time a stack element is deleted (POP). To keep
track of how many elements are in the TR registers, the
three-bit SR-register is incremented by PUSH and decre-

8-6

mented by POP, in step with the naming register. When the
SR-register count is zero, there are no elements in the TR
registers; this would tell a ROM microprogram not to look
for RA in the CPU, and that one or more memory fetches
may be required.

The pre-adder is used to gain a speed increase for instruc-
tions which use or perform computations on bits in the
Current Instruction Register. For example, when executing
indexed memory reference instructions, the proper dis-
placement field of the Current Instruction Register is pre-
added to the contents of the X-register. Thus the final
absolute address can be computed in only one cycle by
adding the output of the pre-adder to the contents of the
base register (P, DB, Q, or S).

ARITHMETIC lOGIC

The foregoing discussions have touched on about half of
the arithmetic logic blocks. The following paragraph sum-
marizes these blocks; this will be followed by descriptions
of the previously unmentioned blocks.

The R-bus and S-bus read selection circuits, under control
of the ROM R- and S-bus fields, read one of the processor
registers (or a set of bus lines) into the R-bus and S-bus
Registers. Then, under control of the ROM Function field,
the Arithmetic Logic Unit performs an arithmetic or logical
function on the R- and S-bus operands. And under control
of the Shift field, the result on the T-bus is transferred
either directly or shifted onto the U-bus.

CPU OUTPUT REGISTER. There are actually two CPU
Output Registers, though both are represented as a single
register for simplicity in figure 8-3. These registers are used
as buffers for sending information to memory. If the ROM
Store field specifies DATA, BUSH (Bus High), or BUSL
(Bus Low), the U-bus is loaded into the CPU Output
Register. If the ROM Skip field specifies NEXT (to fetch
next instruction), the P-register is loaded into the CPU
Output Register. When the transmission to memory occurs
(by a procedure described later under the heading, Central
Data Bus Transmissions), a SEL (Select) signal reads the
buffer contents out to the central data bus.

INTER LEAVER. The interleaver is a circuit which provides
mechanical switches for the user to select one of two
memory interleaving schemes. Memory interleaving causes
the memory transmissions for consecutive addresses to be
directed alternately between two memory modules or, for
four-way interleaving, rotationally among four memory
modules. This is illustrated in figure 8-5. Note that for
two-way interleaving, all even addresses are directed to one
module and all odd addresses to the other module. For
four-way interleaving, the two least significant bits of the
address are used for module selection.

The advantage of interleaving is that, if sequential addresses
are being accessed, it allows memory cycles to overlap; that
is, a second transmission to memory may be made while the
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TWO-WAY INTERLEAVING

BINARY ADDRESSES

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
OOOOOOOOOOOOiOOO
0000000000001001

FOUR-WAY INTERLEAVING

BINARY ADDRESSES

EvenAddresses

Odd Addresses

0000000000000000 A_d.:...dr....:.e....:.ss_es.:....:...En__d__i.;ng~in.....:O:..::0"..l

0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
0000000000001001
0000000000001010
0000000000001011

BIT EXCHANGES

Two 64K-byte(32K-word)Modules: 0-15

Memory
Module

o

Memory
Module

1

Memory
Module

o

Memory
Module

1

Memory
Module

2

Memory
Module

3

Four 32K-byte(16K-word)Modules: 0_14 and 1_15

Figure 8-5. Memory Interleaving
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Functional Operation

first is still going through its memory cycle in another
module. Logically, interleaving is accomplished by ex-
changing address bits as shown in the lower box of fig-
ure 8-5. In the CPU, the interchanging is done only to
obtain a module number; the address sent out on the
central data bus is unmodified. In the memory module, the
address word itself is altered by the specified bit exchange,
so that all memory locations can be filled. (Obviously, if a
module used only even-numbered addresses, only half of its
locations could be used.) An incidental effect of the bit
exchange is that addresses which were originally consecu-
tive will not be adjacent within the memory module; this is
of no consequence in the operation of the system.

MAPPER. The mapper (Le., memory mapper) examines the
three most significant bits of each address word from the
output of the interleaver, and outputs a module number on
the TO lines which corresponds to that address. Jumpers or
switches are used to configure the mapper appropriately for
the quantity and sizes of memory modules existent in the
system.

MODULE CONTROL UNIT

Each module gains access to the central data bus by way of
its Module Control Unit, or MCU. The Module Control Unit
in each module may be a dedicated card, distributed on
several cards, or located on a small part of one card.
However, they all perform essentially the same function,
and that is to establish the priority of transmissions on the
central data bus.

Figure 8-4 illustrates in simplified form the logic of the
CPU Module Control Unit. This MCU is representative, and
will be used as an example in the following discussions.

Since the purpose of the MCU is to effect bus trans-
missions, the logic is best described by following the
sequence of operations involved in different types of bus
transmissions. Refer to the next major heading, Central
Data Bus Transmissions.

CENTRAL DATA BUS
TRANSMISSIONS

The procedures discussed under this heading describe how
an instruction is fetched, how an operand is fetched and
stored, and how a module is given an operation code.
Figures 8-3 and 8-4 are used as references throughout these
procedures.

8-8

As mentioned before, the diagrams are simplified, and so
not all features are shown. For example, none of the error
checking logic is shown, nor is the gating that prevents
undesired simultaneous operations. Flip-flop resets are not
shown unless they are particularly significant, and clock
inputs are not shown at all. Functionally similar logic has
been combined in some cases, whereas in actual fact some
circuits are duplicated in the interest of speed.

TO FETCH NEXT INSTRUCTION

CPU TRANSMIT. The first step in fetching an instruction is
to send an address to memory and tell memory what to do
with that address (read contents and send back to CPU).
The following three paragraphs describe this step.

When a NEXT micro-order is decoded from the ROM Skip
field, a NEXT signal loads the contents of the P-register
(address of instruction to be fetched) into the CPU Output
Register. NEXT also transfers the Next Instruction Register
contents into the Current Instruction Register (CIR). The
CPU may proceed to execute the CIR contents while the
following operations are in progress.

The objective now is to refill the Next Instruction Register.
Assuming that the transmission may proceed, NEXT sets
the LREQ (Low Request) flip-flop in the MCU. (The differ-
ence between low request and high request is that low
request always checks to see if the destination module is
ready to receive a transmission; high request assumes that
the destination module is expecting the transmission, so
readiness is not checked.) By this time, the MCU Operation
Decoder has encoded the appropriate memory opcode
(MOP), which is now in the MOP register. The memory
opcode is a two-bit code which tells memory what to do
when it receives bus data. The four possible codes are NOP
(No Operation), CW (Clear/Write), RR (Read/Restore), and
RNW (Read/No Write). In this case the memory opcode is
RR. NEXT locks this code in the MOP register, and sets the
NIP (Next In Process) flip-flop. Setting NIP "opens" the
Next Instruction Register, so that it will load all central
data bus transmissions until told to stop (by resetting NIP,
later). NEXT also locks the TO register, which now con-
tains the destination module number from the mapper.

The LREQ signal reads the TO register contents into the
Ready Comparator, which checks the RDY (Ready) line
from the intended destination to see if that module is ready
to receive. If not, nothing further happens until the RDY
line is true. The output of the Ready Comparator (through
a set of changeable jumpers) pulls low on the Enable (ENB)
line for this module number. Since each module cannot
transmit unless all ENB lines of higher priority modules are
high, this pulling low on one ENB line disables all lower
priority modules (those with higher module numbers). Pro-
vided that no higher priority module has pulled low on its
ENB line to this module (through a second set of jumpers),
and provided the I/O Processor is not requesting the bus,
the output of the Ready Comparator now sets the Select
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Figure 8-6. A Typical Memory Module

(SEL) flip-flop. The SEL signal reads out the CPU Output
Register contents to the central data bus, as well as the TO
and FROM module numbers and the memory opcode. SEL
also pulls low on the destination module's RDY line for one
cycle, so that other modules will not assume the memory
module is ready before memory has a chance to pull the
RDY line low itself on the next cycle.

MEMORY RECEIVE AND TRANSMIT. The next step in
the process is for memory to receive the address from the
bus, read the contents of the addressed location, and trans-
mit the contents back to the CPU. The following two
paragraphs describe this step. See figure 8-6.

The TO Comparator identifies the code on the TO lines as
its own module number and sets a Start flip-flop. The Start
signal locks the address word from the bus into the address
register, and locks the FROM bits into the FROM register.
The Start signal also keeps the module's RDY line pulled
low (the CPU had pulled it low temporarily in the
preceding cycle), and together with the decoded memory
opcode begins the read/write memory cycle. The X-Y
drivers begin to read the contents of the addressed memory

location into the data register, via the sense amplifiers.
Meanwhile, after a fixed delay, the MCU begins the process
of requesting access to the bus by setting the HREQ flip-
flop. (Since memory transmits only to modules that are
expecting the transmission, only high requests are used.)
The HREQ signal pulls low its ENB line to lower priority
modules and, provided no higher priority module has pulled
low on its ENB to this module, sets the Select flip-flop.

By this time, the memory location contents are in the data
register, and the SEL signal reads the contents out to the
central data bus. SEL also reads out the wired FROM code
and the TO code (which is simply the saved FROM code,
since transmission is back to the CPU).

CPU RECEIVE. The last step in the process is for the CPU
to receive the instruction word, which is now on the central
data bus, and load it into the Next Instruction Register.
The following paragraph describes this step. Refer back to
figures 8-3 and 8-4.

8-9

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle



Functional Operation

The TO Comparator identifies the code on the TO lines as
its own module number, and gives a true output. Also, the
FROM Comparator identifies the transmission as the one it
was waiting for by comparing the saved TO register con-
tents with the FROM lines of the bus; it therefore also gives
a true output. (If the FROM code is not the expected one,
it is loaded into the FROM register, and the bus infor-
mation is processed as an interrupt from the identified
module.) The two true outputs together reset the NIP
flip-flop. The Next Instruction Register, which up until
now has been freely loading all bus transmissions into itself,
is now inhibited from further loading, since it now contains
the expected next instruction.

TO FETCH AN OPERANO

The procedure for fetching an operand from memory is
very similar to the procedure for fetching an instruction.
The main differences are that the initiating signals are
different, and the receiving register is the Operand (OPND)
Register rather than the Next Instruction Register. The
following descriptions are therefore somewhat abbreviated,
primarily giving the overall flow of information. Refer back
to the preceding descriptions if further logical details are
necessary.

CPU TRANSMIT. The process of sending an address to
memory begins when a BUSL (Bus Low) signal from the
ROM Store field loads the U-bus contents into the CPU
Output Register and sets the LREQ flip-flop. The MCU
Operation Decoder gives a memory opcode to the MOP
register and sets the OPINP (Operand in Process) flip-flop.
The OPND register now begins to load all bus transmissions.
The LREQ signal causes the Ready Comparator to check if
the destination module is ready and, if so, enters the
priority structure. When priority allows (ENB present), the
Select flip-flop is set, causing the address in the CPU Out-
put Register to be read out to the central data bus.

MEMORY RECEIVE AND TRANSMIT. The memory
module, after recognizing its TO code and setting the Start
flip-flop, locks the address from the bus into the address
register. The Start signal, together with the decoded
memory opcode, initiates the reading of the addressed
location into the data register. Meanwhile, the HREQ flip-
flop is set and priority is established. When ENB is present,
the Select flip-flop is set causing the operand, now in the
data register, to be read out to the central data bus. The
saved FROM code is used to identify the destination (TO)
as the CPU module.

CPU RECEIVE. The TO and FROM Comparators together
cause the OPINP flip-flop to reset, thus locking the operand
from the bus into the OPND register.

8-10

TO STORE AN OPERANO

Storing an operand in memory involves much the same
logic operations that were discussed in the preceding fetch
transmissions. The main difference here is that instead of
being a round trip, CPU to memory and then memory to
CPU, there are two consecutive transmissions from CPU to
memory. The first transmission is the address, the second is
the operand. The following paragraphs, again condensed to
illustrate the overall flow of information, describe these
transmissions.

