TRACE/3000

Reference Manual

S000.....

HEWLETT ho, PACKARD

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

2

TRACE/3000

Reference Manual

HEWLETT (ho; PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 10/78

4

PART NO. 03000-90015

LIST OF EFFECTIVE PAGES

Changed pages are identified by a change number adjacent to the page number. Changed information is indicated by a
vertical line in the outer margin of the page. Original pages do not include a change number and are indicated as change
number 0 on this page. Insert latest changed pages and destroy superseded pages.

Pages Effective Date
Title. . ..o e Oct 1975
150 7 157 T AU AP Oct 1975
1-1t0 14 e Oct 1975
2-1t0 247 .ot e e Oct 1975
31 t03-17 .t et e Oct 1975
AL e Oct 1975
B-ltoB-2 o Oct 1975
Fltol-2. e e i eiiieenenns Oct 1975
NOTICE

The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1975 by HEWLETT-PACKARD COMPANY

PREFACE

This publication is the reference manual for TRACE/3000. TRACE/3000 is a subsystem of the
MPE/3000 Operating System that is used to find errors in programs written in SPL/3000
(Systems Programming Language for the HP 3000 Computer System) and FORTRAN/3000 (a
version of FORTRAN IV for the HP 3000 Computer System).

The content of this publication is

Section I introduces the TRACE/3000 subsystem. The features of TRACE/3000
are discussed and a summary of all commands is included.

Section II explains TRACE/3000 commands and files.

Section I explains how to use TRACE/3000.

Appendix A defines how TRACE/3000 treats constants of different types.

Appendix B explains how TRACE/3000 treats abbreviations.

Index contains an alphabetical listing of the main topics of this manual.

Other publications which should be available for reference when using this manual are:
HP 3000 Computer System Reference Manual, (03000-90019)
MPE/3000 Operating System Reference Manual, (32000-90002)
FORTRANI/3000 Reference Manual, (32102-90001)
SPL/3000 Reference Manual, (03000-90002)

EDIT/3000 Reference Manual, (03000-90012)

iii

CONVENTIONS USED IN THIS MANUAL

Parameters
A optional
FA - .
B optional, select one
A
[B] optional, select one or more in any order
C
A mandatory
A
B mandatory, select one
italics denote a parameter which must be replaced by a variable
parameter that the user assigns
Example: CALL name
name one to 15 alphanumeric characters
Dialogue: where it i8 necessary to distinguish user input from computer output
the user input is underlined
Examplee NEWNAME? ALPHA1
Control Characters: Control characters are indicated by a superscript ¢
Example: Y°
return indicates a carriage return
linefeed indicates a line feed

iv

CONTENTS

Section I Page
INTRODUCING TRACE/3000
What is TRACE/3000?cciiiiinnannnn.. 1-1
TRACE/3000 Features 1-1
TRACE/3000 Operating Modes 1-2
TRACE/3000 Control Statements and Commands . .. 1-2
Structure Points, 14
Section II Page
TRACE/3000 COMMANDS
$TRACE Control Statement 2-1
TRACE/3000 Files and Tables 2-2
BATCHFile ...t 2-2
INTERACTIVE Filecccvnan., 2-12
PRINT/HALT Tableccvvevunnnnn. 2-14
Paragraphs i i 2-14
Program Unit Name in Paragraphs 2-15
PRINT and HALT Commands and Paragraphs2-16
Sentence Condition Clauses 2-19
Subscript Value Condition Clause 2-19
Identifier Value Condition Clause 2-24
Label Condition Clause 2-27
Use Condition Clause 2-28
Routine Parameter Clause 2-31
PRINT and HALT Sentence Execution
Conditionsc.cviiiiiiinnnn., 2-36

PRINT and HALT Sentence Results 2-36
DROP Commandccvnvunnn. 2-40
CHECK Command...............cccoiviivnnnnnnn. 2-41
SETCommandccciiiiiinnennnnn. 2-42

Block Listing of Elements 2-44

String Data in SET paragraphs 2-45

Using the SET Command for Term Address2-45
GOCommandciiiiiiiiinnnnnn. 2-46
Bad Syntax Error Messages 2-47
Section III Page
USING TRACE/3000
Preparinga BATCHFile.......................... 3-1
Preparing a Source Program to be Monitored
by TRACE/3000ccoiiiiiiiiiinnnnnnnnn, 3-1
Using TRACE/3000 in an Interactive Session....... 34
Using TRACE/3000 in a Batch Job 3-14
TRACE/3000 List File, TRCLIST 3-16
PRINT/HALT Table Sizec.coviivninnnnnn. 3-17
APPENDIX A i A-l1
APPENDIX B . ..ottt iieaneens B-1
INDEX .. i e it I-1

ILLUSTRATIONS

Title Page

BATCH File BATCHIcc0iiiiiinnn.. 24 Routine Parameter Condition Clause,

BATCH File BATCH2ccccivinunnnn. 24 Example 2ciiiiiiiiiiiiiiiiii i 2-35

BATCHFile BATCHS3ccoevvinvnnnt. 2-5 BATCH File PunchedonCards 3-2

SPL/3000 Sample Program, TRACE1 2-6 BATCH File Prepared Using EDIT/3000 3-2

Output Generated by Program TRACE1 2-7 FORTRAN/3000 Source Program TRACES3 3-3

Output Generated by BATCH File BATCH1 2-9 Compiling and Preparing Source Program

Output Generated by BATCH File BATCH?2 2-10 TRACES .. i it s 3-5

Output Generated by BATCH File BATCHS 2-11 Running Program XMPL3 Using BATCH File

Using the INTERACTIVE File 2-13 BATCHS ...ttt ittt it e it eaaeens 3-6

BATCH File PRINT Paragraph Example.......... 2-15 Running Program XMPL3 Using the $LABEL

INTERACTIVE File PRINT Paragraph Example .. 2-15 Sentence i 3-8

FORTRAN/3000 Sample Program, TRACE2 2-22 Running Program XMPL3 Using the Routine

Subscript Value Condition Clause Usage 2-23 Parameter Condition and Identifier Value

Identifier Value Condition Clause Usage 2-26 Condition Clausescccvviunn... 3-11

FORTRAN/3000 Sample Program, TRACE3 2-29 Using TRACE/3000 to Display the Value of

Label Condition Clause Usage 2-30 Array OUT e 3-12

Use Condition Clause Usage 2-32 FORTRAN/3000 Source Program and BATCH

Routine Parameter Condition Clause, File Punchedon Cards 3-14

Example 1ot 2-34 Using TRACE/3000 During a Batch Job 3-15
TABLES

Title Page

TRACE/3000 Commands and Control Calculating PRINT/HALT Sentence Size 3-17

Statementscciiiiiiiiii i 1-3 Equivalent Constant Types Al

INTRODUCING TRACE/3000

1-1. WHATIS TRACE/30007?

TRACE/3000 is a subsystem of the HP 3000 Multiprogramming Executive Operating System
(MPE/3000) that is used to find errors in programs written in SPL/3000 (Systems Programm-
ing Language for the HP 3000 Computer System) and FORTRAN/3000 (a version of FOR-
TRAN IV for the HP 3000 Computer System).

TRACE/3000 can be used during a batch job or an interactive session.

1-2. TRACE/3000 FEATURES

By inserting TRACE/3000 control statements into a source program, and TRACE/3000 com-
mands into a BATCH or INTERACTIVE file, you can monitor the step-by-step execution of a
program, or change the values of variables and array elements during program execution.

For example, depending on the TRACE/3000 commands used, it is possible to

® Monitor the points in a source program where control is passed to a procedure or sub-
routine. TRACE/3000 will display information showing when the routine is called, when it
is entered, and when control is returned back to the calling program unit. In addition,
TRACE/3000 will display the values of all parameters (passed to the routine) at the time of
the call to the routine.

® Monitor the values of variables during program execution. TRACE/3000 will display the
name and current value each time a variable is encountered during program execution,
except when a variable is used on the right side of an assignment statement or as an actual
parameter.

® Monitor the values of array elements during program execution. TRACE/3000 will display
the array name and subscript, and the current value of this element each time it is
encountered, except when the element is used on the right side of an assignment state-
ment or as an actual parameter. In addition, in SPL/3000, an array element will not be
displayed when used in a MOVE or SCAN operation.

® Monitor program labels. TRACE/3000 will display all labels for SPL/3000 and
FORTRAN/3000 programs as they are encountered during program execution.

Note: FORTRAN/3000 programs use numeric statement labels, as, for
example:

10 DO20I=1,15
statement label

SPL/3000 programs use alphabetic statement labels, as, for example:
ENDSORT:

1-1

® Check the correct spelling of program unit names, array names, and variable names if you
enter the first letter of the name. Once the first letter is entered, TRACE/3000 then
displays the correct full name.

Note: If there is more than one item starting with a given letter, only the
first item in alphabetic sequence is displayed. See Appendix B.

¢ Change the values of variables and array elements (in an interactive session only) without
terminating program execution. TRACE/3000 displays the current value and you may
enter a new value at that time.

® Determine the relative addresses of variables and array elements.

1-3. TRACE/3000 OPERATING MODES
TRACE/3000 can be run in either of two modes:

o Interactive mode. In an interactive session, you can enter TRACE/3000 commands from
the terminal. Control returns to the terminal after a HALT command (see Section II) is
executed, or you can regain control from the program by entering CONTROL Y (holding
the CONTROL key, or equivalent, down and pressing Y).

e Batch mode. In batch mode, commands cannot be entered once execution has started.
Execution terminates if a HALT command is executed.

Note: In either mode of operation, TRACE/3000 output will be listed on the
standard list device unless the TRACE/3000 list file designator,
TRCLIST, has been equated to another device with a :FILE command.
(See Section III.)

1-4. TRACE/3000 CONTROL STATEMENTS AND COMMANDS

TRACE/3000 is invoked by control statements, and, once accessed, is controlled by commands.
A summary of these control statements and commands is presented in table 1-1. Included is
the command or control statement name, its purpose, and the page number in this manual
where a complete description of the command or control statement can be found. (Note that
control statements are distinguished from commands by the $ sign.)

1-2

Table 1-1. TRACE/3000 Commands and Control Statements

COMMAND
NAME

PURPOSE

PAGE

CHECK

DROP

GO

HALT

MODE

PRINT

SET

$TRACE

$TRACEEND

$TRACESTART

Confirms correct application of program unit name and
variable and array element name abbreviations.

Deletes PRINT and HALT commands or sentences from
the PRINT/HALT table. (See Section Il for a complete
discussion of the PRINT/HALT table.)

Starts or resumes execution of the program in an interac-
tive session.

In an interactive session, HALT stops program execution
and returns control to the user. In a batch job, HALT
terminates program execution and flushes the remainder
of the program from the system.

Displayed by TRACE/3000 in an interactive session to
indicate that the INTERACTIVE file has been activated.
(See Section Il for a discussion of the INTERACTIVE file.)

Used as the first command in a PRINT paragraph, PRINT
causes TRACE/3000 to display information as defined in
sentences following the PRINT command.

1. Displays the current value of variables and array
elements and, if so directed, changes the values.

2. Displays the relative addresses of variables and
array elements according to their positions in the
stack area. (See the HP 3000 Computer System
Reference Manual for a discussion of the stack.)

Control statement. Used to inform MPE/3000 that the
program unit identified in the $TRACE record will be
monitored by TRACE/3000.

The last statement in the BATCH file, $TRACEEND closes
the file.

$TRACESTART is used as the first statement in the
BATCH file and opens the file.

2-41

2-40

2-46

2-16

2-12

2-16

2-42

2-1

2-3

2-3

Computer
Museum

1-3

1-5. STRUCTURE POINTS

During execution of a source program, TRACE/3000 monitors program structure points if so
directed by specific commands.

A program structure point, if defined for a program unit that calls another program unit (such
as a routine), is the point at which the call to the routine is made, or the point at which control
returns from the routine. If defined for a program unit being called, a structure point is the
point at which control enters this program unit, or the point where control exits this program
unit.

Thus, TRACE/3000 recognizes four structure points:

Call A point at which a program unit calls another program unit.

Enter The point where execution enters a program unit.

Exit The point where execution exits a program unit.

Return The point in the calling program unit where execution returns from a called
program unit.

TRACE/3000 COMMANDS

TRACE/3000 execution is initiated by a $TRACE control statement inserted in the program to
be monitored. During execution of the program, TRACE/3000 is controlled by commands
which are entered interactively or contained in a file.

2-1. $TRACE CONTROL STATEMENT

To monitor a source program unit, and identifiers within the program unit, the $TRACE
control statement is used. (A program unit is the main program unit or any routine operating
with the main program.)

where

program unit name is the name of the program unit (main program or routine) to
which this $TRACE control statement pertains. You may use
MAIN’ (in FORTRAN/3000) or OB’ (in SPL/3000) to signify the
main program unit if this unit has no name. The program unit
name parameter can be omitted from the $TRACE control state-
ment, in which case TRACE/3000 assumes the main program
unit. (If you want TRACE/3000 to monitor any program unit
except the main program unit, however, you must specify the
program unit name.)

identifier is the name of a variable, array, or routine which is contained in
the program unit identified by program unit name. If you specify
an identifier that is not contained in this program unit, TRACE/
3000 displays an error message. If SDELETE is specified as the
first item in the identifier list, the compiler suppresses all calls to
TRACE/3000 to monitor any identifiers except those explicitly
identified in the identifier list.

2-1

During compilation of a program referenced in a $TRACE control statement, the source
language compiler inserts calls to TRACE/3000 to monitor all labels and structure points
during execution. For example, if a program unit contains calls to subroutines A, B, and C,
TRACE/3000 would monitor these procedure calls even if they were not identified in the
identifier list of the $TRACE control statement. Using $DELETE as the first item in the
identifier list, however, suppresses this monitoring and allows TRACE/3000 to monitor only
those items which are specifically identified in the $TRACE control statement.

In a $TRACE control statement, $TRACE starts in column 1. The program unit name, if
present, is separated from $TRACE by one or more spaces. If the program unit name is
omitted, the semi-colon (;) is separated from $TRACE by one or more spices. Spaces can be
used freely within the identifier list, but not within specific identifier names. The examples
below show legal $STRACE records.

$TRACE MAIN’ ; MAX MIN, VAL
$TRACE : A, B, C, D
$TRACE ; ALPHA, OMEGA

$TRACE ; $DELETE, IFIX,10, 100, PROGI1

2-2. TRACE/3000 FILES AND TABLES

TRACE/3000 uses a BATCH file (see paragraph 2-3), an INTERACTIVE file (see paragraph
2-4), and a PRINT/HALT table (see paragraph 2-5) during execution. The BATCH file is
always used during a batch job and is optional during an interactive session. The INTER-
ACTIVE file is always used during an interactive session and cannot be used during a batch
job. The PRINT/HALT table is used in both batch and interactive modes, and is merely a table
used by TRACE/3000 to consolidate all commands from both the BATCH and INTERACTIVE
files.

2-3. BATCH FILE

In a batch job, a BATCH file must exist for any program unit to be monitored by TRACE/3000.
The use of a BATCH file in an interactive session is optional. When TRACE/3000 begins
operation during an interactive session, it displays

BATCHFILE=

If you do not wish to use a BATCH file, press RETURN, or its equivalent. (See Section III for a
discussion of TRACE/3000 operation.)

The first record in a BATCH file must be a $TRACESTART control statement. An optional
body of PRINT and HALT paragraphs follows the $STRACESTART statement and the last
record in the BATCH file must be a $TRACEEND statement. PRINT and HALT commands
are the only commands allowed in a BATCH file; DROP, SET, CHECK, and GO commands
may not be used.

2-2

Note: Paragraph is the name used to signify a list of TRACE/3000 commands
and identifiers. For example,

$TRACESTART

PRINT OPB’

INFILE PRINT paragraph
LEN1

HALT paragraph

HALT
STOP

In the BATCH file shown above, the PRINT OB’ command starts a
PRINT paragraph, INFILE and LEN1 are identifiers and are called
sentences of the paragraph. The HALT command starts a HALT para-
graph; STOP identifies a statement label at which execution will halt
and is called a sentence of the HALT paragraph.

The $TRACESTART statement must begin in column 1. The optional parameter ABORT
informs TRACE/3000 to terminate the program being monitored if the PRINT/HALT table
overflows (becomes too large) or if TRACE/3000 discovers an error in a PRINT or HALT

paragraph.

If the ABORT parameter is not used, TRACE/3000 ignores the error (and the rest of the
paragraph) or the PRINT/HALT table overflow condition and continues executing.

PRINT and HALT paragraphs constitute the body of the BATCH file. The BATCH file can
contain as many PRINT and HALT paragraphs as the size of the PRINT/HALT table will
allow. If the BATCH file contains more PRINT and HALT paragraphs than the PRINT/HALT
table can hold, TRACE/3000 displays an OVERFLOW message and terminates the program if
the ABORT paragrameter was specified in the $TRACESTART statement, or ignores the
paragraph and continues execution of the program if ABORT was not specified.

Each line of a PRINT or HALT paragraph must exist on a separate record and must start in
column 1 of the record. The first PRINT or HALT paragraph in the BATCH file must contain a
program unit name.

The last record in the BATCH file must be a $TRACEEND statement.

The $TRACEEND statement must begin in column 1, must be the last record in a BATCH file
and must be separated from the next-to-last record by a blank record. Failure to observe the
proper form for BATCH file records causes TRACE/3000 to abort the program and display the
message ’

BAD TRACE FILE
Examples of BATCH files are shown in figures 2-1 through 2-3.

