Basic System Problem
Analysis

D |

invent

Bill Cadier
Hewlett-Packard Co.
TCSD MPE/iX Lab
25 April 2003

Table of Contents

CoMMONIY USEA MBCIOSccovieeiiiieeeiiie e eiiie et ettt et sae e s nae e e snae e e snneeeenseeennes 7
Process Management SEFUCLUIES............eiiiaiiiiiee e et e e e e e e e e e e 9
Process Management Structures. CONtINUEd............ueveiiiieeeeiciieee e 10
Job/Session Management SETUCTUIES........coiviieiiiie ettt 13
Job/Session Management StruCtures: CONLINUEoooueriieereiiereniee e 14
File SYStEM SLIUCLUIES......cooieieeeee ettt e e nre e 17
File System Structures: CONLINUEd.............cooiiiiiiiiie e 18
File System Structures: CONLINUEd.............oeoiiiiiiiiie e 19

Finding The GUFD of an opened or closed file.........cccoviiiiiiiiiiiieeee 19
File System StrucCtures: CONLINUEuuiiiiiieeiiiee et 20
Virtual Space Management SITUCIUIESeveiieie e 23
Virtual Space Management Structures. CONtINUEdeviieeriiiiriiiie e 24
Memory Management SITUCLUNES..........oeii it ie et e e enee e e e e snee e e e 27
Memory Management SIructures; CONtINUEdooouieiiiieiiiie e 28
DISPALCNEr SITUCTUIES..... . ittt e e e e e snne e 31
Table MaANAGEMENT ...t e e b e st e e e snre e e enneas 33
VS (< 0 11 (0] 0= £ T PSR 35
PA-RISC General REQISIEIS.coiuiieiiiieeiie ettt e s snne e e snne e 37
PA-RISC SPACe REJISIENS......eeiiiiiieiiiie ettt ettt ettt et e e snne e e snne e e snneeeenes 39
ShOrt VS, LONG POINEEIS........iiiiee ettt e e e et e e e e s e e e e enaeeas 41
Short vs. Long POINEErS: CONLINUET..........ooiiiiiiiieesiie et 43
Procedure Calling CONVENTIONccuiiiiiiiiie et e e e e e e e e 45
Procedure Calling Convention: REJISLENS.couiiiriiieiiie e 47
Procedure Calling Convention: Stack Frame...........ccoovvviieeiiiiiee e 49
Procedure Calling Convention: SP & PSP..........cccceii i 51
Procedure Calling Convention: SP & PSP..........cciii e 52
CaSE STUAY: SABB3......coeeeiiiee et e e e e e e e e e e e e e ararea e 55
Case Study: SAB63 CONLINUED.cccciiiiiiee e e e e e e e e srre e e e e enaeeeeaas 57
Case Study: SAB63 CONLINUED........cccciiiiiieeiiiiiee e sre e e e e e e srre e e e e snaeeeeaas 59
Case Study: SAB63 CONLINUED........cccciiiiiieeeiiiiee e e e e e re e e e e nsaeeeeaas 61
Case Study: SAB63 CONLINUED........cccciiiiieeeiiiiiee et sre e e e e e e srre e e e e snaeeeeaas 63
Case Study: SAB63 CONLINUED........cccciiiiiieeiiiiiee e e e e e s e e e e s esaeeeeaas 65
Case Study: SAB63 CONLINUED........ccceiiiriieeiiiiiee e e s e e e e e e e sare e e e s esaeeeeaas 67
L =T 16 PP 69
Before MemOry DUMP.......ooiiiieiiie ettt ettt e s e e e e snne e e snseeeenes 71
Case Study: Hang Memory DUMP........eeiiiiieeiiie et e s e sneee e 73
Case Study: Hang Memory DUmpP CONtINUEToeeiiiieiiiee it 75
Case Study: Hang Memory DUmpP CONtINUEToeeiiiieiiiee i 76
Case Study: Hang Memory DUmp CONtINUEToeeiieiiiiiee e 77
Case Study: Hang Memory DUmpP CONtINUEToeeiiiieiiiee i 79
Case Study: Hang Memory DUMP........eeiiiiieeiiie et e s e sneee e 81
Case Study: Hang Memory DUmpP CONtINUEToeeiiieeiiieeeiee et 83
Case Study: Hang Memory DUmp CONtINUEToeeiiiieiiiee et 85

Case Study: Hang Conclusion

Introduction

commonly used DAT macros

some OS structures and their types

PA-RISC Registers

short vs. long pointers

overview of the procedure calling convention

case studies

Notes:

Introduction

This paper is being presented at the West Coast HP3000 Solution Symposium in San
Jose, 25 April 2003

The purpose of this paper isto try to provide basic information how to diagnose system
aborts and hangs.

As the HP3000 winds down it will be advantageous for owners of this system to be able
to perform as much trouble shooting as possible. The amount of trouble shooting will be
limited because source code for the OS is not available outside HP.

It is assumed that readers have good familiarity with the tools DEBUG, DAT and SAT.
The documentation for these tools may be found online at:

http://docs.hp.com/mpeix/onlinedocs/32650-90901/32650-90901.html

Commonly Used Macros

sys_abort io_ios_diag_log
pm_ptree rm_format_sirs
pm_family rm_semaphore
pm_errors rm_sem_deadlock
pm_fpib process_dispatcher
ui_showjob process_wait
ui_cihistory vs_page_info
ui_showvar mm_page_info
fs_open_files mm _active_io
fs_file mm_completed _io
fs_find _gufd_entry tbl_info

dcx

Notes:

Commonly Used Macros

Thisis by no means a comprehensive list of macros available in the OS macro set but
these are some of the more commonly used macros.

The MACLIST (MACL) command can be used to list all current macros once they have
been restored. Many of the macros listed will be second level macros, those called by
other macros and so would be of limited value. Use the HEL P command to see the source
for agiven macro, i.e. HELP PM_FPIB.

Most macros are prefaced with a designator to indicate what area of the OS they are
meant to be used for. Here' s alist of some of the designators.

pm = process management

s = file system

mm = memory management

vsm = virtual space management

rm = resource management (sirs and semaphores)
Xm = transaction management

ui = user interface (Cl commands)

10 = 1/0 subsystem

config = hardware configuration

Process Management Structures

- PIB: process information block, type “pib_type”

- PIBX: process information block extension, type
“pibx_type”

- PCB: process control block (CM), type “pcb_type”

- PCBX: process control block extension (CM), type
“pcbx _type”

Notes:

Process Management Structures

These are the fundamental process management structures and their types. DEBUG, DAT
and SAT provide functions that return pointers to these structures. These functions are:

PIB - returns a pointer to the PIB for a given pin
Example: fv pib(5) “pib_type”

PIBX - returns a pointer to the PIBX for a given pin
Example: fv pibx(pin) “pibx_type’

PCB - returns a pointer to the PCB for a given pin
Example: fv pcb(200) “pcb_type’

PCBX - returns a pointer to the PCBX for a given pin

Example: fv pcbx(10) “pcbx_type’

The PIB contains information about a given process. The type for the PIB is divided into
functional areas such as:

DISPATCH_INFO which contains linkages to the dispatcher run queues.

|O_AREA which contains information about outstanding non-memory management 1/0O
requests for the process.

PIB_ERROR_STACK isthe areathat holds that status of errors or warnings. The values
inthis stack are of type “HPE_STATUS’ and are pushed onto this stack by the procedure
HPERRPUSH. The PM_ERRORS macro will dump this stack but often times it is useful
to dump it raw, e.g. DV PIB(PIN)+350,20 so you can see all the errors, even those that
are not current. The PM_ERRORS macro will only dump the active part of the error
stack.

Decoding HPE_STATUS errors is accomplished using the ERRMSG function in DAT
and DEBUG, for example given an HPE_STATUS of fffd008f decoding would be:

$1d5 ($21d) nmdat > wl errmsg(S16(fffd), 8fF)
Intrinsic layer; an access violation occurred.

The “S16” function is used so that “fffd” istreated as a signed quantity rather than as the
low 16 bits of a 32 bit quantity.

Process Management Structures: continued

Two other fields in the PIB worth noting are the PIB_TRAP_PC and PIB_TRAP_ISM.
These two fields are used for certain types of processtraps. The PC (program counter) of
the trap and the interrupt stack marker (1SM) active at the time of the trap are loaded into
these fields. If the system should fail asthe result of a processtrap it may be possible to
use the command “INITNM” supplying the ISM pointer in PIB_TRAP_ISM to restore
the stack asit was at the time of the trap. Unfortunately it is often the case that the old
stack location has been overwritten by activity that transpired from the time of the trap to
the time of the abort. It is always worth a shot to see if something meaningful can be
retrieved. At the very least PIB_ TRAP_PC can tell you what piece of code caused it, e.g.
DCS [thevalue of PIB_TRAP_PC]

Useful process management macros are PM_PTREE which is a more full-featured
version of the built-in DPTREE. Unlike DPTREE the PM_PTREE macro will display the
job or session number. This can be used as input to some of the Ul macros

PM_FAMILY provides similar output as PM_PTREE but for the whole process family.
Note that you get a more complete list of the family tree using the JISMAIN pin. This will
give you the JISMAIN, the CI under it and any descendents under that. The
Ul_SHOWJOB macro lists the JSMAIN pin for each job or session.