CPU ADDRESS TRANSMIT. A BUSL signal from the
ROM Store field loads the U-bus contents into the CPU
Output Register and sets the LREQ flip-flop. The MCU
Operation Decoder gives a memory opcode to the MOP
register; in this case the opcode is Clear/Write rather than
Read/Restore as in the previous cases. (Neither NIP nor
OPINP flip-flops are set.) After checking if the destination
module is ready and ENB is present, the LREQ signal
causes the Select flip-flop to be set. This reads out the
address to the central data bus.

MEMORY RECEIVE. The memory module, after recog-
nizing its TO code and setting the Start flip-flop, locks the
address from the bus into the address register. The Start
signal, together with the decoded memory opcode, causes a
"clear" half-cycle. The Start flip-flop remains set, and the
FROM, MOP and address registers remain locked. Also the
RDY line remains low, so no other modules may send a
new address to this memory module.

CPU DATA TRANSMIT. The CPU, meanwhile, has put the
operand on the U-bus, and a DATA signal from the ROM
Store field loads it into the CPU Output Register. The
DATA signal also sets the HREQ flip-flop. (Destination
readiness does not need to be checked, since memory is
expecting a data transmission from this module.) After
priority checks, the HREQ signal sets the Select flip-flop,
which reads out the operand to the central data bus. (The
memory opcode is NOP, since memory is already holding
the appropriate opcode.)

MEMORY RECEIVE. In the memory module the TO Com-
parator recognizes its TO code and the FROM Comparator
verifies transmission from the correct module. The true
outputs from both of these comparators cause the operand
from the bus to be loaded into the data register, and
additionally cause the memory timing to proceed with the
second half of the clear/write memory cycle. This causes
the operand to be stored into the addressed location.

TO COMMAND A MODULE

The instruction set includes an instruction, CMD, which
permits privileged executive programs to issue commands
directly to a module (assuming the module is equipped to
handle such commands). When programmed, the CMD
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instruction takes a 16-bit word from the top of the stack
and sends it to a module whose module number (and
two-bit opcode) are given in another word in the stack. (See
CMD instruction definition.) The logic operations involved
in this type of transfer are described in the following
paragraph.

A BUSH signal from the ROM Store field loads the word
containing the opcode and intended module number into
the CPU Output Register. The TO code is the CPU's own
module number so that, after select occurs, the CPU trans-
mits to itself. The five effective bits from the CPU Output
Register are loaded by a CRL (Control) signal into the CMD
(Command) and CTO (Command TO) registers in the MCU.
The CPU, meanwhile, has read the top-of-stack word onto
the U-bus, and a BUSL signal from the ROM Store field
loads this word into the CPU Output Register. A CMD
signal from the MCU Operation Decoder enables the CMD
and CTO registers to be read out when select occurs, rather
than MOP and TO respectively. Thus when the Select
flip-flop is set, the 16-bit word in the CPU Output Register
is transmitted to the module specified by CTO, with the
CMD opcode on the MOP lines.

I/O SYSTEM

The remainder of this section deals with components of the
input/output system. Before proceeding with detailed
descriptions, an overall view of the I/O system will be
presented. First, an overall discussion of I/O priorities is
given, followed by a summary of data routes and a com-
parison of basic transfer modes. Figures 8-7, 8-8, and 8-9
are used as the bases of these discussions.

1/0 PRIORITIES

There are two types of priority to be considered in the I/O
system: interrupt priority and service priority. That is, the
ability of a device to interrupt the CPU is based on a
priority structure that is separate and distinct from the
priority structure that handles service requests.

Figure 8-7 partially illustrates the priority structure,
showing the use of "polls" to establish priority. (This figure
is a modified copy of figure 8-1.)

Functional Operation

The interrupt poll determines the priorities of all I/O inter-
rupts. As shown in figure 8-7, the interrupt poll originates
in the I/O Processor and is wired in series through every
device controller in the system. The proximity to the I/O
Processor on this line determines the interrupt priority of
each controller. The desired wiring sequence is dependent
on system configuration. Physically, the interrupt poll is a
twisted-pair wire (signal and ground) connected into and
out of each unit at INT POLL IN and INT POLL OUT
terminals. Functionally, the interrupt poll is an I/O Proces-
sor response to a received Interrupt Request (INTREQ line
in the IOP bus). The poll propagates through each non-
requesting unit and stops at the first requesting unit it
encounters. That unit will then return INTACK (Interrupt
Acknowledge) and its device number to the I/O Processor.
The I/O Processor accordingly generates an interrupt signal
to the CPU. When the CPU is ready to process the inter-
rupt, it will use the device number saved in the I/O Proces-
sor (Interrupt DEVNO register) to refer to the device.

Service priority, unlike the simple series-linked structure of
interrupt priority, is determined in two steps. For Multi-
plexer Channel devices, the first level determines the
priority among two or more Multiplexer Channels. The
second level determines the priority of each device con-
troller associated with that Multiplexer Channel. Figure 8-7
shows only the first-level determination of priority among
Multiplexer Channels by means of a data poll; the re-
maining priority determination is by logic which has not
been detailed in the figure. The data poll operates very
much like the interrupt poll. That is, when the I/O Proces-
sor receives a Service Request, it sends out a data poll. The
first requesting Multiplexer Channel encountered by the
poll stops propagation of the poll, and proceeds to specify
the kind of service required. Since priority is therefore
determined by proximity to the I/O Processor, the poll is
wired through each Multiplexer Channel in the desired
priority sequence.

The second-level priority determination for Multiplexer
Channel devices is by a service request number. Since each
Multiplexer Channel can handle 16 device controllers, there
are 16 service request numbers (0 through 15). Each device
controller associated with a given Multiplexer Channel is
uniquely wired by a jumper to connect to one of these 16
numbers. This, then, gives the device controller a specific
priority level. Service request number 0 is highest priority;
15 is lowest priority.

(The service request number has no association with the
device number. It is simply a convenient means by which a
Multiplexer Channel can communicate with and assign
priorities to its set of device controllers.)

For high-speed device controllers, the Port Controller deter-
mines the first level of priority. Selector Channel 1 has
highest priority and Selector Channel 4 has lowest priority.
The second-level determination is a simple preemptive
process: the first device to be given an SIO instruction, on a
particular channel, will have exclusive use of that channel
until its I/O program is finished. No further SIO instruc-
tions for devices connected to that channel can be honored
until that time.

8-11
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Functional Operation
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Channel

SELECTOR CHANNEL BUS 2
Selector
Channel

Figure 8-7. Interrupt Poll and Data Poll

I/O DATA ROUTES

Central
Processor

Unit

M
C
U

the stack in the CPU via the 1/0 Processor and lOP bus. The
information could be device status (for TIO or rejected
SIO, RIO, or WIO), control information (CIO), or data
(RIO or WIO). For SIO operation, data is transferred to and
from memory by way of the central data bus, 1/0 Proces-
sor, and lOP bus.

Figure 8-8 illustrates data transfer routes for both low-
speed and high-speed devices and for both direct I/O and
SIO type instructions. The ten blocks represent one of each
type of unit (one low-speed device controller, one Multi-
plexer Channel, one memory module, etc.), and correspond
to the ten simplified logic diagrams presented in this
section.

I/O
Processor

SELECTOR CHANNEL DEVICE. For direct 1/0 instruc-
tions, the data route is the same as for Multiplexer Channel
devices: to or from the top of the stack in the CPU via the
1/0 Processor and lOP bus. For SIO operation, data is trans-
ferred to and from memory by way of the central data bus,
Port Controller, Selector Channel, and channel bus.

MULTIPLEXER CHANNEL DEVICE. For direct 1/0 in-
structions, information is transferred to or from the top of
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Functional Operation

TRANSFER MODES

There are three basic modes of data transfer. One, direct
I/O, is relatively uncomplicated, consisting of the transfer
of a single word (per CPU instruction) between the CPU
and a device controller; the Multiplexer Channel and
Selector Channel are not involved. Direct I/O operation will
be described at the end of this section.

The other two transfer modes are SIO-type transfers. That
is, the CPU gives the I/O system a command to "start I/O"
for a particular device, and the I/O system proceeds to
execute an I/O program for that device. The program,
which resides in memory, controls the input and output of
data.

Specifically the two SIO modes are: moderate-speed trans-
fers via the Multiplexer Channel, and high-speed transfers
via the Selector Channel. Figure 8-8 illustrates the differ-
ence in data routes for these two modes; however, the
significant difference is in the sequencing of transfers for
multiple device controllers. The following paragraphs
describe the differences between a multiplexer and a
selector, with reference to figure 8-9.

MULTIPLEXER. A multiplexer transfers data from many
sources on an apparently simultaneous basis. Thus it is the
function of the Multiplexer Channel to perform one dis-
crete operation for one device controller (such as to trans-
fer one word to or from memory), and then check to see
which device controller has highest priority for the next
discrete operation.

Referring to figure 8-9, note that the Multiplexer Channel
includes a 16-cell solid-state memory. Each location in this
memory corresponds to one of the 16 device controllers
connected to the multiplexer channel bus, and at all times
it contains the information required to execute the next
operation for that device. Typically this would be the
current I/O program word. When a particular device con-
troller is selected for service, the stored word is read out to
a set of registers and the Multiplexer Channel proceeds to
execute the indicated operation. Then the information is
updated for the next anticipated operation and is stored
back in the memory cell.

The overall Multiplexer Channel operating sequence is as
follows. Each time a device controller requires a new I/O
program word, it causes the Multiplexer Channel to fetch
an address from the Device Reference Table (1) and loads it
into its solid-state memory location. (Some other operation
for another device could be interleaved after each of these
steps.) Then (2), the I/O program doubleword is fetched
and loaded into the same memory location. This I/O pro-
gram word is then read out (3), control signals are issued to
the device controller (4), and the updated operation

8-14

information is stored back into the memory cell (5). If the
device controller was commanded to transfer data, it issues
a service request when it is ready (6), causing another
read-out of the stored information (7) and a transfer of
data (8); updated operation information is re-stored (9).
Steps 6 through 9 are repeated for each word transferred.

SELECTOR. A selector transfers data from many sources in
a data block manner. That is, it locks onto one device
controller until I/O program for that device is completed.
Then a check is made to see which device controller has
highest priority for the next block transfer. Since only one
I/O program will be in progress as long as a particular device
is selected, the selector is designed to facilitate very high
speed transfers.

As shown in figure 8-9, the Selector Channel uses double-
buffering for both data and I/O program words. For data,
this permits device/channel transfers to overlap channel/
memory transfers. For I/O program words, this permits the
next program word to be fetched from memory while the
current word is active. Both of these features contribute to
the speed capability. In addition, the necessity to
repeatedly fetch a DRT entry for the address of the current
I/O program word (as is done by the Multiplexer Channel)
is eliminated by including a Program Counter in the
Selector Channel. The Program Counter is loaded with the
initial address contained in the DRT, but is thereafter
incremented (or altered for jumps) internally in the
Selector Channel. To provide software compatibility with
Multiplexer Channel transfers, the final value of the Pro-
gram Counter is automatically re-stored in the DRT at the
end of the program. Software cannot distinguish whether
the transfer occurred by way of the Multiplexer Channel or
the Selector Channel.

