Notice

The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability or fitness for a particular purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct, indirect, special, incidental or consequential damages in connection with the furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights reserved. Reproduction, adaptation, or translation without prior written permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Trademark Notice

UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 2000 and 2002 by Hewlett-Packard Company.
1. Introduction

2. Utilities Quick Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Syntax</th>
<th>Operation</th>
<th>Additional Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASOCTBL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUILDACCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUILDINT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLKUTIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEBUG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIRMIG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISCFREE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISCUTIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDIT/3000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

Additional Discussion .. 32
FCOPY .. 33
 Syntax ... 33
 Operation .. 33
 Additional Discussion .. 33
FSCHECK .. 34
 Syntax ... 34
 Operation .. 34
 Additional Discussion .. 34
GENCAT ... 35
 Syntax ... 35
 Operation .. 35
 Additional Discussion .. 35
17DB8CNV .. 36
 Syntax ... 36
 Operation .. 36
 Additional Discussion .. 36
IOMAP .. 37
 Syntax ... 37
 Operation .. 37
 Additional Discussion .. 37
KSAMUTIL ... 38
 Syntax ... 38
 Operation .. 38
 Additional Discussion .. 38
LANGINST ... 39
 Syntax ... 39
 Operation .. 39
 Additional Discussion .. 39
LINK EDITOR/XL .. 40
 Syntax ... 40
 Operation .. 40
 Additional Discussion .. 40
LOGTOOL ... 41
 Syntax ... 41
 Operation .. 41
 Additional Discussion .. 41
MAKECAT .. 42
 Syntax ... 42
 Operation .. 42
 Additional Discussion .. 42
MKNODProgram .. 43
 Usage .. 43
 Operation .. 43
 Additional Discussion .. 43
N7MF8CNV .. 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax</td>
<td>44</td>
</tr>
<tr>
<td>Operation</td>
<td>44</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>44</td>
</tr>
<tr>
<td>NLIOUTIL</td>
<td>45</td>
</tr>
<tr>
<td>Syntax</td>
<td>45</td>
</tr>
<tr>
<td>Operation</td>
<td>45</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>45</td>
</tr>
<tr>
<td>NLUTIL</td>
<td>46</td>
</tr>
<tr>
<td>Syntax</td>
<td>46</td>
</tr>
<tr>
<td>Operation</td>
<td>46</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>46</td>
</tr>
<tr>
<td>NMMGR</td>
<td>47</td>
</tr>
<tr>
<td>Syntax</td>
<td>47</td>
</tr>
<tr>
<td>Operation</td>
<td>47</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>47</td>
</tr>
<tr>
<td>OCA</td>
<td>48</td>
</tr>
<tr>
<td>Syntax</td>
<td>48</td>
</tr>
<tr>
<td>Operation</td>
<td>48</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>48</td>
</tr>
<tr>
<td>OCT</td>
<td>49</td>
</tr>
<tr>
<td>Syntax</td>
<td>49</td>
</tr>
<tr>
<td>Operation</td>
<td>49</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>49</td>
</tr>
<tr>
<td>PATCH</td>
<td>50</td>
</tr>
<tr>
<td>Syntax</td>
<td>50</td>
</tr>
<tr>
<td>Operation</td>
<td>50</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>50</td>
</tr>
<tr>
<td>PXUTIL</td>
<td>51</td>
</tr>
<tr>
<td>Syntax</td>
<td>51</td>
</tr>
<tr>
<td>Operation</td>
<td>51</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>51</td>
</tr>
<tr>
<td>SAINT</td>
<td>52</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>52</td>
</tr>
<tr>
<td>SEGMENTER</td>
<td>53</td>
</tr>
<tr>
<td>Syntax</td>
<td>53</td>
</tr>
<tr>
<td>Operation</td>
<td>53</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>53</td>
</tr>
<tr>
<td>SLPATCH</td>
<td>54</td>
</tr>
<tr>
<td>Syntax</td>
<td>54</td>
</tr>
<tr>
<td>Operation</td>
<td>54</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>54</td>
</tr>
<tr>
<td>SOMPATCH</td>
<td>55</td>
</tr>
<tr>
<td>SORT-MERGE/XL</td>
<td>56</td>
</tr>
<tr>
<td>Syntax</td>
<td>56</td>
</tr>
<tr>
<td>Operation</td>
<td>56</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>56</td>
</tr>
</tbody>
</table>
Contents

SPIFF ... 57
 Syntax .. 57
 Operation .. 57
 Additional Discussion 57
STANDARDS ... 58
 Additional Discussion 58
STORE/RESTORE .. 59
 Syntax .. 59
 Operation .. 59
 Additional Discussion 59
SWITCH ASSIST TOOL ... 60
 Syntax .. 60
 Operation .. 60
 Additional Discussion 60
SYSGEN .. 61
 Syntax .. 61
 Operation .. 61
 Additional Discussion 61
SYSMAP ... 62
 Syntax .. 62
 Operation .. 62
 Additional Discussion 62
TERMDSM ... 63
 Syntax .. 63
 Operation .. 63
 Additional Discussion 63
tic ... 64
 Syntax .. 64
 Operation .. 64
 Additional Discussion 64
TTUTIL ... 65
 Syntax .. 65
 Operation .. 65
 Additional Discussion 65
untic ... 66
 Syntax .. 66
 Operation .. 66
 Additional Discussion 66
V7FF8CNV .. 67
 Syntax .. 67
 Operation .. 67
 Additional Discussion 67
VERSION .. 68
 Syntax .. 68
 Operation .. 68
 Additional Discussion 68
Contents

Saving multiple file sets .. 89
SHOWDEV ... 90
TAPE ... 91
UNCONFIG ... 92
DISCUTIL messages and error handling .. 92

7. EDIT/3000
Operation ... 93
File Definitions .. 96
Additional Discussion .. 96

8. FCOPY
Operation ... 98
"From" and "To" Files ... 98
FCOPY Functions ... 99
Defining Files .. 100
General Guidelines for FCOPY Commands 101
Using FCOPY with KSAM Files ... 102
Additional Discussion .. 102

9. FSCHECK
Operation ... 103
CHECKDIRC [CD] ... 104
CHECKEXTENTS [CE] ... 105
CHECKLABEL [CL] .. 106
CHECKFILE [CF] ... 107
CHECKALL [CA] ... 107
DEBUG ... 108
DISPLAYLABEL [DL] .. 108
DISPLAYEXTENTS [DE] .. 109
DISPLAYLOCKFILE [DLF] ... 109
DO ... 109
EMPTYSLOUGH [ES] ... 110
EXIT [E] .. 111
EXTENTDISTRIB [ED] .. 111
HELP ... 111
LISTREDO .. 112
LOG ... 112
PURGEFILE [PF] ... 113
REDO .. 113
SYNCACCOUNTING [SA] ... 113
TOTALEXTENTS [TE] .. 114
UNLOCKFILE [UF] .. 115
USE .. 115

10. I7DB8CNV
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. LANGINST</td>
<td>120</td>
</tr>
<tr>
<td>Operation</td>
<td>117</td>
</tr>
<tr>
<td>Listing Supported Languages</td>
<td>120</td>
</tr>
<tr>
<td>Adding a Language</td>
<td>120</td>
</tr>
<tr>
<td>Deleting a Language</td>
<td>121</td>
</tr>
<tr>
<td>Modifying Local Formats</td>
<td>121</td>
</tr>
<tr>
<td>Modifying ASCII/EBCDIC Translation Tables</td>
<td>123</td>
</tr>
<tr>
<td>Modifying 16-Bit Asian ASCII/EBCDIC Translation Tables</td>
<td>125</td>
</tr>
<tr>
<td>12. LINK EDITOR/XL</td>
<td>131</td>
</tr>
<tr>
<td>Operation</td>
<td>131</td>
</tr>
<tr>
<td>Commands</td>
<td>132</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>133</td>
</tr>
<tr>
<td>13. LOGTOOL</td>
<td>135</td>
</tr>
<tr>
<td>Operation</td>
<td>135</td>
</tr>
<tr>
<td>COMMAND SUMMARY</td>
<td>137</td>
</tr>
<tr>
<td>Logging system events</td>
<td>138</td>
</tr>
<tr>
<td>14. MKNOD</td>
<td>142</td>
</tr>
<tr>
<td>Operation</td>
<td>142</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>143</td>
</tr>
<tr>
<td>15. N7MF8CNV</td>
<td>145</td>
</tr>
<tr>
<td>Operation</td>
<td>145</td>
</tr>
<tr>
<td>16. NLIOUTIL</td>
<td>147</td>
</tr>
<tr>
<td>Operation</td>
<td>147</td>
</tr>
<tr>
<td>NLIOUTIL Commands</td>
<td>147</td>
</tr>
<tr>
<td>HELP Command</td>
<td>148</td>
</tr>
<tr>
<td>OPEN Command</td>
<td>148</td>
</tr>
<tr>
<td>SHOW Command</td>
<td>149</td>
</tr>
<tr>
<td>SHUT Command</td>
<td>149</td>
</tr>
<tr>
<td>EXIT/END/E Command</td>
<td>149</td>
</tr>
<tr>
<td>Restrictions</td>
<td>149</td>
</tr>
<tr>
<td>17. NLUTIL</td>
<td>151</td>
</tr>
<tr>
<td>Operation</td>
<td>151</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>151</td>
</tr>
<tr>
<td>18. PATCH</td>
<td>153</td>
</tr>
<tr>
<td>Operation</td>
<td>153</td>
</tr>
<tr>
<td>D.</td>
<td>154</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>154</td>
</tr>
<tr>
<td>DG</td>
<td>155</td>
</tr>
<tr>
<td>MG</td>
<td>155</td>
</tr>
<tr>
<td>Additional Discussion</td>
<td>157</td>
</tr>
</tbody>
</table>

19. PXUTIL

<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPDATE</td>
<td>160</td>
</tr>
<tr>
<td>QUIT</td>
<td>160</td>
</tr>
<tr>
<td>EXIT</td>
<td>160</td>
</tr>
<tr>
<td>HELP</td>
<td>160</td>
</tr>
<tr>
<td>Examples</td>
<td>160</td>
</tr>
</tbody>
</table>

20. SAINT

<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boot Image</td>
<td>165</td>
</tr>
<tr>
<td>BUILDPME</td>
<td>166</td>
</tr>
<tr>
<td>EXIT</td>
<td>166</td>
</tr>
<tr>
<td>FINDSYM</td>
<td>166</td>
</tr>
<tr>
<td>HELP</td>
<td>167</td>
</tr>
<tr>
<td>LOADCME</td>
<td>167</td>
</tr>
<tr>
<td>LOADMILLI</td>
<td>167</td>
</tr>
<tr>
<td>LOADSXRT</td>
<td>168</td>
</tr>
<tr>
<td>LOADSYSLIB</td>
<td>168</td>
</tr>
<tr>
<td>MAP</td>
<td>169</td>
</tr>
<tr>
<td>Error Messages</td>
<td>169</td>
</tr>
</tbody>
</table>

21. SLPATCH

<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>174</td>
</tr>
<tr>
<td>M</td>
<td>174</td>
</tr>
<tr>
<td>SLPATCH Example</td>
<td>175</td>
</tr>
<tr>
<td>Additional Information</td>
<td>175</td>
</tr>
</tbody>
</table>

22. SOMPATCH

<table>
<thead>
<tr>
<th>Operation</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive patching</td>
<td>179</td>
</tr>
<tr>
<td>; (semicolon)</td>
<td>180</td>
</tr>
<tr>
<td>BACKOUT</td>
<td>181</td>
</tr>
<tr>
<td>Error Messages</td>
<td>182</td>
</tr>
<tr>
<td>DISPLAY</td>
<td>182</td>
</tr>
<tr>
<td>Error Messages</td>
<td>183</td>
</tr>
<tr>
<td>EXIT</td>
<td>183</td>
</tr>
<tr>
<td>FIND</td>
<td>183</td>
</tr>
<tr>
<td>HELP</td>
<td>184</td>
</tr>
<tr>
<td>LIST</td>
<td>184</td>
</tr>
</tbody>
</table>
Contents

LOG .. 184
Error Messages .. 185
MODIFY .. 185
Error Messages .. 187
OFFSET ... 187
OPEN ... 187
PATCHFILE ... 188
QUIT .. 188
SAVE .. 188
SHOW .. 188
Error Messages .. 189
SOM ... 190
SYMBOL .. 190
Error Message ... 191
USE ... 191
VERSION ... 192

23. SORT-MERGE/XL
Operation .. 195
Using SORT ... 195
Using MERGE .. 195
Additional Discussion 196

24. SPIFF
Operation .. 198
File Definitions ... 199
Additional Discussion 199

25. STANDARDS
The bootstrap ... 201
The initial system loader 202
Stable storage and nonvolatile memory layout ... 202
LIFF standard ... 204
Bootable utility format 207

26. SYSMAP
Operation .. 213
Additional Discussion 213

27. tic
Operation .. 215
Related Information 215

28. TERMDSM
Operation .. 217
Table 4-1. BUILDACCT Processing Options .. 76
Table 7-1. EDIT/3000 Commands ... 94
Table 8-1. FCOPY Functions .. 99
Table 11-1. LANGINST Error Messages ... 127
Table 12-1. Miscellaneous Link Editor/XL Commands 132
Table 12-2. RL Link Editor Commands .. 132
Table 12-3. XL Link Editor Commands .. 133
Table 13-1. LOGTOOL Commands ... 137
Table 13-2. SYSGEN System Logging ... 138
Table 24-1. SPIFF Commands ... 198
Table 25-1. Stable storage format ... 202
Table 25-2. Boot or console path ... 203
Table 25-3. Format of flags ... 203
Table 25-4. Nonvolatile memory ... 203
Table 25-5. PDC and boot area for NVM .. 204
Table 25-6. LIF volume label format ... 206
Table 25-7. LIF addressing ... 207
Table 25-8. Main memory layout .. 210
Table 25-9. Console terminal and boot device configuration 211
Table 25-10. IODC, IPL, and booted utilities offsets 211
Table 32-1. UPSUTIL Commands Summary ... 236
Figure 25-1. LIF Standard Logical Layout .. 205
Figure 25-2. Boot utility format ... 209
Figure 32-1. UPSUTIL Invocation ... 234
Preface

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of forward-compatible operating systems for the HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will encounter references to MPE XL, the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs written for MPE XL will run without change under MPE/iX. You can continue to use MPE XL system documentation, although it may not refer to features added to the operating system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating system for HP 3000s, not based on PA-RISC architecture. MPE V software can be run on the PA-RISC (Series 900) HP 3000s in what is known as compatibility mode.
1 Introduction

MPE/iX utilities are programs that provide a dimension of system management and control that ranges from the required or necessary to the helpful or convenient. As such, they help ensure your success as an HP e3000 computer owner by enabling you to fully utilize the potential of your machine.

This manual approaches utilities in two ways: First, chapter 2 provides a quick reference to the basic operation of each utility. This treatment does not provide in-depth usage detail. Its intent is to give an overview of each utility and instructions on how to get it started. Second, the remaining chapters are in-depth instructions on how to use utilities that are not covered in separate manuals or whose usage, in HP’s judgment, is better served by covering both here, and in a separate manual. Where a utility is covered both here and in a separate manual, the separate coverage is more extensive. The large size and great detail of some utilities prohibit their collective coverage in a single source.

Generally speaking, if you want a quick overview of any particular utility or if you wish to quickly scan all utilities, refer to chapter 2. For example, if you are uncertain that a particular function is covered by a utility you might scan chapter 2. Or, if you know that a utility exists, but need some help remembering what it does or how to start it, you might also refer to chapter 2. For in-depth instructions, see one of the other chapters or the separate reference.
Introduction
This chapter arranges utilities in alphabetical order and provides a quick summary of the basic operation of each one. It does not provide in-depth information.

At the end of each summary, you are told where to find more detailed information. In many cases, you are referred to another chapter in this manual. Where a utility is described in a separate document, however, you are directed toward that source of information.
ASOCTBL

Syntax

ASOCTBL

or

RUN ASOCTBL.PUB.SYS

The system responds with > and you should enter:

> devclass=username.acctname

Operation

Use ASOCTBL to distribute operator commands for specific devices to standard MPE/iX users.

This utility creates a device class/user table in a file called ASOCIATE.PUB.SYS.

Once a user is included in the association table, he or she gains access to the corresponding device class by the use of the ASSOCIATE command. That user then has exclusive access to the operator commands that control that device until the association is terminated by logging off or issuing the DISASSOCIATE command.

Additional Discussion

For more information, refer to Chapter 3, “ASOCTBL,” and to the manual, Controlling System Activity. For more information on the ASSOCIATE and DISASSOCIATE commands, refer to the MPE/iX Commands Reference Manual.
AUTOINST

Syntax

AUTOINST

Operation

Use AUTOINST to restore the information contained on the FOS and SUBSYS tapes, set up the necessary accounting structure and creates a customized system load tape (SLT).

The fundamental operating system (FOS) and subsystem (SUBSYS) tapes contain programs and utilities for performing specific functions such as compiling programs, copying files, or editing text. You must restore these programs, located on tapes provided with MPE iX, before you can use them.

AUTOINST requires minimal intervention beyond mounting the tapes. It issues messages as it performs its tasks. The messages prompt for any necessary intervention and report on the successful completion of the various procedures.

Additional Discussion

For more information, refer to the HP e3000 MPE/iX Installation and Update Manual.
BULDACCT

Syntax

To use BULDACCT interactively, enter:

```
BULDACCT
```

Or, you may invoke BULDACCT and specify options as part of the ;INFO string by entering:

```
BULDACCT;INFO=" ... "
```

Operation

Use BULDACCT to take a snapshot of the directory structure on the source system and recreate it on a destination system. It is especially useful for creating a directory structure on a system without a tape drive where the ;DIRECTORY option of the RESTORE command cannot be used.

BULDACCT also lets you migrate a set of accounts from one volume set to another. This is useful with mirror disks, since they do not allow the system volume set to be mirrored, and it may have accounts that you need moved to a different volume set.

BULDACCT will run only on MPE/iX.

Additional Discussion

For more information, refer to Chapter 4, “BULDACCT.”.
BUILDINT

Syntax

RUN BUILDINT.PUB.SYS

or

BUILDINT

Operation

Use BUILDINT to build or change Compatibility Mode (CM) intrinsic disk files.

BUILDINT accepts SPL procedure head declarations (OPTION EXTERNAL is required) and optional commands as input data. If no commands are issued, the procedure head declarations are added to the intrinsic file. Any input data that is not a procedure head terminates input. At this point, the program prints a formatted list of all intrinsics and terminates.

Additional Discussion

For more information, refer to the Systems Programming Language Reference Manual.
CLKUTIL

Syntax
From the system console:

```
ISL> CLKUTIL
```

Operation
CLKUTIL is a standalone utility that runs only on the physical console at the ISL prompt. It reads and sets the battery-backed-up hardware clock, which should be set to Greenwich Mean Time (GMT). The hardware clock provides the basis for timestamps and time displays that are part of some ISL utilities.

Additional Discussion
For more information, refer to the System Startup, Configuration, and Shutdown Reference Manual.
DEBUG

Syntax

```plaintext
DEBUG

or

RUN PROGNAME;DEBUG
```

Operation

System programmers use DEBUG to set breakpoints within programs and to display and modify data stacks and registers.

To use the DEBUG utility, you must have privileged mode (PM) capability. However, the ;DEBUG option of the RUN command is available to anybody and allows users to debug their applications.

CAUTION

Normal MPE safeguards are bypassed in privileged mode. When attempting to modify privileged data on disk, it is possible to destroy file integrity, or the MPE operating system itself. Hewlett-Packard is **not** responsible for changes that you make to the operating system or system files. For more information, talk to your Hewlett-Packard service representative.

Additional Discussion

DIRMIG

Syntax

 DIRMIG

or

 RUN DIRMIG.PUB.SYS

Operation

Use the directory migration tool (DIRMIG) to simplify the migration of your environment from MPE V/E-based systems to MPE/iX-based systems.

DIRMIG uses an MPE V/E SYSDUMP tape to transport data to MPE/iX. The data includes the system directory (accounting structure), UDCs, user logging IDs, user files and information specifically related to user volumes.

Additional Discussion

For more information refer to the Migration Process Guide.
DISCFREE

Syntax

DISCFREE

or

RUN DISCFREE.PUB.SYS;INFO="[format][,ldev]"

or

DISCFREE "[[format]][,ldev]"

Operation

Use DISCFREE to display information about the system’s free disk space in histogram or allocation formats. It determines disk volume fragmentation and transient and permanent disk space limits. DISCFREE also shows total volume space capacity, as well as disk allocation for single volumes or for the whole system.

DISCFREE displays disk allocation data only for mounted MPE/iX volumes, not scratched or unmounted volumes. (You can use the DSTAT command to identify currently mounted volumes.)

Additional Discussion

For more information, refer to Chapter 5, “DISCFREE,” and the following utilities and commands reference sources:

DISCUTIL

Syntax

 ISL> DISCUTIL

Operation

DISCUTIL is a standalone utility that you can invoke only at the ISL> prompt from the physical console. It lets you request various disk operations when the operating system is not running.

When used in conjunction with the RECOVER command of VOLUTIL, it can save, and subsequently recover, files from a system that is logically inoperable.

Additional Discussion

For more information, refer to Chapter 6, “DISCUTIL,” and to the Volume Management Reference Manual.
DUMP

Syntax

ISL> DUMP

Operation

DUMP is a standalone utility that you can invoke only at the ISL> prompt from the physical console. It takes a snapshot or dump of system memory at a given point in time, which can help HP support personnel to determine the cause of system problems.

You must precede the DUMP command by a non-destructive boot. During the non-destructive boot sequence, the bootstrap software saves the machine's hardware state at the time that the boot was initiated. DUMP then takes control and dumps the processor internal memory, main memory, and all allocated secondary storage marked for dumping.

Additional Discussion

For more information refer to the System Startup, Configuration, and Shutdown Reference Manual.
EDIT/3000

Syntax

EDITOR

Operation

Use EDIT/3000 to create and update ASCII files. The Editor commands allow you to insert, delete, replace, modify, search for, and manipulate characters, strings of characters, or entire lines of characters.

You can run EDIT/3000 in batch mode or interactively.

In an interactive session, you enter commands and text through an interactive terminal. Messages and other output (such as prompt characters) from EDIT/3000 are listed on the terminal.

In batch mode, commands and text are supplied through a batch input medium such as a jobstream or magnetic tape. Messages and output are listed on the standard output device, usually a line printer.

Additional Discussion

For more information EDIT/3000 refer to Chapter 7, “EDIT/3000,” and to the EDIT/3000 Reference Manual.
FCOPY

Syntax

FCOPY FROM=filename;TO=filename[;options]

Operation

Use FCOPY to copy and translate files. The FCOPY command identifies a from file, a to file, and one or more functions that let you convert data, copy files from other systems, append files, extract subsets of files, display binary files in ASCII format, and other tasks.

- A from file is the input file for an FCOPY command; it contains the data that you want to copy.
- A to file is the output file to which you want to copy the data.

Users with SM capabilities can use FCOPY to copy files to MPE accounts outside of their current logon account.

To accommodate the introduction of POSIX in MPE/iX, the FCOPY utility lets you copy files from HFS directories into accounts and groups and into other HFS directories. Users with SM capabilities can use FCOPY to copy files to MPE accounts outside of their logon account.

Keep in mind the following points when using FCOPY to work with HFS files:

- If the from file or to file name begins with an asterisk (*), the file equation can resolve a filename in HFS syntax that begins with a dot(.) or a slash (/).
- If you are copying files to an HFS directory, you must first use the FILE command and specify the filename in HFS syntax
- You cannot use FCOPY to copy directories. If the from file or to file is a directory, you will see an error message.
- You cannot copy compatibility mode (CM) files to HFS directories.

Additional Discussion

For more information, refer to Chapter 8, “FCOPY,” and to the FCOPY Reference Manual.
FSCHECK

Syntax

FSCHECK

Operation

Use the file system check utility ("FCHECK") to detect and repair inconsistencies found in the file directories and file label tables of the MPE/iX operating systems. You also use it to query and display various attributes of these objects. It is a standalone utility and should be the only program running on the system when it is in use.

The FSCHECK utility performs the following functions:

• checks the directory
• checks the label table
• displays the file extent map

The FSCHECK utility also provides consistent MPE/iX subsystem interface, including LISTREDO, REDO, DO, USE, DEBUG, and LOG functionality.

WARNING Do not use this utility without proper service center support. Unauthorized use will void your warranty and may cause data loss!

Additional Discussion

For more information, refer to Chapter 9, “FSCHECK.”
GENCAT

Syntax

RUN GENCAT.PUB.SYS

or

GENCAT

Operation

Use GENCAT to modify a source catalog or to expand a formatted message catalog (for instance, with messages in the user’s native language). It is available to users without any special capabilities.

Additional Discussion

For more information, refer to the Message Catalogs Programmer’s Guide.
I7DB8CNV

Syntax

RUN I7DB8CNV.PUB.SYS

Operation

Use I7DB8CNV to convert the character data in an IMAGE database from any Hewlett-Packard 7-bit national substitution set to ROMAN8. The program is a special version of the program DBLOAD.PUB.SYS, and the conversion is done as part of a database load.

Generally, you run DBUNLOAD.PUB.SYS and DBUTIL.PUB.SYS, ERASE before you run the I7DB8CNV utility.

Additional Discussion

For more information, refer to Chapter 10, “I7DB8CNV.”
IOMAP

Syntax

 ISL> IOMAP

Operation

IOMAP is a standalone utility that you run at the ISL prompt from the physical console. It identifies the actual I/O configuration of the system and its paths and devices. You can also use IOMAP’s self test and loopback diagnostics to test I/O system components.

IOMAP displays processor identification (model, identification, processor board revisions, cache sizes, coprocessors, and main memory) and I/O configuration (paths and components for all cards). You can compare this information to the system configuration information to determine the hardware that is physically available versus the hardware that is configured into the system.

Additional Discussion

For more information, refer to the System Startup, Configuration, and Shutdown Reference Manual.
KSAMUTIL

Syntax

To invoke KSAMUTIL, enter:

RUN KSAMUTIL.PUB.SYS

or

KSAMUTIL

Operation

Use KSAMUTIL to manage compatibility mode KSAM files. With KSAMUTIL commands, you can create a CM KSAM file, rename both the data and key files, save a temporary file as a permanent file, clear all data from a file, purge a file, and verify the contents and access history of an existing file.

KSAMUTIL runs in either session or batch mode. You can issue MPE/iX commands from within KSAMUTIL by preceding the commands with a colon (:). There are seven KSAMUTIL commands for creating and manipulating CM KSAM files and four commands for displaying file information. The file information may be displayed on the terminal or printed.

Additional Discussion

For more information on KSAMUTIL, refer to the KSAM/3000 Reference Manual. For information on managing native mode KSAM files, refer to Using KSAM XL.
LANGINST

Syntax

LANGINST

Operation

Use LANGINST to configure language-specific information onto your HP e3000. Specifically, LANGINST enables you to:

- add a language to the configuration file
- remove a language from the configuration file
- display and modify local formats of a configured language
- display the languages supported by Hewlett-Packard
- display the language currently configured
- modify the system default language

You must log on as MANAGER.SYS to run LANGINST.

Additional Discussion

For more information, refer to Chapter 11, “LANGINST.”
LINK EDITOR/XL

Syntax

 LINKEDIT

or

 RUN LINKEDIT.PUB.SYS;INFO=infostring

Operation

Use Link Editor/XL to prepare native mode (NM) compiled object files for execution on 900 Series HP e3000 computers. Link Editor/XL can also create and maintain relocatable and executable libraries.

To invoke Link Editor/XL for interactive use, enter LINKEDIT at the MPE/iX prompt. Link Editor/XL then displays its command line prompt (LinkEd>) at which you can enter any of the Link Editor/XL commands. To invoke Link Editor/XL and specify an information string, enter a RUN command.

Additional Discussion

For more information refer to the HP Link Editor/ XL Reference Manual.
LOGTOOL

Syntax

SYSDIAG
DUI> RUN LOGTOOL

Operation

Use the system and memory log analysis tool (LOGTOOL) to perform a variety of functions on the system log files.

You use LOGTOOL to manipulate two types of log files: system log files and the memory log file. LOGTOOL is available in multi user mode, but you are required to execute at a diagnostic security level for some functions.

Additional Discussion

For more information, refer to the Precision Architecture: HP e3000/9xx & HP 9000/8xx Online Diagnostics Subsystem Utilities Manual.
MAKECAT

Syntax

RUN MAKECAT.PUB.SYS

Operation

Use MAKECAT to maintain the following message catalogs:

- CATALOG.PUB.SYS, which contains system error messages
- CICAT.PUB.SYS, which contains the Help catalog
- User-defined catalogs for various applications

Additional Discussion

For more information, refer to the Message Catalogs Programmer’s Guide.
MKNODProgram

Usage

mknod "name c|p major minor [link_name]"

Operation

Use `MKNOD` to create special files in a traditional UNIX format of major and minor numbers. When creating a device link or streams file (character-type file), you must enter both the major and minor numbers. If you enter a major number of 0, `MKNOD` creates a device link file that defaults to the LDEV number specified in the minor number argument. Entering a major number greater than 0 creates a streams file.

Additional Discussion

For more information on streams and device link files, refer to the `HPDEVCREATE` intrinsic in the `MPE/IX Intrinsics Reference Manual`.
N7MF8CNV

Syntax

N7MF8CNV

or

RUN N7MF8CNV.PUB.SYS

Operation

Use N7MF8CNV to convert data in EDIT/XL and other MPE text and data files from a Hewlett-Packard 7-bit national substitution character to ROMAN8. N7MF8CNV prompts you for language and a file type of text or data. For each data file, N7MF8CNV prompt you for the starting position and length of each field (portion of a record) to be converted. (For a text file, each record is converted as one field.)

Additional Discussion

For more information, refer to Chapter 15, “N7MF8CNV,” and to the Native Language Programmer’s Guide.
NLIOUTIL

Syntax

NLIOUTIL

or

RUN NLIOUTIL.PUB.SYS;INFO=infostring

Operation

Use NLIOUTIL to dynamically activate the Native Language I/O (NLIO) subsystem for Asian and Middle East/African (MEA) peripheral devices (terminals and printers). NLIO is the basic input and output system integrated into the operating system for Native Language Support (NLS).

Once activated by NLIOUTIL, properly configured native devices may use the Native Language I/O facility.

Additional Discussion

For more information, refer to Chapter 16, “NLIOUTIL.”

For more information on SYSGEN, refer to the System Startup, Configuration, and Shutdown Reference Manual.

For more information on NMMGR, refer to Configuring Systems for Terminals, Printers, and Other Serial Devices.
NLUTIL

Syntax

NLUTIL

or

RUN NLUTIL.PUB.SYS

Operation

NLUTIL is a utility program used to verify a variety of Native Language Support (NLS) languages and corresponding character sets available on the operating system. A complete listing may be selected to print on the system printer.

NLUTIL allows the user to display a table showing the currently configured languages and their character set types.

Additional Discussion

For more information, refer to Chapter 17, “NLUTIL.”

A detailed discussion on Native Language Support is contained in the Native Language Programmer's Guide.
NMMGR

Syntax

NMMGR

Operation

Use the Node Management Services Configuration manager to configure your HP 3000's data communications subsystems.

Additional Discussion

For more information refer to the following publications: NS3000/ XL Network Manager's Reference Manual and the NS3000/ XL NMMGR Screens Reference Manual.
Use the object code analyzer to detect migration incompatibilities in compatibility mode applications. You use the output of this tool to formulate a migration plan. When run on MPE/iX systems, it identifies incompatibilities that would prevent the movement of applications from compatibility mode to native mode. OCA is also available on MPE V/E systems as a component of the migration tool set.

Additional Discussion

For more information, refer to the Migration Process Guide.
OCT

Syntax

OCTOMP

Operation

Use the object code translator to convert compatibility mode (CM) object code to HP Precision Architecture (PA-RISC) instructions for increased performance. With OCT, you can create a new file with translated object code, translate only selected segments of the object code, or add translated segments to another file.

OCT translates most CM instructions into HP precision architecture instructions and appends them to the end of the destination file. The resulting file can be executed on either an MPE-V/E based system or an MPE/iX-based system. The effort involved in using OCT is less than recompiling but, as in recompiling, you should retest the application to verify proper execution.

Additional Discussion

For more information, refer to the Migration Process Guide and to the Introduction to MPE XL for MPE V Programmers.
PATCH

Syntax

PATCH

or

RUN PATCH.PUB.SYS

Operation

Use PATCH to access, display, and/or modify a program file's object code without recompiling the program. You can make simple changes to program instructions or to global stack area variables on compatibility mode programs.

PATCH requires the memory location of the target program symbols, the beginning locations of each program unit, and the offsets for each line of code from these locations. This data may be gathered in a number of ways depending on the source language of the program.

PATCH supports four subcommands (D, M, DG, and MG) to display the code segment contents, to modify the code segment contents, to display the global area of the initial stack, and to modify the global area of the initial stack. PATCH can bypass normal MPE/iX safeguards and modify the contents of privileged program files.

CAUTION

PATCH bypasses normal MPE/iX safeguards and modifies the contents of privileged program files. It is, therefore, possible to corrupt system file(s) or the entire operating system. Hewlett-Packard is not responsible for modifications that you make to the operating system or system files. For more information, contact your Hewlett-Packard service representative.

Additional Discussion

For more information, refer to Chapter 18, “PATCH.”
PXUTIL

Syntax

```
RUN PXUTIL.PUB.SYS
```

Operation

Use PXUTIL to manage the UID/GID databases. The PXUTIL utility requires exclusive access to the databases. This means that any command that needs to modify these files (such as NEWACCT, ALTUSER, and so on) fails during PXUTIL operations. For this reason, no activities that access the databases (NEWACCT, ALTACCT, PURGEACCT, LISTACCT, NEWUSER, ALTUSER, PURGEUSER, LISTUSER, and logon commands) should be attempted on the system while PXUTIL is running.

You must have SM capability to run PXUTIL.

Additional Discussion

For more information, refer to Chapter 18, “PATCH.”
SAINT

SAINT is a standalone initialization utility that you use to analyze system libraries (that contain system object modules, or SOMs) to produce bootable images. A bootable image is a file that can be copied directly to memory and executed without modification.

SAINT primarily depends on the system library file for input. The format of the library file is defined in the SOM Architecture Control Document.

WARNING Do not use this utility without service center support. Unauthorized use will void your warranty and may cause data loss.

Additional Discussion

For more information, refer to Chapter 20, “SAINT.”
SEGMENTER

Syntax

SEGMENTER

Operation

Use SEGMENTER to manage and prepare compatibility mode code segments.

Invoked directly with the SEGMENTER command, SEGMENTER lets you manage code segments in USLs (user subprogram libraries), RLSs (relocatable libraries) and SLs (segmented libraries), including the ability to group RBMs (relocatable binary modules) into code segments. Invoked indirectly (at prep time) SEGMENTER lets you define run-time parameters (using PREP parameters) and to group compatibility mode program statements into RBMs and code segments (using source program statements).

Additional Discussion

For more information, refer to the MPE Segmenter Reference Manual and to the HP Link Editor/ XL Reference Manual.
SLPATCH

Syntax

 SLPATCH

or

 RUN SLPATCH.PUB.SYS

Operation

Use SLPATCH to display or modify the contents of a segmented library (SL) file.

CAUTION

SLPATCH bypasses normal MPE/iX safeguards and will modify the contents of privileged SLs. It is, therefore, possible to corrupt the SL or the entire operating system. Hewlett-Packard is not responsible for modifications that you make to the operating system or system files. For more information, contact your Hewlett-Packard service representative.

Before using this utility, you should be familiar with machine-executable instructions and the internal format of segmented library files in the HP e3000 system environment.

Additional Discussion

For more information, refer to Chapter 21, “SLPATCH,” and to the MPE Segmenter Reference Manual.
SOMPATCH

Use SOMPATCH for binary modification (or patching) of a native mode spectrum object module (SOM) program or library file.

WARNING Do not use this utility without service center support. Unauthorized use will void your warranty and may cause data loss.
SORT-MERGE/XL

Syntax

\[
\text{SORT} \quad \text{MERGE} \\
\text{or} \\ \\
\text{RUN \ SORT.PUB.SYS} \quad \text{RUN \ MERGE.PUB.SYS}
\]

Operation

Use \text{SORT} to sort files based on single-key or multiple-key items. Use \text{MERGE} to merge data from two or more sorted files into a single, new file.

SORT-MERGE/XL operates as a standalone utility (either interactively or in batch mode), or from within a program. You can use SORT-MERGE/XL to sort or merge data in various ways. Some sequences that you might choose as the basis for sorting or merging data are:

- alphabetically in either an ascending or descending order
- numerically in either an ascending or descending order
- alphabetically or numerically based on a single key data items
- alphabetically or numerically based on multiple key data items
- define a unique collating sequence for your application
- merge two or more sorted files into a new merged file

Additional Discussion

For more information, refer to the Chapter 23, “SORT-MERGE/XL,” in this book and to SORT-MERGE/XL General User’s Guide.

SPIFF

Syntax

SPIFF

Operation

Use the Native Mode Spooler Interface Facility to list, manipulate, and transfer spooled device files (spoolfiles) that are created and maintained by MPE/iX. SPIFF is the MPE/iX replacement for the MPE compatibility mode SPOOK5 program.

Additional Discussion

STANDARDS

The system bootstrap, initial program load (IPL) and initial system load (ISL) standard provides a standard interface through which any Hewlett-Packard Precision Architecture (PA-RISC) computer can boot any operating system. The standard also provides a common user interface for booting PA-RISC systems.

WARNING The use of this information without service center support will void your warranty and may cause data loss.

Additional Discussion

For more information, refer to Chapter 25, “STANDARDS.”
STORE/RESTORE

Syntax

To invoke STORE enter:

\[\text{STORE fileset[;parameters]} \]

To invoke RESTORE enter:

\[\text{RESTORE storfile[;parameters]} \]

Operation

Use STORE/RESTORE to store and restore one or more files and directories to and from tape. It has special options that allow you to store files for backup, transport, or archival purposes.

For example, to store all files in all groups in the MFG account, enter:

\[
\text{FILE T;DEV=TAPE} \\
\text{STORE @.@.MFG;*T;SHOW}
\]

The system issues a file equation with your logon user name as the formal file designator. You can implicitly use that file equation by omitting a file reference in your STORE command. For example:

\[
\text{STORE @.@.MFG;;SHOW}
\]

To restore all files in all groups in the MFG account, enter:

\[
\text{FILE T;DEV=TAPE} \\
\text{RESTORE *T;@.@.MFG;SHOW}
\]

You may implicitly reference the system-generated file equation by omitting the *T. You must retain the semicolon as a placeholder, however.

Additional Discussion

For more information, refer to Performing System Manager Tasks and the MPE/iX Commands Reference Manual.
SWITCH ASSIST TOOL

Syntax

 SWAT

or

 RUN SWAT.PUB.SYS

Operation

Use the switch assist tool (SWAT) to simplify the process of implementing an application that has modules written both in native and compatibility modes.

SWAT takes input from the user and generates output in the form of PASCAL/XL source code.

Additional Discussion

For more information, refer to Switch Programming Guide.
SYSGEN

Syntax

SYSGEN

Operation

Use SYSGEN to modify your system configuration. It consists of a global module and four configurator modules:

- The IO configurator, for configuring local devices
- The LOG configurator, for configuring user and system logging processes
- The MISC configurator, for configuring limits on system resources, jobs and sessions
- The SYSFILE configurator, for changing system libraries, programs and message catalogs

The changes you make with SYSGEN are written to disk or to tape, and only take effect when you restart the system.

Additional Discussion

For more information, refer to the System Startup, Configuration, and Shutdown Reference Manual and to Performing System Manager Tasks.
SYSMAP

Syntax

SYSDIAG
DUI> RUN SYSMAP
ENTER MAP>

Operation

Use SYSMAP to display the hardware configuration of a system. It displays the device type, product number, logical device number (LDEV) and device address of I/O devices, and the CPU and memory boards.

