
DCE for the HP e3000

HP e3000 MPE/iX Computer Systems

Edition 3
Manufacturing Part Number: B3821-90003
E0801

U.S.A. August, 2001

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
UNIX is a registered trademark of The Open Group. Windows and Windows NT and
registered trademarks of Microsoft Corporation.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1995, 2000 and 2001 by Hewlett-Packard Company.
2

Contents
1. General Information
Version Identification . 12
DCE/3000 Components and Files . 13
Domestic and International Version . 17

2. Configuring DCE Cells
Using the DCE Configuration Tool . 20

Configuring a DCE Client (Client-Only System) . 21
Removing the DCE Cell . 23

3. Threads Architecture on MPE/iX
Threads Architecture . 26

Threads on MPE/iX. 26
Process Management and Threads . 26
Development, Debugging, and Application Execution of Threads . 27

Breakpoints.. 28
Commands . 29
Environmental Variables . 29
Limitations. 30

Building DCE Programs . 31
Header Files . 31
Compiler Flags . 31
Unresolved Externals . 31

4. DCE 1.2.1 Features and Programming Notes
RPC Changes . 34

Private Client Sockets. 34
Exception Handling. 34

IDL Compiler . 35
Out-of-Line Marshalling . 35
Enhancing IDL Data Types . 35
Support for IDL Encoding Services . 35
Support for IDL Encoding Services . 35
Support for User Defined Exceptions. 35
Support for Customized Binding Handles . 35

Control Programs and Daemons . 36
Transition of ACL Managers . 37
Removing DCE Credentials . 38
Serviceability Improvements . 39
Security Delegation . 41

Compiling Multithreaded Application . 41
3

Contents
5. Programming with Kernel Threads
Threads Synchronization and Communication .44

Mutexes (Mutual Exclusion Objects) .44
Condition Variables .44
Join Facility .44

Threads Scheduling .45
Writing Threaded Applications. .46
Writing Thread-Safe Code .48

6. Introduction to RPC
Runtime Library .51

Private Client Sockets .51
Serviceability .51
Exception Handling .51

DCE-IDL Compiler for RPC 1.2.1. .52
Out-of-Line Marshalling .52
Enhancing IDL Data Types .52
Support for IDL Encoding Services .53
Support for User Defined Exceptions .53
Support for Customized Binding Handles .53

7. Programming with RPC 1.2.1 on MPE/iX
Compiling Multithreaded Application .72
4

Figures
Figure 2-1. DCE Main Menu . 21
Figure 2-2. Security Client . 22
Figure 2-3. Add CDS Client . 22
Figure 2-4. Using LAN Profile Question . 22
Figure 2-5. Configuring Question . 23
Figure 2-6. Remove Message . 23
5

Figures
6

Tables
Table 1-1. CDS Components . 13
Table 1-2. DTS Components . 13
Table 1-3. Security Components . 14
Table 1-4. RPC Components . 15
Table 1-5. Miscellaneous Components . 16
Table 6-1. RPC Components . 50
Table 6-2. Miscellaneous Components . 50
7

Tables
8

Preface
This manual describes the DCE for the HP e3000, based on OSF DCE
version 1.0.2 source code.

This manual is organized into the following chapters:

Chapter 1 , “General Information,” provides information on version
identification and components and limitations.

Chapter 2 , “Configuring DCE Cells,” provides general information on
using the DCE configurator tool and options.

Chapter 3 , “Threads Architecture on MPE/iX,” the section provides the
architecture of threads on MPE/iX as well as building DCE programs.

Chapter 4 , “DCE 1.2.1 Features and Programming Notes,” describes
the differences between DCE 1.0.2 and DCE 1.2.1.

Chapter 5 , “Programming with Kernel Threads,” provides basic thread
creation and management routines

Chapter 6 , “Introduction to RPC,” provides the Remote Procedure Call
component of the core services of OSF DCE.

Chapter 7 , “Programming with RPC 1.2.1 on MPE/iX,” provides
examples of RPC application programming.
9

10

1 General Information
This version of DCE/3000 (version A.01.02) is based on OSF DCE
version 1.0.2 source code. It provides the following OSF components for
the core services:

• Remote Procedure Calls (RPC) — supports the development of
distributed applications by making requests to remotely networked
machines as if they were local. RPCs also implement network
protocols used by clients and servers to communicate with each
other.

• Kernel Threads — supports the interfaces defined in Draft 4 of the
POSIX 1003.4a specification, with some exceptions as stated in this
document.

• Cell Directory Service (CDS) — manages a database of
information about the resources in a group of machines called a DCE
cell. The database consists of the names of resources and associated
attributes.

• Distributed Time Service (DTS) — provides synchronized time
for the computers in a DCE cell.

• DCE Security — provides secure communications through the use
of services such as authentication, which guarantees the identity of
users, and authorization, which keeps track of user privileges.

In the DCE/3000 version A.01.12, the DCE application library is
provided as both an archive library (libdce.a) and an executable library
(DCEXL.HPDCE.SYS). The concept of an executable library is like the
shared library on HP-UX. If you use the archive library, each
application binary will contain its own copy of the DCE routines that it
calls directly or indirectly. If you use shared library, all DCE
applications can share the single copy of the DCEXL on a system.
11

General Information
Version Identification
Version Identification
Version information for the individual DCE/3000 components can be
obtained by running the Version utility against the DCE program. You
will find the product version (B3821AA A.01.02 for the domestic
version, or B3822AA A.01.02 for the international version) and the
program version control information at the beginning of the Version
output. For example, the following is the output from the Version utility
for an RPCD program:

:version idl.hpdce.sys
VERSION C.60.00 Copyright (C) Hewlett-Packard 1987. All Rights Resreved.

IDL.DCEPROGS.ROSEDCE

SOM #1
@(#) HP30315 A.05.10 95/02/08 NRT0 Startup routine
IDL1.2.1-002
DCEmpesrc-003
B0600001/SSICSOCN/$Revision: 1.2$

MAX STACK SIZE: 393216
MAX HEAP SIZE: 81920000
CAPABILITIES: BA,IA
UNSAT PROC NAME:
ENTRY NAME:
LIBRARY SEARCH LIST: CXL.LIB.ROSEDCE
12 Chapter 1

General Information
DCE/3000 Components and Files
DCE/3000 Components and Files
The DCE/3000 components, their corresponding files, the files size (in
sectors), and a description of the files are listed in the following tables,
Table 1-1 shows the CDS components.

NOTE The file sizes list in these tables are for product B3822AA. The sizes
may be different for product B3821AA.

The DTS components are shown in Table 1-2.

Table 1-1 CDS Components

Filename Description

/usr/bin/cdsd shell script

cdsd.hpdce.sys program

/usr/bin/cdscp shell script

cdscp.hpdce.sys program

cdsadv.pub.sys command file

/usr/bin/cdsadv shell script

cdsadv.hpdce.sys program

cdsclerk.hpdce.sys program

Table 1-2 DTS Components

Filename Description

dtscp.pub.sys command file

/usr/bin/dtscp shell script

/usr/bin/dtsd shell script

dtsd.hpdce.sys program

dtsnullp.pub.sys command file

/usr/bin/dts_null_provider shell script

dtsnullp.hpdce.sys program

dtsntpp.pub.sys command file

/usr/bin/dts_ntp_provider shell script

dtsntpp.hpdce.sys program
Chapter 1 13

General Information
DCE/3000 Components and Files
The Security components are shown in Table 1-3.

The RPC components are shown in Table 1-4.

Table 1-3 Security Components

Filename Description

/usr/bin/sec_clientd shell script

secclntd.hpdce.sys program

seccrtdb.pub.sys command file

/usr/bin/sec_create_db shell script

seccrtdb.hpdce.sys program

secadmin.pub.sys command file

/usr/bin/sec_admin shell script

secadmin.hpdce.sys program

rgyedit.pub.sys command file

/usr/bin/rgy_edit shell script

rgyedit.hpdce.sys program

acledit.pub.sys command file

/usr/bin/acl_edit shell script

acledit.hpdce.sys program

dcelogin.pub.sys command file

/usr/bin/dce_login shell script

dcelogin.hpdce.sys program

kinit.pub.sys command file

/usr/bin/kinit shell script

kinit.hpdce.sys program

klist.pub.sys command file

/usr/bin/klist shell script

klist.hpdce.sys program

destroy.pub.sys command file

/usr/bin/kdestroy shell script

kdestroy.hpdce.sys program
14 Chapter 1

General Information
DCE/3000 Components and Files
Table 1-4 RPC Components

Filename Sector Size Description

rpcd.pub.sys 32 command file

/usr/bin/rpcd 16 shell script

rpcd.hpdce.sys 547 program

rpccp.pub.sys 16 command file

/usr/bin/rpccp 16 shell script

rpccp.hpdce.sys 290 program

idl.pub.sys 16 command file

/usr/bin/idl 16 shell script

idl.hpdce.sys 2,166 program

uuidgen.pub.sys 16 command file

/usr/bin/uuidgen 16 shell script

uuidgen.hpdce.sys 125 program

dced.pub.sys

/usr/bin/dced

dced.hpdcde.sys
Chapter 1 15

General Information
DCE/3000 Components and Files
The miscellaneous components are shown in Table 1-5.

Table 1-5 Miscellaneous Components

Filename Description

/etc/dce_config/* shell scripts for dce_config tool

/usr/lib/libdce.a NMRL

DCEXL.HPDCE.SYS DCE shared library

/usr/include/dce/*.h header files

/usr/include/dce/*.idl idl files

/opt/dce local/* directories for DCE use

/usr/lib/libdce.sl POSIX shared library.
16 Chapter 1

General Information
Domestic and International Version
Domestic and International Version
The DCE/3000 Security component of /usr/lib/libdce.a uses the Data
Encryption Standard (DES) algorithm as its default encryption
algorithm. Because the United States DOD restricts the export of DES
software, DCE/3000 supports two binary versions:

The International version of the software disables the RPC data
protection level privacy, disallowing users the ability to encrypt their
data in RPCs. If an application specifies the privacy level of data
protection while using the international version of /usr/lib/libdce.a, the
application receives an rpc_s_unsupported_protect_levelerror. This restriction
does not apply to the Domestic version.
Chapter 1 17

General Information
Domestic and International Version
18 Chapter 1

2 Configuring DCE Cells
This section provides general information on using the DCE
configurator to add your MPE/iX HP e3000 system into a cell. It is
divided into two subsections:

• Using the DCE Configuration Tool — provides detailed steps to
bring up the DCE Configuration main menu (these steps must be
completed each time you change the DCE cell configuration).