The overall Selector Channel operating sequence is as
follows. When the device controller is commanded by the
CPU to "start I/O", it causes the Selector Channel to fetch
the starting address of the I/O program from the Device
Reference Table (A). This address is used to fetch an I/O
program doubleword (B) and load it into either the active
control registers or, during order prefetch, into the
buffers (C). The Program Counter is incremented after each
fetch. Control signals are issued to the device controller
(D), and (E) if the command is a "read", the device con-
troller reads data into buffer A (or buffer B if A is full); if
the command is a "write", the device controller writes data
from buffer A (or buffer B if A is empty). Meanwhile (F),
the Selector Channel attempts to keep both buffers full for
output or both empty for input, by transmissions to or
from memory. At the end of the block transfer, the next I/O
program word is fetched (repeat back to step B). At the end
of the I/O program, the Selector Channel stores its Program
Counter contents into the Device Reference Table (G).
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Functional Operation

I/O PROCESSOR
Figure 8-10 is a simplified logic diagram of the I/O Proces-
sor portion of the CPU/IOP module. The signal lines at the
left of the diagram are the lOP bus. The lines at the top
connect to the CPU (see figure 8-3). Figure 8-11, shown
facing figure 8-10 in order to show MCU interconnections,
will be discussed later under the heading lOP Module Con-
trol Unit.

lOP LOGIC

Basically, the functions of the I/O Processor are to: 1)
execute direct I/O instructions and pass the results to the
CPU, and 2) transfer data and I/O program words between
memory and device controllers, so that the CPU may con-
tinue to execute other instructions without further inter-
vention. The operations performed by the I/O Processor

will be seen throughout the remainder of this section, when
actual transfer sequences are discussed. The following para-
graphs describe the blocks identified in figure 8-10,

lOP CONTROL REGISTER. This register receives the I/O
instruction information, which has been combined by the
CPU into a single word. The instruction code from the code
segment has been translated into a 3-bit command
(IOCMD). This can now be read out onto the IOCMD lines
of the lOP bus. The device number has been obtained from
the stack, and can now be read out on the DEVNO lines of
the lOP bus. The SO bit (Service Out) tells the addressed
device to accept and respond to the accompanying infor-
mation. (The device controller must return SI, Service In.)

lOP CONTROL. This block represents sequencing logic for
transfers between the device and memory, and between the
device and the CPU. Each of the lines shown entering or
leaving this block will be discussed later when transfer
sequences are described.
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Figure 8-10. I/O Processor
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INTERRUPT CONTROL. The interrupt control logic
accepts an Interrupt Request (INTREQ) from the device
controllers on the lOP bus, interrogates the device con-
trollers with INTPOLL to find the highest-priority request,
and, when Interrupt Acknowledge (INTACK) is received,
loads the device address into the Interrupt DEVNO register.
It then issues an interrupt (I/O Int) signal to the CPU.

INT DEVNO. The Interrupt DEVNO register holds the
device number of the interrupting device so that, upon
command, the CPU may read the contents onto its Sbus
for interrupt processing.

DATA OUTPUT REGISTER. There are actually two Data
Output Registers, one for memory data received from the
central data bus, and one for direct data received from the
Svbus of the CPU. For simplicity figure 8·10 combines the
two registers into one. Signals from lOP Control can either
read the contents out onto the lOP bus (OUT), or transfer

Functional Operation

the contents into the Memory Data Input register (for
re-storing a DRT entry).

DATA INPUT REGISTERS. There are two input registers.
The Memory Data Input register is used for sending data to
memory via the central data bus. This register is loaded
either from the lOP bus (In) or, for DRT entry re-storing,
from the Data Output Register. When doing a DRT store,
the Memory Data Input register is incremented by two
before the transfer is made. The second input register may
be used either as a Direct Data Input register or as a
Memory Address register (MAR). It is loaded from the lOP
bus. When direct 1/0 is being executed, the register con.
tents are read onto the CPU S-bus. When addressing mem-
ory, the register contents are read out to the central data
bus.

INTER LEAVER AND MAPPER. These circuits are the
same as described earlier for the CPU, under the Arithmetic

(See CPU MCU) CENTRAL
TO This Module DATABUS

10lNP

CPU HREO

ENS

lOP REO
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Figure 8-11. lOP Module Control Unit
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Functional Operation

Logic heading. The purpose of these circuits is to derive an
appropriate module number when transmitting to memory.
The memory module number for each transmission is
loaded into the IOTO register.

lOP MODULE CONTROL UNIT

Figure 8-11 illustrates the Module Control Unit for the 1/0
Processor. This MCU is a simplified form of the CPU MCU
discussed earlier. Both of these MCUs, in fact, are
physically located on the same printed-circuit card. They
operate basically in parallel, but not independently. Since
both MCUs share the same access to the central data bus, it
is necessary to resolve priority when both IOP and CPU
simultaneously attempt to use the bus.

Priority is resolved such that all lOP requests take prece-
dence over CPU requests, except that a CPU high request
takes precedence over an lOP low request. This exception
means simply that the CPU is in the middle of a transfer,
having sent an address to memory, and the high request is
an attempt to follow up by sending the data. The CPU low
request, on the other hand, represents the beginning of a
transfer (attempt to send an address) and so is of lesser
importance.

Note the logic in figures 8-11 and 8-4 which accomplishes
this priority resolution. In figure 8-11, the IOP REQ is
generated when either a low request (IOLRQ) or a high
request (IOHRQ) is about to set one of the Select flip-flops
(LO SEL or HI SEL). This signal, in figure 8-4, inhibits the
CPU's Select flip-flop from being set. Note, however, that a
CPU HREQ signal from the CPU can inhibit IOLRQ from
generating the IOP REQ signal.

The IOINP flip-flop provides a function similar to the NIP
and OPINP flip-flops in the CPU MCU. IOINP (I/O In
Process) is set when a request sets LO SEL, if the memory
opcode (MOP) is Read/Restore. When data is returned from
memory the FROM Comparator in figure 8-11 checks that
the transmission is from the same memory module that the
address was sent to (by comparing with the contents of the
TO register). Also, the TO Comparator in figure 8-4 checks
that the transmission is to "this module". Together, the
outputs of these two comparators generate an 10STRB (1/0
Strobe) signal which resets the IOINP flip-flop. This causes
the lOP to lock the Data Output Register, since it now
contains the correct information from the central data bus.
IOSTRB also tells lOP Control that the data is ready for
output via the lOP bus.

The Ready Comparator checks if a destination module is
ready, so that an I/O low request can set the Low Select
(LO SEL) flip-flop. Setting the LO SEL flip-flop causes the
contents of the Data Input Register, FROM, TO, and MOP
to be read out onto the central data bus for transmissions
to memory.

8-18

MULTIPLEXER CHANNEL

As explained earlier under the heading of Transfer Modes,
the purpose of the Multiplexer Channel is to execute the
1/0 programs of up to 16 devices on a multiplexed (word-
by-word) basis. All data transfers for these 16 devices are
also multiplexed on a word-by-word basis. A wired-in
service request number in each device controller determines
its priority in being serviced.

Figures 8-12 and 8-13 show, in simplified form, the logic
which accomplishes this purpose. Figure 8-13 is the Multi-
plexer Channel and figure 8-12 shows one device controller
connected to the multiplexer channel bus (top of diagram).
The lOP bus runs across the bottom of both diagrams and
connects to the 1/0 Processor at the right. (See figure 8-10.)

The following descriptions, which refer to these two fig-
ures, describe the major operations that were outlined
briefly under the Transfer Modes heading.

INITIALIZE

When the CPU encounters an SIO instruction the CPU,
under control of its SIO microprogram, outputs a command
word to the lOP Control Register. (See figure 8-10.) The
1/0 Processor, in turn, relays this information to the device
controller (figure 8-12) via the IOP bus. Note in figure 8-12
that the device number on the bus (DEVNO) is compared
with the internal wired device number. A true result,
together with the SO (Service Out) signal from the 1/0
Processor, enables the IOCMD (1/0 Command) to be
decoded. The IOCMD in this case is SIO which, when
decoded, sets the SR (Service Request) flip-flop.

The Service Request is sent via the multiplexer channel bus
to the Multiplexer Channel. (Since an SIO to a controller
temporarily inhibits service requests from all other control-
lers, the only controller requesting is the one receiving the
SIO.) The Priority Encoder then issues a 4-bit binary code
which corresponds to the Service Request line number. The
binary code is used as a "RAM Address", to enable one of
the 16 locations in the solid-state memory. The solid-state
memory consists of three separate "RAMs", or Random-
Access Memories, one each for the IOCW and lOAW parts
of the I/O program doubleword, and one to specify the
"state" (or next operation) - in this case a DRT fetch. The
IOCW is contained in the Order RAM (16 bits), the IOAW
is contained in the Address RAM (16 bits), and the state is
contained in the state RAM (4 bits). Each of the 16
addressable locations therefore contains 36 bits.

For the initialize operation, the State RAM location for the
requesting device is forced to the condition required for a
DRT fetch. Once this is done, the Multiplexer Channel
returns SI (Service In) to the I/O Processor.
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DRT FETCH

The Service Request received at the Multiplexer Channel
from the device controller causes HSREQ (the Multiplexer
Channel's service request) to be issued to the 1(0 Processor,
and also sets the SR Latch. Any of the 16 SR inputs can set
this latch and generate HSREQ; however, only the highest
priority request will be honored by the Priority Encoder.

When the 1(0 Processor receives HSREQ, it issues DATA·
POLL to all Multiplexer Channels. The highest priority
Multiplexer Channel stops the propagation of the poll
(since SR Latch is set), and its transfer logic is enabled.
First, the contents of the addressed RAM location are
loaded into the State, Address, and Order Registers. The
State bits tell the transfer logic to send out a command to
the device controller via the multiplexer channel bus, along
with the service request number signal (which is returned
on the same line used for Service Request) and CHANSO
(Channel Service Out). This command tells the device con-
troller to read out its device number to the lOP bus.

Note: The approximately 20 command and
response lines shown as part of the multi-
plexer channel bus have not been indi-
vidually identified, as they represent
greater detail than is required at this level
of discussion.

The device controller, for a DRT fetch, reads out its device
number (Shifted DEVNO) onto the IOD lines. Instead of
being read onto the eight least significant lines of the bus (8
through 15), the number is read onto lines 6 through 13,
which is left-shifted by two bits. This effectively multiplies
the number value by four, thus automatically providing the
correct address for that device's DRT entry. (Remember
that each device uses four locations in the DRT.)

Meanwhile, the Multiplexer Channel is returning an SI
(Service In) response to the 1(0 Processor, along with an
IOCMD (1(0 Command) which tells the 1(0 Processor to
accept the address existing on the IOD lines, and that a
DRT fetch from that address is required.

Now the I/O Processor proceeds to fetch the DRT entry, as
follows. (Reference can be made to figures 8-10 and 8-11.)
The 1(0 Processor issues IOLRQ to its MCU, with an
appropriate MOP to read memory. When Select occurs, the
address is transmitted to memory, and when memory
returns the DRT entry contents, 10STRB loads the word
into the Data Output register. The contents of this register
are then read out onto the IOD lines, and SO is issued.

On receiving SO, the Multiplexer Channel loads the DRT
word into the Address RAM, re-stores the Order register
contents into the Order RAM, and sets the State RAM to
the condition required for an 1(0 program word fetch.

The 1(0 Processor, meanwhile, transfers its copy of the
DRT word from the Data Output register to the Data Input
register, increments it by two, and sends it back to the DRT
in memory. (This is an anticipatory move, as the Address

Functional Operation

RAM presently contains the desired address for the next
operation; the incremented address in the DRT will not be
used until the next DRT fetch.)

At this point the DRT fetch operation is complete. Some
other operation for another device could be interleaved
here.

I/O PROGRAM WORD TRANSFERS

Each I/O program word consists of two words in memory,
the IOCW (1(0 Command Word) and the IOAW (1(0
Address Word). Therefore two memory transfers are
required. The first transfer is to fetch the 10CW. Depending
on the order that the 10CW contains, the second transfer
may be either a fetch or a store. The differences will be
pointed out in the following descriptions.

IOCW FETCH. The SR flip-flop in the device controller is
still set from the previous procedure, so HSREQ is still
present at the 1(0 Processor. The 1(0 Processor therefore
issues a new DATAPOLL. The SR Latch in the Multiplexer
Channel, which had reset on the trailing edge of the previ-
ous SO, has become set again, since the SR input was still
present at the next clock. Thus DATAPOLL is stopped
from further propagation, and the transfer logic is enabled
again.

Again, the contents of the addressed RAM location are
loaded into the State, Address, and Order registers. The
state specifies an 10CW fetch, so the transfer logic reads out
the contents of the Address Register and issues SI and
10CMD ("transfer from memory") to the 1(0 Processor.
The address now on the 10D lines is the word previously
fetched from the DRT, indicating the address of the I/O
program word.

The 1(0 Processor loads the address into the Memory
Address Register (MAR) and issues IOLRQ to its MCU,
with MOP (Read(Restore). The MCU, when priority allows,
transmits the address to memory. When memory returns
the IOCW, IOSTRB loads this word into the Data Output
Register in the 1(0 Processor. The 1(0 Processor then reads
the word out to the IOD lines and issues SO.