In figure 2-1, the first record is $TRACESTART. The PRINT OB’ command starts a PRINT
paragraph and identifies the program unit (OB’) that is to be monitored. The next record is a
PRINT paragraph sentence and consists of a $FORM command. The $FORM command causes
a listing of structure points encountered during program execution. INFILE and LEN1 also
are sentences of the PRINT paragraph and identify variables which will be monitored by
TRACE/3000. Each variable and its current value will be displayed by TRACE/3000 when the
variable is encountered during program execution.

Note: Unless the $DELETE parameter is used in the $TRACE control state-
ment in the source program, the $FORM command causes all structure
points (for example, calls to subroutines, procedures, and function
subprograms) to be monitored.

The HALT command starts a HALT paragraph. The next line (STOP) is a sentence of the
HALT paragraph and informs TRACE/3000 to halt at the statement labelled STOP. If the
HALT command is omitted from the BATCH file (as in figure 2-2), the program will not halt
until the end of the program is reached.

$TRACESTART
PRINT OB*

$ FORM
INFILE

LEN!1

HALT
STOP

$TRACEEND

Figure 2-1. BATCH File BATCH1

$TRACESTART
PRINT OB*

$ FORM
INFILE

LENI

$TRACEEND

Figure 2-2. BATCH File BATCH2

$TRACESTART
PRINT 0B°'
$LABEL

$TRACEEND

Figure 2-3. BATCH File BATCH3

Figure 2-3 illustrates a BATCH file using the $LABEL command as the first sentence of the
PRINT paragraph instead of the $FORM command used in figures 2-1 and 2-2. The $LABEL
command causes TRACE/3000 to display all labels encountered when the program executes.

Figure 24 contains a short SPL program which reads a file and displays the contents of the file
on the standard list device. The $TRACE control statement (see the second statement of the
program) causes the compiler to invoke the TRACE/3000 subsystem when the :RUN command
is entered. Figure 2-5 shows the output when the program is run. TRACE/3000 displays a
“HELLO TRACE” message, then displays

BATCHFILE=

(the program was run interactively). Pressing the return key informs TRACE/3000 that there
is no BATCH file. TRACE/3000 then activates the INTERACTIVE file and displays

MODE =

to ask for the mode (NORMAL or RESTRICTED, see paragraph 2-4). The response, N for
NORMAL, causes TRACE/3000 to display an asterisk as a prompt for the first TRACE/3000
command of the INTERACTIVE file.

The first command entered is
*PRINT OB’

which starts a PRINT paragraph. The next two lines, INFILE and LEN1, identify variables
which are to be monitored by TRACE/3000. A carriage return, which is the equivalent of
entering a blank record, terminates the PRINT paragraph and TRACE/3000 displays an
asterisk to prompt for the next command. The GO command de-activates the INTERACTIVE
file and starts program execution.

2-5

: SPLPRE® TRACEI

PAGE 392) HP3212%A.25.1

03323 o $CONTROL USLINIT
03320 @ $§TRACE OB'; INFILE,LEN],FO®EN, FREAD,PRINT,FCLOSE
33207 @ << S°L EXAMPLE »>>
20292 3 BEGIN
226302 1 BYTE ARRAY MAILLIST(2:8)1="MAILLIST *;
22336 1 BYTE ARRAY ERRBUF(23:1)3
2023026 1 INTEGER ARRAY ERRQUT (*)=ERRBUF3
62236) ARRAY FOPENERR(2:5)3="FOPEN ERROR *3
20036 1 ARRAY FREADERR(QJ15):="FREAD ERROR "3}
23906 1 ARRAY CHKERR(3:5)1="FCHECK ERROR"3}
232086 | ARRAY OKCLO(@:1)1):='"FILE CLOSED SUCCESSFULLY";
a3314 1 ARRAY FCERR(@:5):="FCLOSE ERROR";
200606 | ARRAY BUF(2:39)2
2632026 | INTEGER INFILE,LEN],LEN2,ERRCODES
22006 1 INTRINSIC FO®EN,FCHECK,FREAD,FCLOSE;
202326 | INTRINSIC PRINT,ASCII3
23806 1 INFILE:=FOPEN(MAILLIST,%645,%2335)3
30937 1 1F < TREN GOTO OPENCHECK:
33043 1 DISPLAY:
08346 | LEN] :=FREADCINFILE,BUF,408)3
38079 1 1F < THEN GOTO READERR;
232371 1 1F > THEN GOTO CLOSE:
aze72 | PRINT(BUF,LEN],2)3
30136 1 GOTO DISPLAY:
23123 1 OPENCHKECK:
20131 1 OPRINT(FO®ENERR, 6,0)3
20145 1 FCHECK(2,ERRCODE);
20152 1 1F < THEN GOTO CHECKERR3
22153 1 LEN2:=ASC11(ERRCODE,102,ERRBUF)3
@2161 1 PRINT (ERROUT,LEN2,0);5
2317S 1 GOTO STO®:
28203 1 READERR:
22211 1 PRINT (FREADERR, 6,8)3
20225 1 CLOSE:
20233 1 FCLOSECINFILE,?,2)3
23246 1 1F < THEN GOTO CLOERR3
20247 | PRINT(OKCLO,12,2);
a2263 1 GOTO STO®;
228272 1 CLOERR:
20333 1 PRINT(FCERR,6,9);
20314 1 GOTO STOP;
2832)) CHECKERR:
28327 1 ORINT (CHKERR, 6,%)3
38343 1 STO®:
82351 1 END.

PRIMARY DB STORAGE=2215; SECONDARY DB STORAGE=2%30244

NO. ERRORS=020; NO. WARNINGS=000

OROCESSOR TIME=0:30:04; ELAPSED TIME=0:04100

END OF COMPILE

END OF PREPARE
:SAVE $0LDPASS,PROG

2-6

Figure 2-4. SPL/3000 Sample Program, TRACE1

¢tRUN PROG

HELLO TRACE HP32222A.82.2
BATCHFILE= return

MODE=N

*PRINT 0B’

INFILE

LEN]

*GO

INFILE= 3
LENI = 38

LO1S ANYONE
LEN1= 30

KING ARTHUR
LEN] = 30

ALI BABA
LEN] = 38

JOHN BIGTOWN
LENI = 30

KNEE BUCKLER
LENI = 3¢

SWASH BUCKLER
LEN1= 30

JAMES DOE
LEN1 = 30

JANE DOE
LEN] = 30

JOHN DOUGHE
LENi = 30

JENNA GRANDTR
LEN1= 30
KARISSA GRANDTR
LEN] = 30

SPACE MANN
LENi =)

6198 COURT ST.

329 EXCALIBUR ST.
49 THIEVES WAY
965 APPlAN WAY
974 FISTICUFF DR.
497 PLAYACTING CT.
4193 ANY ST.

3959 TREEWOOD LN.
239 MAIN ST.

493 TWENTIETH ST.
7917 BROADMOOR WAY

9999 GALAXY WAY

FILE CLOSED SUCCESSFULLY

BYE TRACE

END OF PROGRAM

METROPOL1S

CAMELOT

SESAME

METROPOL1S

PUGILIST

MOVIETOWN

ANYTOWN

BIGTOWN

HOMETOWN

PROGRESSIVE

B1GTOWN

UNIVERSE

NY

ca

co

NY

ND

ca

MD

MA

MA

ca

MA

CA

Figure 2-5. Output Generated by Program TRACE1

TRACE/3000 displays

INFILE= 3
LEN1= 30

then the first record of the file (MAILLIST) being read is displayed on the terminal. The value
of LEN1 is displayed each time a record is read from the file. After the last record is read,
TRACE/3000 displays

LEN1= 0
and, at the end of program execution, displays
BYE TRACE

Figure 2-6 illustrates the results of executing the program shown in figure 2-4 and specifying
BATCHI1 (see figure 2-1) as the BATCH file. Note that in addition to displaying values for
INFILE and LEN1, TRACE/3000 displays the following structure points:

CALL FOPEN
RETURN FOPEN
CALL FREAD
RETURN FREAD
CALL PRINT
RETURN PRINT
CALL FCLOSE
RETURN FCLOSE

The above structure points are displayed because of the $FORM command in BATCH file
BATCH1.

The structure points CALL FOPEN, RETURN FOPEN (when the file is opened) and CALL
FCLOSE and RETURN FCLOSE (when the file is closed) are displayed only once. CALL
FREAD, RETURN FREAD, and CALL PRINT, RETURN PRINT, however, are displayed each
time a record is read from the file and listed on the terminal.

1RUN PROG LEN]= k1]
CALL PRINT
HELLO TRACE HDJ2222A.92.2 JAMES DOE 4193 ANY ST. ANYTOWN MD
BATCHFILE=BATCHI RETURN PRINT
CALL FREAD
RETURN FREAD
MODE=N LENI= 38
CALL PRINT
»G0 JANE DOE 3959 TREEWOOD LN. BIGTOWN MA
CALL FOPEN RETURN PRINT
RETURN FOPEN CALL FREAD
INFILE= 4 RETURN FREAD
CALL FREAD LENI= 38
RETURN FREAD CALL °RINT
LEN] = 3e JOHN DOUGHE 239 MAIN ST. HOMETOWN MA
CALL PRINT RETURN PRINT
LOIS ANYONE 6192 COURT ST. METROPOL1S NY CALL FREAD
RETURN PRINT RETURN FREAD
CALL FREAD LENI» 38
RETURN FREAD CALL PRINT
LENI = 3o JENNA GRANDTR 493 TWENTIETH ST. PROGRESSIVE ca
CALL PRINT RETURN PRINT
KING ARTHUR 329 EXCALIBUR ST. CAMELOT CA CALL FREAD
RETURN PRINT RETURN FREAD
CALL FREAD LENI= 38
RETURN FREAD CALL PRINT
LENI= 38 KARISSA GRANDTR 7917 BROADMOOR WAY BIGTOWN MA
CALL PRINT RETURN PRINT
ALl BABA 48 THIEVES WAY SESAME co CALL FREAD
RETURN PRINT RETURN FREAD
CALL FREAD LENL = 30
RETURN FREAD CALL PRINT
LEN)= 30 SPACE MANN 9999 GALAXY WAY UNJVERSE Ca
CALL PRINT RETURN PRINT
JOHN BIGTOWN 965 APPIAN WAY METROPOLI1S NY CALL FREAD
RETURN PRINT RETURN FREAD
CALL FREAD LEN] = L4
RETURN FREAD CALL FCLOSE
LEN] = 30 RETURN FCLOSE
CALL PRINT CALL PRINT
KNEE BUCKLER 974 FISTICUFF DR. PUGILIST ND FILE CLOSED SUCCESSFULLY
RETURN PRINT RETURN PRINT
CALL FREAD STOP
RETURN FREAD oB*
LENL= 30
CALL PRINT *G0
SYASH BUCKLER 497 PLAYACTING CT. MOVIETOWN [+
RETURN PRINT BYE TRACE
CALL FREAD
RETURN FREAD END OF PROGRAM

Figure 2-6. Output Generated by BATCH File BATCH1

After the last record has been read and the file has been closed successfully, TRACE/3000 halts
at the statement labelled STOP and displays

STOP
OB’

to show the label (STOP) and the program unit (OB’) at which the halt occurred. TRACE/3000
then re-activates the INTERACTIVE file and displays an asterisk to prompt for another
command. The GO command starts program execution at the statement following the point
where the program halted (an END statement in this case) and program execution terminates.

Figure 2-7 shows the use of BATCH file BATCHZ2. Operation is identical to that of figure 2-6
except that TRACE/3000 does not halt operation at statement STOP (there is no HALT
command in BATCH file BATCH2).

Figure 2-8 illustrates the use of BATCHS3. Note that the variables INFILE and LEN1 are not
displayed. Instead, the $LABEL command in BATCH file BATCH3 causes TRACE/3000 to
display the label DISPLAY each time it is encountered until the last record is read. TRACE/
3000 then displays the labels

DISPLAY
CLOSE
STOP

YRUN_PROG

HELLO TRACE HPJ2222A.82.2
BATCHFILE=BATCH2

MODE=N

G0
CALL FOPEN
RETURN FO®EN
INFILE= 4
CALL FREAD
RETURN FREAD
LENI = 32

CALL PRINT

LOl1S ANYONE
RETURN PRINT
CALL FREAD
RETURN FREAD
LEN)= 32

CALL PRINT

KING ARTHUR
RETURN PRINT
CALL FREAD
RETURN FREAD
LENl = 30

CALL PRINT

ALl BABA
RETURN PRINT
CALL FREAD
RETURN FREAD
LENI= 30

CALL PRINT

JOHN BIGTOWN
RETURN PRINT
CALL FREAD
RETURN FREAD
LENt= 32

CALL PIINT

KNEE BUCKLER
RETURN PRINT
CALL FREAD
RETURN FREAD
LENI= 33

CALL PRINT

SWASH BUCKLER
RETURN PRINT
CALL FREAD

6193 COURT ST.

329 EXCALIBUR ST.

40 THIEVES WaY

965 APPIAN VWAY

974 FISTICUFF DR.

497 PLAYACTING CT.

METRO®OLI1S

CAMELOT

SESAME

METRO™QLI1S

PUGILIST

MOVIETOWN

NY

CA

co

NY

ND

Ca

RETURN FREAD
LENI= 32
CALL PRINT
JAMES DOE
RETURN PRINT
CALL FREAD
RETURN FREAD
LEN]= 30
CALL PRINT
JANE DOE
RETURN PRINT
CALL FREAD
RETURN FREAD
LENI= 33
CALL PRINT
JOHN DOUGHE
RETURN PRINT
CALL FREAD
RETURN FREAD
LENI» 32
CALL PRINT
JENNA GRANDTR
RETURN PRINT
CALL FREAD
RETURN FREAD
LEN] = 30
CALL PRINT
KAR1SS5A GRANDTR
RETURN PRINT
CALL FREAD
RETURN FREAD
LEN]= 3e
CALL PRINT
SPACE MANN
RETURN PRINT
CALL FREAD
RETURN FREAD
LEN] = 2
CALL FCLOSE
RETURN FCLOSE
CALL PRINT

4193 ANY ST.

3959 TREEWO0OD LN.

239 MAIN ST.

493 TWENTIETH ST.

7917 BROADMOOR WAY

9999 GALAXY WAY

FILE CLOSED SUCCESSFULLY

RETURN PRINT

BYE TRACE

END OF PROGRAM

ANYTOWN

BIGTOWN

HOMETOWN

PROGRESSIVE

BIGTOWN

UNIVERSE

MD

MA

MA

Cca

MA

Cca

Figure 2-7. Output Generated by BATCH File BATCH2

2-10

tRUN PROG

HELLO TRACE HP32222A.02.2
BATCHFILE=BATCH3

MODE=N

%GO
DISPLAY
LO1S
D1SPLAY
KING
DISPLAY
ALl
D1SPLAY
JOHN
DISPLAY
KNEE
DISPLAY
SWASH
DISPLAY
JAMES
D1SPLAY
JANE
DISPLAY
JOHN
DISPLAY
JENNA
DISPLAY
KAR1SSA
DISPLAY
SPACE
DISPLAY
CLOSE

ANYONE
ARTHUR
BABA
BIGTOWN
BUCKLER
BUCKLER
DOE

DOE
DOUGHE
GRANDTR
GRANDTR

MANN

6192 COURT ST.

329 EXCALIBUR ST.
48 THI1EVES WAY
965 APPIAN WAY
974 FISTICUFF DR.
497 PLAYACTING CT.
4193 ANY ST

3959 TREEWOOD LN.
239 MAIN ST.

493 TWENTIETH ST.
7917 BROADMOOR VWAY

9999 GALAXY VAY

FILE CLOSED SUCCESSFULLY

5TOP

BYE TRACE

END OF PROGRAM

METROPOL1S
CAMELOT
SESAME
METROPOLIS

PUGILIST

"MOVIETOWN

ANYTOWN

BIGTOWN

HOMETOWN

PROGRESSIVE

BIGTOWN

UNIVERSE

NY

ca

co

NY

ND

CcA

MD

MA

ca
MA

CA

Figure 2-8. Output Generated by BATCH File BATCH3

2-11

The examples in figures 2-4 through 2-8 all were run in interactive mode. See Section III for
more complete descriptions of running TRACE/3000 in both the interactive and batch modes. ‘

24. INTERACTIVE FILE

TRACE/3000 opens the INTERACTIVE file only if the source program is running in an
interactive session.

The INTERACTIVE file accepts PRINT, HALT, SET, DROP, CHECK, and GO commands
(unlike the BATCH file, which accepts only PRINT and HALT commands).

TRACE/3000 activates the INTERACTIVE file under the following three conditions only:

1. Before starting execution of the source program.
2. After a HALT command is executed.
3. After CONTROL Y is used.

In the first case above, TRACE/3000 indicates that the INTERACTIVE file has been activated
by displaying

MODE=

You must answer N (for NORMAL) or R (for RESTRICTED). NORMAL mode gives you full
use of all TRACE/3000 facilities, while RESTRICTED mode places two restraints on TRACE/
3000 operation, as follows:

1. You cannot use a label with a GO command (see paragraph 2-23).

2. You can modify the value of only simple variables by entering SET paragraphs into the
INTERACTIVE file (you cannot modify the values of arrays or array elements in
RESTRICTED mode). See paragraph 2-19 for a discussion of the SET command.

