
Accessing Files
Programmer’s Guide

900 Series HP 3000 Computer Systems
Manufacturing Part Number: 32650-90885
E0300

U.S.A. March 2000

Notice
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this material, including,
but not limited to, the implied warranties of merchantability or fitness for a particular
purpose. Hewlett-Packard shall not be liable for errors contained herein or for direct,
indirect, special, incidental or consequential damages in connection with the furnishing or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on
equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights
reserved. Reproduction, adaptation, or translation without prior written permission is
prohibited, except as allowed under the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth
in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause
at DFARS 252.227-7013. Rights for non-DOD U.S. Government Departments and Agencies
are as set forth in FAR 52.227-19 (c) (1,2).

Trademark Notice
UNIX is a registered trademark of The Open Group.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 2000 by Hewlett-Packard Company
2

Contents
1. Introduction
Disk Files and Device Files . 15

Topics in this Manual . 15

2. Creating A File
The HPFOPEN Intrinsic . 18

NOWAIT I/O . 18
NOWAIT I/O intrinsics . 18
Aborting NOWAIT I/O . 19
Limitations . 19

The FOPEN Intrinsic . 48
The BUILD Command . 50
The FILE Command. 51
Summary of Overrides . 55
Specifying a Record Format . 56

Fixed-length records . 56
Variable-length records. 56
Undefined-length records . 57

Specifying a File Type . 59
Standard files . 59
KSAM files. 59
RIO files . 59
Circular files . 59
Message files . 60

Specifying Record Size . 61
 Specifying Disk Volume Restrictions . 63
Specifying a File Code . 64
Specifying Storage Format. 70

3. Specifying a File Designation
MPE/iX File Designators . 72
User-Defined Files . 73

Lockwords . 74
Backreferencing files. 75

System-Defined Files . 77
Input/Output sets . 78
Passed files . 79

Using Command Interpreter Variables and Expressions Within File Designators 83
Parsing and Validating File Designators . 84

4. Specifying a File Domain
New Files . 87
3

Contents
Temporary Files. .87
Permanent Files. .88
Changing Domains .89
Searching File Directories. .90
Listing Files .90

5. Opening a File
How the File System Opens a File .91
Which to Use: HPFOPEN or FOPEN. .93
Opening a Disk File .93

Opening a new disk file .94
Opening a permanent disk file .95

Opening a System-Defined File .97
Opening $STDIN .97
Opening $STDLIST .98

Opening a Device File .99
Device-dependent file characteristics .99
New and permanent device files .100
Opening an unlabeled magnetic tape file .100
Opening a labeled magnetic tape file .101

6. Closing a File
How the File System Closes a File .103
Closing a Disk File. .105

Closing a new disk file as permanent .105
Closing a permanent disk file .106

Closing a Magnetic Tape File .107

7. Record Selection and Data Transfer
Record Pointers .109
Record Selection. .110

Sequential access .111
Random access .111
Update access .111
RIO access. .113

Multiple Record Transfers .113
Control Operations .114

Spacing .114
Pointing. .114
Rewinding .115

Magnetic Tape Considerations .115
4

Contents
8. Writing to a File
Sequential Access and Random Access . 119

Writing to a disk file using sequential access . 120
Writing to a disk file using random access . 121

Writing to $STDLIST. 122
Writing Messages to the System Console . 123

Writing a message to the system console . 123
Writing a message to the system console and requesting a reply 124

Writing to a Magnetic Tape File . 125
Writing to an unlabeled magnetic tape file . 125
Writing to a labeled magnetic tape file . 126

Writing a File Label to a Labeled Tape File . 127
Writing User Data in ANSI Labels . 128

9. Reading from a File
Sequential Access and Random Access . 130

Reading from a disk file using sequential access . 130
Reading from a disk file using random access. 131
Increasing I/O performance using FREADSEEK . 132

Reading From $STDIN . 133
Reading From a Magnetic Tape File . 134
Reading a File Label from a Labeled Tape File . 135

10. Updating a File

11. Accessing a File Using Mapped Access
How to Access a File Mapped . 142

Advantages of mapped access. 143
Short-mapped access. 143
Long-mapped access . 143
Large-mapped access . 144

Opening a File Mapped . 144
New Intrinsics . 146

HPFADDTOPOINTER . 146
HPFFILLDATA. 147
HPFMOVEDATA . 148
HPFMOVEDATALTOR . 149
HPFMOVEDATARTOL . 150

12. Sharing a File
Simultaneous Access of Files . 153

Exclusive access . 154
5

Contents
Semi-exclusive access. .155
Shared access .155
Multiaccess .156
Global multiaccess .156

Sharing the File Using FLOCK and FUNLOCK .157

13. Maintaining File Security
Access Control Definition Security (ACD) .159

ACD scope .159
Owners .159
How acds work .160
ACD modes .160
Managing ACDs with commands and intrinsics .161
Preserving ACDs .162
Managing ACDs .162
Logging system events .167
Logging a specific user .174
Logging file security related events. .175

Traditional Mechanism for File Security .179
Specifying and restricting file access by access mode .179
Specifying and restricting file access by type or user. .181
Changing security provisions of disk files. .185
Suspending and restoring security provisions .186

14. Getting File Information
Displaying General File Information .188

Displaying permanent file information with LISTFILE .188
Displaying temporary file information with LISTFILE...(;TEMP)193
Displaying file equations with LISTEQ .193

Retrieving Specific File Information. .194
[:CMD] FINFO .194
FFILEINFO .195
FGETINFO .196
FLABELINFO .197

Determining Interactive/Duplicative Files with FRELATE .197
Displaying File Error Information .198

FCHECK. .198
FERRMSG .199
PRINTFILEINFO. .199
Writing a file system error-check procedure .201

A. Pascal/XL Program Examples
6

Contents
Program Example A-2 . 208
Program Algorithm . 208
Source code listing . 209

Program Example A-3 . 217
Program Algorithm . 217
Source code listing. 217

Program Example A-4 . 221
Program Algorithm . 221
Source code listing. 222

Program Example A-5 . 224
Program Algorithm . 225
Source code listing . 225
7

Contents
8

Figures
Figure 1-1.. File System Interface . 13
Figure 1-2.. Records/Files Relationship . 14
Figure 2-1.. File System Hierarchy of Overrides. 55
Figure 2-2.. Fixed-Length Records . 56
Figure 2-3.. Variable-length Records . 57
Figure 2-4.. Undefined-Length Records . 58
Figure 2-5.. Record Placement for ASCII Files . 62
Figure 3-1.. Passing Files between Program Runs . 80
Figure 3-2.. Passing Files within a Program Run . 81
Figure 3-3.. Illustration of FPARSE Usage . 84
Figure 3-4.. Illustration of FPARSE Usage . 85
Figure 3-5.. Illustration of FPARSE Usage . 85
Figure 5-1.. File System Hierarchy of Overrides. 92
Figure 6-1.. Using the FCLOSE Intrinsic with Unlabeled Magnetic Tape 107
Figure 7-1.. Record Pointers . 110
Figure 7-2.. Magnetic Tape Markers . 116
Figure 12-1.. Requested Access Granted, Unless Noted . 155
9

Figures
10

Tables
Table 2-1.. FOPEN/HPFOPEN Parameter Equivalents . 48
Table 2-2.. Determining a File's Physical Characteristics Using FOPEN 49
Table 2-3.. FILE, FOPEN, and HPFOPEN Parameters . 52
Table 2-4.. Comparison of Logical Record Formats . 58
Table 2-5.. Standard Default Record Sizes. 62
Table 2-6.. Reserved File Codes . 64
Table 3-1.. System-Defined File Designators . 77
Table 3-2.. Input Set . 78
Table 3-3.. Output Set . 78
Table 3-4.. New Files Versus $NEWPASS . 81
Table 3-5.. Old Files Versus $OLDPASS . 82
Table 4-1.. Features of New, Temporary, and Permanent Files . 88
Table 4-2.. File Domains Permitted . 88
Table 5-1.. Device-Dependent Restrictions . 99
Table 7-1.. Intrinsics for Data Transfer . 111
Table 12-1.. File Sharing Restriction Options . 154
Table 13-1.. SYSGEN System Logging. 167
Table 13-2.. Type 135 Record Format. 169
Table 13-3.. Type 136 Record Format. 169
Table 13-4.. Type 137 Record . 170
Table 13-5.. Type 139 Record . 172
Table 13-6.. Type 140 Record Format. 173
Table 13-7.. Type 141 Record . 173
Table 13-8.. Type 134 Record Format. 177
Table 13-9.. Type 138 Record Format. 178
Table 13-10.. Traditional File Access Mode Types. 180
Table 13-11.. Effects of Access Modes. 181
Table 13-12.. User Type Definitions (Traditional Security) . 181
Table 13-13.. Default Security Provisions (Traditional) . 185
Table 14-1.. Format Selection . 189
Table 14-2.. FINFO Options . 194
Table 14-3.. PRINTFILEINFO Information . 200
11

Tables
12

1 Introduction

Almost every kind of organization in our modern society is concerned in some way with
information. Corporations keep track of their business dealings, political groups keep lists
of potential voters, and families remember whose turn it is to do the dishes. When an
organization needs to deal with large amounts of information in an efficient, dependable
manner, a computer can be an indispensable aid. This manual describes the MPE/iX file
system that is responsible for handling information in the 900 Series of the HP 3000
Family.

Figure 1-1. shows the relationships among your program, the MPE/iX file system, the
MPE/iX I/O System, and the actual hardware of the system. Notice that the MPE/iX file
system serves as the interface between you and the rest of the system.

Figure 1-1. File System Interface

The file system is the part of the MPE/iX operating system that manages information
being transferred or stored with peripheral devices. It handles various input/output
operations, such as the passing of information to and from user processes, compilers, and
data management subsystems. Conceptually, these data transfers are very simple:
information is arranged into data elements within a record; this record is then input,
13

Introduction
processed, and output as a single unit. Logically related records are grouped into sets
known to the file system as files, which may be kept in any storage medium or sent to any
input/output peripheral (as illustrated in Figure 1-2. below).

Figure 1-2. Records/Files Relationship

Since all input/output operations are done through the mechanism of files, you may access
very different devices in a standard, consistent way. It does not make much difference to
you whether you read your file from a disk or from a magnetic tape, because the file system
permits you to treat all files in the same way. This property of the file system gives your
program device independence; the name and characteristics assigned to a file when it is
defined in a program do not restrict that file to residing on the same device every time the
program is run. You, the user, need only reference the file by the file name assigned to it
when it was created, and the file system determines the device or disk address where the
file is stored and access the file for you. (Of course, you should be aware of the properties of
the device you're using. For example, the MPE/iX file system permits you to read a file
from a line printer.)
14 Chapter 1

Introduction
Disk Files and Device Files
Disk Files and Device Files
The file system recognizes two basic types of files, classified on the basis of the media on
which they reside when processed:

1. Disk files, which are files residing on disk, are immediately accessible by the system
and potentially shareable by several jobs/sessions at the same time.

2. Device files are files currently being input to or output from any peripheral device
except a disk. When information exists on such a device but is not being processed, the
file system cannot recognize it as a file. Thus, information on a magnetic tape is not
identified as a file until the tape is loaded onto a tape drive and reading begins; data
being written to a line printer is no longer regarded as a file when output to the printer
terminates. A device file is considered nonshareable; it is accessed exclusively by the
job or session that acquires it, and is owned by that job/session until the job/session
explicitly releases it or terminates.

NOTE Spooled device files, although temporarily residing on disk, are considered
device files in the fullest sense because they are always originated on or
destined for devices other than disk, and because you generally remain
unaware of their storage on disk as an intermediate step in the spooling
process. Whether they deal with spooled or unspooled device files, your
programs handle input/output as if the files reside on nonshareable devices.
The console operator, not the user, controls the spooling operation.

Topics in this Manual

When you create a file, you specify certain permanent attributes that the file will have
based upon its intended use. Chapter 2, "Creating a File" describes the physical
characteristics that are determined when you create a file and the intrinsics and
commands you use to specify those physical characteristics

What name do you give a file that you create? How does MPE/iX recognize your file?
Chapter 3, "Specifying a File Designator" describes how you designate a file name in your
program and discusses file naming conventions maintained by MPE/iX.

You may classify your file as a new, temporary, or permanent file. Chapter 4, "Specifying a
Domain" discusses these classifications.

Before your program can access or otherwise manipulate a file, the program must open
that file. Program examples illustrating various ways you can open a file are described in
Chapter 5, "Opening a File."

Once your program is finished accessing or manipulating a file,the file must be closed.
Program examples illustrating various ways you can close a file are described in Chapter
6, "Closing a File."

One of the file system's principal concerns is the transfer of information to and from your
files. Chapter 7, "Record Selection and Data Transfer" discusses how you can use MPE/iX
file system intrinsics to select records and transfer data between your program and files.
Chapter 1 15

Introduction
Disk Files and Device Files
Program examples illustrating various ways to write data from your program to a file are
described in chapter 8, "Writing to a File."

Program examples illustrating various ways to read data from a file are described in
chapter 9, "Reading From a File."

A special method of accessing a file, called update access, is discussed in chapter 10,
"Updating a File."

You can access a file mapped directly through memory loads and stores, thus bypassing the
overhead associated with accessing the file through file system intrinsics. Chapter 11,
"Accessing a File Using Mapped Access" describes mapped access of a file and the
applications where mapped access may increase your program's performance.

There are special considerations you must take into account when you are accessing a file
that is being shared concurrently by others. Chapter 12 ,"Sharing a File" discusses file
sharing methods available to you.

Associated with each account, group, and individual file, is a set of security provisions that
specifies any restrictions on files in that account or group, or to that particular file. These
provisions are discussed in chapter 13, "Maintaining File Security."

MPE/iX provides a number of commands and intrinsics that enable you to obtain
information about your files. You can use the commands and intrinsics described in
chapter 14, "Getting File Information" for a variety of purposes.

The HP Pascal/iX program examples found in appendix A, "HP Pascal/XL Program
Examples" are provided to help you better understand how to use file system intrinsics to
perform file access tasks.
16 Chapter 1

2 Creating A File

When you create a file, you choose the attributes that file will have; your choices are made
on the basis of how the file will be used. A file's physical characteristics are determined by
the parameters you choose when you create the file with the HPFOPEN/FOPEN intrinsic or

the BUILD command, or when you specify the file with the FILE command.

Once a file has been created, its physical characteristics cannot be changed. The file can be
renamed or purged, but the only way to change its physical characteristics is by building a
new file and copying the contents of the old file into the new.

File equations and HPFOPEN/FOPENcalls cannot alter physical characteristics of an existing
file, but they can alter the way the file is to be used. Other characteristics of the file that
you create can be redefined each time you open the file. Those characteristics are discussed
in later chapters in this manual.

In this chapter, we will address the following questions:

• What intrinsics and commands can you use to specify a file's physical characteristics?

• What are the physical characteristics that are determined when you create a file?
17

Creating A File
The HPFOPEN Intrinsic
The HPFOPEN Intrinsic
The HPFOPENintrinsic establishes access to a disk or device file and enables you to create a
file on a shareable device. HPFOPEN is used to define a file's physical characteristics,
including file and record structure. Its syntax is

 HPFOPEN (filenum , status , [, itemnum , item]...);

The HPFOPEN optional parameters are a superset of the options provided in the FOPEN
intrinsic and provide more efficient access to files.

NOWAIT I/O

Sometimes a programmer wants an application to read or write a record, but does not
want it to wait for I/O to complete. For such an application, waiting is wasting time when it
could be doing other processing. Timeouts do not adequately address this problem. The
programmer wants this application to start an I/O, continue processing immediately, and
check periodically to see if the I/O has finished

MPE/iX provides a way to solve this problem with NOWAIT I/O. This feature is requested
by enabling the NOWAIT I/O option (item #16) in HPFOPEN.

When using NOWAIT I/O, the process must make at least two intrinsic calls to perform the
I/O, one to start it and one to finish it. MPE/iX still handles the file in the same way; but
instead of waiting for the I/O to complete, MPE/iX returns control to the application so that
the application can do some useful processing.

NOWAIT I/O has been available to users of standard files for a long time, but to use it on
standard files requires privileged mode. On standard files the mechanics of NOWAIT I/O
prevent MPE/iX from protecting a process from corrupting its own stack; however, because
message files work differently, NOWAIT I/O on message files does not require privileged
mode.

NOWAIT I/O intrinsics

To perform a NOWAIT I/O, the FREAD or FWRITE intrinsic must be called to initiate the
transfer. These intrinsics return immediately, and no data is transferred yet. The return
value for FREAD is set to zero and is not needed. To complete the transfer, either
IODONTWAITor IOWAIT must be called. IODONTWAITtests whether the I/O has finished. If it
has, the intrinsic returns a condition code of CCE and the file number as the return value.
If the I/O has not completed, CCE and a zero return value are passed back. If IOWAIT is
called, it waits until the I/O has finished, like a normal WAIT I/O FREAD or FWRITE.

Only one NOWAIT I/O can be outstanding against a file by a particular accessor at a time;
however, an accessor can have NOWAIT I/Os outstanding against several files at the same
time. These I/Os can be completed by a "generalized" IODONTWAIT or IOWAIT: the file
number parameter is zero or is omitted. In this case, these intrinsics report on the first I/O
to complete, returning the file number for that file. If the call to one of these intrinsics is in
a loop, then that one call can be used to complete all the NOWAIT I/Os.
18 Chapter 2

Creating A File
The HPFOPEN Intrinsic
Aborting NOWAIT I/O

Occasionally, after a process has started a NOWAIT I/O with FREAD or FWRITE, something
occurs that causes completion of that I/O to be no longer needed. Perhaps the process is
"shutting down" and does not want to wait for the I/O (that is, to issue IOWAIT or
IODONTWAIT).

MPE/iX lets the process abort NOWAIT I/Os that have not yet completed by using
FCONTROL with a control code of 43. A condition code of CCE is returned if the I/O was
aborted; in this case, nothing more needs to be done. CCG is returned if the I/O has already
completed; in this case, IODONTWAIT or IOWAIT must be called to clear it. CCL and FSERR
79, No NOWAIT I/O pending for special file are returned if there was nothing to
abort.

Limitations

Currently, MPE/iX does not support NOWAIT I/O to message files across a network. In
most cases, this is not an important limitation, because it is rare that both readers and
writers to the same message file need to use NOWAIT I/O. If the file is made local to the
accessor that needs NOWAIT I/O, the other accessor can then do WAIT I/O across the
network.

More information on these intrinsics is found in the MPE/iX Intrinsics Reference Manual.
For detailed information about WAIT and NOWAIT, consult the Interprocess
Communications Programmers' Guide.

The following lists the optional parameters you can use to specify a file's physical
characteristics, as well as the default values for each.

Itemnum/
Mnemonic Item Description

0 End of option list:

There is no corresponding item . The absence of an itemnum after the last
itemnum ,item pair is equivalent to specifying this option.

2/CA Formal designator:

Passes a formal file designator that is interpreted according to
MPE-escaped semantics (unless another syntax has been chosen via item
41). The first charater is interpreted as a delimiter, and all subsequent
characters, up to the next occurrence of the delimiter, comprise the formal
designator. The file name must be terminated by a nonalphanumeric
character other than a period (.), a slash (/), a hyphen (-), and an
underscore (_). Use of matched starting and ending name delimiters (a
quoted name) alleviates the need for a terminating character other than
the quote characters.

The file referred to by formaldesig can be either an MPE file (i.e., one
that uses MPE syntax) or it can follow HFS syntax. If formaldesig follows
MPE syntax, the file name can include password, group, and account
specifications. The file name can backreference a file equation and
optionally be preceded by an asterisk. If formaldesig follows HFS syntax,
Chapter 2 19

Creating A File
The HPFOPEN Intrinsic
the file name must start with either a dot (.) or a slash (/).

The file referred to by formaldesig may reside either in an MPE group or
in an HFS directory. For files located in HFS directories, traverse directory
entries (TD) access is required to all directories specified in formaldesig .
If there is no TD access, HPFOPEN fails and a value of -180 is returned in
the status.info parameter. If you are using HPFOPEN to create a file or
hierarchical directory and you lack of create directory entry (CD) access,
status .info will return a value of -179.

If formaldesig is an escaped pathname:

• you cannot reference remote files

• it cannot express a name equivalent to filename :envid

• you cannot use the device parameter (device =node #) to specify the
remote location of a device

If formaldesig is the name of a user-defined file, it can begin with an
asterisk (*). If formaldesig is the name of a system-defined file, it can
begin with a dollar sign ($). When creating a KSAM file, formaldesig
must be a unique file name, that is, one not currently existing in the
permanent file directory.

The formal file designator can contain command interpreter variables and
expressions that are evaluated before formaldesig is parsed and
validated.

As the default, HPFOPENcreates a nameless file that can be read or written
to, but not saved. (The domain option of a nameless file must specify a new
file unless it is a device file.)

The following are examples of valid formal file designators:

&file/lock.group.account:node.dest.level&

&filename&

&!myfile&

&!afile/![FINFO("!afile",33)]&

The following are examples of invalid formal file designators:

"filename.group (missing delimiter ("))

 file.group" ('f' is used as delimiter, missing at end)

(ASC) It is recommended that this itemnum , item pair be used for
asynchronous devices.

When you use HPFOPEN to open a file, you may use either itemnum =2 or
itemnum =51; you cannot use both.

3/I32 Domain:

Passes a value indicating which file domain the system searches to locate
the file. A nameless disk file must always be a new file.
20 Chapter 2

Creating A File
The HPFOPEN Intrinsic
A device file (such as a tape drive, terminal, spooled printer or hot printer)
always resides in the system file domain (permanent file directory).
Always specify a device file as old or permanent.

The following values are valid:

0 The file is a new temporary file. It is not placed in a
directory.

1 The file is a permanent file, found in the system file
domain.

2 The file is a temporary file, found in the job file domain.

3 The file is an old (permanent or temporary) file. The job
file domain is searched first. If the file is not found, the
system file domain is searched.

4 The file is created, placed in the permanent file directory,
and becomes a permanent file.

Hierarchical directories must be created in the permanent file domain by
specifying the create file domain (4).

Default: 0

5/I32 Designator:

Passes a value indicating a special file opening. Any of the following
special files can be specified with the itemnum =2. For example, a file name
of $STDLIST opens the standard list device. The following values are valid:

0 Allows all other options to specify the file.

1 The actual file designator is $STDLIST .

2 The actual file designator is $NEWPASS.

3 The actual file designator is $OLDPASS.

4 The actual file designator is $STDIN.

5 The actual file designator is $STDINX.

6 The actual file designator is $NULL.

Default: 0

For example, if MYFILE is passed in itemnum =2, then using itemnum =5 and
item =4 to equate it with $STDIN is equivalent to the file equation FILE
MYFILE=$STDIN.

This option is not equated with itemnum =2 if both of the following
conditions are true:

• The itemnum =9 option allows file equations for the file opening.

• An explicit or implicit FILE command equating the formal file
designator to a different actual file designator occurs in the job/session.

A leading * in a formal file designator passed by itemnum =2 overrides an
Chapter 2 21

Creating A File
The HPFOPEN Intrinsic
itemnum =9 option.

6/I32 Record format:

Passes a value indicating the internal record structure desired for the file.
This option is applicable only at file creation.

The following values are valid for records:

0 Fixed-length

1 Variable-length

2 Undefined-length (no implied structure)

9 Byte stream

10 Hierarchical directory

Default: 0

Byte stream record format may be specified only for standard disk files
(itemnum 10 equal to 0). Hierarchical directory record format is the the
default record format when creatinng a directory (itemnum 10 equal to 9).
Itemnum 10 equal to 9 is the only record format which may be specified
when creating a directory. Hierarchical record format is only specified for
the directory file type. Record formats not implemented for the specified
file type are ignored. Byte stream and hierarchical directory record
formats are supported only on disk devices.

(ASC) This itemnum,item pair is ignored for files opened on a terminal;
records of files on terminals are of undefined length. If the file is to be
redirected to tape or disk, set the value to 0 (fixed-length).

FIFO file must be created with the byte streams (9) record format.

7/I32 Carriage-control:

Passes a value indicating whether or not a carriage-control directive is
supplied in the calling sequence of each FWRITE call that writes records
onto the file. This option is applicable only at file creation.

The following values are valid:

0 No carriage-control directive expected

1 Carriage-control directive expected

Default: 0

Carriage-control is defined only for ASCII files. This option and
itemnum =53 are exclusive, and attempts to open new files with both binary
and carriage-control directives result in an access violation.

A carriage-control character passed through the control parameter of
FWRITE is recognized for files with carriage-control specified in
HPFOPEN/FOPEN. Embedded control characters are treated as data on files
where no carriage-control is specified, and spacing is not invoked for the
file. Specify spacing action on files where carriage-control has been
specified by either embedding the control in the record, indicated with a
22 Chapter 2

Creating A File
The HPFOPEN Intrinsic
control parameter in the call to FWRITE, or by sending the control code
directly through the control parameter of FWRITE.

If a carriage-control character is sent to a file where the control cannot be
executed directly (for example, line spacing characters sent to a disk or
tape file), the control character is embedded as the first byte of the record.
Therefore, the first byte of each record in a disk file having carriage-control
characters enabled contains control information. If carriage-control
characters are sent to other types of files, the control is transmitted to the
driver.

Control codes %400 through %403 are remapped to %100 through %103,
so that they fit into one byte and can be embedded. Records written to the
line printer with control codes %400 through %403 should contain only
control information.

Records written with control codes %400 through %403 and no data
(count=0, or embedded control and count=1) does not cause physical I/O.

For computing record size, the file system considers carriage-control
information as part of the data record. Therefore, specifying the
carriage-control option adds one byte to the record size when the file is
originally created. For example, a specification of
REC=-132,1,F,ASCII;CCTL results in a recsize of 133 bytes.

Generally, the entire record can be read. Refer to the table listing the item
values returned by the FFILEINFO intrinsic. However, on writes to files
where carriage-control characters are specified, the data transferred is
limited to recsize -1 unless a control of one is passed, indicating the data
record is prefixed with embedded carriage-control characters.

The value of this itemnum is ignored when a byte stream or hierarchical
directory is created. Byte stream files and hierarchical directories are
created without carriage control (NOCCTL).

8/CA Enable tape label:

Passes the tape label name of a labeled tape. The name must follow the
ANSI standards for tape label names. The name consists of <=6 printable
characters that identify the volume. In a multivolume set, only the first
tape label can be specified.

Default: a null tape label

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example:

 %volid% (% is the delimiter, volid is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

(ASC) Not used for asynchronous devices.

9/I32 Disallow file equation:
Chapter 2 23

Creating A File
The HPFOPEN Intrinsic
Passes a value indicating whether or not file equations are allowed. A
leading * in a formal file designator overrides the setting to disallow file
equations.

The following values are valid:

0 Allow file equations to override programmatic or
system-defined file specifications.

1 Disallow file equations from overriding programmatic or
system-defined file specifications.

File equations can be enabled for escaped pathnames expressed using
MPE-escaped name semantics or names expressed using POSIX name
semantics, but a matching file equation is not found since the file
designator on the left side of a file equation can only be expressed using
MPE-only syntax.

Default: 0

10/I32 File type:

Passes a value indicating the internal record structure used to access
records in the file. If the file is old, this option is ignored. Specifying an
itemnum =5 value other than zero overrides this option. This option is
applicable only at file creation.

The following values are valid:

0 Standard (STD) file

1 KSAM/3000 file

2 Relative I/O (RIO) file

3 KSAM XL file

5 NM spoolfile

4 Circular (CIR) file

6 Message (MSG) file

7 KSAM 64 file

9 Directory

Default: 0

Hierarchical directories must be created in the permanent file domain.

