
Database
Update

Vikram Kumar B T

CSY

Aug 2001

•Increase limits of a database

•Support of dataset size > 80GB

•Support find by record number
in QUERY

•Native QUERY allows runtime
PARM=%777

•Support ANSI SQL AS clause
in select statement

Enhancements
included in
6.5 Exp. 2

&
7.0 Exp. 1

Increase limits of a
database

•New version of DBSCHEMA allows higher
limits

•Rootfile version will be ‘C’5 if
datasets/items/paths exceed old limits

•Applications need to increase buffer size for
DBINFO mode 103, 203, 204 and 301

•For debugging purpose, DBUTIL flag available
>>ENABLE basename FOR OLDINFOLIMITS

•DBCONTROL mode 20 allows applications to
negate the DBUTIL setting in the specific
DBOPEN

•Increase number of datasets per
database to 240
•Increase number of items per
database to 1200
•Increase number of paths (from
master to detail) to 64

•Old apps, DB has old limit : continue to work
•Old apps, DB has higher limits :data MAY overrun the
buffer, apps MAY abort

•Old apps, DB has higher limits, flag set :DBINFO returns
error -270

<<new apps : increase buffer, call DBCONTROL 20>>
New apps, DB has old limit : continue to work
•New apps, DB has higher limits : DBINFO returns larger
buffer

•New apps. DB has higher limits, flag set : DBINFO returns
lager buffer

Support of dataset size
> 80 GB

•Use record number instead of record name as the
internal pointers

•Need to specify $CONTROL LARGESET in
DBSCHEMA to create a database in record number
format

•Rootfile version will be ‘C’6 to denote the database
is in record number format

•Only one format allowed for a given database

•Use DBBIGSET.PUB.SYS to migrate databases

•DBINFO mode 406 tells what are the features used

•DBUTIL >>SHOW basename ALL will display

Using 24bit/8bit record name format
as the internal pointer limits the
maximum dataset size to 80GB.
Changing record name format to
record number format allows dataset
size greater than 80GB.

DBINFO mode 406, 17th element:
bit 0..15 where 15 is the rightmost bit
bit 9 : higher limit
bit 10: record number format
bit 11: not use
bit 12: MDX
bit 13: B-tree
bit 14: Jumbo
bit 15: DDX

Rootfile version in Rootfile record 0
‘C’2 -- base --- C.05.XX and before
‘C’3 -- jumbo --- C.06.XX
‘C’4 -- b-tree --- C.07.XX
‘C’5 -- limit --- C.09.XX
‘C’6 -- record number --- C.09.XX

Find by Record number
in QUERY

•Record number is preceded by a # sign

•Default record number is a decimal number

•Record number can be an octal (preceded by %) or
a hexadecimal value (preceded by $)

•Examples: to read the fifteenth record in the dataset
INVOICES

• FIND INVOICES.#15

• FIND INVOICES.#%17

• FIND INVOICES.#$f

User can find a specific record by
giving a record number after the
dataset name
>FIND datasetname.#recordnumber

QUELXD6 Oct 2000 D.03.17

Also Support for new IMAGE Limits

Display percent
completion in QUERY

•New command VERBOSE to enable the report

•New command TERSE to disable the report (this is
default)

•Enhance command SHOW to show VERBOSE and
SHOW ALL to display all options

•Use SETVAR HP_QUERY_PROGRESS_INTERVAL nnn
to set the time interval. The value nnn is 1 to 65000
in seconds, with the default is 30 seconds

•Patch QUELXJ0 released

Query/iX will give a progress report
during long database retrievals for
commands such as FIND, SUBSET
or MULTIFIND:

aaa ENTRIES AFTER bbb RECORDS OUT OF ccc IN
STEP ddd OF eee

•QUELXE9 Dec 2000 D.03.18
Business Basic Floating Decimal Fix

•QUELXJ0 Feb 2001 D.03.19
Progress Reporting Enhancement
VERBOSE/TERSE Commands
SHOW Improved - All option
Performance enhancements

Other QUERY Patches •QUELXP5 Apr 2001 D.03.20

Report Reals trailing zero fix

QUERYCM is no longer being updated
(still 3.17) and will be deleted in the
future.