• Using the DCE Configuration Options — provides detailed steps for
each option in the DCE configuration main menu (basic familiarity
with DCE terms and concepts are assumed) as described in the
Introduction to OSF DCE.
19

Configuring DCE Cells
Using the DCE Configuration Tool
Using the DCE Configuration Tool
The DCE configurator (called dce_config) is a shell-script-based
configuration tool, this enables you to run dce_config from within the
MPE/iX POSIX shell.

Check the following preliminary tasks before you enable the DCE
configuration main menu:

• Ensure that the system network is running (RPC requires network
sockets).

• Create an MPE/iX group named DCECONFG. At the system prompt,
enter:

NEWGROUP DCECONFIG

You must be in an MPE/iX group (that is, your working directory
must be an MPE/iX group not a POSIX directory) when you start the
POSIX shell that runs dce_config.

Perform the following steps to obtain the DCE Main Menu for
configuring cells:

1. Log on to the console as MANAGER.SYS,DCECONFG. At the system
prompt, enter:

HELLO MANAGER.SYS,DCECONFG

2. Enter the POSIX shell. At the system prompt, enter:

sh.hpbin.sys -L

The shell prompt is displayed (for example, shell/iX>).

3. Ensure that /usr/bin is in your shell command search path. At the
shell prompt, enter:

export PATH=/usr/bin:$PATH

4. Bring up the DCE cofiguration Main menu. At the shell prompt,
enter:

dce_config

The DCE Main Menu as shown in Figure 2-1 is displayed on the
console.
20 Chapter 2

Configuring DCE Cells
Using the DCE Configuration Tool
Figure 2-1 DCE Main Menu

From this menu you can configure your system as a DCE client or client
system.

Configuring a DCE Client (Client-Only System)

A DCE client can not be configured without a functional DCE cell. In
other words, when you configure your machine as a DCE client, the
DCE cell that you are going to configure needs to be up and running.
You need to know the name of the cell and the names of the systems
that the DCE servers (Security, CDS and DTS) reside.

Before preceding with the DCE Client configuration, ensure that the
HOSTS.NET.SYS file in your machine contains the IP addresses for the
systems that are running as Servers. When complete, follow the
description in the “Startup the DCE Configuration” menu to bring
up the DCE main menu.

The following steps enable you to add your machine as a DCE client
node:

1. Select “1. Configure Client” from the DCE Main Menu.

2. Respond to the questions as shown in Figure 2-2.

DCE Main Menu

1. CONFIGURE CLIENT configure client and start DCE daemons

2. START re-start DCE daemons

3. STOP S top DCE daemons

4. REMOVE stop DCE daemons and remove data files created by DCE daemons

99. EXIT

selection:
Chapter 2 21

Configuring DCE Cells
Using the DCE Configuration Tool
Figure 2-2 Security Client

Two DCE daemon jobs (rpcd, dced) are streamed and are running.
You are informed that your machine is now a Security client.

3. Respond to the questions shown in Figure 2-3 to add CDS client
configuration to your system:

Figure 2-3 Add CDS Client

4. Respond to the “...LAN profile...” question as shown in Figure
2-4.

Figure 2-4 Using LAN Profile Question

One DCE daemon job (cdsadv) is now running and you are informed
that this machine is now a CDS client.

5. To continue configuring the machine as a DTS clerk, DTS local
server, or DTS global server, respond to the question shown in Figure
2-5.

What is the name of the Security Server for this cell you wish to
join? server1

.

.

.
Enter the name of your cell (without /,,,/): n22cell

Enter Cell Administrator’s principal name: cell_admin

Enter password: password

.

.

.

This machine is now a security client.

What is the name of a CDS server in this cell
(if there is more than one, enter the name of
the server to be cached if necessary)? <dcetst4>

Create LAN profile so clients and servers can be divided into
profile groups for higher performance in a multi-lan cell? (n)<n>
22 Chapter 2

Configuring DCE Cells
Using the DCE Configuration Tool
Figure 2-5 Configuring Question

Once DTS daemon job (dtsd) is running, you are informed that this
machine is now a DTS clerk.

6. Select 99 to exit from dce_config .

WARNING The password for the “cell_admin none none ” user is a
well-known default value. Since this is a security hole, it is
recommended that the password be changed immediately after
exiting this script by using “dce_login ”, then the “rgy_edit
change ” command.

Removing the DCE Cell

To remove a cell, perform the following steps:

1. Bring up the DCE Main Menu (as described in “Using the DCE
Configuration Tool” earlier in this section).

2. Select “4. REMOVE” from the DCE Main Menu. The dce_config
tool displays the message as shown in Figure 2-6.

Figure 2-6 Remove Message

 A “Yes” response stops all running DCE daemons in that system,
removes all remnants of previous DCE configuration and removes all
remnants of previous DCE configuration for all components.

NOTE Existing user credentials will be invalid when DCE daemons are
stopped and restarted.

Should this machine be configured as a DTS Clerk, DTS Local Server, or
DTS Global Server? (Default is DTS Clerk)
(clerk, local, global, none)

REMOVE will remove the node’s ability to operate in the cell.
A reconfiguration of the node will be required. This node
should be unconfigured before a REMOVE is done. You may REMOVE
without unconfiguring if you are destroying the cell.
Do you wish to continue (y/n)? (n) <y>
Chapter 2 23

Configuring DCE Cells
Using the DCE Configuration Tool
24 Chapter 2

3 Threads Architecture on MPE/iX
Threads library were the part of DCE product. From this release of
RPC 1.2.1 threads will be delivered and maintained by the Process
Management Group of CSY. Threads library is separated from the DCE
library. This ensures that the threads programmers need not link their
applications with the DCE library for the threads functionality.

The threads library on MPE/iX was supporting the POSIX 1003.4a
Draft4. When the threads library was separated from the DCE product,
the wrappers that are written over the OTHDXL.THREADS are ported
to support the POSIX 1003.4c Draft10 APIs. The underlying library is
still the Draft 4 version.

This section assumes that DCE application developers have some
experienced in porting standard C applications to the MPE/iX POSIX
environment. For application developers who are not familiar with the
MPE/iX POSIX and C language interface, please read the MPE/iX
Developer’s Kit (36430A) first.
25

Threads Architecture on MPE/iX
Threads Architecture
Threads Architecture
This section describes the architecture of threads on MPE/iX.

The following terminology is adopted throughout the remainder of this
document. The term process refers to the MPE/iX operating system
notion of process. The term task is defined as a multi-threaded
application (depending on the implementation, a task can consist of a
single process or multiple processes).

Threads on MPE/iX

A multi-threaded task on MPE/iX is implemented with multiple
processes (one per thread). A task’s threads are a cooperative processes
in that they share some resources that are normally private to a
process. All threads within a task share the same SR 5 space as the
initial thread (a process created using run or createprocess). The heap
and global variables are shared by all threads, along with loader
information and system information regarding open files and sockets.

All other process resources are private to the thread. Each thread has
its own NM stack, CM stack, pin number, PIB, PIBX, TCB, PCB, PCBX,
process port, and so on. Fields within these data structures that are
shared among threads (such as, file system information) are kept in a
common location.

Process Management and Threads

An initial thread is a process created using run or createprocess (or
fork and exec for POSIX). The threads of a task cannot exist
independently of the initial thread. If the initial thread terminates or is
killed, all of the task’s threads are terminated. A secondary thread
cannot be adopted by another task.

Each thread begins execution at an entry point specified at creation
time. The entry point is an MPE/iX procedure with one parameter. This
procedure resides in either the program file or the linked libraries of
the task.

When a thread is created, the following attributes can be specified:

Stack size: NM stack size for the thread

Inherit scheduling: inherit the scheduling policies of the
creating thread

Priority: priority of the thread

Scheduling policy: round robin, FIFO,...

Scheduling scope: priority is global/local
26 Chapter 3

Threads Architecture on MPE/iX
Threads Architecture
These attributes are required in order to be POSIX compliant. POSIX
also permits each implementation to add its own thread creation
attributes. The following attribute was added for MPE/iX:

Debug: Enter debug before starting the thread

NOTE PH capability is required to create a thread.

From a process management point of view, thread creation is just an
abbreviated form of process creation.

All threads are created as siblings. The threads of a task all have the
same father task; namely, the father of the initial thread. If a thread
creates a child using creatprocess, that child is the child of the task, not
of the thread. From the tasks child-point-of-view, its father is the initial
thread. When a thread exits, the children and the threads it created are
not terminated.

Threads do not “own” the child processes they create. However, threads
may find it necessary to wait for the termination of the offspring that
they created. Therefore, a thread is permitted to wait for a specific child
to terminate and is permitted to wait on the termination of any child.
Refer to the suspend and activate intrinsics for more explanation.

While threads are implemented with multiple processes, to the end
user threads should appear to coexist within a single process. Process
management hides the MPE/iX implementation of threads from the
programmer. The process handling intrinsics work on a task basis.

Development, Debugging, and Application Execution
of Threads

This section discusses the development, debugging, and execution of
applications that use threads on MPE/iX. It should be read before
attempting to create or run an application that uses threads.

Debug has the following features to facilitate debugging in a threaded
environment:

• Breakpoints

• Commands

• Environmental Variable
Chapter 3 27

Threads Architecture on MPE/iX
Threads Architecture
Breakpoints.

There are three types of breakpoints available when debugging a
threaded program:

Breakpoint Type Description

Task-Wide Breakpoints that are recognized by any
thread within a task.

Thread-Specific Breakpoints that are identical to
pin-specific breakpoints, but are
thread-private, and are specified using
an enhanced syntax.

Stop-All-Threads Breakpoints with this option, when
encountered by a thread within a
threaded task suspend all other
threads within the task until a
CONTINUE command is issued.

The syntax for the address and pin parameters to breakpoint
commands includes the specification:

logaddr [:pin|:@]

and the following for threads:

logaddr [:[[init_thread_pin].tin |.@][:@]]

where tin is the thread number returned by pthread_create. The pin
number of the initial thread can be obtained using SHOWPROC. The
syntax [init_thread_pin]. tin specifies a thread,
[init_thread_pin].@ specifies a task-wide breakpoint, and :@
following a [init_thread_pin]. tin specification specifies a
stop-all-threads breakpoint option.