The PM_FPIB macro is an ailmost complete formatting of the PIB structure and can be

useful in describing the overall state of the process. The input to this macro is, oddly
enough a string so the macro would be called like this,

$1d6 ($21d) nmdat > pm_Fpib("pin®)
Or

$1d7 ($21d) nmdat > pm_fpib("21d")

10

This page intentionally left blank

11

Job/Session Management Structures

- JIMAT: job master table, type “jmat_entry type”
- JIT: job information table, type “jit_entry _type”

- JDT: job directory table, type “jdt_header_type”

Notes:

12

Job/Session Management Structures

The IMAT or job master table iswhat is displayed with the SHOWJOB CI command and
there is an equivalent OS macro Ul_SHOWJOB. Like its CI counterpart the macro
displays all jobs and sessions or will display a specific job or session when a string with
the “#Jnnn” or “#Snnn” value is supplied.

The JT and JDT are compatibility mode data segments (DST) but al CM DST’sare
objects and have NM virtual addresses. The DSTVA function translates a CM data
segment number to its NM virtual address equivalent.

TheJIT and IDT DST’s are kept in the CM stack in the “PXGLOBAL” areawhichis
more easily remembered as being the firg 12 (decimal) 16 bit words. So the quickest way
to find the JIT and JDT are to dump the CM stack of the process you want them for.

$1de ($21d) nmdat > cm

%737 (%1035) cmdat > dd sdst.0,#12

DST %40346.0

%0 % 000450 000600 137677 005700 003461 000000 020400 000000
%10 % 040001 040000 040332 040330

13

Job/Session Management Structures: continued
The same thing can be accomplished using the native mode types:
$1lel ($21d) nmdat > fv pcbx(pin) "“pcbx_ type.pxglob,true*

CRUNCHED RECORD

DL_MINUS_A - 128
DB_MINUS_A - 180
USER_ATT - bfbf
JMAT _INDEX - bcO
JPCNT INDEX - 731
JCUT INDEX - 0
STUNBIT - FALSE
RESTART - FALSE
JOBTYPE -2
DUPLICATIVE - FALSE
INTERACTIVE - FALSE
ALLOWMASK - FALSE
JSMSTATE - TRUE
JSMCHANGE - FALSE
FILLERL -0
STACKDUMP_FLAGS :
STACKDUMP_INT : O
FILLER2 -0
NATIVE_LANG - 0
JOB_INPUT_LDN : 4001
JOB_OUTPUT_LDN : 4000
JDTDST - 40da
JITDST - 40d8

END

Y ou want to do an FT on PCBX_TY PE to see where the “.PXGLOB” came from.
Further you will see that the field PXGLOB is of type PXGLOB_TY PE. A format type
on that showsthat the less useful record variant appears first, a crunched array of 12
BIT16's. That will be the variant used unless another is explicitly specified. That’s what
you need to do in this case hence the “, TRUE” added to the format virtual command.

Now that we know the JIT and IDT DST numbers we can use the DSTVA function to
translate that to avirtual address and finally format the type:

$1e3 ($21d) nmdat > fv dstva(40da.0) "jdt_header_ type-

See HELP DSTVA for additional details.

14

This page intentionally left blank

15

File System Structures

- PLFD: process local file descriptor (file handle), type
“plfd _type”

- GDPD: global data pointer descriptor (file pointers), type
“gdpd_t”

- GUFD: global unique file descriptor, type “gufd_t”

- FLAB: file label, type “flab_t”

Notes:

16

File System Structures

These structures are but the tip of the iceberg when it comes to the file system!

The PLFD isafile handle, whenever a process has afile or socket or pipe opened that
entity will occupy a slot in the PLFD table.

The PLFD structure will contain pointers to the GDPD for the file and to the GUFD for
the file, if there isone. The PLFD is also where we keep the “type manager control

block” which is an area used by the type manager bound to the file at open-time. The type
manager’s “PLABEL” (code address) is also kept in the PLFD. Note that thisfield is
usually stored as a short pointer and as a result may be represented for example as
“eacab8.0”. Thisisreally “a.eacab8” and can be displayed via “dcs eacab8’.

The macro FS_PLFD can be used to return the PLFD pointer for agiven file number
associated with a particular pin, for example format the PLFD for file #11 ($b) for the
current pin:

$1e5 ($21d) nmdat > fv fs_plfd(,b) "plfd t-

The FS_FILE macros is quite useful for formatting all of the more important areas of the
PLFD structure. Like the FS_PLFD macro it takes both a PIN and file number as input.

The GDPD is where we keep the current pointers for afile and it is also where we keep
the “ storage management control block”. The tail end of the GDPD has an SM_CB which
is used by storage management to know how to prefetch information from a disk file and
where to write information back to the file. Software updatesthe SM_CB prior to
initiating a read from disk or awrite to disk.

Filesthat are not opened MULTI or GMULTI will have their own unique GDPD. Files
opened MULTI or GMULTI will, of course, share one. The linkage will be through the
NEXT_PLFD field in the PLFD.

The GUFD structure exists only for disk files, so it is normal to find files that do not have
aGUFD. All disk files had better have onel

Technically the GUFD is not afile system structure, it is actually part of storage

management. Additionally the GUFD is kept immediately adjacent to the “V SOD”
structure in the VSM “V SOD/GUFD Table” which will be discussed a bit later.

17

File System Structures: continued

The GUFD structureis also retained in most cases when a process closes afile. In other
words, if aprocessisthe last accessor of adisk file and closes it we do not release the
GUFD rather it is appended to aleast recently used (LRU) list. If thefile is re-opened
chances are the GUFD will be on that list and we can simply pull it off the LRU and use
it making the file open process quicker.

The GUFD structure contains the virtual address of the file. There’s also the GDPD
pointer which isthe end of alinked list of GDPD’s associated with the file.

If thefileis attached to XM that will tracked in the GUFD.

Finally, the GUFD contains information taken from the file label, things such as the EOF
offset and number of records, the number of readers and writers. The GUFD also contains
the pointer to the file label. (Technically the file label is not afile system structure, it is
part of label management.)

The file label is an address that ends in $20 and the reason for that isthat the FLAB_T
typeis part of adlightly larger structure“T_FILE_LABEL_ENTRY”. This larger
structure contains components of what will become the UFID or Unique File Identifier of
afile (typeis“UFID_TYPE”). And it also contains an offset to the extent block for the
file. Replacing the $20 from afile label pointer with $00 allows it to be formatted using
the“T_FILE_LABEL_ENTRY"” type. Thistype is aboolean variant and it has the less
than-useful variant first so proper formatting requires specifying the TRUE variant, for
example:

$1f8 ($70) nmdat > fv 15F.fc600 "t_file_label _entry,TRUE"

Extent blocks migrate away from the file label as the file grows and more extents are
added. The most recent extent block is always kept adjacent to the file label. Extent
blocks are formatted with the type “T_EXTENT_BLOCK_ENTRY” which also suffers
from the less-than-useful-variant-first problem so formatting with this type also requires
the use of the TRUE variant. Each extent block will contain a pointer to the next extent
block, if there isone. And it’s worth noting too that all references to disks are volume
ID’sand not LDEV'’s.

18

File System Structures: continued

Finding The GUFD of an opened or closed file

GUFD’ s for opened files are kept on aHASH_LINK from Storage Management Globals
(KSO #210, type “SM_GLOBAL_REC") and GUFD’s for closed files are kept on a least
recently used (LRU) list also from SM Globals. The top portion of the GUFD_T shows
these links:

GUFD T =
RECORD
HASH_LINK - GUFD_PTR_TYPE;
LRU_LINK - GUFD_PTR_TYPE;
PREV_LRU_LINK - GUFD_PTR_TYPE;

When a process opens a disk file a search of these lists will be made to see if thefileis
opened or if the file has been recently closed. Files do not remain on the LRU
indefinitely, the list can be no more than 1500 entries long and, if we should run short of
GUFD entries for files being opened, the oldest file on the LRU will be pulled off,
mapped out and the GUFD given over to a new file open request.

With MPE/iX 6.5 onward we aso try to hold larger files, those over 1GB in size on the
LRU as long as possible because performance can suffer if a very large file is mapped out
all at once. These files are rotated around the LRU up to 16 times and at each rotation a
16™ of the file is mapped out, from the bottom up. We map out from the bottom up so
that if the file is removed from the LRU because it has been re-opened chances are the
top portion of the file object will be referenced first and that will minimize the need to
page-fault the datain from disk.

The FS_FIND_GUFD_ENTRY macro can be used to locate a GUFD for an opened or
recently closed file. The macro takes as input the interval timer for the file you want to
locate. Since the interval timer is kept in the extended file label that is a good way to get
this information. It is not ever going to change so if you were looking at a memory dump
and for example wanted to locate the GUFD for XL.PUB.SY S you could use the interval
timer from the live system (assuming, of course, you're logged on the system whose
memory dump you'’ re looking at!).