KSAM/3000 (1), RIO (2) and CIR (4) file types may only be created using
names belonging to the MPE name space.

(ASC) Set the value to 0 for asynchronous devices.

11/I32 Access type:

Passes a value indicating the type of access intended for the file. This
option restricts/allows usage of the file system intrinsics.

The following values are valid:
24 Chapter 2

Creating A File
The HPFOPEN Intrinsic
0 Read access only, if the file's security provisions allow read
access. FWRITE, FUPDATE, and FWRITEDIR intrinsic calls
cannot reference this file. The end-of-file (EOF) is not
changed; the record pointer starts at zero. (Default)

1 Write access only, if the file's security provisions allow
write access. Any data written in the file prior to the
current HPFOPEN request is deleted. FREAD, FREADSEEK,
FUPDATE, and FREADDIR intrinsic calls cannot reference
this file. The EOF is set to zero; the record pointer starts
at zero. On magnetic tape an EOF is written to the tape
when the file is closed even if no data is written.

2 Write-Save access only, if the file's security provisions
allow write access. Previous data in the file is not deleted.
FREAD, FREADSEEK, FUPDATE, and FREADDIR intrinsic
calls cannot reference this file. The EOF is not changed;
the record pointer starts at zero. Therefore, data is
overwritten if FWRITE is called. The system changes this
value to append for message files.

3 Append access only, if the file's security provisions allow
either append or write access. FREAD, FREADDIR,
FREADSEEK, FUPDATE, FSPACE, FPOINT , and
FWRITEDIR intrinsic calls cannot reference this file. The
record pointer is set to EOF prior to each FWRITE. For disk
files, the EOF is updated after each FWRITE call.
Therefore, data cannot be overwritten.

4 Read/Write (I/O) access only, if the file's security
provisions allow both read and write access. If both read
and write access are not allowed, the access type is limited
to that specified in the security provisions (either read or
write). Any file intrinsic can be issued except FUPDATEfor
this file. The EOF is not changed; the record pointer starts
at zero. This option is not valid for message files.

5 Update access only, if the file's security provisions allow
both read and write access. If both read and write access
are not allowed, the access type is limited to that specified
in the security provisions (either read or write). All file
intrinsics can be issued, including FUPDATE, for this file.
The EOF is not changed; the record pointer starts at zero.
This option is not valid for message files.

6 Execute access only, if the file's security provisions allow
execute access. This allows read/write access to any loaded
file. The program must be running in privileged mode to
specify execute access. This option is not valid for message
files.

7 Execute-Read access only, if the file's security provisions
allow execute access. This allows only read access to a
Chapter 2 25

Creating A File
The HPFOPEN Intrinsic
loaded file. The program must be running in PM to specify
execute-read access. This is changed to execute access for
KSAM, CIR, and RIO files. Not valid for message files.

8 Reserved for MPE/iX. No access, opens the file or directory
without any access checking. A process must be executing
in system code to use this access type.

9 Directory read access, opens a directory for directory read
access. Directories can only be opened for no access or
directory read access. Files cannot be opened for directory
read access.

FIFO files should be opened for Read Access Only (0) or Write Access Only
(1). Other access types can cause unexpected results to occur.

12/I32 Dynamic locking:

Passes a value enabling/disabling file locking for the file. When specified,
the FLOCK and FUNLOCK intrinsics can be used to dynamically
permit/restrict concurrent access to a disk file by other processes at
specified times.

The following values are valid:

0 Disallow dynamic locking/unlocking

1 Allow dynamic locking/unlocking

Default: 0

The process can continue this temporary locking/unlocking until it closes
the file. If several accessors are sharing the file, they must all specify, or
not specify, this option. For example, if a file is opened with the dynamic
locking option enabled, and a subsequent accessor tries to open the file
with dynamic locking disabled, that subsequent attempt to open fails.

Dynamic locking/unlocking is possible through the equivalent of a global
resource identification number (RIN) assigned to the file and temporarily
acquired by HPFOPEN.

Accessors that have opened a file with the dynamic locking option enabled
must access the file through the FLOCK and FUNLOCK intrinsics to gain
exclusive access to the file. Since the use of these intrinsics is
discretionary, however, all accessors must agree to use FLOCKand FUNLOCK
when writing to a file to guarantee exclusive access. File locking is advised,
but is not mandated by MPE/iX.

Lock access must be at the account, group, and file levels for HPFOPEN to
grant this option. (Lock access is available if lock, execute, append, or
write access is set at these levels.) This option is ignored for files not
residing on disk.

This itemnum may only be specified with the disallow dynamic locking
value (0) when used with directories.

(ASC) Not used for asynchronous devices.
26 Chapter 2

Creating A File
The HPFOPEN Intrinsic
13/I32 Exclusive:

Passes a value indicating continuous exclusive access to the file, from open
to close. Use this option when performing a critical operation (for example,
updating the file).

The following values are valid:

0 If itemnum =11 specifies read only access, read-share
access takes effect. Otherwise, exclusive access takes
effect. Regardless of which access option was selected,
FFILEINFO reports zero. A zero (default) value for the
itemnum specifies that if the access type is read, directory
read, or no access (itemnum 11 equal to 0, 8, or 9) then
shared access takes effect; otherwise exclusive access
takes effect.

1 Exclusive access. After the file is opened, any additional
HPFOPEN/FOPEN requests for this file, whether issued by
this process or another process, are prohibited until this
process issues the FCLOSE request or terminates. If any
process is already accessing this file when an
HPFOPEN/FOPEN call is issued with exclusive access
specified, an error status is returned to the process. If
another HPFOPEN/FOPEN call is issued for this file while
exclusive access is in effect, an error code is returned to
the process that issued that HPFOPEN/FOPENcall. Request
exclusive access only if the lock access mode is allowed by
the security provisions for the file. For message files,
specifying this value means that there can be only one
reader and one writer.

Exclusive access cannot be used with directories.

2 Read-Share access (semi-exclusive access). After the file is
opened, concurrent write access to this file through
another HPFOPEN/FOPEN request is prohibited, whether
issued by this process or another process, until this
process issues the FCLOSE request or terminates. A
subsequent request for the read/write or update
itemnum =11 obtains read access. However, other types of
read access are allowed. If a process already has write
access to the file when this HPFOPEN call is issued, an
error code is returned to the calling process. If another
HPFOPEN/FOPEN call that violates the read-only
restriction is issued while read-share access is in effect,
that call fails and an error code is returned to the calling
process. You can request read-share access only if you are
allowed the lock access mode by the security provisions for
the file. For message files, specifying this value means that
there can be multiple readers, but only one writer.

3 Share access. After the file is opened, this permits
Chapter 2 27

Creating A File
The HPFOPEN Intrinsic
concurrent access to this file by any process, in any access
mode, subject to other basic security provisions in effect.
For message files, specifying this value means that there
can be multiple writers and one reader.

Default: 0

(ASC) This option is ignored for devices.

FIFO files should be opened for Share Access (3). Other exclusive accesses
to file will cause unexpected results to occur.

14/I32 Multiaccess:

Passes a value indicating how the file's record pointer is to be shared. This
option is useful for sharing standard input devices where there is some
natural sequence of access to the file. This option permits processes located
in different jobs or sessions to open the same file and share that file's
record pointer.

The following values are valid:

0 No multiple process access allowed. A unique record
pointer is created for this access to the file. For message
files, the file system sets the multiaccess option to 2 when
a zero is specified for this option.

1 Intrajob multiprocess access allowed. A record pointer is
shared with all other opened files of the same name in the
same job/session who opened the file with itemnum =14 is
set to either 1 or 2.

2 Interjob multiprocess access allowed. A record pointer is
shared with all other opened files of the same name on the
system. This is the same as specifying the GMULTI option
in a FILE command.

Default: 0

Native byte stream access (see item 77) is opened regardless of the value of
this itemnum . This itemnum is also ignored for directories since it is not
applicable.

(ASC) Not used for asynchronous devices.

15/I32 Multirecord:

Passes a value indicating that individual read or write requests are not
confined to record boundaries.

The following values are valid:

0 Nonmultirecord mode (NOMULTI)

1 Multirecord mode (MULTI)

Default: 0

If the number of half words or bytes to be transferred (specified in the
28 Chapter 2

Creating A File
The HPFOPEN Intrinsic
length parameter of the read or write request) exceeds the size of the
physical record (that is, a block) that is referenced, the remaining half
words or bytes are taken from subsequent successive records until the
number specified by length has been transferred. For message (MSG) files
not accessed with itemnum =17 enabled, the file system sets this option to
zero. This option is available only if itemnum =46 is set to 1.

(ASC) This option is not used for printers.

16/I32 Nowait I/O:

Allows the accessor to initiate an I/O request and to have control returned
before the completion of the I/O. This option implies the inhibit buffering
option; if NOBUF is not specified, the file system does it. Multirecord access
is not available. This option is not available if the file is located on a
remote computer. When opening nonmessage files, the process must be
running in PM (execution level 2) to specify this option. Set itemnum =29 to
3 if the file is to be accessed while in user mode (execution level 3).

The following values are valid:

0 Nowait I/O not in effect

1 Nowait I/O in effect

Default: 0

Directories may not be opened using Nowait I/O (1).

17/I32 Copy mode:

Passes a value that determines if any file should be treated as a standard
sequential file so it can be copied by logical record or physical block to
another file.

Byte stream files and directories are accessed using normal access (0)
regardless of the value specified for this itemnum .

The following values are valid:

0 The file is accessed as its own file type (for example, a
message file is treated as a message file).

1 The file is to be treated as a standard (STD) file with
variable-length records. For message files, this allows
nondestructive reading of an old message file at either the
logical record or physical block record level. Only
block-level access is permitted if the file is opened with
write access. This prevents incorrectly formatted data
from being written to the message file while it is
unprotected. To access a message file in copy mode, a
process must have exclusive access to the file.

(KSAM) only allowed for read access for KSAM XL or
KSAM64 files.

Default: 0
Chapter 2 29

Creating A File
The HPFOPEN Intrinsic
18/I32 Short-mapped:

Returns a short pointer to the beginning of the data area of the file. This
option maps the file into short pointer space. A short-mapped file can be 4
megabytes in length. The calling process can have up to 6 megabytes of
short-mapped files open at a time. Use the pointer as a large array of any
type to efficiently access the file.

NOTE SHORT MAPPED files are limited to 4 MB in size per file with a 6MB/process
limit. The system space that holds all SHORT MAPPED files is limited to
1GB with some space already used by the operating system. If a large number
of files or large amount of space is needed, consider opening the files
LONG-MAPPED (item number 21) or LARGE-MAPPED (item number 87)

A file previously opened normally (not mapped) or with the long-mapped
option is not accessible with the short-mapped option. If this option is
specified with the file already opened into long pointer space, an error
results.

A loaded program file or a loaded library file is not accessible with the
short-mapped option. A file cannot be loaded that is currently opened with
the short-mapped option.

Sharing of short pointer files is provided through normal file system
sharing mechanisms, for example, use of the exclusive option. With the
short-mapped file, all file system intrinsics, applicable to the file, can be
used. FREAD and FWRITE calls can be mixed with the short-mapped access.

Standard (STD) type disk files of fixed or undefined record length can be
accessed short-mapped with the access type option set to any value.
Standard type disk files of variable record length can be accessed
short-mapped only if the access type option is set to read-only access.
KSAM files can be accessed short-mapped only if the access type option is
set to read-only access and the copy mode option is set to 1.

Directories may not be opened using short-mapped access.

Default: No short pointer returned

(ASC) Not used for asynchronous devices.

19/I32 Record size:

Passes the size, in bytes, of the logical records in the file. Valid range is
dependent upon both storage format (ASCII or binary) and record format.
For fixed-length and undefined-length ASCII files, a record size can be
specified in the range 1..32,767. For variable-length ASCII files, and for
fixed-length, variable-length, and undefined-length binary files, a record
size can be specified in the range 1..32,766.

HPFOPEN rounds up odd values to the next highest even number
(equivalent to the nearest half word boundary) if the file is ASCII with
variable-length record format, binary with fixed-length, variable-length, or
undefined-length record format.
30 Chapter 2

Creating A File
The HPFOPEN Intrinsic
For example, if a record size of 105 is specified for a fixed-length binary
file, HPFOPEN sets the record size to 106; if a record size of 233 is specified
for a fixed-length ASCII file, the record size remains the same as it was
when specified.

The value specified for this itemnum is ignored when a byte stream file or
hierarchical directory is created. Byte stream files are created with a
logical record size of one byte (1). Hierarchical directories are created with
a logical record size of 32 bytes (32).

Default: 256

(ASC) For terminal and printer files, no rounding up occurs if a record size
consisting of an odd number of bytes is specified. The record size can be
different from the port configuration. The default is the configured record
size (normally 40 words for terminals, 66 words for printers).

20/CA Device name:

Passes the logical device number, in ASCII form, of a specific device. The
file is assumed to be permanent. If the device name option is specified, the
nonshareable device should be ready prior to the HPFOPEN call (otherwise,
an error results).

Only one of the following options can be in effect when a file is opened:

itemnum =20

itemnum =22

itemnum =23

itemnum =42

Default: Disk file located on the volume class DISC associated with the
group in which file resides.

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example:

 %devname% (% is the delimiter, devname is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

21/@64 Long-mapped:

Returns a long-pointer to the beginning of data of the file. This option
maps the file into long pointer space. A long-mapped file can be up to 4GB
-64KB or (4,294,901,760 bytes) in size. There is no limit to the number of
long-mapped files a process can have open at one time. The pointer can be
used as a large array of any type to access the file.

A loaded program file or a loaded library file is not accessible, and a file
cannot be loaded with this option.

Sharing long-pointer files is provided through normal file system file
Chapter 2 31

Creating A File
The HPFOPEN Intrinsic
sharing mechanisms. All file system intrinsics applicable to the file can be
used. FREAD and FWRITE calls can be mixed with this option.

Standard (STD) disk files of fixed or undefined record length can be
accessed with this option. Standard disk files of variable record length can
be accessed only if itemnum =11 (read-only access). Standard disk files of
variable record length and KSAM files can be accessed only if itemnum =11
(read-only access) and itemnum =17 (set to 1).

Directories may not be opened using long-mapped access.

Default: Not returned

(ASC) Not used for asynchronous devices.

22/CA Volume class:

Passes a character array representing a volume class name where the file
space is to be restricted. This option is applicable only at file creation.

A volume class is a subset of volumes within a volume set. The volume
class name must be a valid volume class name residing on the volume set
bound to the volume (the volume set is an attribute of the group in which
the file resides).

Only one of the following options can be in effect when a file is opened with
this option:

itemnum =20

itemnum =22

itemnum =23

itemnum =42

Default: A disk file located on the volume class DISC associated with the
group in which file resides.

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example:

 %volclass% (% is the delimiter, volclass is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

This itemnum may not be specified when creating hierarchical directories.

(ASC) Not used for asynchronous devices.

23/CA Volume name:

Passes a character array representing a volume name that restricts the
file specified to a specific volume. The volume must reside within the
volume set of the group where the file resides. This option is applicable
only at file creation.

Only one of the following options can be in effect when a file is opened with
32 Chapter 2

Creating A File
The HPFOPEN Intrinsic
this option:

itemnum =20

itemnum =22

itemnum =23

itemnum =42

Default: A disk file located on the volume class DISC associated with the
group in which the file resides.

This itemnum may not be specified when creating hierarchical directories.

(ASC) Not used for asynchronous devices.

24/I32 Density:

Passes the tape density required when writing to a tape file. This option is
applicable only when writing to a tape on a drive that supports more than
one density. When reading from a tape, the density of the tape overrides
this option

Default: The highest density available on the device opened.

(ASC) Not used for asynchronous devices.

25/CA Printer environment:

Passes the name of a file that contains a printer environment. This option
is valid only for specified printer devices.

If opening an Hewlett-Packard 268x page printer file, specify an optional
printing environment for the job. The printing environment is defined as
all of the characteristics of the printed page that are not part of the data
itself, including the page size, the margin width, the character set, the
orientation (horizontal or vertical), and the name of forms to use. If an
environment file is not specified, the file system selects a default printer
environment.

Any environment selected remains active until replaced by a new
environment, or until a call to FCLOSE (close the printer).

Default: No printer environment file specified

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example,

 %envname% (% is the delimiter, envname is the designator)

 fabcxyzf (f is the delimiter, abcxyz is the designator)

26/CA Remote environment:

Passes the node name of the remote computer where the file is located.
This option is used when referencing a file located on a remote computer.
Chapter 2 33

Creating A File
The HPFOPEN Intrinsic
Default: No node name passed (local file access)

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example,

 %envname% (% is the delimiter, envname is the designator)

 fabcxyzf (f is the delimiter, abcxyz is the designator)

A remote environment cannot be specified when creating or opening files
in the HFS name space or in byte stream files.

27/I32 Output priority:

Passes the output priority to be attached to the file for spooled output. This
option is applicable only to spooled devices. The output priority must be a
number between 1 (lowest priority) and 13 (highest priority), inclusive. If
the value specified is less than the current outfence set by the system
operator, file printing is deferred until the operator raises the output
priority of the file or lowers the outfence. This option can be specified for a
file already opened (for example, $STDLIST), where the highest value
supplied before the last FCLOSE takes effect. This option is ignored for
nonspooled devices.

Default: 8

28/CA Spooled message:

Passes a spooler message associated with a spoolfile. For example, a
message is passed that can be used for telling the system operator what
type of paper to use in the line printer. This message must be displayed to
the system operator and verified before the file can be printed on a line
printer. The number of characters allowed <=48; any quantity > 48
characters is truncated.

Default: No spooled message specified

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example:

 %message% (% is the delimiter, message is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

29/I32 Privileged access:

Passes a value that temporarily restricts access to the file number
returned from HPFOPEN to a calling process whose execution level is equal
to or less than the value specified in this option. This restriction lasts until
the file associated with the restricted file number is closed. Do not specify
a value less than the execution level of the calling process.

The following values are valid:
34 Chapter 2

Creating A File
The HPFOPEN Intrinsic
0 Privilege level zero (most privileged level)

1 Privilege level one

2 Privilege level two

3 Privilege level three (least privileged level)

Default: The execution level of the calling process

30/I32 Labeled tape type:

Passes a value that indicates tape label type information. This option is
valid only for labeled tapes. The following values are valid:

0 ANSI standard labels

1 IBM standard labels

Default: 0

(ASC) Not used for asynchronous devices.

31/CA Labeled tape expiration:

Passes the date of the expiration of the file or the date after which the
information in the file is no longer useful, in the format MM/DD/YY. The file
can be overwritten after this date. If the default is specified, the file can be
overwritten immediately. In a volume set, file expiration dates must
always be equal to or earlier than the date on the previous file.

Default: No expiration date specified

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example,

 %expdate% (% is the delimiter, expdate is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

(ASC) Not used for asynchronous devices.

32/CA Labeled tape sequence:

Passes one of the following character arrays indicating the position of the
file in relation to other files on the tape:

0 Causes a search of all volumes until the file is found.

1.. 9999 Specifies the position of the file relative to the current file
on the tape.

ADDF Causes the tape to be positioned so as to add a new file at
the end of the volume or last volume in a multivolume set.

NEXT Positions the tape at the next file on the tape. If this is not
the first HPFOPEN/FOPEN for the file and a rewind
occurred on the last close, then the position remains at the
beginning of the previous file.
Chapter 2 35

Creating A File
The HPFOPEN Intrinsic
Default: No array passed (no sequence indicated)

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example,

 %position% (% is the delimiter, position is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

(ASC) Not used for asynchronous devices.

33/I32 User labels:

Passes the number, in the range 0..254, of user-label records to be created
for the file. Applicable for new disk files only.

Default: 0

This itemnum may not be specified when creating hierarchical directories.

(ASC) Not used for asynchronous devices.

34I32 Spooler copies:

Passes a value in the range 1..127 indicating the number of copies of the
entire file to be produced by the spooling facility. This option is applicable
to spooled devices only. This option can be specified for a file already
opened (for example, $STDLIST), where the highest value supplied before
the last FCLOSE takes effect. The copies do not appear continuously if the
system operator intervenes or if a file of higher output priority becomes
READY before the last copy is complete. This option is ignored for
nonspooled output devices.

Default: 1

35/I32 File size:

Passes the maximum file capacity:

• For variable-length records, the capacity is expressed in blocks
(blockitem#=recordsize * blockfactor).

• For fixed-length and undefined-length records, the capacity is expressed
in logical records.

• The maximum file size for a standard byte stream file is 2 gigabytes
(2,147,483,648 bytes)

• The maximum file size for standard, fixed length record files and
KSAM64 files is 128 gigabyte (137,438,953,472 bytes

• The maximum file size for other standard and KSAM XL files is
4,294,901,759 bytes (4 gigabytes less 64K bytes).

• The maximum file size for a CM KSAM data file is 2 gigabytes and for a
CM KSAM key file, 2 gigabytes.

• The maximum file size of 500 megabytes, for RIO and circular is
36 Chapter 2

Creating A File
The HPFOPEN Intrinsic
dependent upon both the record size and the number of extents defined
for the file:

— For circular and RIO files, recsize =256 bytes and numextent =32.

This option is applicable only at file creation.

Default: 2 gigabytes

This itemnum may not be specified when creating hierarchical directories.

(ASC) Not used for asynchronous devices.

36/I32 Initial allocation:

Passes a positive integer value indicating the number of records to be
allocated to the file initially. This option is applicable only at file creation.

Default: 0

This itemnum may not be specified when creating hierarchical directories.

(ASC) Not used for asynchronous devices.

37/I32 File code:

Passes a value that can be used as a file code to identify the type of file.
This code is recorded in the file label and is accessible through the
FFILEINFO intrinsic. This option is applicable only at file creation (except
when opening an old file that has a negative file code).

If the program is running in user mode, specify a file code in the range
0..32,767 to indicate the file type being created. Programs running in user
mode can access files with positive file codes only.

If the program is running in privileged mode, specify a file code in the
range -32,768..32,767. Programs running in privileged mode can access
files with a file code in the range -32,768..32,767. If an old file is opened
that has a negative file code in its file label, the file code specified must
match the file code in the file label (otherwise, an error results).

File codes cannot be specified for hierarchical directories. Negative file
codes may be used only for files in MPE groups. A status.info of -315 is
returned when negative file codes are specified for files outside MPE
groups.

Default: 0

(ASC) Not used for asynchronous devices.

38/I32 File privilege:

Passes a value that determines a permanent privilege level to be
associated with a newly created file. This option permanently restricts file
access to a process whose execution level is less than or equal to the
specified value. A value cannot be specified for less than the execution
level of the calling process. This option is applicable only at file creation.

The following values are valid:
Chapter 2 37

Creating A File
The HPFOPEN Intrinsic
0 Privilege level zero (most privileged level)

1 Privilege level one

2 Privilege level two

3 Privilege level three (least privileged level)

Default: 3

39/I32 Access type:

Passes a value indicating how to use the file, either sequentially or
randomly. The file system uses this information to determine the most
efficient prefetching algorithm to improve the performance of the file
access.

The following values are valid:

0 Access the file sequentially

1 Access the file randomly

Default: 0

(ASC) Not used for asynchronous devices.

40/I32 Block factor:

Passes the number of logical records to be contained in one physical record
(block). This value is used to calculate the physical record size (block size)
for disk and magnetic tape files. Valid ranges are 1..32,767. This option is
applicable only at file creation.

For fixed-length records, this option specifies the actual number of records
in a block. For variable-length records, this option is interpreted as a
multiplier used to compute the block size (record size option * block
factor
option). For undefined-length records, this option is always one logical
record per block.

This itemnum may not be specified when creating hierarchical directories.

Default: 1 for files opened NOBUF; for files opened BUF, it is calculated by
dividing the specified records into the block size configured for the device.

(ASC) Not used for asynchronous devices.

41/I32 Name syntax:

Specifies which of three name semantics will be used to interpret the
filename passed to HPFOPEN:

0 MPE-escaped semantics

1 MPE-only sematics

2 POSIX semantics

MPE-escaped name semantics is the default value for this itemnum . The
selected name semantics do not apply to file equations specified through
38 Chapter 2

Creating A File
The HPFOPEN Intrinsic
itemnum 52 or system-defined file references specified through itemnum 5.

42/CA Device class:

Passes a device class where the file resides. The file system uses the device
class name to select a nonshareable device from a configured list of
available devices. The name can have a length of up to eight alphanumeric
characters, beginning with a letter (for example, TAPE). If a device class is
specified, the file is allocated to any available device in that class.

Only one of the following options can be in effect when a file is opened:

itemnum =20

itemnum =22

itemnum =23

itemnum =42

Default: A disk file located on the volume class DISC associated with the
group in which file resides.

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example:

 %devclass% (% is the delimiter, devclass is the designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

This itemnum may not be specified when creating hierarchical directories.
Hierarchical directories created on the system volume set is allocated on
any volume within the set. Hierarchical directories created on non-system
volume sets is allocated on the master volume.

43/record UFID:

Passes a unique file identifier (UFID) to provide a fast opening of an old
disk file. A UFID is a record structure, 20 bytes in length, that uniquely
identifies a disk file. Using this option avoids a directory search. Obtain
the UFID of an opened file by calling FFILEINFO . The UFID can then be
passed to HPFOPEN. The file represented by the UFID must be accessible to
the process calling HPFOPEN. (All file system security checks are made.)
New files cannot be opened with this option. If the file to be opened by the
UFID contains a lockword, use itemnum =2 to specify the file name with the
lockword.

Only files in the MPE name space may be opened by UFID. An attempt to
open a file outside the MPE name space by UFID results in a status.info
of -321 being returned. Only system code may open a file by UFID in the
POSIX name space.

Default: No UFID passed (a directory search is performed)

(ASC) Not used for asynchronous devices.
Chapter 2 39

Creating A File
The HPFOPEN Intrinsic
44/I32 Numbuffers:

Passes the number of buffers to allocate to the file. Ignored for standard
disk files. This option is useful only for slow devices (such as tapes) used in
a buffered mode. Not applicable for files representing interactive
terminals; a system-managed buffering method is always used.

The valid range for this option is dependent upon the file type:

• For standard and KSAM files, the valid range is 1..31.

• For circular and RIO files, the valid range is 1..16.

• For message files, the valid range is 2..16. (If a 1 is specified, the file
system sets this option to 2 and no error is returned.)

This option must not specify a number of buffers whose combined size
exceeds the physical capacity of the file.

This itemnum is ignored when creating hierarchical directories.

Default: 2

(ASC) Not used for asynchronous devices.

45/CA Fill character:

Passes two ASCII characters that determine what padding character to
use at the end of blocks or unused pages, and the padding used by
itemnum =53. Do not use delimiter characters for this option. The fill
character must be a 2 byte array. The first character only is used as the
padding character. The second character is reserved for future use. This
option is applicable only at file creation.

Default: Null characters for a binary file and ASCII blanks for an ASCII
file.

The default fill character for byte stream files is the null character. The fill
character is null for hierarchical directories regardless of the value
specified for this itemnum .

46/I32 Inhibit buffering:

Passes a value enabling/disabling automatic operataing systembuffering.
If NOBUFis specified, I/O is allowed to take place directly between the data
area and the applicable hardware device.

