
Using KSAM XL and KSAM 64

900 Series HP 3000 Computer Systems
Manufacturing Part Number: 32650-90886
E0300

U.S.A. March 2000

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (c) (1,2).

Trademark Notice
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1994, 2000 by Hewlett-Packard Company
2

Contents
1. Introduction
Terminology . 13
KSAM XL File Format . 13
Automatic Recovery . 17

2. Creating a KSAM File
Creating the File With the BUILD Command . 19
Loading Data to a KSAM XL File . 24
Loading Data to a KSAM64 File . 25
Modifying Existing File Specifications While Copying . 26
Building a KSAM File Programmatically . 26
Using Related Commands . 31

3. Obtaining File Information
Displaying File and Key Information . 33
Accessing File Information from a Program . 36
Accessing Key Information From a Program . 37
Accessing User-Defined Labels . 37

4. Opening and Closing the File
Opening an Existing KSAM File . 39
Opening a New File . 42
Closing a KSAM File . 46

5. Reading File Data
Sequential Access by Primary Key . 48
Sequential Access by Primary and Alternate Key . 49
Sequential Access by Partial Key Value . 51
Random Access of a Single Record . 52
Sequential Access in Physical Record Order . 53
Shared File Access . 54

6. Writing and Updating Record Data
Writing New Records . 56
Updating Existing Records . 56
Deleting a Record . 57
Shared Access . 57

7. Protecting the File and Its Data
Checking Error Information . 59
Protecting Data When File Access is Shared . 60
3

Contents
Writing Directly to Disk .61
Recovering from a System or Software Abort .61
Backing Up KSAM Files .62
Recovering from Index Corruption .62

8. Migration and Mixed Mode Processing
Similarities in KSAM File Features .65
Differences in KSAM File Features .66
Migrating KSAM Files .67
Mixed Mode Operation .69

9. KSAM Intrinsics
FCHECK .72
FCLOSE .74
FCONTROL .77
FERRMSG .80
FFILEINFO .81
FFINDBYKEY .97
FFINDN .99
FGETINFO .101
FGETKEYINFO .105
FLABELINFO .111
FLOCK .119
FOPEN .121
FPOINT .134
FREAD .135
FREADBYKEY .137
FREADC. .139
FREADDIR .141
FREADLABEL. .143
FREMOVE .144
FRENAME .145
FSPACE .147
FUNLOCK .148
FUPDATE .149
FWRITE .151
FWRITELABEL. .153
HPFOPEN .154

A. COBOL Intrinsics
Calling a KSAM Procedure .177
Filetable Parameter. .178
4

Contents
Status Parameter . 180
KSAM Logical Record Pointer . 183
CKCLOSE. 186
CKDELETE . 187
CKERROR . 191
CKLOCK. 192
CKOPEN. 194
CKOPENSHR. 198
CKREAD. 199
CKREADBYKEY . 202
CKREWRITE . 205
CKSTART . 210
CKUNLOCK . 213
CKWRITE. 215
Examples of KSAM File Access . 219

B. BASIC/V Intrinsics
Overview . 227
Calling a KSAM Procedure . 228
Status Parameter . 229
KSAM Logical Record Pointer . 231
BKCLOSE. 232
BKDELETE . 234
BKERROR . 236
BKLOCK. 238
BKOPEN. 240
BKREAD. 246
BKREADBYKEY . 250
BKREWRITE . 252
BKSTART . 255
BKUNLOCK . 259
BKWRITE. 261

C. HP C/iX Example Program
5

Contents
6

Figures
Figure 1-1.. General Representation of the KSAM Format . 14
Figure 1-2.. A Simplified View of the KSAM File Structure . 15
Figure 1-3.. Simple Index Tree Structure . 16
Figure 2-1.. Creating a KSAM XL file using the OPTMBLK parameter 22
Figure 2-2.. Creating a KSAM 64 file using the OPTMBLK parameter 22
Figure 2-3.. Creating a KSAM XL file with data block size set at 4K bytes (default) 22
Figure 2-4.. Creating a KSAM 64 file with data block size set at 4K bytes (default) 23
Figure 2-5.. Building the AR Master KSAM XL File. 23
Figure 2-6.. Building the AR Master KSAM64 File . 24
Figure 2-7.. Using a Key Data File to Create a KSAM XL File . 24
Figure 2-8.. Using a Key Data File to Create a KSAM 64 File. 24
Figure 2-9.. KSAM Parameter Format. 28
Figure 2-10.. KSAM Parameter Settings . 29
Figure 3-1.. File Type Display . 33
Figure 3-2.. File Information Display for a KSAM XL File. 34
Figure 3-3.. File Information Display for a KSAM64 File. 34
Figure 3-4.. Key Information Display for a KSAM XL File. 35
Figure 3-5.. Key Information Display for KSAM64 File . 35
Figure 4-1.. Opening an Existing KSAM File with HPFOPEN. 40
Figure 4-2.. Opening a New KSAM File with HPFOPEN . 43
Figure 4-3.. Opening a New KSAM XL File with FOPEN . 45
Figure 5-1.. FFINDN Intrinsic Sample . 49
Figure 5-2.. FFINDBYKEY Intrinsic Sample . 50
Figure 5-3.. Partial Key Search Sample. 51
Figure 5-4.. Accessing a Record by Key Value . 52
Figure 7-1.. Index Corruption Recovery for a KSAMXL File . 62
Figure 7-2.. Index Corruption Recovery for a KSAM64 File. 63
Figure 9-1.. Foption Bit Summary . 95
Figure 9-2.. Aoption Bit Summary . 96
Figure 9-3.. FGETKEYINFO Parameter Format . 106
Figure 9-4.. FGETKEYINFO Control Parameter Format. 107
Figure 9-5.. Foption Bit Summary . 118
Figure 9-6.. FOPEN KSAM Parameter Format. 132
Figure 9-7.. HPFOPEN KSAM Parameter Format . 175
Figure A-1.. Filetable Structure . 178
Figure A-2.. Representation of KSAMFILE Used in COBOL Examples 184
Figure A-3.. Procedures Allowed for Input/Output Type/Access Mode Combinations . . 195
Figure A-4.. Sequential Write Using COBOL . 219
Figure A-5.. Sequential Read Using COBOL. 221
7

Figures
Figure A-6.. Random Update with COBOL . 224
Figure B-1.. Closing a KSAM File with BKCLOSE . 233
Figure B-2.. Deleting a Record With BKDELETE . 235
Figure B-3.. Dynamically Locking a KSAM File with BKLOCK. 239
Figure B-4.. Opening KSAM File with BKOPEN. 244
Figure B-5.. Reading From a KSAM File with BKREAD . 249
Figure B-6.. Reading a Record Located by Key Value with BKREADBYKEY 251
Figure B-7.. BKREAD values . 253
Figure B-8.. After BKREWRITE . 253
Figure B-9.. Rewriting Record in KSAM File with BKREWRITE. 253
Figure B-10.. Positioning Pointer to Least-Valued Record with BKSTART 257
Figure B-11.. Positioning Pointer to Particular Record with BKSTART. 258
Figure B-12.. Dynamically Unlocking a KSAM File. 259
Figure B-13.. Writing to a KSAM File with BKWRITE . 262
8

Tables
Table 5-1.. Pointer and Advance Flag Settings for Reading . 48
Table 6-1.. Pointer and Advance Flag Settings for Writing . 55
Table 9-1.. FCONTROL Itemnum/Item Values . 77
Table 9-2.. FFILEINFO Itemnum/Item Values . 81
Table 9-3.. FFILEINFO File Codes . 92
Table 9-4.. FGETKEYINFO Control Parameter Format. 108
Table 9-5.. FLABELINFO Itemnum/Item Values . 113
Table 9-6.. FOPEN/HPFOPEN Parameter Equivalents . 130
Table 9-7.. HPFOPEN Itemnum/Item Values . 155
Table 9-8.. FOPEN/HPFOPEN Parameter Equivalents . 173
Table A-1.. Positioning the Logical Record Pointer . 183
Table B-1.. Positioning the Logical Record Pointer . 231
Table B-2.. Procedures Allowed by BKOPEN Access Parameter 243
Table B-3.. Relationship of Exclusive Parameter to Access Parameter 244
9

Tables
10

Preface
MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of
forward-compatible operating systems for the HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will encounter references to
MPE XL, the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. You can
continue to use MPE XL system documentation, although it may not refer to features
added to the operating system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating system for HP
3000s not based on the PA-RISC architecture. MPE V software can be run on the PA-RISC
(Series 900) HP 3000s in what is known as compatibility mode .
11

In This Book
This manual provides programmers with descriptions and examples of the KSAM XL and
KSAM 64 file formats and their accessing routines. The material is organized into nine
chapters and two appendixes.

The "Introduction" describes the KSAM XL and KSAM 64 files, their indexing mechanism,
and their standard recovery methods.

"Creating a KSAM XL or a KSAM 64 File" describes different methods of creating a KSAM
XL or a KSAM 64 file. Standard commands have been adapted to create and load a KSAM
XL or a KSAM 64 file. Intrinsics are also available to create and open a KSAM XL or a
KSAM 64 file. The key characteristics of the files are specified in command or intrinsic
parameters.

"Obtaining File Information" describes the LISTFILE command and two intrinsics that
access file and key characteristics of a KSAM XL file or a KSAM 64 file.

"Opening and Closing the File" describes the intrinsic opening and closing routines. Note
that a KSAM XL and KSAM 64 files can also be created at the time the file is opened.

"Reading File Data" provides various methods of accessing records both sequentially and
randomly using different intrinsics.

"Writing and Updating Record Data" provides the intrinsics that are used to write and
append records to a file. File updates and deletions are also described.

"Protecting the File and Its Data" provides several methods of maintaining file integrity
through error checking routines and regular file backups. Special information is provided
for protecting data when access is shared. This section also describes recovering from
system and software aborts and from internal file structure corruption.

"Migration and Mixed Mode Processing" offers migration strategies for transferring CM
KSAM files to an MPE/iX system and to the KSAM XL or KSAM 64 file formats.

"KSAM XL /KSAM 64 Intrinsics" provides all syntax and operation notes regarding the
use of the KSAM intrinsics.

Two appendixes provide COBOL 68 intrinsics and BASIC/V intrinsics that may be needed
for program maintenance. These intrinsics are not intended for use in new program
development. They are provided here only as a maintenance aid for COBOL 68 or BASIC/V
programs.
12

1 Introduction

The Keyed Sequential Access Method (KSAM) is a method of organizing data records
according to the content of key fields within the record. This method allows sequential
processing of records without relying on the physical location of the record in the file.

Every record in a KSAM file contains a primary key field. The content of this field
determines the logical sequence of each record. Alternate keys offer different sequences for
accessing the same records.

KSAM XL and KSAM 64 are KSAM file formats that function in the native mode (NM)
environment of the MPE/iX operating system. They comprise a single file that consists of
an index area that contains key indexes, and a data area that contains data records.

A primary key and up to fifteen alternate keys can be defined for a KSAM XLor KSAM 64
file. Key values are arranged in ascending order based on the data type of the field.

NOTE The MPE V/E KSAM file format is also available on the MPE/iX system and
is referred to as CM KSAM. It is a two-file format consisting of a data file and
a key file. Refer to the KSAM/3000 Reference Manual for a description of the
format, file building instructions, and maintenance information.

Terminology
In the rest of the book we will use KSAM to denote a KSAM XL or a KSAM 64 file, unless
explicitly stated otherwise. KSAM denotes Keyed Sequential Access Method, the method
of organizing data records according to the contents of key fields within the record.

KSAM XL File Format
A KSAM file is a single file consisting of an index portion and a data portion. Figure 1-1.
provides a general representation of the contents of a KSAM file.
13

Introduction
KSAM XL File Format
Figure 1-1. General Representation of the KSAM Format
14 Chapter 1

Introduction
KSAM XL File Format
Index Area

The index area contains a control block, bit mappings for the pages of the index and data
areas, and the key indexes. The control block contains the file specifications and key
specifications established when the file was built. It also contains pointers to the index and
data page maps to manage the file's space.

A key index contains a key value and pointer for each record. This index data is arranged
in ascending order based on the key value. If alternate keys are identified for the file,
alternate indexes are created for each key.

When the file is opened for sequential processing, records can be accessed by physical
location in the file or by key sequence. The selected key index supplies a pointer to the data
record. Figure 1-2. shows how key index entries relate to the appropriate records in the
file.

Figure 1-2. A Simplified View of the KSAM File Structure
Chapter 1 15

Introduction
KSAM XL File Format
The index portion of the file is organized in a tree structure. Figure 1-3. provides a diagram
of a simple structure. The entry point of the structure, the root, either points to the
location of an entry or directs the search to branches of the structure for higher or lower
entries. The branches narrow the search, again, either to an entry location or to an
ever-decreasing number of higher or lower entries. The lowest level, or leaves, provides
pointers to the locations of the remaining records. Root, branch, and leaf pages for each
key are contained in the index portion of the KSAM file.

Figure 1-3. Simple Index Tree Structure

Data Area

The data area of the file follows the index area and contains all the data records. A 4-byte
record header precedes each record. The first byte of this record header specifies whether
the record has been deleted. When records are written to a KSAM file, the data record is
written to the data area first. Keys are then inserted in the appropriate indexes using the
data area location for creating pointers.

By default, records are stored in chronological order. When new records are appended, they
are written at the end of the file, maintaining the chronological order. As records are
deleted, the record space is not recovered and reused.

If the REUSE option is specified when the file is built, new records appended to the file are
written in available space throughout the file, thus interrupting the chronological
16 Chapter 1

Introduction
Automatic Recovery
sequence. In this case, physical location of a record does not represent the chronological
order of written records.

Any alterations to the data area of the file, such as additions, modifications, or deletions,
are immediately available to subsequent accesses by any process. The file system
guarantees the order of concurrent data access.

Automatic Recovery
Automatic recovery maintains minimal data loss, data consistency, and recoverability from
system software and hardware failures. This recovery is provided by the transaction
management facility. If a failure occurs, all transactions in progress are backed out
automatically when the system is restarted. No data or key inconsistencies result.
Chapter 1 17

Introduction
Automatic Recovery
18 Chapter 1

2 Creating a KSAM File

You can create a KSAM file in several different ways:

• Using the BUILD command. The file name and file characteristics are specified in the
command parameters. The file can then be loaded with data by using the FCOPY
subsystem to load existing file data or by directing program output to the file.

• Copying an existing file using the FCOPY subsystem. File characteristics can be
defaulted to those of the existing file or modified by using a file equation.

• Using HPFOPENor FOPENintrinsic parameters from within an application program. The
intrinsic call creates and opens the file. The program's output can then be written to the
opened file.

Creating the File With the BUILD Command
The BUILD command parameters define standard file characteristics, such as the file and
record lengths, and file, record, and data types. For KSAM files, you must also specify
characteristics of each key field and special KSAM options. The following list offers the
most common file characteristics that you need to decide before building a KSAM file.

• The file name.

• Size of the record.

• Record type of F for fixed-length records (required for KSAM files).

• Binary-coded or ASCII-coded data.

• Permanent or temporary file.

• Device class DISC (required for KSAM files).

• The maximum number of records.

• The language ID.

• A file type of KSAMXL (required for KSAM XL files).

• A file type of KSAM64 (required for KSAM64 files)

• Information about each key (repeated up to sixteen times); at least one key is required:

— Type of key data.

— The location of the first byte of the key.
19

Creating a KSAM File
Creating the File With the BUILD Command
— The length of the key.

— Random insertion or sequential insertion of the key, if duplication is allowed.

• Record numbering starting with 0 or 1.

• Reuse of deleted record space or no reuse.

• Specify default data block size or allow KSAM to select data block size.

KSAM File Characteristics

The key characteristics, the method of file numbering, and the reuse option are unique to
KSAM files. Each key must be defined in the BUILD command's ;KEY= parameter. Record
numbering and the reuse option must be specified if the default values are not acceptable.

Key Characteristics

The ;KEY= parameter of the BUILD command encloses all key characteristics in
parentheses. Individual characteristics for a single key are separated by commas. Each
key description is separated from the next by a semicolon. The following example shows a
;KEY= parameter that defines two keys. Four characteristics are defined for each key: key
type, location, size, and duplication method.

 ;KEY=(B,9,5,RDUP;I,17,3,DUP)

The following descriptions list the available options for the definition and use of keys. Four
characteristics are defined for each key: key type, location,size, and duplication method.

The key type defines the data type of the key field. The type is identified by a keyword or
its abbreviation. In the previous example, the first key field contains byte data and the
second is an integer. The following list provides the valid key types.

byte or B Byte data field.

integer or I Integer data field.

real or R Real number.

IEEE real or E IEEE floating-point decimal number.

numeric or N Numeric field.

packed or P Packed decimal field, odd number of digits.

*packed or * Packed decimal field, even number of digits.

The key's location is determined by the position of the first byte of the field in relation to
the beginning of the record. The first byte of the record is considered to be 1. Only one key
can start at a particular location. In the previous example, the first key begins in byte 9,
the second in byte 17.

The size of the key must be specified in bytes. Specific use of any key is determined by its
definition. The ranges listed below indicate the maximum possible values. The maximum
length of the key varies by data type, as specified in the following list:

byte 1 to 255 bytes.

integer 1 to 255 bytes of integer data.
20 Chapter 2

Creating a KSAM File
Creating the File With the BUILD Command
real 1 to 255 bytes of real number data.

IEEE real 4, 8, or 16 bytes of IEEE real number data.

numeric 1 to 28 bytes of numeric data.

packed 1 to 14 bytes of packed decimal data (odd number of characters).

*packed 2 to 14 bytes of signed packed decimal data (even number of characters).

The duplication key characteristic is an optional field. If a key must be unique, such as an
account number or social security number, no additional parameters are made. The default
value is no duplication. If the key can be duplicated, there are two methods of inserting
duplicate key values in the index's duplicate key chain.

DUPspecifies that each new duplicate key is inserted at the end of the duplicate key chain,
maintaining chronological order.

RDUPspecifies that each new duplicate key is inserted randomly in the duplicate key chain.
RDUP is used if the reuse option is selected. With RDUP, chronological order is not
maintained.

First Record Number

The ;FIRSTREC= parameter of the BUILD command specifies the number of the first record
in the file. Several record retrieval methods use record numbers to identify the physical
location of a record. You can specify whether to use "0" or "1" to identify the first record.
The default value is 0.

REUSE Option

KSAM files can reuse deleted record space if the REUSE option is specified. This option,
however, increases the allocated space reserved for the file by 15 percent and distributes
free space evenly throughout the file when the file is initially loaded. When a record is to
be added to the file, free space is available so that a search for record space is not lengthy.
When a record is deleted, its space is added to the free space available.

The NOREUSE option, the default value, does not allow the reuse of deleted record space.
This option maintains physical record order. A new record is appended to the end of the
file, even if other records have been deleted. If many records are added and deleted, the file
continues to expand in size. In such cases, it is recommended that the file be copied
regularly to eliminate the unusable space if disk space is needed.

Language ID

The optional ;LANG= parameter of the BUILD command 224 specifies the native language
specifies the native language of the data in the file. You can select the language by entering
a code of up to three digits or by entering the language name. To find out what languages
can be accessed on your system, enter RUN NLUTIL.PUB.SYS . Any of the listed language
IDs can be entered in this field. The default language is Native-3000. Different affectd
languages may cause the sequential ordering of records to be affected.

OPTMBLK/DEFBLK Option

Users can assure efficient disk space utilization by using the OPTMBLK option of the BUILD
command. When specified, OPTMBLK allows KSAM to choose the optimal data block size
Chapter 2 21

Creating a KSAM File
Creating the File With the BUILD Command
based on the record size of a file. Refer to MPE/iX Commands Reference Manual for more
information on using this option.

The LISTFILE, 7 command displays the optimal data block size and the 8 bit value of the
flagword of the KSAM parameter.

Figure 2-1. Creating a KSAM XL file using the OPTMBLK parameter

The DEFBLKparameter of the BUILD command allows the user to select a data block size of
4K bytes. If neither OPTMBLKnor DEFBLKis specified, the data block size defaults to DEFBLK
(block size of 4K bytes).

Figure 2-2. Creating a KSAM 64 file using the OPTMBLK parameter

Figure 2-3. Creating a KSAM XL file with data block size set at 4K bytes (default)

:BUILD XOPTMXL;KSAMXL;KEY=(B,1,4);OPTMBLK
:LISTFILE XOPTMXL,7

KEY KEYTYPE KEY LOCATION KEY SIZE DUP/RDUP
--- ------- ------------ -------- --------
 1 BYTE 1 4 NONE

NUM KSAM KEYS: 1 FIRST KSAM RECORD: 0
LANGUAGE : ENGLISH REUSE RECORD : NO
VERSION : 2 COMPUTE BLK SIZE : OPTMBLK
DATA :

:BUILD XOPTM64;KSAM64;KEY=(B,1,4);OPTMBLK
:LISTFILE XOPTM64,7

KEY KEYTYPE KEY LOCATION KEY SIZE DUP/RDUP
--- ------- ------------ -------- --------
 1 BYTE 1 4 NONE

NUM KSAM KEYS: 1 FIRST KSAM RECORD: 0
LANGUAGE : ENGLISH REUSE RECORD : NO
VERSION : 2 COMPUTE BLK SIZE : OPTMBLK
DATA :

:BUILD XDEFXL;KSAMXL;KEY=(B,1,4)
:LISTFILE XDEFXL,7

KEY KEYTYPE KEY LOCATION KEY SIZE DUP/RDUP
--- ------- ------------ -------- --------
 1 BYTE 1 4 NONE

NUM KSAM KEYS: 1 FIRST KSAM RECORD : 0
LANGUAGE : ENGLISH REUSE RECORD : NO
VERSION : 2 COMPUTE BLK SIZE : DEFBLK
DATA :
22 Chapter 2

Creating a KSAM File
Creating the File With the BUILD Command
Figure 2-4. Creating a KSAM 64 file with data block size set at 4K bytes (default)

Use the FILE command along with the FCOPY command to copy a new KSAM file to one
where the data block size is chosen using OPTMBLK.

Users with existing KSAM XL files of 4K bytes can convert their files by using FCOPY.
Specify the OPTMBLK option in the file equation. This allows KSAM XL to select the data
block size in the file equation. If a file equation does not specify either option, FCOPY uses
the FROM= file's setting of OPTMBLK or DEFBLK.

Sample BUILD Command

Figure 2-5. builds a sample KSAM XL master file to process 80-byte accounts receivable
records in English. The maximum size of the file is 100 records. Record numbering in the
sample file begins with number 1. Reuse of deleted record space is allowed.

In this sample, four key fields are defined to sequence data for various programming
functions:

• A unique 6-digit account number as the primary key.

• A 25-character field containing the client's last name.

• A 5-digit zip code field.

• A 3-character branch ID.

Figure 2-5. creates the ARMSTR file with the preceding specifications using the BUILD
command. (Note that ampersands have been included at the end of each line to continue
the command on subsequent lines to improve readability.)

Figure 2-5. Building the AR Master KSAM XL File

:BUILD XDEF64;KSAM64;KEY=(B,1,4)
:LISTFILE XDEF64,7

KEY KEYTYPE KEY LOCATION KEY SIZE DUP/RDUP
--- ------- ------------ -------- --------
 1 BYTE 1 4 NONE

NUM KSAM KEYS: 1 FIRST KSAM RECORD : 0
LANGUAGE : ENGLISH REUSE RECORD : NO
VERSION : 4 COMPUTE BLK SIZE : DEFBLK
DATA :

:BUILD ARMSTRXL.MGR.AR;REC=-80,,F,ASCII;&
 DEV=DISC;DISC=100;KSAMXL;&
 KEY=(N,4,6;& Specifies account number (primary) key
 B,10,25,RDUP;& Defines the last name key
 N,65,5,RDUP;& Defines the zip code key
 B,70,3,RDUP);& Defines the branch ID key
 FIRSTREC=1;REUSE ;LANG=5 Specifies that the first record is identified by

number 1, that deleted record space can be reused,
and that the native language is English.
Chapter 2 23

Creating a KSAM File
Loading Data to a KSAM XL File
Figure 2-6. Building the AR Master KSAM64 File

Specifying an Indirect File

To reduce errors, the characteristics for key data fields can be contained in an indirect file
and referred to in the BUILD command. Such a file can be created using an editor, such as
HP EDIT. The information is structured as it would be if it were included in the command.
The format of the key data in the indirect file is shown in the following example.

(N,4,6;&
B,10,25,RDUP;&
N,65,5,RDUP;&
B,70,3,RDUP)

Figure 2-7. shows the command for setting up the same accounts receivable master file as
in Figure 2-5.. The KEY= parameter, however, refers to the indirect file named KEYDATA for
the key data specifications. The character ^ specifies that an indirect file contains the data.

Figure 2-7. Using a Key Data File to Create a KSAM XL File

Figure 2-8. Using a Key Data File to Create a KSAM 64 File

Loading Data to a KSAM XL File
Once the file has been created, you can load it with data from another file or from a
program. The FCOPY subsystem is often used to load data from one file to another. Any
type of file can be used as the input file for this process. FCOPY is executed by entering the

:BUILD ARMSTR64.MGR.AR;REC=-80,,F,ASCII;&
 DEV=DISC;DISC=100;KSAM64;&
 KEY=(N,4,6;& Specifies account number (primary) key
 B,10,25,RDUP;& Defines the last name key
 N,65,5,RDUP;& Defines the zip code key
 B,70,3,RDUP);& Defines the branch ID key
 FIRSTREC=1;REUSE ;LANG=5 Specifies that the first record is
 identified by number 1,
 that deleted record space can be reused,
 and that the native language is English.

:BUILD ARMSTRXL.MGR.AR;REC=-80,,F,ASCII;DEV=DISC;&
DISC=100;KSAMXL;KEY=^KEYDATA;&
FIRSTREC=1;REUSE ;LANG=5

:BUILD ARMSTR64.MGR.AR;REC=-80,,F,ASCII;DEV=DISC;&
DISC=100;KSAMXL;KEY=^KEYDATA;&
FIRSTREC=1;REUSE ;LANG=5
24 Chapter 2

Creating a KSAM File
Loading Data to a KSAM64 File
subsystem name. It displays a prompt (>) while awaiting input.

 : FCOPY
 >

The FROM= command identifies the source file containing the data to be copied. The TO=
parameter specifies the target file to which the data will be copied. The following example
copies the existing master file records contained in OLDMSTR to the newly created KSAM
XL file, ARMSTR.

 > FROM=OLDMSTR.MGR.AR;TO=(ARMSTR.MGR.AR)

The FCOPY subsystem can also be used to copy a KSAM XL file's records in a different
sequence. The KEY= parameter identifies the relative record location of the key to be used
to establish the new sequence of records. The following example copies records from the old
master file to the new file in alphabetical order by client name. The location of the client
name field (10) is identified in the KEY= parameter.

 > FROM=OLDMSTR.MGR.AR;TO=ARMSTR.MGR.AR;KEY=10

The FCOPY subsystem can create a new KSAM XL file if the source file is a KSAM XL file
and if no file characteristics need to be changed. To identify the type of file to be built as a
KSAM XL file, the name is enclosed in parentheses. If the parentheses are not included, a
standard file type is created.

The following example creates a new master file, duplicating the file and key specifications
from the original file ARMSTR. Note that the file name is enclosed in parentheses,
identifying the file type of the new file as a KSAM XL file type.

 > FROM=ARMSTR.MGR.AR;TO=(ARMBACK.MGR.AR)

Loading Data to a KSAM64 File
The FCOPY utility is also used to load data to a KSAM64 file. In order to copy data to a
KSAM64 file, a file equation must first be referenced which specifies the KSAM64 file type

For example:

 : FILE NEWKSM64; KSAM64
 : FCOPY FROM=OLDKSMXL; TO=(*NEWKSM64)

In the example above, the file equation overrides the FCOPY default of creating a KSAM
XL file.

This example also could be used to copy data from a CM KSAM file, or any other FROM file
type.

The FCOPY utility can also be used to retrieve data from a KSAM64 file (use the KSAM64
file as the FROM file) and to copy to a KSAM64 file with different attributes. The following
example shows how a new larger KSAM64 file can be created from an existing, smaller
KSAM64 file

 : FILE DATANEW; KSAM64; DISC=1000000000
Chapter 2 25

Creating a KSAM File
Modifying Existing File Specifications While Copying
 : FCOPY FROM=DATA; TO=(*DATANEW)

Modifying Existing File Specifications While Copying
A file equation can be used to modify file specifications of an existing file. The FCOPY
subsystem can be used to copy data from an existing file into a new file using a back
reference to the file equation for the new specifications. The following example copies data
from the file DOCto a new KSAM XL file DOC1. The file type and key specifications for the
new file are specified in the file equation.

 FILE DOC1=DOC1;KSAMXL;KEY=(b,1,4)
 FCOPY FROM=DOC;TO=*DOC1;NEW

Building a KSAM File Programmatically
The HPFOPEN and FOPEN intrinsics can be used within a program to create and open a
KSAM file in a single step. As with the BUILD command, file and key characteristics are
provided as parameter data.

NOTE The HPFOPEN intrinsic can be used only in an MPE/iX environment. If a
program is to be developed for both MPE/iX and MPE V/E systems, the FOPEN
intrinsic should be used. Refer to “Mixed Mode Operation” in Chapter 8 for
information regarding cross development.

The unique KSAM file and key characteristics are contained in an array that varies in
length from 40 to 162 words. The format of the array is shown in Figure 2-9..
Characteristics for a maximum of sixteen keys need to be specified in the array. Standard
file characteristics are contained in the file options parameter of the intrinsic.

Language ID

Enter the three digit code for the native language that you desire. To find out what
languages can be accessed on your system, enter RUN NLUTIL.PUB.SYS. A list of languages
and their IDs is displayed on the screen. Any of the listed language IDs can be entered in
this field.

Flag word

The flag word contains two bytes defining the KSAM file characteristics:

Bits Value/Meaning

15:1 Reserved.
26 Chapter 2

Creating a KSAM File
Building a KSAM File Programmatically
14:1 Enter a 1 if record numbering is to start with 1.

Enter 0 if record numbering is to start with 0.

13:1 Enter 1 if only sequential writing by primary key is allowed.

Enter 0 if random writing by primary key is allowed.

12:1 Enter 1 if deleted record space can be reused.

Enter 0 if deleted record space cannot be used.

11:1 Enter 1 if a language type is specified.

Enter 0 if a language type is not specified.

10:1 Enter 1 if the primary key cannot be changed with the FUPDATE intrinsic
for files that are opened for sequential processing.

Enter 0 if the primary key can be changed with the FUPDATE intrinsic for
files that are opened for sequential processing.

9:1 Enter 1 if the file is programmatically accessed by the COBOL
programming language. Enter 0 if the file is not programmatically
accessed by the COBOL programming language. This enables KSAM to
process COBOL information according to COBOL standards.

8:1 Enter 1 if KSAM is to select the optimal data block size. Enter 0 if KSAM
is to use the default data block size.

0:9 Enter 0. These bits are reserved and must contain zeros.
Chapter 2 27

Creating a KSAM File
Building a KSAM File Programmatically
Figure 2-9. KSAM Parameter Format

Number of Keys

Enter a digit between 1 and 16 in word 16 to specify the number of keys to be defined for
this file. Refer to Figure 2-9. for the location of this field.

Key Parameters

The following parameters are defined for each key. The information about each key is
similar to the BUILD command's KEY= parameter.

key type Enter one of the following codes specifying the type of data
the key will contain.

Code Key Data Type
28 Chapter 2

Creating a KSAM File
Building a KSAM File Programmatically
1 Byte key (1 to 255 bytes)

2 Short integer key (255 bytes)

3 Integer key (255 bytes)

4 Real number key (255 bytes)

5 Long real number key (255 bytes)

6 Numeric display key (1 to 28 bytes)

7 Packed decimal key, odd number of digits (1 to 14 bytes)

8 Packed decimal key, even number of digits (2 to 14 bytes)

9 IEEE floating-point decimal key (4, 8, or 16 bytes)

key length Enter the length of the key in bytes. A maximum of 255
bytes is allowed, but the length is dependent on the type of
key data specified.

key location Enter the relative location in bytes of the key field in the
record. Note that the first byte of the record is considered 1.

duplicate key flag Enter 1 if duplicate key values are allowed for this key.

Enter 0 if duplicate key values are not allowed for this key.

random insert flag This field specifies the method of inserting duplicate key
values. To use this feature, the previous duplicate key flag
must be set to 1.

Enter 0 if duplicate key values are to be inserted at the
end of the duplicate key chain.

Enter 1 if the duplicate key values are to be inserted
randomly in the duplicate key chain.

Figure 2-10. provides an example of the declarations that are needed to define and load a
KSAM XL parameter array using Pascal/iX. Chapter 4 , “Opening and Closing the File,”
provides an example of an HPFOPEN intrinsic call that creates and opens a KSAM file.

Figure 2-10. KSAM Parameter Settings

type
bit1=0..1;
bit4=0..15;

 bit7=0..127;
bit8=0..255;
bit12=0..4095;
bit15=0..32767;
bit16=0..65535;
pac80 = packed array [1..80] of char;
ksam_rec = packed record

case integer of
1 : (bitword : bit16);

 2 : (lang_id : bit16);
3 : (resrvd0 : bit8;

 optm_blk: bit1;
Chapter 2 29

Creating a KSAM File
Building a KSAM File Programmatically
 cm : bit1;
 chg_primary : bit1;
 kslang : bit1;

ksreuse : bit1;
 seq_random : bit1;
 rec_numbering : bit1;
 resrvd2 : bit1);

4 : (resrvd3 : bit8;
 num_keys : bit8);

5 : (key_type : bit4;
 key_length : bit12);

6 : (dflag : bit1;
 maxkeyblk : bit15);

 7 : (resrvd5 : bit8;
 rflag : bit1;
 resrvd6 : bit7);

8 : (key_location : bit16);
end;

ksam_struc = ARRAY[0..80] OF ksam_rec;
.
.

 .
var

 ksam_param,
ksamparam : ksam_struc;
keylocation,

 reserved : bit16;
.
.

 .

begin
ksamparam[10].lang_id := 5;
ksamparam[16].resrvd3 := 0;
ksamparam[16].num_keys := 1;

 ksamparam[17].key_type := 2;
 ksamparam[17].key_length := 5;

keylocation := 5;
ksamparam[18].bitword := keylocation;

.

.

.

The HPFOPEN intrinsic uses item number pairs to identify intrinsic parameters. Item
number 54 is paired with the KSAM parameter array to define the KSAM XL key
structure. Other item number pairs that relate to KSAM XL files specifically are listed
below:

10 This item number identifies the KSAM XL file type. Enter 3 to indicate
that a KSAM XL file is to be created. Enter 7 to indicate that a KSAM64
file is to be created.

17 A KSAM XL file can be accessed only as its own type. Enter 0 for a KSAM
XL file.

The FOPEN intrinsic can also be used to create and open a KSAM file. The same KSAM
parameter array is used as an FOPEN parameter option. The FOPEN intrinsic uses
30 Chapter 2

Creating a KSAM File
Using Related Commands
parameter values rather than item number pairs to identify file characteristics and the
KSAM key value array. Refer to Chapter 4 , “Opening and Closing the File,” for a
description of the FOPEN intrinsic.

Using Related Commands
Several MPE/iX commands can be used for KSAM files. KSAM files can be deleted and
renamed using the same commands used with standard files. File attributes can be
modified with a file equation.

Deleting a KSAM File

KSAM files can be deleted using the PURGE command. As with standard files, the file
named in the PURGEcommand is deleted. The accounts receivable file can be deleted using
the following command.

 PURGE ARMSTR.MGR.AR

Renaming a KSAM File

The RENAME command can be used to change the name of an existing KSAM file. The file
name specified in the command is deleted. The parameters for the RENAME command are
the same as for standard files. The file name specified in the command is deleted. The first
file name is the current name of the KSAM file. The second file name is the new name of
the file.

 RENAME ARMSTR.MGR, OLDMSTR.MGR.

Modifying File Attributes

The FILE command declares the file attributes to be used when an existing file is opened.
It can be used with KSAM files as well as standard files. The FILE command's keywords
(;KSAMXL, ;KSAM64, ;KEY, ;FIRSTREC, ;LANG, ;REUSE, ;NOREUSE, ;OPTMBLK and ;DEFBLK)
perform the same functions as they do for the BUILD command.

The FILE command can be used to override system default file specifications or
specifications supplied with the HPFOPENor FOPENintrinsic. The new specifications remain
in effect for the entire job or session unless they are revoked by the RESET command or
superseded by another FILE command.
Chapter 2 31

Creating a KSAM File
Using Related Commands
32 Chapter 2

3 Obtaining File Information

You can obtain file information about an existing file using the LISTFILE command or the
FGETINFO and FGETKEYINFO intrinsics. You can also add specific information about your
file by writing it to a user label. The FWRITELABEL and FREADLABEL intrinsics provide
access to user labels.

Displaying File and Key Information
Use the LISTFILE command to display the file specifications used to build the file. This
command lists descriptions of one or more disk files at the level of detail you select. The
level of display detail is controlled by the option number or keyword parameter
followingthe file name.

A KSAM XL file does not have a unique file code. The file's structure can be discerned from
a LISTFILE display using option 1 (SUMMARY) or 2 (DISC). When displayed in this manner,
the character K is appended to the file type of a KSAM XL or a KSAM64 file to distinguish
them from standard files. A file code of KSAM identifies a CM KSAM data file. A file code
of KSAMK identifies a CM KSAM key file. The following example displays summary
information for a KSAM XL file, a CM KSAM key file, a CM KSAM data file, a KSAM64
file, and a standard file.

Figure 3-1. File Type Display

:LISTFILE,1
ACCOUNT= AR GROUP= MGR

FILENAME CODE ------------LOGICAL RECORD-------
SIZE TYP EOF LIMIT

ARMSTRXL 160B FAK 0 115
EMPKEY KSAMK 128W FB 1742 1742
EMPLOYEE KSAM 256B FA 0 1023
ARMSTR64 160B FAK 0 115
CLIENT 80B FA 1 1

Two options display the key specifications for a KSAM file. Option 5 (DATA) displays the file
specifications and key data for the file. Option 7 (UNIQUE) displays information that is
unique to the file type. For KSAM files, this displays the key data without the file
specifications.

Figure 3-2. provides an example of the LISTFILE command using option 5 (DATA) and the
display it generates.
33

Obtaining File Information
Displaying File and Key Information
Figure 3-2. File Information Display for a KSAM XL File

:LISTFILE ARMSTRXL.MGR.AR,5

FILE: ARMSTRXL.MGR.AR

FILE CODE : 0 FOPTIONS: ASCII,FIXED,NOCCTL,KSAMXL
BLK FACTOR: 1 CREATOR : **
REC SIZE: 160(BYTES) LOCKWORD: **
BLK SIZE: 160(BYTES) SECURITY--READ : ANY
EXT SIZE: 0(SECT) WRITE : ANY
NUM REC: 0 APPEND : ANY
NUM SEC: 2160 LOCK : ANY
NUM EXT: 2 EXECUTE : ANY
MAX REC: 115 **SECURITY IS ON

FLAGS : n/a
NUM LABELS: 0 CREATED : MON, NOV 13, 1989, 3:35 PM
MAX LABELS: 0 MODIFIED: MON, NOV 13, 1989, 3:35 PM
DISC DEV #: 16 ACCESSED: MON, NOV 13, 1989, 10:15 PM
CLASS : DISC LABEL ADDR: **
SEC OFFSET: 0

KEY KEY TYPE KEY LOCATION KEY SIZE DUP\RDUP

 1 NUMERIC 4 6 NONE
2 BYTE 10 25 RDUP

 3 NUMERIC 65 5 RDUP
4 BYTE 70 3 RDUP

NUM KSAM KEYS: 4 FIRST KSAM RECORD: 1
LANGUAGE : ENGLISH REUSE RECORDS : YES
PRIMARY KEY : RANDOM COBOL : NO
VERSION : 2 COMPUTEBLK SIZE : OPTMBLK

Figure 3-3. File Information Display for a KSAM64 File

:LISTFILE ARMSTR64.MGR.AR,5

FILE: ARMSTR64.MGR.AR

FILE CODE : 0 FOPTIONS: ASCII,FIXED,NOCCTL,KSAMXL
BLK FACTOR: 1 CREATOR : **
REC SIZE: 160(BYTES) LOCKWORD: **
BLK SIZE: 160(BYTES) SECURITY--READ : ANY
EXT SIZE: 0(SECT) WRITE : ANY
NUM REC: 0 APPEND : ANY
NUM SEC: 2160 LOCK : ANY
NUM EXT: 2 EXECUTE : ANY
MAX REC: 115 **SECURITY IS ON

FLAGS : n/a
NUM LABELS: 0 CREATED : MON, NOV 13, 1989, 3:35 PM
MAX LABELS: 0 MODIFIED: MON, NOV 13, 1989, 3:35 PM
DISC DEV #: 16 ACCESSED: MON, NOV 13, 1989, 10:15 PM
CLASS : DISC LABEL ADDR: **
SEC OFFSET: 0
34 Chapter 3

Obtaining File Information
Displaying File and Key Information
KEY KEY TYPE KEY LOCATION KEY SIZE DUP\RDUP

 1 NUMERIC 4 6 NONE
2 BYTE 10 25 RDUP

 3 NUMERIC 65 5 RDUP
4 BYTE 70 3 RDUP

NUM KSAM KEYS: 4 FIRST KSAM RECORD: 1
LANGUAGE : ENGLISH REUSE RECORDS : YES
PRIMARY KEY : RANDOM COBOL : NO
VERSION : 2 COMPUTEBLK SIZE : OPTMBLK

For a KSAM file, the file specifications, as well as the key information specified when the
file was built, is displayed. (Note that the keyword DATA could have replaced the option
number 5 in the LISTFILE request in the preceding example.) This display could be
abbreviated to display only the key data by using option 7 (UNIQUE) as shown in Figure 3-4.

Figure 3-4. Key Information Display for a KSAM XL File

: LISTFILE ARMSTRXL.MGR.AR,7

FILE: ARMSTRXL.MGR.AR

KEY KEY TYPE KEY LOCATION KEY SIZE DUP\RDUP

1 NUMERIC 4 6 NONE
2 BYTE 10 25 RDUP

 3 NUMERIC 65 5 RDUP
4 BYTE 70 3 RDUP

NUM KSAM KEYS: 4 FIRST KSAM RECORD: 1
LANGUAGE : ENGLISH REUSE RECORDS : YES
PRIMARY KEY : RANDOM COMPUTE BLK SIZE : OPTMBLK
VERSION : 2

Figure 3-5. Key Information Display for KSAM64 File

: LISTFILE ARMSTR64.MGR.AR,7

FILE: ARMSTR64.MGR.AR

KEY KEY TYPE KEY LOCATION KEY SIZE DUP\RDUP

1 NUMERIC 4 6 NONE
2 BYTE 10 25 RDUP

 3 NUMERIC 65 5 RDUP
4 BYTE 70 3 RDUP

NUM KSAM KEYS: 4 FIRST KSAM RECORD: 1
LANGUAGE : ENGLISH REUSE RECORDS : YES
PRIMARY KEY : RANDOM COMPUTE BLK SIZE : OPTMBLK
VERSION : 4
Chapter 3 35

Obtaining File Information
Accessing File Information from a Program
Accessing File Information from a Program
The FGETINFO intrinsic obtains a file's access and status information based on the
parameters identified in the intrinsic call. Embedded parameters that are not desired are
indicated by commas. Parameters omitted from the end of the list do not need to be
indicated.

In the following example, the intrinsic call returns the end of file in the variable named
LSTREC. This number represents the physical number of the last record in the file if the
REUSEoption has not been specified. This variable can be used to position a pointer to read
the last physical record with the FREADC or FREADDIR intrinsic.

 FGETINFO(FILENO,,,,,,,,,,LSTREC);

The FGETINFO intrinsic returns the following file information.

• The fully qualified file name.

• The foptions specified in the format of the FOPEN intrinsic.

• The aoptions specified in the format of the FOPEN intrinsic.

• The logical record size associated with the file.

• The type and subtype of the device being used for the file.

• The logical device number associated with the device on which the file resides.

• The hardware address of the device.

• The data file code.

• The current physical record pointer setting.

• The number of logical records currently in the data file.

• The number of the last logical record that could be contained by the file.

• The total number of logical records passed to and from the user during the current
access of the file.

• The block size of the file.

• The disk extent size associated with the file.

• The maximum number of disk extents allowed for the file.

• The number of user labels allowed for the file.

• The name of the user who created the file.

• The sector address of the label of the file.
36 Chapter 3

Obtaining File Information
Accessing Key Information From a Program
Accessing Key Information From a Program
Like the FGETINFO intrinsic, the FGETKEYINFO intrinsic provides access and status
information about the keys of a KSAM file. It provides detailed information about the key
location, type, and length in a parameter format similar to the FOPEN intrinsic key
parameter. The FGETKEYINFOintrinsic also provides access information, such as a count of
the number of times the key file has been accessed by various intrinsics, or the date and
time the file was created, closed, updated, or written to.

Accessing User-Defined Labels
A user label is an optional method of adding documentation to your file. You can write your
own labels to a KSAM file with the FWRITELABEL intrinsic. For example, you can use a
label to enter the date and time of the last file update. These labels are read with the
FREADLABEL intrinsic.

Specify the number of user labels to be created in the userlabel parameter of the FOPEN
intrinsic. In order to write labels, the file must be open. To do so, set the aoptions
parameter of the FOPEN intrinsic to one of the write, input/output, or update access
specifications.

The following example shows the intrinsic call to write information to the second file label.

 FWRITELABEL(KFILNUM,LABELBUF,60,1);

In this example, the 60 halfwords of text contained in the variable LABELBUF are to be
written in the second user label. Note that label numbering starts with zero. The second
label is identified by the number 1 in the last parameter. If this parameter contains zero or
is omitted, the first label is written.

You can read the contents of user labels using the FREADLABEL intrinsic. During the
normal reading of a file, user labels are skipped. The FREADLABEL intrinsic, therefore,
should be called immediately after the file has been opened. To read a user label, the file
must be opened with read, input/output, or update access, and the user labels to be read
must be identified.

Issue the following FREADLABELintrinsic call to read the user label written in the previous
example.

 FREADLABEL(KFILNUM,LABEL2,,1)

The variable LABEL2 returns the contents of the second user label. By default, the call
returns 128 halfwords from the label.
Chapter 3 37

Obtaining File Information
Accessing Key Information From a Program
38 Chapter 3

4 Opening and Closing the File

Some application programming languages offer commands for opening and closing KSAM
files (for example, the ORGANIZATION IS INDEXED clause in COBOL). If not, use the
HPFOPEN or FOPEN intrinsic to open the file, and the FCLOSE intrinsic to close the file. See
the appropriate application language reference manual for details on how to call intrinsics.

Opening an Existing KSAM File
The HPFOPEN and FOPEN intrinsics both open KSAM files, as well as other file types.
HPFOPEN is designed to be more flexible and offers more options than the FOPEN intrinsic.
HPFOPEN, however, can be used only in an MPE/iX environment. If the program is to be
used in both MPE/iX and MPE V/E environments, use the FOPEN intrinsic.