A LISTFILE, -3 will display provide the file label pointer, for example:

19

File System Structures: continued

listfile XL.PUB.SYS,-3

R R e e R R AR e

FILE: XL.PUB.SYS

FILE CODE : 1032
BLK FACTOR: 1

REC SIZE: 256(BYTES)
BLK SIZE: 256(BYTES)
EXT SIZE: O(SECT)
NUM REC: 77293

NUM SEC: 77824

NUM EXT: 41

MAX REC: 4096000

NUM LABELS:
MAX LABELS:
DISC DEV #:
SEC OFFSET:
VOLNAME

=E0OPr oo

FOPTIONS: BINARY,FIXED,NOCCTL,STD
CREATOR : MANAGER.SYS

LOCKWORD:

SECURITY--READ - ANY
WRITE - ANY
APPEND : ANY
LOCK - ANY

EXECUTE : ANY
**SECURITY IS ON
FLAGS : 1 ACCESSOR,SHARED,1 R
CREATED : TUE, MAR 4, 2003, 10:43 AM
MODIFIED: TUE, MAR 4, 2003, 10:44 AM
ACCESSED: MON, MAR 17, 2003, 4:09 AM
LABEL ADDR: $00000013.$00204020

PEXL_SYSTEM_VOLUME_SET :MEMBER1

The file label address is 13.204020 and since the interval timer is found at offset $10 in
the extended label structure replacing the $20 with a $10 points us right at it.

Now, using DAT/DEBUG indirection we can pass that value to the FS_FIND_GUFD

macro:

$115 ($31) nmdebug >
gufd_record pointer
File virtual address
End of file offset
File name

fs_find_gufd_entry([13.204010])
$ca016e60

$f8.0

$12ded00

XL.PUB.SYS

And as this example shows, this macro works quite well in DEBUG too.

20

This page intentionally left blank

21

Virtual Space Management Structures

- VSOD: virtual space object descriptor, type
“vs_od _type”

- Cache entry: type “cache_entry type”
- B-tree’s:

- extent b-tree, type “b_tree_root_type”
- extent A/R (variable access rights) b-tree, same type

Notes:

22

Virtual Space Management Structures

There are two VSOD tables, one for files and one for everything else. Everything that has
avirtual address has an entry in one of the two VSOD tables. These tables are:

VSOD/GUFD table, KSO #201
VSOD table, KSO #53

Both tables consist of entrieswhose typeis“VS OD_TYPE”. The difference isthat the
VSOD/GUFD table, KSO #201 contains both VSOD entries and GUFD entries adjacent
one another.

That means that if you know the address of a GUFD all you need to do is subtract the
length of VS_OD_TYPE from it to get a pointer to the VSOD. Of course you can also
use VAINFO to return that value by providing the virtual address of the file, for example:

$20b ($70) nmdat > fv cal2cda8 "gufd _t.file vir_addr*
2e4.0

$20c ($70) nmdat > wl vainfo(2e4.0, "vs_od ptr*)
$cal2cd48

$20d ($70) nmdat > wl cal2cda8-symlen("VS 0D TYPE™")
$cal2cd48

It makes sense to keep the VSOD and GUFD adjacent each other for file objects because
when we need to map the object into memory we are going to need to know where the
fileison disk.

Non-file objects such system objects, DST’ s and so forth reside in KSO #35 which is
formatted using the same VS OD_TYPE.

Both file, and non-file objects use identical methods of mapping the secondary storage
image. Thisisdone using several B-TREE's.

Thereiswhat is called an “AR B-TREE” or access rights B-TREE that keeps track of
objects that have variable access rights. An object typically has a single access right (can
you read it, writeto it, what privilege level do you need etc.) . Program files, libraries and
stacks are examples of objects that require variable access rights. A stack is actually a
good example, the majority of the stack is accessible by a processrunning at normal user
mode (ring 3). Portions of the stack, CM as well as NM are protected so you need to be at
ring 2 (PM) or better to write to these areas.

The other B-TREE (non-AR) is for objectsthat have a single set of accessrights.

23

Virtual Space Management Structures: continued

VSM uses VPN (virtual page number) Cache entries for portions of objectsthat are either
in memory or on the way in to memory. These cache entries provide a fast means of
linking the VSM structures such as the VSOD with the physical page addresses that the
object occupiesin real memory.

The VAINFO function is useful for finding out information about objects however
certain information is unavailable in DEBUG. See HELP VAINFO for more details.

A couple useful macrosto note are:

VS PAGE_INFO which format virtual and secondary storage information for agiven
virtual address.

VS ALLOCATION formats information about PID usage as well as SR6 and SR7
alocations.

24

This page intentionally left blank

25

Memory Management Structures

- HPDIR: hashed page directory, type “hpdir_rec”

- IPDIR: indexed page directory, known system object
(KSO) 3, type “ipdir_rec”

- MIB: memory management information block, type
“mib_type”

- Memory Management Globals, known system object
(KSO) 4, type “mm_global_info_rec”

Notes:

26

Memory Management Structures

Memory management dove tails with Virtual Space management and keeps track of the
real memory pages in use (among a lot of other things).

The hashed page directory or HPDIR is the structure used at the lowest levels of the OS
to load the TLB (translation look-aside buffer) with a virtual-to-real translation.

When avirtual address is referenced, say a LDW (load word) instruction, the hardware
will expect to find in the TLB atranslation of that virtual addressto areal addressin
memory. If there is no TLB translation found the hardware will go back to software (a
page absence trap) and the first thing the software will do istry to locate an entry in this
hashed page table. If an entry cannot be found in the hashed page table then we need to
go back to VSM to find out if the virtual address is valid or not. If it isinvalid the process
or system will be aborted depending on where this trap occurred. If the addressis valid
then we need to go find the corresponding secondary storage address and start the process
of swapping in a part of that object.

The IPDIR or indexed page directory, KSO 3 is atable consisting of a 64 byte entry for
each physical 4K page of memory configured on the system. The header for thistableis
of type “LIST_IPDIR” and contains pointers to lists of pages.

Theselists are

free list, free pages ready for use

present list, pages “owned” by avirtual object

ROC ligt, alist of recoverable overlay candidate pages

Critical list, pages held in reserve for critical operations (stack overflows etc.)
Unusable list, pages found to have had errors and deallocated by PDC

agrwNE

The meaning of “free” and “present” is obvious. A ROC page is a page that has not been
touched recently or one whose owner, playing nice in the pool, has said can be taken if
necessary. When a page is made ROC the contents of the page are written out to disk in
anticipation that the page will be re-used but the 1/0 is done at alower priority
(sometimes called an “anticipatory write”). If the page winds up being made free so it can
be reused the priority of any outstanding 1/0 is bumped up so it completes quickly.

The IPDIR also tracks when pages are “dirty”, that is they have been modified. If the
page is part of a non-memory resident object it would need to be posted to disk in the
event the page was to be reused for another purpose.

Finally MIB’s are Memory Manager 1/O Blocks (not to be confused with MIB’sin

SNMP). Whenever pages of memory are read in from disk or written out to disk aMIB
is created to track that.

27

Memory Management Structures: continued

Some useful memory management macros are:

MM_ACTIVE 10 - lists dl active /O at the time of the dump, this macro probably
won't work very well on a live system although you can try!

MM_COMPLETE_IO —lists all completed /0. Often you may want to set afilter on a
specific virtual address, for example ENV FILTER “a.c0000000” because the list can be
quite lengthy.

MM_PAGE_INFO islike VS _PAGE_INFO and lists memory manager specific
information about the virtual address.

MM_GLOBALS formats the data in the memory manager globals KSO 4.

NOTE: The memory management “hashed page directory” usestypes prefixed with
“HPDIR” but so do types that define objects in the hierarchical file system directory. If
you see references to UFID’s and names then you' re looking at the directory structures!

28

This page intentionally left blank

29

Dispatcher Structures

- Dispatcher Globals, KSO 127, type “disp_globals _type”

- TCB, task control block, type “tcb_type”

Notes:

30

Dispatcher Structures

These are not the only dispatcher structures but they are worth mentioning in this context.

The TCB, or task control block rates a special mention because it is the structure use to
save process state when a process looses the CPU.

It is kept in real memory but is “equivalently mapped”’ meaning that it is given an address
in space 0 at the same offset it occupies in real memory.

The TCB function will return the real memory address of a TCB for agiven PIN. You
cannot format real memory using the FV command. Since the TCB is equivalently
mapped into space 0 you can supply that creating a virtual address from the real address
returned by the TCB function, for example:

$217 ($70) nmdat > wl TCB(pin)
$8c01d00

$218 ($70) nmdat > fv 0.TCB(pin) "TCB_TYPE"

RECORD
STACK_BASE : 41854000
STACK_LIMIT > 418b4000

STK_ADDR_NOT_IN_CACHE : 418aa000

Another useful thing to note about the TCB is that since it stores state information about a
process it can use used in adump to restore that state. That is, you can try to rewind a
processto the state it was in the last time it lost the CPU. For example:

$219 ($70) nmdat > tr,d,i

PC=a.0019fe78 system_abort
NM* 0) SP=418562e0 RP=a.00a51bc8 sm_quarantine_gufd+$1lfc
NM 1) SP=418562e0 RP=a.00ee5a5c
tm_close_common.tm_unlink _plfd_and_gdpd+$184
NM 2) SP=418558e0 RP=a.00ee75cc tm_close_common+$1a98
NM 3) SP=41855860 RP=a.0158a8e4 tm_ord_fix_buf _disc+$le4
NM 5) SP=418547e0 RP=a.01163d68 ?fclose_nm+$8

$21a ($70) nmdat > initnm tcb
$21b ($70) nmdat > tr,d,i
PC=a.00394f78 $$1r_wa_14_long
NM* 0) SP=418565a0 RP=a.010722c0 sd_log_data+$504
NM 1) SP=418565a0 RP=a.01072ca8 sdump_data+$108
NM 2) SP=418564a0 RP=a.009d6140 sdump_dump_navigation_structure+$328c
NM 3) SP=418563e0 RP=a.00a51b98 sm_quarantine_gufd+$lcc

31

Table Management

- used extensively in the OS, table header type “tbl_hdr”

- characteristic of a “table management” table is that the
first two words of the table point to itself

- various types of tables are used, FIFO, LIFO, monotonic
etc.