SYSMAP is part of the online diagnostics subsystem. To use SYSMAP, you start the diagnostic subsystem by entering SYSDIAG and, at the DUI> prompt, enter the command RUN SYSMAP. You then choose one of three basic map options:

- CPUMAP, to get information about the cpu
- MEMMAP, to get information about the size, location and other information about system memory
- IOMAP, to get general I/O configuration information, information about a specific device class, or information about devices on or below a specific physical address

Additional Discussion

For more information, refer to Chapter 26, “SYSMAP,” and to the Precision Architecture: HP 3000/ 9xx & HP 9000/ 8xx Online Diagnostics Subsystem Utilities Manual.
TERMDSM

Syntax

SYSDIAG
DUI > RUN TERMDSM

Operation

Use TERMDSM to diagnose, dump, and reset logical devices, ports, and data communications and terminal controllers (DTCs). You also use it to check the status of ports and DTCs.

Additional Discussion

For more information, refer to Troubleshooting Terminal, Printer, and Serial Device Connections.
tic

Syntax

tic.hpbin.sys[-v[n]]-c file

Operation

Use the tic utility to compile source terminfo descriptions.

tic installs the compiled entry under the /usr/lib/terminfo directory hierarchy, unless you set the TERMINFO environment variable, in which case it places results in the directory it points to instead. Entries are stored in directories that match the first character of their name. The entry for the VT-100 terminal, for example, is stored in /usr/lib/terminfo/v/vt100.

Additional Discussion

For more information, refer to Chapter 27, “tic.”
TTUTIL

Syntax

RUN TTUTIL.PUB.SYS

or

TTUTIL

Operation

Use TTUTIL to create, view and modify an existing terminal or printer type file. You can modify characteristics of serial port connections such as flow control, modem control, printer control and character handling. To do so, you enter the terminal or printer type file name and then specify a function.

Additional Discussion

For more information on TTUTIL, refer to Customizing Terminal and Printer Type Files with Workstation Configurator.
untic

Syntax

untic.hpbin.sys[term]

Operation

Use untic to decompile a terminfo binary file into its source format.

If a TERMINFO environment variable is set, the untic utility searches the specified directory; otherwise, untic assumes the file is in the directory /usr/lib/terminfo. The output of an untic decompile is sent to the standard output.

Additional Discussion

For more information, refer to Chapter 29, “untic.”
V7FF8CNV

Syntax

V7FF8CNV

or

RUN V7FF8CNV.PUB.SYS

Operation

Use V7FF8CNV to convert text and literals in VPLUS/XL forms files from a Hewlett-Packard 7-bit national substitution character set to ROMAN8.

Additional Discussion

For more information, refer to Chapter 30, “V7FF8CNV.”
VERSION

Syntax

VERSION

or

VERSION filename

or

VERSION "filename [,search string]"

Where

file(s) File(s) is the name of a program file or a wild carded file set.

search string Search string is the name of a particular $version string in a system object module (SOM) (Not applicable for CM program files.) Quotes are required if a search string is specified.

Operation

Use VERSION to display information about compatibility mode and native mode files.

- For compatibility mode (CM) program files, VERSION displays segment, stack, data reference base, and capability information.
- For native mode (NM) executable files, VERSION displays information on procedures, libraries, capabilities, stack, heap, entry names, and $version strings.
- For NM object files and nonexecutable library files, VERSION displays $version strings.

VERSION expects a file name or a wild carded file set as input. If you invoke VERSION without entering a file name or a file set, the VERSION> prompt appears. VERSION continues to prompt you for input until you enter EXIT or a colon (:).

If the input is a file set, VERSION processes every file in the set even if an error occurs during processing. If there is an error opening a file, you will see the file system error in addition to the VERSION error message.

Additional Discussion

For more information, refer to Chapter 31, “VERSION.” For more information on the $version strings found in the SOM, refer to the HP Pascal Programmer’s Guide.
VOLUTIL

Syntax

VOLUTIL
volutil> command name

or

RUN VOLUTIL.PUB.SYS
volutil> command name

Operation

Use VOLUTIL to manage and maintain individual volumes, volume sets, and volume classes and to make inquiries about their contents, availability, and status.

VOLUTIL commands are organized into four groups, based on the object they manipulate. All commands that control sets end with SET; those that control classes end with CLASS; the commands that control volumes end with VOL; and the last group consists of miscellaneous commands.

You can use any MPE/iX system command from within VOLUTIL by first entering a colon (:), then the command.

Additional Discussion

For more information, refer to the Volume Management Reference Manual.
3 ASOCTBL

The ASOCTBL utility lets users with SM or OP capability distribute operator commands for specific devices to other system users. It creates an association table in ASOCIATE.PUB.SYS, where the users are identified with the device classes that they may associate.

Once a user is included in the association table, he or she can use the ASSOCIATE command to gain access to the corresponding device class. While a device class is under a user’s control, status messages for the devices in that class appear on the user’s $STDLIST device, and not on the system console. That user continues to have exclusive access to the operator commands that control that device until the user terminates the association by logging off or by issuing the DISASSOCIATE command.

Operation

To invoke ASOCTBL enter:

 ASOCTBL

or

 RUN ASOCTBL.PUB.SYS

The system responds with a > prompt and you should enter the following:

 > devclass= username.acctname

Parameters

devclass The name of a logical device class configured with SYSGEN or NMMGR. When you specify a device class, all devices assigned to that class are affected by the ASSOCIATE command.

username The name assigned to the user by the Account Manager. It must contain from one to eight alphanumeric characters, beginning with an alphabetic character. The username parameter may be replaced by @ to indicate all users. For example, username.@ enables all users of the specified name in any account.

acctname The name created by the System Manager to identify the account. It must contain from one to eight alphanumeric characters, beginning with an alphabetic character. The acctname parameter may be replaced by @ to indicate all accounts. For example, username.@ enables all users of the specified name in any account.

@.@ Enables all users in all accounts.

ASOCTBL expects input from an ASCII file or a terminal. If data is read from a file, the formal file designator is INPUT. ASOCTBL reads the input file until it finds an end-of-file (EOF) indicator or a statement beginning with EXIT in column 1. When ASOCTBL finds errors in the INPUT file, it scans remaining data and then terminates without updating ASOCIATE.PUB.SYS.

If a file equation for INPUT does not exist, ASOCTBL prompts for input from the terminal.

You may not use a text editor to directly modify the ASOCIATE file.
Using ASOCTBL with an ASCII File

To run ASOCTBL with an ASCII file you must first create the file using a text editor such as EDIT3000. For example, in the following ASCII file the users and accounts, MGR.MNFG, USER.UTILITY and JACK.MRKTG will be able to associate with LP, TAPE and LP2 respectively.

```
EDITOR
/ADD
  1  LP = MGR.MNFG
  2  TAPE = USER.UTILITY
  3  LP2 = JACK.MRKTG
  4  EXIT
  5  //
/KEEP ASOTFILE,UNN
/E
```

Once you have created the file and named it, you must use it in a file equation and then invoke the file. To continue the preceding example, you would enter:

```
FILE INPUT=ASOTFILE
ASOCTBL
```

ASOCTBL displays the devices and the users specified in the ASCII file ASOTFILE.

Using ASOCTBL Interactively

To use ASOCTBL interactively enter:

```
ASOCTBL
```

At the ASOCTBL prompt, enter devices and the user names you want to associate. For example:

```
> LP = MGR.MNFG
> TAPE = USER.UTILITY
> LP2 = JACK.MRKTG
```

To terminate ASOCTBL, enter:

```
> EXIT
```

Using Wildcards in User and Account Names

You may use wildcards to specify an association for a group of users, such as those using the same account. For example, the command below associates all users logged onto the FINANCE account, and the user JACK logged onto any account with the device class LP:

```
ASOCTBL
> LP = @.FINANCE,JACK.@
> EXIT
```

In this example user JACK.MRKTG, all users logged onto the FINANCE account, and the user JACK logged onto any account may associate with device class LP.

Removing Entries from ASOCIATE.PUB.SYS

ASOCTBL builds a new version of ASOCIATE.PUB.SYS each time it is invoked and successfully terminates. Therefore, to remove entries invoke ASOCTBL and specify only the the entries you currently want.
Listing the Association Table

To list the association table in ASOCIATE.PUB.SYS (users and the devices to which they may associate) enter:

```
RUN ASOCTBL.PUB.SYS, LIST
```

Fatal Errors

The following error messages indicate a condition where no modifications are made to the association table. Although you may continue to make inputs to the system without damage, you should exit from ASOCTBL and begin again.

- UNABLE TO DELETE OLD 'ASOCIATE.PUB.SYS' FILE
- EXPECTED AT LEAST 3 PARAMETERS, LDEV = USER.ACCT = MUST FOLLOW LDEV
- UNABLE TO OPEN INPUT FILE
- CLASS NAMES ARE LIMITED TO 8 CHARACTERS
- NO SUCH CLASS IN THIS SYSTEM
- EXPECTED . FOLLOWING USER NAME
- UNABLE TO OPEN NEW ASOCIATE.PUB.SYS FILE
- EXPECTED , FOLLOWING EACH USER.ACCT
- USER AND ACCOUNT NAMES ARE
 1 TO 8 ALPHANUMERIC CHARACTERS
 OR ".".

Additional Discussion

For more information refer to Controlling System Activity. For more information on the ASSOCIATE and DISASSOCIATE commands refer to MPE/iX Commands Reference Manual.
ASOCTBL
Operation
4 BULDACCT

The BULDACCT utility lets users with SM capability take a snapshot of the directory structure on a source system running MPE/iX and recreate it on a different destination system. It is especially useful for creating a directory structure on a system without a tape drive where the ;DIRECTORY option of the RESTORE command cannot be used.

BULDACCT also lets you migrate a set of accounts from one volume set to another. This is useful with mirror disks, since they do not allow the system volume set to be mirrored, and it may have accounts that you need moved to a different volume set.

BULDACCT has been enhanced to support the hierarchical file system of MPE/iX. As the default, BULDACCT automatically saves all accounts, groups, users, hierarchical directories and the ACDs associated with the directories. However, if BULDACCT detects that the operating system does not support POSIX, it does not look for any hierarchical directories.

In addition, three new options have been added to BULDACCT: %NODIRS%, %ROOT% and %NOROOT%. These options let you control the migration of root and non-root hierarchical directories when using BULDACCT. Each option is explained in the "Operation" section.
To invoke BULDACCT and use the utility interactively, enter:

```
BULDACCT
```

The utility responds with the BULDACCT: prompt, where you enter options from the list shown in Table 4-1. You may use a maximum of 80 characters in the command line.

Or, you may invoke BULDACCT and enter options when you issue the command, like this:

```
BULDACCT; INFO=" ... "
```

In this format, you insert options from the list shown in Table 4-1 in the ; INFO string. You may use a maximum of 240 characters.

The processing options for the BULDACCT utility are shown in Table 4-1. The capital letters denote keywords and the lower case letters denote user selected names.

Table 4-1 BULDACCT Processing Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%HELP</td>
<td>displays detailed information about the options</td>
</tr>
<tr>
<td>%QUIT</td>
<td>quits the interactive prompt</td>
</tr>
<tr>
<td>[acct_list]%NODIRS</td>
<td>prohibits migration of any hierarchical directories to BULDJOB1</td>
</tr>
<tr>
<td>[acct_list]%ROOT</td>
<td>migrates hierarchical directories immediately under ROOT ("/")</td>
</tr>
<tr>
<td>[acct_list]%NOROOT</td>
<td>prohibits migration of the ROOT hierarchical directories to BULDJOB1</td>
</tr>
<tr>
<td>acct_list%VSACCT=user_set</td>
<td>migrates accounts and groups to the user_set volume set</td>
</tr>
<tr>
<td>acct_list%VS=user_set</td>
<td>migrates only the groups to the user_set volume set</td>
</tr>
<tr>
<td>acct_list%UV[=user_set]</td>
<td>selects accounts with at least one group on any non-system volume set</td>
</tr>
<tr>
<td>acct_list%FROMVS=home _volume_set_name</td>
<td>specifies account list with the home volume set as a selection criteria</td>
</tr>
</tbody>
</table>

The BULDACCT utility produces two job files: BULDJOB1 and BULDJOB2, which you use in the following way:

- To create users, hierarchical directories, groups and accounts on the destination system, move BULDJOB1 to that system and stream it.
- To create user-defined command files (UDCs) on the destination system, first move all of the files using the STORE and RESTORE commands (or, if the destination system is on a network, you can directly copy the UDC files.) Then, to set system, account and user level UDC's, move BULDJOB2 to the destination system and stream it.

BULDACCT always creates two files, BULDJOB1 and BULDJOB2, even if only one is needed.
CAUTION If the destination system already contains user, group or account names that existed on the source system, BULDJOB1 will change their attributes to match those of the source system. If the destination system already contains hierarchical directories that existed on the source system, BULDJOB1 will change the ACDs to match the source system.

Recreating the complete directory structure

To recreate the entire directory structure of the source system and set all system, account, and user level UDCs, enter:

BULDACCT

To create the new directory on the destination system enter:

STREAM BULDJOB1

If you wish to reset UDC's, use the :RESTORE command to restore UDC files and then enter:

STREAM BULDJOB2

Recreating selected accounts on a new system

You may specify a selected list of accounts in the accounts list portion of the ;INFO string. For example, to select all those accounts beginning with S and all those accounts ending with P enter:

RUN BULDACCT;INFO="S@,@P"

Then to create the new directory entries on the destination system, enter:

STREAM BULDJOB1

Migrating root and hierarchical directories

When BULDACCT is processing individual accounts or a subset of "all accounts" ("@"), it does not process any hierarchical directories directly under ROOT ("/"). It only processes the hierarchical directories within each of the specified accounts For example, the following command processes all groups, users and hierarchical directories in accounts GYPSY1 and GYPSY2:

RUN BULDACCT; INFO="GYPSY1,GYPSY2"

To prevent BULDACCT from picking up any hierarchical directories, use the %NODIRS option. To prevent BULDACCT from picking up any hierarchical directories under ROOT ("/"), use the %NOROOT option. If you use both ROOT and %NOROOT, %NOROOT has precedence.

Migrating a specific account to a non-system volume set

To migrate a selected set of accounts to a non-system volume set use the VSACCT option of BULDACCT. In this example the source computer and destination computer are the same. The basic BULDACCT syntax is:

RUN BULDACCT;INFO="[acct_list]%VSACCT=user_vol_set"

In this example acct_list is the list of accounts to be migrated. The default account list is @ or all accounts; user_vol_set must be a valid volume set name.

The following is a sample of the exact steps you would use to migrate an account called GYPSY to a non-system volume set called target_vol_set.
1. Log on as manager.sys and store all the files in the selected account:

 STORE @.@.GYPSY;;SHOW

2. Run BULDACCT with the VSACCT option to create job files BULDJOB1 and BULDJOB2:

 RUN BULDACCT;INFO="GYPSY%VSACCT=target_vol_set"

3. Close system level UDC’s residing in the GYPSY account (if any):

 SETCATALOG udc_file;SYSTEM;DELETE

4. Remove the account from its existing location and make sure there is not a GYPSY account on your target_vol_set:

 PURGEACCT GYPSY
 PURGEACCT GYPSY;ONVS=target_vol_set

5. Rebuild the account, group and user directory structure for target_vol_set:

 STREAM BULDJOB1

6. Restore all GYPSY account files, making sure that the files whose creators have been purged are also restored:

 RESTORE ;@.@.@;SHOW;VOLSET=target_vol_set;CREATE=CREATOR
 (You may wish to add ;OLDDATE to this command to preserve the modify, access and create dates.)

7. Reset all user and account level UDC’s:

 STREAM BULDJOB2

8. If a system level UDC was uncataloged in step 3 then set it again:

 SETCATALOG udc_file;SYSTEM;APPEND

Migrating groups to a non-system volume set

If a given account already exists on a non-system volume set, you may use the VS option to migrate groups of that account to that volume set. The basic BULDACCT syntax is:

 RUN BULDACCT;INFO="[acct_list]%VS=user_vol_set"

The following is an example of the exact steps you would use to migrate the groups in the GYPSY account from one volume set (system or non-system) to a user (non-system) volume set called target_vol_set:

1. Logon as manager.sys and store all the files in the GYPSY account:

 STORE @.@.GYPSY;;SHOW

2. Issue the BULDACCT command with the VS option:

 RUN BULDACCT;INFO="GYPSY%VS=target_vol_set"

3. Unset system level UDC’s in the GYPSY account:

 SETCATALOG udc_file;SYSTEM;DELETE

4. Remove the GYPSY account from the system volume set:

 PURGEACCT GYPSY

5. Rebuild the directory structure for target_vol_set:

 STREAM BULDJOB1
6. Restore files to the GYPSY account; making sure that the files whose creators have been purged are also restored.

 \texttt{RESTORE \seed{.\seed{.\seed{;SHOW;VOLSET=target_vol_set;CREATE=CREATOR}}}}

 (You may wish to add \texttt{;OLDDATE} to this command to preserve the \textit{modify}, \textit{access} and \textit{create} dates.)

7. Reset all user/account level UDC’s:

 \texttt{STREAM BULDJOB2}

8. If a system level UDC was unset in step 3 reset it:

 \texttt{SETCATALOG udc_file;SYSTEM;APPEND}

Qualifying the account list

You can use the \texttt{FROMVS} option of the \texttt{BULDACCT} utility to specify the account list on particular volume sets. For example, to dump the directory information of all the listed accounts that have at least one group on \texttt{home_volume_set_name}, enter:

\texttt{:RUN BULDACCT: INFO=\"account_list \%FROMVS=home_volume_set_name\"}

A minimum of one group linkage is required since the build account program does the scanning on the system volume set. To select all accounts on the system that have a group on some volume set, you can substitute a wild card (@) for part or all of the account list.

The complete information to rebuild the accounts, groups and users on the system, as well as the specified volume set, is dumped in the job scripts. If you want to migrate these accounts to a different volume set, use the \texttt{VSACCT} option in conjunction with the \texttt{FROMVS} option. For example, to select all the accounts which have at least one group with \texttt{HOMEVS=home_volset} and dump information to rebuild these accounts with \texttt{ALL} their groups on the target volset, enter:

\texttt{:RUN BULDACCT: INFO=\@ \%FROMVS=home_volset \%VSACCT=target_volset}

You may use the \texttt{UV} option to select only those accounts which have at least one group on any user (non-system) volume set. For example:

\texttt{RUN BULDACCT;INFO=\[acct_list\]%UV=user_vol_set} \texttt{\=user_vol_set} is optional. If omitted, \texttt{BULDJOB1} will create the directory structure in the \textit{system} domain of the destination system. If \texttt{user_vol_set} is included, \texttt{BULDJOB1} will create the directory structure in the \textit{non-system} domain of the destination system. In either case, \texttt{BULDACCT} selects only those accounts on the source system which have a group on a user (non-system) volume set.

For example, in the following command, the account \texttt{GYPSY1} has groups on a user volume, whereas \texttt{GYPSY2} does not. As a result, when you stream \texttt{BULDJOB1}, it will create the directory only for \texttt{GYPSY1}.

\texttt{RUN BULDACCT;INFO=\”GYPSY1,GYPSY2\%UV=user_vol_set\”}

If, in the preceding example, you omit \texttt{=user_vol_set}, \texttt{BULDJOB1} would create the directory structure for \texttt{GYPSY1} in the \textit{system} domain. Since \texttt{=user_vol_set} is included, \texttt{BULDJOB1} creates the directory structure for \texttt{GYPSY1} in the \textit{non-system} domain on volume set \texttt{user_vol_set}.

Getting help

To get information about the \texttt{BULDACCT} utility, you can:

- Issue the \texttt{BULDACCT} command (without the \texttt{;INFO} string) and, at the prompt, enter \texttt{%HELP}
- Enter \texttt{%HELP} in the \texttt{;INFO} string as follows:
RUN BULDACCT; INFO="HELP"
Use the DISCFREE utility to display information about disk volume fragmentation and the allocation of transient and permanent space on the disk. DISCFREE also shows total volume space capacity, as well as disk allocation for single volumes or for the whole system.

Transient space refers to temporary, fluctuating volume space. Permanent space is volume space set aside for job/session temporary files, permanent disk files, and operating system directories and other data.

DISCFREE displays disk allocation data only for mounted MPE/iX volumes, and not for unmounted or scratched volumes. (If necessary, use the DSTAT command to identify currently mounted volumes.)
Operation

To invoke DISCFREE enter:

```plaintext
DISCFREE
```

or

```plaintext
RUN DISCFREE.PUB.SYS;INFO="[format][,ldev]"
```

or

```plaintext
DISCFREE "[format][,ldev]"
```

where

- **format** is the specified display type. The default is A.
- **ldev** specifies a particular system volume. The default is no ldev, causing all volumes to be displayed.

If you do not specify either of the parameters, DISCFREE prompts for them. If you enter **format** but not **ldev**, DISCFREE reports on all logical disk devices. To report on a particular volume, enter the name of the volume set. For example, to display information about the volume USER_VOL_SET, you would enter:

```plaintext
RUN DISCFREE.PUB.SYS;INFO=",,USER_VOL_SET"
```

The format values you can specify are:

- **A** A histogram showing numbers of blocks by size categories.
- **B** Shows transient and free space allocations in sectors.
- **C** Shows transient and free space allocations in percentage of total device capacity.
- **D** Shows disk allocation summary in sectors.
- **E** Shows disk allocation summary in percentage of total space.

Displaying the histogram

To display a histogram for **ldev** 1 only enter:

```plaintext
DISCFREE "A,1"
```

To display the histogram for all disk devices enter:

```plaintext
DISCFREE "A"
```

Or, you may enter the DISCFREE command (without any options) and, at the prompt, enter only the format and ldev or only the format. For example:

```plaintext
Enter [<format>][,<ldev>] : "A,1"
```

```plaintext
Enter [<format>][,<ldev>] : "A"
```

Displaying the allocation summary

To display the allocation summary as a percent of total space on all logical disk devices, enter:
DISCFREE "C"

If you omit quotation marks, the default is the specified format for all devices.

DISCFREE displays the following information:

- **DEVICE SIZE**: The capacity, in sectors, of the device.
- **TRANS SPACE**: The number of sectors currently allocated for transient space. Transient space is used for objects which are not permanent files, such as stacks, heaps and system tables.
- **MAX TRANS SPACE**: An upper limit on the number of sectors that may be allocated for transient space. TRANS SPACE should not exceed this number although it may if the percentage of MAX TRANS SPACE space is lowered using VOLUTIL.
- **FREE SPACE**: The amount of space on a device currently not used for transient or permanent space. Space available for use.
- **AVAIL TO TRANS SPACE**: The amount of space on the device currently available for use as transient space. The difference between MAX TRANS SPACE and TRANS SPACE. If this difference exceeds the amount of FREE SPACE, DISCFREE displays the amount of FREE SPACE.
- **PERM SPACE**: The number of sectors currently allocated for permanent space. User and system files use permanent space.
- **MAX PERM SPACE**: An upper limit on the number of sectors that may be allocated for permanent space. PERM SPACE should not exceed this number although it may if the percentage of MAX PERM SPACE space is lowered using VOLUTIL, or if enough space is consumed by files brought in during an UPDATE.
- **AVAIL TO PERM SPACE**: The amount of space on the device currently available for use as permanent space. The difference between MAX PERM SPACE and PERM SPACE.

AVAIL TO TRANS SPACE and AVAIL TO PERM SPACE may be negative values. For example, if TRANS SPACE exceeded MAX TRANS SPACE, AVAIL TO TRANS SPACE would be negative. This could occur if VOLUTIL were used to change the maximum percentage of MAX TRANS SPACE to a level lower than currently used for TRANS SPACE. Also, if enough permanent space is used by files brought in during an UPDATE, PERM SPACE may exceed MAX PERM SPACE, which would make AVAIL TO PERM SPACE a negative number.

Additional Discussion

For more information on the general topic of disk volumes refer to Volume Management Reference Manual. For more information on the DSTAT command refer to MPE/iX Commands Reference Manual.
6 DISCUTIL

DISCUTIL is a standalone utility that lets you perform various disk operations without the operating system. It is particularly important when you need to move files to tape from disks on a system that is logically inoperable, such as one with directory damage. (Once you have done so, you then use the RECOVER option of the VOLUTIL utility on this tape to move the files back onto disk.)

You start the utility by entering DISCUTIL at the Initial System Load (ISL) prompt from the system console. (You may not use DISCUTIL at another terminal.) Once DISCUTIL is loaded and running, the operating system is not available.

Operation

You may invoke DISCUTIL only from the ISL> prompt. To display the ISL> prompt and start the utility, perform these steps:

1. Initiate a soft reset of the system by entering CTRL B.
2. At the CM> prompt, enter the following command to start the autoboot process:

 RS ENTER

3. When you see the message TO OVERRIDE, PRESS ANY KEY WITHIN 10 SECONDS, press RTN immediately.
4. When you see the message Interact with IPL (Y or N)?, enter Y. The system displays the ISL> prompt.
5. To start DISCUTIL, enter:

 ISL> DISCUTIL

 The DISCUTIL banner will appear followed by the discutil> prompt.

NOTE To see other utilities available before the system is started enter LS at the ISL> prompt.

DISCUTIL Commands

At the discutil> prompt, you may enter any of the following commands:

- **CONFIGURE** Configures additional devices. (The system console, all disks that were mounted at the time of the failure, and the tape drive are configured by default.)
- **DISMOUNT** Dismounts a disk volume making it inaccessible to DISCUTIL.
- **DO** Reexecutes a command in the command history stack.
- **DSTAT** Displays information about each mounted volume.
- **EXIT** Terminates DISCUTIL and reboots the system.
- **HELP** Lists available commands.
- **LISTREDO** Displays the command history stack.
The remainder of this chapter describes each of the commands. Remember that these commands, though they may appear similar to MPE/iX commands or the commands used with other utilities, operate only as described here.

CONFIGURE

The `CONFIGURE` command is used to dynamically add or configure new/additional devices into the current configuration. You may access only configured devices with `DISCUTIL`.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOUNT</td>
<td>Mounts a disk volume making it accessible to <code>DISCUTIL</code>.</td>
</tr>
<tr>
<td>PDEV</td>
<td>Lists the disks that are currently configured and mounted.</td>
</tr>
<tr>
<td>REDO</td>
<td>Modifies and reexecutes a command from the command history stack.</td>
</tr>
<tr>
<td>SAVE</td>
<td>Saves user-specified files from disks to tape.</td>
</tr>
<tr>
<td>SHOWDEV</td>
<td>Displays information about each configured device.</td>
</tr>
<tr>
<td>TAPE</td>
<td>Displays and selects the current tape <code>ldev</code>.</td>
</tr>
<tr>
<td>UNCONFIG</td>
<td>Unconfigures currently configured devices.</td>
</tr>
</tbody>
</table>

To invoke the `CONFIGURE` command enter:

```
  discutil>CONFIGURE [LDEV=]ldev 
            [CLASS=]devclass [PATH=]path
```

For example:

```
  discutil>CONFIGURE 21 DISC 6/4.0.0
```

DISMOUNT

Use the `DISMOUNT` command to logically dismount a volume. This command removes the volume entry corresponding to the specified `ldev` from `DISCUTIL`'s mounted volume table, thus making it inaccessible to `DISCUTIL`. After a volume has been logically dismounted, the media or disk pack on the corresponding `ldev` can be spun down, new media mounted and spun up, then logically mounted with the `MOUNT` command. `DISCUTIL` will then recognize the new media.

To invoke the `DISMOUNT` command enter:

```
  discutil>DISMOUNT [LDEV=]ldev
```

For example:

```
  discutil>DISMOUNT 4
```

DO

Use the `DO` command to re-execute a command from the command history stack/queue.

To invoke `DO` enter:
Chapter 6

DISCUTIL

Operation

```
  discutil> DO [ [CMD=]cmdid]

For example, to re-execute the fifth command, enter:
  discutil> DO 5

DSTAT

Use this command to display information about each mounted volume (i.e., any volume that is currently
listed in the mounted volume table). To invoke DSTAT enter:
  discutil>DSTAT

DSTAT displays the ldev on which the volume is mounted, the type ID of the device, the type (STATUS) of the
volume, the volume name, and the physical path as shown in the example below:

<table>
<thead>
<tr>
<th>LDEV-TYPE</th>
<th>STATUS</th>
<th>VOLUME ( VOLUME SET-GEN )</th>
<th>PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-079350</td>
<td>MASTER</td>
<td>MPEXL_SYSTEM_VOLUME_SET:MEMBER1</td>
<td>8.0.0</td>
</tr>
<tr>
<td>2-079350</td>
<td>MEMBER</td>
<td>MPEXL_SYSTEM_VOLUME_SET:MEMBER2</td>
<td>8.0.1</td>
</tr>
<tr>
<td>3-079350</td>
<td>MEMBER</td>
<td>MPEXL_SYSTEM_VOLUME_SET:MEMBER3</td>
<td>8.0.2</td>
</tr>
<tr>
<td>14-079350</td>
<td>MASTER</td>
<td>OFFICIAL:MASTER</td>
<td>8.0.4</td>
</tr>
</tbody>
</table>

EXIT

Use the EXIT command to terminate DISCUTIL and automatically begin a system reboot. To exit DISCUTIL enter:
  discutil>EXIT

When the ISL> prompt reappears, you may use the START command to restart your system or choose another
standalone utility. (To see a list of the utilities available to you, enter LS.)

HELP

Use this command to get online help text for DISCUTIL commands. If you specify a command name HELP
displays text for that command. If you don't specify a command, you will see a list of all available commands
and their syntax.

To invoke HELP enter:
  discutil>HELP [ [CMD=] cmdname]

For example, to see a list of all commands and their syntax, enter:
  discutil>HELP

Or, to see information about the MOUNT command, enter:
  :HELP MOUNT

LISTREDO

Use this command to display the command line history stack/queue, ordered from the least to the most recent
command with absolute command reference numbers preceding each command. Use LISTREDO in conjunction
with the DO command to reissue commands you previously entered.

To invoke LISTREDO enter:
  discutil>LISTREDO
```
MOUNT

The **MOUNT** command is used to mount an unmounted volume. If the `ldev` represents a disk and if the device is responding, **DISCUTIL** will attempt to mount the volume. Only **MASTER** or **MEMBER** volumes can be mounted. Once mounted, a volume becomes available to **DISCUTIL** and is added to its mounted volume table. The `ldev` must be configured prior to mounting a volume on it.

To invoke **MOUNT** enter:

```
discutil> MOUNT [LDEV=]ldev
```

For example:

```
discutil> MOUNT 4
```

PDEV

The **PDEV** command displays the volume set name, volume number, and physical device path for all the disks known to **DISCUTIL**. All disks that are configured successfully, either at invocation or by the **CONFIGURE** command, are known to **DISCUTIL**. **DISCUTIL** reads the mounted volume table and uses the table information to configure the disks listed in the table.

The volume number is the volume’s number in a volume set. For example, in a volume set of three volumes, each volume is given a number from one to three. This allows you to determine if you have all volumes of a volume set configured.

To invoke **PDEV** enter:

```
discutil> PDEV
```

The system responds with a display similar to:

```
CURRENT DEVICE CONFIGURATION:

LDEV : 1
  VOLUME SET NAME : MPEXL_SYSTEM_VOLUME_SET
  VOLUME NUMBER   : 1
  PATH            : 2/4.0.0

LDEV : 21
  VOLUME SET NAME : ACCOUNTING_VOL_SET
  VOLUME NUMBER   : 1
  PATH            : 6/4.0.0

LDEV : 22
  VOLUME SET NAME : ACCOUNTING_VOL_SET
  VOLUME NUMBER   : 2
  PATH            : 6/4.0.1
```

REDO

Use **REDO** to modify and re-execute a command in the command history stack.

To invoke **REDO** enter:

```
discutil> REDO [ [CMD=]cmd]
```

For example:

```
discutil> REDO 5
```
This command would re-execute the fifth command entered after allowing you to modify it.
To re-execute the last command entered enter:

```
discutil>REDO
```

SAVE

Use **SAVE** to retrieve files from disk and copy them to magnetic tape. You might use **SAVE** after a system failure, when a directory has been corrupted, or when a disk becomes inaccessible to the operating system.

If the volume label or the label table extent blocks are corrupt, **SAVE** will stop retrieving files from that disk and move onto the next.

Saving one set of files

You can tell **DISCUTIL** which files you want to copy to tape. The file(s) must reside on a disk that was mounted manually or during the startup of **DISCUTIL**.

To specify which files you want to save with **DISCUTIL**, do the following:

1. At the **discutil>** prompt, enter the **SAVE** command.
2. At the **ENTER FILE SET TO BE SAVED** prompt, specify the files you want copied using either MPE or HFS syntax. You can replace any part of the file set specification with @ to indicate all members of the set.
3. At the prompt **TRAVERSE DIRECTORIES UNDER FILESET (Y/N)**, press **RETURN** to not save any hierarchical directories.
4. At the prompt **ENTER THE LDEV**, press **return** to tell the system to search all logical disk devices for the files. To search a single disk, enter its LDEV number.
5. At the prompt **ENTER THE VOLUME SET NAME**, press **RETURN** to search all disks. To search one set, specify the set.
6. At the prompt **ENTER THE MODIFICATION DATE (MM/DD/YYYY)**, enter a date to save only those files in the file set that have been modified on or since a certain date.
7. At the prompt **ENTER THE TAPE LDEV**, enter the LDEV number of the tape drive on which you want to store the files.

DISCUTIL searches the label tables of all ldevs specified for the indicated file(s). Each time a file is found, and when the file is successfully written to tape, it prints a message. You may also see other messages indicating that an error has occurred while **DISCUTIL** was saving a file.

If the end of a tape is reached before the procedure is complete, **DISCUTIL** will prompt you to mount a new tape. Once you have done so, **SAVE** continues until all specified files are copied. At that point, the **ENTER FILE SET TO BE SAVED** prompt appears again so that you may specify additional files sets.

NOTE

Do not manually rewind the tapes. **DISCUTIL** will do this automatically when it has properly finished the process.

Saving multiple file sets

To save multiple sets of files, do the following:

1. Specify the first file set you want saved, answering each of the questions **DISCUTIL** asks. Refer to the preceding set of steps for information.
2. When you see the \texttt{ENTER FILE SET TO BE SAVED} prompt for the second time, press \texttt{RETURN} to complete the first tape set and rewind the tape.

3. At the \texttt{discutil>} prompt, enter the \texttt{SAVE} command again. (This begins the save procedure for the next file set.)

The following is a short sample of the interaction between a user and \texttt{DISCUTIL} during \texttt{SAVE}:

\begin{verbatim}
discutil>SAVE

***************************** WARNING!!! *****************************
**** MANUALLY REWINDING THE TAPE DRIVE AND STARTING A NEW TAPESET ****
**** BEFORE THE CURRENT SAVE COMMAND IS COMPLETE WILL CAUSE FILES ****
**** TO BE LOST!!! TYPE (Return) at "ENTER FILE SET TO BE SAVED:" ****
**** to complete the SAVE properly. SEE HELP "SAVE". ****
**

ENTER FILE SET TO BE SAVED: \texttt{MYFILE}.\texttt{JOHN}.\texttt{SMITH}

TRAVERE DIRECTORIES UNDER FILESET (Y/N)? \texttt{n}

ENTER THE LDEV: \texttt{3}

ENTER THE MODIFICATION DATE (MM/DD/YYYY): \texttt{05/25/1994}

ENTER THE TAPE LDEV: \texttt{7}

\texttt{MYFILE}.\texttt{JOHN}.\texttt{SMITH} - LDEV 3 - ADDR $0002CA0 - FOUND
\texttt{MYFILE}.\texttt{JOHN}.\texttt{SMITH} - LDEV 3 - ADDR $0002CA0 - SAVED

***************************** WARNING!!! *****************************
**** MANUALLY REWINDING THE TAPE DRIVE AND STARTING A NEW TAPESET ****
**** BEFORE THE CURRENT SAVE COMMAND IS COMPLETE WILL CAUSE FILES ****
**** TO BE LOST!!! TYPE (Return) at "ENTER FILE SET TO BE SAVED:" ****
**** to complete the SAVE properly. SEE HELP "SAVE". ****
**

ENTER FILE SET TO BE SAVED:

SHOWDEV

The \texttt{SHOWDEV} command displays information about each device that is currently in the system configuration. For each configured device, the device's \texttt{ldev}, \texttt{class}, and \texttt{physical} are displayed.

To invoke \texttt{SHOWDEV} enter:

\begin{verbatim}
discutil>SHOWDEV
\end{verbatim}

The system responds with a display similar to the following:

\begin{verbatim}
1 DISC 2/4.0.0
3 DISC 2/4.0.2
7 TAPE 6/4.3.0
20 TERMINAL 2/4.1.0
21 DISC 6/4.0.0
25 DISC 2/8.0.0
\end{verbatim}
TAPE

Use the `TAPE` command to display the `ldev` number of the current tape or to specify a new current tape. If the `ldev` parameter is omitted, the current tape `ldev` is displayed. If the `ldev` parameter is supplied, that `ldev` will become the new tape `ldev`. The `ldev` must have been configured as a tape.

To invoke `TAPE` enter:

```
discutil>TAPE [ [LDEV=]ldev]
```
For example, to see the current tape drive enter:

`discutil>TAPE`

To assign a logical device number as the current tape drive enter:

`discutil>TAPE 7`

UNCONFIG

Use the `UNCONFIG` command to remove a device from the system's configuration. This frees or releases the corresponding `ldev` and physical path, making them available for reassignment with the `CONFIGURE` command.

To invoke `UNCONFIG` enter:

`discutil>UNCONFIG [LDEV=] ldev`

For example:

`discutil>UNCONFIG 14`

DISCUTIL messages and error handling

DISCUTIL displays three types of messages:

- information messages, which inform the operator about the status of DISCUTIL.
- warning messages, which generally occur when the operator has made an error during data input. Warning messages begin with `WARNING`.
- error messages, which tell the Operator which errors DISCUTIL has encountered; typically, device errors. Error messages begin with `ERROR`.

If a tape error occurs you must re-enter all file sets when prompted for a new tape unless the file sets were entered while a previous tape was mounted. If the tape error occurred while a previous tape was mounted, DISCUTIL will automatically resave all files on the bad tape.

If an end-of-tape (EOT) is encountered in the middle of a file during DISCUTIL activity, the break in the file will be placed on a page boundary. If a tape write error occurs, DISCUTIL saves all files on the corrupt tape to a new tape. If part of that corrupt file is on the previous tape, the whole file is written to the new tape. Two end-of-file (EOF) marks are written to the tape any time DISCUTIL cannot save the entire file on a tape. VOLUTIL RECOVER is sensitive to this message and aborts that file's recovery at a double EOF before continuing.

Additional Discussion

For more information on the RECOVER command of VOLUTIL refer to the Volume Management Reference Manual.

For more information on resetting the system refer to the System Startup, Configuration, and Shutdown Reference Manual.
7 EDIT/3000

The EDIT/3000 text editor lets you create and edit ASCII files. Specifically, you may insert, delete, replace, modify and search for characters and strings of characters. You may run EDIT/3000 in either of two modes, interactive or batch.

In an interactive session, you enter commands and text from an interactive terminal. Messages and other output (such as prompt characters) from EDIT/3000 are listed on the terminal.

In batch mode, commands and text records are supplied through a batch input medium such as a jobstream or magnetic tape. Messages and output from EDIT/3000 are listed on the standard output device, usually a line printer.

Operation

To invoke EDIT/3000 enter in interactive mode, enter:

```
EDITOR
```

The system responds with a message similar to the one below and displays the EDIT/3000 prompt, awaiting your commands:

```
HP32201A.07.17 EDIT/3000 Mon, Mar 28, 1994, 3:19 PM
(C) HEWLETT-PACKARD CO. 1985
/
```

For example, to create a new *work* file, you issue the `ADD` command and enter data. After the data is entered you use the `KEEP` command to save it as a permanent file. For example:

```
/ADD
  1
  .
  .
  .
  100 //
/KEEP filename,unn
```

To modify an existing file, use the `TEXT` command to open it in EDIT/3000, make the necessary modifications, and then use the `KEEP` command to save it. For example:

```
/TEXT FILE1
  .
  .
/KEEP FILE1
FILE1 ALREADY EXISTS - RESPOND YES TO PURGE OLD AND KEEP NEW
PURGE OLD? yes
```
Below is a summary of commands you may use with EDIT/3000.