After you have entered N or R, TRACE/3000 displays an asterisk in column 1 of the line on the
terminal. Now you can enter commands and paragraphs.

In the second and third cases (after a HALT command has been executed or CONTROL Y has
been used), TRACE/3000 does not display MODE =, but displays an asterisk in column 1 of the
line to indicate that the INTERACTIVE file is ready to accept more commands. Again, you
now may enter commands and paragraphs.

After you have entered all required commands and paragraphs, de-activate the INTER-
ACTIVE file and return control to the program by entering the GO command (see paragraph
2-23).

An example of INTERACTIVE file usage is shown in figure 2-9. The same source program is
used as in figure 2-4. This time, however, all commands are entered through the INTER-
ACTIVE file. The PRINT command is entered to start a PRINT paragraph and the sentence
$LABEL is entered after the PRINT command. The end of the PRINT paragraph is signalled
by pressing RETURN (thus entering a blank record into the INTERACTIVE file). When
TRACE/3000 again displays an asterisk, the GO command is entered and TRACE/3000
monitors and displays all labels. Note that procedure calls and returns are not displayed
because the $FORM command was not used in the PRINT paragraph.

2-12

:RUN PROG

HELLO TRACE HP32222A.82.2
BATCHFILE= return

MODE=N

*PRINT OB’

$LABEL

*GO
D1SPLAY
LOIS
DISPLAY
KING
DISPLAY
ALl
D1SPLAY
JOHN
DISPLAY
KNEE
DI1SPLAY
SWASH
DISPLAY
JAMES
DISPLAY
JANE
DISPLAY
JOHN
DISPLAY
JENNA
DISPLAY
KAR1SSA
DISPLAY
SPACE
DISPLAY
CLOSE

ANYONE
ARTHUR
BABA
BIGTOWN
BUCKLER

BUCKLER

- DOE

DOE

DOUGHE

GRANDTR

GRANDTR

MANN

6193 COURT ST.

329 EXCALIBUR ST.
4¢ THIEVES WAY
965 APPIAN VAY
974 F1STICUFF DR.
497 PLAYACTING CT.
4193 ANY ST.

3959 TREEWOQOOD LN.
239 MAIN ST.

493 TWENTIETH ST.
7917 BROADMOOR WAY

9999 GALAXY WAY

FILE CLOSED SUCCESSFULLY

STOP

METROPOLIS
CAMELOT
SESAME
METROPOL1S
PUGILIST
MOVIETOVWN
ANYTOUWN
BIGTOWN
HOMETOWN
PROGRESSIVE
BIGTOWN

UNIVERSE

NY

ca

co

NY

ND

ca

MD

MA

MA

ca

MA

CA

BYE TRACE

END OF PROGRAM

Figure 2-9. Using the INTERACTIVE File

See Section III for a further discussion of the use of the INTERACTIVE file during TRACE/
3000 operation.

2-13

2-5. PRINT/HALT TABLE

The PRINT/HALT table consists of PRINT and HALT sentences entered into the BATCH or
INTERACTIVE files. TRACE/3000 consolidates all PRINT and HALT sentences from both
files into the PRINT/HALT table.

During program execution, TRACE/3000 searches the PRINT/HALT table for any PRINT and
HALT sentences applying to program identifiers appearing in $TRACE control records in the
program, and takes the appropriate action. For example, the $TRACE control statement in the
source program

$TRACE OB’ INFILE,LEN1,FOPEN,FREAD PRINT FCLOSE
and the PRINT sentences

$FORM
INFILE
LEN1

cause TRACE/3000 to monitor the program structure points (calls and returns from proce-
dures) and to monitor the variables INFILE and LEN1 and display the values of these
variables whenever they are encountered during program execution. Note that the identifiers
must appear in the $TRACE control statement and in the PRINT paragraph.

During an interactive session, PRINT and HALT sentences can be added or deleted from the
PRINT/HALT table once program execution begins by modifying the INTERACTIVE file.

See Section I1I for a discussion of PRINT/HALT table size and using the INTERACTIVE file to
modify the PRINT/HALT table.

2-6. PARAGRAPHS

TRACE/3000 recognizes five paragraph types: PRINT, HALT, DROP, SET, and CHECK.
PRINT and HALT paragraphs can be entered into both the BATCH and INTERACTIVE files;
while DROP, SET, and CHECK paragraphs can be entered into the INTERACTIVE file only.
Paragraphs entered into the BATCH file differ slightly from paragraphs entered into the
INTERACTIVE file (TRACE/3000 prompts with an asterisk for paragraphs in the INTERAC-
TIVE file whereas the asterisk is not used in the BATCH file), but basically BATCH and
INTERACTIVE paragraphs are structured in the same way.

Each paragraph starts with a record containing the paragraph type: PRINT, HALT, DROP,
SET, or CHECK. The paragraph type is optionally followed by one or more blanks and a
program unit name (see paragraph 2-7). For the BATCH file, the paragraph type starts in
column 1 of the record. For the INTERACTIVE file, TRACE/3000 displays an asterisk in
column 1 to indicate its readiness to accept paragraphs. The paragraph type is then started in
column 2 of the line.

The paragraph sentences follow the paragraph type on the next record/line. Each sentence
starts in column 1 of the record/line. You can enter as many sentences as you wish, subject to
the size of the PRINT/HALT table (for PRINT/HALT paragraphs). Sentences must be of the
proper paragraph type and form.

The paragraph end is signified in the BATCH file by a blank record. You then can insert
another paragraph immediately following the blank record. For the INTERACTIVE file,

2-14

paragraph end is signified by a carriage return in column 1 of the current line. TRACE/3000
responds by typing an asterisk in column 1 of the next line to prompt for the next paragraph.

A PRINT paragraph is shown in BATCH file form in figure 2-10 and in INTERACTIVE file
form in figure 2-11.

279, PROGRAM UNIT NAME IN PARAGRAPHS

TRACE/3000 associates a name of a program unit with each paragraph in either the BATCH
or INTERACTIVE file. All the sentences within the paragraph apply to the program unit
associated with the paragraph. Only those program unit names mentioned in $TRACE control
records in program units can be used in paragraphs. If the main program has no name, the
compiler assigns the name MAIN’ (for FORTRAN/3000 programs) or OB’ (for SPL/3000
programs).

The first paragraph of the BATCH and INTERACTIVE files must contain a program unit
name. If no program unit name appears in the first paragraph, TRACE/3000 treats the
paragraph as having incorrect form, and displays a BAD SYNTAX error message.

In each paragraph following the first one, you can include a program unit name along with the
paragraph type. If a program unit name is included, TRACE/3000 assigns that name to the
paragraph. If you do not include a program unit name with the paragraph type, TRACE/3000
assigns the program unit name of the paragraph immediately preceding the current para-
graph. This means that only the first paragraph in the BATCH and INTERACTIVE files must
have a program unit name. All other paragraphs can omit the program unit name. Those
paragraphs then will apply to the same program unit as the first paragraph.

$STRACESTART _ 'No blank record between $TRACESTART
PRINT 0B' and first TRACE/3000 command.

$FORM

INFILE

LENI - Blank record (all 80 characters blank)
$TRACEEND between last sentence and $TRACEEND.

Figure 2-10. BATCH File PRINT Paragraph Example

PRINT OB

* - TRACE/3000 prompts for next command.

Figure 2-11. INTERACTIVE File PRINT Paragraph Example
2-15

2-8. PRINT AND HALT COMMANDS AND PARAGRAPHS

PRINT and HALT commands are used as the first commands in PRINT and HALT para-
graphs. The PRINT and HALT commands are entered into the BATCH or INTERACTIVE
files and various parameters, or sentences, are added after the PRINT and HALT commands to
form paragraphs.

PRINT and HALT sentences are used to request the displaying of program data and logic flow
during program execution.

where

program unit name is the name of the program unit to which the paragraph will
apply. The first PRINT command in the BATCH and
INTERACTIVE files must contain a program unit name. All
other PRINT commands need not contain a program unit
name unless the command applies to a program unit other
than the one in the preceding paragraph.

s

where

program unit name is the same as described for the PRINT command.

The PRINT and HALT commands are used to start PRINT and HALT paragraphs. After the
PRINT or HALT command, parameters, or sentences, are added to inform TRACE/3000 what
action it is to take.

2-16

e

-
i

L
R

o
Lo

i i
-

where

program unit name

sentence

is the same as described for the PRINT command. The first
paragraph in the BATCH and INTERACTIVE files must
contain a program unit name. All other paragraphs need not
contain a program unit name unless the paragraph applies
to a program unit other than the one in the preceding para-
graph.

consists of an identifier name, optionally followed by one or
more condition clauses (see paragraph 2-9) allowed for the
identifier type (array, variable, label, or routine). The
$FORM and $LABEL commands can be used as sentences
and can be modified by condition clauses. $¥ ORM (if unmod-
ified by condition clauses) gives a complete listing of struc-
ture points during program execution (unless $DELETE
was specified in the $TRACE control statement, in which

2-17

blank record terminator

case only those structure points included in the $TRACE
control statement are listed). $LABEL (if unmodified by
condition clauses) gives a complete listing of the labels en-
countered during program execution (unless $DELETE was
specified in the $TRACE control statement, in which case
only those labels specified in the $TRACE control statement
are listed). See paragraph 2-15 for a discussion of PRINT
sentence execution.

is a blank record (all 80 columns blank) for the BATCH file,
or a carriage return in column 1 of the line for the
INTERACTIVE file.

where

2-18

program unit name

sentence

blank record terminator

is the same as that defined for the PRINT paragraph. If the
HALT command is the first command in a BATCH or
INTERACTIVE file, program unit name must be specified,
or if the program unit in which the halt is to be executed is
different that the program unit specified in the preceding
paragraph, program unit name must be specified.

consists of an identifier name, optionally followed by one or
more condition clauses. Every sentence in a HALT para-
graph will cause program execution to stop once the iden-
tifier specified in the paragraph is reached. For example, if
$LABEL (with no condition clauses) is used as a sentence,
program execution will stop at the first label encountered. If
$FORM is used, program execution will stop at the first
program structure point that is encountered. If a HALT
sentence consists of a variable, program execution will stop
when the variable is encountered in the program unit. See
paragraph 2-15 for a discussion of HALT sentence
execution.

is the same as described for the PRINT paragraph.

2-9. SENTENCE CONDITION CLAUSES

Identifiers used in sentences in PRINT and HALT paragraphs can be modified by condition
clauses. There are five types of condition clauses, as follows:

Subscript value condition clause (S1). This condition clause, abbreviated as S1, is used only
with array-type identifiers. See paragraph 2-10.

Identifier value condition clause (I1). The I1 condition clause can be used with array and
variable-type identifiers. See paragraph 2-11.

Label condition clause (L1). The L1 condition clause can be used with all identifier types.
See paragraph 2-12.

Use condition clause (UI). The Ul condition clause can be used with all identifier types.
See paragraph 2-13.

Routine parameter clause (R1). The R1 condition clause is used only with routine-type
identifiers. See paragraph 2-14.

Condition clauses, if used with identifiers, must appear in the order shown below. The clauses
must be separated from the identifier, and from each other, by one or more blanks, although no
blanks can exist within the condition clauses themselves.

or

or

or

or

or

array S111 L1 U1

variable I1 L1 U1

label L1 Ul

$LABEL L1 Ul

routine R1 L1 Ul

$FORM R1 L1 Ul

2-10. SUBSCRIPT VALUE CONDITION CLAUSE. The subscript value condition
clause is used only with array-type identifiers (identifier type is determined by its source
program definition).

2-19

where

represents the effective subscript in the source program. For
example, in the subscript value condition clause (* =6), the value
6 represents the sixth element of the array identifier which is
modified by the condition clause (IVAR in the example shown)
and the asterisk causes TRACE/3000 to search for a reference to
array element IVAR(6) in the source program, thus forming an
expression that can be evaluated (if array element IVAR(6) is
encountered during program execution, TRACE/3000 will display
its value).

relational operator is one of the following relational operations:

equal
< > not equal
> greater than
< less than
>
<

greater than or equal
less than or equal

integer primary is either a constant or variable of type integer. If a variable, it
must have been included in a $TRACE control statement.

Examples of subscript value condition clauses used in PRINT and HALT paragraphs are
shown below. The first paragraph appears as in a BATCH file; the second paragraph appears
as in an INTERACTIVE file.

PRINT PROGRAM1
ARRAY1 (*=6)

ARRAY2 (*<MAXIMUM)
ARRAY1 (*>=34)

blank record terminator

2-20

*HALT PROGRAM1
ARRAY2 (*=36)
ARRAY1 (*=MIN)

return
%

Figures 2-12 and 2-13 illustrate subscript value condition clause usage.

Figure 2-12 is a sample FORTRAN/3000 source program, which is compiled and prepared into
the program file XMPL2. The MPE/3000 :RUN command accesses TRACE/3000, which re-
sponds (the program was run interactively) with:

BATCHFILE=

A carriage return causes TRACE/3000 to use only the INTERACTIVE file and display
MODE=

An N response informs TRACE/3000 that the program will run in the NORMAL mode and

TRACE/3000 prompts for a command by displaying an asterisk.

The HALT paragraph

*HALT TRACE2
70

informs TRACE/3000 to execute the program until statement label 70 is reached and to halt at
that point. When statement label 70 is reached, the program halts, control is returned to the
user, and TRACE/3000 displays

70
TRACE2
The SET paragraph (see paragraph 2-22)

*SET
STOPNOW= " 0/1

causes TRACE/3000 to display the current value (0) of variable STOPNOW and the /1 enters a
new value for this variable. The second GO command (now that STOPNOW is not equal to 0)
causes the STOP and END statements to be executed and the program terminates.

2-21

t FORTPREP TRACEZ2,XMPL2

PAGE 0001 HP32102A.01.4

20001068 $SCONTROL USLINIT

20002000 S$TRACE TRACE231,J,1ARR,STOPNOW
0030300 S$STRACE SBJIVAR,LLM

0 00 0 4200 PROGRAM TRACE2

0 20 85000 108 FORMAT('Q',T8,S57/)

0 00 06000 298 FORMAT(TS,514)

30087000 DIMENSION IARR(S5,5)
? 0008200 CHARACTER Ax*190
00009930 INTEGER STOPNOW
20010200 STOPNOW=0

20011000 10 I=5

20012900 20 J=5

00013030 30 K=10

2001400 40 CALL SB(IARR,A,1,J,K)
20015000 50 WRITE(6,100)A
02016000 60 WRITE(6,200)IARR
202100 70 CONTINUE

00018000 IF(STOPNOW.EQN.3)G0OTO 10
20019500 STOP
00020000 END

*%x%xx NO ERRORS, NO WARNINGS; PROGRAM UNIT COMPILED *k**xx*
COMPILATION TIME 1.138 SECONDS ELAPSED TIME 76.285 SECONDS

260217900 SUBROUTINE SB(IVAR,Z,L,M,N)
20022000 DIMENSION IVAR(L,M)
30023000 CHARACTER Z*(N)

00324300 10 DO 38 NRrR=l1,L
00025000 29 DO 38 NC=1,M
20026000 30 IVAR(NR, NC)=NR*NC

22027200 Z="THE START"
00 228000 RETURN
2 202900 END

*x %% NO ERRORS, NO WARNINGSS PROGRAM UNIT COMPILED &kx
COMPILATION TIME ?.682 SECONDS ELAPSED TIME 43.42¢ SECONDS
TOTAL COMPILATION TIME ©:00:02

TOTAL ELAPSED TIME @:02:13

END OF COMPILE

END OF PREPARE
tRUN XMPL2

HELLO TRACE HP32222A.082.]
BA TCHFILE= return

MODE=N

*HALT TRACE2

18

*GO
THE START
1 2 3 4 s
2 4 6 B8 18
3 6 9 12 15
a 8 12 16 20
s 10 15 20 25

70

TRACE2

*SET

STOPNOW= 8/1

*GO

END OF PROGRAM

2-22

Figure 2-12. FORTRAN/3000 Sample Program, TRACE2

t RUN XMPL2 * DROP

SB
HELLO TRACE HP32222A.82.1 T
BATCHFILE= return *PRINT SB
MODE=N 1VAR (%<26)
*HALT TRACE?2 *GO
70 GO
IVARCl) = 1
*PRINT SB 1 VAR(6) = 2
IVAR (*x=6) , 1 VARC11)= 3
1 VAR(16)= 4
*GO 1VAR(21) = 5
IVAR(6) = 2 I1VAR(2) = 2
1 VAR(7) = 4
1 vAR(C12)= 6
THE START I VARCIT) = 8
1 VAR(22)= 10
1 VAR(3) = 3
1 2 3 4 5 1 VAR(8) = 6
2 4 6 8 10 1VARC(CI3) = 9
3 6 9 12 15 I1vVAR(18)= 12
4 8 12 16 20 1 VAR(23)= 15
5 10 15 2@ 25 I1VARCA) = 4
70 1 VAR(9) = 8
TRACE2 I VARC14)= 12
1 VARC19) = 16
*PRINT SB 1 VAR(24) = 290
IVAR (%=23) 1 VAR(S) = 5
1 VARC1D) = 10
*GO 1 VAR(C15) = 15
1VAR(20) = 29
1VAR(C6) = 2 1 VAR(25)= 25
1 VAR(23) = 15
THE START
THE START
1 2 3 4 5
1 2 3 4 5 2 4 6 8 10
2 4 6 8 10 3 6 9 12 15
3 6 9 12 15 4 8 12 16 2p
4 8 12 16 20 S 19 15 29 25
S 1 15 28 25 70
70 TRACE2
TRACE2
* SET TRACE?2
S TOPNOW= /1
*GO

END OF PROGRAM

Figure 2-13. Subscript Value Condition Clause Usage
2-23

Figure 2-13 illustrates subscript value condition clause usage. Again, the HALT paragraph

*HALT TRACE2
70
informs TRACE/3000 to halt program execution at statement label 70. The PRINT paragraph
*PRINT SB
IVAR (*=6)

causes TRACE/3000 to monitor array IVAR in program unit SB. The (*=6) value condition
clause informs TRACE/3000 that, if array element IVAR(6) is encountered during program
execution, its value is to be displayed.