- TBL_ INFO macro is the easiest way to view a table
management header

Notes:

32

Table Management

The use of table management in the MPE/iX OSis so pervasive that it warrantsthis
mention.

Table management is essentially a centralized method for managing an object. A object is
created and then transformed into atable. The table consists of a“header” and a*“body”.
The header is formatted using the type “TBL_HDR”. Each entry in the body portion will
be whatever type the owner decidesto use.

Tables can have various management types the most common being LIFO, last in first
out, FIFO, first in first out and monotonic, meaning each entry in the table retains it
position. The PLFD table is an example of a monotonic table. Each table entry or PLFD
corresponds to a file number. So file number 10 needs to remain in the 10" position, it
cannot be linked into a list after being closed because that reference would be lost.

A characteristic of atable-management table is that the first two words of the table
header will be a pointer to itself. But it isimportant to stressthat any object with this
characteristic is not necessarily atable. An example of that would be the System Globals
structure which is always found at address a.c0000000

$21c ($70) nmdat > dv a.c0000000,2
VIRT $a.c0000000 $ 0000000a cO000000

Thisisnot atable header. The top portion of system globals is where we keep the KSO
(known system object) pointers so KSO 0 is System Globals.

The TBL_INFO macro is quite useful in formatting table headers. It will decode the
various table options and display information about the cache lists (LIFO or FIFO). One
other thing it will do iswalk down through the list of free entries which can take awhile
depending on how many there are. So if the macro appears to pause give it afew seconds
before stopping it with a control-Y.

33

System Globals

System globals is ALW AYS found at address $a.c0000000

The type is “SYSTEM_GLOBALS_TYPE”

The macro SYSGLOB will return a field within the object.

Short pointer can be created with ZDEP1 3,1,2,rx

Notes:

System Globals

System globals is centralized table of information used by all parts of the OS. Aswas
mentioned earlier, the KSO table is located at the top of System Globals.

At the end of the system globals structure is an array of 32 entries, one for each active
processor (type “SPSD_ENTRY_TYPE”) that tracks information about the process
active on each CPU.

The macro “SY SGLOB” is an easy way to get information out of the system globals
structure but you need to know the name of the field you want to see. The macro also
only handles individual fields within a structure and not structures themselves. So you
could use SY SGL OB to display the highest PIN number used so far, whose field is
PM_HIGHEST PIN

$22c ($70) nmdat > wl SYSGLOB ("'PM_HIGHEST PIN'™)
$223

But you could not use it to display the “SG_SPSD_ENTRY” structure for CPU 3 by
doing

$22d ($70) nmdat > wl SYSGLOB (*'SG_SPSD_ARRAY[3]1')
Error while retrieving the requested data from SYMVAL

Y our best bet isto use FT to find the field or structure within system globals that you
want to format and just use the FV command, for example:

$22e ($70) nmdat > fv c0000000 "system_globals_type.sg_spsd_array[3]"

Finally, it is worth noting that the short pointer to system globals “C0000000” can be
constructed with a single instruction. The ZDEPI or zero and deposit, immediate
instruction

ZDEPI 3,1,2,rx

Where “rx” isR1 to R31. This says zero the target register and deposit the value 3
beginning in bit 1 for 2 bitsto the left. Bits are numbered left to right, O to 31. So bit 1
would be the 2™ bit from the left and the quantity 3 in binary is“11”. The resulting value
inbinary is“11” followed by 30 zeros and when represented in hexadecimal you have
“C0000000".

When you see this sequence followed by the target register “rx” being used in aload or
store with an offset you can match that to the offsets found by doing an FT

“system _globals type, m” remembering that the offsets are in hex from FT and decimal
in the instruction. Y ou can then see which field of system globals is being referenced.

35

PA-RISC General Registers

PA-RISC uses 32 general registers. The procedure calling
convention defines:

- R30 is “SP” or the stack pointer

- R27 is “DP” or the data pointer (global variables)
- R2 is “RP” or the procedure return pointer

- R28 and R29 are function return (ret0O and retl)

« R26, R25, R24 and R23 can contain the first four
arguments passed to procedures (arg0..arg3)

- R31 is used as the “millicode RP”
- RO is a read only register whose value is zero

Notes:

36

PA-RISC General Registers

The PARISC Instruction Set Reference Manual and the Procedure Calling Convention
manual are pretty hard to come by. They are not at the docs.hp.com web site so it is
worth spending a little time going over some of the basics of the hardware.

DEBUG, DAT and SAT use aliases for certain of the registers, SP, the stack pointer will
always be R30. DP, the data pointer (global variables in a program context) will always
be R27. RP or the procedure return pointer is R2.

The procedure calling convention specifies that the first four argument values being
passed in a procedure call be placed in registers R26 to R23. The first parameter going
into R26 and onward to R23. All additional parameters are placed into the stack frame
that was created by the procedure making the call.

Parameters may require more than one register, along pointer or LONGINT for example,
will take two registers. If that occurs the registers must be aligned. This may result in one
of the registers being skipped and left unused (more on thisin a bit).

GR31 iscalled the “millicode RP” but it is also wherethe “BLE” instruction initially
stores the current value of the PC register before making the branch. It moved to R2
immediately after that, in the “delay slot” of the branch.

RO is a scratch register that contains the value 0. It is cannot be writtento but it is legal to
use RO as atarget register when avalue is not required. For example, the “NO OP”
instruction (one that does nothing) is 08000240 OR rO, r0, r0. Logically OR RO, through
RO giving RO... nothing.

PA-RISC instructions are pipelined. Whenever a branch instruction is executed thereisa
delay in processing that branch while the target address is fetched. This delay affords the
hardware the opportunity to execute an instruction in that delay slot. The delay can be
nullified. Typically, the long branch code sequence moves R31, the target offset address
of the BLE into R2 (architected “RP”) in this delay slot.

23ed0012 LDIL $91a000,r31
e7e02640 BLE 800(sr4,r31)
08110242 OR r31,r0,r2

By the way, in DEBUG, DAT or SAT you can manually find out where this branch goes
by doing:

$235 ($70) nmdat > dcs 91a000+#800
SYS $a.91a320
0091a320 tm_unlink_plfd 6bc23fd9 STW r2,-20(sr0,r30)

37

PA-RISC Space Registers

- There are 8 space registers, SRO to SR7
- SRO saves space ID for external branches
- SR1 to SR3 loaded by software as needed
- SR4, SR5, SR6 and SR7 are defined by the calling
convention
SR4 is code, typically the space ID of your program
SR5 is data, the space ID of a process STACK

SR6 is always $b (#11), OS structures and short mapped
files

SR7 is always $a (#10), OS structures, NL.PUB.SYS and
short mapped files

Notes:

38

PA-RISC Space Registers

One point that the illustration did not mention isthat SR5, 6 and 7 can only be written by
code running at the highest privilege level which is O (user mode being 3).

39

Short vs. Long Pointers

Load and Store instructions that specify a space register of
zero intend that the hardware will derive the space register by
using the first 2 bits of the offset portion of the address and
add 4 to that giving the SR number to use.

LDW -296(0,30),22

If R30 contains 418432f0 the ‘4’ is 0100 in binary. The first 2
bits, are 01 + 4 = 5. So SR5 will be used to complete the
pointer.

Notes:

40

Short vs. Long Pointers

Here' s atable of where various addresses would be resolved using short pointer
references:

Address Range Space ID used
00000000 to JFFFFFffF SR4
40000000 to 7FFFFfFfFf SR5
80000000 to bFFFFFff SR6
c0000000 to FFFFFFff SR7

These address ranges are also called “QUADS’ as they represent ¥4 of a4GB space so
each QUAD is 1GB of address space.

The OS uses SR6 and SR7 for resident and non-resident OS structures aswell as
NL.PUB.SYS. Whatever is left over can be allocated to files opened as short mapped for
“share” access.

Files opened with exclusive access and short mapped will use SR5. Files opened this way
will also NOT have their GUFD’ s put on the storage management LRU list. The reason
for thisis simple; the GUFD contains the file' s virtual address. The file is mapped into a
process SR5 space. If the file is closed and the GUFD saved that process might terminate
invalidating the SR5. So we cannot retain the GUFD for afile opened with short mapped,
exclusive access.