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Enters text into the WORK file from the standard input device and/or from the HOLD file.</td>
</tr>
<tr>
<td>BEGIN</td>
<td>Used as the first expression in a BEGIN-END pair.</td>
</tr>
<tr>
<td>CHANGE</td>
<td>Changes existing contents of the WORK file.</td>
</tr>
<tr>
<td>COPY</td>
<td>Copies text from one location to another in the WORK file.</td>
</tr>
<tr>
<td>DELETE</td>
<td>Deletes characters and/or lines from the WORK file.</td>
</tr>
<tr>
<td>END</td>
<td>Terminates EDIT/3000 operation. Or, when used with a matching BEGIN command, terminates a BEGIN-END pair.</td>
</tr>
<tr>
<td>FIND</td>
<td>Finds a specific position or a character string in the WORK file.</td>
</tr>
<tr>
<td>GATHER</td>
<td>Moves portions of text from one location to another in the WORK file and renumbers the lines. (The text is deleted from its original location.) Also can be used to renumber all lines in the WORK file.</td>
</tr>
<tr>
<td>HOLD</td>
<td>Copies part or all of the WORK file into the HOLD file for subsequent recopying into one or more locations of the WORK file.</td>
</tr>
<tr>
<td>INSERT</td>
<td>Inserts text into the WORK file from the INPUT file or from the HOLD file at a specific position.</td>
</tr>
<tr>
<td>JOIN</td>
<td>Copies all or part of the JOIN file to the WORK file.</td>
</tr>
<tr>
<td>KEEP</td>
<td>Saves all or part of the WORK file into an MPE/iX file.</td>
</tr>
<tr>
<td>LIST</td>
<td>Lists all or part of the WORK file to the OUTPUT file or to any other specified file.</td>
</tr>
<tr>
<td>MODIFY</td>
<td>Modifies text in the WORK file using one or more subcommands (DELETE, INSERT and REPLACE) of the MODIFY command.</td>
</tr>
<tr>
<td>NOT</td>
<td>Reverses a flag after executing the command immediately following the NOT command.</td>
</tr>
<tr>
<td>OR</td>
<td>Sets the flag true, or skips the OR command and the command immediately following it if the flag is already true.</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>Calls and executes a procedure previously written and stored in a segmented library (SL) file.</td>
</tr>
<tr>
<td>Q</td>
<td>Displays a user-defined message at the terminal.</td>
</tr>
<tr>
<td>REPLACE</td>
<td>Replaces one or more lines in the WORK file with new text from the standard input file or from the HOLD file.</td>
</tr>
<tr>
<td>SET</td>
<td>Alters EDIT/3000 default operating criteria.</td>
</tr>
</tbody>
</table>
EDIT/3000 Commands (Continued)

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEXT</td>
<td>Copies the contents of a TEXT file into the WORK file, deleting the current WORK file contents.</td>
</tr>
<tr>
<td>USE</td>
<td>Instructs EDIT/3000 to receive commands from the USE file and to send messages to the OUTPUT file and, generally, to expect input from the INPUT file.</td>
</tr>
<tr>
<td>VERIFY</td>
<td>Reports the current EDIT/3000 operating conditions declared in a SET command, or the default conditions not declared in a SET command.</td>
</tr>
<tr>
<td>WHILE</td>
<td>Causes EDIT/3000 to repeat commands in a predefined command block.</td>
</tr>
<tr>
<td>XPLAIN</td>
<td>Lists an explanation of all or part of the EDIT/3000 commands.</td>
</tr>
<tr>
<td>YES</td>
<td>Sets a flag for a WHILE command block true.</td>
</tr>
<tr>
<td>Z::= or Z</td>
<td>Assigns the value of a character string variable to Z::= and uses that value whenever Z:: appears as a part or all of a command.</td>
</tr>
<tr>
<td>:</td>
<td>Instructs EDIT/3000 to pass the rest of the record to MPE/iX.</td>
</tr>
</tbody>
</table>
File Definitions

INPUT
Used to enter commands and text records to `EDIT/3000`. Generally, this file is a terminal in interactive mode and a batch input device in batch mode. `EDITIN` is the formal file designator.

OUTPUT
Receives messages (and prompt characters in interactive sessions). Generally this file is a terminal in interactive mode and a line printer in batch mode. `EDITOUT` is the formal file designator.

WORK
Contains the information to be modified. When a file is created and text is added, or when an external file is copied into the `EDIT/3000` subsystem for modification, the text is written into the `WORK` file and all modifications are performed on it. The `WORK` file may be saved under a new file name or to an existing file.

TEXT
An existing ASCII file copied into the `WORK` file with the **TEXT** command.

JOIN
All or a portion of an external file which is copied into the `WORK` file with the **JOIN** command. The information can be inserted into the `WORK` file at any point. The contents of the existing **JOIN** file are not altered by the **JOIN** command.

HOLD
A temporary file that is generally used for holding interim information.

USE
An external user file containing `EDIT/3000` commands and, optionally, text records which is called with a **USE** command. When a **USE** command is issued, all commands are read from the **USE** file and any `EDIT/3000` messages are sent to the **OUTPUT** file.

Additional Discussion

For more information refer to the `EDIT/3000 Reference Manual`.
8 FCOPY

You use the FCOPY utility to copy and translate files. The FCOPY command identifies a from file, a to file, and one or more FCOPY functions. Some of the functions you may perform include:

- converting data
- copying files from other systems
- appending files
- extracting subsets of files
- displaying binary files in ASCII format
- copying byte-stream files

A from file is the input file for an FCOPY command; it contains the data you want to copy. A to file is the output file to which you want to copy the data. They are the only two options that you must specify.

To accommodate the introduction of POSIX in MPE/iX, the FCOPY utility lets you copy files from HFS directories into accounts and groups and into other HFS directories. Users with SM capabilities can use FCOPY to copy files to MPE accounts outside of their logon account.

Keep in mind the following points when using FCOPY to work with HFS files:

- If the from file or to file name begins with an asterisk (*), the file equation can resolve a filename in HFS syntax that begins with a dot(.) or a slash (/).
- If you are copying files to an HFS directory, you must first use the FILE command and specify the file name in HFS syntax.
- You cannot use FCOPY to copy directories. If the from file or to file is a directory, you will see an error message.
- You cannot copy compatibility mode (CM) files to HFS directories.
Operation

To invoke FCOPY enter:

```
FCOPY FROM=input file;TO=output file;functions
```

For example, to create a new disk file (in exactly the same format as another file) use the `NEW` parameter:

```
> FROM=OLDFILE;TO=NEWFILE;NEW
```

To copy a subset of one file to another enter:

```
> FCOPY FROM=FILEONE;TO=FILETWO;SUBSET=29:33
```

In this example `FCOPY` copies the 30th through 34th records. You specify `;SUBSET=29:33` because `FCOPY` sees the first record in a file as record number 0.

To copy a tape created in EBCDIC format in an IBM environment with a label of `VOL 000001,IBM` you would enter the following:

```
FILE T;DEV=TAPE;LABEL=000001,IBM;REC=-132,20,F,ASCII
FILE HPFILE;REC=-132,1,F,ASCII;DISC=12000
FCOPY FROM=*T;TO=*HPFILE;NEW;EBCDICIN
```

Be sure the parameters in the file equations (blocking factor, record size, etc.) are correct.

To copy a file to your terminal screen in hexadecimal format enter:

```
FCOPY FROM=FILEONE;TO=;HEX
```

If you specify `;TO=` without anything after it the default is the `$STDLIST` device.

"From" and "To" Files

A **from** file is the input file for an `FCOPY` command; it contains the data you want to copy. A **to** file is the output file to which you want to copy the data.

Identify a **from** file for an `FCOPY` command with the `FROM` parameter. `FROM` has the following format:

```
[={fromfile}]
FROM [=(*   )]
[={<empty>}]
```

The value you assign to `FROM` can be either an input file name (`fromfile`), an asterisk (`*`), or nothing at all (`<empty>`). An asterisk backreferences the fromfile named in a file equation. Leaving `FROM` empty lets you use your terminal (or a spoolfile during a job) as the input file.

In the example below, the `FROM` parameter describes an input file named `input` for an `FCOPY` command.

```
FROM=input
```

Specify a **to** file with the `TO` parameter. `TO` has the following format:

```
[={tofile   }]
;TO [=(*   )]
[={<empty   >}]
```

The value that you assign to `TO` can be either the name of the output file (`tofile`), an asterisk (`*`), or nothing at all (`<empty>`). An asterisk backreferences a file named in a file equation. Leaving `TO` empty lets you copy files to the `$STDLIST` device.
The example below describes an output file name outfile for an FCOPY command.

;TO=outfile

FCOPY Functions

In addition to specifying input and output files in an FCOPY command, you also describe the FCOPY functions that you want to perform. Each function has its own syntax and guidelines for its use. The NEW function, for example, lets you create a new disk file. An example of an FCOPY command using the NEW function is:

```
FCOPY
>FROM=oldfile;TO=newfile;NEW
```

The table below lists FCOPY functions and their descriptions in alphabetical order.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCDICIN</td>
<td>Translates from BCDIC to ASCII.</td>
</tr>
<tr>
<td>BCDICOUT</td>
<td>Translates from ASCII to BCDIC.</td>
</tr>
<tr>
<td>CCTL</td>
<td>Designates the first character of each record as a carriage control character in the “to” file.</td>
</tr>
<tr>
<td>CHAR</td>
<td>Displays the contents of a file as ASCII characters.</td>
</tr>
<tr>
<td>CLEAR</td>
<td>Displays the contents of a file as character codes.</td>
</tr>
<tr>
<td>COMPARE</td>
<td>Compares two files.</td>
</tr>
<tr>
<td>DEBLOCK</td>
<td>Deblocks blocked records.</td>
</tr>
<tr>
<td>EBCDICIN</td>
<td>Translates from EBCDIC to ASCII.</td>
</tr>
<tr>
<td>EBCDICOUT</td>
<td>Translates from ASCII to EBCDIC.</td>
</tr>
<tr>
<td>EBCDIKIN</td>
<td>Translates from ECDIC to JIS.</td>
</tr>
<tr>
<td>EBCDIKOUT</td>
<td>Translates from JIS to EBCDIK.</td>
</tr>
<tr>
<td>FILES</td>
<td>Copies multiple file from tape.</td>
</tr>
<tr>
<td>HEX</td>
<td>Displays the contents of a file in hexadecimal form.</td>
</tr>
<tr>
<td>HEXO</td>
<td>Displays the contents of a file in hexadecimal form, and the sequential record number in octal form.</td>
</tr>
<tr>
<td>IGNERR</td>
<td>Bypasses and reports magnetic tape errors.</td>
</tr>
<tr>
<td>KANA</td>
<td>Displays the contents of a file as JIS character symbols.</td>
</tr>
<tr>
<td>KEY</td>
<td>Specifies a key sequence in which to copy a KSAM file.</td>
</tr>
<tr>
<td>NEW</td>
<td>Creates a new permanent disk file.</td>
</tr>
<tr>
<td>NOCCTL</td>
<td>Specifies that the first character of each record in the “from” file will not be a carriage control character.</td>
</tr>
<tr>
<td>NOKSAM</td>
<td>Copies a compatibility mode KSAM data file to a non-KSAM file.</td>
</tr>
</tbody>
</table>
FCOPY
Operation

Table 8-1 FCOPY Functions (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOUSERLABELS</td>
<td>Omits user labels when copying between disk and tape.</td>
</tr>
<tr>
<td>OCTAL</td>
<td>Displays the contents of a file in octal form.</td>
</tr>
<tr>
<td>SKIPEOF</td>
<td>Positions a serial storage device at a desired file.</td>
</tr>
<tr>
<td>SUBSET</td>
<td>Copies a subset of a file.</td>
</tr>
<tr>
<td>UPSHIFT</td>
<td>Converts lowercase characters to uppercase.</td>
</tr>
<tr>
<td>VERIFY</td>
<td>Compares files after copying.</td>
</tr>
</tbody>
</table>

Defining Files

If you are copying files from or to devices other than disk, you must define the files and their associated devices with the `FILE` command before issuing an `FCOPY` command. For example, to copy a file from magnetic tape to a line printer, define two device files as follows:

```plaintext
FILE TAPEFILE;DEV=TAPE;REC=-80,25,F,ASCII
FILE PRINTER;DEV=LP
```

`TAPEFILE` and `PRINTER` are the formal file designators you use in the `FCOPY` command. `TAPE` and `LP` are device class names for a magnetic tape unit and a line printer respectively. Device class names are defined when the system is configured and may vary from one installation to another.

You may use the two formal file designators as the "from" and "to" files in an `FCOPY` command. Type an asterisk (*) before each file name to tell `FCOPY` to refer to the previous `FILE` command for the file's description. The `FROM` and `TO` parameters below reference the two files defined above:

```plaintext
FROM=*TAPEFILE;TO=*PRINTER
```

`FCOPY` assumes files to have default characteristics unless you define the files with other characteristics. For more information on the `FILE` command, refer to the MPE/iX Commands Reference Manual.
General Guidelines for FCOPY Commands

An FCOPY command must follow these general guidelines:

- Semicolons always separate the different components of a command. You can leave spaces between components. However, there can be no more than 70 characters between two semicolons. For example, all three FCOPY commands below are valid.

 FROM=A; TO=B; NEW
 FROM=C; TO=D; NEW
 FROM=E; TO=F; NEW

- To continue an FCOPY command onto more than one line, use an ampersand (&) at the end of each line except the last. An FCOPY command has no maximum length. However, a single line of an FCOPY command cannot be more than 72 characters long. For example:

 FROM=A; &
 TO=B; &
 NEW
Using FCOPY with KSAM Files

To FCOPY from an old compatibility mode KSAM file to a new compatibility mode KSAM file enter:

```
FCOPY FROM=OLDFILE;TO=(DATAFILE,KEYFILE)
```

OLDFILE is the old compatibility mode KSAM data file. DATAFILE is the new compatibility mode data file and KEYFILE is the new compatibility mode key file. The new key and data files are constructed for you with exactly the same structure as the old key and data files. The ;NEW option need not be used.

To FCOPY from an MPE/iX file (a flat file) to an old KSAM file (compatibility or native mode) enter:

```
FCOPY FROM=FLATFILE;TO=KSAMFILE
```

To FCOPY from a KSAM file to an old flat file enter:

```
FCOPY FROM=KSAMFILE;TO=ANYFILE
```

KSAMFILE is either a native mode KSAM file or compatibility mode KSAM data file. ANYFILE is an old MPE/iX file.

To FCOPY from a compatibility mode KSAM file, but to treat the file as if it were an MPE/iX flat file, enter:

```
FCOPY FROM=KSAMFILE;TO=ANYFILE;NOKSAM
```

You may use the NOKSAM parameter with only compatibility mode KSAM files.

To FCOPY from any old KSAM file (compatibility or native mode) to a new native mode KSAM file enter:

```
FCOPY FROM=OLDFILE;TO=(NEWFILE)
```

OLDFILE is the old KSAM file. NEWFILE is the new native mode KSAM file.

Additional Discussion

For more information refer to the FCOPY Reference Manual.
9 FSCHECK

The file system check utility (FSCHECK) is a native mode program used to detect and repair inconsistencies found in the file directories and file label tables of the MPE/iX operating system and to display the file extent map. It is a standalone utility and should be the only program running on the system when it is in use. FSCHECK also provides a consistent MPE/iX subsystem interface, including LISTREDO, REDO, DO, USE, DEBUG, and LOG functionality.

WARNING Do not use this utility without proper service center support. Unauthorized use will void your warranty and may cause data loss!

Operation

There are two parts to the FSCHECK utility, the program and the message catalog. The program can reside in any group and account, but the message catalog must reside in MPEXL.TELESUP. Each version of the program has a unique message catalog, and the catalog contains a version ID to prevent the mixing of incompatible programs and catalog versions. If the message catalog is not in MPEXL.TELESUP, use a file equation to redirect it to the correct file.

To execute the FSCHECK utility, type FSCHECK at the MPE/iX prompt. You can also invoke FSCHECK with the MPE/iX RUN command using the INFO parameter to pass commands. The group and account in FSCHECK that is being run should have PM, MR, DS, and PH capabilities.

The FSCHECK utility uses the formal file designators FSCHKIN and FSCHKOUT for input and output respectively. The default input file is STDINX and the default output file is STDLIST, though you can use file equations to redirect them to other files.

On the following pages, each of the FSCHECK commands is listed in alphabetical order. String sequences (tokens) in brackets next to the command name indicate abbreviations for the command.
The **CHECKDIRC** command checks the directory on the specified volume set for internal consistency and makes sure that for each directory entry there exists an associated file label entry. This command assumes that all volumes of the identified volume set are mounted and available and that the system is fully operational.

Syntax

```
CHECKDIRC [DEV=] set_name
   ALL
   [;IGNORE]
   [;FIX]
   [;LOG=filename]
```

Parameters

- **set_name**
 - **Set_name** is the name of the volume set whose directory is to be checked. The volume set must be opened (the set’s master volume must be mounted in the MASTER state) as displayed by the **DSTAT** command.
- **ALL**
 - **All** checks the directory on all mounted volume sets.
- **IGNORE**
 - **Ignore** ignores errors detected by **CHECKDIRC** and continues checking the directories.
- **FIX**
 - **Fix** fixes the errors detected by **CHECKDIRC** and continues checking the directories. This is the default option.
- **filename**
 - **Filename** is the name of a log file on which **CHECKDIRC** messages are to be written. If this parameter is omitted, the output will be displayed only to **$STDLIST**.

Example

```
fscheck:CHECKDIRC ALL Return
```
CHECKEXTENTS [CE]

The CHECKEXTENTS command checks the extent map for each file label in the label table for duplicate extent descriptors. Duplicate extent descriptors are those with overlapping file sector offset.

Syntax

```
  ldev
  CHECKEXTENTS [DEV=] set_name
  ALL
```

Parameters

The DEV parameter is optional. If omitted, the default is to check the extent maps on each mounted volume of the system volume set.

ldev

Ldev is a number from 1 to 32767, specifying the logical device on which the volume is mounted. The volume must be mounted in the MASTER or MEMBER state as displayed by the DSTAT command.

set_name

Set_name is the name of a mounted volume set whose master volume is mounted in the MASTER state as determined by the DSTAT command. The extent map check is performed on each mounted volume of the set.

ALL

ALL checks the extent maps on each volume mounted in the MASTER or MEMBER state.

Example

```
  fscheck: CHECKEXTENTS ALL Return
```
The `CHECKLABEL` command checks the label table(s) on the specified volume(s) for internal consistency and verifies that each file label entry has an associated entry in the volume set’s directory. It does not verify the integrity of HFS-syntax files whose file names are blanked out in the file label.

If neither the `CNAME` or `VNAME` parameter is specified, the label table of each volume in the system volume set is checked by default (MPEX_SYSTEM_VOLUME_SET).

Syntax

```
CHECKLABEL [DEV=][ldev]
        [set_name]
        [ALL]
        ;IGNORE
        ;FIX
        ;ASK
        ;LOG=filename
```

Parameters

- **ldev**: Ldev is a number from 1 to 32,767, specifying the logical device on which the volume to be checked is mounted. The volume must be mounted in the master or member state, as determined by the `DSTAT` command.

- **set_name**: Set_name is the name of the volume set whose label tables are to be checked. The volume set must be opened (the set that is master must be mounted in the MASTER state, as displayed by the `DSTAT` command).

- **ALL**: All checks the label tables on each volume mounted in the MASTER or MEMBER state as determined by the `DSTAT` command.

- **IGNORE**: Ignore errors detected by `CHECKLABEL` and continue checking the labels.

- **FIX**: Fixes the errors detected by `CHECKLABEL` and continues checking the labels.

- **ASK**: ASK prompts the user to choose to fix the errors or not. This is the default option.

- **filename**: Filename is the name of a log file on which `CHECKLABEL` messages are to be written. If this parameter is omitted, the output will be displayed to `$STDLIST`.

Example

```
fscheck:  CHECKLABEL  ALL  Return
```
CHECKFILE [CF]

The CHECKFILE command checks the label of the specified file for internal consistency.

Syntax

CHECKFILE [FILENAME=] filename

Parameters

filename Specifies the name of the file to be checked. The file name can be an MPE/iX file name of the form filename[.group][.account] or it can be a fully-qualified HFS pathname. You may use wildcard characters that conform to MPE/iX convention, to specify the file, group, and account names.

Examples

fscheck: CHECKFILE @.PUB.SYS Return

fscheck: CHECKFILE /mydir/myfile1 Return

CHECKALL [CA]

The CHECKALL command performs the CHECKLABEL, CHECKDIRC, and CHECKEXTENTS commands consecutively.

Syntax

CHECKALL [DEV=} set_name

ALL

Parameters

The DEV parameter is optional. If omitted, the default is to check the directory, labels, and extent maps on each mounted volume of the system volume set.

set_name Set_name is the name of a mounted volume set whose master volume is mounted in the MASTER state as determined by the DSTAT command. The label, directory, and extent map check is performed on each mounted volume of the set.

ALL ALL checks the labels, directory, and extent maps on each volume mounted in the MASTER or MEMBER state.

Example

fscheck: CHECKALL ALL Return
The `DEBUG` command invokes the native mode system.

Syntax

```plaintext
DEBUG
```

Parameters

None

Example

```plaintext
fscheck: DEBUG Return
```

DISPLAYLABEL [DL]

The `DISPLAYLABEL` command displays the fully qualified file name and offset within the label table for each file label entry of the label table on the specified logical device.

Syntax

```plaintext
DISPLAYLABEL  [DEV=] ldev

set_name

ALL
```

Parameters

`DEV=`

`DEV=` is an optional keyword for the parameter. If it is omitted, the default is to display the contents of the label table for each mounted volume of the system volume set.

`ldev`

`ldev` is a number from 1 to 32,767, specifying the logical device on which the volume is mounted. The volume must be mounted in the master or member state, as displayed by the `DSTAT` command.

`set_name`

`set_name` is the name of a mounted volume set whose master volume is mounted in the `MASTER` state as displayed by the `DSTAT` command. For each mounted volume in the set, the contents of the label table is displayed.

`ALL`

`ALL` displays the contents of the label table for each volume mounted in the `MASTER` or `MEMBER` state, as determined by the `DSTAT` command.

Example

```plaintext
fscheck: DISPLAYLABEL DEV=1 Return
```
DISPLAYEXTENTS [DE]

This command displays the extent map for the specified file. For each extent of the file, it displays the number of sectors in the extent, the single vector disk sector address (in hex), the file sector offset (in hex), and the volume set index of the volume on which the extent resides.

Currently the file name must be fully qualified, that is, with the group and the account names specified.

Syntax

```
DISPLAYEXTENTS [FILENAME=] filename
```

Parameters

filename

Specifies the name of the file whose extent map you want displayed. The file name can be an MPE/iX file name of the form `filename.groupaccount` or it can be a fully-qualified HFS pathname.

Examples

```
fscheck: DISPLAYEXTENTS NL.PUB.SYS Return

fscheck: DISPLAYEXTENTS /sys/mydir1/myfile Return
```

DISPLAYLOCKFILE [DFL]

Displays the fully qualified file name of all of the locked files on the specified volume. Files whose extents contain bad sectors are being locked.

Syntax

```
DISPLAYLOCKFILE [DEV=] ldev
```

Parameters

The DEV parameter is optional. If omitted, the default is to display the locked files on each mounted volume of the system volume set.

ldev

Ldev is a number from 1 to 32767, specifying the logical device on the locked files on the volume to be displayed, is mounted. The volume must be mounted in the MASTER or MEMBER state as determined by the DSTAT command.

set_name

Set_name is the name of the volume set whose locked files are to be displayed. The volume set must be opened (the set's master must be mounted in the MASTER state, as determined by the DSTAT command).

ALL

ALL displays the locked files on each volume mounted in the MASTER or MEMBER state as determined by the DSTAT command.

Examples

```
fscheck: DISPLAYLOCKFILE ALL Return
```

DO

This command re-executes a command from the command line history stack. It is identical in function to the command DO.

Syntax
FSCHECK

Operation

DO [CMD=] cmd_id

Parameters

cmd_id

Cmd_id identifies a particular command in the command line history stack. It can be a number relative to the last command (\(-n\)), an absolute number \(n\) identifying the particular command, or a string used to match a particular command in the stack.

Example

fscheck: DO CMD=-2 Return

EMPTYSLOUGH [ES]

Removes all extents from the slough file without attempting to deallocate the secondary storage owned by its extents. This command is used for file corruption work-around when inconsistencies exist between the free space map and the label table such that there exist extent descriptors for which the corresponding secondary storage is not permanently allocated.

Syntax

ldev

EMPTYSLOUGH [DEV=] set_name

ALL

Parameters

The DEV parameter is optional. If omitted, the default is to empty the slough file on the system volume set.

ldev

ldev is a number from 1 to 32,767, specifying the logical device on which the volume is mounted. The volume must be mounted in the MASTER state as displayed by the DSTAT command.

set_name

Set_name is the name of a mounted volume set whose master volume is mounted in the MASTER state as determined by the DSTAT command.

ALL

ALL empties the slough file on each volume set as mounted in the MASTER state.

Example

fscheck: EMPTYSLOUGH 1 Return
EXIT [E]
This command terminates the FSCHECK utility and returns to the process from which it was invoked.

Syntax
EXIT

Parameters
None

Example
fscheck: EXIT Return

EXTENTDISTRIB [ED]
Displays the distribution of extents by extent size or file size on the specified volume(s). If you choose the EXTENT option, FSCHECK displays the total number of extents that falls in the extent size range. If you choose the FILE option, FSCHECK displays the total number of files, and the average number of extents per file that falls in the file size range.

Syntax
ldev
EXTENTDISTRIB [DEV=] set_name
 ALL
 [; EXTENT]
 [; FILE]

Parameters
The DEV parameter is optional. If omitted, the default is to display the extent distribution on each mounted volume of the system volume set.

ldev
ldev is a number from 1 to 32,767, specifying the logical device on which the extent distribution on the volume to be displayed is mounted. The volume must be mounted in the MASTER or MEMBER state as determined by the DSTAT command.

set_name
Set_name is the name of the volume set whose extent distribution are to be displayed. The volume set must be opened (the set’s master must be mounted in the MASTER state as displayed by the DSTAT command.

ALL
ALL displays the extent distribution on each volume mounted in the MASTER or MEMBER state as determined by the DSTAT command.

EXTENT
EXTENT displays the distribution of extent by extent size. This is the default option.

FILE
FILE displays the distribution of extent by file size.

Example
fscheck: EXTENTDISTRIB ALL Return

HELP
This command provides a list of the FSCHECK utility commands and a description of the function of each.

Syntax
HELP
FSCHECK
Operation

Parameters
None

Example
HELP Return

LISTREDO
This command displays the contents of the command line history stack, from the least recently entered command to the most recently entered command. It is identical in function to the LISTREDO command.

Syntax
LISTREDO

Parameters
None

Example
fscheck: LISTREDO Return

LOG
This command logs the user or program dialog to the specified file, as it appears to the user.

Syntax
LOG [FILENAME=] filename

Parameters
filename Filename is any valid MPE/iX file name to which the user has read/write access. It cannot be an HFS-syntax file. If the file doesn’t exist, it will be created.

Example
fscheck: LOG FILENAME=FSCHKLOG Return
PURGEFILE [PF]

This command purges the specified file.

Syntax

```
PURGEFILE [FILENAME=] filename
```

Parameters

- `filename` Specifies the file to be purged. The file name may be an MPE/iX file of the form `filename[group][account]`, or it may be a fully qualified HFS pathname.

Examples

```
fscheck: PURGEFILE TEMP.PUB.SYS
```

```
fscheck: PURGEFILE /sys/dir1/myfile
```

REDO

This command edits and re-executes a command from the command line history stack. It is identical in function to the REDO command.

Syntax

```
REDO [CMD=] cmd_id
```

Parameters

- `cmd_id` Identifies a particular command in the command line history stack. It can be a number relative to the last command (-n), an absolute number (n) identifying the particular command, or a string used to match a particular command in the stack.

Example

```
fscheck: REDO CMD=5
```

SYNCACCOUNTING [SA]

This command synchronizes the account and group disk space accounting with the disk space information found in the file labels of all files on a specified volume set. For system volume sets containing HFS directories, disk space accounting is done for the account and group structure only.

After performing **SYNCACCOUNTING**, the information reported by the **REPORT** command will coincide with the information reported by the **LISTF** command.

Syntax

```
SYNCACCOUNTING [DEV=] [set_name] [QUIET]
```
FSCHECK
Operation

Parameters

The DEV parameter is optional. If omitted, the default is to synchronize the account and group directories of the system volume set.

set_name

Set_name is the name of the volume set whose directories are to be synchronized. The volume set must be opened. (The set’s master volume must be mounted in the MASTER state as displayed by the DSTAT command).

QUIET

QUIET specifies that the list of accounts and groups processed should not be displayed on the $STDLIST device. If QUIET is not specified, SYNCACCOUNTING displays a list of accounts and groups as they are processed. The format of this list is similar to the output of the REPORT command. When the disk space accounting is corrected for a group or account, ACCOUNTING_CORRECTED is displayed next to the group or account entry in the list.

Example

 fscheck: SYNCACCOUNTING MPEXL_SYSTEM_VOLUME_SET Return

TOTALEXTENTS [TE]

This command displays the total number of sectors occupied by directory space, special space, permanent file space, spool file space, and new and temp file space on the specified volume(s).

Syntax

```
  ldev
  TOTALEXTENTS  [DEV=]set_name
  ALL
```

Parameters

The DEV parameter is optional. If omitted, the default is to display the extent totals on each mounted volume of the system volume set.

ldev

Ldev is a number from 1 to 32,767, specifying the logical device on which the extent totals on the volume to be displayed is mounted. The volume must be mounted in the MASTER or MEMBER state as determined by the DSTAT command.

set_name

Set_name is the name of the volume set whose extent totals are to be displayed. The volume set must be opened (the set’s master must be mounted in the MASTER state as displayed by the DSTAT command).

ALL

ALL displays the extent totals on each volume mounted in the MASTER or MEMBER state, as determined by the DSTAT command.

Example

 fscheck: TOTALEXTENTS ALL Return
UNLOCKFILE [UF]

MPE/iX locks files whose extents contain bad sectors. This command unlocks a locked file so that it can be purged or analyzed.

Syntax

```
UNLOCKFILE [FILENAME=] filename
```

Parameters

`filename` *Filename* is the fully qualified name of the file to be unlocked.

Example

```
fscheck: UNLOCKFILE AFILE.BGROUP.CACCT  Return
```

USE

This command reads and executes commands contained in the specified file.

Syntax

```
USE [FILENAME=] filename
```

Parameters

`filename` *Filename* is any valid MPE/iX file name. The file must already exist, and the user must have read access.

Example

```
fscheck: USE FILENAME=FSCHKUSE  Return
```
I7DB8CNV converts the character data in an IMAGE database from any Hewlett-Packard 7-bit national substitution set to ROMAN8. The program is a special version of the DBLOAD.PUB.SYS program, and the conversion is done as part of a database load.

Operation

To run I7DB8CNV, do the following:

1. Enter RUN DBUNLOAD.PUB.SYS to unload the database to tape:
2. Enter RUN DBUTIL.PUB.SYS,ERASE to erase the database data.
3. Enter RUN I7DB8CNV to convert the data and reload it into the database.

I7DB8CNV will request the following information:

- The 7-bit national substitution set where the conversion is to be made.
- The database name.
- Whether or not to convert all data fields of type X or U. Enter YES or Return to convert the data fields. Otherwise, enter NO and follow the prompts to specify each field of type U or X.

The single field in an automatic data set is not proposed for conversion. Whether or not its values are converted depends on the response to the item(s) it is linked to for detail data set(s). At the end of each data set, the user is asked to confirm that the correct fields to be converted from that data set have been selected. Again, a Return is a YES answer, an N allows the user to change the data fields in the data set to be converted.

I7DB8CNV then loads the database from tape. As each record is read, those fields which were selected have their data converted according to the algorithm for the 7-bit national substitution set selected at the beginning of the program.

I7DB8CNV will not allow 8-bit data (bytes with the high-order bit set) in the data fields it is trying to convert. The utility will not abort, but the field in question will not be converted, and the following warning will be issued:

8-bit data encountered in item [itemname in DS data set]

If the program should abort for any reason during the conversion, the user must log on again to clear the temporary files used during the conversion process before running the program again.

Following is the dialog from a sample run of the I7DB8CNV utility.

RUN I7DB8CNV.PUB.SYS

HP European 7-bit character sets are:

1. SVENSK/SUOMI
2. DANSK/NORSK
3. FRANCAIS
4. FRANCAIS M
5. DEUTSCH
6. UK
I7DB8CNV
Operation

7. ESPANOL
8. ESPANOL M
9. ITALIANO

From which character set should conversion be done: 2

WHICH DATA BASE: QWERTZ

Convert all fields of type U,X in all data sets (Y/N)? N

Data Set SET1 fields to be converted:
ITEM1 (Y/N)? Return
ITEM2 (Y/N)? Return
ITEM3 (Y/N)? N
ITEM4 (Y/N)? Return
Is Data Set SET1 correctly defined (Y/N)? Return

Data Set SET2 - Automatic Master

Data Set SET3 fields to be converted:
ITEM1 (Y/N)? Return
ITEM5 (Y/N)? N
ITEM6 (Y/N)? N
Is Data Set SET3 correctly defined (Y/N)? Return

DATA SET 1: 19 ENTRIES
DATA SET 2: 0 ENTRIES
DATA SET 3: 25 ENTRIES
END OF VOLUME 1, 0 READ ERRORS RECOVERED
DATA BASE LOADED

END OF PROGRAM
:
The `LANGINST` utility builds and modifies the `LANGDEF.PUB.SYS` file, which contains all language-dependent information for every language that the system manager plans to configure. `LANGINST` gathers data from the `NLSDEF.PUB.SYS` and `CHRDEF.xx.PUB.SYS` files and writes it to `LANGDEF.PUB.SYS`.

The system manager uses the `LANGINST` utility to:

- Add a language to the configuration file.
- Remove a language from the configuration file.
- Display and modify local formats of a configured language.
- Display the languages supported by Hewlett-Packard.
- Display the languages currently configured.
- Modify the system default language.

Any changes you make to `LANGDEF.PUB.SYS` will only be implemented if you perform a COOLSTART or WARMSTART.
Operation

The system manager initiates the LANGINST utility by entering:

```
LANGINST
```

When the LANGINST main menu appears, you choose one of the following functions:

- 0. EXIT
- 1. ADD LANGUAGE TO LANGDEF
- 2. DELETE LANGUAGE FROM LANGDEF
- 3. MODIFY NATIVE FORMATS
- 4. LIST HP SUPPORTED LANGUAGES
- 5. MODIFY THE SYSTEM DEFAULT LANGUAGE
- 6. LIST LANGUAGES CURRENTLY CONFIGURED
- 7. DISPLAY TRANSLATION TABLES

Listing Supported Languages

To list languages that are configurable on the system, select option 4 from the LANGINST main menu. You’ll see a display like the one below.

```
HP SUPPORTED LANGUAGES:
0 NATIVE-3000 using USASCII
1 AMERICAN using ROMAN8
2 CANADIAN-FRENCH using ROMAN8
3 DANISH using ROMAN8
4 DUTCH using ROMAN8
5 ENGLISH using ROMAN8
6 FINNISH using ROMAN8
7 FRENCH using ROMAN8
8 GERMAN using ROMAN8
9 ITALIAN using ROMAN8
10 NORWEGIAN using ROMAN8
11 . . .
12 . . .
13 . . .
```

Press any key to continue ...

Adding a Language

To add a language, select option 1 from the LANGINST main menu. When the Add Language to LANGDEF menu is displayed, enter:

1. The language name or language ID number.
 - The addition is aborted if one of the following conditions is met:
 - Entering a language that is already configured on the system.
 - Entering a language not supported by NLS.
 - Pressing Return.
The addition continues if a language is requested that is supported but has not been previously configured. `LANGINST` configures the language and displays a message.

2. When the addition is completed, the `LANGINST` main menu is displayed.

Deleting a Language

`LANGINST` allows the system manager to delete any configured language except NATIVE-3000 (which is hard-coded and therefore always configured) and the system default language.

To delete a language, select option 2 from the `LANGINST` main menu. When the Delete Language from `LANGDEF` menu is displayed, enter:

1. The language name or language ID number.

 - The deletion is aborted if one of the following conditions is met:
 - Entering a language that is not configured on the system.
 - Entering the system default language.
 - Pressing `Return`.

 - The deletion continues if the language requested is configured but is not the system default language.

2. When the deletion is completed, the main menu is displayed.

Modifying Local Formats

As the system manager, you can modify the following local formats for any configured language:

- Date format (dateline format).
- Custom date format (short).
- Time format.
- Currency sign/name.
- Decimal and thousands indicator.
- Month names.
- Abbreviated month names.
- Weekday names.
- Abbreviated weekday names.
- Yes/no indicators.
- Direction of text.
- ASCII/EBCDIC translation tables.
- National date table.

If the language supports a special national table containing date information (such as KATAKANA), the last option lets the user modify the date information.

To modify local language formats, select option 3 from the `LANGINST` main menu. When the Modify Native Formats menu is displayed, enter:

1. The language name or language ID number.
The modification is aborted if one of the following conditions is met:

- Entering a language that is not configured on the system.
- Entering NATIVE-3000.
- Pressing Return.

The modification continues if the language requested is configured.

2. If a configured language is entered, the user dialog is displayed:

1. Long calendar format
2. Date format (Calendar format)
3. Custom date format (Short)
4. Time format (Clock format)
5. Currency sign
6. Currency name
7. Decimal and thousands separator
8. Alternate numeric format
9. YES and NO equivalents
10. Month names.
11. Month name abbreviations
12. Weekday names
13. Weekday name abbreviations
14. Direction of text
15. ASCII/EBCDIC translation tables
16. Handle truncation in date format
17. Process the national date table
18. 16-bit Asian ASCII to EBCDIC translation table
19. 16-bit Asian EBCDIC to ASCII translation table

Enter selection number : 5
Business Currency sign : F
Enter the new value : Return
Fully qualified Currency sign : FF
Enter the new value : Return

The currency sign currently follows the number, 100DM.

The following currency codes are available:

<CR> to retain the existing value.
0 - The currency symbol precedes the number, $100.00.
1 - The currency symbol succeeds the number, 100.00DM.
2 - The currency symbol replaces the decimal point, 100$00.

Enter the required currency codes (0, 1, or 2) : Return

There are to be no blanks before or after the currency symbol.
The following blank-control codes are available:

<CR> to retain the existing value.
0 - No blanks before or after the currency symbol.
1 - A blank is to precede the currency symbol.
2 - A blank is to succeed the currency symbol.
3 - A blank is to precede and succeed the currency symbol.

Enter the required code (0, 1, 2, or 3) : Return

After you make a selection, the current value is displayed and you are prompted for a new value. If you enter a new value, LANGINST validates and replaces the old value with the current one.
After you have made changes to the file, a new copy of it is saved under the name LANGDEF and the old (unchanged) version of the file is saved under the name LANGDxxx. The number xxx increases by one each time a new copy of LANGDEF is saved. This allows the user to return to a configuration that existed before LANGDEF was changed. To return to the previous configuration, PURGE or RENAME the current LANGDEF then RENAME the LANGDxxx with the highest number LANGDEF.

Modifying ASCII/EBCDIC Translation Tables

To modify the ASCII/EBCDIC translation tables for any language other than NATIVE-3000, select option 3 from the LANGINST main menu. When the Modify Native Formats menu is displayed, enter:

1. The language name or language ID number.
 - The modification is aborted if one of the following conditions is met:
 - Entering a language that is not configured on the system.
 - Entering NATIVE-3000.
 - Pressing Return.
 - The modification continues if the language requested is configured.

2. If a configured language is entered, the following user dialog is displayed:

 Enter selection number : 15
 Input ROMAN8 character to be changed (HEX please) : 04
 The current EBCDIC value is : 37
 Enter the new EBCDIC value : 44
 The ROMAN8 to EBCDIC table was updated
 The EBCDIC to ROMAN8 table will be updated too
 ASCII/EBCDIC table inconsistent for 44 <= 04,C8 (hub)
 The tables are inconsistent for ROMAN8 character C8 (hub)
 The current EBCDIC value is : 44
 Enter the new EBCDIC value : 37
 The ROMAN8 to EBCDIC table was updated
 The EBCDIC to ROMAN8 table will be updated too

 Input ROMAN8 character to be changed (HEX please) : Return
 Do you want to save the changes (Y/N) : Y

Notes:
There are two ASCII characters mapping to the same EBCDIC character.

