gp\ﬁ (D004

tior45 and Technology Conference & Expo

Cl Programming For
Stabllity

Jeff Vance, HP-vCSY
leff.vance@hp.com

Hewlett-Packard

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

Outline A

(read the notestoo!)

UDCs and scripts (parameters, entry points)
Variables

Expressions and functions

|/0 redirection and file I/0O

Error handling

Script cleanup techniques

Debugging
Converting a quick’n’dirty script to near production
guality
Examples
Appendix
T

July 18, 2008 HP World 01 2

Alternatives Q]

July 18, 2008

nnnnnn

3GL (C, COBOL, Java, Pascal, compiled Basic,
etc.)

4GL (Speedware, Transact, Powerhouse, Visual
Basic, etc.)

Interpretive (Cl, Basic, other scripting languages)

/)
217448 A2l
—/

HP World '01 3

Common CI “programming” command [@

July 18, 2008

IF, ELSEIF, ELSE, ENDIF branching

ESCAPE, RETURN
WHILE, ENDWHILE

ECHO, INPUT

SETVAR, DELETEVAR

SHOWVAR
ERRCLEAR

RUN
XEQ
PAUSE

OPTION recursion

or COMMENT

looping
terminal, console 170, file I/0
create/modify/delete/display a variable

sets CI error variables to O

invoke a program
invoke a program or script

sleep; job synchronization
only way to get recursion in UDCs

comment
/
P, WORLD2004
Solutions and Technology Conference & Exp
_/
HP World '01 4

UDCs A

User Defined Command files (UDCs) - a single file

that contains 1 or more command definitions, separated by
a row of asterisks (***)

Features:

simple way to execute several commands via one command
allow built-in MPE commands to be overridden

can be invoked each time the user logs on

require lock and (read or eXecute) access to the file

cataloged (defined to the system) for easy viewing and
prevention of accidental deletion - see SETCATALOG and
SHOWCATALOG commands

can be defined for each user or account or at the system level
more difficult to modify since file is usually opened by users

/
HP, WORBZO&Og

ns and Technology Conference & Expo

July 18, 2008 HP World 01 5

Command files (scripts) A

Command file - afile that contains a single command
definition

Features:
similar usage as UDCs

searched for after UDCs and built-in commands using HPPATH
default path is: logon-group, PUB.logon-acct, PUB.SYS, ARPA.SYS

require read or eXecute access

easy to modify since file is only in use while it is being executed

very similar to unix scripts or DOS bat files

July 18, 2008 HP World '01 6

UDC / script comparisons Q]

July 18, 2008

Similarities:
ASCII, NOCCTL, numbered or unnumbered, max 511 byte
record width
optional parameter line ok - max of 255 arguments
optional options, e.g. HELP, NOBREAK, RECURSION
optional body (actual commands)

no inline data, unlike Unix ‘here’ files :(

can protect file contents by allowing eXecute access-only
security, i.e., denying read access

HP World 01 7

UDC / script comparisons (cont) [

July 18, 2008

Differences:
scripts can be variable record width files

UDCs require lock access, scripts don’t

script names can be in POSIX syntax, UDC filenames must be in
MPE syntax

UDC name cannot exceed 16 chars, script name length follows
rules for MPE and POSIX named files

EOF for a script is the real eof, end of a UDC command is one
or more asterisks, starting in column one

HP World 01 8

UDC / script exit A

July 18, 2008

nnnnnn

EOF - real EOF for scripts, a row of asterisks (starting in
column 1) for UDCs

:BYE, :EQJ, :EXIT - terminate the CI too, to use BYE or EOJ
must be the root ClI

‘RETURN -- useful for entry point exit, error handling, help
text - jumps back one call level

:ESCAPE - useful to jump all the back to the CI, or an
active :CONTINUE. In a job without a :CONTINUE,
.:escape terminates the job. Sessions are not terminated by
:escape. Can optionally set CIERROR and HPCIERR
variables to an error number

/
!jmgSWORBZOM

and Technology Conference & Expo

HP World '01 9

Recommendation

July 18, 2008

nnnnn

UDCs provide a repository and are easier to locate, but they
are more difficult to change after they have been cataloged.
They are also more difficult to purge (deliberately or
accidentally).

Scripts can be located anywhere but are easier to maintain if
they are kept in one or a few groups / directories. Scripts are
easier to modify and delete.

My experience has been to use scripts as my first choice and
only use UDCs to override built-in MPE commands.

Use ESCAPE rather than RETURN for script errors that
demand user attention/intervention

/
HP, WQRBZOM

Expo

ons and Technology Conference &

HP World '01

10

Parameters

July 18, 2008

nnnnn

Syntax: ParmName [= value]

supplying a value means the parameter is optional. If no value
Is defined the parameter is considered required.

max parm name is 255 bytes, chars A-Z, 0-9, “_”

max parm value is limited by the CI’s command buffer size
(currently 511 characters)

all parm values are un-typed, regardless of quoting

Parms are separated by a space, comma or semicolon

default value may be a: number, string, !variable, ![expression],
an earlier defined parm (Iparm)

all parameters must be explicitly referenced in the UDC/script

body, e.g. Iparmname
the scope of a parm is the body of the UDC/script

/
HPWO Ezo&og

ons and Technology Conference & Expo

HP World 01

11

Parameters (cont) A

July 18, 2008

all parameters are passed “by value”, meaning the parm value
cannot be changed within the UDC/script

a parm value can be the name of a CI variable, thus it is possible
for a UDC/script to accept a variable name, via a parm, and
modify that variable’s value, e.q.

SUM a, b, result_var SUM is a UDC name
setvar Iresult_var 'la+!b

*kkkk*x

:SUM 10, 2710, x

:showvar x X=1034

setvar | 10

‘setvar] 12

:SUM 1,], X Inside SUM: setvar x, 1 + |
:showvar x X =22

HP World 01 12

ANYPARM parameter

July 18, 2008

all delimiters ignored
must be last parameter defined in UDC/script
only one ANYPARM allowed

only way to capture user entered delimiters, without requiring user
to quote everything

example:

TELLT user

ANYPARM msg = “”

prepends timestamp and highlights msg text
tell tuser; at 'hptimef: ![chr(27)]&dB !Imsg

TELLT op.sys Hi,, what’s up; system seems fast!

anyparm() function is useful with ANYPARM parameters

HP World 01 13

Entry points A

July 18, 2008

simple convention for executing the same UDC/script starting
in different “sections” or subroutines

a UDC/script invokes itself recursively passing in the name of an
entry (subroutine) to execute

the script detects that it should execute an alternate entry and
skips all the code not relevant to that entry.

most useful when combined with 170 redirection, but can provide
the appearance of generic subroutines

benefits are: fewer script files to maintain, slight performance
gain since MPE opens an already opened file faster, can use
variables already defined in script

UDCs need OPTION RECURSION to use multiple entry points

/
HPWO Ezo&og

ons and Technology Conference & Expo

HP World 01 14

Entry points (cont) A

July 18, 2008

two approaches for alternate entries:

define a parm to be the entry point name, defaulting to the
main part of the code, for example: “main”

the UDC/script invokes itself recursively in the main code, and
may use I/0 redirection here too

each entry point returns when done (via :RETURN command)

test HPSTDIN or HPINTERACTIVE variable to detect if
script/UDC has 1/0 redirected.

If TRUE then assume UDC/script invoked itself.

limited only to entry points used when $STDLIST or $STDIN are
redirected

limited to a single alternate entry point, may not work well in
jobs

/
HPWO Ezo&og

ons and Technology Conference & Expo

HP World 01 15

Entry points (cont)

generic approach:

PARM pl ... entry=main
If “lentry” = ““main” then
... Initialize etc...
xeq 'HPFILE p1, ... entry=qgo
entry
. Cleanup etc...
return

elseif “lentry” = ““go” then...

execute the GO subroutine ...

return
elseif “lentry” = ...

endif

July 18, 2008 HP World '01

default entry is “main”

run same script, different

Entry points (cont) Q]

|/0O redirection specific approach:

PARM p1 ... # no “entry” parm defined

iIf HPSTDIN = “$STDIN’’ then
assume “main’ entry - initialize etc...
xeq 'HPFILE !'pl, ... <somefile

. (cleanup etc...)

return

else # no elseif since only 1 alternate
execute the entry to read “somefile”
setvar eof FINFO(hpstdin, “eof”)

return
endif

July 18, 2008 HP World 01 17

Recommendations A

July 18, 2008

Comment all parameters and their expected and default
values. Equally important for entry points since args may be
used differently and input and/or output may have been
redirected.

Define good default parm values and allow some obvious
value for the first parm (“?”") to signify script-specific help.
Sometimes an absent first parm should imply help text needs
to be displayed.

Choose parameter names which do not collide with the
variable names in the script/UDC.

Use “entry points” to make scripts more structured and for
file I/O. The parameter based alternate entry approach is
superior from a flexibility perspective since it works in all
environments and is easily expanded.