For example:

Example Breakpoint Description

B thd_mtx:2e.2 Sets a breakpoint at thd_mtx to be
recognized by tin 2 of the task with
initial thread 2e.

B thd_mtx:.2 Sets a breakpoint at thd_mtx to be
recognized by tin 2 of the current task.

B start_thread:2c.@ Sets a task-wide breakpoint at
start_thread to be recognized by all
threads within the task with initial
thread 2c.

B start_thread:.@ Sets a task-wide breakpoint at
start_thread to be recognized by all
threads within the current task.
28 Chapter 3

Threads Architecture on MPE/iX
Threads Architecture
B HPFOPEN::@ Sets a breakpoint at HPFOPEN for
the current pin (tin) with the
stop-all-threads option that is honored
if the pin belongs to a threaded task.

B HPFOPEN:.3:@ Sets a breakpoint at HPFOPEN for tin
3 of the current task, and the
breakpoint has the stop-all-threads
option.

B HPFOPEN:.@:@ Sets a task-wide breakpoint at
HPFOPEN for the current task, and
the breakpoint has the stop-all-threads
option.

Commands

The following commands aid in debugging threaded applications.

Command Description

TIN [init_thread_pin.]tin This command causes debug to switch
to the environment of the specified tin.
The default init_thread_pin is that
of the current task. Privilege mode is
required to switch to any tin in another
task.

SUSPEND This command suspends all other
threads within the task of the tin being
debugged. The suspended threads are
not resumed automatically with the
continue command.

ACTIVATE This command resumes the threads
that were suspended by the SUSPEND
command. It should be issued from the
same tin that issued the SUSPEND
command.

Environmental Variables

There are two environment variables that simplify debugging
applications:

Environment Variable Description

SS_TERM_KEEPLOCK When set to TRUE, a pin (tin) being
debugged retains the terminal
semaphore while single-stepping. This
prevents any other pin (tin), that is
waiting to enter debug, from obtaining
the terminal semaphore and
interfering with the debug session.
Chapter 3 29

Threads Architecture on MPE/iX
Threads Architecture
TERM_KEEPLOCK Allows a process to retain the terminal
semaphore under all conditions until
the process terminates or the variable
is reset to FALSE. However, this
variable has the potential to create a
deadlock. For example, a deadlock
occurs if the process owning the
terminal semaphore waits for another
process that in turn is waiting for the
debug terminal semaphore.

Limitations

The following are know limitations for the debug thread commands:

• The break command followed by an abort command hangs the task
if the initial thread is waiting to enter debug (such as, another
thread is currently in debug).

• The SUSPEND command has the potential to hang a task if the user
does not issue an ACTIVATE command before doing the CONTINUE
command.

• Each thread has its own debug environment. For example, loaded
macros and environmental variables are not shared by threads
within a task, and must be dealt with on an individual basis for each
thread.
30 Chapter 3

Threads Architecture on MPE/iX
Building DCE Programs
Building DCE Programs

Header Files

In addition to the standard POSIX libraries and HP C/XL functions,
you may have to include the DCE header files, which can be found in
the /usr/include/dce directory. If your C applications use Try/Catch
for exception handling, you should include the following statement in
the C programs:

#include <dce/pthread_exc.h>

There are no MPE/iX equivalent libraries for /usr/lib/libbb.a or
/usr/lib/libc_r.a . The reentrant functions that are defined in
MPE/iX and the thread-safe wrapper functions are in
/usr/lib/libdce.a.

MPE/iX does not have the file strings.h . The HP-UX strings.h
includes string.h , sys/stdsyms.h and some definitions that are
strictly for C++ and HP-UX.

Compiler Flags

When compiling DCE applications using ANSI C under the MPE CI, set
the following compiler switches:

-D_POSIX_SOURCE -D_MPEXL_SOURCE -D_SOCKET_SOURCE
-D_REENTRANT -Aa

When compiling under the MPE POSIX shell, you need the above flags
except for the -Aa option. If -Aa is set, /bin/c89 displays a large
amount of error messages (by definition, the POSIX environment
always uses the ANSI C compiler).

Unresolved Externals

When porting applications from a UNIX environment to MPE/iX, you
may receive unresolved external errors during a compile, link, or run
phase. It is likely that the unresolved externals are not part of the
POSIX.1 standard. To find out if a function is defined in the POSIX
environment, look at the manpage for that function on a UNIX system.
At the bottom of the manpage, there is a section titled STANDARD
CONFORMANCE, which lists the function name and the standard it
conforms to. If the manpage does not have POSIX.1 listed as one of the
standards then that function is not part of the MPE/iX POSIX
Environment. To get around this porting issue, you may have to write a
routine to emulate the functionality for the unresolved external.
Chapter 3 31

Threads Architecture on MPE/iX
Building DCE Programs
32 Chapter 3

4 DCE 1.2.1 Features and
Programming Notes
This section describes the differences between DCE 1.0.2 and DCE
1.2.1.

• RPC changes

— Private Client Sockets

— Exception Handling

• IDL Compiler

— Out-of-Line Marshalling

— Enhanced IDL Data Types

— Support for IDL Encoding Services

— Support for User Defined Exceptions

— Support for Customized Binding Handles

• Control Programs and Daemons

• Transition of ACL Managers

• Removing DCE Credentials

• Serviceability Improvements

• Security Delegation

— Compiling Multithreaded Application
33

DCE 1.2.1 Features and Programming Notes
RPC Changes
RPC Changes

Private Client Sockets

Previously a common pool of sockets was shared by concurrent RPC
requests. Making this concurrency work requires a “helper” thread
created to read from all of the open sockets, and passing received data
onto the call thread for which it is intended. With “Private client
sockets” there are a couple of sockets (2/3), which will only be used for
individual requests (private to the request thread). This reduces the
overhead of a “helper” thread, in case of small applications. When out of
private sockets, socket sharing comes into effect.

Exception Handling

The new version of RPC 1.2.1 supports the exception-handling feature
of RPC. The application developer can use the exception handling
routines (TRY, CATCH, CATCH-ALL etc.).
34 Chapter 4

DCE 1.2.1 Features and Programming Notes
IDL Compiler
IDL Compiler

Out-of-Line Marshalling

Out-of-line marshalling (library based marshalling) causes constructed
data types such as unions, pipes or large structures to be marshalled or
unmarshalled by auxiliary routines, thus reducing the stub size. The
out_of_line attribute directs the IDL compiler to place the marshalling
and unmarshalling code in IDL auxiliary stub files, rather than in the
direct flow of the stub code.

Enhancing IDL Data Types

IDL support for arrays in the previous version was limited to:

• Arrays with a lower bound of zero.

• Arrays with conformance or varying dimensions only in the first
(major) dimension.

Support for IDL Encoding Services

This extension to the IDL stub compiler will enable instances of one or
more data types to be encoded into and decoded from a byte stream
format suitable for persistent storage without invoking RPC Runtime.

Support for IDL Encoding Services

This extension to the IDL stub compiler will enable instances of one or
more data types to be encoded into and decoded from a byte stream
format suitable for persistent storage without invoking RPC Runtime.

Support for User Defined Exceptions

This extension to the IDL compiler will allow specification of a set of
user-defined exceptions that may be generated by the server
implementation of the interface. If an exception occurs during the
execution of the server, it terminates the operation and the exception is
propagated from server to client.

Support for Customized Binding Handles

This allows the application developer to add some information that the
application wants to pass between the client and server. This can be
used when application-specific data is appropriate to use for finding a
server and the data is needed as a procedure parameter.
Chapter 4 35

DCE 1.2.1 Features and Programming Notes
Control Programs and Daemons
Control Programs and Daemons
The following control programs are delivered with DCE 1.2.1:

• cdscp — CDS control program

• rpccp — RPC control program

• dtscp — DTS control program

• rgy_edit — Registry Edit

• acl_edit — ACL edit

On OSF DCE 1.2.1 the above control programs are replaced by a single
control program called DCECP. However, DCECP is not supported on
DCE 1.2.1 on MPE/iX. The above programs are delivered and supported
for MPE/iX.

The following daemons no longer exist:

• sec_client

• rpcd

• cdsclerk

DCED replaces sec_clientd and rcpd. The functionality of cdsclerk is
part of cdsadv. Any scripts or programs that reference these
non-existent daemons may need to be modified.
36 Chapter 4

DCE 1.2.1 Features and Programming Notes
Transition of ACL Managers
Transition of ACL Managers
OSD DCE 1.2.1 provides ACL management facilities within libdce.
The sec_acl_mgr API is obsolete, and it is no longer necessary to write
an ACL manager. Refer to the OSF DCE documentation to determine
how to use the new dce_acl API to greatly reduce the amount of
specialized ACL code that might have to be dealt with.

Application builders may want to try building their existing
applications against DCE 1.2.1 before migrating their ACL
management layer to the DCE supported dce_acl API. DCE 1.2.1
includes a backward-compatible set of header files that match the
header files used by applications in previous DCE releases. Replace any
instance of:

#include <dce/daclmgr.h> with #include <dce/daclmgrv0.h>

In makefiles and in application program, change all instances of:

dalmgr to daclmgrv0

These header files are provided as a transition aid only and should be
used only until application is migrated to the dce_acl API.
Chapter 4 37

DCE 1.2.1 Features and Programming Notes
Removing DCE Credentials
Removing DCE Credentials
A user’s DCE credentials (stored in the directory
/opt/dcelocal/var/security/creds) are not automatically removed
by exiting a shell or logging out. Unless any background processes
require DCE credentials, the credentials can be removed before logging
out by running kdestroy utility. This will make the system more
secure by decreasing the opportunity for someone to maliciously gain
access to your network credentials.

The kdestroy command has been modified to allow destruction of
credentials older than a specified number of hours. kdestroy -e
exp-period my be run manually to purge older credential files.
38 Chapter 4

DCE 1.2.1 Features and Programming Notes
Serviceability Improvements
Serviceability Improvements
DCE 1.2.1 has an improved feature of Serviceability. This feature is
helpful in debugging any problems under different sub components of
DCE.