Change the mapping of C8 to its new EBCDIC value.

To display the translation tables, return to the main menu and enter option 7. Then enter the language ID number and the table you want to display.
Modifying 16-Bit Asian ASCII/EBCDIC Translation Tables

To modify the 16-bit Asian ASCII/EBCDIC translation tables for any language other than NATIVE-3000, select option 3 from the LANGINST main menu. When the Modify Native Formats menu is displayed, enter:

1. The language name or language ID number.
 - The modification is aborted if one of the following conditions is met:
 - Entering a language that is not configured on the system.
 - Entering NATIVE-3000.
 - Pressing Return.
 - The modification continues if the language requested is configured.

2. If a configured language is entered, the following user dialog is displayed:

 1. Long calendar format
 2. Date format (Calendar format)
 3. Custom date format (Short)
 4. Time format (Clock format)
 5. Currency sign
 6. Currency name
 7. Decimal and thousands separator
 8. Alternate numeric format
 9. YES and NO equivalents
 10. Month names.
 11. Month name abbreviations
 12. Weekday names
 13. Weekday name abbreviations
 14. Direction of text
 15. ASCII/EBCDIC translation tables
 16. Handle truncation in date format
 17. Process the national date table
 18. 16-bit Asian ASCII to EBCDIC translation table
 19. 16-bit Asian EBCDIC to ASCII translation table

Enter selection number : 18
The current default translation value is 0000

Enter the new value (HEX please) : 0000

Input Asian character (HEX please) : c1c4 (*)
Current translation value is (in HEX) : 0000 (*)
Input new translation value (HEX please): a1a1

Input Asian character (HEX please) : a1b2 (*)
Current translation value is (in HEX) : 4FE3 (**)
Input new translation value (HEX please): 4FE3 (***)

Input Asian character (HEX please) : 00a5 (****)

*** The character (00a5) is not defined. (****)

Input Asian character (HEX please) : RETURN

1. Long calendar format
2. Date format (Calendar format)
3. Custom date format (Short)
4. Time format (Clock format)
5. Currency sign
6. Currency name
7. Decimal and thousands separator
8. Alternate numeric format
9. YES and NO equivalents
 ...
 ..
 ..

Notes:
* If adding a new character, the current translation value is 0000 (in HEX).
** What is currently being mapped.
*** Change to indicated new value.
**** Invalid input was entered.

To display the translation tables, return to the main menu and enter option 7. Then enter the language ID number and the table you want to display.
Table 11-1 LANGINST Error Messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A NONNUMERIC GRAPHIC CHARACTER IS EXPECTED...</td>
<td>An alphabetic or special character (not numeric) is expected.</td>
<td>Enter a valid character.</td>
</tr>
<tr>
<td>ATTEMPTING TO ADD TOO MANY CHARACTER SETS.</td>
<td>Adding this language would exceed the maximum configurable character sets.</td>
<td>Do not configure languages from so many character sets.</td>
</tr>
<tr>
<td>BUILDING AN EMPTY LANGDEF ...</td>
<td>There was no existing LANGDEF file; a new, empty one is being built.</td>
<td>None. If you have already configured languages, find LANGDEF.PUB.SYS on a backup and restore it; or else, reconfigure the languages with this program.</td>
</tr>
<tr>
<td>DELETION TERMINATED ... ATTEMPTING TO DELETE NATIVE-3000.</td>
<td>The language NATIVE-3000 cannot be deleted from the list of configured languages.</td>
<td>None.</td>
</tr>
<tr>
<td>ERRONEOUS STARTING YEAR NUMBER. EXPECTED A NUMBER BETWEEN 0 AND 99.</td>
<td>The year number entered is not valid.</td>
<td>Enter the year number again. It must be a number between 0 and 99.</td>
</tr>
<tr>
<td>INPUT TOO LONG ... PLEASE REENTER:</td>
<td>The program does not expect this much input in this context.</td>
<td>Re-enter the data correctly.</td>
</tr>
<tr>
<td>INTERNAL ERROR ... PLEASE REPORT.</td>
<td>Internal error.</td>
<td>Contact your Hewlett-Packard representative.</td>
</tr>
<tr>
<td>INVALID DATE FORMAT. EXPECTED MM/DD/YY.</td>
<td>The entered date is not valid.</td>
<td>Enter the date again in the from MM/DD/YY.</td>
</tr>
<tr>
<td>langname IS ALREADY CONFIGURED.</td>
<td>The language selected has already been configured.</td>
<td>None.</td>
</tr>
<tr>
<td>langname IS AN ILLEGAL LANGUAGE NAME (OR NUMBER).</td>
<td>The language name or number entered is not valid.</td>
<td>Enter the language again.</td>
</tr>
<tr>
<td>langname IS AN INVALID SYSTEM DEFAULT LANGUAGE.</td>
<td>The language selected is not configured on the system.</td>
<td>Add the language to the list of currently configured languages with this program.</td>
</tr>
<tr>
<td>langname IS NOT A CONFIGURED LANGUAGE.</td>
<td>The language selected is not configured on the system.</td>
<td>Add the language to the list of currently configured languages with this program.</td>
</tr>
<tr>
<td>Message</td>
<td>Cause</td>
<td>Action</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>langname IS NOT CONFIGURED.</td>
<td>The language selected is not configured on the system.</td>
<td>Add the language to the list of currently configured languages with this program.</td>
</tr>
<tr>
<td>langname IS NOT IN THE CHRDEF FILE.</td>
<td>One of the CHRDEFxx files is not consistent with the NLSDEF file.</td>
<td>Restore all CHRDEFxx files and NLSDEF from your master backup.</td>
</tr>
<tr>
<td>NATIVE-3000 IS ALWAYS CONFIGURED.</td>
<td>NATIVE-3000 cannot be added to the list of configured languages; it is always configured.</td>
<td>None.</td>
</tr>
<tr>
<td>NATIVE-3000 MAY NOT BE MODIFIED.</td>
<td>The language definition of NATIVE-3000 cannot be modified.</td>
<td>None.</td>
</tr>
<tr>
<td>THE CHRDEFxx FILE IS MISSING. THE ADDITION HAS BEEN CANCELLED.</td>
<td>The character definition file for the selected language is missing.</td>
<td>Restore the missing file from your master backup.</td>
</tr>
<tr>
<td>THE DECIMAL SEPARATOR AND THOUSANDS SEPARATOR SHOULD BE DIFFERENT.</td>
<td>The decimals and thousands separators have been defined the same.</td>
<td>Change the decimal and/or thousands indicator.</td>
</tr>
<tr>
<td>THE EXPECTED NAME SHOULD CONTAIN ALPHABETIC CHARACTERS ONLY.</td>
<td>Only alphabetic characters are allowed in this context.</td>
<td>Please re-enter the value, restricting the input to alphabetic characters.</td>
</tr>
<tr>
<td>THE FILECODE FOR CHRDEFxx.PUB.SYS IS INCORRECT.</td>
<td>The character definition file for the selected language has a bad file code.</td>
<td>Restore the missing CHRDEFxx file from the master backup.</td>
</tr>
<tr>
<td>THE FILECODE FOR LANGDEF.PUB.SYS IS INCORRECT.</td>
<td>The current language definition file has a bad file code.</td>
<td>Restore LANGDEF.PUB.SYS from a backup copy. Or purge it, and re-create it by reconfiguring the desired languages with this program.</td>
</tr>
<tr>
<td>THE FILECODE FOR NLSDEF.PUB.SYS IS INCORRECT.</td>
<td>The master NLS definition file has a bad file code.</td>
<td>Restore NLSDEF.PUB.SYS from the master backup.</td>
</tr>
<tr>
<td>THE LANGUAGE YOU ARE ATTEMPTING TO DELETE IS THE SYSTEM DEFAULT LANGUAGE.</td>
<td>The system default language cannot be deleted from the list of configured languages.</td>
<td>To delete this language, first change the system default language to another language.</td>
</tr>
<tr>
<td>THE USER SHOULD BE MANAGER.SYS, RUNNING IN THE PUB GROUP.</td>
<td>The user is not MANAGER.PUB.SYS.</td>
<td>Log on as MANAGER.PUB.SYS and run the program again.</td>
</tr>
<tr>
<td>Message</td>
<td>Cause</td>
<td>Action</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>THERE IS NO MORE ROOM FOR ADDITIONAL DATE PERIODS. PLEASE REPORT.</td>
<td>There is no room for additional entries in the national date table.</td>
<td>Contact your Hewlett-Packard representative.</td>
</tr>
<tr>
<td>TOO MANY LANGUAGES HAVE BEEN CONFIGURED.</td>
<td>Adding another language would exceed the maximum configurable languages.</td>
<td>Don’t configure so many languages on one system.</td>
</tr>
<tr>
<td>UNABLE TO RENAME LANGDEF TO LANGDnnn. THE EXISTING LANGDEF WILL BE PURGED.</td>
<td>The old LANGDEF file cannot be renamed; all files LANGD000 through LANGD999 already exist.</td>
<td>Purge some or all of the files LANGD000 to LANGD999 so the most recent changes to LANGDEF can be saved in the future.</td>
</tr>
<tr>
<td>UNKNOWN OPTION PLEASE REENTER.</td>
<td>The option selected is not valid.</td>
<td>Enter the number corresponding to one of the valid options.</td>
</tr>
</tbody>
</table>
LANGINST

Operation
12 LINK EDITOR/XL

Use LINK EDITOR/XL to prepare native mode (NM) compiled object modules. The LINK EDITOR process resolves all external references which cannot be resolved at run-time. A compiled object module (program file) which has not been link edited will not run.

You may also use LINK EDITOR/XL to create and maintain relocatable and executable libraries.

To prepare and manipulate edit compatibility mode (CM) program files and libraries use the SEGMENTER utility.

Operation

To invoke LINK EDITOR/XL for interactive use enter:

```
LINKEDIT
```

LINK EDITOR/XL displays the LinkEd prompt, where you may enter any LINK EDITOR/XL command.

You may also invoke LINK EDITOR/XL with an info string that contains a LINK EDITOR/XL command as follows:

```
RUN LINKEDIT.PUB.SYS;INFO=info-string
```

For example, to link the object modules from the compiled object file LINEDRAW and place the executable module into a file name GRAF, enter the following:

```
RUN LINKEDIT.PUB.SYS;INFO="LINK LINEDRAW,GRAF"
```
Commands

The following tables list **LINK EDITOR/XL** commands in alphabetical order within function.

Table 12-1 Miscellaneous Link Editor/XL Commands

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXIT</td>
<td>Quits an interactive Link Editor session.</td>
</tr>
<tr>
<td>LINK</td>
<td>Creates an executable program file.</td>
</tr>
<tr>
<td>LISTOBJ</td>
<td>Lists the contents of an object file. The listing shows the symbols contained within the file.</td>
</tr>
<tr>
<td>LISTPROG</td>
<td>Lists the contents of an executable program file. The listing shows the symbols contained within the file.</td>
</tr>
</tbody>
</table>

Table 12-2 RL Link Editor Commands

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRL</td>
<td>Adds all object modules from a named object file into a relocatable library.</td>
</tr>
<tr>
<td>BUILDRL</td>
<td>Builds and initializes a file as a new relocatable library. This library becomes the current relocatable library for subsequent interactive commands.</td>
</tr>
<tr>
<td>CLEANRL</td>
<td>Rebuilds a relocatable library by removing any fragmentation and leaving room for 25% expansion within its internal tables.</td>
</tr>
<tr>
<td>COPYRL</td>
<td>Copies selected object modules from one relocatable library to another.</td>
</tr>
<tr>
<td>EXTRACTRL</td>
<td>Extracts selected object modules from a relocatable library, placing them into a new object file. Modules may be selected by name, locality set, or entry point.</td>
</tr>
<tr>
<td>HIDERL</td>
<td>Hides a symbol so the symbol can no longer be used to resolve external references between other modules.</td>
</tr>
<tr>
<td>LISTRL</td>
<td>Lists the contents of a relocatable library. The listing shows the names of each object module and the symbols within the library.</td>
</tr>
<tr>
<td>PURGERL</td>
<td>Deletes selected object modules from a relocatable library.</td>
</tr>
<tr>
<td>REVEALRL</td>
<td>Reveals a symbol that was previously hidden by the HIDERL command.</td>
</tr>
<tr>
<td>RL</td>
<td>Selects an existing file as the current relocatable library for subsequent interactive commands.</td>
</tr>
<tr>
<td>SHOWRL</td>
<td>Displays the name of the current relocatable library.</td>
</tr>
</tbody>
</table>
Table 12-3 XL Link Editor Commands

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDXL</td>
<td>Adds all object modules from an object file or a relocatable library to an executable library.</td>
</tr>
<tr>
<td>BUILDXL</td>
<td>Builds and initializes a new executable library. This library becomes the current executable library for subsequent interactive commands.</td>
</tr>
<tr>
<td>CLEANXL</td>
<td>Rebuilds an executable library by removing any fragmentation and leaving room for 25% expansion within its internal tables.</td>
</tr>
<tr>
<td>COPYXL</td>
<td>Copies selected object modules from one executable library to another.</td>
</tr>
<tr>
<td>LISTXL</td>
<td>Lists the contents of an executable library. The listing shows the names of each object module and the symbols within the library.</td>
</tr>
<tr>
<td>PURGEXL</td>
<td>Deletes selected object modules from an executable library.</td>
</tr>
<tr>
<td>SHOWXL</td>
<td>Displays the name of the current executable library.</td>
</tr>
<tr>
<td>XL</td>
<td>Selects an existing executable library to be the current executable library for subsequent interactive commands.</td>
</tr>
</tbody>
</table>

Additional Discussion

For more information refer to the HP Link Editor/ XL Reference Manual.
13 LOGTOOL

The System and Memory Log Analysis Tool (LOGTOOL) lets you display and manage system log files and the memory log file. System log files contain information generated by the operating system. The memory error log file contains memory error information gathered by the memory error logging process MEMLOGP.

You can request that the operating system keep records of certain users as well as particular events. To keep a certain type of log, change its status to ON using SYSGEN.

To see specific log records, use the LOGTOOL utility (as explained in the "Operation" section, below).

Operation

To invoke LOGTOOL enter:

SYSDIAG
DUI > RUN LOGTOOL

For detailed information on any command enter HELP followed by the command name. For example, to see information about the LIST command, enter:

LOGTOOL> HELP LIST

To display data from a set of system log files:

1. Log on as MANAGER.SYS or with SM, OP or DI capability.
2. List the names of log files currently on your system before invoking LOGTOOL:

 LISTFILE LOG@.PUB.SYS

3. Invoke LOGTOOL:

 SYSDIAG
DUI > RUN LOGTOOL

4. To get data from your current logfile enter the following command to close it and open a new one:

 LOGTOOL> SWITCHLOG
5. If necessary, display log file record types. (You may skip this step if you already are famililar with types):

 LOGTOOL> TYPES

6. Display the analysis for specified log files as a formatted list.

 SYS Diablo> LIST LOG=9/14,17,20,22;TYPE=111,146

 You may enter the LOG parameter as a range of numbers such as 9/14, as a string of
 numbers such as 17,20,22, or as a combination range and string. (In this example,
 LOGTOOL will analyze log files LOG0009 through LOG0014 and LOG0017 and
 LOG0020 and LOG0022.)

 The TYPE parameter specifies the event types you want analyzed. (In the example, types 111, I/O errors,
 and type 146, maintenance requests, was specified.)

 If you do not wish to see the analysis on your terminal screen, but prefer to write the records to an
 output file, you would use the ;OUTFILE parameter as follows:

 SYS Diablo> LIST LOG=9/14,17,20,22;OUTFILE=MYFILE;TYPE=111,146

 In this example, the output file MYFILE. You may choose any name so long as it begins with an alphabetic
 character. LOGTOOL writes the output file to the DIAG group of the SYS account. You may use any HP3000
 text editor to examine the output file. You may also copy it with the COPY command or the FCOPY utility.

7. Exit the LOGTOOL utility:

 LOGTOOL> EXIT
 DUI > EXIT
COMMAND SUMMARY

There are three categories of LOGTOOL commands: System Log File Commands (SLF), Memory Log File Commands (MLF), and Miscellaneous Commands (MC). They are briefly described in the following table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAYLOG</td>
<td>(SLF)</td>
<td>Displays I/O entries as information is logged.</td>
</tr>
<tr>
<td>EXIT</td>
<td>(MC)</td>
<td>Exits LOGTOOL and returns user to DUI.</td>
</tr>
<tr>
<td>HELP</td>
<td>(MC)</td>
<td>Gives help on running LOGTOOL.</td>
</tr>
<tr>
<td>LAYOUT</td>
<td>(SLF)</td>
<td>Reads in a layout file.</td>
</tr>
<tr>
<td>LIST</td>
<td>(SLF)</td>
<td>Lists contents of a system log file.</td>
</tr>
<tr>
<td>MEMCLR</td>
<td>(MLF)</td>
<td>Clears the memory logging process log files.</td>
</tr>
<tr>
<td>MEMRPT</td>
<td>(MLF)</td>
<td>Displays the contents of the memory log file.</td>
</tr>
<tr>
<td>MEMTIMER</td>
<td>(MLF)</td>
<td>Alters the timer value of the memory error logging process.</td>
</tr>
<tr>
<td>PURGESYSLOG</td>
<td>(SLF)</td>
<td>Deletes the specified system log files from the disc.</td>
</tr>
<tr>
<td>PURGEWORK</td>
<td>(SLF)</td>
<td>Deletes the specified work files from the disc.</td>
</tr>
<tr>
<td>REDO</td>
<td>(MC)</td>
<td>Edits any of the last four lines of text entered.</td>
</tr>
<tr>
<td>SELECT</td>
<td>(SLF)</td>
<td>Selects specified records from the system log files.</td>
</tr>
<tr>
<td>STATUS</td>
<td>(SLF)</td>
<td>Reports on the status of all system log files.</td>
</tr>
<tr>
<td>SUSPEND</td>
<td>(MC)</td>
<td>Suspends LOGTOOL and returns control to the DUI.</td>
</tr>
<tr>
<td>SWITCHLOG</td>
<td>(SLF)</td>
<td>Causes the system to start a new system log file.</td>
</tr>
<tr>
<td>TYPES</td>
<td>(SLF)</td>
<td>Describes the system log file "types".</td>
</tr>
</tbody>
</table>
Logging system events

The following list shows the types of system log events that you can track. To do so, you enable a log event by turning it on in SYSGEN.

Table 13-2 SYSGEN System Logging

<table>
<thead>
<tr>
<th>System Log Events</th>
<th>Event Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>System logging enabled</td>
<td>100</td>
</tr>
<tr>
<td>System up record</td>
<td>101</td>
</tr>
<tr>
<td>Job initiation record</td>
<td>102</td>
</tr>
<tr>
<td>Job termination record</td>
<td>103</td>
</tr>
<tr>
<td>Process termination record</td>
<td>104</td>
</tr>
<tr>
<td>NM file close record</td>
<td>205</td>
</tr>
<tr>
<td>System shutdown record</td>
<td>106</td>
</tr>
<tr>
<td>Power failure record</td>
<td>107</td>
</tr>
<tr>
<td>Spooling log record</td>
<td>108</td>
</tr>
<tr>
<td>I/O error record</td>
<td>111</td>
</tr>
<tr>
<td>Physical mount or dismount</td>
<td>112</td>
</tr>
<tr>
<td>Logical mount or dismount</td>
<td>113</td>
</tr>
<tr>
<td>Tape labels record</td>
<td>114</td>
</tr>
<tr>
<td>Console log record</td>
<td>115</td>
</tr>
<tr>
<td>Program file event</td>
<td>116</td>
</tr>
<tr>
<td>New commercial spooling</td>
<td>120</td>
</tr>
<tr>
<td>Architected interface</td>
<td>130</td>
</tr>
<tr>
<td>Password changes</td>
<td>134</td>
</tr>
<tr>
<td>System logging configuration</td>
<td>135</td>
</tr>
<tr>
<td>Restore logging</td>
<td>136</td>
</tr>
<tr>
<td>Printer access failure</td>
<td>137</td>
</tr>
<tr>
<td>ACD changes</td>
<td>138</td>
</tr>
<tr>
<td>Stream initiation logging</td>
<td>139</td>
</tr>
<tr>
<td>User logging</td>
<td>140</td>
</tr>
<tr>
<td>Process creation</td>
<td>141</td>
</tr>
<tr>
<td>Chgroup record</td>
<td>143</td>
</tr>
<tr>
<td>File open record</td>
<td>244</td>
</tr>
</tbody>
</table>
Table 13-2 SYSGEN System Logging (Continued)

<table>
<thead>
<tr>
<th>System Log Events</th>
<th>Event Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance request log</td>
<td>146</td>
</tr>
<tr>
<td>UPS Monitor event logging</td>
<td>148</td>
</tr>
<tr>
<td>Diagnostic information record</td>
<td>150</td>
</tr>
<tr>
<td>High-priority machine check</td>
<td>152</td>
</tr>
<tr>
<td>Low-priority machine check</td>
<td>152</td>
</tr>
<tr>
<td>Directory open/close logging</td>
<td>155</td>
</tr>
<tr>
<td>CM file close record</td>
<td>160</td>
</tr>
<tr>
<td>Chdir</td>
<td>161</td>
</tr>
<tr>
<td>Process Adoption</td>
<td>162</td>
</tr>
<tr>
<td>File Owner Change</td>
<td>163</td>
</tr>
</tbody>
</table>

All log information is kept in records. Each record begins with a standard header and ends with identification information which varies for each log type. For detailed information about the format of the log records, read the Manager's Guide to MPE/iX Security.
The `MKNOD` utility lets you create device link files, streams files, and fifo files. The security restrictions enforced with `MKNOD` are as follows:

- To create a streams file, you must have either SM or NM capability.
- To create a device link file, you must have SM capability.
- To create a fifo device file, you must CD access to the directory in which you're creating the file.
Operation

MKNOD determines how to create the files based on the arguments passed to the program. When creating a device link or streams (character-type) file, you must enter both the major and minor numbers. To create a device link file, enter a major number of 0 and the LDEV number of the device as the minor number. To create a streams file, enter a major number greater than 0.

Syntax

```
mknod "name c|p major minor [link_name]"
```

Parameters

- **name**: Creates a special or fifo file including the program name in the pathname.
- **c|p**: Creates a device link file or streams file if this argument is ‘c’ (character type). Creates a fifo file or pipe if this argument is ‘p’.
- **major**: Major number. The following major numbers are valid:
 - 0: Creates a device link. The minor number represents the LDEV number.
 - 1-254: Creates a streams file.
- **minor**: Minor device type. This is used in conjunction with the major number option to provide a UNIX compatible device specification. The interpretation of the minor number is dependent on the value of the major number. If the major number is 0, then this number represents a LDEV number. If the major number is > 0, then this number represents a streams connection to a driver.
- **link_name**: Creates the streams file with a link_name. This name is an eight-character MPE link_name (from the NMMGR link screen).

When the special file is created, it can be accessed through the **HPFOPEN** intrinsic and the C library "open" interface. The **0_NONBLOCK** option can be specified using **open**.

MKNOD sets a CI variable **mknodvar** with the value 0 if successful. If errors occur, it returns the file system error status.

To create a fifo file called **MYFIFO**:

```
mknod "myfifo p"
```

To create a device link file for LDEV 7:

```
mknod "/dev/tape7 c,0,7"
```

To create a streams file with a link_name of **DTSLINK**, a major number of 1, and a minor number of 10:

```
mknod "strmfile c,1,10,dtsslk"
```

You can use the **LISTFILE** command to display special files. For example:

```
LISTFILE /dev/0,2
PATH= /dev/.
```

```
CODE -------------LOGICAL RECORD----------------SPACE----- FILENAME
SIZE TYPE EOF LIMIT R/B SECTORS #X MX
```
Chapter 14

MKNOD Operation

```
128W FBf  0  1  1  0  0  * MYFIFO
128W FBs  0  1  1  0  0  * STRMFILE
128W FBd  0  1  1  0  0  * tape7

:LISTFILE /dev/tape7,5
***********************
FILE: /dev/tape7
FILE CODE : 0                  FOPTIONS: BINARY,FIXED,NOCCTL,DEVICE LINK
BLK FACTOR: 1                  OWNER   : **
REC SIZE: 256 (BYTES)          GROUP ID: **
BLK SIZE: 256 (BYTES)          SECURITY--READ :
EXT SIZE: 0 (SECT)                    WRITE :
NUM REC: 0                 APPEND :
NUM SEC: 0                  LOCK :
NUM EXT: 0                  EXECUTE:
MAX REC: 1                             **SECURITY IS ON
                                      FLAGS : NO ACCESSORS
NUM LABELS: 0                CREATED : THU, AUG 24, 1993 3:12 PM
MAX LABELS: 0               MODIFIED: THU, AUG 24, 1993 3:12 PM
DISC DEV #: 1                ACCESSED: THU, AUG 24, 1993 3:12 PM
SEC OFFSET: 0                LABEL ADDR: **
VOLNAME   : MPEXL_SYSTEM_VOUME_SET:MEMBER1
DEV TYPE  : DEVICE LINK
LDEV      : 7                 IO CLASS: TAPE
```

Additional Discussion

For more information on streams and device link files, refer to the HPDEVCREATE intrinsic in the MPE/ iX Intrinsics Reference Manual.
MKNOD
Operation
15 N7MF8CNV

N7MF8CNV converts data in EDIT/XL and other MPE text and data files from a Hewlett-Packard 7-bit national substitution character set to ROMAN8.

Operation

N7MF8CNV prompts you for language and file type (text or data). For each data file, you enter the starting position and length of each field (portion of a record) to be converted. For a text file, each record is converted as one field.

The user is prompted for the name of each file to be converted. Files are read one record at a time; each record is converted (or certain fields of it are converted for data files), and the result is written to a new temporary file. When all records have been read, converted, and written to the new file, the old (unconverted) copy is deleted, and the new one saved in its place. An exception to this is KSAM files, which are converted in place, rather than written to a new temporary file.

A count of the number of records read and converted is displayed on $STDLIST.

This utility will not convert files containing bytes with the eighth bit set. This situation probably indicates a misunderstanding or error. The likely causes are:

- File is not a text or data file.
- File is a data file where the fields have been inaccurately located.
- File was created on a terminal configured for 8-bit operation.
- File has already been converted.

The maximum record length supported is 8192 bytes. The maximum number of fields supported in the records of a data file is 256.

If the file being converted contains user labels, these are copied to the new file without conversion. If a fatal error is encountered during the conversion (for example, 8-bit data or file system error found) the conversion stops, the old copy of the file is saved (with the data unchanged), and the new copy is purged.

An exception to this practise occurs with KSAM files. Since these are converted in place, some records may already have been modified. KSAM files (including key file) should be restored from the backup tape to ensure a consistent copy.
A **CTRL Y** entered during conversion displays the number of records successfully converted, and conversion continues. On variable length data files, if a field or portion of a field is beyond the length of the record just read, a warning is displayed and that field is not converted on that record. Other fields on the same record are converted, and processing continues with subsequent records. After each file has been converted, the user is prompted for another file name.

In addition to the text and data options, there is a test conversion option which shows how the conversion algorithm operates. The test conversion option must be run from a terminal configured for 7-bit operation with the chosen national substitution set. The user is instructed to enter a string, and the result of the conversion is displayed. The user does not have to switch back and forth between 7-bit and 8-bit operation to see the result. Each character converted is displayed as a decimal value in parentheses rather than graphically. Other characters are displayed unchanged.

At any point in the program, a **Return** exits the current program level. A **Return** in response to a request for the starting position and length of a field in a data file indicates that the definition of fields is complete, and the program proceeds with the conversion of the data file. A **Return** entered in response to a request for a text file name indicates the conversion of text files is complete; the program goes back to the question: "Type of file to be converted?".
16 NLIOUTIL

The NLIOUTIL utility dynamically activates the Native Language I/O (NLIO) subsystem for Asian and Middle East/African terminals and printers. (NLIO is the basic input and output system integrated into MPE/iX for Native Language Support NLS.) Once activated by NLIOUTIL, properly configured native devices may use the Native Language I/O facility.

NOTE You use the System Generator utility (SYSGEN) to configure devices connected directly to the system and the Node Management Configuration Services (NMMGR) to configure devices connected to a Distributed Terminal Controller via Local Area Network.

Operation

NLIOUTIL allows the user to start or stop the NLIO service for the current interactive $STDIN and $STDLIST devices. System Supervisor (OP capability) is required to start or stop the NLIO service for a logical device (ldev) or device class name other than the $STDIN.

When NLIO is started for a device with the NLIOUTIL OPEN command, status information is written to a file named NLIODEF.PUB.SYS. When the system is restarted, NLIO reads in all the previous settings from NLIODEF.PUB.SYS file. There is no need to run NLIOUTIL to open a device unless you wish to change the settings for the device.

The actual update of NLIODEF.PUB.SYS is performed when the NLIOUTIL program is terminated with the END/EXIT/E command.

To invoke NLIOUTIL enter:

 NLIOUTIL

or

 RUN NLIOUTIL.PUB.SYS;INFO=infostring

infostring is an NLIOUTIL command passed with the INFO parameter of the RUN command. NLIOUTIL automatically exits after executing the command passed with the INFO parameter.

NLIOUTIL Commands

The NLIOUTIL utility has the following commands:

- HELP Shows the usage of each NLIOUTIL command.
- OPEN Starts NLIO service for a specified device with a specified language.
- SHOW Displays the status of NLIO service for a specified device.
- SHUT Stops NLIO service for a specified device.
- EXIT/END/E Exits the NLIOUTIL utility.

Each of the commands is explained in the following sections.
HELP Command

The HELP command shows the usage of each of the NLIOUTIL commands.

HELP [HELP | OPEN | SHUT | SHOW | EXIT | END | E]

OPEN Command

The OPEN command is used to start the NLIO service for a specified device with a specified language.

nliodevice is the ldev or device class name. If the nliodevice is omitted, the current stdin/stdlib device is assumed when it is an interactive device. System Supervisor (OP) capability is required to specify devices other than your own stdin.

lang_id is the language number. The supported language numbers are:

- 201 Simplified Chinese
- 211 Traditional Chinese
- 221 Japanese
- 231 Korean
- 51 Arabic SUGURU

If the lang_id is omitted, the user interface language (USERLANG) set by SETJCW or the system default language is assumed. (The user interface language has the precedence).

NOTE You can change the system default language by running the LANGINST.PUB.SYS program. Refer to Chapter 11, “LANGINST,” in this manual for additional information on LANGINST.

RECCONV indicates that a record of the next I/O request that will be made is to be treated as the independent record from the current record. The RECCONV option should be used for terminals. This is the default value used for Asian devices (both terminals and printers).

NORECCONV indicates that a record of the next I/O request that will be made is to be treated as the continuing data from the current data. The NORECCONV option should be used for printers.

LATIN specifies the LATIN mode. The primary print direction is left to right. The LATIN mode is used for MEA devices.

NONLATIN specifies the NONLATIN mode. The primary print direction is right to left. The NONLATIN mode is the default.

length specifies the width of the print line. If length is not specified, the value is the length specified when the device was configured.

shape_mode specifies the shape type for MEA characters. The value specified may be 1 for the enhanced font containing 192 shapes, including a number of Lam-Alef ligatures, or 2 for the old font containing 163 shapes, without the Lam-Alef ligatures. The default value is 1.
SHOW Command

The SHOW command displays the status of the NLIO service for a specified device.

SHOW [nliodevice]

nliodevice is the ldev or device class name. If the nliodevice is omitted, the current stdin device is assumed when it is an interactive device. System Supervisor (OP) capability is required to specify devices other than your own stdin. The "at" sign (@) can be specified to designate all devices that are currently opened.

SHUT Command

The SHUT command stops the NLIO service for a specified device.

SHUT [nliodevice]

nliodevice is the ldev or device class name. If the nliodevice is omitted, the current stdin device is assumed when it is an interactive device. System Supervisor (OP) capability is required to specify devices other than your own stdin. The "at" sign (@) can be specified to designate all devices that are currently opened.

EXIT/END/E Command

The EXIT, END, or E command exits the NLIO utility.

EXIT | END | E

Restrictions

- Devices must be configured for NLIO via SYSGEN or NMMGR.
- System Supervisor (OP) capability is required to specify devices other than your own stdin.
- NLIO cannot be used for the system console.
The **NLUTIL** utility lets you verify the Native Language Support (NLS) Languages and character sets available on the system.

Operation

To display a table showing the currently configured languages and their character set types, enter:

```
NLUTIL
```

or

```
RUN NLUTIL.PUB.SYS
```

NLUTIL displays information in columnar format and then prompts you to request a full listing. For example:

```
Lang   Lang                      Char   Char
ID   Name                        ID   Name
----------------------------------------------
 3   DANISH                       1   ROMAN8
 5   ENGLISH                      1   ROMAN8
12   SPANISH                      1   ROMAN8
```

Do you require a full listing of the current configuration? (Y/N)

Enter `Y` to print a full list of the current Native Language Support configuration. Enter `N` to print information about only a single language. For each language set included in the list, **NLUTIL** reports:

- character attributes
- character collation
- EBCDIC translation tables
- upshift and downshift translation tables
- date and time information
- miscellaneous data on YES/NO indicators
- numeric formats
- monetary symbols

Additional Discussion

For more information refer to the Native Language Programmer’s Guide.
18 PATCH

The PATCH utility accesses, displays, and/or modifies a compiled, prepped executable modules. You may make simple changes to program instructions or to global stack area variables with this utility. You may use PATCH on compatibility mode programs only.

Before using this utility you should be familiar with machine-executable instructions and the internal format of executable modules in the HP3000 system environment.

CAUTION PATCH bypasses normal MPE/iX safeguards and will modify the contents of privileged program files. It is therefore possible to corrupt system file(s) or the entire operating system. Hewlett-Packard is not responsible for modifications you make to the operating system or system files. For more information contact your Hewlett-Packard service representative.

Operation

To invoke PATCH enter:

 PATCH

or

 RUN PATCH.PUB.SYS

PATCH identifies itself, then displays ENTITY= to request the name of the file you want to list or modify:

 PROGRAM PATCH G.00.00 (C) HEWLETT-PACKARD CO., 1976
 ENTITY =?

Enter filename.groupname.accountname, in uppercase letters, of the file whose code you wish to display or change. (PATCH does not immediately verify that the file you specified is a program file, but you will get an error when you attempt to use a command on a nonprogram file.)
When the file name is accepted, PATCH displays the ? prompt, where you enter one of the following four subcommands:

- **D** Displays code segment contents.
- **M** Modifies code segment contents.
- **DG** Displays global area of initial stack.
- **MG** Modifies global area of initial stack.

After each command, PATCH prompts you for another. To terminate PATCH press Return without entering a command. (An incorrectly entered command also terminates PATCH.)

On the following pages, each of the four PATCH subcommands is explained in detail.

D

The D command displays code segment contents. To invoke this command enter:

```
?D, segnum, address [,numlocations]
```

Parameters

- **segnum** The logical segment number to be displayed, found at the top of the PMAP output.
- **address** The code segment relative address you wish to display is as follows: add the offset of the instruction within the procedure (an octal value found in your compiler listing) to the procedure start address found in the CODE column of your PMAP output.
- **numlocations** The number of words, in octal, to be displayed.

For a list of segment names and their addresses within a program file, use the PMAP option of the PREP command.

For information regarding the offsets of instructions and global variables in program files, refer to compiler options for the programming language in which the code was written.

M

The M command modifies code segment contents. To invoke this command enter:

```
?M, segnum, address, [,numlocations]
```

Parameters

- **segnum** The logical segment number to be modified, found at the top of the PMAP output.
- **address** The address of the code segment you wish to modify, calculated by adding the offset of the instruction within the procedure (an octal value found in your compiler listing) to the procedure start address found in the CODE column of your PMAP output.
- **numlocations** The number of words, in octal, to be modified.
When you enter the \texttt{M} command, the contents of the current instruction are displayed followed by a comma. To leave the value unchanged, you \textit{must} re-enter the contents! If you press \texttt{RETURN} without entering anything the instruction will be set to zeros (\texttt{%000000}, a \texttt{NOP} instruction).

For a list of segment names and their addresses within a program file use the \texttt{PMAP} option of the \texttt{PREP} command.

For information regarding the offsets of instructions and global variables in program files, refer to compiler options for the programming language in which the code was written.

\textbf{Example}

The following example shows you how to use the \texttt{M} and \texttt{D} commands to display and modify the contents of one instruction in the file \texttt{BIGBUCS.PUB.SALES}:

\begin{verbatim}
FILE = ? BIGBUCS.PUB.SALES

?D,0,20,1
031042

?M,0,20,1
031042, 420031

?D,0,20,1
420031
?
\end{verbatim}

\textbf{DG}

The \texttt{DG} command displays the global area of the initial stack. To invoke this command enter:

\begin{verbatim}
?DG, reloffset [,numwords]
\end{verbatim}

\textbf{Parameters}

\begin{itemize}
\item \texttt{reloffset} \hspace{1cm} The DB-relative offset of the word to display, found in your compiler listing. For more information, refer to the compiler options for the programming language in which the code was written.
\item \texttt{numwords} \hspace{1cm} The number of words, in octal, that you wish to display. The default is one.
\end{itemize}

\textbf{Example}

\begin{verbatim}
FILE = PINITRIN.PUB.TEST

?DG, 0, 4
000010
000015
000000
000046
?
\end{verbatim}

\textbf{MG}

The \texttt{MG} command modifies the global area of the initial stack. To invoke this command enter:

\begin{verbatim}
?MG, reloffset [,numwords]
\end{verbatim}
PATC H
Operation

Parameters

reloffset The DB-relative offset of the word to modify, found in your compiler listing.

numwords The number of words, in octal, that you wish to modify. The default is one.

The **MG** command displays the contents of the current stack word, followed by a comma. To leave the value unchanged, you must re-enter the contents! If you press **RETURN** without entering anything the word will be filled with zeros.

For information regarding the offsets of instructions and global variables in program files, refer to compiler options for the programming language in which the code was written.

Examples

Here is an example of using the **MG** and **DG** command. Begin by running **PATCH** and entering the executable file name. In this example, the file is **BIGTECH.PUB.SYS**.

```
PROGRAM PATCH G.00.00 (C) HEWLETT-PACKARD CO., 1976
FILE = ?BIGTECH.PUB.SYS
```

The following displays values in the first five addresses:

```
?DG, 0, 5
000112
000052
000064
000264
000464
```

The following would set the first five locations to zero because **RETURN** is pressed without entering anything after each location is displayed:

```
?MG, 0, 5
000112,
000052,
000064,
000264,
000464,
```

The following displays the changes you just made:

```
?DG , 0, 5
000000
000000
000000
000000
000000
```
The following changes the zeros displayed above to the values shown after each comma:

```
?MG, 0, 5
  000000, 112
  000000, 52
  000000, 64
  000000, 264
  000000, 464
```

The following displays the first changed value:

```
?DG, , 1
  000112
```

Additional Discussion

For more information on **PREP** command refer to the MPE/iX Commands Reference Manual V. For more information on User Subprogram Library (USL) files refer to the MPE Segmenter Reference Manual.

Many compilers produce a listing of global identifiers and their addresses. For more information refer to the reference manual for that compiler’s programming language.
The system manager uses the `PXUTIL` utility to perform operations related to the UID and GID databases. These include:

- creating the UID and GID databases
- synchronizing existing UID and GID database files with the current directory

`PXUTIL` requires exclusive access to the databases. This means that any command that needs to modify these files (such as `NEWACCT`, `ALTUSER`, and so on) fails during `PXUTIL` operations. For this reason, no activities that access the databases (`NEWACCT`, `ALTACCT`, `PURGEACCT`, `LISTACCT`, `NEWUSER`, `ALTUSER`, `PURGEUSER`, `LISTUSER`, and logon commands) should be attempted on the system while `PXUTIL` is in operation.

NOTE
If you press `BREAK` and the process is aborted, MPE/iX resolves the incomplete operation by closing the existing files (without updating them) and by deleting the new files that it opened.
Operation

You can invoke the PXUTIL utility from a session or job. It requires SM capability. It is breakable except for the period during which either old database files are being purged or new ones are being saved.

