HP 3000

FORTRAN

HEWLETT l’!prl PACKARD

HP Computer Museum
www.hpmuseum.net

For research and education purposes only.

HP 3000

FORTRAN

03000-90007 November 1972

© Copyright, 1972, by HEWLETT-PACKARD COMPANY, 11000 Wolfe Road, Cupertino, California. All rights reserved.

Printed in the U.S.A. ‘

Pages

Title
Copyright
Wi ..
vtoix
1-1to 14
2-1 to 2-17

3-1 to 3-10 .
4-1 to 4-23 .
5-1 to 5-16 .

6-1 to 6-8
7-1 to 7-7
8-1 to 8-11

9-1 to 9-49 .

10-1 to 10-2
11-1 to 11-8
A-1to A-2
B-1 to B-4
C-1

D-1 to D-19

List of Effective Pages

Effective Date

. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972
. Nov. 1972

Printing History

Part No. Date Update Package Date

03000-90007 Nov. 1972

PREFACE

The publication is the reference manual for the HP 3000 FORTRAN programming language
(FORTRAN/3000). It describes the syntax and functions of each FORTRAN/3000
instruction.

Included in the manual are descriptions of the use of the FORTRAN file facility, EORTRAN
Formatter, and the use of the non-FORTRAN (SPL/3000) language subprograms and
system intrinsics. For more detailed information on the above subjects, refer to

e HP 3000 Multiprogramming Executive Operating System (03000-90005)

e HP 3000 Compiler Library (03000-90009)

e HP 3000 Systems Programming Language (03000-90002)

iii

PREFACE

CONTENTS

SECTION I INTRODUCTION

PROGRAM ELEMENTS

Character Set
Lines

Statements
Statement Labels
Comment Lines
Control Records

PROGRAM FORMAT

Fixed Field Format
Free Field Format

SECTION II DATA ELEMENTS

DATA STORAGE FORMATS

Integer Format

Logical Format

Real (Floating Point) Format
Double Precision Real Format
Complex Format

Character Format

CONSTANTS

Integer Constants

Real (Floating Point) Constants
Double Precision Real Constants
Complex Constants

Logical Constants

Character Constants

Composite Numbers

VARIABLES

Simple Variables
Arrays

CONTENTS

1-2
1-2

1-2
1-3
1-3

1-3
1-3
14

21

2-1
2-1
21
2-2
2-3
2-3

2-5
2-5

2-6
2-7
2-7

29

2-11
2-11
2-11

SUBSCRIPTS 2-11

FUNCTION REFERENCES 2-12
STATEMENT FUNCTION REFERENCE 2-13
FUNCTION SUBPROGRAM REFERENCE 2-13
INTRINSIC FUNCTIONS 2-15
DUMMY AND ACTUAL ARGUMENT CHARACTERISTICS 2-15
NUMBER RANGES 2-17
SECTION III EXPRESSIONS AND ASSIGNMENT STATEMENTS 3-1
EXPRESSIONS 3-1
Arithmetic Expressions 31
Logical Expressions 34
Character Expressions 3-8
ASSIGNMENT STATEMENTS 3-9
LABEL ASSIGNMENT STATEMENTS 3-10
SECTION IV SPECIFICATIONS STATEMENTS 4-1
ARRAY DECLARATORS 41
DIMENSION STATEMENTS 4-3
COMMON STATEMENTS 4-4
Correspondence of Common Blocks 4-5
Character Variables and Arrays in Common Blocks 4-7
EQUIVALENCE STATEMENT 49
Equivalence of Different Types 49
Equivalence of Array Elements 410
Equivalence Between Arrays of Different Dimensions 4-11
Equivalence in Common Blocks 4.14
TYPE STATEMENTS 4-16
IMPLICIT STATEMENT 417
EXTERNAL STATEMENTS 4-18
DATA STATEMENTS 4-18
Equivalence in DATA Statements 4-20
Block Data Subprograms 4-22
STATEMENT FUNCTIONS 4-22
SECTION V CONTROL STATEMENT'S 5-1
GO TO STATEMENTS 5-1
Unconditional GO TO 5-1
Computed GO TO 5-1
Assigned GO TO 5-2
IF STATEMENTS 5-3
Arithmetic IF 5-4
Logical IF 5-4
DO STATEMENTS 5-4
Range and Execution of DO Loops 5-5
Nesting DO Loops 5-6

Entering and Exiting DO Loops 5-8

vi

. CONTINUE STATEMENTS 513

BREAK STATEMENTS 5-13
CALL STATEMENTS 5-14
RETURN STATEMENTS 5-15
SECTION VI MAIN PROGRAMS AND SUBPROGRAMS 6-1
STATEMENT ORDER IN PROGRAM UNITS 6-1
END LINES 6-2
MAIN PROGRAMS 6-3
SUBROUTINE SUBPROGRAMS 6-3
FUNCTION SUBPROGRAMS 6-5
BLOCK DATA SUBPROGRAMS 6-7
NON-FORTRAN LANGUAGE SUBPROGRAMS 6-8
SECTION VII FUNCTIONS 7-1
INTRINSIC FUNCTIONS 7-1
STATEMENT FUNCTIONS 7-5
FUNCTION SUBPROGRAMS 7-6
BASIC EXTERNAL FUNCTIONS ' 7-6
. SECTION VIII INPUT/OUTPUT STATEMENTS 8-1
READ STATEMENTS 8-1
ACCEPT STATEMENTS 8-4
WRITE STATEMENTS 8-5
WRITE STATEMENT EXECUTION 8-6
DISPLAY STATEMENTS 8-7
AUXILIARY INPUT/OUTPUT STATEMENTS 8-11
FORMAT STATEMENTS 8-11
SECTION IX THE FORMATTER 9-1
FORMAT STATEMENTS 9-1
Read or Write Statements 9-2
Disc Input/Output 9.2
FORMAT SPECIFICATIONS 9-3
Field Descriptors 9-3
Rules for Input 94
Dw.d DOUBLE PRECISION NUMBERS 9-7
Ew.d REAL NUMBERS 9-9
Fw.d REAL NUMBERS 9-11
Gw.d REAL NUMBERS 9-13
Mw.d REAL NUMBERS 9-16
Nw.d REAL NUMBERS 9-18
Iw INTEGER NUMBERS 9-20

Ow OCTAL INTEGER NUMBERS 9-22
Lw LOGICAL (BOOLEAN) VALUES 9-24

Aw LEFTMOST ASCII CHARACTERS 9-26

Rw RIGHTMOST ASCII CHARACTERS 9-28

S STRINGS OF ASCII CHARACTERS 9-30

Scale Factor 9-32

Repeat Specifications -- Field Descriptors 9-35

EDIT SPECIFICATIONS 9-35

Edit Descriptors 9-35

“. . .” ASCII STRING (FIXED) 9-36

‘. . . ASCII STRING (FIXED) 9-317

nH ASCII STRING (VARIABLE) 9-38

nX ASCII BLANKS 9-39

Tn POSITION (TABULATE) DATA 9-40

/ RECORD TERMINATOR 941

Repeat Specifications -- Edit Descriptors 9-42

SPECIFICATION INTERRELATIONSHIPS 9-42

Nesting 9-42

Unlimited Groups 9-43

FREE-FIELD INPUT/OUTPUT 943

Free-Field Control Characters 9-44

Free-Field Input 9-44

Free-Field Output 9-46

ACCEPT/DISPLAY 9-47

CORE-TO-CORE CONVERSION 9-47

UNFORMATTED (BINARY) TRANSFER 9-48

SECTION X FORTRAN FILE FACILITY 10-1

STANDARD INPUT AND LIST FILES 10-1

CHANGING STANDARD ATTRIBUTES OF FILES 10-2

DIRECT INTRINSIC CALLS 10-2

SECTION XI COMPILER SUBSYSTEM COMMANDS 11-1

CONTROL COMMAND 11-2

PAGE COMMAND 114

TITLE COMMAND 11-5

SET COMMAND 11-5

IF COMMAND 11-5

EDIT COMMAND 11-6

TRACE COMMAND 11-8
APPENDIX A NON-FORTRAN PROGRAM UNITS A-1
SPL/3000 PROGRAMS A-1
SYSTEM INTRINSICS A-2
APPENDIX B FORTRAN/3000 AND ANSI STANDARD FORTRAN B-1

APPENDIX C FORTRAN/3000 AND PREVIOUS VERSIONS OF HP FORTRAN C1

viii

' APPENDIX D ERROR AND WARNING MESSAGES

ERROR MESSAGES
WARNING MESSAGES
ERROR POSITION INDICATION

Table 3-1.
Table 6-1.
Table 7-1.
Table 7-2.
Table 11-1.
Table 11-2
Table D-1.

' Table D-2.

Table D-3.

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.

Figure 2-6.

TABLES
Conversion Between Types
Program Unit Statements
Intrinsic Functions
Basic External Functions
Compiler Subsystem File Names
CONTROL List and Compilation Options
FORTRAN/3000 Warning and Error Messages
Compiler Error Message Action

Compiler Warning Messages

FIGURES
Internal Representation of Integer Values
Internal Representation of Logical Values

Internal Representation of Real Values

Internal Representation of Double Precison Real Values

Internal Representation of Complex Values

Internal Representation of Character Values

D-1
D-1

D-1
D-1

3-10

6-2

7-7

111

11-2

D-3

D-7

D-17

21

21

2-2

2-3

2-3

2-4

SECTION |

Introduction

The FORTRAN/3000 language is based upon the ANSI Standard FORTRAN (X3.9-1966).
In addition, FORTRAN/3000 has many extensions which expand the capabilities and in-
crease the power of the language as a problem-solving tool.

FORTRAN /3000 also incorporates many of the extensions implemented for previous
versions of the Hewlett-Packard FORTRAN to maintain upward compatibility in
FORTRAN programs written for the 2100 family of HP computers.

FORTRAN/3000 operates under the control of the HP 3000 Multiprogramming Executive

operating system (MPE/3000). FORTRAN/3000 programs can be compiled using the
minimum MPE/3000 hardware configuration.

1-1

PROGRAM ELEMENTS .
Character Set

A FORTRAN/3000 source program is written using alphabetic characters A through Z,
numeric characters 0 through 9, and the following special characters:
Blank

= Equal sign

+ Plus sign

- Minus sign

* Asterisk
Slash
Left parenthesis

~ o~

Right parenthesis

Comma

Decimal point
$ Dollar sign

({324

Quotation marks

~

Apostrophe
Left bracket
Right bracket
Hatch mark

% Per Cent

@ Record pointer

I e

: Colon
\ Back slash
“Any other printing ASCII character”

Blanks are used anywhere within a FORTRAN statement. They are ignored by the
compiler except in Hollerith and string constants, where they represent blank char-
acters. The significance of blanks outside the body of a FORTRAN statement is
explained under “Statements,” below.

Lines

Lines consist of a sequence of as many as 80 characters numbered from 1 to 80.
Characters 73 through 80 are not part of the program text, but are used by some
compiler options for sequencing information.

Statements

From one to twenty 72-character lines can be combined to form a statement. The first
line of the statement contains a zero or blank in character position 6. A continuation .
line (any line of the statement following the first line) contains any character other

than blank or zero in position 6. A continuation line cannot contain a C or $ in position

1 (see “Comment Lines”’ and “Control Records” below).

1-2

There are two main statement types—executable andd nonexecutable. Executable
statements are assignment statements, control statement, and input/output statements.
Nonexecutable statements are specification statements such as Type, COMMON, and
IMPLICIT.

Statement Labels

A statement can be labeled so that it can be referred to by other statements in the
program. A label consists of one to five numeric digits placed in any of the first five
positions of a line. The number is unsigned and is in the range of 1 through 99999.
Embedded spaces and leading zeros are ignored. If no label is used, the first five
character positions of the line must remain blank.

Comment Lines

Lines containing comments can be included between statements. The comments are
printed as part of the source program listing. A comment line requires a C in position 1
and treats positions 2 through 72 of the line as text. If more than one comment line is
used, each line must contain a C in position 1. Comment lines cannot be inserted
between lines of a single statement or single control record.

Control Records

Control records are not part of the program proper, but are included with the source
program to indicate compiler options, such as suppressing listings or diagnostic
messages. Control records are detailed in Section XI.

PROGRAM FORMAT
Fixed Field Format

A program unit entered in fixed field format consists of a set of 80-character lines;

characters in a line are numbered from 1 to 80. Character positions 73 through 80,

while not affecting the program logic, can be used for sequencing information. The
order of these lines is the order in which they are entered into the input device.

The program is made up of comment lines, control record lines and thé-initial and
continuation lines which make up the executable and nonexecutable statements of the
program. Comments are indicated by the letter C in position 1. A control record
indicates which options the compiler is to take when compiling the source program.

A control record starts with a $ in position 1. Positions 2 through 72 are available for
control options. Commas plus optional blanks separate each individual option. If a
control record takes more than one line, the initial line and any succeeding lines which
must be continued must end with an &. Each continuation line must begin with a dollar
sign ($) in position 1.

13

The final line of any FORTRAN program unit must be an end line (see Section VI). .
An example of fixed field format is

CATHISAISAANAEXAMPLEAOF Comment line
AFIXEDAFIELDAFORMAT

$CONTROLANOLIST,ANOWARN Control record

AAAAAA|INTEGER A(10),I FORTRAN Statement

AAAAAA|DO 20 1I=1,10 FORTRAN statement

020 AAAA(I)=I Statement with label in positions 1 to 5
AAAAAA|END END line

Free-Field Format

A program unit entered in free-field format consists of a set of 9 to 80-character lines.
Each line of a free-field program begins with a sequence field (corresponding to
positions 73 and 80 in fixed-field format). The sequence field extends up to (but not
including the first blank in the line. A sequence string less than 8 characters long is
treated as being right-justified by the compiler upon input with leading zeros set into
the sequence field for unspecified characters. A blank in position 1 implies that the
entire sequence field is blank.

The remaining positions in the line (up to 71 characters total), starting with the first
position after the blank terminating the sequence string) make up the FORTRAN line.
Comment lines are indicated by a hatch mark (#) in the first position following the
sequence field. Control records are indicated by $ as their first character. If a control
record or FORTRAN statement takes more than one line, the initial line and each
additional line except the last of that record must be terminated with an &. Each
control record continuation line begins with a $ following the sequence field and blank.

Statement labels may be used, but they need not start in the first position following the
sequence string. If the first nonblank character following the sequence string is a digit,
then it begins a statement label. The label can be more than five digits long, but cannot
execeed 99999 in value. The first nonblank, nondigit character following the sequence
field starts the body of the FORTRAN statement. For example

001 A#ATHISAISAANAEXAMPLEA Comment line; a blank separates the
OFAFREEAFIELDAFORMAT sequence field from the rest of the line.

002A$CONTROLANOLIST,ANOWARN Control record.

00000003AINTEGER A(10),I No space need be left for labels if the line
does not contain one.

A4DO 201=1,10 Label follows the first blank after

0520 AD=1 sequence.

0006 END END line.

1-4

SECTION 1l

Data Elements

DATA STORAGE FORMATS

FORTRAN/3000 processes six types of data—integer, logical, real, double precision,
complex, and character. Each data type differs in the way it is internally represented
in memory.

Integer Format

Integer values are stored in one 16-bit computer word. The leftmost bit represents
the arithmetic sign of the number (1 = negative, 0 = positive). The other 15 bits repre-
sent the binary value of the number. Numbers are represented in two’s complement

form.
Figure 2-1. Internal Representation of Integer Values
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sign Bit t = Value —|

Logical Format

Logical values are stored in one 16-bit computer word. Bit 15 is used to determine
the TRUE/FALSE (Boolean) value.

Figure 2-2. Internal Representation of Logical Values

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I Logical Value —|

21

Real (Floating Point) Format

Real numbers are stored in two consecutive 16-bit computer words as normalized
fractions with a scale factor and a sign bit (which applies to the entire number). The
fraction (F) is always positive. The sign bit (S) contains the sign of the number (S = 0
for positive, S = 1 for negative). The binary point is to the left of bit 10 with an implied
leading 1 to the left of the binary point. E represents (scale factor + 2561). The
formula for the decimal value of a floating point representation is

Decimal value = (-1)S x 2(E-256) y (1 + F x 2(-22))

Figure 2-3. Internal Representation of Real Values

S E F Word 1

0|1 2 3 4 5 6 7 8 9|10 11 12 13 14 15

F Word 2

f
0(0 0 0 0 0O 0O 0O 0 0OJO O OO0 O o Word 1
Represents 0|1 2 3 4 5 6 7 8 9[10 11 12 13 14 15
Zero (0) L4
in Memory
0O 0 0 00 0O 0 0O 0O 0 0 O o0 O0FUDO Word 2
. 01 2 3 4 5 6 7 8 9 10 1112 13 14 15
/ .
o|1 0 0 O 0O 0O O 0 OJ]O O O OTUWOTFGDO Word 1
Represents o1 2 3 4 5 6 7 8 9|10 11 12 13 14 15
One (1)
in Memory
0O 00 00 0O 00O 0 O O OO OOTFODO Word 2
.|0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2-2

‘ Double Precision Real Format
Double precision values are stored in three consecutive 16-bit computer words and

are similar to real (single precision) values, except that the fractional part of the
number is extended from 22 to 38 binary bits.

Figure 2-4. Internal Representation of Double Precision Real Values

S E F Word 1

0l 2 3 4 656 6 7 8 9]10 11 12 13 14 15

E Word 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F Word 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Complex Format

A complex value consists of an ordered pair of real numbers, specifying the real and
‘ imaginary parts. Complex numbers are stored in four consecutive 16-bit computer

words; the first two words for the real part, the second two words for the real number

specifying the imaginary part. The two numbers specifying the complex value must

be real
Figure 2-5. Internal Representation of Complex Values
’
S E F Word 1
ol1 2 3 4 5 6 7 8 910 11 12 13 14 15
Real
Part <
F Word 2
\0123456789101112131415
’
S E F Word 3
Imag- 0|1 2 3 4 5 6 7 8 9|10 11 12 13 14 15
inary <
Part
F Word 4
\ J]0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15

2-3

Character Format .

Character values are represented by 8-bit ASCII codes, two characters packed in one
16-bit computer word. The number of words used to represent a character value
depends upon the actual number of characters in the source representation of the value.

Figure 2-6. Internal Representation of Character Values

0 1 2 3 4 5 6 7|8 9 10 11 12 13 14 15

CONSTANTS

A constant is a data element representing one specific value which remains unchanged
throughout the program. A constant’s type and specific value are determined by its
representation in the source program.

Integer Constants

Integers are whole numbers Containing no fractional part. Integers may be specified
in four ways: decimal, octal, ASCII, and composite.

Decimal integer constants use the decimal digits 0 through 9. They can contain a
leading plus (+) or minus (-) sign (a number with no leading sign is positive).
The number ranges from -32768 to 32767. For example,

+45
-365
4012

Octal integer constants are denoted by the % character. They may contain up to six
octal digits and an optional leading sign. The number ranges from -100000g

to +77777g. For example,

#4777
+%605
-%17
177777

ASCII integer constants are used to write one or two ASCII character bit patterns into
one 16-bit computer word. ASCII integer constants are written with the % character
followed by the ASCII characters enclosed in quote marks (also called string bracket
characters) for apostrophes. For example,

+%“AB”
-%“U”
%“HI”
%“L>”
-%'XY’
+0%' A’

If only one ASCII character is specified, the bit pattern representing that character is
placed in the computer word right-justified, and the left half of the word is filled with
leading zeros. Leading plus or minus signs are allowed.

Integer constants can also be specified by composite numbers. See “Composite
numbers,” this section.

Real (Floating Point) Constants

Real constants are represented by an integer part, a decimal point and a decimal
fraction part (with an optional leading sign). The constant can contain a scale factor
(which represents a power of ten by which the constant is multiplied). The eleven forms
of a real constant are

n. nEze
.n nEe
n.n .nEe

n.Ete nEe
.nE+e n.nEe
n.nEte

n is a decimal integer. The construct Ete stands for 10%©, which is multipled by
the other part of the number (n., .n, n.n, etc). The construct Ee is equivalent to Ete.

3.4E-4 = 3.4 x 10~4 = .00034

-3.4E4 = -3.4 x 104 = -34000

A real constant may be written any number of digits in length, but the internal
representation in memory only allows six or seven significant decimal digits.

Real constants also can be represented by octal numbers, followed by the letter R.
The bit pattern specified by the octal number is loaded (right-justified) into two
consecutive 16-bit words in memory and is treated as a floating point number.

%3TT5R = 1.00017764g * 2-256

ASCII real (right-justified) constants also are allowed. From one to four 8-bit ASCII
patterns are stored in the two 16-bit words.

%“ABCD”R
-%“DEF”R
%“V’R
+%“XZ"R

Composite numbers followed by the letter R also can specify real numbers. See
“Composite Numbers” in this section.

Double Precision Real Constants

Double precision real constants are similar to real (single precision) constants.

Substituting the letter D for the letter E in the scale factor of a real constant gives a

double precision real constant with 10 or 11 significant decimal digits as opposed to the

6 or 7 significant digits in the single precision real constant. (Double Precision Con-

stants start with an optional sign.) ‘

26

The eight decimal representations of double precision constants are

nDze nDe
.nDte n.De

n.Dte n.De

n.nDite n.nDe

The real constant forms .n, n., or n.n (those without the scale factor) are not allowed
for double precision constants, as FORTRAN has no way of knowing whether the
number should be stored in single or double precision format.

When written, double precision octal numbers are preceded by % and are followed
by the letter D. For example,

-%3776125D
%64333D
%45D

ASCII double precision real constants also are allowed. From one to six 8-bit ASCII
patterns are stored in the three 16-bit words.

%“ABCDEF”D
-%“A”D
%“TR”’D
+%“DFG”D
%“LKJH”D

Composite double precision real constants are also allowed. See “Composite Numbers”
in this section.

Complex Constants

Complex constants are represented by an ordered pair of real constants enclosed in
parentheses and separated by a comma. The first number represents the real part and
the second number represents the imaginary part of the complex number.

The real constants of each ordered pair can be represented as integers, decimal
fractions (with or without a scale factor), octal numbers, or composite numbers.

Double precision constants cannot be used to represent either the real or the imaginary
part of a complex constant. For example,

(3.0, -2.5E3)

(%376R, %736R)

Logical Constants

Only two values are normally used for logical constants: .TRUE. and .FALSE.
However, the internal representation of these logical values allows use of a full 16-bit
word. .TRUE. is represented by all 16 bits equal to 1. .FALSE. is represented by all 16
bits equal to 0. Any other pattern of 16 bits, can be used with logical operators to
perform masking operations (see Section III).

2-7

The actual bit pattern of a mask is specified by an octal constant, an ASCII character
string of up to two ASCII characters or a composite number followed by an L.
For example,

%177777L
%“AB”L
%1006L,

Character Constants

Character constants represent ASCII character strings which can be manipulated using
character expressions and input/output statements. String constants are character
values bound by quote marks or apostrophes, called string bracket characters. Blanks
are significant characters within a character string. For example,

“THIS IS A STRING”
“NOW IS THE TIME”
'"ANOTHER FORM’

"HE SAID, “HELLO”’

If a quote mark (“) must be included within a string bracketed by quotes, or if an
apostrophe (') must be included within a string bracketed by apostrophes, write it

twice in a row to distinguish it from a string bracket. Apostrophes in strings bracketed
by quotes and quotes in strings bracketed by apostrophes need only be written once.
For example,

“ABC"“XYZ” 'AB"CD’ “AB'CD”
“4XC”“D” IABHCDI

To indicate a null string (a string with no value) write a pair of string bracket characters
with no intervening characters (e.g., “”).

NOTE: A character string written with one or more blanks between the string
delimiters is not the null string, but represents a string of ASCII blanks.

Hollerith constants consist of a decimal integer specifying the length of the constant,
followed by the letter H and the character value. For example,

Hollerith ASCII String

“BLANKS ARE INCLUDED”
“AB”“CDFG”

19HBLANKS ARE INCLUDED = BLANKS ARE INCLUDED
THAB“CDFG = AB“CDFG

A single character can be specified by an octal number representing a character bit
pattern. The octal number is followed by the letter C:

%101C
%16C
%207C

This form is useful for representing nonprinting characters (such as carriage returns) ‘
in source programs.

2-8

Composite Numbers

. Composite numbers are a convenient way of representing specific bit patterns for any
type constant except character or complex. A composite number takes the form

% [bit pattern] letter

where % is an octal number indicator and bit pattern consists of one or more subfields
in the form

A;/Ng, Ag/No, .., A, /N,

A; through A , are decimal integers which represent the number of bits in the bit
pattern subfield. N; through N,, are the octal or decimal values set right-justified

into the subfields. Unspecified leading bits are set to zero. Extra leading bits are
truncated.

For example, 3/7 creates a subfield 3 bits long with the binary value 1115 set into it.
4/7 creates a subfield 4 bits long. The value 71 = 1119 is loaded right-justified

into the four-bit field and the unspecified leading bit is set to zero. The resulting sub-
field is 0111o.

letter indicates the data storage word format for the type of constant. Integer
composite constants do not have a letter suffix. Logical is indicated by L, real by R,
double precision real by D. Complex constants consist of an ordered pair of real
numbers, either or both of which can be real composite numbers. The bit pattern

‘ specified in each subfield is concatenated from left to right and the result is stored
right-justified in the storage space for the constant type indicated by the letter.
Unspecified leading bits are set to zero.

Type Example

Integer %[4/15,6/%13,2/1] (no letter)
Logical %[12/64]L

Real %[4/9,16/%1245,10/49]R

Double precision real %[35/4775,10/%777]D

Complex (%[15/777R,%[12/%4444]R)

For example,
%[3/7,4/T]L
where L indicates a logical constant.

The two subfields 3/7 = 1119 and 4/7 = 0111, are concatenated left to right to form
the bit pattern 1110111,.

1110111,

29

This value is placed right-justified in a 16-bit word, with unspecified leading bits set
to zero. The resulting logical value is

0000000001110111¢9 ‘

Another example is
%[3/7,4/TIR

where R indicates a real (floating point) constant. The bit pattern specified
by the two subfield 3/7 and 4/7

1110111,

is placed right-justified into a 32-bit word, with unspecified leading bits set to zero.
The resulting real value is

000000000000000000000000011101119

2-10

VARIABLES

A variable is a symbolic name from one to 15 alphameric characters (the first character
must be a letter) capable of representing any value of the type associated with the
variable name.

The type of a variable can be determined by a Type statement (see Section IV). If the
variable is not mentioned in a Type statement, the variable type is determined by the
first letter of the variable name. Names starting with I, J, K, L, M, or N are type
integer. Variable names starting with any other letter are type real.

The value of a variable is given through an assignment statement or a READ statement.
The specific value represented by the variable may be changed during execution of the
program containing the variable.

Simple Variables

A simple variable is a symbolic name which has one, and only one, value at one time.
For example,

INTEGER REAL

I ALPHA
JAM1234 (G99887766
NOWHERE4567 ZERO

L1 Q45

Arrays

An array is a collection of one or more values of the same type, all represented by the
same symbolic name. An array variable is an array name suffixed by a subscript to
designate exactly one value of the collection. An array variable is therefore equivalent
in usage to a simple variable.

Array type can be determined by a Type statement (see Section IV). If the array name
is not mentioned in a Type statement, the array type is determined by the first letter of
the variable name. Names starting with I, J, K, L, M, or N are type integer. Array

names starting with any other letter are type real. An array and its dimensions must be
declared in a DIMENSION, Type, or COMMON statement (see Section IV).

SUBSCRIPTS

Subscripts point to a specific element of a named array. A maximum of 255 array
dimensions are allowed; an array variable must contain as many subscript expressions
as the array’s definition specifies. Subscripts are written in the form:

(expy, expo, ..., exp,)
where exp; is an arithmetic constant, variable, or expression of any type except

complex. The computed value of any subscript is truncated to the nearest integer,
regardless of the original implicit or explicit type. Examples of array variables are:

2-11

INTEGER REAL

IJ,K) Q22(4,5,6,7,8)
LAD12(3,4,5,7) YOU(4+LT,3*X+4,6,5)
JO4*1,6+HA,7) RUN(6)
NO@,5/1+K,8*T) ALL(L*K*6,7-24*FUN)

FUNCTION REFERENCES

A function reference is a symbolic name from one to 15 alphmeric characters (the first
of which must be alphabetic) followed by a list of arguments. The symbolic name
references a FORTRAN computational process (defined elsewhere) which is designed
to return a value assigned to the symbolic name. A function reference takes the form

name (param, param, ..., param)

name the symbolic name of the statement function, intrinsic function
or function subprogram.

param a variable name, array name, array element, function sub-
program name, subroutine subprogram name, Hollerith constant,
expression, or an arithmetic or logical expression bounded by
back slashes (\).

The actual subset of arguments allowed for each type of function (statement function,
intrinsic function, or function subprogram) is described in “Dummy and Actual
Argument Characteristics” in this section.

A function reference requests a specific value of the type assigned to it and is
equivalent in usage to a variable reference of the same type. When a function
reference is encountered during the evaluation of an expression, control is passed to
the function. The function is executed using actual arguments listed in the function
reference in place of the dummy arguments in the function definition. The function
name is assigned a value depending upon the values of the actual arguments. (For
discussions of dummy arguments and function definition, see “Dummy and Actual
Argument Characteristics” in this section and “Function Subprograms” in Section VI.)
After the function is executed, control passes back to the expression in the calling
program. Evaluation of the expression containing the function reference then continues,
as shown in the following example.

PROGRAM MAINPROG INTEGER FUNCTION ICOUNT(IA,IB)
MAX =6 ICOUNT = (IA + 6)/1B
LIMIT =6 END

7 = 42 + ICOUNT (MAX,LIMIT)

END

2-12

In this example, the function ICOUNT is assigned the value 2 and Z is assigned the
value 44. The values of MAX and LIMIT replace the dummy arguments in ICOUNT’s
definition. ICOUNT is assigned a value and this value is used to evaluate the expression.

The type associated with a function name is determined by a Type statement (Section
IV). If the function name does not appear in a Type statement, the function type is
determined by the first letter of the function name. Function names beginning with
I,J, K, L, M, or N are type integer, while names beginning with any other letter are
type real. (This typing convention can be modified by an IMPLICIT statement.

A function reference invokes either a local or global function. A local function is
recognized only within the program unit which defines it. A globally defined function
is recognized in any program unit which does not define its name for some local
purpose. Statement functions (Section IV) are local functions; their names can never
appear in an EXTERNAL statement nor be referenced outside the defining program
unit. Intrinsic functions (Section VII) are local functions whose names are predefined
to the compiler; they are implicitly defined within each program unit which does not
redefine their names in a specification statement or through implicit use as a simple
variable. Function subprograms including basic external functions (Section VI) are
global functions. They may appear in any program unit which does not redefine the
name locally.

Individual characteristics of local and global function references appear below.

STATEMENT FUNCTION REFERENCE

A statement function reference invokes a computational process local to the calling
program unit (Section IV). The actual arguments allowed n a statement function
reference are constants, simple variables, array elements, function references or
expressions consisting of any combination of the above. Actual arguments of type
character are not allowed. For example,

ICOUNT(A + 6, XRAY)
PUSHSTAK(6,A(3),ICOUNT(X,Y,Z))
FLIP(MAX,DIX,DIL)

FUNCTION SUBPROGRAM REFERENCE

A function subprogram reference invokes a user externally defined computational
process or a basic external function (Section VI). A function reference is similar in
usage to a simple variable reference and can be used in any expression where a
constant, variable or (expression) can be used. Function subprograms are global
functions.

Outside of a reference the function name can only appear in a Type or EXTERNAL

statement or as an actual parameter for a subroutine CALL statement or another
function reference.