/
HP, WQRIDZOM

ons and Technology Conference & Expo

HP World 01 18

Cl variables A

100 predefined “HP” variables* in MPE/iX release 7.0
user can create and modify their own variables via :SETVAR

variable types are: integer (signed 32 bits), Boolean and string (up
1024 characters)

variable names can be up 255 alphanumeric alphanumeric and
“ ” (cannot start with number)

predefined variable cannot be deleted, some allow write access
‘SHOWVAR @ ; HP - shows all predefined variables

can see user defined variables for another job/session (need SM)
:SHOWVAR @ ; job=#S or #Jnnn

the bound() function returns true if the named variable exists
variables deleted when job / session terminates
HELP variables and :HELP VariableName

/
HPWO Ezo&og

ons and Technology Conference & Expo

July 18, 2008 HP World 01 19

Predefined variables]

July 18, 2008

invent

HPAUTOCONT - set TRUE causes Cl to behave as if each command is
protected by a :continue.

HPCMDTRACE - set TRUE causes UDC / scripts to echo each command line
as long as OPTION NOHELP not specified. Useful for debugging.

HPCPUMSECS - tracks the number of milliseconds of CPU time used by the
process. useful for measuring script performance.

HPCWD - current working directory in POSIX syntax.
HPDATETIME - contains the date/time in
CenturyYearMonthDateHourMinuteSecondMicrosecond format.
HPDOY - the day number of the year from 1..365.

HPFILE - the name of the executing script or UDC file.

HPINTERACTIVE - TRUE means $STDIN and $STDLIST do not form an
Interactive pair, useful to test if it is ok to prompt the user.

HPLASTJOB - the job ID of the job you most recently streamed, useful for a
default parm value in UDCs that alter priority, show processes, etc.

/
HP, WORBZOM

ns and Technology Conference & Expo

HP World '01 20

Predefined variables (cont) D]

July 18, 2008

invent

HPLASTSPID - the $STDLIST spoolfile ID of the last job streamed, useful in
-print 'hplastspid.out.hpspool

HPLOCIPADDR - IP address for your system.
HPMAXPIN - the maximum number of processes supported on your system.

HPPATH - list of groupl[.acct] or directory names used to search for script and
program files

HPPIN - the Process Identification Number (PIN) for the current process.

HPPROMPT - the CI’s command prompt, useful to contain other info like:
I"HPCWD, 'HPCMDNUM, '"HPGROUP, etc.

HPSPOOLID - the $STDLIST spooilfile ID - if executing in a job.

HPSTDIN - the filename for $STDIN, useful in script “subroutines” where input
has been redirected to a disk file

HPSTREAMEDBY - the “Jobname,User.Acct (joblDnum)” of the job/session that
streamed the current job.

HPUSERCAPF - formatted user capabilities, useful to test if user has desired
capability, e.qg. if pos(“SM”,hpusercapf) > O then

/
HP, WORBZOM

ons and Technology Conference & Expo

HP World 01 21

Recommendations

July 18, 2008

nnnnn

Define your own variables to not appears as HP variables and
chose unique names, e.g. |, J, K, NAME, TEMP are not meaningful
names for any variable which survives the scope of its creation.
NUM_CUSTOMERS, PAYROLL_FILENAME, etc. are more
descriptive names.

Don’t define parameters with the same names as your variables and
vice-versa - just not worth the extra confusion.

In general don’t use HPAUTOCONT since it can mask errors in your
script/UDC.

Be careful using the date/time variables. Remember your script
could be running when the clock just passes midnight, or the month
or year just advances.

Use formatted vs. numeric variables. E.g. HPUSERCAPF is preferred
to HPUSERCAP.

Use HPFILE to avoid hard-coding the name of your script.
Use HPINTERACTIVE to avoid prompting in a job.

i
HPWO 32004

Expo

ons and Technology Conference &

HP World '01

22

Cl functions

July 18, 2008

functions are invoked by their name, accept zero or more parms and
return a value in place of their name and arguments
file oriented functions:

BASENAME, DIRNAME, FINFO, FSYNTAX, FQUALIFY

string parsing functions:

ALPHA, ALPHANUM, DELIMPOS, DWNS, EDIT, LEN, LFT,
LTRIM, NUMERIC, PMATCH, POS, REPL, RHT, RPT, RTRIM,
STR, UPS, WORD, WORDCNT, XWORD

conversion functions:
CHR, DECIMAL, HEX, OCTAL, ORD

arithmetic functions
ABS, MAX, MIN, MOD, ODD

HP World '01 23

Cl functions (cont) [

invent

job/process functions:
JINFO, JOBCNT, PINFO

misc. functions:
ANYPARM, BOUND, INPUT, SETVAR, TYPEOF

new to 7.5: devinfo, volinfo, spoolinfo:
Return info about devices, volumesets, and spoolfiles. See Jazz for details.

new to 7.5: user defined functions:

Function name is a filename. HPPATH is used to locate the function file. RETURN
command accepts an expression used as the function return. HPRESULT variable
holds the function return.

Examples:
if myFunc(a, b, c¢) then ...
if compare(result) < compare(last) then ...
if get_user_data(start, end) = O then ...
if get_device_info(ldev, “state”) = “READY” then ...

/
HP, WOR_I-JD2004

Solutions and Technology Conference & Expo

July 18, 2008 HP World 01 24

Cl expressions O |

July 18, 2008

an expression is any variable, constant or function with or without an
operator, e.g.:

MYVAR, “a”+”b”, x~10*y/(j mod 6),
false, (x> lim) or (input() =“y”)
5 commands accept implicit expressions:
.calc, :if, :elseif, :setvar, :while

I expression | can be used explicitly in any command:
-build afile; rec=-80; disc= ![100+varX]
‘build bfile; disc=![finfo(“afile”,”eof”)*3] # file b is 3x larger

examples:
:print ![input(“File name? *)]
:setvar reply ups(rtrim(ltrim(reply)))

HP World 01 25

Partial expression evaluation D)

The CI evaluates the minimal amount of a Boolean expression needed
to determine the end result. For example:

if true or X # “x” side not evaluated
if false and x # “x” side not evaluated

If bound(z) and z > 1 then # if “z” not defined it won’t be referenced

Partial evaluation can cause some mysterious results

ClI scripts may run differently in an MPEX environment since (last | heard) MPEX does
not support partial evaluati complex expressions.

HP, WORIDZOO4

Soluti ons and Technology Conference & Expo

July 18, 2008 HP World '01 26

File I/O

July 18, 2008

[

invent

why not use INPUT in WHILE to read a flat file?, e.g.:

while not eof do
input varname < filename
endwhile
three main alternatives:
write to (create) and read from a MISG file via I/0O redirection
use :PRINT and I/0O redirection to read file 1 record at a time
use entry points and 170 redirection

MSG files work because each read is destructive, so when INPUT
<file reads the 1%t record it automatically gets the next record.

PRINT works because start and end record numbers can be
selected.

once in an entry point where 1/0O has been redirected, you can
easily read a file.

HP World 01

File I/0O - MSG file

July 18, 2008

O |

invent

PARM fileset=.7/@
This script reads LISTFILE,6 output and measures CPU millisecs
using a MSG file

setvar savecpu hpcpumsecs :readmsg

errclear 259 msecs to read 22 records
file msg=/tmp/LISTFILE.msg; MSG
continue ‘-readmsg @.pub.sys

listfile !fileset,6 >*msq 15845 msecs to read 1515
if hpcierr = O then

read listfile names into a variable

setvar cntr setvar(eof, finfo(**msg’, "eof"))

while setvar(cntr, cntr-1) >= 0 do

Input rec <*msqg

endwhile
endif
echo I[hpcpumsecs - savecpu] msecs to read !eof records.

deletevar cntr, eof, rec

P, WORLD2004
Solutions and Technology Conference & Exp
—/
HP World *01 28

File 1/0O - :print]

July 18, 2008

invent

PARM fileset=.7/@

This script reads a file produced by LISTFILE,6 and measures CPU msecs
using PRINT as an intermediate step

setvar savecpu hpcpumsecs

errclear ‘readprnt
continue 735 msecs to read 22 records
listfile !fileset,6 > Iftemp 3 times slower than MSG files

if hpcierr = O then
read listfile names into a variable :readprnt @.pub.sys
setvar cntr O 74478 msecs to read 1515 recs
setvar eof finfo(‘lftemp*,"eof") over 4 times slower than MSG files!
while setvar(cntr, cntr+1) <= eof do
print Iftemp; start=!Icntr;end=Icntr > Iftempl
input rec <Iftempl
endwhile
endif
echo ![Thpcpumsecs - savecpu] msecs to read !eof records.
deletevar cntr,eof,rec

/
HP, WOR-I-JDZOO4

Solutions and Technology Conference & Expo

HP World 01 29

File I/O - entry points]

July 18, 2008

invent

PARM fileset=./@, entry="main”’
This script reads a file produced by LISTFILE,6 and measures CPU msecs
using entry points and script redirection

if "lentry"” = "main" then
setvar savecpu hpcpumsecs
errclear
continue

listfile !fileset,6 > Iftemp
if hpcierr = O then
xeq 'hpfile !fileset entry=read <Iftemp
endif
echo ![hpcpumsecs - savecpu] msecs to read !eof records.
deletevar cntr,eof,rec
purge Iftemp;temp
return
. .. (continued on next slide)

P, WORLD2004
Solutions and Technology Conference & Exp
—/
HP World *01 30

File I/O - entry points (cont)]

July 18, 2008

invent

else
read listfile names into a variable
setvar cntr setvar(eof, finfo(hpstdin, "eof"))
while setvar(cntr,cntr-1) >= O and setvar(rec, input()) <>

chr(1) do

endwhile
return
endif

-readntry
90 msecs to read 22 records.