The PXUTIL utility supports the following four commands:

- **UPDATE**
- **HELP (H)**
- **QUIT (Q)**
- **EXIT (E)**

Each of these commands is explained on the following pages.

UPDATE

The `UPDATE` command provides a way of ensuring that your UID/GID databases accurately reflect the current directory structure. You may need to update the databases in response to particular error messages generated by various commands that could not properly update the databases as expected. UID/GIDs of existing users and accounts are preserved. If the databases do not exist, they are created from scratch, with UID values beginning at 100 and GID values also beginning at 100.

The UID database contains the following information:

- `login name` User name.account name. For example, `MGR.SYS`
- `uid` Integer initially allocated sequentially for each user.
- Initial working directory Home group. For example, `/SYS/PUB`.
- Initial program to use as a shell HFS form of the command interpreter (CI.PUB.SYS), which is: `/SYS/PUB/CI`.

The GID database contains the following information:

- `group name` Group name. For example, `SYS`.
- `gid` Integer initially allocated sequentially for each group.

QUIT

Exits the utility.

EXIT

Exits the utility.

HELP

Displays the PXUTIL utility commands.

Examples

The operation from a session is illustrated below:
RUN PXUTIL.PUB.SYS

MPE/iX PXUTIL A.00.01 Copyright (C) Hewlett-Packard 1991. All Rights Reserved.
PXUTIL> update
User and group databases sucessfully created.
PXUTIL> quit

Below is a typical invocation and operation of PXUTIL when the databases previously exist. Note that users that were added to the database are displayed. (Refer the commands section for more information on the UPDATE command.)

MPE/iX PXUTIL A.00.01 Copyright (C) Hewlett-Packard 1991. All Rights Reserved.
PXUTIL> update
User NEWUSER.POSIX with user id= 542 added to user database.
User TESTUSER.UI with user id= 543 added to user database.
User and group databases synchronized with the directory.
PXUTIL> e
The Standalone Initialization Utility (SAINT) is an interactive utility program that analyzes system libraries (which contain system object modules, or SOMs) to produce executable images known as boot images. A bootable image is a file that can be copied directly to memory and executed without modification. The SAINT utility’s primary function is to produce a boot image for the operating system.

The input file upon which the SAINT utility is primarily dependent is the system library file. The format of the library file is defined in the SOM Architecture Control Document.

WARNING Do not use this utility without service center support. Unauthorized use will void your warranty and may cause data loss.

The following terms are used in this chapter:

- **CME** Compatibility mode environment. This file contains the environment required to run a compatibility mode program file created by the MPE segmenter.
- **IODC** I/O-dependent code. This I/O-device-specific code tests and accesses I/O devices, particularly the boot device device (system disk).
- **IPL** Initial program load. This is the first code to be executed from outside the SPU. It is usually code residing on the system disk (the boot device) and is brought into the system by the PDC and IODC code. It provides a user interface to boot image or SOM files into the system to be executed.
- **LIF** Logical interchange format. This is a common format used to identify the contents of diverse media.
- **LST** Library symbol table. This symbol table is contained in SOM library files and defines the meaning and location of symbols contained in the SOMs that are part of the system library file. The library file is defined in the SOM Architecture Control Document.
- **PIT** Page information table. This table contains entries identical to the page table entries required by the system architecture. These entries describe the physical page layout of the bootable image contained in the boot image file.
- **PDC** Processor-dependent code. This code is contained in ROM and invokes processor self-tests, locates the boot channel, and checks the condition of the boot device path (including the CPU, main memory, and access to the boot device).
- **PME** Primary macro environment. The historical name for MPE boot images. This document uses only the term boot image.
- **RFI** Return from interrupt. This system instruction restores the processor state by resetting the values of the PSW, PC space, and PC offset registers to the values contained in the IPSW and PC space and offset queues. This instruction can be used to switch instruction execution from real addressing mode to virtual addressing mode.
- **SOM** System object module. The SOM is the file used as the output of system compilers, the input and output of the system linker and MPE/iX loader. Its format is defined in the SOM Architecture Control Document.
- **XRT** Cross reference table. This is a process-local table built by the MPE/iX loader, which contains information required to make intermodule procedure calls. There is also a system XRT (SXRT) residing in system space that is used to make system calls.
file offset A byte offset relative to the beginning of the file.
virtual offset A byte offset relative to the beginning of the space.
space offset The same as virtual offset.

Preparation for use
To bring up the operating system, the START boot image contains the code that builds the required software structures and initializes the various components of MPE/iX, such as the virtual space manager, memory manager, IPC, compatibility mode emulator, and so forth.

The first code to be executed is in real addressing mode and builds the page table and hash table required to use virtual addressing mode. It then transfers to virtual addressing mode during the call to the virtual entry point.

When the operating system is running, some parts of it are required to be in main memory at all times. This code is part of the system library, and is identified by the memory-resident bit in the library's initialization pointers and subspace dictionary entries. All code that is defined as being memory-resident is contained in the start boot image.

The operating system code, which must reside in memory while the system is being initialized, must also be contained in the boot image. This code is identified by the initially frozen bit contained in the initialization pointers and subspace dictionary entries. All code that is defined as being initially resident and is also contained in the start boot image. During system initialization, the initially frozen code is locked in memory until the system library is fully mapped into virtual space. At that point, the code resets to allow the memory manager to swap it out, if necessary.

Input files
The input files accepted by the SAINT utility consist of system library files, CME files, SXRT declaration files, and millicode files. The MPE/iX system library contains MPE/iX system code and data structures. The system millicode is also contained in a SOM, and the compatibility mode definition is contained in a CME file.

The input files required to build the boot image are all identified by one of the load commands (LOADCME, LOADMILLI, LOADSXRT, or LOADSYSLIB).

SOMs and system libraries
The system library is the primary input file used by the SAINT utility to produce boot images. Libraries contain SOM files, which are the primary output files of system compilers and assemblers, as well as the system linker. Libraries are built by the link editor, which invokes the linker.

In addition to executable code, SOMs contain an initialization pointer area, which is used to define the page allocation and access rights of both code and data. An initialization pointer record defines either the location of code or data within the SOM, or the value and length of a data area required by the SOM. These records are used to allocate pages within the boot image file and to build the page information table, or PIT, for the boot image.

The library symbol table, or LST, contains records defining the location of procedures within the SOMs contained in the library, and these records are copied directly over to the boot image for use by a symbolic debugger when the system is being booted up.

The system object module ACD defines the format of the SOM and the system library.
Operation

WARNING Do not use this utility without service center support. Unauthorized use will void your warranty and may cause data loss.

The boot sequence expected by the boot image is described below:

1. IPL locates the **START** file in the **LIF** directory and reads the first 128 words of that file, which is the operating system boot image.
2. When the file has been identified as a valid bootable image, the file is booted into physical memory.
3. The IPL auxiliary header contained in the boot image identifies the file relative location of the real entry point, and this location is used as an entry point to begin execution of real mode code.
4. Launch first calculates the size of physical memory, and then finds the page information table (PIT) within the boot image to create the system page and hash tables.
5. Next, launch allocates memory for the stack, system globals, and so on and initializes the value of system registers.
6. When launch is ready to switch over to virtual addressing mode, it gets the location of the main virtual entry point from the boot image descriptor, and executes an **RFI** instruction to jump into Genesis.

Boot Image

Use the following **SAINT** utility commands to creat a boot image:

1. To run the program, type **RUN SAINT.GROUP.ACCT**.
2. Open and read the system library. For example, if your system library file is **NL.ABUILD00.OFFICIAL**, you enter:

   ```
   LOADSYSLIB NL.ABUILD00.OFFICIAL
   ```
3. Open and read the CME. For example, if the CME is in the file **CME.ABUILD01.OFFICIAL**, you enter:

   ```
   LOADME CME.ABUILD01.OFFICIAL
   ```
4. Open and read the millicode file. For example, if the millicode file is **EXTMILLI.MILLI.OFFICIAL**, you enter:

   ```
   LOADMIL EXTMILLI.MILLI.OFFICIAL
   ```
5. Load the system cross-reference table and use it to build the boot image. For example, if the SXRT file is **DSXRT.X.X**, you enter:

   ```
   LOADSXRT DSXRT.X.X
   BUILDPME START, SXRT
   ```
6. Enter **EXIT** to exit the **SAINT** utility.

Each of the **SAINT** utility commands are described below and on the following pages.
BUILDPM

This command creates the permanent boot image from the internal data structures (symbol tables, code arrays, and so on.) built by the SAINT utility in previous load commands. These data structures keep track of the information designated by the load commands previously invoked in this SAINT utility session.

Syntax

BUILDPM bootimagename [,SXRT]

Parameters

bootimagename The name of the boot image file. This parameter is required.

SXRT A keyword designating whether or not a system cross-reference table should be built.

Example

buildpme getit.gotit.good,sxrt

EXIT

This command terminates the SAINT utility, closes all files it is currently using, and returns control to the process that invoked this session of the SAINT utility.

Syntax

EXIT

Parameters

None

Example

exit

FINDSYM

This command searches for the specified symbol name in the symbol table of the designated boot image and displays pertinent information if the symbol is found. If you do not specify a boot image file, SAINT uses the currently built boot image. If a boot image has not yet been built and you do not specify a boot image file, SAINT returns an error.

Syntax

FINDSYM symbolname [,filename]
Parameters

symbolname The symbol to be found in the symbol table. This parameter is required.
filename The name of the boot image file. The default is the currently built boot image.

Example

FINDSYM system_abort, start.abuild01.official

HELP

This command displays a list of the SAINT utility commands in alphabetical order, plus a short description of each command's syntax and function. You can also enter the HELP command followed by a single command name to see the syntax and function of that specific command.

Syntax

HELP

HELP > commandname

Parameters

commandname The name of the command for which you want information.

Examples:

HELP
HELP findsym

LOADCME

This command integrates a compatibility mode environment (CME) file into the current boot image file. SAINT appends the CME file to the current boot image and enters the offset of the CME within the boot image in the boot image descriptor record.

Syntax

LOADCME filename

Parameters

filename The name of the CME file to be added. This parameter is required.

Example

LOADCME why.captain.spalding

LOADMILLI

This command loads the system millicode file into the boot image.
SAINT
Operation

Syntax

LOADMILLI filename

Parameters

filename The name of the SOM file containing the system macros. This parameter is required.

Example

LOADMILLI foobar

LOADSXRT

This command opens the system cross-reference table declaration file (DSXRT), to be used when the SXRT is built by the BUILDME command. The file is used to build the first section of the SXRT, which continues entries for all system entry points used by switches for CM.

Syntax

LOADSXRT filename

Parameters

filename The name of the SXRT declaration file. This parameter is required.

Example

LOADSXRT dsxrt.loader.exprmntl

LOADSYSLIB

This command opens a system library file and adds the contents to the boot image. It loads only those code pages that are designated as memory resident or initially resident into the boot image; it loads all data pages, regardless of residency declarations.

Syntax

LOADSYSLIB filename [realentrypoint] [virtualentrypoint] [syslib offset]

Parameters

filename The name of the system library file. This parameter is required.

realentrypoint The name of the entry point for the real code in the system library. The default is init_ivaaddr.

virtualentrypoint The name of the entry point for the system library entry point. The default is start.

syslib offset The virtual offset of the start of the system library. The default value is zero.
Example

LOADSYSLIB nl.abuild00.official

MAP

This command generates a map of the boot images symbol table. It describes the location of the major components of the boot image. In addition, a flag in the command's parameter list turns on the display of symbolic information obtained from the library symbol tables contained within the boot image.

Syntax

MAP [filename[,radix[,sym]]]

Parameters

filename The name of the boot image file used to generate the map and symbol table. Default is PME under construction.
radix The base in which to display numeric output.
SYM A keyword which allows the display of symbolic information from the boot images tables.

Examples

MAP boot imagefile1,H,sym

Error Messages

The following pages list some of the more common error messages you may encounter, the probable cause and a suggested action.

The Physical Destination address is too small, will overlay ISL

CAUSE The NL used to build this PME has the first-resident or initially resident page at a virtual address that is less than expected. The destination address is the address ISL will use to load the PME. If that destination address is lower than the end of ISL, the PME will not be loaded by ISL.

ACTION Change the linker commands used to build the NL that is the source of the PME. The linked commands that affect the location of the pages are the limit option on the buildxl command and the cleanxl command.

The Physical Destination address is smaller than expected, MAY overlay ISL

CAUSE The NL used to build this PME has the first-resident or initially resident page at a virtual address that is less than expected. The destination address is the address that ISL uses to load the PME. If that destination address is lower than the end of ISL, the PME is not loaded by ISL. The destination address may or may not be lower than the end of ISL. The end of ISL is dependent on:

- type of boot
- size of machine
- size of code
ACTION You may try and use the PME or change the linker commands used to build the NL that is the source of the PME. The linker commands that affect the location of the pages are the limit option on the buildxl command and the cleanxl command.

Internal ERROR. Attempt to read or write with index <0

CAUSE SAINT has attempted to read or write a file using an invalid index. This is an error in an input file or an internal error.

ACTION If an input file is indicated, check the input file for correct format and contents; otherwise enter an SR and provide a copy of all the input files, the SAINT program, and any output file.

An IMPORT STUB entry point was not found in the library

CAUSE One of the SOMs within the library (the NL loaded by SAINT loadsyslib command) has made a call to a procedure external to itself, and no other SOM in the library contains the procedure.

ACTION Find out which SOM the called procedure should reside in (that is, console SOM, diagnostic SOM, and so on) and try relinking the library with another version of the SOM.

An SXRT entry point symbol was not found in the library

CAUSE A procedure or intrinsic name in the DSXRT file (loaded by SAINT loadsxrt command) has no corresponding code in the library (the NL loaded by SAINT loadsyslib command).

ACTION First make sure that the correct version of the DSXRT file is being used for the library. Once this has been verified, it is most likely that the warning message can be ignored. Sometimes obsolete entries are left in the DSXRT file but have no effect on system operation; however, if a warning message exists and the system is experiencing other problems (for example, will not boot), further diagnosis may be necessary. Contact the factory.

ERROR on move data, file num = xx escape code = yyyyyyy

CAUSE When SAINT attempts to move data into a file and an error is detected by the operating system a trap code is returned to SAINT. There will be further error messages that will define the problem.

ACTION Determine the problem from the messages that follow.

Error - OUT OF DISK SPACE or internal pointer error

CAUSE The most common cause of this error is out of disk space. The other possible cause is that an internal pointer has an invalid value in it.

ACTION First make sure that there is enough disk space on the volume set where the file is being written. Next check the limits on the group and account where the file is being written. The file name is in the

```
```

Correct the disk space problem. If there is enough disk space and the problem still exists, enter an SR describing the problem. Send supporting material: a store tape with a copy of all files used as input to SAINT, (NL, CME, DSXRT, EXTMILLI) a copy of the PME written, and the SAINT program.

Error - Unknown internal pointer error

CAUSE An internal pointer has an invalid value in it. The file name is in the

```
```
Enter an SR describing the problem. Send supporting material: A store tape with a copy of all files used as input to SAINT; (NL, CME, DSXRT, EXTMILL) a copy of the PME written, and the SAINT program.

An SXRT file has not been defined
CAUSE The buildpme command has been entered with the sxrt option and the loadsxrt file command has not been entered.
ACTION Enter the "loadsxrt file" command specifying a valid DSXRT file.

Zero SXRT entries found in DSXRT file
CAUSE The loadsxrt file command was entered specifying an empty DSRT file.
ACTION Enter the loadsxrt file command specifying a valid DSXRT file.

Internal ERROR. The SXRT file has not been specified
Internal ERROR. Default entries not available
CAUSE SAINT has reached a point where it thinks there is no SXRT file specified and it needs to get SXRT entries. This is an internal error condition.
ACTION Enter an SR describing the problem and the steps taken. Send supporting material: a store tape with a copy of all files used as input to SAINT; (NL, CME, DSXRT, EXTMILL) a copy of the PME written, and the SAINT program. Re-run the task specifying the loadsxrt file command with a valid DSXRT file.

Data region found in non-syslib file
CAUSE Wrong file name supplied in loadmill command.
ACTION Supply correct file name.

xxx is not a known loader fixup type
CAUSE Millicode or syslib file is corrupt.
ACTION Re-install file from tape.
The **SLPATCH** utility accesses, displays, and/or modifies segmented library (SL) files.

Before using this utility, you should be familiar with machine-executable instructions and the internal format of segmented library files in the **HP3000** system environment.

CAUTION
SLPATCH bypasses normal **MPE/iX** safeguards and will modify the contents of *privileged* SL’s. It is therefore possible to corrupt the SL or the entire operating system. Hewlett-Packard is not responsible for modifications you make to the operating system or system files. For more information contact your Hewlett-Packard service representative.
SLPATCH
Operation

To invoke SLPATCH enter:

SLPATCH

or

RUN SLPATCH.PUB.SYS

SLPATCH responds with the following and displays ? to prompt you for the SL file name you wish to work on. Enter the file name in the form: filename[.groupname[.acctname]], and use all uppercase letters. For example:

SLPATCH A.43.11 (C) HEWLETT-PACKARD CO., 1976
SL FILE? SL.PUB.HITECH

When SLPATCH accepts the name of the segmented library file, it displays another ? to prompt you for a segment name and a command. SLPATCH continues to display this prompt, awaiting another command, until you exit the utility. To terminate SLPATCH, enter EXIT at the ? prompt.

D

This command displays the contents of an SL segment. To invoke this command enter:

? [segname,] D, segdisplace[, numwords]

Parameters

segname The name of the segment you want to display, obtained from an SLCREF (SL Cross-Reference) listing. This parameter must be specified the first time the segment is accessed, but may be omitted in subsequent commands.

segdisplace The segment displacement.

numwords The number of words of the SL to display. The default is one.

M

This command modifies the contents of an SL segment. To invoke this command enter:

? [segname,] M, segdisplace [,numwords]

Parameters

segname The name of the segment you want to modify, obtained from an SLCREF (SL Cross-Reference) listing. This parameter must be specified the first time the segment is accessed, but may be omitted in subsequent commands.

segdisplace The segment displacement.

numwords The number of words SL modifies. The default is one.

The contents of each word to be modified is displayed, followed by a comma. To retain the old value, enter * and press Return. To enter a new value, type the number (in octal) and press Return. If you only press Return, you will be prompted to enter * or a number.
NOTE To find the segment displacement, add the instruction offset (generally found in the compiler listing) to the starting address of the procedure (supplied by the PMAP option of the PREP command).

For information regarding the offsets of instructions in program files, refer to compiler options for the programming language in which the code was written.

SLPATCH Example

Invoke SLPATCH and enter the SL name. For example, if the name of the segmented library file is SL.PUB.HITECH, you enter:

```
SLPATCH
```

SLPATCH A.43.11 (C) HEWLETT-PACKARD CO., 1976
SL FILE? SL.PUB.HITECH

Next, display 4 words, beginning with word 0 of segment SDMCOMM:

```
? SDMCOMM,D,0,4
025001
051404
041605
021040
```

Display 3 words, beginning with word 5 in the same segment. Notice the segment name need not be entered again:

```
? D,0,3
023113
040415
050641
```

Change the contents of the first word of SDMCOMM segment and terminate SLPATCH:

```
? M,0,1
025001,025002
? EXIT
```

Additional Information

For more information on segmented libraries refer to the MPE Segmenter Reference Manual.
Use the SOMPATCH utility for binary modification of a native mode spectrum object module (SOM) program or library file. Binary modification is referred to informally as patching.

WARNING Do not use this utility without service center support. Unauthorized use will void your warranty and may cause data loss.

This utility is capable of tracking all of the modifications that it makes to a SOM file. This history is kept in the SOM file in an unloadable buffer space, which affects neither performance nor memory usage of the program. This buffer space is provided by linking in a ypatch file when the executable SOM file is created.

The ypatch file to be linked into SOM 0 of NL.PUB.SYS creates loadable code because the storage area needs to be in the boot images, and the SAINT utility does not store unloadable spaces in the boot images. This special ypatch file is ypat.som0 and would normally be used only in the NL.

The SOMPATCH utility will accept as input a file not linked with a ypatch file. However, you should use it to build files with the ypatch file, so that at any time you can view and query the file and patch history. If the ypatch file is not linked in, no logging is available. All native-mode system products are required to link with the ypatch file if the product is to be supported in the field to any extent with binary patching.

MPE/iX contains a symbolic debugger that can be used for memory patching or to generate patches that you will permanently apply with the SOMPATCH utility.

To patch compatibility mode files, use the slpatch and patch files.

Input Files

The SOMPATCH utility has one required file and that is the input file to be queried or patched. This file can be a relocatable or executable library SOM or a program SOM. The SOMPATCH utility treats this file as a read-only file. No backup copy is made; however, a QUIT command can be used at any time, with this file remaining unchanged.

The user can also optionally specify a second input file, a script file of modification instructions and logging information, referred to hereafter as a patch file. A patch file is an ASCII file, created by an editor or other text utility, that specifies one or more commands to the SOMPATCH utility. The patch file is given on the command line, or by the USE command, to apply one or more patches. Patches can also be applied interactively. Refer to the paragraph "Interactive Patching" under "Operation."

Error Handling

The input file is maintained in its original state until the user types EXIT or SAVE. If there is a system malfunction between the EXIT command and the colon prompt, purge the possibly modified file and start over with a backup. If no backup is available, redo all patches on the possibly modified input file. (This may cause the oval/verify option on the modify command to generate false error messages). As long as the ypatch file was used, all old patches can be backed out.

Output File

The user can optionally specify an output list file containing all patch instructions issued, any error messages, and any displays. This is saved as a permanent disk file, unless overridden by a user-specified file equation.

The SOMPATCH utility writes to the primary file all patches that did not contain errors. If a patch has several modify instructions, or the count is greater than one for one modify, and one or more generated errors, none of the modifies for that patch are applied. Patches are broken up by LOG commands.

JCW Handling
The **SOMPATCH** utility sets two J CWs: the system J CW and a private J CW, **PATCHJCW**. **PATCHJCW** is set as follows:

- No error -- value of 0
- Nonfatal error -- value of 1
- Fatal error -- value of 2
- Really fatal -- value of 3 (Program will gracefully abort.)

Under these error conditions, the **SOMPATCH** utility also sets the system J CW to the standard MPE values, **OKAY**, **WARN**, and **FATAL**.

Preparation for Use

Patching modifies object code when a problem cannot be easily or conveniently fixed in source code. The **SOMPATCH** utility is used to fix a software problem without recompiling or relinking. A patch is usually developed using the symbolic debugger, with the patch applier using the **SOMPATCH** utility to permanently install a modification in the defective software.

You should link in one of two available ypatch files when you build the product that you are patching. Which one you link depends on how much the product is patched.

When linking a single-SOM library, or a program file, specify the ypatch file you want to use at the end of the source object files for the user’s executable SOM. For example:

```bash
link> LINK from=mysomfile,ypatch4.lib.sys; to=myprogfile
```

When linking a multi-SOM library, specify the desired ypatch file at the end of the source object files for each SOM. For example:

```bash
link> LINK from=mymod1,mymod2,mymod3,ypatch4.lib.sys; to=myint1
link> LINK from=mymod4,mymod5,mymod6,ypatch4.lib.sys; to=myint2
link> BUILDXL mynl
link> LINK from=myint1,myint2; to=mynl
```

HP product files should contain a minimum of 300 bytes of storage for each anticipated patch. Refer to “Error Handling” in this chapter for information of how to handle errors when this storage area overflows.

Operation

The MPE/iX command interpreter includes the implied `RUN` concept, which allows the user to invoke a program merely by naming it. For the `SOMPATCH` utility, type `sompatch [.group .account` and then specify a string of parameters (enclosed in quotes) before typing `Return`. The program file is searched according to the CI variable `HPPATH`. Currently, the `SOMPATCH` utility is stored in `PUB.SYS`.

You may specify the following parameters on the command line:

- name of file to be patched
- name of script file
- name of output list file

The last two files can be specified in one of two ways. To use the C-shell indirection syntax, enter:

```
sompatch mainfile patchfil> listfile
```

Or, to specify the files either positionally or by using the key words `USE` and `LIST`, respectively, enter:

```
sompatch "nl.abuild, patchfil, patchlst"
```

```
sompatch "nl.abuild,,patchlst"
```

```
sompatch "nl.abuild use:patchfil list:patchlst"
```

If you use a patch file as is shown in the example, `SOMPATCH` executes all commands in the patch file and returns you to the MPE prompt.

The following example shows how to patch a file that has been linked with a ypatch file.

Using a text editor, create a patch file that has the following four lines:

```
log  junie moon from august skies, 163, 4700741260
; fixes system crash on listf ,5
modify iobuf+20, 2, 12345678 | 22222222 33333333|FFFFFFFF
exit
```

In this command:

- Junie moon is the integrator,
- August skies supplied the patch,
- 163 is the number of the patch, and
- listf ,5 is the system command that needs to be fixed.
- A semicolon signifies that the rest of the line is a comment.
- SR 4700741260 is the STARS SR where the breakdown is documented.
- iobuf+20 is the location to modify with an offset of 20 bytes.
- 2 indicates that two 32-bit words need to be changed.
- 222222222 and FFFFFFFF are the new values.
- 12345678 and 33333333 are the old values.

The file to be patched is `nl.abuild00.official`.
When using a patch file, specify a list file, so that if the JCW is FATAL after the SOMPATCH utility executes, the list file can be examined to determine the problem.

In the following examples, the patch file is pat0511 and the list file is lpat0511.

```
sompatch "nl.abuild00.official <pat0511 >lpat0511"
```

OR

```
sompatch "nl.abuild00.official,use:pat0511,list:lpat0511"
```

Interactive patching

Normally, the LOG command is used with all of the required parameters specified, just as in the example above; however, the SOMPATCH utility also provides user prompting for the log command.

```
: ( at colon prompt, type )
sompatch nl.abuild00.official Return
   (invoke program, giving primary file)
sp>log Return [a log command is required before the first modify]
username>junie moon from august skies Return [program is prompting]
patchid>163 Return
srnumber>4700241760 Return
comment>fixes system crash on listf ,5 Return
comment> Return [a Return signifies end of comment]
sp>modify iobuf+20, 2
12345678|22222222 33333333|FFFFFFFF Return [application of the patch]
sp>exit Return [exit program, saving patched nl.abuild00.official]
```

`; (semicolon)`

This command describes the reason that a patch is being applied. It indicates problem symptoms and a fix description. A minimum of one line of comment text is required for each set of modify instructions composing a patch. You should describe the symptoms of the problem in detail, with an explanation when you anticipate a fix in source.
Syntax

; text

Parameters

text The ASCII text describing the problem and why the patch fixes it.

Example

;no_op call to check_for_overflow to prevent system error
 ;#2099 on bootup.

; source fix anticipated in SEL CORE release C.06

BACKOUT

This command returns a file previously patched to an unmodified state.

It is possible to undo a patch if the patch ID given in the LOG command used to apply the patch is known. This number can be seen in the output of the SHOW [BACKOUTS] command. The patch file name also can be used to back out the set of patches applied with the patch file.

Backout commands are preserved in the ypatch information area. They can be also seen when using the [BACKOUTS] option on the SHOW command.

All backouts are displayed as they are done (at program exit).

NOTE This command is not available unless the file being patched has been linked with a ypatch file.

Syntax

BA[CKOUT] [:patchid]'lb'
[@]'lb'
[file=patchfilename]

Parameters

patchid The patch to be backed out by its identification number (as given with the LOG command).

@ Causes all applied patches to be backed out.

file= Causes the SMPATCH utility to look for all patches applied under patchfilename and to back them all out. If there is no reference to patchfilename in the audit history, an error message is issued.

patchfilename The name of a patch file that was used to make modifications to the primary input file. Group and account default to the logon if not specified.
Example

```
backout  :12
```

This example shows 12 as the patch ID specified with the `LOG` command.

```
backout file=patchfile.pub
```

This example shows that all patches applied under `patchfile.pub` are to be removed.

Error Messages

No patchfile as given.

CAUSE The `FILE=` option specified a script file that was not used on this file. The `FILES` option on the `SHOW` command indicates what files have been used.

ACTION Specify the correct file.

No patchid as given.

CAUSE An attempt was made to back out a patch that the Sompatch utility does not have recorded. The J CWs will be set to their respective FATAL conditions.

ACTION Use the `SHOW` command to find out what patches are recorded.

NOTE If more than one patch under the same patch ID has been entered, or if patches were applied under the same file name more than once, everything specified is backed out. If in doubt, use the `SHOW` command to see the buffer’s contents for a given patch ID or file name.

DISPLAY

This command displays the value(s) at a location.

Syntax

```
DI[SPAY] symbolname [+/−offset][,count][mode]
```

Parameters

- **symbolname**: Symbolname is the string name of an external symbol given in the link map for the file being patched.
- **offset**: Offset is the offset (in bytes) from the start of the symbol. It can be specified as a simple numeric expression. The default value is 0.
- **count**: Count is the word count (32-bit words) for the command. The default value is 1.
- **mode**: Mode is the display mode.

The values for **mode** are:

- ?X: Hex (default)
- ?D: Decimal
- ?O: Octal (two 6-digit octal numbers)
- ?C: Characters
The display is sent to $STDLIST. The parameter symbolname may be entered in uppercase or lowercase or mixed case, unless it is defined in a C procedure, in which case it must be entered in the specific case in which it is listed out from the linker. If the symbol starts with an underbar, that should be entered as the first character.

If the values to be displayed are the result of modifications made earlier in the SOMPATCH utility session, then the oldvalue|newvalue convention of the MODIFY command is used to indicate it. In the example below, only the word at iobuf+10 has been modified since the user invoked the SOMPATCH utility. (It is currently 1234ABCD in the file and will be 200 if the program is terminated with an EXIT command or a SAVE command.)

```
sp> display iobuf+2,3,?X Return
22222222 FFFFFFFF 1234ABCD200
```

Error Messages

Symbol symbolname not found.

CAUSE The JCWs are set to their respective WARN status.

ACTION Use the FIND command to search for the symbol.

EXIT

This command is used to exit the program and save the modifications made to the primary input file. To obtain a backup copy, make one before running the SOMPATCH utility.

If the SOMPATCH utility is being run interactively and patch xx had an error, the following message is printed:

```
Error(s) in patch xx but valid modifies will be applied upon exit.
```

Syntax

```
EXIT
```

Parameters

None

FIND

This command displays the following information about a symbol:

- residency status (that is, memory resident, initially resident or neither)
- index of SOM (that is, for a multi-SOM library, which SOM contains the symbol)
- symbol type (CODE, DATA, PRIMARY PROGRAM, ...)

This command can also be used to look for a symbol when its name is not known.

Syntax

```
FIND symbolspec
```

Parameters

- **symbolspec** The string name of an external symbol as given in the link map for the file being patched. All symbols are case-sensitive.

The "at" symbol (@) may be used as a leading or trailing mask, as shown in the example below.
Example
The following example displays `trap_handler248set_up_user_trap`

```
:find @set_up_user_trap
```

HELP
This command displays a summary of commands, including syntax and options.

Syntax
```
HELP
```

Parameters
None

LIST
This command causes the SOMPATCH utility to open an output list file.

Syntax
```
LIST filename
```

Parameters
```
filename
```
The output list file name. If you omit the group and account, SOMPATCH creates the file in the logon group and account.

SOMPATCH uses the output list file to record all commands it encountered, all old values that were modified, and any errors that occurred.

Example
To append output to an existing file, use the C-shell redirection feature. For example:

```
sompatch "mainfile <cmdfile >>listfile"
```

If for some reason the file cannot be opened, an error message is generated and the JCWs are set to WARN status. Reissue the LIST command and enter a legal output file name.

LOG
This command records important information about the specified patch.
Syntax

\[\text{LOG} \] \ username,patchid [,srnumber] \\

Parameters

- **username**: An ASCII string that gives the name of the person installing the patch and the name of the patch creator, if it is not the same person. The string is terminated by a comma, but can include other non-alpha characters.
- **patchid**: The identification code from the patch management system. It is parsed as a string and is terminated by a comma. Blanks are ignored.
- **srnumber**: The SR number that this patch is fixing.

Every patch made on a shared file should have associated with it, at a minimum, the patch ID. The other parameters to this command are also important, but they may not be known at the time that the patch is applied. Always build the file with one of the ypatch files so that this information is saved.

Use the **LOG** command before the first **MODIFY** command and before each subsequent patch, where each patch is composed of a set of one or more functionally connected modify commands.

If you do not enter any parameters, **LOG** will prompt you for them. Refer to the "Operation" section.

Example

```
sp> log STEVE THOMPSON, 155 Return
sp> log jim gann(by Kate T.), 19, 4700-192066 Return
```

Error Messages

- **No username given.**

 CAUSE: The first parameter (\textit{username}) is missing.

 ACTION: Supply \textit{username}.

- **No patchid given.**

 CAUSE: The second parameter (\textit{patchid}) is missing.

 ACTION: Supply \textit{patchid}.

- **File not built with ypatch.**

 CAUSE: The file being patched has not been linked with a buffer ypatch file.

 ACTION: Refer to the "Preparation for Use" information on how to do this. J CWs are set to their respective FATAL conditions.

MODIFY

This command modifies the value(s) at a specified location.
SOMPATCH

Operation

Syntax

MO[DFY] [symbol][+/off][,count] [?mode] [oval] nval ...‘lb’

Parameters

symbol Specifies the name of the associated level 1 symbol. This is normally a CODE type symbol, but SOMPATCH accepts a DATA symbol. If the symbol has duplicates (that is, the same name is used more than once in a multi-SOM library), the SOM command must be used to tell SOMPATCH which SOM to look in for the desired symbol. If the symbol is not specified, absolute addressing from 0 is assumed.

off The offset (in bytes) from the start of the symbol. It can be specified as a simple numeric expression. The default is 0. If no symbol is specified, the offset must be positive.

count The word count (32-bit words) for the command. The default is 1. It is not needed for character mode.

mode Indicates how the values are coming in, which can be one of hex, decimal, character, or octal. The default is hex. Refer to the DISPLAY command for syntax.

oval The current value of specified location. Oval should be given whenever possible so that SOMPATCH can verify that the modification instruction does indeed reference the correct area in the file. Mode specification is the same as given under the nval entry.

nval The new value for a specified location. The default base specification mode is hex.

NOTE To specify verify on only part of the word, use a "#" character to specify each digit to be ignored.

All modifications are made in a buffer. However, if you issue a DISPLAY command following a MODIFY command and reference the same location, you will see the oldvalue|newvalue pair.

Multi-SOM patches

If a MODIFY command belongs to a symbol in a different SOM from the last symbol encountered, and there is no new LOG command, and the relevant SOMs have been built with a ypatch file, then the following action is taken:

1. The current patch is written.
2. A new patch is generated, with the same information as the last one (user, patchid, srnumber), but with comments truncated.
3. An informational message is displayed.

Error handling

If there is an error in a MODIFY command, the SOMPATCH utility takes one of the following actions, depending on its state:

- When running the program interactively, the current MODIFY command is not applied, but all previous good MODIFY commands are applied.

- If the input to the SOMPATCH utility is coming from a patch file, and the SOM being patched has not been built with a ypatch file, then the current MODIFY command is not applied, but all previous good MODIFY commands are applied.

- If the input to the SOMPATCH utility is coming from a patch file, and the SOM being patched has been built with a ypatch file, then none of the current patch (as specified by the last LOG command) is applied.

Example
SYMBOL

Operation

SOMPATCH

| sp> modify iobuf+10 2154### FFFFFFFF | Return
| {only check upper 16 bits} |

Also refer to the "Operation" section for an example of this command.

Error Messages

Symbol symbolname not found.

CAUSE PATCHJCW is set to the FATAL condition.

ACTION Change the PATCHJCW setting.

Old value is not as specified.

CAUSE The old value is displayed, and PATCHJCW is set to the FATAL condition.

ACTION Specify the old value.

Illegal syntax--use help.

CAUSE PATCHJCW is set to the FATAL condition.

ACTION Use the help facility, and supply the legal syntax.

OFFSET

This command searches for a set of numbers in a range around a specified symbol.

Syntax

OFFSET symbolname number0 [number1 number 2 ... numbern]

Parameters

symbolname Symbolname is an entry from the library symbol table or current SOM dictionary.

numbern Number0..numbern is a sequence of numbers that the user is looking for. The maximum is 10 numbers.

This command is used mainly in relocating a patch. When an NL is relinked, all those patches that were not bound to their own entry-level procedure (refer to the SYMBOL command) move around. The OFFSET command can be used to find their new location.

OPEN

This command causes a patch to open a new file for patching or query. It specifies the input file to be patched.

If a file is already open and patches have been made to it, the SOMPATCH utility reminds the user that a SAVE command is necessary to save changes before opening the new file.

If the file you specified cannot be opened for read/write, an error message is generated, and the JCWs are set to their respective FATAL conditions.

Syntax

OP[EN] filename

Parameters

filename The name of the file to be opened.
SOMPATCH

Operation

PATCHFILE

This command causes the SOMPATCH utility to generate a patch file from the patches in the main input file. It generates a patch file from the patch information in the ypatch areas in the SOM(s) in the main input file. If there are no patches, a file containing a few lines of header is generated.

If there are no ypatch areas, an error message is generated.

Syntax

\texttt{PA[TCHFILE] filename}

Parameters

\texttt{filename} \textit{Filename} is the file to be generated.

QUIT

This command quits the program without changing the input file.

If no modifications were made to the primary input file, the program exits and returns the user to the colon prompt.

If you have made modifications, you will see following prompt:

\texttt{Do you really want to throw away your patches?}

If the user returns an uppercase or lowercase "y" or "yes," there is an immediate exit to the MPE colon prompt, with no changes made to the file to be patched; otherwise, the \texttt{sp>} prompt is displayed, and the SOMPATCH utility continues to operate.

In either case, if there is a list file open, it is closed and saved.

Syntax

\texttt{QUIT}

Parameters

None

SAVE

Use this command to save the modifications made to the primary input file without exiting the program.

The section entitled "Input Files" in the "Overview" section in this chapter explains how to recover from a system malfunction in the middle of a \texttt{SAVE} command.

Syntax

\texttt{SAVE}

Parameters

None

SHOW

Function

This command shows information about any patches that have been applied to the input file.

If only \texttt{SHOW} is typed, the most recent patch applied is displayed.
In pre-releases of MPE XL, the installation procedures may not clearly define the proper use of the CLKUTIL utility. In this case, the system clock may not be correctly set, and the time of patch shown may be the Greenwich Mean Time, rather than the local time.

Syntax

```
SH[OW] [since[-datespec] [ -[-yesterday] ] [:patchid ] [work ] [0 ] [srs ] [multi ] [backouts ] [history ] [,long ] [files ] [symbol+/-off ]
```

Parameters

- **since**
 Specifies a sort backwards by date of the modifications made to the file.

- **datespec**
 Specifies the AFTER window to view patch modifications. (The BEFORE window is always the current day). Enter a 1 to 6 digit integer in the form ddmmyy, where either or both mm and yy default to current. If no datespec is given at all, the current day is assumed. (Month starts with January = 01.)

- **yesterday**
 A quick way to show all patches since yesterday.

- **patchid**
 The string (usually a number) given as the first parameter to the LOG command. The SOMPATCH utility searches its patches to see if that patch has been applied.

- **work**
 Shows all patches in the working buffer of an interactive session (that is, the material to be saved by an EXIT command).

- **@**
 Provides information on all current patches to be displayed; that is, multiple writes to the same symbol+offset aren’t shown. The last write is the only one shown.

- **srs**
 Shows all SRs fixed by patches.

- **multi**
 Shows all multi-SOM patches.

- **backouts**
 Shows all backed-out patches.

- **history**
 Shows all modifications made to the symbol specified. It is useful for checking the reworks of a patch.

- **long**
 Specifies the long format display. The default is short format, which is patch ID, user name, SR number, and time applied. The long format gives this information, plus the old values, new values, and any other information connected with the patch, such as the name of the source file, the SR number connected with this patch, and the patch applier.

- **files**
 Prints out names of all patch files applied and the time that they were applied.

- **symbol+/-off**
 Refer to the MODIFY or DISPLAY commands for an explanation of this parameter.

Error Messages

No query available--file not linked with ypatch.

CAUSE

The SOMPATCH utility cannot show anything because the file was not linked with a buffer area for history tracking. PATCHJ CW is set to the WARN condition.