The following values are valid:

0 Allow normal buffering (BUF)

1 Inhibit buffering (NOBUF)

Default: 0

NOBUF access is oriented to physical block transfer rather than logical
record transfer. If NOBUF and a variable-length record structure are
specified in itemnum =6 and the file does not have a variable-length record
format, then the format is changed internally to an undefined-length
record format. When performing an FWRITE, set up the variable structure.
40 Chapter 2

Creating A File
The HPFOPEN Intrinsic
With NOBUFaccess, responsibility for blocking and deblocking of records in
the file belongs to the program. To be consistent with files built using
buffered I/O, records should begin on half word boundaries. When the
information content of the record is less than the defined record length,
you must pad the record with blanks if the file is ASCII, or with zeros if
the file is binary.

The record size and block size for files manipulated with NOBUF specified
follow the same rules as those files that are created using buffering. The
default blocking factor for a file created under NOBUF is one.

If a file is opened NOBUF without multirecord mode specified in
itemnum =15, then transfer a maximum of only one block of data per read
or write.

The end-of-file (EOF) marker, next record pointer, and record transfer
count are maintained in terms of logical records for all files. The number of
logical records affected by each transfer is determined by the size of the
transfer.

Transfers always begin on a block boundary. Those transfers that do not
transfer whole blocks leave the next record pointer set to the first record in
the next block. The EOF marker always points at the last record in the file.

For files you have opened NOBUF, the FREADDIR, FWRITEDIR, and FPOINT
intrinsics treat the recnum parameter as a block number.

Indicate non-RIO access to an RIO file by specifying the file NOBUF. Use the
physical block size from FFILEINFO to determine the maximum transfer
length.

For message files, the file system normally resets itemnum =46 to zero.
However, a message file can be opened with NOBUF if itemnum =17 is set to
1; this determines access to the file record-by-record or by block.

If writing to a message file, open it NOBUF if itemnum =17 to access the file
block-by-block.

Native byte stream access opens NOBUF(1) regardless of the value specified
for this itemnum . This itemnum is ignored for directories since a physical
block transfer interface is not provided for directories.

(ASC) Not used for asynchronous devices.

47/I32 Numextents:

Passes a value in the range 1..32 that determines the number of extents
for the file. If a value of 1 is specified, the file is created as one contiguous
extent of disk space. If a value greater than 1 is specified, a variable
number of extents (with varying extent sizes) is allocated on a need basis.
This option is applicable only at file creation.

(ASC) Not used for asynchronous devices.

Default: 1

This itemnum may not be specified when creating hierarchical directories.
Chapter 2 41

Creating A File
The HPFOPEN Intrinsic
48/I32 Reverse VT:

Passes a value indicating whether or not the given device name is to be
allocated on a remote machine. Specify the remote environment in the
same open request, using either the formal designator option or the remote
environment option. Reverse VT behaves nearly the same as a terminal
opened through remote file access, except that no session is required on
the remote machine.

The following values are valid:

0 No reverse VT

1 Reverse VT

Default: 0

49 Reserved for the operating system

50/I32 Final disposition:

Passes a value indicating the final disposition of the file at close time
(significant only for files on disk and magnetic tape). A corresponding
parameter in a FILE command can override this option, unless file
equations are disallowed with itemnum =9.

The following values are valid:

0 No change. The disposition remains as it was before the
file was opened. If the file is new, it is deleted by FCLOSE;
otherwise, the file is assigned to the domain it belonged to
previously. An unlabeled tape file is rewound. If the file
resides on a labeled tape, the tape is rewound and
unloaded.

1 Permanent file. If the file is a disk file, it is saved in the
system file domain. A new or temporary file on disk has an
entry created for it in the system (permanent) file
directory. If a file of the same name already exists in the
directory, an error code is returned at close time and the
file remains open. If the file is a permanent file on disk,
this domain disposition has no effect. If the file is stored on
magnetic tape, the tape is rewound and unloaded.

2 Temporary job file (rewound). The file is retained in your
temporary (job/session) file domain and can be requested
by any process within your job/session. If the file is a disk
file, the uniqueness of the file name is checked. If a file of
the same name already exists in the temporary file
domain, an error code is returned at close time and the file
remains open. When a file resides on unlabeled magnetic
tape, the tape is rewound. However, if the file resides on
labeled magnetic tape, the tape is backspaced to the
beginning of the presently opened file.

3 Temporary job file (not rewound). This value has the same
42 Chapter 2

Creating A File
The HPFOPEN Intrinsic
effect as specifying final disposition option itemnum =2,
except that tape files are not rewound. In the case of
unlabeled magnetic tape, if the FCLOSEis the last done on
the device (with no other FOPEN/HPFOPEN calls
outstanding), the tape is rewound and unloaded. If the file
resides on a labeled magnetic tape, the tape is positioned
to the beginning of the next file on the tape.

4 Released file. The file is deleted from the system.

5 Convert a permanent file to a temporary file. The file is
removed from the permanent file directory and placed in
the temporary file directory. (Privileged mode capability is
required to use this option.)

Default: 0

For more information on file disposition at close time, refer to the
description of the FCLOSE intrinsic.

(ASC) Not used for asynchronous devices.

51/String Pascal XL string:

Passes a formal file designator that follows MPE/iX file naming
conventions, using the Pascal XL STRING type format. This option is
identical to itemnum =2 except for the type of item. No delimiters are
needed.

Default: No string passed

When you use HPFOPENto open a file, you may use either itemnum =2 or you
may use itemnum =51; you may not use both.

As the default, the formal file designator is interpreted according to
MPE-escaped semantics. To choose another syntax, use itemnum 41.

The file referred to by formaldesig can be either an MPE file (i.e., one
that uses MPE syntax) or it can follow HFS syntax. If formaldesig follows
MPE syntax, the file name can include password, group, and account
specifications. The file name can backreference a file equation and
optionally be preceded by an asterisk. If formaldesig follows HFS syntax,
the file name must start with either a dot (.) or a slash (/).

The file referred to by formaldesig may reside either in an MPE group or
in an HFS directory. For files located in HFS directories, traverse directory
entries (TD) access is required to all directories specified in formaldesig .
If there is no TD access, HPFOPEN fails and a value of -180 is returned in
the status.info parameter. If you are using HPFOPEN to create a file or
hierarchical directory and you lack of create directory entry (CD) access,
status .info will return a value of -179.

52 File equation string:

Passes a character string that matches the file equation specification
syntax exactly. (Refer to the FILE command in the MPE/iX Commands
Chapter 2 43

Creating A File
The HPFOPEN Intrinsic
Reference Manual.) This option allows the specification of options available
in the FILE command.

The formaldesig parameter and filereference parameter can contain
embedded command interpreter variables and expressions. However, there
cannot be more than 8-characters in each of these components (filename,
lockword, groupname, accountname) including the command
interpreter variable and expression characters.

Default: No string passed

A character placed in the first element designates the delimiter used by
HPFOPEN to search for the end of the character array. The delimiter can
appear again only following the last valid character of the character array,
for example:

 %fileequation% (% is the delimiter, fileequation is the
designator)

fabcxyzf (f is the delimiter, abcxyz is the designator)

The formaldesignator in the file equation string must belong to the MPE
name space. The filerefence in the file equation string is interpreted
using MPE-escaped semantics. Both the formaldesignator and the
filereference in the file equation string may also contain embedded
command interpreter variables or expressions.

53/I32 ASCII/binary:

Passes a value indicating whether ASCII or binary code is to be used for a
new file when it is written to a device that supports both codes. For disk
files, this affects padding that can occur when issuing a direct-write
intrinsic call (FWRITEDIR) to a record that lies beyond the current logical
end-of-file indicator. By default, magnetic tape and files are treated as
ASCII files. This option is applicable only at file creation.

The following values are valid:

0 Binary file

1 ASCII file

Default: 0

(ASC) Not used for asynchronous devices.

54/REC KSAM parm:

Passes a record that defines the keys for a new KSAM file.

(KSAM XL and KSAM64) For KSAM XL and KSAM64 files, refer to the
parm parameter discussion in the Using KSAM XL.

(KSAM/3000) The record must be at least 34 bytes in size. For details,
refer to the ksamparam parameter discussion in the KSAM/3000 Reference
Manual.

Default: No record passed
44 Chapter 2

Creating A File
The HPFOPEN Intrinsic
(ASC) Not used for asynchronous devices.

55 Reserved for the operating system

56/I32 Object class:

Passes a user object class number, in the range 0..10, that is associated
with the file.

Default: Determined by the file code for system and subsystem files, and
by the file type and record type for normal user files.

57 Reserved for the operating system

58 Reserved for the operating system

59 Reserved for the operating system

60 Reserved for the operating system

61 Reserved for the operating system

64/BA Access Control Definition:

Passes a byte array defining the access control definition (ACD) to be
attached to a new file. The byte array has a length of 1 to 279 bytes. Unlike
other HPFOPEN options that expect a delimiter at both the beginning and
the end of the byte array, this option only expects a trailing carriage return
character as a delimiter, for example,

 (X:@.@;R,W:MGR.SYS;RACD:JOHN.SMITH) <cr>

Where, the <cr> is the carriage return character (13, 0x0D).

The ACD assigned to a newly created file or directory may be different
from the ACD specified as the value of this itemnum . If a process' file mode
creation mask (cmask) is initialized, it modifies the ACD.

65-76 Reserved for the operating system

77/I32 Data format

Allows the caller to select a different format to view the data in the file.
The current valid values for this item are:

0 Use the standard record based view of accessing the file.
This is the default value for all opens. For conventional
files, the file is record based. For directories, the standard
non-privileged directory information is returned when the
HPDIRREADintrinsic is called. When this value is specified
with a byte stream file, access to the file is emulated to
appear like a buffered variable record file. This is the
default.

1 When this value is specified, calls to HPDIRREAD returns
privileged directory information including the UFID and
link ID of the entry. Note that this value is only applicable
to directory files. This value is ignored for all other file
types. In order to specify this value, the caller must be
Chapter 2 45

Creating A File
The HPFOPEN Intrinsic
executing in system code.

2 When this value is specified, the system attempts to let
the caller access the file as a native byte stream file. Byte
stream emulation is supported for ordinary fixed and
variable length record files as well as for files with the byte
stream record type. If this value is requested against a file
type that does not support byte stream access, an error is
returned.

Specifying any value other than the values described above will result in
an error.

79/I32 POSIX Non-Block Mode

Specifying this itemnum allows the caller to open a file with the POSIX
Non-Block mode. This item is useful for a subset of files (including pipes
and FIFO's) and is ignored for all other files. The behavior of the
HPFOPEN call with this option is dependent on the type of file being
opened.

The current valid values for this item are:

0 This value indicates that Non-Block mode is off. This is the
default value.

1 This value indicates that Non-Block mode is on.

Specifying any value other than those described above will result in error.8

80/I32 Reserved for the operating system.

81/I32 Symbolic link option:

This itemnum allows the caller to specify different options when traversing
through or opening a symbolic link. The valid values for this itemnum are
described below:

0 Follow symbolic links. This is the default value for this
option. When a symbolic link is encountered it is traversed
according to the path specified in the symbolic link.

1 Does not follow symbolic links. If the final component of a
path is a symbolic link, then no traversal is done and the
symbolic link is opened. Symbolic links that occur prior to
the last component is traversed.

Specifying any value other than those above will result in error.

82-86 Reserved for MPE/iX

87/@64 Large Mapped Access

Returns a pointer to the beginning of file data. This option can be used on
any sized file, but is the only means by which to open files larger than 4 gb
-64kb (4,294,901,760 bytes) for mapped access. Large mapped access
shares the same constraints on file types as the long mapped option
(option 21).
46 Chapter 2

Creating A File
The HPFOPEN Intrinsic
Optional parameters you can use to specify file access and device control characteristics
are described elsewhere in this manual. For more details on the HPFOPENintrinsic, refer to
the MPE/iX Intrinsics Reference Manual.
Chapter 2 47

Creating A File
The FOPEN Intrinsic
The FOPEN Intrinsic
The FOPENintrinsic is the other programmatic interface for supplying the file system with
information about your file. Its syntax is:

filenum := FOPEN (formaldesignator , foptions , aoptions ,
recsize , device , formmsg , userlabels ,
blockfactor , numbuffers , filesize ,
numextents , initialloc , filecode);

The following table shows the correspondence between the optional parameters of FOPEN
and HPFOPEN that you can use to specify a file's physical characteristic at file creation. For
more details on using the FOPEN intrinsic, refer to the MPE/iX Intrinsics Reference
Manual.

Table 2-1. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item

filenum (functional return) filenum (parameter)

formaldesig 2, formaldesig

foption:

Bits (14:2) domain
Bit (13:1) ASCII/binary
Bits (10:3) file designator
Bits (8:2) record format
Bit (7:1) carriage-control
Bit (6:1) labeled tape
Bit (5:1) disallow file equation
Bits (2:3) file type

3, domain
53, ASCII/binary
5, file designator
6, record format
7, carriage-control
8, labeled tape
9, disallow file equation
10, file type

aoption:

Bits (12:4) access type
Bit (11:1) multirecord
Bit (10:1) dynamic locking
Bits (8:2) exclusive
Bit (7:1) inhibit buffering
Bits (5:2) multiaccess mode
Bit (4:1) nowait I/O
Bit (3:1) file copy

11, access type
15, multirecord
12, dynamic locking
13, exclusive
46, inhibit buffering
14, multiaccess mode
16, nowait I/O
17, file copy

recsize 19, record size
48 Chapter 2

Creating A File
The FOPEN Intrinsic
device 20, device name
22, volume class
23, volume name
24, density
25, printer environment
26, remote environment
42, device class
48, reverse VT

formmsg 8, labeled tape label
28, spooled message
30, labeled tape type
31, labeled tape expiration
32, labeled tape sequence
54, KSAM parms

userlabels 33, user labels

blockfactor 40, block factor

numbuffers:

Bits (11:5) numbuffers
Bits (4:7) spooler copies
Bits (0:4) output priority

44, numbuffers
34, spooler copies
27, output priority

filesize 35, filesize

numextent 47, numextent

initialloc 36, initial allocation

filecode 37, filecode

Table 2-2. Determining a File's Physical Characteristics Using FOPEN

Characteristic Parameter Description Default Value

Record Structure foptions : ASCII/binary option
foptions : record format option
foptions : carriage-control option
recsize parameter

Binary
Fixed-length
None
256 bytes

Table 2-1. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item
Chapter 2 49

Creating A File
The BUILD Command
The BUILD Command
The BUILD command creates a file in much the same way as the HPFOPEN/FOPEN intrinsic,
except that HPFOPEN/FOPEN is used within a program and BUILD is entered as an MPE/iX
command.

The parameters for BUILD have meanings and applications that are similar to the
corresponding parameters for HPFOPEN/FOPEN. For more information about how to use the
BUILD command, refer to the MPE/iX Commands Reference Manual.

File Structure foptions : file type option
device parameter
blockfactor parameter
filesize parameter
initialloc parameter
numextents parameter

Standard
Volume class DISC
128/recsize rounded
down
4 gigabytes
0 extents
A variable number of
extents is allocated

File Identification userlabels parameter
filecode parameter

No user labels
filecode = 0

Table 2-2. Determining a File's Physical Characteristics Using FOPEN

Characteristic Parameter Description Default Value
50 Chapter 2

Creating A File
The FILE Command
The FILE Command
The FILE command is used to determine how a file will be accessed. You may use FILE to
describe any of the characteristics available with HPFOPEN/FOPENor BUILD, but you cannot
actually create a file with the FILE command. While HPFOPEN/FOPEN and BUILD
physically allocates space for a file and define its characteristics, the FILE command may
only define how a file will be accessed at run time.

To be effective, a FILE command must be issued before your file is opened; it takes effect
when the file is opened. A FILE command remains in effect until the job or session ends,
until it is canceled with a RESET command, or until it is overridden by another command
for the same file. Thus, if you enter a FILE command equating the formal designator
DATAFL to the actual designator DISCFILE (indicating a disk file) and then run three
programs that reference DATAFL, all three programs will access the file DISCFILE . If you
wish to define other characteristics for the file, simply issue another FILE command; if you
want to nullify the FILE command completely so that the formal designator has the
characteristics originally specified by the program that is using it, issue a RESETcommand.

For example, suppose that you run two programs, both referencing a new temporary file
named DFILE located on disk. Before you un the first program, you want to redefine the file
so that it is output to the standard list device. To do this, you would issue a FILE command
equating DFILE with the actual designator $STDLIST . In the second program, the file is
again to be a temporary file on disk. You issue a RESETcommand so that the specifications
supplied by the second program (rather than those in the FILE command) apply.

 JOB JNAME,UNAME.ANAME
 .
 .
 .
 FILE DFILE=$STDLIST
 RUN PROG1
 .
 .
 .
 RESET DFILE
 RUN PROG2
 .
 .
 .

A comparison of the parameters for FILE , FOPEN, and HPFOPEN is given in Table 2-3. on
page 52 For more information about using the FILE command, refer to the MPE/iX
Commands Reference Manual.
Chapter 2 51

Creating A File
The FILE Command
Table 2-3. FILE, FOPEN, and HPFOPEN Parameters

CHARACTERISTIC :FILE\
PARAMETER

FOPEN\
PARAMETER

HPFOPEN\
PARAMETER

Formal file
designator

formal
designator

formaldesignator formaldesignator
option
(itemnum=2)

Actual file designator filereference
$NEWPASS
$OLDPASS
$NULL
$STDIN
$STDINX
$STDLIST

Default file
designator foption
(Bits 10:3)

designator option
(itemnum=5)

Domain NEW
OLD
OLDTEMP

Domain foption
(Bits 14:2)

domain option
(itemnum=3)

Logical record size recsize recsize record size option
(itemnum=19)

Block/buffer size blockfactor blockfactor block factor
option
(itemnum=40)

Record format F
V
U

Record format
foption (Bits 8:2)

record format
option
(itemnum=6)

ASCII/Binary Code ASCII
Binary

ASCII/Binary
foption (Bits 13:1)

ASCII/Binary option
(itemnum=53)

Carriage-control
characters supplied
in FWRITE

CCTL
NOCCTL

Carriage-control
foption (Bits 7:1)

carriage-control
option
(itemnum=7)

Access mode IN
OUT
OUTKEEP
APPEND
INOUT
UPDATE

Access-type aoption
(Bits 12:4)

access type option
(itemnum=11)

Number of buffers numbuffers
NOBUF

numbuffers (Bits
11:5)

numbuffers option
(itemnum=44)

Exclusive/Share
access

EXC
SEMI
SHR

EXCLUSIVE access
aoption (Bits 8:2)

exclusive option
(itemnum=13)
52 Chapter 2

Creating A File
The FILE Command
Multi access MULTI
NOMULTI
GMULTI

Multiaccess mode
aoption (Bits 5:2)

multiaccess option
(itemnum=14)

Multirecord MR
NOMR

Multirecord aoption
(Bits 11:1)

multirecord option
(itemnum=15)

File disposition DEL
SAVE
TEMP

N/A final disposition
option
(itemnum=50)

Device class name or
logical device number

device device device class option
(itemnum=42)
device name option
(itemnum=20)

Output priority outputpriorit
y

numbuffers (Bits
0:4)

output priority
option
(itemnum=27)

NOWAIT
input/output

NOWAIT
WAIT

NOWAIT I/O
aoption (Bits 4:1)

nowait I/O option
(itemnum=16)

Number of copies numcopies numbuffers (Bits
4:7)

spooler copies option
(itemnum=34)

File code filecode filecode filecode option
(itemnum=37)

File capacity numrec filesize filesize option
(itemnum=35)

Total number of
extents

numextents numextents numextents option
(itemnum=47)

Extents initially
allocated

initalloc initalloc initial allocation
option
(itemnum=36)

FILE command
prohibition

N/A Disallow FILE
equation foption
(Bits 5:1)

disallow file
equation option
(itemnum=9)

Dynamic file locking LOCK
NOLOCK

Dynamic locking
aoption (Bits 10:1)

disallow file
equation dynamic
locking option
(itemnum=12)

Forms-alignment
message

FORMS formmsg spooled message
option
(itemnum=28)

Table 2-3. FILE, FOPEN, and HPFOPEN Parameters

CHARACTERISTIC :FILE\
PARAMETER

FOPEN\
PARAMETER

HPFOPEN\
PARAMETER
Chapter 2 53

Creating A File
The FILE Command
User labels for disk
file

N/A userlabels user labels option
(itemnum=33)

File labels for
magnetic tape files

LABEL
NOLABEL

Labeled tape
foption (Bit 6:1)

labeled tape label
option
(itemnum=8)

File type STD CIR
MSG RIO

file type foption
(Bits 2:3)

file type option
(itemnum=10)

Mapped access
method

N/A N/A short mapped option
(itemnum=18)
long mapped option
(itemnum=21)
large mapped option
(itmenum=87)

Restrict file access
according to
execution level

N/A N/A privileged access
option
(itemnum=29)
file privilege
option
(itemnum=38)

Determine optimum
pre-fetch algorithm

N/A N/A will access option
(itemnum=39)

Fast file open N/A N/A UFID option
(itemnum=43)

Fill character for
record padding

N/A N/A fill character option
(itemnum=45)

Formal file
designator Pascal/iX
string type

N/A N/A Pascal/iX string
option
(itemnum=51)

File equation string
for file open

N/A N/A file equation string
option
(itemnum=52)

KSAM key file record N/A KSAM param KSAM parm option
(itemnum=54)

User object class
number

N/A N/A object class option
(itemnum=56)

Table 2-3. FILE, FOPEN, and HPFOPEN Parameters

CHARACTERISTIC :FILE\
PARAMETER

FOPEN\
PARAMETER

HPFOPEN\
PARAMETER
54 Chapter 2

Creating A File
Summary of Overrides
Summary of Overrides
If a FILE command has been entered that contradicts some of the HPFOPEN/FOPEN
parameters for a file, which takes precedence? What happens if some parameters are left
out? The file system maintains a hierarchy of overrides for just such situations (illustrated
in Figure 2-1.):

Figure 2-1. File System Hierarchy of Overrides

Since the physical characteristics of a file cannot be changed after it has been created, it
makes sense that the file label would take precedence over all commands. Other
determinants are effective only when a new file is being created.

NOTE FILE commands and HPFOPEN/FOPEN calls cannot alter physical
characteristics of an existing file.
Chapter 2 55

Creating A File
Specifying a Record Format
Specifying a Record Format
A file can contain records written in only one of three formats: fixed-length,
variable-length, and undefined-length. You can specify the format that you want for your
records, either with the HPFOPEN/FOPENintrinsic or the MPE/iX BUILD or FILE commands.
Files residing on disk or magnetic tape may contain records in any of the three formats.
For files on other devices, the file system overrides any specifications that you supply, and
treats the records as undefined-length records.

Fixed-length records

When you create a file and request fixed-length records, all the records in the file will be
the same size. The file system knows how much space has been allocated for each record,
and that all of the space is to be available for data.

Figure 2-2. depicts a file with fixed-length records. A record size of n bytes has been
specified. Note that each record is the same size and contains the same amount of
information.

Figure 2-2. Fixed-Length Records

Variable-length records

There may be a time when you want a disk file in which the logical records need not be the
same size. In this case, you can request that the format of the records be variable-length.
The file system knows the size of each logical record because each record is preceded by a
two-byte (16-bit) counter giving the length of the record in bytes; thus, the data for each
56 Chapter 2

Creating A File
Specifying a Record Format
record is accompanied by an indication of its length. When you build a file containing
variable-length records, specify a record size at least large enough to accommodate your
longest record.

Figure 2-3. depicts a file with variable-length records. The byte count preceding the first
byte of each record gives its record's length.

Figure 2-3. Variable-length Records

Undefined-length records

When your file contains undefined-length records, the file system does not know the
amount of good data in any given logical record. The data length is "undefined."
Undefined-length records are especially useful when you are reading tapes of unknown
record length produced on other systems.

The file system knows the maximum room available in each record because the same
amount of space is allocated for each record; however, the data in the records may vary in
length, so MPE/iX pads the unused space with "filler" instead of good data. The file system
supplies this filler during writes to the file when the length of the data being written is less
than the maximum record length. The file system cannot distinguish between valid data
and filler. When you read data from a file you must be able to distinguish between the valid
Chapter 2 57

Creating A File
Specifying a Record Format
data and the filler.

Figure 2-4. depicts a file with undefined-length records. When data does not fill the space
allocated, filler occupies the unused space.

Figure 2-4. Undefined-Length Records

The three record formats, fixed-length, variable-length, and undefined-length are
summarized in Table 2-4. on page 58

Table 2-4. Comparison of Logical Record Formats

Fixed-Length Variable-Length Undefined-Length

Data length known to file
system.

Data length known to file
system.

Data length not known to file
system.

Same length for all records. Record length varies. Same length for all records.

Record space contains data
only.

Record space contains data
plus byte count.

Record space contains data
plus filler.

Request actual size for
records.

Request maximum size for
records.

Request maximum size for
records.
58 Chapter 2

Creating A File
Specifying a File Type
Specifying a File Type
When you create, a file the file system imposes a structure and access method on the
contents of the file. The file system allows you to access the records in a file only in the
manner dictated by the file type that you specified at file creation. Depending upon your
intended use of the file, you can specify four special file types in addition to the standard
file type: KSAM files, RIO files, circular files, and message files.

Standard files

By far the most common type of file is the standard file, a structure comprised simply of a
group of records beginning with record 0 and ending with record n - 1 (where n is the
maximum specified in the filesize option). Examples of standard files are Editor files
and program files. A standard file is the default file type created when you first open a file.

KSAM files

The keyed sequential access method (KSAM) is a method of organizing records in a file
according to the content of key fields within each record. Every record in a KSAM file
contains a primary key field whose contents determine the primary logical sequence of
records in the file. Other key fields can also be defined so that the file can be sequenced in
alternate orders. The order in that the records are physically written to the file, the
chronological order, can be the same as the primary key sequence or it can be unrelated to
any logical sequence.

KSAM files are not dealt with in this manual. Instead, the creation and application of
KSAM files are discussed in great detail in the KSAM/3000 Reference Manual and Using
KSAM/XL.

RIO files

RIO is a random access method that permits individual file records to be deactivated.
These inactive records retain their relative position within the file. RIO files are intended
for use primarily by COBOL programs; however, you can access these files by programs
written in any language.

RIO files may be accessed in two ways: RIO access and non-RIO access. RIO access ignores
the inactive records when the file is read sequentially using the FREADintrinsic, and these
records are transparent to you; however, they can be read by random access using
FREADDIR. They may be overwritten both serially and randomly using FWRITE, FWRITEDIR,
or FUPDATE. With RIO access, the internal structure of RIO blocks is transparent.

Circular files

Circular files are wrap-around structures that behave as standard sequential files until
they are full. As records are written to a circular file, they are appended to the tail of the
file; when the file is filled, the next record added causes the block at the head of the file to
be deleted and all other blocks to be logically shifted toward the head of the file. Circular
Chapter 2 59

Creating A File
Specifying a File Type
files may not be simultaneously accessed by both readers and writers. When the file has
been closed by all writers, it may be read; a reader takes records from the circular file one
at a time, starting at the head of the file.

Circular files are particularly useful as history files, when a user is interested in the
information recently written to the file and is less concerned about earlier material that
has been deleted. These history files are frequently used as debugging tools. Diagnostic
information may be written to the file, and the most recent and relevant material can be
saved and studied.

Creating a circular file is similar to creating a message file. When a user process opens a
new file and indicates that it will be a circular file, the HPFOPEN/FOPENintrinsic creates the
new circular file. In order to create a circular file with the BUILD command, use the CIR
keyword; for example, to build a circular file named CIRCLE, enter:

 BUILD CIRCLE;CIR

A new circular file may also be specified with a FILE command. Use the CIR keyword for a
new file:

 FILE ROUND, NEW; CIR

A circular file named ROUND is indicated.