---> Almost 3 times faster than MSG files
---> 8 times faster than the PRINT method!

:readntry @.pub.sys

2400 msecs to read 1515 records.
---> Qver 6 times faster than MSG files
---> 31 times faster than using PRINT!

/
P, WORLD2004
Solutions and Technology Conference & Exp
—/
HP World '01 31

Recommendations

July 18, 2008

iiii

Use variable names naturally (implicitly) — no explicit referencing
unless necessary.

Use the more powerful string parsing functions (word, xword,
wordcnt, delimpos, edit) where possible.

Enter :help functions and see If there are any surprises.
Recognize partial evaluation, test the “skipped” clauses.
Use “entry points” to make scripts more structured and for file I/0.

Use MSG files for simple or one-time tasks, or for reading small
files.

Always, always write comments and log changes.

Assume your quick’n’dirty script will stay in production longer than
you!

HP World 01

Error handling O |

use HPAUTOCONT variable judiciously. This is better:
continue
command
if hpcierr > O then
echo something...

return - or - escape
endif ...

RETURN vs. ESCAPE
:return goes back ONE level

:escape goes back to the ClI level in a session, to an
active CONTINUE, or can abort a job

HPCIERRMSG - variable contains the error text for the value of
CIERROR JCW / variable

‘ERRCLEAR - sets HPCIERR, CIERROR, HPFSERR,
HPCIERRCOL variables to zero

July 18, 2008 HP World 01 33

Cleanup]

nnnnn

delete variables “local” to the UDC / script
:deletevar prefix”_ @

purge scratch files

reset “local” file equations

don’t do the above if still debugging!

better to build in a way to preserve files,
variables, etc. on the fly
use a central cleanup “entry” routine

use a variable to control the cleanup related
commands

July 18, 2008 HP World '01

Debugging

July 18, 2008

nnnnn

Some common problems:

syntax error (unmatched parenthesis), variable name typo,
reliance on a var that has not been initialized, hitting eof,
using an HFS file for I/0 redirection and then referencing
FINFO(hpstdin) -- Cl bug!, entry name typo (case
sensitive!), off-by-one on loop counters, unexpected user
input, re-using the same var in two places that are
executed together (popular in entry points), reading from
terminal but $stdin is already redirected, a skipped portion
of an expression or skipped commands now being
executed with different data...

Trickier problems to find:

echoing a literal “>" without escaping,word() by index but
index out of bounds, *array” index increment and
reference in same loop, unmatched endwhile or endif,
creating files that could contain Cl metachars, date
calculations that cross day, month, year boundaries...

/
HP, WORBZOM

Expo

ons and Technology Conference &

HP World '01

35

Quick’'n’dirty & production A

July 18, 2008

nnnnnn

Real example taken from a request on 3000-L to
report all program files with PM capability.

Need to consider NM and CM program files.

Wanted a free solution.

HP World '01 36

The quick solution A

invent

purge progf
purge versf
build progf;msg;rec=-80,,f,ascii
build versf;msg;rec=-80,,f,ascii
file x=progf,old
file y=versf,old
listfile @.@.@,6; seleg=[code=PROG] >*x
listfile @.@.@,6; seleqg=[code=NMPRG] >>*x
setvar peof finfo(**x",'eof")
while setvar(peof,peof-1) >= 0 do
INnput progname <*x
version !progname >*y
setvar veof finfo(**y','eof")
while setvar(veof,veof-1) >= 0 do
input vrec <*y
if pos("CAPABILITIES:",vrec)=1 or pos("CAP:",vrec)=1 then
setvar veof O
if pos("PM",xword(vrec,':")) > O then
echo !'progname has PM capabilty

endif
endif
endwhile
endwhile
o

July 18, 2008 HP World '01

What's wrong?]

invent

Let’s add some comments in the beginning and accept a parameter so
the user can specify which files they are interested in.

Let’s also start adding some error handling

PARM fileset=0.@.@

Reports NM and CM program files which have PM capability. Since two

LISTFILEs are done to get the full list of NMPRG and PROG files the final output
will not be in alphabetic order. Note: HFS syntax is not supported by VERSION.
purge progf

purge versft

build progf;msg;rec=-80,,f,ascii

build versf;msg;rec=-80,,f,ascii

file x=progf,old

file y=versf,old

continue

listfile !fileset, 6;seleq=[code=NMPRG] >*x

continue

listfile !fileset, 6;seleq=[code=PROG] >>*x

July 18, 2008 HP World 01 38

Pass two...

July 18, 2008

O |

invent

Let’s add some real error handling and make the output more

user friendly

PARM fileset=@.@.@

(same comments in the beginning as previous version...)

purge progf >$null
purge versf >$null
(same BUILD and FILE eq as before...)
errclear
continue
listfile !fileset, 6;seleq=[code=NMPRG] >*x
If hpcierr <> 0O then
echo 'hpcierrmsg
return
endif
continue
listfile !fileset, 6;seleq=[code=PROG] >>*x
If hpcierr <> 0O then
ditto...

HP World '01

Pass three...]

July 18, 2008

invent

Let’s try to get the error handling nailed...

errclear
continue
listfile !fileset,6;seleq=[code=NMPRG] >*Xx
if hpcierr > O then
print progf which contains the error
print *x
return
elseif hpcierr < O then
hide warning and erase the contents of progf (the warn text).
print *x >$null
errclear
endif
continue
listfile !fileset,6;seleq=[code=PROG] >>*x
if hpcierr > O then
got an error, maybe the progf file is full? Cannot display progf as
above since it could contain NMPRG files. Also cannot print a subset of
progf since FPOINT fails on MSG files.
echo hpcierrmsg
return
elseif hpcierr < O then
It would be nice to remove the last two records from progf, but
since it is a MSG file we cannot use :PRINT ;start=eof to do this.
#é!?nore the warn but remember the warn text is in progf!
endi

/
HP, WOR_I-JD2004

Solutions and Technology Conference & Expo

HP World 01 40

Production version 7}

July 18, 2008

invent

PARM fileset=@.@.@

Reports NM and CM program files which have PM capability. Since two LISTFILEs
are done to get the full list of NMPRG and PROG files the final output will

not be in alphabetic order. Note: HFS syntax is not supported by VERSION.

iIf word(fsyntax('!fileset’)) = "POSIX" then
echo POSIX syntax names are not supported by the VERSION utility
return

endif

build the MSG files to hold LISTFILE and VERSION output

purge progf >$null

purge verst >$null

build progf;msg;rec=-80,,f,ascii

build versf;msg;rec=-80,,f,ascii

file x=progf,old

file y=versf,old

first list NM program files to a MSG file
errclear
continue
listfile !fileset,6;seleq=[code=NMPRG] >*Xx
if hpcierr > O then
print progf which contains the error
print *x
return
elseif hpcierr < O then
hide warning and erase the contents of progf (the warn text).
prini[*x >$null
errclear
endif P ‘j
HP,WORLD2004

Solutions and Technology Conference & Expo

HP World 01 41

Production version (cont)]

July 18, 2008

invent

Now append CM program files to the same MSG file (progf).

This means that the output will not be in alphabetic order!

continue

listfile !fileset,6;seleq=[code=PROG] >>*x

setvar peof finfo("*x’,'eof")

if hpcierr > O then
got an error, maybe the progf file is full? Cannot display progf as
above since it could contain NMPRG files. Also cannot print a subset Of
progf since FPOINT fails on MSG files.
echo hpcierrmsg
return

elseif hpcierr < O then
It would be nice to remove the last two records from progf, but
since it is a MSG file we cannot use :PRINT ;start=eof to do this.
Ignore the warn but remember the warn text is in progf!
setvar peof peof-2

endif

echo

echo The following programs (out of !peof) have PM
capability:

echo

setvar pcnt O

errclear

(... the read WHILE loop follows...) p j
HP WORLD’2004

Solutions and Technology Conference & Expo

HP World 01 42

Production version (cont)]

invent

read the combined LISTFILE,6 output and pass each filename to VERSION

while setvar(peof,peof-1) >= 0 do
Input progname <*x
setvar progname rtrim(progname)
continue
version !progname >*y
If hpcierr = O then
setvar veof finfo('*y',"'eof")
while setvar(veof,veof-1) >= 0 do
input vrec <*y
If pos(""CAPABILITIES:",vrec) = 1 or pos("CAP:",vrec) = 1 then
setvar veof O
if pos(""PM",xword(vrec,":")) > O then
echo !progname
setvar pcnt pcnt+1
endif
endif
endwhile
endif
endwhile

echo
echo !pcnt programs have PM

July 18, 2008 HP World '01

PM program check output

July 18, 2008

:progcap @.@.vance

[

invent

The following programs (out of 22) have PM capability:

LARSPING.PUB.VANCE
L INKEDDB . PUB . VANCE
MOVER . PUB.VANCE
RYDER .PUB.VANCE
SWINVENP . PUB.VANCE
JINFO.TEST.VANCE
JOBINFO.TEST.VANCE
S1UDBP.TMP .VANCE
S1UDBP.TMP1.VANCE
S1UDBP.TMP2 .VANCE
S1UDBP .UDCS.VANCE
11 programs have PM

HP World 01

Examples A

July 18, 2008

nnnnnn

We start off with some simple, but perhaps still
novel examples.

A few more complex examples are given with

emphasis on techniques for getting more out of
MPE.