2-13

If the function name is used as an actual argument in a function reference, the function
name must be identified either by including the name in an EXTERNAL statement or ‘
by suffixing empty parentheses “()’ after the function name. A function name cannot

appear in an EXTERNAL statement within the program unit which defines it (i.e., a

program unit headed by a FUNCTION statement using the function name). If such a

function name appears as an actual argument within the program unit, providing its

definition and is not suffixed by “()”, the value of the function will be passed as a

simple variable of its type. For example,

PROGRAM EX
DIMENSION TOTAL (10)
REAL TOTAL
EXTERNAL ADDUP
DO 401=1,10

40 TOTAL() = (ADDUP(I,1+1) +6)/4
END

REAL FUNCTION ADDUP(J,K)
INTEGER J,K

ADDUP=J +K

RETURN

END

In the main program (EX), statement 40 references a real function named ADDUP.

Each time the expression on the right-hand side of the assignment statement (statement
40) is evaluated, control passes to ADDUP. The actual arguments of the function at

the time of the reference are I and I + 1. The simple variables used as dummy arguments
in the FUNCTION statement (J and K in this example), use expressions of the same ‘
type as actual parameters (I and I + 1 are both integer expressions). When control
passes to the function, the values of I and I + 1 are used in place of the dummy para-
meters J and K. The value is given to the function name through an assignment state-
ment which uses the function name as a simple variable in the left side. Each time the
range of the DO loop in the main program is executed, the value of ADDUP changes
since the actual arguments change each time the function is referenced.

When functions are used, care should be taken to avoid side effects of parameter
modification during execution. For example,

PROGRAM SAM

REAL DIX

EXTERNAL HUF

R=4

DIX =7

ALF = DIX + HUF (R,DIX) + R
END

REAL FUNCTION HUF(S,T)
A=S*¢

T=A*4

HUF=T+1

END

2-14

In the preceding example, function HUF redefines one of its actual arguments during
the course of its execution. The function reference HUF(R,DIX) (R=4, DIX = 7) results
in the following calculations:

A=-R*6=4*6=24
DIX=A*4=24*4=96
HUF=DIX+1=96+1=97

Order of evaluation of the expression DIX + HUF(R,DIX) + R in the main program is
not necessarily left to right; the results are not necessarily predictable.

INTRINSIC FUNCTIONS

Intrinsic functions are computational procedures which perform useful operations,

such as converting integers to real values. The names of intrinsics are predefined to the
FORTRAN/3000 compiler. To use an intrinsic, it is necessary to reference the

intrinsic function name (along with appropriate arguments) in an expression. It is
incorrect to mention the intrinsic function name in an EXTERNAL statement unless
the program intends to redefine its name as a procedure subprogram.

An intrinsic function name can be redefined for other use within a program unit in
several ways. One way is to use the name in a Type statement different from the
function name’s normal type. Another way is to use the name in a DIMENSION,
COMMON, EXTERNAL, EQUIVALENCE, SUBROUTINE, or FUNCTION statement.
Then the intrinsic name can be used as a simple variable or array name, statement
function name, or subprogram name. This redefinition applies only to the program unit
containing the redefining specification statement. The original FORTRAN compiler-
defined intrinsic is used in any other program unit that does not redefine the name. An
intrinsic name can be redefined in a SUBROUTINE or FUNCTION statement. The
newly defined subroutine or function then can be used in the defining program unit
and in any program unit using the subprogram name in an EXTERNAL statement.
Any function reference using an intrinsic name will call the FORTRAN-defined
intrinsic unless the name is used in an EXTERNAL statement or a Type statement of a
differing type.

Intrinsics are considered locally defined functions. A list of all the intrinsics their uses
and arguments, appears in Section VII. For more detail on intrinsics, consult HP 3000
Compiler Library (03000-90009).

DUMMY AND ACTUAL ARGUMENT CHARACTERISTICS

Actual arguments in a subroutine call or function reference must agree in number,
order, and type with the dummy arguments they replace.

Within subprograms, dummy arguments may consist of simple variables, array names,
subroutine names, or function names, Dummy arguments are local to the subprogram
or statement function containing them; they can be the same as names appearing
elsewhere in the program.

No element of a dummy argument list can occur in a COMMON, EQUIVALENCE, or
DATA statement. When an array name is used as a dummy argument, the dummy
array name must be mentioned in a DIMENSION statement within the body of the
subprogram.

215

In subroutine subprograms, a list of asterisks (*) may follow the list of dummy argu-
ments. When the subprogram is called using actual arguments, statement labels ‘
(prefixed by $’s) are substituted for the asterisks to indicate optional return points in

the calling program. The mechanism for choosing optional return points is described

in “Return Statement’’, Section V.

Actual arguments appearing in subroutine calls or function references may be

o A constant

e A variable name

e An array name

e An array element

e A subroutine name

e A function subprogram name

e An expression
A dummy simple variable requires an actual argument consisting of an expression of
the simple variable’s type. If the expression consists solely of a simple variable, the
variable name is transferred to the subprogram. The variable can be redefined by the

subprogram. If the expression is more complicated (not a simple variable), the sub-
program should not modify the dummy argument associated with the expression.

A dummy array argument requires an actual argument consisting of an array name or
an array variable of the dummy array’s type. The number of subscripts (dimensions) of
the actual array need not match the number in the dummy array. The elements of the
dummy and actual array are dynamically equivalenced using the array successor
function (see Section IV).

A dummy subroutine or function subprogram name requires an actual argument con-
sisting of an external function subprogram of the same type or a subroutine subprogram
name. The function or subroutine name must be declared in an EXTERNAL statement
within the body of the calling program unit unless the name is a recursive call within
the defining program unit. If not so declared, the function or subroutine name in the
actual argument list must be suffixed with empty parentheses “()”’. A statement
function name or an intrinsic function cannot be used as an actual argument, although
an expression used as an actual argument can contain reference to them as part of

the expression.

Dummy simple variables of type character may use Hollerith constants or string vari-
ables as actual arguments.

Note: FORTRAN subprograms accept all arguments by reference to the
resulting value of the argument. No FORTRAN-written sub-
program receives actual arguments by value. In order to facilitate
invoking non-FORTRAN language subprograms which do allow
passing of arguments by value, expressions enclosed in a pair of
“\” can be used as actual arguments. This construct tells FOR- .
TRAN to pass the argument by value.

2-16

. NUMBER RANGES

Numbers represented by FORTRAN constants and variables have specific positive and
negative ranges which limit the size of the number represented. Table 2-1 shows the
various number types and their associated ranges. Complex numbers are not shown;
they are represented by an ordered pair of real numbers.

Table 2-1. Number Ranges in FORTRAN

Number
Type of bit Range Comments
in memory
Integer 16 -32,768,) to +32,767,5 | Negative integers repre-
sented in two’s com-
complement form.
Logical 16 019 to 65,5351 Treated as bit patterns
Real 32 —2256 (2-2("22)) Six to seven decimal
(Floating Point) to digits accuracy with a
+2256 o (2-2(’22)) a range of -1077 to
‘ +1077.
Double Precision 48 2255 (2—2('38)) Ten or eleven decimal
Real to digits accuracy with the
+9255 4 (2_2(—38)) same range as REAL.

217

SECTION 1l

Expressions and Assighment Statements

EXPRESSIONS

Expressions are combinations of primaries and arithmetic, logical, and relational
operators. Primaries are constants, simple and array variables, function references,
and parenthesized expressions of any type except character.

Expressions consist of three main types: arithmetic, logical, and character. Arithmetic
expressions return a single value of type integer, real, double precision, or complex.
Logical expressions evaluate to either .TRUE. or .FALSE. or to a 16-bit mask which can
be used in later computations (depending on the context of the expression). Character
expressions manipulate character primaries and return character values.

Arithmetic Expressions

A simple arithmetic expression is a primary (constant, variable, or function reference).
These simple expressions can be joined together to form more complicated expressions
using the following arithmetic operators:

+ Addition
- Subtraction
* Multiplication
Division
** Exponentiation

For example,

6+ ABLE
X+Y+Z)*6
FOG* X /(A +6)

The hierarchy of arithmetic operations is

*ok Exponentiation
* Multiplication and / Division
+ Addition and - Subtraction

3-1

-Division and multiplication occur before addition and subtraction within an expression,
and exponentiation precedes all other operations. For example,

A**B+C*D+6
is evaluated by

A**B = s¢(s 1 and sg are intermediate results)
C*D = sy

81 +sg+6=the evaluated expression

Operators of the same class are evaluated according to the type of primaries involved
in the operation, not necessarily from left to right.

Parentheses may be used to control the order of evaluation of expressions. For example,
A+B+C

is evaluated according to the types assigned to A, B, and C. (The programmer does
not control the order of evaluation.)

A+(B+C)

evaluates (B + C) first, and then adds it to A while

(A+B)+C
evaluates (A + B) first and then adds it to C.

A+B+QO)-((C+D)+X+Y)
In this expression, the evaluation of (A + B + C) occurs according to the variable types.
In ((C+D)+X+Y)C +D is evaluated and then added to either X or Y depending on
X’s or Y’s type. Finally, ((C + D) + X + Y) is subtracted from (A + B + C).

Two arithmetic operators cannot appear in a row. For example, A**-3 is illegal;
A**(-3) is allowed.

3-2

Partial-Word Designators. A partial-word designator acts as a unary operator which
extracts a specified bit string from the primary it suffixes and right-justifies the string
to form a new value of the same type. This operator applies to integer primaries in
arithmetic expressions, and to logical primaries in logical expressions. (The primary
itself remains unchanged.) The partial-word designator form is

primary[first bit:number of bits]

primary integer (or logical) constant, variable, function reference,
or (expression).

first bit a decimal integer constant specifying the beginning bit
position of the bit string. The integer-word sign-bit is

number 0, and the least significant bit of the integer word
is bit 15.

number of bits a decimal integer constant specifying the length of the bit-
string (cannot exceed 15). If number of bits is not specified,
the length is equal to (16 - first bit).
If number of bits is greater than (16 - first bit), the bit string wraps around (takes bits
from bit 0, 1, etc.). For example, the partial-word designator [15:3] extracts bits 15, 0,
and 1 in that order.

Example 1

%037745=0011111111 1 0 0 1 0 1 Binary
number

01234567 891011 12 13 14 15 Bit position

%037745[15:3]1=0 0 0 0 000000 0 0 0 1 0 0 Newbinary
number

0123456789 1011 12 13 14 15 Bit position

15 0 1 Former bit
position

Example 2

I=3000 =0

o
o
o
—
[eon]
—
—
—

0 1 01 1 1 O Binary
number

0123456789 1011 12 13 14 15 Bit position

I61=0000001110 1 0 1 1 1 0 Newbinary
number

0123456789 1011 12 13 14 15 Bit position

[Y T O I
6 78 9 10 11 12 13 14 15 Former bit
position

In Example 1, wrap-around occurred when number of bits was greater than (16 -
first bit). ‘

In Example 2, the number of bits was left out so the default value (16 - first bit) was
used. Ten bits were extracted from the value of I and right-justified in the new integer
storage word.

Arithmetic Expression Type. Integer, real, double precision, and complex primaries
may be freely intermixed in an arithmetic expression. Before an arithmetic operation
is performed, the lower type primary is converted to a higher type. The expression takes
on the type of the highest type primary in the expression. Primary types rank from
lowest to highest as

Integer
Real
Double precision real

Complex

Logical Expressions

A simple logical expression is a logical primary (constant, variable, function reference,
(or expression), or two arithmetic expressions or character expressions joined by a
relational operator (relation). Simple logical expressions are joined to form more
complicated expressions using logical operators.

Relational Operations. The relational operators are

EQ. Equality

NE. Nonequality

.LT. Less than

.LE. Less than or equal
.GE. Greater than or equal
.GT. Greater than

These operators combine with arithmetic expressions or character expressions to form
relations. Each relation is evaluated and assigned the logical value TRUE. or .FALSE.
depending on whether the relation between the two arithmetic expressions is satisfied
(.TRUE.) or not (FALSE.).

The two expressions in a relation must be of the same type: linear, complex, or
character. A linear expression is an expression of type integer, real, or double
precision; a complex expression is type complex and a character expression is type
character. Complex expressions can be used as operands of .EQ. and .NE. only. The
concept of “less than” or “greater than” is not defined for complex numbers.

For example,

CHAR .EQ. “END”

X + 6 .GT. VAL
1[7:4] .NE. 45

Logical Operators. The logical operators are

.NOT. Complement

.AND. AND

XOR. Exclusive OR
.OR. Inclusive OR

The .NOT. operator takes the complement of the logical value of the primary or relation
immediately following the .NOT. operator, for example, if A is a logical primary,

A = TRUE. .NOT. A = FALSE.
A = FALSE. .NOT. A = . TRUE.
The .AND. operator returns a value of .TRUE. if, and only if, the logical expressions

on both sides of .AND. are evaluated as .TRUE., for example, if A and B are logical
expressions,

A = TRUE.

B = TRUE. A .AND. B = .TRUE.
A = TRUE.

B = .FALSE. A .AND. B = .FALSE.
A = FALSE.

B = .TRUE. A .AND. B = FALSE.
A = FALSE.

B = .FALSE. A .AND. B = FALSE.

The .XOR. operator (exclusive OR) returns a value of .TRUE. if, and only if, one (but
not both) of the logical expressions on either side of the .XOR. is .TRUE. For example,
if A and B are logical expressions,

A = TRUE.

B = TRUE. A XOR. B = .FALSE.
A = TRUE.

B = FALSE. A XOR. B = .TRUE.
A = FALSE.

B = .TRUE. A XOR. B = .TRUE.
A = FALSE.

B = FALSE. A XOR. B = .FALSE.

3-5

The .OR. operator (inclusive OR) returns a value of .TRUE. if one or both of the logical ‘
expressions on either side of the .OR. is . TRUE. For example, if A and B are logical
expressions,

A = TRUE.

B = .TRUE. A .OR. B =.TRUE.
A = TRUE.

B = .FALSE. A .OR. B =.TRUE.
A = FALSE.

B = .TRUE. A .OR. B = .TRUE.
A = FALSE.

B = FALSE. A .OR. B=_FALSE.

Logical Operator Hierarchy. The hierarchy of logical operationsis

.NOT. Complement

.AND. AND

XOR. Exclusive OR

.OR. Inclusive OR
.NOT. operations are performed before .AND. operations, and .OR. operations are ‘
performed after all other operations in a logical expression.

Example 1

If expressions A and B are both .TRUE., .NOT. A .AND. B evaulates .NOT. A
(=.FALSE.) first, then evaluates . FALSE. AND. B (= . FALSE. .AND. .TRUE. = .FALSE.).

Example 2

If expression A = TRUE. and B = .FALSE., .NOT. B .XOR. A AND B evaluates NOT. B
(= .TRUE.) first, then evaluates A .AND. B (= .FALSE.) then evaluates .TRUE. .XOR.
FALSE. (= . TRUE.).

Parentheses can be used to direct the order of evaluation of a logical expression.

Example 3

If expression A and B = .TRUE,, .NOT. (A .AND. B) evaluates A .AND. B (= .TRUE.)
first, then evaluates .NOT. .TRUE. (= .FALSE.).

Without parentheses, the .NOT. operation would be performed first.

3-6

‘ Example 4

If expression A = .TRUE., B = .TRUE,, and C = .FALSE,, (A .OR. B) . AND. C .OR. B
evaulates A .OR. B (= . TRUE.) first, then evaluates TRUE. .AND. C (= . FALSE.) then
evaluates .FALSE. .OR. B (= .TRUE.).

Masking Operations. Besides evaluating .TRUE. or .FALSE. conditions, logical
operators perform bit-by-bit operations on 16-bit logical values as follows:

.NOT.
NOT. 0-=1
NOT. 1=0
For example,
A =11100101001100119 .NOT. A =00011010110011009
AND.
0.AND.0=0
1.AND.0=0
0.AND.1=0
1.AND.1=1
A= 1011001000111011 A AND.B-= 10110010001110112
B=11111111111111119 +11111111111111119
‘ = 1011001000111011,
.XOR.
0.XOR.0=0
1.X0OR.0=1
0.XOR.1=1
1.X0OR.1=0
A =11001100110011009 A XOR. B =1100110011001100
B = 11110000111100005 1111000011110000
=0011110000111100
.OR.
0.OR.0=0
1.0R.0=1
O0OR.1=1
1.0R. 1=1
A =01001100101100119 A .OR. B =0100110010110011
B = 11001101011100004 1100110101110000
=1100110111110011
‘ Partial-word designators can be used in logical expressions. For complete details see
“Partial-word Designators” in this section.

3-7

Character Expressions

A character expression consists of either a character primary (constant, variable or
function reference) or a character variable or function reference followed by a sub-
string designator. No other operators are used in character expressions. Character
expressions can be joined by relational operators to form relations used in logical
expressions. (See ‘“Logical Expressions” in this section.)

Character Primaries. A character value is treated as an array of characters, each char-
acter being one element of the array. If a character value contains 16 characters, the
first character of the string is in position 1, and the last character is in position 16.
Strings of characters and each element in the strings can be manipulated using a sub-
string designator.

Substring Designators. A substring designator is a unary operator which extracts
specified substrings of characters from a character value and creates a new value from
the extracted substring. The substring designator form is

name [first character: number of characters]

name a character variable or function reference. (Substring
designators cannot be applied to character constants.)

first character a linear expression specifying the beginning of the substring.
This expression is evaluated as an integer and must range
from 1 to the length of the character value.

number of characters A linear expression specifying the length of the extracted
substring. This expression is evaluated as an integer and
must range from 0 to (length of value - first character + 1).
If number of characters is not specified, the default value
(length of value - first character + 1) is used.

Example 1
VARI1 = “THIS IS A STRING”
VARI1[3:7] = “IS IS A”

VARI1[3:7] extracts the substring starting from the third character of the value (the
letter I) and continuing for six more characters.

VARI = “THIS IS A STRING”

INDEX = 6

VARI[INDEX + 3] = “A STRING”

VARI[INDEX + 3] extracts the substring starting with the ninth character (the
letter A) and ending with the last character of the value;

number of characters was not specified, so the default value
(length of value - first character + 1) was used.

3-8

ASSIGNMENT STATEMENTS

An assignment statement has the form
name = expression

name a variable or function reference of arithmetic, logical or
character type

expression an expression of the same type as name

When an assignment statement is executed, the expression is evaluated and the re-
sulting value is assigned to the variable or function name.

Arithmetic expressions may be of type integer, real, double precision, or complex. The
name need not be of the same arithmetic type as the expression. The value of the
expression is converted to the name type before the value is assigned. (See Table 3-1.)

Partial-word designators can be used with logical and integer variables and function
references in the name side of an assignment statement.

Substring designators can be used with character variables in the name side of a
character assignment statement.

Character expression values are truncated if the defined character variable length is
less than the expression value length. Character expression values are left-justified
and padded with blanks on the right if the defined character variable length is larger
than the expression value length.

Table 3-1. Conversion Between Types

Convert Convert Convert Double Convert
Integer to Real to Precision to Complex to

Real: Integer: Integer: Integer:
16-bit integer value |Real value is trun- | Double precision Discard the imagi-
is converted to 32- |cated to integer and | value is truncated nary part and
bit floating point stored in one 16- to integer and stored | truncate real part to
value. bit word in one 16-bit word. |16-bit integer word.
Double Precision: Double Precision: Real: Real:
16-bit integer value |Trailing zeros are Double precision Discard the imagi-

is converted to 48-bit|added to right of value is truncated nary part and main-
floating point value |fraction to create a | and stored in a 32- |tain the real part.

48-bit floating bit floating point
point value. value.
Complex: Complex: Complex: Double Precision:
Integer value is con- |Taken as the real Truncated to real Discard the imagi-
verted to real and part of the complex | alue and taken as nary part and con-
stored in real part of [umber with the real part of complex |vert real to double
complex value. imaginary part set | number. Set imagi- |precision.
Imaginary part is to zero. nary part to zero.
set to zero.
LABEL ASSIGNMENT STATEMENTS ‘

A label assignment statement is used to assign label values to integer simple variables.
The form is

ASSIGN statement label TO variable

statement label

variable

Integer simple variables have two separate values, one of type integer and one of the
psuedotype “label.” These two values are independent of each other and can exist
simultaneously. The “label” value is referenced in only two FORTRAN statements.
The label assignment statement assigns a “label” value to an integer simple variable,
and the assigned GO TO statement (Section V) uses that value. All other references to
the variable are to its integer value.

310

SECTION 1V

Specification Statements

Computer
useum

Specification statements define the characteristics of data used in programs. Specification
statements are nonexecutable; when compiled, they do not produce instructions in the ob-
ject program. Specification statements must appear before the first executable statement
in each program unit.

ARRAY DECLARATORS

One function of several specification statements (DIMENSION, COMMON, and Type)
is to define the number of values and the arrangement of the values in an array. This
information is supplied to the program through an array declarator. The form of an
array declarator is

name (bl ey bn)

name the array variable name; the array type is determined
through a Type statement or through the implicit typing
convention of using the first character of the variable
name as a letter that determines the variable type.

The list of integers (by, ..., b,)) are the array bounds. The array bounds indicate the
number of dimensions of the array, and the maximum number of elements in each
dimension. For example, the array declarator I(3, 4, 5) indicates a three-dimensional
array of type integer. The maximum subscript (bound) allowed for each of the three
dimensions is 3, 4, and 5 respectively.

The number of elements in an array are calculated by multiplying the array bounds. For
example, I(3, 4, 5) implies that the array, I, contains 3 x 4 x 5 = 60 elements.

The number of words of memory needed to store an array is determined by the number
of elements in the array and the array type. Integer and logical arrays store each
element of the array in a single 16-bit computer word; real arrays store each element in
two words; double precision real arrays store each element in three words; and complex
arrays store each element in four words. If I (3, 4, 5) is type integer, it takesup3x4 x5
x 1 = 60 words of memory. Real array A(3, 4, 5) takes up 3 x4 x 5 x 2 = 120 words of
memory. A character array, CH(2, 2, 2) with elements consisting of three characters
each (CHARACTER*3) takes up 2 x 2 x 2 x 3 = 24 contiguous characters in memory,
packed two characters per word.

The array is stored as a one-dimensional array in memory according to the Array

Successor Function, described under “Equivalence Between Arrays of Different
Dimensions” in this section.

4-1

One, and only one, array declarator must occur for each array used in a program unit.
The declarator can be contained in a DIMENSION, COMMON, or Type statement with-
in the program unit. (See “Dimension Statements,” “Common Statements,” and “Type
Statements” in this section.) If the array is used in a DIMENSION statement, the array
name only (not the array declarator) can be used in a COMMON or Type statement.
For example,

INTEGER ARR Type statement specifying ARR as an integer
name
DIMENSION ARR4,4) DIMENSION statement specifying number of

elements, bounds, and dimensions in the array,
using an array declarator.

If the array declarator is used in a COMMON or Type statement, the array must not be
mentioned in a DIMENSION statement. The array declarator used in the Type or
COMMON statement creates the necessary storage space in memory, just as if the
array were mentioned in a DIMENSION statement, for example,

INTEGER ARR(4,4)
has the same effect as

INTEGER ARR
DIMENSION ARR (4, 4)

Adjustable Array Declarators

Normally, the array bounds, (b, ..., b,,), are specified by positive (greater than zero)
integer constants. The array bounds are fixed by the value of the constants.

In some cases, it is possible to use adjustable array declarators. The array bounds are
specified by integer simple variables instead of integer constants. Using adjustable
bounds in the form of integer variables allows subprograms to use noncommon,
program-local arrays whose sizes are dynamically determined during execution.
Integer simple variables can be used as array bounds in a situation where the array
declarator appears in a procedure, and the variables used to indicate the array bounds
are dummy arguments. If an adjustable array name is used as a dummy argument the
values assigned to the variables used as dimension bounds must not specify an array
larger than the bounds of the actual array used when the procedure is executed. (See
Section VI for a discussion of procedures and dummy arguments.)

Adjustable array declarators cannot be used in COMMON statements.

4-2

DIMENSION STATEMENTS

DIMENSION statements define the dimensions and bounds of arrays. The form is

DIMENSION decl., ..., decl.

where decl. is an array declarator: name (by, ..., by).

A DIMENSION statement is used to allocate storage space for the arrays specified in
its array declarators (decl.). The DIMENSION statement need not be used to define all
arrays in a program unit. An array declarator for each array used in a program unit
must appear only once in the program (either in a DIMENSION, COMMON, or Type
statement). Using an array declarator in a COMMON or Type statement is equivalent
(in terms of memory space set aside for the array) to using the array declarator in a
DIMENSION statement. For example,

INTEGER ARR Type statement specifying ARR as type integer.
The name of the array, not the array declarator,
appears,

DIMENSION ARR(4,4) DIMENSION statement using the array

declarator ARR(4,4), which causes 16 words of
memory to be set aside for the array element
values.

These two program statements can be replaced by one statement if the array declarator
instead of the array name is used in the Type statement:

INTEGER ARR(4,4) Type statement specifies array ARR as type
integer, and because of the array declarator,
also sets aside 16 words in memory for the array.
This one statement has the same effect as the
two statements in the previous example.

4-3

COMMON STATEMENTS ‘

The COMMON statement reserves a block of global storage space that can be refer-
enced by several program units (such as a main program and one or more subroutines).
The COMMON statement allows one program unit to store data in a nonlocal area
which can be read, manipulated and stored by other program units. These areas of
common information are specified in the form.

COMMON/blockname/data element, ..., data element/blockname/data element,
..., data element...

blockname either null (specified by two slashes with no
intervening non-blank characters //) or from 1 to 15
alphameric characters (the first one must be a letter).
blocknames are used to identify different
common blocks. Different program units refer-
ence the same common block by using the same
blockname in their COMMON statements. The
first blockname (including the two /’s) can be
omitted if the user desires that the first common
block in a list of blocks go unnamed. blocknames
may be used as variable names (but not pro-
cedure names) within the same program unit.
FORTRAN distinguishes between the name
when used in a COMMON statement and when
used as a variable.

data element a simple variable, array name, or array de-
clarator. Using an array name in a COMMON
statement implies that the array declarator
appears in a Type or DIMENSION statement
somewhere in the same program unit.

The length of a common block is determined by the number and type of the data
elements associated with that block. The data elements are stored contiguously within
their block according to their listed order within the COMMON statement,

Statement Description

INTEGER I(4) Type statement indicating an integer array of
four elements. (Area reserved for I = 4 words.)

REAL ARR Type statement indicating ARR as type real.
(Area reserved for ARR = 6 words.)

COMMON I,ARR(3) COMMUON statement. Array ARR has three
elements. (Total common area = 10 words.)

Common block storage is allocated at the time the program is loaded into core for
execution and is not local to any one program unit. No dummy variable name, function,
subroutine name, or array with an adjustable array declarator or adjustable length
character variable may be used in a COMMON statement, nor many any of these
elements be put in a common block with an EQUIVALENCE statement. (See EQUIV-
ALENCE in this section.) No name used in a DATA statement may be used in a
COMMON statement or put in a common block through equivalence.

4-4

. Data space within the common area is allocated as follows:

Common
Word Block

I(1)
I(2)
I(3)
I(4)
ARR(1)
ARR(1)
ARR(2)
ARR(2)
ARR(3)
ARR(3)

S0ooamuawN R

Correspondence of Common Blocks

Each program unit that uses the common block must include a COMMON statement
which contains the blockname (if a name was defined). The data elements assigned to
the common block by the program unit need not correspond by name, type, or number
of elements. The only consideration is the original length of the common block as
specified in the first COMMON statement mentioning that block. An unlabeled
(unnamed) common block size may differ between program units, but a labeled
common block must be the same size in all program units:

‘ Integer Real
| |

In program 1: COMMON /BLOCKA/ 1(4), J(6), ALPHA,SAM
Real Integer
| |
In program 2: COMMON /BLOCKA/ GEO, 1(10), INDIA,JACK

Thus, in the following example, referencing I(4) in program 1 is equivalent to refer-
encing I(2) in program 2 since both variables pertain to the same word of the common

block.

Program 1 Common Block Program 2
Reference Word Number Reference
1(1) 1 GEO
1(2) 2 GEO
1(3) 3 L(1)

14) 4 L2)

J1) 5 L(3)

J(2) 6 L)

J(3) 7 L(5)

J(4) 8 L(6)

J(5) 9 L)

J(6) 10 L(8)
ALPHA 11 L(9)

. ALPHA 12 L(10)

SAM 13 INDIA
SAM 14 JACK

45

gram 2 than in program 1. The last five words of the common block are not used by

In the following example, the unlabeled common block is a different length in pro- .
program 2.

In program 1: COMMON I(12)
In program 2: COMMON JAR(7)
Program 1 Common Block Program 2
Reference Word Number Reference
1(1) 1 JAR(1)
1(2) 2 JAR(2)
1(3) 3 JAR(3)
1(4) 4 JAR4)
1I(5) 5 JAR()
1(6) 6 JAR(6)
1I(7) 7 JAR(7)
1(8) 8 Unused
1(9) 9 Unused
1(10) 10 Unused
I(11) 11 Unused
112) 12 Unused

If portions of a common block are not referred to by a particular program unit, dummy

variables may be used to provide correspondence in reserved areas, for example, ‘
Integer
PR TN
In program 1: COMMON /BLOCKA/ 1(5), J(3), K(4)

Real Integer
| |

In program 2: COMMON /BLOCKA/ ARR4), K4)
Program 1 Common Block Program 2
Reference Word Number Reference

11) 1 ARR(1)
1(2) 2 ARR(1)
1(3) 3 ARR(2)
1(4) 4 ARR(2)
1(5) 5 ARR(3)
J@1) 6 ARR(@3)
J(2) 7 ARR(4)
J(3) 8 ARR(4)
K@) 9 K1)
K(©2) 10 K(2)
K@®3) 11 K(3)
K#4) 12 K@4)
ARR(4) is a dummy array which is never used by program 2 but provides proper corre- ‘

spondence so that program 2 can use array K.

4-6

Character Variables and Arrays in Common Blocks

A character variable occupies (character string length) x 1/2 words in the common
block. For example, a character string of length 11 (11 characters) occupies five-and-
one-half words.

A character array occupies the number of elements in the array times the length of each
element times one-half. If an array contains 30 elements, and each element is five
characters, the array occupies 75 words of the common block. Each data element in
common starts at the next whole-word storage boundary following the preceding data
element, except for string values, which start on the next half storage word. Thus,

INTEGER I(3), NO(3)
CHARACTER*3 CH(3)

COMMON I,CH,NO

In the following example the least significant half of word 8 is unused since the integer
array NO starts on the first whole word boundary after the character array CH.

Program Common Block
Reference Word Number

I(1)
1(2)
I(3)
CH(1)
CHQ)
CH()
CH(2)
CH(2)
CH(2)
CH(@3)
CH(3)
CH(@3)
Unused
NO(1)
NO(2)
NO(@3)

1 word

1 word

1 word

— [
g
= =
o =¥

—
COWWW=I-J AU Ui » Wh =

(S
[y

In the following example, the character array CH takes up five and one-half words in
the common block. Character array BN starts in the least significant half of the fifth
word (starts on a half-word boundary). '

CHARACTER*3CH(3)
CHARACTER*1 BN(3)

COMMON CH,BN

Program Common Block
Retference Word Number
CHQ1) 1 } 1

CH(1) 1 word
CHQ) 2 ‘}

CH(®) 9 1 word
CH(2) 3 }

CH®) 3 1 word
CH(@3) 4 }1

CH(@3) 4 word
CH(@3) 5

BN(I) 5 }1 word
BN 611 word
BN(@3) 6

4-8

‘ EQUIVALENCE STATEMENT

The EQUIVALENCE statement associates simple variables and array elements so that

they share all or part of their storage space. The form of the statement is

EQUIVALENCE (list), (list), ..., (list)

list adata element list consisting of simple variables, array elements,
or array names. Each list is enclosed in parentheses and sepa-
rated by a comma. Each list indicates which variables and/or
array elements (also separated by commas) are to share their
storage space.

The following example of an EQUIVALENCE statement indicates that the named
variables within the parentheses all share the same storage words in memory.

EQUIVALENCE (ABLE,SAM,ALPHA,DIX)

The statement below indicates that DIX and SAM share the same storage space, and
that variables A and B share the same storage space.