On receiving SO, the Multiplexer Channel loads the IOCW
into the Order RAM. (If the order is Control, the Multi-
plexer Channel issues a command through the multiplexer
channel bus, so that the device controller may also load the
10CW into its Control register.) The contents of the
Address Register, incremented by one, are re-stored in the
Address RAM, and the next state (fetch or store 10AW) is
stored in the State RAM.

At this point the 10CW fetch is complete. Some other
operation for another device could be interleaved here.
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Figure 8-12. Multiplexer Channel Device Controller
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Functional Operation

The next operation, transfer of the IOAW, begins the same
way for each of the orders. That is, SR to the Multiplexer
Channel causes HSREQ to the 110 Processor. The 110
Processor returns a DATAPOLL which enables the Multi-
plexer Channel to load the addressed RAM location into
the State, Address, and Order Registers. The action after
this point varies, depending on the order that the IOCW
contains. The following paragraphs describe each of the
various courses of action.

IOAW FETCH. The Read, Write, Jump, Control, and Inter-
rupt orders each cause an lOAW fetch. However, the action
taken on receiving the IDAW varies in each case, as will be
pointed out.

The IOAW fetch begins by reading out the contents of the
Address Register (incremented on the trailing edge of
DATAPOLL in thelOCW fetch procedure) to the IOD lines.
The Multiplexer Channel also issues SI and IOCMD
("transfer from memory") to the I/O Processor. The I/O
Processor, in turn, issues 10LRQ with MOP to its MCU to
request a memory read.

When memory returns the contents of the addressed loca-
tion, 10STRB loads it into the Data Output Register in the
110 Processor. The 110 Processor then reads out the con-
tents of this register to the IOD lines and issues SO. For
Read, Write and Jump orders, the Multiplexer Channel will
store the word (IOAW) into the Address RAM. For a
Control order, the Multiplexer Channel issues a command
via the multiplexer channel bus to tell the device controller
to load the word into its Control register. For an Interrupt
order, the fetched information is loaded into the Address
RAM but is disregarded.

In addition, for Read, Write, and conditional Jump, a
command is sent to the device controller to specify con-
ditions for the next action. For Read, the "in-transfer"
condition is set. For Write, the "out-transfer" condition is
set. For conditional jump, the controller is given the choice
of setting or not setting the "jump met" condition. If
"jump met" is true in the next DRT fetch sequence (or if
an unconditional jump was given), a store operation
(instead of fetch) will occur. That is, the Multiplexer
Channel will cause the contents of the Address Register to
be sent to the 110 Processor, which will increment the value
by two before storing in the DRT. (The Address RAM
already contains the correct jump address, so a DRT
"fetch" is not necessary.)

lOAW STORE. The Sense, End, and Return Residue orders
each cause an IDAW store operation. This operation begins
as the Multiplexer Channel reads the incremented contents
of the Address Register out to the 10D lines and issues SI
with a "transfer-to-memory" 10CMD.

The I/O Processor Loads this address into its Memory
Address Register (MAR) and issues IOLRQ to its MCU with
a "Clear/Write" MOP. The ensuing central data bus trans-
mission prepares memory for receiving data.
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Meanwhile, the I/O Processor has issued SO to the Multi-
plexer Channel to ask for data. Depending on the current
order, the Multiplexer Channel either gates the Order
Register contents out to the 10D lines (Return Residue
order) or issues a command to the device controller, telling
it to read its Status register contents out (Sense or End
orders). When either action occurs, SI is returned to the I/O
Processor, which causes the I/O Processor to load the 10D
information into its Memory Data Input register.

The I/O Processor then proceeds to transmit this infor-
mation to memory by issuing IOHRQ to its MCU. When the
transmission occurs, the appropriate information will be
stored into the IOAW location of the 110 program double-
word.

NEXT OPERATION. At this point (after the IOAW fetch
or store), the I/O program word transfer is complete. In
addition, all orders except Read and Write (i.e., Control,
Sense, Return Residue, End, Jump, and Interrupt) are fully
executed. The next operation for any of these orders
(except End, which terminates the program) is to return to
the DRT fetch operation.

For Read or Write, however, a data transfer is indicated.
Procedures for data transfers are next described.

DATA TRANSFERS

Data transfers are very similar to the 110 program word
transfers described above, in that the basic operation is to
fetch or store information using a memory address that has
been put in the Address RAM by a previous operation. (For
I/O program word transfers, the previous operation was the
DRT fetch; for data transfers, the previous operation is the
I/O program word transfer.)

The main difference is that the data transfer is device-
initiated. That is, when the device is ready for a transfer, it
so informs its device controller, which then issues a Service
Request to the Multiplexer Channel. Another difference is
that the word count and memory address contained in the
Order and Address Registers must be incremented during
each word transfer.

Each data transfer consists of two distinct steps: the
transfer of an address to memory, and the transfer of data
to or from that address. The first step is the same for either
output or input, and is described first. Output and input
data transfers are then separately described, followed by
the end-of-transfer operations.

ADDRESS TRANSFER. When the device sets the device
controller's SR flip-flop, the SR signal to the Multiplexer
Channel generates an HSREQ signal to the 110 Processor.
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The I/O Processor returns DATAPOLL, which enables the
Multiplexer Channel to begin its transfer. First, the
addressed RAM location is read out to the State, Address,
and Order Registers. Then the Address Register contents
are read out to the IOD lines. Also SI and an appropriate
10CMD ("transfer to memory" or "transfer from
memory") are sent to the I/O Processor.

The I/O Processor loads the address into its Memory
Address Register (MAR) and issues IOLRQ to its MCU,
with a "Read/Restore" or a "Clear/Write" MOP. When
priority allows, the MCU will transmit the address to
memory.

Meanwhile, the Multiplexer Channel resets the device con-
troller's SR flip-flop, via the multiplexer channel bus, and
increments the Address and Order Registers.

OUTPUT TRANSFER. When memory returns a data word,
IOSTRB loads the word into the Data Output Register in
the I/O Processor. The I/O Processor then reads the con-
tents of this register out to the 10D lines and issues SO. On
receiving SO, the Multiplexer Channel issues a command to
the device controller via the multiplexer channel bus, telling
the controller to load the word on the bus into the con-
troller's Data Out Buffer. The device controller returns SI
to the I/O Processor and proceeds to output the word to
the device.

Meanwhile, the Multiplexer Channel re-stores the contents
of the State, Address, and Order Registers into the RAM
location, and the output data transfer is complete. Some
other operation for another device could be interleaved
here. Otherwise, the entire data transfer procedure repeats.

INPUT TRANSFER. As the input data transfer procedure
begins, memory is expecting the data. The procedure begins
when the I/O Processor sends SO to the Multiplexer Chan-
nel to ask for data. On receiving SO, the Multiplexer Chan-
nel issues a command to the device controller via the
multiplexer channel bus, telling the device controller to
read the contents of its Data In Buffer out to the 10D lines.
When the controller does so, it also sends an SI response,
which causes the I/O Processor to load the data into its
Memory Data Input register. The I/O Processor then issues
IOHRQ to its MCU, with a "Clear/Write" MOP, thus
causing a data transmission to memory via the MCU bus.

Meanwhile, the Multiplexer Channel re-stores the contents
of the State, Address, and Order Registers into the RAM
location, and the input data transfer is complete. Some
other operation for another device could be interleaved
here. Otherwise, the entire data transfer procedure repeats.

END OF TRANSFER BY WORD COUNT. If the word
count rolls over while incrementing (during the address

Functional Operation

transfer sequence), then in the data transfer sequence the
Multiplexer Channel will issue a command which will reset
the "in-transfer" or "out-transfer" condition in the device
controller. Also an End-of-Transfer (EOT) signal accompa-
nies the last command from the Multiplexer Channel to
read or write. The controller logic will therefore not
transfer any more data to or from the device. It will,
however, issue one more SR.

In the Multiplexer Channel, the transfer logic sets the next
state to "DRT fetch", when re-storing the RAMs at the end
of the final data transfer. When the Multiplexer Channel
receives the SR from the device controller, and when
priority conditions are satisfied, a new DRT fetch pro-
cedure will begin. This advances the I/O program to the
next IOCW.

END OF TRANSFER BY DEVICE. On termination of a
transfer by a device, the controller will issue an SR to the
Multiplexer Channel. When the Multiplexer Channel
responds with the select code and CHANSO, the device
controller returns a "device end" signal. This causes the
Multiplexer Channel to initiate a DRT fetch, thus advancing
the I/O program to the next IOCW.

INTERRUPTS

Each device controller has its own device number and is
able to generate an interrupt on being given an Interrupt
command by the I/O Processor. The interrupt logic for a
device controller is shown in figure 8-12.

As explained earlier in this manual, each device number can
be assigned to an interrupt mask group. If the mask bit for
that group is not set, no interrupt from that device can
occur. Note in figure 8-12 that setting the Mask flip-flop
will allow the Interrupt Request flip-flop to set the Inter-
rupt Latch. The conditions that set the Mask flip-flop
are: 1) that the I/O Processor has issued an IOCMD of
SMASK (Set Mask); 2) that the mask word given on the
IOD lines includes a true bit corresponding to the single bit
that is wired to the Mask flip-flop input. Several device
controller cards may have their Mask flip-flop wired to
the same IOD line; thus these cards form one interrupt
mask group.

An interrupt is initiated either by a CPU instruction (SIN,
Set Interrupt), for any device number, or by an I/O pro-
gram order (device controllers only). A SIN instruction
causes the I/O Processor to issue an IOCMD of SIL (Set In-
terrupt Level) with the appropriate DEVNO, which sets the
Interrupt Request flip-flop. An Interrupt order causes the
Multiplexer Channel to issue "set interrupt" command to
the device controller via the multiplexer channel bus; the
controller logic then directly forces the Interrupt Request
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flip-flop to set. From either cause, setting the Interrupt
Request flip-flop will result in an INTREQ signal to the I/O
Processor and (only if the Mask flip-flop is set) the setting
of the Interrupt Latch.

When the I/O Processor receives INTREQ and is ready to
process the request, it returns INTPOLL to determine the
highest priority request. The first set latch encountered by
the poll stops further propagation of the poll, and is then
permitted to set the Interrupt Active (IACTIVE) flip-flop.
This causes the interrupt device number to be sent to the
I/O Processor via the DEVNO lines. An Interrupt Acknowl-
edge signal (INTACK) is also sent, telling the I/O Processor
to load DEVNO into its Interrupt DEVNO register.

When the I/O Processor has the device number, it issues an
I/O Int signal to the CPU, so that interrupt processing may
begin when the CPU is ready.

SELECTOR CHANNEL

As explained earlier under the heading of Transfer Modes, a
Selector Channel operates only one I/O program, and trans-
fers blocks of data, for only one device at a time.

However, since there may be several Selector Channels
operating in the system, it would be advantageous to first
study the Port Controller, to see how each channel gains
access to the central data bus. Then, following the Port
Controller discussion, the complete operating sequences for
a Selector Channel will be given.

PORT CONTROLLER

The Port Controller provides four ports to the central data
bus for I/O program and data transfers between Selector
Channels and memory. Figure 8-14 is a simplified logic
diagram of the Port Controller. Note that only one-fourth
of the logic is shown; the logic for the three remaining ports
is identical to the one shown. The signal and data lines on
the left of the diagram represent a portion of the port
controller bus. (The port controller bus contains four sets
of signal lines-one set for each channel-and one set of
data lines which is shared by all four channels.) The bold
line on the right is the central data bus. Connection points
for the other three sets of logic are marked by X's.

The Port Controller is assigned a module number, like other
system modules, by jumper wiring of the module number
and Enable (ENB) inputs and outputs. The module number
(2, 3, 4, 5, or 6) gives the Port Controller a specific trans-
mission priority among the other system modules.

8-24

A Selector Channel requiring transfer of a word to or from
memory presents the Port Controller with a request for a
Clear/Write or a Read/Restore operation, respectively,
along with the memory module number (0, 1, 2, or 3) to
which the address will be sent.

A Clear/Write operation consists of a Low Request (LREQ)
for an address transfer followed by a Low Select (LSEL) of
that address from the channel to memory, via the central
data bus; then a High Request (HREQ) for a data transfer
followed by a High Select (HSEL) of that data to memory,
via the central data bus. A Read/Restore operation consists
of a LREQ for an address transfer followed by a LSEL of
the address to the bus and memory; then a "wait" for a
return transfer of data to the Port Controller from the
module to which the address was sent. This return transfer
of data is indicated to the Selector Channel by the STRB
(Strobe) signal.