41

Short vs. Long Pointers

In short pointer addressing the high order 2 bits of an offset are
used to denote the space register therefore they are NOT used
as part of the address. This means that using short pointers limits
addressability to 2(30)-1 or 1GB.

A long pointer reference would specify a space register from 1
to 7, for example:

LDW 272(srl,rl19),r21

Notes:

42

Short vs. Long Pointers: continued

The dlide says it all!

43

Procedure Calling Convention

- Stack Frames are built by non-leaf procedures so that
when they call other procedures registers can be spilled
into the frame and restored from there on return.

- GR3 through GR18 are “callee save” registers, they are
spilled, if necessary by the procedure that is being
called.

- GR19 through GR22 are “caller save” registers, saved
by the procedure making the call.

Notes:

Procedure Calling Convention

There is considerably more to the procedure calling convention than is represented on the
previous page but those are some of the more important points.

A stack frame only needs to be built if the current procedure will call other procedures. A
leaf procedure would be one that makes no calls so there is no need for it to alocate
space to spill registers.

It isworth noting that while the caller and callee are responsible for saving ranges of
registers they are not obliged to save them all. For example, the “caller save” registers
only need to be saved if they are active at the time of the call and need to be restored to
their prior state on return from the call.

This fact can make it quite difficult, if not impossible to locate values that may have been

available before a procedure call was made but which may have disappeared after the
call because they are no longer needed.

45

Procedure Calling Convention: Registers

len = FREAD (MPE_fd, &buf, -32767);

RO =00000000 40100480 013dc097 41845630 R4 =d66e8018 d66ea018 00000000 00000000
R8 =00000000 00000000 00000000 00000000 R12=00000000 00000000 00000000 00OOOOOOO
R16=00000000 00000000 00000000 00000000 R20=0000000a 013dc08c c01075a0 000002d6
R24=41845abc d44b1400 0000000a c0202008 R28=00000020 00000000 4184db30 0000008b

$5 ($2c5) nmdebug > dv sp-60,10

VIRT $2d6-4184dadO 00000000 4184568c 0000004d 4184567c

VIRT $2d6.4184dae0 00000029 00000000 00000000 00000000

VIRT $2d6-4184daf0 00000000 00000000 00000000 FFFF8001 <- sp-34
VIRT $2d6-4184db00 40bbee00 00000000 d44b1400 4164671c

$
$
$
$

File number is $a or 10. The ‘buffer’ parameter to FREAD is a lo ng pointer. As a
result it must be aligned in registers and R23 and R24 will cont ain the value
2d6.41845abc and R25 is skipped. We only use R26..R23 so the “le ngth”
parameter is saved in the stack at SP-$34.

Notes:

46

Procedure Calling Convention: Registers

The previous page illustrates how parameters for a call to FREAD would be passed. The
convention says that R26 to R23 are used for the first 4 arguments.

R26 isreferred to as“arg0” with R25 “argl”, R24 “arg2” and R23 “arg3”.

The second parameter to FREAD is defined as along pointer, which takes 64 bits (2
words). The procedure calling convention specifies that 64 bit quantities be passed with
the high order word in an ODD argument register. In this example the space ID portion of
the pointer is the high order word and it is loaded into R23 (arg3) so that the offset
portion of the address can be loaded adjacent to it in R24 (arg2). This leaves R25 (argl)
unused and the value is whatever happened to be there the last time the register was used.

Since all four of the argument registers are used the “length” parameter must be saved

into the stack. Here also, the first four positions are skipped and reserved for later use as
the values in R26..R23 may eventually need to be spilled into the stack frame.

a7

Procedure Calling Convention: Stack Frame

013dcOc8
013dcOcc
013dc0dO
013dc0d4
013dc0d8
013dcOdc
013dc0e0

013dc160

Notes:

FREAD
FREAD+$%$4
FREAD+$8
FREAD+$c
FREAD+$10
FREAD+$14
FREAD+$18

FREAD+$98

6bc23fd9
6Ttc30200
6bc43e09
6bc53el1l
6bd73dal
6bd83da9
08000240

d35al1ff0

48

r2, -20(sr0,r30)
r3,256(sr0,r30)
r4, -252(sr0,r30)
r5, -248(sr0,r30)
r23, -304(sr0,r30)
r24, -300(sr0,r30)
ro,r0,r0

r26,31,16,r26

Procedure Calling Convention: Stack Frame

The illustration shows the first things that FREAD does when it is called. These steps are
roughly the same for all OS procedures,

1. thecurrent value of R2 (RP) is saved at SP-#20, that will be picked up at the end of
the procedure to return to the caller. The caller will have had to be sure that R2 does
contain a pointer back to it!

2. if necessary a stack frame is built. One way is using a “store word and modify”
instruction (STWM) which in this particular form saves the register R3 on top of
stack and then adds the offset value to R30 moving SP out that many words.
Occasionally you may find the LDO (load offset) being used for this purpose.

3. the procedure then saves any of the “callee save” registersit needs to as well as any
of the register-passed parameters that it needs to.

What you will notice in this case is that FREAD is not saving R26, which holds the file
number.

It does not need to because all FREAD doesiscall “fread nm” which also defines file
number as the first parameter. Thisisimpossible to know without the source code so you
may be forced to make a few scientific guesses for other routines.

The key point being that you cannot expect that arguments passed in registers 26..23 will

be saved off to the stack so that you can conveniently level down to them and find what
you want.

49

Procedure Calling Convention: SP & PSP

Once the STWM (or LDO) instruction is executed to build a
new stack frame, all references to a procedure’s parameters
become “PSP” (previous stack pointer) relative.

GR26 to GR23 may be spilled to PSP-$24 to PSP-$30
respectively.

You cannot count on that occurring! There may be no need to
save a register to memory.

Notes:

50

Procedure Calling Convention: SP & PSP

SPisareal register, R30 by convention. PSP is not. It is the value of SP with the size of
the current frame subtracted.

Let’s say you run aprogram and set a break point at FREAD. At the point before the
stack frame is built you could count on the argument registers 26..23 being correct and
that SP-negative addresses would give you any additional parameters that might be there.

Once the stack frame is built those SP-negative addresses become PSP-negative
addresses.

And, as the procedure executes and calls other procedures you are less able to assume
anything about where parameter values might be if they were not initially spilled to the
stack. The only way to be sure isto read the instructions the procedure executed.

Here's atrick for helping to find how registers get moved around.
Let’s say you have the following stack trace in a dump:

PC=a.0019fe78 system_abort
* 0) SP=418562e0 RP=a.00a51bc8 sm_quarantine_gufd+$lfc
1) SP=418562e0 RP=a.00ee5a5c
tm_close_common.tm_unlink _plfd_and_gdpd+$184
2) SP=418558e0 RP=a.00ee75cc tm_close_common+$1a98
3) SP=41855860 RP=a.0158a8e4 tm_ord_fix_buf_disc+$led
4) SP=418548a0 RP=a.01164370 fclose_nm+$5d4
5) SP=418547e0 RP=a.01163d68 ?fclose_nm+$8
export stub: a.013d22a8 FCLOSE+$b8
6) SP=41854560 RP=a.013d21bc ?FCLOSE+$8
export stub: 298.00279b68 cr_fclose+$lc
7) SP=418544a0 RP=298.00272350 COB_CLOSE+$17c
8) SP=41854468 RP=298.0026e804 ?COB_CLOSE+$8
export stub: 97c.0000eld4
9) SP=418543f0 RP=97c.00000000
(end of NM stack)

You level down to look for the file number at FCLOSE (lev 6). You notice that PSP-$24
is zero, no file number there and R26 doesn’'t look good either.

$23b ($70) nmdat > env Ffilter "r26,"
$23c ($70) nmdat r26,> dc pc-b8,bc/4
013d2288 FCLOSE+$98 d35al1ff0 EXTRS r26,31,16,r26

$23d ($70) nmdat r26,> env Filter *,r26"

$23e ($70) nmdat ,r26> dc pc-b8,bc/4
013d2288 FCLOSE+$98 d35a1ff0 EXTRS r26,31,16,r26

51

Procedure Calling Convention: SP & PSP

This, admittedly very simple example shows how to look for r26 appearing either asthe
source register or destination register to see whether it has been moved. In this example
the only reference to R26 from the beginning of FCLOSE to the current offset is that one
instruction. All that is doing is extracting the right 16 bits of the register because file
number is defined as a 16 bit value.

This also assumes (which is not always a good thing) that FCLOSE has not hopped
around and executed code past the current PC location which might have saved R26
someplace you could find it. You can determine that by reading each instruction from top
to bottom and essentially “replaying” the procedure based on the data you find in
registers and on the stack (assuming you have the time and inclination!).

Here we can see that FCLOSE did not save R26 to the stack. It had no need to. Perhaps
fclose_nm did?