TRACE/3000 displays the value (2) of array element IVAR(6), executes the remainder of the
program up to statement label 70, and halts at this point.

The next PRINT paragraph

*PRINT SB
IVAR (*=23)

adds element IVAR(23) to the array elements to be monitored and TRACE/3000 displays the
value of IVAR(6) and IVAR(23), again halting at statement label 70.

The DROP command (see paragraph 2-17) is used to start the DROP paragraph
*DROP
SB
which deletes all sentences from the PRINT SB paragraphs and the new PRINT paragraph

*PRINT SB
IVAR (*<26)

is entered. The value condition clause (* <26) will cause TRACE/3000 to display the values of
IVAR array elements as long as the subscript is less than 26. TRACE/3000, therefore, displays
all elements of IVAR and the value of each element. When the program halts at statement
label 70, the SET paragraph

*SET TRACE2
STOPNOW= 0/1

sets the value of STOPNOW to 1 and the next GO command causes program termination.

2-11. IDENTIFIER VALUE CONDITION CLAUSE. The identifier value condition
clause is used with array and variable-type identifiers to test the value of a data element. The
clause is separated from the subscript value condition clause by one or more blanks, or from
the identifier by one or more blanks if a subscipt value condition clause is not used.

2-24

where

relational operator is the same as that defined for the subscript value condition
clause.
primary is either a variable or a constant.

The following examples (in a BATCH file) show how the identifier value condition clause joins
with identifiers and subscript value condition clauses to form arithmetic expressions. If the
arithmetic expression is true, then the identifier value condition clause is true.

PRINT

ARRAY1 (*=10)=MAXIMUM
ITEM >MINIMUM

ARRAY2 (*=24)=1000

blank record terminator

Figure 2-14 illustrates identifier value condition clause usage. The same program (TRACEZ2)
is used as in figure 2-13.

The PRINT paragraph

*PRINT TRACE2
I <6

>

Gy
—

informs TRACE/3000 to monitor the variables I and J if the identifier value condition clauses
are true. That is, if the value of I is less than 6 and the value of J is greater than 1.
The second PRINT paragraph

*PRINT SB
IVAR (*=13) =9

uses the subscript value condition clause (*=13) and the identifier value condition clause to
modify the sentence. Thus, the sentence will execute only if both clauses are true. That is, if
array element IVAR(13) has a value of 9.

The HALT paragraph instructs TRACE/3000 to halt at label 70 and the GO command
de-activates the INTERACTIVE file and starts program execution. TRACE/3000 displays

I= 5
J= 5
IVAR(13)= 9

(the condition clauses were true), executes the remainder of the program, and halts at
statement 70. :

The DROP paragraph

*DROP SB
$ALL

deletes all PRINT sentences from the PRINT/HALT table for program unit SB. The new
PRINT paragraph

*PRINT SB
IVAR (*=13) =10

2-25

t RUN XMPL2

HELLO TRACE HP32222A.02.1
BATCHFILE= return
M ODE=N

*PRINT TRACE2
I <6

J >1

*PRINT SB
IVAR (*=13) =9

*HALT TRACE?2

70

*G0

I= S

J= S

I VAR(13)= 9
THE START
1 2 3 4 S
2 4 6 8 1@
3 6 9 12 15
] 8 12 16 20
S 18 15 24 25

79

T RACE2

* DROP SB

$ALL

*PRINT SB

IVAR (x=13) =10

*G0

I= S

J= S
THE START
1 2 3 4 5
2 4 6 8 19
3 6 9 12 15
4 8 12 16 20
S 18 15 28 25

73

TRACE2

* SET TRACE?2

ST OPNOW= /1

*GO0

END OF PROGRAM

2-26

Figure 2-14. Identifier Value Condition Clause Usage

changes the identifier value condition clause for IVAR element 13 (the subscript value
condition clause (* = 13) is the same as previously). After the GO command is entered and
program execution begins, TRACE/3000 displays

I= 5
J= 5

(these identifier value condition clauses were not changed) but does not display a value for
IVAR(13) because the identifier value condition clause is false (array element IVAR(13) does
not equal 10).

2-12. LABEL CONDITION CLAUSE. The label condition clause can be used with all
identifier types. This condition clause describes an area within a program unit bounded by two
labels. The area includes the source statement of the first label and all statements up to (but
notincluding) the source statement of the second label. If the identifier in the identifier value
condition clause falls between the two labels, the label condition clause is true. If the identifier
is encountered after the second label or before the first label, the label condition clause is false.
The label condition clause is separated from the preceding condition clause or the identifier
itself (if no preceding condition clause is used) by one or more blanks.

where

label is either a label-type identifier or an asterisk. *-label denotes “from the begin-
ning” of the program unit to the second label (defined by label). label-* denotes
from the first label to the “end of program unit”.

The second label must physically follow the first label in the program unit.

The following are examples (in a BATCH file) of label condition clauses:

PRINT EXON

ARRAY1 (*=10) =MAX 10-30
MAXVAL *-60

VALUE (*=8) 60-*

blank record terminator

Figures 2-15 and 2-16 illustrate label condition clause usage.
2-27

Figure 2-15 is a sample FORTRAN/3000 source program, TRACE3, which is compiled and
prepared into program file XMPL3. The MPE/3000 :FILE command

:FILE FTN20=NAMES,OLD

equates FORTRAN/3000 logical unit number 20, used in statement 10 in the program, to the
old file NAMES. See the MPE/3000 Operating System Reference Manual for a discussion of the
:FILE command and the FORTRAN/3000 Reference Manual for a discussion of FORTRAN/
3000 logical unit numbers.

The HALT paragraph

*HALT TRACE3
40 .

causes the program to halt at statement label 40. The SET paragraph

*SET
STOPNOW= 0/1

is used to set the integer variable STOPNOW equal to 1 so that when the second GO command
is executed, the program terminates.

The program reads names from a file (NAMES), and reverses and displays the names.

Figure 2-16 illustrates label condition clause usage. Again, the HALT paragraph instructs
TRACE/3000 to halt at statement label 40.

The PRINT paragraph

*PRINT REVERSE
K 40-60
OUT (* <8) 30-50

specifies label condition clauses for the variable K and the array OUT. When the GO command
is entered, TRACE/3000 displays the value of OUT for all elements less than 8 which are
bounded by labels 30 and 50 in program unit REVERSE. (The program statements between
labels 30 and 50 write the last name into array OUT, so this is the information displayed in
OUT array elements OUT(1) through OUT(7).) Also, the values of K occurring between the
labels 40 and 60 are displayed.

2-13. USE CONDITION CLAUSE. The use condition clause can be used with all iden-
tifier types. This condition clause is separated from the preceding condition clause or from the
identifier by one or more blanks. The use condition clause is referenced only if all the
preceding condition clauses (if any) in the sentence are true.

2-28

1FORTPREP TRACED

PAGE 2981 HP32102A.01.6

Q0801008 $CONTROL USLINIT

20022200 STRACE TRACEJIINAMEIN, NAMEOUT, STOPNOW
97833093 S$TRACE REVERSEJIN,OUT,1,J,K

22024220 PROGRAM TRACE3

200352892 120
2200862292 200
aaaareae 3aa

FORMAT (2@A1)
FORMAT(T7,208R1,T32,208A1)

2320 8320 CHARACTER NAMEIN(2@),NAMEOUT (28)
2023995200 INTEGER STOPNOW
22a10020 STOPNOV=2

aae11020 10
20012000 20
2091232202 3a

VRITE(6,129)
READ (22,230, END=46)NAMEIN
CALL REVERSE(NAMEIN, NAMEOUT)

200614220 WRITE(6,302)NAMEIN, NAMEOUT
202) 5009 GOTO 20

20916800 49 CONTINUE

eaal 7229 1F(STOPNOW.NE.Q)STO®
adaisaaa REWIND 20

300195200 GOTO 19

90020029 52 sToP

20021000 END

seks NO ERRORS,
COMPILATION TIME

NO WARNINGS}

1.395 SECONDS ELAPSED TIME

280220089 SUBROUTINE REVERSECIN,OUT)
02023238 CHARACTER IN(20),0UT(20@)
aaa24d02 C

82025003 C FIND END OF FIRST NAME
20026003 C

20827809 12 DO 20 1=1,29

228280800 IFCINCI) <EQ." ")GOTO 30
20029300 20 CONTINUE

920630020 3a J=l+]

d20831008 C

92032003 C WRITE LAST NAME INTO OUT
23333333 C

932340027 K=3

32035933 DO 47 1=J,23

23336223 KeKel

23037293 IFCINCI)CEQ™ ")GOTO 53

22238203 42 QUT(K)=INCI)

930339932 53 0UT (K)I="",""

23343233 K=Ke+]

23341339 QUT(K)=" *

220842033 C

32343223 C WRITE FIRST NAME INTO OUT
223344323 C

23745092 DO 63 I=1,23

33346303 K=Ke1

022470822 IFCINCI)oEQW™ "™)GOTO 72

93348203 69
90349308 C
30050933 C FILL REMAINDER OF OUT WITH BLANKS
Q23251393 C

23852303 72
822353203 82 ouT(l)="
902354333 RETURN
23355222 END

OUTCKI=INCI)

DO 82 I=K,23

wess NO ERRORS, NO WARNINGS}
COMPILATION TIME 1.425 SECONDS
TOTAL COMPILATION TIME 231:82:03
TOTAL ELA®SED TIME 2103151

ELAPSED TIME

END OF COMPILE

END OF PREPARE

FORMAT (T 1@, "NAME”,T3@,"LAST NAME F11ST"//)

DROGRAM UNIT COMPILED s%%%

84.161 SECONDS

©ROGRAM UNIT COMPILED ssss

132.633 SECONDS

s FILE FTN23=NAMES,OLD

¢ QUN XMPL3

HELLO TRACE MP32222A.72.1

BATCHFILE= return
¥ ODE=N

*HALT TRACE3J

)
x50
NAME
JOHN BIGTOWYH
LO1S ANYONE
AL1 BABA
JAMES DOE
JOHMN DOYGHE
MARY MEEK
SPACE MAMN
KING ARTHI?
KARISSA GRANDT™
JENNA GRANDTR
SWASH BUCKLEZ®
XNEE BUCKLER
47
TRACE3
®SET
ST OPNOW= arsl
*G

END OF 2NOGPAM

LAST NAME FI19ST

BIGTQWN, JO:IN
ANYONE, LOIS
3ABA, ALl
DOE, JAMES
DO'GHE, JOHH
MEEK, MARY
MANN, SPACE
ARTHUZ, KIn
GRANDT®, KARISSA
GRANDTR, JENNA
BUCKLER, SWASH
BICKLE®, KNZIE

Figure 2-15.

FORTRAN/3000 Sample Program, TRACE3

2-29

1 RUN XMPLJ SPACE MANN MANN, SPACE

e
HELLO TRACE HP32222A.02.) ouTC1)="A
BATCHFILE= return
MO DE=N

.
*HALT TRACE3 0 UTCS)m" U

0UT(&)="R"
K= 8

*PRINT REVERSE e

K a0-68 Xa 11

OUT x<8) 30-50 Ka 12
K= 13

*50 KING ARTHUR ARTHUR, KING
QUTCDA"G”

NAME LAST NAME FIRST

QUT(I)a"B"

QUT(T)="R"

K=
K=
Ka
K=
K=
K=
Km
K=
K=
GRANDTR, KARISSA
BIGTOWN, JOHN OUT(1yamtr
OUT(2)="R
ouUT (=
ouTCa)
oUT(S)=
oUT(H)=
OUT(S)I="EN OUT(Ty="R
X= 8 K= 9
K= 9 K= 10
K= 10 K= 11
K= 11 Ka
K= 12 K=
K= 13 K=
LOIS ANYONE ANYONE, LOIS K=
OUTCI)="B" GRANDTR GRANDTR, JENNA
oyuT(2y=ran OUTC1)avpr
OUT(Da" QUT(2>=
ouTCa A" OUT(D=
K= 6 oUT(&)=
K= 7 oUT(S)=
K= 8 0UT(6)=
K= b4 OUT(TY="R"
K= 18 K= 0
ALI BABA BABA, ALI K= 18
OUTCI)= K= "
ouUT(2)= K= 12
0UT(3)="E" K= 13
K= K= 14
K= K= 15
K= SWASH BUCKLER BUCKLER, SWASH
K= OUTC1)="B"
K=
b OUT(="C"
augor
DOE, JAMES 2312‘;3.‘:
0UTC1)="
oUT(2)="
0UT(3)=
oUTCa)=
0UT(5)=
OUT(&I="E"
K= 8
Ka 9
K= 10 BUCKLER, KNEE
K= 11
K= 12
K= 13
JOHN DOUGHE DOUGHE, JOHN *SET TRACE3
OUT (])= "Mn Ss——mpm‘,_ es1
*GO
OUT ¢a)="K" =
K2 s END OF PROGRAM
K= 7
K= 8
K= 9
K= 10
K= 11
MARY MEEK MEEK. MARY
QUT (1) =""M"
QUT()="
OUT(D)=
oUT(=
K= 6
K= 7
K= 8
K= 9
K= 10
K= 11
K= 12

Figure 2-16. Label Condition Clause Usage
2-30

where

integer primary is either an integer variable or an integer constant. The type is
determined by the primary’s definition in the source program. If an
integer variable, it must have been included in a $TRACE control
statement.

TRACE/3000 initially stores the constant or evaluates and stores the value of the variable. A
value of less than one is stored as one. If integer primary has a value of 4, the use condition
clause is false for the first 3 (n - 1) times it is referenced. (Remember that the use condition
clause is not referenced unless all previous condition clauses in the sentence are true.) The
fourth time the use condition clause is referenced, it is true and the PRINT or HALT sentence
is executed. Upon execution of the sentence, TRACE/3000 re-evaluates and stores integer
primary in the same manner as initially.

The following are examples (in a BATCH file) of use condition clauses:

HALT PROG2

VALUE @2

ARRAY1 (* <24) =1000 10-40 @44
NUM >MAXIMUM @ITEM

blank record terminator

Figure 2-17 is an example of the use condition clause. The same program is used as in
figure 2-16.

The use condition clause @4 is added to the PRINT paragraph sentences K 40-60 and OUT
(* <8) 30-50 to produce the PRINT paragraph

*PRINT REVERSE
K 40-60 @4
OUT (* <8) 30-50 @4

As you recall from figure 2-16, TRACE/3000 had displayed all values of K occurring between
labels 40 and 60 and values for array OUT elements less than 8 occurring between labels 30
and 50. Adding the use condition clause @4, however, causes TRACE/3000 to display values
for variable K and array OUT elements only every fourth time.

Comparing figures 2-16 and 2-17, observe that in figure 2-16 for the name “JOHN BIG-
TOWN”, TRACE/3000 displays OUT(1) through OQUT(7) and values for K of 9 through 14. In
figure 2-17, however, TRACE/3000 displays OUT(4)="T" (OQUT(1), OUT(2), and OUT(3) are
not displayed), and K=12. K is not displayed when its value is 9, 10, or 11 (the first 3 times it
occurs). This sequence continues through the remainder of the program, with TRACE/3000
displaying every fourth occurrence of array OUT and variable K.

2-14. ROUTINE PARAMETER CLAUSE., The routine parameter clause consists of a
pair of empty parentheses “()” separated from the routine name or $f ORM by one or more
blanks. This condition clause causes TRACE/3000 to print the current value of the parameters
for the specific routine (and the routine’s assigned value if it is a function subprogram) when
the routine is entered or called during program execution (the program structure points).

231

t RUN XMPL3

HELLO TRACE HP32222A.02.1
BATCHFILE= return
M ODE=N

*HALT TRACE3
40

*PRINT REVERSE
K an-6a @4
OUT (*<8) 30-50 @4

*GO

NAME

ouTCA =TT
K= 12

JOHN BIGTOWN
oUTC1)="A"
OUT(SI="N"
K= 9
K= 13

LOIS ANYONE
0UT(3)="B"
K= 9

ALI BABA
QUT(3)="E"
K= 7
K= 11

JAMES DOE
0 UTC4)="G"
K= 11

JOHN DOUGHE
OUT(2)="E"
K= 7
K= 11

MARY MEEK
OUT(2)="A"
K= 9

SPACE MANN
OUT(2)=""R"
OUT(6)="R"
K= 8
K= 12

KING ARTHUR
OUTC4)="N"
K= 1
K= 15

KARISSA GRANDTR
OUTC1)="G"
OUT(5)=""D"
K= 10
K= 14

JENNA GRANDTR
ouT2)="1
OUT(E)="E"
K= 11
K= 15

SWASH BUCKLER
OUTCI)="C"
OUTCT="R"
K= 12

KNEE BUCKLER
49
TRACE3

*SET TRACEJ
ST O°PNOW= 6/1

*G0

END OF PROGRAM

LAST NAME FIRST

BIGTOWN, JOHN

ANYONE, LOIS

BABA, ALI

DOE, JAMES

DOUGHE, JOHN

MEEK., MARY

MANN, SPACE

ARTHUR, KING

GRANDTR, KARISSA

GRANDTR, JENNA

BUCKLER, SWASH

BUCKLER, KNEE

Figure 2-17. Use Condition Clause Usage

Figures 2-18 and 2-19 illustrate the use of the routine parameter clause.