Priority is resolved among the four ports in the Port Con-
troller on the following basis: Low Requests, with the
desired destination module ready, are granted first to chan-
nell, next to channel 2, next to channel 3, and last to
channel 4. A High Request for any channel takes prece-
dence over all Low Requests. Since a High Request is set
immediately when a Low Request for a CW operation is
granted, there can be at most one High Request pending at
a time.

To maximize the transfer rate, each port can accept a
request from its channel before a previously requested
transfer has completed; i.e., after LSEL but before or
during HSEL or STRB. This second request cannot be
granted by a LSEL, however, until the first transfer is
complete.

The Clear/Write sequence is as follows. A CWREQ on the
request lines to the port sets the LREQ flip-flop and sets
the MOP flip-flop to the CW state. The TO lines from the
channel are clocked into TO Register A, and the content is
then compared with the Ready line (RDY) for that module.
When the destination is ready, and ENB is present, and the
port has priority, the LSEL and HREQ flip-flops are set.
LSEL clocks the content of TO Register A into TO Regis-
ter B, and gates the address from the channel to the central
data bus along with TO (= TO Reg A), FROM (= wired
module number), and MOP (= CW). LSEL also pulls low on
the destination's RDY line. Then, when ENB is present, the
HSEL flip-flop is set. HSEL gates data from the channel to
the central data bus, along with TO (= TO Reg B), FROM
(= wired module number), and MOP (= NOP).

The Read/Restore sequence is as follows. A RRREQ on the
request lines to the port sets the LREQ flip-flop and sets
the MOP flip-flop to the RR state. The TO lines from the
channel are clocked into TO Register A, and the content is
then compared with the RDY line for that module. When
the destination is ready, and ENB is present, and the port
has priority, the LSEL flip-flop is set. LSEL clocks the
content of TO Register A into TO Register B, and gates the
address from the channel to the central data bus along with
TO (= TO Reg A), FROM (= wired module number), and
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MOP (= RR). LSEL also sets the Wait flip-flop. Then, when
returning data is present on the bus, the TO (= This
Module) and FROM (= TO Reg B) comparisons match, and
a STRB signal is sent to the channel. This tells the channel
to accept the data on the port controller data (PCD) lines.

INITIATOR SE~UENCE

The following procedures describe how the Selector Chan-
nel's program counter is initialized, as the first step in
executing an I/O program for one device.

Refer to figures 8-15 and 8-16, which show simplified logic
diagrams of, respectively, a high-speed device controller and
a Selector Channel. The selector channel bus, which is
similar to the multiplexer channel bus in purpose, is shown
originating at the Selector Channel. It is routed to all
controllers on this channel, although only one is shown.
The selector channel bus differs from the multiplexer chan-
nel bus in that it uses 16 lines for transfer of control, status,
and data words between device controller and channel; the
corresponding lines on the multiplexer channel bus are used
as service request lines for up to 16 devices.

The IOP bus (not shown) connects to the device controller
as indicated at the top of figure 8-15. Except for the SI
signal, the Selector Channel has no connections to the lOP
bus. Physically, the SI line is routed to the Selector Chan-
nels by way of the power bus (see figure 8-2).

The initiator sequence begins when the CPU encounters an
SIO instruction. The CPU, under control of its SIO micro-
program, outputs a command word to the lOP Control
Register. (See figure 8-10.) This initial command is a TIO
(Test 1(0), the purpose of which is to see if there is already
an I/O program active on the channel. The I/O Processor
issues the TIO with SO and DEVNO on the lOP bus. The
device controller compares DEVNO with its internal wired
device number and a true comparison, with SO, causes the
controller to return SI to the 1(0 Processor with a 16-bit
status word on the lOP bus. The CPU microprogram
obtains this status word from the 1(0 Processor and checks
to see that bit 0, the "SIO OK" bit, is true. This bit will be
true if the device is ready and the channel is inactive.
Assuming that the SIO OK bit is true, the CPU micro-
program outputs an SIO command to the lOP Control
Register, and the I/O Processor issues the SIO command to
the controller.

Again, the DEVNO on the bus is compared with the
internal wired device number (see figure 8-15), and the true
result, with SO, enables the IOCMD (1(0 Command) to be
decoded. The 10CMD is now SIO which, when decoded,
issues a Request (REQ) signal to the channel control logic.
The channel then returns SI (Service In) to the 1(0 Proces-
sor as an acknowledgment response. From now on (except
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for processing an interrupt), the 1(0 Processor is not
involved. The data gating logic routes all data transmissions
to the DATA lines of the selector channel bus, rather than
the 10D lines of the lOP bus.

The REQ signal, sent to the Selector Channel via the
channel bus, is accompanied by a 16-bit word on the DATA
lines. This 16-bit word identifies the requesting device by
device number (eight bits).

When the Selector Channel receives REQ from the device
controller, it sets the control logic to "active". The device
address is then loaded into the DEVNO register. The
Selector Channel is now exclusively reserved for that
device. Furthermore, only this controller will respond to
CHANSO (Channel Service Out) from the Selector Channel.

The Selector Channel now reads out the device number
from the DEVNO register, and requests a memory transfer
by issuing a Read/Restore Request to the Port Controller.
The Port Controller checks if memory is ready and, when
ENB is present, sets LSEL. The LSEL signal is returned to
the Selector Channel, where it reads the device number
(shifted left by two bits to be the DRT entry address) onto
the PCD lines. LSEL also reads out the TO, FROM, and
MOP codes in the Port Controller, thus effecting an address
transmission to memory.

When memory returns the DRT contents, the Port Con-
troller issues STRB to the Selector Channel. Since the
channel control logic is expecting a DRT word, it loads the
bus data into the 1(0 Program Counter. The contents of the
I/O Program Counter will hereafter be used to address the
individual locations of the I/O program, and so no further
DRT fetches are necessary. Program execution will occur as
a result of "fetch" and "execute" sequences, next
described.

FETCH SEQUENCE

Fetching an 1(0 program doubleword requires two memory
fetches. Unlike the Multiplexer Channel, which examines
the IOCW to determine what to do about the lOAW (fetch
it, store into it, or gate it out to the device controller), the
two memory fetches always occur. The different operations
for the various types of I/O orders are accomplished in the
execute sequence.

The fetch sequence begins with the Selector Channel
reading out the contents of the I/O Program Counter, and
requesting a memory transfer (Read(Restore Request to
Port Controller). When the Port Controller has obtained
transmit priority, it returns LSEL, transmitting the I/O
Program Counter contents to memory as an address. (The
Counter is immediately incremented.)
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When memory returns the 10CW from the addressed
location, the Port Controller issues STRB to the Selector
Channel. The channel control logic, which is expecting the
IOCW, loads the word into the IOCW Active Register. Then
the I/O Program Counter is again read out with another
memory transfer request. The Port Controller transmits this
address to memory, and the I/O Program Counter is again
incremented. Then, when memory returns the lOAW from
the addressed location, the Selector Channel loads the word
into the lOAW Active Register, and at this point the fetch
sequence is complete.

The channel control logic can now examine the order. If
the order specified in the IOCW is Read or Write, and if
data chaining is also specified, a pre-fetch sequence is
enabled. This operation is the same as the fetch sequence
described in the preceding two paragraphs, except that the
returned data is loaded into the IOCW Buffer and lOAW
Buffer instead of the IOCW and lOAW Active Registers. An
additional condition for the pre-fetch sequence is that data
transfers take precedence; i.e., pre-fetch will occur only
when both Input Buffers A and B are empty (for Read) or
both Output Buffers A and B are full (for Write).

Then, when the Read or Write order finishes, due either to
word count rollover or to a "device end" condition (see
Read and Write execute sequences), the IOCW/IOAW
Buffers are read into the IOCW/IOAW Active Registers. The
data transfer can thus continue uninterrupted. If the new
IOCW specifies further data chaining, another pre-fetch is
initiated to refill the buffers.

EXECUTESEUUENCES
A separate description is given below for the execute
sequence of each of the eight I/O orders. In each case
except End (which terminates the I/O Program), operation
returns to the fetch sequence following the completion of
the execute sequence, in order to fetch the next I/O pro-
gram word.

SENSE. The Selector Channel issues a "P STATUS STB"
signal to the device controller, with CHANSO, via the
channel bus. The device controller accordingly reads the
contents of its Status register onto the channel DATA lines
and returns CHAN ACK (Channel Acknowledge). On
receipt of CHAN ACK, the Selector Channel loads the
Status information into one of the two input buffers, and
prepares for a memory transfer. First the contents of the
I/O Program Counter are decremented by one. This is
necessary because the Status word must be stored in the
IOAW location for the current order, whereas the fetch
sequence has incremented the I/O Program Counter to
point at the next word. Once this is done, the contents of
the I/O Program Counter and the input buffer containing
the status word are read out to the channel PCD gates (but

Functional Operation

not gated out yet). Also, the I/O Program Counter contents
are decoded by the interleaver and mapper to derive a TO
code. (See earlier discussions of these circuits under the
Arithmetic Logic heading of the CPU discussion.) A Clear/
Write Request to the Port Controller requests a trans-
mission to memory, and when the Port Controller returns
LSEL, the address from the I/O Program Counter is sent to
memory and the Counter is incremented. An HSEL from
the Port Controller (which follows immediately unless ENB
has been preempted by a higher-priority module) then reads
out the Status word to the PCD lines and sends it to
memory. This stores Status in the 10AW location.

RETURN RESIDUE. The function of the Return Residue
order is to send the current contents of the Residue
Register (which reflects the results of the most recent Read
or Write order) to the IOAW location of the current I/O
program word. The device controller is not involved. To
begin the procedure, the channel control logic decrements
the I/O Program Counter (for the same reason described in
the preceding paragraph). The contents of the I/O Program
Counter and the Residue Register are then read out to the
PCD gates, while a Clear/Write Request and a mapped TO
code are issued to the Port Controller. When the Port
Controller returns LSEL, the address from the I/O Program
Counter is sent to memory. When HREQ sets the HSEL
flip-flop, the word count from the Residue Register is sent
to memory. This stores the residue in the lOAW location.

INTERRUPT. The channel control logic issues a "P SET
INT" signal to the device controller, with CHANSO, via the
selector channel bus. The device controller returns CHAN
ACK and sets its Interrupt Request flip-flop. Provided the
Mask flip-flop is set, the device controller issues INTREQ to
the I/O Processor via the lOP bus. When the I/O Processor
returns INTPOLL, the device number is sent to the I/O
Processor, along with INTACK. On receipt of INTACK, the
I/O Processor generates an interrupt signal to the CPU.

JUMP. The Jump order may be specified to be either
conditional or unconditional. It is the function of an
unconditional jump or a successful conditional jump to
transfer the contents of the IOAW Buffer (the jump
address) to the I/O Program Counter. (The IOAW Buffer
and IOAW Active Register contain identical contents at this
time.) In the case of a conditional Jump order, the Selector
Channel issues a "set jump" command to the device con-
troller, with CHANSO, via the channel bus. The device
controller returns a true or false "jump met" signal. If the
jump is not met, operation returns to the fetch sequence. If
the jump is met, and for an unconditional Jump order, the
channel control logic gates the contents of the 10AW
Active Register into the 1/0 Program Counter. Thus sub-
sequent orders will be fetched and executed from a new 1/0
program area.

CONTROL. The Control order routes both the IOCW and
the IOAW to the device controller. The Selector Channel
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Functional Operation

first reads out the contents of the IOCW Active Register to
the channel DATA lines and issues a "PCMDI" signal, with
CHANSO, for the device controller to load the DATA
word. The device controller accordingly loads the word into
its Control register, and then issues a request (CHAN SR)
back to the Selector Channel to send the second word. The
Selector Channel reads out the contents of the IOAW
Active Register to the DATA lines and issues a second
command ("P CONT STB"), with CHANSO, for the device
controller to load this new word. When the device con-
troller has done so, and is ready for the next order, it
returns the appropriate response (another CHAN SR) signal
to the Selector Channel.