Query has done a FIND of 16,700,000
records (the FIND Limit) on a 979-100
under MPE/iX 6.5 with Jamaica discs in
under 14 minutes. (MUSIC database)

•Large file dataset

•TurboIMAGE scalability II

•Increase Allbase limits

•Allow one store procedure to
call another store procedure

•IMAGE/SQL NOAUTOs

•(Allbase Auto-increment)

Enhancements
ready to test/ submit

Large file data set

•$CONTROL LFDS in DBSCHEMA to create large file
dataset, which is default

•May need $CONTROL LARGESET if the capacity is too big

•The maximum large file dataset size is 128GB, if exceeds,
need to make the dataset jumbo

•Large file dataset and jumbo dataset cannot co-exist in the
same database

•Rootfile version will be ‘C’7 and bit 8 will be true if database
has at least one large file dataset

•Basic migration tool : DBLOAD/DBUNLOAD to disk

For a dataset larger than 4GB, use
MPE large file feature instead of
jumbo dataset.

TurboIMAGE
scalability II

Put/Delete semaphore

•Used to serialize DBPUT/DBDELETE/DBUPDATE activities

•One semaphore per database

Usage of put/delete semaphore

•Control the modification to the dataset file label

•Cover XM rollback at intrinsic level

•Avoid deadlock between data block locks

•Manage dynamic dataset expansion

DSEM

•Group related datasets together

•Different group can be modified concurrently

Divide Put/Delete semaphore down to
block level

TurboIMAGE
scalability II

•Lock dependency semaphores (one for each dataset)
one at a time

•lock all the necessary data blocks
•release the dependency semaphore

•Release all the data block locks at end of intrinsic
•EHWM introduced for detail dataset

•EHWM resides in dataset user label, starts from
15th double word (1 base)
•each EHWM has 21 entries, each entry
represents a block, with the 1st entry as a header
•each entry occupies 8 bytes
•allocated when the first DBPUT (if EHWM
enabled) access the dataset
•deallocate when user disable EHWM

•DBUTIL
>>ENABLE basename FOR EHWM

0th entry

1st 2nd 3rd 4th 5th 6th 7th 8th

1st 2nd 3rd 4th 5th 6th 7th 8th

Nth entry

E H W M

.

.

.

Blocking Factor No. of Entries

Block number PIN No. of records
used in block

Increase Allbase limits

•Increase number of pages for
runtime control block from 2000 to
6000
•Increase number of concurrent
transactions from 250 to 750

Allbase/SQL H0

Under beta testing

SP Calling SP
CREATE PROCEDURE [Owner.]ProcedureName [LANG = languagename]

[(ParameterName ParameterDataType

CREATE PROCEDURE [Owner.]ProcedureName [LANG = ProcLangName]

[(ParameterDeclaration [, ParameterDeclaration] [...])]

[WITH RESULT ResultDeclaration [, ResultDeclaration] [...]]

AS BEGIN

ProcedureStatement;

EXECUTE PROCEDURE [Owner.]ProcedureName

[(ActualParameter) [,...]]

where ActualParameter =

[ParameterName =] ParamaterValue [OUTPUT [ONLY]]

[...] END ;

[IN DBEFileSetName]

SP Calling SP

where ParameterDeclaration =

ParameterName ParameterType [LANG = ParameterLanguage]

[DEFAULT DefaultValue] [NOT NULL] [OUTPUT]

where ResultDeclaration =

ResultType [LANG = ResultLanguage] [NOT NULL]

Example:
CREATE PROCEDURE ReportMonitor (PartNumber CHAR(20)) AS
BEGIN

EXECUTE PROCEDURE RemoveParts(:PartNumber);
RETURN ::sqlcode ;

END ;
Constraints : Return Value from Execute Procedure within the Create Procedure

can't be assigned to variable.