52

This page intentionally left blank

53

Case Study: SA663 D]

invent

PC=a.0019fe78 system_abort
NM 0) SP=418562e0 RP=a.00a51bc8 sm_quarantine_gufd+$1fc
NM 1) SP=418562e0 RP=a.00ee5a5c tm_close_common.tm_unlink_plfd_and_gdpd+$184
NM 2) SP=418558e0 RP=a.00ee75cc tm_close_common+$1a98
NM 3) SP=41855860 RP=a.0158a8e4 tm_ord fix_buf disc+$led
NM 4) SP=418548a0 RP=a.01164370 fclose_nm+$5d4
NM 5) SP=418547e0 RP=a.01163d68 ?fclose_nm+$8
export stub: a.013d22a8 FCLOSE+$b8
6) SP=41854560 RP=a.013d21bc ?FCLOSE+$8
export stub: 298.00279b68 cr_fclose+$1c
7) SP=418544a0 RP=298.00272350 COB_CLOSE+$17c
8) SP=41854468 RP=298.0026e804 ?COB_CLOSE+$8
export stub: 97c.0000eld4
9) SP=418543f0 RP=97c.00000000
(end of NM stack)

Notes:

Case Study: SA663

A system abort 663 occurs when a problem is encountered in a file system structure but
the Subsystem Dump facility has not been enabled by running SDUTIL. Had it been
enabled the file system and storage management would have been able to quarantine the
file preventing it from being accessed until it could be checked and, if necessary restored
with a good copy.

Since the failure is the result of a problem with a file the first thing to do would be to find
out what file that is.

We already know that FCLOSE would not have saved the file number in the stack so
there is no point looking there. The routine fclose_nm may have.

Note! The“level” (lev) command is used to move to a particular stack frame in a trace.

Y ou always move to the “level” one past the code you want to look at. We want to look
at “fclose_nm” so we must set the level to 5 not 4.

55

Case Study: SA663

($70) nmdat > lev 5

($70) nmdat > dv psp-60,10

$866.41854500 $ d6ef0a94 41854418 05650003 4f4bbecl
$866.41854510 cal2a970 0300000a 84000000 013d21lbc
$866.41854520 06020000 00000000 00000003 00000000
$866.41854530 01030000 00000000 41850000 4185000d

fclose_nm has spilled the file number $d to the stack.
Remember that the file number is a 16 bit value (see the
FCLOSE intrinsic definition).

Notes:

56

Case Study: SA663 continued

Y up, it did save the file number in the stack. Well, to be honest we would have to assume
that the $d is the file number just by looking at the value in PSP-$24. If we wanted to be
absolutely certain it is (and absolute certainty is handy a lot of the time) then we would
need to examine the code that fclose_nm executed to see if it did spill the file number
parameter to the stack.

01163d9c fclose_nm 6bc23fd9 STW r2,-20(sr0,r30)
01163da0 fclose_nm+$4 6fc30500 STWM r3,640(sr0,r30)
01163dad4 fclose_nm+$8 6bc43b09 STW r4,-636(sr0,r30)
01163da8 Tfclose _nm+$c 6bc53b11 STW r5,-632(sr0,r30)
01163dac Tfclose_nm+$10 6bc63b19 STW r6,-628(sr0,r30)
01163db0 fclose_nm+$14 6bc73b21 STW r7,-624(sr0,r30)
01163db4 fclose_nm+$18 6bc83b29 STW r8,-620(sr0,r30)
01163db8 Tfclose _nm+$ic 6bc93b31 STW r9,-616(sr0,r30)
01163dbc fclose_nm+$20 67da3abd STH r26,-674(sr0,r30)
01163dcO0 Tfclose_nm+$24 67d93ab5 STH r25,-678(sr0,r30)
01163dc4 fclose _nm+$28 67d83aad STH r24,-682(sr0,r30)
01163dc8 Tclose_nm+$2c 67d73aa5 STH r23,-686(sr0,r30)

Y es, the file number really was saved to the stack frame. Note that a sore half-word was
used since the file number is a 16 bit value.

The value of R26 should be stored to PSP-$24 so if we want to check we can do the
math:

$243 ($70) nmdat > =#674-#640
$22

The location it was saved to, SP-#674 less the size of the stack frame, #640 results in the
value hexadecimal 22. Since it is a half word quantity and is aligned in the right 16 bits of
the value it should really be saved at PSP-$22 and that’ s exactly where it is.

VIRT $866.4185453c $ 4185000d
- SP-$21
-— SP-$22
- SP-$23
- SP-$24

57

Case Study: SA663

$193 ($70) nmdat > fs_TfTile(,d)
Filename: TESTFILE.PUB.AP

Native Mode file
Access options: APPEND,NOMR,LOCK,SHR,BUF, NOMULTI ,WAIT,N OCOPY
Access method: $0

Last error number: $0

File options: SYS,BINARY,FORMAL ,F,NOCCTL,DEQ,STD,NOLABEL
File code: $9c5

Record size: $100

Block size: $100

Record limit: $fffeff00

lIdev: $76

Notes:

58

Case Study: SA663 continued

Now that we have the file number we can use the FS_FILE macro to display information
about this file. The most important thing is the file name because if this file is damaged
and could not be quarantined there is a good chance someone else may try to access the
file which could cause another system abort.

Notice the record limit on the file. That’s pretty large. The proper way to convert that to
decimal isthis:

$245 ($70) nmdat > =U32(FFfeff00),d
#4294901504

$246 ($70) nmdat > =Fffeff00,d
#-65792

Unless otherwise directed numbers are treated as signed 32 bit values. So if you do not
say that the value should be treated as an unsigned value all you get is a negative number
back.

If you look at the type “GUFD_T” you will see that the field “FILE_SIZE” is defined as
aBIT32 which is how an unsigned integer is defined.

59

Case Study: SA663

$19d ($70) nmdat > lev 2
$19e ($70) nmdat > dc pc
SYS $a.eebabc

00Oee5a5c tm_close_common.tm_unlin*+$184 2000008f ** Stmt 1 43

$19f ($70) nmdat > dcx pc-184,188/4

Notes:

60

Case Study: SA663 continued

Recognizing that we do not have the source code and cannot just go look at what may
have caused the problem we can try to find out some relevant information.

The 2" level proceduretm unlink_plfd_and_gdpd of tm_close_common made the call to
sm_quarantine_gufd. The question is, why did it want to quarantine the GUFD?

We can dump out the code for that 2™ level routine from its beginning up to the location
of the PC counter in that routine as shown in the illustration above. The DC command
expects a“count” and so we provide avalue 4 bytes larger than the current PC offset and
then because that offset represents bytes and we want 32 bit words we divide by 4.

That formulawill produce an inclusive list of all instructions executed from the
beginning of the procedure through the instruction pointed to by PC.

Also note that while the DC command could have been used, the DCX macro was used

instead. This macro translates the “long call” sequence of LDIL and BLE and displays
the name of the procedure being called by that sequence.

61

Case Study: SA663

tm_close_common.tm_unlin*+$118 4bda3ebl -168(sr0,r30),r26
tm_close_common.tm_unlin*+$11c 287fefff $FFFFFf000,r 3,1
tm_close_common.tm_unlin*+$120 343900c8 100(rl),r25
tm_close_common.tm_unlin*+$124 4bd83ea9 -172(sr0,r30),r24
tm_close_common.tm_unlin*+$128 23ed0012 $91a000,r31
tm_close_common.tm_unlin*+$12c e7e02430 536(sr4,r31)
$a.ee5al04 *Call To: tm_unlink_gdpd
tm_close_common.tm_unlin*+$130 0810242 OR r31,r0,r2
tm_close_common.tm_unlin*+$134 2000008d ** stmt 141
tm_close_common.tm_unlin*+$138 4bd63ea9 LDW -172(sr0,r30),r22
tm_close_common.tm_unlin*+$13c 4ac10000 LDW 0(sr0,r22),r1
tm_close_common.tm_unlin*+$140 84202132 COMIBT,=,N O,rl1,tm_unlink
_plfd_and_gdpd+$1e0

Notes:

62

Case Study: SA663 continued

[llustrated above is a small portion of the code that would be displayed by the DCX
macro call.

From this we can see that the 2™ level procedure made a call to the procedure
tm_unlink_gdpd. On return from that procedure avalue a SP-#172 was loaded into R22.
Then R22 was used to load a value into R1. The value in R1 was compared to zero
(COMBIT is compare, immediate branchif true) and if the condition was met PC would
have moved to apoint BEY OND where we would have called sm_quarantine_gufd. So
the next thing we would want to look at is that value since it is looks like we did not take
that branch.

Note: Technically it would be incorrect to say that the code did not take that branch. In
actual fact the branch may have been taken and another branch might have move PC back
to the instruction just following the branch at offset $140. If after looking at the value it
should have used you find that it should have taken the branch the next steps (and thisis
where it gets time consuming) would be to walk through the instructions in an attempt to
replay the code. This becomes so time consuming that it really is not worth the
investment in time.

63

Case Study: SA663

Notes:

($70) nmdat > dv sp-#172
$866.41855834 $ 418545a8

($70) nmdat > dv [sp-#172]
$866.418545a8 $ fc0e008F

($70) nmdat > wl errmsg(S16(fcOe), 8F)

manager; unable to unlink the GDPD.

Case Study: SA663 continued

The illustration shows how we would mimic the actions of the instructions to find out
what this value was.

The command
$1a2 ($70) nmdat > dv [sp-#172]

Employs indirection ([and]) so that rather than loading the value at SP-#172 we are
instead saying take the value at SP-#172 and show me what it points to.