Using the HPFOPEN Intrinsic

The HPFOPEN intrinsic uses pairs of item numbers and items for optional parameter
passing. An itemnum parameter passes an integer by value to define the parameter and
expected data type of the value passed in its corresponding item parameter.

To open an existing permanent file, file characteristics do not have to be specified. This
information is obtained by the file management system from the file's label.

Most often, the item number pairs that are needed to open an existing KSAM file include
the file designator, its domain, and access options. The domain identifies the location of the
file to be opened. The access option defines the method of access allowable for the file. In
some cases, the dynamic locking option and exclusive option need to be specified if more
than one process is to access the file.

Figure 4-1. provides a portion of a Pascal program that calls the HPFOPENintrinsic to open
the accounts receivable KSAM file. It presents the itemnum and item definitions and
declarations as well as the HPFOPEN intrinsic call. In the example, the file is opened for
update access, allowing all intrinsic usage. It also allows dynamic locking and shared
access for concurrent use with other processes.
39

Opening and Closing the File
Opening an Existing KSAM File
Figure 4-1. Opening an Existing KSAM File with HPFOPEN

procedure open_permanent_KSAM_file;

const
 formal_designator_option = 2;

domain_option = 3;
 access_type_option = 11;

dynamic_locking_option = 12;
exclusive_option = 13;
ASCII_binary_option = 53;

type
pac160 = packed array [1..160] of char;

var
file_num : integer;
status : integer;
file_name : pac160;
permanent : integer;
update : integer;
lockable : integer;
shared : integer;
ascii : integer;

begin
file_num := 0;
status := 0;
file_name := ’%ARMSTR.MGR.AR%’
permanent := 1;
update := 5;
lockable := 1;
shared := 3;
ascii := 1;

HPFOPEN(file_num, status,
formal_designator_option, file_name,
domain_option, permanent,
access_type_option, update,
dynamic_locking_option, lockable,
exclusive_option, shared,
ASCII_binary_option, ascii
);

if status <> 0 then handle_file_error (file_num, status);
end;
40 Chapter 4

Opening and Closing the File
Opening an Existing KSAM File
The file_num parameter is used to return a file number to the calling program. This file
number is used to identify the file in subsequent intrinsic calls. The status parameter
returns a numeric code identifying the success or failure of the file opening process.

For clarity, the itemnum parameters in the previous example have been defined as
constants. This is not necessary for intrinsic use. The following HPFOPEN intrinsic call
provides the same options as the preceding example, but the itemnum parameters are
identified by number. Note that the corresponding item parameters are variables that
contain the appropriate selections. These variables would have to be defined and declared
as in the previous sample.

 HPFOPEN(file_num, status,
 2, file_name,
 3, permanent,
 11, update,
 12, lockable,
 13, shared,
 53, ascii
)

Using the FOPEN Intrinsic

Only the file designator and the domain need to be specified to open an existing file with
the FOPEN intrinsic. Rather than the itemnum/item pairs in HPFOPEN, the FOPEN intrinsic
parameters are specified as bit groupings. The domain must be specified in the foption
parameter (bits 14:2). The aoption parameter must be set if an access other than read
needs to be specified.

The FOPEN intrinsic uses positional parameters to specify options. This means that the
sequence of parameter data defines the parameter to which it refers. For example, in an
FOPEN intrinsic call, the file designator is followed by the foption parameter, which is
followed by the aoption parameter. The following example shows the FOPEN intrinsic call
to open an existing KSAM file for read only access:

 file_num:=FOPEN(file_name,3)

The variable file_num returns the file number for use in subsequent intrinsic calls. The
foption value 3 specifies that an existing user file is to be opened (bits 14:2= (binary) 11).
Because no aoption parameter was specified, the file is opened with read only access, the
default.

To open an existing file with update access, specify the access mode in the aoption
parameter. The other parameters remain the same. The following example opens the file
with update access.

 file_num:=FOPEN(file_name,3,5)

In this example, the aoption value 5 specifies update access for the file (bits 12:4 =
(binary) 0101). This level of access allows all other intrinsic calls for this file. Other binary
access selections include:

binary 0000 or 0 To read the file.
Chapter 4 41

Opening and Closing the File
Opening a New File
binary 0001 or 1 To write to the file for the first time.

binary 0010 or 2 To append records to the file.

binary 0100 or 4 To allow both read and write access.

binary 0101 or 5 To update records in the file.

If your file requires shared access and you are accessing records using pointer-dependent
procedures, you must allow dynamic locking in the file opening procedure and use the
FLOCKand FUNLOCKintrinsics to protect your transactions from access by another process.
This ensures that no other user changes or deletes the record after you have positioned the
pointer to it. In this case, the aoption parameter must be set to allow both shared access
and dynamic locking, as well as to specify the access method. Note that the aoption
parameter can be entered in octal notation listing "%" instead of "binary". This allows
setting the shared and dynamic locking bits.

 FILENUM:=FOPEN(FILNAME,3,OCTAL ('340')

The preceding example allows shared access (bits 8:2 = binary 11) and dynamic locking
(bits 10:3=1) with read only access (bits 12:4=0) .

Opening a New File
As discussed in Chapter 2, a file can be created when it is opened using the HPFOPEN or
FOPEN intrinsics. The file characteristics must be specified, as well as the formal file
designator, the domain, and the access method. The most common item numbers used to
create and open KSAM files with the HPFOPEN intrinsic include:

2 The file designator.

10 A file type of 3 for KSAM XL files. A file type of 7 for KSAM64 files.

11 An access option of 1 for writing records to a new file.

19 The record length.

35 The maximum file length.

50 Either a disposition of 2 for a temporary file or 1 for a permanent file.

53 ASCII or binary record data.

54 The KSAM key parameter defining primary and alternate key
descriptions.

Figure 4-2. presents a portion of a program that builds and opens a KSAM file.
42 Chapter 4

Opening and Closing the File
Opening a New File
Figure 4-2. Opening a New KSAM File with HPFOPEN

type
 bit1=0..1;
 bit4=0..15;
 bit7=0..127;
 bit8=0..255;
 bit12=0..4095;
 bit15=0..32767;
 bit16=0..65535;
 pac80 = packed array [1..80] of char;
 ksam_rec = packed record
 case integer of
 1 : (bitword : bit16);
 2 : (lang_id : bit16);
 3 : (resrvd0 : bit8;
 select_blk_size;
 cm : bit1;
 chg_primary : bit1;
 kslang : bit1;
 ksreuse : bit1;
 seq_random : bit1;
 rec_numbering : bit1;
 resrvd2 : bit1);
 4 : (resrvd3 : bit8;
 num_keys : bit8);
 5 : (key_type : bit4;
 key_length : bit12);
 6 : (dflag : bit1;
 maxkeyblk : bit15);
 7 : (resrvd5 : bit8;
 rflag : bit1;
 resrvd6 : bit7);
 8 : (key_location : bit16);
 end;
 ksam_struc = ARRAY[0..80] OF ksam_rec;
.
.
.
var
 file_num : integer;
 status : integer;
 file_name : pac80;
 ksam_type : integer;
 write_access : integer;
 line_len : integer;
 file_len : integer;
 save_perm : integer;
 ascii : integer;
 ksamparam : ksam_struc;
 keylocation,
 reserved : bit16;
.
.
.
begin
Chapter 4 43

Opening and Closing the File
Opening a New File
 file_num := 0;
 status := 0;
 file_name := '%ARMSTRXL.MGR.AR%';

ksam_type := 3;{creating a KSAM XL file} {to create a KSAM64 file set to 7}
 write_access := 1;
 rec_len := 80;
 file_len := 100;
 save_perm := 1;
 ascii := 1;
.
.
.
 ksamparam[10].lang_id := 5;
ksamparam[16].resrvd3 := 0;
ksamparam[16].num_keys := 1;
ksamparam[17].key_type := 2;
ksamparam[17].key_length := 5;
keylocation := 5;
ksamparam[18].bitword := keylocation;
.
.
.
HPFOPEN(file_num, status,
 2, file_name,
 10, ksam_type
 11, write_access
 19, rec_len,
 35, file_len
 50, save_perm,
 53, ascii
 54, ksamparam
);

 if status <> 0 then handle_file_error (file_num, status);
end;

To create a new KSAM64 file set ksam_type=7 in the program segment shown inFigure
4-2. To create a new KSAM file using the FOPEN intrinsic, file characteristics and KSAM
key information are specified in the positional parameters. In most cases, the foption ,
aoption , recsize , ksamparam , and filesize parameters must be specified. Commas
identify those positional parameters for which the default specifications are used. Figure
4-3. provides an FOPENintrinsic call that creates a KSAM XL file with write access to build
the file.
44 Chapter 4

Opening and Closing the File
Opening a New File
Figure 4-3. Opening a New KSAM XL File with FOPEN

type
 bit1=0..1;
 bit4=0..15;
 bit7=0..127;
 bit8=0..255;
 bit12=0..4095;
 bit15=0..32767;
 bit16=0..65535;
 pac80 = packed array [1..80] of char;
 ksam_rec = packed record
 case integer of
 1 : (bitword : bit16);
 2 : (lang_id : bit16);
 3 : (resrvd0 : bit8;
 select_blk_size;
 cm : bit1;
 chg_primary : bit1;
 kslang : bit1;
 ksreuse : bit1;
 seq_random : bit1;
 rec_numbering : bit1;
 resrvd2 : bit1);
 4 : (resrvd3 : bit8;
 num_keys : bit8);
 5 : (key_type : bit4;
 key_length : bit12);
 6 : (dflag : bit1;
 maxkeyblk : bit15);
 7 : (resrvd5 : bit8;
 rflag : bit1;
 resrvd6 : bit7);
 8 : (key_location : bit16);
 end;
 ksam_struc = ARRAY[0..80] OF ksam_rec;
var
 file_num : integer;
 file_name : pac80;
 ksamparam : ksam_struc;
 keylocation : bit16;
begin
 file_num := 0;
 file_name := 'ARMSTR.MGR.AR ';
 ksamparam[10].lang_id := 5;
 ksamparam[16].resrvd3 := 0;
 ksamparam[16].num_keys := 1;
 ksamparam[17].key_type := 2;
 ksamparam[17].key_length := 5;
 keylocation := 5;
 ksamparam[18].bitword := keylocation;
 file_num:=FOPEN(file_name,6148,1,-80,,ksamparam,,,,100)
end;
Chapter 4 45

Opening and Closing the File
Closing a KSAM File
Closing a KSAM File
The FCLOSE intrinsic terminates access to a file. The disposition and the security code
parameters control the file's retention and its authorized users. When closing an existing
file, you usually close it with both parameters set to zero.

 FCLOSE(FILNUM,0,0)

You cannot change an existing permanent file to a temporary file using the FCLOSE
intrinsic. A temporary file, however, can be closed as a permanent file by specifying the
domain in the disposition field. To close a newly created temporary file, set the disposition
parameter (bits 13:3) to 1 to save it as a permanent file, or 2 or 3 to keep it as a temporary
file. Note that the disk space bit of the disposition parameter (bits 11:2) should not be
used for a KSAM file.

 FCLOSE(FILNUM,1,0)

The security code parameter (seccode) specifies the level of access security assigned to the
file. It is set only for a permanent file. A value of 1 gives you exclusive access to the file; 0
allows access by other users. Regardless of the value assigned to the seccode parameter
when closing an existing file, the type of security applied to the file when it was created is
maintained.

In the following example, a new file is closed and saved as a permanent file in the system
file domain (disposition = 1), and access to the file is restricted to the file's creator
(seccode = 1).

 FCLOSE(FILENUM,1,1)
46 Chapter 4

5 Reading File Data

KSAM files offer multiple record retrieval options using primary and alternate keys, and
logical and physical record numbers. The following list identifies the methods of reading
KSAM file data:

• Sequential access:

— By primary key.

— By alternate key.

— In physical record order.

• Random access:

— By key value.

— By logical record number.

— By approximate key match.

— By partial key.

— By physical record number.

KSAM uses two types of pointers to identify the location of records to be read: the logical
record pointer and the physical record pointer. The logical record pointer points to a key in
the index, which points to a data record. This pointer is used to locate records by key. The
physical record pointer points directly to a data record. This pointer is used to locate
records by their physical location in the file.

Intrinsics that use pointers are either pointer-dependent or pointer-independent.
Pointer-dependent intrinsics expect the pointer to be positioned in order to execute
correctly. Pointer-independent intrinsics execute regardless of where the pointer is
positioned.

KSAM maintains an advance flag to specify whether or not to advance the pointers before
the specific function. If the flag is set to TRUE, pointers are advanced before performing
the intrinsic function. If the flag is set to FALSE, the intrinsic function is performed
without advancing the pointers first.

Intrinsics have been developed to position pointers and to read records in sequence or
randomly, by key value and by record number. Table 5-1. identifies the intrinsics used to
47

Reading File Data
Sequential Access by Primary Key
access files and identifies those pointers that are set by each.

NOTE COBOL II and Business BASIC provide KSAM file access routines that read
records by key value. Refer to your programming language manual for
details.

Sequential Access by Primary Key
Many processes retrieve records in a sequence, to systematically perform a function on
each record. The primary key sequence is usually used for such routines. The file opening
routine (an HPFOPENor FOPENintrinsic call) prepares for the most common record retrieval
method by positioning the pointers at the record containing the lowest value of the
primary key. A call to the FREAD intrinsic, after the file is opened, reads the first record in
the primary key sequence.

After reading the first record, the logical record pointer remains in the same position. The
next FREADrepositions the logical pointer as well as the physical record pointer to the next
sequential record in ascending key sequence and reads the record. Although FREAD may
position both pointers, it uses the logical data pointer to locate the particular record. An
end-of-data condition occurs when the last logical record is passed. At this point, the CCG
condition code is set and returned to your process.

Table 5-1. Pointer and Advance Flag Settings for Reading

Intrinsic Reads Advance
Flag

Sets Pointer Sets Advance Flag Pointer
Dependant

FFINDBYKEY no both no no

FFINDN no both no no

FPOINT no both no no

FREAD yes both yes yes

FREADBYKEY no both no no

FREADC yes PHYS yes yes

FREADDIR no PHYS yes no

FSPACE yes both no yes
48 Chapter 5

Reading File Data
Sequential Access by Primary and Alternate Key
Sequential Access by Primary and Alternate Key
Two intrinsics, FFINDN and FFINDBYKEY, can be used to set the logical pointer to the lowest
value of an alternate key field. The FFINDN intrinsic identifies the first record by using a
logical record number. The FFINDBYKEY intrinsic uses a key value to determine the first
record.

When the first record has been located, the FREAD intrinsic reads the first record specified
by the alternate key. Subsequent reads reposition the logical pointer and read the next
logical record.

The FREADBYKEY intrinsic can also be used to position the logical pointer by alternate key
value. In this case, however, the user must know the lowest value of the alternate key. An
approximate value cannot be used with this intrinsic.

Specifying the Record Number

The FFINDN intrinsic positions the pointer to the record specified by the logical record
number of the appropriate key. To position the pointer to the particular record of a key, the
intrinsic parameters identify the particular key of interest and then the record number.

Depending on how the file was built, the first record of any key is identified by 1 or 0. Use
option 5 or 7 of the LISTFILE command to determine how records are numbered in the file
you are accessing. A negative record number also positions the pointer to the lowest value
in the key field.

The key location identifies the key field to be used. Again, use option 5 or 7 of the LISTFILE
command to determine the location of the desired key (ffn_key_location). The following
example identifies the record of an alternate key and reads the specified record:

Figure 5-1. FFINDN Intrinsic Sample

 FFINDN(filenum,ffn_rec_number,ffn_key_location);
.
.
.
 lgth :=FREAD(filenum,fr_record,fr_tcount);

Specifying a Key Value

The FFINDBYKEYintrinsic can also be used to position the pointer to an alternate key. This
intrinsic is intended to position the pointer to the first occurrence of a record value that
matches or is greater than the key value. This is referred to as an approximate match. To
position the pointer to the first record of the key, supply a key value that is less than any
value of the key and specify a relational operator of 1 (greater than) or 2 (equal to or
greater than). For example, a relational operator of 1 locates the first record having a key
value greater than the key value provided.

Figure 5-2. sets the pointer to the lowest value of the alternate key by searching for the
first occurrence of a key value greater than (relop = 1) the value "0000":
Chapter 5 49

Reading File Data
Sequential Access by Primary and Alternate Key
Figure 5-2. FFINDBYKEY Intrinsic Sample

 fby_keyvalue := '0000';
 fby_keylocation := 1;
 fby_keylength := 4;
 fby_relop := 1;
.
.
.
 FFINDBYKEY(filenum,fby_keyvalue,fby_keylocation,fby_keylength,fby_relop);
.
.
.
 lgth := FREAD(filenum,fr_record,fr_tcount);
50 Chapter 5

Reading File Data
Sequential Access by Partial Key Value
Sequential Access by Partial Key Value
The FFINDBYKEY intrinsic can be used to point to those records that contain a common
portion of a key field. The intrinsic parameters (key value , key length , and relational
operator) identify the partial value to be matched, the number of characters to be
compared in the key field, and whether the record should equal the value or be greater
than the value.

Only the common portion of the key is specified in the key value field. For example, to list
all records with a zip code beginning with 943 but ending in any combination of numbers,
943 is entered in the key value field.

The key length parameter identifies the portion of the key field to be used in the
comparison. For example, to list all records with a zip code beginning with 943, a key
length of 3 would be specified. This means that only the first three characters of the
five-character field are used in the comparison.

The relational operator limits the operation to only those records that meet the
criteria. The relational operators that can be specified are 0 (equal to), 1 (greater than),
and 2 (equal to or greater than). Figure 5-3. searches for the first occurrence of a record
containing a partial key of “M0”.

Figure 5-3. Partial Key Search Sample

 fby_keyvalue := ’M0’;
 fby_keylocation := 1;
 fby_keylength := 2;
 fby_relop := 0;
.
.
.
 FFINDBYKEY(filenum,fby_keyvalue,fby_keylocation,fby_keylength,fby_relop);
.
.
.
 lgth := FREAD(filenum,fr_record,fr_tcount);

To read all records containing “M0”, a series of freads would be issued and a comparison
made in the program to see when the key field did not contain “M0” or the end of the file
reached.
Chapter 5 51

Reading File Data
Random Access of a Single Record
Random Access of a Single Record
A record can be accessed randomly by a particular key value or by its relative or physical
record number.

Using a Key Value

The FREADBYKEY intrinsic is recommended for retrieving records randomly. The desired
key value and the key location are specified in the intrinsic parameters. The index of
the specified key is checked for a matching key value and the appropriate record is read.

If an exact key value match is not found, an error condition is returned. Because of this,
the FREADBYKEY intrinsic is not appropriate when searching for an approximate key value
or the lowest value of a key. Use the FFINDBYKEY intrinsic in such cases.

Figure 5-4. Accessing a Record by Key Value

 target := ’ ’;
 tcount := -8;
 keyvalue := ’15 ’;
 keylocation := 5;

 lgth :=FREADBYKEY(filenum,target,tcount,keyvalue,keylocation);

Using the Relative Record Number

Records can also be accessed randomly using the FFINDN intrinsic. To use this intrinsic,
however, you need to know the record's relative record number in its key sequence.

Using a Physical Record Number

The FREADDIR intrinsic reads a single record based on its physical record number in the
file. The record number is supplied as parameter data in the intrinsic call. Record
numbering starts with either 1 or 0, depending on the specifications made when the file
was built.

The FPOINT and FREADCintrinsics can be used to read a record based on its physical record
number. The FPOINT intrinsic positions the pointers to the record identified by its physical
record number in the file. The FREADCintrinsic is then used to read the record based on the
physical record pointer without reference to the record's index location.

In this case, the FREAD intrinsic could also be used to read the record, because the FPOINT
intrinsic also sets the logical record pointer to the record that it located by physical record
number. By default, the key used is the primary key for that record. An alternate key is
used, however, if such a key was specified by a previous call to the FFINDBYKEY or
FREADBYKEY intrinsic.

NOTE This is true for the reads on the previous examples of FFINDN FFINDBYKEY,
FREADBYKEY intrinsics that sets the key of reference for succeeding reads.
52 Chapter 5

Reading File Data
Sequential Access in Physical Record Order
Sequential Access in Physical Record Order
A sequential access in physical record order is really a series of random accesses by
physical record number. The FPOINT and FREADC intrinsics are used to read records in
order of their physical location in the file. The FPOINT intrinsic sets the physical record
pointer to the position specified in its record number parameter. The FREADC intrinsic
reads the record specified by the physical record pointer without reference to the logical
record pointer. A subsequent FREADC intrinsic advances the physical record pointer to the
next physical record. Any record containing a delete flag is ignored and is not read.

The FREADDIR intrinsic also reads files in physical record order. It positions the pointer to
the record specified in the record number parameter. A subsequent FREADDIRintrinsic call
repositions the physical record pointer to the next physical record. Note that deleted
records are not ignored with this intrinsic. It is recommended, therefore, that you use the
FPOINTand FREADCintrinsics to read records sequentially in physical record order. Use the
FREADDIR intrinsic only to read a single record identified by its physical record number.

The FGETINFO intrinsic returns the physical record pointer setting, as well as other
information, for the record most recently accessed. This number is returned in the record
pointer parameter and can be used in a subsequent FPOINT or FREADDIR intrinsic call.
Chapter 5 53

Reading File Data
Shared File Access
Shared File Access
If only one process is accessing a file, setting a pointer and reading a record in a two-step
process does not present a problem. Shared file access, however, presents potential
retrieval contention. If a pointer is positioned to retrieve a particular record by one
process, another process could modify or delete the record before the original process reads
it. The FLOCK and FUNLOCK intrinsics should be used to ensure proper record retrieval in
any program that allows shared access to its file.

NOTE File locking keeps the file inaccessible to other users until the file is unlocked.
This could be a potential source of performance problems. A different file
structure may be more suitable for applications in a shared environment,
such as IMAGE/3000, etc.

An FLOCK intrinsic call should be made prior to a pointer positioning and record reading
procedure to ensure that the proper retrieval is executed. The FUNLOCK intrinsic restores
shared access once the retrieval is completed. Once the file is unlocked, do not assume that
the pointer is still valid. Before using the pointer again, reposition it. The following
sequence shows the appropriate locking procedure to ensure the proper sequence of
records.

FLOCK
FFINDBYKEY (sets the logical pointer)
 FREAD loop (reads records in key sequence)
FUNLOCK
54 Chapter 5

6 Writing and Updating Record Data

When records are written to a file for the first time, they are usually written sequentially.
Following execution of an FWRITE intrinsic, the logical record pointer is positioned at the
next sequential record in key sequence or at the end-of-file marker if the record is the last
in sequence.

Updating and deleting records also rely on pointer positioning. The logical and physical
record pointers are usually positioned by a read procedure, as discussed in Chapter 5 ,
“Reading File Data,”. Typically, a read procedure precedes an update or delete procedure to
verify that the correct record has been found. Table 6-1. specifies the advance flag and
pointer usage of each of the writing, updating, and deletion intrinsics.

Table 6-1. Pointer and Advance Flag Settings for Writing

Intrinsic Reads Advance
Flag

Sets Pointer Sets Advance Flag Pointer
Dependant

FREMOVE no both no yes

FUPDATE (keys
unchanged)

no none yes yes

FUPDATE(keys
changed)

no both no yes

FWRITE no both no yes
55

Writing and Updating Record Data
Writing New Records
Writing New Records
The FWRITE intrinsic writes new records to a new or existing file from a buffer in your
program. Index entries for primary and alternate keys are entered automatically for each
record written.

Depending on how the file was created, records may be written in random or sequential
order. If the REUSE option is specified, each record is written to the next available space. If
the NOREUSE option is specified, all records are written at the end of the file.

Records written to an existing file either overwrite existing records or are appended to
existing records. This is determined by the access option of the aoptions parameter,
selected in the HPFOPEN or FOPEN intrinsic call.

Following each write procedure, the logical record pointer is positioned at the next
sequential record in key sequence or at the end-of-file marker. When the physical bounds
of either the data area or index area of the file is reached, a CCG condition code is returned
to your program.

Note that the control parameter of the FWRITE intrinsic must be included in the intrinsic
call for compatibility. It has no meaning for KSAM files.

When writing records to a file that has shared access, file locking should be used. The
HPFOPEN or FOPEN intrinsic call must allow dynamic locking. An FLOCK intrinsic should be
included before pointers are positioned and records are written. Unlock the file using the
FUNLOCK intrinsic when the write procedure is complete.

Updating Existing Records
To update a record in a KSAM file, the HPFOPEN or FOPEN intrinsic call to open the file
must specify update access. This is set by the aoption parameter. Normally, you would
read the record with one of the read intrinsics , to verify its contents before modification.

The FUPDATE intrinsic writes the contents of the buffer area over the contents of the last
record accessed. This buffer area is identified in an FUPDATE intrinsic parameter. The
written record must contain all the key values expected by the file. If only a portion of the
record is updated, specified by the tcount parameter, this portion must contain all
primary and alternate key values. If it does not, a CCL condition is returned and the
update does not take place.
56 Chapter 6

Writing and Updating Record Data
Deleting a Record
Deleting a Record
The intrinsic FREMOVE effectively removes the current record from the KSAM file. When
executed, the 4-byte record header is modified, identifying the record as deleted. All key
entries pointing to this record are deleted from the indexes. Although the data still
occupies record space in the file, it is no longer possible to access the record through
standard read operations. Note that if deleted record space can be reused, this area can be
overwritten by a new record.

The FREMOVE intrinsic checks only the logical record pointer, not the physical record
pointer, to locate the record to be deleted. To delete a record located by its physical record
pointer, precede the call to the FREMOVE intrinsic with the FPOINT intrinsic. The FPOINT
intrinsic locates the record by its physical record pointer but sets both the logical and
physical record pointers.

NOTE If you use the FREADDIR or FREADC intrinsic to locate the record, only the
physical record pointer is set. You may delete the wrong record because the
logical record pointer was not set by the read procedure.

Shared Access
If access to the file is shared with other processes, any of these intrinsics should be
preceded by FLOCKand FUNLOCKintrinsics. This controls access to the records and reduces
contention while a modification procedure is being performed. All pointer positioning, read
intrinsics, and writing, updating, and deletion procedures should be bounded by the FLOCK
and FUNLOCK intrinsics to guarantee that the proper record is updated or deleted.

NOTE File locking keeps the file inaccessible to other users until the file is unlocked.
This could be a potential source of performance problems. A different file
structure may be more suitable for applications in a shared environment.
Chapter 6 57

Writing and Updating Record Data
Shared Access
58 Chapter 6

7 Protecting the File and Its Data

Attention must be paid to protecting a KSAM file's data. Check an intrinsic's status after
a call to find information about a failed routine. The FCHECK and FERRMSG intrinsics
provide error codes and messages after an intrinsic call has failed.

Various intrinsics control file access when a file is shared by more than one process.
Locking and unlocking the file controls access to a shared file during critical modification
operations.

The item numbers 2 and 6 of the FCONTROLintrinsic ensure that data is written to the disk
before processing is allowed to continue. This protects the data from system and software
aborts that may occur between the time that data is written to the transaction log and the
time that it is actually written to the disk. Transaction management provides automatic
recovery from system and software aborts.

Regular maintenance and file backups are needed for data protection against hardware
failures or improper processing. If index corruption exists, files can be restored quickly
through the FCOPY facility.

Checking Error Information
When a file intrinsic returns a condition code indicating that a physical input or output
error has occurred, additional details can be obtained by calling the FCHECK intrinsic. The
parameters of the FCHECK intrinsic can be designated to return the following error
information:

• The error code that identifies the type of error that occurred.

• The transmission log value that specifies the number of words not read or written
before the input or output error.

• The relative number of the block involved with the error.

• The number of logical records that were in the bad block at the time of the error.

This error information can be expanded to include a description of the error by calling the
FERRMSG intrinsic. This intrinsic uses the error code returned by the FCHECK intrinsic. By
supplying the returned FCHECK error code and defining a message buffer in the FERRMSG
intrinsic call , a corresponding message can be displayed from your program. The error
code returned by FCHECK and its corresponding message can also be found in the MPE/iX
Intrinsics Reference Manual.
59

Protecting the File and Its Data
Protecting Data When File Access is Shared
Protecting Data When File Access is Shared
If a KSAM file is shared with another process, you need to ensure that the most current
data and key index information is retrieved. Locking files controls other processes from
accessing the file while a modification routine is processing. Such a modification routine
should include the pointer positioning and reading routines that are associated with the
modification routine. The FUNLOCK intrinsic allows the file to be shared again, once
modifications are complete.

In a shared environment, it is recommended that you lock and unlock the file for
pointer-related activities, such as FREAD or FUPDATE intrinsics using FFINDBYKEY or
FFINDN intrinsics to locate the proper record.

NOTE File locking keeps the file inaccessible to other users for an indeterminate
length of time. This could be a potential source of performance problems. A
different file structure may be more suitable for applications in a shared
environment.

The following example shows how modification routines can be locked effectively by the
placement of the FLOCK and FUNLOCK intrinsics.

FLOCK
FREADBYKEY
FUPDATE
FUNLOCK

FLOCK
FFINDBYKEY
FREAD loop
FUNLOCK

In many interactive processes, it is inefficient to keep a file locked while a user retrieves a
record, decides whether it needs to be updated, makes appropriate changes, and writes the
new record. In such cases, a simple read could retrieve the record's contents for the online
user to see. Once a decision has been made to modify the contents, a new retrieval
redisplays the record for updating. By rereading the file, the program will be able to verify
that the correct record has been retrieved without locking the file for an excessive amount
of time.

FLOCK
FREADBYKEY
FUNLOCK
.
.
.
 Other users can access and modify this record while
 the user decides how to update it.
.
.
.
FLOCK
60 Chapter 7

Protecting the File and Its Data
Writing Directly to Disk
FREADBYKEY
FUPDATE
FUNLOCK

Writing Directly to Disk
The FCONTROL intrinsic's controlcode parameter settings identify the control operation
desired. A setting of 2 ensures that the requested output has been physically completed. (If
the file is shared, you must lock the file before calling the FCONTROLintrinsic with a control
code of 2.) A control code of 6 provides a similar function. It ensures that the requested
output has been physically completed and that the end-of-file has been written.

Recovering from a System or Software Abort
File recovery after a system or software abort is provided automatically through
transaction management. After a file has been created with the BUILD command or has
been created and loaded using the HPFOPEN or FOPEN intrinsics, it is attached to system
logging. If processing of a transaction is interrupted prior to its logical completion, the
transaction is rolled back before processing is allowed to continue. A transaction is rolled
back in the following cases:

• A system abort occurs.

• A process with an active logical transaction aborts.

• A transaction aborts.

• A transaction causes a deadlock condition.

If a KSAM file is created and loaded using FCOPY's NEW option, or an HPFOPEN or FOPEN
intrinsic call, transaction logging is not attached until the file is closed. This provides a
fast load mode that loads the file more quickly than if transaction logging was invoked. An
abort during this load process, however, is not logged. If an abort occurs when creating and
loading a file with FCOPY's NEWoption or with the HPFOPENor FOPENintrinsic, restart the
file loading process.

To protect initial loading, use the BUILD command to create the file. The file is attached to
transaction management when the BUILD command is used. A file can also be attached
manually by creating and loading the file with the HPFOPEN intrinsic and specifying the
DOMAIN=CREATE option. With this option, the file is attached and system logging begins
with the first access.
Chapter 7 61

Protecting the File and Its Data
Backing Up KSAM Files
Backing Up KSAM Files
A regularly scheduled backup of all files is always advisable. The STORE/RESTORE
facility used for most other files is also appropriate for backing up KSAM files to tape. The
following commands provide a backup routine for a KSAM file.

 FILE T=ARBACK;DEV=TAPE
 STORE ARMSTR.MGR.AR;*T

NOTE Do not use the TRANSPORT option of the STORE command with KSAM files.
The TRANSPORToption is intended as a migration option for storing files from
MPE/iX to MPE V/E systems.

Use the following commands to restore the file from tape:

 FILE T=ARBACK;DEV=TAPE
 RESTORE *T;ARMSTR.MGR.AR;KEEP;DEV=DISC;SHOW

The FCOPY utility can also be used to back up KSAM files on disk instead of tape. This
allows a quick recovery with little delay. If sufficient resources are available, this is an
effective and rapid method of backing up files.

Recovering from Index Corruption
If the file management subsystem detects file corruption, it does not allow writing,
updating, and deletion activities. The file manager attempts to honor read requests, but
the attempt may not be successful.

If index entries have been corrupted, create a new KSAM file using the BUILD command.
When the file is built, load the data from the original file using the FCOPY utility with the
KEY=0 option. The KEY=0 option does not access the indexes in the source file. It merely
transfers data records from source to target, creating new index entries after each record is
copied.

The following routine creates a new file and loads it with the data records from the original
accounts receivable file.

Figure 7-1. Index Corruption Recovery for a KSAMXL File

:BUILD ARMSTRXL.MGR.AR;REC=-80,,F,ASCII;DEV=DISC;&
DISC=100;KSAMXL;KEY=(N,4,6;&
B,10,25,RDUP;&
N,65,5,RDUP;&
B,70,3,RDUP;&
FIRSTREC=1;REUSE

:FCOPY
62 Chapter 7

Protecting the File and Its Data
Recovering from Index Corruption
>FROM=OLDMSTR.MGR.AR;TO=(ARMSTR.MGR.AR);KEY=0
>EXIT

Figure 7-2. Index Corruption Recovery for a KSAM64 File

:BUILD ARMSTR64.MGR.AR;REC=-80,,F,ASCII;DEV=DISC;&
DISC=100;KSAM64;KEY=(N,4,6;&
B,10,25,RDUP;&
N,65,5,RDUP;&
B,70,3,RDUP;&
FIRSTREC=1;REUSE
:FILE ARMSTR64; KSAM64
:FCOPY
>FROM=OLDMSTR64.MGR.AR;TO=(*ARMSTR64.MGR.AR);KEY=0
>EXIT
Chapter 7 63

Protecting the File and Its Data
Recovering from Index Corruption
64 Chapter 7

8 Migration and Mixed Mode Processing

MPE/iX offers three KSAM file formats: CM KSAM, KSAM XL and KSAM64. CM KSAM is
the two-file KSAM structure used on MPE V/E systems.

KSAM XL and KSAM64, single-file KSAM structures, are used only on MPE/iX systems.
KSAM XL and KSAM64 files offer a more convenient single-file format.

Programs running in CM or NM can access any type of KSAM file. Use the FCOPY utility
to migrate data and rebuild indexes from one KSAM file format to another.

NOTE RPG Programmers:

Record-level locking cannot be used for any type of KSAM file on MPE/iX.

Similarities in KSAM File Features
All three file formats allow multiple keys to access data records and duplicate key values
for specified keys. You can access records by various keys using constructs within the
programming language. You can also use KSAM intrinsics to access records in various
sequences.

Record retrieval can be by direct match of specific key value, by generic (or partial) key
value, or by approximate match. Access of data records by physical record location may or
may not match the primary key sequence, depending upon the order in which records were
initially loaded.
65

Migration and Mixed Mode Processing
Differences in KSAM File Features
Differences in KSAM File Features
Unlike CM KSAM files, KSAM XL and KSAM64 data records and indexes are combined in
a single file. The file limit of KSAM XL files is substantially larger than CM KSAM files.
The physical size of the KSAM file is the same as the MPE/iX native mode flat file.

KSAM XL and KSAM64 files allow only fixed-length records. CM KSAM files allow
fixed-length or variable-length records. When the data is copied from CM KSAM
variable-length records to KSAM XL or KSAM64 fixed-length records, shorter records are
padded with a fill character to the defined fixed-length record size. The fill character is
specified during the file creation. The default fill character for an ASCII file is a blank. The
default fill character for a binary file is a binary zero.

The three types of KSAM files allow the reuse of index entry space for deleted entries, but
only KSAM XL and KSAM64 allow the reuse of deleted record space. If chronological order
of the records is not necessary, deleted record space can be reused.

KSAMUTIL, the utility used to create, rename, and purge CM KSAM files, does not support
KSAM XL and KSAM64 files. Instead, KSAMUTIL functions have been integrated into the
following CI commands:

• BUILD

• PURGE

• RENAME

• LISTFILE

The FCOPY utility provides a method of migrating CM KSAM files to KSAM XL and
KSAM64. KSAM XL and KSAM64 files, however, cannot use the NOKSAM option in file
copying.

Transaction management guarantees consistency and recoverability from system crashes.
System logging provides this recoverability. System logging is attached after the first
FCLOSE of the file. This occurs automatically with the BUILD command. Files built with
HPFOPEN or FOPEN intrinsics are attached after the first FCLOSE intrinsic call or with the
DOMAIN=CREATE option of the HPFOPEN intrinsic.
66 Chapter 8

Migration and Mixed Mode Processing
Migrating KSAM Files
Migrating KSAM Files
The data records from an existing KSAM file on an MPE V/E system can be migrated to an
existing KSAM XL or KSAM64 file on an MPE/iX system. Perform the following steps to
migrate an existing CM KSAM file with fixed-length records to a new KSAM XL or a
KSAM64 file:

1. Store both the CM KSAM key file and data file to tape using the TRANSPORT option
(used only if migrating to an MPE V/E system).

2. Restore both files to the MPE/iX machine (used only if migrating from an MPE V/E
system).

3. Create the new KSAM XL or a KSAM64 file using the BUILD command.

4. Run the FCOPY utility.

5. Enter the appropriate FROM=and TO=parameters to copy the CM KSAM file to a KSAM
XL file or a KSAM64 file.

6. Exit FCOPY.

7. Delete the original data file and key file from the MPE/iX machine.

8. Rename the new KSAM XL or KSAM64 file to the original CM KSAM data file name.

NOTE KSAM XL and KSAM64 files require fixed-length records. If the source CM
KSAM file contains variable-length records, define the record length of the
target file as the maximum length of the source records. When copying the
file, FCOPY pads the source record with a fill character to create the target
record size. The fill character is specified during the file creation. The default
fill character for an ASCII file is a blank. The default fill character for a
binary file is a binary zero.

The following entries show the FCOPY commands needed to migrate the CM KSAM file
named ARMSTR.MGR.AR to an existing KSAM XL/64 file. Note that in this example, the
KSAM XL/64 file structure already exists. You can create the file with the BUILD command
or with the FOPEN or HPFOPEN intrinsics.

:FCOPY
>FROM=ARMSTR.MGR.AR;TO=ARMSTR2.MGR.AR
>EXIT
:PURGE ARMSTR.MGR.AR
:PURGE ARKEY.MGR.AR
:RENAME ARMSTR2.MGR.AR, ARMSTR.MGR.AR

If record-level locking has not been used and no other migration issues exist, the source
program can be run in compatibility mode. The program successfully accesses the new
ARMSTR file. Refer to the Migration Process Guide for details about migrating application
programs.

You can create a new KSAM XL/64 file and copy the CM KSAM record data in a single
step. Enclose the new file name in parentheses to specify that this is a KSAM XL/64 file. If
Chapter 8 67

Migration and Mixed Mode Processing
Migrating KSAM Files
the KSAM XL/64 file does not exist, a new file is created. A new file is also created by using
the NEW option.

If you create the file and copy data to it using one command, however, you are not able to
change the key structure. This would not be acceptable when copying variable-length
records because the record length and record type parameters must be modified to
acceptable values.

:FCOPY
>FROM=ARMSTR.MGR.AR;TO=(ARMSTR2.MGR.AR)
>EXIT

or

:FCOPY
>FROM=ARMSTR.MGR.AR;TO=(ARMSTR2.MGR.AR);NEW
>EXIT

FCOPY copies data records from the source file in the sequence identified by the primary
key. Use the KEY= option to select a different sequence for copying the records. KEY=2, for
example, would copy records in the sequence of the second key of the source file. To retain
the physical layout of the source file, specify KEY=0. This specification copies the records in
the order that they reside in the source file without regard to a key.

NOTE The NOKSAM option is not allowed with KSAM XL/64 files.
68 Chapter 8

Migration and Mixed Mode Processing
Mixed Mode Operation
Mixed Mode Operation
Application programs running in CM or NM can access either CM KSAM or KSAM XL/64
files. If you are using an RPG application, do not specify any record locking features. RPG
will default to file-level locking. This is especially important for cross-development for
multiple environments.

In some organizations, cross development is necessary because satellite offices operate
different types of systems. CM KSAM files can be used on both MPE V/E and MPE/iX
systems. The KSAM XL/64 file format can be used only on MPE/iX systems.

KSAM files can be copied from one type to another using the FCOPY utility. For detailed
information on using the FCOPY utility, refer to the FCOPY Reference Manual.

To create a new CM KSAM file and copy data to it from an existing CM KSAM file ,
remember to identify both the data file and the key file for the target CM KSAM file. Use
this method to back up current files or to create test files on an MPE V/E system. This
process is described in detail in the KSAM/3000 Reference Manual.

:FCOPY
>FROM=ARMSTR.MGR.AR;TO=(ARBACK.MGR.AR,ARBKEY.MGR.AR)
>EXIT

To create a new KSAM XL/64 file and copy data to it from a CM KSAM file, specify only a
single file name in the TO=parameter. (KSAM XL/64 files include indexes and data records
in a single file.) Enclose the new file name in parentheses to indicate that it is to be a
KSAM XL/64 file. The ;NEWparameter is optional. Use this method to migrate files from an
MPE V/E system to an MPE/iX system.

:FCOPY
>FROM=ARMSTR.MGR.AR;TO=(ARMSTR2.MGR.AR)
>EXIT

or

:FCOPY
>FROM=ARMSTR.MGR.AR;TO=(ARMSTR2.MGR.AR);NEW

To copy from one KSAM XL/64 file to another existing KSAM XL/64 file, enter a single file
name for the target file. (KSAM XL/64 files include indexes and data records in a single
file.) Use this type of copy to back up current KSAM XL/64 files or to create a test file on an
MPE/iX system.

:FCOPY
>FROM=ARMSTR.MGR.AR;TO=ARBACK.MGR.AR
>EXIT

To create a new CM KSAM file and copy data to it from an existing KSAM XL/64 file,
remember that both the target data file name and the target key file name must be
specified. Use this type of copy for cross-development.

:FCOPY
>FROM=ARMSTR2.MGR.AR;TO=(ARDATA.MGR.AR,ARKEY.MGR.AR)
>EXIT
Chapter 8 69

Migration and Mixed Mode Processing
Mixed Mode Operation
70 Chapter 8

9 KSAM Intrinsics

The following section provides syntax and parameter definitions for the KSAM intrinsics.
For details regarding status usage and data types, refer to the MPE/iX Error Message
Manual Volumes 1, 2 and 3 and the MPE/iX Intrinsics Reference Manual.
71

KSAM Intrinsics
FCHECK
FCHECK
Returns specific details about error conditions that occurred when a file system intrinsic
returned a condition code indicating an I/O error. FCHECK applies to files on any device.

Syntax

 I16V I16 I16 I32 I16
 FCHECK(filenum,fserrorcode,translog,blocknum,numrecs);

Parameters

filenum 16-bit signed integer by value (optional)

Specifies the file number of the file for which error information is to be
returned. If filenum is not specified or set to zero, error information is
returned about the last failed FOPEN call.

fserrorcode 16-bit signed integer by reference (optional)

Returns a file system error code indicating the type of error that occurred.

translog 16-bit signed integer by reference (optional)

Returns the number of halfwords read or written if an I/O error occurred.
(This value is recorded in the transmission log.)

blocknum 32-bit signed integer by reference (optional)

Returns the physical record count for a nonspoolfile or the logical record
count for a spoolfile:

• For fixed-length and undefined-length record files, the physical count is
the number of physical records transferred to or from the file since
FOPEN.

• For variable-length record files, the physical count is the last rewind,
rewind/unload, space forward or backward to tape mark.

numrecs 16-bit signed integer by reference (optional)

Returns the number of logical records in the bad block (blocking factor).

Operation Notes

FCHECKis used to determine the error conditions of the last failed FOPENintrinsic call (even
if a file number was not returned) by setting the filenum parameter to zero. In this case,
only fserrorcode returns valid information.

Do not use FCHECK to determine error conditions of a last failed HPFOPEN call; error
conditions are returned in the HPFOPENstatus parameter.
72 Chapter 9

KSAM Intrinsics
FCHECK
Condition Codes

CCE Request granted.

CCG Not returned.

CCL Request denied. The file number passed by filenum is invalid, or a
bounds violation occurred while processing this request
(fserrorcode =73).

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 73

KSAM Intrinsics
FCLOSE
FCLOSE

Terminates access to a file on any device.

Syntax

 I16V I16V I16V
 FCLOSE(filenum,disposition,securitycode);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be closed.

disposition 16-bit signed integer by value (required)

Passes the disposition of the file, significant only for files on disk and
magnetic tape.

NOTE This disposition can be overridden by a corresponding parameter in a FILE
command entered prior to program execution.

The disposition options are:

Bits Value/Meaning

13:3 Domain disposition:

000

No change. The disposition remains as it was before
the file was opened. If the file is new, it is deleted by
FCLOSE; otherwise, the file is assigned to the domain it
belonged to previously. An unlabeled tape file is rewound
and a labeled tape is rewound and unloaded.

001

Close as a permanent file. If the file is a disk file, it is
saved in the system file domain. A new or old temporary
file on disk has an entry created for it in the system file
directory. If a file of the same name already exists in the
directory, an error code is returned and the file remains
open. If the file is a permanent file on disk, this domain
disposition has no effect.

010

Close as a temporary job file (rewound). The file is
retained in your temporary (job/session) file domain and
can be requested by any process within your job/session. If
74 Chapter 9

KSAM Intrinsics
FCLOSE
the file is a disk file, the file name is checked.If a file of the
same name already exists in the temporary file domain, an
error code is returned and the file remains open.

011

Close as a temporary job file (not rewound). This option
has the same effect as domain disposition 010, except that
tape files are not rewound.

100

Release the file. The file is deleted from the system.

101

Makes a permanent standard disk file temporary (valid
only for standard disk files with either fixed-length,
variable-length, or undefined-length record formats). The
file is removed from the permanent file directory and
inserted into the TEMPORARY file directory. (PM
capability is required for this option.)

11:2 Disk space disposition (valid only for standard disk files
with either fixed-length, undefined-length, or
variable-length record formats):

00

Does not return any disk space allocated beyond the
end-of-file marker.

01

Returns any disk space allocated beyond the end-of-file
(EOF) marker to the system. The EOF becomes the file
limit; records cannot be added to the file beyond the EOF.

10

Returns any disk space allocated beyond the end-of-file
(EOF) marker to the system. The file limit remains the
same; records can be added to the file beyond EOF, up to
the file limit. The disk space disposition takes effect on
each FCLOSE.

0:11 Reserved for MPE/iX.
Chapter 9 75

KSAM Intrinsics
FCLOSE
securitycode 16-bit signed integer by value (required)

Returns the type of security initially applied to the file (significant for new
permanent files only). The valid options are:

Value Meaning

0 Unrestricted access; can be accessed by any user, unless
prohibited.

1 Private file creator security; can be accessed only by the
creator.

Operation Notes

FCLOSE deletes buffers and control blocks where the process accessed the file. It also
deallocates the device where the file resides, and it can change the disposition of the file.
If FCLOSE calls are not issued for all files opened by the process, the calls are issued
automatically by MPE/iX when the process terminates.