EQUIVALENCE (DIX,SAM), (A,B)

Equivalence of Different Types

Equivalence between data elements of different types is allowable in FORTRAN, but care
should be taken when attempting to match data types which store values in different size
storage space. For example, if an integer and a real value are equivalenced, then the
integer value is the same as the most significant word of the two-word real value:

Storage in Memory

Word 1 INTEGER VALUE
REAL VALUE
Word 2

Care should be taken when equivalencing character variables with other variable types.
All data values other than character are stored in multiples of whole 16-bit computer
words. Character values are stored in multiples of 8-bit half-words (two 8-bit char-
acters per word). Character values may be equivalenced with other data types only if
the resulting group can be allocated so that all noncharacter data elements begin on a
whole-word boundary. For example,

EQUIVALENCE (A, C(1)), (B, C(2))
CHARACTER*5 C(3)

Requires A and B to be allocated 5 half-words apart, which is illegal.

4-9

Equivalence of Array Elements

Array elements can be equivalenced to elements of a different array or to simple vari-
ables, for example,

DIMENSION A(3),C(5)
EQUIVALENCE(A(2),C(4))

In the preceding example array element A(2) shares the same storage space as array
element C(4). This implies that

e A(1) shares storage space with C(3), and A(3) shares storage space with C(5).

e No equivalence occurs outside the bounds of any of the arrays.
The two statements below indicate that arrays A and C are type integer and that each
arry has four elements and one dimension. C(1) and C(2) have unique store areas and
A(3) and A(4) also have unique storage areas. A(l) shares space with C(3), and A(2)
shares storage space with C(4):

INTEGER A(4),C(4)
EQUIVALENCE (A(2),C4))

Storage Space

Array A Word Number Array C
1 C(1)
2 C(2)
A1) 3 6]
A(2) 4 C@)
A@B) 5
A(4) 6

Array elements are equivalenced on the basis of storage elements. If the arrays are not
of the same type, they do not line up element by element. For example,

INTEGER A(4)
REAL B(2)

EQUIVALENCE (A(1),B(1))

4-10

As shown below, A(1) and A(2) share the two computer words with the real array
element B(1). A(3) and A(4) share the two computer words used to store the value
of B(2).

Storage Space

Array A Word Number Array B
A1) 1 } B(1)
A(2) 2
A(3) 3 } B(2)
A(4) 4

Equivalence Between Arrays of Different Dimenslons

To determine equivalence between arrays with different dimensions, FORTRAN pro-
vides an array successor function which views all elements of the array in linear
sequence. This means that all arrays, regardless of their dimensions, are stored in
memory as one-dimensional arrays. The following is a description of how the array
successor function works. The right column shows how the array A(3,3,3) is viewed by
the array successor function:

Process Array Elements

1. The first element is designated by the subscript A(1,1,1)
with all indexes equal to 1.

2. The next series of elements is determined by A(1,1,1)

incrementing the leftmost index by one. |A(2,1,1)

3. Continue to increment the leftmost index by one A(1,1,1)

until the index bound is reached. A@1,1)

|A@3,1,1)

4, Once the index bound is reached, reset the index A,1,1)

to 1 and increment the index immediately to the A(2,1,1)

right by one. A@3,1,1)

|A(1,2,1)

5, The next series of elements is determined by A1,1,1)

incrementing the leftmost index by one until the A21,1)

index bound is reached. A@B,1,1)

A(1,2,1)

|A(2,2,1)

|A@3,2,1)

6. Once the index bound is reached, reset the index AQ1,1,1)

to 1 and increment the index immediately to the A(2,1,1)

right by one. A(B,1,1)

A1,2,1)

A(22,1)

A@3,2,1)

|A(1,3,1)

4-11

Process Array Elements .

Determine the next series of elements by in- A(1,1,1)
crementing the leftmost index by one until the A(2,1,1)
index bound is reached. A@B,1,1)
A(1,2,1)
A(2,2,1)
A(3,2,1)
A(1,3,1)
|A(2,3,1)
|A(3,3,1)

Both the leftmost and the index to the immediate A(1,1,1)
right are at the index bound. Reset both indexes A@2,1,1)
back to 1 and increment the third index by one. AG3,1,1)
AQ1,2,1)
A(2,2,1)
A(3,2,1)
A1,3,1)
A(2,3,1)
A(3,3,1)
|A(1,1,2)

This same process continues for each index. A(1,1,1)
Generally, the next element is found by incre- A(2,1,1)
menting the leftmost index until it reaches A(3,1,1)
its bound, then incrementing the next index by one A1,2,1)
only and returning all indexes to its left to one. A(2,2,1)
The leftmost index is then incremented until it A,2,1)
reaches its bound, etc. AQ1,3,1)
A2,3,1)
A(3,3,1)
A(1,1,2)
|A(2,1,2)
|AG,1,2)
|A1,2,2)
|A(2,2,2)
|A(3,2,2)
|A1,3,2)
|A(2,3,2)
|A(3,3,2)
|A1,1,3)
|A(2,1,3)
|A(3,1,3)
|A1,2,3)
|A(2,2,3)
|A(3,2,3)
|A(1,3,3)
|A(2,3,3)
|A(3,3,3)

4-12

The following statements equivalence array elements A(2,2,2) and 1(3). A is a three-
dimensional array, and I is one-dimensional.

DIMENSION A(3,3,3),1(10)
INTEGER LA
EQUIVALENCE (A(2,2,2), 1(3))

The elements correspond as shown below.

Storage Word

Array A Relative Number Array |

A(1,1,1) 1

A(21,1) 2

A@31,1) 3

A(1,2,1) 4

A(2,2,1) 5

A@3,2,1) 6

A(1,3,1) 7

A(2,3,1) 8

A(3,3,1) 9

A(1,1,2) 10

A(2,1,2) 11

A(3,1,2) 12 1(1)

A(1,2,2) 13 1(2)
. A(2,2,2) 14 13)

A(3,2,2) 15 14)

A(1,3,2) 16 1(5)

A(2,3,2) 17 1(6)

A(3,3,2) 18 I(7)

A(1,1,3) 19 1(8)

A(2,1,3) 20 1(9)

A(3,1,3) 21 1(10)

A(1,2,3) 22

A(2,2,3) 23

A@3,2,3) 24

A(1,3,3) 25

A(2,3,3) 26

A(3,3,3) 27

4-13

Equivalence in Common Blocks

Data elements may be put into a common block by specifying them as equivalent to data
elements mentioned in a common statement. If one element of an array is equivalenced
to a data element within a common block, the whole array is placed in the common
block with equivalence maintained for storage units preceding and following the data
element in common. The common block is always extended, if it is necessary to fit an
equivalenced array into the block, but no array can be equivalenced into a common
block if storage elements would have to be prefixed to the common block to contain the
entire array. Equivalence cannot insert storage into the middle of the common block or
rearrange storage within the block. Since elements in a common block are stored
contiguously according to the order they are mentioned in the COMMON statement,
two elements in common cannot be equivalenced. In the example below, array A is in
a common block. Array element B(2) is equivalent to A(3).

DIMENSION B(6)
COMMON A(6)
EQUIVALENCE (A(3), B(2))

The common block is extended to accommodate array B as follows:

Common Block

Array A Word Number Array B
AQ) 1 Not defined
A(2) 2 B(1)
A(3) 3 B(2)
A(4) 4 B(3)
A(5) 5 B@)
A(6) 6 B(5)

Not defined 7 B(6)

The common block is extended by one word to store B(6).

The equivalence set up by the following statements is illegal. In order to set array B
into the common block, an extra word must be inserted in front of the common block:

DIMENSION A(6),B(6)
COMMON A
EQUIVALENCE (A(1),B(2))

4-14

Common Block

Array A Word Number Array B
B()
A(l) 1 B(2)
AQ2) 2 B(3)
A@3) 3 B(4)
A) 4 B(5)
A(B) 5 B(6)
A(6) 6 Not defined

Element B(1) would be stored in front of the common block; EQUIVALENCE (A(1),
B(2)) is not allowed.

Dummy variables, dummy array elements, function names, and subrouting names
cannot occur in an EQUIVALENCE statement. A data element occurring in a DATA
statement cannot be put into a common block through an EQUIVALENCE statement.
None of the following elements can occur in an EQUIVALENCE statement:

e An array with an adjustable declarator.

e A character array of adjustable length.

e A character variable of adjustable length.

4-15

TYPE STATEMENTS ‘

Type statements assign an explicit type to symbolic names representing variables and
arrays (and their elements) and functions which would otherwise have their type
implicitly determined by the first letter of their symbolic names. The Type statement

form is

type element, element, element, ..., element, ...

type consists of either INTEGER, REAL, DOUBLE PRECISION,
COMPLEX, LOGICAL or CHARACTER * x (x = the length of
the character elements following)

element consists of a simple variable name, array name, array

declarator, function subprogram name, or a character
simple name (optionally followed by * x)

If an array declarator is used in the element list, the declarator for that array must not
be used in any other specification statement (such as DIMENSION or COMMON). If
an array name is used, then an array declarator must appear within a DIMENSION or
COMMON statement somewhere within the same program unit. The length of char-
acter symbolic names can be specified in two ways:

1.

2.

Through the length attribute following the CHARACTER heading (*x), or
Through individual length attributes following character symbolic names

For example, CHARACTER * 40 W,X,Y,Z defines the variable names W, X,
Y, and Z as type character, each with a length of 40.

The length attribute following the CHARACTER heading applies only to
symbolic names not having their own length attribute. For example,
CHARACTER * 30 X,Y,Z*20 defines two character variables of length 30,
and one character variable Z of length 20. Character variables, array
names, etc., are the only data elements which may have length attributes.
Elements in a Type statement with any other heading cannot have length
attributes.

A CHARACTER heading orindividual length attribute can use an adjustablelength
attribute in the form of an integer simple variable. For example, CHARACTER*
(INT) X, Y, Z is a Type statement using an adjustable length attribute (INT,
defined as an integer simple variable). The length attribute of X, Y, and Z
depends upon the value assigned to INT.

Adjustable length attributes in character Type statements can only be used
in function subprograms and subroutine subprograms. The integer simple
variable used as the length attribute must be a dummy parameter in the
subprogram definition.

A function of type CHARACTER cannot have an adjustable length.

4-16

A symbolic name can occur in only one Type statement within a program
unit. If an intrinsic function name is used in a Type statement, the intrinsic
function of that name is lost to the program unit. FORTRAN assumes that
the name is defined within the program unit for some use other than that of
an intrinsic function name.

Examples of Type statements are:
INTEGER A, B, C(6,6,6)
CHARACTER*25 A*6, FOUR*10(6,6), LEFT, RIGHT
COMPLEX CORE

IMPLICIT STATEMENT

The IMPLICIT statement reassigns the type associated with the initial letter of a
symbolic name. If a symbolic name is not mentioned in a Type statement, the type of
the data element is determined by the first letter of the symbolic name. Names starting
with the I, J, K, L, M, or N are type integer, and names starting with any other letter are
type real. The IMPLICIT statement rearranges this convention for any type desired
(logical, integer, real, double precision, character, and complex). The IMPLICIT
statement form is

IMPLICIT type (letter, ..., letter), type (letter, ..., letter), ...

type INTEGER, LOGICAL, REAL, DOUBLE PRECISION,
COMPLEX, or CHARACTER * x (* x is the length attribute
of the character value, specified by a positive integer
constant)

letter a letter of the alphabet which assumes the type specified by
the heading preceding it in the IMPLICIT statement; letter
can be a single letter or a range of letters — for example,
A-C means A,B,C.

The following statement specifies that all symbolic names starting with A, B, C, and E
are type integer; D, F, G, and H are type real; J, K, and L are type complex; M, N, O,
and P are double precision real and names starting with the letter Q are type character
and have a length attribute of six characters.

IMPLICIT INTEGER (A - C,E), REAL (D,F - H), COMPLEX (J - L),
DOUBLE PRECISION (N - P,M), CHARACTER * 6 (Q)

In the CHARACTER heading, the length attribute (* x) cannot be specified by a
variable. If the length attribute is omitted, the length is assumed to be one.

The implicit typing convention controlled by the IMPLICIT statement is overridden for
specific symbolic names when these names are used in a TYPE statement. For example,
IMPLICIT INTEGER (A) specifies that symbolic names starting with A are type
integer. A Type statement such as REAL ABLE indicates that the variable ABLE is
type real, overriding the IMPLICIT statement in that case. Only one IMPLICIT
statement per program unit can be used.

417

EXTERNAL STATEMENTS .

EXTERNAL statements identify function subprograms and subroutine subprograms
which are called in one program unit but are defined in another (external) program
unit. If a function subprogram or subroutine subprogram is used as actual argument,
the function or subroutine name must be used in an EXTERNAL statement within the

calling program unit.
The form of an EXTERNAL statement is
EXTERNAL name, name, ..., name, ...
where name is the symbolic name of a function or subroutine
Two examples are
EXTERNAL SUBRUT, ARRFIX
EXTERNAL ALPHA ,BETA,DELTA

Functions and subroutines used as actual parameters in a function reference can be
declared external to the program unit containing the function reference in two ways:

1. Mention the symbolic names of the functions or subroutines used as actual
parameters in an EXTERNAL statement contained in the same program
unit as the function reference, or

2. Suffix the symbolic names used as actual parameters with empty .
parentheses, for example,

FUNC (NOWHERE (), SUBRUT ())

DATA STATEMENTS

DATA statements allocate local storage space and/or supply initial values for the data
elements listed. The two forms of the DATA statement are

DATA element, element, ..., element

DATA element, element, ..., element/initial value list/, element, element, ...,
element/initial value list/, ...

element a simple variable name, array name, or array element

initial value list a list of constants (separated by commas) including
Hollerith constants

Allocation of storage space for elements of DATA statements can be reordered by
EQUIVALENCE. Storage space is allocated statically; storage space for the data
elements is set aside at the time the program unit containing the DATA statement is
loaded and remains in memory even when the program unit is not executing.

4-18

The following format is legal:

‘ DATA element, element, ..., element/initial value list/, element, ..., element, ...

For example,

DIMENSION TARR(4,4)
DATA TARR
results in
Data Storage Word

Elements Number

TIARR(1,1) 1

. 2,1) 2

@3,1) 3

4,1) 4

(1,2) 5

(2,2) 6

3,2) 7

4,2) 8

1,3) 9

(2,3) 10

. 3,3) 11

. (4,3) 12

' . 1,4 13

. 2,4) 14

. 3,4) 15

4,4) 16

If the DATA statement has the form,

DATA element, ..., element/initial value list/, element, ..., element/inital value list/ ...
The constants in the initial value list are matched one-for-one to the simple variables
and the array elements occuring in front of the initial value list. For example, the
statement

DATAIL J, K /6,7,8/
assigns I=6, J=7, and K=8.

If a constant is specified one or more times in a row, the list may be abbreviated using
a repeat factor. For example,

DATA A,B,C/ 3*0/
is the same as

' DATA AB,C /0,0,0/

4-19

Mentioning an array name is the same as mentioning all the elements of the array. For ‘
example, the statement

INTEGER A(3)
DATA A /3*0/
assigns A(1) = 0, A(2) = 0, and A(3) = 0. The statement
DATA A/3*0/
is the same as
DATA A(1),A(2),A(3)/0,0,0/.

The constants in the initial value list must be the same type as the data elements to
which they are assigned!. Integer variables must be initialized by integer constants, real
variables by real constants, and so on. A Hollerith or string constant can be used to
initialize a data element of any type. For a character variable, the initial value repre-
sented by the Hollerith character is the character value itself. For any other type
variable, the 8-bit ASCII patterns of the constant are stored left-justified in the storage
space reserved for the variable. If the constant does not fill the entire storage space,
the remaining part of the storage word is padded with the 8-bit ASCII code for blanks.
Two characters are stored in one 16-bit computer word. For example,

DATA 1,J K,L/4*2HSA/

I, J, K, and L are integer variables. The ASCII 8-bit patterns for S and A are loaded into
each 16-bit word for I, J, K, and L. It is not necessary to set initial values for all of the
data elements listed in a DATA statement. For instance, the statements

DATA A / 10*8.0/

REAL A(20)

set up 20 elements of storage for array A, but only the first 10 of those elements are
initialized to the value 8.0 (the other 10 elements of A are not given an initial value).

Equivalence in DATA Statements

Variables and array elements can be allocated in data blocks through the use of
EQUIVALENCE statements. If an array element is equivalenced to an element in a
DATA statement, the entire array is allocated in the data block. The data block is
extended either at the beginning or the end to accommodate data elements set into the
block through the EQUIVALENCE statement. For example,

INTEGER A(5), B(7)

DATA A

EQUIVALENCE (A(1), B(2))

1A real variable can be initialized by an integer constant consisting of an optional sign
followed by a string of digits. E.G., 20 can be used instead of ““20.”.

4-20

In the following example the data block is prefixed with one storage word to accom-
modate B(1) and extended one word to accommodate B(7). Note also that DATA A
allocates five words of storage for array A. The EQUIVALENCE (A1), B(2)) state-
ment extends the data block one word in front and one word at the end to accommodate
all the elements of array B.

Data Block
Array A Word Number Array B
Unused 1 B(1)
A1) 2 B(©2)
A2) 3 B@3)
A(3) 4 B@4)
A@4) 5 B(5)
A(D) 6 B(6)
Unused 7 B(7)

Equivalence can rearrange the order of storage allocation in the data block as long as
all arrays remain contiguous within themselves. For example,

DIMENSION I(5), J(5), K(10)
DATA 1,J
EQUIVALENCE (K(), J(1)), (K(6), I(1))

is allowable and produces the result:

Data Block
Array K Word Number Arrays | and J
K(1) 1 J@)
K(2) 2 J(2)
K(3) 3 J3
K(4) 4 J(4)
K() 5 JB)
K(6) 6 1(1)
K(7) 7 1(2)
K(8) 8 1(3)
K(9) 9 1(4)
K(10) 10 1I(5)

No simple variable or array element can belong to both a common block and a data block,
either explicitly through the use of DATA and COMMON statements, or implicitly
through EQUIVALENCE statements. (See Block Data Subprograms for exceptions.) No
dummy arguments or arrays with adjustable declarators can belong to a data block.
EQUIVALENCE statements cannot be used if they try to store two elements of the same
array into the same space in memory, or if they destroy the contiguity of the array
elements. Noncharacter values will be stored starting on a full-word boundary in
memory.

4-21

Block Data Subprograms ‘

Block data subprograms exist for the sole purpose of supplying initial values to elements
contained in common blocks. DATA statements are used in data block subprograms to
supply these initial values. Storage space is allocated by the COMMON statements, and
the initial values are supplied by the DATA statements. (For further discussion of block
data subprograms, see Section VI.)

STATEMENT FUNCTIONS

A statement function is a computational procedure defined within the program unit that
references it. The form of a statement function is

name (param, param, ..., param) = expression
name a symbolic name starting with a nonnumeric character.

param a simple variable used as a dummy argument. No other
symbolic names except simple variable names may be used.

expression an arithmetic or logical expression of constants, simple
variables, array variables, function subprogram references,
intrinsic references, statement function references, and the

appropriate operators for the type expressions.
The statement function is defined in the program unit in which it will be used. The
definition must occur before the first executable statement of the program unit and after
all other specification statements (except for DATA statements). The statement function
name may not be used in an EXTERNAL statement. The definition is a single statement
similar to an arithmetic assignment statement.

The expression defines the actual computational procedure which derives one value.
When referenced, this value is assigned to the function name. The expression must be
either a logical expression or an arithmetic expression; no character expressions or
character-valued function statements are allowed.

Any statement function referenced in the definition of another statement function must
be defined before it is used in the definition. Statement function definitions are not
recursive, that is, a statement function cannot reference itself.

The value of any dummy arguments in the expression are supplied at the time the
statement function is referenced. (See Section I1.) All other expression elements are
local to the program containing the reference and derive their values from statements in
the containing program.

The type of the statement function is determined by using the statement function name in
a Type statement or by the first letter of the statement function name (names beginning
with I, J, K, L., M, or N are type integer, while names beginning with all other letters are
type real). This convention may be altered using the IMPLICIT statement.

4-22

The type of the expression must be compatible with the defined type of the statement
function’s symbolic name. Logical expressions must be used in logical statement
functions and arithmetic expressions in arithmetic statement functions. The expression
need not be the same arithmetic type as the statement function symbolic name. The
expression value is converted to the statement function type at the time it is assigned to
the statement function’s symbolic name. (See Section III for a discussion of type con-
version.) Two examples are

PROGRAM EX

REAL HOFFER

HOFFER X,)Y)=X**Y+C

END
Note that the real statement function, HOFFER, is defined before the first executable
statement of the program and after any other specification statements. In the following
example the statement function uses a function subprogram reference as part of the
defining expression.

PROGRAM WHY

EXTERNAL TOM

HARRY (X,Y,Z) = TOM (X,Y) + Z

END

4-23

SECTION V

Control Statements

Program execution normally proceeds sequentially from statement to statement. Control
statements alter this sequence by transferring control to a specified statement or by repeat-
ing a predetermined group of statements.

Statements within a program unit are labeled by unsigned integers (1 through 99999).
Embedded blanks and leading zeros in the label are ignored; 1, 01, 0 1, and 0001 are identical.

GO TO STATEMENTS

GO TO statements transfer control to the appropriately labeled statement in the same
program unit. The three kinds of GO TO statements are unconditional, computed,
and assigned.

‘ Unconditional GO TO

The form of an unconditional GO TO statement is
GOTOEk

where k is a statement label number. This statement transfers control to the statement
labeled & every time it is executed. For example, when this statement is executed,
control is transferred to statement 43 instead of the statement immediately following
the GO TO statement.

20 GO TO 43

26 (a statement)
34 (a statement)
40 (a statement)
43 (a statement)
48 (a statement)

Computed GO TO
The form of a computed GO TO is
GO TO (label, label, ..., label), index expression
‘ label an unsigned integer from 1 to 99999,

index expression an arithmetic expression of any type other than complex.

5-1

In a computed GO TO, the index expression is evaluated and converted to an integer ‘
value. (See “Arithmetic Expression Type,” Section III.) The index is then used to pick

one of the statement labels in the label list. Control is passed to the statement with that

label. For instance, if the index is 1, the first label in the list is used; if the index is 2, the

second is used; and so on. If the index evaluates to an integer less than 1, the first 1abel

in the list is used; and if the index evaulates to an integer greater than the positional

number of the last label in the list, the last label is used. For example,

I=0
20 I=T+1

GO TO (30,40,50), I
30 A=J+1
40 EXP=C*D
50 KAY = 4 + JAY

In the preceding example I is the index expression. The first time the GO TO statement
is encountered I = 1; thus control is transferred to statement 30. The next time the GO
TO statement is executed, I = 2, thus control passes to statement 40. The third time,
and any subsequent time the statement is executed, control is passed to statement 50 (as
long as I remains greater than 3).

Assigned GO TO

The form of an assigned GO TO statement is

GO TO variable
or
GO TO variable, (label, label, ..., label)

variable an integer simple variable.
label an unsigned integer from 1 to 99999.

In either of the preceding forms, variable must be given a value through an ASSIGN
statement prior to execution of the GO TO statement. Control is transferred to the
statement whose label matches the value of variable. If variable is not given a label
value or if the value given is not a valid existing label, an error message results.

The second from listed above includes a list of possible values that variable might take.
The list is not functional; the value of variable is not checked against this label list.
The list is there to remind the programmer of the possible places control might be
transferred and is part of the documentation of the program.

In the following example, control is passed to statement 60 when the GO TO I state-
ment is executed. I was assigned a valid statement label before the statement was

executed.
10 ASSIGN 60 to I
GOTOI1
60 JAY = KAY + ELL

IF STATEMENTS

IF statements control program flow in ways similar to GO TO statements. An arith-
metic IF statement transfers control to one of three labeled statements depending
whether the index expression is positive, negative, or zero. A logical IF statement
defines an executable statement which is executed only if a conditional clause
evaluates as true.

Arithmetic IF
The form of an arithmetic IF statement is:
IF (expression) label, label, label
expression an arithmetic expression of any type except complex.
label an unsigned integer from 1 to 99999.
In an arithmetic IF statement expression is evaluated. If the value is negative, control
is passed to the statement whose label is first in the list. If the expression value is zero,
control is passed to the statement whose label is second in the list. If the value is
positive, then the last label in the list is chosen. Two or all of the labels in the list

may be the same. For example,

IF (I - 3) 30,40,50

30 L
40 K
50 M

7
9
11

If I is less than 3, control is transferred to statement 30; if I is equal to 3, control is

transferred to statement 40; and if I is greater than 3, control is transferred to state-
ment 50.

5-3

Logical IF

The form for a logical IF statement is
IF (logical expression) statement
logical expression a logical expression as defined in Section III

statement an input/output statement, an assignment statement,
or a control statement other than a DO statement.

In a logical IF statement, the statement following the logical expression is executed as
false, the statement is not executed. For example,

IF(A.EQ.6)S=B+D

If A does equal 6, then the expression in parentheses evaluates as true,and S=B +D
is executed. If A is not equal to 6, S = B + D is ignored. Thus, for example,

IF (A .EQ. 6) GO TO 40
If A equals 6, the unconditional GO TO statement is executed, and control is passed to
the statement 40. If A does not equal 6, the GO TO is not executed and control passes
to the statement immediately following the IF statement.

DO STATEMENTS

A DO statement controls execution of a predefined group of statements. The form of
a DO statement is

DO label variable = init, limit, step
or
DO label variable = init, limit

label the statement label for the last statement of the group
controlled by the DO

variable an integer simple variable which controls the number of times
the group of statements is executed

tnit the inital value given to variable at the start of execution of
the DO statement

limit the termination value for variable

step the increment by which variable is changed after each
execution of the group of statements defined by label. Step can
be positive or negative.

init, limit, and step are indexing parameters. All three are arithmetic expressions of

any type except complex, although their values are converted to integer whenever ‘
they are used by the DO mechanism. If step is omitted, it is assumed equal to 1. init

and limit can be positive, negative, or zero.

54

‘ Range and Execution of DO Loops

A DO statement defines a loop. The range of the DO loop is defined as the first state-
ment following the DO statement, up to and including the terminal statement refer-
enced by label. When the DO statement is executed, the following steps occur:

1. The control variable (variable in the DO statement) is assigned the
value of init.

2. Control is passed to the first executable statement after the DO
statement, and the range is executed.

3. The termination statement (defined by label in the DO statement) of the
range is executed and variable is incremented by the value of step. If
step is not mentioned in the DO statement, the control varaible is
incremented by 1.

4, The control variable is compared with limit.

o IF step is positive, the sequence is repeated starting at step 2 (if
variable is less than or equal to limit). If variable exceeds limit, the
DO loop is satisfied, and control transfers to the statement following
the termination statement.

o If step is negative, the sequence is repeated starting at step 2 (if
variable is greater than or equal to limit). If variable drops below
limit, the DO loop is satisfied, and control transfers to the statement
following the termination statement.

Step 4 indicates that two possible cases exist when comparing the control variable with
the limit parameter. When step is negative, the control variable must be less than
limit before the DO loop passes control. When step is positive, the control variable
must be greater than limit before the DO loop passes control. If either of the two cases
exist when the loop is first entered, the instructions in the range of the DO loop are
executed once only.

limit or step must not be redefined during execution of the range of the loop. Variable
can be redefined during execution of the range of the loop.

The termination statement of a DO loop may not be a GO TO statement, arithmetic
IF statement, RETURN statement, STOP statement, DO statement, or a logical IF
statement which contains any of the previously mentioned statements.

Nesting DO Loops

If a DO loop is completely contained within the range of another DO loop, the first loop
is nested within the second. The last statement of the nested loop (specified by the
label in the DO statement) must either be the same as the terminating statement of the
outer loop, or must occur before the outer loop terminating statement. For example,

10 DO 1001 = 1,10,2
20 DO 90 J = 1,10,2
30 ?)0 80 K = 1,10,2 —
80 A=B+C
90 JAY = KAY + ELL
100 X = C*D+6 .

The DO loop defined by statement 30 and 80 is nested within the DO loop defined by
statements 20 and 90. These two DO loops are both nested within the range of the
outer DO loop defined by statements 10 and 100. Thus, each DO loop has its own
unique terminating statement. In the following example, the two outer loops have the
same terminal statement.

10 DO 1001- 1102
20 ?JO 100 J = 1,10,12
30 ?)0 90 K = 1,10,2 —
90 :A =G*D
100 Y-X+Z

56

The three DO loops are satisfied in the following manner:

1. The control variable I is initiated for the outer loop and control is passed
to the statement following statement 10.

2. When statement 20 is executed, control variable J is initialized for the
next inner loop and control is passed to the statement following state-
ment 20.

3. When statement 30 is reached, control variable K is initialized for the
innermost loop and control is passed to the statement following state-
ment 30.

4, When statement 90 is reached, control is returned to the statement
following 30. This continues until the innermost loop is satisfied.

5. Control is passed to the statement following 90.

6. When statement 100 is reached, control variable J is incremented and
checked against the limit. Control is passed to the statement following
20. This continues until the “J” loop is satisfied.

1. When statement 100 is reached on the last pass through the J loop, the
I control variable is incremented and checked, and control is returned

to the statement after 10.

8. The two inner nested loops must again be satisfied before control is
returned to the top of the outermost loop.

For example,

10 DO 1001+ 1,102

20 DO 100 J = 1,10,2

30 ?)o 100 K = 1,10,2
100 CONTINUE

If one or more loops have the same terminal statement, the control variable for the
next outer loop is incremented and tested against the associated limit when the inner
DO loop is satisfied. Control transfers to past the terminal statement only after all
three loops are satisfied.

DO loops may be nested to as many levels as desired, as long as the ranges do not .
overlap. An example of overlapping ranges is

10 DO 1001 =1,10,2 —
20 DO 200 J = 1,10,2 ILLEGAL: THE RANGES OF THE
. TWOLOOPS OVERLAP
100 X-Y
200 GEO=A*B

Entering and Exiting DO Loops

A DO loop may be exited at any time, e.g., by a GO TO statement or a subprogram call,
as long as the statement causing the passing of control is not the termination statement
of the loop. For example,

10 DO501-1102 —
:(;0 TO 500
50 :CONTINUE
500 X=Y+Z

In this example, control passes out of the DO loop by means of a GO TO statement.

58

It is possible to pass control into the range of a DO loop, but the results of this transfer
are not defined unless certain conditions are met. Transfers into a DO range should occur
only if a transfer out of that same DO loop had occurred previously. The following
represents a legal transfer out of the range of a DO loop and back into the same range.

PROGRAM EXAMPLE

10 DO 50 1=1,10,2
15 :Go TO 70

20 X=Y*V+R
50 CONTINUE

70 :VAL =BAN +6
90 GO TO 20

59

Instructions executed after a transfer out of a DO loop should not modify the control .
variable of that loop.

Instructions executed after a transfer out of a DO loop can include DO statements.
However, the ranges of the DO statements must not contain any means for exiting and
reentering the range before the DO loop is satisfied. Otherwise, the space in memory
used for the original DO loop mechanism will be destroyed. The following is an
example of an illegal transfer:

PROGRAM EXAMPLE
10 ?)o 1001 =1,10,2
20 :GO TO 150
25 :GO TO 170
30 X=T
100 CONTINUE
150 ?)o 250 J = 1,10,2
170 IF (A =6.0) GO TO 30
250 CONTINUE

The loop defined by statements 150 and 250 contain a possible transfer out of the range
of the loop. When a transfer is made out of the first DO loop (through statement 20)
and the second DO statement is executed, the first DO loop mechanism is altered. An
attempt to reenter the first DO loop range might cause arbitrary results. Hence, trans-
ferring from the range of one DO loop and executing another DO statement is legal
only if the second DO loop range does not contain possible exit points other than those
that cause normal satisfaction of the DO loop.

