Network Performance: An MPE/iX Overview

Jeff Bandle HP MPE/iX Networking Architect

CONTENTS

- General Networking
 - Common networking terms
 - Networking concepts independent of MPE/iX
- MPE/iX Specific Networking
 Overview of MPE/iX networking stacks
 Ideas for performance changes on MPE/iX
- System Performance
 - How MPE/iX networking performance affects the system

INTRODUCTION

- What is performance?
 - Bandwidth
 - Response time
 - System
- General Networking vs. System Specific Networking

Network setup complexity is a factor
 Simple Network – Fewer layers to propagate data

- Network setup complexity
 - Complex network More layers/hardware delays data propagation
 - Study of "pings" to 3000 international sites 150 ms avg.

• Use or Routers, Switches and Hubs

- Hub A hub is a small, simple, inexpensive device that joins multiple computers together at a low-level network protocol layer.
- Switch A switch is a small device that joins multiple computers together at a lowlevel network protocol layer. Technically, switches operate at layer two (Data Link Layer) of the OSI model.
- Router A router is a physical device that joins multiple networks together.
 Technically, a router is a "layer 3 gateway," meaning that it connects networks (as gateways do), and that it operates at the network layer of the OSI model.

Common tools to check complex networking

 Ping

ping [-oprv] [-i address] [-t ttl] host packet-size [[-n] count]

: ping nack.cup.hp.com PING nack.cup.hp.com: 64 byte packets 64 bytes from 15.13.195.50: icmp_seq=0. time=1. ms 64 bytes from 15.13.195.50: icmp_seq=1. time=1. ms 64 bytes from 15.13.195.50: icmp_seq=2. time=1. ms 64 bytes from 15.13.195.50: icmp_seq=3. time=1. ms 64 bytes from 15.13.195.50: icmp_seq=4. time=1. ms 64 bytes from 15.13.195.50: icmp_seq=5. time=1. ms 64 bytes from 15.13.195.50: icmp_seq=6. time=1. ms 64 bytes from 15.13.195.50: icmp_seq=6. time=1. ms

Common tools to check complex networking
 Traceroute

traceroute [-dnrv] [-w wait] [-m max_ttl] [-p port#] [-q nqueries] [-s src_addr] host [data size]

traceroute to cup.hp.com (15.75.208.53), 30 hops max, 20 byte packets1 cup47amethyst-oae-gw2.cup.hp.com (15.244.72.1)1 ms1 ms2 hpda.cup.hp.com (15.75.208.53)1 ms1 ms1 ms

• Traceroute (cont)

traceroute to atl.hp.com (15.45.88.30), 30 hops max, 20 byte packets 1 cup47amethyst-oae-gw2.cup.hp.com (15.244.72.1) 1 ms 1 ms 1 ms 2 cup44-gw.cup.hp.com (15.13.177.65) 1 ms $1 \,\mathrm{ms}$ $1 \,\mathrm{ms}$ 3 cupgwb01-legs1.cup.hp.com (15.61.211.71) 1 ms 1 ms 1 ms 4 palgwb02-p7-4.americas.hp.net (15.243.170.45) 2 ms 1 ms 1 ms 5 atlgwb02-p6-1.americas.hp.net (15.235.138.17) 60 ms 60 ms 60 ms 6 atlgwb03-vbb102.americas.hp.net (15.227.140.7) 60 ms 60 ms 60 ms 7 atldcrfc5.tio.atl.hp.com (15.41.16.205) 61 ms 60 ms 60 ms 8 i3107at1.atl.hp.com (15.45.88.34) 60 ms 60 ms 60 ms

• Traceroute (cont)

traceroute to www-dev.bri.hp.com (15.144.120.100), 30 hops max, 20 byte packets 1 cup47amethyst-oae-gw2.cup.hp.com (15.244.72.1) 1 ms 1 ms 1 ms 2 cup44-gw.cup.hp.com (15.13.177.65) 1 ms 1 ms 1 ms 3 cupgwb01-legs1.cup.hp.com (15.61.211.71) 1 ms 1 ms 1 ms 4 palgwb02-p7-4.americas.hp.net (15.243.170.45) 2 ms 2 ms 1 ms5 atlgwb02-p6-1.americas.hp.net (15.235.138.17) 60 ms 60 ms 61 ms 6 15.227.138.42 (15.227.138.42) 183 ms 204 ms 183 ms 7 bragwb02.europe.hp.net (15.203.204.2) 183 ms 184 ms 184 ms 8 15.203.202.18 (15.203.202.18) 188 ms 227 ms 188 ms 9 15.144.16.4 (15.144.16.4) 189 ms 188 ms 189 ms 10 www-dev.bri.hp.com (15.144.120.100) 189 ms 188 ms 188 ms