Condition Codes

CCE Request granted.

CCG Not returned.

CCL Request denied. The file was not closed; an incorrect filenum was
specified, or another file with the same name and disposition exists.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
76 Chapter 9

KSAM Intrinsics
FCONTROL
FCONTROL
Performs various control operations on a file or on the device where the file resides,
including:

• Verifying I/O.

• Reading the hardware status word for the device where the file resides.

• Setting a terminal's timeout interval.

• Repositioning a file at its beginning.

• Writing an end-of-file marker.

Syntax

 I16V I16V *

 FCONTROL(filenum,itemnum,item);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file for which the control operation is to be
performed.

itemnum 32-bit signed integer by value (required)

Specifies which operation is to be performed. (Refer to Table 9-1.)

item type varies (required)

Passes/returns a value associated with a control operation as indicated by
the corresponding itemnum parameter. (Refer to Table 9-1.)

This parameter is ignored, but must be specified to satisfy internal
requirements.

Table 9-1. FCONTROL Itemnum/Item Values

Itemnum Mnemonic Item Description

0 U16 General device control:

The value specified is passed to the appropriate device driver. A value
from the driver is returned in item . Not valid for spooled device files.

Not applicable to KSAM files.

1 U16 Carriage control (CCTL):

Not applicable to KSAM files.
Chapter 9 77

KSAM Intrinsics
FCONTROL
2 I16 Complete I/O:

Ensures that requested I/O has been physically completed. Valid only for
buffered files. Posts the block being written (full or not).

Item is ignored.

A checkpoint record is written. In the event of a system crash, recovery is
done to this state of the files.

3 U16 Device status:

Returns a record containing information about the state of the device
associated with the file immediately after the last I/O operation
(including HPFOPEN/FOPEN) on the file. The record size and contents are
device-dependent.

Not applicable to KSAM files.

4 U16 Set timeout interval:

Passes the timeout interval, in seconds, to be applied to input from the
specified file. The maximum value allowed is 655.35 seconds. If input is
requested from a file but is not received in this interval, the FREAD
request terminates prematurely with CCL. The interval is specified in
seconds and returned in item . If this interval is zero, any previously
established interval is cancelled, and no timeout occurs.

A timeout value should be used for programs reading from an
unattended device to prevent "hangs". Timeouts can be used to terminate
binary reads, but only as a safeguard to prevent a program from waiting
too long for a read to complete.

Only valid for terminal and message files. Only affects the next read if
the addressed file is being read from the terminal; it must be reissued for
each read. If this code is applied to a message file, item specifies the
length of time that a process waits when reading from an empty file or
writing to a full one and the timeout remains enabled until it is explicitly
cancelled.

Denotes a halfword in the stack that contains the time-out interval, in
seconds, to be applied to input from the terminal.

During block mode reads, the timer halts when a DC2 character is
received. The block mode read timer is activated by the system software;
these values are not user changeable.

Not applicable to KSAM files.

5 U16 Reposition file at its beginning:

The file is repositioned to the first logical record, the record with the
lowest value in the current key.

Table 9-1. FCONTROL Itemnum/Item Values

Itemnum Mnemonic Item Description
78 Chapter 9

KSAM Intrinsics
FCONTROL
Condition Codes

CCE Request granted.

CCG Not returned.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.

6 U16 Write end-of-file:

Marks the end-of-file (EOF) on disk. It performs the function of
itemnum =2 and writes the file label. This guarantees that the end-of-file
is correct and the extent bit map is updated.

Item is ignored.

7 U16 Space forward to tape mark:

Not used for KSAM XL/64 files. For CM KSAM files, it clears the key and
data buffers of all information and reads the first two sectors of the key
file from disk to buffer.

Table 9-1. FCONTROL Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 79

KSAM Intrinsics
FERRMSG
FERRMSG
Returns a message corresponding to an FCHECK error number and enables error messages
to be displayed from a program.

Syntax

 I16 CA I16
 FERRMSG(fserrorcode,msgbuffer,msglength);

Parameters

fserrorcode 16-bit signed integer by reference (required)

Passes an error code returned by the FCHECK intrinsic, indicating which
message to return in msgbuffer .

msgbuffer character array (required)

Returns the error message identified with fserrorcode . To contain the
longest possible message, msgbuffer must be >= 72 bytes long.

msglength 16-bit signed integer by reference (required)

Returns the length of the error message in msgbuffer . The length is
returned in positive bytes.

Condition Codes

CCE Request granted.

CCG Request denied. No error message exists for this fserrorcode .

CCL Request denied. The msgbuffer address was out of bounds, msgbuffer
was not large enough, or msglength was out of bounds.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
80 Chapter 9

KSAM Intrinsics
FFILEINFO
FFILEINFO

Returns information about a file.

Syntax

 I16V I16V *
 FFILEINFO(filenum [, itemnum,item] [...]);

NOTE Up to five itemnum/item pairs can be specified.

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file for which information is requested.

itemnum 16-bit signed integer by value (optional)

Specifies which item value is to be returned. (Refer to Table 9-2.)

item type varies (optional)

Returns the value of the item specified in the corresponding itemnum .
(Refer to Table 9-2.)

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description

1 CA File designator (28 bytes): Returns the file designator of the file being referenced
in the format:

filename.groupname.accountname

Must be >=28 bytes in length. Unused bytes are filled with right-justified blanks
and a nameless file returns an empty string.

The fully qualified name of the file referenced by filenum is returned as the value
of this itemnum . Only names which can be expressed using MPE-only semantics
are returned by this itemnum . If the name of the object referenced by filenum can
not be expressed using MPE-name semantics a CCL condition code is returned.
Calling FCHECK for filenum after this error occurs will result in error.
Chapter 9 81

KSAM Intrinsics
FFILEINFO
2 U16 File options: Returns file characteristics (refer to the FFfoption figure).

The record format extension bit is returned as the foption (1:1) bit. Byte stream
record format is represented as a record format extension of one with a variable
record format foption (8:2) bits equal to 01.

Directories, symbolic links, device links, pipes and FIFO's can not be represented
by foptions . If the object referenced by filenum is one of these objects, a CCL
condition code is returned. Calling FCHECKfor filenum after this error occurs will
result in error.

3 U16 Access options: Returns file access information (refer to the FFaoption figure).

4 I16 (CM) Record size: Returns the logical record size associated with the file:

• If the file was created as a binary file, this value is positive and is in halfwords.

• If the file was created as an ASCII file, this value is negative and is in bytes.

For message files, when there is call to FCONTROLwith controlcode =46, the value
returned is the size of the data records, including the 4 byte header.

Maintained for compatibility with MPE V/E-based systems only. CM record sizes
are imposed when FGETINFO returns record size information on all file types. If
the record size exceeds the limits, a zero is returned.

NOTE If a zero is returned, use item 67.

5 I16 Device type/subtype: Returns the type and subtype of the device being used for a
KSAM, RIO, circular, or message file, or devices such as a tape drive, printer, or
terminal where bits (0:8) indicate the device subtype, and bits (8:8) indicate the
device type.

If the file is not spooled or is opened as a spoolfile through the logical device, the
actual value is returned. If an output file is spooled and was opened by device
class name, the type and subtype of the first device in its class is returned. (This
may be different from the device actually used.)

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
82 Chapter 9

KSAM Intrinsics
FFILEINFO
6 U16 Logical device number: Returns the logical device number of the device where the
disk file label resides.

• If the file is a disk file, the LDEV is the location of the file label. (File data can
reside on the same device as the file label.)

• If the file is spooled, the LDEV is a virtual device number that does not
correspond to the system configuration I/O device list.

• If the file is located on a remote computer, linked by a DS point-to-point or
X.25 link, the left eight bits (0:8) are the LDEV of the distributed system (DS)
device.

• If the file is located on a remote computer, linked by NS 3000/XL, the left eight
bits (0:8) are the remote environment of the connection. The right eight bits
(8:8) are the LDEV of the device on the remote computer where the file label
resides.

• If the DS device for the RFA or the LDEV is 0, then a zero is returned.

NOTE If a zero is returned, use item 50.

7 U16 Hardware device address: Returns 2048. Maintained to provide backward
compatibility with MPE V/E-based systems.

8 I16 File code: Returns the file code of a disk file (refer to FFILEINFO for file codes).

9 I32 Current logical record pointer: Returns the current logical record pointer setting.
This value is the displacement in logical records from record number 0 in the file
and identifies the record that would be accessed next by FREAD or FWRITE.

10 I32 EOF: Returns the pointer setting of the last logical record currently in the file
(equivalent to EOF). If the file does not reside on disk, the value is zero. For
message files, when a call is made to FCONTROL with itemnum =46, the number of
records returned includes open, close, and data records.

11 I32 File limit: Returns a number representing the last logical record that can exist in
the file (equivalent to the file limit). If the file does not reside on disk, the value is
zero.

12 I32 Log count: Returns the logical records passed to and from the program during the
current file access.

13 I32 Physical count: Returns the number of buffered physical I/O operations performed
since the last FOPEN/HPFOPEN call (records).

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
Chapter 9 83

KSAM Intrinsics
FFILEINFO
14 I16 Block size: Returns the file block size:

• If the file is binary, the value is positive and the size is in halfwords.

• If the file is ASCII, the value is negative and the size is in bytes.

Maintained for compatibility with MPE V/E-based systems only. CM block size
limits are used when FGETINFO returns block size information on all file types
(STD, KSAM, RIO, CIR, MSG). If the block size of the specified file exceeds the
limits, zero is returned.

NOTE If a zero is returned, use item 68.

15 I16 Extent size: Returns the extent size; for compatibility with MPE V/E-based
systems only.

NOTE If a zero is returned, use item 69. If extent size is specified or the
maximum number of extents is specified at file creation, the size
and number of extents are determined by the operating system and
the item values are not actual values; they are calculated using
system defaults.

16 U16 Maximum number of extents:

If the extent size or maximum number of extents is specified as zero at file
creation, then the size and number of extents are determined by the system. In
that case, these item values are calculated using system defaults defaults and do
not reflect actual values.

17 I16 User labels: Returns the number of user labels defined for the file during creation.
If the file is not a disk file, this number is zero. When an old file is opened for
overwrite output, the value is not reset and the old user label is not destroyed.

18 CA Creator: Returns the name of the file creator (at least 8 bytes). If the file does not
reside on disk, blanks are returned.

An unqualified form of the file owner's name is returned as the value of this
itemnum . The file owner is not neccessarily the file's creator. File ownership may
be changed using (see engineer).

A symbolic zero (ASCII 48 in decimal) is returned as the file owner for root
directories, accounts, and MPE groups created prior to the POSIX release.

If the file is not located in the account in which the file owner is a member, a blank
file owner name is returned. Item number 85 should be used to obtain the full file
owner name instead of item 18.

19 I32 Label address: Returns a zero. For compatibility with MPE V/E-based systems
only.

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
84 Chapter 9

KSAM Intrinsics
FFILEINFO
20 I16 Blocking factor

21 I16 Physical block size; indicates halfwords

22 I16 Data block size; indicates halfwords

23 I16 Offset to data in blocks; indicates halfwords

24 I16 Offset of active record table for RIO files; indicates halfwords

25 I16 Size of active record table within the block; indicates halfwords

26 CA Volume ID (tape label)

27 CA Volume set ID (tape label)

28 U16 Expiration date (julian format)

29 I16 File sequence number

30 I16 Reel number

31 I16 Sequence type

32 U16 Creation date (julian format)

33 I16 Label type

34 I16 Current number of writers

35 I16 Current number of readers

36 U16 File allocation date, when the file was last restored (CALENDAR format)

37 I32 File allocation time, when the file was last restored (CLOCK format)

38 U16 Spoolfile device file number:

Bits (1:15) = Device file number

Bit (0:1) = 1 Output spoolfile

Bit (0:1) = 0 Input spoolfile

If the spoolfile device number is larger than 32767, itemnum 38 returns 0 (zero).
Use itemnum 78 instead for spoolfile numbers larger than 32767.

40 I32 Disk device status: Returns a zero. For compatibility with MPE V/E-based
systems only.

41 I16 Device type

42 I16 Device subtype: Always returns an 8. (Indicates a 7933 or 7935 disk drive)

43 CA Environment file name (>=36 bytes)

44 I16 Number of disk extents currently allocated to the file

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
Chapter 9 85

KSAM Intrinsics
FFILEINFO
45 CA File name from labeled tape header 1 record (>= 17 bytes)

46 I16 Tape density

47 I16 DRT number: Always returns an 8.

48 I16 Device unit number: Always returns a 0.

49 U16 Equivalent to a software interrupt PLABEL for message files

50 U16 Real device number of the file

51 I16 Remote environment number

Note: If using NS 3000/XL RFA (remote file access), specify DSDEVICEldev# when
you are using a DS (point-to-point or X.25) link.

52 I32 Last modification time (CLOCK format) Zero is returned as the modification time
for root directories, accounts, and MPE groups created prior to the POSIX release.

53 U16 Last modification date (CALENDAR format) Zero is returned as the modification
time for root directories, accounts, and MPE groups created prior to the POSIX
release.

54 U16 File creation date (CALENDARformat) Zero is returned as the modification time for
root directories, accounts, and MPE groups created prior to the POSIX release.

55 U16 Last access date (CALENDAR format) Zero is returned as the modification time for
root directories, accounts, and MPE groups created prior to the POSIX release.

56 I32 Number of data blocks in a variable length file

57 I16 Number of user labels written to the file

58 I16 Number of accessors having output access (write) for a particular file

59 I16 Number of accessors having input access (read/update) for a particular file

60 I16 Terminal type:

0 File's associated device not a terminal

1 Standard hardwire or multipoint terminal

2 Terminal connected through phone-modem

3 DS pseudo-terminal

4 X.25 Packed Switching Network PAD (packet
assembler/disassembler) terminal

5 NS virtual terminal

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
86 Chapter 9

KSAM Intrinsics
FFILEINFO
61 CA NS 3000/XL remote environment ID name

Note: If using NS 3000/XL RFA (remote file access), specify DSDEVICEldev# when
using a DS (point-to-point or X.25) link. A buffer must be provided for the node
name (or envid) with the required space of 52 bytes; otherwise, data corruption
may occur on variables following itemnum =61 or an FSERR 73, BOUNDS
VIOLATION may be returned.

62 CA File lockword (8 bytes):

63 CA Unique file identifier (UFID) (20 bytes):

64 @64 Virtual address of the file: Applicable for standard disk files only. (Requesting
itemnum s 64, 74, or 75 for any other file type, RIO, MSG, CIR, causes an error
and returns CCL (1).)

65 Reserved for the operating system.

66 @32 Virtual address of global unique file descriptor (GUFD):

67 U32 (NM) Record size (indicates bytes)

68 U32 Block size (indicates bytes)

69 U32 Extent size (indicates bytes)

74 @64 Virtual address of file label: Applicable for standard disk files only. (Requesting
itemnum s 64, 74, or 75 for any other file type (RIO, MSG, CIR) causes an error
and returns CCL (1).)

75 CA Hardware path: Applicable for standard disk files only. (Requesting itemnum s 64,
74, or 75 for any other file type (RIO, MSG, CIR) causes an error and returns CCL
(1).)

76 CA Volume restriction (34 bytes): The last two characters indicate the type:

0 File placed on the specified volume at creation

1 File can be placed on any volume containing the specified class
at creation

2 File can be placed on any volume within the specified volume set
at creation (Default)

77 U32 Transaction management log set ID If itemnum 77 = 0 (zero), the file is not
attached to the XM (Transaction Management) log.

78 U32 Spoolfile device file number:

Bits (1:31) = Device file number

Bit (0:1) = 1 Output spoolfile

Bit (0:1) = 0 Input spoolfile

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
Chapter 9 87

KSAM Intrinsics
FFILEINFO
79 I16 File's pending disposition

0 = No change, the disposition is the same as before the file was opened

1 = Permanent

2 = Temporary (tape files rewound)

3 = Temporary (same as 2 except tape files not rewound)

4 = Released (purged)

5 = Temporary (but the file was previously a permanent file)

80 This itemnum returns a null-terminated POSIX-syntax system absolute
pathname for the file or directory referenced by filenum . On input the first four
bytes of this buffer are interpreted as a 32-bit unsigned integer specifying the
maximum buffer size in bytes. This maximum buffer size does not include the four
bytes used to represent this size. On output the first four bytes of the buffer
represent the pathname length excluding the null-terminator as an unsigned
integer. The pathname is returned in the bytes following the pathname length.
Bytes beyond the null-terminator should be considered undefined. If the
maximum buffer length is incorrect on input, variables allocated near the buffer
may be overwritten or a bounds violation may occur. A zero pathname length is
returned for unnamed new files and when an error occurs. Zero is the mininum
buffer length on input for this itemnum .

81 32-bit unsigned integer by reference. The current number of hard links to the file.

82 32-bit signed integer by reference. Time of last file access in clock format. The bit
assignments are:

Bits 0 7 hours

Bits 8 15 minutes

Bits 16 23 seconds

Bits 24 31 tenths of seconds

83 32-bit signed integer by reference. Time of last file status change. (Clock format -
See item 82 for a description of the format).

84 16-bit unsigned integer by reference. Date of last file status change in calendar
format. The bit assignements are:

Bits 0 - 7 Year of the century

Bits 8 - 15 Day of the year

85 32-byte character array by reference. File Owner:

The full file owner name. Unused characters are blank filled. A symbolic zero
(ASCII 48 in decimal) is returned as the file owner for root directories, accounts,
and MPE groups created prior to the POSIX release.

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
88 Chapter 9

KSAM Intrinsics
FFILEINFO
86 32-bit signed integer by reference. File owner identifier:

The file owner identifier (UID). Zero is returned as the file owner ID for root
directories, accounts, and MPE groups created prior to the POSIX release.

87 32-byte character array by reference. File group:

The file group name. Unused characters are blank filled. A symbolic zero (ASCII
48 in decimal) is returned as the file group for root directories whose GID's have
not been assigned.

88 32-bit signed integer by reference. File group identifier:

The file group identifier (GID). Zero is returned as the file group ID for root
directories whose GID's have not been assigned.

89 32-bit unsigned integer by reference. File type:

The following valid file types may be returned:

0 Ordinary File

1 KSAM/3000

2 RIO

3 KSAM XL

4 CIR

5 Native Mode Spool File

6 MSG

7 KSAM64

8 Not Applicable

9 Directory

10-11 Not Applicable

12 Pipe

13 FIFO

14 Symbolic link

15 Device link

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
Chapter 9 89

KSAM Intrinsics
FFILEINFO
90 32-bit unsigned integer by reference. Record type:

The following valid record types may be returned:

0 Fixed

1 Variable

2 Undefined

3 Spool block

4 Root directory

5 Not applicable

6 Account directory

7 Group directory

8 Not applicable

9 Byte stream

10 Hierarchical directory

91 64-bit signed integer by reference. The current file size in bytes. The value
returned represents the current position of the End-of-File (EOF) and may not
reflect the number of bytes actually occupied by the file on disk if the file is
sparsely allocated.

92 32-bit signed integer by reference. KSAM file version:

This item returns a value indicating the version of a KSAM file. A value of 1
indicates an original type KSAM XL file, and a value of 2 indicates the next
generation KSAM XL file. A value of 4 indicates that it is a KSAM64 file. A value
of zero is returned if the file is not a KSAM file.

93 32-bit unsigned integer by reference. NM Plabel:

This item returns a 32-bit NM Plabel of a message file interrupt handler.
Interrupts may be enabled on message files by calling the FCONTROLintrinsic with
item 48 and the Plabel address.

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
90 Chapter 9

KSAM Intrinsics
FFILEINFO
94 32-bit signed integer by reference. MPE/iX device type:

This item returns the following values for the following types of devices:

0 Disk device

1 Tape device

2 Terminal device

3 Printer device

4 Remote device

5 Ports device

6 Reserved

7 Streams device

8 Sockets device

95 32-bit signed integer by reference. Close-on-Exec:

This item returns a value indication whether or not this filenum is closed if one
the POSIX.1 exec() family of functions if called. A value of 1 means that the file
is closed on an exec() call, while a value of 0 indicates the file will survive across
exec() calls.

96 32-bit signed integer by reference. POSIX Append mode:

This item returns a value indicating whether or not this filenum has the
POSIX.1 append mode flag set. When the append mode flag is set on files that
support this feature, all writes occur at the end of the file, although reads may
occur anywhere in the file. A value of 1 indicates that the POSIX.1 append mode
is on, while a value of 0 indicates the append mode is off.

The only time that the POSIX.1 append mode is valid is when a file has been
oepned for byte stream access (HPFOPEN option 77 with a value of 2).

97 32-bit signed integer by reference. POSIX non-block mode:

This item returns a value indicating whether or not this filenum has the
POSIX.1 non-block flag set. When the non-block flag is set, on files that support
this feature, reads, writes, and opens can be affected in a file dependent manner.
In general, operations that would otherwise have impeded the caller results in
immediate return when this flag is set. A value of 1 indicates the non-block flag is
set, while a value of zero indicates the flag is not set.

The only time the non-block flag is valid is for pipes and FIFO's.

Table 9-2. FFILEINFO Itemnum/Item Values

Item
num

Item
Type

Item Description
Chapter 9 91

KSAM Intrinsics
FFILEINFO
Table 9-3. FFILEINFO File Codes

Integer Mnemonic Description

0 Default (unreserved)

1024 USL User subprogram library

1025 BASD Basic data

1026 BASP Basic program

1027 BASFP Basic fast program

1028 RL Compatibility mode relocatable library

1029 PROG Compatibility mode program file

1030 NMPRG Native mode program file

1031 SL Segmented library

1032 NMSL Native mode executable library

1033 NMRL Native mode relocatable library

1035 VFORM VPLUS forms file

1036 VFAST VPLUS fast forms file

1037 VREF VPLUS reformat file

1040 XLSAV Cross loader ASCII file (SAVE)

1041 XLBIN Cross loader relocated binary file

1042 XLDSP Cross loader ASCII file (DISPLAY)

1050 EDITQ Edit quick file

1051 EDTCQ Edit KEEPQ file (COBOL)

1052 EDTCT Edit TEXT file (COBOL)

1054 TDPDT TDP diary file

1055 TDPQM TDP proof marked QMARKED

1056 TDPP TDP proof marked non-COBOL file

1057 TDPCP TDP proof marked COBOL file

1058 TDPQ TDP work file

1059 TDPXQ TDP work file (COBOL)

1060 RJEPN RJE punch file

1070 QPROC QUERY procedure file

1080 KSAMK KSAM key file
92 Chapter 9

KSAM Intrinsics
FFILEINFO
1083 GRAPH GRAPH specification file

1084 SD Self-describing file

1090 LOG User logging log file

1100 WDOC Hewlett-Packard WORD document

1101 WDICT Hewlett-Packard WORD hyphenation dictionary

1102 WCONF Hewlett-Packard WORD configuration file

1103 W2601 Hewlett-Packard WORD attended printer environment

1110 PCELL IFS 3000/XL character cell file

1111 PFORM IFS 3000/XL form file

1112 PENV IFS 3000/XL environment file

1113 PCCMP IFS 3000/XL compiled character cell file

1114 RASTR Graphics image in RASTR format

1130 OPTLF OPT/3000 log file

1131 TEPES TEPE/3000 script file

1132 TEPEL TEPE/3000 log file

1133 SAMPL APS/3000 log file

1139 MPEDL MPEDCP/DRP log file

1140 TSR Hewlett-Packard Toolset root file

1141 TSD Hewlett-Packard Toolset data file

1145 DRAW Drawing file for Hewlett-Packard DRAW

1146 FIG Figure file for Hewlett-Packard DRAW

1147 FONT Reserved

1148 COLOR Reserved

1149 D48 Reserved

1152 SLATE Compressed SLATE file

1153 SLATW Expanded SLATE work file

1156 DSTOR RAPID/3000 DICTDBU utility store file

1157 TCODE Code file for TRANSACT/XL compiler

1158 RCODE Code file for Report/3000 compiler

Table 9-3. FFILEINFO File Codes

Integer Mnemonic Description
Chapter 9 93

KSAM Intrinsics
FFILEINFO
1159 ICODE Code file for Inform/3000 compiler

1166 MDIST Hewlett-Packard Desk distribution list

1167 MTEXT Hewlett-Packard Desk text

1168 MARPA ARPA messages file

1169 MARPD ARPA distribution list

1170 MCMND Hewlett-Packard Desk abbreviated commands file

1171 MFRTM Hewlett-Packard Desk diary free time list

1172 None Reserved

1173 MEFT Hewlett-Packard Desk external file transfer messages file

1174 MCRPT Hewlett-Packard Desk encrypted item

1175 MSERL Hewlett-Packard Desk serialized (composite) item

1176 VCSF Reserved

1177 TTYPE Terminal type file

1178 TVFC Terminal vertical format control file

1192 NCONF Network configuration file

1193 NTRAC Network trace file

1194 NLOG Network log file

1195 MIDAS Reserved

1211 ANODE Reserved

1212 INODE Reserved

1213 INVRT Reserved

1214 EXCEP Reserved

1215 TAXON Reserved

1216 QUERF Reserved

1217 DOCDR Reserved

1226 VC VC file

1227 DIF DIF file

1228 LANGD Language definition file

1229 CHARD Character set definition file

Table 9-3. FFILEINFO File Codes

Integer Mnemonic Description
94 Chapter 9

KSAM Intrinsics
FFILEINFO
Figure 9-1. Foption Bit Summary

1230 MGCAT Formatted application file

1236 BMAP Base map specification file

1242 BDATA BASIC data file

1243 BFORM BASIC field order file for VPLUS

1244 BSAVE BASIC saved program file

1245 BCNFG Configuration file for default option BASIC program

1258 PFSTA Pathflow static file

1259 PFDYN Pathflow dynamic file

1270 RFDCA Revisable form DCA data stream

1271 FFDCA Final form DCA data stream

1272 DIU Document interchange unit file

1273 PDOC Hewlett-Packard WORD/150 document

1401 CWPTX Reserved

1421 MAP Hewlett-Packard MAP/3000 map specification file

1422 GAL Reserved

1425 TTX Reserved

1461 NMOBJ Native mode object file

1462 PASLB Pascal/XL source library

Table 9-3. FFILEINFO File Codes

Integer Mnemonic Description

1=KSAM64
Chapter 9 95

KSAM Intrinsics
FFILEINFO
Figure 9-2. Aoption Bit Summary

Condition Codes

CCE (2) Request granted.

CCG (0) Not returned.

CCL (1) Request denied. Access or calling sequence error.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
96 Chapter 9

KSAM Intrinsics
FFINDBYKEY
FFINDBYKEY
Positions the record pointer at the beginning of the first record matching the key value
comparison in a KSAM file.

Syntax

 I16V CA I16V I16V I16V
 FFINDBYKEY(filenum,value,location,length,relop);

Parameters

filenum 16-bit integer by value (required)

Identifies the file number of the file to be positioned.

value character array (required)

Contains a value that determines which record is read. This value is
compared to the data contained in location in relation to the operator
specified in relop .

location 16-bit integer by value (required)

Specifies the relative byte location in the record of the key being used.
Bytes are numbered starting with 1. If location =0, the primary key is
used.

length 16-bit integer by value (required)

Specifies the length of the key in bytes. If length =0, then the entire key is
used. If length is less than the full key length (generic key), then only the
length specified is used in the comparison with relop . The length
parameter must be equal to or less than the full length of the key when the
file was created. For numeric display keys or packed decimal keys, the full
key length must be used.

relop 16-bit signed integer by value (required)

Specifies the relational operator for the comparison of the key value of the
file to the value specified in value . The record where the file is positioned
has this relation to key value:

Value Meaning

0 Equal

1 Greater than

2 Greater than or equal to

When relop is set to 1 or 2, the search is for an approximate key.
Chapter 9 97

KSAM Intrinsics
FFINDBYKEY
Operation Notes

Split stack calls are permitted.

The FFINDBYKEY intrinsic does not read the advance flag. It positions both the logical
record pointer and the physical pointer to the appropriate record. When the function is
complete, it sets the advance flag to FALSE.

To locate and read a single record, use the FREADBYKEY intrinsic.

Condition Codes

CCE Request granted.

CCG Request denied. The requested position was beyond the logical end-of-file
or beginning-of-file.

CCL Request denied. An error occurred: an I/O error occurred, the relop
parameter could not be satisfied, a length less than the full length was
specified for a key with numeric display or packed decimal format, or a key
was not found when relop =0.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
98 Chapter 9

KSAM Intrinsics
FFINDN
FFINDN
Positions the logical record pointer to the relative record number according to the key
sequence in a KSAM file.

Syntax

I16V DV I16V
 FFINDN(filenum,number,location);

Parameters

filenum 16-bit signed integer (required)

Passes the file number of the file to be positioned.

number double by value (required)

Specifies a record number relative to the first logical record in the file.
Record numbers start with zero or one depending on the record numbering
scheme specified at file creation. The lowest numbered record applies to
the record with the lowest value in the specified key field. A negative
record number positions the file pointer to the record with the smallest key
value.

location 16-bit signed integer by value (required)

Passes the relative byte location in the record of the key to be used. The
first byte of the record is considered 1. If location =0, the primary key is
used.

Operation Notes

Split stack calls are permitted.

This intrinsic does not read the advance flag. It sets both the logical record pointer and the
physical pointer to the appropriate record. When its function is complete, it sets the
advance flag to FALSE.

When the relative record number is specified, be sure not to confuse this number with the
physical record number (the number of the record as it is stored in the file). The relative
record number is based on the value of a specified key, not its location in a file.

If FFINDN is used to position the pointer before calling another procedure that reads or
updates the file in a shared environment, FLOCK must be called before calling FFINDN.
After performing the read or update operation, unlock the file. If the file is locked after
calling FFINDN, another user can change the pointer position without your program being
aware of it.
Chapter 9 99

KSAM Intrinsics
FFINDN
Condition Codes

CCE Request granted.

CCG Request denied. The requested position was beyond the logical end-of-file.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
100 Chapter 9

KSAM Intrinsics
FGETINFO
FGETINFO

Returns access and status information about a file.

NOTE FGETINFO is provided for compatibility with MPE V/E-based systems only. It
is recommended that FFILEINFO be used to access data.

Syntax
 I16V CA U16 U16
 FGETINFO(filenum,formaldesig,foption,aoption
 I16 I16 U16 U16 I16

lrecsize,devtype,ldevnum,hdaddr,filecode,
 I32 I32 I32 I32 I32 I16

lrecptr,eof,filelimit,logcount,physcount,blksize,
 U16 I16 I16 CA I32

extsize,numextent,userlabels,creatorid,labaddr);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file for which information is requested.

formaldesig character array (optional)

Returns the actual designator of the file being referenced, in the following
format:

filename.groupname.accountname

The formaldesig array must be at least 28 bytes in length. When the
actual designator is returned, unused bytes in the array are filled with
blanks on the right. A nameless file returns an empty string.

foption 16-bit unsigned integer by reference (optional)

Returns seven different file characteristics by setting corresponding bit
groupings. The file characteristics are those specified for foptions in the
FOPEN intrinsic.

aoption 16-bit unsigned integer by reference (optional)

Returns up to seven different access options represented by bit groupings
as described for the aoptions parameter of FOPEN.

lrecsize 16-bit signed integer by reference (optional)

Returns the logical record size associated with the file:

• If the file was created as a binary file, this value is positive and
expresses the size in halfwords.
Chapter 9 101

KSAM Intrinsics
FGETINFO
• If the file was created as an ASCII file, this value is negative and
expresses the size in bytes.

devtype 16-bit signed integer by reference (optional)

Returns the type and subtype of the device being used for a KSAM, RIO,
circular, or message file, or devices such as a tape drive, printer, or
terminal where bit (0:8) indicate device subtype, and bit (8:8) indicate
device type. For standard disk files, bit (8:8)=00000011 and bit
(0:8)=00001000 (indicate a 7933/35 disk drive).

ldevnum 16-bit unsigned integer by reference (optional)

Returns the logical device number (ldev) associated with the device where
the file label resides:

• If the file is a disk file, ldevnum is the location of the file label. (File
data may reside on the same device as the file label.)

• If the file is spooled, ldevnum is a virtual device number that does not
correspond to the system configuration I/O device list.

• If the file is located on a remote computer, linked by a DS point-to-point
or X.25 link, the left eight bit (0:8) are the logical device number of the
distributed system (DS) device.

• If the remote computer is linked by NS 3000/XL, the left eight bit (0:8)
are the remote environment of the connection. The right eight bit (8:8)
are the ldev of the device on the remote computer where the file label
resides.

• If the DS device for the RFA or the LDEV is 0, then ldevnum returns a
0.

hdaddr 16-bit unsigned integer by reference (optional)

Returns 2048. Maintained to provide backward compatibility with
MPE V/E-based systems.

filecode 16-bit signed integer by reference (optional)

Returns the file code of a disk file.

lrecptr 32-bit signed integer by reference (optional)

Returns the current physical record pointer setting. Remember that
physical record numbers can begin with zero or one, depending on how the
file was built.

eof 32-bit signed integer by reference (optional)

Returns the pointer setting of the last logical record currently in the file
(equivalent to the number of logical records currently in the file). If the file
does not reside on disk, this value is zero. For interprocess communication
(IPC), when a call to FCONTROLwith itemnum =46 is in effect, the number of
records returned in eof includes open, close, and data records.
102 Chapter 9

KSAM Intrinsics
FGETINFO
filelimit 32-bit signed integer by reference (optional)

Returns a number representing the last logical record that could exist in
the file (the physical limits of the file). If the file does not reside on disk,
this value is zero.

logcount 32-bit signed integer by reference (optional)

Returns the total number of logical records passed to and from the
program during the current file access.

physcount 32-bit signed integer by reference (optional)

Returns the total number of physical I/O operations performed within the
process, against the file, since the last FOPEN/HPFOPEN call.

blksize 16-bit signed integer by reference (optional)

Returns the file block size:

• If the file is binary, the value is positive and the size is in halfwords.

• If the file is ASCII, the value is negative and the size is in bytes.

extsize 16-bit unsigned integer by reference (optional)

Maintained to provide backward compatibility with MPE V/E-based
systems.

numextent 16-bit signed integer by reference (optional)

Maintained to provide backward compatibility with MPE V/E-based
systems.

userlabels 16-bit signed integer by reference (optional)

Returns the number of user labels defined for the file during creation. If
the file is not a disk file, this number is zero. When an old file is opened for
overwrite output, the value of userlabels is not reset, and old user labels
are not destroyed.

creatorid character array (optional)

Returns the name of the file creator (8-character array). If the file is not a
disk file, blanks are returned.

labaddr 32-bit signed integer by reference (optional)

Returns a zero. Maintained for backward compatibility with
MPE V/E-based systems.

Operation Notes

Returns access and status information about a file located on any device. The file must be
opened by the calling process at the time of the FGETINFO call.
Chapter 9 103

KSAM Intrinsics
FGETINFO
Condition Codes

CCE Request granted.

CCG Not returned.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
104 Chapter 9

KSAM Intrinsics
FGETKEYINFO
FGETKEYINFO
Requests access and status information about a KSAM file.

Syntax

I16V BA BA
 FGETKEYINFO(filenum,param,control)

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file about which information is requested.

param byte array (required)

Returns information describing the key information for a KSAM file. The
length is 162 bytes.

control byte array (required)

Passes 256 bytes of control information about the key file.

Operation Notes

The FGETKEYINFOparameter returns an array equivalent to the array for the HPFOPENand
FOPEN intrinsics. (Refer to Figure 9-3.) Its length must be 162 bytes.
Chapter 9 105

KSAM Intrinsics
FGETKEYINFO
Figure 9-3. FGETKEYINFO Parameter Format

The control parameter provides dynamic information about the use of the file from the
time it was created. It counts the number of times the file was referred to by intrinsics, and
the date and time it was created, closed, updated, or written to. Its format is shown in
Figure 9-4.
106 Chapter 9

KSAM Intrinsics
FGETKEYINFO
Figure 9-4. FGETKEYINFO Control Parameter Format
Chapter 9 107

KSAM Intrinsics
FGETKEYINFO
Table 9-4. FGETKEYINFO Control Parameter Format

Word Bits/setting

43 Set to 0 (32-bit interger)

45 Minimum primary key value record number** (64-bit integer)**

49 Maximum primary key value record number** (64-bit integer)**

53 FFINDN Count (32-bit integer)**

55 FWRITE Count (32-bit integer)**

57 FUPDATE Count (32-bit integer)**

59 Set to 0 (32-bit interger)

61 Set to 0 (32-bit interger)

63 Any key block splict count (32-bit integer)

65 Set to 0 (32-bit interger)

67 Reserved

69 Minimum primary key value record number (32-bit integer)

71 Maximum primary key value record number (32-bit integer)

73 Reserved

75 File record type (fixed=TRUE)

76 Reserved

77 Total number of keys (always >=1)

78 Record numbering method (32-bit integer) (=-1 if starts with 1, 0 if starts
with 0)

81 Set to 0

82 FPOINT Count (32-bit integer)**

84 FLOCK Count (32-bit integer)**

86 Set to 0 (32-bit interger)

88 FCONTROL Count (32-bit integer)**

90 Set to 0 (32-bit interger)

92 File limit (32-bit unsigned interger)

94 Key block size (16-bit unsigned integer)

95 Set to 0 (16-bit unsigned interger)

96 Set to 0 (16-bit unsigned interger)

97 Set to 0 (16-bit unsigned interger)
108 Chapter 9

KSAM Intrinsics
FGETKEYINFO
**These fields are valid for KSAM XL and KSAM64 only. For KSAM XL and KSAM 64 files
the 64-bit fields minimum primary key value record number as well as the maximum
primary key value record number contain the same value as their 32-bit counterparts. For
a KSAM XL file the 64-bit fields chronological data pointer and the logical data pointer
contain the same value as the 32-bit counterparts. For a KSAM64 file, if the file size is less
than 4 gigabytes, then the 64 bit and the 32-bit fields will have identical values. However,
if the file size is greater than 4 gigabytes, the the 32-bit fields will contain hex (‘ffffffff ’)
while the 64-bit fields will contain the actual values.

Condition Codes

CCE Request granted.

CCG Not returned.

CCL Request denied. An error occurred; insufficient space was declared for
param or control , an illegal file number was specified, or the DB register
is not set to the user stack.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes

98 Set to 0 (16-bit unsigned interger)

99 Set to 0 (16-bit unsigned interger)

100 Data reuse (16-bit unsigned interger)

101 Set to 0 (32-bit unsigned interger)

103 Num deleted records (32-bit unsigned interger)

105 Set to 0 (16-bit unsigned interger)

106 Set to 0 (16-bit unsigned interger)

107 Set to 0 (16-bit unsigned interger)

108 Chronological data pointer (64-bit signed integer)

112 Logical data pointer (64-bit signed integer)

116 Lang ID (16-bit unsigned interger)

117 Set to 0 (32-bit unsigned interger)

119 Set to 0 (32-bit unsigned interger)

121 Set to 0 (32-bit unsigned interger)

123 Chronological data pointer** (32-bit unsigned integer)**

125 Logical data pointer** (32-bit unsigned integer)**

127 Reserved

Table 9-4. FGETKEYINFO Control Parameter Format

Word Bits/setting
Chapter 9 109

KSAM Intrinsics
FGETKEYINFO
pertaining to KSAM files.
110 Chapter 9

KSAM Intrinsics
FLABELINFO
FLABELINFO

Returns information from the file label of a disk file.

Syntax

 CA I16V I16
 FLABELINFO(formaldesig,mode,fserrorcode ,
 I16A REC I16A

itemnum,item,itemerror);

Parameters

formaldesig character array (required)

Passes the name of the file using either MPE syntax (the default) or HFS
syntax. The file name must be terminated by a nonalphanumeric
character other than a period (.), a slash (/), a hyphen (-), and an
underscore (_).

If MPE syntax, the file name can include password, group, and account
specifications. The file name can backreference a file equation and
optionally be preceded by an asterisk.

If HFS syntax, the file name must start with either a dot (.) or a slash (/).
For files located in HFS directories, traverse directory entries (TD) access
is required to all directories specified in formaldesig . If there is no TD
access, FLABELINFO fails and a file system error code (398) is returned in
the fserrorcode parameter.

If the file can be named using both MPE syntax and HFS syntax (for
example, FILEA.MYGROUP.MYACCT and /MYACCT/MYGROUP/FILEA), the file
can be either permanent or temporary. If a temporary and a permanent file
have the same name, FLABELINFO returns information about the
temporary file only.

mode 16-bit signed integer by value (required)

Passes an option specifying the valid backreferencing to file equations for
the file. Valid values are:

Value Meaning

0 Use file equation (if one exists)

1 Must use file equation (error if one does not exist)

2 Ignore existing file equations
Chapter 9 111

KSAM Intrinsics
FLABELINFO
Bits Value/Meaning

0:11 Reserved for future use.

12:1 Symbolic Link Traversal

0

To traverse through symbolic links, if they exist.

1

Do not traversing through symbolic links, if they exist.

13:2 Caller Privilege Level Allows the caller to pretend to be
less privileged. The privilege level is passed in this field.

15:2 File Equations

0

Use file equations if they exist.

1

A file equation must be used.

2

Do not use a file equation.

fserrorcode 16-bit signed integer by reference (required)

Returns a value indicating whether an error or warning occurred when
FLABELINFO attempted to return requested information:

• A value of zero indicates that no errors were encountered.

• A positive value is a file system error code and indicates that an error
was encountered and no information was returned in item .

• A -1 indicates that an item error or warning has occurred. Check the
itemerror parameter to determine which item(s) has an
error/warning and what it is.

itemnum 16-bit signed integer array (required)

Specifies which item value is to be returned. (Refer to Table 9-5.)

To indicate the end of the list, place a zero in the element following the last
itemnum .

item record (required)

Returns the value of the item specified in the corresponding
itemnum .(Refer to Table 9-5.)

Itemnum/item s are paired such that the nth field of the item record
corresponds to the nth element of the itemnum array.
112 Chapter 9

KSAM Intrinsics
FLABELINFO
itemerror 16-bit signed integer array (required)

Returns an error number corresponding to the items specified in the
itemnum array. The itemnum/item and itemerror parameters are paired
such that the nth element of the itemerror array corresponds to the nth
element of the itemnum array.

If a value in the itemerror array is negative, a warning exists for the
corresponding item. If the value is positive, an error was detected for the
corresponding item. The absolute value of each value is a file system error
number.

Table 9-5. FLABELINFO Itemnum/Item Values

Itemnum Mnemonic Item Description

1 CA File name (8 bytes): The file name component for the file referenced in
formaldesig is returned as the value. If the file name is not
expressible using MPE-only semantics, a file system error code (391) is
returned in the associated itemerror .

2 CA Group name (8 bytes): The group name component for the file
referenced in formaldesig is returned as the value. If the group name
is not expressible using MPE-only semantics, a file system error code
(391) is returned in the associated itemerror .

3 CA Account name (8 bytes): The account name component for the file
referenced in formaldesig is returned as the value. If the account
name is not expressible using MPE-only semantics, a file system error
code (391) is returned in the associated itemerror .

4 CA File creator name (8 bytes): An unqualified form of the file owner's
name is returned as the value. The file owner is not necessarily the
file's creator.

A symbolic zero (ASCII 48 in decimal) is returned as the file owner for
root directories, MPE accounts, and MPE groups created prior to
release 4.5.

If the file is not located in the account where the file owner is a member,
a blank file owner name is returned. Use itemnum =43 to obtain the full
file owner name.

5 U32 Security matrix for access: Returns the file's security matrix. This value
does not indicate the actual security enforced for a file, since group and
account security masks can also restrict access. This field is ignored if
an ACD is active on a file.

6 U16 File creation date: The date in CALENDAR intrinsic format. Either
creator (C) or manager (AM if file is within account, otherwise SM)
access required.

Zero is returned as the creation date for root directories, MPE accounts,
and MPE groups created prior to release 4.5.
Chapter 9 113

KSAM Intrinsics
FLABELINFO
7 U16 Last access date: The date in CALENDAR intrinsic format. May not be
up-to-date when the file is open.

Zero is returned as the last access date for root directories, MPE
accounts, and MPE groups created prior to release 4.5.

8 U16 Last modification date: The date in CALENDARintrinsic format. May not
be up-to-date when the file is open.

Zero is returned as the modification date for root directories, MPE
accounts, and MPE groups created prior to release 4.5.

9 I16 File code of disk file

10 U16 Number of user labels written: May not be up-to-date when the file is
open.

11 U16 Number of user labels available: May not be up-to-date when the file is
open.

12 I32 Total number of logical records possible in the file: Equivalent to the file
limit measured in logical records.

13 U16 File options: The record format extension bit is returned as the foption
(1:1) bit. Byte stream record format is represented as a record format
extension of one with a variable record format (foption (8:2) bits equal
to 01).

Directories, symbolic links, device links, pipes and FIFO's cannot be
represented by foption . If the object referenced by filenum is is an
object, MPE error 399 is returned in the associated itemerror .

Refer to the foption figure.

14 I16 Record size: Maintained for compatibility with MPE V/E-based
systems. (If a zero is returned, use itemnum 30 instead.)

15 I16 Block size: Maintained for compatibility with MPE V/E-based systems.
(If a zero is returned, use itemnum 31 instead.)

16 I16 Maximum number of extents: Maintained for compatibility with
MPE V/E-based systems. (If a zero is returned, use itemnum 32
instead.)

17 I16 Last extent size: Indicates sectors. May not be up-to-date when the file
is open.

18 I16 Extent size: Indicates sectors. (If a zero is returned, use itemnum 32
instead.)

19 U32 Number of logical records in file: Equivalent to EOF. May not be
up-to-date when the file is open.

Table 9-5. FLABELINFO Itemnum/Item Values

Itemnum Mnemonic Item Description
114 Chapter 9

KSAM Intrinsics
FLABELINFO
20 U32 File allocation time: The time when file was last restored (in CLOCK
intrinsic format).

Zero is returned as the file allocation time for root directories, MPE
accounts, and MPE groups created prior to release 4.5.

21 U16 File allocation date: The date when the file was last restored (in
CALENDAR intrinsic format).

Zero is returned as the file allocation date for root directories, MPE
accounts, and MPE groups created prior to release 4.5.

22 I32 Number of open/close records: MSG files only. May not be up-to-date
when the file is open.

23 CA Device name (8 bytes)

24 U32 Last modification time: The time when the file was last modified (in
CALENDAR intrinsic format). May not be up-to-date when the file is
open.

25 CA First user label (user label 0) (256 bytes): May not be up-to-date when
the file is open. Manager (AM if file is within account, otherwise SM) or
read/write (R/W) access required.

27 REC Unique file identifier (UFID) (20 bytes)

28 U32 Total number of bytes allowed in file: Equivalent to the file limit
measured in bytes. May not be up-to-date when the file is open.