The value that it pointsto looks like it could be an HPE_STATUS. This would make
sense because the call to tm_unlink_gdpd passed in R24 the value at SP-#172 o it would
be logical to assume that this is a status variable and on return from the procedure we are
checking it to see if the call succeeded.

Note: Most HPE_STATUS values have athe following characterigics:
The left 16 bit value will be negative “info” value, positive values are warnings
but because they are positive they are harder to spot if you are guessing
Theright 16 bits will have a small positive “subsys’ value. You can get alist of
subsystem values with “syml subsys@,,const”. There will be a few non-
subsystems scattered in there but most will be valid MPE/iX subsystem numbers.

One of the tricks in successful dump reading is being able to identify a something just by
they way it looks. For example:

Tfet00a6

That looks like it could be an HPE_STATUS. It has a negative “info” field and the “a6”
happens to be a valid subsystem number. Where as

00ab9a00

Does not look like it could be avalid HPE_STATUS value. The *9a00’ isway out of
range of subsystem numbers.

65

Case Study: SA663

$1a6 ($70) nmdat > fv fs_gufd(fs_plfd(,d)) "gufd_t*~

RECORD

FILE_VIR_ADDR

GDPD_PTR

QUARANTINE_REASON
ALL : fc0e008TF
QUARANTINE_TIME : 3b167877d4453
EOF_OFFSET : 94dd300

STORE_ACTIVE

Notes:

66

Case Study: SA663 continued

Finally we can format the GUFD for file $d and see that it agrees with what was found,
the bad status was $fc0e008f.

There are some other interesting things to be seen; the GDPD_PTR is zero. This should
be a pointer to the last GDPD in alinked list. Since the call to tm_unlink_gdpd failed we
could assume (and it would be correct!) that the failure was due to the fact that this value
is null. Something else seemsto have either cleared the value or unlinked the GDPD
erroneoudly. It is also possible that the file being closed was never actually linked into the
list correctly in the first place.

That’s a problem with reading memory dumps, it’s relatively simple to find out what
happened. Figuring out why or how it happened is far more difficult!

One final bit of potentially interesting information is the fact that the GUFD field
STORE_ACTIVE is 1. That seemsto imply that a STORE may be running. Thisis
another of those “how can you tell without the source code” problems.

The most direct way of confirming the suspicion would be to find out if STORE is
running. That can be done by setting afilter on the string “STORE” and using the
PM_PTREE macro (with no input PIN) to scan all processes in the dump:

$251 ($70) nmdat > env Filter "STORE-"
$252 ($70) nmdat STORE> pm_ptree
$1d7 (STORE.PUB.SYS) #J2697
$21d (STORE.PUB.SYS) #J2697

It’s running alright. So does that mean STORE did this? No, obviously not but it would
be a data point.

If you are reporting this to the Response Center you can supply this information in your
initial contact with them. If there are internal reportsthat indicate there is problem the
support engineer may be able to recommend a patch right away. Y ou can also check the
ITRC database to see if there are any documents reporting this too.

This information can also be recorded in afailure log for later reference.
Last but certainly not least, since the problem involves afile it would be wise to schedule

atime to run FSCHECK. The problem itself is unlikely to be due to physical damage to
the file but why take chances.

67

Hangs
- hangs are usually difficult to diagnose.
- determine the scope of the hang, what is affected

- gather as much information as possible BEFORE
deciding to get a memory dump.

- if you have to reboot the system to clear a hang you
may as well get a memory dump too, time permitting

- memory dumps of hangs can be MUCH larger than
system abort memory dumps

Notes:

68

Hangs

Hangs do tend to be more difficult to diagnose than aborts. Often what is called a “hang”
isreally a performance slow-down. It can often be limited to a particular application or
area of the OS.

If the sole function of a system isto run account’s payable and the accounts payable yet
anyone trying to do so hangs then it istechnically correct that the “system” is hung. But
telling that to a support engineer might mislead them badly!

If isimportant to determine the scope of the problem. Are only certain users affected?
Are certain programs or applications affected?

Isit possible to log on the system? And log off? Does a control-A produce an equal (=)
sign? If so than the OS is able to respond.

If people are unable to connect to the system how are they connecting, DTC, TELNET,
VT, FTP, viathe web? Do some connection methods work where others don’t

If the problem is going to require a reboot to clear it then if you haven't determined the
cause and can invest the time you should get a memory dump. Even if al you do is hold
onto it, it is better to have it than not have it if the problem appears again.

But remember, memory dumps of hangs can be a log larger than memory dumps of
system aborts. They will take longer, especially if you are writing them to tape.

69

Before a Memory Dump

- repeating the SHOWPROC command can tell if
processes are using CPU time or not

- SHOWIJOB will tell what is presently running

- SHOWQ/SHOWWG will show the present queue &
workgroup settings

- are disks active or idle

- use debug to trace suspect processes
- macros such as pm_semaphore, rm_semaphore can help

Notes:

70

Before Memory Dump

Gather as much information as possible!

If you are able to log on or if asession logged on as MANAGER.SY Sis already logged
on you should try to gather as much information as possible.

SHOWPROC is extremely useful in cases where the system is not completely hung up
but people are complaining of problems. For example,

SHOWPROC PIN=1;TREE;SY STEM

Will display all processes on the system. Use this to locate processes that may be
blocked. Y ou would see either “BLKMM” or “BLKCB” for processes blocked on
memory or on a control block.

If you find processes in this state repeat the SHOWPROC command on those specific
PIN’sto seeif their CPU time increases. It is completely normal for processesto be
blocked in thisway but if they remain blocked without accumulating CPU time then they
may be part of the problem. They would be a good place to begin looking.

Y ou can use DEBUG to trace their stacks too. A useful way to do this would be as
follows, say we find PIN 9a blocked on memory and it appears to be using CPU time but
anytime you catch it with SHOWPROC it is back in that BLKMM state:

$1a ($2d) nmdebug > pin 9a;tr,i,d

Y ou will notethat the pin command and the trace command are submitted together
separated by a semicolon. That minimizes the time between the two commands so you
areamore likely to catch the processin away that will allow a useful trace to be
displayed. Remember, the process is running, it may be slow, but it’s running!

Y ou could also usethe “CRON” (carriage return repeats the last command) feature, asin:
$1b ($2d) nmdebug > set cron

Then all you would need to do is press return to capture atrace.

If the process is using NO CPU time then you would still want to grab a stack trace

because you may find that the process is blocked on something which can be fixed
without the need of getting a memory dump!

71

Case Study: Hang Memory Dump

$150 ($0) nmdat > process_wait

DISPATCHER INFORMATION FOR A PROCESS

Wait Event i Blocked Reason

LONG_WAIT Known Port f fffffed
Progen Global Port
LONG_WAIT JUNK_WAIT

LONG_WAIT Control Block CNTL_BLOCK__ T
LONG_WAIT 1PC TERMINAL_READ_WAIT
LONG_WAIT I1PC Jsmain Port FfFFF7fbO
LONG_WAIT 1PC CHILD_WAIT

LONG_WAIT Control Block CNTL_BLOCK_WAIT

Notes:

72

Case Study: Hang Memory Dump

If you have a memory dump of a hang it is not so important to begin looking at stack
traces asit is finding “interesting processes’. These would be processes blocked in ways
that would not be normal.

Now, without having had the complete MPE/iX internals training and a few years of
reading memory dumps, knowing what is “normal” is not quite that ssmple. For example,
“JUNK_WAIT” doesn't look al that normal but it is. Pin 2 isthe CM loader process and
that is how it normally waits. Likewise, pin 1 is PROGEN and it waits on a “port”.

[llustrated on the previous page is output from the PROCESS WAIT macro which
walks down the list of processes and reports what they are blocked on. Thisis probably
the best macro to employ when beginning to look at amemory dump of a hang. This
macro can be used in DEBUG as well, but when the system is running, even slowly you
would need to be skeptical of any output because process states could change.

The“CNTRL_BLOCK_WAIT” is definitely an “interesting process’ because this
indicates that the process has blocked on a semaphore.

The full listing from PROCESS_WAIT actually showed alarge number of processesin
this state.

73

Case Study: Hang Memory Dump

$151 ($0) nmdat > pin 86

$152 ($86) nmdat > pm_semaphores

ADDRESS OF SEMAPHORE WAITED ON: $b.88ael9b0
$154 ($86) nmdat > rm_semaphore b.88ael9b0

List of pins waiting on semaphore at $b.88ael9b0

$60 $6e $76 $7e $86 $8e $92 $96 $9a $9e %a2 $a6 $aa Sae

Pin $35 has an exclusive lock on shareable semaphore at $b.88ael9b0

Notes:

74

Case Study: Hang Memory Dump continued

What we do once we find an interesting process is to switch to that pin and have a look at
thetrace. That isn’'t shown inthe illustration on the prior page:

$14a ($0) nmdat > pin 35

$150 ($35) nmdat > tr,d,i
PC=a.0017099c enable_int+$2c

NM* 0) SP=41853ef0 RP=a.00786004
notify dispatcher.block current_process+$338
NM 1) SP=41853ef0 RP=a.00787e44 notify_dispatcher+$268
NM 2) SP=41853e70 RP=a.001b6034 sem_ block.wait_for_resource+$lbc
NM 3) SP=41853d70 RP=a.001b6428 sem_block+$358
NM 4) SP=41853cb0 RP=a.00757ce8 cb_shr_lock+$240
NM 5) SP=41853bb0 RP=a.00757a94 ?cb_shr_lock+$8

export stub: fb.011380f8 lock"set"exclusive_345+$230
NM 6) SP=41853a70 RP=fb.0113bc78 nmdbunlock+$16f4
NM 7) SP=41853a30 RP=fb.0109ae70 dblock+$10c
NM 8) SP=418522b0 RP=fb.0109ad38 ?dblock+$8

export stub: 48f.000060a0
NM 9) SP=418521b0 RP=48f_.00000000

(end of NM stack)

Thecall to “SEM_BLOCK” at level 3 (or 4 if we want to look at the parametersto it!) is
what causes the process to block on a semaphore owned by some other process.