There are many more examples at the end of the
Appendix.

Many of the longer examples are on Jazz
http://jazz.external.hp.com/src/scripts/

P WORLD’200

Solutions and Technology Conference & Expo

\E

HP World 01 45

Simple examples

July 18, 2008

display last N records of a file (no process creation)

PARM file, last=12

print Ifile; start= -!last

“Tail” script

display CI error text for a Cl error number

alter

PARM cierr= !Icierror
setvar save_err cierror

setvar cierror lcierr

showvar HPCIERRMSG

setvar cierror save_err

deletevar save_err

“Cilerr” script

priority of job just streamed - great for online compiles ;)

PARM job=!HPLASTJOB; pri=CS
altproc job=!job; pri=!pri

HP World '01

“Altp” script

O |

invent

Brief file, group, user, dir listings A

July 18, 2008

PARM fileset=./@ |
listfile !fileset,6

PARM group=@ “LG”
listgroup !group; format=brief

PARM user=@ “LU”
listuser !user; format=brief

PARM dir=./@ “LD”
setvar _dir “Idir”
if delimpos(_dir, “./”) <> 1 then
convert MPE name to POSIX name
setvar _dir dirname(fqualify(_dir)) + “/” + basename(_dir)
endif
listfile !_dir, 6; seleq=[object=HFSDIR] ;tree

Z
HPWORLD’2004

Solutions and Technology Conference & Expo

/

HP World 01 47

Displaying spoolfiles A

invent

PRINTSP script:

PARM job=!HPLASTJOB
Prints spoolfile for a job, default is the last job you streamed
if “ljob” = then
echo No job to print
return
endif
setvar hplastjob “!job”
if hplastspid = “” then
echo No $STDLIST spoolfile to print for “ljob”.
return
endif
print !HPLASTSPID.out.hpspool

:stream scopejob
#3324
printsp
-JOB SCOPEJOB,MANAGER.SYS, SCOPE.
Priority = DS; Inpri = 8; Time = UNLIMITED.

July 18, 2008 HP World 01 48

Powerfail script

July 18, 2008

UPS configuration file, UPSCNFIG.PUB.SYS):

Contents:

powerfail_message routing
powerfail low battery
powerfail _command_ file

all_terminals
keep_running

prodshut.opsys.sys

powerfail _grace period 300

PRODSHUT.OPSYS.SYS script example:

warn @; Powerfail detected by UPS. Orderly shutdown BEGIN...
warn @; ***** Please logoff immediately! *****
if jobcnt(*“prodlJ,usr.acct”, jobID) > O then
stream hipril
pause 60; job=!hplastjob
abortjob !jobID
endif
errclear
pause 180; job=@s
if cierror = 9032 then
warn @;System going down in 2 minutes!
pause 120
endif
shutdown

HP World 01

[

invent

Testing remote command execution

July 18, 2008

ANYPARM cmd

Script that executes a command in a remote session and returns the
CIERROR and HPCIERR values for that command back to the local
environment.

purge rmstatus; temp >$null

build rmstatus;rec=-80,,f,ascii; temp

remote file rmstatus=rmstatus:$back,oldtemp
continue

remote 'cmd

remote echo setvar cierror !lcierror >*rmstatus
remote echo setvar hpcierr !'"hpcierr >>*rmstatus
xeq rmstatus

echo remote CIERROR=!cierror, remote HPCIERR=!hpcierr

-rem listfile 4abc,?2

O |

invent

First character 1n file name not alphabetic.(CIERR 530)

remote CIERROR=530, remote HPCIERR=530

/
HP, WOR_I-JD2004

Solutions and Technology Conference & Expo

HP World '01

50

Synchronize jobs A

July 18, 2008

1JOB jobZero,...

Himit +2

Istream job1l

Ipause job=!hplastjob

Istream job?2

lerrclear

Ipause 600, 'hplastjob

lif hpcierr = -9032 then

I tellop Job "!hplastjob” has exceeded the 10 minute limit
N -To]

lendif

Istream job3

Ipause job=!hplastjob; WAIT

linput reply, “’Reply ‘Y’ for 'hplastjob”; readcnt=1; CONSOLE
lf dwns(reply) = “y” then

/
HPWORLD’2004

Solutions and Technology Conference & Expo

/

HP World 01 51

Parsing HPPATH

setvar x O
while setvar(token, &

word(“'hppath’,”,;
If delimpos(token,”/.”) = 1 then

we have a POSIX path element

else
we have an MPE path element

endif
endwhile

Why was HPPATH explicitly referenced?

July 18, 2008 HP World '01

“,setvar(x, x+1))) <>

"7 do

“Where” script output

July 18, 2008

‘where @sh@

SHOWME
SH
SH.PUB.VANCE

SHOWVOL . PUB . VANCE
BASHELP .PUB.SYS

HSHELL . PUB.SYS

PUSH.SCRIPTS.SYS

RSH_HPBIN.SYS
SH_HPBIN.SYS
/bin/csh
/bin/ksh
/bin/remsh
/bin/rsh
/bin/sh

USER uUDC
SYSTEM UDC
NMPRG
script

PROG

script
script
NMPRG

NMPRG

NMPRG

symlink -->
symlink -->
symlink -->
symlink -->

HP World 01

In SYS52801.UDC.SYS
in HPPXUDC.PUB.SYS

/SYS/HPBIN/SH
/ENM/PUB/REMSH
/SYS/HPBIN/RSH
/SYS/HPBIN/SH

[

invent

Appendix A

July 18, 2008

nnnnnn

ClI limits

Recent Cl enhancements

Redo/do features

COMMAND and HPCICOMMAND inrtrinsics
More on UDCs and scripts

More on CI variables, including compound variables and
“arrays”

Expressions, JINFO, JOBCNT, and PINFO CI functions
More on I/0 redirection
More examples...

HP World 01 54

Cl limits]

nnnnn

command buffer 511 bytes

applies to interactive, batch, UDCs, scripts, COMMAND and
HPCICOMMAND intrinsics, NM and CM

CM command parms limited to 255 bytes due to MYCOMMAND
Intrinsic, eg. info= string

nested IFs and WHILEs 100
nested UDCs and scripts 30 each
length of string variable value 1024 bytes
length of CI variable name 255 bytes
max number of CI variables 10,800 (approx)
typical number of CI variables 8,300 (approx)
length of UDC name 16 bytes
length of script name 255 bytes
max number of UDC/script parms 255
length of user function name* 255 bytes
HE WORLD 2004
—

July 18, 2008 HP World '01

“Recent” Cl enhancements Q]

July 18, 2008

extended POSIX filename characters

new CI functions: anyparm, basename, dirname, fqualify,
fsyntax, jobcnt, jinfo, pinfo, wordcnt, xword

new CIl variables: hpdatetime, hpdoy, hphhmmssmmm,
hpleapyear, hpmaxpin, hpyyyymmdd

new ClI commands: abortproc, newci, newjobq, purgejobq,
shutdown

enhanced commands: INPUT from console, FOS store-to-
disk, :SHOWVAR to see another job/sessions’ variables,
:COPY to= a directory, :ALTJOB HIPRI and jobg=, :LIMIT +-N

‘HELP shows all Cl variables, functions, ONLINEINFO, NEW
user functions, e.g. if myFunc(a, true,10) > b then ...

/
HPWORLD’2004

Solutions and Technology Conference & Expo

_/

HP World 01 56

Redo

July 18, 2008

O |

invent

delete a word
dw, >dw, dwddw, dwiXYZ

delete up to a special character
d., d/, d*, d/iXyz, d.d
delete to end-of-line

d>
delete two or more non-adjacent characters
d d

upshift/downshift a character or word
N, AW, VY, VW, SN SY NS S
append to end-of-line
>XYZ
replace starting at end of line
>rXYz
change one string to another
c¢/ABCD/XYZ, ¢:123::

undo last or all edits
u or u twice in a row

available in Cl, VOLUTIL, STAGEMAN, DEBUG others...

Z
}{R\AK)R;;;ZHX}1

Solutions and Technology Conference & Expo

HP World 01 57

COMMAND intrinsic Q]

July 18, 2008

COMMAND is a programmatic system call (intrinsic)
syntax: COMMAND (cmdimage, error, parm)

implemented in native mode (NM, PA-RISC mode)

use COMMAND for system level services, like:
building, altering, copying purging a file

no UDC search (a UDC cannot intercept “cmdimage”)
no command file or implied program file search

returns command error number and error location
(for positive parmnum), or file system error number for negative
parmnum

HP World 01 58

HPCICOMMAND intrinsic (]

July 18, 2008

HPCICOMMAND is an intrinsic
syntax: HPCICOMMAND (cmdimage,error,parm [,msglevel])

implemented in native mode (NM, PA-RISC mode)

use HPCICOMMAND for a “window” to the ClI, e.g.:
providing a command interface to a program, “:cmdname”

UDCs searched first
command file and implied program files searched

returns command error number and error location or file system
error number.