Figure 2-18 uses program TRACE3. The PRINT paragraph

*PRINT TRACE3
REVERSE ()

specifies the routine REVERSE followed by a pair of empty parentheses. When the program
executes, TRACE/3000 displays the values assigned to the parameters passed to the sub-
routine REVERSE.

The first call to REVERSE results in the display
CALL REVERSE("J”,*)

“J” is the value of element 1 of character array NAMEIN (the first letter of the name “JOHN
BIGTOWN?”). NAMEIN is one of the parameters passed to REVERSE. The second part of the
display (* ”) shows that character array NAMEOUT is null at this point (it will be given a
value by the subroutine). The second call to REVERSE shows that NAMEIN(1)="L" (the first
letter of “LOIS ANYONE”) and NAMEOUT(1)="B”, which is the first letter assigned to
NAMEOUT by the subroutine REVERSE on the previous call. (NAMEOUT retains its pre-
vious value until subroutine REVERSE executes again, filling NAMEOUT with new values.)

The program executes until statement label 40 is reached, then displays

40
TRACE3

The SET paragraph is used to set the value of STOPNOW to 1 and the second GO command
terminates the program.

Figure 2-19 uses a short FORTRAN program which increments a value from 1.0 to 10.0 and
computes the square root and the reciprocal of the value.

The PRINT paragraph

*PRINT TRACE1
$FORM ()

illustrates the use of the $F ORM () type of routine parameter condition clause. Using $FORM
causes TRACE/3000 to display all program structure points during program execution. The
empty parentheses causes TRACE/3000 to display values of parameters passed to routines.

2-33

s RUN XMPL3

HELLO TRACE HP32222A.02.1
BATCHFILE= return

M ODE=N
* D RINT TRACE3
REVERSE ()
*HALT
40
*GO
NAME LAST NAME FIRST

CALL REVERSE("J",""™)
R ETURN REVERSE

JOHN BIGTOWN BIGTOWN, JOHN
CALL REVERSE("L",'B")
R ETURN REVERSE

LOIS ANYONE ANYONE, LOIS
C ALL REVERSE("A","A')
R ETYURN REVERSE

ALI BABA BABA, ALI
CALL REVERSE("J",'B")
R ETURN REVERSE

JAMES DOE DOE,» JAMES
CALL REVERSE("J","D")
R ETUSN REVERSE

JOHN DOUGHE DOUYGHE, JOHN
CALL REVERSE("M'",*'D")
R ETUSN REVERSE

MARY MEEK MEEK, MARY
CALL REVERSE("™S",'"M")
R ETURN REVERSE

SPACE MANN MANN, SPACE
CALL REVERSE(™K'","M")
R ETUSN REVERSE

KING ARTHUR ARTHUR, KING
C ALL REVERSE("K","A™)
R ETURN REVERSE

KARISSA GRANDTR GRANDTR, KARISSA
CALL REVERSE(''J","G")
R ETURN REVERSE

JENNA GRANDTR GRANDTR, JENNA
CALL REVERSE('"S",'"G")
R ETURN REVERSE

SWASH BUCKLER BUCKLER, SWASH
CALL REVERSE("K",'"3'")
P ETURMN REVERSE

KNEE BUCKLER BUCKLER, KNEE
49
T RACE3
*SET
S TOPNOW= 0/1
*GO

END OF PROGRAM

2-34

Figure 2-18. Routine Parameter Condition Clause, Example 1

tFORTGO TEST

PAGE 0001 HP32)102A+0).6

20001000 SCONTROL USLINIT
20002000 STRACE TESTJA,1,SQRT,ROQT,RCPL

30033000 PROGRAM TEST
00003402033 106 FORMAT('0°',T2,"NUMBER",T12,'"SQUARE ROOT".,T27
20005000 #,"RECIPROCAL'//)

20006000 200 FORMAT(T2,F4¢1,T14,F7:4,T28,F7+4)
20007000 10 WRITE(6,108)

20008000 A=] 0

33009000 20 DO 30 1=1,10

20010300 ROOT=SQRT (A)

22011000 RCPL=] /A

20012000 WRITE(6,200)A,R00T,RCPL
20013000 30 A=A+) «3

00014000 STOP

00015300 END

*xxx NO ERRORS, NO WARNINGS; PROGRAM UNIT COMPILED #xxx
COMPILATION TIME 1.359 SECONDS ELAPSED TIME 62.638 SECONDS
TOTAL COMPILATION TIME 01:1098:02

TOTAL ELAPSED TIME 2191117

END OF COMPILE
END OF PREPARE

HELLO TRACE HP32222A.02.2
BATCHFILE= return
MODE=N

*PRINT TEST
$SFORM O

*G0
NUMBER SQUARE ROOT RECJIPROCAL

CALL SQRT(1.000030)
RETURN SQRT=].000029
1.0 1.0002 1.0002
CALL SART(2.000000)
RETURN SART=].414214
2.9 1.4142 +5000
CALL SQRT(3.000000)
RETURN SQRT= 1.732051
3.0 1.732] «3333
CALL SQRT(4.000000)
RETURN SQRT= 2.000000
440 2.0000 «2500
CALL SQRT(S5.000000)
RETURN SQRT= 2.236068
'5.0 2.2361 «2000
CALL SQRT(6.000000)
RETURN SQRT= 2.449490
6.0 2.4495 «1667
CALL SAQRT(7.000800)
RETURN SQRT= 2.645751
7.0 2.6458 1429
CALL SQRT(B.080000)
RETURN SQRT= 2.828427
8.0 2.8284 «1250
CALL SQRT(9.000080)
RETURN SQRT= 3.000800
9.0 3.0000 <1111
CALL SQRT(10.00000)
RETURN SQRT= 3.162278
18.8 3.1623 1000
END OF PROGRAM

Figure 2-19. Routine Parameter Condition Clause, Example 2
2-35

When the program executes, TRACE/3000 displays
CALL SQRT (1.000000)

where 1.000000 is the value passed to SQRT. TRACE/3000 then displays
RETURN SQRT= 1.000000

SQRT is a basic external function, and a value, associated with its name, is returned to the
calling program unit. Using the $FORM () type of routine parameter condition clause causes
TRACE/3000 to display the value of SQRT on the return.

Note: The form SQRT () also would cause TRACE/3000 to display the value
assigned to SQRT on the return from this function.

2-15. PRINT AND HALT SENTENCE EXECUTION CONDITIONS

A PRINT or HALT sentence executes only if all of the following conditions are satisfied by the
source program:

1. The program unit assigned to the PRINT or HALT paragraph is referenced in a $TRACE
control statement in the source program.

2. The identifier in a PRINT or HALT paragraph sentence has been referenced in a $TRACE
control statement in the source program. Note, however, that if SLABEL is used in a
sentence, label identifiers need not have been mentioned in a $TRACE control statement
and if $FORM is used in a sentence, routine identifiers need not have been referenced in a
$TRACE control statement unless $DELETE was used. ($LABEL causes TRACE/3000 to
monitor all labels in a program unit and $FORM causes TRACE/3000 to monitor all
structure points in a program unit.)

3. Al condition clauses in the sentence are true.

For example, the PRINT sentence below executes only if REVERSE has been referenced in a
$TRACE control statement, and if the $TRACE control statement specified an array called
OUT (the identifier) whose subscript must be less than 8 (the subscript value condition clause)
and whose value must be equal to “T” (the identifier value condition clause). The call to
TRACE/3000 must also occur between statement labels 30 and 50 (the label condition clause).
All the former conditions must have been true three times previously, thus making the use
condition clause true and the entire PRINT statement true.

PRINT REVERSE
OUT (* <8) ="T” 30-50 @4

A PRINT or HALT sentence can exist without any condition clauses at all. The PRINT
statement below executes if the program unit REVERSE and the identifier K have been
referenced in a $TRACE control statement.

PRINT REVERSE
K

2-16. PRINT AND HALT SENTENCE RESULTS

When a PRINT or HALT sentence is evaluated as true, a message is displayed on the standard
2-36 |

output device (a terminal in an interactive session or a line printer in a batch job) unless the

of the message depends on the type of identifier referenced in the sentence, as follows:

‘ TRACE/3000 list file, TRCLIST, has been equated to another device (see Section III). The form

Sentence Type Message
variable variable = value
array array (subscript value) =value
label name of label
routine CALL routine name
RETURN routine name
SFORM CALL routine name

ENTER routine name
EXIT routine name

RETURN routine name

Variable Identifier. If the identifier is a variable, the variable name is displayed along
with the value of the variable. For example, the PRINT paragraph below produces the
results as shown.

*P RINT TRACE?2

1

J

*G O

1= 5
J= 5

Array Identifier. An array identifier in a PRINT sentence produces all values of the array
unless a subscript value condition clause is used in the sentence. For example, the first
PRINT paragraph below produces values for all elements of the array IVAR whereas the
second PRINT paragraph produces values for subscripts 16 and 9 only because of the use of
the subscript value condition clauses.

*PRINT SB
1vAR

*GO

IVAR(l)= 1
I JAR(6) = 2
1VAR(lIl) = 3
IV AR(16)= 4
IVAR(21)= 5
IVAR(2)= 2
IVAR(T) = 4
IvaRr(l2)= 6
IVAR(17)= 8

2-37

IV AR(22)= 12

IVAR(3)= 3
IVAR(8)= 6
IVAR(I3)= 9
IVAR(18)= 12
I JAR(23)= 15
IVAR(4)= 4
I1vAR(9)= 8
IVARC(l4)= 12
IVAR(19)= 16
1 VAR (24)= 20
IVAR(S)= S
IVAR(18)= 10
IVAR(]IS)= 15
I1VvAR(2@) = 20
IVAR(25)= 25
* PRINT SB

IVAR (x=16)
IVAR (%x=9)

*xG 0

IVAR(16)= 4
IVAR(O) = 8

® LabelIdentifier. A labelidentifier causes TRACE/3000 to display the name of the label (an
alphabetic name for SPL/3000 programs or a numeric name for FORTRAN/3000 pro-
grams). For example,

*PRINT TRACE2
10

S
QR

*
S

20
392

® Routine Identifier. If a routine identifier is used in a sentence, TRACE/3000 displays
CALL routine name when the call to the routine is executed and RETURN routine name
when control is passed back to the calling program unit. For example,

* DRINT TRACED
SB

%

(9]

0

CALL SB
RETYRN SB

2-38

If $FORM is used in a sentence, TRACE/3000 displays the same information as above,
even though the routine identifier was not used in the sentence. For example,

*PRINT TRACE2
$FORM

*G0

CALL SB
RETUAN SB

If $FORM appears in a sentence in a PRINT or HALT paragraph that referenced the
routine itself, TRACE/3000 displays ENTER routine name when the routine is entered and
EXIT routine name when control exits the routine. For example,

*PRINT SB
$ FORM

*G0

ENTER SB
EXIT SB

If $FORM is used in a paragraph referencing the calling program unit and in a paragraph
referencing the routine, TRACE/3000 displays the following information:

*PRINT TRACE2
$FORM

*PRINT SB
$ FORM

*GO

CALL SB
ENTER SB
EXIT SB
R ETURN SB

If the sentence contains a routine parameter clause, for example SB (), the display format
will include a list of the parameter values at the time of the call to the routine. For
example,

*PRINT TRACE2
SB O

*GO
CALL SBC 34l,"", 5, s, 12>
RETURN SB

2-39

If the routine is a function (that is, a value associated with the routine’s name is returned
after execution of the routine) and the routine parameter clause is used, the RETURN
form of the display includes the value of the function. For example,

*PRINT TRACEI
SART O

*GO

CALL SQRT(|.000200)
R ETURN SQRT= 1.000000

2-17. DROP COMMAND

The DROP command is used as the first statement in a DROP paragraph and deletes PRINT
and HALT sentences from the PRINT/HALT table. Unlike PRINT and HALT paragraphs,
DROP paragraphs may be entered into the INTERACTIVE file only. The INTERACTIVE file
is opened and accessed only if the source program is running in interactive mode.

The DROP paragraph acts on the PRINT/HALT table in one of three ways:

1. Deletes all PRINT and HALT sentences in the PRINT/HALT table.
2. Deletes all PRINT and HALT sentences pertaining to a specific program unit.
3. Deletes PRINT and HALT statements pertaining to specific identifiers in a program unit.

To delete the entire PRINT/HALT table, enter the DROPALL form of the DROP command.

Note: The asterisk is output by the computer in the following examples.

*DROPALL

To delete all sentences pertaining to a specific program unit, use the DROP program unit name
form of the DROP command, followed by $ALL. For example,

*DROP TRACE2
$ALL

To delete sentences pertaining to specific identifiers within a program unit, use the DROP

2-40

program unit name form of the DROP command, followed by the specific identifiers that you:
wish to drop. For example,

*DROP TRACE2

fe =

Note: The program unit name parameter is optional if the DROP paragraph
pertains to the same program unit as the preceding paragraph.

2-18. CHECK COMMAND

The CHECK command is used as the first command in a CHECK paragraph. The CHECK
paragraph confirms the correct application of program unit name and identifier name ab-
breviations as they appear in the paragraphs (see Appendix B, “Abbreviations in TRACE/3000
Paragraphs”). CHECK paragraphs can be entered only through the INTERACTIVE file
during an interactive session.

For example,

*CHECK TRACE2

or
*CHECK T

After you enter the CHECK command (optionally followed by program unit name or program
unit name abbreviation), TRACE2 responds with the complete spelling of program unit name.

For example,

*CHECK TRACE3
TRACE3

*CHECK T
TRACE3

Note: If there is more than one item starting with a given letter, only the
first item in alphabetic sequence is displayed. See Appendix B.

241

If program unit name and program unit name abbreviation are omitted from the CHECK
command, TRACE/3000 assigns, program unit name from the paragraph immediately
preceding. For example,

* CHECK
T RACE3

In the above example, TRACE3 was the program unit name in effect for the preceding
paragraph and is now assigned to the current paragraph by TRACE/3000.

Once you enter the CHECK command and TRACE/3000 responds by displaying the full
spelling of the program unit name assigned to the CHECK paragraph, you can enter identifier
name abbreviations for identifiers pertaining to that program unit. To accomplish this, enter
the identifier abbreviation followed by an equal sign (=). TRACE/3000 responds by typing the
full spelling of the abbreviated identifier. For example,

* CHECK
T RACE3

N= NAMEIN
S=5TOPNOW
R =REVERSE

If the abbreviation entered into a CHECK paragraph is not the abbreviation for any identifier
within the program unit assigned to the paragraph, TRACE/3000 responds with a BAD
SYNTAX message. For example,

* CHECK
T RACE3
R=REVERSE
n=
BAD SYNTAX 1

2-19. SET COMMAND

The SET command is used as the first command in a SET paragraph. The SET paragraph
performs two main functions:

1. Examines and changes the values of terms within program units.

2. Reports the relative addresses of terms according to their positions within the user stack
area. (See the HP 3000 Computer System Reference Manual for a discussion of the stack.)

TRACE/3000 recognizes two classes of terms: variables and elements. A variable is one of the
following: :

1. A simple variable name without subscript. For example,

I
K

STOPNOW
2-42

2. An array name without subscript (FORTRAN/3000 or SPL/3000) or a pointer name
without subscript (SPL/3000 only). For example,

IVAR
ARRAY1
MAXPOINT

3. @array name or @pointer name without subscript (SPL/3000 only). For example,

@ARRAY1
@SORT
@MAXPOINT

An element is either:

1. An array name with subscript (FORTRAN/3000 and SPL/3000) or a pointer name with
subscript (SPL/3000 only). For example,

IVAR(1)
ARRAY1(13)
MAXPOINT(3)

2. A stack element specified by a stack register name and an increment. For example,

DB +100
Q-13
S-2

The stack element takes one of three forms:

DB =+ unsigned octal number
Q = unsigned octal number
S — unsigned octal number

S, Q, and DB stand for stack registers which indicate the start of areas within the stack. All
references to stack elements must be within the bounds of your current stack. It is out of the
scope of this manual to discuss stack limits; therefore, refer to the HP 3000 Computer System
Reference Manual and the MPE/3000 Operating System Reference Manual for a complete
discussion of the stack.

A SET paragraph can be entered into the INTERACTIVE file at any time the file is accessed. If
a SET paragraph is entered when the INTERACTIVE file is initially accessed and before
program execution, only global or common variables, or DB relative stack elements may be
used. If a SET paragraph is entered after the program has started execution, then all DB
relative, Q relative, and S relative terms may be used, providing they are contained in the
currently executing program unit. (See the MPE/3000 Operating System Reference Manual
for a discussion of global variables, common variables, and DB, @, and S relative terms.)