When you perform a LISTFILE,2 command, circular files are identified by an "O" in the
TYP field; CIRCLE is identified here:

 FILENAME CODE -----------LOGICAL RECORD----------- ----SPACE----

 SIZE TYP EOF LIMIT R/B SECTORS #X MX

 CIRCLE 256B FBO 0 1023 1 0 0 8

Message files

Message files are used by interprocess communication (IPC), a facility of the file system
that permits multiple-user processes to communicate with one another in an easy and
efficient manner. Message files act as first-in-first-out queues of records, with an entry
made by FWRITEand a deletion made by FREAD; one process may submit records to the file
with the FWRITEintrinsic while another process takes records from the file using the FREAD
intrinsic.

Message files are not dealt with in this manual. Instead, the creation and application of
message files are discussed in great detail in the IPC Communication Programmer's
Guide.
60 Chapter 2

Creating A File
Specifying Record Size
Specifying Record Size
You can specify the size of the records in your file by using the BUILD (for disk files) or FILE
commands, or the HPFOPEN/FOPEN intrinsic; however, the interpretation of the requested
record size can be affected by the record structure and data format chosen as well as the
device for the file.

NOTE Within MPE/iX and in various subsystems, the record size for an ASCII file is
usually identified in terms of bytes (8 bits) and the record size for a binary file
is identified in terms of half-words (16 bits). This convention is a matter of
convenience only, since most users think of ASCII files as being character
oriented.

When you specify the record size for a fixed-length ASCII file, the record size determined
for the file is the same as that which you specified for it. The maximum record size allowed
for fixed-length ASCII files is 32767 bytes.

To maintain compatibility with pre-900 Series HP 3000 computer systems, the following
file types always begin records on half-word boundaries:

• ASCII files with variable-length or undefined-length record format

• binary files with fixed-length, variable-length, or undefined-length record format

For these file types, when you specify an odd-byte record size, the file system rounds up the
value to an even number to reflect the fact that these records always begin on half-word
boundaries. The maximum record size you can specify for these file types is 32766 bytes.

When the file is a binary file or a variable-length ASCII file, the extra byte is available to
be used for data. Figure 2-5. illustrates the placement of odd-bytes records and the
disposition of the added byte.
Chapter 2 61

Creating A File
Specifying Record Size
Figure 2-5. Record Placement for ASCII Files

Rather than specify your own record size, you can accept the default record size for the
device that you are using. Default record sizes are listed in Table 2-5. on page 62 Note that
subsystem defaults may be different from MPE defaults; for example, the Editor default
may be 72 or 80 bytes (depending on text format) while the MPE standard default is the
record size configured for the device.

Table 2-5. Standard Default Record Sizes

DEVICE RECORD SIZE (BYTES)

Disk 256

Magnetic Tape Unit 256

Terminals (most cases) 80

Line Printer 132

Plotter 510

Programmable Controller 256

Synchronous Single-Line Controller 256
62 Chapter 2

Creating A File
Specifying Disk Volume Restrictions
 Specifying Disk Volume Restrictions
MPE/iX makes a distinction between the device and the media. The device is the disk drive
and the media is the disk pack. The MPE/iX volume management facility controls the
media and divides the media into three entities:

• Volume set, a set of related disk packs assigned to the group in which you create your
file.

• Volume class, a subset of a volume set. A volume can be assigned to more than one
volume class.

• Volume, a single disk pack. Each volume on a system is a member of a volume set.

By default, when you create (or otherwise access) a disk file and data is posted to disk, new
extents are placed wherever space is available on any volume within the volume class DISC
assigned to the group in which your file resides.

You can use either the volume name option or the volume class option of HPFOPEN, or
the device parameter of FOPEN, to specify either a volume name or a volume class name,
thus restricting the placement of your file's extents to either the specified volume or to the
specified volume class within the volume set.

The device parameter of FOPENalso allows you to specify a volume name or a volume class
in an additional manner, due to the necessity of maintaining FOPEN compatibility with
MPE V/E based computer systems. If an LDEV (a logical device number used to identify a
device) is passed into FOPEN, MPE/iX translates the LDEV into the volume name that is
currently mounted on the disk device and places the volume name in the file's label.
Similarly, a device class that is associated to a disk device is translated into the volume
class name.

NOTE HPFOPENfails if, when creating a disk file, an LDEV is passed to volume name
option for a mounted disk or a device class is passed to volume class
option .
Chapter 2 63

Creating A File
Specifying a File Code
Specifying a File Code
MPE/iX subsystems often create special-purpose files whose functions are identified by
four-digit integers called file codes, written in their system file labels. HPFOPEN/FOPEN,
BUILD, and FILE have parameters that enable you to specify a file code for your file when
you first create it. For user files, you can use as a file code any number from 0 through
1023. Numbers above 1023 listed in Table 2-6. on page 64 are predefined by
Hewlett-Packard for special system files and should not be redefined for your use. If you do
not specify a file code when you create a file, the MPE/iX default value of zero applies.

For instance, compilers create Native Mode Object (NMOBJ) files, written in a special
format and identified by the code 1461 , upon which they compile object programs. User
programs sometimes create files that must be identified in some unique way, too. Such a
program might produce a permanent disk file identified by the integer 1. If you were to run
this program several times and want to uniquely identify the file produced on each run (or
set of runs) by a special class, purpose, or function, you could use a FILE command to
supply a unique file code for each run (or group of runs).

For instance, on the second run, you might wish to classify the file with the file code 2, as
follows:

 File code
 |

FILE DESGX=DESGB;CODE=2
RUN FILEPROD

If you later wished to determine the classification to which this file belonged, you could use
the LISTFILE command with an information level of 1, which prints the file name, file
code, and other information about the file. Alternatively, you could determine the file code
by calling the FFILEINFO intrinsic. Both LISTFILE and FFILEINFO are discussed in Getting
System Information Programmer's Guide. The file codes that have particular
Hewlett-Packard-defined meanings are listed in Table 2-6. on page 64

Table 2-6. Reserved File Codes

Integer Mnemonic Meaning

1024 USL User Subprogram Library

1025 BASD Basic Data

1026 BASP Basic Program

1027 BASFP Basic Fast Program

1028 RL Compatibility Mode Relocatable Library

1029 PROG Compatibility Mode Program File

1031 SL Segmented Library

1035 VFORM VPLUS Forms File
64 Chapter 2

Creating A File
Specifying a File Code
1036 VFAST VPLUS Fast Forms File

1037 VREF VPLUS Reformat File

1040 XLSAV Cross Loader ASCII File (SAVE)

1041 XLBIN Cross Loader Relocated Binary File

1042 XLDSP Cross Loader ASCII File (DISPLAY)

1050 EDITQ Edit Quick File

1051 EDTCQ Edit KEEPQ File (COBOL)

1052 EDTCT Edit TEXT File (COBOL)

1054 TDPDT TDP Diary File

1055 TDPQM TDP Proof Marked QMARKED

1056 TDPP TDP Proof Marked Non-COBOL File

1057 TDPCP TDP Proof Marked COBOL File

1058 TDPQ TDP Work File

1059 TDPXQ TDP Work File (COBOL)

1060 RJEPN RJE Punch File

1070 QPROC QUERY Procedure File

1080 KSAMK KSAM Key File

1083 GRAPH GRAPH Specification File

1084 SD Self-Describing File

1090 LOG User Logging Log File

1100 WDOC HP WORD Document

1101 WDICT HP WORD Hyphenation Dictionary

1102 WCONF HP WORD Configuration File

1103 W2601 HP WORD Attended Printer Environment

1110 PCELL IFS/3000 Character Cell File

1112 PENV IFS/3000 Environment File

1113 PCCMP IFS/3000 Compiled Character Cell File

1114 RASTR Graphics Image in RASTER Format

1130 OPTLF OPT/3000 Log File

Table 2-6. Reserved File Codes

Integer Mnemonic Meaning
Chapter 2 65

Creating A File
Specifying a File Code
1131 TEPES TEPE/3000 Script File

1132 TEPEL TEPE/3000 Log File

1133 SAMPL APS/3000 Log File

1139 MPEDL MPEDCP/DRP Log File

1140 TSR HPToolset Root File

1141 TSD HPToolset Data File

1145 DRAW Drawing File for HPDRAW

1146 FIG Figure File for HPDRAW

1147 FONT Reserved

1148 COLOR Reserved

1149 D48 Reserved

1152 SLATE Compressed SLATE File

1153 SLATW Expanded SLATE Work File

1156 DSTOR RAPID/3000 DICTDBU Utility Store File

1157 TCODE Code File for Transact/3000 Compiler

1158 RCODE Code File for Report/3000 Compiler

1159 ICODE Code File for Inform/3000 Compiler

1166 MDIST HP Desk Distribution List

1167 MTEXT HP Desk Text

1168 MARPA ARPA Messages File

1169 MARPD ARPA Distribution List

1170 MCMND HP Desk Abbreviated Commands File

1171 MFRTM HP Desk Diary Free Time List

1172 None Reserved

1173 MEFT HP Desk External File Transfer Messages File

1174 MCRPT HP Desk Encrypted Item

1175 MSERL HP Desk Serialized (Composite) Item

1176 VCSF Version Control System File

1177 TTYPE Terminal Type File

Table 2-6. Reserved File Codes

Integer Mnemonic Meaning
66 Chapter 2

Creating A File
Specifying a File Code
1178 TVFC Terminal Vertical Format Control File

1192 NCONF Network Configuration File

1193 NTRAC Network Trace File

1194 NTLOG Network Log File

1195 MIDAS Reserved

1211 NDIR Reserved

1212 INODE Reserved

1213 INVRT Reserved

1214 EXCEP Reserved

1215 TAXON Reserved

1216 QUERF Reserved

1217 DOCDR Reserved

1226 VC VC File

1227 DIF DIF File

1228 LANGD Language Definition File

1229 CHARD Character Set Definition File

1230 MGCAT Formatted Application Message Catalog

1236 BMAP Base Map Specification File

1242 BDATA HP Business BASIC/V Data File

1243 BFORM HP Business BASIC/V Field Order File for VPLUS

1244 BSAVE HP Business BASIC/V SAVE Program File

1245 BCNFG Configuration File for Default Options for HP Business
BASIC Programs

1246 BKEY Function Key Definition File for Terminal

1258 PFSTA Pathflow STATIC File

1259 PFDYN Pathflow Dynamic File

1270 RFDCA Revisible Form DCA Data Stream

1271 FFDCA Final Form DCA Data Stream

1272 DIU Document Interchange Unit File

1273 PDOC HP WORD/150 Document

Table 2-6. Reserved File Codes

Integer Mnemonic Meaning
Chapter 2 67

Creating A File
Specifying a File Code
1275 DFI DISOSS Filing Information File

1276 SRI Search Restart Information File

1401 CWPTX Chinese Word Processor Text File

1421 MAP HP MAP/3000 Map Specification File

1422 GAL Reserved

1425 TTX Reserved

1428 RDIL HP Business Report Writer (BRW) Dictionary File CM

1429 RSPEC BRW Specification File

1430 RSPCF BRW Specification File

1431 REXCL BRW Execution File

1432 RJOB BRW Report 509 File

1433 ROUT1 BRW Intermediate Report File

1434 ROUTD BRW Dictionary Output

1435 PRINT BRW Print File

1436 RCONF BRW Configuration File

1437 RDICN BRW NM Dictionary File

1438 REXNUM BRW NM Execution File

1441 PIF Reserved

1476 TIFF Tag Image File Format

1477 RDF Revisible Document Format

1478 SOF Serial Object File

1479 GPF Chart File for Charting Gallery Chart

1480 GPD Data File for Charting Gallery Chart

1483 VCGPM Virtuoso Core Generator Processed Macro File

1484 FRMAT Formatter

1485 DUMP Dump Files Created and Used by IDAT and DPAN

1486 NNMD0 New Wave Mail Distribution List

1491 X4HDR X.400 Header for HP Desk Manager

1500 WP1 Reserved

Table 2-6. Reserved File Codes

Integer Mnemonic Meaning
68 Chapter 2

Creating A File
Specifying a File Code
NOTE Default is the unreserved file code of 0.

Using 1090 (LOG) as a designated file code may not yield the number of records that you
specify in the DISC= parameter. Most files use the number of records specified in the DISC=
parameter as the maximum limit; user logging uses this specified number as a minimum.

1501 WP2 Reserved

1502 LO123 Lotus 123 Spread Sheet

1514 FPCF Form Tester Command Spec File

1515 INSP Spooler/XL Input Spool File

1516 OUTSP Spooler/XL Output Spool File

1517 CHKSP Spooler/XL Checkpoint Spool File

1521 DSKIT HP Desk Intrinsics Transaction File

1526 MSACK Man Server Acknowledgement

1527 MSNON Man Server Non-Delivery Notification

1528 MSTRC Man Server Trace File

3333 Reserved

Table 2-6. Reserved File Codes

Integer Mnemonic Meaning
Chapter 2 69

Creating A File
Specifying Storage Format
Specifying Storage Format
Devices on the HP 3000 can transmit information in ASCII (American Standard Code for
Information Interchange) and/or binary code, depending on the device.

For example, a line printer handles ASCII formatted data, while a disk can transmit and
store data in either format. You can use appropriate optional parameters in
HPFOPEN/FOPEN to specify the code (ASCII or binary) in which a new file is to be recorded
when it is written to a device that supports both codes.

NOTE It is even possible to transmit and store data in EBCDIC, as long as the
application program or subsystem (FCOPY, for example) handles the
decoding/encoding. EBCDIC is not handled automatically by MPE/iX.

With many devices, there is no restriction on the data actually transferred to or from the
file; you can write ASCII data to a binary file, or binary data to an ASCII file. You can
specify the type of code that you want, or accept the MPE/iX default for the device that you
are using.

When the allocated record space is not filled by data, MPE/iX pads the unused space with a
fill character instead of good data. If you accessed this unused portion of a record (for
example, with the inhibit buffering option set to NOBUF), you would find in the unallocated
record space the fill character specified at file creation.

The fill character may be different depending upon the mechanism you used to create the
file. If you create the file with FOPENor BUILD, MPE/iX pads an ASCII file with blanks and
a binary file with zeros. If you create the file with HPFOPEN, MPE/iX pads the file with the
fill character specified by the fill character option (if not specified, the default fill
character for files created with HPFOPENis blanks for ASCII files and NULL characters for
binary files). Examples of ASCII files on the HP 3000 include program source files, general
text and document files, and MPE/iX stream files containing MPE/iX commands. Examples
of binary files include program files containing linked object code, and application data
files.
70 Chapter 2

3 Specifying a File Designation

The name by which a program recognizes your file is its formal file designator. This is
the file name that is coded into the program, along with the program's specifications for
the file.

The formal file designator is the name by which your program recognizes the file, but there
must also be a means by which the file system can recognize it, allowing it to be referenced
by various commands and programs. This chapter discusses the various ways MPE/iX
allows you to designate a name for your file.

As you read this chapter, keep these considerations in mind:

• How will the file be referenced?

• How will the file be used?

• How does MPE/iX associate formal and actual file designators?
71

Specifying a File Designation
MPE/iX File Designators
MPE/iX File Designators

The file system recognizes two general classes of files:

• user-defined files, which you or other users define, create, and make available for your
own purposes

• system-defined files, which the file system defines and makes available to all users to
indicate standard input/output devices

These files are distinguished by the file names and other descriptors (such as group or
account names) that reference them, as discussed below. You may use both the file name
and descriptors, in combination, as either formal designators within your programs or as
actual designators that identify the file to the system. Generally, however, most
programmers use only arbitrary names as formal designators, and then equate them to
appropriate actual file designators at run time. In such cases, the formal designators (user
file names) contain from one to eight alphanumeric characters, beginning with a letter; the
actual designators include a user or system file name, optionally followed by a group name,
account name, and/or security lockword, all separated by appropriate delimiters. This
technique facilitates maximum flexibility with respect to file references.
72 Chapter 3

Specifying a File Designation
User-Defined Files
User-Defined Files
You can reference any user-defined file by writing its name and descriptors in the
filereference format, as follows:

filename [/ lockword][. groupname][. accountname]

In no case must any file designator written in the filereference format exceed 35
characters, including delimiters.

When you reference a file that belongs to your logon account and group, you need only use
the filereference format in its simplest form, which includes only a file name that may
range from one to eight alphanumeric characters, beginning with a letter (unless, of
course, the file has a lockword, in which case you must specify the lockword and a
delimiter). In the following examples, both formal and actual designators appear in this
format:

 Formal designator
 |
 FILE ALPHA=BETA <---- Actual designator
 FILE REPORT=OUTPUT
 FILE X=AL126797
 FILE PAYROLL=SELFL

A file reference is always qualified, in the appropriate directory, by the names of the group
and account to which the file belongs, so you need ensure only that the file's name is
unique within its group. For instance, if you create a file named FILX under GROUPA and
ACCOUNT1, the system recognizes your file as FILX.GROUPA.ACCOUNT1; a file with the same
file name, created under a different group, could be recognized as FILX.GROUPB.ACCOUNT1.

File groups serve as the basis for your local file references; thus, when you log on, if the
default file system file security provisions are in effect, you have unlimited access to all
files assigned to your logon group and your home group. Furthermore, you are permitted to
read, and execute programs residing in, the public group of your logon account. This group,
always named PUB, is created under every account to serve as a common file base for all
users of the account. In addition, you may read and execute programs residing in the PUB
group of the System Account. This is a special account available to all users on every
system, always named SYS.

When you reference a file that belongs to your logon account, but not to your logon group,
you must specify the name of the file's group within your reference. In this form of the
filereference format, the group name appears after the file name, separated from it by a
period. Embedded blanks within the file or group names, or surrounding the period, are
prohibited. As an example, suppose your program references a file under the name LEDGER,
which is recorded in the system by the actual designator GENACCT. This file belongs to your
home group, but you are logged on under another group when you run the program. To
access the file, you must specify the group name as follows:

FILE LEDGER=GENACCT.XGROUP <------- Group name
RUN MYPROG <------- Program file (in logon group)
Chapter 3 73

Specifying a File Designation
User-Defined Files
As another example, suppose that you are logged on under the group name XGROUP but
wish to reference a file named X3 that is assigned to the Public Group of your account. If
your program refers to this file by the name FILLER , you would enter:

FILE FILLER=X3.PUB

When you reference a file that does not belong to your logon account, you must use an even
more extensive form of the filereference format. With this form, you include both group
name and account name. The account name follows the group name, and is separated from
it by a period. Embedded blanks are not permitted. As an example, suppose you are logged
on under the account named MYACCT but wish to reference the file named GENINFO in the
public group of the system account. Your program references this file under the formal
designator GENFILE. You would enter:

FILE GENFILE=GENINFO.PUB.SYS

A file reference that includes the file name, group, and account is called a fully qualified
file name.

NOTE You can create a new file only within your logon account; therefore, if you
wish to have a new file under a different account, you log on to the other
account and create the file in that account and group.

In summary, remember that if you do not supply a group name or account name in your
filereference , MPE/iX supplies the defaults of the group and account in which you are
currently logged on.

Lockwords

When you create a disk file, you can assign to it a lockword that must thereafter be
supplied (as part of the filereference format) to access the file in any way. This lockword
is independent of, and serves in addition to, the other file system security provisions
governing the file.

You assign a lockword to a new file by specifying it in the filereference parameter of the
BUILD command or the formaldesignator parameter of the HPFOPEN/FOPENintrinsic used
to create the file. For example, to assign the lockword SESAME to a new file named FILEA ,
you could enter the following BUILD command:

BUILD FILEA/SESAME <---- Lockword

From this point on, whenever you, or another user, reference the file in an MPE/iX
command or HPFOPEN/FOPEN intrinsic, you must supply the lockword. It is important to
remember that you need the lockword even if you are the creator of the file. Lockwords,
however, are required only for old files on disk.

When referencing a file protected by a lockword, supply the lockword in the following
manner:

• In batch mode, supply the lockword as part of the file designator (filereference
format) specified in the FILE command or HPFOPEN/FOPEN intrinsic call used to
establish access to the file. Enter the lockword after the file name, separated from it by
a slash mark. Neither the file name nor the lockword should contain embedded blanks.
74 Chapter 3

Specifying a File Designation
User-Defined Files
In addition, the slash mark (/) that separates these names should not be preceded or
followed by blanks. The lockword may contain from one to eight alphanumeric
characters, beginning with a letter. If a file is protected by a lockword and you fail to
supply that lockword in your reference, you are denied access to the file. In the following
example, the old disk file XREF, protected by the lockword OKAY, is referenced:

 FILE INPUT=XREF/OKAY <---- Lockword

• In session mode, you can supply the lockword as part of the file designator specified in
the FILE command or HPFOPEN/FOPEN intrinsic call that establishes access to the file,
using the same syntax rules described above. If a file is protected by a lockword and you
fail to supply it when you open the file, the file system interactively requests you to
supply the lockword as shown in the example below:

 LOCKWORD: YOURFILE.YOURGRP.YOURACCT?

Always bear in mind that the file lockword relates only to the ability to access files, and not
to the account and group passwords used to log on. Three examples of FILE commands
referencing lockwords are shown below; the last command illustrates the complete, fully
qualified form of the filereference format.

 FILE AFILE=GOFILE/Z22 <---- Lockword
 FILE BFILE=FILEM/LOCKB.GRO7
 |
 |---- Lockwords
 |
 FILE CFILE=PAYROLL/X229AD.GROPN.ACCT10

A file may have only one lockword at a time. You can change or remove the lockword by
using the RENAME command or the FRENAME intrinsic. You can also initially assign a
lockword to an existing file with this command or intrinsic.

To accomplish these tasks, you must be the creator of the file.

Backreferencing files

Once you establish a set of specifications in a FILE command, you can apply those
specifications to other file references in your job or session simply by using the file's formal
designator, preceded by an asterisk (*), in those references. For example, suppose you use a
FILE command to establish the specifications shown below for the file FILEA , used by
program PROGA. You then run PROGA. Now you wish to apply those same specifications to
the file FILEB , used by PROGB, and run that program. Rather than specify all those
parameters again in a second FILE command, you can simply use FILE to equate the FILEA
specifications to cover FILEB , as follows:

This technique is called backreferencing files, and the files to which it applies are

FILE FILEA;DEV=TAPE;REC=-80,4,V;BUF=4 Establishes specifications.

RUN PROGA Runs program A.

FILE FILEB=*FILEA Backreferences specifications for FILEA .

RUN PROGB Runs program B.
Chapter 3 75

Specifying a File Designation
User-Defined Files
sometimes known as user predefined files. Whenever you reference a predefined file in a
file system command, you must enter the asterisk before the formal designator if you want
the predefinition to apply.
76 Chapter 3

Specifying a File Designation
System-Defined Files
System-Defined Files
System-defined file designators indicate those files that the file system uniquely identifies
as standard input/output devices for jobs and sessions. These designators are described in
Table 3-1. on page 77 When you reference them, you use only the file name; group or
account names and lockwords do not apply.

As an example of how to use some of these designators, suppose you are running a
program that accepts input from a file programmatically defined as INFILE and directs
output to a file programmatically defined as OUTFILE. Your program specifies that these
are disk files, but you wish to respecify these files so that INFILE is read from the standard
input device and OUTFILE is sent to the standard listing device.

Table 3-1. System-Defined File Designators

FILE\DESIGNATOR
(NAME)

DEVICE/FILE REFERENCED

$STDIN The standard job or session input device from which your job/session is
initiated. For a session, this is always a terminal. For a job, it may be a
disk file or other input device. Input data images in this file should not
contain a colon in column 1, because this indicates the end-of-data. (When
data is to be delimited: use the EOD command, which performs no other
function.)

$STDINX Same as $STDIN except that MPE/iX command images (those with a colon
in column 1) encountered in a data file are read without indicating the
end-of-data; however, the commands :EOD and EOF(and in batch jobs, the
commands JOB, EOJ and DATA) are exceptions that always indicate
end-of-data, but are otherwise ignored in this context--they are never read
as data. $STDINX is often used by interactive subsystems and programs to
reference the terminal as an input file.

$STDLIST The standard job or session listing device, nearly always a terminal for a
session and a printer for a batch job.

$NULL The name of a nonexistent ghost file that is always treated as an empty
file. When referenced as an input by a program, that program receives an
end-of-data indication upon each access. When referenced as an output
file, the associated write request is accepted by MPE/iX but no physical
output is actually done. Thus, $NULL can be used to discard unneeded
output from a running program.
Chapter 3 77

Specifying a File Designation
System-Defined Files
You could enter the following commands:

FILE INFILE=$STDIN
FILE OUTFILE=$STDLIST
RUN MYPROG

Input/Output sets

All file designators can be classified as those used for input files (Input Set), or those used
for output files (Output Set). For your convenience, these sets are summarized in Table 3-2.
on page 78 and Table 3-3. on page 78

An input file and a list file are said to be interactive if a real-time dialog can be established
between a program and a person using the list file as a channel for programmatic requests,
with appropriate responses from a person using the input file. For example, an input file
and a list file opened to the same teleprinting terminal (for a session) would constitute an
interactive pair. An input file and a list file are said to be duplicative when input from the

Table 3-2. Input Set

File Designator Function/Meaning

$STDIN Job/session input device.

$STDINX Job/session input device with commands allowed.

$OLDPASS Last $NEWPASS file closed. Discussed in the following pages.

$NULL Constantly empty file that returns end-of-file indication when read.

*formaldesignator Back reference to a previously defined file.

filereference File name, and perhaps account and group names and lockword. May
be a temporary file created in current job/session, created and saved in
any job/session.

Table 3-3. Output Set

File Designator Function/Meaning

$STDLIST Job/session list device.

$OLDPASS Last file passed. Discussed in following pages.

$NEWPASS New temporary file to be passed. Discussed in the following pages.

$NULL Constantly empty files that returns end-of-file indication when read.

*formaldesignator Back reference to a previously defined file.

filereference File name, and perhaps account and group names and lockword.
Unless you specify otherwise, this is a temporary file residing on disk
that is destroyed on termination of the creating program. If closed as a
temporary file, it is purged at the end of the job/session. If closed as a
permanent file, it is saved until you purge it.
78 Chapter 3

Specifying a File Designation
System-Defined Files
former is duplicated automatically on the latter. For example, input from a magnetic tape
device is printed on a line printer. You can determine whether a pair of files is interactive
or duplicative with the FRELATE intrinsic call. (The interactive/duplicative attributes of a
file pair do not change between the that time the files are opened and the time they are
closed.)

The FRELATE intrinsic applies to files on all devices. To determine if the input file INFILE
and the list file LISTFILE are interactive or duplicative, you could issue the following
FRELATE intrinsic call:

 ABLE := FRELATE(INFILE,LISTFILE);

INFILE and LISTFILE are identifiers specifying the file numbers of the two files. The file
numbers were assigned to INFILE and LISTFILE when the HPFOPEN/FOPEN intrinsic
opened the files.

A half-word is returned to ABLE showing whether the files are interactive or duplicative.
The half-word returned contains two significant bits, 0 and 15:

if bit 15 = 1, INFILE and LISTFILE form an interactive pair

if bit 15 = 0, INFILE and LISTFILE do not form an interactive pair

if bit 0 = 1, INFILE and LISTFILE form a duplicative pair

if bit 0 = 0, INFILE and LISTFILE do not form a duplicative pair

Passed files

Programmers, particularly those writing compilers or other subsystems, sometimes create
a temporary disk file that can be automatically passed to succeeding MPE/iX commands
within a job or session. This file is always created under the special name $NEWPASS. When
your program closes the file, MPE/iX automatically changes its name to $OLDPASS and
deletes any other file named $OLDPASSin the job/session temporary file domain. From this
point on, your commands and programs reference the file as $OLDPASS. Only one file
named $NEWPASS and/or one file named $OLDPASS can exist in the job/session domain at
any one time.