5-10

If a terminal statement is the terminal statement for two or more nested DO loops, a
transfer to the termination statement is a transfer to the innermost loop. For example,

10 DO 1001 = 1,102
20 :DO 100 J = 1,10,2
30 ?)o 100K = 1,10,1 —
35 IF (K = 1) GO TO 150
40 z =C+X

100 :CONTINUE

‘ 150 z -N*B+6
200 GO TO 100

In the above example, program control runs from statements 10 to 20 to 30 to 35 to

150 to 200 to 100. When transfer to statement 100 occurs, FORTRAN assumes that the
range of the innermost loop has been reached and checks the DO parameters against
the control vaiable K.

5-11

A Transfer out of an inner level of several nested DO loops, and a subsequent transfer
some time later into the range of the one of the outer DO loops is allowable as long as
the previously discussed rules for the transfer are obeyed. For example,

10 DO 701=1,10,2
20 ?)0 60 J = 1,10,2
25 X=Y+Z
30 ?)0 50 K = 1,10,2
35 GO TO 100
50 CONTINUE
60 CONTINUE
70 :CONTINUE

100 N=T+R

110 GO TO 25

512

CONTINUE STATEMENTS

A CONTINUE statement is used as the last statement in a DO loop that would other-
wise end in a prohibited instruction such as a GO TO or logical IF statement. The
form is

CONTINUE

If CONTINUE is used elsewhere in a program, it acts as a do-nothing instruction and
control passes to the next executable statement. For example,

10 DO 1001 = 1,10,2
20 X=6
GO TO 20
100 CONTINUE

In the above example, the last useful statement of the DO loop is a GO TO statement,
which is not allowed to be a terminal statement. The CONTINUE statement is used to
terminate the loop.

‘ BREAK STATEMENTS

Break statements consist of two forms, STOP and PAUSE. Execution of a STOP state-
ment causes termination of program execution. The PAUSE statement causes a pro-
gram break if the program is executing in interactive mode or a program termination
if the program is executing in batch mode.
The form of a STOP statement is

STOP integer
The form of a PAUSE statement is

PAUSE integer

integer an unsigned integer used to identify the specific PAUSE or STOP.

5-13

CALL STATEMENTS

A program references a subroutine by executing a CALL statement. The CALL state-
ment has the form:

CALL name
or
CALL name (param, param, ..., param)
or
CALL name (param, param, ..., param, $label, ..., $label)
name identifies the symbolic name of the subroutine called. It must
be identical to the name used in the SUBROUTINE statement

that defines the subroutine.

param an actual argument defined by the program unit containing the
CALL statement. Actual arguments must agree in number,
order, and type with the dummy arguments defined in the
SUBROUTINE statement. The actual arguments may be
constants, simple variables, array names, expressions, or
procedure subprogram names.

label a statement label (prefixed with a $). .

The CALL statement transfers control to the subroutine. When the subroutine is
executed, the actual arguments in the CALL statement are associated with their
equivalent dummy arguments in the SUBROUTINE statement. The subroutine is then
executed using the actual arguments. When a RETURN or END statement is executed
(in the subroutine), control is returned to the statement following the CALL statement
in the calling program unit. Control also can be returned to other statements in the
calling program if a RETURN 7 statement is executed. (See “RETURN Statements”
in this section.)

The CALL statement in the main program below is used to reference the subroutine
defined after the calling program:

PROGRAM SAM
COMMON A(10), B(10)

INTEGER J

REAL A,B

DO10L=1,10 Calling program
10 B(l)=L

J=6

CALL MULT(J)

DO20M=1,10
20 WRITE (6,200) A(M)

END

5-14

SUBROUTINE MULT(K)
COMMON A(10), B(10)

DO10I=1,10 Subroutine definition
10 AD=BOD*K
END

The main program first loads array B with integers from 1 to 10. Integer variable J is
assigned the value 6. CALL MULT(J) transfers control from the main program to the
subroutine. The integer variable J is substituted in the CALL statement for the integer
variable K in the SUBROUTINE statement. The actual result of calling the subroutine
is to multiply the number stored in each element of array B by 6 (J = 6) and store the
result in the corresponding element of array A. J is substituted for K whenever K
appears in this subroutine. When the END statement in the subroutine is executed,
control is passed back to the statement following CALL MULTY(J) in the main program.
Since array A is accessible to both the subroutine and the main through COMMON
statements, the main program can use the results of the subroutine execution.

RETURN STATEMENTS

RETURN statements transfer control from a subprogram back to the calling program
unit. The statement form is

RETURN
or
RETURN n

where n i8 a positive integer constant or integer simple variable with positive value.
In a subroutine subprogram, executing a RETURN statement of the first form returns

program control to the statement following the subroutine CALL statement in the
calling program. For example,

PROGRAM SAM SUBROUTINE DIX
COMMON A,B.C
X=6 COMMON AB,C
40 CALL DIX
50 IF(ALT.3)Y=1 RETURN
- END
END

Statement 40 transfers control to subroutine DIX. When the RETURN statement is
executed, control is returned to statement 50 in the main program.

5-15

In a function subprogram, only the first form of the RETURN statement is allowed.
When a RETURN statement is executed in a function, control is returned to the
expression in the calling program which referenced the function. The value given the
function name is used to continue evaluation of the referencing expression.

For example,

PROGRAM HUFF FUNCTION IDIV(L,M)
EXTERNAL IDIV IDIV = L/M
RETURN
I=8 END
J=4
30 Y = 6 + IDIV(LJ)
END

The function reference in statement 30 passes control to function IDIV, which assigns
a value to the function name. When the RETURN statement is executed, control is

returned to statement 30 in the main program. The value assigned by IDIV is used to
evaluate the expression. Control then passes to the statement following statement 30.

In subroutine subprograms the second form, RETURN nr, can be used, where n is a
positive integer constant or simple variable which acts as an index to choose a state-
ment label from the list following the actual parameters of the CALL statement.
Control is passed to the statement in the calling program that is prefixed by the chosen
statement number:

PROGRAM SUBROUTINE SUBR(X,Y.*, *, *,
EXTERNAL SUBR X = HOF + 3
. Y = HOF/x
10 CALLSUBR(A,B,$20,$30,$40)
20 T-A+B 1-2
' RETURN I
30 T-A*B END
40 END

In the SUBROUTINE statement a list of asterisks follow the two dummy parameters to
show that alternate return points exist. In the CALL statement in the main program,
the asterisks are replaced by $20, $30, and $40. (The $ prefix is necessary to distinguish
statement labels from integer constants.) Control is passed to the subroutine. When
the RETURN I statement is executed, I = 2. The second label in the list is choosen.
Control returns to statement 30 in the main program.

If the index is less than 1 or greater than the number of statement labels listed, a com-
plier error results (when the index is a constant), and a run error results when the index
is a simple variable.

516

SECTION VI

Main Programs and Subprograms

Computer

<. Miuseyum

An executable FORTRAN program consists of program units made up of a main program
and any necessary subprograms. Subprograms are subroutine subprograms, function sub-
programs or block data subprograms, written and compiled separately from the main pro-
gram. Procedure subprograms are subroutines or functions (containing executable
instructions). Block data subprograms do not contain executable instructions.

A main program does not require any other program to activate it, while subprograms
depend upon other program units for activation. Procedure subprograms are referenced or
called by a main program or another procedure subprogram. A procedure subprogram can
also call itself as part of the defined computational process; i.e., a subprogram may be
defined recursively. A calling program unit is a main program or subprogram that refer-
ences or calls another subprogram.

STATEMENT ORDER IN PROGRAM UNITS
Categories of statements must appear in the same order within program units. In

general, all specification statements must appear before the first executable statement
in the program unit (see Table 6-1).

Table 6-1. Program Unit Statements

Statement Category Statement Examples

Subprogram statements SUBROUTINE
FUNCTION
BLOCK DATA
PROGRAM

Implicit statements IMPLICIT
Specification statements DIMENSION
COMMON
EQUIVALENCE
TYPE

EXTERNAL

Data statements DATA

Statement function definitions FUNCA,B)=A+B

Executable statements Assignment statements
control statements

170 statements

END line END

FORMAT statements (not shown in Table 6-1) are nonexecutable but can appear any-
where in the program unit after the subprogram statement and before the END line.
Specification statements can appear in any order after any IMPLICIT statement and
before any DATA statements. DATA statements can appear anywhere after specifi-
cation statements. Statement function definitions appear after the last nonexecutable
statement and before the first executable statement. Statement function definitions
may appear in any order within their group. However, any statement function refer-
enced as part of another statement function definition must physically precede the
former function’s use in the definition.

END LINES

The very last line of any program unit (main or subprogram) must be an END line in
the form

END

The END line signals the end of the program unit to the compiler. In a main program,
END acts as a STOP statement causing termination of execution. In a procedure sub-
program, END acts as a RETURN statement if the END statement is executed. The

END line should be prefixed by a label if it is intended to double as a RETURN or STOP

statement. '

‘ MAIN PROGRAMS

A main program consists of any necessary nonexecutable instructions (IMPLICIT,
specifications statements, or DATA statements, in addition to statement function
definitions); one or more assignment, control, or input/output statements; and an

END line. The main program can be assigned a symbolic name by using a PROGRAM
statement as the very first statement of the program. The PROGRAM statement

has the form

PROGRAM name

where name is an alphameric string from one to fifteen characters (the first
character must be alphabetic).

Any main program not headed by a PROGRAM statement is assigned the special name
MAIN' by the FORTRAN compiler.

SUBROUTINE SUBPROGRAMS

A subroutine is a computational procedure. A subroutine also can return values
through actual arguments supplied by the calling program unit or through common
storage. No value or type is associated with the name of the subroutine.

The first statement of a subroutine must be a SUBROUTINE statement, which gives
the subroutine name and its dummy arguments, if any:

‘ SUBROUTINE name
or
SUBROUTINE name (param, param, ..., param)
or
SUBROUTINE name (param, param, ..., param, ¥, ..., ¥

name alphameric string from one to fifteen characters (the first
character must be alphabetic).

param a dummy argument of the subroutine. param can be a simple
variable, array name, subroutine name, or function sub-
program name.

* indicates that statement label (prefixed by a $) occurred in
CALL statement for this subroutine.

The subroutine can define or modify any of its value-possessing arguments and common
areas to return values to the calling program. The subroutine can contain any state-
ment except another SUBROUTINE, FUNCTION, PROGRAM, BLOCK DATA
statement. The subroutine can contain a CALL statement referencing itself (recursive
call). Other statement categories must appear as defined earlier in Section VI.

6-3

The last line of a subroutine must be an END line. One or more RETURN statement .
can be included to return control to the calling program unit. If no RETURN statement
exists, the END line acts to return control to the calling program unit. For example,

SUBROUTINE STORCOM

COMMON A(50)

REAL A

DO10I=1,50

AD=A0*6

RETURN

END
In this example, the subroutine named STORCOM multiplies each element of array A
by 6. If it contains a COMMON statement, array A is stored in a common block and is
therefore accessible to the calling program.
In the following example, the subroutine named FLAG compares two real numbers
and assigns the value true to the logical variable SET if the numbers are equal; FLAG

assigns the value false if the numbers are unequal. These values are stored in a
common block so that they are accessible to both the subroutine and the calling program

unit. .

SUBROUTINE FLAG
COMMON SET, AB
LOGICAL SET

REAL AB

IF (A .EQ. B) SET = .TRUE.
IF (A .NE. B) SET = .FALSE.
END

Subroutines are invoked by using the subroutine name in a CALL statement (see
Section V).

6-4

FUNCTION SUBPROGRAMS

A function subprogram is a computational procedure which returns a value associated
with the function name. The first statement of a function must be

FUNCTION name (param, param, ..., param)
or
type FUNCTION name (param, param, ..., param)

name an alphameric string from one to fifteen characters (the first
character must be alphabetic).

param a dummy argument of the function. It can be a simple variable,
array name, subroutine name, or a function subprogram name.

type either LOGICAL, INTEGER, REAL, DOUBLE PRECISION,
COMPLEX or CHARACTER *n (where n is a positive integer
constant specifying the length of the character function value.
n cannot be a variable. *n can be omitted).

The type associated with the function name is determined in one of three ways:

1. If the type is mentioned as the first part of the FUNCTION statement,
the function name is assigned that type.

2. If the type is not given in the FUNCTION statement, the function name
can be mentioned in a Type statement within the calling program unit.

3. If the function name is not mentioned in a Type statement or the type
mentioned in the FUNCTION statement itself, the type is assigned
implicitly according to the first letter of the name. Names starting with
I, d,K, L, M, or N are type integer, and names starting with any other
letter are type real. (This convention may be modified by an IMPLICIT
statement, see Section IV.)

To associate a value with the function subprogram name, the name must be used
within the function subprogram as a simple variable in one or more of the following
contexts:

1. The left side of an assignment statement

2. An element of an input list in a READ statement

3. An actual parameter of a function or subroutine
The value last assigned to the name of the function at the time a RETURN or END

statement is executed within the subprogram is considered the value of that function.
The body of the function may contain a reference to itself (recursive call).

6-5

In the following example, the function name is used as a simple variable and is given .
its value through assignment:

INTEGER FUNCTION DIVID(1,J)
DIVD =1/J
END

The function named DIVD is defined as type integer by the FUNCTION statement. The
value of the function is determined through assignment. If I and J are both integers,
1/J is always evaluated as an integer; i.e.,,4/3=1,7/2=3,9/4= 2.

The function name in the following example is given a value by using it as an input item
in a READ statement:

REAL FUNCTION GETVAL
READ(5) GETVAL
END

GETVAL is associated as type REAL by the FUNCTION statement. The value of the
function is determined by reading from an input device.

FUNCTION SCALL (A,B,C)
A=6

CALL SUBF(SCALL, A B)
RETURN

END

SUBROUTINE SUBF(X,S,T)
X =S+T
END

SCALL is the function name used as an actual parameter of the subroutine SUBF.
SCALLis given a value through SUBF and this valueis passed back to the calling program.

6-6

BLOCK DATA SUBPROGRAMS

Block data subprograms provide initial values for simple variables and array elements
in labeled common blocks. A block data subprogram consists of a BLOCK DATA
statement and IMPLICIT, COMMON, DIMENSION, EQUIVALENCE, Type, and
DATA statements. EXTERNAL statements are not allowed in block data subprograms.
The subprogram’s last line must be an END line.

The first statement of a block data subprogram must be a BLOCK DATA statement:

BLOCK DATA
or
BLOCK DATA name

where name is a character string from 1 to 15 characters (the first character is
alphabetic. The name may be included to identify the subprogram.

Block data subprograms do not generate code; they use DATA statements to supply
initial values to variables in labeled common blocks. The common blocks must be
fully specified in a COMMON statement. EQUIVALENCE, DIMENSION, and Type
statements also can be used for defining the variables in the common blocks. The
DATA statements indicate which variables mentioned in the COMMON statement
have initial values and what those values are. No variable should be mentioned in a
DATA statement in a BLOCK data subprogram unless it is mentioned in a COMMON
statement. However, not all variables mentioned in a COMMON statement need be
mentioned in a DATA statement—only those data elements which are to have initial
values. DATA statements do not affect the storage allocation of any of the variables in
block data subprograms.

More than one common block can be initialized in a single block data subprogram; for
example,

BLOCK DATA BL1

COMMON /COMA/A,B,C/COMB/D,E,F

REAL AB,CDEF

DIMENSION A(20)

DATA A,C/20 *1.0,34.0/, E,F/ -4.3,67.9/

END
The preceding block data subprogram describes two common blocks, COMA and
COMB. COMA contains a real array of 20 elements called A, and two simple real vari-
ables called B and C. COMB contains simple real variables D, E, and F. The DATA
statement supplies initial values for all 20 elements of array A, variable C, E, and F.

Initial values are not supplied for B or D, even though they are both mentioned in the
COMMON statement.

6-7

NON-FORTRAN LANGUAGE SUBPROGRAMS ‘

Procedure subprograms written in a language other than FORTRAN can be used as
long as the calling sequence and the effect of execution are consistent with FORTRAN.
For details on the use of non-FORTRAN language subprograms, consult Appendix A.

6-8

SECTION ViI

Functions

A function is a computational process which returns a single value to the function name of the
type assigned to the name. Functions are either locally defined or globally defined. Locally
defined functions are recognized only in the program unit which defines them. Globally de-
fined functions are recognized in any program unit which declares the function name as
EXTERNAL. Intrinsic functions and statement functions are locally defined functions, and
function subprograms (including a distinguished set of function subprograms called basic
external functions) are globally defined functions.

INTRINSIC FUNCTIONS

The symbolic names of the intrinsic functions are predefined to the FORTRAN com-
piler. Intrinsics can be used merely by writing a function reference with the appro-
priate actual arguments (see “Function References” in Section II. The symbolic

name of an intrinsic function can be redefined within a program unit by using the name
in a specification statement other than a Type statement of the intrinsic’s normal type,
or as a statement function or as a simple variable. The intrinsic name can also be re-
defined in a subprogram statement (SUBROUTINE, FUNCTION, BLOCK DATA). The
new usage applies only to the program unit in which the redefinition is made. For a
subprogram definition, the new usage applies in any other program unit where the
intrinsic name is used in an EXTERNAL statement or in a Type statement different
from the intrinsic’s type. Otherwise, the intrinsic itself is invoked when the name is
used in a function reference. Table 7-1 describes the intrinsics, their function refer-
ences and their argument characteristics.

7-1

Table 7-1. Intrinsic Functions

Intrinsic Definition Number of Function Type of Type of
Function Arguments Reference Argument | Function
Absolute Value| |a| 1 ABS(a) Real Real
IABS(a) Integer Integer
DABS(a) Double Double!
Truncation Sign of a times 1 AINT(a) Real Real
lj‘lrngt integer INT(a) Real Integer
=le Logical
IDINT(a) Double Integer
DDINT(a) Double Double
Remaindering? | a; (mod a9) 2 AMOD (ay, ag) Real Real
MOD (aq, a9) Integer Integer
Choosing Max (aq, ag, --.) 2 AMAXO Integer Real
largest value (ay, ag, ..., a,)
AMAXI1 Real Real
(al, ag, -, an)
MAXO Integer Integer
(al, 02, veey an)
MAX1 Real Integer
(ay, a9, .., ay,)
DMAX1 Double Double
(al, a2, veey an)
Choosing Min(a;, a9, ...) 2 AMINO Integer Real
smallest value (al, ag, .., an)
AMIN1 Real Real
(al, ag, ..., an)
MINO Integer Integer
(al, a2, veey an)
MIN1 Real Integer
(al, (12, ooy an)
DMIN1 Double Double
(al, (12, vesy an)

1Double = double precision real.

?The function MOD or AMOD (aq, ag) is defined as a{ -|a;/aglag, where | is the integer whose
magnitude does not exceed the magnitude of x and whose sign is the same as x.

7-2

Table 7-1. Intrinsic Functions (Continued)

Intrinsic Definition Number of Function Type of Type of
Function Arguments Reference Argument | Function
Float Conversion from 1 FLOAT (a) Integer Real
integer to real
Fix Conversion from 1 IFIX(a) Real Integer
real to integer
Transfer of Sign of ag 2 SIGN(aq, ag) Real Real
sign times |a4|
ISIGN(ay, a9) Integer Integer
DSIGN(a;, a9) Double Double
Positive a; - Min(ay, a9) 2 DIM(ay, a9) Real Real
Difference
IDIM(ay, a9) Integer Integer
Obtain most 1 SNGL(a) Double Real
significant
part of double
precision
argument
Obtain real 1 REAL(a) Complex | Real
part of
complex
argument
Obtain imagi- 1 AIMAG(a) Complex | Real
nary part of
complex
argument
Express single 1 DBLE(a) Real Double
precision argu-
ment in double
precision form
Express two aj +agv-1 2 CMPLX(ay, ag) | Real Complex

real arguments
in complex
form

7-3

Table 7-1. Intrinsic Functions (Continued)

Intrinsic
Function

Definition

Number of
Argument

Function
Reference

Type of
Argument

Type of
Function

Obtain con-
jugate of a
complex
argument

Obtain the
position of the
character in the
first argument
which begins the
substring which
matches the
second argument

Convert char-
acter expression
to integer
(INUM), real
(RNUM) or
double-precision
(DNUM)

Convert an
arithmetic ex-
pression of any
type except
complex (ay)
string of length

a2.

Convert integer
expression to
type logical

INDEX

INUM
RNUM

DNUM

STR

BOOL

1

CONJG(a)

INDEX(a;, a)

INUM(a)
RNUM(a)

DNUM(a)

STR(al, as)

BOOL(a)

Complex

Character

Character
Character

Character

Integer,
real, or
Double

Integer

Complex

Integer

Integer
Real

Double

Character

Logical

7-4

. STATEMENT FUNCTIONS

Statement functions are similar in effect to intrinsic functions, recognized only within
the program unit which defines it. Use of a statement function name in any program
unit outside the defining one is purely local to the program unit outside the defining
program unit. (See “Function References” in Section II, and “Statement Functions”
in Section IV.)
In the following example the statement function (TWO) includes a reference to state-
ment function ONE in its definition. This reference is allowable since ONE is defined
before TWO in the program.

PROGRAM EX

ONEX)Y) = (X + Y)**2 (Statement function definition)

TWO(S,T) = (ONE(S,T))**2 (Statement function definition)

A=-
B=3

' 20 Z-TWOA +2,B - 2)

END
The value of Z in statement 20 is calculated as
A+2=1
B-2=1
ONE(A + 2, B -2)=ONE(1,1) = 2**2 =4
TWO(1,1) = (ONE(1,1))**2 = 4**2 = 16

Z-=16

7-5

FUNCTION SUBPROGRAMS .

Function subprograms are globally defined computational procedures. A reference to
a function subprogram can appear in any program unit. (See “Function References”
in Section II and “Main Programs and Subprograms” in Section IV.)

In the following example, program EX references the function LARGE to assign a value
to the variable, Z.

FUNCTION LARGE(A,B)
REAL AB

IF (A .LT. B) LARGE =B
IF (A .GT. B) LARGE = A

END

PROGRAM EX

REAL XY

7 X = LARGE(X,Y)

END

BASIC EXTERNAL FUNCTIONS

Some basic computational procedures (such as taking the square root of a number) are
defined in FORTRAN as basic external functions. To use these functions, the function
reference, along with the appropriate actual arguments, must appear in an expression.

The type of the function (if other than Integer or Real) must be defined in the user’s
program through a Type statement or use of an IMPLICIT statement. When the basic
external function is referenced, the actual arguments are checked for proper type. The
defined function type is associated with the results.

The user can define a function subprogram with the same name as a basic external
function. The new function takes the place of the system defined function.

The defined basic external functions available are shown in Table 7-2. For complete
details of basic external function see HP 3000 Compiler Library (03000-90009).

76

Table 7-2. Basic External Functions

Basic External Definition Number of Function Type of Type of
Function Arguments Reference Argument | Function
Exponential e 1 EXP(a) Real Real
1 DEXP(a) Double Double
1 CEXP(a) Complex | Complex
Natural Log, (a) 1 ALOG(a) Real Real
logarithm
1 DLOG(a) Double Double
1 CLOG(a) Complex | Complex
Common Log,, (a) 1 ALOG10(a) Real Real
Logarithm
1 DLOG1Xa) Double Double
Trigonometric | Sin (a) 1 SIN(a) Real Real
Sine 1 |DSIN() Double | Double
1 CSIN(a) Complex | Complex
Trigonometric | Cos (a) 1 COS(a) Real Real
cosine 1 DCOS(a) Double Double
. 1 CCOS(a) Complex | Complex
Trigonometric | Tan (a) 1 TAN(a) Real Real
tangent
Hyperbolic Tanh (a) 1 TANH(a) Real Real
tangent
Square root (a)v2 1 SQRT(a) Real Real
1 DSQRT{(a) Double Double
1 CSQRT(a) Complex | Complex
Arctangent Arctan (a) 1 ATAN(a) Real Real
1 DATAN(a) Double Double
Arctan (aq/a9) 2 ATANX(ay, ag) Real Real
2 DATANZ2(aq, ag) | Double Double
Remaindering? | ay (mod ag) 2 DMOD(a;/a9) Double Double
Modulus 1 CABS(a) Complex | Real

1Double = double precision real.

?The function MOD or AMOD (a1, ag) is defined as a; ~|ay/aglag, where || is the integer whose
magnitude does not exceed the magnitude of x and whose sign is the same as x.

77

SECTION VIl

Input/Output Statements

Input/output statements transfer information between data elements in memory and
external devices or between data elements in memory and user-defined buffers in memory.

An input/output statement can contain a list of names of simple variables, array elements,
arrays, and function subprograms. When an input statement is executed, the input values
from the external device or user-buffer are assigned to the symbolic names in the list. When
an output statement is executed, the values assigned to the listed variables are transferred to
the external device or to the specified buffer space in memory.

To reference a specific external device, an input or output statement references the file
number associated with the device. The file facility transfers data to and from the external
devices. (See Section X for a discussion of the FORTRAN/3000 file facility.)

Data is input or output in groups called records. These records may be formatted or un-
formatted. To transfer formatted data, a string of characters known as format and edit
specifications must be used to convert the data to and from memory.

All input/output is handled through the FORTRAN Formatter program. For a complete
description of the format and edit specifications and the interaction between the user pro-
gram and the FORTRAN Formatter, consult Section IX.

READ STATEMENTS

Read statements transfer information from an external device or character buffer in
memory to specified data elements in a list. The form of a READ statement is

READ (control part) element, element, ..., element
or
READ (control part)
where control part consists of
(unit, format, labels)
or
(unit, format)
or
(unit, labels)
or
(unit)
element is a simple variable name, array or array element name, function
subprogram name or DO-implied list (see below).

8-1

Control Part .

The control part of a READ statement consists of a unit reference, format reference, or
action label reference in any combination specified above.

UNIT REFERENCE. unit specifies the source from which the data values are to be
read (either a file associated with an external device, or a user-defined buffer in core).

If the source is a file, unit consists of

file (sequential access)
file @ record (direct access)
file is a positive integer constant or integer simple variable which

indicates the desired file number (between 1 and 99, inclusive).

record is an arithmetic expression of any type except complex, This
value is converted to type integer and indicates a specific record
of a direct-access file. The @ must be used to separate the file
number from the record expression.

If the source is a buffer in memory, unit consists of

name

where name is a simple character or character array element specifying the buffer which .
contains the data to be transferred.

FORMAT REFERENCE. format specifies the location of the format and/or edit
specifications which determine how the data is to be converted. format consists of

statement label
or
array name
or
character variable name (Simple or subscripted)

or
*

where statement label indicates that format and edit specifications appear in the
FORMAT statement prefixed by statement label, and array name or character variable
name indicates that format and edit specifications are contained in the array or variable
specified. An asterisk (*) indicates that data is in free-field format and does not require
any format or edit specifications other than those already contained within the data to
be transmitted.

If format is omitted in the READ statement control part, a binary transfer takes place.

8-2

ACTION LABEL REFERENCES. labels allow program control over exceptional con-
ditions and take the form

END = statement label

or
ERR = statement label
or
END = statement label, ERR = statement label
or

ERR = statement label, END = statement label

END = statement label transfers program control to the statement identified by state-
ment label if an end-of-file condition occurs (insufficient records, record too short for
a binary read, etc.). ERR = statement label transfers control to the statement shown if
a transmission error occurs (parity error, incorrect type, etc.).

If the action labels are left out of a READ statement, and an exceptional condition
occurs, the FORTRAN/3000 program is terminated with the appropriate diagnostic
message. For example,

PROGRAM EXRE

INTEGER A B

READ (3 3.210,END = 250,ERR = 260) A,B
210 FORMAT ...
950 CALL ENDOF
260 CALL ERROF

program EXRE reads two values from a file and assigns them to the integer variables
A and B. The data read is converted through a FORMAT statement (labeled 210)
containing format specifications. If an end-or-file condition occurs, program control is
passed to statement 250, a call to subroutine ENDOF to process the end-of-file con-
dition. If a data transmission error occurs, control is passed to statement 260, which
calls for another subroutine (ERROF) to process the error condition.

READ STATEMENT EXECUTION. When the READ statement is executed, data
values are transferred from the source indicated by unit in the READ statement (control
part) to the data elements specified in the element list. Elements are assigned values
left-to-right as they appear in the list.

Each READ statement begins reading values from a fresh record of the file, ighoring
any values left unread in records accessed by previous READ statements. If a READ
statement does not contain any elements, the “next record” pointer advances one
record and no transfer of data takes place.

8-3

If the READ statement contains no format reference in the control part, a binary read ‘
is initiated. For a sequential file (unit = file), records are read sequentially until the

last element in the element list receives a value. For a direct access file (unit = file

record), only one record is read. The record must contain enough values so that all the
elements in the element list receive a value. Otherwise, a run error occurs.

If the READ statement does contain a format reference in the control part, a formatted
read is initiated. Records are read sequentially until all of the list elements have
received a value, regardless of whether the file is direct or sequential access.

Array names appearing in an element list stand for all the elements of the array.
Values are transferred to the array elements in the order prescribed by the array
successor function (see Section IV).

ACCEPT STATEMENTS

An ACCEPT statement is a read statement intended for (but not restricted to) programs
operating from a terminal device. The form is

ACCEPT element, element, ..., element

where element is a simple variable name, array name, array element, function sub-
program name, or DO-implied list. (See “DO-implied Lists” in this section.)

When the ACCEPT statement is executed, it prints a question mark on the standard
output device, e.g., a teleprinter. It then performs a free-field read from the standard
input device (which may also be the teleprinter). For example,

PROGRAM RL
INTEGER A, B, C
ACCEPT AB,C
END

When the program executes, it types the message ?. The user answers, for example,
35,455,733. This assigns the value 35 to A, 455 to B and 733 to C.

8-4

‘ STATEMENT FUNCTIONS

Statement functions are similar in effect to intrinsic functions, recognized only within
the program unit which defines it. Use of a statement function name in any program
unit outside the defining one is purely local to the program unit outside the defining
program unit. (See “Function References” in Section II, and “Statement Functions”
in Section IV.)

In the following example the statement function (TWO) includes a reference to state-
ment function ONE in its definition. This reference is allowable since ONE is defined
before TWO in the program.

PROGRAM EX
ONEX)Y) = (X + Y)**2 (Statement function definition)

TWO(S,T) = (ONE(S,T))**2 (Statement function definition)

A--
B-3 y
Computer
MuSeU”l
‘ 20 Z=TWOA + 2, B - 2)
END

The value of Z in statement 20 is calculated as
A+2=1
B-2=1
ONE(A + 2, B - 2) = ONE(1,1) = 2**2 = 4
TWO(1,1) = (ONE(1,1))**2 = 4**2 = 16

Z-=16

FUNCTION SUBPROGRAMS ‘

Function subprograms are globally defined computational procedures. A reference to
a function subprogram can appear in any program unit. (See “Function References”
in Section II and “Main Programs and Subprograms” in Section IV.)

In the following example, program EX references the function LARGE to assign a value
to the variable, Z.

FUNCTION LARGE(A,B)
REAL AB

IF (A .LT. B) LARGE = B
IF (A .GT. B) LARGE = A
END

PROGRAM EX

REAL XY

Z X = LARGE(X,Y)

END
BASIC EXTERNAL FUNCTIONS

Some basic computational procedures (such as taking the square root of a number) are
defined in FORTRAN as basic external functions. To use these functions, the function
reference, along with the appropriate actual arguments, must appear in an expression.

The type of the function (if other than Integer or Real) must be defined in the user’s
program through a Type statement or use of an IMPLICIT statement. When the basic
external function is referenced, the actual arguments are checked for proper type. The
defined function type is associated with the results.

The user can define a function subprogram with the same name as a basic external
function. The new function takes the place of the system defined function.

The defined basic external functions available are shown in Table 7-2. For complete
details of basic external function see HP 3000 Compiler Library (03000-90009).