29 U32 Start of file offset: Indicates the byte offset where user data starts.

30 U32 Record size (indicates bytes

31 U32 Block size (indicates bytes)

32 U32 Extent size (indicates bytes)

33 CA File lockword (8 bytes): Returned if you are the file creator, account
manager, or system manager.

34 CA Volume restriction (34 bytes): The last two characters indicate the type
of restriction, as follows:

0 File is placed on the specified volume at creation

1 File can be placed on any volume containing the
specified class at creation

2 File can be placed on any volume within the specified
volume set at creation (Default)

35 CA Volume set names (32 bytes): No restrictions.

36 CA Transaction management log set id (4 bytes) No restrictions.

Table 9-5. FLABELINFO Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 115

KSAM Intrinsics
FLABELINFO
37 U16 Logical device number

38 REC Terminated HFS-syntax system absolute pathname: Upon input, the
first four bytes are interpreted as a 32-bit unsigned integer specifying
the maximum available buffer size in bytes. This maximum available
buffer size does not include the four bytes used to represent this size.
Upon output, the first four bytes represent the pathname length
excluding the null terminator as a 32-bit unsigned integer. The
pathname is returned in bytes following the pathname length. Bytes
beyond the pathname terminator are undefined. If the maximum
available buffer size is incorrect upon input, variables allocated near
the buffer can be overwritten or a bounds violation could occur. A zero
pathname length is returned for unnamed new files and when an error
occurs. Zero is the minimum buffer length upon input for this itemnum .

39 U32 The current number of hard links to the file

40 I32 Time of last file access (clock format): The bit assignments are:

 bits 0-7 = hours
 bits 8-15 = minutes
 bits 16-23 = seconds
 bits 24-31 = tenths of seconds

41 I32 Time of last file status change (clock format): DFThe bit assignments
are:

 bits 0-7 = hours
 bits 8-15 = minutes
 bits 16-23 = seconds
 bits 24-31 = tenths of seconds

42 U16 Date of the last file status change (calendar format): The bit
assignments are:

 bits 0-7 = year of century
 bits 8-15 = day of the year

43 CA File owner (32 bytes): The full file owner name. Unused characters are
filled with blanks. A symbolic zero (ASCII 48 in decimal) is returned as
the file owner for root directories, accounts, and MPE groups created
prior to release 4.5.

44 I32 File owner identifier: The file owner identifier (UID). Zero is returned
as the file owner ID for root directories, MPE accounts, and MPE
groups created prior to release 4.5.

45 CA File group (32 bytes): The file group name. Unused characters are filled
with blanks. A symbolic zero (ASCII 48 in decimal) is returned as the
group for root directories where GIDs have not been explicitly assigned.

Table 9-5. FLABELINFO Itemnum/Item Values

Itemnum Mnemonic Item Description
116 Chapter 9

KSAM Intrinsics
FLABELINFO
46 I32 File group identifier: The file group identifier (GID). Zero is returned as
the group ID for root directories where GIDs have not been explicitly
assigned.

47 U32 File type: Following are valid file types that can be returned:

 0 = Ordinary file
 1 = KSAM/3000
 2 = RIO
 3 = KSAM XL
 4 = CIR
 5 = Native Mode Spool File
 6 = MSG
 7 = KSAM64
 8 = N/A
 9 = Directory
 10-11= N/A
 12 = Pipe
 13 = FIFO
 14 = Symbolic Link
 15 = Device Link

48 U32 Record type: Following are valid record types that can be returned:

 0 = fixed
 1 = variable
 2 = undefined
 3 = spool block
 4 = root directory
 5 = N/A
 6 = account directory
 7 = group directory
 8 = N/A
 9 = byte stream
 10 = hierarchical directory

49 I64 Current file size (in bytes): The value returned represents the current
position of the end-of-file (EOF) and may not reflect the number of bytes
actually occupied by the file on disk if the file is sparsely allocated.

50 I32 KSAM XL File Version: This item returns a value indicating the version
number of a KSAM XL file. A value of 1 indicates an original type
KSAM XL file. A value of 2 indicates the next generation KSAM XL file.
A value of zero is returned if the file is not a KSAM XL file.

51 I32 KSAM XL Parameters: This item returns file information about KSAM
XL.

Table 9-5. FLABELINFO Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 117

KSAM Intrinsics
FLABELINFO
Figure 9-5. Foption Bit Summary

Condition Codes

CCE (2) Request granted.

CCG (0) Not returned.

CCL (1) Request denied. An error occurred. Refer to the fserrorcode and
itemerror parameters for more information.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.

52 I32 MPE/iX Device Type: This item returns the following values for the
following types of devices:

 0=Disk device
 1=Tape device
 2=Terminal device
 3=Printer device
 4=Remote device
 5=Ports device
 6=Reserved
 7=Streams device
 8=Sockets device

53 I32 Secure/Release: This item returns a value indicating whether the file is
currently secured or released. A value of 1 indicates that the file is
secured. A value of zero indicates that the file is released.

Table 9-5. FLABELINFO Itemnum/Item Values

Itemnum Mnemonic Item Description

11 1=KSAM64
118 Chapter 9

KSAM Intrinsics
FLOCK
FLOCK
Dynamically locks a file. A call to FLOCK is required before any attempt is made to read or
modify a file with shared access.

NOTE The file system does not guarantee exclusive access, even when FLOCK and
FUNLOCKare used, unless all programs that access the file cooperate by using
locking. A program that opens the file with dynamic locking enabled will still
be allowed to modify the file, even if it never calls FLOCK.

Syntax

I16V U16V
 FLOCK(filenum,lockflag);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file whose global resource identification
number (RIN) is to be locked.

lockflag 16-bit unsigned integer by value (required)

Specify either conditional or unconditional locking by setting bit (15:1) as
follows:

Value Meaning

0 Locking takes place only if the file's global RIN is not
currently locked. If the RIN is locked, control returns
immediately to the calling process, with condition code
CCG.

1 Locking takes place unconditionally. If the file cannot be
locked immediately, the calling process suspends until the
file can be locked.

Condition Codes

The following condition codes are possible when lockflag bit (15:1)=1:

CCE Request granted.

CCG Not returned.

CCL Request denied. This file was not opened with the dynamic locking
aoption bit (10:1) specified in the FOPEN/HPFOPEN intrinsic.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 119

KSAM Intrinsics
FOPEN
FOPEN
Opens a file.

Syntax

 I16 CA U16V U16V I16V CA
filenum :=FOPEN(formaldesig,foption,aoption,recsize,device,

 CA I16V
formmsg,userlabels

I32V I16V I16V I16V
filesize,numextent,initialloc,filecode);

Functional Return

filenum 16-bit signed integer (assigned functional return)

Returns a unique file number identifying the opened file.

Parameters

formaldesig character array (optional)

Passes a formal file designator, following file naming conventions. The file
name must begin with a letter and contain alphanumeric characters,
slashes, or periods. Terminate the string by placing a delimiter in the
array element following the last valid character. The delimiter can be any
nonalphanumeric character except a slash (/), period (.), colon (:), or
exclamation point (!).

If the file name is the name of a user-defined file, it can begin with an
asterisk (*). If the file name is the name of a system-defined file, it can
begin with a dollar sign ($). The remote location of a device can be specified
as filename:envid . The file, lockword, group, and account names are
each limited to eight characters in length.

The formal file designator can contain command interpreter variables and
expressions that are evaluated before the formal file designator is parsed
and validated.

Default: A nameless file is assigned that can be read or written to, but not
saved. (The domain option of a nameless file must specify a new file unless
it is a device file.)

foption 16-bit unsigned integer by value (optional)

Specifies up to eight different file characteristics, as noted below, by setting
corresponding bit groupings:
120 Chapter 9

KSAM Intrinsics
FOPEN
NOTE For existing files, default conditions are specified in the file label. Device
characteristics may override some foption s.

Bits Value/Meaning

14:2 Domain

Indicates which file domain is searched to locate a file. A
nameless disk file must always be a new file. A device file
(such as a tape or terminal) always resides in the system
file domain (permanent file directory). Always specify a
device file as old or permanent.

The following bit settings are valid:

00

The file is new. No search is necessary.

01

The file is a permanent file. The system file domain
(permanent file directory) is searched.

10

The file is a temporary file. The job file domain (temporary
file directory) is searched.

11

The file is an old (permanent or temporary) file. The job
file domain (temporary file directory) is searched. If not
found, the system file domain is searched.

Default: 00

13:1 ASCII/binary

Indicates which code, ASCII or binary, a new file is in
when written to a device that supports both codes. This
option is applicable only at file creation. type

The following bit settings are valid:

0

Binary file

1

ASCII file

Default: 0

10:3 Designator

The actual file designator is the same as the formal file
designator (000). This is the default and only setting
Chapter 9 121

KSAM Intrinsics
FOPEN
allowed for KSAM files.

8:2 Record format

Bit settings indicate internal record structure for a file.
This option is applicable only at file creation.

KSAM XL/64 support fixed-length records only (00). The
file contains logical records of uniform length.

7:1 Carriage control

No carriage-control directive is expected for KSAM files.

5:1 Disallow file equation option

Indicates whether or not to allow file equations. A leading
* in a formal file designator can override the setting to
disallow FILE . The following bit settings are valid:

0

Allow FILE equations to override programmatic or
system-defined file specifications.

1

Disallow FILE equations from overriding programmatic or
system-defined file specifications.

Default: 0

2:3 File type option

Indicates internal record structure used to access records
in a file. KSAM XL files are identified by a setting of 011.
KSAM64 files are identified by a setting of 111.

0:2 Reserved for MPE/iX

aoption 16-bit unsigned integer by value (optional)

Specifies up to eight different file access options, as noted below, by setting
corresponding bit groupings:

Bits Value/Meaning

12:4 Access type

Indicates the type of access intended for the file. This
option restricts usage of file system intrinsics.

The following bit settings are valid:

0000

Allows read access only, provided that the file's security
provisions specify read access. FWRITE, FUPDATE, and
FREMOVE intrinsic calls cannot reference this file. The
end-of-file (EOF) is not changed.

0001
122 Chapter 9

KSAM Intrinsics
FOPEN
Allows write access only, provided that the file's security
provisions allow write access. Any data written in the file
prior to the current FOPEN request is deleted.
FFINDBYKEY, FFINDN, FPOINT, FREAD, FREADBYKEY,
FREADC, FREADDIR, FREMOVE, FSPACE, and FUPDATE
intrinsic calls cannot reference this file. The EOF is set to
0.

0010

Allows write-save access only, if the file's security
provisions allow write access. Previous data in the file is
not deleted. FFINDBYKEY, FFINDN, FPOINT, FREAD,
FREADBYKEY, FREADC, FREADDIR, FREMOVE, FSPACE, and
FUPDATEintrinsic calls cannot reference this file. The EOF
is not changed. Therefore, data is overwritten if a call to
FWRITEis made. The system changes this value to append
for message files.

0011

Allows append access only, if the file's security provisions
allow either append or write access. FFINDBYKEY,
FFINDN, FPOINT, FREAD, FREADBYKEY, FREADC,
FREADDIR, FREMOVE, FSPACE, and FUPDATEintrinsic calls
cannot reference this file. For disk files, the EOF is
updated after each FWRITEcall. Therefore, data cannot be
overwritten.

0100

Allows read/write (I/O) access only, provided that the file's
security provisions allows both read and write access. If
both read and write access are not allowed, the access type
specified in the security provisions (either read or write) is
allowed. Any file intrinsic except FUPDATE and FREMOVE
can be called for this file. The EOF is not changed. This
option is not valid for message files.

0101

Allows update access only, if the file's security provisions
allows both read and write access. If both read and write
access are not allowed, the access type specified in the
security provisions (either read or write) is allowed. All file
intrinsics can be called for this file. The EOF is not
changed. This option is not valid for message files.

0110

Allows execute access only, if the file's security provisions
allow execute access. This access allows read/write access
to any loaded file. The program must be running in PM to
specify execute access. This option is not valid for message
Chapter 9 123

KSAM Intrinsics
FOPEN
files.

0111

Allows execute/read access only, if the file's security
provisions allow execute access. This access allows only
read access to any loaded file. The program must be
running in PM to specify execute/read access. This access
is changed to execute (only) access for KSAM, CIR, and
RIO files. This option is not valid for message files.

Default: 0000

10:1 Dynamic locking

Enables/disables file locking for the file. When this option
is specified, the FLOCK and FUNLOCK intrinsics can be used
to dynamically permit or restrict concurrent access to a
disk file by other processes at specified times.

The following bit settings are valid:

0

Disallow dynamic locking/unlocking.

1

Allow dynamic locking/unlocking.

Default: 0

If several accessors are sharing the file, they must all
specify, or not specify, this option. For example, if a file is
opened with the dynamic locking option enabled, and a
subsequent accessor tries to open the file with dynamic
locking disabled, the subsequent attempt to open fails.

NOTE The file system does not guarantee exclusive access, even when FLOCK and
FUNLOCKare used, unless all programs that access the file cooperate by using
locking. A program that opens the file with dynamic locking enabled will still
be allowd to modify the file, even if it never calls FLOCK.

8:2 Exclusive option

Indicates continuous exclusive access to this file, from
open to close. Use this option when performing a critical
operation (for example, updating the file).

The following bit settings are valid:

00

If access type option (aoption bit (12:4)) specifies read
only access, then read-share access takes effect.
Otherwise, exclusive access takes effect. Regardless of
which access option was selected, FFILEINFO reports zero.
124 Chapter 9

KSAM Intrinsics
FOPEN
01

Exclusive access. After the file is opened, any additional
HPFOPEN/FOPEN requests for this file are prohibited until
this process issues the FCLOSE request or terminates. If
any process is already accessing this file when an
HPFOPEN/FOPEN call is issued with exclusive access
specified, an error status is returned. If another
HPFOPEN/FOPEN call is issued for this file while exclusive
access is in effect, an error code is returned to the process
that issued the call. Request exclusive access only if the
lock access mode is allowed by the security provisions for
the file.

10

Read-share access (semi-exclusive access). After the file is
opened, concurrent write access to this file through
another HPFOPEN/FOPEN request is prohibited, whether
issued by this process or another process, until this
process issues the FCLOSE request or terminates. A
subsequent request for the read/write or update access
type option (aoption bit (12:4)) obtains read access.
However, other types of read access are allowed. If a
process already has write access to the file when this call
is issued, an error code is returned to the calling process. If
another HPFOPEN/FOPEN call that violates the read only
restriction is issued while read-share access is in effect,
that call fails and an error code is returned to the calling
process. Request read-share access only if the lock access
mode is allowed by the security provisions for the file.

11

Share access. After the file is opened, concurrent access to
this file by any process is permitted, in any access mode,
subject to other security provisions in effect.

Default: 00

5:2 Multiaccess mode option. KSAM XL/64 support no
multiaccess (00).

Default: 00

4:1 NOWAIT I/O option. KSAM XL/64 does not support
NOWAIT I/O (0).

Default: 0

3:1 Copy mode option Determines whether a file should be
treated as a standard sequential file (copy by logical
record) or physical block (copy to another file).

KSAM XL/64 do not allow the copy mode option (0).
Chapter 9 125

KSAM Intrinsics
FOPEN
Default: 0

0:3 Reserved for MPE/iX.

recsize 16-bit signed integer by value (optional)

Passes the size, in halfwords or bytes, of the logical records in the file.
Positive values are halfwords, negative values are bytes. The valid range is
dependent on storage and record formats:

• For fixed-length and undefined-length ASCII files, the valid range is 1
to 32,767 bytes.

• For variable-length ASCII files and fixed-length, variable-length, and
undefined-length binary files, the range is 1 to 32,766 bytes (1 to 16,383
halfwords). All odd values specified are rounded up to the next even
value (the next halfword boundary).

Default: Device dependent.

device character array (optional)

Passes a string of ASCII characters terminating with any
nonalphanumeric character except a slash (/) or period (.), designating
the device where the file is to reside. For a KSAM file, the device must be
a random access device such as a disk.

Default: DISC

ksamparam character array (optional)

Contains a description of the KSAM parameters including the primary key
and up to 15 alternate keys. If a new file is being created, this parameter
must be specified. If this is an existing file, check flag word field to see if
the default values are acceptable. In the flag word field you can set bit 13
to sequential write. For COBOL, set flag 9. If this is not an existing file,
specify this field explicitly. (Refer to Figure 9-6. for parameter format.)

Language ID Number

This three-digit code identifies the native language to be used for the file.
To display a list of native languages that are available on your system,
enter RUN NLUTIL.PUB.SYS .

If the file already exists, this field is ignored.

Flag word

The flag word contains a halfword defining the file characteristics.

Bits Value/Meaning

15:1 Reserved, do not use. Always set to 0.

14:1 Enter 1 if record numbering is to start with 1. Enter 0 if
record numbering is to start with 0.

13:1 Enter 1 if only sequential writing by primary key is
allowed. Enter 0 if random writing by primary key is
allowed.
126 Chapter 9

KSAM Intrinsics
FOPEN
12:1 Enter 1 if deleted record space can be reused. Enter 0 if
deleted record space cannot be used.

11:1 Enter 1 if a language type is specified. Enter 0 if a
language type is not specified.

10:1 Enter 1 if the primary key cannot be changed with the
FUPDATE intrinsic for files that are opened for sequential
processing. Enter 0 if the primary key can be changed with
the FUPDATE intrinsic for files that are opened for
sequential processing. This enables KSAM processing of
COBOL information according to COBOL standards.

9:1 Enter 1 if the file is programmatically accessed by the
COBOL programming language. Enter 0 if the file is not
programmatically accessed by the COBOL programming
language. This enables KSAM to process COBOL
information according to COBOL standards.

8:1 Enter 1 if selecting optimal block size.

0:9 Enter 0. These bits are reserved and must contain zeros.

Number of Keys

In bits 8:8, enter a number between 1 and 16 specifying the number of
keys to be defined for this file.

Key Definitions

Each key in the file requires a 4-halfword word definition. The first
definition is always the primary key. Up to 15 alternate keys are allowed
for any KSAM file. The key definitions contain the key type, key length,
key location, duplicate key flag, and random insert flag:

Key Type

Bits 0:4 specify the type of key:

Value Meaning

0001 Byte key (1 to 255 bytes)

0010 Short integer key (255 bytes)

0011 Integer key (255 bytes)

0100 Real number key (255 bytes)

0101 Long real number key (255 bytes)

0110 Numeric display key (1 to 28 bytes)

0111 Packed decimal key (1 to 14 bytes)

1000 Signed packed decimal key (2 to 14 bytes)

1001 IEEE floating-point decimal key (4, 8, or 16 bytes)

Key Length
Chapter 9 127

KSAM Intrinsics
FOPEN
Bits 4:12 specify the key length. Enter the length of the key in bytes. A
maximum of 255 bytes is allowed, but the length is dependent on the type
of key data specified.

Key Location

Enter the relative location in bytes of the key field in the record. Note that
the first byte of the record is considered 1.

Duplicate Key Flag

Bits 0:1 specify the duplicate key flag. Enter 1 if duplicate key values are
allowed for this key. Enter 0 if duplicate key values are not allowed for this
key.

Random Insert Flag

Bits 8:1 specify the random insert flag. This field specifies the method of
inserting duplicate key values. To use this feature, the previous duplicate
key flag must be set to 1. Bits 0:8 and 9:7 are reserved and always set to 0.

Enter 1 if duplicate key values are to be inserted randomly in the
duplicate key chain.

Enter 0 if duplicate key values are to be inserted at the end of the
duplicate key chain.

userlabels 16-bit signed integer by value (optional)

Passes the number, in the range 0 to 254, of user-label records to be
created for the file. Applicable to new disk files only.

Default: 0

filesize 32-bit signed integer by value (optional)

Passes the maximum file capacity.

KSAM XL/64 require extra space for their index area. The actual space
needed is computed by the KSAM XL type manager, based on the file size
specified by the user. If the space required to build a KSAM XL file of the
user-specified size exceeds 4 gigabytes, FOPEN returns an error. For a
KSAM64 file, FOPEN returns an error if the space required exceeds 128
gigabytes

numextent 16-bit signed integer by value (optional)

Passes a value in the range 1 to 32 that determines the number of extents
for the file. If a value of 1 and an initialloc value of 1 is specified, the file
is created as one contiguous extent of disk space. If a value >1 is specified,
a variable number of extents (with varying extent sizes) are allocated on a
need basis. Applicable only at file creation.

Default: >=1 extents

initialloc 16-bit signed integer by value (optional)

Passes an integer value in the range 1 to 32 that determines the number of
extents to be allocated to the file initially. Applicable only at file creation.
128 Chapter 9

KSAM Intrinsics
FOPEN
Default: 0

filecode 16-bit signed integer by value (optional)

Passes a value that can be used as a file code to identify the type of file.
This code is recorded in the file label and is accessible through the
FFILEINFO intrinsic. Applicable only at file creation (except when opening
an old file that has a negative file code).

If the program is running in user mode, specify a file code in the range 0 to
32,767 to indicate the file type being created; programs running in user
mode can access files with nonnegative file codes. If the program is
running in privileged mode, specify a file code in the range -32,768 to
32,767; programs running in privileged mode can access files with a file
code in the range -32,768 to 32,767. If an old file with a negative file code is
opened, the file code specified must match the file code in the file label.

Default: 0

Table 9-6. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item

filenum (functional return) filenum (parameter)

formaldesig 2,formaldesig

foption :

Bits (14:2) Domain

Bit (13:1) ASCII/binary

Bits (10:3) File designator

Bits (8:2) Record format

Bit (7:1) Carriage-control

Bit (6:1) Labeled tape

Bit (5:1) Disallow file equation

Bits (2:3) File type

3, domain
53, ASCII/binary
5, file designator
6, record format
7, carriage-control
8, labeled tape
9, disallow file equation
10, file type

aoption:

Bits (12:4) Access type

Bit (11:1) Multirecord

Bit (10:1) Dynamic locking

Bits (8:2) Exclusive

Bit (7:1) Inhibit buffering

Bits (5:2) Multiaccess mode

Bit (4:1) Nowait I/O

Bit (3:1) File copy

11, access type
15, multirecord
12, dynamic locking
13, exclusive
46, inhibit buffering
14, multiaccess mode
16, nowait I/O
17, file copy
Chapter 9 129

KSAM Intrinsics
FOPEN
Operation Notes

Figure 9-6. shows the format of the KSAM parameter.

recsize 19, record size

device 20, device name
22, volume class
23, volume name
24, density
25, printer environment
26, remote environment
42, device class
48, reverse VT

formmsg 8, labeled tape label
28, spooled message
30, labeled tape type
31, labeled tape expiration
32, labeled tape sequence
54, KSAM parms

userlabels 33, user labels

blockfactor 40, block factor

numbuffers:

Bits (11:5) Numbuffers

Bits (4:7) Spooler copies

Bits (0:4) Output priority

44, numbuffers
34, spooler copies
27, output priority

filesize 35, filesize

numextent 47, numextent

initialloc 36, initial allocation

filecode 37, filecode

Table 9-6. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item
130 Chapter 9

KSAM Intrinsics
FOPEN
Figure 9-6. FOPEN KSAM Parameter Format

A file can be referenced by its formal file designator. When executed, a unique file number
is returned to the process. This file number, rather than the formal file designator, is used
in subsequent calls to this file.
Chapter 9 131

KSAM Intrinsics
FOPEN
Condition Codes

CCE Request granted. The file is open.

CCG Not returned.

CCL Request denied. For example, another process already has exclusive or
semi-exclusive access for this file, the privilege level of this file is not user
(3), or an initial allocation of disk space cannot be made due to lack of disk
space. If the file is not opened successfully, the file number value returned
by FOPEN is 0. Call the FCHECK intrinsic for more details.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
132 Chapter 9

KSAM Intrinsics
FPOINT
FPOINT

Sets the logical and physical record pointers to the specified record.

Syntax

I16V I32V
 FPOINT(filenum,lrecnum);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file where the pointer is to be set.

lrecnum 32-bit signed integer by value (required)

Passes the relative physical record number where the physical record
pointer is to be positioned. Record numbering starts with zero or one,
depending on how the file was created.

Operation Notes

This intrinsic does not read the advance flag. It positions both the logical record pointer
and the physical pointer to the appropriate record. When its function is complete, it sets
the advance flag to FALSE.

Condition Codes

CCE Request granted.

CCG Request denied. The physical record pointer position is unchanged.
Positioning was requested at a point beyond the file limit.

CCL Request denied. The physical record pointer position is unchanged because
of one of the following:

• Invalid filenum parameter.

• The lrecnum parameter specified a record marked for deletion.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 133

KSAM Intrinsics
FREAD
FREAD

Reads a logical record in key sequence from a file to the buffer.

Syntax

 I16 I16V UDS I16V
lgth :=FREAD(filenum,buffer,length);

Functional Return

lgth 16-bit signed integer (assigned functional return)

Returns the length of the data transferred to buffer :

• If a negative value is passed in the length parameter,the lgth is a
positive value indicating the number of bytes transferred.

• If a positive value is passed in the length parameter, the lgth is a
positive value indicating the number of halfwords transferred.

• If a value of 0 is passed in the length parameter, the position is
identified, but the data is not returned.

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be read.

buffer user-defined structure (required)

Returns the record that was read. This structure must be large enough to
hold all of the information to be transferred.

length 16-bit signed integer by value (required)

Passes the length of the data to be transferred to buffer . If this value is
positive, it signifies the length in halfwords. If negative, it signifies the
length in bytes. If zero, no transfer occurs.

If length is larger than the size of the logical record, transfer is limited to
the length of the logical record. If less than the size of the logical record,
the transfer is limited to the length specified.

Operation Notes

This intrinsic reads the advance flag and advances to the next record if the flag is set to
TRUE. It positions the logical record pointer and the physical pointer to the appropriate
record. When its function is complete, it sets the advance flag to TRUE.

When the logical end-of-data is encountered, CCG is returned to the process.
134 Chapter 9

KSAM Intrinsics
FREAD
Condition Codes

CCE Request granted. The information was read.

CCG Request denied. The logical end-of-data was encountered during reading.

CCL Request denied. The information was not read because an error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 135

KSAM Intrinsics
FREADBYKEY
FREADBYKEY
Reads a logical record based on key value from a KSAM file to the target.

Syntax

 I16 I16V LA I16V CA
lgth :=FREADBYKEY(filenum,buffer,length,value,

 I16V
location);

Functional Return

lgth 16-bit signed integer by value (assigned functional return)

Returns the length of the information transferred.

• If lgth is positive, it is a halfword count.

• If lgth is negative, it is a byte count.

• If lgth is 0, the position is identified, but the data is not returned.

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be read.

buffer logical array (required)

Returns the transferred record. It must be large enough to hold all the
information to be read.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be transferred. If length is
positive, it is the length in halfwords. If negative, it is the length in bytes.
If zero, no transfer occurs.

If length is less than the size of the record to be transferred, only the first
length halfwords or bytes are transferred from the record. If the length is
larger than the physical record size, only the physical record length is
transferred.

value character array (required)

Passes the key value determining the record to be read. The first record
found with an identical key value specified by location is the record read.

location 16-bit signed integer by value (required)

Passes the relative byte location in the record of the key whose value
determines which record is to be read. The first byte is numbered as 1. If 0
is specified, the primary key is used.
136 Chapter 9

KSAM Intrinsics
FREADBYKEY
Operation Notes

This intrinsic does not read the advance flag. It positions the logical record pointer and the
physical pointer to the appropriate record. When its function is complete, it sets the
advance flag to FALSE.

Condition Codes

CCE Request granted.

CCG Request denied. The logical end-of-data or beginning-of-data was
encountered during the read.

CCL Request denied. An error occurred. Either an I/O error occurred or the key
could not be located.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 137

KSAM Intrinsics
FREADC
FREADC
Reads a logical record in physical sequence from a KSAM file to the target.

Syntax

 I16 I16V LAI 16V
lgth :=FREADC(filenum,buffer,length);

Functional Return

lgth 16-bit signed integer by value (assigned functional return)

Returns the length of the information transferred.

• If lgth is positive, it is a halfword count.

• If lgth is negative, it is a byte count.

• If lgth is 0, the position is identified, but the data is not returned.

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be read in physical record sequence.

buffer logical array (required)

Returns the transferred record. It must be large enough to hold all the
information to be read.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be transferred. If length is
positive, it is the length in halfwords; if negative, it is the length in bytes.
If, zero, no transfer occurs. If length is less than the size of the record to
be transferred, only the first length halfwords or bytes are transferred
from the record. If the length is larger than the physical record size, only
the physical record length is transferred.

Operation Notes

This intrinsic reads the advance flag and advances to the next record if the flag is set to
TRUE. It positions only the physical record pointer to the appropriate record. Deleted
records are skipped. When its function is completed, it sets the advance flag to TRUE.
138 Chapter 9

KSAM Intrinsics
FREADC
Condition Codes

CCE Request granted.

CCG Request denied. The logical end-of-data was encountered during the read.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 139

KSAM Intrinsics
FREADDIR
FREADDIR

Reads a logical record located by its physical record number from a file to the buffer.

Syntax

I16V UDS I16V I32V
 FREADDIR(filenum,buffer,length,lrecnum);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be read.

buffer user-defined structure (required)

Returns the record that was read. This structure should be large enough to
hold all of the information to be transferred.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be transferred. If this value is
positive, it signifies halfwords. A negative value indictates a transfer in
bytes. If zero, no transfer occurs.

If length is less than the size of the logical record, only the first length
halfwords or bytes are read from the record. If length is larger than the
size of the logical record, the transfer is limited to the length of the logical
record.

lrecnum 32-bit signed integer by value (required)

Indicates the relative physical record number to which the physical
pointer is positioned. Physical record numbering for fixed-length records
starts with zero or one, as specified when the file was built.

Operation Notes

This intrinsic reads the advance flag. It sets only the physical pointer to the appropriate
record. When its function is completed, it sets the advance flag to TRUE.

This intrinsic is different from the FREAD intrinsic. The FREAD intrinsic reads only the
record already pointed to by the logical record pointer. FREADDIR inputs the specified
logical record. If the record is inactive, the contents of the inactive record are transmitted
and a CCE is returned. There is no indication of the block containing some inactive
records. (FCHECK returns a nonzero error number to distinguish active and inactive
records.)
140 Chapter 9

KSAM Intrinsics
FREADDIR
Condition Codes

CCE Request granted. The information was read.

CCG Request denied. End-of-data was encountered.

CCL Request denied. The information was not read; an error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 141

KSAM Intrinsics
FREADLABEL
FREADLABEL

Reads a user-defined file label.

Syntax

I16V UDS I16V I16V
 FREADLABEL(filenum,buffer,length,labelid);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file whose label is to be read.

buffer user-defined structure (required)

Returns the label that was read. This structure must be large enough to
hold the number of halfwords specified by length .

length 16-bit signed integer by value (optional)

Passes the number of halfwords to be transferred from the label. This field
must not be greater than 128 halfwords.

Default: 128 halfwords

labelid 16-bit signed integer by value (optional)

Passes the label number. (The first label is numbered zero.)

Default: Zero

Operation Notes

When a disk file is opened, user labels can be read from it, or written to it, in any order, at
any time, regardless of access capabilities to the rest of the file. A disk file can have as
many as 254 128-halfword user-defined labels.

MPE/iX automatically skips over any unread user-defined labels when the first FREAD intrinsic call for files
is issued. To read a user-defined label, you should call the FREADLABEL intrinsic immediately after an
FOPEN/HPFOPEN intrinsic has opened the file. The user-defined label must be 40 halfwords in length to
conform to the length of the ANSI-standard or IBM-standard label.

Condition Codes

CCE Request granted. The label was read.

CCG Request denied. A label was referenced beyond the last label written on
the file.

CCL Request denied. The label was not read; an error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
142 Chapter 9

KSAM Intrinsics
FREMOVE
FREMOVE
Marks the current record in a KSAM file for deletion.

Syntax

I16V
 FREMOVE(filenum)

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file where the record is to be deleted.

Operation Notes

Split stack calls are permitted.

When executed, the first bit in the record header is set to 1.

This intrinsic does not read the advance flag. It sets the logical record pointer and the
physical physical pointer to the appropriate record. When its function is completed, it sets
the advance flag to FALSE. When a record is deleted, the pointers are positioned at the
next sequential record of the specified key.

Condition Codes

CCE Request granted.

CCG Request denied. The logical end-of-data was encountered.

CCL Request denied. An error was encountered, the record is not deleted.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 143

KSAM Intrinsics
FRENAME
FRENAME
Renames an open disk file (and its lockword, if applicable). The file being renamed must be
either:

• A new file.

• An old file (permanent or temporary), opened for exclusive access with the exclusive
option of the HPFOPEN/FOPEN intrinsics, and with security provisions allowing write
access.

Syntax

 I16V CA
 FRENAME(filenum,formaldesig);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be renamed.

formaldesig character array (required)

Passes the new name of the file. The maximum number of characters
allowed in the string is 36. The ASCII string contained in formaldesig
must begin with a letter and can contain up to eight alphanumeric
characters for each of the filename, lockword, group , and account
fields. The string must end with a nonalphanumeric character, including a
blank, but not a slash (/) or a period (.). The home volume set of
formaldesig must be the same as the file being renamed. Volume sets
cannot be spanned when renaming files. The format of formaldesig is:

filename/lockword.group.account

where:

filename Is the new file name for the file. (Required in
formaldesig .)

lockword Is a lockword for the new file name. (Optional portion of
formaldesig .) To keep or add a lockword to the file, the
lockword must be entered in the ASCII string. If this
part of formaldesig is not specified, the new file name
has no lockword associated with it.

group Is the group where the file is to reside. (Optional portion of
formaldesig .) If a group is not specified, the file resides
in the group it was assigned before the FRENAME intrinsic
call.

account Is the account name where the file is to reside. (Optional
portion of formaldesig .) If renaming a new or temporary
144 Chapter 9

KSAM Intrinsics
FRENAME
file that was created, specify any account that shares the
same volume set as the file being renamed. A permanent
file cannot be renamed across account boundaries. If other
than the current account name is specified for a
permanent file, the CCL (1) error condition is returned
and the file retains its old name.

Operation Notes

The formaldesig parameter uses MPE-escaped semantics. If a file is referenced by
filenum , you can rename it within the hierarchical directory as long as the process
invoking FRENAME has sufficient access and the restrictions are satified. FRENAME intrinsic
fully qualifies the file owner name. Only file owners and users with appropriate privilege
can manipulate a file's lockword.

If renaming a file, a process must have the following:

TD Traverse directory entry to access to all directories specified in
formaldesig . If formaldesig is specified as file.group.account , the
directories are the root directory, the account, and the MPE group.

CD Create directory entry to access to the new parent directory.

DD Delete directory entry to access to the old parent directory.

SF Save files capability.

The following restrictions apply to FRENAME:

• Directories cannot be renamed.

• Lockwords cannot be assigned to hierarchical directories.

• Files cannot be renamed across volume sets.

• Files with KSAM/3000, RIO, and CIR file types may only be assigned names in the
MPE name space.

If a file without an ACD is renamed from an MPE group to a directory (although not within
the same account), an ACD is automatically assigned to the file.

All errors will set the condition codes to CCL.

CM KSAM files cannot be renamed, but KSAM XL/64 files can be.

Condition Codes

CCE (2) Request granted.

CCG (0) Not returned.

CCL (1) Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 145

KSAM Intrinsics
FSPACE
FSPACE

Moves a record pointer forward or backward in a file.

Syntax

I16V I16V
 FSPACE(filenum,displacement);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file on which spacing is to be done.

displacement 16-bit signed integer by value (required)

Passes the number of logical records to be spaced over, relative to the
current position of the logical record pointer.

A positive value signifies forward spacing, a negative value signifies
backward spacing. The maximum positive value is 32,767. The maximum
negative value is −32,768.

Operation Notes

The logical record pointer is repositioned in key sequence. The spacing is based on the
primary key unless an alternate key has been specified in a prior call to FFINDN,
FFINDBYKEY, or FREADBYKEY.

This intrinsic reads the advance flag and advances to the next record if the flag is set to
TRUE. It sets the logical record pointer and the physical pointer to the appropriate record.
When its function is completed, it sets the advance flag to FALSE.

Note that because this intrinsic reads the advance flag, spacing might be affected by a
preceding call to an FREAD or FREADC intrinsic. FREAD and FREADC set the advance flag to
TRUE. If the FSPACEintrinsic is then called, it advances one record before moving back or
ahead the specified number of records.

Condition Codes

CCE Request granted.

CCG Request denied. A logical end-of-file indicator was encountered during
spacing. The logical record pointer is at the beginning-of-file if
displacement was negative or at the end-of-file if displacement was
positive.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
146 Chapter 9

KSAM Intrinsics
FUNLOCK
FUNLOCK

Dynamically unlocks a file.

Syntax

 I16V
 FUNLOCK(filenum);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file whose global RIN is to be unlocked.

Condition Codes

CCE Request granted.

CCG Request denied. The file had not been locked by the calling process.

CCL Request denied. The file was not opened with the dynamic locking
aoption of the FOPEN/HPFOPEN intrinsic, or the filenum parameter is
invalid.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 147

KSAM Intrinsics
FUPDATE
FUPDATE
Updates the contents of a logical record in a file.

Syntax

I16V UDS I16V
 FUPDATE(filenum,buffer,length);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be updated.

buffer user-defined structure (required)

Passes the record to be written in the update.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be written to the file. A positive
value is in halfwords; a negative value is in bytes.

If length is less than record size, the length is transferred in halfwords or
bytes and remaining portions of the record will be padded with fill
characters. If length equals zero, no transfer occurs and the record
address is overwritten with default fill characters (blanks for ASCII files;
null characters for binary files). If length is greater than record size, CCL
is returned and no transfer occurs.

Operation Notes

This intrinsic does not read the advance flag. If the record's key data is unchanged, it does
not position any pointers, but sets the advance flag to TRUE. If the record's key data
changes, it positions the logical record pointer and the physical pointer to the appropriate
record and sets the advance flag to FALSE. The act of updating the keys advances the
pointers to the next record.

The record to be updated is the record pointed to by the logical data pointer. FUPDATE
moves the specified information from the stack into this record. The file containing this
record must be opened with the update aoption specified in the FOPEN/HPFOPEN call and
the file cannot have variable-length records. If RIO access is used, the modified record is
set to the ACTIVE state.
148 Chapter 9

KSAM Intrinsics
FUPDATE
Condition Codes

CCE Request granted.

CCG Request denied. An end-of-file condition was encountered during updating.

CCL Request denied. An error occurred. The length exceeds the size of the
record, length does not include all the keys, or a disk I/O error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 149

KSAM Intrinsics
FWRITE
FWRITE

Writes a logical record from the buffer to a file.

Syntax

I16V UDS I16V U16V
 FWRITE(filenum,buffer,length,controlcode);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be written on.

buffer user-defined structure (required)

Passes the record to be written.

length 16-bit signed integer by value (required)

Passes the number of halfwords or bytes to be written to the record. If this
value is positive, it signifies halfwords; if negative, bytes. Zero indicates
that no transfer occurs.

If length is less than the record size, the remaining portion of the record is
padded with the fill character that is specified during the file creation. The
default for ASCII is blank. The default for binary is binary zero.

If length is larger than the logical record size, the FWRITE request is
refused and CCL is returned.

controlcode 16-bit unsigned integer by value (required)

This parameter must be specified to satisfy internal requirements, but it is
ignored.

Operation Notes

This intrinsic does not read the advance flag. It positions the logical record pointer and the
physical pointer to the appropriate record. When its function is completed, it sets the
advance flag to FALSE.

When the FWRITE intrinsic is executed, the logical record pointer is set to the record
immediately following the record just written. When an FWRITEcall writes a record beyond
the current logical end-of-file indicator, this indicator is advanced. If the physical bounds of
the file are reached, CCG is returned.
150 Chapter 9

KSAM Intrinsics
FWRITE
Condition Codes

CCE Request granted.

CCG Request denied. The physical bounds of the file prevented further writing.

CCL Request denied. An error occurred: an I/O error occurred;

• a duplicate key value occurred when duplicates are not allowed

• length does not include all keys

• sequential processing was specified in the flag word of the ksamparam
in FOPEN and the primary key is not in ascending order.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
Chapter 9 151

KSAM Intrinsics
FWRITELABEL
FWRITELABEL

Writes a user-defined file label.

Syntax

I16V UDS I16V I16V
 FWRITELABEL(filenum,buffer,length,labelid);

Parameters

filenum 16-bit signed integer by value (required)

Passes the file number of the file to be labeled.

buffer user-defined structure (required)

Passes the label to be written. If the file is a labeled magnetic tape file, this
label must be 40 halfwords in length.

length 16-bit signed integer by value (optional)

Passes the number of halfwords or bytes to be written. A positive value is
in halfwords; a negative value is in bytes.

labelid 16-bit signed integer by value (optional)

Passes the number of the label to be written. The first label is zero. This
parameter is ignored for labeled tapes. The next sequential tape label is
written. The default is zero.

Operation Notes

Once a disk file is opened, it is possible to read from or write to user-defined labels
regardless of the access to the rest of the file.

Condition Codes

CCE Request granted.

CCG Request denied. The calling process attempted to write a label beyond the
limit specified in the FOPEN/HPFOPEN intrinsic when the file was created.

CCL Request denied. An error occurred.

Refer to this intrinsic in the MPE/iX Intrinsics Reference Manual for other codes
pertaining to KSAM files.
152 Chapter 9

KSAM Intrinsics
HPFOPEN
HPFOPEN

Establishes access to a file and creates a file.

Syntax

 I32 I32 I32V *
 HPFOPEN(filenum,status [, itemnum,item] [...]);

NOTE Up to 41 itemnum/item pairs can be specified.

Parameters

filenum 32-bit signed integer by reference (required)

Returns a file number used to identify the opened file in subsequent
intrinsic calls.

Can be used safely with all file system intrinsics that require a 16-bit file
number to be passed in the intrinsic call (for example, FREAD, FWRITE,
FCLOSE).

status 32-bit signed integer by reference (optional)

Returns the status of the HPFOPEN call. If no errors or warnings are
encountered, status returns 32 bits of zero. If errors or warnings are
encountered, status is interpreted as two 16-bit fields:

Bits Value/Meaning

0:16 status.info

A negative value indicates an error condition, and a
positive value indicates a warning condition.

16:16 status.subsys

The value represents the subsystem that set the status
information. Refer to the MPE/iX Error Message Manual
Volumes 1, 2 and 3 for status messages.

CAUTION If an error or warning is encountered and the status parameter was not
specified, HPFOPEN causes the calling process to abort.

itemnum 32-bit signed integer by value (optional)

Passes the item number, refer to Table 9-1.

item type varies by reference (optional)

Passes and/or returns the option indicated by the corresponding itemnum
parameter, refer to Table 9-1.
Chapter 9 153

KSAM Intrinsics
HPFOPEN
NOTE An itemnum takes precedence over any previously specified duplicate
itemnum . Any duplicated itemnum is flagged as a warning.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description

0 End of option list: There is no corresponding item . The absence of an
itemnum after the last itemnum,item pair is equivalent to specifying
this option.

2 CA Formal designator:

Passes a formal file designator, following MPE/iX file naming
conventions. The file name must begin with an alphabetic character and
contain alphanumeric characters, slashes, or periods. If the file name is
the name of a user-defined file, it can begin with an asterisk (*). If the
file name is the name of a system-defined file, it can begin with a dollar
sign ($). Specify the remote location of a device as filename:envid . The
file, lockword, group, and account names are each limited to eight
characters in length. The formal file designator may contain command
interpreter variables and expressions that are evaluated by HPFOPEN
before the formal file designator is parsed and validated.

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character
array, for example:

%devname% (% is the delimiter, devname is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

For a KSAM file, the device must be a random access device such as a
disk.

The following are examples of valid MPE/iX formal file designators:

&file/lock.group.account:node.dest.level&

&filename&

&!myfile&

&!afile/![FINFO("!afile",33)]&

The following are examples of invalid formal file designators:

"filename.group (missing delimiter (”))

file.group" (’f’ is used as delimiter, missing at end)
154 Chapter 9

KSAM Intrinsics
HPFOPEN
2
Cont.

CA Default: A nameless file is assigned that can be read from or written to,
but not saved. (The domain of a nameless file must be new.)
Only one of the following options can be in effect when a file is opened:

itemnum =2

itemnum =51

3 I32 Domain:

Passes a value indicating which file domain MPE/iX searches to locate
the file. A nameless disk file must always be a new file. A device file (such
as a tape or terminal) always resides in the system file domain
(permanent file directory). Always specify a device file as old or
permanent.

The following values are valid:

0 The file is a new temporary file. It is not placed in a
directory.

1 The file is a permanent file, found in the system file
domain.

2 The file is a temporary file, found in the job file domain.

3 The file is an old (permanent or temporary) file. The job
file domain is searched first. If the file is not found, the
system file domain is searched.

4 The file is created, placed in the permanent file
directory, and becomes a permanent file.

Default: 0

5 I32 Designator:

Passes a value indicating a special file opening. Any of the following
special files can be specified with the itemnum =2. For example, a file
name of $STDLIST opens the standard list device. The following values
are valid:

0 Allows all other options to specify the file.

1 The actual file designator is $STDLIST .

2 The actual file designator is $NEWPASS.

3 The actual file designator is $OLDPASS.

4 The actual file designator is $STDIN.

5 The actual file designator is $STDINX.

6 The actual file designator is $NULL.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 155

KSAM Intrinsics
HPFOPEN
5
Cont

I32 Default: 0
For example, passing &MYFILE& in itemnum=2 and using itemnum=5
and item=4 to equate it with $STDIN is equivalent to the file equation
FILE MYFILE=$STDIN.

This option is not equated with itemnum=2 if both of the following
conditions are true:

The itemnum=9 option allows file equations for the file opening.

An explicit or implicit FILE command equating the formal file
designator to a different actual file designator occurs in the job or
session.

A leading * in a formal file designator passed by itemnum=2 overrides an
itemnum=9 option.

6 I32 Record format:

Passes a value indicating the internal record structure desired for the
file. This option is applicable only at file creation.

Only a fixed-length record is allowed for KSAM XL files (0).

Default: 0

9 I32 Disallow file equation:

Passes a value indicating whether or not MPE/iX file equations are
allowed. A leading * in a formal file designator overrides the setting to
disallow FILE equations.

The following values are valid:

0 Allow FILE equations to override programmatic or
system-defined file specifications.

1 Disallow FILE equations from overriding
programmatic or system-defined file specifications.

Default: 0

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
156 Chapter 9

KSAM Intrinsics
HPFOPEN
10 I32 File type:

Passes a value indicating the internal record structure used to access
records in the file. If the file is old, this option is ignored. Specifying an
itemnum =5 value other than zero overrides this option. This option is
applicable only at file creation.

The following values are valid:

0 Standard (STD) file

1 KSAM/3000 file

2 Relative I/O (RIO) file

3 KSAM XL file

4 Circular (CIR) file

6 Message (MSG) file

7 KSAM64 file

Default: 0

11 I32 Access type:

Passes a value indicating the type of access intended for the file. This
option restricts usage of the file system intrinsics.