Msglevel controls CI errors/warnings - similar to the
HPMSGFENCE variable

HP World 01 59

UDCs vs. scripts O |

option logon
UDCs only (a script can be executed from an “option logon”
UDC)

logon UDCs executed in this order:

1. System level 2. Account level 3. User level
(opposite of the non-logon execution order!)

Cl command search order:

A. UDCs (1. User level 2. Account level 3. System level)
thus UDCs can override built-in commands

B. built-in MPE commands, e.g. LISTFILE

C. script and program files. HPPATH variable used to qualify
unqualified filenames

:XEQ command allows script to be same name as UDC or built-
In command, e.qg. :xeq listf.scripts.sys

/
HP WO Bzo&og

ns and Technology Conference & Expo

July 18, 2008 HP World 01 60

UDCs vs. scripts (cont.) A

performance

logon time:
9 UDC files, 379 UDCs, 6050 lines: 1/2 sec.

most overhead in opening and cataloging the UDC files
to make logons faster remove unneeded UDCs

execution time:
iIdentical (within 1 msec) for simple UDCs vs scripts,

however:
factorial script:
.fac 12 157 msec
factorial UDC (option recursion):
.facudc 12 100 msec

file close logging impacts performance for scripts more
since they are opened/closed for each invocation

/
HPWORLD’2004

Solutions andwmerence & Expo

July 18, 2008 HP World 01 61

UDCs vs. scripts (cont.) A

maintenance / flexibility / security

SETCATALOG opens UDC file, cannot edit without un-
cataloging file, but difficult to accidentally purge UDC file

UDC commands grouped together in same file, easier to view
and organize

UDC file can be lockword protected but users don’t need to
know lockword to execute a UDC

scripts opened while being executed (no cataloging), can be
purged and edited more easily than UDCs

scripts can live anywhere on system. Convention is to place
general scripts in a common location that grants read or
eXecute access to all, e.g. “XEQ.SYS” group

if script protected by lockword then it must be supplied each
time the script is executed

/
HP, WORBZOM

ons and Technology Conference & Expo

July 18, 2008 HP World '01 62

UDC search order A

File:UDCUSER.udc.finance UDCA pl =abc |
1. Invoke UDCC, which calls UDCA with option NOrecursion
the argument “ghi” udcC 'pl
2. UDCA is found, starting after the UDCC ™
definition (option NOrecursion default) UDCB pl = def
T option recursion
udcA !pl
4. Invoke UDCB, which calls UDCA passing | ypcc p1 = ghi
the arg “def”. The recursion option causes | ydcA Ip1
the first UDCA to be found. This calls *kk
UDCC and follows the path at step 1 UDCA pl = xyz) |
above echo pl=!pl
5. The line “pl=def” is echoed o

/
HPWO Ezo&og

ons and Technology Conference & Expo

July 18, 2008 HP World 01 63

Script search order A

July 18, 2008

scripts and programs are searched for after the command is
known not to be a UDC or built-in command

same order for scripts and for program files

fully or partially qualified names are executed without
qualification

unqualified names are combined with HPPATH elements to
form qualified filenames:
first match is executed — could be a script, could be a
program file
filecode = 1029, 1030 for program files
EOF > 0 and filecode in 0..1023 for script files

to execute POSIX named scripts with HPPATH
qualification, a POSIX named directory must be present in
HPPATH

/
HPWO Ezo&og

ons and Technology Conference & Expo

HP World 01 64

UDC file layout A

July 18, 2008

nnnnnn

fllename: AUDC.PUB.SYS

header:

body:
end-of-UDC:

header:

body:

/
HPWORLDZO‘”
_/

HP World 01 65

Script file layout A

July 18, 2008

nnnnnn

fllename: PRNT.SCRIPTS.SYS

header:

body:

eof

filename: LG.SCRIPTS.SYS

header:

body:

/
HPWORLDZOO"
_/

HP World '01 66

Variable scoping A

all Cl variables are job/session global, except the following:
HPAUTOCONT, HPCMDTRACE, HPERRDUMP, HPERRSTOLIST,
HPMSGFENCE, which are local to an instance of the CI

thus it is easy to set “persistent” variables via a logon UDC
need care in name of UDC and script “local” variables to not

collide with existing job/session variables

_scriptName_varname - for all script variable names.
Use:deletevar _scriptName_@ at end of script

Can create unique variable names by using 'HPPIN,
IHPCIDEPTH, 'HPUSERCMDEPTH as part of the name, e.g.
.setvar _script_xyz_!hppin , value
save original value of some “environment” variables

.setvar _script_savemsgfence hpmsgfence
:setvar hpmsgfence 2

7
HPWO 92004

ons and Technology Conference & Expo

July 18, 2008 HP World '01 67

Variable referencing D]

July 18, 2008

invent

two ways to reference a variable:

explicit - lvarName

implicit - varName
some Cl commands expect variables (and expressions) as their
arguments, e.g.

:CALC, :IF, :ELSEIF, :SETVAR, :WHILE

use implicit referencing here, e.g.

;if (HPUSER = “MANAGER”) then

most)CI commands don’t expect variable names (e.g. BUILD, ECHO,
LISTF

use explicit referencing here, e.g.
:echo You are logged on as: 'HPUSER.!HPACCOUNT

note: all UDC/script parameters must be explicitly referenced

all CI functions accept variable names, thus implicit referencing works

:while JINFO (HPLASTJOB, “exists”) do... better than ...
‘while JINFO (““IHPLASTIJOB”?, “exists”) do

HP World 01 68

Explicit referencing - A
lvarname

processed by the CI early, before command name is known
can cause hard-to-detect bugs in scripts - array example

lose variable type - strings need to be quoted, e.g..
“lvarName”

I (two exclamation marks) used to “escape” the meaning of “!”, multiple
“I'’s” are folded 2 into 1

even number of “1” --=> don’t reference variable’s value
odd number of “!” --> reference the variable’s value
useful to convert an ASCIl number to an integer, e.g.
setvar int “123” or input foo, “enter a number”’
if lint > O then ... if 1foo = 321 then ...

the only way to reference UDC or script parameters
the only way for most ClI commands to reference variables

/
HP, WOR-I-JD2004

Solutions and Technology Conference & Expo

July 18, 2008 HP World 01 69

Implicit referencing - A

July 18, 2008

invent

just varname

evaluated during the execution of the command - later than explicit
referencing

makes for more readable scripts
variable type is preserved - no need for quotes, like: ““!varname

only 5 commands accept implicit referencing: CALC, ELSEIF, IF,
SETVAR, WHILE - all others require explicit referencing

all CI function parameters accept implicit referencing
variables inside ![expression] may be implicitly referenced

performance differences:
“IHPUSER.'HPACCOUNT”” = “OP.SYS” 4340 msec
HPUSER + “.” + HFACCOUNT = “OP.SYS” 4370 msec
HPUSER = “OP” and HPACCOUNT = “SYS” 4455 msec*

(*with user match true)

| prefer the last choice since many times :IF will not need to evaluate the
expression after the AND

/
HP, WORBZOM

ns and Technology Conference & Expo

HP World 01 70

Compound variables A

invent

:setvar a “!lb” # B is not referenced, 2!’s fold to 1
:setvar b “123”

:showvar a, b A=*1p” B=123

:echo bis!b, ais!la bis 123, ais 123

setvar al23 “xyz”
:echo Compound var "al'b": I"alb>> Compound var "al!b": xyz

:setvar J 2
setvar VAL2 “bar”
:setvar VAL3 “foo”

:calc VAL bar
:calc VAL![J] bar
:calc VAL![decimal(J)] bar

.calc VAL![setvar(J,J+1)] foo

July 18, 2008 HP World 01 71

Variables arrays]

July 18, 2008

invent

simple convention using standard Cl variables

varnameO = number of elements in the array
varnamel...varnameN = array elements, 1 .. lvarnameO
varnamel!] = name of element]
I”’varnamelJ” = value of element]

:showvar buffer@

BUFFERO = 6

BUFFER1 = aaa
BUFFER2 = bbb
BUFFER3 = ccc
BUFFER4 = ddd
BUFFERS = eee
BUFFERG6 = fFf

HP World 01 72

Variable array example

July 18, 2008

centering output:

PARM count=5

setvar cnt O
while setvar(cnt,cnt+1) <= Icount do
setvar string!cnt,input("Enter string 'cnt: ")
endwhile
setvar cnt O
while setvar(cnt,cnt+1) <= Icount do

echo ![rpt(" ",39-len(string!cnt))]!"'string!cnt™

endwhile
.center
Enter string 1: The great thing about Open
Enter string 2: software is that you can
Enter string 3: have any color
Enter string 4: 'screen of death”
Enter string 5: that you want.

The great thing about Open Source
software i1Is that you can
have any color
"'screen of death”

that you want.

HP World 01

2

“Center” script

Source

/
}HTMKH&;;bOO4

Solutions and Technology Conference & Expo

73

Filling variables arrays -- wrong! [

example 1: # array name is “rec”
setvar | O
setvar looping true
while looping do
Input name, “Enter name “

if name = *“” then
setvar looping false
else

setvar j j+1
setvar rec!j name
endif
endwhile
setvar recO |

:xeq exmpll
infinite loop!, won’t end until <break>

July 18, 2008 HP World 01 74

Filling variables arrays (cont) A

invent

example 2:
setvar j O
setvar looping true
while looping do
setvar NAME
input name, “Enter name *“

if name = “” then
setvar looping false
else

setvar | j+1
setvar reclj name
endif
endwhile
setvar recO |

:xeq exmpl2 <datafile (datafile has 20 text records)

(“enter name” prompt shown 20 times snipped...)