The automatic passing of files between program runs is depicted in Figure 3-1. To
illustrate how file passing works, consider an example where two programs, PROG1 and
PROG2, are executed. PROG1 receives input from the actual disk file DSFILE (through the
programmatic name SOURCE1) and writes output to an actual file $NEWPASS, to be passed to
PROG2. ($NEWPASSis referenced programmatically in PROG1by the name INTERFIL .) When
PROG2 is run, it receives $NEWPASS (now known by the actual designator $OLDPASS),
referencing that file programmatically as SOURCE2. Note that only one file can be
designated for passing.
Chapter 3 79

Specifying a File Designation
System-Defined Files
Figure 3-1. Passing Files between Program Runs

 .
 .
 .
 FILE SOURCE1=DSFIL
 FILE INTERFIL=$NEWPASS <---
 RUN PROG1 |- Same File
 FILE SOURCE2=$OLDPASS <---
 RUN PROG2
 .
 .
 .

A program file must pass through several steps as it is executed; passed files are most
frequently used between these steps. A program file must be compiled and linked before it
is executed. By default, the compiled form of a text file is written to $NEWPASS. When the
compiler closes $NEWPASS, its name is changed to $OLDPASS; it is this file that is linked
for execution. The linked form of the program file is written to a new $NEWPASS, which is
renamed $OLDPASS when the file is closed; the old $OLDPASS is deleted. Now, this file is
ready to be executed. This $OLDPASS may be executed any number of times, until it is
overwritten by another $OLDPASS file.

The steps that a program takes as it is run are depicted in Figure 3-2..
80 Chapter 3

Specifying a File Designation
System-Defined Files
Figure 3-2. Passing Files within a Program Run

$NEWPASSand $OLDPASSare specialized disk files with many similarities to other disk files.
Comparisons of $NEWPASSto new files, and $OLDPASSto old files, are given in Table 3-4. on
page 81 and Table 3-5. on page 82.

Table 3-4. New Files Versus $NEWPASS

NEW $NEWPASS

Disk space allocated. Disk space allocated.

Disk address put into control block. Disk address put into control block.

Default close disposition:
 Deallocate space.
 Delete control block entry.

Default close disposition:
Rename to $OLDPASS.
Save disk address in current job or session
table. (Job Information Table)
Delete control block entry.
Chapter 3 81

Specifying a File Designation
System-Defined Files
Disk address not saved (Not in any directory). Disk address saved for future use in the
current job session.

Table 3-5. Old Files Versus $OLDPASS

OLD $OLDPASS

Directory (job temporary or
system) searched for disk address

Disk address obtained from Job Information Table (JIT)

Disk address put into control block. Disk address put into control block.

Default close disposition:
Delete control block.

Default close disposition:
Delete control block.

Disk address still in directory
for future use.

Disk address still in JIT for future use in current job
session.

Table 3-4. New Files Versus $NEWPASS

NEW $NEWPASS
82 Chapter 3

Specifying a File Designation
Using Command Interpreter Variables and Expressions Within File Designators
Using Command Interpreter Variables and Expressions
Within File Designators
Your file reference may also contain command interpreter variables and expressions that
are evaluated before the file reference is parsed and validated. In the following file
equation, the exclamation point (!) instructs MPE/iX to substitute the variable name
MYFILE with the actual file designator assigned to that variable by the SETVAR command.

 SETVAR MYFILE,'FILE2.MYGROUP.MYACCT'
 FILE FILE1=!MYFILE

The HPFOPEN and FOPEN intrinsics also allow you to embed command interpreter
variables and expressions in the file reference. The following file references are valid when
passed as formal designators:

 !MYFILE
 !MYFILE.!HPGROUP.!HPACCT
 !FILE1/![FINFO(-!FILE1",33)]

For more information about using command interpreter variables and expressions, refer to
the Command Interpreter Access and Variables Programmers' Guide.
Chapter 3 83

Specifying a File Designation
Parsing and Validating File Designators
Parsing and Validating File Designators
The FPARSE intrinsic parses and validates a file designator string to determine if it is
syntactically correct. You can employ this intrinsic to check a formal file designator
representing a file before attempting to open the file with HPFOPEN/FOPEN. MPE/iX file
designators used for the file system and two user interface commands include a remote
environment ID (envid). This allows the user to indicate that a file is to be accessed from a
remote environment established by the user with the DSLINE or REMOTE HELLO command.
FPARSE facilitates the changes required for the file designator extension. It provides the
only location within MPE/iX where file designators are parsed and syntax is checked.

The following are examples of the items and the vectors array pair. The order of entries
in the vectors array corresponds to the order of items in the items array. Each 32-bit
entry in the vectors array returns the byte offset of the item in the first half-word, and
the length in bytes of the item in the second half-word. However, the last entry of the
vectors array has a different meaning from that of the other entries: the second half-word
gives the total length of the file string, and the first half-word gives a system file code when
applicable.

In Figure 3-3. the file string is
"FILENAME/LOCKWORD.GROUP.ACCOUNT:ANIMAL.INDDCL.HPBCG":

Figure 3-3. Illustration of FPARSE Usage

The items array, as illustrated above, can be listed in any order or can be left unspecified if
not required.

In Figure 3-4., below, the file string is "*FILENAME:ANIMAL":
84 Chapter 3

Specifying a File Designation
Parsing and Validating File Designators
Figure 3-4. Illustration of FPARSE Usage

In Figure 3-5., below, the file string is "$OLDPASS":

Figure 3-5. Illustration of FPARSE Usage

Note that "$" is a special exception to the rules of file names and is considered part of the
file name, unlike "*", which is not.
Chapter 3 85

Specifying a File Designation
Parsing and Validating File Designators
86 Chapter 3

4 Specifying a File Domain

One way to classify a file is on the basis of its domain. A file can be permanent or
temporary, or it may exist only to one particular process. The file system maintains
separate directories to record the location of temporary files and permanent files. Of
course, there is no file system directory for files that exist only to their creating process
(new files).

In this chapter, we will address the following questions:

• What do the various domains mean?

• Can a file's domain be changed?

• How can the files in various domains be listed?

New Files
When you create a file, you can indicate to the file system that it is a new file; it has not
previously existed. Space for this file has not yet been allocated. As a new file, it is known
only to the program that creates it, and exists only while the program is being executed.
When the program concludes, the file simply vanishes, unless you take actions to retain it.

Temporary Files
A temporary file is one that already exists, but that is known only to the job or session that
created it. Some or all of the space for a temporary file has already been allocated, and its
physical characteristics have already been defined. A file in this domain is considered a job
temporary file; it was created for some specific purpose by its job or session and may not be
needed when the job or session concludes. Like a new file, it vanishes when its creating job
or session is over.
87

Specifying a File Domain
Permanent Files
Permanent Files
A permanent file exists as a file in the system file domain. Its existence is not limited to the
duration of its creating job or session, and depending on security restrictions, it may be
accessed by jobs or sessions other than the one that created it. Some or all of the space for
a permanent file has already been allocated, and its physical characteristics have been
defined.

The features of new, temporary and permanent files are listed in Table 4-1. on page 88

In some cases, the domain you can specify for a file may be restricted by the type of device
on which the file resides. The domains permitted are summarized in Table 4-1. on page 88

NOTE * When you specify a file domain using HPFOPEN, you should open only disk
files with the domain option set to NEW. Device files can be opened with the

Table 4-1. Features of New, Temporary, and Permanent Files

New Files Temporary Files Permanent Files

Exists only to creating
process.

Exists as job temporary file. Exists as permanent file in
system.

Space not allocated yet. Space (some or all) already
allocated.

Space (some or all) already
allocated.

Physical characteristics not
previously defined.

Physical characteristics
defined.

Physical characteristics
defined.

Known only to creating job or
session.

Known only to creating job or
session.

Known system-wide.

Exists only for duration of
program execution.

Exists only for duration of
creating job/session.

Permanent.

Table 4-2. File Domains Permitted

Device Type Domain Permitted

Disk new, temporary, or permanent

Magnetic Tape Device new * or permanent

Synchronous Single-Line Controller new * or permanent

Programmable Controller new * or permanent

Terminal new * or permanent

Line Printer new *

Plotter new *
88 Chapter 4

Specifying a File Domain
Changing Domains
domain option set to NEW (to maintain compatibility with with MPE V/E),
but a warning is returned in the status parameter.

Changing Domains
A file need not always stay in the same domain. Any disk file can be made permanent, or
can be deleted when it has served its purpose. The disposition parameter of the FCLOSE
intrinsic can specify a different domain for a file as it closes, or the FILE command can be
used to change the domain of a file. The DEL, TEMP, and SAVE parameters determine what
happens to the file when it is closed. For details about how the FCLOSE intrinsic handles
file domain disposition, refer to chapter 6, "Closing a File".

A file in any domain may be deleted if the DEL parameter is used in a file equation. For
example, suppose that you have a permanent file named OLDFL, and want to delete it after
its next use. Before running the program that uses OLDFL, enter:

FILE OLDFL;DEL

The file may now be opened in your program, and when the program closes the file, it is
deleted. If OLDFL were a new or temporary file, it would be deleted in the same way.

New files may be made temporary if the TEMP parameter is used in a file equation. If you
are about to create a file named NEWFL, and wish it to remain as a temporary file after it is
used, enter:

FILE NEWFL,NEW;TEMP

After the file is created in your program and is closed, the file system maintains it as a
temporary file. If you wish to keep a new or temporary file as a permanent file after it is
used, use the SAVE parameter in a file equation. If you have a temporary file named
TEMPFL, and you want it to be kept as an permanent file in the system, enter:

FILE TEMPFL,OLDTEMP;SAVE

TEMPFLis kept as a permanent file, so it will not be lost when your job or session concludes.

File equations are useful for determining the disposition of files when the files have been
programmatically accessed and closed. By using the MPE/iX SAVEcommand, you can keep
a temporary file as permanent without opening and closing the file. If you want to keep a
temporary file named TEMPDATA, but do not need to use it in a program at this time, enter:

SAVE TEMPDATA

and the file system immediately identifies it as a permanent file. If there were a lockword
associated with TEMPDATA, you would be prompted for it. You can use the SAVEcommand to
keep $OLDPASS and assign it a name for future reference by entering:

SAVE $OLDPASS,filename

where filename is any name that you choose.

For more information about the FILE and SAVE commands, consult the MPE/iX
Commands Reference Manual.
Chapter 4 89

Specifying a File Domain
Searching File Directories
Searching File Directories
There are two directories with addresses of files: the temporary file directory (job file
domain) for the addresses of temporary files and the permanent file directory (system file
domain) for the addresses of permanent files. There is no directory for new files. When both
directories are searched for a file address (for example, when you open a file with the
domain option set to OLD), the temporary file directory is searched first.

Listing Files
To obtain a list of your permanent files, enter the LISTFILE command. Use the
LISTFILE...;TEMP command to list your temporary files and the LISTEQ command to list
FILE equations. The LISTFILE , LISTFILE...;TEMP , and LISTEQ commands are discussed
in detail in the Getting System Information Programmer's Guide and in the MPE/iX
Command Reference Manual.
90 Chapter 4

5 Opening a File

Before your program can read, write, or otherwise manipulate a file, the program must
initiate access to that file by opening it with the HPFOPEN/FOPEN intrinsic call. This call
applies to both disk files and device files. This chapter discusses how you can use HPFOPEN
to open various types of files supported by MPE/iX. Examples of program segments are
provided to illustrate HPFOPEN calls.

This chapter is divided into the following subjects:

• how the file system opens a file

• which to use: HPFOPEN or FOPEN?

• opening a disk file

• opening a system-defined file

• opening a device file

How the File System Opens a File
When you open a file, HPFOPEN/FOPEN establishes a communication link between the file
and your program by

• Determining the device on which the file resides.

• Allocating to your process the device on which the file resides. Disk files generally can
be shared concurrently among jobs and sessions. Magnetic tape and unit-record devices
are generally allocated exclusively to the requesting job or session.

If the file resides on a nonshareable device (such as magnetic tape) and you have
nonshareable device (ND) capability, HPFOPEN/FOPEN determines whether the system
operator must approve allocation of the device (such as an unlabeled magnetic tape) or
provide a particular media (such as a specific volume for a labeled magnetic tape
request or special forms for a line printer). If so, HPFOPEN/FOPEN requests the system
operator to respond appropriately.

Different processes within the same job may open and have concurrent access to a file
on the same magnetic tape or unit-record device if the file has been opened with
multiaccess option set; however, this device cannot be accessed by another job until
all accessing processes in this job have issued a corresponding FCLOSE call.

• Verifying your right to access the file under the security provisions existing at the
account, group, and file levels.
91

Opening a File
How the File System Opens a File
• Determining that the file has not been allocated exclusively to another process (by the
exclusive option in an HPFOPEN/FOPEN call issued by that process).

• Processing user labels (for files on disk). For new files on disk, HPFOPEN/FOPENspecifies
the number of user labels to be written.

• Constructing the control blocks required by MPE/iX for this particular access of the file.
The information in these blocks is derived by merging specifications from four sources,
listed below in descending order of precedence (and illustrated in Figure 5-1.)

1. The file label, obtainable only if the file is an old file on disk; otherwise,
device-dependent characteristics applicable to the nonshareable device. This
information overrides information from any other source.

2. The parameter list of a previous FILE command referencing the same formal file
designator named in this HPFOPEN/FOPENcall, if such a command was issued in this
job or session. This is only true, if file equations were not disallowed.

3. The parameter list of this HPFOPEN/FOPEN intrinsic call.

4. System default values provided by MPE/iX (when values are not obtainable from the
above sources).

When information from one of these four sources conflicts with that from another,
preempting takes place according to the order of precedence illustrated in Figure 5-1. To
determine the specifications actually taking effect, you can call the FFILEINFO intrinsic.
Certain sources do not always apply or convey all types of information. For example, no file
label exists when a new file is opened, and so all information must come from the last four
sources above.

Figure 5-1. File System Hierarchy of Overrides

Since the physical characteristics of a disk file cannot be changed after it has been created,
it makes sense that the file label would take precedence over information from any other
source. Likewise, when a device file is opened, device-dependent characteristics override
information from any other source.
92 Chapter 5

Opening a File
Which to Use: HPFOPEN or FOPEN
When the HPFOPEN/FOPENintrinsic is executed, it returns to your program a file number. If
the file is opened successfully, the file number returned is a positive integer. At this point,
the file is ready to be accessed with system intrinsics (for example, FREADor FWRITE). If the
file cannot be opened, the file number returned is zero, and the intrinsic returns an error
condition.

If your process issues more than one HPFOPEN/FOPEN call for the same file before it is
closed, this results in multiple, logically separate accesses of that file, and MPE/iX returns
a unique file number for each such access. Also, MPE/iX maintains a separate logical
record pointer (indicating the next sequential record to be accessed) for each access where
you did not request or permit the multiaccess option at HPFOPEN/FOPEN time.

Which to Use: HPFOPEN or FOPEN
The HPFOPEN intrinsic is the recommended intrinsic for creating and opening files on an
MPE/iX-based computer system. HPFOPEN is designed to be more flexible and extendible
than the FOPEN intrinsic. In addition, HPFOPEN's available options are a superset of the
options available through FOPEN. For example, mapped access is available through
HPFOPEN but not through FOPEN.

NOTE One HPFOPEN option, the file privilege option , when used to set a new
file's privilege level to other than 3 (least-privileged, or user level), disallows
all subsequent access of that file by the FOPEN intrinsic. (For compatibility
reasons, FOPEN can only access a file whose file privilege level is three.)

You should use the FOPEN intrinsic only if you are planning to migrate your application
between MPE/iX-based systems and MPE V/E-based systems. HPFOPENis not supported on
an MPE V/E-based system.

The examples in this chapter illustrate the use of the HPFOPEN intrinsic. The HPFOPEN
intrinsic uses an itemnum, item pair convention for optional parameter passing. The
itemnum and item parameters are paired, where the nth itemnum is immediately followed
in the parameter list by the nth item . The itemnum parameter passes by value an integer
that the intrinsic uses to define the meaning and expected data type of the value passed by
reference in the corresponding item parameter.

For details on HPFOPEN and FOPEN parameters, refer to the respective intrinsics
descriptions in the MPE/iX Intrinsics Reference Manual.

Opening a Disk File
Disk files are files residing on volumes (disk packs). Disk files are immediately accessible
by the system and potentially shareable by several jobs or sessions at the same time. The
Chapter 5 93

Opening a File
Opening a Disk File
following examples show how you can use the HPFOPEN intrinsic to open a disk file:

• "Opening a new disk file" shows an example of an HPFOPENcall that creates a new disk
file (see example 5-1).

• "Opening a permanent disk file" shows an example of an HPFOPEN call that opens a
permanent disk file that is to be shared among multiple concurrent accessors (see
example 5-2).

Opening a new disk file

Example 5-1 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that
opens a new disk file to be used with a text editor. The text editor accesses only standard
ASCII text files with fixed-length records, each record 80 bytes in size.

Knowing this, you can specify the appropriate HPFOPEN options, and allow others
(specifically, domain option , record format option , and file type option) to default
to the desired characteristics. Note that the HPFOPENfinal
disposition option is specified to indicate that the file is to be saved as a temporary file
at close time.

Example 5-1. Opening a New Disk File

 procedure open_new_disk_file;

 const
 formal_designator_option = 2; {defines HPFOPEN itemnum 2 }
 record_size_option =19; {defines HPFOPEN itemnum 19 }
 final_disposition_option =50; {defines HPFOPEN itemnum 50 }
 ASCII_binary_option =53; {defines HPFOPEN itemnum 53 }

 type
 pac80 = packed array [1..80] of char;

 var
 file_num : integer; {required HPFOPEN filenum parameter }
 status : integer; {returns info if error/warning occurs}

 file_name : pac80; {declares HPFOPEN itemnum 2 }
 line_len : integer; {declares HPFOPEN itemnum 19 }
 save_perm : integer; {declares HPFOPEN itemnum 50 }
 ascii : integer; {declares HPFOPEN itemnum 53 }

 begin
 file_num :=0;
 status :=0;
 file_name :='&myfile/lock.mygroup&'; (filereference format}
 line_len :=80; {maximum record/line length }
 save_temp :=2; {make temp file at close }
 ascii :=1; {label indicates ASCII code }

 HPFOPEN (file_num, status,
formal_designator_option,file_name, { formal designator option }
record_size_option, line_len, { record size option }
final_disp_option, save_temp, { final disposition option }
94 Chapter 5

Opening a File
Opening a Disk File
ASCII_binary_option, ascii { ASCII/binary option }
);

 if status <> 0 then handle_file_error (file_num, status);
 end;

If the HPFOPEN call is successful, a positive integer value is returned in file_num , and
status returns a value of zero. The new disk file is now open and can be accessed with
system intrinsics. If an error or warning condition is encountered by HPFOPEN, status
returns a nonzero value, thus invoking the error-handling procedure handle_file_error .

In appendix A, "HP Pascal/iX Program Examples," Example A-1 uses a similar procedure
to open a new disk file. For more information about HPFOPEN parameters, refer to the
MPE/iX Intrinsics Reference Manual.

Opening a permanent disk file

Example 5-2 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that
opens a permanent disk file that is to be shared among multiple concurrent accessors. Note
the use of the dynamic locking option to enable the use of file-locking intrinsics (FLOCK
and FUNLOCK) with this file. The file is opened update access to allow opening the file with
Read/Write access without affecting the current EOF. Thus, current data in the file is
retained.

Example 5-2. Opening a Permanent Disk File

 procedure open_permanent_disk_file;

 const
 formal_designator_option = 2; {defines HPFOPEN itemnum 2 }
 domain_option = 3; {defines HPFOPEN itemnum 3 }
 access_type_option =11; {defines HPFOPEN itemnum 11 }
 dynamic_locking_option =12; {defines HPFOPEN itemnum 12 }
 exclusive_option =13; {defines HPFOPEN itemnum 13 }
 ASCII_binary_option =53; {defines HPFOPEN itemnum 53 }

 type
 pac80 = packed array [1..80] of char;

 var
 file_num : integer; {required HPFOPEN filenum parameter }
 status : integer; {returns info if error/warning occurs}

 file_name : pac80; {declares HPFOPEN itemnum 2 }
 permanent : integer; {declares HPFOPEN itemnum 3 }
 update : integer; {declares HPFOPEN itemnum 11 }
 lockable : integer; {declares HPFOPEN itemnum 12 }
 shared : integer; {declares HPFOPEN itemnum 13 }
 ascii : integer; {declares HPFOPEN itemnum 53 }

 begin
 file_num :=0;
 status :=0;
 file_name :='&datafile/![FINFO("datafile",33)].!hpgroup&';
 permanent :=1; {search in permanent file directory}
Chapter 5 95

Opening a File
Opening a Disk File
 update :=5; {enable update access to file }
 lockable :=1; {enable dynamic locking option }
 shared :=3; {allow concurrent access by all }
 ascii :=1; {label will indicate ASCII code }

 HPFOPEN (file_num, status,
formal_designator_option,file_name, { formaldesignator option }

 domain_option, permanent, { domain option }
 access_type_option, update, { access type option }
 dynamic_locking_option, lockable, { dynamic locking option }
 exclusive_option, shared, { exclusive option }
 ASCII_binary_option, ascii { ASCII/binary option }
);

 if status <> 0 then handle_file_error (file_num, status);
 end;

The file name passed in the formaldesignator option contains MPE/iX command
interpreter variables and expressions that are evaluated by HPFOPEN before the file name
is parsed and evaluated. HPFOPEN substitutes ![FINFO(datafile",33)] with the
lockword associated with file datafile (if the security provisions in effect enable you to
obtain the file's password). The exclamation point (!) before the variable name hpgroup
instructs HPFOPENto substitute the value of the variable in place of the variable name. For
more information about using command interpreter variables and expressions, refer to the
Command Interpreter Access and Variables Programmer's Guide.

If the HPFOPEN call is successful, a positive integer value is returned in file_num , and
status returns a value of zero. The file is now open and can be accessed with file system
intrinsics. If an error or warning condition is encountered by HPFOPEN, status returns a
nonzero value, thus invoking the error-handling procedure handle_file_error .

In appendix A "HP Pascal/iX Program Examples," Example A-5 uses a similar procedure to
open a permanent disk file. For more information about HPFOPEN parameters, refer to the
MPE/iX Intrinsics Reference Manual.
96 Chapter 5

Opening a File
Opening a System-Defined File
Opening a System-Defined File
System-defined file designators indicate those files that the file system uniquely identifies
as standard input/output devices for jobs and sessions. System-defined files are $STDIN,
$STDINX, $STDLIST, $NEWPASS, $OLDPASS, and $NULL. You cannot redefine
characteristics for these files once the process executing your code has been created, nor
can you backreference a file equation to redefine the characteristics for a system-defined
file designator. For more information about system-defined files, refer to Chapter 3,
"Specifying a File Designator".

The following examples show two different ways that you can open system-defined files
using the indicated HPFOPEN options:

• "Opening $STDIN" shows an example of an HPFOPEN call that uses the designator
option to open the job or session standard input device (see Example 5-3).

• "Opening $STDLIST " shows an example of an HPFOPEN call that uses the
formaldesignator option to open the job or session standard list device (see
example 5-4).

Opening $STDIN

Example 5-3 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that
uses only the designator option to open the system-defined file $STDIN. $STDIN is the
file designator associated with your job or session's standard input device. For an
interactive session, $STDIN is always a terminal keyboard. For a batch job, $STDIN may be
a disk file or other input device. You can also open a system-defined file using only the
HPFOPENformaldesignator option (illustrated in Example 5-4).$STDIN, opening:files|

Example 5-3. Opening $STDLIST Using HPFOPEN designator option

 procedure open_standard_input_device

 const
 designator_option = 5; {defines HPFOPEN itemnum 5}

 var
 inputfile_num : integer; {required HPFOPEN filenum parameter}
 status : integer; {returns info if error/warning occurs}

 designator : integer; {declares HPFOPEN item 5 }

 begin
 inputfile_num := 0;
 status := 0;
 designator := 4; {Specifies $STDIN }

 HPFOPEN (inputfile_num, status,
 designator_option, designator, {HPFOPEN designator option }
);

 if status <>0 then handle_file_error (inputfile_num, status);
 end;
Chapter 5 97

Opening a File
Opening a System-Defined File
If the HPFOPEN call is successful, a positive integer value is returned in inputfile_num ,
and status returns a value of zero. The file is now open and can be read from. If an error
or warning condition is encountered by HPFOPEN, status returns a nonzero value, thus
invoking the error-handling procedure handle_file_error . For more information about
HPFOPEN parameters, refer to the MPE/iX Intrinsics Reference Manual.

Opening $STDLIST

Example 5-4 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that
uses the formaldesignator option to open the system-defined file $STDLIST .

$STDLIST is the file designator associated with your job or session's standard list device.
For an interactive session, $STDLIST is nearly always a terminal screen. For a batch job,
$STDLIST is usually a line printer. You can also open $STDLIST using the HPFOPEN
designator option (illustrated in Example 5-3).

Example 5-4. Opening $STDLIST Using HPFOPEN formaldesignator option

 procedure open_standard_list_device

 const
 formal_designator_option = 2; {defines HPFOPEN itemnum 2}

 type
 pac80 = packed array [1..80] of char;

 var
 listfile_num : integer; {required HPFOPEN filenum parameter}
 status : integer; {returns info if error/warning occurs }

 file_name : pac80; {declares HPFOPEN item 2 }

 begin
 listfile_num := 0;
 status := 0;
 file_name := '$stdlist'; {Specifies system-defined file }
 {Blank is used as delimiter }

 HPFOPEN (listfile_num, status,
 formal_designator_option, file_name,
 { formaldesignator option }
);

 if status <>0 then handle_file_error (listfile_num, status);
 end;

If the HPFOPENcall is successful, a positive integer value is returned in listfile_num , and
status returns a value of zero. The standard list device is now open and can be written to.
If an error or warning condition is encountered by HPFOPEN, status returns a nonzero
value, thus invoking the error-handling procedure handle_file_error .

In appendix A, "HP Pascal/iX Program examples," example A-1 uses a similar procedure to
open $STDLIST . For more information about HPFOPEN parameters, refer to the MPE/iX
Intrinsics Reference Manual.
98 Chapter 5

Opening a File
Opening a Device File
Opening a Device File
Device files are files that are currently being input to or output from a nonshareable device
(any peripheral device except a disk). Because all file open operations are accomplished
through the file system, you can open files on very different devices in a standard,
consistent way, using the HPFOPEN or FOPEN intrinsics. Furthermore, the name and
characteristics assigned to a file when it is defined in a program do not restrict that file to
residing on the same device every time the program is run. In these cases, the file system
temporarily overrides the programmatic characteristics with those characteristics
required by the device.

The following topics provide you with further discussions concerning device files, as well as
two program examples to illustrate how to open a magnetic tape file:

• "Device-Dependent File Characteristics" discusses those file characteristics affected by
particular devices.

• "New and permanent device files" discusses the domains required by various
input/output devices.

• "Opening an unlabeled magnetic tape file" shows an example of an HPFOPEN call that
opens an unlabeled magnetic tape file (see example 5-5).

• "Opening a labeled magnetic tape file" shows an example of an HPFOPENcall that opens
a labeled magnetic tape file (see example 5-6).