- Hardware Potential Performance Changes
 Routers
 - Use router tools to analyze networking traffic
 - Readjust traffic loads to balance across different connections (if possible)
 - Use tools to verify memory usage is not being compromised for connections

- Hardware Potential Performance Changes
 - Routers
 - Since routers have intelligence inside of them, data is stored in buffers
 - Common performance problems related to buffer allocation Middle buffers, 600 bytes (total 150, permanent 25): 147 in free list (10 min, 150 max allowed) 61351931 hits, 137912 misses, 51605 trims, 51730 created 91652 failures (0 no memory)
 - **permanent**: take the number of total buffers in a pool and add about 20%.
 - **min-free**: set min-free to about 20-30% of the permanent number of allocated buffers in the pool.
 - max-free: set max-free to something greater than the sum of permanents and minimums
 - buffer middle permanent180buffer middle min-free50
 - buffer middle max-free 235
 - Adjust for traffic burst
 - Slow traffic Min free goes up
 - Fast traffic Permanent goes up

- Hardware Potential Performance Changes
 Switches
 - Dependant on type and brand, changeable parameters vary
 - Change speed (10/100/1000 mbps) to match other devices
 - Change Duplex level (Half/Full to relieve conflicts)
 - Autonegotiation isnt' full foolproof (If possible nail port paramters)
 - Link multiple ports together in a trunk (not all switches)
 - Limited to direct connections with peer switch

- Hardware Potential Performance Changes

 Hubs
 - Hubs usually don't have parameters that can be changed for performance
 - If they are bundled with a switch, use switch information to make changes
 - Most hubs, by default, are half-duplex in operation
 - Need to validate that connections into the hub are half duplex

- Other Potential Issues
 - Difference in software standards
 - HTTP 1.0 vs. HTTP 1.1 Persistent connections
 - Large data frames Not standard in all hardware
 - Systems need to work to keep "pipes" full
 - Introduction of Fiberchannel starting to push 100BT
- Other places for tips and tricks
 - <u>www.web100.org</u> Pointers to tools for performance analysis
 - <u>www.compnetworking.about.com</u> High level info on networks
 - <u>www.practicallynetworked.com</u> SOHO networking information

• MPE/iX Networking Stacks Made of Multiple Layers

F Intrinsics	Sockets/Net IPC APIs
ADCP	Telnet
AFCP	TCP/IP/UDP
Network Links	

- MPE/iX Networking Stack Links
 - 100BT/100VG Full Duplex vs. Half Duplex
 - Full Duplex allows for send and receive traffic at the same time
 - 100 VG had some advantages but lost out on marketing side VHS vs. Beta
 - Full Duplex can be affected by connections
 - Full Duplex can be affected by application design
 - MP systems also affect Full Duplex behavior

- MPE/iX Networking Stack Links
 - ACC WAN Link
 - Speeds limited by connection medium
 - Phone speeds and satellite technologies 2 mbps possible
 - Best used as an access point into a network, not as interconnect between systems.

- MPE/iX Networking Stack Transports
 - AFCP Used to communicate with DTC device HP Proprietary
 - Configuration within NMMGR to change parameters
 - After selecting DTC to configure, select TUNE DTC option
 - Set 1: Normal timer mode
 - Set 2: Short retransmission timer mode
 - Set 3: Long retransmission timer mode
 - Set 4: Variable timer mode
 - Set 5: MPE XL Release 1.2 timer mode
 - Set 6: MPE XL Release 2.1 timer mode