Term usage in SET paragraphs further depends on whether TRACE/3000 is operated in
NORMAL or RESTRICTED mode. In RESTRICTED mode, only simple variables can be
modified in a SET paragraph sentence. @array name, @ pointer name, or elements of any kind
are not modified by TRACE/3000 in RESTRICTED mode (although their values can be listed).
In NORMAL mode, TRACE/3000 modifies terms of all kinds subject to the terms definition as
global, common, or program local. (See the MPE/3000 Operating System Reference Manual.)

243

SET commands and paragraphs may be entered into the INTERACTIVE file only. To enter a
SET paragraph, enter SET followed by the (optional) program unit name. If program unit name
is omitted, TRACE/3000 assigns the program unit from the preceding paragraph. If the SET
paragraph is the first paragraph in the INTERACTIVE file, program unit name must be
specified.

To enter a SET paragraph, enter, for example,
*SET TRACE2

You now can enter as many SET sentences as desired. To display the value of a term, type the
term name, followed immediately by an equal sign. TRACE/3000 responds by displaying the
current value of the term. For example,

* SET TRACEZ
I= 5
5

[
1]

Once TRACE/3000 displays the current value of the term, you can change the value of the
term by typing a slash and the new value of the term. For example,

* SET TRACE?2
1= 5/6
J= 576

You can change the value of a term repeatedly within the same sentence. Entries are limited
to the current line, however (you are not allowed to continue entries to the next line without
respecifying the name of the term). An example of repeated changes to a term’s value is

* SET TRACE?2
I= 5/6/108/723/745

2-20. BLOCK LISTING OF ELEMENTS

To list a block of related elements (such as several elements of the same array), enter the array
name, the array element subscript (in parentheses) indicating the element at which the listing
will start, a comma, and an unsigned positive decimal integer indicating how many elements
TRACE/3000 is to list. Simple variables (terms without subscripts or indexes) cannot be listed
in block form, since their definition implies only one element in their group. TRACE/3000
displays the elements line by line. The number of elements per line depends on the element
type. For string data, TRACE/3000 leaves three spaces between elements. If the complete
listing cannot be displayed on one line, TRACE/3000 continues it on the next line.

An example of array block listing is

* SET TRACEZ2

IARRU),12=
1 2 3 4 5
10

\v}
&
o))
x

2-44

The listing started with array element 1 and continued for the next 9 elements of the array.

Block data listing also can be used for stack elements by entering the stack register, a plus or
minus sign, the element at which the listing is to begin, a comma, and the number of elements
to be listed. For example,

* SET TRACE2
D2+@,6=
2229241 %0082C80 220223 2220120 Q40006 201123

2-21. STRING DATA IN SET PARAGRAPHS

TRACE/3000 displays string data enclosed in quotes (”). A quote mark within a string is
displayed twice to distinguish it from the quote marks at the beginning and end of the string.
For example, the string value ABC“D is displayed by TRACE/3000 as

((AB C”“D”

String values entered by you must follow the same rule. For example,

*SET
CHAR= !QABC”!(D”/“X”“CDF”

would replace the value ABC“D with X“CDF.

When you change the value of a string variable, take care to replace the original value with a
string value of equal or shorter length. An attempt to replace a string value with a string value
of longer length results in a BAD SYNTAX message. For example,

*SET TRACE2
A="THE START "/"THERE 1S A START"
BAD SYNTAX 27 «— Column number where input is incorrect.

If a string value is replaced with a value of shorter length, then only the number of characters
in the replacement value are changed in the original value. For example,

*SET TRACE2
A=“THE START’/*A START”
A=A STARTRT”

2-22, USING THE SET COMMAND FOR TERM ADDRESS

You can enter SET paragraphs into the INTERACTIVE file to locate the stack addresses of
terms. To accomplish this, start the SET paragraph by entering the SET command and the
program unit name (if required), then enter a hatch mark (#), the term, and an equal sign. For
example,

*SET TRACE2
#1=

TRACE/3000 responds with the stack address of the term. Unlike SET paragraphs which allow
you to change the value of terms, this form of SET does not allow you to change the term’s
address in memory.

2-45

The address of the term is always given by TRACE/3000 relative to either the DB, Q, or S
register. TRACE/3000 follows the register name by the proper displacement (in computer
words). If the term is addressed in the stack through an indirect reference, TRACE/3000
follows the address with 1. If the term is addressed thraugh the index register, TRACE/3000
follows the address with ,X. The register used in the address depends on the registers used by
the MPE/3000 operating system. If the term is a globally defined variable in the source
program, TRACE/3000 uses the DB register. If the term is a local variable in the program unit,
TRACE/3000 displays the address in terms of the Q or S register. See the MPE/3000 Operating
System Reference Manual for a complete discussion of addressing.

Some examples of SET paragraphs used for addressing are
* SET TRACE?2
I=0+2
J=+4

STOPNOW=Q+3
TARR(3)=Q+1,1,X

2-23. GO COMMAND

The GO command de-activates the INTERACTIVE file and starts execution of the program.

The GO command can be used only in the INTERACTIVE file and starts in column 2 of the
line (following the asterisk displayed by TRACE/3000 as a prompt character). The label
parameter is optional, and if used, causes program execution to start at the point in the
program specified by label. The GO label form of the command is not allowed if TRACE/3000 is
operating in the RESTRICTED mode. If no label is included in the first GO command,
execution starts at the main entry point of the main program unit.

CAUTION

Do not go to a label while in a DO loop (FORTRAN) or a FOR statement (SPL).
This can cause unpredictable results due to the stack related dependency of
this construct. See the MTBA instruction in the HP 3000 Reference Manual.

2-46

The GO command resumes execution only in the currently executing program unit (or initial-
ly, the main program unit). TRACE/3000 displays a BAD SYNTAX message and ignores the
GO command if a label is specified that is not contained in the currently executing program
unit.

2-24. BAD SYNTAX ERROR MESSAGES

Whenever TRACE/3000 discovers a sentence with improper form, it displays a BAD SYNTAX
n message, where n is the first character position in the line where the error occurred.

If an error occurs in the BATCH file, TRACE/3000 ignores the rest of the paragraph following
the improper sentence and either aborts the program (if the ABORT parameter was used in the
$TRACESTART record) or reads the next paragraph if the ABORT parameter was not used in
the $TRACESTART record.

If an error occurs in the INTERACTIVE file, TRACE/3000 ignores the sentence and prints a
BAD SYNTAX message. A corrected sentence can then be entered.

247

USING TRACE/3000

TRACE/3000 can be used in either batch mode or interactive mode. In batch mode, you must
use a BATCH file and you may not use the INTERACTIVE file. In interactive mode, you may
use both files, or the INTERACTIVE file only.

3-1. PREPARING A BATCH FILE

The BATCH file is opened with a $TRACESTART statement (which may contain the optional
parameter ABORT, see Section II) and is closed with a $TRACEEND statement. PRINT and
HALT paragraphs are inserted in the BATCH file between the $TRACESTART and
$TRACEEND statements. You can insert as many PRINT and HALT paragraph sentences as
desired, subject to the PRINT/HALT table size (see paragraph 3-5). No PRINT or HALT
paragraphs need be entered into the BATCH file, but the $TRACESTART and $TRACEEND
statements must be present. If a $TRACESTART or $TRACEEND statement is missing or
misspelled, TRACE/3000 displays BAD TRACE FILE and terminates the program. In batch
mode, the program terminates and is flushed from the system; in interactive mode, control
passes to TRACE/3000, which activates the INTERACTIVE file.

A blank record must be inserted between PRINT and HALT paragraphs and between the last
PRINT or HALT paragraph and the $TRACEEND statement; however, no blank record may
be inserted between the $TRACESTART and $TRACEEND statements if no PRINT or HALT
paragraphs are included in the BATCH file.

A BATCH file can be prepared and saved through either of two methods:

1. For a batch job, the BATCH file must be prepared on a batch input medium such as
punched cards. In addition, the BATCH file must be input to the computer when the
program is run before the program data from $STDIN. Figure 3-1 shows a BATCH file
punched on cards. See paragraph 3-4 for a discussion of a source program which uses this
BATCH file during a batch job.

2. For an interactive session, the BATCH file can be prepared, given a file name, and can be
stored on disc and then referenced when the source program is run. Figure 3-2 shows a
BATCH file prepared using EDIT/3000, kept under the file name BATCH3, and stored on
disc. See paragraph 3-3 for a discussion of a source program which uses this BATCH file
during an interactive session.

3-2. PREPARING A SOURCE PROGRAM TO BE MONITORED BY
' TRACE/3000

Source programs which are to be monitored by TRACE/3000 must contain $TRACE control
statements. The $TRACE control statement contains the name of the program unit and a list

of identifiers which specify those items (simple variables, arrays, and routines) in the program
unit which are to be monitored by TRACE/3000.

3-1

Figure 3-3 shows a FORTRAN/3000 source program containing two $TRACE control state-
ments, as follows:

$TRACE TRACE3;NAMEIN NAMEQUT,STOPNOW
$TRACE REVERSE;IN,OUT,I,J,K

The first $TRACE control statement specifies TRACE3 as the program unit; and the arrays
NAMEIN and NAMEOQOUT and the simple variable STOPNOW as the items to be monitored by
TRACE/3000. The second $TRACE control statement specifies REVERSE as the program
unit; and the arrays IN and OUT and the simple variables I, J, and K as the items to be
monitored.

| STRGCEENN \

=
[z
i \YE
_[EeRT O
PRINT TRaCE1 ‘Xéi

ETEACESTART \a

vz pseresmnzRwskre lonuulsrnzﬁﬂunnllnnknuwunwnduuutsnunsﬂ!!!!lisunuucﬂw

feswosusunnnunansTenw

0 0080 00 onco000
12245570 HIIHIHI RN DN ANINAN IR NT NN AN CON SR TRANNTUNENTUNRACOUSRTNORIIINANTI NS
[ERE R A R R R R R R R R R R R R R R R R R R R AR R R AR AR R R AR
*22222,22222222222222222020222

33 32 20 22322233333333333333333333333333333333333333322322333333333333333320)
AAA444404040000000 4040000400445 44 0444014 14 14 04404 14 1 1 11 U
55555 55 rJ-
GOCOROEEEEEEEEEO00COCOCEEO000000C06660000000000006066600000660006006600660606600 [-
IR R R RN RS r-
sossnaonnnaaonNsoRRRRRRRRRRRRRRRR BRI RRRRRRRRRRRRRRRRRRRRNRRRRRRRRRRRRRNRNRENY r‘r-

!!:,!!!!! 999999999900 00990999999999990099999999999999999909999999899990998999399 r-

JETHIHIRUNBUITUNNIADNINTIRNNANTDNHANTIINSHCQUSSQESRNTUNRNANARNIRDUBNTURNNINDNANITIANN
£LOBE 50083

Figure 3-1. BATCH File Punched on Cards

s EDITOR
HP32221A.4.01 EDIT/39722 THU, JUL 12, 1975, 3:57 PM
/S5 SHORT
/ADD
1 $TRACESTART
2 DRINT TRACES3
3 $FORM
4 return
) HALT
6 42
7 return
8 PRINT REVERSE
9 $FORM
12 return
11 $TRA N
12 eoe Y
/KEEP BATCH3
/E
CLEAR? Y

END OF SUBSYSTEM
Figure 3-2. BATCH File Prepared Using EDIT/3000

3-2

LN WN -

NN &P PLPPPPLWUOUWWRWWWWWNNNYNNNNN VN & e e e ot ot e ot e
=~ CVOVDINPTNLPWV~OLYTT~NITUVPRPFLUN"OORE~NRITRPWNOOVIDINCPNLPWN—D

52
53
54
55

SCONTROL USLINIT
$TRACE TRACE3INAMEINJNAMEQUT»STOPNOW
$TRACE REVERSESINsQUTs1 U9k

PROGRAM TRACE3

100 FORMAT(T10s"NAMEH,T30,"LAST NAME FIRST"//)

200 FORMAT(20A1)

300 FORMAT(T7+20A19T732+20A1)
CHARACTER NAMEIN(20y 9 NAMEOQUT (20)
INTEGER STOUPNOW
STOPNOw=0

10 WRITF (6+100)

20 READ (209200 END=64¢0) NAMEIN

30 CALL REVERSE (NAMEINyNAMEOUT)
WRITE (69300)NAMEINsNAMEOUT
GOTO 20

40 CONTINUE
IF (STUPNOWNE,Q)STOP
REWIND 20
GOTO 10

50 STOP
END
SUBROUTINE REVERSE(IN,OUT)
CHARACTER IN(20)s0UT (20)

C
C FIND END OF FIRST NAME
C
10 DO 20 I=1+20
IF(INC(I) oEQg' ")GOTO 30
20 CONTINUE
30 Jle]
C
C WRITE LAST NAME INTO OUT
C
K=0
DO 40 I=Ue20
K=K+l
IF(IN(I)YoabQe ")GOTO SO

40 OUT (K)=IN(I)
50 OUT (K)=ty

K=K+]

oUT(K)=n ®
C
C WRITE FIRST NAME INTO OUT
c

DO 60 I=1+20

K=Ke]

IF(INC(]) Qg ")yGOTO 70U
60 QUT(K)=IN(I)

C
C FILL REMAINDER OF OUT WITH BLANKS
C
70 DO 80 I=Ks20
80 oUT(I)=h n
RETURN
END

Figure 3-3. FORTRAN/3000 Source Program TRACE3

3-3

Be sure to identify, in a $TRACE control statement, all items which are to be monitored by

TRACE/3000. Failure to do so will result in a BAD SYNTAX error message when any such

items are entered into the BATCH or INTERACTIVE files during an interactive session; or .
will cause the program to abort if such items are included in the BATCH file during a batch

job.

$TRACE control statements are inserted into a source program in one of two ways: Either
place the $TRACE control statements for each program unit immediately in front of the
program unit to which the $TRACE statements apply, or group all $TRACE statements and
place them in front of the first program unit.

3-3. USING TRACE/3000 IN AN INTERACTIVE SESSION

Once a source program is coded, it can be compiled and prepared into a program file by using
the appropriate compiler command (:SPLPREP for SPL/3000 programs and :FORTPREP for
FORTRAN/3000 programs) or it can be compiled, prepared, and executed using the :SPLGO or
:FORTGO commands. See the MPE/3000 Operating System Reference Manual for descriptions
of the foregoing commands.

Figure 3-4 shows the FORTRAN/3000 source program TRACE3 compiled and prepared, then
saved under program file XMPLS3.

The source program is compiled and prepared using the

:FORTPREP TRACE3

command, then saved under program file name XMPL3 with the
:SAVE $OLDPASS, XMPL3

command.

Figure 3-5 illustrates running the compiled and prepared program using the :RUN command
and BATCH file BATCHS3.

The :FILE commamd
:FILE FTN20=NAMES,OLD

is used to equate the old file NAMES to FORTRAN logical unit number 20 (FTN20) so that
this file can be accessed by the program.

The :RUN XMPL3 command starts program execution, and since the source program con-
tained $TRACE control statements, TRACE/3000 is accessed. TRACE/3000 displays

HELLO TRACE

then displays
BATCHFILE=

BATCH file BATCH3 (see paragraph 3-1) is entered, then TRACE/3000 displays
MODE=

activating the INTERACTIVE file and asking for the operational mode. N is entered for
NORMAL and TRACE/3000 prompts for input to the INTERACTIVE file by displaying an
asterisk. The GO command de-activates the INTERACTIVE file and starts program execution.