Device-dependent file characteristics

Certain physical and access characteristics for device files are restricted by the devices on
which the file resides. For your convenience, device-dependent restrictions for several
devices are summarized in Table 5-1. on page 99

Table 5-1. Device-Dependent Restrictions

DEVICE TYPE RESTRICTED FILE CHARACTERISTICS

Terminal
(parallel input/output device)

record format option = undefined-length records
block factor option = 1
inhibit buffering option = NOBUF
ASCII/binary option = ASCII

Magnetic tape drive
(serial input/output device)

No restrictions

Line printer/plotter
(serial output device)

domain option = NEW
record format option = undefined-length records
access type option =Write only
block factor option = 1

Laser printer
(serial output device)

Initially and always spooled
access type option =Write only
All other restrictions same as for line printer
Chapter 5 99

Opening a File
Opening a Device File
New and permanent device files

When a process accesses a device file (a file that resides on a nonshareable device), the
device's attributes may override information passed in the domain
option of the HPFOPEN/FOPEN call. Devices used for input only are considered permanent
files. Devices used for output only, such as line printers, are considered new files. Serial
input/output devices, such as terminals and magnetic tape drives, follow the domain
option specification in your HPFOPEN/FOPEN call

NOTE The HPFOPEN intrinsic assumes that all files on nonshareable devices (device
files) are permanent files. To maintain compatibility with MPE V/E, device
files can be opened with the domain option specifying a new file, but a
warning is returned in the status parameter.

When your job or session attempts to open a permanent file on a nonshareable device,
MPE/iX searches for the file in the input device directory (IDD). If the file is not found, a
message is transmitted to the system console requesting the system operator to locate the
file by taking one of the following steps:

• Indicate that the file resides on a device that is not in auto-recognition mode. No DATA
command is required; the System Operator simply allocates the device.

• Make the file available on an auto-recognizing device, and allocate that device.

• Indicate that the file does not exist on any device; in this case, your HPFOPEN/FOPEN
request is rejected.

When you use the device name option or device class option of HPFOPEN/FOPEN to
open a file on a nonshareable device (other than magnetic tape), you are requesting that an
unused device be allocated to your job or session. The first available device is allocated to
your job or session; the System Operator is not required to intervene. The device is
immediately available if it is not being used by another job or session, or if is already
allocated to your job or session by a previous HPFOPEN/FOPEN call.

If the device is already allocated to your job or session, you can specify that device by
passing its logical device number (LDEV) in the device name option of HPFOPEN/FOPEN.
Be certain, though, that you don't invoke a file equation that overrides the LDEV. (You can
use the FFILEINFO intrinsic to determine the LDEV assigned to an opened file.)

When you use the device name option or device class option of HPFOPEN/FOPEN to
open a file on a magnetic tape drive, operator intervention is usually required. The
operator must make the tape available, unless the tape is already mounted and recognized
by MPE/iX, it is auto-allocating, or if the tape drive is already allocated to the job or
session.

Opening an unlabeled magnetic tape file

Example 5-5 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that
opens an unlabeled magnetic tape file TAPEFILE. The intrinsic call assumes that the tape
drive associated with device class TAPE supports a density of 1600 bpi.
100 Chapter 5

Opening a File
Opening a Device File
Example 5-5. Opening an Unlabeled Magnetic Tape File

 procedure open_unlabeled_magnetic_tape_file;

 const
 formal_designator_option = 2; {defines HPFOPEN itemnum 2 }
 domain_option = 3; {defines HPFOPEN itemnum 3 }
 access_type_option =11; {defines HPFOPEN itemnum 11 }
 density_option =24; {defines HPFOPEN itemnum 24 }
 device_class_option =42; {defines HPFOPEN itemnum 42 }

 type
 pac80 = packed array [1..80] of char;

 var
 tfile_num : integer; {required HPFOPEN filenum parameter }
 status : integer; {returns info if error/warning occurs}

 file_name : pac80; {declares HPFOPEN itemnum 2 }
 permanent : integer; {declares HPFOPEN itemnum 3 }
 update only : integer; {declares HPFOPEN itemnum 11 }
 device_class : pac80 {declares HPFOPEN itemnum 24 }
 density : integer; {declares HPFOPEN itemnum 42 }

 begin
 tfile_num :=0;
 status :=0;
 file_name :='&tapefile&'; {delimiter is "&" }
 permanent :=1; {search system file domain }
 update_only :=5; {preserves existing data }
 density :=1600; {select this tape density }
 device_class :='&tape&'; {system-configured device class name }

 HPFOPEN (tfile_num, status,
 formal_designator_option, file_name, { formaldesignator option }
 domain_option, permanent, { domain option }
 access_type_option, update_only { access type option }
 density_option, density, { density option }
 device_class_option, device_class { device class option }
);

 if status <> 0 then handle_file_error (tfile_num, status);
 end;

If the HPFOPEN call is successful, a positive integer value is returned in tfile_num , and
status returns a value of zero. The file is now open and can be accessed with file system
intrinsics. If an error or warning condition is encountered by HPFOPEN, status returns a
nonzero value, thus invoking the error-handling procedure handle_file_error .

In appendix A, "HP Pascal/iX Program Examples," Example A-1 uses a similar procedure
to open an unlabeled magnetic tape file. For more information about HPFOPENparameters,
refer to the MPE/iX Intrinsics Reference Manual.

Opening a labeled magnetic tape file

Example 5-6 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that
Chapter 5 101

Opening a File
Opening a Device File
opens a labeled magnetic tape file labltape . Use of the HPFOPENlabeled tape label
option indicates to the file system that the file is opened as a labeled magnetic tape file.

Example 5-6. Opening a Labeled Magnetic Tape File

 procedure open_labeled_magnetic_tape_file;

 const
 formal_designator_option = 2; {defines HPFOPEN itemnum 2 }
 domain_option = 3; {defines HPFOPEN itemnum 3 }
 tape_label_option = 8; {defines HPFOPEN itemnum 8 }
 tape_expiration_option =31; {defines HPFOPEN itemnum 31 }
 device_class_option =42; {defines HPFOPEN itemnum 42 }

 type
 pac80 = packed array [1..80] of char;

 var
 file_num : integer; {required HPFOPEN filenum parameter }
 status : integer; {returns info if error/warning occurs }

 file_name : pac80; {declares HPFOPEN itemnum 2 }
 old : integer; {declares HPFOPEN itemnum 3 }
 tape_label : pac80; {declares HPFOPEN itemnum 8 }
 expire_date : pac80 {declares HPFOPEN itemnum 31 }
 device_class : pac80 {declares HPFOPEN itemnum 42 }

 begin
 file_num :=0;
 status :=0;
 file_name :='&labltape&'; {delimiter is "&" }
 old :=3; {equivalent to specifying permanent}
 tape_label :='&tape01&'; {ANSI tape label }
 expire_date :='&05/20/87&' {when data is no longer useful }
 device_class :='&tape&'; {system-configured device name }

 HPFOPEN (file_num, status,
 formal_designator_option, file_name, { formaldesignator option }
 domain_option, old, { domain option }
 tape_label_option, tape_label, { labeled tape label option }
 tape_expiration_option, expire_date, { labeled tape expiration option }
 device_class_option, device_class { device class option }
);

 if status <> 0 then handle_file_error (file_num, status);
 end;

If the HPFOPEN call is successful, a positive integer value is returned in file_num and
status returns a value of zero. The magnetic tape files is now open and ready to be
accessed. If an error or warning condition is encountered by HPFOPEN, status returns a
nonzero value, thus invoking the error-handling procedure handle_file_error .

In appendix A "HP Pascal/iX Program Examples," Example A-2 uses a similar procedure to
open a labeled magnetic tape file. For more information about HPFOPEN parameters, refer
to the MPE/iX Intrinsics Reference Manual.
102 Chapter 5

6 Closing a File

Once your program is finished accessing a file, the program can terminate access to the file
with the FCLOSE intrinsic. This chapter discusses various ways that you can use the
FCLOSE intrinsic to close disk files and device files. Examples are provided to illustrate
important features available through the FCLOSE intrinsic. The following subjects are
discussed in detail:

• how the file system closes a file

• closing a disk file

• closing a magnetic tape file

How the File System Closes a File
You terminate access to a file from your program with the FCLOSE intrinsic. The FCLOSE
intrinsic applies to both disk and device files. FCLOSE also deallocates the device on which
the file resides; however, if your program has several concurrent HPFOPEN/FOPEN calls
issued to the same file, the device is not deallocated until the last "nested" FCLOSEintrinsic
is executed.

You can use the FCLOSE intrinsic to specify (or change) the disposition of a disk or a
magnetic tape file when it is closed. The disposition of a disk or magnetic tape file can be
new, temporary, or permanent. If you do not change the disposition of a new file when it is
closed, the file and its contents are deleted from the system when the file is closed using
FCLOSE.

You can change the disposition of a new file to be either temporary or permanent. A file
closed with a temporary disposition is closed as a temporary file. It is deleted from the
system when your job/session is terminated. A file closed with a permanent disposition is
closed and saved as a permanent file. It remains in the system domain after your
job/session ends, and until you purge it.

When you close a file with either a temporary or permanent disposition, MPE/iX conducts
a search:

• If the file is to be closed as a temporary file, the job file domain is searched.

• If the file is to be closed as a permanent file, the system file domain is searched.

You are not allowed to have duplicate file names in the same domain. If MPE/iX finds a file
of the same name in the searched directory, the file is not closed, and the FCLOSE intrinsic
returns an error condition.
103

Closing a File
How the File System Closes a File
You can specify the disposition of a file when it is opened when you use the final
disposition option or the file equation option of the HPFOPENintrinsic, or the FILE
command. Both HPFOPENoptions provides the same choices as the disposition parameter
of FCLOSE, except that you can change the disposition of a file when the file is opened (as
opposed to when the file is closed). For more information about HPFOPEN options, refer to
the MPE/iX Intrinsics Reference Manual.

NOTE Even though you are allowed to specify a file's final disposition when the file
is opened, MPE/iX does not search the appropriate directory until you
attempt to close that file.

If a conflict occurs between the dispositions specified at file-open time and file-close time,
the disposition specification that has the lower positive-integer value takes precedence.
For example, if a disposition of temporary (final disposition option = 2) is specified by
HPFOPEN, and a disposition of permanent (disposition = 1) is specified by FCLOSE , the
disposition specified by FCLOSE takes precedence. Likewise, if there are conflicts between
the disposition specifications of multiple FCLOSE calls on the same file, the disposition
specification that has the lower positive-integer value takes precedence when the file is
finally closed.

If your program does not issue an FCLOSE intrinsic call on files that have been opened,
MPE/iX closes all files automatically when the program's process terminates. In this case,
MPE/iX closes all opened files with the same disposition they had before being opened.
New files are deleted; old files are saved and assigned to the domain in which they
belonged previously, either permanent or temporary; however, if you specified the file's
disposition when you opened it with HPFOPEN, that disposition takes effect.
104 Chapter 6

Closing a File
Closing a Disk File
Closing a Disk File

The following examples show how you use the FCLOSE intrinsic to close a disk file:

• "Closing a New Disk File as Permanent" shows an example of an FCLOSE call that
closes the file opened in Example 5-1.

• "Closing a Permanent Disk File" shows an example of an FCLOSEcall that closes the file
opened in Example 5-2.

Closing a new disk file as permanent

Example 6-1 is an HP Pascal/XL code segment containing an HPFOPEN call that opens a
new file, and an FCLOSEintrinsic call that changes the disposition of the file to permanent
prior to closing it. (Refer to Example 5-1 for details on this HPFOPEN call.)

In Example 6-1, there is a disposition conflict between the FCLOSE call and the HPFOPEN
call that opened the file identified by file_num :

• The disposition parameter of FCLOSE specifies that the file is to be closed as a
permanent file.

• The final disposition option of the HPFOPENcall specifies that the file should be
closed as a temporary file.

The disposition parameter of FCLOSE takes precedence over the final disposition option
of HPFOPEN because the integer value of FCLOSE's disposition (1) is a smaller positive
value than that of HPFOPEN's final disposition option (2).

Example 6-1. Closing a New Disk File as Permanent

 .
 .
 .
 save_temp := 2;
 HPFOPEN(file_num, status,
 formal_designator_option, file_name, {HPFOPEN formaldesignator option }
 record_size_option, line_len, {HPFOPEN record size option }
 final_disp_option, save_temp, {HPFOPEN final disp option }
 ASCII_binary_option, ascii {HPFOPEN ASCII/binary option }
);
 .
 .
 .
 error := 1;
 disposition := 1; {close file as a permanent file }
 security_code := 0; {No additional restrictions }

 FCLOSE (file_num, {file_num returned by HPFOPEN }
 disposition, {close file with permanent disposition }
 security_code {no additional restrictions are added }
);

 if ccode = error then handle_file_error (file_num, 0)
 .
Chapter 6 105

Closing a File
Closing a Disk File
 .
 .

If the file could not be closed because an incorrect file_num was specified, or another file of
the same name and disposition already exists, ccode returns a value of one, thus invoking
the error-handling procedure handle_file_error .

In Appendix A, "Pascal/XL Program Examples," Example A-1 uses a similar procedure to
close a new disk file. For more information about FCLOSEparameters, refer to the MPE/iX
Intrinsics Reference Manual.

Closing a permanent disk file

Example 6-2 closes the permanent file opened in Example 5-2. (Refer to Example 5-2 for
details on this HPFOPEN call.) The disposition of the file is not changed when it is closed.
The file remains a permanent disk file.

Example 6-2. Closing a Permanent Disk File

 .
 .
 .
 HPFOPEN(file_num, status,
 formal_designator_option, file_name, {HPFOPEN formaldesignator option }
 domain_option, permanent, {HPFOPEN domain option }
 access_type_option, update, {HPFOPEN access type option }
 dynamic_locking_option, lockable, {HPFOPEN dynamic locking option }
 exclusive_option, shared {HPFOPEN exclusive option }
 ASCII_binary_option, ascii {HPFOPEN ASCII/binary option }
);
 .
 .
 .
 error := 1;
 disposition := 0; {no change to disposition }
 security_code := 0; {No additional restrictions }

 FCLOSE (file_num, {file_num returned by HPFOPEN }
 disposition, {don't change prior disposition }
 security_code {no additional restrictions are added }
);

 if ccode = error then handle_file_error (file_num, 0)
 .
 .
 .

If the file could not be closed because an incorrect file_num was specified, or another file of
the same name and disposition already exists, ccode returns a value of one, thus invoking
the error-handling procedure handle_file_error .

In Appendix A, "Pascal/XL Program Examples," Example A-5 uses a similar procedure to
close a permanent disk file. For more information about FCLOSE parameters, refer to the
MPE/iX Intrinsics Reference Manual.
106 Chapter 6

Closing a File
Closing a Magnetic Tape File
Closing a Magnetic Tape File
The operation of the FCLOSEintrinsic as used with unlabeled magnetic tape is outlined in
the flowchart of Figure 6-1..

Figure 6-1. Using the FCLOSE Intrinsic with Unlabeled Magnetic Tape
Chapter 6 107

Closing a File
Closing a Magnetic Tape File
Note that a tape closed with the temporary no-rewind disposition is rewound and unloaded
if certain additional conditions are not met. It is possible for a single process to open a
magnetic tape device using the device class option of HPFOPEN/FOPEN, then again open
the already-allocated device by specifying its logical device number (ldev) using the device
name option of HPFOPEN/FOPEN. This may be done in such a manner that both magnetic
tape files are open concurrently. The second HPFOPEN/FOPEN does not require any operator
intervention to allocate the device. When file open and file close calls are arranged in a
nested fashion, tape files may be closed without deallocating the physical device, as
follows:

HPFOPEN allocated tape

tape remains allocated

FCLOSE deallocated tape

Such nesting of HPFOPEN/FOPENand FCLOSEpairs is required to keep from rewinding a tape
closed with FCLOSE. A tape closed with the temporary, no-rewind disposition is rewound
and unloaded unless the process closing it has another file currently open on the device.

When a temporary no-rewind tape is deallocated, the file system has not placed an EOF
(end-of-file mark) at the end of the data file.

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled
tape file that is part of a volume set. If you close the file with a disposition code of 0 or 3,
the tape does not rewind, but remains positioned at the next file. If you close the file with a
disposition code of 2, the tape rewinds to the beginning of the file, but is not unloaded. A
subsequent request to open the file does not reposition the tape if the sequence (seq)
subparameter is NEXT or default (1). A disposition code of 1 (save permanent) implies the
close of an entire tape volume set.
108 Chapter 6

7 Record Selection and Data Transfer

The chief activities of the file system involve the transfer of data. In this chapter we will
examine how this is accomplished. As you read this chapter, keep these considerations in
mind:

• How are records selected for transfer?

• What intrinsics are used for data transfer?

• How is the record pointer affected by intrinsics?

The last section of this chapter discusses the major points presented in this chapter as
they pertain to magnetic tape files.

Record Pointers
The file system uses record pointers to find specific records for your use. Physical record
pointers (also referred to as block pointers) are used to locate specific blocks on disk; logical
record pointers blocks and deblocks the logical records in a physical record and indicate
specific logical records within a file. A file opened with the inhibit buffering option
parameter set to BUF (the default) is accessed with a logical record pointer. A file opened
with the inhibit buffering option parameter set to NOBUF is accessed with a physical
record (or block) pointer.

Figure 7-1. shows how the physical and logical record pointers operate together to locate
any record in a file. For any record, the physical record pointer indicates the correct block,
and the logical record pointer locates the logical record within the block.

The file system uses both the physical and the logical record pointers to locate records.
Future references to "record pointer" in this manual will imply this combination.

When you open your file the HPFOPEN/FOPEN intrinsic sets the record pointer to record 0
(the first record in your file) for all operations. If you have opened the file with APPEND
access, though (using the access type option parameter available in HPFOPEN/FOPEN),
MPE/iX moves the record pointer to the end of the file prior to a write operation; this
ensures that any data that you write to the file is added to the end of the file rather than
written over existing data.
109

Record Selection and Data Transfer
Record Selection
Figure 7-1. Record Pointers

Following initialization, the record pointer may remain in position at the head of your file,
or it may be moved by the intrinsics used in record selection.

Record Selection
How are records selected for transfer? The file system intrinsics listed in Table 7-1. are
designed to move records to and from your file, but how do they choose the records they
want? The record pointer indicates the specific location where a file will be accessed;
records can be transferred to or from this location, or the pointer can be moved to another
place in the file that you wish to access.

There are five methods of record selection that you can use to access your file:

• sequential access, in which you transfer data to and from the place the record pointer
currently indicates

• random access, in which you move the record pointer before transferring data

• update access, in which you choose a record and write a new record over it
110 Chapter 7

Record Selection and Data Transfer
Record Selection
• RIO access, in which you access only records that are not deactivated.

• Mapped access is a special type of access available only through the HPFOPENintrinsic,
in which you bypass file system data transfer mechanisms by referencing the file as an
array using a pointer declared in your program. Mapped files are discussed in chapter
11, "Accessing a File Using Mapped Access".

Sequential access

When you use this method of record selection, you assume that the record pointer is
already where you want it. You transfer your data using the FREADor FWRITEintrinsic, and
the record pointer is automatically set to the beginning of the next record at the end of
each read or write; for this reason, this method is also called serial record selection. For
fixed-length and undefined-length record files, the file system updates the record pointer
by adding the uniform record length to the pointer after you read or write a record; for
variable-length record files, the file system takes the byte count from the record being
transferred plus some bytes required for overhead, and adds that to the record pointer,
resulting in a pointer to the next record.

Random access

If the record pointer is not indicating the location that you want, you can use the random
access method to move the pointer and begin your transfer wherever that you like; for this
reason, this method is also called controlled record selection.

It is possible to access specific records in a disk file with the FREADDIR and FWRITEDIR
intrinsics. The record number to be read or written is specified as one of the parameters in
the FREADDIRor FWRITEDIRintrinsic call. Following the read or write operation, the record
pointer is set to the next record, as in the default case. Note that FREADDIRand FWRITEDIR
may be issued only for a disk file composed of fixed-length or undefined-length records.

Update access

To update a logical record of a disk file, you use the FUPDATE intrinsic. The FUPDATE
intrinsic affects the last logical record (or block for NOBUF files) accessed by any intrinsic
call for the file named and writes information from a buffer in the stack into this record.
Following the update operation, the record pointer is set to indicate the next record
position.

The record number need not be supplied in the FUPDATE intrinsic call; FUPDATE
automatically updates the last record referenced in any intrinsic call. Note that the file
system assumes the record to be updated has just been accessed in some way.

You must open the file containing the record to be updated with the access type
option parameter of the HPFOPEN/FOPENcall set to update access. In addition, the file must
not contain variable-length records.

Table 7-1. Intrinsics for Data Transfer

FREAD Used for sequential read.

May be used with fixed-length, variable-length, or undefined-length record files.
Chapter 7 111

Record Selection and Data Transfer
Record Selection
File must be opened with Read, Read/Write, or Update access.

Successful read returns CCE condition code and transfer length; file error results
in CCL condition code; end-of-file results in CCG condition code and returns a
transfer length of zero.

FWRITE Used for sequential write.

May be used with fixed-length, variable-length, or undefined-length record files.

File must be opened with Write, Write/SAVE, APPEND, Read/Write or Update
access.

Successful write returns CCE condition code; file error results in CCL condition
code; end-of-file results in CCG condition code.

FREADDIR Used for random-access read.

Used only with fixed or undefined-length record files.

File must be opened with Read, Read/Write, or Update access.

Successful read returns CCE condition code; file error results in CCL condition
code; end-of-file results in CCG condition code. No transfer length is returned
because you get the amount requested unless an error occurs.

FREADSEEK Used for anticipatory random-access read into file system buffers.

Used only with buffered fixed-length or undefined-length record files.

File must be opened with Read, Read/Write, or Update access.

Successful read returns CCE condition code; file error results in CCL condition
code; end-of-file results in CCG condition code.

FWRITEDIR Used for direct write.

Use only with fixed-length or undefined-length record files.

File must be opened with Write, Write/SAVE, Read/Write or Update access;
APPEND not allowed.

Successful write returns CCE condition code; file error results in CCL condition
code; end-of-file results in CCG condition code.

FUPDATE Used to update previous record (logical or physical).

Used only with fixed-length or undefined-length record files.

Table 7-1. Intrinsics for Data Transfer
112 Chapter 7

Record Selection and Data Transfer
Multiple Record Transfers
RIO access

RIO is an access method that permits individual file records to be deactivated. These
inactive records retain their relative position within the file. RIO access is intended for use
primarily by COBOL programs; however, you can access these files by programs written in
any language. You create an RIO file using the file type option parameter of
HPFOPEN/FOPEN.

RIO files may be accessed in two ways, RIO access and non-RIO access. RIO access ignores
the inactive records when the file is read sequentially using the FREADintrinsic, and these
records are transparent to you; however, they can be read by random access using
FREADDIR. They may be overwritten both sequentially and randomly using FWRITE,
FWRITEDIR, or FUPDATE. With non-RIO access, the internal structure of RIO blocks is
transparent.

Multiple Record Transfers
In almost all applications, programs conduct input/output in normal recording mode,
where each read or write request transfers one logical record to or from the data stack. In
certain cases, however, you may want your program to read or write, in a single operation,
data that exceeds the logical record length defined for the input or output file.

For instance, you may want to read four 128-byte logical records from a file to your data
stack in a single 512-byte data transfer. Such cases usually arise in specialized
applications. Suppose, for example, that your program must read input from a disk file
containing 256-byte records. This data, however, is organized as units of information that
may range up to 1024 bytes long; in other words, the data units are not confined to record
boundaries. Your program is to read these units and map them to an output file, also
containing 256-byte records.

You can bypass the normal record-by-record input/output, instead receiving data transfers
of 1024 bytes each, by specifying multirecord mode (MR) using the multirecord option
parameter in your HPFOPEN/FOPEN call or FILE command. For example:

 :FILE BIGCHUNK; REC=-256,1,U;NOBUF;MR
 \
 Specifies multirecord mode

The essential effect of multirecord mode is to make it possible to transfer more than one
block in a single read or write. This mode effectively ignores block boundaries, and permits
transfers of as much data as you wish; it does not, however, break up blocks. Your transfers
must begin on block boundaries. In order to take advantage of multirecord mode, you must

File must be opened with Update access. No multirecord update allowed.

Successful update returns CCE condition code; file error results in CCL condition
code; end-of-file results in CCG condition code.

Table 7-1. Intrinsics for Data Transfer
Chapter 7 113

Record Selection and Data Transfer
Control Operations
also set the the inhibit buffering option parameter to NOBUF in your HPFOPEN/FOPEN
call or FILE command.

When you read from a file in multirecord mode, you may not read beyond the EOF
(end-of-file marker). When you write to a file in multirecord mode, you may write only up
to the block containing the file limit. If your transfer exceeds its limit, a condition code of
CCG is returned, data is transferred only up to the limit, and the FREADintrinsic returns a
transfer length of 0.

NOTE To obtain the actual transfer length for your data use the FCHECKintrinsic, as
described in the MPE/iX Intrinsics Reference Manual. The transfer length is
returned in the TLOG parameter of FCHECK.

Control Operations
There may be times when you want to move the record pointer to a particular place
without necessarily transferring any data. There are three general categories for this type
of record selection:

Spacing: Move the record pointer backward or forward.

Pointing: Reset the record pointer.

Rewinding: Reset the pointer to record 0.

Spacing

To space forward or backward in your file, use the FSPACE intrinsic. Its syntax is

 FSPACE(filenum,displacement);

The displacement parameter gives the number of records to space from the current record
pointer. Use a positive number for spacing forward in the file or a negative number for
spacing backward.

You can use the FSPACE intrinsic only with files that contain fixed-length or
undefined-length records; variable-length record files are not allowed. The FSPACE
intrinsic may not be used when you have opened your file with APPEND access; the file
system returns a CCL condition if you attempt to use it in this case. Spacing beyond the
EOF results in a CCG condition, and the record pointer is not changed.

Pointing

To request a specific location for the record pointer to indicate, use the FPOINT intrinsic. Its
syntax is

 FPOINT(filenum , recnum);

Use the recnum parameter to specify the new location for the record pointer; recnum is the
114 Chapter 7

Record Selection and Data Transfer
Magnetic Tape Considerations
record number relative to the start of the file (record 0).

You can use The FPOINT intrinsic only with files that contain fixed-length or
undefined-length records; variable-length record files are not allowed. The FPOINT
intrinsic may not be used when you have opened your file with Append access; the file
system returns a CCL condition if you attempt to use it in this case. It is legal to point to
any record between the start of file and the file limit. Subsequent reads will fail if the data
pointer is positioned beyond the EOF. If the data pointer is positioned beyond the EOF and
a subsequent write is done, this will become the new EOF and all data between the old and
new EOF will be initialized with the fill character.

Rewinding

When you "rewind" your file, you set the record pointer to indicate record 0, the first record
in your file. Use the FCONTROL intrinsic with a control code of 5 to accomplish this.
FCONTROL's syntax in this case would be

 FCONTROL(filenum,5,dummyparam);

Issuing this intrinsic call sets the record pointer to record 0. You can use FCONTROL with
fixed-length, variable-length, or undefined-length record files; you can use it with any
access method.

NOTE FCONTROL's control code 5 has a special meaning when used with Append
access. The file system sets the record pointer to record 0, as with other access
modes, but at the time of the next write operation to the file, the record
pointer is set to the end of the file so that no data is overwritten.

For more information about the FSPACE, FPOINT, and FCONTROL intrinsics, consult the
MPE/iX Intrinsics Reference Manual.

Magnetic Tape Considerations
The most common medium for storage of a device file is magnetic tape. This section
describes the matters that you should keep in mind when you work with your magnetic
tape files.