The default location for this file is /opt/dcelocal/var/svc/routing .
The DCE_SVC_ROUTING_FILE environment variable can be used to
name an alternate location for the file. The file is consulted if no switch
is given on the command line or if no environment variable (SVC_level
or SVC_comp_DBG) is found when a DCE process is started. Leading
whitespace is ignored, as is any line whose first non-whitespace
character is a #.

Production messages are parsed as:

<level>:<where>:<parameter>

<level> is FATAL ERROR WARNING NOTICE NOTICE_VERBOSE
or * (meaning all)

<where> is STDERR STDOUT FILE (or TEXTFILE) BINFILE
DISCARD

<parameter> is the filename, where “%ld” becomes the process-id

Send all messages to the console:

*. FILE:/dev/console

If FILE or BINFILE ends with “.n.m”, then at most “n” files and at most
“m” messages for each file will be written, where “.n” will be appended
to each generation of the file. To keep the last 1000 NOTICE messages
for all programs, with 100 messages in each of 10 files:

NOTICE: FILE.10.100:/var/log/syslog

Multiple routings for the same severity level can be specified by simply
adding the additional desired routings to form a semicolon-separated
list of <where>:<parameter> pairs.

Debug messages are parsed as:

<comp>:<level>:<where>:<parameter>

<comp> is the component (rpc, sec, cds, dts, dhd, ...)

<level> is a comma-separated list of sub-component levels for each
component.

<where> and parameter are as above.

Each component can have its own entry. Each subcomponent level has
the form “<subcomp>.n”, where “n” is 1 to 9; these are parsed in order,
so put subcomponent wildcard entries first.
Chapter 4 39

DCE 1.2.1 Features and Programming Notes
Serviceability Improvements
For example, to enable tracing for different components at different
levels.

dts:*.9:FILE:/tmp/logs/%ld.dts

rpc:*.3:FILE:/tmp/logs/%ld.rpc

sec:*.4:FILE:/tmp/logs/%ld.sec

dhd:*.7:FILE:/tmp/logs/%ld.dhd

cds:*.9:FILE:/tmp/logs/%ld.cds
40 Chapter 4

DCE 1.2.1 Features and Programming Notes
Security Delegation
Security Delegation
Intermediary servers can operate on behalf of the initiating client while
preserving identities and ACLs.

Compiling Multithreaded Application

There are some new preprocessing directives that has been introduced
to compile with latest Pthread implementation.

_POSIX_SOURCE: This needs to be used when compiling any DCE
application. It is not necessary when compiling threads only
application.

_MPE_THREADS: This is used when compiling any DCE or
multithreaded application. This directive is used set the thread specific
errno.

Applications should ensure that they link /lib/libpthread.sl before
/lib/libc.sl to ensure that they invoke the thread-safe versions of
these C runtime. Applications should not use the c89 linking feature
directly since it bind the C routines to /lib/libc.a before
/lib/libpthread.sl . Also since we are binding to /lib/libc.sl , we
need to explicitly link the program object file(s) with the loader “start”
routine.

The following makefile will provide an example of the linking process.

DEBUG = -g

INCENV = -I. -I/usr/include

ANSI_FLAGS = -D_POSIX_SOURCE -D_POSIX_D10_THREADS

MPE_FLAGS = -D_MPEXL_SOURCE -D_MPE_THREADS -DMPEXL

CFLAGS = ${ANSI_FLAGS} ${DEBUG} ${MPE_FLAGS} ${INCENV}

#LIBS = -lsocket -lsvipc -lm

XL = /lib/libdce.sl, /lib/libpthread.sl, /lib/libc.sl

PROGRAMS = server client

server_OFILES = manager.o server.o sleeper_sstub.o

client_OFILES = sleeper_cstub.o client.o

IDLFLAGS = -keep c_source ${INCENV}

IDLFILES = sleeper.idl

IDLGEN = sleeper.h sleeper_*stub.c

IDL = /SYS/HPBIN/SH /usr/bin/idl

#IDL = /SYS/PUB/IDL

all: objects ${PROGRAMS}
Chapter 4 41

DCE 1.2.1 Features and Programming Notes
Security Delegation
objects: ${server_OFILES} ${client_OFILES}

fresh: clean all

clean:

@-rm $(IDLGEN) $(server_OFILES) $(client_OFILES) $(PROGRAMS)

server: ${server_OFILES}

ar -rc server.obj ${server_OFILES}

callci linkedit \" 'link from=/SYS/PUB/STARTO, /Speedware/sleeper/server.obj;\

to=/Speedware/sleeper/server;xl=${XL};posix;share'\"

client: ${client_OFILES}

ar -rc client.obj ${client_OFILES}

callci linkedit \" 'link from=/SYS/PUB/STARTO, /Speedware/sleeper/client.obj;\

to=/Speedware/sleeper/client;xl=${XL};posix;share'\"

sleeper.h: ${IDLFILES}

$(IDL) ${IDLFLAGS} ${IDLFILES}

sleeper_cstub.o sleeper_sstub.o manager.o server.o client.o: sleeper.h
42 Chapter 4

5 Programming with Kernel
Threads
Programming with threads is useful for structuring programs,
performance enhancement through concurrency and overlapping I/O,
and making client/server interaction more efficient (it increases
programming complexity). Some things that need to be addressed when
programming with threads are:

• Creation and management of threads.

• Threads synchronization and communication.

• Threads scheduling.

• Error handling

A traditional non-threaded process has a single thread of control,
started and terminated with the process. Multi-threaded programs
require that threads be created and terminated explicitly.

The HP e3000 Kernel Threads provide basic thread creation and
management routines.
43

Programming with Kernel Threads
Threads Synchronization and Communication
Threads Synchronization and Communication
All threads in a process execute within a single address space and share
resources. When threads share resources in an unsynchronized way,
incorrect output can result from race conditions or thread scheduling
anomalies. The Kernal Threads provide the following facilities and
routines to synchronize thread access to shared resources.

Mutexes (Mutual Exclusion Objects)

Mutexes are used to synchronize access by multiple threads to a shared
resource, allowing access by only one thread at a time. Routines for
creating and managing mutexes are:

• pthread_mutex_init(mutex,attr)
• pthread_mutex_destroy(mutex)
• pthread_mutex_lock(mutex)
• pthread_mutex_trylock(mutex)
• pthread_mutex_unlock(mutex)

Condition Variables

Condition variables provide an explicit communication vehicle between
threads. A condition variable is a shared resource, and requires a
mutex to protect it. A condition variable is used to block one or more
threads until a condition becomes true, then any or all of the blocked
threads can be unblocked. Routines for creating and managing
condition variables are:

• pthread_cond_init(cond,attr)
• pthread_cond_broadcast(cond)
• pthread_cond_signal(cond)
• pthread_cond_wait(cond,mutex)
• pthread_cond_destroy(cond)

Join Facility

The join facility is the simplest means of synchronizing threads, and
uses neither shared resources or mutexes. The join facility causes the
calling thread to wait until the specified thread finishes and returns a
status value to the calling thread. Routines for joining and detaching
threads are:

• pthread_join(thread,status)
• pthread_detach(thread)
44 Chapter 5

Programming with Kernel Threads
Threads Scheduling
Threads Scheduling
HP e3000 Kernel Threads scheduling is handled through the
dispatcher, therefore each thread is visible to and known by the kernel.
Altering the scheduling of one or more threads in a task is
accomplished with the same tools and methods used to alter the
scheduling of any non-threaded task.

NOTE The HP e3000 Kernel Threads is a POSIX 1003.1 Draft 10
implementation. Individual threads created within a given task may
use the same processor at any given time; the threads are
independently scheduled by the kernel. Therefore, a multi-threaded
process can take advantage of the increased concurrency available on a
multi-CPU machine.
Chapter 5 45

Programming with Kernel Threads
Writing Threaded Applications
Writing Threaded Applications
 Useful hints on writing multi-threaded DCE applications:

• All DCE applications are multi-threaded — DCE runtime software
is multi-threaded and all DCE applications are multi-threaded; even
if the application code itself does not explicitly create threads.

• Using non-thread-safe libraries — When making calls to libraries
which are not known to be specifically thread-safe, a locking scheme
needs to be provided by the application, For example,
non-thread-safe routines 1 and 2 make a call to routine A (also
non-thread-safe), if routines 1 and 2 use different mutexes to lock
their calls to routine A, then routines 1 and 2 can both get into
routine A at the same time (violating the programmer’s attempt to
make the calls thread-safe).

• Using fork() in a threaded application — fork() is not allowed
from a threaded task.

• environ is a process-wide resource — Programmers must
coordinate threads that use the putenv() and getenv() interfaces
to change and read environ.

• Signal mask: A thread-specific resource — If one thread manipulates
the signal mask, it only affects signals that a specific thread is
interested in.

• Handling synchronous terminating signals — The default behavior
of OSF DCE 1.0.2 is to translate synchronous terminating signals
into exceptions. If the exception is not caught, the thread that caused
the exception is terminated. Any thread that goes through the
terminate code causes the entire task to be terminated.

• Establish synchronous signal handlers using sigaction() — It is
used to establish handlers for synchronous signals on an individual
thread basis only.

• Asynchronous signals — There is no supported mechanism for
establishing signal handlers for asynchronous signals on MPE/iX.

• Cancelling threads blocked on a system call — The HP e3000 Kernel
Threads provide a cancellation facility that enables one thread to
terminate another. The canceled thread normally terminates at a
well-defined point. Terminating a thread that is blocked while
executing system code is not possible on MPE/iX; only threads
executing non-system code may be canceled.

• Using waitpid() — The waitpid() routine allows the parent
thread to specify which child it cares about by specifying its PID.
This call only works for the initial thread; because children created
by any thread within the task are considered children of the whole
46 Chapter 5

Programming with Kernel Threads
Writing Threaded Applications
task.

• Using setjmp and longjmp — Do not use calls to setjmp and
longjmp , these routines save and restore the signal mask and could
inadvertently cause a signal that another thread is waiting on to be
masked. Instead, use _setjmp and _longjmp ; these routines do not
manipulate the signal mask.

When executing _longjmp be aware of the following:

— Ensure you are returning to a state saved within the context of
the same thread.

— If you _longjmp over a TRY clause, an exception could try to
_longjmp to a stack frame that no longer exists; and vice versa.