7-6

Table 7-2. Basic External Functions

Basic External Definition Number of Function Type of Type of
Function Arguments Reference Argument | Function
Exponential o 1 EXP(a) Real Real
1 DEXP(a) Double Double
1 CEXP(a) Complex | Complex
Natural Log,, (a) 1 ALOG(a) Real Real
logarithm
1 DLOG(a) Double Double
1 CLOG(a) Complex | Complex
Common Log,, (a) 1 ALOG10(a) Real Real
Logarithm
1 DLOG10(a) Double Double
Trigonometric | Sin (a) 1 SIN(a) Real Real
Sine 1 |DSIN@) Double | Double
1 CSIN(a) Complex | Complex
Trigonometric | Cos (a) 1 COS(a) Real Real
cosine 1 DCOS(a) Double | Double
‘ 1 CCOS(a) Complex | Complex
Trigonometric | Tan (a) 1 TAN(a) Real Real
tangent
Hyperbolic Tanh (a) 1 TANH(a) Real Real
tangent
Square root (a)2 1 SQRT(a) Real Real
1 DSQRT(a) Double Double
1 CSQRT(a) Complex | Complex
Arctangent Arctan (a) 1 ATAN(a) Real Real
1 DATAN(a) Double Double
Arctan (a;/a9) 2 ATAN2(aq, a9) Real Real
2 DATAN2(a1, a2) Double Double
Remaindering? | a; (mod ay) 2 DMOD(a;/a9) Double Double
Modulus 1 CABS(a) Complex | Real

1Double = double precision real.

?The function MOD or AMOD (ay, a9) is defined as ay -|a;/aglag, where|x] is the integer whose
magnitude does not exceed the magnitude of x and whose sign is the same as x.

7-7

SECTION VHI

Input/Output Statements

Input/output statements transfer information between data elements in memory and
external devices or between data elements in memory and user-defined buffers in memory.

An input/output statement can contain a list of names of simple variables, array elements,
arrays, and function subprograms. When an input statement is executed, the input values
from the external device or user-buffer are assigned to the symbolic names in the list. When
an output statement is executed, the values assigned to the listed variables are transferred to
the external device or to the specified buffer space in memory.

To reference a speciﬁé external device, an input or output statement references the file
number associated with the device. The file facility transfers data to and from the external
devices. (See Section X for a discussion of the FORTRAN/3000 file facility.)

Data is input or output in groups called records. These records may be formatted or un-
formatted. To transfer formatted data, a string of characters known as format and edit
specifications must be used to convert the data to and from memory.

All input/output is handled through the FORTRAN Formatter program. For a complete
description of the format and edit specifications and the interaction between the user pro-
gram and the FORTRAN Formatter, consult Section IX.

READ STATEMENTS

Read statements transfer information from an external device or character buffer in
memory to specified data elements in a list. The form of a READ statement is

READ (control part) element, element, ..., element
or
READ (control part)
where control part consists of
(unit, format, labels)
or
(unit, format)
or
(unit, labels)
or
(unit)
element is a simple variable name, array or array element name, function
subprogram name or DO-implied list (see below).

8-1

Control Part

The control part of a READ statement consists of a unit reference, format reference, or
action label reference in any combination specified above.

UNIT REFERENCE. unit specifies the source from which the data values are to be
read (either a file associated with an external device, or a user-defined buffer in core).

If the source is a file, unit consists of

file (sequential access)
file @ record (direct access)
file is a positive integer constant or integer simple variable which

indicates the desired file number (between 1 and 99, inclusive).

record is an arithmetic expression of any type except complex, This
value is converted to type integer and indicates a specific record
of a direct-access file. The @ must be used to separate the file
number from the record expression.

If the source is a buffer in memory, unit consists of

name

where name is a simple character or character array element specifying the buffer which
contains the data to be transferred.

FORMAT REFERENCE. format specifies the location of the format and/or edit
specifications which determine how the data is to be converted. format consists of

statement label
or
array name
or
character variable name (Simple or subscripted)

or
*

where statement label indicates that format and edit specifications appear in the
FORMAT statement prefixed by statement label, and array name or character variable
name indicates that format and edit specifications are contained in the array or variable
specified. An asterisk (*) indicates that data is in free-field format and does not require
any format or edit specifications other than those already contained within the data to
be transmitted.

If format is omitted in the READ statement control part, a binary transfer takes place.

82

ACTION LABEL REFERENCES. labels allow program control over exceptional con-
ditions and take the form

END = statement label

or

ERR = statement label
or

END = statement label, ERR = statement label
or

ERR = statement label, END = statement label

END = statement label transfers program control to the statement identified by state-
ment label if an end-of-file condition occurs (insufficient records, record too short for
a binary read, etc.). ERR = statement label transfers control to the statement shown if
a transmission error occurs (parity error, incorrect type, etc.).

If the action labels are left out of a READ statement, and an exceptional condition
occurs, the FORTRAN/3000 program is terminated with the appropriate diagnostic
message. For example,

PROGRAM EXRE
INTEGER A,B
READ (3 3.210,END = 250,ERR = 260) A,B
210 FORMAT ...
250 CALL ENDOF

9260 CALL ERROF

program EXRE reads two values from a file and assigns them to the integer variables
A and B. The data read is converted through a FORMAT statement (labeled 210)
containing format specifications. If an end-or-file condition occurs, program control is
passed to statement 250, a call to subroutine ENDOF to process the end-of-file con-
dition. If a data transmission error occurs, control is passed to statement 260, which
calls for another subroutine (ERROF) to process the error condition.

READ STATEMENT EXECUTION. When the READ statement is executed, data
values are transferred from the source indicated by unit in the READ statement (control
part) to the data elements specified in the element list. Elements are assigned values
left-to-right as they appear in the list.

Each READ statement begins reading values from a fresh record of the file, ignoring
any values left unread in records accessed by previous READ statements. If a READ
statement does not contain any elements, the “next record” pointer advances one
record and no transfer of data takes place.

8-3

If the READ statement contains no format reference in the control part, a binary read ‘
is initiated. For a sequential file (unit = file), records are read sequentially until the

last element in the element list receives a value. For a direct access file (unit = file

record), only one record is read. The record must contain enough values so that all the
elements in the element list receive a value. Otherwise, a run error occurs.

If the READ statement does contain a format reference in the control part, a formatted
read is initiated. Records are read sequentially until all of the list elements have
received a value, regardless of whether the file is direct or sequential access.

Array names appearing in an element list stand for all the elements of the array.

Values are transferred to the array elements in the order prescribed by the array
successor function (see Section IV).

ACCEPT STATEMENTS

An ACCEPT statement is a read statement intended for (but not restricted to) programs
operating from a terminal device. The form is

ACCEPT element, element, ..., element

where element is a simple variable name, array name, array element, function sub-
program name, or DO-implied list. (See “DO-implied Lists” in this section.)

When the ACCEPT statement is executed, it prints a question mark on the standard
output device, e.g., a teleprinter. It then performs a free-field read from the standard
input device (which may also be the teleprinter). For example,

PROGRAM RL
INTEGER A, B, C
ACCEPT AB,C
END

When the program executes, it types the message ?. The user answers, for example,
35,455,733. This assigns the value 35 to A, 455 to B and 733 to C.

8-4

WRITE STATEMENTS

WRITE statements transfer information from specified data elements in memory to an
external device or character buffer in core. The form of a WRITE statement is

WRITE (control part} element, element, ..., element

or
WRITE (control part)

where control part consists of

(unit, format, labels)
or

(unit, format)
or

(unit, labels)
or

(unit)

and element is a simple variable name, array name, array element, function sub-
program name (defined in the same program unit only), or DO-implied list. An
expression of any type can also be used. The value of the expression is transferred.

Control Part

The control part of WRITE statement consists of a unit reference, format reference or
action label reference in any combination specified above.

UNIT REFERENCE. unit specifies the destination to which the data element values
are to be transferred (either a file associated with an external device or a user-defined
buffer in core).

If the destination is a file, unit consists of

file (Sequential access)
or
file @ record (Direct access)
file is a positive integer constant or integer simple variable which

indicates the desired file number (between 1 and 99, inclusive).

record is an arithmetic expression of any type except complex. This
value is converted to type integer and indicates a specific re-
cord of a direct-access file. The @ must be used to separate the
file number from the record expression.

If the destination is a buffer in memory, unit consists of:

name where name is a simple character or character array element
specifying the buffer to which the data is transferred.

85

FORMAT REFERENCE. format specifies the location of the format and/or edit
specifications which determine how the data is to be converted. format consists of: ‘

statement label

or
array name
or
character variable name
or

*

statement label indicates that format and edit specifications appear in the FORMAT
statement prefixed by statement label. array name or character vaiable name indicates
that the format and edit specifications are contained in the array or variable specified.
An asterisk (*) indicates that the data is in free-field format and does not require any
format or edit specifications other than those already contained within the data to be
transmitted.

If format is omitted in the WRITE statement control part, a binary transfer takes place.

ACTION LABEL REFERENCES. labels allow program control over exceptional
conditions and takes the form

END = statement label

or
ERR = statement label
or
END = statement label, ERR = statement label
or

ERR = statement label, END = statement label

END = statement label transfers program control to the statement identified by state-
ment label if an end-of-file condition occurs (insufficient records, record too short for

a binary read, etc.). ERR = statement label transfers control to the statement shown

if a transmission error occurs (parity error, incorrect type, etc.). If the action labels are
left out of a WRITE statement and an exceptional condition occurs, the FORTRAN/3000
program is terminated with the appropriate diagnostic message. (See the example in
“Action Label References” for READ statements in this section.)

WRITE STATEMENT EXECUTION

When the WRITE statement is executed, values are transferred from the data elements
in the element list to the destination indicated by unit in the WRITE statement control
part. Values are transferred left~to-right as the elements appear in the list.

Each WRITE statement begins writing values into a fresh record of the file, ignoring
any space left unused in records accessed by previous WRITE statements. If a WRITE
statement does not contain any elements, the “next record” pointer advances one
record and no transfer to data takes place.

8-6

If the READ statement contains no format reference in the control part, a binary read
is initiated. For sequential file (unit = file) records are written sequentially until the
last list element’s value has been transmitted. For a direct-access file (unit = file
record), only one record is written. The record size must be large enough to store all the
values indicated in the element list of the WRITE statement. Otherwise, a run

error occurs. -

If the WRITE statement does contain a format reference in the control part, a
formatted write is initiated. Records are written sequentially until all of the list
elements’ values have been transmitted, regardless of whether the file is direct-or
sequential-access. An unformatted WRITE statement must have an element list.

Array names appearing in an element list stand for all the elements of the array. Values
are transferred from the array elements in the order prescribed by the array successor
function (see Section IV).

DISPLAY STATEMENTS

A DISPLAY statement is a write statement intended for (but not restricted to) programs
operating from a terminal device. The form is

DISPLAY element, element, ..., element
element

where element is a simple variable, array name, array element or function subprogram
name, or DO-implied list (see below). An expression of any type can also be used. The
expression is evaluated and that value stored and transmitted as a variable.

When a DISPLAY statement is executed, the values of the data elements in the list are
output in free-field format onto the teleprinter. The DISPLAY statement creates as
many records, e.g., lines as needed to output all of the element values in the list.

For example,

PROGRAM EX
INTEGER A,B,C
A=17

B=45

C = 7666
DISPLAY A,B,C
END

When the DISPLAY statement is executed, the program types

7 45 7666

8-7

DO-implied Lists

READ, WRITE, ACCEPT, and DISPLAY statements can contain DO-implied lists. A DO-
implied list contains a list of data elements to be input (read) or output (written), and a set .
of indexing parameters. The form of a DO-implied list is

(element, element, ..., element, var = m,, m,, m,)

or
element, element, ..., element, var = m,, m,)

For a READ statement element is a simple variable name, array name, array element,
or a function subprogram name (used as a simple variable in this case.)

For a WRITE statement

element is a simple variable name, array name, array element, function
subprogram name or an expression.

var is an integer simple variable used as an index variable.

m,,my,m, are all arithmetic expression of any type except complex. The
are converted to type integer when used.

The DO-implied list acts as a DO loop (see Section V). The range of the implied DO
loop is the list of elements to be output/input. The implied DO loop can transfer a list
of simple variables or array elements, etc., or any combination of allowable data
elements. The control variable is assigned the value of m, at the start of the loop.

The list of elements is transmitted. The control variable is then incremented by the
value of m, or by one if m, is absent. The control variable is compared with m,,.

If m, is positive and the control variable is greater than m,, the implied DO
statement terminates; otherwise, the list is transmitted again.

If m, is negative and the control variable is less than m,, the implied DO statement
terminates; otherwise, the list is transmitted again. For example,

WRITE (IUNIT*) (A, I=1,3)
where (A,I = 1,3) is a DO-implied list. A is a simple variable. The effect of the DO-
implied list is to write the value of A three times in succession. If A = 35.6, the output
would consist of one record containing 35.6 35.6 35.6.
The preceding example is comparable to (but more efficient than)
DO10I=13
WRITE (UNIT,*) A

10 CONTINUE

8-8

which results in three records, each containing 35.6:

35.6
35.6
35.6

If the element list of an implied DO contains several simple variables, each of the
variables in the list is output/input for each pass through the loop:

READ (IUNIT,*) (A,B,C,J = 1,2)
is the same as
READ (IUNIT,*) A,B,C,A,B,C.
A DO-implied list also can transmit arrays and array elements:
WRITE (IUNIT,*) (A(I), I = 1,10)
which results in the array elements written in the order:
A(1) A(2) A(3) A4) A(5) A(6) A(7) A(8) A(9) A(10)
If an array name is used in an element list, the entire array is transmitted:
PROGRAM DOIMP
DIMENSION A(5)
WRITE (IUNIT) A
END
The WRITE statement writes
A(1) A(2) A(3) A(4) AB).
The result of the following two statements
DIMENSION A(3)
WRITE (IUNIT,*) (A,I = 1,2)
is to write the elements of array A twice:

A1) A@2) A@3) A(1) A(2) A@B)

89

DO-implied lists also can be nested to transmit arrays of more than one dimension.
The form of a nested DO-implied list is ‘

((element, ..., element, var, = m,, m,, my), var, = m,, m,, m,))

The nesting of DO-implied lists follows the same rules as nested DO loops.
For example,

WRITE (IUNIT,*) (A{I,J),I=1,2), J=1,2)
produces the following output:

A(1,1) A@2,1) A(1,2) A2,2)

8-10

AUXILIARY INPUT/OUTPUT STATEMENTS

Auxiliary input/output statements are useful primarily for control of magnetic tape
files. These statements are in the form:

REWIND file
BACKSPACE file
ENDFILE file

where file is a file reference consisting of a positive integer constant or integer simple
variable within the value range of from 1 through 99.

The REWIND command positions the “record pointer” to the first record of the refer-
enced file. This may envoke a physical rewind of the device associated with the file.

A BACKSPACE command positions the “record pointer” to the previous record of the
file referenced.

ENDFILE writes an end-of-file record for devices which require such records, and
closes the file. The file can be reopened by other I/0 statements at a later time.

If a file is referenced in one of the above statements and does not have the physical
capability to perform the request, the statement causes no action.

I FORMAT STATEMENTS

A FORMAT statement provides the editing specifications necessary for the FORTRAN
formatter to convert binary (internal) data to external string data on output, or from
external string form to internal binary form on input. The form is

label FORMAT (edit specifications)

label a statement label consisting of a positive integer con-
stant from 1 to 99999

(edit specifications) the symbols which describe the conversion of the data
during transmission in (or out) of memory (see
Section IX.

FORMAT statements may appear anywhere in the program.

When label is specified in a READ or WRITE statement control part, the formatter uses
the edit specifications in the referenced FORMAT statement. Edit specifications can
also be contained in a character variable or in an array. In that case, the control part of
the input/output statement contains a reference which directs the Formatter to the
storage space containing the (edit specifications).

811

SECTION IX
The Formatter

The Formatter is a subroutine called by FORTRAN compiler-generated code or by SPL/3000 user
programs. The FORTRAN/3000 compiler interprets READ or WRITE statements of a FORTRAN
program to generate the calls to the Formatter; an SPL/3000 user must generate the calls himself.
The Formatter can perform the following functions:

1.

Convert between external ASCII numeric and/or character records and an internally
represented list of variables. Formatting proceeds according to implicit parameters
derived from a FORTRAN program’s FORMAT statements or explicit parameters
written into an SPL/3000 program.

. Convert free-field external ASCII records to an internally represented list of variables

according to format and/or edit control characters imbedded in the input records.

. Convert an internally represented list of variables to external ASCII records which are

free-field input-compatible.

. Convert between an internally represented list of variables and a user-defined ASCII

buffer storage area (core-to-core).

. Transfer (unformatted and without conversion) between an internally represented list

of variables and external files on disc or tape.

READ and WRITE statements in a FORTRAN program must meet the syntactic requirements of that
language. The Formatter derives format and edit parameters from FORMAT statements or the data.

FORMAT STATEMENTS

FORMAT statements in a FORTRAN program enclose a series of format and/or edit specifi-
cations in parentheses. The specifications must be separated by commas or record termi-

. nators (see ‘‘/Edit Descriptor”).

EXAMPLE:

10 FORMAT (15,A2,5F12.3)

FORMAT statement identifier Format and/or edit specifications

These format and edit specifications can include another set of format and/or edit specifi-

cations enclosed in parentheses; this is called nesting. The HP 3000 Formatter allows
nesting to a depth of four levels.

EXAMPLE:

20 FORMAT (13,E12.5,3(D14.3,16),4HSTOP)

READ or WRITE Statements

Formatted READ or WRITE statements in a FORTRAN program identify the list of variables
that reference a FORMAT statement. (More than one READ or WRITE statement can refer-
ence a given FORMAT statement.)

EXAMPLE:

READ (2,10) INT,LETR,ARRAY

File unit # FORMAT statement identifier List elements

//

p Sl

WRITE (4,20) INT,LETR, ARRAY

The list of variables can consist of any number of elements (including zero elements); there
need not be a direct relationship to the number of list elements and the number of format
and/or edit specifications. Refer to ‘“‘Unlimited Groups,” in this section.

Disc Input/Output

Two types of access to files on disc devices are available through the MPE/3000 file
system: sequential or direct. Either type can be established through the MPE/3000 file in-
trinsic FOPEN; direct access includes the capability of sequential access.

When formatted/sequential access is used, the READ or WRITE statements of a FORTRAN
program are written as described above, under “READ or WRITE Statements.”

When formatted/direct access is used, the READ or WRITE statements of a FORTRAN pro-
gram must specify an integer, real, or double precision simple variable or a constant for the
record identifier.

9-2

EXAMPLES:

READ (8@1V, 100) list elements

File unit # Record FORMAT
identifier statement
variable identifier

WRITE (12@KR, 300) list elements

When the file is opened (through the MPE/3000 file intrinsic FOPEN), the record size can be
left at the system default value 128, or the user can specify a different size.

In sequential access, as many records as needed are used in sequence until the entire list of
variables has been transmitted.

In direct access, only one record is transmitted.

FORMAT SPECIFICATIONS
Format specifications are written as

® A field descriptor
® A scale factor followed by a field descriptor
® A repeat specification followed by a field descriptor

® A scale factor followed by a repeat specification and a field descriptor

A brief discussion of field descriptors follows; detailed descriptions appear later in this section.

Field Descriptors

For output of data, the field descriptor determines the components of a data field into which a
given list element will be written. For input, the field descriptor defines only the field width
from which data can be read into an internal list element.

DECIMAL NUMERIC CONVERSIONS
Seven descriptor forms are provided:

Dw.d Output in double precision, floating point (with an exponent field) form.
Ew.d Output in real, floating point (with an exponent field) form.
Fw.d Output in real, fixed point (with no exponent field) form.

Gw.d Output in either the Fw.d format or the Ew.d format, depending on the
relative size of the number to be converted.

Mw.d Output in monetary (business) form (real, fixed-point, plus $ and commas),
e.g., $4,376.89.

e.g., 3,267.54.

Iw Output in integer form.

Nw.d Output in numeration form (same as the Mw.d format, but without the §), .

where

]

the length of the external data field, in characters; must be greater than zero.

QU
]

the number of fraction field digits in a floating or fixed point output (see detailed
descriptions on the following pages). On input, if the external data does not include
a decimal point, the integer is multiplied by 10~9. If the external data does include
a decimal point, this specification has no effect. Where listed above, d must be
stated even if zero.

Rules for Input

All of the field descriptors listed on the preceding page accept ASCII numeric input in the
following formats.

NOTE: lw, on input, is interpreted as Fw.0

1. A series of integer number digits with or without a sign

2314 or +56783 or -96

2. Any of the above with an exponent field with or without a sign
2314+2 or +56783E~-4 or -96D+4

3. A series of real number digits with or without a sign

2.314 or +567.83 or -.96

4. Any of the above, with an exponent field with or without a sign
2.314+2 or +567.83E-4 or -.96D+4

5. Either of the above items 1 and 3, in monetary (business) form
$234 or $5,678.30 or -.96

6. Either of the above items 1 and 3, in numeration form

2.314 or +5,678.30 or -961,534.873

In summary, the input field can include integer, fraction, and exponent subfields:

Integer field Fraction field Exponent field

¥—>| |L>|<4
tn...nn...nEtee

(Decimal point)

9-4

Rules: 1. The number of characters in the input field, including $ and commas, must
. not exceed w in the field descriptor used.

2. The exponent field input can be any of several forms:

+e +ee Ee Eee De Dee
—e —ee E+e E+tee D+e D+ee
E— E—ee D—e D—ee

where e is an exponent value digit.

3. Imbedded or trailing blanks (to the right of any character read as a value) are
treated as zeros; leading blanks are ignored; a field of all blanks is treated as

zero.
EXAMPLES:
1A23 =1023 2A56AE+A4 = 20560E+04
12.A34 =12.034 2A2,/A45 .AA3 = 202045.003
-$1,A34.AA5 = ~1034.005 2.A002-A13 = 2.002-013

4. The type of the internal storage is independent of either the ASCII numeric
input or the field descriptor used to read the input. The data is stored accord-
. ing to the type of the list element (variable) currently using the field descriptor.
The conversion rules are as follows:

® Type INTEGER truncates a fractional input.
® Type REAL rounds a fractional input.
® Type DOUBLE PRECISION rounds a fractional input.

OCTAL NUMERIC CONVERSION
One descriptor form is provided:
Ow for octal numbers 0 through 177777g
where
w is the length (in characters) of the external data field (must be greater than zero).

This field descriptor accepts ASCII numeric input up to six octal digits long. Non-numeric or
non-octal characters cause a conversion error,

9-5

LOGICAL CONVERSION
One descriptor form is provided:
Lw for logical values (T or F followed by any other characters).

The field descriptor accepts any ASCII characters input that begins with either T or F.

ALPHAMERIC CONVERSIONS
Three descriptor forms are provided:

Aw for alphameric conversion to and from the leftmost bytes of a list element.
Rw for alphameric characters to and from the rightmost bytes of a list element.

S for alphameric characters to and from a character string (user-defined character
list element).

Each of the above field descriptors accepts (but provides differing storage of) any ASCII
character’s input, including blanks.

9-6

Dw.d
‘ Double precision numbers

FUNCTION: Define a field for a double precision number with an exponent (floating-point).

OUTPUT
On output, the D field descriptor causes normalized output of a variable (internal representation
value: interger, real, or double precision) in ASCII character floating-point form right-justified.
The least significant digit of the outpt is rounded.
The external field is w positions of the record:

| —— w ——

—-xq. . .deiee

/I<—d—>l

Decimal point

where
‘ x7...x5 = the most significant digits of the value
ee = the digits of the exponent value
w = the width of the external field
d = in the number of significant digits allowed in w

— (minus) is present if the value is negative

The field width w must follow the general rule
w=d+6

to provide positions for the sign of the value, the decimal point, d digits, the letter D, the sign
of the exponent, and the exponent’s two digits. If w is greater than the number of positions
required for the output value, the output is right-justified in the field with blank spaces to the
left. If w is less than the number of positions required for the value (with the sign, decimal
point, and exponent field), the entire field is filled with #’s.

97

Dw.d (cont.)

EXAMPLES:
Internal
Descriptor Value Output
D10.3 +12.342 AA.123D+02
D10.3 -12.341 A-.123D+02
D12.4 +12.340 ANAA.1234D+02
Di12.4 -12.345 AN-.1235D+02
D7.3 +12.343 HH#HASHH
D5.1 +12.344 H#HHH##HH

If rounding of the least significant digit occurs and “rollover” results (for example, 99.99 be-
comes 100.00), the rollover value is normalized and the exponent is adjusted.

EXAMPLES:
Internal
Descriptor Value Output .
D115 -999,997 -.10000D+04
D11.5 +999.996 A.10000D+04
D10.5 -99.9995 RHBHBHHH I
INPUT

On input, the D field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list element)
currently using the field descriptor.

All rules for input to decimal numeric conversions (see “Rules for Input’’) apply.

9-8

Ew.d
. Real Numbers

FUNCTION: Define a field for a real number with an exponent (floating-point).

OUTPUT

On output, the E field descriptor causes normalized output of a variable (internal repre-
sentation value: integer, real, or double precision) in ASCII character floating-point
form, right-justified. The least significant digit of the output is rounded.

The external field width is w positions in the record:
e— w —|

—Xxq. . .xdEiee

Decimal point
where

. x1..Xxg = the most significant digits of the value

ee = the digits of the exponent value
w = the width of the external field

d = the number of significant digits allowed in w (for output, d must be
greater than zero

—(minus) is present if the value is negative

The field width w must follow the general rule
w=d+6

to provide positions for the sign of the value, the decimal point, d digits, the letter E, the sign of
the exponent, and the exponent’s two digits. If w is greater than the number of positions re-
quired for the output value, the output is right-justified in the field with blank spaces to the left.
If w is less than the number of positions required for the value (with the sign, decimal point, and
exponent field), the entire field is filled with #’s.

Ew.d (cont.)

EXAMPLES:
Internal

Descriptor Value Output
E10.3 +12.342 AA123E+02
E10.3 -12.341 A-.123E+02
E12.4 +12.340 AAA.1234E+02
E12.4 -12.345 AA-1235E+02
E7.3 +12.34 HEHARRH
E5.1 +12.34 HEH#H

If rounding of the least significant digit occurs and “‘rollover’’ results (for example, 99.99 be-
comes 100.00), the rollover value is normalized and the exponent is adjusted.

EXAMPLES:
Internal
Descriptor Value Output
E11.5 ~999.998 —.10000E+04
E11.5 999.995 A.10000E+04
E105 -99.9997 Hf SR
INPUT

On input, the E field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list ele-
ment) currently using the field descriptor.

All rules for input to decimal numeric conversions (see ‘“Rules for Input’’) apply.

9-10

Fw.d

Real Numbers

FUNCTION: Define a field for a real number without an exponent (fixed-point).

OUTPUT

On output, the F field descriptor causes output of a variable (internal representation value:
integer, real, or double precision) in ASCII character fixed-point form, right-justified. The
least significant digit of the output is rounded.

The external field width is w positions in the record:

| w I
i1y f1---1g

|«—d —

Decimal point
where
i1...0, = the integer digits
f1---fq = the fraction digits
w = the width of the external field

d = the number of fractional digits allowed in w
n = the number of integer digits
— (minus) is present if the value is negative.

The field width w must follow the general rule
w=d+n+3

to provide positions for the sign, n digits, the decimal point, d digits, and a rollover digit if
needed (see the following examples). If w is greater than the number of positions required
for the output value, the output is right-justified in the field with blank spaces to the left.
If w is less than the number of positions required for the value (with the sign and decimal
point), the entire field is filled with #s.

9-11

Fw.d (cont.)

EXAMPLES:
Internal
Descriptor Value Output

F10.3 +12.3402 ANAAA12.340
F10.3 -12.3413 AAA-12.341
F12.3 +12.3434 ANNANAN12.343
F12.3 -12.3456 AAAAN-12.346
F4.3 +12.34 H##H#

F4.3 +12345.12 H#H#

If rounding of the least significant digit occurs and ““rollover” results (for example, 99.99 be-
comes 100.00), the stated formula for w provides enough positions for the value.

EXAMPLES:
Internal
Descriptor Value Output
F8.2 +999.997 A1000.00
F8.2 -999.996 -1000.00
F7.2 -999.995 HHABHAHH
INPUT

On input, the F field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list ele-
ment) currently using the field descriptor.

All rules for input to decimal numeric conversions (see ‘“‘Rules for Input’’) apply.

9-12

Guw.d

Real Numbers

FUNCTION: Define a field for a real number without an exponent (fixed-point) or, if needed, with
an exponent (floating-point).

OUTPUT

On output, the G field descriptor causes output of a variable (internal representation value:
integer, real, or double precision) in ASCII character fixed-point form, or if needed, floating-
point form, right-justified. The least significant digit of the output is rounded.

The external field is w positions in the record:

| w ; |— w |
—.xl...xdEiee —lllnflfdAAAA
or
|-— d — |l«—d—~
Decimal point Decimal point (4 spaces)

where

i1...1, = the integer digits
(Fw.d descriptor)
f1...fg = the fraction digits

xq...%g = the most significant digits of the value (Ew.d descriptor)

ee = the digits of the exponent value (Ew.d descriptor)
w = the width of the external field

d = the number of fractional digits allowed in w

n = the.number of integer digits (Fw.d descriptor)

— (minus) is present if the value is negative

The Gw.d field descriptor is interpreted as an Fw.d descriptor for fixed-field form or as an
Ew.d descriptor for floating-point form, according to the internal representation absolute
value (N) after rounding. If the number of integer digits in N is > d, orif N < .1, the E
descriptor is used; otherwise the F descriptor is used (see following page).

913

Guw.d (cont.)

IF N<0.1 THEN Euw.d;

IF 0.1 <N<1 THEN F(w-4) .d plus 4X (spaces);
IF 1 <N < 10! THEN F(w-4) .(d-1) plus 4X;

IF 10 <N <10 THEN F(w-4) .(d-2) plus 4X;

IF 102 <N <103 THEN F(w-4) . (d-3) plus 4X;

7 100d-1) <N<109 THEN F(w-4) .0 plus 4X;

Ir 109 <N THEN Ew.d;

EXAMPLES:

G12.6,N=1234.5: F(w-4).(d-4) = F8.2, 4X: A1234.50AAAA
G13.7,N =123456.7: F(w-4).(d-6) = F9.1, 4X: A123456.TAAAA
G9.2,N=123.4: Ewd=E92: AA.12E+03

The field width w must follow the general rule for the Ew.d descriptor
w=>d+6

to provide positions for the sign of the value, d digits, the decimal point (preceding x,), and,
if needed, the letter E, the sign of the exponent, and the exponent’s two digits. If w is greater
than the number of positions required for the output value, the output is right-justified in the
field with blank spaces to the left. If w is less than the number of positions required for the
value (with the sign, decimal point, and the exponent field—or 4 spaces), the entire field is
filled with #°s.

EXAMPLES:
Internal

Descriptor Value Output
G10.3 (E10.3) +1234 AA.123E+04
G10.3 (E10.3) -1234 A-.123E+04
G124 (E12.4) +12345 AAA1235E+05
G124 (F8.0,4X) +9999 FAVAVAN: Je e T¢ WAVAVAVAN
G12.4 (F8.14X) -999 AN-999.0AAAN
G7.(E7.1) +.09 A.9E-01
G5.1 (E5.1) -.09 HAHBH

9-14

Guw.d (cont.)

When the E descriptor is used, if rounding of the least significant digit occurs and “rollover”
results (for example, 99.99 becomes 100.00), the rollover value is normalized and the exponent
is adjusted.

EXAMPLES:
Internal
Descriptor Value Output
G12.1 (E12.2) +9999 AAAAA.10E+05
G8.2 (E8.2) +999 A10E+04
G7.2 (E7.2) -999 HRBHAH
INPUT

On input, the G field descriptor causes interpretation of the next w positions in an ASCII input
record. The number is converted to an internal representation value for the variable (list ele-
ment) currently using the field descriptor.

All rules for input to decimal numeric conversions (see “Rules for Input”) apply.

9-15

Mw.d
Real Numbers ‘

FUNCTION: Define a field for a real number without an exponent (fixed-point) written in monetary
(business) form.