The following values are valid:

0 Read access only, if the file's security provisions allow
read access. FWRITE, FUPDATE, and FREMOVE intrinsic
calls cannot reference this file. The end-of-file (EOF) is
not changed. (Default)

1 Write access only, if the file's security provisions allow
write access. Any data written in the file prior to the
current HPFOPEN request is deleted. FFINDBYKEY,
FFINDN, FPOINT, FREAD, FREADBYKEY, FREADC,
FREADDIR, FREMOVE, FSPACE, and FUPDATE intrinsic
calls cannot reference this file. The EOF is set to zero.

2 Write-save access only, if the file's security provisions
allow write access. Previous data in the file is not
deleted. FFINDBYKEY, FFINDN, FPOINT, FREAD,
FREADBYKEY, FREADC, FREADDIR, FREMOVE, FSPACE,
and FUPDATE intrinsic calls cannot reference this file.
The EOF is not changed. Therefore, data is overwritten
if FWRITE is called. The system changes this value to
append for message files.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 157

KSAM Intrinsics
HPFOPEN
11
Cont

I32 Access type:

3 Append access only, if the file's security provisions
allow either append or write access. FFINDBYKEY,
FFINDN, FPOINT, FREAD, FREADBYKEY, FREADC,
FREADDIR, FREMOVE, FSPACE, and FUPDATE intrinsic
calls cannot reference this file. The record pointer is set
to EOF prior to each FWRITE. For disk files, the EOF is
updated after each FWRITEcall. Therefore, data cannot
be overwritten.

4 Read/write (I/O) access only, if the file's security
provisions allow both read and write access. If both
read and write access are not allowed, the access type
is limited to that specified in the security provisions
(either read or write). Any file intrinsic except
FUPDATE and FREMOVE can be called for this file. The
EOF is not changed. This option is not valid for
message files.

5 Update access only, if the file's security provisions
allow both read and write access. If both read and write
access are not allowed, the access type is limited to
that specified in the security provisions (either read or
write). All file intrinsics can be called for this file. The
EOF is not changed. This option is not valid for
message files.

6 Execute access only, if the file's security provisions
allow execute access. This allows read/write access to
any loaded file. The program must be running in
privileged mode to specify execute access. This option
is not valid for message files.

7 Execute-read access only, if the file's security
provisions allow execute access. This allows only read
access to a loaded file. The program must be running in
PM to specify execute-read access. This is changed to
execute access for KSAM, CIR, and RIO files. Not valid
for message files.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
158 Chapter 9

KSAM Intrinsics
HPFOPEN
12 I32 Dynamic locking:

Passes a value enabling or disabling file locking for the file. When
specified, the FLOCK and FUNLOCK intrinsics can be used to dynamically
permit or restrict concurrent access to a disk file by other processes at
specified times.

The following values are valid:

0 Disallow dynamic locking/unlocking

1 Allow dynamic locking/unlocking

Default: 0

The process can continue this temporary locking or unlocking until it
closes the file. If several accessors are sharing the file, they must all
specify, or not specify, this option. For example, if a file is opened with the
dynamic locking option enabled, and a subsequent accessor tries to open
the file with dynamic locking disabled, that subsequent attempt to open
fails.

Dynamic locking and unlocking are possible through the equivalent of a
global resource identification number (RIN) assigned to the file and
temporarily acquired by HPFOPEN.

Accessors that have opened a file with the dynamic locking option
enabled must access the file through the FLOCKand FUNLOCKintrinsics to
ensure exclusive use of the file. These accessors are allowed concurrent
access even when not using FLOCK and FUNLOCK, but exclusive access is
not guaranteed.

Note: The file system does not guarantee exclusive access, even when
FLOCK and FUNLOCK are used, unless all programs that access the file
cooperate by using locking. A program that opens the file with dynamic
locking enabled will still be allowd to modify the file, even if it never calls
FLOCK.

Lock access must be at the account, group, and file levels for HPFOPEN to
grant this option. (Lock access is available if lock, execute, append, or
write access is set at these levels.) This option is ignored for files not
residing on disk.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 159

KSAM Intrinsics
HPFOPEN
13 I32 Exclusive:

Passes a value indicating continuous exclusive access to the file, from
open to close. Use this option when performing a critical operation (for
example, updating the file).

The following values are valid:

0 If itemnum =11 specifies read only access, read-share
access takes effect. Otherwise, exclusive access takes
effect. Regardless of which access option was selected,
FFILEINFO reports zero.

1 Exclusive access. After the file is opened, any
additional HPFOPEN/FOPEN requests for this file,
whether issued by this process or another process, are
prohibited until this process issues the FCLOSErequest
or terminates. If any process is already accessing this
file when an HPFOPEN/FOPEN call is issued with
exclusive access specified, an error status is returned
to the process. If another HPFOPEN/FOPEN call is
issued for this file while exclusive access is in effect, an
error code is returned to the process that issued that
HPFOPEN/FOPEN call. Request exclusive access only if
the lock access mode is allowed by the security
provisions for the file. For message files, specifying this
value means that there can be only one reader and one
writer.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
160 Chapter 9

KSAM Intrinsics
HPFOPEN
13
Cont

I32 2

Read-share access (semi-exclusive access). After the file is opened,
concurrent write access to this file through another HPFOPEN/FOPEN
request is prohibited, whether issued by this process or another process,
until this process issues the FCLOSE request or terminates. A
subsequent request for the read/write or update itemnum=11 obtains
read access. However, other types of read access are allowed. If a process
already has write access to the file when this HPFOPEN call is issued,
an error code is returned to the calling process. If another
HPFOPEN/FOPEN call that violates the read-only restriction is issued
while read-share access is in effect, that call fails and an error code is
returned to the calling process. You can request read-share access only if
you are allowed the lock access mode by the security provisions for the
file. For message files, specifying this value means that there can be
multiple readers, but only one writer.

3

Share access. After the file is opened, this permits concurrent access to
this file by any process, in any access mode, subject to other basic
MPE/iX security provisions in effect. For message files, specifying this
value means that there can be multiple readers and multiple writers.

Default: 0

17 I32 Copy mode:

Passes a value that determines if any file should be treated as a
standard sequential file so it can be copied by logical record or physical
block to another file.

The following values are valid:

0 The file is accessed as its own file type (for example, a
message file is treated as a message file).

1 The file is to be treated as a standard (STD) file, with
variable-length records. For message files, this allows
nondestructive reading of an old message file at either
the logical record or physical block record level. Only
block-level access is permitted if the file is opened with
write access. This prevents incorrectly formatted data
from being written to the message file while it is
unprotected. To access a message file in copy mode, a
process must have exclusive access to the file.

Default: 0

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 161

KSAM Intrinsics
HPFOPEN
18 @32 Short-mapped:

Returns a short pointer to the beginning of the data area of the file. This
option maps the file into short pointer space. A short-mapped file can be
4-megabytes in length. The calling process can have up to 6-megabytes of
short mapped files open at a time. Use the pointer as a large array of any
type to efficiently access the file.

A file previously opened normally (not mapped) or with the long-mapped
option is not accessible with the short-mapped option. If this option is
specified with the file already opened into long pointer space, an error
results.

A loaded program file or a loaded library file is not accessible with the
short-mapped option. A file cannot be loaded that is currently opened
with the short-mapped option.

Sharing of short pointer files is provided through normal file system
sharing mechanisms, for example, use of the exclusive option. With the
short-mapped file, all file system intrinsics, applicable to the file, can be
used. FREAD and FWRITE calls can be mixed with the short-mapped
access.

Standard (STD) type disk files of fixed or undefined record length can be
accessed short-mapped with the access type option set to any value.
Standard type disk files of variable record length can be accessed
short-mapped only if the access type option is set to read-only access.
KSAM files can be accessed short-mapped only if the access type option
is set read-only access and the copy mode option is set to 1.

Default: No short pointer returned

19 I32 Record size:

Passes the size, in bytes, of the logical records in the file. Valid range is
dependent upon both storage format (ASCII or binary) and record
format. For fixed-length and undefined-length ASCII files, a record size
can be specified in the range 1 to 32,767. For variable-length ASCII files,
and for fixed-length, variable-length, and undefined-length binary files, a
record size can be specified in the range 1 to 32,766.

HPFOPEN rounds up odd values to the next highest even number
(equivalent to the nearest halfword boundary) if the file is ASCII with
variable-length record format, or binary with fixed-length,
variable-length, or undefined-length record format.

For example, if a record size of 105 is specified for a fixed-length binary
file, HPFOPENsets the record size to 106; if a record size of 233 is specified
for a fixed-length ASCII file, the record size remains the same as it was
when specified.

Default: 256

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
162 Chapter 9

KSAM Intrinsics
HPFOPEN
20 CA Device name:

Passes the logical device number, in ASCII form, of a specific device. The
file is assumed to be permanent. If the device name option is specified,
the nonshareable device should be ready prior to the HPFOPEN call
(otherwise, an error results).

Only one of the following options can be in effect when a file is opened:

itemnum =20

itemnum =22

itemnum =23

itemnum =42

Default: disk file located on the volume class disc associated with the
group in which file resides.

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character
array, for example:

%devname% (% is the delimiter, devname is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

For a KSAM file, the device must be a random access device such as a
disk.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 163

KSAM Intrinsics
HPFOPEN
22 CA Volume class:

Passes a character array representing a volume class name where the
file space is to be restricted. This option is applicable only at file creation.

A volume class is a subset of volumes within a volume set. The volume
class name must be a valid volume class name residing on the volume set
bound to the volume (the volume set is an attribute of the group in which
the file resides).

Only one of the following options can be in effect when a file is opened
with this option:

itemnum =20

itemnum =22

itemnum =23

itemnum =42

Default: A disk file located on the volume class DISC associated with the
group in which the file resides.

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character
array, for example:

%volclass% (% is the delimiter, volclass is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
164 Chapter 9

KSAM Intrinsics
HPFOPEN
23 CA Volume name:

Passes a character array representing a volume name that restricts the
file specified to a specific volume. The volume must reside within the
volume set of the group where the file resides. This option is applicable
only at file creation.

Only one of the following options can be in effect when a file is opened
with this option:

itemnum =20

itemnum =22

itemnum =23

itemnum =42

Default: A disk file located on the volume class DISC associated with the
group in which the file resides.

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character
array, for example:

%volclass% (% is the delimiter, volclass is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

26 CA Remote environment:

Passes the node name of the remote computer where the file is located.
This option is used when referencing a file located on a remote computer.

Default: No node name passed (local file access)

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character
array, for example:

%envname% (% is the delimiter, envname is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 165

KSAM Intrinsics
HPFOPEN
29 I32 Privileged access:

Passes a value that temporarily restricts access to the file number
returned from HPFOPEN to a calling process whose execution level is
equal to or less than the value specified in this option. This restriction
lasts until the file associated with the restricted file number is closed. Do
not specify a value less than the execution level of the calling process.

The following values are valid:

0 Privilege level zero (most privileged level)

1 Privilege level one

2 Privilege level two

3 Privilege level three (least privileged level)

Default: The execution level of the calling process

33 I32 User labels:

Passes the number, in the range 0 to 254, of user-label records to be
created for the file. Applicable for new disk files only.

Default: 0

35 I32 File size:

Passes the maximum file capacity:

• For variable-length records, the capacity is expressed in blocks
(blockitem#=recordsize * blockfactor).

• For fixed-length and undefined-length records, the capacity is
expressed in logical records.

• The maximum file size for standard and KSAM XL files is
4-gigabytes.

• The maximum file size for KSAM64 files is 128 gigabytes

• The maximum file size of 500-megabytes, for RIO, circular, and
message files, is dependent upon both the record size and the number
of extents defined for the file:

• For circular and RIO files, recsize =256 bytes and
numextent =32.

• For message files, recsize =128 bytes and numextent =32.

This option is applicable only at file creation.

Default: 2-gigabytes

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
166 Chapter 9

KSAM Intrinsics
HPFOPEN
36 I32 Initial allocation:

Passes a positive integer value indicating the number of extents to be
allocated to the file initially. This option is applicable only at file
creation.

Default: 0

37 I32 Filecode:

Passes a value that can be used as a file code to identify the type of file.
This code is recorded in the file label and is accessible through the
FFILEINFO intrinsic. This option is applicable only at file creation (except
when opening an old file that has a negative file code).

If the program is running in user mode, specify a file code in the range 0
to 32,767 to indicate the file type being created. Programs running in
user mode can access files with positive file codes only.

If the program is running in privileged mode, specify a file code in the
range -32,768 to 32,767. Programs running in privileged mode can access
files with a file code in the range -32,768 to 32,767. If an old file is opened
that has a negative file code in its file label, the file code specified must
match the file code in the file label (otherwise, an error results).

Default: 0

38 I32 File privilege:

Passes a value that determines a permanent privilege level to be
associated with a newly created file. This option permanently restricts
file access to a process whose execution level is less than or equal to the
specified value. A value cannot be specified for less than the execution
level of the calling process. This option is applicable only at file creation.

The following values are valid:

0 Privilege level zero (most privileged level)

1 Privilege level one

2 Privilege level two

3 Privilege level three (least privileged level)

Default: 3

A file created with levels 0, 1, or 2 can be opened only with the HPFOPEN
intrinsic; the FOPEN intrinsic cannot be used.

41 Reserved for MPE/iX.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 167

KSAM Intrinsics
HPFOPEN
42 CA Device class:

Passes a device class where the file will reside. The file system uses the
device class name to select a nonshareable device from a configured list
of available devices. The name can have a length of up to eight
alphanumeric characters, beginning with a letter (for example, TAPE). If
a device class is specified, the file is allocated to any available device in
that class.

Only one of the following options can be in effect when a file is opened:

itemnum =20

itemnum =22

itemnum =23

itemnum =42

Default: A disk file located on the volume class DISC associated with the
group in which the file resides.

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character
array, for example:

%devclass% (% is the delimiter, devclass is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

43 record UFID:

Passes a unique file identifier (UFID) to provide a fast opening of an old
disk file. A UFID is a record structure, 20 bytes in length, that uniquely
identifies a disk file. Using this option avoids a directory search. Obtain
the UFID of an opened file by calling FFILEINFO . The UFID can then be
passed to HPFOPEN. The file represented by the UFID must be accessible
to the process calling HPFOPEN(all file system security checks are made).
New files cannot be opened with this option. If the file to be opened by
the UFID contains a lockword, use itemnum =2 to specify the file name
with the lockword.

Default: No UFID passed (a directory search is performed)

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
168 Chapter 9

KSAM Intrinsics
HPFOPEN
45 CA Fill character:

Passes two ASCII characters that determine what padding character to
use at the end of blocks or unused pages, and the padding used by
itemnum =53. Do not use delimiter characters for this option. The fill
character must be a 2-byte array. The first character only is used as the
padding character. The second character is reserved for future use. This
option is applicable only at file creation.

Default: Null characters for a binary file and ASCII blanks for an ASCII
file.

47 I32 Numextents:

Passes a value in the range 1 to 32 that determines the number of
extents for the file. This parameter is kept mainly for compatibility with
MPE/V. Its main usefulness is that a file may be created with 1
contiguous extent. If a value of 1 is specified, the file is created as one
contiguous extent of disk space. If a value greater than 1 is specified, a
variable number of extents (with varying extent sizes) is allocated on a
need basis. This option is applicable only at file creation. To get one
initially allocated continuous extent, specify both numextent=1 and
initialloc=1.

Default: 1

49 Reserved for MPE/iX.

50 132 Final disposition:

Passes a value indicating the final disposition of the file at close time
(significant only for files on disk and magnetic tape). A corresponding
parameter in a FILE command can override this option, unless file
equations are disallowed with itemnum =9.

The following values are valid:

0

No change. The disposition remains as it was before the file was opened.
If the file is new, it is deleted by FCLOSE; otherwise, the file is assigned
to the domain it belonged to previously. An unlabeled tape file is
rewound. If the file resides on a labeled tape, the tape is rewound and
unloaded.

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 169

KSAM Intrinsics
HPFOPEN
50 Cont I32 Final disposition:

2 Temporary job file (rewound). The file is retained in
your temporary (job or session) file domain and can be
requested by any process within your job or session. If
the file is a disk file, the uniqueness of the file name is
checked. Should a file of the same name already exist
in the temporary file domain, an error code is returned
at close time and the file remains open. When a file
resides on unlabeled magnetic tape, the tape is
rewound. However, if the file resides on labeled
magnetic tape, the tape is backspaced to the beginning
of the presently opened file.

3 Temporary job file (not rewound). This value has the
same effect as specifying final disposition option,
except that tape files are not rewound. In the case of
unlabeled magnetic tape, if the FCLOSEis the last done
on the device (with no other FOPEN/HPFOPEN calls
outstanding), the tape is rewound and unloaded. If the
file resides on a labeled magnetic tape, the tape is
positioned to the beginning of the next file on the tape.

4 Released file. The file is deleted from the system.

5 Convert a permanent file to a temporary file. The file is
removed from the permanent file directory and placed
in the temporary file directory. (Privileged mode
capability is required to use this option.)

Default: 0

For more information on file disposition at close time, refer to the
description of the FCLOSE intrinsic.

51 Pascal XL string:

Passes a formal file designator, following MPE/iX file naming
conventions, but using the Pascal/iX STRING type format. This option is
identical to itemnum =2 except for the type of item. No delimiters are
needed.

Default: No string passed

Only one of the following options can be in effect when a file is opened:

itemnum =2

itemnum =51

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
170 Chapter 9

KSAM Intrinsics
HPFOPEN
52 CA File equation string:

Passes a character string that matches the MPE/iX file equation
specification syntax exactly. This option allows the specification of
options available in the FILE command.

The formaldesig parameter and filereference parameter can contain
embedded command interpreter variables and expressions. However,
there cannot be more than eight characters in each of these components
(filename, lockword, groupname, accountname) including the
command interpreter variable and expression characters.

Default: No string passed

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character
array, for example:

%fileequation% (% is the delimiter, fileequation is the
designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

53 I32 ASCII/binary:

Passes a value indicating whether ASCII or binary code is to be used for
a new file when it is written to a device that supports both codes. For
disk files, this may affect padding that can occur when issuing a
direct-write intrinsic call (FWRITEDIR) to a record that lies beyond the
current logical end-of-file indicator. The fill character is specified during
the file creation. Default for ASCII is blank. Default for binary is binary
0. By default, magnetic tape and files are treated as ASCII files. This
option is applicable only at file creation.

The following values are valid:

0 Binary file

1 ASCII file

Default: 0

54 REC KSAM parm:

Passes a record that defines the keys for a new KSAM file. The format of
the parameter is the same as the FOPEN intrinsic ksamparam field.

Default: No record passed

55 Reserved for MPE/iX

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
Chapter 9 171

KSAM Intrinsics
HPFOPEN
56 I32 Object class:

Passes a user object class number, in the range 0 to 10, that is associated
with the file.

Default: Determined by the file code for system and subsystem files, and
by the file type and record type for normal user files.

57 Reserved for MPE/iX.

58 Reserved for MPE/iX.

59 Reserved for MPE/iX.

60 Reserved for MPE/iX.

61 Reserved for MPE/iX.

64 ACD.

Table 9-8. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item

filenum (functional return) filenum (parameter)

formaldesig 2,formaldesig

foption :

Bits (14:2) Domain

Bit (13:1) ASCII/binary

Bits (10:3) File designator

Bits (8:2) Record format

Bit (7:1) Carriage-control

Bit (6:1) Labeled tape

Bit (5:1) Disallow file equation

Bits (2:3) File type

3, domain

53, ASCII/binary

5, file designator

6, record format

7, carriage-control

8, labeled tape

9, disallow file equation

10, file type

Table 9-7. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description
172 Chapter 9

KSAM Intrinsics
HPFOPEN
aoption:

Bits (12:4) Access type

Bit (11:1) Multirecord

Bit (10:1) Dynamic locking

Bits (8:2) Exclusive

Bit (7:1) Inhibit buffering

Bits (5:2) Multiaccess mode

Bit (4:1) Nowait I/O

Bit (3:1) File copy

11, access type

15, multirecord

12, dynamic locking

13, exclusive

46, inhibit buffering

14, multiaccess mode

16, nowait I/O

17, file copy

recsize 19, record size

device 20, device name
22, volume class
23, volume name
24, density
25, printer environment
26, remote environment
42, device class
48, reverse VT

formmsg 8, labeled tape label
28, spooled message
30, labeled tape type
31, labeled tape expiration
32, labeled tape sequence
54, KSAM parms

userlabels 33, user labels

blockfactor 40, block factor

numbuffers:

Bits (11:5) Numbuffers

Bits (4:7) Spooler copies

Bits (0:4) Output priority

44, numbuffers

34, spooler copies

27, output priority

filesize 35, filesize

numextent 47, numextent

initialloc 36, initial allocation

filecode 37, filecode

Table 9-8. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item
Chapter 9 173

KSAM Intrinsics
HPFOPEN
Operation Notes

Enables creation of a new file on a shareable device and defines the physical
characteristics of that file prior to access. Enables access to existing files. Returns a file
number to the calling process that uniquely identifies the file. Use the file number to
reference the file in calls to other intrinsics.

The format of the KSAM parameter is shown in Figure 9-7.

Figure 9-7. HPFOPEN KSAM Parameter Format
174 Chapter 9

A COBOL Intrinsics

COBOL compilers (COBOL 68 and earlier) required special intrinsics to access keyed files.
The following intrinsics are provided only for the maintenance of COBOL 68 or earlier
COBOL programs using KSAM structures.

NOTE Do not use these intrinsics for new programming. Current COBOL file access
modules provide KSAM file access.

Calling a KSAM Procedure
KSAM files are accessed from COBOL programs through calls to a set of procedures. These
procedures allow you to open, open for shared access, write records to, read records from,
lock, unlock, update, position, and close a KSAM file. The COBOL procedures provided
with KSAM/3000 correspond to the INDEXED I/O module statements in COBOL 74.

In HP COBOL/3000, the procedures that are used to access KSAM files differ in form from
the COBOL input/output statements used to access non-KSAM files. The KSAM interface
procedures use parameters for information that would otherwise be specified in the
FILE-CONTROL paragraph and the FD entry of the DATA DIVISION. These parameters
are themselves defined in the WORKING-STORAGE section of the DATA DIVISION. The
main restriction on the KSAM interface call parameters is that they must be 16 bit
aligned.

The KSAM interface procedures are called using a CALLstatement of the following general
form.

CALL "name" USING filetable,status [,parameter[,. . .]]

Where:

”name” identifies the procedure to which control is transferred.

filetable an 8-halfword table that identifies the file by name and in which access
mode and input/output type are specified, and to which is returned the file
number on open, and a code identifying the previous operation.

status One halfword to which a two-character code is returned that indicates the
status of the input/output operation performed on the file by the called
procedure.

parameter One or more parameters, depending on the particular procedure called,
177

COBOL Intrinsics
Filetable Parameter
that further define operations to be performed on the file.

The first two parameters, filetable and status , are included in every KSAM procedure
call except CKERROR; other parameters may be specified depending on the particular
procedure. If a parameter is included in the procedure format, then it must be included in
the procedure call. All parameters are required.

Another characteristic of KSAM procedure call parameters is that they must always start
on a halfword boundary. In order to ensure this, the parameters should be defined in the
WORKING-STORAGE SECTION as 01 record items, 77 level elementary items, or else
the SYNCHRONIZED clause should be included in their definition.

A literal value cannot be used as a parameter to these procedures. Any value assigned to a
data item used as a parameter is passed to the procedure, but a literal value causes an
error.

Depending on the procedure, certain data items may be assigned values as a result of
executing the procedure.

NOTE There are no COBOL procedures to read a KSAM file in physical order or to
access a record by its physical record number. (Physical order is the order in
which the data records were written to the file.)

Filetable Parameter
The first parameter in every KSAM procedure call must be filetable , a table describing
the file and its access. This table is defined in the WORKING-STORAGE SECTION of the
COBOL program. It requires eight halfwords as illustrated in Figure A-1.

Figure A-1. Filetable Structure

filenumber A number identifying the file returned by the CKOPEN
178 Appendix A

COBOL Intrinsics
Filetable Parameter
procedure after the file named in halfwords 2-5 has been
successfully opened. After the file is closed by CKCLOSE,
filenumber is reset to 0. (This number should be set to zero
when the file table is initially defined.) It must be defined
as a COMPUTATIONAL item.

filename The name of the KSAM file. This name is the actual
designator assigned to the file when it is created with the
KSAMUTIL or MPE/iX BUILD command; filename may be
a formal designator if it is equated to the actual designator
in a FILE command.

input/output type A code that limits the file access to input only, output only,
or allows both input and output:

0 input only

1 output only

2 input/output

It must be defined as a COMPUTATIONAL item.

access mode A code that indicates how the file will be processed:
sequentially only, randomly only, or either (dynamically):

0 sequential only

1 random only

2 dynamic (sequential or random)

It must be defined as a COMPUTATIONAL item.

previous operation A code in the right byte of halfword 8 of the file table
indicating the previous successful operation:

0 previous operation unsuccessful or there has been no
previous operation on this file

1 CKOPEN successful

2 CKSTART successful

3 CKREAD successful

4 CKREADBYKEY successful

5 CKDELETE successful

6 CKWRITE successful

7 CKREWRITE successful

8 CKCLOSE successful

9 CKOPENSHR successful

This field should be set to zero when the file table is
initially defined and thereafter should not be altered by
the programmer. It must be defined as a
Appendix A 179

COBOL Intrinsics
Status Parameter
COMPUTATIONAL item.

lock/unlock A code in the left byte of halfword 8 of the file table that
indicates whether a CKLOCK or CKUNLOCK has been
performed successfully since the operation specified in
previous operation:

10 CKLOCK successful

11 CKUNLOCK successful

A sample file table definition might be:

WORKING-STORAGE SECTION.
 FILE_TABLE.
 01 KSAM_FILE.
 02 FILENUMBER PIC S9(4) COMP VALUE 0.
 02 FILENAME PIC X(8) VALUE "KSAMFILE".
 02 I-O-TYPE PIC S9(4) COMP VALUE 0.
 02 A-MODE PIC S9(4) COMP VALUE 0.
 02 PREV-0P PIC S9(4) COMP VALUE 0.

The file table identifies a file created with the name KSAMFILE as a file to be opened for
sequential input only. The values of I-O-TYPE and A-MODE can be changed following a
call to CKCLOSE for the file.

Status Parameter
The status parameter is a two-character item to which the status of the input/output
operation is returned. It is always the second parameter in a KSAM procedure call. The
status parameter must be defined in the WORKING-STORAGE SECTION of the COBOL
program.

Status consists of two separate characters: the left character is known as status-key-1,
and the right is known as status-key-2.

/---left character----\/----right character-----\
|----------------------|------------------------|
| | |
| "status-key-1 | "status-key-2" |<--- status word
|----------------------|------------------------|

Combining status-key-1 with status-key-2, the following values may be returned to the
status parameter as a whole:

00 Successful completion —
180 Appendix A

COBOL Intrinsics
Status Parameter
The current input/output operation was completed successfully; no
duplicate keys were read or written.

02 Successful completion ; Duplicate key —

For a CKREAD or a CKREADBYKEY call, the current alternate key has the
same value as the equivalent key in the sequentially following record;
duplicate keys are allowed for the key. For a CKWRITE or CKREWRITE call,
the record just written created a duplicate key value for at least one
alternate key for which duplicates are allowed.

10 At End condition —

In a sequential read using CKREAD, no next logical record was in the file.

21 Invalid key; Sequence error —

A call to CKWRITE attempted to write a record with a key that is not in
sequentially ascending order, to a file opened for sequential access.

A call to CKREWRITE was attempted but the primary key value was
changed by the program since the previous successful call to CKREAD.

22 Invalid key; Duplicate key —

An attempt was made to write or rewrite a record with CKWRITE or
CKREWRITE and the record would create a duplicate key value for a key
where duplicates are prohibited.

23 Invalid key; No record found —

An attempt was made with CKSTART or CKREADBYKEY to access a record
identified by key, but no record is found with the specified key value at the
specified location.

24 Invalid key; Boundary violation —

An attempt was made with a call to CKWRITE to write past the externally
defined boundaries of the file; that is, to write past the end-of-file.

30 Lock denied —

An attempt was made to lock a file already locked by another process; or
file was not opened with dynamic locking allowed.

31 Unlock denied —

An attempt was made to unlock a file with CKUNLOCK, but the file had not
been locked by CKLOCK.

9n File system error —

A call to an input/output procedure was unsuccessful as a result of a file
system error, not one of the error conditions defined for the other status
values. The value of status-key-2 (n) is a binary number between 0 and 255
that corresponds to an MPE file system error code. To convert this binary
value to numeric display format, call the CKERROR routine.
Appendix A 181

COBOL Intrinsics
Status Parameter
The value of status can be tested as a whole, or the two characters can be tested
separately as status-key-1 and status-key-2 . In any case, the status of each call should
be tested immediately following execution of the call. Unless the first character of status
= 0, the call was not successful.

For example, a sample status parameter definition might be:

WORKING-STORAGE SECTION.
.
.
.
01 STAT.
 02 STATUS-KEY-1 PIC X.
 02 STATUS-KEY-2 PIC X.

These items can then be referenced in the PROCEDURE DIVISION. For example: to test
only the first character:

IF STATUS-KEY-1 NOT = "0" THEN
 GO TO "ERROR-ROUTINE".

To test the entire status word:

IF STAT = "23" THEN
 DISPLAY "RECORD NOT FOUND".

Note that the word STATUS is reserved.
182 Appendix A

COBOL Intrinsics
KSAM Logical Record Pointer
KSAM Logical Record Pointer
Many of the KSAM procedures use a logical record pointer to indicate the current
record in the file. This pointer points to a key value in the index area that identifies the
current record in the data area. The particular key used, if the file has more than one key,
is the key specified in the current procedure or the last procedure that referenced a key.

Procedures that use pointers are either pointer-dependent or pointer-independent .
Pointer-dependent procedures expect the pointer to be positioned at a particular record in
order to execute correctly. Pointer-independent procedures, on the other hand, execute
regardless of where the pointer is positioned and, in most cases, they position the pointer.

Shared Access

Particular care must be taken when using the logical record pointer during shared access
(the file was opened with CKOPENSHR). If more than one user opens the same file, one user
may modify the record pointer. This causes other users to access the data record.

To avoid this problem, you should always lock the file in a shared environment before
calling a procedure that sets the pointer and leave the file locked until all procedures that
depend on the pointer have been executed. Thus, if you want to read the file sequentially,
delete a record, or modify a record, you should lock the file, call a procedure that sets the
pointer (such as CKSTART), and then call CKREAD, CKDELETE, or CKREWRITE. When the
operation is complete, you can then unlock the file to give other users access to it.

Table A-1. Positioning the Logical Record Pointer

Procedure Name Pointer-
Dependent

Position of Pointer After Execution of Procedure

CKSTART NO Points to key whose value was specified in call.

CKREADBYKEY NO Points to key whose value was specified in call.

CKWRITE NO Points to key whose value is next in key sequence to key value
in record just written.

CKREAD YES Pointer remains positioned to key value for record just read;
unless next call is to CKREAD, or to CKREWRITE followed by
CKREAD, in which case, next CKREAD moves pointer to next
key in key sequence before reading the record.

CKDELETE YES Points to next key value in ascending sequence following key
value in record just deleted.

CKREWRITE YES
(sequential
mode)

NO
(random or
dynamic
mode)

Pointer remains positioned to key value for record just
modified, unless any key value in record was changed; in this
case, it points to next key in ascending sequence after the key
in the modified record.
Appendix A 183

COBOL Intrinsics
KSAM Logical Record Pointer
Sample KSAM File

The file KSAMFILE illustrated in Figure A-2. is used in all subsequent examples associated
with the COBOL procedure calls.

Figure A-2. Representation of KSAMFILE Used in COBOL Examples

:>BUILD KSAMFILE;REC=-74,3ASCII;KSAMXL;KEY=(B,3,20;&KEY=B,23,8,,DUP)

:>BUILD KSAMFILE;REC=-74,3ASCII;KSAM64;KEY=(B,3,20;&KEY=B,23,8,,DUP)

file creation command
character KSAMFILE Data Record halfword

1 1

23

3

31

73 37

reserved

NAME (primary key)

PHONE (alternate key)

OTHER DATA
184 Appendix A

COBOL Intrinsics
KSAM Logical Record Pointer
A File Description in Working Storage for Figure A-2 appears below.

File Description in Working Storage (Figure A-2).

WORKING-STORAGE SECTION
77 RECSIZEPIC S9(4)COMP VALUE 74.
77 RESULTPIC 9(4)VALUE 0.
01 REC.
 03 FILLERPIC XXVALUE SPACES.
 03 NAMEPIC X(20).
 03 PHONEPIC X(8).
 03 OTHERDATAPIC X(44).
01 DAT.
 03 NAMEPIC X(20).
 03 PHONEPIC X(8).
 03 OTHERDATAPIC X(44).
01 FILETABLE.
 03 FILETABLEPIC S9(4)COMP VALUE 0.
 03 FILENAMEPIC X(8)VALUE "KSAMFILE".
 03 I-O-TYPEPIC S9(4)COMP VALUE 0.
 03 A-MODEPIC S9(4)COMP VALUE 0.
 03 PREV-OPPIC S9(4)COMP VALUE 0.
01 STAT.
 03 STATUS-KEY-1PIC X.
 03 STATUS-KEY-2PIC X.
Appendix A 185

COBOL Intrinsics
CKCLOSE
CKCLOSE

A call to CKCLOSE terminates file processing for the specified KSAM file.

 CALL "CKCLOSE" USING filetable, status

When processing is completed, a KSAM file should be closed with a call to CKCLOSE. No
further processing is allowed on the file until a CKOPEN procedure call opens the file.

CKCLOSE can be executed only for a file that is open.

Parameters

filetable An 8 halfword record containing: the name of the file, its input/output
type, access mode, the file number given the file when it was last opened,
and a code indicating whether the previous operation on the file was
successful and if so what it was. (Refer to Filetable Parameter discussion
earlier in this section.)

status One-halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKCLOSE. It indicates whether or not the file was successfully
closed and if not, why not. The left character is set to 0 if CKCLOSE is
successful, to 9 if not. The right character is set to 0 if CKCLOSE is
successful, to the file system error code if not. (Refer to Status Parameter
discussion earlier in this section.)

Operation Notes

Upon successful completion of CKCLOSE, the file identified by filetable is no longer
available for processing. Note that a KSAM file can be closed and then reopened in order to
specify a different access mode or input/output type.

FINISH.
 CALL "CKCLOSE" USING FILETABLE, STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKCLOSE ERROR NO. ", RESULT;
 ELSE DISPLAY "CKCLOSE SUCCESSFUL".
186 Appendix A

COBOL Intrinsics
CKDELETE
CKDELETE

This procedure logically deletes a record from a KSAM file.

 CALL "CKDELETE" USING filetable, status

In order to logically delete records from a KSAM file, you can use the procedure CKDELETE.
If reuse is not specified, then a logically deleted record is marked for deletion, but is not
physically removed from the file. The deletion mark makes such a record inaccessible but
does not physically reduce the size of the file. The utility program FCOPY can be used to
compact a KSAM file by copying only active records, excluding deleted records, to a new
KSAM file.

CKDELETE deletes the record at which the logical record pointer is currently positioned.
Therefore, CKDELETE must be preceded by a call that positions the pointer.

Parameters

filetable An 8 halfword record containing the number and name of the file, its
input/output type, access mode, and a code indicating whether the
previous operation was successful and if so what it was. (Refer to Filetable
Parameter discussion earlier in this section.)

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKDELETE indicating whether the call was successful and if
not, why not. (Refer to Status Parameter discussion earlier in this section.)

Operation Notes

In order to delete a record, you should first read the record into the working storage section
of your program with a call to CKREAD if in sequential mode, a call to CKREADBYKEY if in
random mode, or a call to either if in dynamic mode. CKDELETEcan be called only if the file
is currently open for both input and output (input/output type =2). This allows the record
to be read into your program's data area and then written back to the file with the delete
mark. Following execution of CKDELETE, the deleted record can no longer be accessed.

If the file was opened for shared access with CKOPENSHR, you must lock the file with CKLOCK
before you can delete any records with CKDELETE. Because CKDELETEdepends on the logical
record pointer, the call to CKLOCK should precede the call that positions the pointer. The
call to CKUNLOCK is then called after the call to CKDELETE. To illustrate, the sequence of
calls in shared access should be:

 CKLOCK <--- to lock file
 CKSTART or CKREADBYKEY <--- to position pointer
.
.
.
 CKDELETE<--- to delete record at which pointer is positioned
 CKUNLOCK<--- to unlock file
Appendix A 187

COBOL Intrinsics
CKDELETE
Following the call to CKDELETE, the pointer is positioned to the next key following the key
in the deleted record.

The following examples show the use of CKDELETE for sequential access using CKREAD and
for random access using CKREADBYKEY. The WORKING-STORAGE SECTION from Figure
A-2. and the FINISH procedure from the CKCLOSE example are assumed for these
examples.

NOTE If access is shared, the file must be opened with a call to CKOPENSHRand then
locked before the call to CKSTART that initially sets the pointer. The file must
remain locked while the records to be deleted are read and then marked for
deletion. If the file is not locked before CKSTART is called, other users can
change the file so that the record pointer points to the wrong record.

In the first example, to delete all records whose primary key begins with "P", first position
the file to the start of these records with CKSTART and then read each record with CKREAD
and delete it with CKDELETE.

WORKING-STORAGE SECTION.
77 RELOP PIC S9(4) COMP.
77 KEYVAL PIC X(20).
77 KEYLOC PIC S9(4) COMP.
77 KEYLENGTH PIC S9(4) COMP.
.
.
.
PROCEDURE DIVISION.

START.

 MOVE 2 TO I-O-TYPE.
 MOVE 0 TO A-MODE.
 CALL "CKOPEN" USING FILETABLE, STAT.
.
.
.

 FIND-REC.
 MOVE 0 TO RELOP.<--- test for equality between

 primary key and KEY
 MOVE "P" TO KEYVAL.
 MOVE 3 TO KEYLOC.
 MOVE 1 TO KEYLENGTH.<--- check first character only
 CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,
 KEYLENGTH.
 IF STATUS-KEY-1 = "0" THEN
 GO TO READ-REC.
 IF STAT = "23" THEN
 DISPLAY "NO RECORD FOUND"
 GO TO FINISH.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKERROR NO.=", RESULT
 GO TO FINISH.
188 Appendix A

COBOL Intrinsics
CKDELETE
 READ-REC.
 CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.
 IF STATUS-KEY-1 = "1" THEN
DISPLAY "END OF FILE REACHED"
GO TO FINISH.
 IF STATUS-KEY-1 = "0" THEN
 IF NAME OF REC NOT LESS THAN "Q "THEN
DISPLAY "DELETIONS COMPLETED"
 GO TO FINISH;
 ELSE GO TO DELETE-REC;
 ELSE
DISPLAY "CKREAD ERROR, STATUS =", STAT
 IF STATUS-KEY-1 = "9" THEN
CALL "CKERROR" USING STAT, RESULT
DISPLAY "CKERROR NO.", RESULT.
 GO TO READ-REC.

 DELETE-REC.
 CALL "CKDELETE" USING FILETABLE, STAT.
 IF STATUS-KEY-1 = "0" THEN
 DISPLAY "DELETED"
GO TO READ-REC;
 ELSE
DISPLAY "CKDELETE ERROR, STATUS = ", STAT
IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY"CKERROR NO.=", RESULT
 GO TO READ-REC.
Appendix A 189

COBOL Intrinsics
CKDELETE
In the second example, a file containing the primary keys of those records to be deleted
from a KSAM file is read into the working storage area DAT. These key values are used by
CKREADBYKEY to locate and read the items to be deleted by CKDELETE.

PROCEDURE DIVISION.

START.
 MOVE 2 TO I-O-TYPE, A-MODE.
 CALL "CKOPEN" USING FILETABLE, STAT.
.
.
.
READ-KEY.
 READ DATA-FILE INTO DAT;
 AT END GO TO FINISH.
 CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, NAME OF DAT, KEYLOC,
RECSIZE.
 IF STATUS-KEY-1 = "0" THEN
 GO TO DELETE-RECORD.
 DISPLAY "CKREADBYKEY ERROR, STATUS = ",STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKERROR ", RESULT
 GO TO READ-KEY.
DELETE-RECORD.
 CALL "CKDELETE" USING FILETABLE, STAT.
 IF STATUS-KEY-1 = "0" THEN
 DISPLAY REC, " DELETED"
 GO TO READ-KEY.
 DISPLAY "CKDELETE ERROR, STATUS =",STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKERROR NO. =", RESULT.
 GO TO READ-KEY.

NOTE If access is shared, the file must be opened with a call to CKOPENSHR. A call to
CKLOCKmust precede the call to CKREADBYKEY. A call to CKUNLOCKmust follow
the CKDELETE error tests and should precede the return to READ-KEY.
190 Appendix A

COBOL Intrinsics
CKERROR
CKERROR

Converts KSAM file system error code returned in status to a display format number.

 CALL "CKERROR" USING status, result

Whenever a 9 is returned as the left character of the status parameter following any call to
a KSAM procedure, you can call the procedure CKERROR to convert the MPE file system
error code in the right character of status from a binary number to a display format
number. This allows you to display the error code.

Parameters

status The status parameter to which a value was returned by a previous KSAM
procedure call. The entire status parameter, both left and right characters,
must be specified.

result An item to which the error number is returned right justified in display
format. The item must have a picture of 4 numeric characters (PIC 9(4)).

Operation Notes

The following example shows the WORKING-STORAGE SECTION entries needed to
check for errors and a call to CKERRORin the PROCEDURE DIVISION that checks for and
displays the error number if a file system error occurred in a call to process a KSAM file.

 DATA DIVISION.
.
.
.
 WORKING-STORAGE SECTION.
 77 RESULT PIC 9(4) VALUE ZERO.
 01 STAT.
 03 STATUS-KEY-1 PIC X.
 03 STATUS-KEY-2 PIC X.
.
.
.
 PROCEDURE DIVISION.
 START.
.
.
.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT.
 DISPLAY "ERROR NUMBER ",RESULT.
Appendix A 191

COBOL Intrinsics
CKLOCK
CKLOCK

A call to CKLOCK dynamically locks a KSAM file.

 CALL "CKLOCK" USING filetable, status, lockcond

When access is shared, you must lock the file before calling CKWRITE, CKREWRITE, or
CKDELETE. This ensures that another user cannot attempt to modify the file at the same
time. It guarantees that the most recent data is available to each user who accesses the
file.

In order to call CKLOCK, the file must have been opened with a call to CKOPENSHR, not
CKOPEN.

Parameters

filetable An 8 halfword record containing the number and name of the file, its
input/output type, access mode, and a code indicating whether the
previous operation was successful and if so, what it was. (Refer to Filetable
Parameter discussion earlier in this section.)

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKLOCK. It indicates whether or not the file was successfully
locked and if not, why not. The status word = 00 if the call was
successful. It = 30 if the file was locked by another process. It = 9n, where n
is a file system error code, if the call failed for some other reason. (Refer to
the Status Parameter discussion earlier in this section.)

lockcond One halfword computational item whose value determines the action
taken if the file is locked by another user when CKLOCK is executed. The
value is either zero (0) or one (1).

0 locking is conditional; if the file is already locked, control
is returned to your program immediately with the status
word set to "30".

1 locking is unconditional; if the file cannot be locked
immediately because another use has locked it, your
program suspends until the file can be locked.

Operation Notes

In order to call CKLOCK, the file must be opened with dynamic access enabled. This can be
done only with the CKOPENSHR procedure. CKOPEN will not open the file for shared access
with dynamic locking.

When users are sharing a file, it is essential to lock the file before modifying it. An error is
returned if any user attempts to write, rewrite, or delete records without first locking the
file. It is also important to avoid situations where one user locks the file and forgets to
unlock it. If the file is already locked when you call CKLOCK with lockcond set to zero, the
call will fail with 30 returned to status , and your process will continue. If, however,
192 Appendix A

COBOL Intrinsics
CKLOCK
lockcond is set to 1, your process suspends until the other user unlocks the file or logs off.

The following example opens file KSAMFILE for shared access with dynamic locking
allowed. It then locks the file unconditionally. If another user has locked the file, the
process suspends until the file is unlocked and then continues by locking your file. The
status value is checked as soon as control returns to your process to ensure that the file
has been locked before continuing.

 DATA DIVISION.

 77 LOCKCOND PICTURE S9(4) COMP VALUE 1.
 77 RESULT PICTURE 9(4) VALUE 0.
 01 STATUSKEY.
 02 STATUS-KEY1 PICTURE X VALUE " ".
 02 STATUS-KEY2 PICTURE X VALUE " ".
 01 FILETABLE.
 02 FILENUMBER PICTURE S9(4) COMP VALUE 0.
 02 FILENAME PICTURE X(8) VALUE "KSAMFILE".
 02 I-O-TYPE PICTURE S9(4) COMP VALUE 0.
 02 A-MODE PICTURE S9(4) COMP VALUE 0.
 02 PREV-OP PICTURE S9(4) COMP VALUE 0.

 PROCEDURE DIVISION.

START.
 CALL "CKOPENSHR" USING FILETABLE, STATUSKEY.
 IF STATUS-KEY1 = "0" THEN GO TO LOCK-FILE.
 IF STATUS-KEY1 = "9" THEN
 CALL "CKERROR" USING STATUSKEY, RESULT
 DISPLAY "ERROR NO. ",RESULT.

LOCK-FILE.
 CALL "CKLOCK" USING FILETABLE, STATUSKEY, LOCKCOND.
 IF STATUSKEY="00"
 THEN DISPLAY "CKLOCK IS OK"
 ELSE IF STATUSKEY = "30"
 THEN DISPLAY "FILE LOCKED BY ANOTHER PROCESS"
 ELSE IF STATUS-KEY1="9"
 THEN CALL "CKERROR" USING STATUSKEY, RESULT
 DISPLAY "ERROR NO.", RESULT.
Appendix A 193

COBOL Intrinsics
CKOPEN
CKOPEN

A call to procedure CKOPEN initiates KSAM file processing.

 CALL "CKOPEN" USING filetable, status

In order to process a KSAM file, it must be opened with a call to the CKOPEN procedure.
CKOPEN initiates processing, specifies the type of processing and the access mode; the file
must have been created previously.

To open a file means to make it available for processing, to specify the type of processing
(input only, output only, or both), and to specify the access method (sequential, random, or
dynamic). If a different type of processing or access method is needed, the file must be
closed and opened again with the parameters set to new values.

NOTE If you want to open the file for shared access, you must use a call to
CKOPENSHR, rather than CKOPEN.

Parameters

filetable An 8 halfword record containing the name of the file, its input/output type,
and access mode. When the open is successful, the first word of this table is
set to the file number that identifies the opened file. (Refer to Filetable
Parameter discussion earlier in this section.)

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKOPEN to indicate whether or not the file was successfully
opened and if not why not. The left character is set to 0 if open is
successful, to 9 if not. The right character is set to 0 if the open is
successful, to the file system error code if not. (Refer to Status Parameter
discussion earlier in this section.)

Operation Notes

Upon successful execution of CKOPEN, the file named in filetable is available for the type
of processing specified in filetable . Before the file is successfully opened with CKOPEN, no
operation can be executed that references the file either explicitly or implicitly.