— Do not _longjmp out of a signal handler.
Chapter 5 47

Programming with Kernel Threads
Writing Thread-Safe Code
Writing Thread-Safe Code
The standard C/XL library is not completely thread-safe on the
HP e3000. Hewlett-Packard has provided a set of wrapper functions to
intercept calls to the C library and make them thread-safe. The threads
library takes care of this intercept library implementation.
48 Chapter 5

6 Introduction to RPC
This version of DCE/3000 is based on the OSF DCE version 1.2.1 source
code. It provides the Remote Procedure Call component of the core
services of OSF DCE.

Remote Procedure Call: supports the development of distributed
applications by making requests to remotely networked machines as if
they were local. RPCs also implement network protocols used by clients
and servers to communicate with each other.

The different components of RPC product are:

RPC Runtime Library:

This is the shared library, which provides the
functionality of different RPC APIs. It maintains and
manages memory for the RPC application. Runtime
basically is the transparent layer, which manages the
communication with a remote machine in the network.
Along with the help of IDL, runtime makes the RPC
protocol possible on a heterogeneous network. The data
sent across the network are “Marshalled” before being
sent and “Unmarshalls” the incoming data. The
functions to do these activities are present in the
runtime library.

RPCD:

This is the RPC endpoint mapper daemon. RPCD is a
process that provides services for the local host, and is
also the server used by remote applications to access
these host services. The endpoint mapper service
maintains a database called the local endpoint map,
which allows DCE clients to find servers, individual
services provided by servers, and objects managed by
services on the host. The endpoint mapper service maps
interfaces, object UUIDs, and protocol sequence
registrations to server ports (endpoints). Servers
register their bindings with the local endpoint mapper,
and the endpoint mapper service on each host uses the
local endpoint map to locate a compatible server for
clients that do not already know the endpoint of a
compatible server.
49

Introduction to RPC
IDL Compiler:
Interface definition language compiler. IDL compiler to
converts an interface definition, written in IDL, into
output files. The output files include a header file,
server stub file, client stub file, and auxiliary files. The
compiler constructs the names of the output files by
keeping the basename of the interface definition source
file but replacing the filename extension with the new
extension (or suffix and extension) appropriate to the
newly generated type of output file. For example,
math.idl could produce math_sstub.c or
math_sstub.o for the server stub. IDL compiler
generates the “stubs” which, when linked with the
appropriate modules of the application, makes the RPC
communication simple.

In DCE/3000 RPC 1.2.1 version, the DCE library is provided as Shared
library (libdce.sl). This library contains only the RPC functionality of
DCE product.

Table 6-1 indicates the different files in different formats present in the
MPE/iX environment as part of the DCE/3000 product.

Table 6-2 shows various components.

Table 6-1 RPC Components

Filename Description

rpcp.pub.sys Command Script

/usr/bin/rpcp Shell Script

rpcd.hpdce.sys Program

rpccp.pub.sys Command Script

/usr/bin/rpccp Shell Script

rpccp.hpdce.sys Program

idl.pub.sys Command Script

/usr/bin/idl Shell Script

idl.hpdce.sys Program

Table 6-2 Miscellaneous Components

Filename Description

/usr/lib/libdce.sl Shared library for DCE

/usr/include/*.h Header files for DCE applicaton development

/usr/include/*.idl IDL files for DCE application development
50 Chapter 6

Introduction to RPC
Runtime Library
Runtime Library

Private Client Sockets

Previously a common pool of sockets was shared by concurrent RPC
requests. Making this concurrency work requires that there be a
“helper” thread created to read from all of the open sockets, passing
received data onto the call thread for which it is intended. Now with
“Private client sockets” there are a couple of sockets (2/3) which will be
used only for individual requests (private to the request thread). This
reduces the overhead of “helper” thread in case of small applications.
However, when we run out of private sockets, the sharing of sockets
comes into effect.

Serviceability

This is another new feature, which has been added to RPC runtime.
This feature logs messages during the runtime to a specified log file.
The level of the messages and the components can be configured using
the routing file (/opt/dcelocal/var/svc/routing).

This feature will be helpful during analysis of a problem.

By default the routing file is picked from
“/opt/dcelocal/var/svc/routing ”. The
DCE_SVC_ROUTING_FILE environment variable can be used to
name an alternate location for the file.

The various switches that can be used are as below:

“general” “mutex” “xmit” “recv” “dg_state” “cancel” “orphan” “cn_state”
“cn_pkt” “pkt_quotas” “auth” “source” “stats” “mem” “mem_type”
“dg_pktlog” “thread_id” “timestamp” “cn_errors” “conv_thread” “pid”
“atfork” “inherit” “dg_sockets” “timer” “threads” “server_call” “nsi”
“dg_pkt” “libidl”.

The level of messaging ranges from 0-9, where level 9 is the highest
level and gives the maximum details. The file to which the logs should
be redirected can also be configured. For example: for the RPC, if we
want to generate log files with “general” and “cn_pkt” switch enabled at
level 9 and the logs to be written to a file named after the process-id of
the process, the line would be something like:

rpc:general.9,cn_pkt,9:FILE:/tmp/%ld.log

Exception Handling

The new version RPC 1.2.1 supports the exception-handling feature of
RPC. Now, the application developer can use the exception handling
routines (TRY, CATCH, CATCH-ALL, etc.).
Chapter 6 51

Introduction to RPC
DCE-IDL Compiler for RPC 1.2.1
DCE-IDL Compiler for RPC 1.2.1

Out-of-Line Marshalling

Out-of-line marshalling (library-based marshalling) causes constructed
data types such as unions, pipes or large structures to be marshalled or
unmarshalled by auxiliary routines, thus reducing the stub size. The
out_of_line attribute directs the IDL compiler to place the marshalling
and unmarshalling code in IDL auxiliary stub files, rather than in the
direct flow of the stub code.

In-line/Out_of_line: The in_line and out_of_line attributes affect
the stub code generated for marshaling and unmarshalling non-scalar
parameters (Non-scalar types include int, float, char and pointers in C).
Normally IDL compiler generates marshalling and unmarshalling code
for all parameters in line. This means that if the same data type is used
repeatedly, the identical code will appear in multiple places. If
out_of_line is specified, the marshaling and unmarshalling code will
be provided as a subroutine, which is called from wherever it is needed.

Enhancing IDL Data Types

IDL support for arrays in previous version was limited to:

• Arrays with a lower bound of zero.

• Arrays with conformance or varying dimensions only in the first
(major) dimension.

The current version of IDL will remove these restrictions by supporting
fully general arrays as described in the IDL functional specification.
The following example includes declarations that were not supported in
previous version that, but are allowed now:

• long c1[][4];

• long c2[][0..3]; /* Same array shape as c1 */

• long c3[0..*][4]; /* Same array shape as c1 */

• long c4[0..*][0..3]; /* Same array shape as c1 */

• float d1[1..10]; /* Equivalent to FORTRAN REAL D1(10) */

• float d2[*..10]; /* Lower bound is determined at run time */

• float d3[*..*]; /* Both bounds determined at run time */

The <attr_var>s are in one-to-one correspondence with the dimensions
of the array, starting at the first. If there are fewer <attr_var>s than the
array has dimensions, the missing <attr_var>s are assumed to be null.
An <attr_var> will be non-null if and only if the lower bound of the
52 Chapter 6

Introduction to RPC
DCE-IDL Compiler for RPC 1.2.1
corresponding dimension is determined at runtime. Not all <attr_var>s
in a min_is clause can be null. Below are examples of the syntax.
Assume values of variables are as follows: long a = -10; long b = -20;
long c = -30; long d = 15; long e = 25.

• min_is(a)] long g1[*..10]; /* g1[-10..10] */

• [min_is(a)] long g2[*..10][4]; /* g2[-10..10][0..3] */

• [min_is(a,b)] long g3[*..10][*..20]; /* g3[-10..10][-20..20] */

• [min_is(,b)] long g4[2][*..20]; /* g4[0..1][-20..20] */

• [min_is(a,,c)] long g5[*..7][2..9][*..8]; /* g5[-10..7][2..9][-30..8] */

• [min_is(a,b,)] long g6[*..10][*..20][3..8]; /* g6[-10..10][-20..20][3..8] */

• [max_is(,,e),min_is(a)] long g7[*..1][2..9][3..*]; /*
g7[-10..1][2..9][3..25] */

• [min_is(a,,c),max_is(,d,e)] long g8[*..1][2..*][*..*];/*
g8[-10..1][2..15][-30..25] */

Support for IDL Encoding Services

This extension to the IDL stub compiler will enable instances of one or
more data types to be encoded into and decoded from a byte stream
format suitable for persistent storage without invoking RPC Runtime.

The encode and decode attributes are used in conjunction with IDL
Encoding service routines (idl_es*) to enable RPC applications to
encode datatypes in input parameters into a byte stream and decode
datatypes in output parameters from a byte stream without invoking
the RPC runtime. Encoding and decoding operations are analogous to
marshaling and unmarshalling, except that the data is stored locally
and is not transmitted over the network.

Support for User Defined Exceptions

This extension to the IDL compiler will allow specification of a set of
user-defined exceptions that may be generated by the server
implementation of the interface. If an exception occurs during the
execution of the server, it terminates the operation and the exception is
propagated from server to client.

Support for Customized Binding Handles

This allows the application developer to add some information that the
application wants to pass between the client and server. This can be
used when application-specific data is appropriate to use for finding a
server and the data is needed as a procedure parameter.
Chapter 6 53

Introduction to RPC
DCE-IDL Compiler for RPC 1.2.1
54 Chapter 6

7 Programming with RPC 1.2.1 on
MPE/iX
This chapter explains the RPC application programming with a small
example. The example consists of server and client components. The
client makes a RPC request to the server and asks the server to sleep
for a specified amount of time. The server serves this request from the
client by going to sleep for the time given by the client.

/* client.c

 **

 * This is the sleeper client program.It takes two arguments, a hostname to contact

* for the server and a number of seconds to sleep. The client locates the server

* using the hostname provided and the endpoint mapper on the server's host -- the

* client does not contact the name service for server location information. The

* client uses the explicit binding method, so it uses th hostname argument to

* construct a binding handle (rpc_binding_handle_t).The client passes this binding

* handle to the invocation of the remote procedure.