READ. The Read order causes a block of data to be
transferred from the device to memory. The block size in
words is specified in two's complement form by the word
count (IOCW bits 4 through 15) and the absolute starting
address in memory is specified by the IOAW. While the
block transfer is in progress, there are two separate, simul-
taneous operations taking place: the device-to-channel
transfer and the channel-to-memory transfer. The following
two paragraphs separately describe these two operations.
To begin the Read execute sequence, the Selector Channel
issues CHANSO to the controller. When the controller
returns CHAN ACK, the Selector Channel issues the initial
RD NXT WD ("Read Next Word") with CHANSO still
asserted. When CHANSO is removed, both the Selector
Channel and the controller are set to the "in-transfer"
condition to enable data transfers.

After the device has read a word and the controller is ready
to transfer it to the channel, it sends CHAN SR (Channel
Service Request) to the channeL The channel issues "P
READ STB" and CHANSO, causing the device controller to
read its Data In Buffer onto the channel DATA lines and to
return CHAN ACK. On receiving CHAN ACK, the Selector
Channel loads the data into either Input Buffer A or Input
Buffer B (depending on which is empty), increments the
word count in the IOCW Active Register, and re-issues RD
NXT WD. The above transfer sequence repeats for each
data word until the device controller asserts DEV END to
terminate the block, or until the word count rolls over. In
either case, the channel sends EOT ("End of Transfer") to
the controller and, if not data chaining, clears the "in-
transfer" condition. A CHAN SR from the controller is
required to resume program execution.

Meanwhile, the Selector Channel attempts to keep both
Input Buffers empty by transmitting their contents to
memory. The control logic for the A and B buffers ensures
that data is transmitted to memory in the same sequence as
received from the device. To accomplish a memory transfer,
the Selector Channel enables the IOAW Active Register for
use as a memory address, enables Input Buffer A or B for
use as a data word, and sends a Clear/Write Request and a
mapped TO code to the Port Controller. When the port
returns LSEL, the IOAW is gated onto the bus as an address
to memory, and the IOAW is incremented to point to the
next data location. When the port returns HSEL, the Input
Buffer is gated onto the bus to be stored in the addressed

8·30

memory location. The preceding operation (this paragraph)
repeats until the Read order completes, via a DEV END or
word count rollover, and all input data has been sent to
memory.

If the data chaining bit in the IOCW Active Register is true,
the next order pair will have been prefetched when possible
during the block data transfer. When the Read order com-
pletes, the prefetched order pair will be transferred from
the IOCW/IOAW buffers to the active registers without the
need for a normal fetch sequence. Data input can thus
continue for the next block with minimum interruption. If
the data chaining hit is not set, the Read termination will
be followed by a normal fetch sequence.

WRITE. The Write order causes a block of data to be
transferred from memory to the device. The block size in
words is specified in two's complement form by the word
count (IOCW bits 4 through 15) and the absolute starting
address of the block in memory is specified by the IOAW.
While the block transfer is in progress, there are two
separate, simultaneous operations taking place: the
memory-to-channel transfer and the channel-to-device
transfer. The following two paragraphs separately describe
these two operations. To begin the Write execute sequence,
the Selector Channel issues CHANSO to the controller, and
when the controller returns CHAN ACK, both the Selector
Channel and the controller are set to the "out- transfer"
condition to enable data transfers.

Meanwhile, the Selector Channel proceeds with a memory
fetch and will attempt to keep both output buffers full.
The control logic for the A and B Output Buffers ensures
that data is transmitted to the device in the same sequence
as it was fetched from memory. To accomplish a memory
fetch, the Selector Channel enables the IOAW Active
Register for use as a memory address and sends a Read/
Restore Request (RRREQ) and a mapped TO code to the
Port Controller. When the port returns LSEL, the IOAW is
gated onto the bus as an address to memory, and the lOAW
is incremented to point to the next data location. When the
port returns STRB, the data on the bus from memory is
loaded into an empty output buffer. The preceding
operation (this paragraph) repeats until the Write order
completes (by either a DEV END or word count rollover).

When the controller is ready to accept a data word from the
channel, it sends CHAN SR. The channel issues CHANSO
and "P WRITE STB" and gates Output Buffer A or B onto
the channel DATA lines. The controller returns CHAN
ACK, causing the channel to remove P WRITE STB,
increment the word count, and remove CHANSO in that
order. The device controller uses the removal of P WRITE
STB to latch the data word from the channel DATA lines.
The above transfer sequence (this paragraph) repeats for
each data word sent to the device controller, until the
device controller asserts DEV END to prematurely
terminate the block or until the word count rolls over. In
either case, the Selector Channel sends EOT ("End of
Transfer") to the controller and, if not data chaining, clears
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the out-transfer condition. To resume program execution, a
new CRAN SR from the controller is required by the
Selector Channel.

If the data chaining bit (IOCW bit 0) is true, the next order
pair will have been prefetched when possible during the
block transfer. When the Write order completes, the pre-
fetched order pair will be transferred from the IOCW/IOAW
buffers to the active registers without the need for a normal
fetch sequence. Data output to the controller can thus
continue for the next block with minimum interruption. If
the data chaining bit is not set, termination of the Write
order will be followed by a normal fetch sequence.

END. The execute sequence for the End order begins by
duplicating the operations of a Sense order, obtaining the
controller's status word and storing it in the 10AW location
in the I/O program. Additionally, if IOCW bit 4 is true, a "P
SET INT" signal is also issued to the controller; see Inter-
rupt order description. Then the channel proceeds to store
the contents of its I/O Program Counter into the device's
DRT location. As explained earlier, this is to maintain
compatibility with I/O programs run via a Multiplexer
Channel. The Selector Channel enables its DEVNO register,
shifted left two bits, as a memory address, enables the I/O
Program Counter for use as data, and sends a Clear/Write
Request (CWREQ) and a mapped TO code to the Port
Controller. When the port returns LSEL, the shifted device
number is gated out as the DRT address, and when the port
returns RSEL, the I/O Program Counter content is gated
out to the bus as data. This completes all operations for the
I/O program. The channel control logic resets to the
inactive condition, thus allowing another program for the
same or another device to be initiated via that channel.

DIRECT I/O OPERATION
In addition to the SIO modes of transfer, described under
the Multiplexer Channel and Selector Channel headings of
this section, a direct I/O mode is also provided. In this
mode, the CPU may transfer information directly to or
from a device controller, without involving memory, Multi-
plexer Channel, or Selector Channel.

The CPU has four instructions for direct I/O communi-
cation. These are: TIO (Test I/O), CIO (Control I/O), RIO
(Read I/O), and WIO (Write I/O). In each case, one word is

Functional Operation

transferred for each instruction, either to or from the top
of the stack in the CPU. The following paragraphs describe
the operation for each of these four instructions. Figures
8-10 and 8-12, the I/O Processor and a device controller,
may be used as references.

TIO. The Test I/O instruction obtains the contents of the
device controller's Status register and loads it into the
CPU's current top-of-stack register (RA). When the CPU
encounters a TIO instruction, its TIO microprogram loads a
command word into the lOP Control Register in the I/O
Processor. The I/O Processor then issues a TIO IOCMD to
the device addressed by the DEVNO code, along with SO.
The addressed device is therefore enabled to accept and
decode the command, and accordingly reads the contents
of its Status register onto the IOD lines, with SI. On receipt
of SI, the I/O Processor loads the Status word into the
Direct Data Input register and informs the CPU that the
word is present (by means of a flag signal not shown in
figure 8-10). The CPU then issues a read signal which reads
the contents of the Direct Data Input register to the S-bus.
From there, the status word is routed to the current RA
register.

RIO. The operations for the Read I/O instruction begin by
performing a TIO to the controller (as above) to check the
Read/Write OK status bit. If status is acceptable, the same
sequence is repeated except that the OUTCMD is RIO and
data is transferred from the Data In Buffer rather than the
Status register.

CIO. The Control I/O instruction obtains a control word
from the top-of-stack register (RA) and sends it to the
device controller's Control register. When the CPU
encounters a CIO instruction, its CIO microprogram loads
the RA contents into the Data Output Register, and then
issues a command word to the lOP Control Register in the
I/O Processor. The command word causes a CIO IOCMD to
be issued to the device controller addressed by the DEVNO
code, along with SO. At the same time, the contents of the
Data Output Register are' read out onto the IOD lines.
When the device controller decodes the 10CMD it loads the
word on the 10D lines into its Control register, and returns
SI to the I/O Processor. On receiving SI, the I/O Processor
returns a flag signal to the CPU, indicating completion of
the instruction.

WIO. The operations for the Write I/O instruction begin by
performing a TIO to the controller (as above) to check the
Read/Write OK status bit. If status is acceptable, the remain-
ing operations for the Write I/O instruction are the same as for
CIO, except that the information sent is a data word, the
IOCMD isWIO instead of CIO, and the information is loaded
into the Data Out Buffer instead of the Control register.
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Table 8-1. Mnemonics and Abbreviations

Adrs Address JMP Jump
ALU Arithmetic Logic Unit LO SEL Low Select ~
BUSH Bus High LREQ Low Request
BUSL Bus Low LSEL Low Select
CHAN ACK Channel Acknowledge LUT Look-Up Table
CHANDATA Channel Data MAR Memory Address Register
CHANSO Channel Service Out MCU Module Control Unit
CHAN SR Channel Service Request Mem Memory
CIO Control Input/Output MOP Memory Opcode
Comp Comparator NIP Next In Process
Cont Controller NOP No Operation
CPU Central Processor Unit OPINP Operand In Process
CRL Control OPND Operand
CTO Command TO PCONT STB Programmed Control Strobe
CW Clear/Write PREADSTB Programmed Read Strobe
CWREQ Clear/Write Request PSETINT Programmed Set Interrupt
DC Device Controller/Data Chain P STATUS STB Programmed Status Strobe
DEVEND Device End PWRITE STB Programmed Write Strobe
DEVNO Device Number PCD Port Controller Data
DATAPOLL Data Poll Prog Program
DRT Device Reference Table RAM Random Access Memory
DRTE Device Reference Table Entry RAR ROM Address Register
ENB Enable RDY Ready
EOT End-of- Transfer Reg Register-
HISEL High Select REQ Request
HREQ High Request RIL Reset Interrupt Level

"-----./

HSEL High Select RIO Read Input/Output
HSREQ High Service Request RNW Read/No Write
INTACK Interrupt Acknowledge ROM Read-Only Memory
IACTIVE Interrupt Active ROR ROM Output Register
Incr Increment RR Read/Restore
Int DEVNO Interrupt Device Number RRREQ Read/Restore Request
IOAW 1/0 Address Word SEL Select
IOCMD I/O Command SI Service In
IOCW I/O Control Word SIL Set Interrupt Level
IOD I/O Data SIN Set Interrupt
IOHRQ I/O High Request SIO Start Input/Output
IOINP I/O In Process SMASK Set Mask
IOLRQ I/O Low Request SO Service Out
IOMOP I/O Memory Opcode SR Service Request - -- '"

IOP Input/Output Processor STRB Strobe
IOSTRB I/O Strobe TIO Test Input/Output
INTPOLL Interrupt Poll WC Word Count
INTREQ Interrupt Request WIO Write Input/Output
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INDEX OF TERMS

absent · .. 4·1 file area .. · .. 4-2
actual parameters 4-15 file system · .. .6-1
addressing modes 3-12 formal parameters 4-15
allocate .. 4-2 free space links 4-6
assigned memory links 4-6
Attach I/O . . .. 6-7 global data area 4-12

global variable 4-16
base ... · . 3-13
BEGIN statement 4-16 high request · . · .. . . . . . . . . .. 8-8
blocked I/O 6-11
blocks 6-1

ICS Flag 7-3buffer tanks 6-9 · ..
bus system 8-1 implicit addressing 4-14

byte addressing 3-15 indexing · .. 3-15
indicators . · . 3-9
indirect addressing 3-13

Carry ... · . 3-9 instruction formats 3-6
central data bus 8-1 interleaver 8-6
Central Processor 3-1 internal interrupts 7-3
code segment 4-1 interrupt code segment 7-3
code segment number 4-8 Interrupt Control Stack 7-1
Code Segment Table 4-2 Interrupt Counter 7-11
Code Segment Table Pointer 4-3 Interrupt Handler 7-1
cold load · .. 7-12 interrupt poll 8-11
Condition Code 3-9 interrupt receiver code 7-3
console interrupt 7-12 Interrupt Reference Flag 7-3
CPU .. 3-1 I/O Address Word 6-13
CPU Output Registers 8-6 I/O Command Word 6-13
Current Instruction Register 8-3 I/O Control Block 6-7
Current Process Control Block pointer 4-9 I/O Monitor Process 6-7

lOP bus .. · . · . 8-1

data base 3-11 I/O Processor · . 6-12

data chaining 6-13 I/O Program Pointer 6-4

data domain 4-5 I/O Program word 6-13

data formats 3-3 I/O Queue 6-3

data limit 3-11 I/O Queue Head 6-3

data poll 8-11 I/O system 6-1

data segment 4-2 IRF interrupts 7-11

Data Segment Table 4-2 job 4-5Data Segment Table Pointer 4-3 ..
deallocate 4-2 line buffer 6-9delete 3-3
delta Q 4-13 local program label 4-8..

local variables 4-14device controller 6-2
device driver 6-7 logical device numbers 6-4

Device Information Tables 6-3 Look-Up Table 8-3

device number 6-4 low request 8-8..
Device Reference Table 6-4
Dispatcher 7-3 mapper .. 8-8

Dispatcher Flag 7-1 mask 7-6

displacement 3-12 memory opcode 8-8
microprocessor 3-1
microprogram 8-5

effective address 3-13 mini-opcode 3-6
END statement 4-16 Module Control Unit 8-8
extents 6-1 multiplexer · . · . 8-14
external interrupts 7-3 multiplexer channel 6-12
external program label 4-8 multiplexer channel bus 8-1
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INDEX OF TERMS

Next Instruction Register
non-standard device

8-3
7-3

operating system
Overflow ....