End of file on input. (CIERR 900)

input name, "enter name “

Error executing commands in WHILE loop. (CIERR 10310)

/
HP, WORazo 4

Solutions and Technology Conference & Expo

_/

July 18, 2008 HP World 01 75

Filling variables arrays (cont) A

invent

example 3:
setvar j O
if HPINTERACTIVE then
setvar prompt “’Name = *”
setvar limit 2”30
setvar test ‘name= “" *
else
setvar prompt
setvar limit FINFO (HPSTDIN, "eof”)
setvar test “false”
endif
while (j < limit) do
setvar name “”
input name , 'prompt
if ltest then
setvar limit O # exit interactive input
else
setvar | j+1
setvar rec!j name
endif
endwhile
setvar recO |

July 18, 2008 HP World 01 76

Filling variables arrays (cont) A

nnnnnn

Xxeq exmpl3 <datafile

:showvar rec@

REC1 = linel
REC2 = li1ne2
REC20 = line20
RECO = 20
performance:
Script as is: 100 records: 530 millisecs

Script modified for file input only (shown in notes):

100 records: 380 millisecs

July 18, 2008 HP World 01 77

Filling variables arrays (cont) A

nnnnnn

can we fill arrays (and read files) faster?

example 4:

setvar recO O

setvar limit FINFO (HPSTDIN, "eof”)

while setvar(recO, recO+1) <= limit and &
setvar(rec![recO+1], input()) <> chr(1) do

endwhile

setvar recO recO-1

performance (:xeq exmpl4 <datafile):
100 recordes: 185 millisecs (twice as fast!)

/
HP,W RBZ{)&()g

and Technology Conference & Expo

July 18, 2008 HP World 01 78

Cl expressions

July 18, 2008

iiii

operators:
+ (ints and strings), -, *, 7/, ™, (), <, <=, >, >=, =, AND, BAND,
BNOT, BOR, BXOR, CSL, CSR, LSL, LSR, MOD, NOT, OR, XOR

precedence (high to low):
1) variable dereferencing

2) unary + or -
3) bit operators (csr, Isl...)
4) exponentiation ()
)
) +
)

01

* /., mod

o)

7<<__>>:

8) logical operators (not, or...)
left to right evaluation, except exponentiation is r-to-l

HP World '01

JINFO function]

nnnnnn

syntax: JINFO (“‘[#]S|IJnnnn”’, ““item” [,status])
where jobID can be “[#]J] Snnn” or “0”, meaning “me”

63 unique items: Exists, CPUSec, IPAddr, JobQ,
Command, JobUserAcctGroup, JobState, StreamedBy,
Waiting ...

status parm is a variable name. If passed, ClI sets status to
JINFO error return - normal CI error handling bypassed

can see non-sensitive data for any job on system

can see sensitive data on: “you”; on other jobs w/ same
user.acct if jobsecurity is LOW,; on other jobs in same
acct if AM cap; on any job if SM or OP cap

/
!;&BSWQR-IDZOO4

Technology Conference & Expo

July 18, 2008 HP World '01 80

JOBCNT function O |

syntax: JOBCNT (“‘job_spec” [,joblist_var])

“Job_Spec” can be:
“user.account”

= “jobname,user.account”

- “@r, “@s”, “@”

e “@J:[jobname,]user.acct” or “@S:[jobname,]user.acct”
wildcarding is supported
use empty jobname (“,”) to select jobs without jobnames
omit jobname to match any jobname

July 18, 2008 HP World 01 81

PINFO function]

nnnnnn

syntax: PINFO (pin, “item” [,status])
where PIN can be a string, “[#P]nnn[.tin]”, or a simple
Iinteger, “0” is “me”
66 unique items: Alive, IPAddr, Parent, Child, Children,
Proctype, WorkGroup, SecondaryThreads,
NumOpenFiles, ProgramName, etc.

status parm is a variable name. If passed, ClI sets status to
PINFO error return - normal CI error handling bypassed

can see non-sensitive data for any user process on system

follows SHOWPROC's rules for sensitive data

2
!i&XYQRQZQ"?

Technology Conference & Expo

July 18, 2008 HP World 01 82

Cl I/O redirection A

July 18, 2008

> name - redirect output from $STDLIST to “name”
“name” will be overwritten if it already exists

file will be saved as “name”;rec=-
256,,v,ascii;disc=10000;TEMP

file name can be MPE or POSIX syntax

>> name - redirect, append output from $STDLIST to “name”
same file attributes for “name” if it is created

< name - redirect input from $STDIN to “name”
“name” must exist (TEMP files looked for before PERM files)

|/0O redirection has no meaning if the command does not do I/0 to
$STDIN or $STDLIST

available on all commands, except:

IF, ELSEIF, SETVAR, CALC, WHILE, COMMENT, SETICW, TELL,
TELLOP, WARN.

7
HPWO 92004

ons and Technology Conference & Expo

HP World '01 83

Cl 1/O redirection (cont) D]

invent

how it works:
ClI ensures the command is not one of the excluded commands

Cl scans the command line looking for <, >, >> followed by a possible
filename (after explicit variable resolution has already occurred)

text inside quotes is excluded from this scan

text inside square brackets is excluded from this scan
filename is opened and “exchanged” for the $STDIN or $STDLIST
after the command completes the redirection is undone

examples:
INPUT varname < filename
ECHO The next answer is: Iresult >>filename
LISTFILE ./@,6 > filename
PURGEACCT myacct <Yesfile
PURGE foo@ ;temp ;noconfirm >$null
ECHO You need to include '<THIS!> too!

July 18, 2008 HP World 01 84

String manipulations

Assume variable X = "ab c;de,,fg;hij=k Imn,op=qr” and 500 iterations for timing tests
Parse out all tokens in a string variable:

setvar j O
while j<=len(x) do
setvar tok word(x, , , j, j*+1)
endwhile 2136 millisecs

OR

setvar j O
while setvar(j, j+1) <= wordcnt(x) do
setvar tok word(x, , j)

endwhile 2298 msecs

OR
setvar j O # fails on null token
while setvar(tok, word(x, , setvar(j, j+1))) <= “” do
endwhile 1686 msecs

July 18, 2008 HP World '01

O |

invent

/
HP, WOR‘IDZOO4

Solutions and Technology Conference & Expo

85

String manipulations (cont) O |

Assume variable X = "ab c;de,,fg;hij=k Imn,op=qr”
Extract the first N tokens from a string var

setvar toks Ift(x, delimpos(x, , N) -1) # includes all token delimiters
OR

setvar j O # original delimiters replaced by single space
setvar toks “”
while setvar(j, j+1) <= N do
setvar toks toks + word(x, , j) + “
endwhile

Extract the last N tokens from a string var

setvar toks rht(x, -delimpos(x, , -N)-1) # includes all token delimiters
OR

setvar j O # original delimiters replaced by single space
setvar toks “”
while setvar(j, j+1) <= N do
setvar toks word(x, , -j) + “ * + toks
endwhile

/
HP, WOR-I-JDZOO4

Solutions and Technology Conference & Expo

July 18, 2008 HP World 01 86

String manipulations (cont)

Assume variable X = "ab c;de,,fg;hij=k Imn,op=qr” and 500 iterations for timing tests

Test for word “hi”” somewhere in a string var
pos(“hi”, x) Is wrong, e.g. “high”, “highest” will also match
word(x, , , , pos(“hi”, x)) = “hi” works correctly

Count tokens in a string var
setvar cnt wordcnt(x)

Remove Nth token from a string var

setvar y Ift(x, delimpos(x, , N-1)) + rht(x, -delimpos(x, , N) -1)
note: removes the right hand delimiter from X after extraction # 526 msecs

OR

setvar y xword(X, , N) # note: same as above # 364 msecs

Remove N consecutive tokens from a string var

assume we are removing tokens 5,6,7 so N=3 and START=5:
setvar y Ift(x, delimpos(x, , START-1)) + rht(x, -delimpos(x, , START+N-1) -1)

2

/
HP, WOR-I-JDZOO4

Solutions and Technology Conference & Expo

July 18, 2008 HP World '01

87

Customize jobs using variables

July 18, 2008

PARM p1l="my value", p2="something*

create a simple job passing parms and variables to the job

setvar testvarl true
setvar testvar2 46
setvar testvar3 "abc“

echo !!job jeff.vance;outclass=,2
echo !!setvar myP1 "lp1"

echo !lsetvar myP2 "lp2"

echo !lsetvar myVarl !testvarl
echo !lsetvar myVar2 !testvar2
echo !lsetvar myVar3 "ltestvar3"
echo !'showvar my@

echo !'eoj

stream tmpjob

HP World '01

>tmpjob

>>tmpjob
>>tmpjob
>>tmpjob
>>tmpjob
>>tmpjob

>>tmpjob
>>tmpjob

=N

P

Solutions an

a
—
=

eCl

\

in

RLD2004

nology Confel

rence & Expo

88

New location (group, CWD)

July 18, 2008

CD script

PARM dir="*~"
setvar d “!dir”
“” means go to prior CWD
if d = *” and bound(save_chdir) then
setvar d save chdir
elseif fsyntax(d) = “MPE” then
iIf finfo(*./”+d, “exists”) then
setvard “./” +d
elseif finfo(*../”+ups(d), “exists”) then
setvar d “../” + ups(d)
elseif finfo(ups(d), “exists”) then
setvar d ups(d)
endif
endif
setvar save_chdir HPFCWD
chdir Id

HP World 01

MPE syntax?
HFS dir?