**

 */

/*

 * (c) Copyright 1992, 1993, 1994 Hewlett-Packard Co.

 */

/*

 * @(#)HP DCE/3000 @(#)Module: client.c

*/

#include <stdlib.h> /* Standard POSIX defines */

#include <strings.h> /* str*() routines */

#include <stdio.h> /* Standard IO library */

#include <dce/dce_error.h> /* DCE error facility */

#include <pthread.h> /* DCE Pthread facility */

#include "common.h" /* Common defs for this app */

#include "sleeper.h" /* Output from sleeper.idl */

#ifdef TRACING

tr_handle_t *tr_handle = NULL; /* Initialize for client */

#endif /* TRACING */
55

Programming with RPC 1.2.1 on MPE/iX
void main(int argc, char *argv[])

{

 rpc_binding_handle_tbh; /* "points" to the server */

 error_status_t st, _ignore; /* returned by DCE calls */

 dce_error_string_t dce_err_string; /* text describing error code */

 ndr_char *string_binding; /* used to create binding */

 unsigned long sleep_time; /* seconds server will sleep */

 unsigned_char_t *netaddr; /* network address of server */

#ifdef TRACING

 /* tr_init() --

 *

 * The tr_init call initializes the trace facility. The first parameter

 * is the name of an environment variable to consult to determine the

 * values for the selector levels, output filename, etc. These values

 * can have defaults assigned in the second and third parameters, but

 * this sample application does not choose to do this. The trace_name

 * parameter is a prefix string that will appear on each line of output

 * to distinguish tracing from this application from other applications.

 */

 if (tr_handle == NULL) {

 tr_handle = tr_init("TR_SLEEPER", /* environment variable name */

NULL, /* selector level defaults */

NULL, /* filename for output */

trace_name); /* prefix string in output */

if (tr_handle == NULL) {

 /*

 * Still NULL -- unable to initialize tracing. This may cause

 * the following tr_printmsg calls (via PRINT_FUNC) to fail.

 */

 fprintf(stderr, "Unable to initialize tracing interface!\n");

}

}

#endif /* TRACING */

if (argc != 3) {

ifprintf(stderr, "Usage: %s hostname sleep_time\n", argv[0]);

exit(1);

 } else {
56 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
netaddr = (unsigned_char_t *)argv[1];

sleep_time = atoi(argv[2]);

 }

 /* rpc_string_binding_compose() --

 *

 * Create a string binding using the command line hostname parameter. A

 * string binding must be converted into a binding handle, required by

 * the DCE runtime, before it can be used.

 *

 * The first parameter is an optional object UUID. This application does

 * not use multiple object UUIDs, so none is supplied. The second

 * parameter is the protocol sequence to use to establish a connection;

 * the "ip" parameter selects the UDP/IP protocol. The third parameter is

 * the network address of the server; this was specified on the command

 * line either as a hostname or as an IP address.

 *

 * The fourth parameter is an endpoint value (IP port number) to use; you

 * should only specify this when creating a string binding if the

 * endpoint is well-known. Most servers use a dynamic endpoint, chosen

 * when the server starts up; so specify a value of NULL to cause the

 * RPC runtime to determine the value during the RPC setup. The fifth

 * parameter is for network options.

 *

 * The sixth parameter is the return argument where the string binding

 * will be stored. New memory will be allocated for this return value;

 * it must be freed later by this application. The final parameter is a

 * DCE return status which will be checked for errors.

 */

 rpc_string_binding_compose(NULL, /* no object UUID */

(unsigned_char_t *)"ip", /* protocol to use */

netaddr, /* network addr of server */

NULL, /* use a dynamic endpoint */

NULL, /* misc. network options */

&string_binding, /* returned string binding */

&st); /* error status for this call */

 if (st != rpc_s_ok) {

/* dce_error_inq_text() --
Chapter 7 57

Programming with RPC 1.2.1 on MPE/iX
*

* Inquire about the error status returned by the previous DCE call.

*

* The first parameter to this call is a DCE error_status_t presumed

* to have been returned by a preceeding DCE call. The second

* parameter is a string long enough to hold the longest possible

* DCE error string -- the data type dce_error_string_t is defined

* to be a character array of this length. The third parameter is

* another dce error status; this call is unlikely to fail so its

* status is ignored.

*/

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);

PRINT_FUNC(PRINT_HANDLE, "Cannot compose string binding: %s\n",

dce_err_string);

exit(1);

 }

 /* rpc_binding_from_string_binding() --

 * Create a binding handle structure from the string binding. The

 * client stub function needs a binding handle; it cannot use the string

 * binding form created above.

 *

 * The first parameter to this call is the string binding generated

 * earlier. The second parameter is an RPC binding handle structure;

 * a new binding handle will be allocated and stored here -- this

 * application must free the storage when it is done with it. The third

 * parameter is the DCE return status.

 */

 rpc_binding_from_string_binding(string_binding, /* created above */

&bh, /* allocated and returned */

&st); /* error status for this call
*/

 if (st != rpc_s_ok) {

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);

PRINT_FUNC(PRINT_HANDLE, "Cannot get a binding handle: %s\n",

dce_err_string);

exit(1);

}

58 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
/*

 * At this point the application is not actually connected to any

 * server, but it has all the information needed to establish a

 * connection to the remote server. Connection establishment happens in

 * the client stub function called below.

 */

 PRINT_FUNC(PRINT_HANDLE, "Bound to %s\n", string_binding);

 /* rpc_string_free() --

 *

 * Free a string allocated by the RPC runtime. The first parameter is

 * the address of a string which was previously allocated (or is NULL).

 * It will be free()d, and the space returned to the system for use in

 * the future. The second parameter is the DCE return status.

 */

 rpc_string_free(&string_binding, /* DCE string to free */

&_ignore); /* DCE return status */

 PRINT_FUNC(PRINT_HANDLE, "Calling remote_sleep(%d)\n", sleep_time);

 /* TRY --

 *

 * The macro TRY is used to wrap a call which may result in a DCE

 * exception being raised. Any call to an RPC client stub can result in

 * an exception being raised if something goes wrong. Examples of what

 * can go wrong include: there is no server listening on the remote

 * host; there is a data error in a client or server stub; the server

 * raises an exception while executing the procedure call. If an

 * exception is raised and there is no TRY/CATCH block surrounding the

 * call, the exception will cause the process to abort and dump core.

 * Since this is typically not very helpful, we prefer to catch the

 * exception. In the string_conv and later sample applications the

 * client will do something intelligent with the exception.

 */

 TRY {

/*

* Call the remote procedure passing in the number of seconds to sleep,

* as defined in the .idl file. A binding handle parameter is required
Chapter 7 59

Programming with RPC 1.2.1 on MPE/iX
* since this client uses the explicit binding method.

*/

remote_sleep(bh, sleep_time);

 /* CATCH_ALL --

 *

 * The CATCH_ALL macro denotes the end of a TRY block. If an exception

 * occurs in any of the calls within the TRY block, control will pass to

 * the CATCH_ALL block where the exception is dealt with. This client

 * will simply inform you that something went wrong; in the string_conv

 * and later sample applications the client will do something

 * intelligent with the exception.

 */

 } CATCH_ALL {

/*

* We caught an exception in the client stub code. Inform the user.

*/

PRINT_FUNC(PRINT_HANDLE, "Caught an exception!\n");

exit(1);

 }

 /* ENDTRY --

 *

 * The ENDTRY macro is required by the exception implementation to

 * terminate a TRY block.

 */

 ENDTRY;

 /*

 * No status information was passed back. If the call failed, the RPC

 * runtime will have raised an exception and caused an exit.

 */

 PRINT_FUNC(PRINT_HANDLE, "Returned from remote_sleep(%d)\n", sleep_time);

 exit(0);

}

60 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
/* manager.c

 * This is the server-side RPC manager function; this is the function that

 * actually implements the remote procedure defined in the .idl file. The

 * server stub (called by the RPC runtime) calls this function when an RPC

 * request comes in for this interface.

 *

 * The manager function takes the arguments defined in the .idl file,

 * performs its function and returns results as defined in the .idl file.

 * This particular manager function does not return any results (it does not

 * have any [out] parameters, nor a return value).

 */

/*

 * (c) Copyright 1992, 1993, 1994 Hewlett-Packard Co.

 */

/*

 * @(#)HP DCE/3000

* @(#)Module: manager.c

*/

#include <stdlib.h> /* Standard POSIX defines */

#include <stdio.h> /* Standard IO library */

#include "common.h" /* Common defs for this app */

#include "sleeper.h" /* Output from sleeper.idl */

/*

 * This particular manager function simply sleeps for the number of seconds

 * specified by its argument. Since the .idl file speficies use of explicit

 * binding, the manager must take a binding handle as its first argument.

 *

 * Note: the code in this manager function must be (and is) reentrant since it

 * may be running simultaneously in multiple server threads.

 */
Chapter 7 61

Programming with RPC 1.2.1 on MPE/iX
void remote_sleep

 (

 /* [in] */ handle_t h, /* Use explicit binding */

 /* [in] */ ndr_long_int time /* Seconds to sleep */

)

{

 PRINT_FUNC(PRINT_HANDLE, "Enter remote_sleep(%d) manager\n", time);

 /*

 * This is a mind-numbingly simple manager ...

 */

 (void) sleep (time);

 PRINT_FUNC(PRINT_HANDLE, "Return from remote_sleep(%d) manager\n", time);

 return;

}

/* server.c

 * This is the server program for the basic sleeper sample application. It

 * will register the interface named "sleeper" with the local RPC runtime

 * and with the endpoint mapper daemon (rpcd) on the local host. It then

 * listens for incoming requests and serves each request in a separate

 * thread. The manager function (see manager.c) is invoked to serve the

 * requests after the inbound arguments are unmarshalled.

 */

/*

 * (c) Copyright 1992, 1993, 1994 Hewlett-Packard Co.