4-3
3-9

parameter passing
parity errors
peripheral device
power bus
Power Fail interrupt
pre-adder ....
primary memory
privileged mode
Privileged Mode bit
privileged user
procedure
procedure body
procedure call
procedure declaration
procedure head . . . .
procedure name
procedure parameters
procedure statement
process .
Process Control Block
Process Control Block Extension
Process Control Block Table Pointer
program
program base . .
program counter
program file
program limit
push

4-15
7-13
6-13
8-1

7-12
8-6
4-1

3-12
3-8

3-12
4-8

4-16
4-8

4-16
4-16
4-16
4-13
4-16
4-5
4-5
4-9
4-3
4-5

3-11
3-11
4-2

3-11
3-11

Random Access Memories
Read-Only Memory
recursive procedure
re-entrant .....
relative address . .
relative addressing

8-18
8-5

4-18
4-1
3-13
3-12

relocatable binary module
renamer .
ROM Address Register
ROM Output Registers

4-2
8-6
8-5
8-5

scatter read . . . . .
scratch pad registers
secondary memory
segment .....
segmented library
Segment Transfer Table
selector .
selector channel
selector channel bus
service request number
special opcode
split stack
stack ....
stack limit
stack marker
stack overflow
stack underflow
standard device
Status word
sub-ope ode groups
sub-opcodes
swapping area
System Global Pointer

6-15
8-6
4-1
4-1
4-3
4-8

8-14
6-12
8-1

8-11
3-6

3-20
3-2,4-10

3-11
4-13
3-19
3-19
7-3
3-8
3-6
3-6
4-1
4-3

temporary storage
TERM process
top-of-stack
Trace
traps

4-14
6-9

4-11
7-13
7-13

unblocked I/O
uncallable bit
user mode
user subprogram library

6-11
4-9

3-12
4-2

value part ...
virtual memory

4-16
4-1
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OCTAL ARITHMETIC

ADDITION

TABLE EXAMPLE

0 01 02 03 04 05 06 07

1 02 03 04 05 06 07 10

2 03 04 05 06 07 10 11

3 04 05 06 07 10 11 12

4 05 06 07 10 11 12 13

5 06 07 10 11 12 13 14

6 07 10 11 12 13 14 15

7 10 11 12 13 14 15 16

Add: 3677 octal
+ 1331 octal

(111 - ) carries

5230 octal

MULTIPLICATION

TABLE EXAMPLE

1 02 03 04 05 06 07

2 04 06 10 12 14 16---_.
3 06 11 14 17 22 25

4 10 14 20 24 30 34

5 12 17 24 31 36 43

6 14 44 30 36 44 52

7 16 35 34 43 52 61

Multiply: 657
X 54

octal
octal

octal

(Reminder: add in octal)

COMPLEMENT

To find the two's complement form of an octal number. (Same procedure whether converting
from positive to negative or negative to positive.)

RULE EXAMPLE

1. Subtract from the maximum represen-
table octal value.

Two's complement of 5568 :

2. Add one.
177777

- 000556

177221
+ 1

1772228
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OCTAL/DECIMAL CONVERSIONS

TABLE

OCTAL TO DECIMAL

EXAMPLE
OCTAL DECIMAL

0- 7 0- 7
10-17 8-15
20-27 16-23
30-37 24-31
40-47 32-39
50-57 40-47
60-67 48-55
70-77 56-63
100 64

- 200 128-
400 256

1000 512
2000 1024
4000 2048
10000 4096
20000 8192
40000 16384
77777 32767

Convert 4638 to a decimal integer.

400s 25610

60s 4810

3s ~

307 decimal

TABLE

DECIMAL TO OCTAL

EXAMPLEDECIMAL OCTAL

1 1
10 12
20 24
40 50
100 144

- -2(){)- - 31Q
500 764

1000 1750
2000 3720
5000 11610

10000 23420
20000 47040
32767 77777

Convert 522910 to an octal integer.

500010

20010

2010

910

11610s

310s

24S

118

121558

t
(Reminder: add in octal)

TABLE

NEGATIVE DECIMAL TO TWO'S COMPLEMENT OCTAL

EXAMPLEDECIMAL 2'5 CaMP

-1 177777
-10 177766
-20 177754
-40 177730

-100 77634
-200 177470
:-500 177014

-1000 176030
-2000 174040
-5000 166170

-10000 154360
-20000 130740
";32768 100000

Convert -62910 to two's complement octal.

-5°°10 1770148

-10°10 1776348

-2010 1777548 (Add in

-910 1777678
octal)

1766138

For reverse conversion (two's complement octal to negative decimal):
1. Complement, using procedure on facing page.
2. Convert to decimal, using OCTAL TO DECIMAL table.
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MATHEMATICAL EOUIVALENTS

2±n IN DECIMAL

2n n 2-n
65 536 16 0.00001 52587 89062 5

1 0 1.0 131 072 17 0.00000 76293 94531 25
2 1 0.5
4 2 0.25 262 144 18 0.00000 38146 97265 625

524 288 19 0.00000 19073 48632 8125
8 3 0.125 1 048 576 20 0.00000 09536 74316 40625
16 4 0.0625
32 5 0.03125 2 097 152 21 0.00000 04768 37158 20312 5

4 194 304 22 0.00000 02384 18579 10156 25
64 6 0.01562 5 8 388 608 23 0.00000 01192 09289 55078 125
128 7 0.00781 25
256 8 0.00390 625 16 777 216 24 0.00000 00596 04644 77539 0625

33 554 432 25 0.00000 00298 02322 38769 53125
512 9 0.00195 3125 67 108 864 26 0.00000 00149 01161 19384 76562 5

1 024 10 0.00097 65625
2 048 11 0.00048 82812 5 134 217 728 27 0.00000 00074 50580 59692 38281 25

268 435 456 28 0.00000 00037 25290 29846 19140 625
4 096 12 0.00024 41406 25 536 870 912 29 0.00000 00018 62645 14923 09570 3125
8 192 13 0.00012 20703 125
16 384 14 0.00006 10351 5625 073 741 824 30 0.00000 00009 31322 57461 54785 15625

2 147 483 648 31 0.00000 00004 65661 28730 77392 57812 5
32 768 15 0.00003 05175 78125 4 294 967 296 32 0.00000 00002 32830 64365 38696 28906 25

10 ±n IN OCTAL

10n n 10-n 10n n 10-n
1 0 1.000 000 000 000 000 000 00 112 402 762 000 10 0.000 000 000 006 676 337 66

12 1 0.063 146 314 631 463 146 31 1 351 035 564 000 11 0.000 000 000 000 537 657 77
144 2 0.005 075 341 217 270 243 66 16 432 451 210 000 12 0.000 000 000 000 043 136 32

1 750 3 0.000 406 111 564 570 651 77 221 411 634 520 000 13 0.000 000 000 000 003 411 35
23 420 4 0.000 032 155 613 530 704 15 2 657 142 036 440 000 14 0.000 000 000 000 000 264 11

303 240 5 0.000 002 476 132 610 706 64 34 327 724 461 500 000 15 0.000 000 000 000 000 022 01
3 641 100 6 0.000 000 206 157 364 055 37. 434 157 115 760 200 000 16 0.000 000 000 000 000 001 63

46 113 200 7 0.000 000 015 327 745 152 75 5 432 127 413 542 400 000 17 0.000 000 000 000 000 000 14
575 360 400 8 0.000 000 001 257 143 561 06 67 405 553 164 731 000 000 18 0.000 000 000 000 000 000 01

7 346 545 000 9 0.000 000 000 104 560 276 41
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MATHEMATICAL EOUIVALENTS

2X IN DECIMAL

x 2x x 2X x 2x
0.001 1.00069 33874 62581 0.01 1.00695 55500 56719 0.1 1.07177 34625 36293
0.002 1.00138 72557 11335 0.02 1.01395 94797 90029 0.2 1.14869 83549 97035
0.003 1.00208 16050 79633 0.03 1.02101 21257 07193 0.3 1.231144413344916
0.004 1.00277 64359 01078 0.04 1.02811 38266 56067 0.4 1.31950 79107 72894
0.005 1.00347 17485 09503 0.05 1.03526 49238 41377 0.5 1.41421 35623 73095
0.006 1.00416 75432 38973 0.06 1.04246 57608 41121 0.6 1.51571 65665 10398
0.007 1.00486 38204 23785 0.07 1.04971 66836 23067 0.7 1.62450 47927 12471
0.008 1.00556 05803 98468 0.08 1.05701 80405 61380 0.8 1.74110 11265 92248
0.009 1.00625 78234 97782 0.09 1.06437 01824 53360 0.9 1.86606 59830 73615

n 10910 2, n 1092 10 IN DECIMAL

n n 109102 n 1092 10 n n 10910 2 n 1092 10
1 0.30102 99957 3.32192 80949 6 1.80617 99740 19.93156 85693
2 0.60205 99913 6.64385 61898 7 2.10720 99696 23.25349 66642
3 0.90308 99870 9.96578 42847 8 2.40823 99653 26.57542 47591
4 1.20411 99827 13.28771 23795 9 2.70926 99610 29.89735 28540
5 1.50514 99783 16.60964 04744 10 3.01029 99566 33.21928 09489

MATHEMATICAL CONSTANTS IN OCTAL SCALE

7f = (3.11037 552421) (8) e (2.55760 521305)(8) 'Y = (0.44742 147707)(8)

7f-1 = (0.24276 301556)(8) e-1 (0.27426 530661)(8) In 'Y = - (0.43127 233602) (8)

..;n = (1.61337611067)(8) ..;e= (1.51411 230704)(8) 1092'Y = - (0.62573 030645)(8)

In tt = (1.11206 404435) (8) 10910e = (0.33626 754251) (8) -/2 = (1.32404 746320)(8)

10927f = (1.51544 163223) (8) 1092e = (1.34252 166245)(8) In 2 = (0.54271 027760)(8)

..;;0 = (3.12305 407267) (8) 109210 = (3.24464 741136)(8) In 10 = (2.23273 067355)(8)
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CONSOLIDATED CODING TABLE

o 2 3 4 5 6 7 8 9 10 11 12 15
STACK OPCODES
ALL 64 STACK
OPS MAY BE
USEDIN
EITHER POSI-
TION (STACK
OPAORB)

00 00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

NOP
DELB
DDEL
ZROX
INCX
DECX
ZERO
DZRO
DCMP
DADO
DSUB
MPYL
DIVL
DNEG
DXCH
CMP
ADD
SUB
MPY
DIV
NEG
TEST
STBX
DTST
DFLT
BTST
XCH
INCA
DECA
XAX
ADAX
ADXA