The input/output procedures that can be called to process the file depend on the value of
the halfwords in filetable that specify input/output type and access mode. (Refer to
Figure A-3. for the procedures allowed with the various combinations of input/output type
and access mode.)

A file may be opened for input, output, or input/output, and for sequential, random, or
dynamic access in the same program by specifying a different call to CKOPEN for each
change in input-output type or access mode. Following the initial execution of CKOPEN, each
subsequent call to CKOPEN for the same file must be preceded by a call to CKCLOSE for that
file.

When files are opened for input or input/output, the call to CKOPEN sets the current record
194 Appendix A

COBOL Intrinsics
CKOPEN
pointer to the first record in the primary key chain.

Figure A-3. Procedures Allowed for Input/Output Type/Access Mode
Combinations

Halfword 6 of filetable must be set to one of the following values before calling CKOPEN:

0 input only

1 output only

2 input/output

In general, if you want to allow records to be read or the file to be positioned without
allowing any new records to be written or any existing records to be changed, you should
set the input/output type to 0. This input/output type allows you to call CKREADor CKSTART
in sequential processing mode, CKREADBYKEY in random mode, or all three in dynamic
mode.

If you want to cause all existing records to be deleted when the file is opened and then
allow new records to be written, you should set the input/output type to 1. This type of
open deletes all existing records so that records are written to an empty file. When a file is
opened for output only, you can call CKWRITE in any of the three access modes: sequential,
random, or dynamic, but you cannot call any other of the KSAM procedures.

If you want unrestricted file access, you should set the input/output type to 2. This access
type allows records to be read, positioned, written, rewritten, or deleted. You may call
CKREAD, CKSTART, CKREWRITE, and CKDELETE(but not CKWRITE) when opened in sequential
Appendix A 195

COBOL Intrinsics
CKOPEN
mode; you may call CKREADBYKEY, CKWRITE, CKREWRITE, or CKDELETE (but not CKREAD or
CKSTART) when opened in random mode. In dynamic mode, any of the KSAM procedures
may be called. With this type of input/output, existing records are not cleared when you
write a record with CKWRITE.

Halfword 7 of filetable must be set to one of the following values before calling CKOPEN:

0 sequential access

1 random access

2 dynamic access

With sequential access, records in the file are read in ascending order based on the value of
a key within each record. The key is the primary key unless an alternate key was specified
with CKSTART. Reading starts with the first record in sequence unless a particular record
was specified with CKSTART. Each time a call to CKREAD is executed, the next record in
sequence is read from the file. CKREAD and CKSTART are the only procedures that can be
called in input mode. CKREADBYKEY cannot be specified for any input/output type if the
access mode is sequential.

In output mode, CKWRITE is the only procedure that can be called. When access is
sequential, the record to be written must contain a unique primary key that is greater in
value than the key of any previously written record. If it is not in sequence, an invalid key
sequence error 21 is returned to status .

In input/output mode, CKREWRITE and CKDELETE can be specified as well as CKREAD and
CKSTART, but CKWRITE cannot.

Random access allows you to read, write, replace, or delete a record with any value for its
primary key. To read a record, the CKREADBYKEYprocedure must be called in either input or
input/output mode. CKREAD and CKSTART cannot be specified for any input/output type
when access mode is random.

When writing a record with CKWRITE in output or input/output mode, the value of the
primary key in the record need not be greater than the keys of previously written records;
that is, records can be written in any order.

In input/output mode, CKREWRITE can be used to replace any record whose primary key
matches the primary key in the record being written. CKDELETE can be used to delete a
record specified in a previous CKREADBYKEY call.

CKWRITEcan be used to write a record following existing records in the file if you position to
follow the last sequential record before writing. Use this input/output type if you want to
save existing data in a file to which you are writing.

Dynamic access allows you to use any call to process a file opened for input/output. When
the file is opened in dynamic mode, and a call is made to CKREADor CKSTART, the file can be
read, but not updated, sequentially. For all other calls, dynamic mode is treated as if the
file had been opened in random mode. The reason to open a file in dynamic mode is to allow
both sequential and random processing on the same file without closing it and then
opening it again each time access switches from sequential to random or vice versa.

To open a file initially for sequential read:
196 Appendix A

COBOL Intrinsics
CKOPEN
 WORKING-STORAGE SECTION.
 77 RESULT PIC 9(4) VALUE ZERO.
 01 FILETABLE.
 03 FILENUMBER PIC S9(4) COMP VALUE ZERO.
 03 FILENAME PIC X(8) VALUE "KSAMFILE".
 03 I-O-TYPE PIC S9(4) COMP VALUE ZERO.<--- input only
 03 A-MODE PIC S9(4) COMP VALUE ZERO.<----- sequential access
 03 PREV-OP PIC S9(4) COMP VALUE ZERO.
 01 STAT.
 03 STATUS-KEY-1 PIC X.
 03 STATUS-KEY-2 PIC X.
.
.
.
 PROCEDURE DIVISION.

 START.
 CALL "CKOPEN" USING FILETABLE, STAT.
 IF STATUS-KEY-1 ="0" THEN GO TO S-READ.
 IF STATUS-KEY-1 ="9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKOPEN FAILED. . .ERROR NO.", RESULT
 STOP RUN.
S-READ.
 .
 .
 .

If you subsequently want to write in sequential order to the same file, you should close the
file with a call to CKCLOSE (described below), move the value 1 (output to I-O-TYPE and
then reopen the file:

 CALL "CKCLOSE" USING FILETABLE, STAT.
 IF STATUS-KEY-1 ="9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKCLOSE FAILED -- ERROR NO.",
 STOP RUN.
 MOVE 1 TO I-O-TYPE.<--- output only
 CALL "CKOPEN" USlNG FILETABLE, STAT.

Similarly, to update records in random order in the same file, first close the file, then use
the following MOVEstatement to alter the input/output type and access mode in FILETABLE
and reopen the file:

CALL "CKCLOSE" USING FILETABLE, STAT.
.
.
.
MOVE 2 TO I-O-TYPE.<--- input/output
MOVE 1 TO A-MODE.<--- random access
CALL "CKOPEN" USING FILETABLE, STAT.
Appendix A 197

COBOL Intrinsics
CKOPENSHR
CKOPENSHR
A call to CKOPENSHR initiates KSAM file processing with dynamic locking and shared
access allowed.

 CALL "CKOPENSHR" USING filetable, status

In order to process a KSAM file with shared access and dynamic locking, the file must be
opened with a call to CKOPENSHR. CKOPENSHR is exactly like CKOPEN in that it initiates
processing, specifies the type of processing, and specifies the access mode. The file must
have been created previously.

To open a file for shared access means to make it available for processing by more than one
user. Shared access allows all users to read or position the file, but only one user at a time
can modify the file by writing new records, or rewriting or deleting existing records. To
ensure that more than one user does not attempt to modify the file at the same time, you
must call CKLOCK to dynamically lock the file before calling the procedures CKWRITE,
CKREWRITE, or CKDELETE. After modifying the file, you should call CKUNLOCK so that it can
be accessed by other users.

Parameters

filetable An 8 halfword record containing the name of the file, its input/output type,
and access mode. When the open is successful, the first halfword of this
table is set to the file number that identifies the opened file.

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKOPENSHR to indicate whether or not the file was
successfully opened and if not why not. The left character is set to 0 if the
open is successful, to 9 if not. The right character is to 0 if open is
successful, to the file system error code if not.

Operation Notes

A call to CKOPENSHRoperates like the call to CKOPEN, except that CKOPENSHRallows shared
access and dynamic locking. Upon successful execution of CKOPENSHR, the file named in
filetable is available for the type of processing specified in filetable . Before the file is
opened successfully, no operation can be performed that references the file either explicitly
or implicitly.

A file may be opened by CKOPENSHR for any of the access modes (sequential, random, or
dynamic) and for any input/output type (input only, output only, or input/output) allowed
with CKOPEN.

Refer to the description of using CKOPENfor the specific effects of opening a KSAM file with
the various input/output types and access modes.
198 Appendix A

COBOL Intrinsics
CKREAD
CKREAD

A call to procedure CKREAD makes available the next logical record from a KSAM file.

 CALL "CKREAD" USING filetable, status, record, recordsize

In order to read records in sequential order by key value, call procedure CKREAD. The file
must have been opened in input or input/output mode with access mode specified as either
sequential or dynamic.

Parameters

filetable An 8 halfword record containing the number and name of the file, its
input/output type, access mode, and a code indicating whether the
previous operation was successful and if so, what it was.

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKREADto indicate whether or not the record was successfully
read and if not, why not.

record A record defined in the WORKING-STORAGE SECTION into which the
contents of the next sequential KSAM record is read.

recordsize An integer (S9(4)COMP) containing the length in characters of the record
being read. It must not exceed the maximum record length established for
the file when it was created.

Operation Notes

The file from which the record is read must be opened for sequential or dynamic access
(access mode = 0 or 2). It may be opened for input only or input/output (input/output type =
0 or 2), but not for output only.

When the file is opened initially for input or input/output, the logical record pointer is
positioned at the first sequential record; that is, at the record with the lowest key value.
The key used is the primary key unless a previous call to CKSTART has specified an
alternate key. When a call to CKREAD is executed, the record at which the record pointer is
currently positioned is read into the location specified by record .

If, when CKREAD is executed, there is no next logical record in the file, the at end condition
is returned to status ; that is, status is set to 10. Note that a call to the procedure
CKSTART can be used to reposition the pointer for subsequent sequential access according
to primary or alternate key order.

In order to update records in sequential order, CKREAD must be called before executing
either of the update procedures CKREWRITE or CKDELETE. When access is shared, it is
important to include the call to CKREAD within the same locked portion of code that
includes the call to CKREWRITE or CKDELETE. This ensures that the correct record is
modified or deleted.

Because CKREAD is a pointer-dependent procedure, the actual record read depends on the
current position of the logical record pointer. When access is shared, this pointer position
Appendix A 199

COBOL Intrinsics
CKREAD
can be made incorrect by other users without your program being aware of it. For this
reason, you should lock the file, position the pointer with a pointer-independent procedure,
and then call CKREAD. When the last record is read, you should then unlock the file so other
users can access the file. Example 2 below illustrates how you should read the file
sequentially when access is shared.

Using the WORKING-STORAGE SECTION from Figure A-2. and the FINISH procedure
in the CKCLOSEexample, the following procedures read records in sequential order from file
KSAMFILE and display them on the standard output device.

PROCEDURE DIVISION.

START.
 .
 .
 .
 MOVE 0 TO I-O-TYPE, A-MODE.
 CALL "CKOPEN" USING FILETABLE, STAT.
 IF STATUS-KEY-1 = "9"
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKOPEN ERROR NO. ", RESULT.
 IF STATUS-KEY-1 NOT = "0"
 DISPLAY "CKOPEN FAILED"
 STOP RUN.
 READ-NEXT.
 CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.
 IF STATUS-KEY-1 = "1" GO TO NEW-POSITION.
 IF STATUS-KEY-1 = "0"
 DISPLAY REC;
 ELSE
 DISPLAY "CKREAD ERROR, STATUS =", STAT.
 IF STATUS-KEY-1 ="9"
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "FILE ERROR =", RESULT.
 GO TO READ-NEXT.
 NEW-POSITION.
 .
 .
 .
200 Appendix A

COBOL Intrinsics
CKREAD
The following example provides a sequential read with shared access.

PROCEDURE DIVISION.
START.
.
.
.
 MOVE 0 TO I-O-TYPE, A-MODE.
 CALL "CKOPENSHR" USING FILETABLE, STAT <--- open file for shared
access
.
.
. <--- test status
FIND-RECORD.
 MOVE 2 TO RELOP.
 MOVE "000-0000" TO KEYVAL.
 MOVE 23 TO KEYLOC,
 MOVE 8 TO KEYLENGTH.
 MOVE 1 TO LOCKCOND.
 CALL "CKLOCK" USING FILETABLE, STAT, LOCKCOND.<--- lock file
unconditionally
 CALL "CKSTART" USING FILETABLE,
 STAT, RELOP, KEYVAL, KEYLOC, KEYLENGTH.<--- position pointer to
lowest key value
.
.
. <--- test status
READ-RECORD.
 CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE<--- read record
 IF STATUS-KEY-1 ="1"<--- end of file
 GO TO END-OF-READ.
 IF STATUS-KEY-1 ="0"<--- if successful, display record read
 DISPLAY REC.
.
.
. <--- test status for errors
 TO TO READ-RECORD.
END-OF-READ.
 CALL "CKUNLOCK" USING FILETABLE, STAT.<----- unlock file
Appendix A 201

COBOL Intrinsics
CKREADBYKEY
CKREADBYKEY

A call to CKREADBYKEY makes available a record identified by key value from a KSAM file.

 CALL "CKREADBYKEY" USING filetable, status, record, key, keyloc, recordsize

Records can be read from a KSAM file in an order determined by key value. This order
need not be sequential; in fact, it can be any order you specify. This type of access is used to
access individual records in random order by key value.

Parameters

filetable An 8 halfword record containing the number and name of the file, its
input/output type, access mode, and a code indicating whether the
previous operation was successful and if so what it was.

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKREADBYKEYindicating whether the call was successful and
if not why not.

record A record defined in the WORKING-STORAGE SECTION into which the
contents of a record located by key value is read.

key An item whose value is used by CKREADBYKEY to locate the record to be
read. Key values in the file identified by filetable are compared to the
value of key until the first record with an equal value is found.

keyloc One halfword integer (S9(4)COMP) set to the starting character position of
the key in the KSAM data record (first position is character 1). The
keyloc parameter identifies the file key to be compared with key .

recordsize An integer (S9(4)COMP) containing the length in characters of the record
being read; it must be less than or equal to the maximum record length
established for the file at creation.

Operation Notes

In order to use the CKREADBYKEY procedure, the file must be opened for either input or
input/output. The access mode can be either random or dynamic, but must not be
sequential.

Execution of CKREADBYKEYcauses the value of key to be compared to the value of the key at
location keyloc in the KSAM file data records. When a key is found whose value is
identical to that of key , the record pointer is moved to the beginning of that record and the
record is read into the location record .

If no record can be found whose key value equals that of key , an invalid key condition is
diagnosed and status is set to the value 23.

Successful execution of CKREADBYKEYis indicated by the value 0 in the left byte of status .
Unsuccessful execution is indicated by either the invalid key return or by a value of 9 in
the left byte of status .
202 Appendix A

COBOL Intrinsics
CKREADBYKEY
In order to delete records in random or dynamic mode, CKREADBYKEYmust be called before
executing CKDELETE. It is not required prior to CKREWRITE.

In the following examples, update information is read into the area called DAT in the
WORKING-STORAGE SECTION. (Note that in this as in the preceding examples, the
WORKING-STORAGE SECTION from Figure A-2. continues to be useful.) In the first
example, the primary keys of records in KSAMFILE are searched for values matching the
value read into NAMEin the DAT record; in the second example, an alternate key at location
23 is searched for values matching the value read into PHONE in the DAT record.

Read a record located by its primary key value:

DATA DIVISION.
.
.
.
WORKING-STORAGE SECTION.
77 KEYLOC PIC S9(4) COMP.
.
.
.
PROCEDURE DIVISION.
START.
.
.
.

MOVE 2 TO I-O-TYPE, A-MODE.<--- prepare to open for input/output, dynamic access
 CALL "CKOPEN" USING FILETABLE, STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKOPEN ERROR NO. ", RESULT.
 IF STATUS-KEY-1 NOT="O" THEN
 DISPLAY "CKOPEN FAILED"
 STOP RUN.
FIND-RECORD.
 READ NEW-DATA INTO DAT;<--- read update records
 AT END GO TO FINISH.
 MOVE 3 TO KEYLOC.
 CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, NAME OF DAT,
 KEYLOC, RECSIZE.
 IF STAT = "00" THEN
 DISPLAY "RECORD FOUND", REC
 GO TO FIND-RECORD.
 IF STAT = "23" THEN
 DISPLAY "RECORD NOT FOUND,KEY=", NAME OF DAT
 GO TO FIND-RECORD.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "ERROR NO. ", RESULT
 GO TO FIND-RECORD.
Appendix A 203

COBOL Intrinsics
CKREADBYKEY
To find a record by the value of an alternate key, simply change two statements in the
preceding example so that KEYLOC contains the location of the alternate key and the key
value for comparison is found in item PHONE OF DAT rather than in NAME OF DAT:

 FIND RECORD.
 READ NEW-DATA INTO DAT;
 AT END GO TO FINISH.
 MOVE 23 TO KEYLOC.
 CALL "CKREADBYKEY" USING FILETABLE, STAT, REC, PHONE OF DAT,
 KEYLOC, RECSIZE.
204 Appendix A

COBOL Intrinsics
CKREWRITE
CKREWRITE
The procedure CKREWRITE replaces a record existing in a KSAM file with another record
having a matching primary key.

 CALL "CKREWRITE" USING filetable, status, record, recordsize

You can replace an existing record in a KSAM file with the procedure CKREWRITE. This
procedure replaces a record previously read from the file with another record whose
primary key matches the primary key of the record being replaced.

Parameters

filetable An 8 halfword record containing the number and name of the file, its
input/output type, access mode, and a code indicating whether the
previous operation was unsuccessful and if so what it was.

status One halfword (two 8-bit characters) set to a pair of values upon the
completion of the call to CKREWRITEindicating whether or not the call was
successful and if not why not. (Refer to Status Parameter discussion
earlier in this section.)

record A record defined in the WORKING-STORAGE SECTION containing data
to be written as a logical record to the file replacing the record with a
matching primary key.

recordsize An integer (S9(4)COMP) containing the length in characters of the record
to be written. It must not exceed the maximum record length established
for the file when it was created.

Operation Notes

In order to call procedure CKREWRITE, the file must be open for both input and output
(input/output type=2). The access mode can be sequential, random, or dynamic. If access
mode is sequential, CKREAD must have been executed successfully just prior to the call to
CKREWRITE. In random or dynamic mode, no prior read is required; the system searches the
file for the record to be rewritten.

When the file is opened in sequential mode (access mode = 0), CKREAD must be executed
before CKREWRITE. The primary key in the record to be written by CKREWRITE must be
identical to the primary key in the record read by CKREAD. A simple way to ensure that the
keys match is to read a record into WORKING-STORAGE, modify it without altering the
primary key, and then write it back to the file using CKREWRITE. Since the primary key is
not changed, the sequence of records in the file is not affected.

If you want to rewrite in sequential mode all the records in a chain of records with
duplicate keys, use either CKSTART or CKREADBYKEY to position to the first record in the
chain. Then call CKREWRITE to update the first record in the chain. Subsequent calls
depend on whether you are changing any key value in the record (not necessarily the
selected key).
Appendix A 205

COBOL Intrinsics
CKREWRITE
If no key in the record is changed, the record pointer continues to point to the current
record. Only a subsequent CKREADadvances the pointer to the next record in the duplicate
key chain. In this case, you can issue CKREADand CKREWRITEcalls until all records with the
duplicated key value have been rewritten.

If any key in the record is changed, the new key is written to the end of the chain of
duplicate keys in the index area. After the first call to CKREWRITE, the record pointer points
to the record whose key value follows the changed key. Since this key is now at the end of
the chain of duplicate keys, a subsequent call to CKREWRITE skips all records with keys in
the duplicate key chain and rewrites the record with the next higher key value. In this
case, you must precede each call to CKREWRITE with a call to CKSTART or CKREADBYKEY in
order to update all subsequent records with duplicate keys.

If you are updating a primary key value that is duplicated, it is good practice to use
CKDELETE to delete the selected record and then rewrite it as a new record with CKWRITE.

When the file is opened in random or dynamic mode (access mode = 1 or 2), no prior call to
a read procedure is needed. You specify the record to be written in WORKING-STORAGE
and then call CKREWRITE. However, you must use the primary key to position to the record
to be modified. When the procedure is executed, the file is searched for a record whose
primary key matches that of the record to be written. If such a record is found, it is
replaced by the record specified in CKREWRITE. If not found, an invalid key condition is
diagnosed and status is set to 23.

A call to CKREWRITE in random mode updates only the first record with a key in the chain
of duplicate keys.

Regardless of the mode, after any call to CKREWRITE that does not modify a key value, the
record pointer is positioned to the key of the record just modified. However, if any key in
the modified record was changed, the record must be deleted and then rewritten by a write
procedure. If the access mode is sequential and a key was modified, the pointer is moved to
the record with the next key value in ascending sequence after the modified key. If the
access mode is random or dynamic, and a key was modified, the pointer is moved to the
record with the next key in ascending sequence after the primary key in the modified
record. This means that in random or dynamic mode the key pointer may change if it was
pointing to an alternate key before the call to CKREWRITE.

If the file was opened for shared access with CKOPENSHR, then you must lock the file with a
call to CKLOCK before rewriting any records with CKREWRITE. After the records are
rewritten, you should unlock the file with CKUNLOCK.

To ensure that you are updating the correct record in sequential mode, you should call
CKLOCK before positioning the pointer with CKSTART or CKREADBYKEY, then specify the
sequential calls to CKREAD and CKREWRITE before unlocking the file with CKUNLOCK. This
ensures that no other users change the position of the pointer while you are sequentially
updating the file.

In sequential mode, the invalid key condition exists when the record just read by CKREAD
and the record to be written by CKREWRITE do not have the same primary key value. In
random or dynamic mode, an invalid key condition exists if no record can be found in the
file whose primary key matches that of the record to be written by CKREWRITE. In either
case, status is set to the value 23.
206 Appendix A

COBOL Intrinsics
CKREWRITE
Regardless of mode, an invalid key condition occurs if an alternate key value in the record
to be written duplicates a corresponding alternate key for which duplicates are prohibited.
When rewriting a record, try to avoid specifying an alternate key value that may duplicate
a value existing in the file unless duplicates are allowed for the key. A duplicate key
condition where duplicates are not allowed causes status to be set to 22 and the procedure
is not executed.

Use CKSTART to position the current record pointer to the start of the file. Then read each
record in sequence and set its non-key items to blanks.

The first example is of a sequential update that clears the value of an item in each record
of the file. The second example searches the file for a record whose primary key has a
particular value in order to change the alternate key for that record. Both examples
assume the WORKING-STORAGE SECTION from Figure A-2. and the FINISH procedure
from CKCLOSE.

NOTE If the file was opened for shared access with a call to CKOPENSHR, then the file
should be locked with a call to CKLOCK before the call to CKSTART. The file
should be unlocked with a call to CKUNLOCK only when the final record is
updated, probably in the FINISH procedure.

DATA DIVISION.
.
.
.
WORKING-STORAGE SECTION. \
77 RELOP PIC S9(4) COMP.|
77 KEYVAL PIC X(20). |<--- items required by CKSTART
77 KEYLOC PIC S9(4) COMP.|
77 KEYLENGTH PIC S9(4) COMP.|
.
.
.
PROCEDURE DIVISION.
START.
 MOVE 2 TO I-O-TYPE.
 MOVE 0 TO A-MODE.
 CALL "CKOPEN" USING FILETABLE, STAT.
.
.
. <--- check status
UPDATE-FILE.
 MOVE 1 TO RELOP.
 MOVE "000-0000" TO KEYVAL.<--- set up CKSTART parameters to start
 MOVE 23 TO KEYLOC. reading at lowest alternate key
value
 MOVE 8 TO KEYLENGTH.
 CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,
KEYLENGTH.
 IF STATUS-KEY-1="0" THEN
 GO TO READ-RECORD;
 ELSE
 DISPLAY "CKSTART ERROR, STATUS", STAT.
Appendix A 207

COBOL Intrinsics
CKREWRITE
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKERROR NO.", RESULT
 GO TO FINISH.
READ-RECORD.
 CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE.
 IF STATUS-KEY-1 = "1" THEN
 GO TO FINISH. <------------------ end of file
 IF STATUS-KEY-1 = "0" THEN
 GO TO WRITE-RECORD
 ELSE
 DISPLAY "CKREAD ERROR,STATUS =", STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKERROR NO. ", RESULT
 GO TO READ-RECORD.
WRITE-RECORD.
 MOVE SPACES TO OTHERDATA OF REC.
 CALL "CKREWRITE" USING FILETABLE,
 IF STATUS-KEY-1 = "0" THEN
 DISPLAY NAME OF"DATA CLEARED"
 GO TO READ-RECORD.
 DISPLAY "CKREWRITE ERROR, STATUS=",
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT,
 DISPLAY "CKERROR NO.=",
 GO TO READ-RECORD.

The second example finds the record with the primary key "ECKSTEIN, LEO "and
changes the value of the secondary key to "257-5137":

PROCEDURE DIVISION.

START.
.
.
.
 MOVE 2 TO I-O-TYPE, A-MODE.
 CALL "CKOPEN" USING FILETABLE, STAT.
 IF STATUS-KEY-1 = "0" THEN
 GO TO F-UPDATE.
 DISPLAY "CKOPEN ERROR, STA", STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKERROR NO.=", RESULT
 GO TO FINISH.
F-UPDATE.
 MOVE "ECKSTEIN, LEO "TO NAME OF REC.
 MOVE "257-5137" TO PHONE OF REC.
 MOVE SPACES TO OTHERDATA OF REC.
 CALL "CKREWRITE" USING FILETABLE, STAT, REC, RECSlZE.
 IF STATUS-KEY-1="0" THEN
 DISPLAY REC "UPDATED"
 GO TO FINISH.
 IF STAT = "23" THEN
 DISPLAY NAME OF REC "NOT FOUND"
 GO TO FINISH.
208 Appendix A

COBOL Intrinsics
CKREWRITE
 DISPLAY "CKREWRITE ERROR, STATUS =", STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKERROR NO.=", RESULT.
 GO TO FINISH.
Appendix A 209

COBOL Intrinsics
CKSTART
CKSTART
A call to procedure CKSTARTallows you to position the record pointer to a particular record
in a KSAM file defined by its primary or alternate key value.

 CALL "CKSTART" USING filetable, status, relop, key, keyloc, keylength

In order to position the current record pointer to a location in the file defined by a key
value, call CKSTART. Since CKSTART is used in preparation for sequential retrieval of
records with CKREAD, the file must be open for sequential or dynamic access, not random,
and for input or input/output, not output only.

Parameters

filetable An 8 halfword record containing the number and name of the file, its
input/output type, access mode, and a code indicating whether the
previous operation was successful and if so, what it was.

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKSTART to indicate whether or not the call was successful
and if not why not. (Refer to Status Parameter discussion earlier in this
section.)

relop One halfword integer (S9(4)COMP) code that specifies a relation between
the key value specified in the call to CKSTART and the key value in the
record to which the record pointer is to be positioned:

0 — record key is equal to key

1 — record key is greater than key

2 — record key is greater than or equal to key

key An item whose value is used by CKSTART to locate the record at which to
position the record pointer. The values of a specified file key are compared
in ascending order to the value of key according to the relation specified by
relop .

keyloc One halfword integer (S9(4)COMP) set to the starting character location of
a key in the KSAM file data record (first position is character 1). The key
at keyloc is compared to key .

keylength One halfword integer (S9(4)COMP) set to the length of key ; the length
must be less than or equal to the length of the key defined by keyloc .

Operation Notes

When CKSTARTis executed, the index area is searched for the first key in the set of keys at
location keyloc whose value when compared with key satisfies the comparison specified
by relop . The current record pointer is positioned to the beginning of the record in the
data area associated with the key found by CKSTART.

The specified length of key (key length) may be less than the length of the key in the file;
210 Appendix A

COBOL Intrinsics
CKSTART
if so, the comparison proceeds as if the file key were truncated on the right to the same
length as key length . If no record can be found whose key value satisfies the comparison,
an invalid key condition is returned to status ; that is, status is set to 23.

If you use CKSTART to position the pointer before reading or updating the file sequentially
in a shared environment, you must lock the file with a call to CKLOCK before calling
CKSTART. Then, after you have completed the sequential operations, you can unlock the file
with a call to CKUNLOCK. If you wait to lock the file until after the call to CKSTART, another
user can change the structure of the index area so that the position of the pointer becomes
invalid for any subsequent call to a procedure that depends on the pointer position.

For the following examples, four new items must be added to the WORKING-STORAGE
SECTION in Figure A-2.; otherwise, the same WORKING-STORAGE SECTION is used.
The new items are:

 77 RELOP PIC S9(4) COMP.
 77 KEYVAL PIC X(20).
 77 KEYLOC PIC S9(4) COMP.
 77 KEYLENGTH PIC S9(4) COMP.

Each of these items is assigned the value appropriate to the operation to be performed by
statements in the PROCEDURE DIVISION. Note that the length of array KEYVAL can be
made shorter by assigning a value less than 20 to KEYLENGTHbut it cannot be made longer
than 20 characters. Since there is no key in KSAMFILE longer than 20 characters, this
allows comparison to be made on the longest key.

The following example shows the statements needed to display the records in KSAMFILEin
order by the alternate key PHONEthat starts in location 23 and has a length of 8 characters.
It assumes the file is open for input or input/output and that the access mode is sequential.
It also assumes the FINISH procedure from the CKCLOSE example.

NEW-POSITION.
 MOVE 2 TO RELOP.<--- find key value greater than or equal to
KEYVAL
 MOVE "000-0000" TO KEYVAL.
 MOVE 23 TO KEYLOC.
 MOVE 8 TO KEYLENGTH.
 CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,
KEYLENGTH.
 IF STAT = "23" THEN GO TO FINISH.<--- no record found
 IF STATUS-KEY-1 = "0" THEN GO TO READ-BY-PHONE.<--- lowest key
value found
 DISPLAY "CKSTART ERROR, STATUS", STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "ERROR NUM", RESULT.
 GO TO FINISH.

READ-BY-PHONE.
 CALL "CKREAD" USING FILETABLE, STAT, REC, RECSIZE,
 IF STATUS-KEY-1 = "1" THEN GO TO FINISH.<---- end-of-file
 IF STATUS-KEY-1 = "O" THEN
 DISPLAY REC;
 ELSE DISPLAY "CKREAD ERROR,STATUS=", STAT
Appendix A 211

COBOL Intrinsics
CKSTART
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "ERROR NUMBER", RESULT.
 GO TO READ-BY-PHONE.

In the next example, CKSTART is used to position to the beginning of the series of names
beginning with the letter "T". The KSAM file key is located at character position 3 (NAME
key); the parameter KEYVAL is set to the value "T"; the key length for purposes of
comparison is set to 1; and RELOP is set to 0. Thus the record pointer is positioned at the
first key found whose value (when the key is truncated to 1 character) is equal to "T". Note
that this example reads not only all names beginning with "T", but also reads all names
that begin with letters following "T". To read only the names beginning with "T", the
program must add a test for the end of the "T" names.

POSITION.
 MOVE 0 TO RELOP.<--- find key equal to KEY value
 MOVE "T" TO KEYVAL.
 MOVE 3 TO KEYLOC.
 MOVE 1 TO KEYLENGTH.
 CALL "CKSTART" USING FILETABLE, STAT, RELOP, KEYVAL, KEYLOC,
KEYLENGTH.
 IF STAT = "23" THEN GO TO FINISH.
 IF STATUS-KEY-1 = "0" THEN
 GO TO READ-NAMES.
 DISPLAY "CKSTART ERROR, STATUS=",STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "ERROR NUMBER=", RESULT.
 GO TO FINISH.
READ-NAMES.
 CALL "CKREAD" USING FILETABLE, STAT, REC, RECSlZE.
 IF STATUS-KEY-1 ="1" THEN GO TO FINISH.
 IF STATUS-KEY-1 ="0" THEN
 DISPLAY REC;
 ELSE
 DISPLAY "CKREAD ERROR, STATUS",STAT.
 IF STATUS-KEY-1 = "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "ERROR NUM", RESULT.
 GO TO READ-NAMES.
212 Appendix A

COBOL Intrinsics
CKUNLOCK
CKUNLOCK

A call to CKUNLOCK unlocks a KSAM file dynamically locked by CKLOCK.

 CALL "CKUNLOCK" USING filetable, status

A file locked by CKLOCK is released for use by other users with a call to CKUNLOCK. (If you
log off from any connection with the system, the file is also unlocked.) Since dynamic
locking takes place during shared access to the same file by more than one user, it is
important that any file locked by CKLOCK be unlocked as soon as possible by CKUNLOCK.

To use CKUNLOCK, the file must be opened for shared access with dynamic locking allowed.
This can be done only by calling CKOPENSHR to open the file, not CKOPEN.

Parameters

filetable An 8 halfword record containing the number and name of the file, its
input/output type, access mode, and a code indicating whether the
previous operation was successful and if so, what it was.

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKUNLOCK. It indicates whether or not the file was
successfully unlocked and if not, why not. The status word is set to 00 if
the file was unlocked successfully; to 31 if the file was not locked; or to 9n
where n is a binary file system error code if the call fails for any other
reason.

Operation Notes

After calling CKUNLOCK, you should always check the status parameter to make sure that
the procedure was executed successfully. When successful, the file locked by CKLOCK is
again made available for access by other users. If the file was not locked by CKLOCK, when
CKUNLOCK is called, status is set to 31.

The following example unlocks a file previously locked by CKLOCK. (Refer to the CKLOCK
example.)
Appendix A 213

COBOL Intrinsics
CKUNLOCK
DATA DIVISION.
.
.
.
77 RESULT PICTURE 9(4) VALUE 0.
01 STATUSKEY.
 02 STATUS-KEY1 PICTURE X VALUE " ".
 02 STATUS-KEY2 PICTURE X VALUE " ".
01 FILETABLE.
 02 FILENUMBER PICTURE S9(4) COMP VALUE 0.
 02 FILENAME PICTURE X(8) VALUE "KSAMFILE".
 02 I-O-TYPE PICTURE S9(4) COMP VALUE 0.
 02 A-MODE PICTURE S9(4) COMP VALUE 0.
 02 PREV-OP PICTURE S9(4) COMP VALUE 0.

PROCEDURE DIVISION.
.
.
.
 CALL "CKUNLOCK" USING FILETABLE, STATUSKEY.
 IF STATUSKEY ="00"
 THEN DISPLAY "CKUNLOCK IS OK"
 ELSE IF STATUSKEY ="31"
 THEN DISPLAY="FILE NOT PREVIOUSLY LOCKED BY THIS PROCESS"
 ELSE IF STATUS-KEY1 ="9"
 THEN CALL"CKERROR" USING STATUSKEY, RESULT
 DISPLAY "ERROR NO.", RESULT.
214 Appendix A

COBOL Intrinsics
CKWRITE
CKWRITE
Procedure CKWRITEcopies a logical record from the program's data area to an output or an
input/output KSAM file.

 CALL "CKWRITE" USING filetable, status, record, recordsize

A call to procedure CKWRITE may be used to write records to a KSAM file either in
sequential order or randomly by key value. The file must have been opened for output or
for input/output, but not for input only.

Parameters

filetable An 8 halfword record containing the number and name of the file, its
input/output type, access mode, and a code indicating whether the
previous operation on the file was successful and if so what, it was.

status One halfword (two 8-bit characters) set to a pair of values upon completion
of the call to CKWRITE to indicate whether or not the record was
successfully written and if not, why not.

record A record defined in the WORKING-STORAGE SECTION containing data
to be written to the file by CKWRITE.

recordsize An integer (S9(4)COMP) containing the length in characters of the record
to be written. It must not exceed the maximum record length established
for the file when it was created, and it must be long enough to contain all
the keys.

Operation Notes

The file to which the content of record is written must be open for output only if
sequential mode is specified. It may be opened for output or input/output if the access
mode at open is random or dynamic.

When the file is opened for sequential access (access mode = 0) and for output only (I-O
type = 1), then records must be written to the file in ascending sequential order by primary
key value. The value of the primary key in the record to be written must be greater than
the value of the primary key in any record previously written to the file. This ensures that
the records written to the file are initially in ascending order physically as well as logically.

When I-O type = 1, CKWRITE writes records starting at the beginning of the file, thereby
effectively clearing any records previously written to the file.

In a file opened for random or dynamic access (access mode = 1 or 2) and for output only or
for input/output (I-O type = 1 or 2), records can be written in any order. The value of the
primary key need not be in any particular relation to the primary key values of previously
written records.

If you want to preserve existing records in the file, you should open the file with the
input/output type equal to 2; when input/output type = 1, all existing records are cleared
prior to the write.
Appendix A 215

COBOL Intrinsics
CKWRITE
If the file was opened for shared access with CKOPENSHR, then you must lock the file with a
call to CKLOCKbefore writing any records. After the records are written, you should unlock
the file with a call to CKUNLOCK.

The invalid key condition (left byte of status =2) can occur as a result of the following
circumstances:

• File was opened for sequential access in output mode and the value of the primary key
in the record being written is less than or equal to the value of the primary key in the
record just written; status =21.

• File was opened for sequential or random access in output or input/output mode and the
value of the primary key is equal to the value of the primary key in an existing record;
status =22.

• File was opened for sequential or random access in output or input/output mode and the
value of an alternate key for which duplicates are prohibited equals the value of a
corresponding key in an existing record; status =22.

• File was opened for sequential or random access in output or input/output mode and an
attempt was made to write a record beyond the physical bounds of the file; status =24.

Assume a KSAM file called KSAMFILE with records containing 74 characters, one primary
key containing a name, and an alternate key containing a phone number. The data is read
from an input file called DATA-FILE . (Refer to Figure A-2. for a diagram of the structure of
this file.)

The first example writes data to KSAMFILE in sequential order by the primary key.

DATA DIVISION
.
.
.
WORKING-STORAGE SECTION.
77 RECSIZE PIC S9(4) COMP VALUE 74.
77 RESULT PIC 9(4) VALUE 0.
01 REC.
 03 FILLER PIC XX VALUE SPACES.
 03 NAME PIC X(20).
 03 PHONE PIC X(8).
 03 OTHERDATA PIC X(44).
01 DAT.
 03 NAME PIC X(20).
 03 PHONE PIC X(8).
 03 OTHERDATA PIC X(44).
01 FILETABLE.
 03 FILENUMBER PIC S9(4) COMP VALUE 0.
 03 FILENAME PIC X(8) VALUE "KSAMFILE".
 03 I-O-TYPE PIC S9(4) COMP VALUE 0.
 03 A-MODE PIC S9(4) COMP VALUE 0.
 03 PREV-OP PIC S9(4) COMP VALUE 0.
01 STAT.
 03 STATUS-KEY-1 PIC X.
 03 STATUS-KEY-2 PIC X.
.
.

216 Appendix A

COBOL Intrinsics
CKWRITE
.
PROCEDURE DIVISION.
START.
.
.
.

MOVE 1 TO I-O-TYPE,<--- set type to output only
 CALL "CKOPEN" USING FILETABLE, STAT.
 IF STATUS-KEY-1="O" THEN GO TO WRITE-F.
 DISPLAY "CKOPEN ERROR, STATUS = ", STAT.
 IF STATUS-KEY-1= "9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKERROR NO. ", RESULT.
 STOP RUN.
WRITE-F.
 READ DATA-FILE INTO DAT;
 AT END GO TO FINISH.
 MOVE CORRESPONDING DAT TO REC.
 CALL "CKWRITE" USING FILETABLE, STAT, REC, RECSIZE.
 IF STATUS-KEY-1="0" THEN
 DISPLAY REC.
 GO TO WRITE-F.
 IF STAT="21" THEN
 DISPLAY "SEQUENCE ERROR IN", NAME OF REC
 GO TO WRITE-F.
 IF STAT = "22" THEN
 DISPLAY "DUPLICATE KEY", NAME OF REC
 GO TO WRITE-F.
 IF STAT = "24" THEN
 DISPLAY "END OF FILE"
 GO TO FINISH.
.
.
.
FINISH
 CLOSE DATA-FILE.
 CALL "CKCLOSE" USING FILETABLE, STAT.
 IF STATUS-KEY-1="9" THEN
 CALL "CKERROR" USING STAT, RESULT
 DISPLAY "CKCLOSE ERROR NO. ", RESULT.
 STOP RUN.
Appendix A 217

COBOL Intrinsics
CKWRITE
The second example, using the same DATA DIVISION and the same FINISH procedure,
writes one record to the file containing "ADAMSON JOHN" as its primary key value.

PROCEDURE DIVISION.
START.
.
.
.
 MOVE 1 TO I-O TYPE.<--- output only
 MOVE 2 TO A-MODE.<--- random access
 CALL "CKOPEN"USING FILETABLE, STAT.
.
.
. check status
FIND-REC.
 READ DATA-FILE INTO DAT;
 AT END GO TO FINISH.
 IF NAME OF DAT = "ADAMSON JOHN" THEN
 GO TO WRlTE-REC;
 ELSE GO TO FIND-REC.
WRITE-REC.
 MOVE CORRESPONDING DAT TO REC.
 CALL "CKWRITE" USING FILETABLE, STAT, REC, RECSIZE.
 IF STATUS-KEY-1="0" THEN
 DISPLAY REC," RECORD WRITTEN"
 GO TO FINISH.
 IF STAT = "22" THEN
 DISPLAY "DUPLICATE KEY"
 GO TO FINISH.
 IF STAT = "24" THEN
 DISPLAY "NO ROOM IN FILE"
 GO TO FINISH.
218 Appendix A

COBOL Intrinsics
Examples of KSAM File Access
Examples of KSAM File Access
The following three examples illustrate KSAM file access from a COBOL program. The file
accessed in each example is called KSAMFILE. It was created previously with BYTE type
keys: the primary key containing the name of a person and the alternate key containing
his telephone number. The remaining data in each record is his address.

Sequential Write

The first example reads data from an input file into working storage and then writes it to a
KSAM file. Access mode is sequential so that as each record is written, the keys are linked
in sequential order although the records are not physically written in sequence.
Input/output type is output only, the only type allowed for the procedure CKWRITE. The
following procedures are illustrated:

• CKOPEN

• CKWRITE

• CKCLOSE

Figure A-4. Sequential Write Using COBOL

Input to EXAMP1:

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087
HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022
ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050
CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053
PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94012
SEELY HENRY 293-4220 1144 LIBERTY ST. EL CERRITO CA. 94053
ROBERT GERRY 258-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871
TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234
WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234
WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098
END OF INPUT FOR EXAMP1

Program EXAMP1
001000 IDENTIFICATION DIVISION.
001100 PROGRAM-ID. EXAMP1.
001200 ENVIRONMENT DIVISION.
001300 INPUT-OUTPUT SECTIONS
001400 FILE-CONTROL.
001500 SELECT SEQ-DATA ASSIGN TO "SEQDATA".
001600 DATA DIVISION.
001700 FILE SECTION.
001800 FD SEQ-DATA
001900 LABEL RECORDS ARE STANDARD.
002000 01 INPUT-REC.
002100 05 REAL-DATA PIC X(72).
002200 WORKING-STORAGE SECTION.
002300 77 RECSIZE PIC S9(4) COMP VALUE 74.
002400 77 RESULT PIC 9(4) VALUE ZERO.
Appendix A 219

COBOL Intrinsics
Examples of KSAM File Access
002500 01 DATA-REC.
002600 05 FILLER PIC XX VALUE SPACES.
002700 05 REAL-DATA PIC X(72).
002800 01 FILETABLE.
002900 02 FILENUMBER PIC S9(4) COMP VALUE 0.
003000 02 FILENAME PIC X(8) VALUE "KSAMFILE".
003100 02 I-O-TYPE PIC S9(4) COMP VALUE 1.
003200 02 A-MODE PIC S9(4) COMP VALUE 0.
003300 02 PREV-OP PIC S9(4) COMP VALUE 0.
003400 01 STATUSKEY.
003500 02 STATUS-KEY-1 PIC X.
003600 02 STATUS.KEY-2 PIC X.
003700
003800 PROCEDURE DIVISION.
003900 START.
004000 OPEN INPUT SEQ-DATA
004100 CALL "CKOPEN" USING FILETABLE, STATUSKEY.
004200 IF STATUS-KEY-1="9" THEN
004300 CALL "CKERROR" USING STATUSKEY, RESULT
004400 DISPLAY "CKOPEN ERROR NO.", RESULT.
004500 IF STATUS-KEY-1 NOT = "0" THEN
004600 DISPLAY "CKOPEN FAILED"
004700 STOP RUN.
004800 LOOP.
004900 READ SEQ-DATA
005000 AT END GO TO FINISH.
005100 MOVE CORP INPUT-REC TO DATA-REC.
005200 CALL "CKWRITE" USING FILETABLE, STATUSKEY, DATA-REC,
005300 RECSIZE.
005400 IF STATUSKEY = "02" THEN
005500 DISPLAY "DUPLICATE KEY".
005600 IF STATUS-KEY-1 = "0" THEN
005700 DISPLAY DATA-REC
005800 GO TO LOOP.
005900 IF STATUS-KEY-1 = "9" THEN
006000 CALL "CKERROR" USING STATUSKEY, RESULT
006100 DISPLAY "CKWRITE ERROR NO.", RESULT
006200 DISPLAY DATA-REC
006300 GO TO LOOP.
006400 FINISH.
006500 CLOSE SEQ-DATA.
006600 CALL "CKCLOSE" USING FILETABLE, STATUSKEY.
006700 IF STATUS-KEY-1 = "9" THEN
006800 CALL "CKERROR" USING STATUSKEY, RESULT
006900 DISPLAY "CKCLOSE ERROR NO. ". RESULT.
007000 STOP RUN.
220 Appendix A

COBOL Intrinsics
Examples of KSAM File Access
Output from EXAMP1 Execution:

NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087
HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022
ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050
CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053
PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94012
SEELY HENRY 293-4220 1144 LIBERTY ST. EL CERRITO CA. 94053
ROBERT GERRY 258-5535 12345 TELEGRAPH AVE . BERKELEY CA. 90871
TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234
WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234
WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098
END OF PROGRAM

Sequential Read

The second example reads the file KSAMFILE in sequential order by primary key (NAME)
and prints each record as it is read. It then repositions the file to the first sequential record
according to the alternate key (PHONE) and prints each of the records as it is read in this
order. The file is opened in sequential mode for input only. The following procedures are
illustrated:

• CKOPEN

• CKREAD

• CKSTART

• CKCLOSE

Figure A-5. Sequential Read Using COBOL

Program EXAMP2:

001000 IDENTIFICATION DIVISION.
001100 PROGRAM-ID. EXAMP2.
001200 ENVIRONMENT DIVISION.
001300 INPUT-OUTPUT SECTION.
001400 FILE-CONTROL.
001500 SELECT SEQ-DATA ASSIGN TO "SEQDATA".
001600 DATA DIVISION.
001700 WORKING-STORAGE SECTION.
001800 77 RECSIZE PIC S9(4) COMP VALUE 74.
001900 77 RESULT PIC 9(4) VALUE ZERO.
002000 77 KEY-LOC PIC S9(4) COMP VALUE 23.
002100 77 RELOP PIC S9(4) COMP VALUE 2.
002200 77 KEYLENGTH PIC S9(4) COMP VALUE 8.
002300 77 KEY-VALUE PIC X(8) VALUE "000-0000".
002400 01 DATA-REC.
002500 05 FILLER PIC XX.
002600 05 NAME PIC X(20).
002700 05 PHONE PIC X(8).
002800 05 OTHER-DATA PIC X(44).
002900 01 FILETABLE.
003000 02 FILENUMBER PIC S9(4) COMP VALUE o.
Appendix A 221

COBOL Intrinsics
Examples of KSAM File Access
003100 02 FILENAME PIC X(8) VALUE "KSAMFILE".
003200 02 I-O-TYPE PIC S9(4) COMP VALUE o.
003300 02 A-MODE PIC S9(4) COMP VALUE o.
003400 02 PREV-OP PIC S9(4) COMP VALUE o.
003500 01 STATUSKEY.
003600 02 STATUS-KEY-l PIC X.
003700 02 STATUS-KEY-2 PIC X.
003800
003900 PROCEDURE DIVISION.
004000 START.
004100 CALL "CKOPEN" USING FILETABLE, STATUSKEY.
004200 IF STATUS-KEY-1 = "9" THEN
004300 CALL "CKERROR" USING STATUSKEY, RESULT
004400 DISPLAY "CKOPEN ERROR NO.", RESULT.
004500 IF STATUS-KEY-1 NOT = "0" THEN
004600 DISPLAY "CKOPEN FAILED"
004700 STOP RUN.
004800 DISPLAY "ALPHABETICAL ORDER"
004900 DISPLAY " ".
005000 L00P1.
005100 CALL "CKREAD" USING FILETABLE, STATUSKEY, DATA-REC,
005200 RESIZED.
005300 IF STATUS-KEY-1= "1" THEN GO TO PART2.
005400 IF STATUS-KEY-1 = "0" THEN
005500 DISPLAY DATA-REC
005600 ELSE
005700 DISPLAY "CKREAD ERROR, STATUS = ", STATUSKEY
005800 IF STATUS-KEY-1 = "9" THEN
005900 CALL "CKERROR" USING STATUSKEY, RESULT
006000 DISPLAY "ERROR NO.", RESULT.
006100 GO TO LOOP.
006200 PART2.
006300 DISPLAY " ".
006400 DISPLAY "PHONE NO. ORDER:"
006500 DISPLAY " ".
006600 CALL "CKSTART" USING FILETABLE, STATUSKEY, RELOP,
006700 KEY-VALUE, KEY-LOC, KEYLENGTH.
006800 IF STATUSKEY = "23" THEN GO TO FINISH.
006900 IF STATUS-KEY-1 = "0" THEN GO TO LOOP2.
007000 DISPLAY "CKSTART ERROR, STATUS = ", STATUSKEY.
007100 IF STATUS-KEY-1 = "9" THEN
007200 CALL "CKERROR" USING STATUSKEY, RESULT
007300 DISPLAY "ERROR NO.", RESULT.
007400 GO TO FINISH.