OUTPUT
On output, the M field descriptor causes output of a variable (internal representation value:

integer, real, or double precision) in ASCII character fixed-point form right-justified, with a
dollar sign $ and commas. The least significant digit of the output is rounded.

The external field is w positions in the record:

| w I
“$ig,.eesdy f1.. Iy

l—d —+

Comma(s)
(as needed)

Decimal point

i-v- - i,, = the integer digits (without commas)
f1-..fq = the fraction digits

commas = ¢ = the number of output commas needed: one to the left of every third
digit left of the decimal point; see general rule for w below.

d = the number of fractional digits allowed in w
n = the number of integer digits
w = the width of the external field

— (minus) is present if the value is negative

The field width w must follow the general rule
w=d+n+c+4

to provide positions for the sign, $, n digits, ¢ commas, the decimal point, d digits, and a rollover
digit if needed (see the following examples). If w is greater than the number of positions re-
quired for the output value, the output is right-justified in the field with blank spaces to the left.

9-16

Muw.d (cont.)

If w is less than the number of positions required for the output value (with the sign $,
comma(s), and the decimal point), the entire field is filled with #’s.

EXAMPLES:
Internal
Descriptor Value Output
M10.3 +12.3402 AAA$12.340
M10.3 -12.3404 AN-$12.340
M13.3 +80175.3965 AA$80,175.397
M12.2 -80175.396 A-$80,175.40
M12.2 +28705352.563 BHAH B AR

If rounding of the least significant digit occurs and ““rollover” results (for example, 99.99 be-
comes 100.00), the stated formula for w provides enough positions.

EXAMPLES:
Internal
Descriptor Value Output
M12.2 +99999.996 A$100,000.00
M12.2 -99999.998 -$100,000.00
M11.2 -99999.995 HHHHHEH AR
INPUT

On input, the M field descriptor causes interpretation of the next w positions in an ASCII input
record. The field width is expected (but not required) to have a $ and comma(s) imbedded in
the data as described above for Mw.d outputs; the $ and comma(s) are ignored. The number is
converted to an internal representation value for the variable (list element) currently using the
field descriptor.

All rules for input to decimal numeric conversions (see ‘“Rules for Input’’) apply.

9-17

Nw.d
Real Numbers ‘

FUNCTION: Define a field for a real number without exponent (fixed-point) written in numeration
form (same as Mw.d but without $ on output).

OUTPUT
On output, the N field descriptor causes output of a variable (internal representation value:
integer, real, or double precision) in ASCII character fiexed-point form, right-justified, with
commas. The least significant digit of the output is rounded.

The external field is w positions in the record:

| w >
—ll,...,..ln.fl fd
|«—d —»]
Comma(s)
(as needed)
Decimal point
where
TR i, = the integer digits (without commas)
f1...fq = thefraction digits

the number of output commas needed: one to the left of every third
digit left of the decimal point; see general rule for w below.

commas = ¢

d = the number of fractional digits allowed in w
n = the number of integer digits
w = the width of the external field

— (minus) is present if the value is negative

The field width w must follow the general rule
w=2d+n+c+3

to provide positions for the sign, n digits, ¢ commas, the decimal point, d digits, and a rollover
digit if needed (see the following examples). If w is greater than the number of positions re-
quired for the output value, the output is right-justified in the field with blank spaces to the
left. If w is less than the number of positions required for the output value (with the sign,
comma(s), and the decimal point), the entire field is filled with #’s.

9-18

Nuw.d (cont.)

EXAMPLES:
Internal

Descriptor Value Output
N9.3 +12.3402 AAA12.340
N9.3 -12.3404 AA-12.340
N12.3 +80175.3965 AA80,175.397
N11.2 -80175.396 A-80,175.40
N11.2 +28705352.563 HHHHH

If rounding of the least significant digit occurs and “rollover” results (for example, 99.99 be-
comes 100.00), the stated formula for w provides enough positions.

EXAMPLES:
Internal
Descriptor Value Output
N11.2 +99999.995 A100,000.00
N11.2 -99999.997 -100,000.00
N10.2 -99999.999 HPHHAHHHHH
INPUT

On input, the N field descriptor causes interpretation of the next w positions in an ASCII input
record as a real number without exponent (fixed-point). The field width is expected (but not
required) to have comma(s) imbedded in the data as described above for Nw.d outputs; the
comma(s) are ignored. The number is converted to an internal representation value for the
variable (list element) currently using the field descriptor.

All rules for input to decimal numeric conversions (see “Rules for Input’’) apply.

9-19

Iw

Integer Numbers

FUNCTION: Define a field for an integer number.

OUTPUT
On output, the I field descriptor causes output of a variable (internal representation value:
integer, real, or double precision) in ASCII character integer form, right-justified. If the

internal representation is real or double precision, the least significant digit of the output is
rounded.

The external field is w positions of the record:
le—w —=

—ll...ln

where

i1...10p the integer digits

=
1]

the number of significant digits
the width of the external field

&
it

~ (minus) is present if the value is negative

The field width w must follow the general rule
w=n+2

to provide positions for the sign, n digits, and a rollover digit if needed (see the following
examples). If w is greater than the number of positions required for the output value, the
output is right-justified in the field with blank spaces to the left. If w is less than the number
of positions required for the output (all digits of the integer and, when needed, the sign), the
entire field is filled with #’s.

9-20

‘ Iw (cont.)

EXAMPLES:
Internal

Descriptor Value Output
I5 -123 A-123
I5 +123 AA123
I5 +12345 12345
15 -12345 #HH#HH
14 +12.4 AA12
14 -12.7 A-13
16 -.3765E+03 AA-3TT

If rounding of the least significant digit occurs and “rollover” results (for example, 99.99 be-
comes 100.00), the stated formula for w provides enough positions:

EXAMPLES:
‘ Internal
Descriptor Value Output
I5 -999.8 -1000
15 +999.6 A1000
14 -999.5 #HH#H
INPUT

On input, the I field descriptor functions as an Fw.d descriptor with d = 0; it causes
interpretation of the next w positions in the ASCII input record. The number is converted
to an internal representation value for the variable (list element) currently using the field
descriptor.

All rules for input to decimal numeric conversions (see ‘“‘Rules for Input’) apply.

9-21

Ow
Octal Integer Number

FUNCTION: Define a field for an octal integer number.

OUTPUT

On oufput, the O field descriptor causes output of a variable (internal representation value:
integer only) in ASCII-character octal integer form, right-justified.

The external field is w positions of the record:

|<—w—>

11...ln

where

...y the octal integer digits
the number of significant digits (maximum: 6) .
= the width of the external field

&
[l

g
I

The field width w can be any desired value but should be = 6 for complete accuracy. If w is
greater than the number of positions required for the output value, the output is right-justified
in the field with blank spaces to the left. If w is less than the number of positions required for
the entire octal integer, only the w least significant digits are output.

EXAMPLES:
Internal
Descriptor Value Output
o1 143567 A143567
08 102077 AA102077
04 027033 7033
06 002004 002004

9-22

. Ow (cont.)

INPUT

On input, the O field descriptor causes interpretation of the next w positions in the ASCII input
record as an octal integer number. The number is converted to an internal representation value
for the variable (list element) currently using the field descriptor.

The input field can consist of only octal digits, no more than six digits (no larger than 177777g)
are interpreted. Any non-octal or non-numeric character (including a blank) anywhere in the
field will produce a conversion error. If w is less than 6, w digits are right-justified in the internal
representation (one word of memory).

EXAMPLES:
Descriptor Input Result
06 134577 134577
04 275674 002756
o10 1345367421 167421

9-23

Lw
Logical (Boolean) Values

FUNCTION: Define a field for a logical value.

OUTPUT

On output, the L field descriptor causes output of a variable (internal representation value:
integer or logical (boolean)) in ASCII-character logical value form (T or F).

The external field is w positions of the record:

|[«— w —»]

Xl “ o XnC
where
X1---%Xp = w-1 blanks
¢ = either of two logical characters: T (true) or F (false)
n = the number of blank spaces to the left of ¢ ‘
w = the width of the external field

The field width w can be any value = 1.

The logical character c is T if the least significant bit of the internal representation is 1;c is F
if that bit is 0.

EXAMPLES:
Internal
Descriptor Value Output
L1 102033g T
L13 32767(77171g) JAVAVAVAVAVAVAVAVAVAVAVA |
L5 +124(174g) AAAAF

9-24

Lw (cont.)

INPUT

On input, the L field descriptor causes a scan of the next w positions in an ASCII input record
to find a logical character (T or F). All positions to the left of the logical character must be
blank; any other character(s) can follow the logical character. The character T is converted to
-1 (177777g), F is converted to 0 (000000g).

EXAMPLES:
Descriptor Input Result
L8 AAAATRUE 177777g
L1 F 000000g
L6 AFALSE 000000g

Computer

Museum

9-25

Aw

Leftmost ASCII Characters

FUNCTION: Define a field for ASCII alphameric characters of a variable.

OUTPUT

On output, the A field descriptor causes output of one or more bytes of a variable in ASCII-
character alphameric form. The maximum number n of bytes (thus, the maximum number of
characters available to a single Aw descriptor) depends on the type of the variable: for logical
or integer, n = 2; for real, n = 4; for double precision, n = 6; for character, n = the length

attribute! of the character variable (any integer in the range [1,255]).

The external field is w positions of the record:

|<——w——>

81...Sr01...cn
where
¢q]-.. ¢, = the alphameric characters
n = the number of characters
w = the width of the external field
r = any remaining positions not used by n (r = w-n)
§1 - .- 8, = blank spaces (when needed)

The field width w can be any value = 1. If w is = n, the output is right-justified in the field
with w-n blanks to the left. If w is <n, the leftmost w bytes of the variable are output. The

n—w remaining bytes are ignored.

EXAMPLES:
Internal

Descriptor Characters
A3 SA
A3 SAMB
AT JANETW
Al0 BG
A4 DIXMCG
Al12 LEFTMOST
A6 LEFTMOST

1As defined in a Type statement such as CHARACTER*8 LOCALE.

Variable
Type (n =)

Logical or Integer (2)
Real (4)

Double Precision (6)
Logical or Integer (2)
Double Precision (6)
Character! (8)
Character! (8)

9-26

Output
ASA

SAM

AJANETW
JAVAVAVAVAVAVAVAN . T€]
DIXM
ANAALEFTMOST
LEFTMO

‘ Aw (cont.)

INPUT

On input, the A field descriptor causes transmittal of w positions in an ASCII input record to n
bytes of the variable (list element) currently using the field descriptor. If w= n, the first w-n
characters of input are skipped, and n characters are transmitted. If w <n, w characters are
transmitted to the leftmost bytes of the variable, and all remaining n-w bytes are set to blank.

EXAMPLES:
External
Descriptor Characters
A3 CAB
A2 CA
Al10 COMPLEMENT
A4 REAL
A4 REAL
AT PROGRAM

Variable
Type (n =)
Integer or Logical (2)
Integer or Logical (2)
Integer or Logical (2)
Double Precision (6)
Real (4)

Character! (8)

. 'As defined in a Type statement such as CHARACTER*8 LOCALE.

9-27

Internal
Result

AB
CA

NT
REALAA

REAL
PROGRAMA

Rw
Rightmost ASCII Characters

FUNCTION: Define a field for ASCII alphameric characters of a variable.

OUTPUT

On output, the R field descriptor causes output of one or more bytes of a variable in ASCII
character alphameric form. The maximum number n of bytes (thus, the maximum number of
characters) available to a single Rw descriptor depends on the type of the variable: for logical or
integer, n = 2; for real, n = 4; for double precision, n = 6; for character, n = the length
attribute! of the character variable (any integer in the range [1,255]).

The external field is w positions of the record:

fe——w ——]
Sl...Srcl...Cn
where
€1 ...¢, = the alphameric characters
n = the number of characters
w = the width of the external field ‘
r = any remaining positions not used by n (r = w-n)
§1 - . .8, = blank spaces (When needed)

The field width w can be any value 2 1. If w is 2 n, the output is right-justified in the field with
w-n blanks to the left. If w is <n, the rightmost bytes of the variable are output. The n-w
remaining bytes are ignored.

EXAMPLES:
Internal Variable

Descriptor Characters Type (n=) Output
R3 SA Logical or Integer (2) ASA
R3 SAMB Real (4) AMB
R7 JANETG Double Precision (6) AJANETG
R10 BG Logical or Integer (2) AAAAANANABG
R4 DIXMCG Double Precision (6) XMCG
R12 RIGHTMOST Character! (9) ANARIGHTMOST
R6 RIGHTMOST Character! (9) HTMOST

1As defined in a Type statement such as CHARACTER*9 LOCALE.

9-28

. Rw (cont.)

INPUT

On input, the R field descriptor causes transmittal of w positions in an ASCII input record to n

bytes of the variable currently using the field descriptor. If w = n, the first w-n characters of

input are skipped, and n characters are transmitted. If w <n, w characters are transmitted to

the rightmost bytes of the variable, and all bits of the remaining n—w bytes are set to 0 (ASCII Null).

EXAMPLE:
External Variable Internal
Descriptor Characters Type (n =) Result
R3 CAB Integer or Logical (2) AB
R2 CA Integer or Logical (2) CA
R10 COMPLEMENT Integer or Logical (2) NT
R4 REAL Double Precision (6) aa REAL?
R4 REAL Real (4) REAL
R7 PROGRAM Character? (8) aPROGRAM!

ta = ASCII Null.
‘ 2As defined in a Type statement such as CHARACTER*8 LOCALE.

9-29

S

Strings of ASCII Characters

FUNCTION: Define a field for a string of ASCII alphameric characters.

OUTPUT

On output, the S field descriptor causes output of a variable! (internal value: character only)
in ASCII-character alphameric form.

The external field is ! positions of the record:

e —
€1---¢p
where
€{...Cp = the alphameric characters
= the number of characters ‘
1 = the length attribute of the character variable (list element); thus, the width
of the external field
EXAMPLES:
NAME Internal
Characters Output
JIM MY NAME IS JIM JONES
SAM MY NAME IS SAM JONES

where the list element and length attributed are defined by the Type statement
CHARACTER*3 NAME and the format and edit specifications are

(“MY NAME IS ”,S,“ JONES”)

LIf the variable (list element) is not type character,2 SOFTERROR’ message FMT: STRING
MISMATCH occurs. .

9-30

S (cont.)

INPUT

On input, the S field descriptor causes transmittal of / positions in an ASCII input record to
the character variable currently using the field descriptor.

EXAMPLES:
External DAY Internal
Characters Result
MONDAY A MONDAY A
SATURDAY SATURDA

where the list element and length attribute are defined by the Type statement
CHARACTER*7 DAY and the format and edit specifications are

(“TODAY IS ”, S).

9-31

Scale Factor .
The scale factor is a format specification to modify the normalized output of the Dw.d, Ew.d,
and the Gw.d-selected Ew.d! field descriptors and the fixed-point output of the Fw.d, Mw.d,
and Nw.d field descriptors. It also modifies the fixed-point and integer (no exponent field)
inputs to the Dw.d, Ew.d, Fw.d, Gw.d, Mw.d, and Nw.d field descriptors. The scale factor has
no effect on output of the Gw.d-selected Fw.d! field descriptor or floating-point (with exponent
field) inputs.

A scale factor is written in one of two forms:

nPf
or
nPrf
where
n = an integer constant or - (minus) followed by an integer constant: the scale value
P = the scale factor identifier
f = the field descriptor

r = arepeat specification—for a field descriptor (described later in this section)

When the Formatter begins to interpret a FORMAT statement, the scale factor is set to zero.

Each time a scale factor specification is encountered in that FORMAT statement, a new value is

set. This scale value remains in effect for all subsequent affected field descriptors or until use of ‘
that FORMAT statement ends.

EXAMPLES:
Format Specifications Comments
(E10.3,F12.4,19) No scale factor change, previous value remains in effect.
(E10.3,2PF12.4,19) Scale factor for £E10.3 unchanged from previous value,

changes to 2 for F12.3, has no effect on I9.

If the FORMAT statement includes one or more nested groups (see “Nesting,” this section), the
last scale factor value encountered remains in effect.

1 See descriptions for Gw.d.

9-32

Format Specifications Comments

(G9.2,2PF9.4,E7.1,

2(D10.2,-1PG8.1)) Scale values resulting are
Descriptor Scale Value
G9.2 (Unchanged from previous value)
F9.4 2
E7.1 2
D10.2 2
G8.1 -1
D10.2 -1
G8.1 -1
OUTPUT

On output, the scale factor affects Dw.d, Ew.d, Fw.d, Mw.d, Nw.d, and Gw.d-selected Ew.d
field descriptors only.

Dw.d and Ew.d
. The internal fraction is multiplied by 10", and the internal exponent value is reduced by n.
® If n < 0, the output fraction field has —n leading zeros, followed by d + n significant

digits. The least significant digit is rounded.

® If n > 0, the output has n significant digits in the integer field, and (d ~ n) + 1 digits in
the fraction field. The least significant digit field is rounded.

® The field width specification w normally required may have to be increased by 1.

EXAMPLES:
Scale Factor! and Internal
Field Descriptor Value Output
E124 +12.345678 AAA1235E+02
3PE12.4 +12.345678 AA123.46E-01
-3PE12.4 +12.345678 AAA.0001E+05

'In “Examples,” no scale factor stated implies zero.

9-33

Fw.d, Mw.d, and Nw.d

The internal value is multiplied by 10", then output in the normal manner.

EXAMPLES:
Scale Factor! and Internal Output
Field Descriptor Value
F11.3 1234.500 AAA1234.500
-2PF11.3 1234.500678 AAAAN12.345
2PF11.3 1234.500678 A123450.068
1PM11.3 1234.500678 $12,345.007

Guw.d-selected Ew.d

The effect is exactly as described for Ew.d.

Guw.d-selected Fw.d

The scale factor has no effect.

INPUT .

On input, the scale factor effect is the same for integer or fixed-field (no exponent field) inputs
to the Dw.d, Ew.d, Fw.d, Gw.d, Mw.d, and Nw.d field descriptors. The external value is multi-
plied by 10™" then converted in the usual manner.

If the input includes an exponent field, the scale factor has no effect.

EXAMPLES:
Scale Factor! and External Internal
Field Descriptor Value Representation
E10.4 123.9678 .1239678E+03
2PD10.4 123.9678 .1239678E+01
-2PG11.5 123.96785 .12396785E+05
-2PE13.5 1239.6785E+02 .12396785E+06

1In “Examples,” no scale factor stated implies zero.

9-34

‘ Repeat Specification—For Field Descriptors

The repeat specification is a positive integer written to the left of the field descriptor it controls.
If a scale factor is also needed, it is written to the left of the repeat specification.

The repeat specification allows one field descriptor to be used for several list elements. It can
also be used for nested (groups of) format specifications.

EXAMPLES:
(4E12.4) = (E12.4,E12.4E12.4 E12.4)
(-2P3D8.2,216) = (-2PD8.2,D8.2,D8.2,16,16)

(E8.2/3F7.1,3(16 AHLOAD,D12.3))
= (E8.2/F17.1,F7.1,F7.1,16, 4HLOAD,D12.3,16,4HLOAD,D12.3,16 4HLOAD,D12.3)

(2(M8.2)) = (M8.2,M8.2)

EDIT SPECIFICATIONS

Edit specifications are written as an edit descriptor or a repeat specification followed by an edit
descriptor.

NOTE: The repeat specification cannot be used directly on the nH or nX edit
descriptors. See ‘““Repeat Specification—For Edit Descriptors.”

Edit Descriptors

There are six edit descriptors:

Descriptor Function
eouur Fix the next n characters of an edit specification.
‘L) Fix the next n characters of an edit specification.
nH Inijtialize the next n characters of an edit specification.
nX Skip n positions of the external record.
Tn Select the position in an external record where data input/output is

to begin or resume.

/ Signal the end of a current record and the beginning of a new record.

Detailed descriptions of each edit descriptor follow.

9-36

113 ”

ASCII String (Fixed)

FUNCTION: Fix n characters in the edit specification where n is the number of ASCII characters
enclosed in the quotation marks. Any one or more of those characters can be a
quotation mark if signaled by an adjacent quotation mark. Any other ASCII charac-
ters, including ’ (apostrophe), can be used without restriction.

OUTPUT

On output, the *“ . . . ” edit descriptor causes n characters to be transmitted to the external
record; any adjacent pair of quotation marks is transmitted as one quotation mark.

EXAMPLES:
Edit Descriptor Output
“OUTPUTA*“ “LOAD” ”.” OUTPUTA“LOAD”,
“USER’SAPROGRAM” USER’SAPROGRAM
INPUT
On input, the “ . . . >’ edit descriptor causes n positions of the input record to be skipped. Each

pair of adjacent quotation marks counts as one position.

EXAMPLES:
Edit Descriptor Input Comment
“HEADINGAHERE” THISAISATHEASTART 12 positions of the input are
skipped.
“HEADINGA“ “A” ”A.” THISAISATHEAENDAOF 13 positions of the input are
skipped.

9-36

L3 b
.

‘ ASCII String (Fixed)

FUNCTION: Fix n characters in the edit specification, where n is the number of ASCII characters
enclosed in the apostrophes. Any one or more of those characters can be an apostro-
phe if signaled by an adjacent apostrophe. Any other ASCII characters, including
“ (quotation mark), can be used without restriction.

OUTPUT

On output, the “ . . .’ edit descriptor causes n characters to be transmitted to the external
record; any adjacent pair of apostrophes is transmitted as an apostrophe.

EXAMPLES:
Edit Descriptor Output
‘PRINTA ‘DATA’ PRINTA ‘DATA’.
‘SAM’ 'SA“SCORE”’ SAM’SA “SCORE”
INPUT
On input, the ¢ . . .’ edit descriptor causes n positions of the input record to be skipped. Each

pair of adjacent apostrophes counts as one position.

EXAMPLES:
Edit Descriptor Input Comment
‘COLUMNAHEAD’ BEGINADATAAINPUT 11 positions of the input are
skipped
‘ROWALABELA* ‘B”°° ENDADATAAINPUT 14 positions of the input are
skipped.

9-37

- o
ASCII String (Variable)

FUNCTION: Initialize the next n characters of the edit specification. Any ASCII character is legal.
If written, n must be a positive integer greater than zero (if omitted, its default value
is 1).

OUTPUT

On output, the nH edit descriptor causes the current next n characters in the edit specification
to be transmitted to the external record.

If the edit descriptor has not been referenced by a READ statement (see “Input”), the ASCII
characters originally written into the edit descriptor are transmitted.

If the edit descriptor has been referenced by a READ statement, the ASCII characters read last
are transmitted.

EXAMPLES:
Edit Descriptor Input Last Read Output .
4HMULT (None) MULT
THFORTRAN ALGOLAA ALGOLAA
12HPROGRAMADATA BINARYALOADER BINARYALOADE
10HCALCULATED PASSEDAAAA PASSEDAAAA
INPUT

On input, the nH edit descriptor causes the next n characters of the external record to be
transmitted to replace the next n characters in the edit specification.

9-38

o o
ASCII Blanks

FUNCTION: Skip n positions of the external record. If written, n must be a positive integer greater
than zero; if omitted, the default value is 1.

OUTPUT

On output, the nX edit descriptor causes n positions of the external record to be skipped,
typically to separate fields of data.

EXAMPLES:
Format/Edit Contents of Numeric
Specifications List Element(s) Output
(E7.14X,“END”) 34.1 A.BE+02AAAAEND
Fields: 7 4
‘ (F8.2,2X,16) 5.87,436 . AAAA5 8TANNANLS6
\ N/ v \’_’
Fields: 8 2 6

NOTE: This descriptor, when used with the Tn edit descriptor (described
later in this section), may cause previous characters to be overlaid.

EXAMPLE:

Format/Edit Specifications Output
(“ABCDEFG”, T1, “X”, 2X, “Y”) XBCYEFG

INPUT

On input, the nX edit descriptor causes the next n positions of the input record to be skipped.

EXAMPLES:
Format/Edit Data Transmitted
Specifications External Record Input to List Elements
. (D8.2,3X,M9.2) A.25E+02END$1,563.79 25E+02, 1563.79
(5X,E9.2,15) 54321-98.7563814581 -.9876538E+02, 14581

9-39

Tn
Position (Tabulate) Data .

FUNCTION: Select the position (tabulation) in an external record where data input/output is to
begin or resume.

The Tn edit descriptor positions the record pointer to the nth position in the record.

OUTPUT EXAMPLES
1. Format/Edit Specifications
(T10,“DESCRIPTION”, T25, “QUANTITY”, T1, “PARTANO.”)
Result
PARTANO.ADESCRIPTIONAAAAQUANTITY

L\
position #1 position #10 position #25

2. Format/Edit Specifications
(T25,13,T1,3A2,T10,3A4)

Contents of List Elements
125,HR124A,LOCK-WASHERS

Result
HR124 AAAALOCK-WASHERSAAA125

position #1 position #10 position #25

INPUT EXAMPLE
Format/Edit Specifications
(T18,E8.2,T1,14, T24 M12.3)
Input
1325COUNTEDAAA525.78LBSAA$4,365.78ACOST
position #1 position #13 position #24

Results in List Elements
.52578E+03, 1325, .436578E+04

As can be seen in the above examples, the position numbers n need not be given in ascend-
ing order.

NOTE: This descriptor may cause previous characters to be overlaid (see nX
descriptions, earlier in this section).

940

/

. Record Terminator

FUNCTION: Terminate the current external record and begin a new record (on a line printer or a
keyboard terminal, a new line; on a card device, a new card; etc.).

OUTPUT and INPUT

The / edit descriptor has the same result for both output and input: it terminates the current
record and begins a new record.

If a series of two or more / edit descriptors are written into a FORMAT statement, the effect is
to skip n-1 records, where n is the number of /’s in the series. A series of /’s can be written
by using the repeat specification.

NOTE: If one or more / edit descriptors are the first item(s) in a series of format
specifications, n (not n-1) records are skipped for that series of /’s.

EXAMPLES:
‘ Format Specifications Output Record #

(E12.5,13/“END”) AA.32456E+04A95 1

END 2

(E12.5,13///“END") AA.32456E+04A96 1

2

3

END 4

(I5,3HEND,4/“NEW DATA”) 43592END 1

2

3

4

NEW DATA 5

(2/“END") 1

2

END 3

The / edit descriptor can also be used without a comma to separate it from other format
and/or edit specifications; it has the same separating effect as a comma.

941

Repeat Specification—F or Edit Descriptors ‘

The repeat specification is a positive integer written to the left of the edit descriptor it controls.
It is writtenasr*‘ . .. ”orr‘ . ..’ or r(nH) or r(nX) or r/, where r is the repetition value.

NOTE: The forms r(nH) and r(nX) may include other field and/or edit
descriptors within the parentheses.

EXAMPLES:

(E9.2/3F7.1,2(4HDATA)) = (E9.2/F7.1,F7.1,F7.1 4HDATA 4HDATA)
(2(HABORT2/)) = (5HABORT,//,5HABORT//)
(G10.3,3(“READ”E12.4)) = (G10.3,“READ”E12.4,“READ”E12.4 “READ”E12.4)

SPECIFICATION INTERRELATIONSHIPS

Two or more specifications (E9.3,16) in a FORMAT statement are concatenated: Data 12.3
and -30303 produces ‘

A.123E+02]-30303

The nX edit specification (E9.3,4X,16) can insert blank spaces between fields: The same data

produces
A123E+02|AAAA|-30303 ‘

Or the / edit specification (E9.3/I6) places each field on a different line: The same data
produces

A.123E+02
-30303

Nesting

The group of format and edit specifications in a FORMAT statement can include one or more
other groups enclosed in parentheses (in this text, called *““group(s) at nested level x’’). Each
group at nested level 1 can include one or more other group(s) at nested level 2; those at
level 2 can include group(s) at nested level 3; those at level 3 can include group(s) at level 4:

(E9.3,16,(2X,14)) One group at nested level 1.

(T12,“PERFORMANCES”3/(E10.3,2(A2,L4))) One group at nested level 1,
one at nested level 2.

(T5,5HCOSTS,2(M10.3,(16,E10.3,(A2,F8.2)))) One group at nested level 1,
one at level 2, one at level 3.

A FORTRAN READ or WRITE statement references each element of a series of list elements;

the Formatter scans the corresponding FORMAT statement to find a field descriptor for each
element. As long as a list element and field descriptor pair occurs, normal execution continues.
Formatter execution continues until all list elements have been transmitted. ‘

9-42

. Unlimited Groups

If a program does not provide a one-to-one match between list elements and field descriptors,
Formatter execution continues only until all list elements have been transmitted. If there are
fewer written field descriptors than list elements, format specification groups at nested level 1
and deeper are used as ‘“‘unlimited groups.” After the effective rightmost field descriptor in a
FORMAT statement has been referenced (see “Repeat Specifications—For Field Descriptors’),
the Formatter performs three steps:

1. The current record is terminated: on output, the current field is completed, then the
record is transmitted; on input, the rest of the record is ignored.

2. A new record is started.

Format control (field descriptor interpretation) is returned to the repeat specification
for the rightmost specification group at nested level 1. Or, if there is no group at level 1,
control returns to the first field descriptor (and its repeat specification) in the FORMAT
statement.

NOTE: In any case, the current scale factor is not changed until another scale factor
is encountered (see ‘‘Scale Factor™).

s
EXAMPLES:
(I5,2(3X,F8.2,8(12))) Control returns to 2(3X.F8.2,8(12))
(15,2(3X,F8.2,8(1212)),4X,(16)) Control returns to (16)
(15,3X,4F8.2,3X) Control returns to (I5,3X,4F8.2,3X)
(“HEADER” /3(E10.2)) Control returns to 3(E10.2) to produce:
HEADER
E10.2 E10.2 E10.2
|<— E10.2 — E10.2 —{=—E10.2
E10.2 E10.2 E10.2

FREE-FIELD INPUT/OUTPUT

Free-field input/output is formatted conversion according to format and/or edit control charac-
ters imbedded in the data. That is, the Formatter converts data from or to external ASCII
character form without using FORMAT statements. For free-field inputs, format and/or edit
control characters are imbedded in the external data fields. For free-field outputs, predefined
field and edit descriptions are used.

For free-field input/output, FORTRAN READ or WRITE statements are written with an
asterisk instead of a FORMAT statement identifier:

READ (2, *) list elements
File unit # Free-field signal
.
WRITE (4, *) list elements

9-43

For free-field input/output to or from disc devices (see “Disc Input/Output,” earlier in
this section), READ or WRITE statements in a FORTRAN program are written: ‘
For sequential access: As described on the preceding page for free-field input/output.
For direct access:
READ (9@LM, *) list elements
File unit # —_Record identifier variable _ Free-field signal (asterisk)

WRITE(21@KL, *) list elements

Free-Field Control Characters

Special ASCII characters embedded in the external data fields control free-field input:

Character(s) Function

(Blank space) or , (comma) Data item delimiter (terminator)
or any ASCII character
not part of the data item.

| (slash) Record terminator (when not part of a character
string data item)

+ (plus) or — (minus) Sign of data item

. (period) Define the beginning of the fraction subfield of

the data item

Eor+or-orD Define the beginning of the exponent subfield of
the data item

% (percent) Define the data item as octal (not decimal)

13 "

A character string enclosed by quotation marks; to
be input to a FORTRAN/3000 type character
variable.

<<...>> A character string enclosed by << and >>; the
characters are a comment only for the external
record; the string and symbols are ignored on input

Free-Field Input

Six data types can be input to free-field conversion: octal, integer, floating-point (real),
double-precision floating point, and character string. Numeric data types can be mixed
freely with numeric list elements. For example, an integer data intem can be input to a
floating-point list element; the Formatter converts the integer to floating-point form and
stores the double-word result.

All rules for input to numeric and alphameric conversions (see “Field Descriptors™) apply.

9-44

A character string item, however, must be input only to a character string list element; if not,
SOFTERROR’ message FMT: STRING MISMATCH: occurs and Formatter execution is aborted.