40
41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
60
61
62
63
64
65
66
67
70
71
72
73
74
75
76
77

13 14

Q1 _ x
x
x
x
x
x
x

x
X
I
I
I
I
X
Y
X
X
X
X
X
X
I
I
I
I
X
X
X
X
I
I

00
01
02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

ASL
ASR
LSL
LSR
CSL
CSR
SCAN
IABZ
TASL
TASR
IXBZ
DXBZ
BCY
BNCY
TNSL
SPARE
DASL
DASR
DLSL
DLSR
DCSL
DCSR
CPRB
DABZ
BOV
BNOV
TBC
TRBC
TSBC
TCBC
BRO
BRE

f---
+/-
+/-
+/-
+/-~

I---
+/-
+/-
+/-
+/-I---

I---
+/-
+/-

DEL
ZROB
LDXB
STAX
LDXA
DUP
DDUP
FLT
FCMP
FADD
FSUB
FMPY
FDIV
FNEG
CAB
LCMP
LADD
LSUB
LMPY
LDIV
NOT
OR
XOR
AND
FIXR
FIXT
SPARE
INCB
DECB
XBX
ADBX
ADXB

RESERVED

SHIFT COUNT L

02 SUB OPCODE 2 00 MOVE OPS o
1
2
2
3
3
4
5

MOVE
MVB
MVBL
SCW
MVLB
SCU
MVBW
CMPB

RESERVED
P RELATIVE DISPLACEMENT
SHIFT COUNT L

P RELATIVE DISPLACEMENT

SHIFT COUNT L

P RELATIVE DISPLACEMENT

BIT POSITION

P RELATIVE DISPLACEMENT

PB/DB RESERVED SDEC

o

o
1 "
N A I U

PB/DB RESERVED SDEC
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CONSOLIDATED CODING TABLE

0 1 2 3 4 5 6 7 8 I 9 I 10 I 11 12 I 13 I 14 15
02 SUB OPCODE 2 00 MINIOPS 14 RSW RESERVED 0

14 llSH RESERVED 1
15 PlDA RESERVED 0
15 PSTA RESERVED 1

01 SPARE
02 lDI IMMEDIATE OPERAND N
03 lDXI " " "
04 CMPI " " "
05 ADDI " " "
06 SUBI " " "
07 MPYI " " "
10 DIVI " " "I-~·~

I DBI Dl I STA I I11 PSHR Z X 0 S
12 lDNI IMMEDIATE OPERAND N
13 lDXN " r r "
14 CMPN " " "
15 EXF BEGINNING BIT # # OF BITS
16 DPF " " " " " "
17 SETR I DBI Dli z STA I X I 0 S

03 SUB OPCODE 3 00 SPECIAL OP 00 SPARE
01 PAUS K FIELD
02 SED " "
03 XCHD " "
04 SMSK " "
05 RMSK " "
06 , XEO " "
07 SIO " "
10 RIO " "
11 WIO " "
12 TIO " "
13 CIO " "
14 CMD " "
15 SIRF " "
16 SIN " "
17 HALT " "

~ --~ 01 SCAl STT ENTRY # N
02 PCAl " " II 1/

03 EXIT N FIELD
04 SXIT " "
05 ADXI " "
06 SBXI " "
07 llBl Pl- DISPLACEMENT N
10 lDPP P+ DISPLACEMENT N
11 lDPN P- D ISPlACEM ENT N
12 ADDS IMMEDIATE OPERAND N
13 SUBS " " "
14 TSBM DB+ DISPLACEMENT N
15 ORI IMMEDIATE OPERAND N
16 XORI " " "

17 ANDI " " "
04 LOAD X I PDOS ADDRESS MODE & DISPLACEMENT
05 TBA 0 0 0 +/- P RELATIVE DISPLACEMENT

MTBA 0 1 0 +/- " " "
TBX 1 0 0 +/- " " "
MTBX 1 1 0 +/- " " "

STOR X I 1 - DOS ADDRESS MODE & DISPLACEMENT
06 CMPM X I

r----
PDOS " " " "

07 ADDM X I " " " " "
10 SUBM X I " " " " "
11 MPYM X I " " " " "

12 INCM X I 0 DOS " " " "
DECM X I 1 " " " " "

13 lDX X I PDOS " " " "
14 BR X I 0 ~ P RELATIVE DISPLACEMENT

BR X 1 1 DOS ADDRESS MODE (INDIRECT) & DISPLACEMENT
BCC I 0 1 CCGI CCE I cci.j +/- J P RELATIVE DISPLACEMENT

15 lDB X I 0 DOS ADDRESS MODE & DISPLACEMENT
lDD X I 1 " " " " "

16 STB X I 0 " " " " "
STD X I 1 " " " " "

17 LRA X I
r----

PDOS " " " "
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Appendix

CHARACTER CODES
ASCII FirstCharacter Second Character

Character OctalEquivalent OctalEquivalent

A 040400 000101
B 041000 000102
C 041400 000103
D 042000 000104
E 042400 000105
F 043000 000106
G 043400 000107
H 044000 000110
I 044400 000111
J 045000 000112
K 045400 000113
L 046000 000114
M 046400 000115
N 047000 000116
0 047400 000117
P 050000 000120
Q 050400 000121
R 051000 000122
S 051400 000123
T 052000 000124
U 052400 000125
V 053000 000126
W 053400 000127
X 054000 000130
Y 054400 000131
Z 055000 000132

a 060400 000141
b 061000 000142
c 061400 000143
d 062000 000144
e 062400 000145
f 063000 000146
9 063400 000147
h 064000 000150
i 064400 000151
j 065000 000152
k 065400 000153
I 066000 000154
m 066400 000155
n 067000 000156
0 067400 000157
P 070000 000160
q 070400 000161
r 071000 000162
s 071400 000163
t 072000 000164
u 072400 000165
v 073000 000166
w 073400 000167
x 074000 000170
y 074400 000171
z 075000 000172

0 030000 000060
1 030400 000061
2 031000 000062
3 031400 000063
4 032000 000064
5 032400 000065
6 033000 000066
7 033400 000067
8 034000 000070
9 034400 000071

NUL 000000 000000
SOH 000400 000001
STX 001000 000002
ETX 001400 000003
EOT 002000 000004
ENQ 002400 000005

A-IO

ASCII FirstCharacter Second Character
Character OctalEquivalent OctalEquivalent

ACK 003000 000006
BEL 003400 000007
BS 004000 000010
HT 004400 000011
LF 005000 000012
VT 005400 000013
FF 006000 000014
CR 006400 000015
SO 007000 000016
SI 007400 000017

DLE 010000 000020
DCl 010400 000021
DC2 011000 000022
DC3 011400 000023
DC4 012000 000024
NAK 012400 000025
SYN 013000 000026
ETB 013400 000027
CAN 014000 000030
EM 014400 000031
SUB 015000 000032
ESC 015400 000033
FS 016000 000034
GS 016400 000035
RS 017000 000036
US 017400 000037

SPACE 020000 000040
! 020400 000041
" 021000 000042
# 021400 000043
$ 022000 000044
% 022400 000045
& 023000 000046

023400 000047
( 024000 000050
) 024400 000051
* 025000 000052
+ 025400 000053

026000 000054
- 026400 000055

027000 000056
/ 027400 000057
: 035000 000072
; 035400 000073
< 036000 000074
= 036400 000075
> 037000 000076
? 037400 000077
@ 040000 000100
[ 055400 000133
\ 056000 000134
1 056400 000135
6. 057000 000136
- 057400 000137
{ 060000 000140

075400 000173
I 076000 000174
} 076400 000175- 077000 000176

DEL 077400 000177

FirstCharacter Second Character
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ALPHABETICAL INDEX OF INSTRUCTIONS

ADAX. · . .5-5 DXCH .5-5 OR · . · . .5-9
ADBX .5-6 DZRO · .5-2 ORI · . 5-21
ADD · . .5-4
ADDI · 5-20 EXF · . 5-22 PAUS · . 5-24
ADDM · 5-30 EXIT · . 5-25 PCAL · . 5-24
ADDS · 5-23 PLDA · . 5-19
ADXA. · . .5-5 FADD .5-7 PSHR · 5-22
ADXB · . .5-6 FCMP .5-6 PSTA · . 5-19
ADXI · . 5-21 FDIV .5-7
AND · . .5-9 FIXR .5-7 RIO · . 5-26
ANDI · . 5-22 FIXT .5-8 RMSK · . 5-26
ASL · . .5-9 FLT . . .5-6 RSW .. · 5-19
ASR .5-9 FMPY .5-7

FNEG · . .5-7 SBXI · . 5-21
BCC · . 5-14 FSUB · .. 5-7 SCAL · 5-24
BCY · 5-12 SCAN · . 5-14
BNCY · . 5-12 HALT · . 5-24 SCU · . 5-17
BNOV · . 5-13 SCW · . · 5-17
BOV .. · . 5-13 IABZ · . 5-12 SED · . 5-25
BR · . · . 5-13 INCA .5-2 SETR · . 5-23
BRE · . · . 5-13 INCB · . .5-2 SIN · . 5-28
BRO .. · . 5-13 INCM · 5-31 SIO · . 5-26
BTST · .. 5-5 INCX · . .5-2 SIRF · . 5-28

IXBZ · . 5-12 SMSK · . 5-26
CAB · .5-5 STAX · .. 5-6
CIO · . · . 5-27 LADD · . .5-8 STB · . · . 5-32
CMD · . 5-27 LCMP · . .5-8 STBX · .5-5
CMP . 5-3 LDB · 5-31 STD · . · 5-32
CMPB · . 5-18 LDD. · . 5-31 STOR · 5-30
CMPI · . 5-20 LDI · . 5-20 SUB · .5-4
CMPM · . 5-30 LDIV · . .5-8 SUBI · . 5-20
CMPN · . 5-21 LDNI · . 5-21 SUBM · . 5-30
CPRB · 5-12 LDPN · . 5-29 SUBS · . 5-23
CSL · . · . 5-10 LDPP · . 5-29 SXIT · . 5-25
CSR · . · 5-10 LDX .. · 5-31

LDXA · . .5-6 TASL · 5-11
DABZ · 5-13 LDXB · .. 5-6 TASR · . 5-11
DADD. .5-3 LDXI · . 5-20 TBA · 5-28
DASL · . 5-10 LDXN · . 5-21 TBC · 5-14
DASR · . 5-10 LLBL · . 5-19 TBX · . · . 5-29
DCMP . 5-3 LLSH · 5-19 TCBC · . 5-15
DCSL · 5-11 LMPY · . .5-8 TEST · . .5-4
DCSR . . . ... · . 5-11 LOAD · . 5-29 TIO · . 5-27
DDEL .. . . .5-1 LRA. · . 5-32 TNSL · . 5-11
DDUP ...... · .. 5-1 LSL .5-9 TRBC · . 5-14
DECA · .5-2 LSR · . .5-9 TSBC · . 5-15
DECB · . . 5-2 LSUB · . .5-8 TSBM · . 5-15
DECM · . 5-31
DECX .5-2 MOVE. · . 5-15
DEL · . · .. 5-1 MPY .. · .. 5-4 WIO · . . . · . 5-27
DELB · .. 5-1 MPYI · . 5-20
DFLT · .. 5-6 MPYL · . .5-3
DIV · . · .. 5-4 MPYM . · . 5-30 XAX · .. 5-5
DIVI · . 5-21 MTBA · . 5-28 XBX .. · .. 5-5
DIVL · .. 5-3 MTBX · . 5-29 XCH .. · . .5-5
DLSL · . 5-10 MVB · . 5-16 XCHD · . 5-23
DLSR · . 5-10 MVBL · . 5-16 XEQ · 5-24
DNEG · . .5-3 MVBW · . 5-18 XOR · . .5-9
DPF · . · . 5-22 MVLB · . 5-17 XORI · . 5-22
DSUB · . .5-3
DTST .5-4 NEG. .5-4 ZERO .5-2
DUP · . · . .5-1 NOP .5-1 ZROB .5-2
DXBZ · . 5-12 NOT. .5-8 ZROX .5-2
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