 */

/*

 * @(#)HP DCE/3000

 * @(#)Module: server.c
 */

#include <pthread.h> /* POSIX threads facility */

#include <stdlib.h> /* Standard POSIX defines */

#include <strings.h> /* str*() routines */

#include <stdio.h> /* Standard IO library */
62 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
#include <dce/dce_error.h> /* DCE error facility */

#include "common.h" /* Common defs for this app */

#include "sleeper.h" /* Output from sleeper.idl */

#ifdef TRACING

tr_handle_t * tr_handle = NULL; /* Initialize for server */

#endif /* TRACING */

void main(int argc, char *argv[])

{

 rpc_binding_vector_t *bvec; /* used to register w/runtime */

 error_status_t st, _ignore; /* returned by DCE calls */

 dce_error_string_t dce_err_string; /* text describing error code */

 ndr_char *string_binding; /* printable rep of binding */

 int i; /* index into bvec */

#ifdef TRACING

 /*

 * Initialize tracing.

 */

 if (tr_handle == NULL) {

char trace_name_buf[40];

/*

* Construct the tracing prefix string from the trace_name constant

* and the current process id. This allows multiple servers on the

* same host to differentiate themselves from each other.

*/

sprintf(trace_name_buf, "%s-%d", trace_name, getpid());

 tr_handle = tr_init("TR_SLEEPER", /* environment variable name */

NULL, /* selector level defaults */

NULL, /* filename for output */

trace_name_buf); /* prefix string in output */

if (tr_handle == NULL) {

/*

* Still NULL -- unable to initialize tracing. This may cause

* the following tr_printmsg calls (via PRINT_FUNC) to fail.

*/
Chapter 7 63

Programming with RPC 1.2.1 on MPE/iX
fprintf(stderr, "Unable to initialize tracing interface!\n");

}

 }

#endif /* TRACING */

 /* rpc_server_use_protseq() --

 *

 * Specify the protocol sequences that the RPC runtime should use when

 * creating endpoints. The first parameter is a string representation

 * of a protocol sequence to use. The second parameter is the maximum

 * number of concurrent remote procedure call requests that the server

 * will accept. In the first version of DCE, the second parameter is

 * always replaced by a default value. The third parameter is the DCE

 * return status.

 *

 * This server uses only the UDP/IP protocol sequence for efficiency

 * reasons: the UDP transport is more efficient for procedures that are

 * idempotent and expected to return only small amounts of data. The

 * reason why we don't simply listen on all protocols and let the client

 * choose is because it consumes more system resources to listen on

 * multiple protocol sequences.

 */

 rpc_server_use_protseq((unsigned char *)"ip", /* prot seq to listen on */

rpc_c_protseq_max_calls_default,

&st); /* error status for this call */

 if (st != rpc_s_ok) {

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);

 PRINT_FUNC(PRINT_HANDLE, "Cannot use protocol sequence ip: %s\n",

dce_err_string);

exit(1);

 }

 /* rpc_server_register_if() --

 *

 * Register the interface definition and manager entry point vector with

 * the RPC runtime. The first parameter is the interface specification

 * generated by the IDL compiler; it is declared in the "sleeper.h" file

 * generated by idl. The second parameter is the manager type UUID to
64 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
 * associate with the third parameter. This application does not use

 * type UUIDs (an advanced feature). The third parameter is the manager

 * entry point vector, the array of functions used as implementations

 * for incoming remote procedure calls. A value of NULL indicates that

 * the runtime should use the default manager EPV generated by the IDL

 * compiler. The fourth parameter is the DCE error status.

 */

 rpc_server_register_if(sleeper_v1_0_s_ifspec, /* generated interface spec */

NULL, /* No type UUIDs */

NULL, /* Use supplied epv */

&st); /* error status for this call */

 if (st != rpc_s_ok) {

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);

 PRINT_FUNC(PRINT_HANDLE,"Cannot register interface with runtime: %s\n",

dce_err_string);

exit(1);

 }

 /* rpc_server_inq_bindings() --

 *

 * Inquire from the RPC runtime about the bindings that were created in

 * the registration call above.

 *

 * The first parameter is the address of a binding vector data type.

 * Memory for a new binding vector will be allocated and returned. The

 * application must later free this memory. The second parameter is the

 * DCE error status.

 *

 * The binding information is required for registration with the

 * endpoint mapper below. We print it out simply for debugging

 * purposes.

 */

 rpc_server_inq_bindings(&bvec, /* runtime's binding vector */

&st); /* error status for this call */

 if (st != rpc_s_ok) {

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);

 PRINT_FUNC(PRINT_HANDLE, "Cannot get bindings: %s\n", dce_err_string);

exit(1);
Chapter 7 65

Programming with RPC 1.2.1 on MPE/iX
 } else

PRINT_FUNC(PRINT_HANDLE, "Bindings:\n");

 /*

 * Print out the bindings obtained from the RPC runtime. This info is

 * only for debugging purposes -- it shows what protocol sequence and

 * ports have been grabbed by the runtime for this server.

 */

 for (i = 0; i < bvec->count; i++) {

/* rpc_binding_to_string_binding() --

*

* Convert a binding handle to a string binding for printing. The

* first parameter is a binding handle. (In a binding vector there

* are bvec->count binding handles). The second parameter is a

* pointer to a dce string data type; memory will be allocated and

* the value returned in it. The application must free this memory.

* The third parameter is the DCE error status.

*/

 rpc_binding_to_string_binding(bvec->binding_h[i], /* a binding handle */

&string_binding, /* returned string form */

&st); /* error status for this call */

 if (st != rpc_s_ok) {

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);

 PRINT_FUNC(PRINT_HANDLE, "Cannot get string binding: %s\n",

dce_err_string);

} else

PRINT_FUNC(PRINT_HANDLE, " %s\n", string_binding);

/*

* Free the memory allocated in rpc_binding_to_string_binding().

*/

rpc_string_free(&string_binding, &_ignore);

 }

 /* rpc_ep_register() --

 *

 * Register the interface with the endpoint mapper. The first parameter

 * is the interface specification generated by the IDL compiler. The
66 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
 * second parameter is the binding vector returned by the RPC runtime

 * describing the endpoints (IP ports) on which this server is listening

 * for RPC requests. The third parameter is a vector of object UUIDs

 * that the server offers; this server does not implement multiple

 * objects so it specifies NULL. The fourth parameter is an annotation

 * used for informational purposes only. The RPC runtime does not use

 * this string to determine which server instance a client communicates

 * with, or for enumerating endpoint map elements. The last parameter

 * is the DCE error status.

 *

 * When this call completes the bindings we established with the RPC,

 * runtime will be associated with this interface. This allows a client

 * to look up a server by interface without specifying an endpoint

 * (port): instead, by contacting the endpoint mapper, a client is able

 * to locate servers registered using dynamic (system-chosen) endpoints.

 */

 rpc_ep_register(sleeper_v1_0_s_ifspec, /* generated interface spec */

bvec, /* runtime's binding vector */

NULL, /* no objects supported */

(unsigned_char_t *) sleeper_description,

&st); /* error status for this call */

 if (st != rpc_s_ok) {

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);

PRINT_FUNC(PRINT_HANDLE, "Cannot register with endpoint map: %s\n",

dce_err_string);

exit(1);

 }

 PRINT_FUNC(PRINT_HANDLE, "Listening...\n");

 /* rpc_server_listen() --

 *

 * Listen and handle incoming RPC requests. This call typically does

 * not return; instead incoming RPC requests will be dispatched to the

 * manager function(s), each in its own thread.

 *

 * The first parameter is the maximum number of concurrently executing

 * remote procedure calls to allow. The second parameter is the DCE

 * error status.
Chapter 7 67

Programming with RPC 1.2.1 on MPE/iX
 */

 rpc_server_listen(rpc_c_listen_max_calls_default,

&st); /* error status for this call */

 if (st != rpc_s_ok) {

dce_error_inq_text(st, dce_err_string, (int *)&_ignore);

PRINT_FUNC(PRINT_HANDLE, "Listen returned with error: %s\n",

dce_err_string);

 } else

PRINT_FUNC(PRINT_HANDLE, "Stopped listening...\n");

 /**

 * IMPORTANT NOTE: We will probably never reach here. If you interrupt

 * the server with an asynchronous signal, such as a ^C (or SIGINT) from

 * the keyboard or a "kill <PID>" (a SIGTERM signal), it will cause the

 * process to exit; it will not reach here. See the lookup sample

 * application for code that is able to properly clean up after the

 * listen call.

 **/

 PRINT_FUNC(PRINT_HANDLE, "Unregistering endpoints and interface...\n");

 /* rpc_ep_unregister() --

 *

 * Unregister the interface and endpoints with the RPC runtime. The

 * first parameter is the interface specification from the IDL compiler.

 * The second parameter is the binding vector registered with this

 * interface. The third parameter is the object UUID vector (NULL since

 * this application does not support multiple objects). The final

 * parameter is the DCE error status.

 */

 rpc_ep_unregister(sleeper_v1_0_s_ifspec, /* IDL-generated ifspec */

bvec, /* this server's bindings */

NULL, /* no object UUIDs supported */

&_ignore); /* ignore any errors */

 /* rpc_binding_vector_free() --

 * Free a binding vector that is no longer needed. Since it was
68 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
 * allocated by the runtime, the application should remember to free it.

 * The first parameter is the binding vector to free; the second

 * parameter is the DCE error status, which is ignored.

 */

 rpc_binding_vector_free(&bvec, &_ignore);

 /* rpc_server_unregister_if() --

 *

 * Unregister this server from the RPC runtime. This is unnecessary

 * since this process is about to exit, but is here to demonstrate good

 * programming style. The first parameter is the interface

 * specification; the second is the manager type UUID (which is NULL

 * since this application does not support multiple types). The last

 * parameter is the DCE error status, which is ignored.

 */

 rpc_server_unregister_if(sleeper_v1_0_s_ifspec, /* IDL-generated ifspec */

NULL, /* No object UUID */

&_ignore); /* ignore any errors */

 exit(0);

}

/* common.h

 * This file contains definitions common between the client and server.

 * (c) Copyright 1992, 1993, 1994 Hewlett-Packard Co.

 */

/*

 * @(#)HP DCE/3000 1.5

 * @(#)Module: common.h
 */

/*

 * This string will be registered with the RPC runtime as an annotation

 * describing the endpoint entry.

 */

define sleeper_description "sleeper"

#ifdef TRACING
Chapter 7 69

Programming with RPC 1.2.1 on MPE/iX
/*

 * If you want to use the building blocks tracing facility then define the TRACING
 * flag in your compile (put -DTRACING in the Makefile). For this to compile and
 * link, you will need the building blocks library installed on your system.