Every standard reel of magnetic tape designed for digital computer use has two reflective
markers located on the back side of the tape (opposite the recording surface). As illustrated
in Figure 7-2., one of these marks is located behind the tape leader at the
beginning-of-tape (BOT) position, and the other is located in front of the tape trailer at the
end-of-tape (EOT) position. These markers are sensed by the tape drive itself and their
position on the tape (left or right side) determines whether they indicate the BOT or EOT
positions:
Chapter 7 115

Record Selection and Data Transfer
Magnetic Tape Considerations
Figure 7-2. Magnetic Tape Markers

As far as the magnetic tape hardware and software are concerned, the BOT marker is
much more significant than the EOT marker because BOT signals the start of recorded
information; but EOT simply indicates that the remaining tape supply is running low, and
the program writing the tape should bring the operation to an orderly conclusion. The
difference in treatment of these two physical tape markers is reflected by the file system
intrinsics when the file being read, written, or controlled is a magnetic tape device file. The
following paragraphs discuss the characteristics of each appropriate intrinsic.

FWRITE. If the magnetic tape is unlabeled (as specified in the HPFOPEN/FOPENintrinsic or
FILE command) and a user program attempts to write over or beyond the physical EOT
marker, the FWRITE intrinsic returns an error condition code (CCL). The actual data is
written to the tape, and a call to FCHECK reveals a file error indicating end-of-tape. All
writes to the tape after the EOT marker has been crossed transfer the data successfully,
but return a CCL condition code until the tape crosses the EOT marker again in the
reverse direction (rewind or backspace).

If the magnetic tape is labeled (as specified in the HPFOPEN/FOPEN intrinsic or FILE
command), a CCL condition code is not returned when the tape passes the EOT marker.
Attempts to write to the tape after the EOT marker is encountered cause end-of-volume
(EOV) labels to be written. A message then is printed on the operator's console requesting
another reel of tape to be mounted.

FREAD. A user program can read data written over an EOT marker and beyond the
marker into the tape trailer. The intrinsic returns no error condition code (CCL or CCG)
and does not initiate a file system error code when the EOT marker is encountered.

DDS tape drives do not permit an FREAD past the marker. With DDS drives, every FWRITE
updates the EOT marker and does not permit a rewrite of previous data.

FSPACE. A user program can space records over or beyond the EOT marker without
receiving an error condition code (CCL or CCG) or a file system error. The intrinsic does,
however, return a CCG condition code when a logical file mark is encountered. If the user
program attempts to backspace records over the BOT marker, the intrinsic returns a CCG
condition code and remains positioned on the BOT marker.

FCONTROL (Write EOF). If a user program writes a logical end-of-file (EOF) mark on a
magnetic tape over the reflective EOT marker, or in the tape trailer after the marker,
hardware status is saved to return END-OF-TAPE on the next FWRITE. The file mark is
actually written to the tape.
116 Chapter 7

Record Selection and Data Transfer
Magnetic Tape Considerations
FCONTROL (FORWARD SPACE TO FILE MARK). A user program that spaces
forward to logical tape marks (EOFs) with the FCONTROL intrinsic cannot detect passing
the physical EOT marker. No special condition code is returned.

FCONTROL (BACKWARD SPACE TO FILE MARK). The EOT reflective marker is not
detected by FCONTROL during backspace file (EOF) operations. If the intrinsic discovers a
BOT marker before it finds a logical EOF, it returns a condition code of CCE and treats the
BOT as if it were a logical EOF. Subsequent backspace file operations requested when the
file is at BOT are treated as errors and return a CCL condition code and set a file system
error to indicate INVALID OPERATION .

In summary, except for FCONTROL, only those intrinsics that cause the magnetic tape to
write information are capable of sensing the physical EOT marker. If a program designed
to read a magnetic tape needed to detect the EOT marker, it could be done by using the
FCONTROL intrinsic to read the physical status of the tape drive itself. When the drive
passes the EOT marker and is moving in the forward direction, tape status bit 5 (%2000) is
set and remains on until the drive detects the EOT marker during a rewind or backspace
operation. Under normal circumstances, however, it is not necessary to check for EOT
during read operations. The responsibility for detecting end-of-tape and concluding tape
operations in an orderly manner belongs to the program that originally created (wrote) the
tape.

A program that needed to create a multiple reel tape file would normally write tape
records until the status returned from FWRITE indicated an EOT condition. Writing could
be continued in a limited manner to reach a logical point at which to break the file. Then
several file marks and a trailing tape label would typically be added, the tape rewound,
another reel mounted, and the data transfer continued. The program designed to read
such a multitape file must expect to find and check for the EOF and label sequence written
by the tape's creator. Since the logical end of the tape may be somewhat past the physical
EOT marker, the format and conventions used to create the tape are of more importance
than determining the location of the EOT.
Chapter 7 117

Record Selection and Data Transfer
Magnetic Tape Considerations
118 Chapter 7

8 Writing to a File

This chapter describes, through program examples, various ways that you can use file
system intrinsics to transfer data from your program to a disk file or a device file. This
chapter is intended to illustrate topics introduced in chapter 7, "Record Selection and Data
Transfer". This chapter is divided into the following topics:

• "Sequential Access and Random Access" discusses two common methods of record
selection and data transfer, and uses examples to illustrate the use of the FWRITE and
FWRITEDIR intrinsics.

• "Writing to $STDLIST" discusses how your program can use the PRINT and FWRITE
intrinsics to write data from your program to the job/session standard list device,
$STDLIST . An example illustrates the use of the PRINT intrinsic to write a character
string to $STDLIST .

• "Writing Messages to the system console" discusses how your program can send
messages from your program to the system console, and request a reply from the
operator. Examples illustrate the use of the PRINTOP and PRINTOPREPLY intrinsics.

• "Writing to a Magnetic Tape File" discusses how you can write data to two kinds of
magnetic tape files: unlabeled tape files and labeled tape files. Examples illustrate the
use of the FWRITE intrinsic to write data to both types of tape files.

• "Writing a File Label to a Labeled Tape File" provides an example of using the
FWRITELABEL intrinsic to write a user-defined file label to a labeled magnetic tape file.

Sequential Access and Random Access
Two of the most frequently used methods of transferring data to a file from your program
are sequential access and random access.

When you use sequential access to write data to a file, you write data to the record
currently pointed to by the record pointer. You use the FWRITE intrinsic to write data
sequentially to a disk file or device file. When you open a file with any form of write access
(except Append) specified in the access type option of HPFOPEN/FOPEN, the file is opened
with the record pointer set to the first record in the file. When you have accomplished the
write operation, the file system automatically sets the record pointer to point to the
beginning of the next record in the file. Both disk files and device files can be accessed with
the FWRITE intrinsic.

When you use random access to write data to a disk file, you write data to any record in the
file by specifying where you want the file system to set the record pointer prior to the write
119

Writing to a File
Sequential Access and Random Access
operation. You use the FWRITEDIRintrinsic to write data randomly to a disk file. You must
specify in FWRITEDIR which record that you want to write to. The file system sets the
record pointer to the selected record, then transfers the data to the record from your
program's stack. When you have accomplished the write operation, the file system
automatically sets the record pointer to point to the beginning of the next record in the file.
Only disk files can be accessed with the FWRITEDIR intrinsic.

The following examples illustrate the use of file system intrinsics to perform sequential
access writes and random access writes to a disk file.

Writing to a disk file using sequential access

Example 8-1 is an HP Pascal/iX code segment that copies logical records sequentially from
an unlabeled tape file (indicated by variable tape_file_num) and uses FWRITE to write
them to a disk file (indicated by variable disk_file_num). The operation is performed in a
loop. The loop ends when the FREAD intrinsic encounters an EOF marker on the tape
(indicating the end of the file).

Example 8-1. Writing to a Disk File Using Sequential Access

procedure copy_tape_file_to_disk_file;

var
 record : packed array [1..80] of char; {declare record }
 end_of_file : boolean; {declare exit condition}
 record_length : shortint; {size of record read }
 length : shortint; {declare parameter }
 control_code : 0..65535; {declare parameter }

begin
 end_of_file := false; {initialize exit condition }
 control_code := 0; {initialize to default }
 length : -80; {size of record to be copied }

 repeat {loop until exit condition }

 record_length := FREAD (tape_file_num, record, length);
 if ccode = ccl then {check condition code for error }
 handle_file_error (tape_file, 3)
 else
 if ccode = ccg then {FREAD returns ccg if EOF }
 end_of_file := true {exit condition encounter encountered}
 else
 begin
 FWRITE(disk_file_num, {identity returned by HPFOPEN }
 record, {read from tape_file_num }
 record length, {actual size of record }
 control_code {default }
);
 if ccode <> cce then {check condition code for error }
 handle_file_error (disk_file, 5);
 end
 until end_of_file;
end {end procedure }
120 Chapter 8

Writing to a File
Sequential Access and Random Access
If an error is encountered by either FWRITEor FREAD, the condition code CCL is returned to
the program, thus invoking the procedure handle_file_error . For more information
about FWRITE parameters, refer to the MPE/iX Intrinsics Reference Manual. For more
information about using the FREAD intrinsic, refer to chapter 9, "Reading from a File". For
more information about opening a file, refer to chapter 5, "Opening a File". In appendix A,
"HP Pascal/iX Program Examples," example A-1 uses a similar procedure to copy records
from a tape file to a disk file.

Writing to a disk file using random access

Example 8-2 is an HP Pascal/iX code segment that reads records sequentially from
old_disk_file and writes them into new_disk_file . Assume that both files have been
opened already with calls to HPFOPEN/FOPEN. The end-of-file (EOF) using the FWRITEDIRof
old_disk_file is determined with the FGETINFO intrinsic and assigned to the variable
record_num .

Example 8-2. Writing to a Disk File Using Random Access.

procedure copy_from_old_file_to_new_file;

var
 record_num : integer;
 buffer : packed array [256] of char;
 end_of_file : boolean;
 read_length : integer;
 length : shortint;

begin
 end_of_file := false; {initialize exit condition }
 record_num := 0; {initialize record pointer }
 length := 128 {also means 256 bytes }

 FGETINFO (old disk_file,,,,,,,,,,rec); {locate the EOF in old_disk_file}

 if ccode = ccl then
 handle_file_error (old_disk_file); {error check on intrinsic call}

 repeat {Copy the records in the reverse}
 {orders from old disk file }

 {to the new disk file }

 read_length := FREAD (old_disk_file, buffer, length);
 if ccode = ccl then
 handle_file_error (old_disk_file)
 else
 if ccode = ccg then {check for exit condition}
 end_of_file := true
 else begin
 rec := rec - 1 {decrement record pointer}
 FWRITEDIR(new_disk_file, buffer, read_length, record_num);
 if ccode <> cce then
 handle_file_error (new_discfile); {error check }
 end
 until end_of_file {exit loop if exit condition true}
Chapter 8 121

Writing to a File
Writing to $STDLIST
end; {end procedure }

The operation is performed in a loop. Before each write operation, record_num is
decremented. The loop ends when the FREAD intrinsic encounters an EOF in
old_disk_file (indicating the end of the file). For more information about FWRITEDIR
intrinsic parameters, refer to the MPE/iX Intrinsics Reference Manual. For more
information about the FREAD intrinsic, refer to chapter 9, "Reading from a File". In
appendix A, "HP Pascal/iX Program Examples", example A-3 uses a similar routine to copy
records using the random access method of data transfer to write date from one file to
another.

Writing to $STDLIST
You can write data from your program to your program's standard list device $STDLIST
using two intrinsics:

• PRINT

• FWRITE

Normally, $STDLIST for jobs is a line printer and for sessions a terminal. You can write a
string of ASCII characters from an array in your program to $STDLIST with the PRINT
intrinsic. You do not need to use HPFOPEN/FOPEN to open the standard list device in order
to use PRINT.

NOTE The PRINT intrinsic is limited in its usefulness in that FILE commands are
not allowed. In addition, you cannot use the FCHECK intrinsic to determine
error conditions encountered by PRINT. You may find it more convenient (and
a better programming practice) to use the HPFOPEN/FOPEN intrinsic to open
the file $STDLIST , then write to this file using FWRITE.

You can also use the FWRITEintrinsic to write data from your program to the standard list
device $STDLIST , if you opened $STDLIST with HPFOPEN/FOPEN. In this case, the
HPFOPEN/FOPEN call returns a file number that identifies $STDLIST . You would then write
to $STDLIST sequentially using FWRITE. For more information about opening $STDLIST ,
refer to chapter 5, "Opening a File".

Example 8-3 is an HP Pascal/iX code segment that contains a PRINT intrinsic call that
transmits a message to $STDLIST .

Example 8-3. Writing to $STDLIST Using PRINT

 .
 .
 .
 var
 message : packed array [1..72] of char; {declare PRINT parm}
 message_length : shortint; {declare PRINT parm}
 controlcode : 0..65535; {declare PRINT parm}
 .
122 Chapter 8

Writing to a File
Writing Messages to the System Console
 .
 .
 message := 'WRITING A MESSAGE TO THE STANDARD LIST DEVICE.';
 message_length := -46 {message is 46 bytes long }
 control_code := 0;
 PRINT (message, {message written to $STDLIST }
 message_length, {number of bytes in message }
 controlcode {set to default }
);
 .
 .
 .

For more information about PRINT parameters, refer to the MPE/iX Intrinsics Reference
Manual. In appendix A, "HP Pascal Program Examples," example A-2 uses the PRINT
intrinsic to write messages to $STDLIST .

Writing Messages to the System Console
Two intrinsics are available that allow you to print a character string directly from your
program to the system console:

• PRINTOPtransmits an ASCII character string from your program to the system console.

• PRINTOPREPLY transmits an ASCII character string from your program to the system
console, and solicits a reply from the system operator.

Writing a message to the system console

Example 8-4 is an HP Pascal/iX program segment that illustrates how your program can
call the PRINTOPintrinsic to transmit a message from a character array in your program to
the System Console.

Example 8-4. Writing a Message to the System Console

 .
 .
 .
 var
 message : packed array [1..56] of char; {declare PRINTOP parm}
 length : shortint; {declare PRINTOP parm}
 controlcode : 0..65535; {declare PRINTOP parm}
 .
 .
 .
 message := 'Message to Operator'; {message to transmit }
 length := -19 {actual length in bytes }
 controlcode := 0; {set to default }
 PRINTOP (message,
 length,
 controlcode
);
 .
Chapter 8 123

Writing to a File
Writing Messages to the System Console
 .
 .

The PRINTOPintrinsic transmits a maximum of 56 ASCII characters to the system console.
Longer messages are truncated to 56 characters. For more information about PRINTOP
intrinsic parameters, refer to the MPE/iX Intrinsics Reference Manual.

Writing a message to the system console and requesting a reply

The PRINTOPREPLY intrinsic can be used to transmit a message from an array in your
program to the system console and to request that a reply be returned. The message that
you send must be no longer than 50 characters in length. PRINTOPREPLY can return a
maximum of 31 ASCII characters to your program. For example, a program could ask the
system operator if the line printer contains a certain type of form. If the response is
affirmative, the program could then write information on these forms.

Example 8-5 is an HP Pascal/iX code segment containing a PRINTOPREPLY intrinsic call.
The program is asking the system operator if the line printer device LP contains the correct
forms. The program is requesting that the system operator respond with a simply YES or
NOresponse. The program takes appropriate action based upon the characters returned in
reply .

Example 8-5. Writing a Message to the System Console and Requesting a Reply

 .
 .
 .
 var
 message : packed array [1..50] of char; {PRINTOREPLY parameter}
 length : shortint; {PRINTOREPLY parameter}
 zero : shortint; {PRINTOREPLY parameter}
 reply : packed array [1..31] of char; {PRINTOREPLY parameter}
 expected_length: shortint; {PRINTOREPLY parameter}
 counter
 .
 .
 .
 message := 'Does device LP contain the correct forms? [Y/N]';
 length := -47 {length of message }
 zero := 0;
 reply := ' '; {initialize reply }
 expected_length := -3 {expected reply Y/YES/N/NO }
 PRINTOREPLY (message, {message sent to system console }
 length, {length of message in range 0..50 }
 zero, {required, but not used. Set to 0 }
 reply {reply returned in this array }
 expected_length {length of reply in range 0..31 }
);
 .
 .
 .

The actual length of the System Operator's reply is returned to expected_length . For
more information about PRINTOREPLYintrinsic parameters, refer to the MPE/iX Intrinsics
Reference Manual.
124 Chapter 8

Writing to a File
Writing to a Magnetic Tape File
Writing to a Magnetic Tape File
The following discussion pertains to writing data to two different types of magnetic tape
files.

• unlabeled magnetic tape files

• labeled magnetic tape files

Unless you specifically create and open a labeled magnetic tape file, the file system opens
an unlabeled magnetic tape file when you specify a tape drive using either the device
name option or device class option of HPFOPEN/FOPEN. For more information about
opening both unlabeled and labeled magnetic tape files, refer to chapter 5, "Opening a
File".

When you are writing records to an unlabeled magnetic tape file, you must take into
consideration characteristics of magnetic tape that do not apply to files on other devices.
For example, if a user program attempts to write over or beyond the physical EOT marker,
the FWRITE intrinsic returns an error condition code (CCL). The actual data is written to
the tape, and a call to FCHECKreveals a file error indicating END-OF-TAPE. All writes to the
tape after the EOT tape marker has been crossed transfer the data successfully, but return
a CCL condition code until the tape crosses the EOT marker again in the reverse direction
(rewind or backspace). For more information about magnetic tape considerations, refer to
chapter 7, "Record Selection and Data Transfer".

Writing records to a labeled tape file differs slightly from writing to an unlabeled tape file.
If the magnetic tape is unlabeled and a user program attempts to write over or beyond the
physical EOT marker, the FWRITE intrinsic returns an error condition code (CCL). The
actual data has been written to the tape, and a call to FCHECKreveals a file error indicating
END-OF-TAPE. All writes to the tape after the EOT tape marker has been crossed transfer
the data successfully, but return a CCL condition code until the tape crosses the EOT
marker again in the reverse direction (rewind or backward).

If the magnetic tape is labeled, a CCL condition code is not returned when the tape passes
the EOT marker. Attempts to write to the tape after the EOT marker is encountered cause
end-of-volume (EOV) labels to be written. A message then is printed on the operator's
console requesting another reel of tape to be mounted.

The following headings provide examples of file system intrinsic calls that illustrate:

• writing to an unlabeled magnetic tape file

• writing to a labeled magnetic tape file

• writing a user-defined file label on a labeled tape file

Writing to an unlabeled magnetic tape file

Example 8-6 is an HP Pascal/iX code segment that writes user-supplied data to the
unlabeled magnetic tape file opened in example 5-5. For information about the HPFOPEN
call that returns the file number in the variable unlabeled_tape_file , refer to example
5-5.
Chapter 8 125

Writing to a File
Writing to a Magnetic Tape File
Example 8-6. Writing to an Unlabeled Magnetic Tape File

 .
 .
 .
 var
 control_code : 0..65535; {Declare FWRITE parm. }
 record_length: shortint; {Declare FWRITE parm }
 file_record : record_type; {Record to be written to file; }
 {record_type is 256-byte }
 {fixed-length record. }
 .
 .
 .
 record_length:= -256; {Number of bytes in record. }
 control_code := 0; {Default specified }
 FWRITE (unlabeled_tape_file, {HPFOPEN returned file number. }
 file_record {Record to be passed }
 record_length {Size of file_record. }
 control_code {Required, but ignored. }
);

 if ccode = CCL {check FWRITE condition code }
 then handle_file_error (labeled_tape_file);
 .
 .
 .

If the FWRITE intrinsic encounters an error condition (CCL), an error-handling procedure,
handle_file_error , is invoked. FWRITE returns a CCG condition code if the EOF is
reached. For details concerning FWRITE intrinsic parameters, refer to the MPE/iX
Intrinsics Reference Manual.

Writing to a labeled magnetic tape file

Example 8-7 is an HP Pascal/iX code segment that writes user-supplied data to the labeled
magnetic tape file opened in Example 5-6. For information about the HPFOPEN call that
returns the file number in the variable labeled_tape_file , refer to example 5-6.

Example 8-7. Writing to a Labeled Magnetic Tape File

 .
 .
 .
 var
 control_code : 0..65535; {Declare FWRITE parm. }
 record_length: shortint; {Declare FWRITE parm }
 file_record : record_type; {Record to be written to file; }
 {record_type is 256-byte }
 {fixed-length record. }
 .
 .
 .
 record_length:= -256; {Number of bytes in record. }
 control_code := 0; {Default specified }
 FWRITE (labeled_tape_file, {HPFOPEN returned file number. }
 file_record {Record to be passed }
126 Chapter 8

Writing to a File
Writing a File Label to a Labeled Tape File
 record_length {Size of file_record. }
 control_code {Required, but ignored. }
);

 if ccode = CCL {check FWRITE condition code }
 then handle_file_error (labeled_tape_file);
 .
 .
 .

If the FWRITE intrinsic encounters an error condition (CCL), an error handling procedure
handle_file_error is invoked. FWRITE returns a CCG condition code if the EOF is
reached. For more information about FWRITE intrinsic parameters, refer to the MPE/iX
Intrinsics Reference Manual. For more information about opening files, refer to chapter 5,
"Opening a File".

Writing a File Label to a Labeled Tape File
User-defined labels are used to further identify files and may be used in addition to the
ANSI-standard labels. User-defined labels are written on files with the FWRITELABEL
intrinsic instead of with the HPFOPEN/FOPEN intrinsic, as is the case for writing
ANSI-standard labels.

User-defined labels for labeled tape files differ slightly from user-defined labels for disk
files, in that user-defined labels for tape files must be 80 bytes (40 half-words) in length.
The tape label information need not occupy all 80 bytes, however, and you can set unused
portions of the space equal to blanks.

In order to write a user-defined header label, the FWRITELABEL intrinsic must be called
before the first FWRITEto the file. MPE/iX does, however, write user-defined trailer labels if
FWRITELABEL is called after the first FWRITE.

NOTE User-defined labels may not be written on unlabeled magnetic tape files.

Example 8-8 is an HP Pascal/iX code segment that writes a user-label to the labeled
magnetic tape file opened in example 5-6. For information about the HPFOPEN call that
returns the file number in the variable LABELED_TAPE_FILE, refer to example 5-6.

Example 8-8. Writing a User-Label to a Labeled Magnetic Tape File.

 .
 .
 .
 var
 counter : integer; {Initialize counter }
 label_length : shortint; {FWRITELABEL length parm }
 user_label : packed array [1..80] of char;
 .
 .
 .
 label_length := 40; {40 half-words required length }
Chapter 8 127

Writing to a File
Writing User Data in ANSI Labels
 for counter := 1 to 80 do {Loop to fill array with }
 user_label [counter] := ' '; {ASCII blanks. }
 user_label := 'tape01 user header label no. 1'; {Overwrite first }
 {30 bytes with label name }

 FWRITELABEL (labeled_tape_file, {Required parameter }
 user_label, {Required parameter }
 label_length {Optional parameter }
);

 if ccode = CCL or CCG {check FWRITELABEL condition code }
 then handle_file_error (labeled_tape_file);
 .
 .
 .

If ccode indicates that the FWRITELABEL intrinsic encountered an error condition (either
CCL or CCG), an error handling procedure handle_file_error is invoked. For more
information about FWRITELABEL intrinsic parameters, refer to the MPE/iX Intrinsics
Reference Manual. For more information about opening files, refer to chapter 5, "Opening a
File".

Writing User Data in ANSI Labels
It is possible to write data into bytes 5/21 of the HDR1 record of an ANSI tape label. In all,
17 bytes are available. If you write more than 8 bytes into the record, the 9th byte (Byte
13) must be a period (".").

For example, to write the string "FRANKSTN COUNCIL" into bytes 5/21, mount your tape
and then do this:

FILE FRANKSTN.COUNCIL;DEV=TAPE;REC=-80,,F,ASCII;LABEL=BUDGET,ANS
FCOPY FROM=datafile ;TO=*FRANKSTN.COUNCIL

where datafile is the name of a disk file. This coerces the string
"FRANKSTN.COUNCIL" into bytes 5/21 of the HDR1 record, and it places "BUDGET"
into the VOL1 record of the tape.

The "file" and "group" names are right-justified.

In order to retrieve the string recorded in bytes 5/21, you must create a program that uses
the intrinsics FOPEN (or HPFOPEN) and FFILEINFO . The program must do two things:

• It must FOPEN (or HPFOPEN) the tape device.

• It must employ FFILEINFO with option 45 to retrieve the "file" identifier.

The tape containing such a label must be mounted before you run the program.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

F R A N K S T N . C O U N C I L
128 Chapter 8

9 Reading from a File

This chapter describes, through program examples, various ways that you can use file
system intrinsics to transfer data to your program from a disk file or device file. This
chapter is intended to illustrate topics introduced in chapter 7, "Record Selection and Data
Transfer". This chapter is divided into the following topics:

• "Sequential Access and Random Access" discusses two common methods of record
selection and data transfer, and uses examples to illustrate the use of the FREAD and
FREADDIR intrinsics.

• "Reading from $STDIN" discusses how your program can use the READ, READX, and
FREAD intrinsics to read data from the job/session standard input device, $STDIN. An
example illustrates the use of the READ intrinsic to read a character string from
$STDIN.

• "Reading from a Magnetic Tape File" provides an example of using the FREAD intrinsic
to read data from file located on magnetic tape.

• "Reading a File Label from a Labeled Tape File" provides an example of using the
FREADLABEL intrinsic to read a user-defined file label located on a labeled magnetic
tape file.
129

Reading from a File
Sequential Access and Random Access
Sequential Access and Random Access
Two of the most frequently used methods of transferring data from a file to your program
are sequential access and random access.

When you use sequential access to read data from a file, you read data from the record
currently pointed to by the record pointer. You use the FREAD intrinsic to read data
sequentially from a disk file or device file. When you open a file with any form of Read
access specified in the access type option of HPFOPEN/FOPEN, the file is opened with the
record pointer set to the first record in the file. When you have accomplished the read
operation, the file system automatically sets the record pointer to point to the beginning of
the next record in the file. Both disk files and device files can be accessed with the FREAD
intrinsic. When you use random access to read data from a disk file, you read data from
any record in the file by specifying where you want the file system to set the record pointer
prior to the read operation. You use the FREADDIRintrinsic to randomly access records in a
disk file. You must specify in FREADDIR which record that you want to read from. The file
system sets the record pointer to the selected record, then transfers the data from the
record to your program's stack. When you have accomplished the read operation, the file
system automatically sets the record pointer to point to the beginning of the next record in
the file. Only disk files can be accessed with the FREADDIR intrinsic

The following examples illustrate the use of file system intrinsics to perform sequential
access reads and random access reads from a disk file.

Reading from a disk file using sequential access

Example 9-1 is an HP Pascal/iX code segment that uses the FREADintrinsic to read records
sequentially from a disk file. Example 9-1 contains a loop construct, where records are
read sequentially from disk_file and written to the file new_file (both files opened
elsewhere by HPFOPEN/FOPEN calls). The files are both standard ASCII files with
fixed-record format, each record 256 bytes in length. When a logical end-of-file (EOF) is
reached, a condition code of CCG is returned by FREAD. The loop ends when FREAD
encounters the EOF and returns the CCG condition to the program.