DATA ITEM DELIMITERS

A data item is any numeric or character string field occurring between data item delimiters. A
data item delimiter is a comma, a blank space, or any ASCII character that is not a part of the
data item. The initial data item need not be preceded by a delimiter; the function of a delimiter
is to signal the end of one data item and the beginning of another.

Two commas with no data item in between indicate that no data item is supplied for the corre-
sponding list element, and the previous contents of that list element are to remain unchanged.
Any other delimiter appearing two or more consecutive times is equivalent to one delimiter.

NOTE: Do notinclude a ‘‘no-data” field in a series of free-field data inputs.
For example, a remark field such as REMARK: 1=1234 IS CORRECT

will not prevent the digits 1234 from being interpreted as a free-field
data item.

DECIMAL DATA

Decimal data items are written in any of the forms described under “‘Field Descriptors,’ except
the monetary or the numeration forms. Imbedded commas or the dollar sign are data item
delimiters.

NOTES: 1. Leading, imbedded, or trailing blanks or commas, $, etc., are data
item delimiters.

2. All integer inputs have an implicit decimal point to the right of the last
(least significant) digit.

3. The exponent field input can be any of several forms:

+e +ee Ee Eee De Dee
—-e —ee E+e E+ee D+te D+ee

E—-e E—ee D-e D-ee

where e is an exponent value digit.

OCTAL DATA
Octal data items are written
Poiq - - . ip
where
I1---ip = the octal integer digits

n = the number of octal digits (maximum: 6)

% is the octal data identifier

Non-octal digits are delimiters. The largest number allowed is 177777g. If n is greater than 5,
the first (most significant) digit must be 0 or 1.

9-45

CHARACTER STRING DATA ‘

A character string data item is any series of ASCII characters, including blank spaces, enclosed
in quotation marks. Any one or more of those characters can be a quotation mark if signaled
by an adjacent quotation mark.

The corresponding list element must be of type CHARACTER in FORTRAN/3000 (or type BYTE
ARRAY in SPL/3000) of a specified string length. If the number of characters in the data item is
greater than the length attribute n of the list element, n characters are transmitted and the remain-
ing characters are ignored. If there are fewer characters than n, all characters of the data item are
transmitted, left-justified in the list element, followed by trailing blanks.

If an end-of-record condition occurs before the terminating quotation mark of a character string
data item, the Formatter assumes the data item is continued in the next record and resumes trans-
mission with the first character of the next record.

RECORD TERMINATOR

The character / (slash), if not part of a character data item, terminates the current record and
delimits the current data item. If this occurs before all list elements have been satisfied, the re-
mainder of the current record is skipped and transmission resumes with the first character of the
next record.

LIST TERMINATION

If an end-of-record condition occurs without the record terminator /, the effect is to end the ‘
list of variables. Any list elements not satisfied are left unchanged.

Free-field Output

Five data types can be output under free-field conversion: integer, floating-point (real),
double precision floating-point, and character string. All output is compatible with the
requireements of free-field input: it does not require external changes to be input using free-
field conversion.

Integer data items are output under the 16 field description.

Double-integer data items are output under the 111 field description.

Floating-point data items are output under the G12.6 field description.

L

Double-precision floating-point data items are output under the G17.11 field
description.

5. Character string data items are output under the *“ . . . ” edit description; the adjacent
quotation marks rule for included quotation marks is used. (If a quotation mark is in-
cluded in the string, a double quote is output.)

9-46

DATA ITEM DELIMITER

Each field in the output record is delimited by one blank space.

RECORD TERMINATORS

If the width of a current numeric data item is too great for the remainder of a current record,
a record terminator character / is output, and a new record is started with the first character of
the data item.

If a character string data item overlaps record boundaries, subsequent records are output (without
record terminator slashes) until the entire character string has been transmitted.

ACCEPT/DISPLAY

FORTRAN/3000 ACCEPT and DISPLAY are alternate applications of free-field input and out-
put. They are invoked by program statements such as

ACCEPT INT,ARRAY,LETR or DISPLAY INT,ARRAY ,LETR

where INT, ARRAY, and LETR are typical list elements. The key words ACCEPT and DISPLAY
are equivalent to READ(i, *) and WRITE(o, *), where i is the MPE/3000 file system name of a
standard input device $STDIN and o is the name of a standard output device $STDLIST, and * is
the free-field signal.

Transmissions by ACCEPT and DISPLAY conform to the descriptions given for free-field input
and output, with one exception: the Formatter determines if the standard output device to be

used is an interactive terminal (such as a teleprinter or a CRT keyboard/display); if the device is
an interactive terminal, the ACCEPT routine prints a prompt character, ?, before accepting inputs.

CORE-TO-CORE CONVERSION

Conversions between external ASCII records and a list of variables use an input/output (I/0)
buffer allocated to the Formatter. Core-to-core conversions, on the other hand, transfer to
and from user-defined buffers (byte arrays). The user can manipulate the data, transmit it to
or from external records, or return it to the original location or any other location.

To invoke core-to-core conversion FORTRAN READ and WRITE statements are written:
READ (v,f) list elements or WRITE (v,f) list elements

where

v = a character simple variable or a character array element
the FORMAT statement identifier

9-47

Core-to-core conversions are subject to the same rules, restrictions, and interactions as formatted
or free-field conversions to and from external records, with the following exceptions: .

1. Any signal to terminate the current record and start a new record (such as edit specifi-
cation /, or free-field record terminator /, or the end of an unlimited group sequence)
is taken to be an error; SOFTERROR’ message FMT: BUFFER OVERFLOW occurs.

2. If an end-of-record condition occurs before either a terminating quotation mark (*’) or
a close comment symbol (>>>) is encountered in free-field data, SOFTERROR’ message
FMT: BUFFER OVERFLOW occurs.

UNFORMATTED (BINARY) TRANSFER
Data can be transferred to and from disc or tape files in internal representation (binary) form
without any conversion. Such transfers are faster and occupy less space than formatted data
transfers.
Two types of access to files on disc devices are available through the MPE/3000 file system:
sequential or direct. Either type can be established through the MPE/3000 file intrinsic
FOPEN.

When binary /sequential access is used, the READ or WRITE statements of a FORTRAN program
are written without a FORMAT statement identifier.

EXAMPLES: .

READ (8) list elements
File unit #
N
WRITE (12) list elements
When binary /direct access is used, the READ or WRITE statements of a FORTR AN program

are written with an integer simple variable for the record identifier and without a FORMAT
statement identifier.

EXAMPLES:

READ (8@1V) list elements
File unit # Record identifier variable
WRITE (12@KR) list elements

When the file is opened (through the MPE/3000 file intrinsic FOPEN), the record size can be left
at the system default value 128, or the user can specify a different size. ‘

9-48

In sequential access, as many records as needed are used in sequence until the entire list of
elements has been transferred.

NOTE: If the storage required exceeds the size of the record, transfer continues
into the next record; this usually leaves part of that next record unused.

In direct access, record access is terminated by the last element in the list. Any unused portion
of the record just terminated is ignored.

If the storage required by all the elements in the list exceeds the record size, SOFTERROR’
message FMT: DIRECT ACCESS OVERFLOW occurs.

Matching List Elements

The binary transfer user must match list elements between corresponding READ and WRITE
statements of a FORTRAN program. For example, if a list of elements is transferred to a disc,
any corresponding return of the data to internal storage must do so to a list that matches each
element by type and dimensions and by order of appearance in the list. The simplest method
is to use the same element labels for input and output, if possible.

NOTE: Under binary /direct access, the Formatter begins each new list element output
at a word boundary. If the list element is, for example, a byte array of an odd
number of bytes, one byte of the record will not be used.

9-49

SECTION X

FORTRAN File Facility

Every peripheral transmission or storage device is linked to a file through the file facility

of the operating system. Each file takes on the attributes of the hardware device associated
with it. FORTRAN input or output statements reference specific hardware devices (such as
teleprinters or card readers) by referencing the associated file. The FORTRAN compiler
translates the FORTRAN input/output statements into requests for manipulations of the
files referenced in the input/output statement. Manipulation of the files (and hence the
peripheral device) is handled by non-FORTRAN language routines called intrinsics, which
are part of the operating system. A FORTRAN user need only reference the appropriate file
for a data transmission. The operating system handles the transfer for the user.

Files are referenced in FORTRAN input/output statements by using integer constants or
integer simple variables with values in the range of 1 to 99, inclusive. Only those values are
used that correspond to an existing file in the system. The same number can be used in more
than one input/output statement; the same file is referenced in each case. File numbers
need not be declared available before they are used. The FORTRAN compiler assumes the
existence of any file specifically referenced by an integer constant in the control part of an
input/output statement.

If the file reference in the control part of an input/output statement appears as an integer
simple variable, the file number represented by the variable must appear in a FILE com-~
piler control record at the beginning of the program unit (see Section XI) if it does not also
appear explicitly in some other I/0 statement. The file facility opens a file when it is first
referenced, and closes it when the program terminates.

The DISPLAY statement implicitly declares and references file 6. The ACCEPT statement
references file 6 for prompting and file 5 for the user’s response (see Section VII).

STANDARD INPUT AND LIST FILES

The integer values used as file names in the source program are converted to names
acceptable to the operating system file facility. The name for any file is created by con-
catenating the characters FTN with the two-character alphameric representation of the
integer name. For example, file 8 is FTNOS, file 10 is FTN10, etc.

By default unit 5 is the standard input file, typically a card reader for the batch user, or
a teleprinter for the interactive user. Unit 6 is the standard list file, typically a line
printer for the batch user or a teleprinter for the interactive user. All other files are
scratch files and are considered to be disc files unless otherwise specified by the ap-
propriate operating system command.

10-1

CHANGING STANDARD ATTRIBUTES OF FILES .

The standard attributes of files used by the FORTRAN programmer may be modified
through the use of MPE/3000 :FILE commands. These commands are submitted with the
user’s source program. Each command contains the file name (FTN@6, FTN19, for.
example) and the list of file attribures which the user desires to change (those attributes
not mentioned in the record remain unchanged).

:FILE can store files under the same or any other name (FTN12 can be given the name
PRINT and stored elsewhere). Atthe end of program execution, a file can be saved under
another name and the old file can be purged. Any file can be modified through :FILE
commands.

DIRECT INTRINSIC CALLS

Since a FORTRAN user can write and execute non-FORTRAN language programs, it is
possible to access files directly. This is accomplished by writint direct calls to operating
systems intrinsics which manipulate the indicated files. The calls may require actual
arguments passed by value (see Section VI). Direct intrinsic calls may be used
intirely by themselves or in conjunction with label equation records.

Care must be taken when using direct intrinsic calls for file manipulation. Status
information is maintained for all files referenced in FORTRAN input/output state-
ments. Reading from or writing into files by directly accessing intrinsics is safe, but
opening or closing a file that is mentioned in a FORTRAN input/output statement ‘
within a user’s program may invalidate the program’s subsequent attempts to refer-

ence the file. However at program termination, the system file facility closes all the

files mentioned in a user’s program, regardless of how they were opened.

Note: :FILE commands and file intrinsics are described in the HP 3000
Multiprogramming Executive Operating System (03000-90005).

10-2

SECTION XI

Compiler Subsystem Commands

The FORTRAN/3000 compiler reads source code, generates object code, and produces
listings through the MPE/3000 file system. FORTRAN/3000 compiles a source program
located in the textfile, generates object code to the uslfile, outputs listings to the listfile and
performs editing function from a masterfile and a newfile. The actual files names used are
equated through MPE/3000 commands (see HP 3000 Multiprogramming Executive Oper-
ating System (03000-90005). Table 11-1 shows the formal file designator and the default file
designators for FORTRAN/3000 compiler subsystem commands.

Table 11-1. Compiler Subsystem File Names

Fil Use Formal File Default File
¢ Designator Designator
Textfile (source) Source program, FTNTEXT $STDIN
Corrections, Com-
piler commands
Listfile Output listing FTNLIST $STDLIST
Uslfile Code output FTNUSL SNEWPASS/
$OLDPASS!
Masterfile 0Old copy for edit FTNMAST $NULL
Newfile New copy for edit FTNNEW $NULL

The compiler subsystem commands are entered through the textfile and take effect
only after the compiler has been accessed. In the following description of these com-
mands, brackets are used to enclose optional items, braces are used to enclose required
items (one of which must be chosen), and ellipses (...) indicate repeated items.

The basic syntax of subsystem commands is
$command [parameter list]

The $ must be the first character in the FORTRAN line and immediately be followed by
the command name, which must be completely spelled out. The parameter list, sepa-
rated from the name by at least one blank, may be optional; some commands have
parameters, others do not. Parameters are separated from each other by commas.
Blanks may be freely inserted between items in the list.

1If $OLDPASS exists and is a USL file.

11-1

A command can be continued for as many as 19 additional records if the last nonblank
character is an ampersand (&). If the last character is an ampersand, the following
record must begin with a $. The effect is to concatenate the characters preceding the &
with those following the $ of the next record. Command names and parameters must not
be broken by an &. The sequence field of each record (source or command) is

ignored by the compiler and can be used for sequence numbers (see “EDIT Commands”
in this section.

CONTROL COMMAND

The CONTROL command specifies list and compilation options during source program
compilation. A CONTROL command can appear anywhere a statement or comment can
appear, although some parameters are honored only at special points during com-
pilation. The form for CONTROL is

$CONTROL parameter list
The possible parameters are given in Table 11-2.

Table 11-2. CONTROL List and Compilation Options

Parameter Description

BOUNDS Requests the compiler to emit code for the dynamic validation of
arrayindices. the compiler checks adjustable as well as fixed-size arrays;
it also checks dummy arrays by using information in the DIMENSION
statements as opposed to any actual attributes of the arrays associ-
ated during execution of the program unit. The BOUNDS parameter
is honored only at the beginning of a program unit and is cleared
by default unless specified.

CODE Sends relocatable machine code records from the compilation to
the listfile after appropriate sections of the source records are sent.
The CODE parameter is honored only at the beginning of the pro-
gram unit and is cleared by default at the beginning of each
program unit.

ERRORS=ddd Sets a maximum number of severe errors allowable before the com-
piler terminates compilation of the program unit (0 <ddd <999).
The ERRORS=ddd parameter sets the maximum number of severe
errors at 50 by default for each program unit compiled.

FILE =positiveinteger
Declares that any executable FORTRAN program containing the program unit
with the FILE record has access to a file with a positive integer as its FORTRAN/
3000 file number. The FILE = positive integer option is used for files whose
FORTRAN numbers do not explicitly appear in a FORTRAN I/0 statement but
will be used as the value of an integer simple variable in an 1/0 statement (see
Section X, “FORTRAN/3000 File Facility”).

11-2

Table11-2. CONTROL List and Compilation Options (Continued)

Parameter Description

FIXED Specifies that the source records following the FIXED parameter
appear in fixed-field format (see Section I). The FIXED parameter,
honored anywhere in the program unit, is on by default and
remains set through the entire compliation unless

explicity changed by the FREE OPTION.

FREE Specifies that the source records following the FREE parameter
appear in free-field format (see Section I). The FREE parameter
is honored anywherein the program unit and clears the FIXED option.

INIT Requests the compiler to emit code to initialize all local
simple variables and arrays upon each invocation of the program
unit. Arithmetic values are initialized to zero, logical values
to FALSE, and character values to all null characters. The INIT
option is honored only at the beginning of the program unit and
is cleared by default if not specified.

LABEL Requests a listing of the program units label map following the
machine code listing. Addresses are supplied for statement labels
and FORMATS stored in the code. The LABEL parameter is
cleared by default at the beginning of compilation.

LIST Sends each source record after editing to listfile (see “EDIT
Commands” in this section). The LIST parameter is set by default
for compilations in batch mode and can appear anywhere in a pro-
gram unit. Once set, the parameter remains set for the entire com-
pilation unless the NOLIST parameter is used later in the
compilation.

MAP Sends a symbol table dump to the listfile following the program
unit source records. The MAP parameter is cleared by default
at the beginning of compilation.

NOCODE Clears the CODE parameter if it is on. The NOCODE parameter
is set by default at the beginning of compilation.

NO LABEL Clears the LABEL parameter if it is on.

NOLIST Sends only offending source records and error message records
to the listfile. The NOLIST parameter is initially set by default
for compilations in interactive mode and can appear anywhere in
a program unit. Once set, the parameter remains set for the
entire compilation unless the LIST parameter is used later in the

compilation.
NOMAP Clears the MAP parameter if it is on.
NOWARN Clears the WARN parameter if it is set.

11-3

Table11-2. CONTROL List and Compilation Options (Continued)

Parameter Description

SEGMENT =segment name
Assigns a specific segment name to the program unit. The SEGMENT =segment
name parameter is used by the MPE /3000 loader to determine which code
modules are combined into executable program segments. All program units
having the same segment name — and only those program units — are placed
into the same segment. All program units lacking a segment name are placed
into the segment containing the default name SEG’. This option has no effect
on BLOCK DATA subprograms since they produce no code.

WARN
Sends offending source records and warning meassages to the listfile. The
WARN parameter is initially set by default at the beginning of compilation.

PAGE COMMAND
The form for the PAGE command is

$PAGE [character string list]

The PAGE command ejects the current page of listfile to the top of the next page and .
prints a page heading followed by two blank lines. If the optional character list is
present, it appears as the title of this and following page headings until changed by a
subsequent PAGE or TITLE command. Character string list consists of one or more
character strings separated by commas (each string is bracketed with quote marks.)
When the list is printed, the quote marks, separating commas and any blanks between
strings are deleted and the character strings themselves are concatenated and placed
in the heading. One character string in the list cannot be continued from one line to
the next, but individual strings in the list can be continued on continuation lines. No
page eject occurs if NOLIST is on since no listing is being printed. No page eject takes
place if the PAGE command is within the range of an unsatisfied IF command. A
PAGE command example is

$PAGE “MIDDLE OF”, “THE PROGRAM”&
$, “UNIT COMPILATION”

11-4

‘ TITLE COMMAND

The form for the TITLE command is’
$TITLE [character string list]

The TITLE command is used to print a page heading whenever the top of the page is
encountered in listfile. The character string list is used for subsequent page headings
until another PAGE or TITLE command is encountered. If no character string list is
present, the title field is set to all blanks. Character string lists is defined in the same
way that the character string list is defined for the PAGE command. TITLE commands
can be continued on continuation lines in the same manner as PAGE commands. An
example of a TITLE command is

$TITLE “THE DATE” &
$“TODAY IS”.&

Computer
Museum

$“10/10/72”

SET COMMAND

The form of a SET command is

ON ON
$SET [X,, ={ }[xn ={ }] -
OFF OFF

where n varies from 0 to 9, inclusive.

The SET command sets or clears toggle X,, if no parameters are specified, all ten
toggles are cleared. If more than one parameter is given, each parameter must be
separated from the next by a comma. All toggles begin the compilation in the cleared
(OFF) state. The SET command is used with the IF command to bypass portions of the
source file during compilation (see “IF Command,” in this section).

IF COMMAND

The form of an IF command is

ON
$IF [x,, :{OFF}]

where n varies from 0 to 9, inclusive.

The IF command specifies a condition (X,, =ON or X, = OFF). If the specified
condition is false, i.e., if the toggle is not in the state specified, all succeeding source
records are ignored by the compiler until another IF command is specified. The only
command not ignored during the bypass is the EDIT command. If the specified con-
dition is true, succeeding source records are compiled normally. An IF command with
no parameters specified merely terminates the preceding IF command. Any source
records ignored by the compiler are listed and sent to newfile. Toggles are set using
the SET command (see “SET Command” in this section).

11-5

EDIT COMMAND

The form for the EDIT command is

$EDIT parameter [,parameter] ...
where any of the following parameters may be specified:

VOID = sequence number

SEQNUM = sequence number

NOSEQ

INC = number
Use of the EDIT command depends on the parameters specified (see “EDIT Para-
meters” for parameter meanings) and the files specified in the MPE/3000 subsystem
command :FORTRAN. For a description of the :FORTRAN command and parameters,
consult HP 3000 Multiprogramming Executive System (03000-90005).

The editing capabilities available are

e Merging correction records with an old master program to produce a new
program for compilation

e Checking source record sequence numbers for ascending order

e Bypassing sections of source program
¢ Renumbering source record sequence numbers

If the :FORTRAN command specifies both masterfile and textfile, source records

from both files are merged, and the record sequence numbers are checked for
ascending order. Each sequence number in columns 73 to 80 of the record must either
be all blank or greater than the previous sequence number. In merging masterfile with
textfile, one record is read from each file and their sequence numbers are compared.
The record with the lower sequence number is compiled and passed to the newfile. If
the sequence numbers are identical, the record from textfile is compiled and passed to
newfile (if it exists).

By default records set to newfile are sent with unchanged sequence numbers. To re-
number sequence numbers, use the SEQNUM parameter of the EDIT command. Sequence
numbers are checked by the compiler for proper order only if masterfile is specified in
the :FORTRAN command and textfile is not specified. masterfile is not specified,
sequence numbers are not checked by the compiler.

EDIT command records can contain sequence numbers to indicate placement in the
textfile but EDIT continuation records must have blank sequence fields. Unlike other
source records or commands, EDIT commands are not sent to newfile.

11-6

Edit Parameters

The EDIT command can contain VOID, SEQNUM, NOSEQ, or INC parameters. The
parameters and their meanings appear below:

The VOID parameter form is
VOID = sequence number

When the VOID parameter appears in an EDIT command, the compiler bypasses all
masterfile records with a sequence number less than or equal to the sequence number
in the VOID parameter. The sequence number can be specified either as a number,
The compiler left-fills the number with zero (0) digits, or strips the “string” of the
quote marks and left-fills the field with blank characters to achieve eight characters.
The first form is compatible with sequence numbers as generated by the SEQNUM
parameter (see below); the second form is compatible with sequence numbers gene-
rated by the HP 3000 Text Editor program.

The form for the SEQNUM parameter is

SEQNUM = sequence number
The SEQNUM parameter renumbers the following source records sent to newfile starting
with the sequence number specified in SEQNUM. If the INC parameter (see below) is
specified, each record sequence number is incremented by the value associated with
INC. If INC is not specified, sequence number is incremented by the default value 1000
for each succeeding record.
The form for the NOSEQ parameter is

NOSEQ
NOSEQ indicates that following source records retain their current sequence numbers. If
SEQNUM = sequence number is not specified, the NOSEQ condition occurs regardless
of whether NOSEQ is specified.
The form for the INC parameter is

INC = number
number indicates the value by which each source record sequence number is incre-
mented when the SEQNUM parameter is specified. INC is ignored if newfile is not
specified or if the last SEQNUM parameter was overridden by a NOSEQ.
The form for the FIXED parameter is

FIXED
The FIXED parameter following an EDIT command informs the compiler that the

source records in the textfile are in fixed-field format (sequence field is located in
columns 73-80 of the source record). If no masterfile exists, FIXED is ignored.

11-7

For form for the FREE parameter is
FREE

The FREE parameter following an EDIT command informs the compiler that the
source records in the textfile are in free-field format (sequence field is located in
columns 73-80 of the source record). If no masterfile exists, FREE is ignored.

When a record is read from the textfile, the compiler must locate the sequence field to
determine when the record is to be merged with the masterfile. At the beginning of
compilation of after an EDIT command specifying FIXED, the compiler takes characters
73-80 of the record as the sequence field. Following an EDIT command specifying
FREE the compiler takes the sequence field to be the first character of the record up to
(but not including) the first blank. The compiler uses only the last eight characters and
prefixes the sequence string with ASCII zero characters if less than eight. A blank in
column one indicates an all blank sequence field.

When the record from the textfile is merged with the masterfile if the mode (FIXED or

FREE) is the same as the mode of source records in the masterfile, then the textfile

record is used as is. If the mode differs, the textfile record is converted to the master-

file mode. A line read as FIXED is converted to FREE by moving the sequence field

(columns 73-80) to the beginning of the line, inserting a blank following the sequence

field, and following that with characters originally in columns 1 through 71 of the line.

Column 72 of the line is lost since free-field records contain a maximum of 71 char-

acters following the sequence field. A line read as FREE is converted to FIXED by

removing characters from 1 to 72 and using the last eight characters of the sequence ‘
field (remember the blank is not part of the field) as characters 73 - 80.

Note that the records in textfile which will be converted should be written in the mode
of the masterfile except for the sequence field. For instance, comment lines merged
into a fixed field program must use the letter C (in the appropriate place in the line)
instead of “#”’, even though the line is entered into the textfile in free-field mode.

TRACE COMMAND
The form for the TRACE command is
'TRACE [program unit] ;identifier, identifier, ...

The TRACE command specifies variables, arrays, labels, and other program elements
(identifiers) to be monitored by the HP 3000 Symbol Trace program (TRACE/3000)
during program execution. program unit is the name of the program unit to which the
identifiers belong, (if omitted, the compiler uses the name MAIN’). The compiler
inserts calls to the TRACE/3000 subprogram at appropriate points in the object code
generated during compilation.

$TRACE records must appear before the first FORTRAN statement of the program unit

to which the $TRACE records apply. For a multiprogram unit compilation, $TRACE

records can appear before any program unit preceding the affected one, thus allowing

all $TRACE records to be grouped before the first program unit in a multiunit com-

pilation. For further information on the TRACE/3000 program, consult HP 3000

Symbol Trace (03000-90015). ‘

11-8

APPENDIX A

Non-FORTRAN Program Units

Any non-FORTRAN language program unit may be used as part of an executable
FORTRAN/3000 program, provided the program unit has a calling sequence and effects of
execution compatible with FORTRAN. Conversely, a FORTRAN/3000 language sub-
program can be used by a program written in some other language, as long as its use is com-
patible with the calling program’s requirements.

All arguments of a subprogram written in FORTRAN/3000 must be passed by reference. A
function reference or CALL statement prepares a list of addresses for the actual arguments
associated with the call. In a function, space is allocated immediately before the address
list for the value associated (returned) with the function name after execution. A sub-
program written in FORTRAN/3000 deletes the actual argument addresses from its data
space after it is executed. Any FORTRAN/3000 program referencing a non-FORTRAN
language subprogram expects that subprogram to delete its actual parameter addresses.
FORTRAN/3000 also expects FORTRAN/3000 and non-FORTRAN function subprograms
to retain the value returned in the subprogram data storage space.

Non-FORTRAN program units may require actual arguments passed by value. No
FORTRAN/3000 program unit allows arguments passed by value, but a calling program can
pass arguments by value to non-FORTRAN subprograms if they require it (see Section II),
“Dummy and Actual Argument Characteristics.”

SPL/3000 PROGRAMS

SPL./3000 (System programming Language for HP/3000) can be used for non-FORTRAN

subprograms; SPL/3000 uses the same calling sequence as FORTRAN/30000. SPL./3000
function and subroutine subprograms are invoked in the same manner in an SPL/3000

source program. A function written in FORTRAN/3000 is called in an SPL/3000 program
in the same manner.

SPL/3000 programs do not accept complex values as do FORTRAN programs, while SPL/
3000 includes the use of double integers and FORTRAN/3000 does not. Double precision
real numbers in FORTRAN/3000 are called long real in SPL/3000 although their use is
compatible. FORTRAN statement labels are not useful to an SPL/3000 program, and
SPL/3000 statement labels are not allowed in FORTRAN; they cannot be passed as
actual arguments between one language and the other. SPL/3000 also includes the use
of pointer variables, which is useful only if the data space in FORTRAN/3000 pro-
grams corresponds to the SP1./3000 data space. Pointers are passed by value from
FORTRAN/3000 to SPL/3000, and by reference from SPL/3000 to FORTRAN/3000.

A-1

Arrays are passed between SPL/3000 and FORTRAN /3000 programs by supplying an array
element as the actual parameter. The first element of an SPL/3000 array is element zero,

while the first element of a FORTRAN/3000 array is element 1. SPL/3000 allows only one-
dimensional arrays, so any multidimensional arrays passed from FORTRAN/3000 to SPL/

3000 are linearized according to the array successor function (see Section III). A character

value in FORTRAN/3000 corresponds to a byte value in SPL/3000.

SYSTEM INTRINSICS

System intrinsics can beinvoked from FORTRAN /3000 programs using SPL/3000 language
subprograms, subject to the restrictions just mentioned. The system intrinsics and their uses
(including calling sequences) are described in HP 3000 Multiprogramming Executive
Operating System (03000-90005).

A-2

APPENDIX B

FORTRAN/3000 and ANSI Standard FORTRAN

FORTRAN/3000 conforms to the American National Standard Institute’s Standard for
FORTRAN (X.39 — 1966). To provide a more powerful programming tool, FORTRAN/
3000 extends beyond the Standard and in some minor cases, places restrictions on the
Standard to conform with the HP 3000 computer system architecture. A brief description of
each extension or restriction appears below. Numbers in the “Standard Reference” column
are references to the appropriate text in the Standard (X3.9 — 1966).

Standard
Reference Comments

3. Program preparation from terminals can occur in a free-field
as well as a fixed-field format.

3.1 FORTRAN/3000 uses a 128-character USACII 8-bit standard
character set. All printing characters can appear in Hollerith
and string values. Some of the control characters are reserved
for special purposes (such as carriage return or line feed).

3.2 End lines can appear with a statement label preceding.

3.5 Symbolic names consist of as many as 15 characters instead of
just 6.

4, Character-type data can be used in FORTRAN/3000
programs to facilitate data manipulation.

4.2 Logical data can be manipulated as 16-bit binary masks in
addition to their function as true/false data.

5.1.1 Constants of all types can be specified in more than one way
by using octal values, partial-word designators, etc. Char-
acter constants in the form of string or Hollerith values can
also be used.

5.1.3 FORTRAN/3000 allows arrays of up to 255 dimensions instead

of just three dimensions allowed by the Standard. Subscript
expressions are any linear expressions.

B-1

Standard
Reference

5.3

6.1

6.3

7.1.1

7.1.2.1

7.1.2.3

7.1.24

Comments

The IMPLICIT statement can be used to generalize the data
type associated with the first letter of an identifier to include
integer, real, double precision, complex, or character.
Function subprograms can determine their type through a
Type statement within the subprogram defining unit.

Expressions of type character can be used to facilitate the
use of character data.

Expressions can be created using primaries of different types.
In assignment statements, the resulting expression value type
is converted to the type of the identifier on the left side of the
assignment indicator.

In exponentiation, constructs such as A¥**B**B are allowed

(without the need for parentheses) and can use powers and

bases of differing types. No base can be raised to a complex
power, however.

Partial-word designators allow manipulation of the subparts of
integer values.

FORTRAN/3000 includes an “exclusive OR” operator. The
other relational operators are generalized. Expressions of type
integer, real, or double precision can appear on one side of a
relational operator with an expression of type integer, real, or
double precison on the other side. Complex expressions can
appear between equal ((EQ.) or not equal (NE.) signs only.

The identifier to the left of the assignment operator in an
assignment statement need not be of the same type as the ex-
pression on the right of the operator. The expression value
type is converted to the identifier type prior to assignment.
Partial-word designators can be used to assign parts of integer
or logical variables. Character-type assignment statements
can be used providing the left and right-hand parts are of type
character.

Label data and integer data are mutually exclusive. A variable
of the same name can be assigned values of both types without
ambiguity.

The assigned GO TO statement does not require a list of labels.
The computed GO TO can use a linear expression for its index
for selecting the transfer statement.

The dependent statement of a logical IF statement can be
ancther logical IF statement.

A label can be used as an actual argument in a CALL statement
to allow alternative return points following execution of the .
subroutine referenced by CALL.

B-2

Standard
Reference

7125

7.1.2.7

7.1.2.8

7.1.3

7.2.1.1

7.2.1.3

7.2.1.6

7.2.2

7.2.3

8.1

8.2

8.3

8.4

8.5

Comments

An optional exit label can be included in the RETURN state-
ment to return to one of the calling program unit’s statements
whose label appears as an actual argument to the subroutine
containing the RETURN.

STOP or PAUSE statements use a decimal integer for identifi-
cation rather than an octal integer.