MPE group?

MPE dir name?

nnnnn

Columnar output A

before: output:

setvar j O a xx bbbbbb xx
while setvar(j,j+1) < 4 do aa xx bbbb xx
setvar a rpt(“a”, j) aaa xx bb xx
setvar b rpt(“b”, (4-)*2)

echo 'a xx b xx

endwhile
after:
while ...
setvar a ; setvar b...same way... a xx bbbbbb xx
echo la ![rpt(* **, 3-len(a))]xx & aa xx bbbb xx
I[rpt(** *“, 6-len(b))] 'b xx aaa xx bb xx
endwhile

July 18, 2008 HP World 01 90

MPE version

July 18, 2008

PARM vers_parm=!hprelversion “Vers” script

react to MPE version string
setvar vers "lvers_parm”
convert to integer, e.g.. "C.65.02" => 6502
setvar vers ![str(vers,3,2) + rht(vers,2)\
If vers >= 7500 then
echo On 7.5!
elseif vers >= 7000 then
echo On 7.0!
elseif vers >= 6500 then
echo On 6.5!
elseif vers >= 6000 then
echo On 6.0!
endif

HP World 01

nnnnnn

INFO= example

July 18, 2008

[

invent

ANYPARM info=![""]
run volutil.pub.sys; info="":!linfo"

-anyrun echo "Hi there!”)
run volutil._pub.sys;info=":echo "Hi there!""

N\

Expected semicolon or carriage return. (CIERR 687)

“anyrun” script

ANYPARM info=![""]
setvar _inf repl(*linfo*, """, """
run volutil.pub.sys;info=":! inf "
.anyrun echo "Hi there!”
Volume Utility A.02.00, (C) Hewlett-Packard Co.,
1987. All Rights...
volutil: :echo "Hi therel!”
"Hi therel”

double up quotes in :RUN

Is this correct now?

HP World 01 92

INFO= example (cont) [

July 18, 2008

invent

ANYPARM info=![""]

setvar _inf anyparm(!info) # note info parm is not quoted
setvar _inf repl(_inf, """, """

run volutil.pub.sys;info=":_linf

-anyrun echo "Hi there, ‘buddy’!”

Volume Utility A.02.00, (C) Hewlett-Packard Co.,
1987. All Rights...

volutil: :-echo "Hi there, “buddy”!”

""Hi there, “buddy’!”

HP World '01 93

Random names 7}

July 18, 2008

invent

PARM varname, minlen=4, maxlen=8

This script returns in the variable specified as "varname™" a random’
name consisting of letters and numbers - cannot start with a number.
At least "minlen™ characters long and not more than "maxlen" chars.

expression for a ‘random’ letter:
setvar letter "chr((hpcpumsecs mod 26) + ord(‘A'))”

expression for a “‘random' number:

setvar number "chr((hpcpumsecs mod 10) + ord('0"))"
first character must be a letter

setvar lvarname !letter

now fill in the rest, must have at least "minlen™ chars , up to "maxlen"
setvari 1
setvar limit min((hpcpumsecs mod !Imaxlen) + !'minlen, !maxlen)
while setvar(i,i+1) <= limit do
if odd(hpcpumsecs) then
setvar !varname lvarname + lletter

else
setvar 'varname !varname + 'number
endif
endwhile
/)
HP WORLD’2004
Solutions and Technology Conference & Expo
HP World '01 94

PRNT - print file based on HPPATH [

invent

PARM filename
This command file prints the first MPE filename found in HPPATH.
setvar _prnt_i O
setvar _prnt_maitch false
while not (_prnt_match) and &
setvar(_prnt_tok,word(“'hppath”,,; *,setvar(_prnt_i,_prnt_i+1)))<>""do
if delimpos(_prnt_tok,"./") <> 1 then
skip HFS path elements, we have an MPE syntax element
setvar prnt_match (finfo("!filename.! prnt_tok",'exists'))
endif
endwhile
if _prnt_match then
setvar _prnt_f fqualify("'!filename.! prnt_tok")
echo ! prnt f
continue
print ! prnt_f,'out ;page=22
else
echo ![ups("!filename™)] was not found in your HPPATH.
endif

July 18, 2008 HP World *01 95

Scan history (redo) stack A

invent

PARM cmdstr entry=main
Script scans the redo stack, from top-of-stack (TOS), backwards towards the
beginning, searching for the 1st cmd line that contains "cmdstr* anywhere.
iIf 'lentry’ = 'main’ then

listredo ;unn >Irtmp

create variables for each command line in the redo stack

xeq !hpfile "lcmdstr entry="listredo’ <Irtmp

scan above variables for first match on "cmdstr

xeq 'hpfile "lcmdstr' entry="match*

match or not?

if _rdo_line ="" then
echo "lcmdstr" not found in history stack.
else

do an interactive command redo feature
echo Edit command line for REDO:
echo ! rdo_line
setvar _rdo_edit input()
while rdo_edit <> "" do
setvar rdo_line edit(_rdo_line, rdo_edit)
echo ! rdo_line
setvar rdo_edit input()
endwhile
execute the command
continue
I rdo_line
endif
deletevar _rdo_@
return

/
HP, WOR‘IDZOO4

Solutions and Technology Conference & Expo

July 18, 2008 HP World 01 96

Scan history stack (cont)]

invent

elseif "lentry* = 'listredo’ then
Fill variable "array" so redo stack can be searched from TOS down.
Input comes from output of LISTREDO ;unn command.
Skip TOS redo line since it invoked this script!
setvar _rdo_x O
setvar _rdo_size finfo(hpstdin,‘eof')-1
while setvar(_rdo_x, rdo_x+1) <= _rdo_size do
setvar rdo_! rdo_Xx input()
endwhile
return

elseif "lentry' = 'match’ then
Find redo entry (now in variable "array") that matches user’s string.
Search from last array element down to the first. Return _rdo_line as
""" for no match, or the matching cmd.
setvar _rdo_txt dwns("!cmdstr")
setvar _rdo_x _rdo_size+1
while setvar(_rdo_x, rdo_x-1) >0 and &
pos(_rdo_txt,dwns(_rdo_![rdo x-1])) =0 do
endwhile
if _rdo_x > 0 then
maitch
setvar _rdo_line _rdo_! rdo_x
else
setvar _rdo_line "
endif
return
endif

/
HP, WOR-I-JDZOO4

Solutions and Technology Conference & Expo

July 18, 2008 HP World 01 97

Scan history stack (cont) A

invent

listredo

1) listf,6

2) Showtime

3) run editor

4) run edit.pub.sys
5) hpedit rem
6) listredo ;unn
7) showjob

8) me

9) spme

10) showproc O
11) listredo

-rdo sys

Edit command line for REDO:
run edit.pub.sys
ihp
run hpedit.pub.sys
HP EDIT HP32656A.02.33 (c) COPYRIGHT Hewlett-Packard Co

July 18, 2008 HP World 01 98

Where is a “command” ? A

July 18, 2008

PARM cmd="*", entry=main
This script finds all occurrences of "cmd" as a UDC, script or program in
HPPATH. Wildcards are supported for UDC, program and command file
names.
Note: a cmd name like "foo.sh™ is treated as a POSIX name, not a qualified
MPE name.
iIf "lentry” = "main" then
errclear
setvar _wh_cmd "lcmd”
if delimpos(_wh_cmd,”/.") = 1 then
echo WHERE requires the POSIX cmd to be unqualified.
return
endif

see if the command could be a UDC (wildcards are supported)

setvar _wh_udc_ok (delimpos(_ wh _cmd,". ") = 0)

see if the command could be an MPE filename (wildcards ok, and

MPE names cannot be qualified at all)

setvar _wh_mpe_ok (delimpos(_ wh_cmd,". ") = 0)

All command values are assumed to be ok as a POSIX filename.

The dash (-) char is excluded above since it could be in a [a-z] pattern

... continued . . .

/
HP, WOR-I-JD2004

Solutions and Technology Conference & Expo

HP World 01 99

Where (cont)]

invent

check for UDCs first
iIf _wh_udc_ok then
continue
showcatalog >whereudc
if cierror = O then
xeq 'hpfile I_wh_cmd entry=process_udcs <whereudc
endif
endif

Now check for command/program files

if word(setvar(_wh_syn,fsyntax(“./”+_wh_cmd))) = “ERROR” then
illegal name, could be a longer UDC name, in any event there
no need to check for command/program files.
deletevar _wh_@
return

endif

setvar _wh_wild pos("WILD", wh_syn) > O

. .. continued . . .

July 18, 2008 HP World 01 100

Where (cont) A

invent

loop through hppath
setvar _wh_i O
—— while setvar(_wh_tok,word(hppath,”,; “,setvar(_wh_i, wh_i+1)))<>"" do
if delimpos(_wh_tok,”/.”) = 1 then
we have a POSIX path element
setvar _wh_tok "!_wh_tok/! wh_cmd”
elseif _wh_mpe_ok then
we have an MPE syntax HPPATH element with an unqualified _tok
setvar _wh_tok "!_wh_cmd.! wh_tok”
endif
errclear
if _wh_wild then
continue
listfile ! _wh_tok,6 >prntlf
elseif finfo(_wh_tok,"exists") then
write to same output file as listfile uses above
echo ![fqualify(_wh_tok)] >prnitlf
else
setvar hpcierr -1
endif
if hpcierr = O then
xeq 'hpfile I_wh_tok entry=process_listf <prntlf
endif
—— endwhile
deletevar _wh_@
return

.. . .continued. . .