- MPE/iX Networking Stack Transports
 - TCP/IP Used to communicate with open standards based devices
 - Configuration with NMMGR
 - Within the NS->UNGUIDED CONFIG->NETXPORT->GPROT->TC
 - [1024] Maximum Number of Connections
 - [2] Retransmission Interval Lower Bound (Secs)
 - [180] Maximum Time to Wait For Remote Response (Sec)
 - [4] Initial Retransmission Interval (Secs)
 - [4] Maximum Retransmissions per Packet
 - [600] Connection Assurance Interval (Secs)
 - [4] Maximum Connection Assurance Retransmissions

- MPE/iX Networking Stack APIs
 - Sockets Standards based networking connectivity interface
 - Sending data requires use of data buffers
 - Tradeoff between efficiency in application and efficiency in networking
 - Studies seem to point to 1k byte buffers being optimal balance
 - Only works if application can package data.
 - Connection startup/teardown is expensive AVOID IF POSSIBLE

- MPE/iX Networking Stack APIs
 - NetIPC HP Propriety networking connectivity interface
 - Similar to open standards sockets
 - 1k byte buffers are optimal if application allows
 - Fix length data blocks remove need to negotiate buffer length – Eliminates an extra IPCRECEIVE call for get length of data
 - Connection startup/teardown is expensive AVOID IF POSSIBLE

- MPE/iX Networking Stack Services
 - Telnet Open standards terminal connectivity
 - Based on very inefficient 1-character transfer mode
 - Most common complaint is character echo response
 - Block mode response is comparable to VT/DTC
 - Character echo improved with Advanced Telnet functionality
 - Requires terminal emulator that supports it.
 - QCTERM as an example

- MPE/iX Networking Stack Services
 - DTC TIO/ADCP HP Proprietary terminal connectivity
 - Efficient block mode data transfer
 - Higher cost due to needing DTCs and special applications
 - DTSTUNEB can be used to adjust buffer parameters
 - WARNING Due so at your own risk.
 - Change total number of data buffers created # per ldev
 - Change maximum number of data buffers useable per Idev 24 is default

- Networking connections use resources
 - Data structures for each socket/NetIPC connection
 - Data buffers for each DTC/Telnet connection
 - Timer structures used by all layers
 - Busy connections on small systems can exhaust resources
 - "Fake" system by creating more "dummy" devices

- System is very busy servicing interrupts
 - Tradeoff between "smart" cards and "dumb" cards
 - Network adapters could do more work
 - Newer cards are cheaper, but system needs to do processing
 - High LAN traffic situations see this more often as problem
 - Solution is to get more CPU
 - Efficiencies have been introduced into MPE/iX stacks

- Connectivity mix can affect system performance
 - VT vs. DTC vs. Telnet
 - DTC is most efficient
 - Handles data away from the system
 - Very few data transfers per I/O request
 - VT is efficient also because of HP proprietary
 - Has limits because of sitting on TCP/IP stack
 - Requires driver applications on sending and receiving systems

- Connectivity mix can affect system performance (cont)
 - Telnet is least efficient because of need to support open standards
 - Block mode applications (VPLUS) comparable to VT
 - Telnet is 90% as efficient as VT in block mode
 - CI commands most overhead for Telnet 1 character at a time response
 - Telnet is 70% as efficient as VT in character mode

- \bullet Check for application type with regards to I/O
 - Block mode access vs. character mode access
 - Internal studies show that frame size is either:
 - Very small < 140 bytes
 - Max value 1500 bytes
 - Nothing in between
 - If many character mode applications being used, system network will bog down
 - Move to block mode alternative, higher CPU speeds or offload to other systems

- Check for application type with regards to I/O (cont)
 - Check to see how networking connections are being made
 - Multiple starts/shutdowns for connection are EXPENSIVE
 - On small 918 class system, 15 user test FAFFed system
 - Higher CPU
 - Different connectivity methods
 - More memory

WRAPUP

- If you suspect networking performance problems, what can you do?
 - Characterize problem can't connect, lost packets, system is bogging down
 - Understand where heaviest use is coming from
 - Single application use Can application/parms be tweaked to ease performance pressure?
 - Multiple users rapidly connecting to system Can users be directed to connect by differing methods
 - Network is experiencing problems Isolate segment that is causing problem

- Check router, switch for potential problems

i n v e n t