 */

#include <dce/trace_log.h> /* Building blocks tracing */

extern tr_handle_t * tr_handle; /* used by client, server */

/*

 * These print functions use the trace/log facility instead of stdio. All print

* statements in this file use these macros so it's easy to replace use of stdio with

* the trace/log facility. The NULL after tr_handle signifies the use of the 500

* byte, default buffer for trace output.

 */

define RINT_FUNC tr_printmsg

define PRINT_HANDLE tr_handle, NULL

/*

 * The trace_name string is registered with the trace/log facility as the

 * name of this application. It will appear in any tracing output.

 */

define trace_name sleeper_description

#else /* TRACING */

/*

 * These print functions use stdio instead of the trace/log facility. They

 * turn off the tracing macros by replacing them with standard IO routines.

 */

define PRINT_FUNC fprintf

define PRINT_HANDLE stdout

#endif /* TRACING */
70 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
/* sleeper.idl

 **

 * This .idl file declares an interface with a set of remotely-callable

 * procedures. This file is compiled by the idl compiler into a C interface

 * declaration (.h) and a C client stub (_cstub.c) and server stub

 * (_sstub.c) that interface with the RPC runtime. You must write a manager

 * for this procedure (see manager.c) and the client and server main()

 * functions (see client.c and server.c).

 **/

/*

 * (c) Copyright 1992, 1993, 1994 Hewlett-Packard Co.

 */

/*

 * @(#)HP DCE/3000

 * @(#)Module: sleeper.idl

 */

/*

 * This definition declares the interface for this application and

 * associates it with a globally (universally) unique identifier, or UUID.

 * The RPC runtime uses the UUID to identify this interface. If you

 * leverage this code, BE SURE TO CHANGE THE UUID! Do this by running the

 * program "uuidgen" and putting the uuidgen output in place of the one

 * supplied. Failure to do this may cause bizarre results.

 */

[uuid(D0FCDD70-7DCB-11CB-BDDD-08000920E4CC), /* NOTE: CHANGE THIS!!! */

 version(1.0)]

interface sleeper

{

 void remote_sleep

(

[in] handle_t h, /* Use explicit binding */

[in] long time /* Seconds to sleep */

);

}

Chapter 7 71

Programming with RPC 1.2.1 on MPE/iX
Compiling Multithreaded Application
Compiling Multithreaded Application
There are some new preprocessing directives that has been introduced
to compile with latest Pthread implementation.

_POSIX_SOURCE: This needs to be used when compiling any DCE
application. It is not necessary when compiling threads-only
application.

_MPE_THREADS: This is used when compiling any DCE or
multithreaded application. This directive is used to set the thread
specific errno.

Applications should ensure that they link /lib/libpthread.sl before
/lib/libc.sl to ensure that they invoke the thread-safe versions of
these C runtime. Applications should not use the c89 linking feature
directly since it binds the C routines to /lib/libc.a before
/lib/libpthread.sl . Since we are binding to /lib/libc.sl, we need
to explicitly link the program object file(s) with the loader “start”
routine.

The following makefile will provide an example of the linking process.

DEBUG = -gINCENV = -I. -I/usr/include

ANSI_FLAGS = -D_POSIX_SOURCE -D_POSIX_D10_THREADS

MPE_FLAGS = -D_MPEXL_SOURCE -D_MPE_THREADS -DMPEXL

CFLAGS = ${ANSI_FLAGS} ${DEBUG} ${MPE_FLAGS} ${INCENV}

#LIBS = -lsocket -lsvipc -lm

XL = /lib/libdce.sl, /lib/libpthread.sl, /lib/libc.sl

PROGRAMS = server client

server_OFILES = manager.o server.o sleeper_sstub.o

client_OFILES = sleeper_cstub.o client.o

IDLFLAGS = -keep c_source ${INCENV}

IDLFILES = sleeper.idl
72 Chapter 7

Programming with RPC 1.2.1 on MPE/iX
Compiling Multithreaded Application
IDLGEN = sleeper.h sleeper_*stub.c

IDL = /SYS/HPBIN/SH /usr/bin/idl

#IDL = /SYS/PUB/IDL

all: objects ${PROGRAMS}

objects: ${server_OFILES} ${client_OFILES}

fresh: clean all

clean:

@-rm $(IDLGEN) $(server_OFILES) $(client_OFILES) $(PROGRAMS)

server: ${server_OFILES}

ar -rc server.obj ${server_OFILES}

callci linkedit \" 'link from=/SYS/PUB/STARTO, /Speedware/sleeper/server.obj;\

to=/Speedware/sleeper/server;xl=${XL};posix;share'\"

client: ${client_OFILES}

ar -rc client.obj ${client_OFILES}

callci linkedit \" 'link from=/SYS/PUB/STARTO, /Speedware/sleeper/client.obj;\

to=/Speedware/sleeper/client;xl=${XL};posix;share'\"

sleeper.h: ${IDLFILES}

$(IDL) ${IDLFLAGS} ${IDLFILES}

sleeper_cstub.o sleeper_sstub.o manager.o server.o client.o: sleeper.h
Chapter 7 73

Programming with RPC 1.2.1 on MPE/iX
Compiling Multithreaded Application
74 Chapter 7

Index
A
activate, 27
ACTIVATE command, 30
algorithm

default, 17
asynchronous signals, 46

B
B3821AA, 12
B3822AA, 12
Breakpoints, 27

stop-all-threads, 28
task-wide, 28
thread-specific, 28

C
C/XL library, 48
CDS, 11, 13
CDS client, 22
CDS components, 13
Cell Directory Service (CDS), 11
CM stack, 26
Commands, 27, 29
commands

ACTIVATE, 29, 30
break, 30
CONTINUE, 30
debug, 30
SHOWPROC, 28
SUSPEND, 29, 30
TIN, 29

compiler flags, 31
compiling, 31
components

CDS, 13
DTS, 13
miscellaneous, 16
OSF, 11
RPC, 14
Security, 14

condition variables, 44
configure system

client system, 21
DCE server, 21

configuring
DCE cells, 19

CONTINUE command, 30
core services, 11
createprocess, 26

D
Data Encryption Standard, 17
Data Encryption Standard (DES), 17
DCE client node, 21
DCE configuration options, 19
DCE configuration tool, 19
DCE configurator

dce_config, 20
DCE daemon jobs

csadv, 22
rpcd, 22
secclntd, 22

DCE daemons
stopping, 23

DCE main menu, 20
DCE Security, 11
DCE servers

CDS, 21
DTS, 21
Security, 21

DCE/3000, 11
dce_config, 20, 23
DCECONFG, 20
DCEXL, 11
debug, 27
debug thread commands, 30
DES (Data Encryption Standard), 17
Distributed Time Service (DTS), 11
DOD, 17
domestic version, 12
DTS, 11, 13
DTS components, 13

E
environ, 46
Environmental Variable, 27
Environmental Variables, 29

SS_TERM_KEEPLOCK, 29
TERM_KEEPLOCK, 30

error handling, 43
exec, 26

F
FIFO, 26
fork, 26

H
HP C/XL, 31
HPOPEN, 29
Index 75

Index
I
inherit scheduling, 26
initial thread, 26
international version, 12
intrinsics

activate, 27
suspend, 27

K
Kernel Threads, 45
Kernel Treads, 11

L
Limitations, 30

M
miscellaneous components, 16
multi-theraded task, 26
multithreaded, 46
mutexes, 44
Mutual Exclusion Objects, 44

N
NM stack, 26

O
OSF components, 11

P
PCB, 26
PCBX, 26
PIB, 26
PIBX, 26
pin number, 26
POSIX, 20
POSIX compliant, 27
priority, 26
process, 26
process port, 26
pthread_create, 28

R
Remote Procedure Calls (RPC), 11
round robin, 26
RPC, 11, 14, 17, 20
RPC components, 14
RPCD, 12
run, 26

S
safe code, 48
scheduling policy, 26
scheduling scope, 26
Security client, 22
Security components, 14
SHOWPROC, 28
single mask, 46
SR 5 space, 26
stack size, 26
STANDARD CONFORMANCE, 31
start_thread, 28
stop DCE daemon, 23
suspend, 27
SUSPEND command, 30
synchronous signals, 46

T
task, 26
TCB, 26
terminating signals, 46
thd_mtx, 28
Threaded applications, 46
Threads

communication, 44
creation, 43
management, 43
scheduling, 43, 45
synchronization, 44

threads, 26
thread-safe, 46
tread safe, 48
TRY, 47
Try/Catch, 31

V
versions

domestic, 12
international, 12
76 Index

	1� General Information
	Version Identification
	DCE/3000 Components and Files
	Domestic and International Version

	2� Configuring DCE Cells
	Using the DCE Configuration Tool
	Configuring a DCE Client (Client-Only System)
	Removing the DCE Cell

	3� Threads Architecture on MPE/iX
	Threads Architecture
	Threads on MPE/iX
	Process Management and Threads
	Development, Debugging, and Application Execution of Threads
	Breakpoints.
	Commands
	Environmental Variables
	Limitations

	Building DCE Programs
	Header Files
	Compiler Flags
	Unresolved Externals

	4� DCE 1.2.1 Features and Programming Notes
	RPC Changes
	Private Client Sockets
	Exception Handling

	IDL Compiler
	Out-of-Line Marshalling
	Enhancing IDL Data Types
	Support for IDL Encoding Services
	Support for IDL Encoding Services
	Support for User Defined Exceptions
	Support for Customized Binding Handles

	Control Programs and Daemons
	Transition of ACL Managers
	Removing DCE Credentials
	Serviceability Improvements
	Security Delegation
	Compiling Multithreaded Application

	5� Programming with Kernel Threads
	Threads Synchronization and Communication
	Mutexes (Mutual Exclusion Objects)
	Condition Variables
	Join Facility

	Threads Scheduling
	Writing Threaded Applications
	Writing Thread-Safe Code

	6� Introduction to RPC
	Runtime Library
	Private Client Sockets
	Serviceability
	Exception Handling

	DCE-IDL Compiler for RPC 1.2.1
	Out-of-Line Marshalling
	Enhancing IDL Data Types
	Support for IDL Encoding Services
	Support for User Defined Exceptions
	Support for Customized Binding Handles

	7� Programming with RPC 1.2.1 on MPE/iX
	Compiling Multithreaded Application