/
HP, WOR_I-JD2004

Solutions and Technology Conference & Expo

July 18, 2008 HP World 01 101

Where (cont) A

invent

elseif "lentry" = "process_udcs" then
input redirected from the output of showcatalog
setvar _wh_udcf rtrim(input())
setvar _wh_eof finfo(hpstdin,”eof”) -1
while setvar(_wh_eof, wh_eof-1) >= 0 do
if Ift(setvar(_wh_rec,rtrim(input())),1) = " " then
a UDC command name line
if pmatch(ups(_wh_cmd),setvar(_wh_tok,word(_wh_rec))) then
display: UDC_command_name UDC level UDC_filename
echo ! wh_tok ![rpt(" ",26-len(_wh_tok))] &
I[setvar(_wh_tok2,word(_wh_rec,,-1))+rpt(" ",7-len(_wh_tok2))] &
UDC in ! wh_udcf
endif
else
a UDC filename line
setvar _wh_udcf wh rec
endif
endwhile
return

/
HP, WOR_I-JDZOO4

Solutions and Technology Conference & Expo

July 18, 2008 HP World 01 102

Where (cont) A

July 18, 2008

invent

elseif "lentry" = "process_listf" then
input redirected from the output of listfile,6 or a simple filename
setvar _wh_eof finfo(hpstdin,’eof’)
———while setvar(_wh_eof, wh_eof-1) >= 0 do
setvar _wh_fc "~
if setvar(_wh_fc, finfo(setvar(_wh_tok,ltrim(rtrim(input()))), fmtfcode")) = »~
setvar _wh_fc 'script’
elseif _wh_fc <> 'NMPRG" and _wh_fc <> 'PROG' then
setvar _wh_fc "~
endif
if _wh_fc <> "" and finfo(_wh_tok,"eof') > O then
setvar _wh_Ink “”
if _wh_fc = “script” and finfo(_wh_tok, filetype’) = 'SYMLINK" then
setvar _wh_fc 'symlink’
get target of the symlink
file If 7tmp;msg
continue
listfile | wh_tok,7 >*If7tmp
if hpcierr = O then
discard first 4 records
input _wh_Ink <*If7tmp
input _wh_Ink <*If7tmp
input _wh_Ink <*If7tmp
input _wh_Ink <*If7tmp
input _wh_Ink <*If7tmp
setvar _wh_Ink "-!>" + word(_wh_Ink,,-1)
endif
endif

/
HP, WOR_I-JDZOO4

Solutions and Technology Conference & Expo

HP World 01 103

Where (cont) A

invent

display: qualified_filename file_code or "script" and link if any
echo ! wh_tok ![rpt(" ",max(0,26-len(_wh_tok)))] ! wh_fc &
Hrpt(" ", 7-len(_wh_fc))] ! _wh_Ink

endif
— endwhile
return
endif

:where @sh@

SHOWME USER UDC 1n SYS52801.UDC.SYS

SH SYSTEM UDC in HPPXUDC.PUB.SYS

SH.PUB.VANCE NMPRG

SHOWVOL . PUB . VANCE script

BASHELP .PUB.SYS PROG

HSHELL .PUB.SYS script

PUSH._SCRIPTS.SYS script

RSH.HPBIN.SYS NMPRG

SH.HPBIN.SYS NMPRG

/bin/csh NMPRG

/bin/ksh symlink --> /SYS/HPBIN/SH

/bin/remsh symlink --> /ENM/PUB/REMSH

/bin/rsh symlink --> /SYS/HPBIN/RSH

/bin/sh symlink --> /SYS/HPBIN/SH

D)
HP,WORLD2004
Solutions and Technology Conference & Expo
July 18, 2008 HP World '01 104

Stream UDC - overview

July 18, 2008

[

invent

STREAM
ANYPARM streamparms = 1[*“”’]
OPTION nohelp, recursion

iIf main entry point then
initialize ...
- if “jobg=" not specified then read job file for job “card”
- if still no “jobg=" then read config file matching “[jobname,]user.acct”
- stream job in HPSYSJQ (default) or derived job queue
- clean up
else
alternate entries
separate entry name from remaining arguments

if entry is read_jobcard then read job file looking for “:JOB”,
concatenate
continuation lines (&) and remove user.acct passwords

elseif entry is read_config then
read config file, match on “[jobname,]user.acct”

endif
/
P, WORLD2004
Solutions and Technology Conference & Exp
—/
HP World '01 105

Stream UDC - “main” A

July 18, 2008

comments ...
If "Istreamparms™ = """ or pos("entry=","Istreamparms™) = O
then

main entry point of UDC

setvar _str_jobfile word(*'!streamparms") # extract 1st arg

extract remaining stream parameters
setvar _str_parms ups(&
repl(rht("!streamparms",-delimpos("!streamparms™))," ",""))
if setvar(_str_pos, pos(*;JOBQ=", str_parms)) > O then
setvar _str_jobqg word(_str_parms,,2,, str_pos+5)
endif
if _str_jobq = “” then
no jobg=name in stream command so look at JOB *“card”
STREAM _str_jobcard entry=read_jobcard <! str_jobfile
if setvar(_str_pos,pos(";JOBQ=",_str_jobcard)) > O then
setvar _str_jobqg word(_str_jobcard,,2,, str_pos+5)
endif
endif

/
P, WORLD2004
Solutions and Technology Conference & Exp
—/
HP World '01 106

Stream UDC - “main” (cont) D]

invent

if _str_jobqg =" and finfo(_str_config_file,"exists") then
No jobg=name specified so far so use the config file.
STREAM ![word(_str_jobcard,";")] _str_jobq entry=read_config &
<! str _config_file
If _str_jobqg <> " then
found a match in config file, append jobg name to stream command line
setvar _str_parms _str_parms + ";jobg=! str _jobqg"
endif
endif

i héw finally stream the job.
if _str_jobqg =" then
echo Job file "'!_str_jobfile" streamed in default "HPSYSJQ" job queue.

else
echo Job file ! _str_jobfile" streamed in ™! str_jobq" job queue.
endif
option norecursion
continue

stream ! str jobfile ! str_parms

July 18, 2008 HP World 01 107

Stream UDC - “read jobcard”]

invent

else

alternate entry points for UDC.

setvar _str_entry word("!streamparms"”,,-1)

remove entry=name from parm line

setvar _str_entry _parms
Ift("Istreamparms’,pos(‘entry=","'Istreamparms')-1)

If _str_entry = "read_jobcard" then
Arg 1 is the *name™ of the var to hold all of the JOB card right of "JOB".
Input redirected to the target job file being streamed
Read file until JOB card is found. Return, via argl, this record,
including continuation lines, but less the "JOB" token itself. Remove
all passwords, if any. Skip leading comments in job file.
setvar _str_argl word(_str_entry _parms)
while str(setvar(!_str_argl,ups(input())),2,4) <> "JOB " do
endwhile
remove line numbers, if appropriate
if setvar(_str_numbered, numeric(rht(!_str_argl,8))) then
setvar ! str_argl Ift(! str_argl,len(! str_argl)-8)
endif

/
HP, WORBZO&Og

ons and Technology Conference & Expo

July 18, 2008 HP World 01 108

Stream UDC - “read_jobcard” (cont) A

July 18, 2008

invent

concatenate continuation (&) lines
while rht(setvar(!_str_argl,rtrim(!_str_argl)),1) = '&"' do
remove & and read next input record
setvar ! str_argl Ift(! str_argl,len(! str_argl)-1)+ltrim(rht(input(), -2))
if _str_numbered then
setvar ! str_argl Ift(! str_argl,len(! str _argl)-8
endif
endwhile
remove passwords, if any
while setvar(_str_pos,pos(‘/*,! str_argl)) > 0 do

setvar ! str_argl repl(! str_argl,"/"+word(! str argl,'.,;',,, str pos+1),"
endwhile
return, upshifted, all args right of "JOB", and strip all blanks.
setvar ! str_argl ups(repl(xword(!_str_argl)," ","")
return

HP World 01

")

Stream UDC - “read_config” [

invent

elseif _str_entry = "read _config" then
Arg 1 is the "[jobname,]Juser.acct” name from the job card.
Arg 2 is the *name™ of the var to return the jobQ name if the acct name
Input redirected to the jobQ config file.
setvar _str_argl word(_str_entry_parms," ")
setvar _str_arg2 word(_str_entry _parms,” ",2)
setvar _str_eof finfo (hpstdin, “eof”)

%@.read config file and find [jobname,]Juser.acct match (wildcards are ok)
while setvar(_str_eof , str eof-1) >= O

and &

(setvar(_str_rec,ltrim(rtrim(input()))) = “” or &
Ift(_str_rec,1) = '#' or &
not pmatch(ups(word(_str_rec,,-2)),_str_ua) or &
(pos(*,", str_rec) > O and Ift(_str rec,2) <>'@,” and &
not pmatch(ups(word(_str_rec)),_str_jname))) do

endwhile

if _str_eof >= 0 then
[jobname,]user.acct match, return jobg name
setvar ! str arg2 word(_str_rec,,-1)

endif
return
/
Sol tR smgwlo%gkg)ferez & Ep4
_/

July 18, 2008 HP World 01 110