ACTION

Link the ypatch.
SOMPATCH
Operation

Illegal date specified--syntax YYMMDD.
CAUSE The date as specified, with defaults, is not a legal date.
ACTION Supply a date with the correct syntax.

Symbol not found.
CAUSE The symbol given in symbolspec was not in the symbol table for the file being queried.
ACTION Use a correct symbol.

SOM
This command causes the SOMPATCH utility to look only in the specified SOM for symbols. There are no SOM errors when parameters are entered as specified. Remember to start indexing from zero.
If a name is given, it is a SOM not in the file. Try SOM @ to see what SOMs are in the file.

Syntax

SOM [somindex]
 [somname]
[@]
[?]

Parameters
somindex Specifies an index (starting at 0) of the desired SOM.
somname Indicates the name of the SOM (as shown by the LISTXL command in linker, or by SOM @.)
@ Shows all SOMs in the current file.
? Shows which SOM is current for patching.

SYMBOL
This command finds the next level 1 procedure after the symbol+offset specified.

Syntax

SYMBOL symbolname +- offset

Parameters
symbolname The LST symbol name.
offset The byte offset of the patch from symbolname.

This command is used in generating level 1 patches for multi-SOM libraries.

For a very large file, such as the native mode system library, there may be a five-second to ten-second delay for symbol lookup. In this case, the message searching... is displayed every 15,000 symbols.

For Pascal level 2 procedures, the code being patched is represented as a positive offset from the last level 1 procedure; however, this level 1 procedure is often in a different relocatable object file from the level 2 procedure being patched. This is because of the way that Pascal code is generated:

```
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Proc A's Level 2 code</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
ProcA + 0000----------------

| Proc A -- Level 1 |
```

The patch instruction may have the following syntax, but the second represents the preferred method:

1) Modify ProcA + 00xx
OR
2) Modify ProcB - 00yy (Where ProcA + xx + yy = ProcB)

When the multi-SOM NL is linked, the two relocatable object files are sometimes no longer congruent. If they are not congruent, the positive offset from the first level 1 procedure is no longer valid.

There are different ways of dealing with this problem. The easiest way is to specify a patch as a negative offset from the level 1 procedure that owns the level 2 procedure being patched (2) in the example above). The SOMPATCH utility contains the SYMBOL command, which determines the procedure name of the level 1 procedure that owns the level 2 procedure containing the patched instruction, plus the negative offset of the patch from the level 1 procedure entry point.

Error Message

No such symbol

CAUSE A symbol was given that is not in the library symbol table.
ACTION Try the FIND command, and use the @feature.

USE

This command causes a patch to read an input file of patch instructions, and to implement the instructions.

If there is an error such as an undefined symbol in a MODIFY command, an error message is generated, and the program continues to execute.

If the file specified is not present, an error message is generated, and the JCWs are set to their respective FATAL status.

When the end of the patch file is reached, the program returns to the MPE/iX CI.

Syntax

`USE [E] filename`

Parameters

`filename` is the name of the script file to be used. The group and account default to logon if not specified.
VERSION

This command gives the current SOMPATCH utility version. It is used to show the version of the SOMPATCH utility that is being run. The version is also printed on the list file and as part of each patch written to the ypatch area.
Syntax

```
VERSION
```

Parameters

None

Example

```
sp> VERSION
Sompatch Version A.00.00
sp>
```
23 SORT-MERGE/XL

SORT-MERGE/XL allows you to sort files by single or multiple key fields and to merge two or more sorted files into a single new sorted file.

You may use SORT-MERGE/XL as a standalone utility (either interactively or in batch mode), or from within a program. For information on how to use SORT-MERGE/XL programmatically, refer to the SORT-MERGE/XL Programmer’s Guide.

Operation

Using SORT

To invoke the sort portion of SORT-MERGE/XL enter:

SORT

or

RUN SORT.PUB.SYS

SORT-MERGE/XL responds with a message similar to this:

HP31900A.01.01 SORT/V TUE, JAN 2, 1990, 2:58 PM
(C) HEWLETT-PACKARD CO. 1987

It then presents a > prompt. At this prompt you must specify an INPUT file, an OUTPUT file and sort KEY(s). For example:

> INPUT INFILE
> OUTPUT OUTFILE
> KEY 1,10
> KEY 11,6
> END

You may enter the parameters in any order. However, you must specify the keywords OUTPUT, INPUT and KEY. You must use valid MPE/iX file names. If you qualify both files with group and account names, you must have read access to the INPUT file and write access to the group and account for the OUTPUT file.

This example contains two keys, the first, beginning in byte one, which is 10 bytes long and the second, beginning in byte 11, which is six bytes long. The first key entered is the primary key. Each successive key entered is secondary to the key entered before it.

The word END indicates you are finished entering parameters and signals SORT-MERGE/XL to begin processing.

After sorting your file SORT-MERGE/XL produces a statistical display and then terminates.

If you want to terminate SORT-MERGE/XL without processing do not enter END. Instead enter:

> EXIT

You may access the sorted OUTPUT file just as you would any other MPE/iX file.

Using MERGE

To invoke the MERGE portion of SORT-MERGE/XL enter:
SORT-MERGE/XL
Operation

MERGE

or

RUN MERGE.PUB.SYS

SORT-MERGE/XL responds with a display similar to:

```
HP31900A.01.01 MERGE/V TUE, JAN 2, 1990, 3:54 PM
(C) HEWLETT-PACKARD CO. 1987
```

It then presents a > prompt. At this prompt you must supply INPUT file(s) an OUTPUT file and SORT key(s).

For example:

```
> INPUT INFILE1, INFILE2, ... INFLEN
> OUTPUT OUTFILE
> KEY 1,12
> END
```

You may enter the parameters in any order. However, you must specify the keywords INPUT, OUTPUT and KEY. You may enter file names on one line separated by commas (as in the example), or you may enter each on a separate line with the keyword INPUT.

The OUTPUT file is the file to which the merged files will be written. In this example there is only one key. It begins in byte one and is 12 bytes long.

The word END indicates you are finished entering parameters and signals SORT-MERGE/XL to begin processing.

After merging your files SORT-MERGE/XL produces a statistical display and then terminates.

If you want to terminate SORT-MERGE/XL without processing do not enter END. Instead enter:

```
EXIT
```

You may access the sorted OUTPUT file just as you would any other MPE/iX file.

Additional Discussion

For more information refer to the SORT-MERGE/XL General User’s Guide.
Use the Native Mode Spool File Interface Facility to list, manipulate, and transfer spooled device files (spoolfiles) that are created and maintained by MPE/iX. SPIFF replaces the CM SPOOK program.

SPIFF supports many of the commands of the SPOOK program, and has also been enhanced with the following features:

- Access to the MPE/iX Command Interpreter.
- Case insensitive FIND, which you may set as the default.
- Native mode output display.
- No LOCKED state for spool files. You can text in a file or output it to tape without changing its state.
- New STORE and BROWSE commands.
- Allows use of file equations on $STDINX (the standard input file) and $STDLIST (the standard output file).
Operation

To run the Native Mode Spooler Utility, enter **SPIFF**. You will see an identifying banner and the > prompt, like this:

```
SPIFF A.00.00 (C) COPYRIGHT HEWLETT-PACKARD CO. 1993
>
```

Once you see the prompt, you may enter any of the commands described on the following page.

Table 24-1 SPIFF Commands

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALTER</td>
<td>Alters the priority, number of copies, target device, or any combination of these attributes, of one spoolfile or many spoolfiles.</td>
</tr>
<tr>
<td>APPEND</td>
<td>Appends all or part of one or many spoolfiles to a new spoolfile. The first spoolfile processed by the command creates the new spoolfile. Subsequent spoolfiles are appended to it.</td>
</tr>
<tr>
<td>BROWSE</td>
<td>Invokes the HPBROWSE utility, if it is available.</td>
</tr>
<tr>
<td>COPY</td>
<td>Copies all or part of one or many spoolfiles to a new spoolfile.</td>
</tr>
<tr>
<td>DEBUG</td>
<td>Invokes the MPE/iX DEBUG facility if the SPIFF user has Privileged Mode (PM) capability.</td>
</tr>
<tr>
<td>EXIT</td>
<td>Terminates SPIFF, returning control to its parent process.</td>
</tr>
<tr>
<td>FIND</td>
<td>Locates a specified pattern in a specified range of the current spoolfile.</td>
</tr>
<tr>
<td>HELP</td>
<td>Displays information about SPIFF and its commands.</td>
</tr>
<tr>
<td>INPUT</td>
<td>Inputs one or more spoolfiles from a tape created by SPOOK5 or SPFXFER.</td>
</tr>
<tr>
<td>LIST</td>
<td>Lists a line range of the currently TEXTed spoolfile to $STDLIST.</td>
</tr>
<tr>
<td>MODE</td>
<td>Controls the width and format of the displayed output of the LIST and FIND commands.</td>
</tr>
<tr>
<td>OUTPUT</td>
<td>Outputs one or more spoolfiles to a tape in SPOOK5/SPFXFER format.</td>
</tr>
<tr>
<td>PURGE</td>
<td>Deletes one or more spoolfiles from the system.</td>
</tr>
<tr>
<td>QUIT</td>
<td>Terminates SPIFF, returning control to its parent process.</td>
</tr>
<tr>
<td>SHOW</td>
<td>Displays information about one or more spoolfiles.</td>
</tr>
<tr>
<td>STORE</td>
<td>Stores one or more files to tape using the MPE/iX STORE subsystem.</td>
</tr>
<tr>
<td>TEXT</td>
<td>Accesses an output spoolfile for use by the ALTER, APPEND, BROWSE, COPY, FIND, LIST, PURGE, and SHOW commands.</td>
</tr>
<tr>
<td>XPLAIN</td>
<td>Displays a summary of SPIFF commands.</td>
</tr>
</tbody>
</table>
SPIFF recognizes only the first letter of the full form of the command (F or FIND in the above example), except for APPEND and STORE. The abbreviations for these two commands require two letters (AP, ST) to distinguish them from the ALTER (A) and SHOW (S) abbreviations, respectively.

File Definitions

SPIFF opens the formal file designator SPUTIN as its $STDIN(X)$ and the formal file designator SPUTOUT as its $STDLIST$. You may redirect these files as desired with a file equation. However the record width of any redirected SPUTOUT should not be less than 80 bytes; otherwise displays and messages may generate an error when SPIFF directs them to SPUTOUT.

Additional Discussion

The system bootstrap, initial program load (IPL) and initial system load (ISL) standard provides a standard interface through which any Hewlett-Packard Precision Architecture (PA-RISC) computer can boot any operating system. The standard also provides a common user interface for booting PA-RISC systems.

WARNING Do not use this information without service center support. Unauthorized use will void your warranty and may cause data loss.

The following terms are used in this chapter:

- **PDC** Refers to processor-dependent code as defined in the System I/O Architectural Control Document (ACD).
- **IODC** I/O-dependent code is I/O-device-specific code used to test and access I/O devices (also defined in the I/O ACD).
- **BOOTSTRAP** BOOTSTRAP describes the PDC and IODC functionality needed to bring code into memory and launch it.
- **IPL** Initial program load is the first code brought into the system and executed from outside the SPU. This code is loaded by the bootstrap code.
- **ISL** Initial system load is a standard code module that is used during the startup of any operating system to provide a standard user interface for booting. On some systems, this code may be the IPL, while on others, IPL may perform some preliminary tasks and then proceed to load the ISL.

The bootstrap and initial system load are discussed on the following pages.

The bootstrap

The bootstrap performs these functions:

- a minimum SPU test including memory configuration, nondestructive memory test, and destructive SPU test and one coldload device path
- provides user interface with system initialization information and alters the initialization path.
- reads in the IPL code from the one load device, finds the location of the IPL on the device through a pointer in the device label, and loads and launches the IPL code.
The initial system loader

The Initial System Loader performs these functions:

- provides user interface with boot path information and alters boot path.
- loads an operating system-specific code set or a hardware-specific code set and launches it. If this implementation-specific code does not damage the ISL image, ISL remains in memory in case the code returns control to ISL for initialization of further utilities.

Certain standards are used by hardware and software operating systems using system bootstrap, IPL, and ISL standard. These standards are architectural in nature, but are not necessarily defined in any system architectural document. The remainder of this chapter contains a description of these standards.

Stable storage and nonvolatile memory layout

Stable storage and nonvolatile memory (NVM) are described as blocks of bytes that are accessible by bootstrap, ISL, and the operating system through standard entry points. The first 96 bytes of stable storage are required implementation; bytes 96 through 191 are optional, but if implemented they are reserved for PDC and ISL access as described below. Nonvolatile memory is not required by the architecture; therefore, it should contain only values that can be managed by an alternate method. When more than one byte is used in the representation of an item in stable storage, the most significant byte is the byte with the lower address.

The format of stable storage is shown below:

Table 25-1 Stable storage format

<table>
<thead>
<tr>
<th>BYTE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-31</td>
<td>Boot flags and device</td>
</tr>
<tr>
<td>32-63</td>
<td>Unique file names</td>
</tr>
<tr>
<td>64-95</td>
<td>Future OS requirements</td>
</tr>
<tr>
<td>96-127</td>
<td>Console terminal</td>
</tr>
<tr>
<td>128-159</td>
<td>Alternate boot path</td>
</tr>
<tr>
<td>160-191</td>
<td>Dump flags and device</td>
</tr>
<tr>
<td>192-nnn</td>
<td>Future OS options</td>
</tr>
</tbody>
</table>

Autoboot flags and device path

This 32-byte field defines the coldload path that PDC uses for autoboot. If this path is not valid, or if the device that it describes is not a valid boot device containing an IPL image, PDC then requests a valid path through the console if the console is present; otherwise, the error is displayed through the front panel.
A detailed internal representation of a boot or console path (the format applies to the auto bootpath, the alternate boot path, the dump path, and the console path) is as follows:

Table 25-2 Boot or console path

<table>
<thead>
<tr>
<th>0000</th>
<th>flags</th>
<th>BC(0)</th>
<th>BC(1)</th>
<th>BC(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0004</td>
<td>BC(3)</td>
<td>BC(4)</td>
<td>BC(5)</td>
<td>MOD</td>
</tr>
<tr>
<td>0008</td>
<td></td>
<td>Logical_ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>000C</td>
<td></td>
<td>Device_Depend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that in the above illustration, the flags field in the console path is ignored. The format of flags is as follows:

Table 25-3 Format of flags

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2-3</th>
<th>4 through 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>as</td>
<td>00</td>
<td>timer</td>
</tr>
</tbody>
</table>

Console Path

This 32-byte field defines the device path that PDC uses to locate the system console. If this path is not valid, or if the device that it describes is not a valid console device image, PDC then uses a default path.

Alternate Boot Path

This 32-byte field defines the coldload path that PDC uses (after getting the go-ahead from the operator) if the operator rejects the autoboot path through console intervention. If this path is not valid, or if the device it describes is not a valid boot device containing an IPL image, PDC then requests a valid path through the console.

Dump flags and device

This 32-byte field is used to describe the destination device for a snapshot dump facility.

The format of nonvolatile memory is shown below:

Table 25-4 Nonvolatile memory

<table>
<thead>
<tr>
<th>BYTE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-63</td>
<td>PDC and boot reserved</td>
</tr>
<tr>
<td>64-nn</td>
<td>OS reserved</td>
</tr>
</tbody>
</table>
NVM is an optional implementation, not required by the architecture. If NVM is implemented, the PDC and boot reserved area of NVM is as follows:

Table 25-5 PDC and boot area for NVM

<table>
<thead>
<tr>
<th>BYTE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1F</td>
<td>Last boot-device path</td>
</tr>
<tr>
<td>20-23</td>
<td>Self-test status</td>
</tr>
<tr>
<td>24-27</td>
<td>Powerfail time stamp</td>
</tr>
<tr>
<td>28-2A</td>
<td>Boot restart time stamp</td>
</tr>
<tr>
<td>2B-2F</td>
<td>TOC restart time stamp</td>
</tr>
<tr>
<td>30-63</td>
<td>PDC and boot reserved</td>
</tr>
</tbody>
</table>

LIF standard

The Hewlett-Packard Logical Interchange Format (LIF) provides a standard method for locating IPL code on the boot device.

The method of locating IPL code on the boot device must be the same for all boot devices, computer processors, and the operating systems, so that the PDC knows where to find it. Having IPL at the very beginning of the device is ideal; however, some operating systems require a volume label at the beginning of a disk. IPL also needs a method of locating its modules (utilities) when they are needed.

The LIF standard addresses these issues, and provides a standard with utilities already in existence. For further information on LIF format, refer to LIF Directory Organization and Record Format for Data Interchange.

LIF requires a 256-byte volume label at the beginning of the media; thus, the operating-system-specific volume label can be located at the beginning of the disk, offset by 256 bytes. The LIF volume label points to the location of the LIF directory, which then points to the location of each of the files.

Compliance to LIF standard does not require complete implementation. The level of compliance to the standard in the IPL code is the minimum implementation (volume header and directory in ASCII code). The format of the files is the system object module (SOM) format.

The LIF volume header, as well as an entry in the LIF directory, points to the IPL code.
The following drawing represents the LIF standard logical layout of disk and tape media.

Figure 25-1 LIF Standard Logical Layout
The LIF volume label allows easy identification of media type and gives the location of the directory. The format of the LIF volume label follows:

Table 25-6 LIF volume label format

<table>
<thead>
<tr>
<th>BYTE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>LIF identifier</td>
</tr>
<tr>
<td>2-7</td>
<td>Volume label (0-6 ASCII characters)</td>
</tr>
<tr>
<td>8-11</td>
<td>Directory start address (in blocks)</td>
</tr>
<tr>
<td>12-13</td>
<td>Octal 10000</td>
</tr>
<tr>
<td>14-15</td>
<td>Set to 0 (dummy)</td>
</tr>
<tr>
<td>16-19</td>
<td>Length of directory (fixed at initialization)</td>
</tr>
<tr>
<td>20-21</td>
<td>Set to 0</td>
</tr>
<tr>
<td>22-23</td>
<td>Set to 0</td>
</tr>
<tr>
<td>24-41</td>
<td>Set to 0 (level 1 extension)</td>
</tr>
<tr>
<td>42-239</td>
<td>Set to 0 (reserved for extensions and future use)</td>
</tr>
<tr>
<td>240-243</td>
<td>Byte address of IPL on media</td>
</tr>
<tr>
<td>244-247</td>
<td>IPL length (in bytes)</td>
</tr>
<tr>
<td>248-251</td>
<td>Offset in IPL of entry</td>
</tr>
<tr>
<td>252-253</td>
<td>Set to 0</td>
</tr>
<tr>
<td>254-255</td>
<td>Set to 0 (reserved by system 250)</td>
</tr>
</tbody>
</table>

The directory contains all of the information necessary to find files. It is a linear list of 32-byte directory entries, one for each LIF file on the media. The maximum number of entries in the directory is fixed at the time of initialization. A logical end of directory mark is defined to be a file type of -1 and is written only if the directory is not filled. The physical end of directory is determined by adding the start of directory and length of directory fields from the volume label. Directory entries must be stored so that they are in strictly increasing starting addresses on sequential media. Directory entries are undefined after the logical end of directory, so when a file is appended to the directory, the following directory entry’s file type must be set to -1 to make it the logical end of the directory.

LIF addressing is in blocks of 256 bytes, and system addresses are 2K-bytes-aligned.
Each directory is organized as follows:

Table 25-7 LIF addressing

<table>
<thead>
<tr>
<th>BYTE</th>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>File name (1-10 ASCII characters, trailing blanks)</td>
</tr>
<tr>
<td>10-11</td>
<td>File type</td>
</tr>
<tr>
<td>12-15</td>
<td>Starting address (in blocks)</td>
</tr>
<tr>
<td>16-19</td>
<td>Length of file (in blocks)</td>
</tr>
<tr>
<td>20-25</td>
<td>Time of creation</td>
</tr>
<tr>
<td>26-27</td>
<td>1 /volume number</td>
</tr>
<tr>
<td>28-31</td>
<td>Set to 0 (implementation)</td>
</tr>
</tbody>
</table>

The file type is a 16-bit signed integer. The defined file types that are recognized by systems are:

- 0 -- Purged file
- 30001 -- Bootable, executable file
- 30002 -- Boot data file
- 30003 -- Autoexecutable file list
- 30004 -- Data protect file
- 30010 -- HPE system file

A file is deleted from the directory by changing its file type to -2, to represent a purged file. The data itself need not be removed from the media.

Bootable utility format

All of the bootable utilities accessible through the LIF directory must have enough of a common format for IPL to load and launch the utilities through a standard method. IPL may need to know the intended physical memory destination address for which the module was linked, as well as the length of the image and the entry point. For those utilities that are position independent, the destination address can be set to -1 and IPL will load it at the first available memory after IPL.
All software implementation intends to support the system object module (SOM) format, using the linker; therefore, an auxiliary SOM header for IPL, as described below, would meet IPL’s needs for loading and launching bootable utilities. For further description of the linker and the SOM format, refer to the System Linker External Specifications and the System Object File Format Architectural Control Document.
Figure 25-2 Boot utility format

The initial system loader
Main Memory Layout

Although the exact memory locations of boot and IPL code during the boot process vary according to size of the IODC and IPL, a general description of memory layout is presented here for clarification. Also, the first page of main memory is reserved for communication between PDC and software.

Table 25-8 Main memory layout

<table>
<thead>
<tr>
<th>Address (X'00000000)</th>
<th>Description</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000</td>
<td>Initialize vectors</td>
<td>0</td>
</tr>
<tr>
<td>X'00000040</td>
<td>Processor dependent</td>
<td>64</td>
</tr>
<tr>
<td>X'00000200</td>
<td>Reserved</td>
<td>512</td>
</tr>
<tr>
<td>X'00000350</td>
<td>Memory configuration</td>
<td>848</td>
</tr>
<tr>
<td>X'00000360</td>
<td>MEM_ERR</td>
<td>864</td>
</tr>
<tr>
<td>X'00000380</td>
<td>MEM_FREE</td>
<td>896</td>
</tr>
<tr>
<td>X'00000384</td>
<td>MEM_HPA</td>
<td>900</td>
</tr>
<tr>
<td>X'00000388</td>
<td>MEMPDC</td>
<td>904</td>
</tr>
<tr>
<td>X'0000038C</td>
<td>MEM_10MSEC</td>
<td>908</td>
</tr>
<tr>
<td>X'00000390</td>
<td>Initial memory module</td>
<td>912</td>
</tr>
<tr>
<td>X'000003A0</td>
<td>Boot console/display</td>
<td>928</td>
</tr>
<tr>
<td>X'000003D0</td>
<td>Boot device</td>
<td>976</td>
</tr>
<tr>
<td>X'00000400</td>
<td>Boot keyboard</td>
<td>1024</td>
</tr>
<tr>
<td>X'00000430</td>
<td>Reserved</td>
<td>1072</td>
</tr>
<tr>
<td>X'00000600</td>
<td>Processor dependent</td>
<td>1536</td>
</tr>
<tr>
<td>X'00000800</td>
<td></td>
<td>2048</td>
</tr>
</tbody>
</table>

The format of the first memory controller configuration is as follows:

- word0: HPA of the memory controller
- word1: SPA of the corresponding memory
- word2: SPA_size
- word3: Max_Mem
The format of the console terminal and boot device configurations are as follows:

Table 25-9
Console terminal and boot device configuration

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00</td>
<td>path</td>
<td>00</td>
</tr>
<tr>
<td>X'08</td>
<td>LAYERS</td>
<td>08</td>
</tr>
<tr>
<td>X'20</td>
<td>HPA</td>
<td>322</td>
</tr>
<tr>
<td>X'24</td>
<td>SPA</td>
<td>36</td>
</tr>
<tr>
<td>X'28</td>
<td>IODC_IO</td>
<td>40</td>
</tr>
<tr>
<td>X'2C</td>
<td>Reserved</td>
<td>44</td>
</tr>
<tr>
<td>X'30</td>
<td>Class</td>
<td>48</td>
</tr>
</tbody>
</table>

The format of the boot and system console device paths is the same as that for the autoboot, alternate boot, and console paths in stable storage. In the console path, the flags are ignored.

The offsets of IODC, IPL, and booted utilities are variable, based on the size of code images.

Table 25-10
IODC, IPL, and booted utilities offsets

<table>
<thead>
<tr>
<th>Offset</th>
<th>Description</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>X'00000000</td>
<td>Page zero</td>
<td>0</td>
</tr>
<tr>
<td>X'00000080</td>
<td>MEM_FREE</td>
<td>2048</td>
</tr>
<tr>
<td>MEM_FREE</td>
<td>Monarch PDC</td>
<td>MEM_FREE</td>
</tr>
<tr>
<td></td>
<td>Console IODC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boot Device IODC</td>
<td></td>
</tr>
<tr>
<td>IPL_START</td>
<td>IPL code</td>
<td>IPL_START</td>
</tr>
</tbody>
</table>
STANDARDS
The initial system loader
SYSMAP maps the hardware configuration of I/O devices, CPU boards and memory boards.

Operation

To invoke **SYSMAP** enter:

```
SYSDIAG
DUI> RUN SYSMAP
```

SYSMAP is part of the Online Diagnostics Subsystem. To use this utility, start the diagnostic subsystem by entering **SYSDIAG** and at the **DUI>** prompt, enter **RUN SYSMAP**.

Once you are in the **SYSMAP** subsystem, you can choose one of three basic map options:

```
ENTER MAP> CPUMAP
ENTER MAP> MEMMAP
ENTER MAP> IOMAP
```

If you choose **CPUMAP** the system displays the following for each **CPU**: hardware model and revision number, software model and revision number and slot number.

If you choose **MEMMAP** the system responds by listing memory controller’s and arrays, slot numbers, hard physical addresses and memory size.

If you choose **IOMAP** the system responds by presenting the **IOMAP>** prompt. At this prompt you may choose one of three responses:

```
IOMAP> GENERAL
IOMAP> CLASS
IOMAP> STEPPING
```

- **GENERAL** displays a general map of the I/O configuration.
- **CLASS** maps all devices in the device class you specify.
- **STEPPING** displays all system hardware configurations or all configurations from a specific physical address on down.

Additional Discussion

Chapter 27

27 tic

The tic utility compiles the terminfo source file.

Operation

The tic utility compiles source terminfo descriptions. The compiled entry is installed under the `/usr/lib/terminfo` directory hierarchy. If the `TERMINFO` environment variable is set, results are placed in the directory it points to instead. Entries are stored in directories that match the first character of their name. The entry for the VT-100 terminal, for example, is stored in `/usr/lib/terminfo/v/vt100`.

When a `use=` specification is found in the source file, tic adds the binary of the appropriate capabilities to the compiled file.

The tic utility can only be used to compile single files. Multiple files can be compiled by concatenating individual files together.

Compiled entries cannot exceed 4098 bytes. The name field cannot exceed 128 bytes. Terminal names that are longer than 14 characters are truncated to 14 characters, and a warning message is printed.

Syntax

```
tic.hpbin.sys [-v[n]]-c file
```

Parameters

- `-v[n]` provides varying level of detail on the compilation process where `n` is a number from 1 to 10 (default is 1). The higher the value for `n`, the more detail provided.

- `-c` checks for errors in file (not including errors in `use=links`).

Example

```
tic.hpbin.sys /product/curses/lib/terminfo/ansi
```

Related Information

Commands untic utility, terminfo database
tic
Operation
28 TERMDSM

TERMDSM is part of the Online Diagnostics Subsystem and is used to diagnose, dump, and reset logical devices, ports, and distributed terminal controllers. It also performs status checks of ports and DTC’s.

Operation

To invoke TERMDSM enter:

:csdm
csdm> RU TERMDSM

At this point the system responds by displaying the TERMDSM banner, your system’s Distributed Terminal Controllers and the following prompt:

Comment DIag DTc DUm p Help Reset Status EXIT ?

To proceed, select one of these eight commands by entering either the entire command or only the letters shown in upper case.

Each TERMDSM command has a security level which prevents users without certain capabilities from executing it. The following shows which capabilities are required for each of three TERMDSM security levels.

<table>
<thead>
<tr>
<th>User Capability</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM or DI</td>
<td>0 (greatest capability)</td>
</tr>
<tr>
<td>SM, DI or OP</td>
<td>1 (second most capability)</td>
</tr>
<tr>
<td>SM, DI, OP or AM</td>
<td>2 (least capability)</td>
</tr>
</tbody>
</table>

Each of the TERMDSM commands is explained on the following pages.
Comment
Comment allows comments to be entered for later reference. Security level is 2.

Diag
Diag is entered to run diagnostic functions. The system responds by displaying the following:

(diagnostics)

SElftest # (DTC Selftest)
PRint #,#,# (Print to specified port)
Internal #,#,# (Internal loopback on specified port)
EXTernal #,#,# (Loopback through hood on specified port)
Terminal #,#,# (write and read to terminal on that port)
(carriage return to exit) ?

The parameter for SElftest is DTC number. Parameters for all other tests consist of DTC number, SIC number and port number. For example, to execute a PRint test on port 7 on SIC 0 on DTC 2 the following would be entered: PR 2,0,7.

Security level is 0 for DTC selftest; 1 for all other diagnostic tests.

CAUTION A DTC SElftest aborts all sessions on the DTC being tested and may result in lost data.

DUmp
DUmp dumps the contents of memory for the port and driver to disk. When DU is entered the system responds by displaying the following:

(dump)
Ldev #
POrt #,#,#
DTc #
(carriage return to exit) ?

Parameters are Ldev number or DTc number. For POrt the parameters are DTC, SIC and port number. Security level is 0 for DTC dump, 1 for other functions. Ports and Ldevs are dumped to a file with the following naming convention: TRMnnnXX.pub.sys where nnn is the day of year and XX is two characters ranging from AA to ZZ. DTC’s are dumped to a file named as follows: SnnnnnnnX.pub.sys, where nnnnnn is the 6-digit DTC address and X ranges from A to Z. Analyzing dump contents requires specialized training and is usually done by HP support personnel.
Reset

Reset resets a DTC, SIC or port. When the Reset command is entered the system responds with the following:

(reset)

Ldev #
POrt #,#,#
SIC #,# (multiplexer card in DTC)
DTC #

(carriage return to exit) ?

Parameters are DTC, SIC and port for POrt and DTC and SIC for SIC. Other parameters are as indicated. Security is 1 for Ldev's and ports; 0 for DTC's or SIC's.

CAUTION Active sessions are logged off reset devices.

Status

SStatus displays information about the DTC or port. When SStatus is entered the system responds by displaying:

(status)

DTC #
POrt #,#,#

(carriage return to exit) ?

The parameter for POrt is DTC, SIC and port number.

DTC displays the system’s DTC’s. It provides the same information provided when TERMDSM is initiated.

Help displays information about TERMDSM.

EXIT terminates the TERMDSM subsystem.

Additional Discussion

For more information refer to Troubleshooting Terminal, Printer, and serial Device Connections.
TERMDSM
Operation
29 untic

The untic utility decompiles the terminfo binary file.

Operation

The untic utility decompiles a terminfo binary file into its source format. If a TERMINFO environment variable is set, the untic utility searches the specified directory; otherwise, untic assumes the file is in the directory /usr/lib/terminfo. The output of an untic decompile is sent to the standard output.

Syntax

untic.hpbin.sys [term]

Parameters

term is the name of the terminal (default is the terminal from the TERM environment variable.)

Example

untic.hpbin.sys ansi

Related Information

Commands tic utility, term, terminfo database
until
Operation
V7FF8CNV converts text and literals in VPLUS/XL forms files from a Hewlett-Packard 7-bit national substitution character set, to ROMAN8. V7FF8CNV is a special version of FORMSPEC.PUB.SYS and is run the same way.

Operation

1. Use the STORE command or SYSGEN to back up the forms file.

2. Configure your terminal for 8-bit operation. Refer to the System Startup, Configuration, and Shutdown Reference Manual for information on peripheral configuration.

3. Run V7FF8CNV.PUB.SYS, stepping through each form, field definition, save field, and function key label. As each screen is presented on the terminal, 7-bit substitution characters have already been converted to their ROMAN8 equivalent.

4. If the data is correct, press Enter and proceed to the next screen. If not, correct the data, then press Enter to continue.

5. After all screens are converted, recompile the forms file as usual.

Conversion applies to substitution characters found in all source record VPLUS/XL forms files with the following exception: substitution characters for “[“ and “]” are not converted in screen source records since these indicate start and stop of data fields. The following would be converted:

- Text in screens.
- Function key labels.
- Initial values in save field definitions.
- Initial values in field definitions.
- Literals in processing specifications.
Alternate Character Sets

Hewlett-Packard block mode terminals, which have the capability of handling all or part of ROMAN8, can be divided into two groups. The group differentiation is based on how they handle alternate character sets when configured for 8-bit operation.

Files using alternate character sets on one group of terminals will not display correctly on the terminals of the other group, even when terminals from both groups are configured for 8-bit operation.

The use of characters from an alternate set affects the conversion procedure. If the forms file does contain characters from an alternate character set, choose one of the following alternatives:

- Eliminate the use of alternate character sets (either with FORMSPEC or while running V7FF8CNV).
- Define alternate character sets to appear correctly on Group 1 terminals. This happens automatically when V7FF8CNV is run from a Group 1 terminal. Characters from these alternate sets will appear as USASCII characters on a Group 2 terminal.

Group 1 - HP 2392A, 2625A, 2627A, 2628A, 2700, and 150

Use shift-out and shift-in characters to switch back and forth between an 8-bit base character set and an 8-bit alternate character set. This is standard for new Hewlett-Packard terminals and printers.

Group 2 - HP 2622A, 2623A, 2626A, and 2382A

(Do not use an HP 2624A or HP 2624B, as they are unable to handle 8-bit characters properly.) Group Two terminals use the eighth bit to switch back and forth between a 7-bit base character set and a 7-bit alternate character set. It is not possible to get true 8-bit operation (ROMAN8) and use an alternate character set (for example, Line Draw) at the same time because the base character set is not really 8-bit, but 7-bit with the additional characters defined in the alternate character set. Using both 8-bit ROMAN8 characters and Line Draw in the same file is not recommended since the user must continually redefine the alternate character set, switching back and forth between Roman Extension and the line drawing character set. Shift-out and shift-in are ignored by the terminal and return to the alternate character set when the high-order bit is on.
Procedure Example

V7FF8CNV must be run on a terminal supported by VPLUS/XL which supports display of all characters, enhancements, and alternate character sets used in the forms. If alternate character sets are used, the HP 2392, 2625, 2627, 2628, 2700, or 150 are recommended.

The **V7FF8CNV** procedure is:

2. Run **V7FF8CNV.PUB.SYS**. Respond to prompts for the terminal group and the national substitution set.

3. Press **Next** to begin going through the forms file.

4. Press **Enter** after each screen until the end of the forms file is reached. Two exceptions are:
 a. Enter **Y** in Function key labels on each FORM MENU and the GLOBALS MENU to see and convert function key labels.
 b. On the field definition screen, if the processing specifications have converted data which you want to save, press the FIELD TOGGLE key, then **Enter** to save that conversion.

 If you try to redisplay a screen which has already been converted and this conversion has been saved by pressing **Enter**, a message **Form contains 8 bit data** will be displayed. Do not press **Enter** again, but continue through the forms file.

5. Compile your forms file as usual.
31 VERSION

VERSION displays information about compatibility mode (CM) program files and native mode (NM) executable files (program files or executable library files), object files, and nonexecutable library files.

Operation

To invoke VERSION enter:

```
VERSION
```
or

```
VERSION file(s)
```
or

```
VERSION "file(s),search string"
```

Parameters

- **file(s)** The name of a program file or a wildcarded fileset.
- **search string** The name of a particular $version string in a system object module SOM. (Not applicable for CM program files.) Quotes are required if a search string is specified. Spaces within the search string are significant and the search string is not case sensitive.

Example

To find out the version of the file `P01P346A.PUB.SYS`, enter:

```
VERSION P01P346A.PUB.SYS
```

Or, using a file set and a search string, you would enter:

```
VERSION "P@.@.MFGACCT,HEADER"
```

If a `file(s)` or "file(s),search string" is not entered the version prompt `VERSION>` appears and you may enter data then.

To terminate VERSION enter:

```
EXIT or :
```
If the input to VERSION is a file set, every file in the set will be processed even if an error occurs processing a previous file. If there is an error opening a file, the file system error will be displayed in addition to the VERSION error message.

VERSION displays the following information.

- **CM program file**: Number of segments, stack size, maximum data segment size, total data reference base (DB), data segment limit (DL), and capabilities.
- **NM executable file**: Unsatisfied procedure name, library search list, capabilities, maximum stack size, maximum heap size, entry name, and all $version strings found in the SOMs.
- **NM object file**: All $version strings found in the SOMs.
- **NM nonexecutable library file**: All $version strings found in the SOMs.

Additional Discussion

For more information on the $version strings found in the SOM, refer to the HP Pascal/iX Migration Guide.
Introduction

UPSUTIL is an easy-to-use support tool that helps to manage the UPS Monitor/iX UPS-management subsystem on MPE/iX HP e3000 systems.

Working in conjunction with the system's UPS Monitor/iX UPS management subsystem, UPSUTIL provides easily accessible functions that assist authorized users to:

- Check the system to see if the UPS Monitor/iX subsystem is running.
- Check the system to see what, if any, UPS LDEVS (logical devices) has been configured.
- Check the current operational status of all configured UPS devices on the system.
- Control (start, stop, restart, set UPS Monitor configuration file) the UPS Monitor/iX subsystem while the HP e3000 system is running.

These functions make it easy to determine whether the running system has been configured correctly for UPS devices, whether the UPS Monitor/iX subsystem is communicating correctly with the configured UPS devices, and allow an online user to have “stop and start” control over the UPS Monitor/iX subsystem.

The “stop and start” control is valuable in cases where a UPS device may have been removed from the system for repair and is now being reinstalled in the system, or has had its I/O interface cable accidentally or intentionally disconnected and now reconnected. In either of these cases, without UPSUTIL it is necessary to re-boot the system in order to re-start the monitoring of that UPS device by the UPS Monitor/iX subsystem. But with UPSUTIL, the UPS Monitor process may be restarted with the system up, without rebooting the system. This ability reduces system downtime and increases system availability.

Intended Users

UPSUTIL is intended to be used by authorized system users who perform system management functions for the HP e3000 system, such as:

- System Managers
- System Operators
- HP Customer Engineers
- HP Response Center Engineers

UPSUTIL is not intended for use by “ordinary” system users.

(Refer to the “Product Invocation and Security” section of this document for information about limiting usage of UPSUTIL.)

Product Environment

UPSUTIL is intended for and supported for use in an HP e3000 MPE/iX system environment, characterized as follows.

Hardware Environment

UPSUTIL will run correctly on any HP e3000 system platform, but is intended for, and really only useful on, HP e3000 systems that employ the UPS method of power failure protection, such as:
Introduction

- HP 3000 Series 991/995/997
- HP 3000 Series 9X8
- HP 3000 Series 9x9
- HP e3000 N-Class and A-Class
- Future HP e3000 systems with UPS devices

While it is possible to run the program harmlessly on other HP e3000 models (where there are no UPS devices), there is nothing useful that UPSUTIL can do on such systems.

Software Environment

UPSUTIL runs under the MPE/iX Operating System, and requires system release “5.0 Push” (Core System Release C.50.00) or later in order to function correctly.

Product Structure

UPSUTIL is structured as a single executable program file, UPSUTIL.MPEXL.TELESUP. There are no message catalog files or other auxiliary files associated with UPSUTIL.
UPSUTIL OVERVIEW

Functional Overview

Through a very simple “command keyword” user interface, the UPSUTIL program provides the following functions pertaining to the management of UPS devices and the UPS Monitor/iX subsystem on HP e3000 systems running MPE/iX Release 5.0 “Push” or later releases:

1. A configuration query function that obtains and displays the list of UPS Ldevs (logical devices) that are in the I/O configuration of the system that is running.

2. A status query function that obtains and displays the current status of the UPS Monitor/iX subsystem process (running or not running; power normal or power failed; number of UPS devices being monitored) and of each of the configured UPS devices (Ldev number, allocated/not allocated, initialized/not initialized, operational state, power condition, and UPS hardware status).

3. A control function that halts the UPS Monitor/iX subsystem process, if it is currently running.

4. A control function that starts the UPS Monitor/iX subsystem process, if it is not currently running.

5. A control function that restarts (stops, then immediately starts) the UPS Monitor/iX subsystem process, if it is currently running.