007500 LOOP2.
007600 CALL "CKREAD" USING FILETABLE, STATUSKEY, DATA-REC,
007700 RECSIZE.
007800 IF STATUS-KEY-1 = "1" THEN GO TO FINISH.
007900 IF STATUS-KEY-1 = "0" THEN
008000 DISPLAY DATA-REC
008100 ELSE
008200 DISPLAY "CKREAD ERROR, STATUS =", STATUSKEY
008400 IF STATUS-KEY-1 ="9" THEN
008400 CALL "CKERROR" USING STATUSKEY, RESULT
008500 DISPLAY "ERROR NO. ", RESULT.
008600 GO TO LOOP2.
008700 FINISH.
222 Appendix A

COBOL Intrinsics
Examples of KSAM File Access
008800 CALL "CKCLOSE" USING FILETABLE, STATUSKEY.
008900 IF STATUS-KEY-1 = "9" THEN
009000 CALL "CKERROR" USING STATUSKEY, RESULT
009100 DISPLAY "CKCLOSE ERROR NO.", RESULT.
009200 STOP RUN.

Output from EXAMP2 Execution:
ALPHABETICAL ORDER:
CARDIN RICK 587-7018 11100 WOLFE ROAD CUPERTINO CA. 94053
ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050
HOS0DA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022
NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087
PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102
ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871
SEELY HENRY 293-4220 1144 LIBERTY ST. EL CERRITO CA. 94053
TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234
WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098
WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234

PHONE NO. ORDER:
HOSODA JOE 227-8214 1180 SAINT PETER CT. LOS ALTOS CA. 94022
ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 90871
WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 43098
ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050
SEELY HENRY 293-4220 1144 LIBERTY ST. EL CERRITO CA. 94053
PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102
WHITE GORDON 398-0301 4350 ASHBY AVE. BERKELEY CA. 91234
CARDIN RICK 578-7018 11100 WOLFE ROAD CUPERTINO CA. 94053
NOLAN JACK 923-4975 967 REED AVE. SUNNYVALE CA. 94087
TURNEWR IVAN 984-8498 22905 EMERSON ST. OAKLAND CA. 98234

END OF PROGRAM

Random Update

This example reads a set of new data containing update information into the
WORKING-STORAGE SECTION. Each record read is followed by a U for update, a D for
delete, or an A for add. Records to be added are written to the file KSAMFILEusing CKWRITE
in random mode. Records to be updated are copied to the appropriate record with
CKREWRITE. Records to be deleted are first read into the WORKING-STORAGE SECTION
with CKREADBYKEYand then deleted with CKDELETE. The file is opened in random mode for
input/output.

The procedures illustrated by this example are:

• CKOPEN

• CKREADBYKEY

• CKDELETE

• CKREWRITE

• CKWRITE

• CKCLOSE
Appendix A 223

COBOL Intrinsics
Examples of KSAM File Access
Figure A-6. Random Update with COBOL

Program EXAMP3:

001000 IDENTIFICATION DIVISION,
001100 PROGRAM-ID. EXAMP3.
001200 ENVIRONMENT DIVISION.
001300 INPUT-OUTPUT SECTION.
001400 FILE-CONTROL.
001500 SELECT NEW-DATA ASSIGN TO "NEWDATA".
001600 DATA DIVISION.
001700 FILE SECTION.
001800 FD NEW-DATA
001900 LABEL RECORDS ARE STANDARD.
002000 01 INPUT-REC PIC X(73),
002100 WORKING-STORAGE SECTION,
002200 77 RECSIZE PIC S9(4) COMP VALUE 74.
002300 77 RESULT PIC 9(4) VALUE ZERO.
002400 77 KEY-LOC PIC S9(4) COMP VALUE 3.
002500 01 MASTER-REC.
002600 05 FILLER PIC XX.
002700 05 NAME PIC X(20).
002800 05 PHONE PIC X(8).
002900 05 OTHER-DATA PIC X(44).
003000 01 DATA-REC.
003100 05 NAME PIC X(20).
003200 05 PHONE PIC X (8).
003300 05 OTHER-DATA PIC X(44).
003400 05 TRANSACTION-CODE PIC X.
003500 01 FILETABLE.
003600 02 FILENUMRER PIC S9(4) COMP VALUE o.
003700 O2 FILENAME PIC X(8) VALUE "KSAMFILE".
003800 02 I-O-TYPE PIC S9(4) COMP VALUE 2.
003900 02 A-MoDE PIC S9(4) COMP VALUE 1.
004000 02 PHEV-OP PIC S9(4) COMP VALUE 0.
004100 01 STATUSKEY.
004200 02 STATUS-KEY-1 PIC X.
004300 02 STATUS-KEY-2 PIC X.
004400
004500 PROCEDURE DIVISION.
004600 START.
004700 OPEN INPUT NEW-DATA.
004800 CALL "CKOPEN" USING FILETABLE, STATUSKEY.
004900 IF STATUS-KEY-1 = "9" THEN
005000 CALL "CKERROR" USING STATUSKEY, RESULT
005100 DISPLAY "CKOPEN ERROR NO.", RESULT.
005200 IF STATUS-KEY-1 NOT ="0" THEN
005300 DISPLAY "CKOPEN FAILED"
005400 STOP RUN.
005500 LOOP.
005600 READ NEW-DATA INTO DATA-REC;
005700 AT END GO TO FINISH.
005800 IF TRANSACTION-CODE = "A" THEN GO TO ADD-REC,
005900 IF TRANSACTION-CODE NOT = "D" AND "U" THEN
006000 DISPLAY "ILLEGAL TRANSACTION CODE"
224 Appendix A

COBOL Intrinsics
Examples of KSAM File Access
006100 DISPLAY DATA-REC
006200 GO TO LOOP.
006300 CALL "CKREADBYKEY" USING FILETABLE, STATUSKEY, MASTER-REC,
006400 NAME OF DATA-REC, KEY-LOC, RECSIZE.
006500 IF STATUS-KEY-1 NOT = "0" THEN
006600 DISPLAY "CKREADBYKEY ERROR, STATUS =", STATUSKEY,
006700 "; KEY =", NAME OF DATA-REC
006800 IF STATUS-KEY-1 = "9" THEN
006900 CALL "CKERROR" USING STATUSKEY, RESULT
007000 DISPLAY "ERROR NO.", RESULT
007100 GO TO LOOP
007200 ELSE
007300 GO TO LOOP.
007400 IF TRANSACTION-CODE = "D" THEN GO TO DELETE-REC.
007500 MOVE CORR DATA-REC TO MASTER-REC.
007600 CALL "CKREWRITE" USING FILETABLE, STATUSKEY, MASTER-REC,
007700 RECSIZE.
007800 IF STATUS-KEY-1 = "0" THEN
007900 DISPLAY MASTER-REC, "UPDATED"
008000 GO TO LOOP.
008100 DISPLAY "CKREWRITE ERROR, STATUS =", STATUSKEY, "; KEY ="
008200 NAME OF MASTER-REC.
008300 IF STATUS KEY-1= "9" THEN
008400 CALL "CKERROR" USING STATUSKEY, RESULT
008500 DISPLAY "ERROR NO.", RESULT
008600 GO TO LOOP.
008700 DELETE-REC.
008800 CALL "CKDELETE" USING FILETABLE, STATUSKEY.
008900 IF STATUS-KEY-1 = "0" THEN
009000 DISPLAY MASTER-REC, "DELETED"
009100 GO TO LOOP.
009200 DISPLAY "CKDELETE ERROR, STATUS =" STATUSKEY.
009300 IF STATUS-KEY-1 = "9" THEN
009400 CALL "CKERROR", USING STATUSKEY, RESULT
009500 DISPLAY "ERROR NO.", RESULT.
009600 GO TO LOOP.
009700 ADD-REC.
009800 MOVE CORR DATA-REC TO MASTER-REC.
009900 CALL "CKWRITE" USING FILETABLE, STATUSKEY, MASTER-REC.
010000 RECSIZE.
010100 IF STATUSKEY = "02" THEN
010200 DISPLAY "DUPLICATE KEY",
010300 IF STATUS-KEY-1 = "0" THEN
010400 DISPLAY MASTER-REC, "ADDED"
010500 GO TO LOOP.
010600 DISPLAY "CKWRITE ERROR, STATUS = ", STATUSKEY.
010700 IF STATUS-KEY-1 = "9" THEN
010800 CALL "CKERROR" USING STATUSKEY, RESULT
010900 DISPLAY "ERROR NO. ", RESULT.
011000 DISPLAY MASTER-REC,
011100 GO TO LOOP.
011200 FINISH.
011300 CLOSE NEW-DATA.
011400 CALL "CKCLOSE" USING FILETABLE, STATUSKEY,
011500 IF STATUS-KEY-1 = "9" THEN
011600 CALL "CKERROR" USING STATUSKEY, RESULT
011700 DISPLAY "CKCLOSE ERROR NO.", RESULT
011800 STOP RUN.
Appendix A 225

COBOL Intrinsics
Examples of KSAM File Access
Input to EXAMP3:

NOLAN JACK 923-4975 1 ANY STREET. SUNNYVALE CA. 94O87U
SMITH JOHN 555-1212 102 FIRST ST. OUR TOWN CA. 94099A
ECKSTEIN LEO D
CARDIN RICK 257-7000 11100 WOLFE ROAD CUPERTINO CA. 94041U
PASBY LINDAL D
JANE MARY 565-9090 1776 BICENTENNIAL ST. AMAHEIM CA. 91076A
ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 94704U
TURNEW IVAN D
FORD GERALD 555-1976 1600 PENNSYLVANIA WASHINGTON DC. 20001U
WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 94309A

Output from Execution of EXAMP3:

NOLAN JACK 923-4975 1 ANY STREET. SUNNYVALE CA. 94087
 UPDATED
SMITH JOHN 555-1212 102 FIRST ST. OUR TOWN CA. 94099
 ADDED
ECKSTEIN LEO 287-5137 5303 STEVENS CREEK SANTA CLARA CA. 95050
 DELETED
CARDIN RICK 257-7000 11100 WOLFE ROAD CUPERTINO CA. 94014
 UPDATED
PASBY LINDA 295-1187 TOWN & CNTRY VILLAGE SAN JOSE CA. 94102
 DELETED
JANE MARY 565-9090 1776 BICENTENNIAL ST. ANAHEIM CA. 91076
 ADDED
ROBERT GERRY 259-5535 12345 TELEGRAPH AVE. BERKELEY CA. 94704
 UPDATED
CKREADBYKEY ERROR, STATUS = 23; KEY = TURNEW IVAN
CKREADBYKEY ERROR, STATUS = 23; KEY = FORD GERALD
CKWRITE ERROR, STATUS = 22
WESTER ELDER 287-4598 1256 KINGFISHER ST. SUNNYVALE CA. 94309

NOTE Note that the input contains data that results in error messages. The name
IVAN TURNEW is spelled incorrectly and cannot be found. The name
GERALD FORD does not exist in the original file and also cannot be found.
On the other hand, the name ELDER WESTER already exists in the file and
cannot be added since it is a primary key for which duplicates are not
allowed.
226 Appendix A

B BASIC/V Intrinsics

The BASIC/V interpreter and compiler require special intrinsics to access existing KSAM
files. The following intrinsics were developed for these BASIC/V programs.

NOTE These intrinsics are provided to allow BASIC/V programs to run in
compatibility mode. Do not use these intrinsics when writing new programs
in other languages or when porting BASIC/V programs. If you are porting to
Business BASIC/XL, use the standard file intrinsics discussed in this manual.

Overview
KSAM files are accessed from BASIC/V programs through calls to a set of input/output
procedures. These procedures allow you to open, write records to, read records from,
update and delete records, position, lock, unlock, and close KSAM files.

A KSAM file must already exist before it can be accessed from a BASIC/V program. The
BASIC/V procedures for accessing KSAM files do not provide a means to create a KSAM
file.

The BASIC/V procedures to access KSAM files perform input/output activities differently
from the BASIC/V input/output commands. The KSAM procedures read and write records
in their entirety. Once part of a record has been read or written by one of the KSAM file
access procedures, the entire record has, in actuality, been read or written. A subsequent
call will access another record.

Character substrings are expressions when used in the BASIC/V KSAM procedures. As
such, no values can be returned to them. A copy of the substring is passed as the actual
parameter.
227

BASIC/V Intrinsics
Calling a KSAM Procedure
Calling a KSAM Procedure
The KSAM interface procedures are called from a BASIC program with a CALL statement
of the following general form:

statementlabel CALL procname (filenumber, status [, parameterlist])

Where:

statementlabel The number of the statement in the program.

procname The KSAM access procedure to which control is
transferred.

filenumber A numeric variable whose value identifies an open KSAM
file. This parameter must be present. Its value is assigned
when the file is opened and must not be changed until the
file is closed.

status A 4-character string variable to which a code is returned
that indicates whether the current operation was
successful or not, and if not, the reason for failure.

parameterlist A set of one or more parameters that, if present, further
define input/output operations on this file.

The first two parameters, filenumber and status are included in every KSAM procedure
call, except BKERROR and BKVERSION. The parameters in parameterlist depend on the
procedure in which they are used. Some parameterlist parameters are optional and, if
omitted, default values are assigned by KSAM. Such parameters are indicated by brackets
in the procedure call format. The required parameters filenumber and status are both
variables, the first numeric, the second string. Other parameters are either variables or
expressions. Expressions are either variables or constants, or a combination of both. The
data type of the parameter depends on its definition in the procedure. The procedure call
formats specify the data type of each parameter.

Depending on the procedure, certain variables can be assigned values as a result of
executing the procedure. The procedure itself is never assigned a value.

Optional Parameters

When parameters in parameterlist are optional, those parameters are surrounded by
brackets. In a series of optional parameters, the enclosing brackets are nested. For
example:

 CALL name (filenum,status [, param1 [, param2 [, param3]]])

This notation tells you that parameters can be omitted only from the end of the optional
list; parameters cannot be omitted from the middle or beginning of the list. For example, if
you want to specify param3 , you must also specify the preceding parameters, param1 and
param2 . If you specify param2 , you can omit the following parameter param3 , but not the
preceding param1 .
228 Appendix B

BASIC/V Intrinsics
Status Parameter
Status Parameter
The status parameter is a four-character string variable to which the status of the
input/output operation is returned. It is the second parameter in every KSAM procedure
call except BKERROR, in which it is the first parameter.

The first character of the status string determines its general type. The other three
characters supply specific codes to further define the status. The operation of a called
procedure is successful only if the first character returned in status is zero. Other values
returned to status indicate the reason an operation was not successful. You can convert
any status value to a printable message by calling BKERROR. By combining the two parts of
the status code, the following values may be returned to the status parameter:

00 Successful completion —

The current input/output operation was completed successfully; no
duplicate keys read or written.

02 Successful completion; Duplicate key —

• In a call to BKREADor BKREADBYKEY, the current key has the same value
as the equivalent key in the next sequential record; duplicate keys are
allowed for the key.

• In a call to BKWRITE or BKREWRITE, the record just written created a
duplicate key value for at least one key for which duplicates are
allowed.

10 At end condition —

A sequential read was attempted with BKREAD and there was no next
logical record in ascending sequence according to the primary key value or
the current alternate key value. Or an attempt was made by BKSTART or
BKREADBYKEY to position the pointer to a record whose key value was less
than the lowest key value or higher than the highest key value.

21 Invalid key; Sequence error —

• In a call to BKWRITEfor a file opened with sequence checking, the record
being written contains a primary key that is less than a key in a
previously written record.

• In a call to BKREWRITE, the primary key value was changed in the
program since a successful execution of BKREADdefined the record to be
rewritten.

22 Invalid key; Duplicate key error —

An attempt was made to write or rewrite a record with BKWRITE or
BKREWRITE and the record would create a duplicate key value in a key for
which duplicates are not allowed.
Appendix B 229

BASIC/V Intrinsics
Status Parameter
23 Invalid key; No record found —

An attempt was made to locate a record by a key value with BKSTART or
BKREADBYKEY and the record cannot be found.

24 Invalid key; Boundary violation —

An attempt was made with BKWRITEto write beyond the externally defined
boundaries of the file; that is, to write past the end-of-file.

71 Request denied; File already locked —

An attempt was made to lock a file with BKLOCK and the file is already
locked.

81 Invalid call; Invalid number of parameters —

Too many or too few parameters were specified in the procedure call just
made.

82 Invalid call; Invalid parameter —

The specified parameter is not the correct type. For example, a string
variable was selected where only a numeric variable or expression is
allowed.

83 Invalid call; Insufficient internal buffer space —

The data specified in the parameterlist to be read or written will not fit
into the configured internal buffer space. You may need to have certain
operating system parameters revalued.

9xxx File system error —

An MPE file system error occurred for which the three-character value,
xxx is the error code. You can call procedure BKERROR to convert the error
code returned here to a printable message.

The value of status can be tested as a whole, or the first character can be tested separately
from the remaining characters. For example:

 10 DIM S$(4)
 .
 .
 .
 50 IF S$(1;1) = "0" THEN PRINT "SUCCESS"
 60 ELSE PRINT "ERRORCODE=";S$
 .
 .
 .
 100 IF S$(1;1)= "9" THEN DO
 110 PRINT "FILE ERROR=";S$(2)
 120 DOEND
 .
 .
 .
 200 IFS$ = "22" THEN DO
 210 PRINT "DUPLICATE KEY ERROR"
230 Appendix B

BASIC/V Intrinsics
KSAM Logical Record Pointer
 220 DOEND
 300 IF S$(2)= "2" THEN PRINT "DUPLICATE KEY"

For any status value, you can call the BKERROR procedure and a message is returned that
gives the meaning of the status code. You can then print this message rather than writing
your own.

KSAM Logical Record Pointer
Many of the KSAM procedures use a logical record pointer to indicate the current
record in the file. This pointer points to a key value in the index area that identifies the
current record in the data area. The particular key used, if the file has more than one key,
is the key last specified in the current or a previous procedure call. By default, it is the
primary key.

Procedures that use pointers are either pointer-dependent or pointer-independent .
Pointer-dependent procedures expect the pointer to be positioned at a particular record in
order to execute properly. Pointer-independent procedures, on the other hand, execute
regardless of where the pointer is positioned and, in most cases, they position the pointer.

BASIC procedures do not access a KSAM file in physical sequence or by record number;
they ignore the physical pointer.

Table B-1. Positioning the Logical Record Pointer

Procedure
Name

Pointer-
Dependent

Position of Pointer After Execution of Procedure

BKSTART NO Points to key whose value was specified in call.

BKREADBYKEY NO Points to key whose value was specified in call.

BKWRITE NO Points to key whose value is next in ascending key sequence to
key value in record just written.

BKREAD YES Pointer remains positioned to key value for record just read;
unless the next call is to BKREAD, or to BKREWRITE followed by
BKREAD, in which case, the pointer is moved to the next record
in key sequence before the read.

BKDELETE YES Points to next key value in ascending sequence following key
value in record just deleted.

BKREWRITE YES Pointer remains positioned to key value for record just modified;
unless any key value in record was changed, in which case, it
points to next key in ascending sequence after the key in the
modified record.
Appendix B 231

BASIC/V Intrinsics
BKCLOSE
Shared Access

Particular care must be taken when using the logical record pointer during shared access.
Since the record pointer is maintained in a separate control block for each open file, one
user may cause the record pointer to be inaccurate without other users being aware of it.
To avoid this problem, you should always lock the file in a shared environment before
calling any procedure that sets the pointer and leave the file locked until all procedures
that depend on that pointer have been executed. Thus, if you want to read the file
sequentially, delete a record, or modify a record, you should lock the file, call a procedure
that sets the pointer (such as BKSTART), and then call BKREAD, BKDELETE, or BKREWRITE.
When the operation is complete, you can then unlock the file to give other users access to
it.

BKCLOSE

A call to BKCLOSE terminates file processing for the specified KSAM file.

 CALL BKCLOSE (filenum, status)

When processing is completed, a KSAM file should be closed with a call to BKCLOSE. No
further processing is allowed on the file until a BKOPEN procedure call reopens the file.

BKCLOSE can be executed only for a file that is open.

Parameters

filenum A numeric variable containing the file number that identifies the file; this
number was returned by the last call to BKOPEN. It should not be altered
until the file is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the file was successfully closed and if not, why not. The first
character is set to 0 if the close is successful, to another value if not.
(Required parameter)

Operation Notes

After calling BKCLOSE, you should check the status parameter to determine if the file was
closed successfully. A successfully closed file is no longer available for processing until it is
reopened. Note that a KSAM file can be closed and then reopened in order to specify a
different access mode or type of processing.

The BKCLOSE procedure does not remove the file from the system. To do this, you should
use the PURGE command of KSAMUTIL or MPE/iX.

The example in Figure B-1. closes a file identified by the file number in F. It then checks
the status and prints a message if the status shows any code except the zero for successful
completion.
232 Appendix B

BASIC/V Intrinsics
BKCLOSE
Figure B-1. Closing a KSAM File with BKCLOSE

3610 REM **
3620 REM * CLOSE A KSAM FILE *
3630 REM **
3640 REM
3650 REM F IS THE FILE NUMBER OF A KSAM FILE
3660 REM DEFINED BY A CALL TO BKOPEN
3670 REM
3680 CALL BKCLOSE(F,S$)
3690 REM
3700 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED
3710 REM
3720 IF S$[1,1]<>"0" THEN DO
3730 REM N$ CONTAINS THE NAME OF THE KSAM FILE
3740 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
3750 PRINT "UNABLE TO CLOSE ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]
376O CALL BKERROR(S$,M$)
3770 PRINT M$
3780 DOEND
Appendix B 233

BASIC/V Intrinsics
BKDELETE
BKDELETE

Logically deletes a record from a KSAM file.

 CALL BKDELETE (filenum , status)

A call to BKDELETE logically deletes the record referenced by the logical record pointer. If
reuse is not specified, then a logically deleted record is marked for deletion, but is not
physically removed from the file. The connection between a data record marked for
deletion and the index area is severed.

When a file with deleted records is copied by FCOPYto a new KSAM file, records marked for
deletion by BKDELETE are not copied. This use of FCOPY provides a means to compact a file
in which many records have been marked for deletion but physically use space in the file.

To use BKDELETE, the file must be open in the access mode that allows update. If access is
shared, the file must also be opened with dynamic locking allowed (lock =1), and the file
must be locked by BKLOCK before records are deleted.

Parameters

filenum A numeric variable containing the file number that identifies the file; this
number was returned by the last call to BKOPEN. It should not be altered
unless the file is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKREWRITE was successful and if not, why not.
The first character is set to zero if the call succeeds, to another value if not.

Operation Notes

Before calling BKDELETE, you can read the record to be deleted from the KSAM file into the
BASIC program. Using either BKREAD or BKREADBYKEY, read the record into variables
named in the read call. When BKDELETE is successfully executed, the record is marked for
deletion. If reuse is not specified, then a logically deleted record is marked for deletion, but
is not physically removed from the file. Any connections between the record and key
entries in the index area are severed. The associated key entries are physically deleted
from the index area although the data record remains in the data area. Data space is not
reused in order to maintain the chronological order of the file. Because BKDELETE requires
that the record be both read and written, you must open the file for update (access = 4)
before calling this procedure.

After calling BKDELETE, you should check the status parameter to make sure that the
delete was successful.

FCOPYcan also be used to permanently remove any records that were logically deleted with
BKDELETE. When you use FCOPYto copy your KSAM file to a newly created KSAM file, only
active records are copied. Records marked for deletion are dropped from the data area
during the copy. The new file is more compact, particularly if many records had been
deleted from the old file.
234 Appendix B

BASIC/V Intrinsics
BKDELETE
When access is shared, the call that positions the pointer to the record to be deleted should
be included in the same pair of BKLOCK/BKUNLOCK calls as the call to BKDELETE. This
ensures that no other user alters the record position between the call that locates the
record and the call that deletes it.

Figure B-2. contains an example illustrating the logical deletion of a record from a KSAM
file.

Figure B-2. Deleting a Record With BKDELETE

3240 REM **
3250 REM * REMOVE A RECORD FROM A KSAM FILE *
3260 REM **
3270 REM
3280 REM F IS THE FILE NUMBER OF A KSAM FILE OPENED BY A CALL TO BKOPEN
3290 REM NOTE THAT FOR BKDELETE, BKOPEN ACCESS MODE MUST = 4 FOR UPDATE
3295 REM
3300 REM THE RECORD TO BE DELETED MUST FIRST BE READ...
3305 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ
3310 REM AND DELETED CONTAINS THE SAME INFORMATION THAT WAS
3320 REM WRITTEN IN THE BKWRITE EXAMPLE.
3330 REM
3340 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])
3350 REM
3360 REM NOW DETERMINE WHETHER THE CALL WAS SUCCESSFUL
3370 REM
3380 IF S$[1;1]<>"0" THEN DO
3390 REM N$ CONTAINS THE NAME OF THE KSAM FILE
3400 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
3410 PRINT "UNABLE TO READ ";N$" ERROR ";S$[1;1];" DETAIL ";S$[2]
3420 CALL BKERROR(S$,M$)
3430 PRINT M$
3435 GOTO 3620
3440 DOEND
3450 REM
3460 CALL BKDELETE(F,S$)
3470 REM
3480 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED
3490 REM
3500 IF S$[1;1]<>"0" THEN DO
3510 REM N$ CONTAINS THE NAME OF THE KSAM FILE
3520 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
3530 PRINT "UNABLE TO DELETE RECORD FROM ";N$;
3535 PRINT "ERROR ";S$[1;1];"DETAIL ";S$[2]
3540 CALL BKERROR(S$,M$)
3550 PRINT M$
3560 GOTO 3620
3570 DOEND
3575 PRINT "DELETED RECORD CONTAINS ";B1$;B2$;
3576 MAT PRINT A5
3577 MAT PRINT A3,A2
3580 REM
3590 REM THE PROGRAM CONTINUES
Appendix B 235

BASIC/V Intrinsics
BKERROR
BKERROR

A call to BKERROR returns a message corresponding to the status value.

 CALL BKERROR (status, message)

Call this procedure in order to get a printable string of characters that describes the
condition that corresponds to the value of the status parameter. The string of ASCII
characters returned in message can be printed as an error message.

Parameters

status A four-character string variable to which is returned a numeric value in
printable form following execution of any of the procedures described in
this section. The value in status is used to derive the text in message .
(Required parameter)

message A string variable which will contain the text describing the error whose
code has been returned to status . This parameter should be dimensioned
to at least 72 characters in length. If the message length exceeds the
dimensioned length of message , a truncated text is provided. (Required
parameter)

Operation Notes

The following example illustrates the use of BKERROR. Two strings are dimensioned for
message ; one (M$) is sufficiently long, the other (N$) causes truncation of the message.
Assume that the status code in S$ is the value 22.

 10 DIM S$(4),M$(72),N$(24)
 20 REM..S$ IS THE STATUS STRING
 30 REM..M$ IS A SUFFICIENTLY LARGE STRING
 40 REM..N$ IS TOO SMALL FOR THE MESSAGE
 50 REM..ASSUME S$ CONTAINS THE VALUE "22"
 60 REM..
 .
 .
 .
 100 CALL BKERROR (S$,MS)
 110 PRINT "ERROR";S$(1;1);"DETAIL";S$(2);"";M$
 120 CALL BKERROR (S$,M$)
 130 PRINT "ERROR "S$(1;1);"DETAIL";S$(2);"";N$
RUN
ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPLICATED KEY VALUE
ERROR 2 DETAIL 2 INVALID KEY VALUE. DUPL
236 Appendix B

BASIC/V Intrinsics
BKERROR
In another example, BKERROR is called to retrieve the message corresponding to the MPE
file system error code returned when the first character of status is 9.

 10 DIM S$(4),M$(72)
 .
 .
 .
 50 IF S$(1;1)="9" THEN DO
 60 CALL BKERROR(S$,M$)
 70 PRINT"FILE ERROR";S$(2);"MEANS";M$
 80 DOEND

Suppose the value returned in status is 9172. The routine above prints the following
message when the program is run:

 FILE ERROR 172 MEANS KEY NOT FOUND; NO SUCH KEY VALUE
Appendix B 237

BASIC/V Intrinsics
BKLOCK
BKLOCK

Dynamically locks KSAM file during shared access.

 CALL BKLOCK(filenum,status [,condition])

When more than one user accesses the same file, BKLOCKcan be used to make access to the
file exclusive for one user while he writes to or updates the file. In order to use BKLOCK, the
file must be opened with dynamic locking allowed by all users who are sharing the file.
When finished with the changes that required exclusive access, the user who has locked
the file with BKLOCK should unlock it with BKUNLOCK.

NOTE Note that a file opened for shared access must be locked by BKLOCKbefore the
file can be modified by BKWRITE, BKREWRITE, or BKDELETE.

Parameters

filenum A numeric variable containing the file number that identifies the file; this
number was returned to filenum by the last call to BKOPEN. It should not
be altered unless the file is successfully closed by BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKLOCK was successful and if not, why not. The
first character is set to zero when the call succeeds, to another value if it
fails. (Required parameter)

condition A numeric expression whose value determines the action taken if the file is
locked by another user when BKLOCK is executed. If the value of
condition is:

• Zero-locking is unconditional.

If the file cannot be locked immediately because another user has
locked it, your program suspends execution until the file can be locked.
(default value)

• Non-zero-locking is conditional.

If the file is already locked, control returns immediately to your
program with status set to 71.

(Optional parameter) Default: If omitted, locking is
unconditional .

Operation Notes

In order to call BKLOCK, the file must be opened with dynamic locking allowed. That is, the
parameter lock in the BKOPEN procedure must be set to 1. Also, since dynamic locking is
useful only when access is shared, probably the file will have been opened with the
exclusive parameter in BKOPEN set to 3.
238 Appendix B

BASIC/V Intrinsics
BKLOCK
Users who share the same file should cooperate on how they will share the file. Unless they
all agree to allow locking, no one will be able to lock the file. Also, it is important to avoid
situations where one user locks the file and forgets to unlock it. If this occurs when
condition is set to a non-zero value, the calling process is not halted. But if the file is
locked already and you attempt to lock a file with condition omitted or set to zero, your
process is halted until the other user either unlocks the file or logs off.

You should always check the status parameter immediately following a call to BKLOCK in
order to determine if the call was completed successfully. If you locked with condition set
to a nonzero value, you should check if the file was locked before continuing. If it was
locked, status will have a 0 in the first character, but if another user had locked the file
preventing your call to BKLOCK from working, then status contains the value 71.

Figure B-3. contains an example of locking a file with BKLOCK.

Figure B-3. Dynamically Locking a KSAM File with BKLOCK

 830 REM **
 840 REM * LOCK A KSAM FILE *
 850 REM **
 855 REM
 860 REM F IS THE FILE NUMBER OF A KSAM FILE
 870 REM OPENED BY A CALL TO BKOPEN
 890 REM
 900 REM THE THIRD PARAMETER INDICATES THAT LOCKING IS
 910 REM TO TAKE PLACE UNCONDITIONALLY
 920 REM
 930 CALL BKLOCK(F,S$,0)
 940 REM
 950 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED
 960 REM
 970 IF S$[1;1]<>"0" THEN DO
 980 REM N$ CONTAINS THE NAME OF THE KSAM FILE
 990 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
 1000 PRINT "UNABLE TO LOCK ";$N;" ERROR ";N$;" "LS$[1;1];" DETAIL ";S$[2]
 1010 CALL BKERROR(S$,M$)
 1020 PRINT M$
 1030 DOEND
Appendix B 239

BASIC/V Intrinsics
BKOPEN
BKOPEN

A call to procedure BKOPEN initiates KSAM file processing.

 CALL BKOPEN (filenum,status,name [, access [, lock [, exclusive [, sequence]]]])

In order to process a KSAM file, it must be opened with a call to the BKOPEN procedure.
BKOPENinitiates processing, and optionally specifies how the file is to be processed. BKOPEN
does not create the file; it must have been created previously.

To open a file means to make it available for processing. You can also specify how the file is
to be accessed (whether for input, output, input/output, or for update), whether dynamic
locking is allowed, whether access to the file can be shared, and whether records written to
the file are to be checked for primary key sequence. Default values are assigned for the
optional parameters. If you want to change the current processing or access method, you
must close the file and then open it again with the parameters set to new values.

Parameters

filenum A numeric variable whose value identifies the file opened by the call to
BKOPEN. Since the value of filenum identifies the file in other CALL
statements, it must not be changed while the file is open. (Required
parameter)

status A four-character string variable to which is returned a code to indicate
whether or not the file was successfully opened and if not, why not. The
first character is 0 if the open is successful, to another value if not.
(Required parameter)

name A string expression containing the name of the KSAM file to be processed.
This name is the actual designator assigned to the file when it was
created, or else it is a back reference to a formal designator specified in a
FILE command, in which case, name has the form *formal
designator .(Required parameter)
240 Appendix B

BASIC/V Intrinsics
BKOPEN
access A numeric expression whose value indicates one of the permissible access
types:

0 Read only . Use of procedures BKWRITE, BKREWRITE, and
BKDELETE are prohibited.

1 Write only . Overwrites previously written data. Use of
the procedures BKREAD, BKREADBYKEY, BKREWRITE,
BKDELETE, and BKSTART are prohibited.

2 Write only . Saves previously written data and adds
data. Use of the procedures BKREAD, BKREADBYKEY,
BKREWRITE, BKDELETE, and BKSTART are prohibited.

3 Read and write . Use of procedures BKREWRITE and
BKDELETE prohibited. (Default value.)

4 Update access . Allows all procedures described in this
section.

(Optional parameter) Default: If omitted or out of range, access is 3, read
and write access.

lock A numeric expression whose value indicates whether dynamic locking can
take place. Acceptable values are:

0 Disallow dynamic locking and unlocking. Use of
procedures BKLOCK and BKUNLOCK prohibited. (Default
value .)

1 Allow dynamic locking and unlocking. Procedures BKLOCK
and BKUNLOCK may be used to permit or restrict
concurrent access to the file.

(Optional parameter) Default: If omitted or out of range, lock equals 0 to
disallow dynamic locking.

exclusive A numeric expression whose value indicates the kind of exclusive access
desired for this file. If this parameter is omitted or is not one of the
following acceptable values, the default is assumed:

0 Depends on access parameter. If access = 0 (read only),
then users share access to this file as if exclusive were
set to 3. If access is not = 0, then access to this file is
exclusive as if exclusive were set to 1.

1 Exclusive. Prohibits other access to this file until either
the file has been closed or the process terminated. Only
the user who opened the file can access it while it is
currently open.

2 Semi-exclusive. Other users can access this file, but only
for read access. The file cannot be accessed to write,
rewrite, or delete records until it is closed or the process is
terminated. (Default value.)

3 Shared. Once the file is opened, it can be accessed
Appendix B 241

BASIC/V Intrinsics
BKOPEN
concurrently by any user in any access mode, subject only
to the MPE security provisions in effect.

(Optional parameter) Default: If omitted or out of range, exclusive
equals 2, semi-exclusive access.

sequence A numeric expression whose value indicates whether records written to
the file will be checked for primary key sequence or not. Acceptable values
are:

0 No sequence checking. When records are written to the
file, primary key values can be in any order; their
sequence is not checked. (Default value .)

1 Sequence checking. As each record is written to the file,
KSAM checks to ensure that its primary key value is
greater than the primary key value of any previously
written records. If duplicates are allowed for this key, then
the primary key can be equal to that of the previously
written record.

(Optional parameter) Default: If omitted or out of range, sequence = 0,
no sequence checking.

Operation Notes

After calling BKOPEN, you should always check the status parameter to determine
whether the open was successful. Upon successful execution of BKOPEN, the file named in
name is available for processing. An identification number is assigned to this file and
returned to filenum where it is available to identify the open file in other calls. Until the
file is successfully opened with BKOPEN, no operation can be executed that references the
file either explicitly or implicitly.

If only the first three parameters are specified and the file is opened successfully, the file
has the following default characteristics:

• Read and write access: you can read from and write to but not update the file.

• Semi-exclusive access: other users can read from but not write to or update the file.

• Dynamic locking not allowed: you cannot lock or unlock a file.

• No sequence checking: records can be written in any order without checking sequence of
primary key values.

There are two types of write only access. One clears any existing records before writing the
specified records to the file (access = 1). The other saves existing records and writes the
new records after those already written (access = 2). Both these access modes do not
permit any read or update access to the file.

Read-only access (access = 0) can be specified if you want to ensure that the file is not
changed. This mode prohibits the writing of new records, and rewriting or deleting of
existing records. In read-only mode, you can position the file and read records in either
sequential or random order.

The default access mode (access = 3) allows you both to read records from and write
242 Appendix B

BASIC/V Intrinsics
BKOPEN
records to a file, but not to change or delete existing records. If you plan to read and write
records during the same process but do not want to alter existing records, use this access
mode.

If you want to rewrite or delete existing records in a KSAM file, you must open with
access = 4. This mode allows you to use the BKREWRITEand BKDELETEprocedures, as well
as all the other procedures described in this section.

Table B-2. summarizes the procedures you may call depending on the access parameter
value you specify in BKOPEN.

By default in a multi-user environment, all users whose MPE security restrictions allow
them to access your file can read the file, but they cannot change the file or add new
records to it. This is the default specification of the exclusive parameter in BKOPEN
(exclusive =2). It is independent of the value of the access parameter.

If you want to prevent other users from reading the file as well as writing to it, you must
specify this by setting exclusive =1. This setting allows only you to read from, write to, or
alter the file.

Another alternative is to set exclusive =0, thereby allowing other users access to the file
only when it is opened for read only (access =0). This setting of the exclusive parameter
prevents any access by other users when the file is opened for any form of write or update
(accesss ≠ 0). This means that you and other users share read access to the file, but only
you can write to or change the file.

You can choose to completely share access to the file, reading and/or writing and updating,
by setting the exclusive parameter to 3.

(Refer to Table B-2. for a summary of the relation between the exclusive parameter and

Table B-2. Procedures Allowed by BKOPEN Access Parameter

Procedure Read-only
(access =0)

Write-only
with Clear

(access =1)

Write-only
with Save

(access =2)

Read/Write
(access =3)

Update
(access =4)

BKREAD X X X

BKREADBYKEY X X X

BKSTART X X X

BKWRITE X X X X

BKREWRITE X

BKDELETE X

BKCLOSE X X X X X

BKERROR X X X X X
Appendix B 243

BASIC/V Intrinsics
BKOPEN
the access parameter.)

When access is shared, it is good practice to allow dynamic locking so that individual users
can dynamically lock the file while performing any updates to the file. The file can be
unlocked as soon as the update is complete. An update to a file is when you write a new
record, delete a record, or rewrite an existing record. When access is exclusive or
semi-exclusive, there is no need for dynamic locking since only the user who has opened
the file can update the file.

Dynamic locking should also be allowed if access is shared and you plan to read the file
sequentially. This is because the sequential read procedure (BKREAD) is dependent on the
position of the logical record pointer and, in a shared environment, this pointer can be
changed by other users unless the file is locked. (Refer to Table B-2. for a list of the
pointer-dependent procedures.)

When sequence checking is specified, you must write records to the file in primary key
sequence. An attempt to write a record out of sequence causes the write to fail and the
value 21 is returned to status following a call to BKWRITE. As a result of sequence
checking, the physical and the primary key sequence of records in your file is the same.
Since the BASIC KSAM procedures have no provision to read the file in physical sequence,
you may want to specify sequence checking for any file that you will want to read in that
order. With sequence checking, a file read in logical order by primary key (the default for
BKREAD) is also read in physical order.

The example in Figure B-4. shows how to use BKOPEN to open a KSAM file for input and
output (default access), with dynamic locking (lock =1), for shared access (exclusive =3),
and without sequence checking (default sequence).

Figure B-4. Opening KSAM File with BKOPEN

 10 DIM S$[4] <-------- status \
 20 DIM N$[26] <------------- filename |- variable dimensions
 30 DIM M$[72] <-------- message /
 40 INTEGER A[10]
 50 DIM B$[12]
 55 INTEGER J
 60 DIM B1$[1]
 65 DIM B2$[2]
 70 INTEGER A2[2],A3[3],A5[5]

Table B-3. Relationship of Exclusive Parameter to Access Parameter

exclusive =0 exclusive =1 exclusive =2
(default)

exclusive =3

access =0

(read only)

shared exclusive semi-exclusive shared

access ≠0

(write only,
read/write, or
update)

exclusive exclusive semi-exclusive shared
244 Appendix B

BASIC/V Intrinsics
BKOPEN
 80 REM
 90 REM THE KSAM/3000 FILE WAS BUILT WITH:
100 REM REC=-80,16,F,ASCII
110 REM KEY=B,2,2,,DUP
120 REM SO,RECORD LENGTH IS 80 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK.
130 REM THE KEY IS 2 CHARACTERS LONG,STARTING IN CHARACTER 2 OF RECORD
135 REM
140 REM **
145 REM * OPEN A KSAM FILE *
150 REM **
160 REM
170 REM THE FILE NAME IS IN N$
175 REM THE STATUS OF THE CALL IS RETURNED IN S$
180 REM WHEN SUCCESSFUL, BKOPEN RETURNS A FILE NUMBER IN F
190 REM INPUT-OUTPUT ACCESS IS SPECIFIED IN J
200 REM DYNAMIC LOCKING IS ALLOWED IN D
210 REM SEMI-EXCLUSIVE ACCESS IS INDICATED IN E
220 REM
240 N$="KNAME,ACCOUNT,GROUP" <---------- file name
250 J=3 <-------- access is read/write
260 D=1 <------------------------------- dynamic locking allowed
270 E=3 <-------- access shared
280 CALL BKOPEN(F,S$,N$,J,D,E)
290 REM
300 REM NOW DETERMINE WHETHER THE CALL SUCCEEDED:
310 REM
320 IF S$[1;1]<>"0" THEN DO
330 REM S$ IS THE STATUS CODE SET BY THE CALL TO BKOPEN
340 REM N$ IS THE NAME OF THE FILE
350 PRINT "UNABLE TO OPEN ";N$;" ERROR ";S$[1;1];"DETAIL "LS$[2]
360 CALL BKERROR(S$,M$)
370 PRINT M$
380 GOTO 3620 <-------- to close the file
390 DOEND
400 REM
410 REM THE PROGRAM CONTINUES
Appendix B 245

BASIC/V Intrinsics
BKREAD
BKREAD
Transfers the next logical record from a KSAM file to a BASIC program.

 CALL BKREAD(filenum,status [,parameterlist])

A call to BKREAD transfers the contents of a record from a KSAM file to a storage area
defined by a list of variables in a BASIC program. The record read is that at which the
logical record pointer is currently positioned. In a series of calls to BKREAD, records are read
in ascending order by key value. The primary key is used unless a previous call to BKSTART
or BKREADBYKEY has positioned the pointer to an alternate key. The file must have been
opened with an access mode that allows reading.

Parameters

filenum A numeric variable containing the file number that
identifies the file. This number was returned by the last
call to BKOPEN. It should not be altered unless the file is
closed by a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a
code that indicates whether or not the call to BKREAD was
successful and if not, why not. The first character is set to
zero when the call succeeds, to another value if not.
(Required parameter)

parameterlist A list of variables separated by commas into which the
data in the record is read. The contents of the record are
read into the variable (or variables) until the physical
length (or combined physical lengths) of parameterlist
is exhausted, or the end of the record is reached.
(Optional parameter) Default: If omitted, the logical
record pointer is positioned to the beginning of the next
record in key sequence.

Operation Notes

After calling BKREAD, you should always check the status parameter to determine
whether the read was successful. Upon successful completion of BKREAD, the variables
specified in parameterlist contain data read from the record at which the record pointer
was positioned when BKREADwas called. Note that if parameterlist is omitted, the record
pointer is positioned to the beginning of the next logical record, effectively skipping the
current record.

In order to use BKREAD, the file must be opened for input. The BKOPENaccess parameter
should be zero if you plan to only read or position a record. To both read from and write to
the same open file, you either omit the access parameter or set it to 3. If you want to
rewrite or update as well as read records, you must set access to 4.
246 Appendix B

BASIC/V Intrinsics
BKREAD
Values are read from the current record into the variables specified in parameterlist
according to the type and length of the variable. For example, consider the following code:

 10 DIM G$(3),H$(3),S$(4)
 20 INTEGER L,F
 30 CALL BKREAD (F,S$,G$,H$,L)

If the record being read contains only the word SCRABBLE, this word is read into the
specified variables as if they were assigned by the statements:

 100 G$="SCR"
 110 H$="ABB"
 120 L=NUM("LE")

NOTE Each variable in the parameterlist is filled to its current physical length
before proceeding to the next variable.