3-4

:BUILD XMPL33CODE=PROG
t F ORTPREP® TRACE3,XMPL3

PAGE 2091 HP32122A.01 .4

20021202 $CONTROL MSLINIT

N30 782080 $TRACE TRACE3;NAMEIN,NAMEOUT, STOPNOVW

72 723889 $TRACE REVERSESIN,O0UJT,I,d.K

33 234300 PROGRAM TRACE3

223352938 120 FORMAT(TIZ,"NAME', T3a,"LAST NAME FIRST"//)
227 26994 206 FORMAT(22A1)

2 2327007 303 FORMAT(T7,20A1,T32,22A1)

220 23309 CHARACTER NAMEIN(22),NAMEOJT(22)
3023973080 INTEGE® STOPNOW
2031 M2G STOPNOW=2

233311300 1¢ WRITE(6,122)
27212029 27 READ(2@,20%2,END=42)NAMEIN
22721 328@ 39 CALL REVERSE(NAMEIN, NAMEOUT)

099 14000 WRITE(6,320)NAMEIN, NAMEQ'IT
2991 5929 GOTO 22

7z 7215229 42 CONTINVE

272921 72089 IF(STOPNOW.NE.2)STO?
22018323 REWIND 27

20219272 G0TO 12

203202022 58 STO®

779 210830 END

x*%x NO ETRORS, NO WARNINGS: OPOGRAM TUNIT COMPILED **

COMPILATION TIME 1.531 SECONDS ELAPSED TIME 87.699 SECONDS
ne322209% SUBRONMTINE REVERSECIN, OUT)
22323233392 CHARACTER IN(22),0UT(29)

3024863 C

2A7A253@% C FIND END OF FIRST NAME
13026268 C

AN 70923 12 DO 22 1=1,22

NP3 283929 IFCINCI)«EN."™ »)GOTO 230
NBB29039 29 CONTINUE

207 372730 32 J=1+1

nee31a29 C

29832323 C WRITE LAST NAME INTO OUT
2093375%% C

28734293 K=2

23235003 DO 42 1=d,20

372 236097 K=K+1

3 %3 37292 IFCINCI) «ER.' ")G0TO S2

202387290 40 OITC(K)=INCI)

A3 39020 59 OUT(K)="","

3 2B4ARAB K=K+1

7?2 2241929 OUT(K)=" "

23242000 C

22243208 C WRITE FINST NAME INTO OUT
293 44093 C

223450092 DO 60 I1=1,29
B224 6007 K=K+1
222 479%2 IFCINCI)SEQW" ")GOTO 72

B2 43009 50 O"T(K)=INCI)

2 2492999 C

2022523973 C FILL REMAINDER OF OUT WITH BLANKS
22251222 C

26252200 72 DO 89 1=K,22

2 953 S3827 84 oUT(Iy=" ¢

32254230 RETURN

2% 355093 END

xx NO ERRORS, NO WARNINGS; PROGRAM UINIT COMPILED *k

COMPILATION TIME 1.779 SECONDS ELAPSED TIME 124.484 SECONDS
TOT AL COMPILATION TIME 9:83:34
T OTAL ELAPSED TIME :23:48

END OF COMPILE

END OF PREPARE

Figure 3-4. Compiling and Preparing Source Program TRACE3

3-6

¢ FILE FTN2@=NAMES,OLD

:$ RUN XMPL3

HELLO TRACE HP32222A.02.1

BAT CHFILE=BATCH3

MODE=N

NAME

CALL REVEPSE
ENTER REVERSE
EXIT REVERSE
RETYUSN REVERSE
JOHN BIGTOWN
CALL REVERSE
ENTER REVERSE
EXIT R[EVERSE
RETUSN REVERSE
LOIS ANYONE
CALL REVERSE
E NTER REVERSE
EXIT REVERSE
RET!SN REVERSE
ALI BABA
CALL REVERSE
ENTER REVERSE
EXIT REVERSE
RETURN REVERSE
JAMES DOE
CALL REVERSE
ENTER REVERSE
EXI T REVERSE
® ETUURN REVERSE
JOHN DOUGHE
CALL REVERSE
ENTER REVERSE
EXIT REVERSE
RETI™N REVERSE
MARY MEEK
CALL REVERSE
ENTER REVERSE
EXIT REVERSE
RETYURN PEVERSE
SPACE MANN
CALL REVERSE
ENTER REVERSE
EXIT REVERSE
R ETURN REVERSE
KING ARTHUR
CALL REVERSE
ENT ER REVERSE
EXIT REVERSE
R ETUSN REVERSE
KARISSA GRANDTR
CALL REVERSE
ENTER REVERSE
EXIT REVERSE
R ETUSN REVERSE
JENNA GRANDTR
CALL REVERSE
ENTER REVERSE
EXI T REVERSE
RET URN REVERSE
SWASH BUCKLER
CALL REVERSE
ENTER REVERSE
EXIT REVERSE
R ETURN REVERSE
KNEE BUCKLER
43
TRACE3

LAST NAME FIRST

BIGTOWN,

ANYONE,

BABA, ALI

JOHN

LOIS

DOE, JAMES

DOUGHE,

JOHN

MEEK, MARY

MANN, SPACE

ARTHUR,

GRANDTR,

GRANDTR,

BUCKLER,

BUJCKLER,

KING

KARISSA

JENNA

SWASH

KNEE

3-6

Figure 3-5. Running Program XMPL3 Using BATCH File BATCH3

The PRINT paragraphs in the BATCH file (see figure 3-2) cause TRACE/3000 to monitor the
program structure points in program units TRACE3 and REVERSE and

CALL REVERSE
ENTER REVERSE
EXIT REVERSE
RETURN REVERSE

is displayed each time subroutine REVERSE is called, executed,”and exited. The program
halts at statement 40 in the main program (TRACES3).

In figure 3-6, the INTERACTIVE file is used to add two new PRINT paragraphs as follows:

*PRINT TRACE3
$LABEL

*PRINT REVERSE
$LABEL

When the GO command is entered, TRACE/3000 monitors and displays all statement labels
encountered when the program units TRACE3 and REVERSE are executed. The PRINT and
HALT paragraphs from the BATCH file are still effective, thus TRACE/3000 also displays the
structure points during execution of the two program units, then halts at statement 40 in
program unit TRACE3.

In figure 3-7, the DROPALL command deletes all PRINT and HALT paragraphs from the
PRINT/HALT table.

The new PRINT and HALT paragraphs

*PRINT TRACE3
REVERSE ()

and

*HALT
40

are entered. The GO command causes TRACE/3000 to display calls to and returns from
subroutine REVERSE, and to display the values of the parameters passed to REVERSE.
Again, the program halts at statement 40.

The DROP command in figure 3-7 is used to drop the sentence REVERSE from the PRINT/
HALT table and the new PRINT paragraph

*PRINT REVERSE
K >9

is entered. This time TRACE/3000 displays all values of K greater than 9 because of the >9
identifier value condition clause.

In figure 3-8, the DROP command drops the sentence K from the PRINT/HALT table. A new
PRINT paragraph

*PRINT
OuT

causes TRACE/3000 to display the values of array OUT.
3-7

*PRINT TRACE3
$ LABEL

*PRINT REVERSE
$ LABEL

G0

12

29

39

CALL REVERSE
E NTER REVERSE
12

29

29

20

20

30

49

49

43

42

49

49

EXI T REVERSE
RET'JRN REVERSE
JOHN BIGTOWN BIGTOWN.,
20
3@
CALL REVERSE
E NI ER REVERSE

EXIT REVERSE
RETURN REVERSE
LOIS ANYONE ANYONE,

NAME LAST NAME FIRST

20

3@

CALL REVERSE
ENTER REVERSE

EXIT REVERSE

= ETUBN REVERSE
ALI BABA

292

32

CALL REVERSE

EZ NTER REVERSE

192

29

272

22

29

20

32

49

49

40

592

EX1 T REVERSE
RETURN REVERSE
JAMES DOE

BABA,

DOE.,

ALl

JAMES

Figure 3-6. Running Program XMPL3 Using the $LABEL Sentence (Sheet 1 of 3)

3-8

29

39

CALL REVERSE
ENTER REVERSE

EXIT REVERSE

® ETURN REVERSE
JOHN DOUGHE DOUGHE, JOHN

29

33

CALL REVERSE

ENTER REVERSE

EXI T REVERSE
] ETURN REVERSE
MARY MEEK MEEK, MARY

29

39

CALL REVERSE
ENTER REVERSE
12

29

29

29

23

29

EXIT REVERSE

R ETIIN REVERSE
SPACE MANN

20

33

CALL REVERSE

ENT E? REVERSE

13

29

2

22

29

39

49

47

49

49

4¢

EXIT REVERSE
® ETU N PEVERSE
KING ARTHUR

MANN, SPACE

ARTHUR,

KING

Figure 3-6. Running Program XMPL3 Using the $SLABEL Sentence (Sheet 2 of 3)

3-9

23

30

CALL REVERSE
ENTER REVERSE
12

20

22

29

29

EXIT REVERSE

RETIMN REVERSE
KARISSA GRANDTR GRANDTR.,

20

39

CALL REVERSEZ

E NTER REVERSE

12

EXIT REVERSE
RETURN REVERSE

JENNA GRANDTR GRANDTR.

29

39

CALL REVERSE
ENTER REVERSE

80

EXI T REVERSE
RETJN REVERSE

SWASH BUCKLER

29

30

CALL REVERSE
ENTER REVERSE

EXI T REVERSE

RETURN REVERSE
KNEE BUCKLER

2e

4@

T RPACE3

BUCKLER,

BUCKLER,

SWASH

KNEE

Figure 3-6. Running Program XMPL3 Using the $LABEL Sentence (Sheet 3 of 3)

3-10

* DRO™ALL * DROP

R EVERSE
*PRINT TRACE3 .
] EVERSE () *PRINT REVERSE
K »>9
*HALT
42 *GO
*GO NAME LAST NAME FIRST
NAME LAST NAME FIRST
K= 19
K= 11
CALL REVERSE("J","B") K= 12
R ETURN REVERSE K= 13
JOHN BIGTOWN BIGTOWN, JOHN K= 14
CALL REVERSE("L",'"B") JOHN BIGTOWN BIGTOWN, JOHN
R ETUSN REVERSE K= 19
LOIS ANYONE ANYONE, LOIS K= 11
CALL REVERSE('A'™,"A") K= 12
R} ETURN REVERSE K 13
ALI BABA BABA, ALl LOIS ANYONE ANYONE, LOIS
CALL REVERSE(™J',"B'") K= 19
R ETURN REVERSE ALI BABA BABA, ALI
JAMES DOE DOE, JAMES K= 12
CALL REVERSE("J'",' D) K= 11
R ETURN REVERSE JAMES DOE DOE, JAMES
JOHN DOUGHE DOUGHE, JOHN K= 18
CALL REVERSE("M',"D') K= 11
R ETUSN REVERSE K= 12
MARY MEEK MEEK, MARY K= 13
CALL REVERSE('"™S',"M") JOYN DOUGHE DOUGHE, JOHN
R ETURN REVERSE K= 10
SPACE MANN MANN, SPACE K= 11
CALL REVERSE("K',"M") MARY MEEK MEEK, MARY
R ETURN REVERSE K= 10
KING ARTHUR ARTHUR, KING K= 11
CAL L REVERSE("K","A"™) K= 12
RETURN REVERSE SPACE MANN MANN, SPACE
KARISSA GRANDTR GRANDTR, KARISSA K= 18
CALL REVERSE('J","G") K= 11
RETURN REVERSE K= 12
JENNA GRANDTR GRANDTR, JENNA K= 13
CALL REVERSE("™S","G") KING ARTHUR ARTHUR, KING
RE TJRN REVERSE K= 12
SWASH BUCKLER BUCKLER, SWASH K= 11
CALL REYERSE(K'",'"B") K= 12
2 ETURN REVERSE K= 13
KNEE BUCKLE® BUICKLER, KNEE K= 14
43 K= 15
T RACE3 K= 16
K= 17
KARISSA GRANDTR GRANDTR, KARISSA
K= 19
K= 11
K= 12
K= 13
K= 14
K= 15
JENNA GRANDTR GRANDTR, JENNA
K= 19
K= 11
K= 12
K= 13
= 14
K 15
SWASH BUCKLER BUCKLER, SWASH
K= 10
K= 11
= 12
= 13
K= 14
KNEE BUCKLER BUCKLER, KNEE
40
TMCE3

Figure 3-7. Running Program XMPL3 Using the Routine Parameter Condition

and Identifier Value Condition Clauses 311

* DROP

* P RINT
0uUT

*
(7]
o

NAME

0UT (1)="B"
ouTC2)=""1"
0 YJT(3):'!6"
OUTC4y=""T"
0 UT (S)y=>0"
0O ur (6y=""u"
0 UTC7)=""N"

0 uUTCl1D)Y=""J"
QUTC11)Y=""0"
0 uUTC12)="H"
0UT(C13)="N"
0 UTC14)=" "
ourcisy="
0UT(16)=I' ”
OuUTC17y="" "
ouTC18)="" "
0UTC19)="
0UTC28)="" "

JOHN BIGTOWN

0UT C(l)=>A"
0 UT (2)=*"N"
0O uT (3)y="1y"
0 UTC4)="0"
0 UT(S5)="N"
0O UT(6)="E"
OUTCTy="","
our(gy=" »
0O UT(9)="L"
0UTc1@>="0"
OUT(Cll)y=""1"
0UTC12)=""S"
0 UT(C13)=" "
OUT (14)=" "
OUTC(1Sy=" *
0uUTCl16)="" "

O uTC28)="

LOIS ANYONE

0UT (1>="B"
0 ygr¢2y="Aa"
0 TC3)="B"
0 uUTC4="A"
OUT(S)=","
oOuUTC 6y="
0UT(7)="A"
O UT (8)=""L"
OUT (9)=""1"
OUT(]0)-_-" "
0UTC11)=" "
ouTCl12)=" *
0 m(13)=l' L1
ouTclay="
ourcisy==
OU T(l6)=l' "
oUrct7y="
ouTC18)="" "
ouTC19)=" "
0yUT(29)=" *

ALI BABA

ouUTCly="D"
o uUTC(2)=""0"
0UT (3)="E"
ouTcay=","
ourc¢sy=" "
ourcey=rJ”
o UTCTY="A"
o uUT(8)="M"
0 UT(9)=""E"
LAST NAME FIRST ouTC1@)="3"
0UT(11)=
ouTc12)=" "
0uUT(C13)=" "
ouUTCl4=" "
0UT(15)=" "
our ciey="
OuUT(17>=" ¢
ouTc18y=" "
ouTC19)=" "
ouTc2g)=" "
JAMES DOE
OUTC1>="D"
QuUT (2)="0"
0 UTC3)=""U"
O UTC4)="G"
0 UT(S)="H"
0 UT(6)="E"
QUTC(THY=","
ouT(8)=" "
0 UT(9>=""J"
0uUTC1g)=""0"
O UT(]11)="H"
BIGTOWN, JOHN O UT(12) ="N"
0UT(C13)=" "
ourclay=" *
ourcisy=" "
ouTCle)=" "
ouUTC173="" "
ourcigy=" "
0 UTC 19)="
ouTC29)=" "
JOHN DOUGHE
OUTC1)="M"
OUT(2)="E"
0 uUT(3)="E"
O UTC4)="K"
O ur(sy=","
ouT(E=" "
O UTCTHY=""M"
o uUT(8)="A"
OUT(9)=""R"
ouTCl1g)=""Y"
OUTC11)="
ANYONE, LOIS QuTC12)=" "
QuUTC13)=" "
OuUTCl14)=" "
OUT C15)=" "
0uUTC16)="" "
ouUTC17Y=" "
ouTcigy=" "
ouTC19)=" "
ouTrcegy="
MARY MEEK

BABA., ALl

DOE,

JAMES

DOUGHE., JOHN

MEEK.,

MARY

Figure 3-8. Using TRACE/3000 to Display the Values of Array OUT (Sheet 1 of 2)

3-12

ouUTCl)=""M"
0 UT (2)="A"
0 UT(3)="N"
OUTC4)=""N"
O UT(S5)="","
O UTC6I="
O UT(7)="S"
O UT(8)="p™
O UT(9)="A"
ouUTC1g)=""C"
0 UT(11)="E"
ouTC12)=" "
OUTCI3)=" "
oOUTC 14)=" "
QUT(15)=" "
0UT(16)="" "
OUTC17)=" "
ouTC18)=" *
O UT(19)=" "
our(2g)=" "
SPACE MANN
0UT(1)="A"
0 ur (2)="R"
0UT(3)="T"
OUT(4)=*"H"
O UT(S)=""U"
O UT(6)=""R"
OUTC(THI=","
ouT(g8)=" v
0 UT(9)="K"
ouUTClgy="1"
OUTC(11)="N"
0 UT(12)="G"
0UT(13)=" "
OUTC14)=" "
ouUT(1S)=" "
QUTC16)=" "
OUTC17)=" "
ouUTCI18)="
0uUTC19)=" "
OuUT(29) =" "
KING ARTHUR

OUT(1)="G"
0 Ur (2)="R"
O UT(3)="A"
O UT(C4)=""N"
O UT(S)="D"
O UT(6)="T"
ouT(7)="R"
QUT(8)=","
O UT(9)=" *
OUT(18)="K"
OUT(11)="A"
O UT(12)="R"
O UT(13)="1"
0 UTC14)="5"
OUT (15)="5"

0UT(16)="A"
QUT(17) =" ™
ouUT(18)=" "
ouUTCl19)=" "
o uUT(28)=" "

KARISSA GRANDTR

MANN, SPACE

ARTHUR,

GRANDTR,

KING

KARISSA

OUT(1)="G"
0 UT(2)=""R"
O UT(3)="A"
O UTC 4)=""N"
OUT (5)="D"
O UT(6)=""T"
0 UT(7)="R"
OUT(8)="",""

ouUTC19)=""J"
O UT(11)="E"
0 UT(12)="N"
O UTC13)=""N"
O UTC14)="A"
o uUT(C1S5)=" "
0 uUTC16)=" "
OUT(17)=" "
ouTC1g8)=" "
ouUT(19)=" "
ouTtc2e)="
JENNA GRANDTR
OUT(1)="B"
ouT(2)=""u"
O UT(3)="C"
O UTC4)="K"
OUT(S)="L"
OUT(6)=""E"
OUT (7)="R"
ouUT(8)=""
0UT(9) ="
ouTC1@)="Ss"
OUTC11)="y"
0 UT(12)=""A"
O UTC(13)="5"
O UTC14)="H"
OUT(1S5)=" "
OUT(C16)="" *
OUT(17)="
ouTCigy=" "
ouT(C19)=""
our(¢2my=" "
SWASH BYCKLER
oUT(1)="B"
ouT 2)="uy*
0 UT(3)=""C"
O UT(4)="K"
O UT(S)=""L"
0 UT(6)="E"
CUT(7)="R"
ouT(8)=","
QUT(9)="
O Ur (12)=""K"
O UT(11)="N"
0 UT(12)="E"
O UT(13)="E"
ouUTC14)=" "
0uUT(iS)=" "
our (16)=" "
our (17)=" "
ouUTC18)=" "
ouUT(19)="
0 UT(29) =" *
KNEE BUCKLER

TRACE3

DROP
uT

o *

*SET TRACE3

S TOPNDW= 8/1
S TOPNOW= 1
#5TOPNOW=0+3

0N +3=7000001

%60
END OF PROGRAM

GRANDTR.