6. A configuration function that selects a new user-defined configuration file to be used by the UPS Monitor subsystem.

7. A control function that resets (clears) the UPS Monitor’s information pertaining to the previous execution (if any) of a UPS powerfail “grace period” timeout and a UPS powerfail “user command file”.

In addition, UPSUTIL has two other functions that pertain to the operation of UPSUTIL itself:

1. A “help” function that displays the menu of UPSUTIL’s commands.

2. An “exit” functions that ends UPSUTIL program execution.

Product Invocation and Security

Like any MPE/iX program, UPSUTIL is activated by being “run” from the Command Interpreter in a job or in a session. However, because the user of UPSUTIL can affect the operation of the system’s UPS Monitor Process, there are security restrictions on running the UPSUTIL program.

UPSUTIL should not be accessible to ordinary system users because of UPSUTIL’s ability to affect execution of the system’s UPS Monitor Process. Therefore UPSUTIL has been implemented as a Privileged-Mode Program, and is limited in accessibility to privileged system users, such as System Managers and HP Service Personnel.

Security to prevent unauthorized access to the UPSUTIL program is provided by two factors:

1. UPSUTIL is a “Privileged Mode” program. This requires that, in order to run, it reside in a file group.account that has the PM capability associated with both the group and the account.

2. UPSUTIL requires that its user have “System Manager” (SM) capability in order to be able to run the UPSUTIL program. Users without SM capability can not run UPSUTIL.

To invoke UPSUTIL from an interactive session, type “run upsutil.mpexl.telesup” at the Cl prompt, as shown in the following example:

:run upsutil.mpexl.telesup
UPSUTIL for MPE/iX

UPSUTIL OVERVIEW

There is no run-time parameter (parm=) and no information string (info=) for UPSUTIL.

When activated, UPSUTIL presents the start-up display information see Figure 32-1 on the Output file (terminal screen). The start-up display shows the version and copyright banner of UPSUTIL, the “help menu” of UPSUTIL’s commands, and then the UPSUTIL prompt for the user’s first command input.

Figure 32-1 UPSUTIL Invocation

UPS Utility Program A.02.00 (c) COPYRIGHT Hewlett-Packard Co. 1994, 2001

UPSUTIL Program: Commands available are as follows:

(There are no parameters for any of the commands.
At the prompt, just type the command name.
)

<table>
<thead>
<tr>
<th>Cmd Name</th>
<th>Command Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Show this menu of commands.</td>
</tr>
<tr>
<td>exit</td>
<td>Done, exit the program.</td>
</tr>
<tr>
<td>config</td>
<td>Show system configuration of UPS devices.</td>
</tr>
<tr>
<td>newconfig</td>
<td>Change to a new UPS Monitor config file.</td>
</tr>
<tr>
<td>start</td>
<td>Start the System UPS Monitor process.</td>
</tr>
<tr>
<td>stop</td>
<td>Stop the System UPS Monitor process.</td>
</tr>
<tr>
<td>restart</td>
<td>Restart (stop, then start) the UPS Monitor process.</td>
</tr>
<tr>
<td>resetpfail</td>
<td>Reset (clear) UPS Monitor’s information about the most recent execution of the "powerfail command file".</td>
</tr>
<tr>
<td>status</td>
<td>Show System UPS Monitor process status.</td>
</tr>
</tbody>
</table>

There is no run-time parameter (parm=) and no information string (info=) for UPSUTIL.

Use of Files

UPSUTIL uses only two files in its operation. It reads its commands from the Pascal INPUT file (job/session $STDIN file), and writes its output (prompts for commands, progress messages, error messages, and display information resulting from command execution) to the Pascal OUTPUT file (job/session $STDLIST) file.

Revision of March 2000: Version 8:

UPSUTIL now also uses “UPS Monitor configuration files”, as described in the NEWCONFIG command. (Actually, UPSUTIL does not, per se, “use” these files — it never opens a UPS Monitor configuration file; it simply acquires from the user the file name of a configuration file, and passes that file name to the UPS Monitor, which actually opens and uses the file.)

Revision of December 2001: Version 9:
Introduction of the “user-specified UPS powerfail command file”. This is an MPE/iX CI command file that can be specified by a configuration command within the UPS Monitor configuration file. When so specified, this command file will be executed by the MPE/iX CI at a user-specified time following the detection by the UPS Monitor of a UPS device's powerfail signal. UPSUTIL itself does not access this file; it merely reports the file's specification (or lack thereof) in UPSUTIL's STATUS display.

Product Restrictions & Limitations

Because UPSUTIL was conceived to be a simple-to-use service tool, intended primarily for use by HP support personnel to help them to verify and troubleshoot the operation of the UPS Monitor/iX subsystem, UPSUTIL is not a “full-blown” MPE/iX software product implementation. In its initial implementation, UPSUTIL has the following restrictions and limitations. These could be alleviated by future enhancements if warranted.

Batch Mode Limitations

UPSUTIL is primarily intended to be operated interactively from an online user's terminal within an MPE/iX session, and although it can be operated within a batch job, it does not implement the file I/O functions that batch-mode applications usually possess.

In particular, UPSUTIL assumes that its Input and Output files comprise an MPE/iX “duplicative file set” (i.e., input records that are read from the Input file are automatically written to and appear on the Output file), and so it makes no checks for duplicative input/output files and no provision for echoing the input records to the output file when the file set is not duplicative, as is the case in a batch job.

So, while it is permissible to run UPSUTIL from a batch job, taking UPSUTIL's command inputs from $STDIN (or from a file-equated INPUT file) and writing UPSUTIL's output to $STDLIST (or to a file-equated OUTPUT file), when UPSUTIL is run in this fashion the commands read from INPUT will not be echoed to the OUTPUT file.

Language Localization Limitation

UPSUTIL has made no provisions for national language localization. Instead, to speed development, as assumption was made that since the primary users of UPSUTIL will be HP support personnel, probably in the HP Response Centers, it will be acceptable to have an English-language-only implementation.

Consequently, all UPSUTIL command input and display and error message output is hard-coded in English language in the ASCII character set.

UPSUTIL User Interface

Type of User Interface

The UPSUTIL user interface is a simple “line mode” command and response interface, suitable for use on direct-connected user terminals and dial-up modem-connected remote user terminals with no special hardware features required in the terminal (e.g., no graphics capability is needed).

UPSUTIL sequentially prompts the user for the next command (using the UPSUTIL command prompt shown at the bottom of Figure 32-1), reads the user's command from the Input file, executes the command, and displays the command's results (including warning or error messages, if any) on the Output file.

UPSUTIL Commands Summary

The UPSUTIL commands are syntactically very simple: each command consists only of a single command-name keyword, such as “start”.

Chapter 32 235
The UPSUTIL command set is summarized in the following (Table 32-1) Subsequent sections of this document explain the commands in detail.

Table 32-1 UPSUTIL Commands Summary

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Keyword</th>
<th>Command Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Help</td>
<td>help</td>
<td>Displays the menu of UPSUTIL commands.</td>
</tr>
<tr>
<td>Exit</td>
<td>exit</td>
<td>Terminates UPSUTIL execution, returns to CI.</td>
</tr>
<tr>
<td>Show UPS Devices Configuration</td>
<td>config</td>
<td>Queries the running system for UPS devices configuration information, and displays the list of configured UPS Ldevs.</td>
</tr>
<tr>
<td>Set new UPS Monitor Configuration</td>
<td>newconfig</td>
<td>Commands the UPS Monitor to start using a new, user-specified configuration file, which establishes some operating characteristics of the UPS Monitor.</td>
</tr>
<tr>
<td>Show UPS Monitor Status</td>
<td>status</td>
<td>Queries the running system for UPS Monitor process status and UPS devices’ statuses, and displays those statuses to the user.</td>
</tr>
<tr>
<td>Start UPS Monitor</td>
<td>start</td>
<td>Starts execution of the system’s UPS Monitor process, if it is not currently running.</td>
</tr>
<tr>
<td>Stop UPS Monitor</td>
<td>stop</td>
<td>Stops execution of the system’s UPS Monitor process, if it is currently running.</td>
</tr>
<tr>
<td>Restart UPS Monitor</td>
<td>restart</td>
<td>Restarts (stops, then starts) execution of the system’s UPS Monitor process, if it is currently running.</td>
</tr>
<tr>
<td>Reset UPS Powerfail Indicators</td>
<td>resetpfail</td>
<td>Resets (clears) the status indicators that show the completion dates and times of the previous occurrences of UPS powerfail grace period timer runout and UPS powerfail user command file execution.</td>
</tr>
</tbody>
</table>

General Command Parser Errors

Since the UPSUTIL user interface for entering commands is very simple, there are only a few error conditions associated with entering commands.

First, if a command keyword is simply mis-typed (misspelled), then UPSUTIL outputs the error message:

** ERROR: This command is not known to the UPSUTIL program, command ignored.**

Second, if a command keyword contains an invalid character, such as a numeric digit or special punctuation character, then UPSUTIL outputs the error message:

** ERROR: This command name is not legal, command ignored.**

Third, if a command keyword is just too long to be valid, then UPSUTIL outputs the error message:

** ERROR: This command name is too long, command ignored.**
UPSUTIL Commands

UPSUTIL's command set is defined and explained in this section. Each command is fully described, including:

- command name
- command purpose/function
- command syntax
- UPSUTIL's operation in response to the command
- information displayed by UPSUTIL for the command's execution
- normal (no-error) operation of the command
- possible errors in command execution, and error messages

Actual examples of the terminal screen displays produced by invoking UPSUTIL commands.

HELP Command

The HELP command merely displays a "menu" of UPSUTIL commands, as an online documentation aid to users of UPSUTIL.

Syntax

help

Example

UPSUTIL: Command > help

UPSUTIL Program: Commands available are as follows:

(There are no parameters for any of the commands.
At the prompt, just type the command name.)

<table>
<thead>
<tr>
<th>Cmd Name</th>
<th>Command Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Show this menu of commands.</td>
</tr>
<tr>
<td>exit</td>
<td>Done, exit the program.</td>
</tr>
<tr>
<td>config</td>
<td>Show system configuration of UPS devices.</td>
</tr>
<tr>
<td>newconfig</td>
<td>Change to a new UPS Monitor config file.</td>
</tr>
<tr>
<td>start</td>
<td>Start the System UPS Monitor process.</td>
</tr>
<tr>
<td>stop</td>
<td>Stop the System UPS Monitor process.</td>
</tr>
<tr>
<td>restart</td>
<td>Restart (stop, then start) the UPS Monitor process.</td>
</tr>
<tr>
<td>resetpfail</td>
<td>Reset (clear) UPS Monitor’s information about the</td>
</tr>
</tbody>
</table>
most recent execution of the "powerfail command file".

status - Show System UPS Monitor process status.

EXIT Command

The EXIT command terminates a UPSUTIL session. When the EXIT command is entered, UPSUTIL finishes execution and returns to the MPE/iX Command Interpreter.

Syntax

exit

Example

UPSUTIL: Command > exit

END OF PROGRAM:

CONFIG Command

The CONFIG command causes UPSUTIL to examine the I/O configuration tables of the currently running system to determine what (if any) UPS devices are configured on the system, and then to display the list of configured UPS devices (if any).

Syntax

config

Example

The first example shows the results of a CONFIG command performed on a system on which there are three UPS devices currently configured.

For convenience in referring to the display, UPSUTIL consecutively numbers the UPS devices that it finds in the system configuration, starting with UPS #1. This “UPS number” has no operational significance in the system: it merely provides a convenient means for counting and referring to the system's UPS devices.

The LDEV numbers do have operational meaning within the system. These are the file system's “logical device numbers” that were assigned to the UPS devices during system configuration. These LDEV numbers can be used to check and corroborate the system's SYSGEN and NMMGR NMCONFIG I/O configurations for the UPS devices. The MPE/iX "SHOWDEV" command will display all LDEV numbers configured on the running system, including, as a subset, these UPS LDEV numbers.

----------UPSUTIL: Command > config

Begin SHOW UPS CONFIGURATION Operation
There are 3 UPS devices configured on this system.

<table>
<thead>
<tr>
<th>UPS #</th>
<th>LDEV #</th>
</tr>
</thead>
<tbody>
<tr>
<td>~~~~~</td>
<td>~~~~~</td>
</tr>
<tr>
<td>1</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
</tr>
</tbody>
</table>

End SHOW UPS CONFIGURATION Operation

UPSUTIL: Command >

The second example shows the result of performing a CONFIG command on a system on which there are no UPS devices configured. If you get this result from a CONFIG command on a system that is supposed to have UPS devices configured, then there is something wrong with the system's I/O configuration files: the UPS devices have not been configured correctly. Revise the system I/O configuration according to the procedures given in the Performing System Management Tasks manual for configuring UPS devices, then reboot the system and run UPSUTIL again to verify the configuration.

UPSUTIL: Command > config

Begin SHOW UPS CONFIGURATION Operation

There are no UPS devices configured on this system.

End SHOW UPS CONFIGURATION Operation

UPSUTIL: Command >

NEWCONFIG Command

The NEWCONFIG command causes UPSUTIL to instruct the UPS Monitor subsystem to begin using a new UPS Monitor configuration file, specified by the user in the NEWCONFIG command. (The NEWCONFIG command executor prompts the user to enter the file name of the desired new UPS Monitor configuration file.)

A UPS Monitor configuration file is a simple ASCII line-oriented text file that the user can create with a text editor. The file contains a set of UPS Monitor configuration commands, which establish various operating characteristics or options in the UPS Monitor. In its first implementation (March 2000), the NEWCONFIG configuration file permits only one kind of UPS Monitor configuration option to be set: namely, the option to have the UPS Monitor's "** RECOVERY FROM POWERFAIL **" messages either routed to the system console and to all logged-on user terminals, or to have those messages sent only to the system console, and not
to any user terminals. This configuration option is called the "powerfail message routing" option. In the future, more configuration options may be added to the UPS Monitor configuration file facility, as the need arises.

Revision of December 2001: Version 9: Additional Configuration Commands

The UPS Monitor has been enhanced to include more configuration options. The new configuration commands pertain to establishing the UPS Monitor's behavior in response to a UPS device's signaling of an AC power failure. The new commands allow the user (system manager) to specify his own custom MPE/iX Command File to be executed a certain time (also user configurable) following a UPS power failure signal. In addition, the UPS Monitor's behavior in response to a UPS's "low battery charge" signal is now configurable by the user. (Prior to this enhancement, the UPS Monitor always performed an intentional "system abort" to protect disk data in case of a UPS "low battery" signal.)

The new configuration commands are:

- `powerfail_command_file = <filename>`
- `powerfail_grace_period = <number of seconds>`
- `powerfail_low_battery = <option>`

where `<option>` is either "system_abort" or "keep_running".

Syntax

newconfig

When you type in the `NEWCONFIG` command in response to the `UPSUTIL >` command prompt, UPSUTIL will then prompt you to enter the name of your UPS Monitor configuration file that you want to activate. UPS Monitor configuration files are discussed next.

Requirements for UPS Monitor Configuration Files

UPS Monitor configuration files handled by the `NEWCONFIG` command must adhere to the following requirements of structure and placement:

1. ASCII text files of standard file structure (MPE file type STD).
 These are simple, line-by-line, flat ASCII text files, of the most basic kind, as created by any of the HP e3000 text editors.
2. The file resides in the standard MPE/iX file system, and hence the file's name is of the form "file.group.account", according to standard file system naming rules.
 POSIX-style HFS (hierarchical file system) files are NOT allowed.
3. Record size (line length) from 32 bytes to 128 bytes long.
 Any record size within these limits is acceptable. EDITOR-style line numbered files are acceptable.
4. The first line (record) of the file must consist solely of the file's file name.
 This is a simple means of verifying that a file specified in a `NEWCONFIG` command is, in fact, a UPS Monitor configuration file. It protects against accidentally using an incorrect file.
5. Subsequent lines (records) in the file contain UPS Monitor configuration information settings, and are of the general form:
 `<configuration parameter name> = <configuration parameter value>`
For example, the first implemented UPS Monitor configuration command establishes the setting of how to route **RECOVERY FROM POWERFAIL** messages, and it appears as follows in a UPS Monitor configuration file:

```
powerfail_message_routing = all_terminals
-or-
powerfail_message_routing = console_only
```

6. Configuration parameter names and non-numeric configuration parameter values are alphanumeric symbols, using the underscore character (_) to connect the parts of a multi-part name or value.

7. Configuration file contents are NOT case sensitive. Use upper and/or lower case text as you wish.

UPS Monitor Configuration Options

Here are the available configuration options (configuration “commands”) for UPS Monitor configuration files.

Powerfail Message Routing The powerfail message routing configuration option allows you to choose how the UPS Monitor will handle its issuance of the HP e3000 system’s **RECOVERY FROM POWERFAIL** message, which is issued at the end of every power failure event — when AC power has returned to all UPSs — to notify the system operator and (optionally) system users of the completion of a power failure cycle.

parameter name: powerfail_message_routing

parameter values:

(a) all_terminals
To send the notification message to the system console and to all user terminals.

(b) console_only
To send the notification message only to the system console. No notification messages are sent to any user terminals.

Powerfail Command File The powerfail command file configuration option allows you to specify your own MPE/iX Command File to be executed at a certain time (established by the powerfail grace period configuration command, see below) following the UPS Monitor’s detection of a UPS AC power failure signal.

This configuration command is optional, and need not be included in the UPS Configuration file. If it is not included, then no powerfail command file will be used by the UPS Monitor. In that case, the UPS Monitor will only report UPS power fail occurrences to the system console and system log file, and will take no other actions due to UPS power fail detection.

parameter name: powerfail_command_file

parameter values:

(a) file.group.account [; <parm1> <parm2> ... <parmN>]
To cause UPS Monitor to utilize the named file (file.group.account) as an MPE/iX CI command file, to be executed at powerfail grace period time following any UPS’s report of an incoming AC power failure.

The file name may optionally be followed by a semicolon and a list of parameters for the execution of the CI command file. If the parameters are supplied in the “powerfail_command_file = xxx” configuration command, then the parameters will be passed as-is to the MPE/iX CI at the time when the powerfail command file is executed.

(b) $null
To specify that no powerfail command file is to be used.
Powerfail Grace Period The powerfail grace period configuration option allows you to specify a “grace period” (a delay time) following the detection of a UPS power failure by the UPS Monitor during which the UPS Monitor will wait to see if AC power returns to that UPS. If power is restored to the UPS before the grace period has elapsed, then the UPS Monitor will NOT commence execution of the user’s “powerfail command file” (if a powerfail command file has been configured). But if power does not return to the UPS device by the time that the grace period has elapsed, then the UPS Monitor will commence execution of the “powerfail command file”, if one is configured.

If no “powerfail command file” is configured via the UPS Monitor configuration file, then the setting of the powerfail grace period is immaterial. If a powerfail grace period is configured but no powerfail command file is configured, then the setting of the powerfail grace period has no effect upon the UPS Monitor’s operation in response to a UPS device power failure report.

parameter name: powerfail_grace_period

parameter values:

(a) nnnn – integer number of seconds in the grace period.

Minimum value: 0, Maximum value: 1800 seconds.

Powerfail Low Battery The powerfail low battery configuration option allows you to specify one of two behaviors of the UPS Monitor following its detection of a “low battery charge” condition from any configured UPS device. The choices of behavior are:

(a) System Abort: UPS Monitor is to perform an intentional special system abort at “low battery” detection, in order to guarantee the correctness of data stored on disk devices in case AC power to one or more disk drives does fail exactly at a time when the disk device is performing a “write data” operation on the disk. (Present models of SCSI disk devices can not by themselves guarantee not to write a partial sector of data if they happen to be writing data when their power disappears.)

(b) Keep Running: UPS Monitor is commanded NOT to perform its intentional system abort at “low battery” detection time. Rather, it is to allow the system to keep running even after the “low UPS battery” condition has been detected. This option gives the system approximately two more minutes of operation than it would have if the “system abort” option were specified, in the hope that this will be sufficient additional time to complete an orderly system shutdown before power to the disk device(s) is actually lost.

NOTE The use of the “keep running” option is entirely at the discretion and responsibility of the HP e3000 system manager. While making this option available for users who wish to use it, Hewlett-Packard DOES NOT RECOMMEND USE OF THIS OPTION, and CAN NOT ASSURE USERS THAT THERE WILL NOT BE CORRUPTION OF DATA STORED ON DISK DEVICES should this option be used.

parameter name: powerfail_low_battery

parameter values:

(a) system_abort

To cause UPS Monitor to execute a special “low UPS battery system abort” operation whenever a configured UPS device signals “low battery charge condition” to the UPS Monitor.

(b) keep_running

To cause UPS Monitor to report any “low battery charge condition” to the system console and system log file, but thereafter to keep the system running. There will be no intentional system abort from the UPS Monitor in this case.
The Default UPS Monitor Configuration File

You can still control the UPS Monitor with a configuration file even if you never use UPSUTIL's \texttt{NEWCONFIG} command. This is because the UPS Monitor (Version 8 of March 2000, or later version) automatically attempts to open and read a default UPS Monitor configuration file, named \texttt{UPSCNFIG.PUB.SYS}, at each system startup (each system boot).

Therefore, after installing Version 8 (or later) of the UPS Monitor software on your system, you need only use your favorite editor to create a \texttt{UPSCNFIG.PUB.SYS} text file and then re-boot the system. From this point on, the file \texttt{UPSCNFIG.PUB.SYS} will be read by and acted upon by the UPS Monitor during every system startup, and also (should you choose to use this facility) every time the UPS Monitor is started by using the UPSUTIL \texttt{START} command.

\begin{quote}
\textbf{NOTE} \hfill The UPSUTIL START command causes a fresh-from-scratch startup of the UPS Monitor (when it is not already running). Hence, a START will cause UPS Monitor to read the default configuration file \texttt{UPSCNFIG.PUB.SYS}.

The UPSUTIL RESTART command causes a re-initializing restart of the UPS Monitor, when it is already running. In this case, UPS Monitor will remember the file name of the most recently active configuration file, and will re-process that same file during the restart.
\end{quote}

Here are some examples of valid \texttt{UPSCNFIG.PUB.SYS} configuration files for use by the UPS Monitor:

\begin{enumerate}
\item To send ** RECOVERY FROM POWERFAIL ** messages to the system console and to all logged-on user terminals, which is the traditional method:

\begin{verbatim}
upscnfig.pub.sys
powerfail_message_routing = all_terminals
\end{verbatim}

\item to send the recovery messages ONLY to the system console:

\begin{verbatim}
upscnfig.pub.sys
powerfail_message_routing = console_only
\end{verbatim}

\item to send the recovery messages only to the system console, and to cause the user-defined command file \texttt{MYPFAIL.PUB.MYACCT} to be executed starting 10 minutes (600 seconds) after a UPS signals “power failure”, and to cause the UPS Monitor to perform its intentional system abort in case a UPS device signals a “low battery” condition:

\begin{verbatim}
upscnfig.pub.sys
powerfail_message_routing = console_only
powerfail_command_file = mypfail.pub.myacct
powerfail_grace_period = 600
powerfail_low_battery = system_abort
\end{verbatim}

\end{enumerate}

If No \texttt{UPSCNFIG.PUB.SYS} File Exists

\texttt{UPSCNFIG.PUB.SYS} is the default UPS Monitor configuration file, to be used unless/until you use UPSUTIL's \texttt{NEWCONFIG} command to choose a different configuration file.

The UPS Monitor's final default, in case there is no \texttt{UPSCNFIG.PUB.SYS} default configuration file on the system, is to assume case (a) above: The powerfail messages routing option will be assumed to be “to all terminals”, the same as it has been in the past. Also, there will be no “powerfail command file” configured.
(and no “powerfail grace period time” configured), so there will be no special action taken following a UPS device power fail signal. Finally, the default UPS Monitor action for “UPS low battery charge condition” will be system abort.

Observing Results of NEWCONFIG Command

After you have used the NEWCONFIG command to activate a new UPS Monitor configuration file through UPSUTIL, then use the STATUS command of UPSUTIL to see the results of the new configuration file activation. (Refer to the STATUS command elsewhere in this document.)

UPSUTIL’s NEWCONFIG command causes your chosen configuration file to be “sent to” the UPS Monitor software; but UPSUTIL itself does not do error checking on the configuration file. (The UPS Monitor module does perform error checking on the file. Any problems with the configuration file will be reported to the system operator via console messages issued by the UPS Monitor. These error messages will also be recorded in the system diagnostic log file.)

The UPSUTIL STATUS command obtains a status report from the UPS Monitor module, which will show you whether the UPS Monitor detected any errors in your new configuration file, and what the current settings of the configurable options are after your NEWCONFIG command has executed.

Example #1 — Using UPSCNFIG.PUB.SYS

The first example shows a NEWCONFIG command being used to set the configuration using the default UPSCNFIG.PUB.SYS configuration file. A STATUS command following the NEWCONFIG command reports the results of using UPSCNFIG.PUB.SYS.

```
---
UPSUTIL: Command > newconfig
---
Begin SET NEW CONFIG FILE UPS Monitor operation

Enter the file name of the new configuration file (file.group.account)
New config file name? upscnfig.pub.sys
SET NEW CONFIG FILE UPS Monitor operation successfully initiated.

End SET NEW CONFIG FILE UPS Monitor operation
---

UPSUTIL: Command > status
---
Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

  UPS Monitor Operating State : Running (PIN = 78)
  UPS Monitor Version Number : 9 3 UPS Devices Configured
  System Power State : Power is normal. 3 UPS Devices Monitored
---
```
Powerfail Recovery Messages: All terminals. 3 UPS Devices Allocated

Configuration File Name: UPSCNFIG.PUB.SYS (Config File Ok)

Powerfail Command File Name: $null (Pfail Cmd File Ok)

Powerfail Command FileParms: none

Powerfail Grace Period (secs): 0

Powerfail Grace Timer: Not Running.

Powerfail Command File: Not Running.

Action on UPS Low Battery: Keep Running

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>3</td>
<td>103</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
</tbody>
</table>

End display of UPS Monitor status.

Example #2 — Using UPSCNFGB.PUB.SYS

The next example shows the selection of a new UPS Monitor configuration file, UPSCNFGB.PUB.SYS, in which the powerfail message routing option is set to “console only”. Again, the STATUS command shows the results.

UPSUTIL: Command > newconfig

Begin SET NEW CONFIG FILE UPS Monitor operation

Enter the file name of the new configuration file (file.group.account)

New config file name? upscnfgb.pub.sys

SET NEW CONFIG FILE UPS Monitor operation successfully initiated.

End SET NEW CONFIG FILE UPS Monitor operation

UPSUTIL: Command > status

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:
UPS Monitor Operating State : Running (PIN = 78)
UPS Monitor Version Number : 9 3 UPS Devices Configured
System Power State : Power is normal. 3 UPS Devices Monitored
Powerfail Recovery Messages: Console only. 3 UPS Devices Allocated
Configuration File Name : UPSCNFGC.PUB.SYS (Config File Ok)
Powerfail Command File Name: $null (Pfail Cmd File Ok)
Powerfail Command FileParms: none
Powerfail Grace Period (secs): 0
Powerfail Grace Timer : Not Running.
Powerfail Command File : Not Running.
Action on UPS Low Battery : Keep Running

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>3</td>
<td>103</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
</tbody>
</table>

End display of UPS Monitor status.

Example #3 — Error in Configuration File

The final example shows what happens when an error is detected in an UPS Monitor configuration file. In this case, the configuration file UPSCNFGC.PUB.SYS was attempting to set the powerfail message routing to “all terminals”, but there was a typographic error in the “all terminals” parameter. The UPS Monitor reports the error to the system console, and the UPSUTIL STATUS command shows that the UPS Monitor has found an error in the current configuration file, UPSCNFGC.

UPSUTIL: Command >

Begin SET NEW CONFIG FILE UPS Monitor operation

Enter the file name of the new configuration file (file.group.account)

New config file name? upscnfgc.pub.sys

12:09/52/Illegal configuration command parameter in UPS Monitor
configuration file "UPSCNFGC.PUB.SYS" at record 2, column 29. (UPSERR 0640)

SET NEW CONFIG FILE UPS Monitor operation successfully initiated.

End SET NEW CONFIG FILE UPS Monitor operation

--

UPSUTIL: Command > status

--

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

UPS Monitor Operating State : Running (PIN = 78)
UPS Monitor Version Number : 9 3 UPS Devices Configured
System Power State : Power is normal. 3 UPS Devices Monitored
Powerfail Recovery Messages : Console only. 3 UPS Devices Allocated
Configuration File Name : UPSCNFGC.PUB.SYS (** Config File Has Error **)
Powerfail Command File Name : $null (Pfail Cmd File Ok)
Powerfail Command File Parms: none
Powerfail Grace Period (secs: 0
Powerfail Grace Timer : Not Running.
Powerfail Command File : Not Running.
Action on UPS Low Battery : Keep Running

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal AC</td>
<td>Power Normal</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal AC</td>
<td>Power Normal</td>
</tr>
<tr>
<td>3</td>
<td>103</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal AC</td>
<td>Power Normal</td>
</tr>
</tbody>
</table>

End display of UPS Monitor status.

--

UPSUTIL: Command >
STATUS Command

The **STATUS** command causes UPSUTIL to query the UPS Monitor Process for its status and for the status of each configured UPS device, and to display the status information reported by the UPS Monitor process.

Syntax

```
status
```

Example #1 — Normal Status

```
--------------------------------------------------------------------------
UPSUTIL: Command > status
--------------------------------------------------------------------------
Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

UPS Monitor Operating State : Running               (PIN = 196)
UPS Monitor Version Number : 9                       3 UPS Devices Configured
System Power State          : Power is normal.        3 UPS Devices Monitored
Powerfail Recovery Messages : All terminals.         3 UPS Devices Allocated
Configuration File Name     : UPSCNFIG.PUB.SYS       (Config File Ok)
Powerfail Command File Name : MYPFAIL.PUB.SYS        (Pfail Cmd File Ok)
Powerfail Command File Parms: none
Powerfail Grace Period (secs): 300
Powerfail Grace Timer       : Not Running.
Powerfail Command File      : Not Running.
Action on UPS Low Battery   : Keep Running

UPS DEVICES STATUS:

```
UPS# Ldev# Alloc Init State Power Hardware Status
~~~   ~~~~  ~~~~~~ ~~~~ ~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~
  1    22   Yes   Yes  Monitoring   Normal  AC Power Normal
  2   101   Yes   Yes  Monitoring   Normal  AC Power Normal
  3   103   Yes   Yes  Monitoring   Normal  AC Power Normal
```

End display of UPS Monitor status.

--------------------------------------------------------------------------
UPSUTIL: Command >

--------------------------------------------------------------------------
The Status Display

The status display produced by the `STATUS` command’s execution is shown in the above example and in several additional examples that follow this explanation of the parts of the status display.

The status display has two main sections, titled UPS MONITOR PROCESS STATUS and UPS DEVICES STATUS. The former section gives information about the UPS Monitor Subsystem Process, while the latter gives information about each UPS device configured on the system.

The next subsections describe the component parts of the status display, explaining their purposes and meanings. Refer to the examples as references while reading the following subsections, which first describe the parts of UPS MONITOR PROCESS STATUS and then the parts of UPS DEVICES STATUS.

**UPS Monitor Process Status Display**

**UPS Monitor Operating State** This field of the status display shows the current operational state of the UPS Monitor Process.

Possible values of this field are:

- **Starting-Up** — The UPS Monitor Process has been launched, and is in the process of acquiring the system resources that it needs in order to run.
- **Running** — The UPS Monitor Process has started-up successfully, and is now running.
- **Shutting-Down** — The UPS Monitor Process is performing its shutdown processing in preparation for process termination. The UPS Monitor Process shuts down for any of the following reasons: (a) A system shutdown ("Control-A shutdown") is occurring. (b) A user of UPSUTIL has commanded the UPS Monitor to stop operation (via the `STOP` command) or to stop and then restart operation (via the `RESTART` command). (c) The UPS Monitor process has detected a serious problem in its operation, and is either shutting-down or restarting to try to correct the problem, or (in cases of “fatal error”) is just shutting-down.
- **Undefined** — This state value is defined within the UPS Monitor Process, and it represents a “pre-startup” state in which even the most basic data structures are not yet initialized. It should not ever be possible to observe this operating state through the use of UPSUTIL’s `STATUS` command. The reason for this is when the UPS Monitor Process is in this early “pre-start” state; it is not possible for UPSUTIL to communicate with the UPS Monitor Process, to query it for its status.

**UPS Monitor Version Number** This field of the status display presents the “version number” of the UPS Monitor Process that is executing. This is simply a software version identification number, to identify the particular revision of the UPS Monitor software present on the system.

**System Power State** The System Power State status field shows the current condition of overall system power as most recently observed by the UPS Monitor Process.

The following values are possible:

- **Power is normal** — As of the most recent observation, incoming AC power was detected as “normal” at every UPS device being monitored. Overall, the system is in a “normal power” state.
- **Power has failed** — As of the most recent observation, incoming AC power was detected as “absent” or “out of tolerance” at one or more of the UPS devices being monitored. Hence, one or more of the UPS devices is/are providing “battery backup power” to the system (unless power has been absent for so long that the UPS battery has been drained completely).
**Powerfail Recovery Messages** This field shows the current setting of the UPS Monitor’s configuration option for handling "**RECOVERY FROM POWERFAIL**" messages. This setting is established when the UPS Monitor processes its configuration file, either during system startup (using `UPSCNFIG.PUB.SYS`) or, when the system is up, via the `NEWCONFIG` command of the UPSUTIL program.

Possible values of this field are:

- **All terminals** — "**RECOVERY FROM POWERFAIL**" messages will be sent to the system console and to all logged-on user terminals. (This is the traditional behavior for HP e3000 systems.)
- **Console only** — Recovery messages will be sent ONLY to the system console; no powerfail messages will be sent to user terminals.

**Configuration File Name** This field shows the file name of the currently active UPS Monitor configuration file, and is followed by a status indication field that reads either (**Config File OK**) or (**Config File Has Error**).

Note that this field always shows the file name of the most recent UPS Monitor configuration file to have been processed by the UPS Monitor, regardless of whether that processing was successful (no errors in configuration file) or not (configuration file has some error(s)).

If a configuration file does contain some error(s) and then the UPS Monitor reports the error to the system console, then ignores the configuration file record containing the error. This means that whatever configuration attribute (e.g., `powerfail_message_routing`) was supposedly being set in that configuration file record will not be set to a new value. Instead, UPS Monitor will simply retain the original value of the configuration attribute. Therefore, if the status display shows (**Config File Has Error**), then the actual values of configuration attributes that are shown in the status display do not “belong” to that configuration file. Instead, they are the prior values, being retained by UPS Monitor.

**Powerfail Command File Name** This field shows the file name of the currently active UPS Monitor powerfail command file, if any, and is followed by a status indication field that reads either (**Pfail Cmd File OK**) or (**Command File Has Error**).

Note that this field always shows the file name of the most recent UPS Monitor powerfail command file to have been set up by the UPS Monitor, regardless of whether that command file was set up correctly or not.

The UPS Monitor attempts to “set up” (or establish) a powerfail command file when it encounters a "`powerfail_command_file = <filename>`" configuration command while processing a UPS Monitor configuration file. When it does so, the UPS Monitor performs only a very basic error check on the powerfail command file: it simply checks to determine if the named file exists and can be opened for reading. If so, then the UPS Monitor establishes that file to be the powerfail command file, with no errors indicated. If not, then the UPS Monitor will flag the named powerfail command file as “has errors”, and will NOT attempt to execute that file in case of a UPS power failure that exceeds the “grace period” time.

**Powerfail Command FileParms** This field shows the parameters, if there were any, specified for use by the powerfail command file. These parameters may be specified in the "`powerfail_command_file = filename; parameters...`" configuration command in the UPS configuration file.

**Powerfail Grace Period** This field shows the current “powerfail grace period”, in seconds, as established by the most recent processing of the UPS configuration file.

The powerfail grace period is the amount of time, in seconds, that must elapse following the UPS Monitor’s detection of a “power fail” signal from a UPS device before the UPS Monitor will commence the execution of the user’s specified “powerfail command file”.

Thus, the grace period gives a chance of a certain amount of time in which the incoming AC power may come back on and restore normal system operation (a recovery from the power failure), so that the UPS Monitor will not begin to execute the user’s power failure command file.
**Powerfail Grace Timer**  This field shows the current state of the UPS Monitor’s “powerfail grace period timer”, which measures the amount of time (powerfail grace period) from the time of the onset of a UPS device power failure until the time when the power fail command file begins to be executed.

Possible values of this field are:

- **Not Running** — The grace period timer is dormant. There is no UPS power failure in progress, so no grace period time is being measured.
- **Running** — The grace period timer is active, measuring out the grace period time for an in-progress UPS power failure.
- **Completed** — The grace period timer has run to completion. If the UPS AC power failure is still in progress (power has not returned to the UPS device), and a user-defined “powerfail command file” has been established, then that command file will have started its execution. (It could have completed its execution by the time this status display has been observed.)

If the Timer State is “Completed”, then date and time of the timer completion will be shown in the status display to the right of this field. The state of “Completed” and the completion date and time will be maintained in the status display until either the UPS Monitor is re-started, or until the user invokes UPSUTIL’s **RESETPFAIL** command to clear-out the information regarding the powerfail grace period timer completion.

When UPS Monitor is restarted, or when the **RESETPFAIL** command is given in UPSUTIL, then the powerfail grace timer field of the status display reverts back to “Not Running”, and the date and time of the last timer completion are erased.

**Powerfail Command File**  This field shows the current state of the UPS Monitor’s “powerfail command file” execution, which occurs only if a powerfail command file has been configured and there has been a UPS device power failure that has persisted for longer than the “powerfail grace period” time.

Possible values of this field are:

- **Not Running** — The powerfail command file is dormant. Either there is no powerfail command file configured (see the Powerfail Command File Name field of the status display to determine this), or there is no UPS power failure in progress lasting longer than the powerfail grace period time.
- **Running** — The configured power fail command file is now being executed by the MPE/iX CI, due to a UPS power failure lasting longer than the power fail grace period time.

In this case, the previous field of the status display (Powerfail Grace Timer) will show that the grace period timer has run to completion, thus allowing the powerfail command file to begin execution.

- **Completed** — The powerfail command file has run to completion. In this case, the date and time of command file execution completion will be shown in the status display to the right of this field. The state of “Completed” and the completion date and time will be maintained in the status display until either the UPS Monitor is re-started, or until the user invokes UPSUTIL’s **RESETPFAIL** command to clear-out the information regarding the powerfail command file execution completion.

When UPS Monitor is restarted, or when the **RESETPFAIL** command is given in UPSUTIL, then the powerfail command file field of the status display reverts back to “Not Running”, and the date and time of the last command file execution are erased.

**Action on UPS Low Battery**  This field shows the configured action to be taken by the UPS Monitor in case a UPS device signals “low battery charge condition.”

Possible values of this field are:
- **System Abort** — The UPS monitor will invoke a particular System Abort in case of low battery charge condition, to ensure that there is no “partial write” on any disk device when the UPS output power does turn off.

- **Keep Running** — The UPS monitor will NOT invoke a System Abort in case of UPS low battery charge condition. Rather, it will allow the HP e3000 system to keep running in that condition.

**Pin** The PIN field shows the PIN (Process Identification Number) of the UPS Monitor Process.

**UPS Devices Configured** This field shows the number of UPS devices that have been configured into the system’s I/O configuration, as detected by the UPS Monitor Process during its start-up operations.

**UPS Devices Monitored** This field shows the number of UPS devices that the UPS Monitor Process is monitoring (or is attempting to monitor).

The value in this field should always be the same as the value of the UPS Devices Configured field. It can be a different number only if the system was configured with more UPS devices than the UPS Monitor Process is capable of monitoring. (At present, the limit is 128 UPS devices.) In such an unlikely case, the UPS Monitor will monitor as many UPS devices as it is capable of, and ignore the rest. In such a case, you could see “200 UPS Devices Configured” and “128 UPS Devices Monitored”, for example.

**UPS Devices Allocated** This field shows the number of UPS devices that the UPS Monitor Process has successfully allocated through the MPE/iX File System. (Each UPS device to be monitored must first be allocated, to give ownership of the UPS device to the UPS Monitor Process.)