Extra enhancement

•For auditing from the log file

•Users use the same logon with different
session name

•No userident being passed through
password/userident parameter of DBOPEN call

•DBUTIL flag
>>ENABLE basename FOR FORCESESSION

Use session name as user identifier in
the log file to help the auditors to
differentiate users with the same
logon.

IMAGE/SQL NOAUTOs

• ATTACH [WITH OWNER]
[noauto/ auto] [noautosplit/
autosplit]

• Automatic masters will not be
attached in IMAGE/SQL
‘ATTACH’ command

• Automatic split of compound
items will not be done

• Lab testing complete

• Call for beta testing

• Release vehicle to be identified

• NO AUTOVIEWS investigated

• Require Allbase DBCORE
changes

• Not addressed now

Three requests included:

• make TurboIMAGE thread
aware and thread safe

•make TurboIMAGE forkable

•pass ‘base ID’ between
processes

Investigation
for

making TurboIMAGE
thread safe

(TOP SIB ITEM)

Thread Characteristics:

•Thread has its own PIN
•Thread has its own stack
•Thread shares SR5 space

•Runtime Control Block (DBUX/DBU)
- One per DBOPEN
- transaction information
- locking information
- logging information
- current record pointers
- opened files
- trailer area

•Global Variables
- qlock_trace
- bti_global
- ccu_global
- chunk_control

•Open Files
- except rootfile, not using file system intrinsics
- maintain own current record pointers
- use SMCB

Problems for not being thread safe:

•Runtime control block
•Global variables
•Open files

Fork() Characteristics:

•Forked process inherits characters
from its parent
•Forked process has its own SR5
•Duplicate some file system data
structures and share some

•Runtime Control Block (DBUX/DBU)

- Not able to duplicate file system data structure of
DBUX and DBU

- Many fields not suitable for sharing
- State of the process while forking

•Global Variables
- qlock_trace
- bti_global
- ccu_global
- chunk_control

•Open Files
- except rootfile, not using file system intrinsics
- maintain own current record pointers
- use SMCB

Problems for forking:

•fork() will fail if DB opened
•Runtime control block
•Global variables
•Open files

Pass ‘base ID’ between processes:

•threads
•forking/forked processes
•father/son processes
•unrelated processes

What is ‘base ID’?

•An index into an array of DBUs this
process has opened
•Array resides in DBUX

•Pass ‘base ID’ means share DBU

- What if the receiving process already has the same DB
opened?

- Who is the owner?

- What if process terminated?

- How to handle user logging?

Options for Runtime Control Block

• Copying DBUX and DBU

• Sharing DBUX and DBU

•Pros for Copying

- Separate current record pointers

- Distinct XM related data structures

- ‘accessor entry’ in DBG matches with no. of DBU

- Separate DBU trailer area

- Same process termination procedure

•Cons for Copying

- Time consuming to duplicate DBUs

- May have space problem in SR5 for threads

- May conflict the “inherit” concept

Options for Runtime Control Block

• Copying DBUX and DBU

• Sharing DBUX and DBU

•Pros for Sharing

- The key concept for thread is sharing, so does DBU

- Share DBU will share open files

- Share DBU will share current record pointers

•Cons for Sharing

- Need mechanism to control the currency of XM and
locking in DBU

- Need space control procedures to handle DBU trailer
area

- Need extra space for log record belongs to different PIN

- Break the coherency among the DBOPEN, “accessor
entry” and DBU

Feedback:
•If share, it shares current record pointer
too. It is programmer’s responsibility to
handle it correctly

•For thread, concurrency is the key. Lock
out other thread for the duration of a
whole intrinsic is not acceptable

•To make fork() work is very important too

Recommendation:
•Passing “base ID” between any two
processes is too vague and ambitious

•If we do decide to implement, may
implement in phases

•Thread should share DBUX/DBU

•Fork() should duplicate the DBUX/DBU