BUCKLER,

BUCKLER.,

JENNA

SWASH

KNEE

Figure 3-8. Using TRACE/3000 to Display the Values of Array OUT (Sheet 2 of 2)

3-13

Finally, a SET paragraph is used to change the value of STOPNOW from 0 to 1. Also, to
demonstrate using the SET command to locate stack addresses, the address of STOPNOW is
determined by entering :

#STOPNOW =

TRACE/3000 displays Q+3. Then, after Q+3= is entered, TRACE/3000 displays the contents
of location Q+3 (which is %000001, the value of STOPNOW).

3-4. USING TRACE/3000 IN A BATCH JOB

Figure 3-9 shows a FORTRAN/3000 source program and a BATCH file, both of which are
punched on cards and arranged in the correct order to run in batch mode.

The first two cards are a :JOB command card and a :FORTGO command card. The :JOB
command initiates a batch job; the :FORTGO command compiles, prepares, and executes a
FORTRAN/3000 source program. See the MPE/3000 Operating System Reference Manual for
descriptions of these commands.

The $TRACE control statement (card three) informs TRACE/3000 to monitor identifiers A, I,
SQRT, ROOT, and RCPL in program unit TRACE1. (Note that since this program example
consists of only one program unit, the program unit parameter could have been omitted.) The
:EOD command card informs the compiler that there are no more lines of code in this program.

The BATCH file, which must follow the :EOD card, is begun with a $TRACESTART statement
and terminated with a $TRACEEND statement. A blank record separates the last sentence
(RCPL) in the PRINT paragraph from the $TRACEEND card.

The :EQJ command terminates the job.

Jeen
B B
I o)
N N n
_[ronT \@
i [
e ©
_ero %El
PRINT TRALF \{\
Letracestert S
| B \E]
ol ENT)Y
| S ey
N D T CI)
TRTTE (R Z0M A, RINT: REPL
__I-LI&'FF[/Q ‘Tﬂ?
Il ROOT=SART(A) &
_J 20__1n 20 1=1,410 fﬁ
.| Aa=1.0
] 18 URITR(A, 100D ‘g
| 500 FORMAT(TE:F4.1.T145F7.4:123:F7.4) i"
] 100 FORMATC 0"y T2, "NOMBER® , T12. "SAUARE_RONT* 127« "RECIPROCAI" 7/
PROGRAN TRACET
STRACE TRACE13As [5 SART 2 ROAT < RCPL B
TONTROL._HSLINTT I
TFORTHN f'l-
£ R MANAGER, SCR o r
[iayiso wew - TR RN Ry |—
rl'

(B R RN B R R R RN R R R RN R A N R R R AR R AR R R RN R RN RN R [RRRRRRRRERE!
TR2222222212,122222222222222022 ’Jrr
1313333330003 3 IININIININNANINNINNNINIINIINNIINNININIINININININNINIINININIM

AL A4 1B O U VuEUUEUUUEUEEULULLG rr
555955 55 SEFSESSESEs5s5855 8855555555 5555555555555555555555535555555555558585 r
LU L T I T A N Y] I-r

NN NI I NI I NI NI I NI NI I I NIN NN NI N I_r
SRR IR RN RN RN IR RN RO OO RN R RRRnInIIRIRRIsInsIssIIInIsSsIIINIINIIINIINY L-

na
1134

sresmnin
nLoer scow

Figure 3-9. FORTRAN/3000 Source Program and BATCH File Punched on Cards
3-14

Figure 3-10 shows the output (printed on a line printer) resulting when the card deck is run.

tJ08B MANAGER . SCR,
FRI= DS; IHPRI= 13:
J0B MUMBER = #J41
THY, JUL 10, 1975,
HP32000C.00.3@

PUB
TIME= ?

11:33 AM

tFORTGO

PAGE 0001 HEWLETT~PACKARD 32102R.01 .4 FORTRAN/3000 THU, JUL 10, 1975, 11:33 AN

$CONTROL USLINIT
$TRACE TRACE1;A,1,SART,ROOT.,RCFL

100
200
10

2a

(2
el

ok

END OF COMFILE

END OF FREPARE
HELLO TRACE

NUMBEF

A= 1. 000000
1= 1
CALL SORTY
RETURN SGRT=
ROOT= 1.0000CO
gRCPL= 1 .G0CGLOO
1.0
A= 2.000000

1=

RETURN SGRT=

ROCGT= t . 414214

RCPL= .SCG000OC
2.0

A= 3.000000
I= 3

CALL SGRT(

RETURN S@RT= 1.

ROQT= 1
RECPL=
3.0
A= 4. 000000

I= 4
CALL S@RT(
RETURN SGRT=
R00OT= 2. 000000
RCPL= .2500000
4.0

.732051

NO ERFRORS,
COMPILARTION TIME
TOTAL COMPILATION TIME
TOTAL ELAFSED TIHME

HP3ZZZ2m . O

SGURRE ROOT

1.0000

1.4142

.3333332
1.

2.0000

PROGRAN TRACE1L
FORMATC(’0’,T2,“NUMBER",T12,"SQUARE ROOT".T27,"RECIFROCAL",//)
FORMAT(T2,F4. .1, T14,F7 . 4,T28,F7.4)
WRITEC®, 100

A=1.0

ba 30 I=1,10

ROOT=SGRTCR)

RCPL=1/A

WRITEL&,200)2R.R00T,RCPL

R=R+1 O

STOP

EHD

FROGRAM UNIT COMPILED
ELARFSED TIME 3.571

NO WARNINGS
0.956 SECONDS

0:00:02

0:C¢0:04

EETEY
SECOHDS

n
—

RECIPROCAL

1.000000
1.000000

1.0000

(4
CALL SaRrRTC 2.000000
1. 414214

. 5000

3.000000)
732051

3zl

L3333

4.000000 1
2.000000

Figure 3-10.

Using TRACE/3000 During a Batch Job (Sheet 1 of 2)
3-15

A= 5.000000
I= S
CALL SGRTC 5.000000)
RETURN S@FRT= 2. 23e068
ROO0T= 2.236068
gCpL= 2000000
5.0 2.2361 .2000
A= 6.000000
1= 3
CALL SGRTC 6.000000)
RETURN SQRT= 2.4494%0
ROOT= 2.44%9430
RCPL= . 16666067
6.0 2.4495 .lee7?
A= 7.000000
1= 7
CALL SGRTY 7.000000 b
RETURN SGRT= 2.6435751
kO0T= 2.645751
RCPL= 1428571
.Q ' 2.6458 . 1429
8.G0o0000
3

CALL SQRTC 8.000000 b
RPETURN SE@RT= 2.828427
kROOT= 2.828427
RCPL= .1250000

-~

R
1

8.0 2.8284 .1250
A= 9.000000

I= 9
CALL SGRTC 9.000000 bl

RETURN S@RT= 3.000000
r00T= 3.000000
RCPL= . t111111

%.0 3.0000 L1t
A= 10.00000

I= 10
CALL SQ@RTC 10.00000)

RETURN SGRT= 3.162278

ROOT= 3.162278

RCPL= .9999999E-01

10.0 3.1623 .1000
A= 11.000G00

END OF FROGRAM

{EOJ

CPU (SEC)> = 15
ELAPSED (MIN) =
THU, JUL 10, 197
END OF JOB

2
S, 11:34 A

Figure 3-10. Using TRACE/3000 During a Batch Job (Sheet 2 of 2)

3-5. TRACE/3000 LIST FILE, TRCLIST

TRACE/3000 output will be sent to the standard output file (a terminal in an interactive
session or a line printer in a batch job) unless the TRACE/3000 list file, TRCLIST, is equated to
another file with a :FILE equation.

For example, to list the output on the line printer, instead of the terminal, in an interactive
session, enter:

‘FILE TRCLIST;DEV=LP
:RUN PROG

3-16

3-6. PRINT/HALT TABLE SIZE

All PRINT and HALT sentences from both the BATCH and INTERACTIVE files are entered
into the PRINT/HALT table by TRACE/3000. As the number of sentences is varied (by
changing the INTERACTIVE file during an interactive session), TRACE/3000 changes the
PRINT/HALT table accordingly.

The size of the PRINT/HALT table depends on the types of condition clauses used in PRINT

and HALT sentences. Table 3-1 shows the sizes for the different condition clauses. TRACE/
3000 sets the maximum size of the PRINT/HALT table at 200 computer words.

Table 3-1. Calculating PRINT/HALT Sentence Size

Note: The base word length of any PRINT/HALT sentence is 3 words.

CONDITION CLAUSE TYPE SIZE (COMPUTER WORDS)
Subscript Value Condition Clause 3
Label Condition Clause 1
Use Condition Clause 2
Identifier Value Condition Clause 1

(If the clause contains a variable, or as many words
as necessary if the clause contains a constant,
depending on the constant type.)

3-17

EQUIVALENT CONSTANT TYPES IN
TRACE/3000 PARAGRAPHS || A

When you enter PRINT, HALT, or SET paragraphs, TRACE/3000 allows some constants of
different types to substitute for constants of an expected type. For example,

*SET MAIN’
ITEM= 200/300.25
ITEM= 300

In the above example, ITEM is an integer variable, but the user changed the integer value by
entering a real constant (300.25). TRACE/3000 accepts the real constant in place of the integer
constant, but truncates the real constant to form an integer.

Table A-1 indicates which constant types are acceptable replacements for other constant types.
The table also indicates any restrictions on the relational operators that can be used in PRINT
and HALT sentences for constants of various types. In the table, a short string is a string of one
or two characters only.

TRACE/3000 prints a BAD SYNTAX message:

1. If the constant type is not equivalent to the expected type.

2. If the relational operator is illegal for the constant type.

3. If an overflow occurs in the PRINT/HALT table in the process of converting a constant to
the proper type.

Table A-1. Equivalent Constant Types

ALLOWABLE
TYPE OF CONSTANT RELATIONAL | TYPE OF CONSTANT ALLOWED BY
EXPECTED BY TRACE/3000 OPERATORS TRACE/3000
LOGICAL,INTEGER,SHORT STRING = LOGICAL,INTEGER,SHORT STRING
INTEGER,(SPL) DOUBLE INTEGER, INTEGER,(SPL) DOUBLE INTEGER,
REAL,DOUBLE PRECISION (REAL) all REAL,DOUBLE PRECISION (REAL)
COMPLEX = COMPLEX
STRING = STRING (of length not greater than the
length of the expected string)

A-l

ABBREVIATIONS IN TRACE/3000
PARAGRAPHS || B

Abbreviated program unit names and identifier names can be used in PRINT, HALT, CHECK,
DROP, and SET paragraphs ($TRACE control statements, however, must contain the full
program unit and identifier names). The abbreviations consist of at least the first letter of the
full name, followed by as many characters as necessary to identify the desired full name
(subject to the rules contained in the next paragraph).

After compilation of the source program, the compiler passes a list of all program unit names
and identifier names in the $TRACE control statements to TRACE/3000.' TRACE/3000 stores
these names in a name dictionary, in alphabetical order. This means that the name A appears
before AA, and AA appears before AAA in the list. Whenever TRACE/3000 encounters a name
in a sentence, it searches the name dictionary. The name chosen is the first name encountered
in the dictionary that has the same first letter as the first letter in the abbreviation, or that has
the same first leiters if more than one letter is used in the abbreviation.

EXAMPLE:
The following $TRACE control statements are read during compilation of a source program:

$TRACEMYPROG;$DELETE,IVAR1,IVAR2,IVAR3 FIXIT
$TRACE FIXIT;$DELETE,AJAX,B,BB

The compiler passes the list of names to TRACE/3000. The names are stored in the name
dictionary as follows:

AJAX

B

BB

FIXIT
IVAR1
IVAR2
IVAR3
MYPROG

If TRACE/3000 encounters the PRINT paragraph

PRINT M
I= 6

it searches the name dictionary and decides that M stands for MYPROG (MYPROG is the first
name in the name dictionary that has the same first letter as the first letter of the abbrevia-
tion), and that I stands for IVAR1 (IVARI is the first name in the name dictionary that has the

'The compiler also includes all program unit labels and user-defined routine names (for structure points) unless
$DELETE is the first identifier in the $TRACE control record identifier list.

B-1

same first letter as the first letter of the abbreviation). Thus, TRACE/3000 assumes that the
PRINT paragraph means

PRINT MYPROG
IVAR1= 6

Using the above name dictionary, TRACE/3000 responds as shown below for the following
paragraph:

*CHECK F
FIXIT
B=B

“B” is the full name of a variable and cannot be abbreviated; BB cannot be abbreviated since
TRACE/3000 always takes B to stand for the identifier B in the name dictionary shown above,

INDEX

Abbreviations, B-1
ABORT, 2-3
Addressing, 2-46

Array identifier, 2-37
Asterisk, 2-12

@ array name, 2-43

@ integer primary, 2-28
@ pointer name, 2-43

BAD SYNTAX error message, 2-47
BAD TRACE FILE message, 2-4
BATCH file, 2-2

BATCHFILE=, 2-2

Batch job, 3-14

Blank record, 2-14

Block listing of elements, 2-44

Calculating PRINT/HALT table size, 3-17
CHECK paragraph, 2-41
Commands
CHECK, 241
DROP, 2-40
$FORM, 2-8
GO, 246
HALT, 2-16
$LABEL, 2-5
PRINT, 2-16
SET, 2-42
Common terms, 2-43
Condition clauses
identifier value, 2-24
label, 2-27
routine parameter, 2-31
subscript value, 2-19
use, 2-28
Constant types, A-1
Control statements
$TRACE,2-1
$TRACEEND, 2-3
$TRACESTART, 2-3
CONTROL Y, 2-12

DB register, 2-43
$DELETE, 2-1

DROP command, 2-40
DROP paragraph, 2-40

EDIT/3000, 3-2

element, 2-43

Elements, block listing of, 2-44
Equivalent constant types, A-1
Error messages, 2-47

Files
BAD TRACE FILE message, 2-4
BATCH, 2-2
INTERACTIVE, 2-12
TRACE/3000 list file TRCLIST, 3-14

FORTRAN/3000 sample program, 2-22

Global terms, 2-43
GO command, 2-46

HALT command, 2-16
HALT paragraph, 2-18
How TRACE/3000 treates abbreviations, B-1

identifier, 2-1

Identifiers, 2-37

Identifier value condition clause, 2-24
Indirect addressing, 2-46

integer primary, 2-20

INTERACTIVE file, 2-12

Interactive session, 3-4

$LABEL command, 2-5
Label condition clause, 2-27
Label identifiers, 2-38

List file TRCLIST, 3-14

MAIN’, 2-1

Main program unit, 2-1
MODE=, 2-12

Modifying sentences, 2-25

NORMAL, 2-12

OB, 2-1

Operating modes, 1-2

Operating TRACE/3000
in a batch job, 3-14
interactively, 3-4

Paragraphs

blank records, 2-14

CHECK, 2-41

description, 2-14

DROP, 2-40

equivalent constant types in, A-1

HALT, 2-18

PRINT, 2-17

program unit name in, 2-15

sentence, 2-18

SET, 2-43

string data in, 2-45
Pointer, 2-43
Preparing a BATCH file, 3-1
Preparing a source program, 3-1
primary, 2-25
PRINT and HALT sentence execution
conditions, 2-36
PRINT and HALT sentence results, 2-36
PRINT Command, 2-16
PRINT paragraph, 2-17
PRINT/HALT table, 2-14
PRINTHALT table size, 3-17

I-1

INDEX

Program local terms, 2-43

program unit name, 2-1

program unit name abbreviations, 2-41
Program unit name in paragraphs, 2-15

Q register, 2-43

relational operator, 2-20
Relative addresses, 2-42
RESTRICTED, 2-12
Routine identifier, 2-38
Routine parameter clause, 2-31
Running TRACE/3000

batch job, 3-14

interactive session, 3-4

Sentence condition clauses
identifier value, 2-24
label, 2-27
routine parameter, 2-31
subscript value, 2-19
use, 2-28

Sentences
condition clauses, 2-19
description, 2-18
execution conditions, 2-36
modifying, 2-25
results, 2-36
types, 2-37

SET command, 2-42

SET paragraph, 2-43

Size, PRINT/HALT table, 3-17

Source program, 3-1

SPL/3000 sample program, 2-6

S register, 2-43

Stack, 2-43

Stack element, 2-43

I-2

Stack register, 2-43

Statement labels, 1-1

String data, 2-45

Structure points, 1-4

Subscript value condition clause, 2-19
Substituting constant types, A-1

Term address, 2-45
$TRACE control statement, 2-1
$TRACEEND control statement, 2-3
$TRACESTART control statement, 2-3
TRACE/3000
commands, 1-2
control statements, 1-2
description, 1-1
error messages, 2-47
features, 1-1
files and tables, 2-2
FORTRAN/3000 sample program, 2-18
list file TRCLIST, 3-16
operating modes, 1-2
paragraphs, 2-14
preparing a BATCH file, 3-1
preparing a source program, 3-1
SPL/3000 sample program, 2-6
structure points, 1-4
using TRACE/3000, 3-1
TRCLIST, 3-16

Use condition clause, 2-28
Using EDIT/3000, 3-2
Using SET command for term address, 2-45
Using TRACE/3000
in a batch job, 3-14
interactively, 3-4

Variable identifier, 2-37