This number should always be the same as the UPS Devices Configured and UPS Devices Monitored fields. In the unlikely event that some UPS device(s) can not be allocated via the File System, this number will be less than the number of UPS devices configured and to be monitored. If this happens, something is wrong with the system, and corrective action is needed. One way in which an UPS device can fail to be allocated is a failure of the system to initialize and download a DTC (Datacommunications and Terminal Controller) to which an UPS is connected will result in a failure of the File System to “open” (allocate) that UPS device.

**UPS Devices Status Display**

- **UPS #** The UPS number field of the UPS DEVICES STATUS portion of the status display is simply an ordinal index number assigned by UPSUTIL to the UPS devices, for convenience in referring to the UPSs. It has no functional significance.

- **DEV #** The LDEV number field (column) of the status display shows the logical device numbers associated with the UPSs configured on the system. These LDEV numbers are the “handles” by which I/O devices are known in the MPE/iX File System. LDEV numbers are assigned to the UPS devices during the I/O configuration process of system configuration.

- **Alloc (Allocated Indicator)** The allocated field (column) of the status display shows whether or not a UPS device has been successfully allocated to (i.e. is now “owned” by) the UPS Monitor Process.

In order to control and monitor a UPS device, the device must first be allocated to the UPS Monitor Process. Allocation is performed in the MPE/iX File System, via the HPFOPEN intrinsic. If allocation succeeds, then the UPS Monitor Process will attempt to monitor that UPS device, and a value of Yes will be displayed in the Alloc field. If allocation should fail, then the UPS Monitor Process can not monitor that UPS device. A value of No will appear in the Alloc column in that case.

- **Init (Initialized Indicator)** The initialized field (column) of the status display shows whether or not a UPS device has been successfully initialized (i.e., “brought online”) by the UPS Monitor Process.

A value of Yes in this column indicates that the UPS device has been successfully initialized by the UPS Monitor Process, and is in a “ready to be monitored” condition.
A value of No in this column indicates that either initialization of the UPS device failed (in which case there will be log entries in the system log file showing what errors were encountered during initialization), or that initialization is in progress but not yet completed (in which case, a later repetition of the `STATUS` command will show a Yes in this column, denoting completion of initialization).

### State
The State field (column) of the status display shows the operating state of the UPS device as perceived by the UPS Monitor Process.

Possible values for State are:

- **Configured** — The UPS device has been found in the system I/O configuration tables and has been recognized by the UPS Monitor Process as a valid UPS device, but initialization of the UPS device has not yet begun.

- **Initializing** — Initialization (a sequence of commands that brings the UPS device “online” and ready for monitoring) of the UPS device is in progress in the UPS Monitor Process. If it completes successfully, the UPS will be advanced to the Monitoring state. If initialization fails, the UPS device will be placed in the Down/Broken state.

- **Monitoring** — This is the normal “steady-state” of the UPS, in which the UPS Monitor Process is “watching” the UPS for its hardware events, such as power failures and other hardware conditions (e.g., high temperature, low battery charge, output power overload, etc.).

- **Down/Broken** — This State indicates that the UPS Monitor Process encountered severe errors when trying to initialize the UPS device, or while monitoring the UPS after a successful initialization.

The UPS Monitor Process will declare a UPS device to be “Down/Broken” only after a number of retries of the operations that experienced errors have also failed.

This state most likely indicates some hardware related problem with the UPS device or with the RS-232 serial I/O interface hardware (including cabling connections) used by the HP e3000 system to “talk to” the UPS device.

### Power
This field (column) of the status display shows the most recent “power status” of the UPS device as observed by the UPS Monitor Process.

Possible values of this field are:

- **Normal** — AC power coming into the UPS device is normal, and the UPS device is supplying filtered AC power to the system component(s).

- **Failed** — The UPS detected a loss of, or a variation from acceptable tolerances of, incoming AC power, and reported that power status to the UPS Monitor Process. Currently, a “power fail” condition has been declared by the UPS Monitor Process. The UPS device is supplying battery reserve power to the system component(s), unless its battery has been exhausted, in which case power to the system component(s) has truly failed.

### Hardware Status
The Hardware Status field (column) of the status display shows any and all of the UPS hardware status conditions that each UPS device has reported to the UPS Monitor Process, as of the most recent observation.

---

**NOTE** If a UPS device ever does enter the Down/Broken state, then that UPS device is no longer being monitored by the UPS Monitor Process and after correcting the hardware problem, the UPS Monitor Process must be restarted (by means of a RESTART command, or by a STOP followed by a START command, or by a system boot) in order to begin monitoring that UPS device again.
The “normal state” of hardware status is simply: AC Power Normal. In this normal state, AC Power Normal will be the only status item shown in the Hardware Status display. The UPS devices, however, are capable of reporting a number of status conditions to the host system, and in cases of additional UPS hardware status, there will be multiple lines in the status display showing the additional status conditions.

Possible values of Hardware Status are:

- **AC Power Normal** — AC power at the input of the UPS device is present and within its normal tolerance range.
- **AC Power Fail** — AC power at the input of the UPS device is either absent, or has drifted out of its normal tolerance range.
- **Low Battery Charge** — AC power at the input of the UPS device has failed, and the UPS has engaged its battery reserve power in order to continue to supply AC output power to the system component(s). When engaging the Battery reserve power, the UPS device detected and reported that the battery in the UPS hardware was in a depleted charge condition. This means that the UPS battery will only be able to supply full output power to the system component(s) for approximately two minutes, instead of for the fifteen minute period provided by a fully charged battery.
- **Output Power Off** — The UPS device reported that its output power (to the system component(s)) has been turned off. This means that someone has (intentionally or accidentally) turned “off” the Output Power On/Off switch on the UPS device's front control panel.
- **Bypass Mode** — The UPS device reported that it had been placed into AC Power Bypass Mode. This is only possible on some models of UPS devices, such as the A2998A 3.0 KVA UPS, that have a “Bypass Switch”. With this switch control, a service person can “bypass” the normal flow of power through the UPS, so that the UPS passes its AC input power directly through to its AC output plugs, without passing the power through the normal power inverters and filters.
- **UPS System Failure** — The UPS device reported a System Fail status, which indicates a serious hardware problem within the UPS device.
- **UPS Inverter Failure** — The UPS device reported an Inverter Fail status, which indicates a hardware failure in the UPS's DC-to-AC power inverter module.
- **Battery Disconnected** — The UPS device reported a Battery Not Present status, which indicates that the UPS internal controller perceived that a battery module was not properly connected to the UPS device.
- **UPS Charger Fault** — The UPS device reported a Charger Fault status, which indicates a hardware failure in the UPS' internal battery charger circuitry.
- **Output Power Overload** — The UPS device reported an Overload status, which indicates that the equipment being powered from the UPS is drawing too much power from the UPS.
- **Power Overload Shutdown** — The UPS device reported an Overload Shutdown status, which indicates that the equipment being powered from the UPS drew so much power from the UPS that the UPS performed a “shutdown” (turned its power circuits “off”) to protect itself from the overload condition.
- **High Ambient Temperature** — The UPS device reported a High Ambient Temperature status, which indicates that the UPS internal hardware detected an elevated temperature condition within the UPS device.
- **High Temperature Shutdown** — The UPS device reported a High Ambient Temperature Shutdown status, which indicates that the temperature inside the UPS device rose so high that the UPS control module shut down the UPS power circuits to protect the UPS device from damage due to excessive heat.
- **Battery Test Failure** — The UPS device reported a Battery Test Fail status, which indicates that the UPS control module detected that a battery pack failed to operate within specifications.
• **High Battery Voltage** — The UPS device reported a High Battery Voltage status, which indicates that the UPS control module perceived an overvoltage at the battery terminals, indicative of a hardware problem.

• **Low Battery Voltage** — The UPS device reported a Low Battery Voltage status, which indicates that the UPS control module perceived an undervoltage at the battery terminals, indicative of a hardware problem.

• **High Output Voltage Shutdown** — The UPS device reported a High Output Voltage Shutdown status, which indicates that the UPS control module perceived a severe overvoltage at its AC power output terminals, and consequently shut-down its power circuits to prevent damage to itself and to the system component(s) receiving power from this UPS.

• **Low Output Voltage Shutdown** — The UPS device reported a Low Output Voltage Shutdown status, which indicates that the UPS control module perceived a severe undervoltage at its AC power output terminals, and consequently shut-down its power circuits to prevent damage to itself and to the system component(s) receiving power from this UPS.

**Additional Examples**

The following examples illustrate various conditions of the UPS Monitor Process and of the UPS hardware devices that can be observed by using the `STATUS` command.

**Example #2 — UPS Monitor Not Running**

This example shows the display of the `STATUS` command when given at a time at which the UPS Monitor Process is not running.

If you get this result from a `STATUS` command, you know that the UPS Monitor Process is currently not running. You can start the UPS Monitor Process running by using the `START` command, if desired.

--------------------------------------------------------------------
UPSUTIL: Command > status
--------------------------------------------------------------------
Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

** WARNING: System UPS Monitor Process is not running at this time.

End display of UPS Monitor status.

--------------------------------------------------------------------

UPSUTIL: Command >

**Example #3 — AC Power Failure In Progress**

This example shows a status display typical of an incoming AC power failure condition at one of the UPS devices.

In this case, you can see in the UPS MONITOR PROCESS STATUS that the System Power State is “Power has failed,” and that the configured “Powerfail Grace Period” timer is now running.

The UPS DEVICES STATUS portion of the display shows that UPS LDEV #23 has reported an “AC Power Fail” hardware status condition, and so its Power condition field has been changed to Failed.
UPSUTIL: Command > status

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

UPS Monitor Operating State: Running (PIN = 196)
UPS Monitor Version Number: 9
System Power State: Power has failed
Powerfail Recovery Messages: All terminals
Configuration File Name: UPSCNFIG.PUB.SYS (Config File Ok)
Powerfail Command File Name: MYPFAIL.PUB.MYACCT (Pfail Cmd File Ok)
Powerfail Command FileParms: [inventory_data_set orders_data_set]
Powerfail Grace Period (secs): 300
Powerfail Grace Timer: Running.
Powerfail Command File: Not Running.
Action on UPS Low Battery: Keep Running

UPS DEVICES STATUS:

UPS# Ldev# Alloc Init State Power Hardware Status
1 22 Yes Yes Monitoring Normal AC Power Normal
2 23 Yes Yes Monitoring Failed AC Power Fail
3 24 Yes Yes Monitoring Normal AC Power Normal

End display of UPS Monitor status.

Example #4 — AC Power Failure Timed-Out

This example shows a status display following an incoming AC power failure condition at one of the UPS devices and after the configured “Powerfail Grace Period Timer” has expired. This has caused the user’s “Powerfail Command File” to begin execution.

In this case, you can see in the UPS MONITOR PROCESS STATUS that the System Power State is “Power has failed,” the configured “Powerfail Grace Period” timer has expired, and the “Powerfail Command File” is now in execution ("Running").

The UPS DEVICES STATUS portion of the display shows that UPS LDEV #23 has reported an “AC Power Fail” hardware status condition, and so its Power condition field has been changed to Failed.
UPSUTIL: Command > status

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

UPS Monitor Operating State : Running            (PIN = 196)  
UPS Monitor Version Number : 9                 3 UPS Devices Configured  
System Power State           : Power has failed.     3 UPS Devices Monitored  
Powerfail Recovery Messages : All terminals.       3 UPS Devices Allocated  
Configuration File Name      : UPSCNFIG.PUB.SYS    ( Config File Ok )  
Powerfail Command File Name : MYPFAIL.PUB.MYACCT ( Pfail Cmd File Ok )  
Powerfail Command File Parms: [inventory_data_set orders_data_set]  
Powerfail Grace Period (secs : 300  
Powerfail Grace Timer       : Completed.         TUE, FEB 12, 2002, 10:22 AM  
Powerfail Command File      : Running.  
Action on UPS Low Battery   : Keep Running  

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Failed</td>
<td>AC Power Fail</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
</tbody>
</table>

End display of UPS Monitor status.

Example #5 — AC Power Failure, Command File Completed

This example shows a status display following an incoming AC power failure condition at one of the UPS devices and after the configured “Powerfail Command File” has completed its execution.  

In this case, you can see in the UPS MONITOR PROCESS STATUS that the System Power State is “Power has failed,” the configured “Powerfail Grace Period” timer has expired, and the “Powerfail Command File” has run to completion.  

The UPS DEVICES STATUS portion of the display shows that UPS LDEV #23 has reported an “AC Power Fail” hardware status condition, and so its Power condition field has been changed to Failed.
UPSUTIL: Command > status

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

<table>
<thead>
<tr>
<th>UPS Monitor Operating State</th>
<th>Running</th>
<th>(PIN = 196)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPS Monitor Version Number</td>
<td>9</td>
<td>3 UPS Devices Configured</td>
</tr>
<tr>
<td>System Power State</td>
<td>Power has failed.</td>
<td>3 UPS Devices Monitored</td>
</tr>
<tr>
<td>Powerfail Recovery Messages</td>
<td>All terminals.</td>
<td>3 UPS Devices Allocated</td>
</tr>
<tr>
<td>Configuration File Name</td>
<td>UPSCNFIG.PUB.SYS</td>
<td>(Config File Ok)</td>
</tr>
<tr>
<td>Powerfail Command File Name</td>
<td>MYFAIL.PUB.MYACCT</td>
<td>(Pfail Cmd File Ok)</td>
</tr>
<tr>
<td>Powerfail Command FileParms</td>
<td>[inventory_data_set orders_data_set]</td>
<td></td>
</tr>
<tr>
<td>Powerfail Grace Period</td>
<td>300 secs</td>
<td></td>
</tr>
<tr>
<td>Powerfail Grace Timer</td>
<td>Completed.</td>
<td>TUE, FEB 12, 2002, 10:22 AM</td>
</tr>
<tr>
<td>Powerfail Command File</td>
<td>Completed.</td>
<td>TUE, FEB 12, 2002, 10:23 AM</td>
</tr>
<tr>
<td>Action on UPS Low Battery</td>
<td>Keep Running</td>
<td></td>
</tr>
</tbody>
</table>

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Failed</td>
<td>AC Power Fail</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
</tbody>
</table>

End display of UPS Monitor status.

Example #6 — Monitor Startup & UPS Initializations

This example illustrates what the STATUS display shows when the STATUS command is given during the time that the UPS Monitor Process is in its “start-up and initialize UPS devices” phase of processing.

In this example, the UPS Monitor Process had originally not been running, so a START command was given to start it. Then, quickly, two STATUS commands were given one after the other.

The first STATUS display shows that the UPS Monitor Process is now running (UPS Monitor Operating State is “Running”), and that it is part way through the process of bringing the three UPS devices “online”. The display of UPS DEVICES STATUS shows that all three UPS devices have been allocated successfully (Alloc}
= “Yes”) by the UPS Monitor Process, that the first UPS device (Ldev# = 22) has completed its initialization sequence and is now being monitored (Init = “Yes” and State = “Monitoring”), and that the other two UPS devices, Ldevs 23 and 24, are still in the process of being initialized (Init = “No” and State = “Initializing”). Notice that until the initialization process has completed, the UPS Monitor Process does not have information from the UPS device regarding its hardware status conditions. That is why the Power and Hardware Status fields for UPS Ldevs 23 and 24 are shown as “???”.

A few seconds later, the second STATUS display shows that the initialization processing has been completed for all of the three UPS devices. All three are now being monitored, and their Power and Hardware Status fields are normal.

UPSUTIL: Command > start

Begin START UPS Monitor operation

START UPS Monitor operation successfully executed.

End START UPS Monitor operation

UPSUTIL: Command > status

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

UPS Monitor Operating State : Running           (PIN = 196)
UPS Monitor Version Number :   9                 3 UPS Devices Configured
System Power State         : Power is normal.     3 UPS Devices Monitored
Powerfail Recovery Messages: All terminals.      3 UPS Devices Allocated
Configuration File Name    : UPSCNFIG.PUB.SYS     (Config File Ok)
Powerfail Command File Name: MYPFAIL.PUB.MYACCT (Pfail Cmd File Ok)
Powerfail Command FileParms: [inventory_data_set orders_data_set]
Powerfail Grace Period     : 300
Powerfail Grace Timer      : Not Running.
Powerfail Command File     : Not Running.
Action on UPS Low Battery  : Keep Running

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>~~~~</td>
<td>~~~~~</td>
<td>~~~~</td>
<td>~~~~</td>
<td>~~~~~</td>
<td>~~~~~</td>
<td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>
</tr>
</tbody>
</table>
UPSUTIL for MPE/iX

UPSUTIL Commands

1 22 Yes Yes Monitoring Normal AC Power Normal
2 23 Yes No Initializing ??? ???
3 24 Yes No Initializing ??? ???

End display of UPS Monitor status.

--------------------------------------------------------------------------

UPSUTIL: Command > status

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

UPS Monitor Operating State : Running           (PIN = 196)
UPS Monitor Version Number  : 9                3 UPS Devices Configured
System Power State         : Power is normal.   3 UPS Devices Monitored
Powerfail Recovery Messages : All terminals.   3 UPS Devices Allocated
Configuration File Name    : UPSCNFIG.PUB.SYS   (Config File Ok)
Powerfail Command File Name : MYPFAIL.PUB.MYACCT (Pfail Cmd File Ok)
Powerfail Command FileParms: [inventory_data_set orders_data_set]
Powerfail Grace Period (secs: 300
Powerfail Grace Timer      : Not Running.
Powerfail Command File     : Not Running.
Action on UPS Low Battery  : Keep Running

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
</tbody>
</table>

End display of UPS Monitor status.

--------------------------------------------------------------------------

UPSUTIL: Command >

Example #7 — UPS Down/Broken

This example shows that a UPS device has experienced some problem, like a failed or disconnected I/O cable, or a failed piece of internal hardware, that has prevented the UPS Monitor Process from communicating with the UPS device. After retrying several times to obtain status from the UPS device, the UPS Monitor Process has marked the UPS device (Ldev #24) as “Down/Broken”.

260
In this case, as in Example #6 when initialization was not yet completed, the UPS Monitor Process does not know what the power status or hardware status of the UPS device is, so the STATUS display shows “???” for those fields.

NOTE

If a UPS device is put into the “Down/Broken” state by the UPS Monitor Process, then the UPS Monitor Process must be restarted (after repairing the problem that has caused the loss of communications with the UPS device) in order to resume monitoring of that UPS device.

-------------------------------------------------------------------------

UPSUTIL: Command > status

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

UPS Monitor Operating State : Running            (PIN = 196)
UPS Monitor Version Number  :   9                 3 UPS Devices Configured
System Power State         : Power is normal.    3 UPS Devices Monitored
Powerfail Recovery Messages : All terminals.      3 UPS Devices Allocated
Configuration File Name     : UPSCNFIG.PUB.SYS   (Config File Ok)
Powerfail Command File Name : MYPFAIL.PUB.MYACCT (Pfail Cmd File Ok)
Powerfail Command File Parms: [inventory_data_set orders_data_set]
Powerfail Grace Period (secs: 300
Powerfail Grace Timer       : Not Running.        
Powerfail Command File      : Not Running.        
Action on UPS Low Battery   : Keep Running      

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>Yes</td>
<td>No</td>
<td>Down/Broken</td>
<td>???</td>
<td>???</td>
</tr>
</tbody>
</table>

End display of UPS Monitor status.

-------------------------------------------------------------------------

UPSUTIL: Command >
RESETPFAIL Command

The RESETPFAIL command is for the purpose of clearing-out from the UPS Monitor’s status display the information pertaining to past completions of the “Powerfail Grace Period Timer” and “Powerfail Command File”.

When there has been a UPS AC power failure signaled, and the user has configured the Powerfail Grace Period time, and the power failure has lasted longer than the grace period time, then the STATUS display will show that the state of the Grace Period Timer is “Completed”, and will also show the date and time of completion.

Similarly, if the user has configured a Powerfail Command File, and there has been a UPS power failure exceeding the grace period time, then the powerfail command file will have been executed. The STATUS display will then show the state of the Powerfail Command File as “Completed”, and will also show the completion date and time.

The “Completed” states and the completion dates and times for both the Powerfail Grace Period timer and the Powerfail Command File will be retained in UPS Monitor status until either:

1. The UPS Monitor is re-started, or
2. The RESETPFAIL command of UPSUTIL is used to clear this information.

The RESETPFAIL command will cause the state displays for Powerfail Grace Period timer and Powerfail Command File to revert from “Completed” to “Not Running”, and will erase the completion dates and times for the Powerfail Grace Period timer and Powerfail Command File.

The example below shows an observation of UPS Monitor status following a UPS power failure that caused expiration of the Grace Period Timer and an execution of the Powerfail Command File, followed by a usage of the RESETPFAIL command, and then another status display. You can see from this example how the powerfail status information gets cleared by the RESETPFAIL command.

Syntax

resetpfail

Example

--------------------------------------------------------------------
UPSUTIL: Command > status
--------------------------------------------------------------------
Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

  UPS Monitor Operating State : Running                        (PIN = 196)
  UPS Monitor Version Number :  9                             3 UPS Devices Configured
  System Power State          : Power is normal.              3 UPS Devices Monitored
  Powerfail Recovery Messages : All terminals.                3 UPS Devices Allocated
  Configuration File Name     : UPSCNFIG.PUB.SYS (Config File Ok)
  Powerfail Command File Name : MYPFAIL.PUB.MYACCT (Pfail Cmd File Ok)
  Powerfail Command FileParms: [inventory_data_set orders_data_set]
  Powerfail Grace Period (secs: 300
Powerfail Grace Timer       : Completed.         TUE, FEB 12, 2002,  2:53 PM
Powerfail Command File      : Completed.         TUE, FEB 12, 2002,  2:53 PM
Action on UPS Low Battery   : Keep Running

UPS DEVICES STATUS:

UPS# Ldev# Alloc Init    State     Power   Hardware Status
~~~~ ~~~~~ ~~~~~ ~~~~ ~~~~~~~~~~~~ ~~~~~~  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 1 22 Yes Yes Monitoring Normal AC Power Normal
 2 23 Yes Yes Monitoring Failed AC Power Fail
 3 24 Yes Yes Monitoring Normal AC Power Normal

End display of UPS Monitor status.
--

UPSUTIL: Command > resetpfail
--

Begin RESET PFAIL CMD FILE UPS Monitor operation
RESET PFAIL CMD FILE UPS Monitor operation successfully initiated.
End RESET PFAIL CMD FILE UPS Monitor operation
--

UPSUTIL: Command > status
--

Begin display of UPS Monitor status.

UPS MONITOR PROCESS STATUS:

UPS Monitor Operating State : Running (PIN = 196)
UPS Monitor Version Number : 9 3 UPS Devices Configured
System Power State : Power is normal. 3 UPS Devices Monitored
Powerfail Recovery Messages: All terminals. 3 UPS Devices Allocated
Configuration File Name : UPSCNFIG.PUB.SYS (Config File Ok)
Powerfail Command File Name: MYPFAIL.PUB.MYACCT (Pfail Cmd File Ok)
Powerfail Command File Parms: [inventory_data_set orders_data_set] Powerfail Grace Period (secs: 5
Powerfail Grace Timer : Not Running.
Powerfail Command File : Not Running.
Action on UPS Low Battery : Keep Running

UPS DEVICES STATUS:

<table>
<thead>
<tr>
<th>UPS#</th>
<th>Ldev#</th>
<th>Alloc</th>
<th>Init</th>
<th>State</th>
<th>Power</th>
<th>Hardware Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>Yes</td>
<td>Yes</td>
<td>Failed</td>
<td>AC Power Fail</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>Yes</td>
<td>Yes</td>
<td>Monitoring</td>
<td>Normal</td>
<td>AC Power Normal</td>
</tr>
</tbody>
</table>

End display of UPS Monitor status.

START Command

The **START** command instructs UPSUTIL to attempt to start-up a fresh copy of the system's UPS Monitor Process. If there is not already a copy of the UPS Monitor Process running, then UPSUTIL launches a new copy of the UPS Monitor Process. However, if the UPS Monitor Process is already running when the **START** command is given, then UPSUTIL displays a warning message informing the user of that, and stating that the **START** command has been rejected.

The first example below shows a normal, successful execution of the **START** command, while the second example shows the results when the **START** command is rejected because the UPS Monitor Process is currently running.

Before issuing the **START** command, you can use the **STATUS** command to verify that the UPS Monitor Process is not already running.

After executing the **START** command, you can use the **STATUS** command to verify that the **START** command worked. The **STATUS** command should reveal that the UPS Monitor Process is now running.

Syntax

```
start
```

Example #1 — Normal START

```
UPSUTIL: Command > start

Begin START UPS Monitor operation

START UPS Monitor operation successfully executed.

End START UPS Monitor operation
```
Example #2 — Rejected START

UPSUTIL: Command > start

Begin START UPS Monitor operation

** WARNING: UPS Monitor process is already running at this time.
** WARNING: START UPS Monitor operation not performed.

End START UPS Monitor operation

STOP Command

The STOP command instructs UPSUTIL to attempt to stop execution of the system's UPS Monitor Process. If the UPS Monitor process is running when the STOP command is given, then UPSUTIL performs the STOP operation by sending a “shutdown” message to the running UPS Monitor Process. The “shutdown” message causes the UPS Monitor Process to shut itself down (TERMINATEs the process). However, if there is no copy of the UPS Monitor Process running when the STOP command is given, then UPSUTIL rejects the STOP command, and displays a warning message to the user explaining that the STOP command could not be executed because the UPS Monitor Process is not currently running.

The first example below shows a normal, successful execution of the STOP command, while the second example shows the results when the STOP command is rejected because the UPS Monitor Process is not currently running.

Before issuing the STOP command, you can use the STATUS command to verify that the UPS Monitor Process is running.

After executing the STOP command, you can use the STATUS command to verify that the STOP command worked. The STATUS command should reveal that the UPS Monitor Process is no longer running.

Syntax

stop

Example #1 — Normal STOP

UPSUTIL: Command > stop

Begin STOP UPS Monitor operation

STOP UPS Monitor operation successfully executed.
End STOP UPS Monitor operation

Begin STOP UPS Monitor operation

** WARNING: UPS Monitor process is not running at this time.
** WARNING: STOP UPS Monitor operation not performed.

End STOP UPS Monitor operation

UPSUTIL: Command >

RESTART Command

The RESTART command is a shortcut method of stopping and then restarting the UPS Monitor Process. It is equivalent to issuing a STOP command immediately followed by a START command.

Like the STOP command, the RESTART command will be rejected if the UPS Monitor Process is not running at the time the RESTART command is issued.

The first example below shows a normal, successful execution of the RESTART command, while the second example shows the results when the RESTART command is rejected because the UPS Monitor Process was not running when the RESTART command was given.

Before issuing the RESTART command, you can use the STATUS command to verify that the UPS Monitor Process is running.

After executing the RESTART command, you can use the STATUS command to verify that the RESTART command worked. The STATUS command should reveal that the UPS Monitor Process is again running, after shutting itself down and then relaunching itself.

Syntax
restart

Example #1 — Normal RESTART

Begin RESTART UPS Monitor operation

Example #2 — Rejected STOP

Begin STOP UPS Monitor operation
RESTART UPS Monitor operation successfully executed.

End RESTART UPS Monitor operation

--

UPSUTIL: Command >

Example #2 — Rejected RESTART

--

UPSUTIL: Command >

WARNING: UPS Monitor process is not running at this time.

WARNING: RESTART UPS Monitor operation not performed.

End RESTART UPS Monitor operation

--

UPSUTIL: Command >

<the end>
SHOWDEV command, 238

Symbols
$STDIN, 234
$STDLIST, 71, 234

A
AC Power Fail, 256
account(s)
migrating with BULDACCT, 75
African peripherals, 147
application code written in both native and compatibility mode
facilitating with SWAT, 60
Asian peripherals, 147
ASOCIATE.PUB.SYS, 22, 71
ASOCTBL, 22, 71
errors, 73
input to, 71
listing association table, 72
parameters, 71
removing entries from ASOCIATE.PUB.SYS, 72
using wildcards with, 72
ASSOCIATE command, 22, 71
association table, 71

B
backing up your system, 59
BACKOUT, 181
boot image, 165
SOMs, system libraries, 52
breakpoint
setting within programs, 27
BUILDINT, 25
BUILDPME, 166
BULDACCT, 24, 75
migrating an account to a non-system volume, 77
migrating groups to a non-system volume set, 78
output from, 76
processing options, 76
recreating entire directory structure, 77
recreating selected accounts, 77
UDC files, 76
Bypass Switch, 254

C
catalog(s)
modifying or generating with GENCAT, 35
user defined, 42
CATALOG.PUB.SYS, 42
CHECKALL, 107
CHECKDIRC, 104, 107
CHECKDIREC, 107
CHECKEXTENTS, 105, 107
CHECKFILE, 107
CHECKLABEL, 106
CI command, 235, 241
CI prompt, 233
CICAT.PUB.SYS, 42
CLKUTIL, 26, 189
code
modifying with PATCH, 50
command
CI, 241
CONFIG, 239
NEWCONFIG, 244
RESETPFAIL, 251, 262
RESTART, 249, 266
SHOWDEV, 238
START, 243, 264
STATUS, 244, 248
STOP, 249, 265
command execution, 237
Command Interpreter, 233
command keyword, 233
command name, 237
command purpose/function, 237
command response, 237
command syntax, 237
command-name keyword, 235
commands
CI, 235
CONFIG, 238, 239
EXIT, 238
HELP, 237
NEWCONFIG, 234, 239, 240
compatibility mode code
managing with SEGMENTER, 53
compatibility mode program files
obtaining information about with VERSION, 68
CONFIG command, 238, 239
configuration
identifying with IOMAP, 37
system, 61
CONFIGURE command in DISCUTIL, 86
converting files to ROMAN8, 44
copying files with FCOPY, 33, 98
creating device link files, 141
creating fifo files, 43, 141
creating special files, 43, 141
creating streams files, 141

data
transport via SYSDUMP tape, 28
data communications
configuring with NMMGR, 47
data stacks and registers
modifying, 27
database load, 36
DBLOAD.PUB.SYS, 117
DEBUG, 108
device class/user association table, 22, 71
device link files, 141
diagnostics in TERMDSM, 218
directory
reproducing with BULDACCT, 77
storing to tape, 59
directory check, 34, 103
Index

DIRMIG, 28
DISASSOCIATE command, 22, 71
DISCFREE, 29, 81
allocation summary, 82
format options, 82
histogram, 82
parameters, 82
DISCUTIL, 30, 85
command summary, 85
CONFIGURE command, 85
DISMOUNT command, 86
DO command, 86
DSTAT command, 87
EXIT command, 87
HELP command, 87
LISTREDO command, 87
messages and errors, 92
MOUNT command, 88
PDEV command, 88
REDO command, 88
SAVE command, 89
SHOWDEV command, 90
TAPE command, 91
UNCONFIG command, 92
DISCUTIL
file recovery, 85
disk fragmentation, 29, 81
disk management, without MPE/iX, 30
disk space
evaluating free, 29, 81
limits, 29, 81
disk volume(s), 75
DISMOUNT command in DISCUTIL, 86
DISPLAY, 182
DISPLAYEXTENTS, 109
DISPLAYLOCKFILE, 109
DO command of DISCUTIL, 86
DSTAT command, 29, 81
DSTAT command in DISCUTIL, 87
DTC, 218
dump, 31
dump
in TERMDSM, 218
taking, 31
duplicative file set, 235

E
EBCDIC, 98
EDIT/3000, 32, 93
commands, 94
work file, 93
EMPTYSLough, 110
endEDIT/3000
commands, 96
endFCOPY
functions, 99
endIMAGE data base
converting to ROMAN8, 118
endLINK EDITOR/XL
commands, 133
endLOGTOOL
command summary, 137
endNLIOUTIL
commands, 149
endSPIFF
commands, 198
endTERMDSM
commands, 219
executive library(s), 131
EXIT, 111, 166, 183
EXIT command, 238
EXIT command in DISCUTIL, 87
exit function, 233
EXTENTDISTRIBUT, 111

F
fatal error, 249
FCOPY, 33, 97
copying EBCDIC tape, 98
copying IBM tape, 98
defining devices with file equations, 100
functions, 99
general guidelines, 101
hexadecimal, 98
input files, 98
output files, 98
using formal file designators in, 100
using with KSAM files, 102
FCOPY
copying a subset of a file, 98
fifo files, 43, 141
file directories
checking, directory, label, extent, 34
file extent map display, 34, 103
file recovery, DISCUTIL, 85
files
merging, 195
restoring, 59
sorting, 195
storing, 59
FIND, 183
FINDSYM, 166
formal file designators, 100
FSCHECK, 34, 103
functions
exit, 233
help, 233
fundamental operating system, 23

G
GENCAT, 35
grace period, 233, 242

H
hardware clock, 26
hardware configuration
viewing, with SYSMAP, 62
HELP, 111, 167, 184
HELP command, 237
HELP command in DISCUTIL, 87
help function, 233
help menu, 234
hierarchical file system, 240
HPFOPEN intrinsic, 252
I
I7DB8CNV, 36, 117
IBM tape
 copying with FCOPY, 98
IMAGE data base
 converting to ROMAN8, 36, 117
Initial stack, modifying, 156
intrinsic disk files
 building, changing, 25
IOMAP, 37
ISL> prompt, 85
K
keep_running, 240
keyword
 config, 236
 exit, 236
 help, 236
 new config, 236
 resetfail, 236
 restart, 236
 start, 236
 status, 236
 stop, 236
KSAM, 145
 copying files, 102
KSAM files
 managing with KSAMUTIL, 38
KSAMUTIL, 38
L
label table check, 34, 103
label table extent blocks, 89
labeled tape, 98
LANGINST, 39, 119, 148
 add a language, 120
 delete a language, 121
 error messages, 127
 modifying 16-bit Asian ASCII/EBCDIC translation tables, 125
 modifying ASCII/EBCDIC translation tables, 123
 modifying local language formats, 121
language specific information
 configuring onto your system, 39
languages
 displaying configured, 151
libraries
 creating and maintaining with LINK EDITOR/XL, 40
line mode command, 235
LINK, 178
LINK EDITOR/XL, 40, 131
 commands, 132
LIST, 184
LISTFILE command, 135
LISTREDO, 112
LISTREDO command in DISCUTIL, 87
LOADCME, 167
LOADMILLI, 168
LOADSXRT, 168
LOADSYSLIB, 168
LOG, 112, 138, 185
log files, 135
 managing with LOGTOOL, 41
 record types, 136
 system, memory, 135
logical devices, 233
LOGTOOL, 41, 135
 command summary, 137
 HELP command, 135
LISTLOG parameter, 136
OUTFILE parameter, 136
TYPE parameter, 136
low battery charge signal, 240
low battery charge, 242
low battery charge condition, 242
low battery signal, 240
low UPS battery, 242
low UPS battery system abort, 242
M
MAKECAT, 42
MAP, 169
MEMLOGP, 135
memory dump, 31
memory log file, 41
MERGE, 56, 195
message catalogs
 accessing with MAKECAT, 42
Message Catalogs Programmer's Guide, 35
Middle East/African peripherals, 147
migrating code
 using OCT to convert compatibility mode code to HP-PA, 49
migration
 detecting problems in programs with OCA, 48
 from MPE V/E to MPE/iX, 28
Migration Process Guide, 28
mirrored disk, 75
MKNOD, 43, 141
MODIFY, 185
modify ASCII/EBCDIC Translation Tables, 123
modifying 16-Bit Asian ASCII/EBCDIC Translation Tables, 125
modifying files with EDIT/3000, 32
MOUNT command in DISCUTIL, 88
mounted volume table, 87
MPE/iX Commands Reference Manual, 100
N
N7MF8CNV, 44, 145
 eighth bit set, 145
KSAM files, 145
 user labels, 145
native language I/O, 147
native language support, 151
 verifying with NLUTIL, 46
native language(s)
Index

activating for devices, 45
NEWCONFIG command, 234, 239, 240, 244
NLIODEF.PUB.SYS, 147
NLIOUTIL, 45, 147
commands, 147
NLUUTIL, 151
NMMGR, 47, 147
NOP instruction, 155

O
object code
analyzing with OCA, 48
modifying and displaying, 153
modifying with PATCH, 50
OCA, 48
OCT, 49
OCTOMP, 49
OFFSET, 187
OPEN, 187

P
Pascal INPUT, 234
Pascal OUTPUT, 234
PASCAL/iX source code, 60
PATCH, 50, 153
D command, 154
DG command, 155
M command, 154
MG command, 155
subcommands, 154
PATCHFILE, 188
PATCHJCW, 178
PDEV command in DISCUTIL, 88
permanent space, 81
PMAP, 175
power fail signal, 250
power failure, 243
power failure protection, 231
powerfail command file, 242, 244, 250
powerfail grace period, 250
powerfail grace period time, 244
powerfail message routing, 240
PREP command, 157, 175
preparing native mode object modules, 131
preparing Native Mode programs, 40
Privileged-Mode Program, 233
PURGEFILE, 113
PXUTIL, 51, 159
PXUTIL utility, 51, 159

Q
QUIT, 188

R
REDO, 113
REDO command in DISCUTIL, 88
relocatable library(s), 53, 131
reset in TERMDSM, 219
RESETPFAIL command, 251, 262
RESTART command, 249, 266
RESTORE, 59
ROMAN8, 36, 44, 67
S
SAINT, 52, 163
Commands, 165, 169
SAVE, 188
SAVE command in DISCUTIL, 89
security levels for TERMDSM, 217
segmented library(s), 53
modifying with SLPATCH, 54
SEGMENTER, 53
semicolon (, 180
serial port connections
modifying with TTUTIL, 65
SHOW, 188
SHOWDEV command in DISCUTIL, 90
signal
low battery, 240
low battery charge, 240
system abort, 240
SL segment
displaying, 174
modifying, 174
SLPATCH, 54
D command, 174
M command, 174
SLPLATCH, 173
SM capability, 233
soft reset, 85
SOM, 190
modification, patching, 55
SOMPATCH, 55, 177
SORT, 56, 195
SORT-MERGE/XL, 195
primary key, 195
secondary key, 195
terminating, 195, 196
special files, 43, 141
SPIFF, 57, 197
commands, 198
SPL procedure head declarations, 25
standalone utilities
listing at ISL> prompt, 85
standard, 201
STANDARDS, 58
standards
bootstrap, IPL, ISL, 58
START command, 243, 264
STATUS command, 244, 248
status in TERMDSM, 219
stop and start control, 231
STOP command, 249, 265
STORE, 59
storing and restoring files, 59
streams files, 141
SWAT, 60
Switch Assist Tool, 60
Switch Programming Guide, 60
SWITCHLOG command, 135
SXRT, 165
SYMBOL, 190
SYNCACCOUNTING, 113
Index

SYSDIAG, 135, 213
SYSGEN, 61, 71, 147
SYSMAP, 62, 213
CPUMAP, 213
IOMAP, 213
MEMMAP, 213

system abort, 242
system abort signal, 240
system backup and recovery, 59
system diagnosis
TERMDSM, 63
system log file, 41
system logging, 138
System Manager (SM), 233
system volume(s), 75
system_abort, 240

T
TAPE command of DISCUTIL, 91
terminal screen, 234
TERMDSM, 63, 217
commands, 217
security levels, 217
termtype file
modifying with TTUTIL, 65
tic, 64, 215
tic utility, 64, 215
timestamps, 26
TOTALEXTENTS, 114
transient space, 81
translating files with FCOPY, 33
TTUTIL, 65

U
UDC files, 76
UNCONFIG command of DISCUTIL, 92
UPDATE, 155
untic, 66, 221
untic utility, 66, 221
UPS LDEVS, 231
UPS management, 231
UPS Monitor, 231
UPS Monitor configuration files, 234
UPS Monitor/iX, 231
UPSCNFGC, 246
UPSUTIL, 231, 234
UPSUTIL command set, 236
UPSUTIL's STATUS display, 235
USE, 115, 177, 191
user command file, 233
user subprogram library(s), 53
user volume(s), 75
USERLANG, 148
utilities, 24
PXUTIL, 51, 159
tic, 64, 215
untic, 66, 221

V
V7FF8CNV, 67, 223
alternate character sets, 224
VERSION, 68, 192, 227

information displayed, 228
volume label, 89
volume number in volume set, 88
volume set(s)
managing with VOLUTIL, 69
volumes
mounted, 29, 81
VOLUTIL, 69
RECOVER, 30
VOLUTIL
RECOVER, 85
VPLUS
converting to ROMAN8, 67