FORTRAN/3000 supports the concept of extended DO ranges,
as discussed in this manual. :

Direct-access files can be referenced in FORTRAN/3000
input/output statements. These statements allow extended
format and error recovery capabilities’

Adjustable array declarators can be used for local arrays in
subprograms to select different size arrays for each activation
of a subprogram.

Since FORTRAN/3000 executes on a 16-bit word machine,
integer and logical values require one word of computer memory,
real values two, double precision three, complex four. Char-
acter data uses half-word storage units.

Type statements for type character is available.

The DATA statement in FORTRAN/3000 extends beyond the
Standard as described in this manual.

Additional editing types other than those described in the
Standard are available in FORMAT statements.

The defining statement of a statement function can be any
expression of the appropriate type. The expression can include
array elements.

FORTRAN/3000 includes a larger set of intrinsic functions
than listed in the Standard.

Recursion in function subprogram defintion is allowed. The
type of actual arguments in a function reference has been ex-
panded. Argument are all passed by reference rather than value.

Subroutines can be defined recursively and can be called with
the same actual arguments types as function subprograms.

Block data subprograms can be given a name.

B-3

Standard
Reference

9.

10.2

Comments
Main program units can be given a name.

A variable that is defined is always available on the first and
second level. For instance, an integer simple variable that is
used for both label values and integer values. FORTRAN/3000
never confuses the two values. Any variable appearing in a
DATA or COMMON statement remains defined until it is
explicitly redefined.

B4

APPENDIX C

FORTRAN/3000 and Previous Versions of HP FORTRAN

Compute

4 Museum

FORTRAN/3000 attempts to correspond to previous versions of Hewlett-Packard FOR-
TRAN whenever possible. However, differences between the 2100 family and the 3000
family of computer requires that some differences exist. The following differences are
deletions of certain aspects of HP 2100 FORTRAN.

e QOctal constants are no longer represented by a B suffix following the constant but
are prefixed with %.

e Array variables must explicitly reference all subscripts. Previously, 2100 FORTRAN
filled in any omitted subscripts with 1’s.

e An array declarator for the same array may not appear in both a DIMENSION and
. COMMON statement within the same program unit.
e An arithmetic IF statement must always include three statement labels, not just two.

e The logical IF statement cannot be followed by a pair of statement labels in place of
an executable statement.

e An END line can contain no other nonblank characters other than a statement label
followed by the characters E, N, and D.

e Index expressions such as subscripts and computed GO TO indices cannot evaluate
to a complex value.

e Hollerith constants cannot be used in place of integer constants or expressions.

e Statement function names and intrinsic function names cannot be passed as actual
arguments for a dummy function name.

e Comments cannot separate a continuation line from its predecessor.

The following differences constitute modifications of various 2100 FORTRAN aspects.
e Intrinsics cannot be passed as actual arguments while Basic External Functions can.
e The @ and K format editing phrases are supplanted by the O editing phrase.

‘ e Character strings appearing as free-field data are enclosed in double quotes (*) or

C1

APPENDIX D

Error and Warning Messages

During compliation of FORTRAN/3000 source programs, the compiler prints error
messages and warning messages to indicate conditions such as illegal syntax or to warn of
marginal conditions which may cause improper execution of the compiler-generated object
code. When such a condition occurs, the compiler prints a message which includes a
number and a brief explanitory text.

Table D-1 lists all the messages that may occur; Table D-2 includes explanation for error
conditions, and Table D-3 outlines warning conditions.

ERROR MESSAGES

If an error condition occurs, the compiler outputs the message
*** ERROR nnn *** message text

where nnn is the message number and message text is a brief description of the error
condition. Error conditions are nonrecoverable. The compiler flushes any code
generated for the current program unit and attempts to compile the next program unit.
Table D-2 below describes compiler action taken for specific error conditions. The
number indicates the error condition which prompted the message while the “Compiler
Action” column describes what action the compiler takes.

WARNING MESSAGES
If a warning condition occurs, the compiler outputs the message
** WARNING nnn ** message text

where nnn is the message number and message text is a brief description of the
warning condition. Warnings do not inhibit successful compilation of a program unit
or the emission of object code by the compiler. Conditions indicated by the message
can cause program execution errors if not corrected and if the source code is not re-
compiled. Table D-3 describes compiler action taken for specific warning conditions.
The number indicates the warning condition which prompted the message while the
“Compiler Action” column describes what action the compiler takes.

D-1

ERROR POSITION INDICATION .

Error and warning messages relate to the source code in one of four ways, depending
on the type of message and time the compiler prints the message.

During syntax scanning, the compiler usually prints an up arrow (1) at or to the right of
the error position in the text. Sometimes (as in the case of an illegal character) the com-
piler prints the arrow under the offending line, while other times the compiler waits
until the entire statement is printed before indicating an error. In this case, the com-
piler prints error indicators refering to previous lines of the statement, following the
last line of the statement. If the compiler is not producing a source listing, the compiler
prints the last line examined before printing the error message.

Some error messages do not refer to any particular part of the program (e.g., TOO
MANY TRACE SYMBOL.S) and have no error indication. The user solution is not tied
to one symbol or statement.

In some cases such as solving equivalences, the compiler prints an error message after
reading the entire program unit. The compiler indicates which statement is being
processed by using the form

AT statement number + offset

statement number is the label of the offending statement or the closest preceding state-

ment label to the offending statement if the offending statement is not labeled. offset

is a count of the number of statements the offending statement is from the label

preceding it. These messages also include the name of the variable being processed .
when the compiler noticed the error.

Error messages such as TRACE SYMBOL NOT FOUND include a variable name or a
label name to indicate the area of the program in error since the error depends upon
omitted statements or statement parts.

D-2

Table D-1. FORTRAN/3000 Warning and Error Messages

(] COMPILATION TERMINATED ==

1 NON=DIGIT IN LABEL FIELOD

Vad CONTINUATION LINE HAS NON-BLANK LABEL FIELD
3 SYMBOLIC NAME EXCEEDS 15 CHARACTERS

4 EXPECTED A COMMA

5 EXTRANEOUS COMMA

6 EXPECTED A '3

7 UNEXPECTEL CHARACTER

8 UNEXPECTED t=¢

9 UNEXPECTED COMMA

1¢ UNEXPECTED)¢

11 EXPECTED AN INTEGER

12 EXPECTED A 140

13 EXPECTED A P!

14 UNEXPECTEDL 'P¢

15 NESTING EXCEEDS S LEVELS
16 EXTRANEQUS SOURCE
17 MULTIPLE SEGMENT NAMES

18 SYMBOLIC NAME REODUNDANTLY TYPED
19 SYMBOLIC NAME REDUNDANTLY EXTERNALLED

2@ EXTRANEOUS EQUATE GROUP

22 EXTRA INITIAL VALUES

23 EXTRANEOUS UATA ITEM

24 NO INITIAL VALUES

25 INITIAL VALUE TRUNCATED

26 STATEMENT FUNCTION DUMMY USED AS NON=-SIMPLE VARIABLE
27 EXPRESSION VS. NON=EXPRESSION ARGUMENT

28 S1JBPROGRAM VS, NON=SUBPROGRAM ARGUMENT

29 SUBROUTINE VS, FUNCTION ARGUMENT

3¢ ARGUMENT TYPE INCONSISTENT

31 SJUBPROGRAM NAME NOT EXTERNALLED

32 ARGUMENTS OF NESTED REFERENCF NOT CHECKED
33 INTRINSIC NAME CONVERTED To SIMPLE VARIABLE
34 STATEMENT CANNOQOT BE REACHED

36 RETURN OR STOP INSERTED

38 TOO MANY CONTINUATION LIANES

39 EXPECTED CONTINUATION LINE

49 EXPECTED COMPILER CUNTROL KEYWORD

41 EXPECTED SYMBOLIC nNAME

42 NOT ACCEPTABLE AT THIS POINT

43 I4PROPER STATEMENT LASEL

44 TRACE SYMBUOL NOT FOUNI) ==

45 INTRINSIC IN TRACE KECORD

46 EXPECTED A =y

o7 SEQUENCE FIELD TOO LONG

48 OUT OF SEQUENCE ==

49 TITLE TOO LONG

Sy PROGRAM UNIT ABORTEY ==

51 EXPECTED A (¢

52 EXPECTED A)0

53 EXTRANEOUS)0

D-3

Table D-1. FORTRAN/3000 Warning and Error Messages

EXPECTED A]

EXTRANEOQUS *]¢

EXPECTED ASSIGNMENT OPERATOR
EXPECTED A /¢

EXPECTED A QUOTE

EXPECTED A '\?

IMPOSSIBLE CONTEXT FOR v,
IMPOSSIBLE CONTEXT FOR '®%!
IMPOSSIBLE CONTEXT FOR '$?

SYMBOLIC NAME EXCEEDS 255 CHARACTERS
NUMBER EXCEEDS 255 CHARACTERS

STRING LITERAL EXCEEDS 25% CHARACTERS
HOLLERITH LITERAL EXCEEDS 255 CHARACTERS
HOLLERITH LITERAL TOO SHORT
NON=OCTAL DIGIT

EXPECTED FIELD wIDTH

EXPECTED FIELD VALUE

PACKED NUMBER OVERFLOW

INTEGER CANNOT BE @

INTEGER EXCEEDS CONTEXTUAL LIMITS
INTEGER OVERFLOW

EXPECTED EXPONENT VALUE

FLOATING LITERAL UNDER/OVERFLOW
IMPROPER COMPLEX LITERAL

MISSING END LINE

UNEXPECTED CONTINUATION LINE
RESERVED TOKEN NOT RECOGNI1ZED

CANMOT RECOGNIZE KEYWORD

CANNOT CLASSIFY STATEMENT

STATEMENT OUT OF POSITION

DUMMY NAME NOT UNIQUE

IMPROPER NUMMY ARGUMENT

ARGUMENT ADDRESSIBILITY EXCEEDED

TOO MANY ALTERNATE RETURNS

IMPROPER TYPE CONSTRUCT

IMPROPER INITIAL LETTER CONSTRUCT
SUBROUTINE CANNOT BE TYPED

SYMBOLIC NAME TYPED INCONSISTENTLY
DYNAMIC BOUND DIMEMSIONED

PROCEDURE DIMENSIONED

ARRAY REDUNDANTLY DIMENSIONED
EXPECTED HOUND

ARRAY EXCEEDS 32767 ELEMENTS

NUMBER OF BOUNDS EXCEEDS 255

DYNAMIC STRUCTURE IN COMMON

DUMMY NAME IN COMMON

ITEM IN COMMON TWICE

COMMON BLUCK NAME ALSO PROCEDURE NAME
PROCEUUIRE NAME IN COMMON

CHARACTER FUNCTION HAS UDYNAMIC LENGTH
SIMPLE VARIABLE OR ARRAY EXTERNALLED
DYNAMIC STRUCTURE IN EQUATE

DuMdy NAME IN EQUATE

D-4

Table D-1. FORTRAN/3000 Warning and Error Messages

118 PROCEDURE NAME IN EQUATE

120 DYNAMIC STRUCTURE IN DATA

121 OUMMY NAME IN DATA

122 PROCEDURE NAME IN DATA

123 COMMON ITEM IN DATA

124 EXPECTED INLTIAL VALUE

125 INITIAL VALUE TYPE IMPROPER

126 UNARY SIGN REQUIRES ARITHMETIC LITERAL
127 NUMBER OF SUBSCRIPTS <> NUMBER OF BOUNDS
128 ARRAY EXCEEDS 32767 WORUS

129 SUBSCRIPT VvALUE NOT IN ARRAY

131 LOCAL ADDRESSIBILITY EXCEEDED

132 DYNAMIC BOUND NOT DUMMY INTEGER

134 DATA BLOCK T00 LARGE

135 COMMON BLOCK T0O LARGE

136 COMMON FXTENDED FORWARY)

137 EQUATE BLOCK 700 LARGE

140 WORD STRUCTURE ALIGNED ON BYTE BOUNDARY
141 DATA BLOCK ITEM EQUATED TO COMMON BLOCK [TEM
142 TWO COMMON BLOCKS EQUATED

143 INCONSISTENT EQUATE

l44 SIMPLE VARIABLE HAS SUBSCRIPT

145 EXPECTED STATEMENT LABEL

147 DUPLICATE LABEL

148 UNRESOLVED LABE|l. REFERENCE ==

149 FORMAT REFERENCE TO NON=FORMAT

150 EXECUTABLE REFEREMCE TO NON=-EXECUTABLE STATEMENT
153 SUBROUTINE USED AS PRIMARY

154 EXPECTED ARITHMETIC PRIMARY

15% NON=ARITHMETIC PRIMARY wHERE ARITHMETIC EXPECTED
156 NON=LOGJICAL OPERAND WHERE LOGICAL EXPECTED
157 RELATIONAL OPERAND HAS LOGICAL TYPE

158 CHARACTER VSe ARITHMETIC RELATION

159 ILLEGAL RELATION FOR COMPLEX OPERANDS

162 OPERAND OF .eNOTe NOT LOGICAL

161 IMPROPER SUBSTRING UESIGNATER

162 COMPLEX POWER

163 COMPLEX BASE TO NON=JHWNTEGER ROWER

le4 STRING EXPRESSION IN PARENTHESES

165 PARTIAL=-WORU EXCEEDS 15 BITS

166 IMPROPER TYPE FOR PARTIAL=WORD DESIONATER
167 COMPLEX INDEX EXPRESSION

168 COMPLEX SUBSCRIPT

169 RECURSIVE STATEMENT FUNCTION

179 SUBROUTINE MISSING ARGUMENTS

171 FUNCTION MISSING ARGUMENTS

172 REDEFINITION OF USED (NTRINSIC

173 MISSING SUBSCRIPT

174 ILLEGAL. ARGUMENT FOK INTRINSIC

176 TOO FEW ARGUMENTS

177 TOO MANY ARGUMENTS

178 VALUE VS. REFERENCE ARGUMENT

179 CHARACTER ARGUMENT BY VALUE

D-5

189
181
182
183
184
185
186
188
189
191
194
196
197
198
199
2ve
291
202
293
204
245
296
2
298
209
219
211
212
213
t0J

Table D-1. FORTRAN/3000 Warning and Error Messages

NO LIMIT PARAMETER

TERMINAL LABEL PRECEDES V0O STATEMENT
IMPROPERLY NESTED DO STATEMENTS
INTEGER SIMPLE VARIABLE EXPECTED
IMPROPER TERMINAL STATEMERNT
UNDECLARED ARRAY NAME ?

LEFT=-HAND IS FUNCTION OR SUBROUTINE
RIGHT AND LEFT-HAND TYPES INCOMPATIBLE
DUMMY HAS TYPE CHARACTER

CHARACTER STATEMENT FUNCTION

UNABLE TO CLASSIFY O6OTO

IMPROPER ASSIGN

EXPECTED LOGICAL EXPRESSION
IMPROPER LOGICAL CLAUSE

IMPROPER DEPENDENT STATEMENT
ALTERNATE RETURN IN NON=SUBROUTINE
LABEL ARGUMENTS OUT OF POSITION
SYMSOL MOT SUBROUTINE NAME
EXPRESSTON IN INPUT LIST

IMPROPER [/0 LIST ITEM

EXPECTED I/0 LIST

IMPROPER UNIT REFERENCE

EXPECTED CHARACTER vARIABLY
EXPECTEN FORMAT REFERENCE

EXPECTED ACTION LAREL

DUPLICATE ACTION LABEL

TOO MANY TRACE SYMBOLS

DATA SPACE OVERFLOw

CUDE SPACE OVERFLOW

D-6

Table D-2. Compiler Error Message Action

Error Code Compiler Action
0 The compiler appended the cause of termination as part of the
message. STACK OVERFLOW, or SYMBOL TABLE
OVERFLOW can cause termination.
7 The compiler found a character it did not expect and ignored it.

11 The compiler flushed the statement.

12 The compiler inserted the period.

4 The compiler inserted the comma.
5 The compiler ignored the comma.

16 A statement could have logically ended at some point prior to the
physical end of the statement and the compiler could not logically
phrase the next symbol as a continuation of the statement. The
compiler flushed the remainder of the statement.

38 Too many continuation lines appear for one statement. The com-
piler flushed the execess continuation lines.

41 The compiler did not find a symbolic name necessary for proper
statement form. The compiler flushed the statement.

43 The compiler discovered an improper statement label and
ignored it.

51-52 The compiler expected a right or left parentheses and flushed
the statement.

53 The compiler ignored the right parentheses “)”.

55 The compiler expected a right bracket “]” aﬁd flushed the
statement.

56 The compiler ignored the right bracked “]”.

58 The compiler expected an assignment operator (=) and flushed
the statement.

59 The compiler exprected a forward slash (/) and flushed the
statement.

60 The compiler expected a string delimiter (") or (') but did not
find one. The compiler flushed the statement.

61 The compiler expected a back slash (\) and flushed the statement.

D-7

Table D-2. Compiler Error Message Action

Error Code Compiler Action

63 The compiler found a period (.) extraneous to the statement syntax
requirements and ignored it.

64 The compiler found a “%” extraneous in the context used and
ignored it.

65 The compiler found a dollar sign ($) which makes no sense in the
context used and ignored it.

67 The compiler discovered a symbolic name exceeding 255 char-
acters and flushed the statement containing the name.

68 The compiler discovered a number exceeding 255 characters and
flushed the statement containing the number.

69 The compiler discovered a string literal exceeding 255 characters
and flushed the statement containing the string.

70 The compiler discovered a Hollerith literal exceeding 255 char-
acters and flushed the statement containing the literal.

71 The compiler discovered a Hollerith literal shorter than that
indicated by the length element of the literal and flushed the
statement containing the literal.

72 The compiler discovered a nonoctal digit in an octal number and
ignored the octal number.

73 The compiler expected a field width to be indicated and flushed
the statement when no field width was found.

74 The compiler expected a field value to be specified and flushed
the statement when no field value was found.

75 A packed number overflowed and the compiler used whatever
arbirary value was contained in the data space.

78 Integer overflow occurred and the compiler used whatever
arbitrary value was contained in the data space.

80 A floating-point literal caused under- or over-flow and the com-
piler used whatever arbitrary value was contained in the data
space.

76 This integer value cannot be equal to zero so the compiler changed

it to 1.

D-8

Table D-2. Compiler Error Message Action

Error Code Compiler Action

77 An integer value is incorrect according to the statement context,
so the compiler changed it to 1.

79 An expected exponent value was incorrect or not supplied and
the compiler flushed the statement.

81 The compiler discovered an improper complex literal and flushed
the statement containing it.

84 The compiler expected an END line at this point and supplied one.

85 The compiler did not expect a continuation line to be used and
flushed the entire statement up to (but not including) the next non-
continuation line (start of next statement).

87 The compiler expected a reserved symbol such as .OR. or .TRUE.
and did not recognize it. The compiler might have flushed the
statement.

88 The compiler expected a FORTRAN/3000 keyword such as
INTEGER or REAL but flushed the statement when the keyword
was not recognized.

89 A statement possibly did not begin with a letter or its missing a
right parentheses “)” causing the compiler to flush the statement.

91 The compiler has discovered a declaration statement following an
executable statement or an exectable statement in a BLOCK-
DATA subprogram, etc., and flushed the statement.

92 The compiler has discovered a dummy name not unique to the
program unit in which the name appears. The compiler continues
to scan.

93 The compiler has discovered an improper dummy argument and
flushed the statement containing the argument.

94 A function or subroutine contains more than 54 arguments, or a
statement function has too many arguments. The number of
arguments allowed depends upon the argument type and com-
plexity of the defining expression. The compiler continues to scan.

95 The compiler found too many alternate return points specified in
a subprogram. The compiler containues to scan.

96 The compiler has discovered an incorrect type construct and

flushed the statement.

D9

Table D-2. Compiler Error Message Action

Error Code

Compiler Action

97

99

100

102

103

104

105

106

107

108

109

110

111

112

113

The compiler has discovered an incorrect type based on the first
letter of the symbol and flushed the statement containing that
symbol.

The compiler has found a subroutine subprogram with a type
implicitly or explicitty declared but continued to scan.

The compiler has found a symbolic name whose type was de-
clared in an inconsistant manner for its usage. The compiler
continued to scan.

The compiler has discovered a dynamic bound defined in a
DIMENSION statement but continued scanning.

The compiler found a procedure name in a DIMENSION state-
ment but continued scanning.

The compiler found an array whose dimensions were defined
more than once in the same program unit but continued scanning.

The compiler expected an array bound and flushed the statement.

The compiler discovered an array defined with more than 32767
elements and continued scanning.

The compiler discovered an array with more than 255 bounds and
continued scanning.

The compiler discovered a dynamically-defined data space
mentioned in a COMMON statement and continued scanning.

The compiler discovered a dummy name used in a COMMON
statement and continued scanning.

The compiler discovered an item appearing in a COMMON
statement twice and continued scanning.

The compiler discovered a name used as a COMMON block name
and as the name of a procedure. The compiler continued scanning.

The compiler discovered a procedure name appearing in a
COMMUON statement and continued scanning.

The compiler discovered a character function defined with a
dynamic length (using a variable length specification) and con-
tinued scanning.

D-10

Table D-2. Compiler Error Message Action

Error Code Compiler Action

114 The compiler discovered a simple variable or array name used in
an EXTERNAL statement. The compiler continued scanning.

116 The compiler discovered a dynamic structure (defined with vari-
able memory allocation) used in an EQUIVALENCE statement.
The compiler continued scanning.

117 The compiler discovered a dummy name in an EQUIVALENCE
statement and continued scanning.

118 The compiler discovered a procedure name in an
EQUIVALENCE statement and continued scanning.

120 The compiler discovered a dynamic structure in a DATA state-
ment and continued scanning.

121 The compiler discovered a dummy name in a DATA statement
and continued scanning.

122 The compiler discovered a procedure name in a DATA statement
and continued scanning.

123 The compiler discovered a data item in common in a DATA
statement and continued scanning.

124 The compiler expected an initial value for a data element and
flushed the statement when none was found.

125 The compiler discovered an initial value not coinciding with the
defined data element type. The compiler continued scanning.

126 The compiler discovered a minus or plus sign without a constant
following it. The compiler continued scanning.

127 The compiler discovered an array element with the number of
subscript expressions not equal to the number of defined bounds.
The compiler continued scanning.

128 The compiler discovered an array that occupies more than 32767
words of memory. The compiler continued scanning.

129 The compiler discovered an array element subscript that in-

dicates a memory location outside the defined bounds of the array.
The compiler continued scanning.

D-11

Table D-2. Compiler Error Message Action

Error Code

Compiler Action

131

132

134

135

136

137

140

141

142

143

144

145

147

The compiler was unable to address all of the local variables in a
program unit. The compiler bypassed the rest of the program
unit and continued with the next program unit.

The compiler discovere a dynamic bound not represented by a
dummy integer. The compiler continued scanning.

The compiler discovered a data block larger than allowed. The
compiler continued scanning.

The compiler discovered a common block larger than allowed.
The compiler continued acanning.

The compiler discovered a common block that has attempted to
extend the common data space from the beginning instead of from
the end. The compiler continued scanning.

The compiler discovered a group of EQUIVALENCE statement
which equivalence too large a block of data. The compiler
continued scanning.

The compiler discovered a data value aligned on a half-word
(byte) boundary instead of a full-word boundary. The compiler
continued scanning.

The compiler discovered an element defined in a data block used
in an EQUIVALENCE statement that is also declared in a common
block. The compiler continued scanning.

The compiler discovered two common blocks whose elements are
equated through an EQUIVALENCE statement. The compiler
continued scanning.

The compiler discovered array elements in an EQUIVALENCE
statement which cause other elements of the arrays to equate
improperly; or two elements are equated that require unique
data space (e.g., label values).

The compiler discovered a simple variable with a subscript and
continued scanning.

The compiler expected a statement label and flushed the state-
ment when no label was found.

The compiler discovered a duplicate statement label and ignored
the label. '

D-12

Table D-2. Compiler Error Message Action

Error Code Compilier Action

148 The compiler found a label referenced in a statement but never
found a statement prefixed by that label. The compiler ignored
the referenced label.

149 The compiler discovered a statement label reference to a non-
FORMAT statement when a FORMAT statement was expected.
The compiler continued scanning.

150 The compiler discovered a statement label reference to a non-
executable statement. The compiler continued scanning.

153 The compiler discovered a subroutine name used as a primary
and flushed the statement.

154 The compiler expected to find an arithmetic primary and flushed
the statement when no primary was found.

155 The compiler found a nonarithmetic primary when it expected
an arithmetic primary and flushed the statement.

156 The compiler expected to find a logical operand and flushed the
statement when a nonlogical operand was found.

157 The compiler discovered an operand in a relation of type logical
(instead of arithmetic) and flushed the statement.

158 The compiler expected an arithmetic relation and flushed the
statement when a character relation was found.

159 The compiler discovered an illegal relational operator between
two complex values and continued scanning.

160 The compiler discovered a nonlogical operand following a .NOT.
operator and dlushed the statement.

161 The compiler discovered a substring designator in improper form
and flushed the statement.

162 The compiler discovered a number raised to a complex power and
continued scanning.

163 The compiler found a complex number raised to a noninteger
power and continued scanning.

164 The compiler discovered a string expression in parentheses when

it expected an arithmetic expression and flushed the statement.

D-13

Table D-2. Compiler Error Message Action

Error Code Compiler Action

165 The compiler discovered a partial-word designator that specifies
more than 15 bits and continued scanning.

166 The compiler discovered a partial-word designator of improper
type and continued scanning.

167 The compiler discovered an index expression of type complex
and continued scanning.

168 The compiler discovered a subscript value of type complex and
continued scanning.

169 The compiler discovered a recursively defined statement function
and flushed the statement.

170 The compiler discovered a subroutine with the improper number
of arguments and continued scanning.

171 The compiler discovered a function with the improper number of
arguments and continued scanning.

172 The compiler discovered an intrinsic that had been redefined
after being called and flushed the statement.

173 The compiler discovered a missing subscript for an array name
and flushed the statement.

174 The compiler discovered an illegal argument for an intrinsic and
flushed the statement.

176 The compiler discovered a procedure with too few arguments and
continued scanning.

177 The compiler discovered a procedure with too many arguments
and continued scanning.

178 The compiler discovered an argument passed by value when it
expected an argument passed by reference. The compiler con-
tinued scanning.

179 The compiler discovered a character argument being passed by
value and continued scanning.

180 The compiler discovered a missing limit parameter in a DO state-

ment or implied-DO in an 1I/0 statement and continued scanning.

D-14

Table D-2. Compiler Error Message Action

Error Code Compiler Action

181 The compiler discovered a DO-loop terminal label preceding the
DO-loop DO statement and continued scanning.

182 The compiler discovered improperly nested DO statements and
continued scanning.

183 The compiler expected an integer simple variable but did not find
one. The compiler continued scanning.

184 The compiler discovered an improper terminal statement in a
DOJloop and continued scanning.

185 The compiler discovered a symbolic name used as an array but
not defined as such. The compiler flushed the statement.

186 The compiler discovered a function or subroutine on the left side
of an assignment operator and flushed the statement.

188 The compiler discovered imcompatible types in the left and right
sides of an assignment statement and continued scanning.

189 The compiler discovered a dummy parameter of type character
and continued scanning.

191 The compiler discovered a character-type statement function and
flushed the statement.

194 The compiler was unable to classify a GO TO statement as one of
the three allowable types and dlushed the statement.

196 The compiler discovered an improper ASSIGN statement and
flushed the statement.

197 The compiler expected a logical expression but continued
scanning when none was found.

198 The compiler discovered an improper logical clause and flushed
the statement.

199 The compiler discovered an improper dependent statement in an
IF statement and continued scanning.

200 The compiler discovered an alternate RETURN statement in a
nonsubroutine and flushed the statement.

201 The compiler discovered label arguments appearing elsewhere

than at the end of the argument list and flushed the statement.

D-15

Table D-2. Compiler Error Message Action

Error Code Compller Action

202 The compiler expected a symbol to be a subroutine name and
flushed the statement when none was found.

203 The compiler discovered an expression in an I/0 input list and
continued scanning.

204 The compiler discovered an improper 1/0 list item in an I/0
statement and flushed the statement.

205 The compiler expected an 1/0 list and flushed the statement
when none was found.

206 The compiler discovered an improper unit reference in an 1/0
statement and fxshed the statement.

207 The compiler expected a character variable and flushed the state-
ment when none was found.

208 The compiler expected a format reference in an 1/0 statement
and flushed the statement when none was found.

209 The compiler expected an action label in an 1/0 statement and
flushed the statement when none was found.

210 The compiler discovered a duplicate action label and continued
scanning.

211 The TRACE/3000 symbol table overflowed but the compiler con-
tinued to compile the program unit.

212 The program unit data space overflowed but the compiler con-
tined to compile the program unit.

213 The program code space overflowed but the compiler continued

to compile the program unit.

D-16

Table D-3. Compiler Warning Messages

Waming Code

Compiler Action

10
11
12
13
14
15

16

17
18
19
20

22

The compiler ignored the label field.
The compiler ignored the label field.
The compiler truncated the symbolic namé to 15 characters.

The compiler assumed the comma was present and continued
compilation.

The compiler ignored the comma and continued compilation.

The compiler expected a colon “:” and flushed the source record
when none was found.

The compiler skipped to the next comma and ignored the state-
ment between the extra character and the comman.

FORMAT warning — the compiler continued scanning.
FORMAT warning — the compiler continued scanning.
FORMAT warning — the compiler continued scanning.
FORMAT warning — the compiler continued scanning.
FORMAT warning — the compiler continued scanning.
FORMAT warning — the compiler continued scanning.
FORMAT warning — the compiler continued scanning.
FORMAT warning — the compiler continued scanning.

A statement could have logically ended at some point before the
physical end of the statement and the compiler cannot logically
parse the next symbol as a continuation of the statement. The
compiler ignored the remainder of the record.

The compiler used the last seen segment name.

The compiler took no action and continued scanning.

The compiler took no action and continued scanning.

The compiler took no action and continued scanning.

The compiler ignores the extra values.

D-17

Table D-3. Compiler Warning Messages

Warning Code Compiler Action

23 The compiler discovered a variable name in a DATA statement
in a Block Data subprogram which is also not in a common block.
The compiler continues scanning.

24 The compiler discovered a Block Data subprogram that did not
specify initial values for a labeled common block and continued
scanning.

25 The compiler truncated an initial value that was too large for
its type.

26 The compiler takes no action and continues scanning.

27 The compiler discovered actual arguments inconsistant with the
dummy arguments and continued scanning.

28 The compiler discovered actual arguments inconsistant with
dummy argument and continued scanning. '

29 The compiler discovered actual arguments inconsistant with
dummy arguments and continued scanning.

30 The compiler discoverd actual arguments inconsistant with
dummy arguments and continued scanning.

31 The compiler discovered a subprogram name not mentioned in an
EXTERNAL statement and continued scanning.

32 The compiler discovered a recursive call in the actual argu-
ment list of an external procedure call and informed the user that
only the actual arguments of the recursive call not the inital call,
are checked.

33 The compiler converted an intrinsic name to a simple variable.

34 The compiler discovered a statement that cannot be locally
addressed.

36 The compiler inserted a RETURN or STOP statement because an
unlabeled END line was not preceded by an unconditional
transfer of control.

38 The comp'ller discovered too many continuation lines for one
statement/ and ignored the excess lines.

39 The compiler expected a continuation line and did not find one.

D-18

Table D-3. Compiler Warning Messages

Warning Code

Compiler Action

40

41

42

43

44

45

77

The compiler discovered a missing keyword, unrecognized
keyword or incomplete parmeter. The compiler skipped past the
next comma in the statement and continued scanning.

The compiler expected a symbolic name and continued scanning.

The compiler recognized a construct in the program unit that
appeared too late to be honored and ignored the construct.

The compiler discovered a statement label equal to zero or
greater than 99999 and ignored it.

The compiler cannot find the symbol mentioned in a TRACE
record.

The compiler discovered an intrinsic name in a TRACE record.
The intrinsic will not be traced.

The compiler discovered an integer equal to zero (divided into
another number) or an integer too large for its intended usage.

D-19