[llustrated is the use of the PM_SEMAPHORES macro which is actually an easier way of
extracting the address of the semaphore. That address can then be passed to the
RM_SEMAPHORE macro which will list the processes waiting on it as well as the
owner PIN and format it for you (not shown in the illustration).

75

Case Study: Hang Memory Dump continued

$152 ($86) nmdat > pm_semaphores
ADDRESS OF SEMAPHORE WAITED ON: $b.88ael9b0

$154 ($86) nmdat > rm_semaphore b.88ael9b0
List of pins waiting on semaphore at $b.88ael9b0
$60 $6e $76 $7e $86 $Be $92 $96 $9a $9e $a2 a6 Paa $ae

Pin $35 has an exclusive lock on shareable semaphore at
$b.88ael19b0

RECORD
SEM_INFO_WORD :
SEM_STATE : 2
SEM_LOCK : 1
SEM_SPEC : 4
SEM_CLASS : 39
SEM_OWNER : 35

SEM_OWNER_COUNT : 1
SEM_WAIT_COUNT : e
SEM_HEAD_WAITER : d3818280
SEM_TAIL_WAITER : d382bas0

END

The“SEM_HEAD WAITER” and “SEM_TAIL_WAITER” fields are actually PIB
pointers formatted using the type PIB_TY PE.

The RM_SEMPHORE macro isalot easier asit displays the list of pinsthat are currently
blocked waiting for this semaphore.

If you had wanted to manually get the address of the semaphore then you would do it this
way:

$166 ($35) nmdat > lev 4

$167 ($35) nmdat > dv psp-28,2
VIRT $480.41853b88 $ 0000000b 88ael18d0

The semaphore address is passed, as a long pointer to SEM_BLOCK so it will be found
at PSP-28 and PSP-24.

This is another of those “how can | know this without the source code” problems. So that
iswhy | am sharing it here J

76

Case Study: Hang Memory Dump continued

Now that you have the address of the semaphore you could, for example, use the function
VAINFO to get the BASE_V A (or address) of that semaphore. It is very likely to be a
part of some larger structure. VAINFO could also be used to tell you the OBJ CLASS
(object class) of the structureit is in. These would be useful data points.

$169 ($35) nmdat > wl vainfo(b.88ael8d0, "BASE VA®)
$b.88ae0000

$16a ($35) nmdat > wl vainfo(b.88ael8d0, "OBJECT_ CLASS")
$16e

With the object class you can set afilter on the value, $16e and then use the SYMLIST or
SYML command to see what that may be. Object class constants in the OS all begin with
the string OBJCL

$16b ($35) nmdat > env filter "l1l6e"

$16¢c ($35) nmdat 16e> syml objcl@, ,const
OBJCL_TURBO_GLOBAL_CB CONST INTEGER $16e

So the semaphore is in an object whose class is OBJCL_TURBO_GLOBAL_CB.

77

Case Study: Hang Memory Dump

$156 ($86) nmdat > pin 35

$157 ($35) nmdat > tr,d,i
PC=a.0017099c enable_int+$2c
NM* 0) SP=41853ef0 RP=a.00786004 notify_dispatcher.block_current _process+$338
NM 1) SP=41853ef0 RP=a.00787e44 notify dispatcher+$268
NM 2) SP=41853e70 RP=a.001b6034 sem_block.wait_for_resource+$lbc
NM 3) SP=41853d70 RP=a.001b6428 sem_block+$358
NM 4) SP=41853cb0 RP=a.00757ce8 cb_shr_lock+$240
NM 5) SP=41853bb0 RP=a.00757a94 ?cb_shr_lock+$8
export stub: fb.011380f8 lock"set"exclusive_345+$230
6) SP=41853a70 RP=fb.0113bc78 nmdbunlock+$16f4
7) SP=41853a30 RP=fb.0109ae70 dblock+$10c
8) SP=418522b0 RP=fb.0109ad38 ?dblock+$8
export stub: 48f.000060a0

Notes:

78

Case Study: Hang Memory Dump continued

At this point we know that Pin 86 was blocked on a semaphore owned by Pin 35. We
want to go look at what Pin 35 is doing and we find that this process has called DBLOCK
and is also blocked. Notethat it also has “SEM_BLOCK?” in its stack trace. You only see
this when a process blocks on a semaphore.

We need to see what semaphore this process is waiting on.

Interms of red flags, thisisagreat big banner sized flag, a process owning a semaphore
is also blocked on one! Not agood sign at all.

79

Case Study: Hang Memory Dump

$158 ($35) nmdat >pm_semaphores

ADDRESS OF SEMAPHORE WAITED ON: $b.88ael8d0
$159 ($35) nmdat > rm_semaphore b.88ael8d0

List of pins waiting on semaphore at $b.88ael8d0

$35 $72 $7a $82 $8a

Pin $60 has an exclusive lock on shareable semaphore at $b.88ael8d0

Notes:

80

Case Study: Hang Memory Dump

Thisis exactly what was done with Pin 86. Here we see that pin 60 owns the semaphore
that pin 35 is blocked on.

So let’sgo to pin 60...

81

Case Study: Hang Memory Dump

$15a ($35) nmdat > pin 60

$15b ($60) nmdat > tr,d,i
PC=a.0017099c enable_int+$2c

NM*
NM
NM
NM
NM
NM

Notes:

0)
D
2)
3)
4)
5)

6)
7
8)

SP=41853ef0
SP=41853ef0
SP=41853e70
SP=41853d70
SP=41853ch0
SP=41853bb0

export stub: fb.
RP=Fb .
RP=Fb.
RP=Fb.

SP=41853a70
SP=41853a30
SP=418522b0

export stub:

RP=a.
RP=a.
RP=a.
RP=a.
RP=a.
RP=a.

00786004
00787e44
001b6034
001b6428
00757ce8
00757a94
011380f8
0113bc78
0109ae70
0109ad38

notify_dispatcher._block_current _process+$338
notify_dispatcher+$268
sem_block.wait_for_resource+$1lbc
sem_block+$358
cb_shr_lock+$240
?cb_shr_lock+$8
lock"set"exclusive_345+%$230
nmdbunlock+$16 f4
dblock+$10c
?dblock+$8

309.000060a0

82

Case Study: Hang Memory Dump continued

We seem to have a pattern developing here...

Pin 60 owns a semaphore but it aso has both a DBLOCK call and a SEM_BLOCK call
inits stack. So it is also waiting on a semaphore while holding one just like pin 35.

We will use the same two macrosto look at what pin 60 is waiting for.

83

Case Study: Hang Memory Dump

$15c ($60) nmdat > pm_semaphores

ADDRESS OF SEMAPHORE WAITED ON: $b.88ael9b0

$15d ($60) nmdat > rm_semaphore b.88ael9b0

List of pins waiting on semaphore at $b.88ael9b0

$60 $6e $76 $7e $86 $8e $92 $96 $9a $9e %$a2 $a6 $aa Sae

Pin $35 has an exclusive lock on shareable semaphore at $b.88ael9b0

Haven’t we been here before?

Notes:

Case Study: Hang Memory Dump continued

Pin 60 is waiting on the semaphore that pin 35 holds. Pin 35 is waiting on the semaphore
that pin 60 holds. The classic deadly embrace.

The macro RM_SEM_DEADLOCK would actualy have been a much better choice here,
as it would have detected this and displayed the two pins involved:

$161 ($0) nmdat > rm_sem deadlock

*hkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkikkhkkhkkkkkkk*k

* Deadlock detected. *

*hkkhkkhkkhkkhkkhkkkhkkhkkhkkhkkhkkhkkhkkkkkkikxkx

Suspected PINs: $$35 $60 $$60 $35

The output “$$35” and “$$60” indicate the holders of semaphores and “$35” and “$60”
are the pins waiting. The problem is obvious!

85

Case Study: Hang Conclusion

- the hang is due to a database locking problem

- the memory dump probably was not necessary, DBUTIL
“SHOW LOCKS” would probably have helped
determine what the problem was

- the TELESUP utility “UNDEDLOCK” might even have
been able to correct it

Notes:

86

Case Study: Hang Conclusion

Thisis pretty obviously an application problem. Two programs are locking datasetsin a
database in the opposite order.

It isalso very likely that some far less drastic measure could have been taken to diagnose
this short of taking the system down and dumping it.

Unfortunately most system hang’s are not as easy and obvious as this one was to
diagnose. Any information that can be gather beforehand will help.

87