The following calls omit the parameterlist in order to skip forward two records:

 210 CALL BKREAD(F,S$)
 220 CALL BKREAD(F,S$)

The records skipped are not the next records physically placed on the file, but are the next
two in logical sequence according to the value of the current key. The particular key used
for the read sequence can be selected with a call to BKSTARTor BKREADBYKEY. BKSTARTcan
also be used to position the file to the beginning of the record with the lowest key value in
the selected key.

The example in Figure B-5. assumes that the record pointer has been positioned to the
beginning of the first record in primary key sequence. Assume that the file being read was
opened in the example in Figure B-4. the records read were written in the example in
Figure B-13.

Each record contains five integers followed by five undefined words followed by a string of
three characters. The record is read into:
Appendix B 247

BASIC/V Intrinsics
BKREAD
A5 a 5-word integer array

A2 a 2-word integer array

A3 a 3-word integer array

B1$ a 1-character string

B2$ a 2-character string

The five integers that were written to the beginning of each record are read into array A5.
The next two arrays A2 and A3 receive the undefined values that filled the next five words
of the record. The first string character is read into B1$, the next two into B2$.

If you open the file for read-only access (access =0), and the exclusive parameter is
allowed to default to zero, then more than one user can share read access to the file. In this
case, or if you specifically indicate shared access, you should also allow dynamic locking in
order to read records from the file in key sequence. This is necessary because BKREAD
depends on the current position of the logical record pointer. (Refer to Table B-2. for a list
of the pointer-dependent procedures.)

For example, if you plan to read the file sequentially starting from a particular key value,
use the following sequence of calls:

 BKOPEN <-------- open file for read-only, shared access, allow dynamic locking
 BKLOCK <-------- lock file
 BKSTART <-------- position pointer
 BKREAD loop <-------- read file in sequence from original pointer position
 BKUNLOCK <-------- unlock file when last record read
248 Appendix B

BASIC/V Intrinsics
BKREAD
Figure B-5. Reading From a KSAM File with BKREAD

 10 DIM S$[4]
 20 DIM N$[26]
 30 DIM M$[72]
 40 INTEGER A[10]
 50 DIM B$[12]
 55 INTEGER J
 60 DIM B1$[1]
 65 DIM B2$[2]
 70 INTEGER A2[2],A3[3],A5[5]
 .
 .
 .
1310 REM **
1320 REM * READ FROM A KSAM FILE * o
1330 REM **
1350 REM F IS THE FILE NUMBER OF A KSAM FILE
1360 REM OPENED BY A CALL TO BKOPEN
1370 REM
1380 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ
1390 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN TO
1400 REM THE FILE BY THE EXAMPLE TO WRITE A KSAM FILE
1410 REM
1420 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])
1430 REM
1440 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED
1450 REM
1460 IF S$[1;1]<>"0" THEN DO
1470 REM N$ CONTAINS THE NAME OF THE KSAM FILE
1480 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
1490 PRINT "UNABLE TO READ ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]
l500 CALL BKERROR(S$,M$)
1510 PRINT M$
1520 REM
1530 REM TEST FOR END OF FILE
1540 REM AND POSITION TO LEAST VALUED PRIMARY KEY
1550 IF S$[1;1]="1" THEN 1080
1560 GOTO 3620
1570 DOEND
1580 REM
1590 REM ECHO WHAT WAS READ
1600 REM
1610 PRINT "RECORD CONTAINS";B1$,B2$
1620 MAT PRINT A5
1622 MAT PRINT A3,A2
1630 REM
1650 REM THE CONTENTS OF B1$="1", OF B2$="23"
1660 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE 1 THROUGH 5.
1670 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN.
1680 REM
1690 REM THE PROGRAM CONTINUES
Appendix B 249

BASIC/V Intrinsics
BKREADBYKEY
BKREADBYKEY

Transfers record identified by particular key value from KSAM file to BASIC program.

CALL BKREADBYKEY(filenum,status,keyvalue,keylocation,parameterlist)

A call to BKREADBYKEY locates and reads a record into a storage area identified by a list of
variables in the BASIC program. The record to be read is located by matching the specified
keyvalue with an identical value stored in the record starting at keylocation . The record
value and the one specified in keyvalue must match exactly, or an error code is returned to
status . To use BKREADBYKEY, the file must be open in an access mode that allows reading.

You cannot use BKREADBYKEY to locate a record by generic or approximate key values. For
this purpose you can call BKSTART followed by a call to BKREAD.

Parameters

filenum A numeric variable containing the file number that identifies the file. This
number was returned by the last call to BKOPEN. It should not be altered
unless the file is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKREADBYKEY was successful and if not, why
not. The first character is set to zero if the call succeeds, to another value if
not. (Required parameter)

keyvalue A string or numeric expression whose value is compared to a key value in
the record. The record pointer is positioned to the first record with a key
value at keylocation that is exactly equal to the specified keyvalue . In
order to match exactly, the record value and keyvalue must have the
same logical length. (Required parameter)

keylocation A numeric expression whose value indicates the starting character
position in each record of the key used to locate the record to be read by
BKREADBYKEY. The characters in a record are counted starting with 1. If
the value of keylocation is zero, the primary key is assumed. The
primary key also may be specifically indicated by its location in the record.
(Required parameter)

parameterlist A list of variables separated by commas into which the data in the
record is read. The contents of the record are read into the variable (or
variables) until the physical length (or combined physical lengths) of
parameterlist is exhausted, or until the end of the record is reached.
(Required parameter)

Operation Notes

After calling BKREADBYKEY, you should always check the status parameter to determine
whether the read was successful. Upon completion of BKREADBYKEY, the variables specified
in parameterlist contain data read from the record located through the keyvalue and
250 Appendix B

BASIC/V Intrinsics
BKREADBYKEY
keylocation parameters.

The key value in the record to be read must exactly match the specified keyvalue . Unlike
BKSTART, the only relation between the value in the record and the value in the call is that
of equality. If duplicate key values are allowed in the key being sought, then the first
record with a matching key value is read by BKREADBYKEY. To read the remaining records
with duplicate key values, you should use BKREAD.

NOTE Each variable in parameterlist is filled to its current physical length before
proceeding to the next variable.

The example in Figure B-6. uses BKREADBYKEYto read the first record found with the value
23 starting in byte 2. Since this is the file written by BKWRITE in Figure B-13., the records
in the file are identical including the keys and only the first record is read.

Figure B-6. Reading a Record Located by Key Value with BKREADBYKEY

2220 REM ***
2230 REM * READ BY KEY FROM A KSAM FILE *
2240 REM ***
2250 REM
2260 REM F IS THE FILE NUMBER OF A KSAM FILE
2270 REM OPENED BY A CALL TO BKOPEN
2280 REM
2290 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ
2300 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN IN THE
2310 REM WRITE EXAMPLE.
2320 REM
2330 REM AN ADDITIONAL ASSUMPTION IS THAT THE DESIRED KEY VALUE
2340 REM STARTS AT CHARACTER 2 AND HAS THE VALUE "23".
2350 REM
2360 CALL BKREADBYKEY(F,S$,"23",2,B1$,B2$,A5[*],A3[*],A2[*])
2370 REM
2380 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED
2390 REM
2400 IF S$[1;1]<>"0" THEN DO
2410 REM N$ CONTAINS THE NAME OF THE KSAM FILE
2420 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
2430 PRINT "UNABLE TO READBYKEY ";N$;" ERROR ";S$[1;1];" DETAIL "S$[2]
2440 CALL BKERROR(S$,M$)
2450 PRINT M$
2460 GOTO 3620
2470 DOEND
2480 REM
2490 REM THE CONTENTS OF B1$="1", OF B2$="23".
2500 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE INTEGERS 1 THROUGH 5
2510 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN.
2520 REM
2530 REM ECHO WHAT WAS READ
2540 REM
2550 PRINT "RECORD READ = ";B1$,B2$
2560 MAT PRINT A5
2562 MAT PRINT A3,A2
2570 REM
2580 REM THE PROGRAM CONTINUES
Appendix B 251

BASIC/V Intrinsics
BKREWRITE
BKREWRITE

Changes the contents of a record in a KSAM file.

 CALL BKREWRITE (filenum, status, parameterlist)

A call to BKREWRITEreplaces the contents of an existing record with new values. The record
to be rewritten is the last record accessed by a call to BKREAD, BKREADBYKEY, or BKSTART. To
use BKREWRITE, the file must be open in the access mode that allows update. If access is
shared, it must also be opened with dynamic locking allowed, and the file must be locked
by BKLOCK before records are rewritten.

Parameters

filenum A numeric variable containing the file number that identifies the file. This
number was returned by the last call to BKOPEN. It should not be altered
unless the file is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKREWRITE was successful and if not, why not.
The first character is set to zero if the call succeeds, to another value if not.
(Required parameter)

parameterlist A list of variables or constants, separated by commas, that contains the
data to be written to the file replacing the last record read or written. The
total length of the new record is derived from the total number, data type,
and length in characters of each item in parameterlist . Although this
length need not be the same as the record it replaces, it should be long
enough to contain all the keys, but not exceed the defined record length.
(Required parameter)

Operation Notes

After calling BKREWRITE, you should always check the status parameter to make sure that
the rewrite was successful. Upon successful completion of BKREWRITE, new values replace
the data in the last record read to or written from the BASIC program. The new data may
change every value in the previously read record including the primary key value.

If you want to replace a record with a particular key value, you should locate and read the
record with BKREADBYKEY or BKSTART. To rewrite a series of records you should read the
records with BKREAD.

When the data in the parameterlist of BKREWRITEis shorter in total length than the data
in the record being rewritten, there is less total data in the rewritten record. In order to
maintain the key sequence of all keys, defined values should be written to the location of
all keys, both the primary key and any alternate keys.
252 Appendix B

BASIC/V Intrinsics
BKREWRITE
NOTE Items written to a KSAM file with the BKREWRITE procedure are
concatenated; rounding to halfword boundaries does not occur.

The example in Figure B-9. writes new values to a record originally written in Figure B-13.
and read in Figure B-5. The new values fill an array that had undefined values in the last
five elements, now defined as two arrays A3 and A2 by the BKREAD call. The primary key
value 23 in location 2 is unchanged.

The record read by BKREAD contained the following values:

Figure B-7. BKREAD values

After being rewritten by BKREWRITE, it contains the following values:

Figure B-8. After BKREWRITE

When access is shared, the call to BKREAD, BKREADBYKEY, or BKSTART that locates the
record to be rewritten should be included in the same pair of BKLOCK/BKUNLOCKcalls as the
call to BKREWRITE. This ensures that no other user alters the record pointer between the
call that locates the record and the call that rewrites it.

If you want to sequentially rewrite all records in a chain of records with duplicate keys,
locate the first record in the chain with BKREADBYKEY. Then call BKREWRITE to modify this
record. If no key value (the selected key or any other) is modified, subsequent calls to
BKREWRITE will modify the next sequential records in the chain of duplicate keys. If,
however, any key has been changed, the modified key is written to the end of the chain and
the next sequential record is one with the next higher key value. In this case, to rewrite all
records with duplicate keys, precede each call to BKREWRITE by a call to BKREADBYKEY.

Figure B-9. Rewriting Record in KSAM File with BKREWRITE

2600 REM
2610 REM ***
2620 REM * REVISE THE CONTENTS OF A RECORD READ FROM A KSAM FILE *
2630 REM **
Appendix B 253

BASIC/V Intrinsics
BKREWRITE
2640 REM
2650 REM F IS THE FILE NUMBER OF A KSAM FILE OPENED BY A CALL TO BKOPEN
2660 REM NOTE THAT FOR BKREWRITE,BKOPEN ACCESS MODE MUST=4 FOR UPDATE.
2670 REM
2680 REM AN ASSUMPTION HAS BEEN MADE THAT THE RECORD TO BE READ
2690 REM CONTAINS THE SAME INFORMATION THAT WAS WRITTEN TO THE
2700 REM KSAM FILE IN THE BKWRITE EXAMPLE,,
 |------------------ parameterlist
2710 REM /------------------------\
2720 CALL BKREAD(F,S$,B1$,B2$,A5[*],A3[*],A2[*])
2730 REM
2740 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED.
2750 REM
2760 IF S$[1;1]<>"0" THEN DO
2770 REM N$ CONTAINS THE NAME OF THE KSAM FILE
2780 REM S$ CONTAINS THE STATUS CALL SET BY THE PRECEDING CALL
2790 PRINT "UNABLE TO READ ";N$;" ERROR ";S$[1;1]" DETAIL ";S$[2]
2800 CALL BKERROR(S$,M$)
2810 PRINT M$
2820 GOTO 3620
2830 DOEND
2900 REM THE CONTENTS OF B1=1", OF B2$="23"
2910 REM THE CONTENTS OF A5(1) THROUGH A5(5) ARE 1 THROUGH 5
2920 REM THE CONTENTS OF A3 AND A2 ARE UNKNOWN
2930 REM
2940 REM STORE VALUES 1 THROUGH 3 INTO A3(1) THROUGH A3(3)
2950 REM STORE VALUES 1 AND 2 INTO A2(1) AND A2(2).
2960 REM
2970 FOR I=1 TO 2
2980 A2[I]=I
2990 A3[I]=I
3000 NEXT I parameterlist
3010 A3[3]=3 |
3020 REM /------------------------\
3030 CALL BKREWRITE(F,S$,B1$,B2$,A5[*],A3[*],A2[*])
3040 REM
3050 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED
3060 REM
3070 IF S$[1;1]<>"0 THEN DO
3080 REM N$ CONTAINS THE NAME OF THE KSAM FILE
3090 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
3100 PRINT "UNABLE TO REWRITE ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]
3110 CALL BKERROR(S$,M$)
3120 PRINT M$
3130 GOTO 3620
3140 DOEND
3150 REM
3160 REM ECHO WHAT WAS UPDATED
3170 REM
3180 PRINT "REWRITTEN RECORD = ";B1;B2
3190 MAT PRINT A5,A3,A2
3200 REM
3210 REM THE PROGRAM CONTINUES
254 Appendix B

BASIC/V Intrinsics
BKSTART
BKSTART

Positions a KSAM file to a particular record based on a key value.

 CALL BKSTART(filenum,status [,keyvalue [,keylocation [, relation]]])

By calling BKSTART, you can position the record pointer to any record in the file based on
the value of a key in that record. The key can be the primary key or any alternate key,
since BKSTART also allows you to select the key for positioning and for subsequent
sequential reads. If you want to read all the keys in a key sequence, you can use BKSTART
to position the pointer to the record with the lowest key value in the selected key.

Parameters

filenum A numeric variable containing the file number that identifies the file. This
number was returned by the last call to BKOPEN. It should not be altered
unless the file is closed with a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKSTARTwas successful and if not, why not. The
first character is set to zero when the call succeeds, to another value when
it fails. (Required parameter)

keyvalue A string or numeric expression whose value is compared to a key value in
this record. The record pointer is positioned to the first record with a key
value that bears the relation specified by relation to the value in
keyvalue . If the value is a string, its logical length is used for the
comparison; otherwise, the physical or dimensioned length is used. The
length of this value must be less than or equal to the length of the key as
specified when the file was created. If keyvalue is a null string (””), the
file is positioned to the beginning of the first logical record according to the
value of the key in keylocation . (Optional Parameter)

Default: If omitted, the value assumed for keyvalue is the lowest value for
the specified key type.

keylocation A numeric expression whose value indicates the starting character
location in each record of the key used for positioning by BKSTART. The
characters in a record are counted starting with one. If set to zero, the
primary key is assumed. (Optional parameter)

Default: If omitted, the primary key is assumed.
Appendix B 255

BASIC/V Intrinsics
BKSTART
relation A numeric expression whose value specifies the relation between the
specified keyvalue and the value of the key at keylocation . The record
pointer is positioned to the first record with a key value satisfying this
relation:

0 The value of the record key is equal to keyvalue

1 The value of the record key is greater than keyvalue

2 The value of the record key is greater than or equal to
keyvalue (default).

>2 Any value greater than 2 is treated as if it were 2.
(Optional parameter)

Default If omitted, the relation is assumed to be 2, record key is
greater than or equal to the keyvalue .

Operation Notes

After calling BKSTART, you should check the status parameter to determine if the
procedure was executed successfully. If successful, the record pointer is positioned at the
beginning of the first record with a value at keylocation that has the relation specified in
relation to the value specified in keyvalue .

If default values are assumed for all three optional parameters, the pointer is positioned to
the record with the lowest value for its type in the primary key location.

If the relation specified is equality (relation = 0), then a record must be located that has
the same key value as that specified in the BKSTART call. When the record is found, the
pointer is positioned to it. If duplicate values are allowed for the key, then the pointer is
positioned at the first record with the particular key value.

When the specified relation is greater than (relation = 1), the file is searched until a
record is found with a key value greater than the specified key value. The search passes
over any record with a key value equal to the specified value. This relation allows you to
retrieve items by an approximate key . Thus, if you specify a key value of "R", a call to
BKSTART will position the pointer to the first record with a key value that starts with the
letter R. A subsequent series of calls to BKREADallows you to read the remaining records in
the file or, by including a test, to read only the records beginning with R.

When the specified relation is greater than or equal to (relation = 2), BKSTARTlooks for a
record containing a value equal to the specified value. If found, it positions the pointer to
that record. If not found, it continues looking and positions the pointer to the first record
that is greater than the specified value. This type of search can be used to locate records by
generic key . A generic, or partial, key is a value that matches characters at the
beginning of the key, but not necessarily the end.

Whenever a record cannot be found with a key that satisfies the relation and value
specified, the value 23 for invalid key is returned to status .

BKSTART allows you to specify a key other than the primary key assumed by BKREAD.
Called prior to a series of calls to BKREAD, it prepares for a sequential read of the file in
alternate key order. For example, assuming a file with an alternate key in location 21, the
following call positions the pointer to the first record in that key sequence:
256 Appendix B

BASIC/V Intrinsics
BKSTART
 100 DIM A$(10),S$(4)
 150 A$=" " <------------------- assign null string to keyvalue
 160 L=21 <-------------------- assign alternate key location to keylocation
 170 CALL BKSTART(F,S$,A$,21)

The default for relation is 2 (greater than or equal to) and need not be specified except for
documentation purposes.

Figure B-10. illustrates the use of BKSTARTwith default values for all optional parameters.
Specified in this minimal form, it positions to the least valued primary key.

Figure B-10. Positioning Pointer to Least-Valued Record with BKSTART

 1080 REM ***
 1090 REM * POSITION TO LEAST VALUED PRIMARY KEY *
 1100 REM ***
 1110 REM
 1120 REM F IS THE FILE NUMBER OF A KSAM FILE
 1130 REM OPENED BY A CALL TO BKOPEN
 1140 REM
 1150 CALL BKSTART(F,S$)
 1160 REM
 1170 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED
 1180 REM
 1190 IF S$[1;1]<>"0" THEN DO
 1200 REM N$ CONTAINS THE NAME OF THE KSAM FILE
 1210 REM S$ CONTAINS THE STATUS CODE RETURNED BY THE PRECEDING CALL
 1220 PRINT "UNABLE TO POSITION FILE TO LEAST VALUED PRIMARY KEY"
 1230 PRINT "ERROR ";S$[1;1]," DETAIL";S$[2]
 1240 CALL BKERROR,(S$,M$)
 1250 PRINT M$
 1260 GOTO 3620
 1270 DOEND
 1280 REM
 1290 REM THE PROGRAM CONTINUES
 1300 REM
Appendix B 257

BASIC/V Intrinsics
BKSTART
The example in Figure B-11. positions the record pointer to a record containing a specific
key value. The value is 23; it is located starting in the second character of each record. The
value for relation is zero indicating that the key must contain exactly the value 23, not a
value larger than 23.

Figure B-11. Positioning Pointer to Particular Record with BKSTART

1920 REM
1930 REM ***************************************
1940 REM * POSITION A KSAM FILE *
1950 REM ***************************************
1960 REM
1970 REM F IS THE FILE NUMBER OF A KSAM FILE
1989 REM OPENED BY A CALL TO BKOPEN
1990 REM
2000 REM AN ASSUMPTION HAS BEEN MADE THAT THE POSITIONING TO BE
2010 REM DONE IS TO THE RECORD WRITTEN IN THE WRITE EXAMPLE,
2020 REM AND THAT THE DESIRED KEY STARTS AT CHARACTER 2.
2060 REM
2070 CALL BKSTART(F,S$,"23",2,0)
2080 REM
2090 REM NOW DETERMINE WHETHER THIS CALL HAS SUCCEEDED
2100 REM
2110 IF S$[1;1]<>"0" THEN DO
2120 REM N$ CONTAINS THE NAME OF THE KSAM FILE
2130 REM S$ CONTAINS THE STATUS CODE RETURNED BY THE PRECEDING CALL
2140 PRINT "UNABLE TO START ";N$;" ERROR ";S$[1;1];" DETAIL ";S$[2]
2150 CALL BKERROR(S$,M$)
2160 PRINT M$
2170 GOTO 3620
2180 DOEND
2190 REM
2200 REM THE PROGRAM CONTINUES
2210 REM
258 Appendix B

BASIC/V Intrinsics
BKUNLOCK
BKUNLOCK

Unlocks a KSAM file dynamically locked by BKLOCK.

 CALL BKUNLOCK(filenum,status)

A file locked by BKLOCK is released for use by other users with a call to BKUNLOCK. (If you
log off from any connection with the system, the file is also unlocked.) Since dynamic
locking takes place during shared access to the same file by more than one user, it is
important that any file locked by BKLOCK be unlocked as soon as possible by BKUNLOCK.

To use BKUNLOCK, the file must be opened with dynamic locking allowed by all users who
share access to the file.

Parameters

filenum A numeric variable containing the file number that identifies the file. This
number was returned to filenum by the last call to BKOPEN. It should not
be altered until the file is successfully closed by BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKLOCK was successful and if not, why not. The
first character is set to zero when the call succeeds, to another value if it
fails. (Required parameter)

Operation Notes

After calling BKUNLOCK, you should always check the status parameter to make sure that
the procedure was successfully executed. When successful, a file locked by BKLOCKis again
made available for access by other users. If the file is not locked by BKLOCKwhen BKUNLOCK
is called, the file is not affected.

Figure B-12. illustrates the use of BKUNLOCK to unlock the file after it is updated.

Figure B-12. Dynamically Unlocking a KSAM File

1700 REM ***
1710 REM * UNLOCK A KSAM FILE *
1720 REM ***
1730 REM
1740 REM F IS THE FILE NUMBER OF A KSAM FILE
1750 REM OPENED BY A CALL TO BKOPEN
1760 REM
1770 CALL BKUNLOCK(F,S$)
1780 REM
1790 REM NOW DETERMINE WHETHER THE CALL HAS SUCCEEDED
1800 REM
1810 IF S$(1;1)<>"0" THEN DO
1820 REM N$ CONTAINS THE NAME OF THE KSAM FILE
1830 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CALL
1840 PRINT "UNABLE TO UNLOCK ";N$;" ERROR ";S$(1;1);"DETAIL ";S$[2]
Appendix B 259

BASIC/V Intrinsics
BKUNLOCK
1850 CALL BKERROR(S$,M$)
1860 PRINT M$
1870 GOTO 3620
1880 DOEND
1890 REM
1900 REM THE PROGRAM CONTINUES
260 Appendix B

BASIC/V Intrinsics
BKWRITE
BKWRITE

Writes data from a BASIC program to a KSAM file.

 CALL BKWRITE (filenum,status,parameterlist)

A call to procedure BKWRITE writes a record to a KSAM file from a BASIC program. This
call provides the only way to create a KSAM record from a BASIC program. The file must
have been opened with an access mode that allows writing. If access is shared, the file also
must be opened for dynamic locking (lock = 1), and the file locked with BKLOCKbefore any
records are written.

Parameters

filenum A numeric variable containing the file number value that identifies the
file. This number was returned by the last call to BKOPEN. It should not be
altered unless the file is closed by a successful call to BKCLOSE. (Required
parameter)

status A four-character string variable to which is returned a code that indicates
whether or not the call to BKWRITEwas successful and if not, why not. The
first character is set to zero when the call succeeds, to another value if not.
(Required parameter)

parameterlist A list of variables or constants, separated by commas, that contain the
data to be written to the file as a record. The total length of the record
contents is derived from the total number, the type, and the length in
characters of the items in parameterlist . The parameterlist must
contain a value for each location defined as a key location in the record.
(Required parameter)

Operation Notes

After calling BKWRITE, you should always check the status parameter to ensure that the
write was successful. Upon successful completion of BKWRITE, one record containing the
values specified in parameterlist is written to the opened KSAM file.

Two parameters that are set when the file is opened affect how BKWRITE operates. These
are the access and sequence parameters.

In order to write to a file, the file must be opened with access greater than 0. If the access
parameter is set to 1, all existing data in the file is cleared before the first record is written
to the file. If access is set to 2 or greater, the first record written by BKWRITEimmediately
follows any existing records; the file is not cleared.

The sequence parameter determines whether records must be written in primary key
sequence, or not. If sequence is 0, records can be written in any order; no check is made on
the sequence of the primary key field. If sequence is set to 1, you must write each record
with a value in the primary key field that is greater than the primary key value in the
previous record. Primary key values may equal the previous primary key value only if the
file was created with duplicate key values permitted.
Appendix B 261

BASIC/V Intrinsics
BKWRITE
NOTE Items written to a KSAM file from a BASIC program are concatenated;
rounding to halfword boundaries does not occur.

Figure B-13. is an example of writing one string and one integer array to each record of the
KSAM file.

Figure B-13. Writing to a KSAM File with BKWRITE

 10 DIM S$[4]
 20 DIM N$[26]
 30 DIM M$[72]
 40 INTEGER A[10]
 50 DIM B$[12]
 55 INTEGER J
 60 DIM B1$[1]
 65 DIM B2$[2]
 70 INTEGER A2[2],A3[3],A5[5]
 80 REM
 90 REM THE KSAM/3000 FILE WAS BUILT WITH:
 100 REM REC=-80,16,F,ASCII
 110 REM KEY=B,2,2,,DUP
 120 REM SO,RECORD LENGTH IS 2 BYTES, FIXED, TYPE ASCII, 16 REC/BLOCK.
 130 THE KEY IS 2 CHARACTERS LONG,STARTING IN CHARACTER 2 OF RECORD
 135 REM
 .
 .
 .
 430 REM **
 440 REM * WRITE TO A KSAM FILE *
 450 REM **
 460 REM
 470 REM ASSIGN VALUES TO OUTPUT VARIABLES
 480 REM
 490 FOR I=1 TO 5
 500 A[I]=I
 510 NEXT I
 520 RS="123"
 530 REM
 540 REM F IS THE FILE NUMBER OF A KSAM FILE
 550 REM OPENED BY A CALL TO BKOPEN
 560 REM

570 REM NOTE THAT ONLY THREE BYTES "123" ARE WRITTEN FROM B$
 580 REM WHEREAS TEN WORDS ARE WRITTEN FROM NUMERIC ARRAY A.
 620 REM
 630 REM THREE IDENTICAL RECORDS ARE BEING OUTPUT SO THAT
 640 REM SUBSEQUENT EXAMPLES OF THIS PROGRAM WILL EXECUTE
 650 REM .
 660 FOR I=1 TO 3
 670 CALL BKWRITE(F,S$,BS,A[*])
 680 REM
 690 REM NOW DETERMINE WHETHER THIS CALL SUCCEEDED
 700 REM
 710 IF S$[1;1]<>"0" THEN DO
 720 REM N$ CONTAINS THE NAME OF THE KSAM FILE
262 Appendix B

BASIC/V Intrinsics
BKWRITE
 730 REM S$ CONTAINS THE STATUS CODE SET BY THE PRECEDING CODE
 740 PRINT "UNABLE TO WRITE TO ";N$;"ERROR "[S$]; DETAIL ";S$[&
 2]
 750 CALL BKERROR(S&,Ms)
 760 PRINT M$
 770 GOTO 3620
 780 DOEND
 790 NEXT I
 800 REM
 810 REM THE PROGRAM CONTINUES
Appendix B 263

BASIC/V Intrinsics
BKWRITE
264 Appendix B

C HP C/iX Example Program

The following example program shows how a KSAM XL file can be created, accessed, and
updated from an HP C/iX program. This program uses features of ANSI C. Compile with
INFO=-Aa + e .

This example program uses the assert macro to do quick error checking. In a production
program, more comprehensive error checking and reporting would be desirable.

The KSAM XL file has the following layout:

 1 - 5 Employee number (primary key)
 6 - 25 Name (secondary key)
26 - 34 Social Security Number
35 - 38 Department Number (secondary key)
39 - 44 Date of hire

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mpe.h>:
#pragma intrinsic FCLOSE, FFINDN, FLOCK
#pragma intrinsic FREAD, FREADBYKEY, FREMOVE
#pragma intrinsic FUNLOCK, FUPDATE, FWRITE
#pragma intrinsic HPCICOMMAND, HPFOPEN
#define FILENAME "KSAMD"
typedef char record_t[44];
static int filenum;
static void close_file(void);
static void create_file(void);
static void delete_records(void);
static void dump_file(void);
static void list_sequential(void);
static void list_sequential_primary(void);
static void list_sequential_secondary(int location);
static void lock_file(void);
static void open_file(void);
static void unlock_file(void);
static void update_records(void);
static void write_new_records(void);
static void write_record(const char *record);
main(void)
{
 create_file();
 open_file();
 dump_file();
 write_new_records();
 update_records();
 delete_records();
265

HP C/iX Example Program
 dump_file();
 close_file();
 return EXIT_SUCCESS;
}
static void close_file(void)
{
 /* Close file */
 FCLOSE(filenum, 0, 0);
 assert(ccode()==CCE);
}
static void create_file(void)
{
 /* Create sample KSAM XL file and load initial test data */
 int status; short cmderror;
 const int ksamxl=3, out=1, recsize=sizeof(record_t),
 filesize=100, save=1, ascii=1;
 const struct
 {
 short filler_1[10];
 unsigned short language_id : 16;
 short filler_2[4];
 struct
 {
 unsigned short filler_1 : 10;
 unsigned short chg_primary : 1;
 unsigned short kslang : 1;
 unsigned short ksreuse : 1;
 unsigned short seq_random : 1;
 unsigned short rec_numbering : 1;
 unsigned short filler_2 : 1;
 } flagword;
 unsigned short filler_3 : 8;
 unsigned short num_keys : 8;
 struct
 {
 unsigned short key_type : 4;
 unsigned short key_length : 12;
 unsigned short key_location : 16;
 unsigned short dflag : 1;
 unsigned short filler_1 : 15;
 unsigned short filler_2 : 8;
 unsigned short rflag : 1;
 unsigned short filler_3 : 7;
 } keyparms[16];
 } ksamparam = { {0}, 0, {0}, {0,0,1,0,0,0,0}, 0, 3,
 { {1, 5, 1,0,0,0,0,0},
 {1,20, 6,1,0,0,0,0},
 {1, 4,35,1,0,0,0,0} } };
 const record_t test_data[] =
 {
 "11111DOE JOHN 1230067898540821201",
 "03452CUSTER HERB 3218800003160821203",
 "28766WORKMAN DEBBIE 0006612341520850601",
 "33678MORSE EUGENE 8760098763160850715"
 } ;
 const int test_items = sizeof test_data / sizeof test_data[0];
 int i;
 /* First, purge file if it already exists */
266 Appendix C

HP C/iX Example Program
 HPCICOMMAND("PURGE " FILENAME "\r", &cmderror, , 2);
 assert(!cmderror || cmderror==-383);
 /* Create new KSAM XL file, output access, 44-byte
 ASCII records, limit = 100, save disposition */
 HPFOPEN(&filenum, &status,
 2, "-" FILENAME "-",
 10, &ksamxl,
 11, &out,
 19, &recsize,
 35, &filesize,
 50, &save,
 53, &ascii,
 54, &ksamparam);
 assert(!status);
 /* Write test data to file */
 for (i=0; i<test_items; ++i)
 write_record(test_data[i]);
 printf("\n");
 /* Close file */
 FCLOSE(filenum, 0, 0);
 assert(ccode()==CCE);
}
static void delete_records(void)
{
 /* Delete records for several employees */
 const char delete_data[][5] = {"33678", "03452"};
 const int delete_items =
 sizeof delete_data / sizeof delete_data[0];
 int i;
 record_t buffer;
 for (i=0; i<delete_items; ++i)
 {
 printf("Deleting employee %.5s: ", delete_data[i]);
 lock_file();
 FREADBYKEY(filenum, buffer, - sizeof buffer,
 delete_data[i], 0);
 assert(ccode()==CCE);
 printf("%.20s\n", buffer+5);
 FREMOVE(filenum);
 assert(ccode()==CCE);
 unlock_file();
 }
 printf("\n");
}
static void dump_file(void)
{
 /* List the file several different ways */
 list_sequential_primary();
 list_sequential_secondary(6);
 list_sequential_secondary(35);
}
static void list_sequential(void)
{
 /* List the file, looping on FREAD until end-of-data */
 int save_ccode;
 record_t buffer;
 for (;;)
 {
Appendix C 267

HP C/iX Example Program
 FREAD(filenum, buffer, - sizeof buffer);
 if ((save_ccode=ccode()) == CCG)
 break;
 assert(save_ccode==CCE);
 printf(" %.5s %.20s %.3s-%.2s-%.4s "
 "%.4s %.2s/%.2s/%.2s\n",
 buffer, buffer+5, buffer+25, buffer+28, buffer+30,
 buffer+34, buffer+40, buffer+42, buffer+38);
 }
 printf("\n");
}
static void list_sequential_primary(void)
{
 /* List file in sequence on primary key */
 printf("In sequence by primary key:\n");
 lock_file();
 /* Following call to FFINDN not necessary if this
 is the first access since the file was opened */
 FFINDN(filenum, -1, 0);
 assert(ccode()==CCE);
 list_sequential();
 unlock_file();
}
static void list_sequential_secondary(const int location)
{
 /* List file in sequence on specified secondary key */
 printf("In sequence by secondary key in location %d:\n",
 location);
 lock_file();
 FFINDN(filenum, -1, location);
 assert(ccode()==CCE);
 list_sequential();
 unlock_file();
}
static void lock_file(void)
{
 /* Lock the file unconditionally */
 FLOCK(filenum, 1);
 assert(ccode()==CCE);
}
static void open_file(void)
{
 /* Open file for shared update access with locking */
 int status;
 const int old=1, update=5, lock=1, shr=3;
 HPFOPEN(&filenum, &status,
 2, "-" FILENAME "-",
 3, &old,
 11, &update,
 12, &lock,
 13, &shr);
 assert(!status);
}
static void unlock_file(void)
{
 /* Unlock the file */
 FUNLOCK(filenum);
 assert(ccode()==CCE);
268 Appendix C

HP C/iX Example Program
}
static void update_records(void)
{
 /* Update department code for several employees */
 const struct {char empno[5]; char new_dept[4];} update_data[] =
 {{"28766", "9901"}, {"11111", "9905"}};
 const int update_items =
 sizeof update_data / sizeof update_data[0];
 int i;
 record_t buffer;
 for (i=0; i<update_items; ++i)
 {
 printf("Updating employee %.5s to department %.4s: ",
 update_data[i].empno, update_data[i].new_dept);
 lock_file();
 FREADBYKEY(filenum, buffer, - sizeof buffer,
 update_data[i].empno, 0);
 assert(ccode()==CCE);
 printf("%.20s\n", buffer+5);
 memcpy(buffer+34, update_data[i].new_dept, 4);
 FUPDATE(filenum, buffer, - sizeof buffer);
 assert(ccode()==CCE);
 unlock_file();
 }
 printf("\n");
}
static void write_new_records(void)
{
 /* Add some entries to the file */
 const record_t test_data[] =
 {
 "77777NEWMAN GEORGE 7770066661520871012",
 "55555GOODMAN BRIAN 5553300008540880815",
 "66666MANLEY SHAUNA 0003526143360890930"
 } ;
 const int test_items = sizeof test_data / sizeof test_data[0];
 int i;
 for (i=0; i<test_items; ++i)
 {
 lock_file();
 write_record(test_data[i]);
 unlock_file();
 }
 printf("\n");
}
static void write_record(const char * const record)
{
 /* Write one record to the file */
 printf("Writing record for %.5s, %.20s\n", record, record+5);
 FWRITE(filenum, record, - sizeof(record_t), 0);
 assert(ccode()==CCE);
}

Appendix C 269

HP C/iX Example Program
270 Appendix C

Index
A
abort recovery, 61
access options, 39, 41
access selections, 41
advance flag, 47
alternate key, 13, 49
approximate key match, 49
automatic recovery, 17

B
BASIC/V intrinsics

BKCLOSE, 232
BKDELETE, 234
BKERROR, 236
BKLOCK, 238
BKOPEN, 240
BKREAD, 246
BKREADBYKEY, 250
BKREWRITE, 252
BKSTART, 255
BKUNLOCK, 259
BKWRITE, 261

BKCLOSE
BASIC/V intrinsic, 232

BKDELETE
BASIC/V intrinsic, 234

BKERROR
BASIC/V intrinsic, 236

BKLOCK
BASIC/V intrinsic, 238

BKOPEN
BASIC/V intrinsic, 240

BKREAD
BASIC/V intrinsic, 246

BKREADBYKEY
BASIC/V intrinsic, 250

BKREWRITE
BASIC/V intrinsic, 252

BKSTART
BASIC/V intrinsic, 255

BKUNLOCK
BASIC/V intrinsic, 259

BKWRITE
BASIC/V intrinsic, 261

BUILD command, 19, 20, 24, 61, 62, 66

C
chronological order, 16
CKCLOSE

COBOL 68 intrinsic, 186
CKDELETE

COBOL 68 intrinsic, 187
CKERROR

COBOL 68 intrinsic, 191
CKLOCK

COBOL 68 intrinsic, 192
CKOPEN

COBOL 68 intrinsic, 194
CKOPENSHR

COBOL 68 intrinsic, 198
CKREAD

COBOL 68 intrinsic, 199
CKREADBYKEY

COBOL 68 intrinsic, 202
CKREWRITE

COBOL 68 intrinsic, 205
CKSTART

COBOL 68 intrinsic, 210
CKUNLOCK

COBOL 68 intrinsic, 213
CKWRITE

COBOL 68 intrinsic, 215
CM KSAM, 13, 65
CM KSAM display, 33
COBOL 68 intrinsics

CKCLOSE, 186
CKDELETE, 187
CKERROR, 191
CKLOCK, 192
CKOPEN, 194
CKOPENSHR, 198
CKREAD, 199
CKREADBYKEY, 202
CKREWRITE, 205
CKSTART, 210
CKUNLOCK, 213
CKWRITE, 215

commands
BUILD, 19, 20, 24, 61, 62, 66
FILE, 31
LISTFILE, 33, 34, 66
PURGE, 31, 66
RENAME, 31, 66

control block, 15
control code, 61
copying data, 19
cross development, 69

D
data area, 16
data block size

specifying, 22
DEFBLK option, 22
Index 271

Index
deleting records, 57
device class, 19
Disk file file label information returned

FLABELINFO, 111
disk file, remove

FRENAME, 145
disposition, 46
domain, 39, 41, 46, 61, 66
DUP parameter, 21
dynamic locking, 39, 42, 54, 56, 57, 60

E
error information, 59

F
FCHECK intrinsic, 59, 72
FCLOSE intrinsic, 46, 74
FCONTROL intrinsic, 61, 77
FCOPY subsystem, 25, 61, 67

KEY= parameter, 25
FERRMSG intrinsic, 59, 80
FFILEINFO

Intrinsic, 81
Returns information about a file, 81

FFINDBYKEY intrinsic, 49, 51, 97
FFINDN intrinsic, 49, 52, 99
FGETINFO intrinsic, 33, 36, 53, 101
FGETKEYINFO intrinsic, 33, 37
file

backup, 62
characteristics, 19, 20, 26, 33
closing, 46
corruption, 62
creation, 19, 42
deletion, 31
designator, 39, 41
information, 33
locking, 60
modifications, 31
opening, 39
recovery, 61
renaming, 31
type, 19, 30

FILE command, 31
File information returned

FFILEINFO, 81
File label information, disk file returned

FLABELINFO, 111
FIRSTREC= parameter, 21
FLABELINFO

Intrinsic, 111

Return information from file label, disk file,
111

flag word, 26
FLOCK intrinsic, 42, 54, 56, 57, 60, 119
FOPEN intrinsic, 19, 26, 30, 39, 41, 44, 61, 120
FPOINT intrinsic, 52, 53, 134
FREAD intrinsic, 135
FREADBYKEY intrinsic, 52
FREADC intrinsic, 52, 53
FREADDIR intrinsic, 52, 53, 141
FREADLABEL intrinsic, 37, 143
FREMOVE intrinsic, 57
FRENAME

Intrinsic, 145
Remove disk file, 145

FROM= parameter, 25
FSPACE intrinsic, 147
FUNLOCK intrinsic, 42, 54, 56, 57, 60, 148
FUPDATE intrinsic, 56, 149
FWRITE intrinsic, 56, 151
FWRITELABEL intrinsic, 37, 153

H
HPFOPEN intrinsic, 19, 26, 30, 39, 42, 61, 154

I
index area, 15, 16
index corruption, 62
indirect file, 24
Intrinsic

FFILEINFO, 81
FLABELINFO, 111
FRENAME, 145

intrinsics
FCHECK, 59, 72
FCLOSE, 46, 74
FCONTROL, 61, 77
FERRMSG, 59, 80
FFINDBYKEY, 49, 51, 97
FFINDN, 49, 52, 99
FGETINFO, 33, 36, 53, 101
FGETKEYINFO, 33, 37
FLOCK, 42, 54, 56, 57, 60, 119
FOPEN, 19, 26, 30, 39, 41, 44, 61, 120
FPOINT, 52, 53, 134
FREAD, 135
FREADBYKEY, 52
FREADC, 52, 53
FREADDIR, 52, 53, 141
FREADLABEL, 37, 143
FREMOVE, 57
272 Index

Index
FSPACE, 147
FUNLOCK, 42, 54, 56, 57, 60, 148
FUPDATE, 56, 149
FWRITE, 56, 151
FWRITELABEL, 37, 153
HPFOPEN, 19, 26, 30, 39, 42, 61, 154

item number pairs, 30, 39, 42

K
key

duplication, 20, 28
duplication method, 21
length, 28, 37
location, 20, 28, 37
size, 20
type, 20, 28, 37

key characteristics, 26
key data, 19
key field, 13
key index, 15
key parameters, 28
key sequence, 15
key specifications, 34, 37
KEY= parameter, 20
KSAM XL, 65

data area, 16
definition, 13
index area, 15

KSAM XL display, 33
KSAMUTIL utility, 66

L
language ID, 26, 127
LISTFILE, 22
LISTFILE command, 33, 34, 66
LISTFILE options, 33
loading data, 25
logical record number, 49
logical record pointer, 47, 55, 57

M
migration, 66, 67
mixed mode operation, 69
modifying file specifications, 26

N
native language ID, 26, 127
NOREUSE option, 21, 56
number of keys, 28

O
options

REUSE, 16
OPTMBLK option, 22

P
partial key value, 51
physical location, 15
physical record number, 52, 53
physical record pointer, 47, 53, 55
pointer-dependent intrinsics, 47
pointer-independent intrinsics, 47
positional parameters, 41, 44
primary key, 13, 48
protecting records, 59
PURGE command, 31, 66

R
random access, 52

by key, 52
by physical record number, 52
by relative record number, 52

RDUP parameter, 21
record deletion, 57
record header, 16, 57
record numbering, 19, 21, 26, 49
record protection, 59
record retrieval, 47
record sequence change, 25
record space reuse, 19, 21, 26
record updates, 56
record writing, 56
record-level locking, 65
recoverability, 66
recovered data space, 16
recovery, 17
relational operator, 51
relative record location, 25
relative record number, 52
Remove disk file

FRENAME, 145
RENAME command, 31, 66
Return file label information of disk file

FLABELINFO, 111
Returns information about a file

FFILEINFO, 81
REUSE option, 16, 21, 56

S
security code, 46
sequential access, 48, 49, 53
Index 273

Index
shared access, 42, 54, 56, 57, 60
software abort, 61
specifying data block size, 22
STORE/RESTORE facility, 62
subsystems

FCOPY, 25, 61, 67
system abort, 61
system logging, 61, 66

T
TO= parameter, 25
transaction management, 17, 61, 66
tree structure, 16

U
update access, 56
updating records, 56
user label, 37
utilities

KSAMUTIL, 66

V
variable-length records, 67

W
writing records, 56
274 Index

	Preface
	1� Introduction
	Terminology
	KSAM XL File Format
	Automatic Recovery

	2� Creating a KSAM File
	Creating the File With the BUILD Command
	Loading Data to a KSAM XL File
	Loading Data to a KSAM64 File
	Modifying Existing File Specifications While Copying
	Building a KSAM File Programmatically
	Using Related Commands

	3� Obtaining File Information
	Displaying File and Key Information
	Accessing File Information from a Program
	Accessing Key Information From a Program
	Accessing User-Defined Labels

	4� Opening and Closing the File
	Opening an Existing KSAM File
	Opening a New File
	Closing a KSAM File

	5� Reading File Data
	Sequential Access by Primary Key
	Sequential Access by Primary and Alternate Key
	Sequential Access by Partial Key Value
	Random Access of a Single Record
	Sequential Access in Physical Record Order
	Shared File Access

	6� Writing and Updating Record Data
	Writing New Records
	Updating Existing Records
	Deleting a Record
	Shared Access

	7� Protecting the File and Its Data
	Checking Error Information
	Protecting Data When File Access is Shared
	Writing Directly to Disk
	Recovering from a System or Software Abort
	Backing Up KSAM Files
	Recovering from Index Corruption

	8� Migration and Mixed Mode Processing
	Similarities in KSAM File Features
	Differences in KSAM File Features
	Migrating KSAM Files
	Mixed Mode Operation

	9� KSAM Intrinsics
	FCHECK
	FCLOSE
	FCONTROL
	FERRMSG
	FFILEINFO
	FFINDBYKEY
	FFINDN
	FGETINFO
	FGETKEYINFO
	FLABELINFO
	FLOCK
	FOPEN
	FPOINT
	FREAD
	FREADBYKEY
	FREADC
	FREADDIR
	FREADLABEL
	FREMOVE
	FRENAME
	FSPACE
	FUNLOCK
	FUPDATE
	FWRITE
	FWRITELABEL
	HPFOPEN

	A� COBOL Intrinsics
	Calling a KSAM Procedure
	Filetable Parameter
	Status Parameter
	KSAM Logical Record Pointer
	CKCLOSE
	CKDELETE
	CKERROR
	CKLOCK
	CKOPEN
	CKOPENSHR
	CKREAD
	CKREADBYKEY
	CKREWRITE
	CKSTART
	CKUNLOCK
	CKWRITE
	Examples of KSAM File Access

	B� BASIC/V Intrinsics
	Overview
	Calling a KSAM Procedure
	Status Parameter
	KSAM Logical Record Pointer
	BKCLOSE
	BKDELETE
	BKERROR
	BKLOCK
	BKOPEN
	BKREAD
	BKREADBYKEY
	BKREWRITE
	BKSTART
	BKUNLOCK
	BKWRITE

	C� HP C/iX Example Program