Example 9-1. Reading from a Disk File Using Sequential Access

.
 .
 .
 var
 expected_length: shortint; {required by FREAD }
 record : packed array [1..256] of char; {declare record type }
 control_code : 0..65535; {required by FWRITE }
 record_length : shortint; {expected record length}
 end_of_file : boolean; {declare exit condition}
 .
 .
 .

 begin
130 Chapter 9

Reading from a File
Sequential Access and Random Access
 end_of_file := false; {initialize exit condition }
 expected_length := -256; {record size of file }
 control_code := 0 {set to default }

 repeat {begin loop }
 record_length := FREAD (disk_file, {file number from HPFOPEN }
 record, {data transferred to here }
 expected_length {record size of file }
);
 if ccode = ccl then handle_file_error (disk_file) {error check }
 else if ccode = ccg then end_of_file ;= true {exit condition check}
 else begin
 FWRITE(new_file, {file number from HPFOPEN }
 record, {data transferred here }
 record_length, {value returned by FREAD }
 control_code {required; set to default }
);
 end
 until end_of_file; {loop ends when exit condition encounted }
 .
 .
 .

If an error is encountered by either FREADor FWRITE, the condition code CCL is returned to
the program, thus invoking the procedure handle_file_error. For more information
about FREAD parameters, refer to the MPE/iX Intrinsics Reference Manual. For more
information about using the FWRITE intrinsic, refer to chapter 8, "Writing to a File". For
more information about opening a file, refer to chapter 5, "Opening a File".

Reading from a disk file using random access

Example 9-2 is an HP Pascal/iX code segment that, within a loop construct, calls the
FREADDIR intrinsic to read a record whose record number has been selected by the
procedure select_record and returned in the variable record_number. The example
then prints the selected record to the standard list device $STDLIST using the PRINT
intrinsic.

Example 9-2. Reading from a Disk File Using Random Access

 .
 .
 .
var
 record : packed array [1..30] of char; {declare record type }
 record_length : shortint; {expected record length }
 read_length : shortint; {actual bytes read by FREAD}
 record_number : integer; {which record to read }
 control_code : shortint; {required by PRINT }
 end_of_file : boolean; {declare exit condition }
 .
 .
 .
 control_code := 0; {default condition }
Chapter 9 131

Reading from a File
Sequential Access and Random Access
 record_length := -30; {file record size 30 bytes }
 record_number := 0; {initialize variable }
 end_of_file := false; {initialize exit condition }

 repeat {begin loop }
 select_record (record_number);
 read_length := FREADDIR (data_file, {HPFOPEN file number }
 record, {record read from data_file }
 record_length,{expected length of record }
 record_number {returned from select_record }
);
 if ccode = ccl then handle_file_error (data_file) {error check }
 else if ccode = ccg then end_of_file := true {check for exit condition}
 else begin
 PRINT (record, {returned by FREADDIR }
 read_length, {returned by FREADDIR }
 control_code {set to default condition}
);
 if ccode <> cce then handle_file_error (data_file)
 end
 until end_of_file; {exit if exit condition true }
 .
 .
 .

Assume that a disk file identified by data_file has been opened elsewhere by an
HPFOPEN/FOPEN call. Also, assume that procedure select_record prompts the user for a
valid record number of a record in data_file. The loop is repeated until the FREADDIR
intrinsic encounters an end-of-file condition, or an error condition is returned by an
intrinsic.

If an error is encountered by either FREADDIRor PRINT, procedure handle_file_error is
invoked. For more information about FREADDIRparameters, refer to the MPE/iX Intrinsics
Reference Manual. For more information about using the PRINT intrinsic, refer to chapter
8, "Writing to a File". For more information about opening a file, refer to chapter 5,
"Opening a File".

Increasing I/O performance using FREADSEEK

If you know in advance that a certain record is to be read from a file with the FREADDIR
intrinsic, you can speed up the I/O process by issuing an FREADSEEK intrinsic call.

The FREADSEEK intrinsic moves the record from disk to virtual memory. Then, when the
FREADDIR intrinsic call is issued, the record is transferred from virtual memory to the
buffer in the stack specified by FREADDIR without having to perform I/O. The use of
FREADSEEK enhances the I/O process, because the FREADDIR call does not make the file
system perform a physical I/O.
132 Chapter 9

Reading from a File
Reading From $STDIN
Reading From $STDIN
You can read data from your program's standard input device ($STDIN) by using one of the
following intrinsics:

• READ

• READX

• FREAD

The job/session input device is the source of all MPE/iX commands relating to a job or
session and is the primary source of all ASCII information input to the job or session. You
can read a string of ASCII characters from the job/session input device into an array in
your program with the READ and READX intrinsics. The READ and READX intrinsics are
identical, except that the READXintrinsic reads input from $STDINX instead of $STDIN. The
$STDINX file is equivalent to $STDIN, except that records with a colon (:) in the first column
of a line indicate the end-of-file to $STDIN, and only the commands :EOD, and EOF indicate
the end of file for $STDINX.

NOTE The READ and READX intrinsics are limited in their usefulness in that FILE
commands are not allowed. In addition, you cannot use the FCHECK intrinsic
to determine error conditions encountered by READ or READX. You may find it
more convenient (and a better programming practice) to use the
HPFOPEN/FOPEN intrinsic to open the files $STDIN or $STDINX, then issue
FREAD calls against these files.

If the standard input device ($STDIN) and the standard list device ($STDLIST) are opened
with an HPFOPEN/FOPEN intrinsic call, the FREAD and FWRITE intrinsics can be used with
these devices. For example, the FREADintrinsic can be used to transfer information entered
from a terminal to a buffer in the stack, and the FREAD intrinsic can be used to transfer
information from your stack directly to the standard list device.

Example 9-3 is an HP Pascal/iX code segment that uses the PRINT intrinsic to prompt a
user for a file designator, then uses the READ intrinsic to read the input from $STDIN.
Assume that the file designator is then returned to a procedure that calls HPFOPEN to
open a file with the formaldesignator option passing the file name specified by the user.

Example 9-3. Reading from $STDIN Using READ

procedure get_file_designator (var file_name : packed array [1..80] of
 char);

 var
 message : packed array [..80] of char; {holds prompt to user }
 length : shortint; {length of prompt }
 control_code : shortint; {required by PRINT }
 read_length : shortint; {length read by READ }
 expected_length : shortint; {size of message array}

 begin
Chapter 9 133

Reading from a File
Reading From a Magnetic Tape File
 massage :='Please input a valid file reference'; {specify prompt }
 length := -35; {length of prompt }
 control_code := 0 {default condition }
 expected_length := -80
 PRINT (message,
 length,
 control_code
);
 if ccode <> cce then handle_file_error;
 else begin
 read_length := READ (file_name, {read data to output parm}
 expected_length {length of file_name }
);
 if ccode <> cce then handle_file_error;
 end
 end;

If an error is encountered by either READ or PRINT, procedure handle_file_error is
invoked. For more information about READ parameters, refer to the MPE/iX Intrinsics
Reference Manual. For more information about using the PRINT intrinsic, refer to chapter
8, "Writing to a File". For more information about opening a file, refer to chapter 5,
"Opening a File". For more information about file designators, refer to chapter 3,
"Specifying a File Designator". In appendix A, "HP Pascal/iX Program Examples", example
A-2 uses a routine similar to example 9-3 to prompt the user for a valid file reference.

Reading From a Magnetic Tape File
Example 9-4 is an HP Pascal/iX code segment that reads records sequentially from an
unlabeled magnetic tape file (indicated by variable tape_file_num) and uses FWRITE to
write them to a disk file (indicated by variable disk_file_num). The operation is
performed in a loop. The loop ends when the FREADintrinsic encounters an EOF marker on
the tape (indicating the end of the tape file).

Example 9-4. Reading From a Magnetic Tape File

procedure copy_tape_to_disk_file;

var
 record : packed array [1..30] of char; {declare record }
 end_of_file : boolean; {declare exit condition }
 record_length : shortint; {size of record read }
 length : shortint; {declare parameter }
 control_code : 0..65535; {declare parameter }

begin
 end_of_file := false; {initialize exit condition}
 control_code := 0; {initialize to default }
 length := -80; {size of record to be copied}

 repeat {loop until exit condition}
134 Chapter 9

Reading from a File
Reading a File Label from a Labeled Tape File
 record_length := FREAD (tape_file_num, record, length);
 if ccode = ccl then
 handle_file_error (tape_file, 3)
 else
 if ccode = ccg then {FREAD returns ccg if EOF }
 end_of_file := true {exit condition encountered }
 else
 begin
 FWRITE(disk_file_num, {identity returned by HPFOPEN }
 record, {read from tape_file_num }
 record_length, {actual size of record }
 control_code {default }
);
 if ccode <> cce then {check condition code for error}
 handle_file_error (disk_file, 5);
 end

 entil end_of_file;
end; {end procedure }

If an error is encountered by either FREAD or FWRITE, procedure handle_file_error is
invoked. For more information about FREAD intrinsic parameters, refer to the MPE/iX
Intrinsics Reference Manual. For more information about the FWRITE intrinsic, refer to
chapter 8, "Writing to a File". In appendix A, "HP Pascal/iX Program Examples", example
A-1 uses a similar procedure to copy records from a tape file to a disk file.

Reading a File Label from a Labeled Tape File
The FREADLABELintrinsic is used to read a user-defined label located on a labeled magnetic
tape file or a labeled disk file. To read a user-defined header label, the FREADLABEL
intrinsic must be called before the first FREAD is issued for the file. Execution of the first
FREAD causes MPE/iX to skip past any unread user-defined header labels.

Example 9-5 is an HP Pascal/iX code segment that reads a user label located in the
user-defined label portion of data_file, a labeled magnetic tape file. The label is printed
to `STDLIST (identified by list_file) using the FWRITE intrinsic. Assume that both
data_file and list_file have been opened elsewhere with calls to HPFOPEN/FOPEN.

Example 9-5. Reading a User Label from a Labeled Magnetic Tape File

 procedure read_user_label;

 var
 label : packed array [1..80] of char; {holds label from file }
 length : shortint; {length of label }
 control_code : 0..65535; {required by FWRITE }

 begin
 length := 40 {required ANSI label size}
 control_code := 0 {set to default }
Chapter 9 135

Reading from a File
Reading a File Label from a Labeled Tape File
 FREADLABEL (data_file, {file number of tape file}
 label, {returns label }
 length {# of halfwords to read}
);
 if ccode <> cce then handle_file_error (data_file);
 FWRITE (list_file, {output to $STDLIST }
 label, {label read by FREADLABEL }
 length, {length of label }
 control_code {default condition }
);
 if ccode <> cce then handle_file_error (list_file);
 end; {end read_user_label }

If an error is encountered by either FREADLABELor FWRITE, procedure handle_file_error
is invoked. For more information about FREADLABEL intrinsic parameters, refer to the
MPE/iX Intrinsics Reference Manual. For more information about the FWRITE intrinsic,
refer to chapter 8, "Writing to a File". In appendix A, "HP Pascal/iX Program Examples",
example A-2 uses a similar procedure to read a user label from a labeled magnetic tape
file.
136 Chapter 9

10 Updating a File

You can use the FUPDATE intrinsic to update a logical record of a disk file. FUPDATE affects
the last logical record (or block for NOBUF files) accessed by any intrinsic call for the file
named, and writes information from a buffer in the stack into this record. Following the
update operation, the record pointer is set to indicate the next record position. The record
number need not be supplied in the FUPDATEintrinsic call; FUPDATEautomatically updates
the last record referenced in any intrinsic call. Note that the file system assumes that the

record to be updated has just been accessed in some way.

The disk file containing the record to be updated must have been opened with the access
type option parameter of HPFOPEN/FOPEN set to update access. In addition, the file must
not contain a variable-length record format. Example 10-1 is an HP Pascal/iX code
segment that illustrates how to use the FUPDATE intrinsic to update records in a disk file
being shared by multiple concurrent accessors. The program segment also uses file system
locking intrinsics (FLOCK and FUNLOCK) to guarantee exclusive access to the file while the
update occurs.

The pertinent code from Example 10-1 is shown below:

 .
 .
 .
 read_length := FREAD (disk_file_num, inbuf, 128);
 .
 .
 .
 FUPDATE (disk_file_num, inbuf, 128);
 .
 .
 .

The statements above are in a loop that follows this algorithm:

1. Read the record from the file identified by disk_file_num using the FREAD intrinsic.

2. Write the record to STDLIST to be reviewed by user.

3. Read new data input to STDIN by user and modify record in program.

4. Using FUPDATE intrinsic, write the updated record to the location in disk_file_num
indicated by last intrinsic call (in this case, the FREAD call shown above).

Example 10-1. Updating a Disk File

 procedure update_disk_file;

 {**}
137

Updating a File
 { procedure update_disk_file updates records in the disk file }
 { with the replacement records read from $STDIN }
 {**}

 var
 dummy : integer;
 inbuf : array [1..80] of char;
 end_of_file : boolean;
 read_length : integer;

 begin
 {Lock the file and suspend }
 end_of_file := false;
 FLOCK (disk_file_num, 1);
 if ccode = ccl then
 handle_file_error (disk_file_num, 0);
 {Begin loop }
 repeat
 { Read record from disk file, then write record to $STDLIST; }
 { read updated record number from $STDIN and update }
 { the disk file with the input record and unlock disk file. }

 read_length := FREAD (disk_file_num, inbuf, 128);
 {read in record}
 if ccode = ccg then
 end_of_file := true {exit condition }
 else
 begin
 FWRITE (std_list, inbuf, -20, octal('320'));
 {user reviews record}
 if ccode <> cce then
 handle_file_error (std_list, 5);
 dummy := FREAD (std_in, inbuf[20], 5);
 {input updated field}
 if ccode = ccl then
 handle_file_error (std_list, 6);
 else
 if ccode = ccg then
 end_of_file := true; {exit condition}

FUPDATE (disk_file_num, inbuf, 128); {update record }
 if ccode <> cce then
 handle_file_error (disk_file_num, 7);
 end
 until end_of_file; {test for EOF }
 FUNLOCK (disk_file_num); {final unlock of disk file}
 if ccode <> cce then
 handle_file_error (disk_file_num, 2);
 end: {end update_file }
138 Chapter 10

Updating a File
In appendix A, "HP Pascal Program Examples," example A-5 is an HP Pascal/iX program
that uses the procedure in example 10-1 to update records in a disk file. For more
information about FUPDATE parameters, refer to the MPE/iX Intrinsics Reference Manual.

NOTE A magnetic tape device is not designed to enable the update/replacement of a
single record in an existing file. Problems occurs in maintaining the integrity
of tape records if you attempt to perform a record update operation directly to
a magnetic tape file. You should update individual records of a magnetic tape
file only when you are copying the entire contents of that file to another file.
Chapter 10 139

Updating a File
140 Chapter 10

11 Accessing a File Using Mapped Access

A major enhancement to the MPE/iX file system is mapped file access, a method that
allows you to access a file directly through memory load and store instructions. Mapped
file access is available through three HPFOPEN intrinsic optional parameters:

• Item #18 short-mapped option returns a 32-bit value of type address.

• Item #21 long-mapped option returns a 64-bit value of type address.

• Item #87 large-mapped option returns a 64-bit value of type address. Long-mapped and
large-mapped options are identical with the exception that attempts to open a file
larger than 4GB - 64KB with the long-mapped option will result in a failure. The
large-mapped option may be used to open any file and is therefore considered more
reliable.
141

Accessing a File Using Mapped Access
How to Access a File Mapped
How to Access a File Mapped
You can access a file mapped by declaring a short (32-bit) or long (64-bit) pointer variable
within a program and passing that variable to the appropriate HPFOPEN option. The
HPFOPEN intrinsic returns the variable pointing to the beginning of the data area of the
opened file.

After HPFOPENreturns the address of the file, you simply reference the pointer as an array.
The machine architecture ensures integrity and protection of the file.

The following file types are allowed any type of access (Read, Write, Read/Write, and so
forth) when opened using mapped access options:

• standard disk files with fixed-length or undefined-length record formats

The following file types are allowed read-only access when opened using mapped access
options:

• standard disk files with variable-length record formats

• KSAM files opened with copy mode option enabled

The following file types are not allowed to be opened using mapped access options:

• relative I/O (RIO) files

• message (MSG) files

• circular (CIR) files

• device files

You can use all applicable file system intrinsics with files opened for mapped access,
including all data transfer intrinsics; however, when mixing data transfer intrinsic calls
(such as FREAD and FWRITE) with mapped access, you must take into consideration the
data type (ASCII/binary) of the file, the record format, and the record size. Otherwise, data
written to the file using mapped access may not make sense when read by FREAD.

When you open a file using mapped access and write data to that file, you must use the
FPOINT and FCONTROL intrinsics to reset the EOF before you close the file. Otherwise, all
data you write to the file after the EOF will be lost when you close the file. In the case of a
newly created file, the EOF initially points to record zero.

NOTE When you access a file with mapped access you are bypassing file system
services that set various file system pointers automatically, including the
EOF and the logical record pointer. You are responsible for resetting the EOF
prior to closing a file that you have accessed mapped. Also, file system posting
is bypassed; so, if data recovery is needed you should use FCONTROL
controlcodes 2 and/or 6 to post data and update the EOF periodically.
Heavy use of the FCONTROL intrinsic to post data and set the EOF degrades
performance due to the overhead of the extra posting.

When attempting to set the EOF to the file limit for a file opened with mapped access, the
142 Chapter 11

Accessing a File Using Mapped Access
How to Access a File Mapped
FCLOSE intrinsic disposition parameter, bit 10:1 set to 1 will force the EOF to the file
limit. This overcomes the problem of trying to FPOINT to the file limit.

Advantages of mapped access

Mapped access to a file can be much faster than access through normal file system
intrinsics. This is especially the case when you are accessing a smaller file randomly
rather than sequentially. When accessing a file mapped, there is no file system overhead
associated with a specific reference to the file. The only difference between accessing a file
mapped and accessing normal memory is the locality of the access and the protection
strategy.

NOTE It is possible to show a degradation of performance if an application that
accesses files sequentially is modified to access those files mapped. Normal
system reads prefetch multiple records per read. Mapped file access has no
method of prefetching the data, consequently, some performance penalty is
paid by additional overhead on page faults.

There are two perspectives you can take on mapped file access:

1. A file is accessible as virtual memory. The advantages from this perspective are high
performance and fast response time from the file system.

2. Virtual memory is accessed through the file system. The advantages from this
perspective are

• Virtual memory can be easily saved permanently.

• Virtual memory can be checkpointed.

• Virtual memory can be easily shared through a common naming convention.

Short-mapped access

Item #18 short-mapped option is available in the HPFOPEN intrinsic to provide you with
shared virtual memory. A short pointer is returned in an optional item parameter. You can
use the pointer as a large array of any type to efficiently access the file.

A file created using the short-mapped option can be up to four megabytes in size. A
process can have open at the same time up to six megabytes of files that are opened using
the short-mapped option . For larger file needs, a file created using the long-mapped
option is required.

An error results if you attempt to open a file using the short-mapped option that you
have previously opened normally or with the long-mapped option .

You cannot access a loaded program file or a loaded library file using either mapped access
option. In addition, you cannot load a file that is currently being accessed mapped.

Long-mapped access

Item #21 long-mapped option is available in the HPFOPEN intrinsic to provide you with
Chapter 11 143

Accessing a File Using Mapped Access
Opening a File Mapped
access to large amounts of shared virtual memory. You can use the pointer as a large array
of any type to efficiently access the file.

A file created using the long-mapped option can be up to 4GB - 64KB in size. There is no
practical limit of the number of long-mapped access files that a process can have open at a
time.

You cannot access a loaded program file or a loaded library file using either mapped access
option. In addition, you cannot load a file that is currently being accessed mapped.

Advantages of long-mapped access over short-mapped access are:

• You can access much larger files than you can using the short-mapped option .

• You can open files that were opened previously with any options (as long as the
exclusive status of the file is not violated)

The disadvantage of long-mapped access is that it may be slower than short mapped access
because of the need to load a space register to access the long-pointer space. long-mapped
access can be as much as four times slower than short-mapped access, although
long-mapped access still can be faster than accessing the file through the file system data
transfer intrinsics.

The degradation can be minimized if you make the references to the long pointer space in a
localized part of your code. This way it may be possible for the system to keep the pointer
to the file's virtual space loaded into a space register rather than to repeatedly load and
unload it.

Large-mapped access

Item #87, large-mapped option is similar to the long-mapped option. However, due to the
possible issues of trying to dereference a data structure that straddles a space ID
boundary, the large-mapped option is required whenever opening a large file for user
mapped access. Specifying this option indicates that the programmer is aware of the issue
of cross-SID buffers and has coded the application to correctly handle this situation. In all
other respects the large-mapped option is identical to the long-mapped option.

Opening a File Mapped
Example 11-1 illustrates how a file is created and opened with short-mapped access. This
HP Pascal/XL program segment opens the file, then writes data to the file with
assignments to the array structure. The procedure then sets the EOF and closes the file.

The file is then reopened short-mapped, and data is retrieved before the file is closed and
purged.

Example 11-1. Opening a Mapped File

 procedure Mapped_File_Example;
 type
 record_t = record {** defines an 80-byte record **}
144 Chapter 11

Accessing a File Using Mapped Access
Opening a File Mapped
 a_record : packed array [1..80] of char;
 end;
 file_t = array [1..50000] of record_t;
 {** define a 4,000,000 byte array **}
 var
 access,domain : integer;
 dummy : shortint;
 file_name : packed array [1..20] of char;
 file_number : integer;
 file_ptr :^file_t; {** pointer to the file **}
 filesize : integer;
 index, rec : integer;
 create_domain_perm : integer;
 read_write_access : integer;
 domain_old : integer;
 status : record
 case integer of
 0: (all: integer);
 1: (info: shortint;
 subsys: shortint);
 end;
 const
 file_name_option = 2;
 domain_option = 3;
 filesize option = 35;
 short_mapped_option = 18;
 access_type_option = 11;

 begin
 {** initialize item values for the HPFOPEN **}
 file_name := '%EXAMPLE%';
 create_domain_PERM := 4;
 domain_OLD := 3;
 filesize := 15265;
 read_write_access := 4;

 {** create a short-mapped file **}
 HPFOPEN (
 file_number, status,
 file_name_option, file_name
 domain_option,create_domain_PERM,
 filesize option, filesize,
 short_mapped_option, file_ptr,
 access_type_option, read_write_access,
);
 {** put some data into the file **}
 for rec := 1 to 100 do
 for index := 1 to 80 do
 file_ptr^[rec].a_record[index] :=
 Chr (((rec - 1) Mod 26) + 65);

 {** set the logical record pointer **}
 FPOINT (file_number, 33);
 FCONTROL (file_number, 6, dummy); {** set the EOF **}
 FCLOSE (file_number, 0, 0); {**close the file **}
Chapter 11 145

Accessing a File Using Mapped Access
New Intrinsics
 {** re-open the same short-mapped file **}
 HPFOPEN (
 file_number, status,
 file_name_option, file_name,
 domain_option, domain_OLD,
 short_mapped_option, file_ptr,
);

 {** retrieve some data you put in file **}
 for rec := 1 to 100 do
 begin
 write ('Record-', rec:4, ' ');
 for index := 1 to 20 do
 write (file_ptr^[rec].a_record[index];
 writeln;
 end;
 {** close and purge the file **}
 FCLOSE (file_number, 4, 0);
 end;

New Intrinsics
The following intrinsics have been added to make dealing with user mapped files simpler.
The intrinsics provide for basic pointer manipulation, data movement and memory
initialization. These intrinsics safely hadle all cross-SID buffer problems, removing the
user from having to deal with these situations. These intrinsics can be safely used on
long-mapped or large-mapped files.

HPFADDTOPOINTER

NM callable only.

This routine can be used to perform arithmetic on a 64-bit pointer value. Byte offsets can
be added to or subtracted from a pointer by specifying eithger a positive or negative offset
value.

Syntax

 @64 I64 @64 I32
 HPFADDTOPOINTER(base_ptr, offset , return_ptr , status ,

Parameters

base_ptr 64-bit pointer by reference (required)

The base_ptr can be a 64-bit pointer to an object of any type.

offset 64-bit signed integer by reference (required)

The offset can be any positive or negative value. Specifying a positive
value will move the return_ptr forward from the previous base_ptr, while a
negative value will move the return_ptr backward from the base_ptr.
146 Chapter 11

Accessing a File Using Mapped Access
New Intrinsics
return_ptr 64-bit pointer by reference (required)

The return_ptr is an output parameter that will have the new pointer
value returned to it. It can be a 64-bit pointer to an object of any type

status 32-bit signed integer by reference (optional)

Returns the status of the HPFADDTOPOINTER call. If no errors or warn-
ings are encountered, status returns 32 bits of zero. If errors or warnings
are encountered, status is interpretted as two 16-bit fields.
Bits (0:16) comprise status.info. A negative value indicates an error condi-
tion, and a positive value indicates a warning condition.

Bits (16:16) comprise status.subsys. The value represents the subsystem
that set the status information.

Operation Notes

No attemt is made to verify that the pointer value returned is a legitimate pointer to a
valid object. Any invalid pointers will be detected and generate errors when the pointers
are dereferenced.

Related Information

Manual Accessing Files Programmer's Guide

HPFFILLDATA

NM callable only.

This routine can be used to efficiently initialize a buffer with a specified character value.

Syntax

I64 @64 CV I32
 HPFFILLDATA(count, buffer_ptr , fill_char , status ,

Parameters

count 64-bit signed integer by reference (required)

A positive count of the number of bytes in the buffer indicated by the
buffer_ptr parameter that should be initialized.

buffer_ptr 64-bit pointer by value (required)

A pointer to the buffer that should be initialized. The buffer_ptr may point
to any valid object in your stack, heap, or a file that has been opened with
user mapped access.

fill_char Character value by value (required)

The character value that should be used to initialize the specified buffer.
Any value in the range of 0 through 255 can be specified, including all
printable and non-printable ASCII characters.

status 32-bit signed integer by reference (optional)
Chapter 11 147

Accessing a File Using Mapped Access
New Intrinsics
Returns the status of the HPFFILLDATA call. If no errors or warnings are
encountered, status returns 32 bits of zero. If errors or warnings are
encountered, status is interpretted as two 16-bit fields.
Bits (0:16) comprise status.info. A negative value indicates an error condi-
tion, and a positive value indicates a warning condition.

Bits (16:16) comprise status.subsys. The value represents the subsystem
that set the status information.

Operation Notes

None.

Related Information

Manual Accessing Files Programmer's Guide

HPFMOVEDATA

NM callable only.

This routine can be used to efficiently move data from a source buffer to a target buffer.

Syntax

I64 @64 @64 I32
 HPFMOVEDATA(count, source_ptr , target_ptr , status ,

Parameters

count 64-bit signed integer by reference (required)

The count parameter allows the caller to specify the number of bytes to
move from the source buffer to the target buffer.

source_ptr 64-bit pointer by value (required)

The source_ptr can be a 64-bit pointer to any valid object that the calling
process has access to. The buffer may be in the caller’s stack, heap, or
obtained by opening a file with user mapped access

target_ptr 64-bit pointer by value (required)

The target_ptr can be a 64-bi pointer to any valid object that the calling
proceThis intrinsic is especially useful when the source and target buffers
are overlapping. The HPFMOVEDATARTOL intrinsic is typically used
when the target buffer’s address is to the right (larger) of the source
buffer’s address. Moving the data from the right to the left ensures that
the data in the source buffer is copied to the target buffer before it is
overwritten itselfss has access to. The buffer may be in the caller’s stack,
heap, or obtained by opening a file with user mapped access.

status 32-bit signed integer by reference (optional)
148 Chapter 11

Accessing a File Using Mapped Access
New Intrinsics
Returns the status of the HPFMOVEDATA call. If no errors or warnings
are encountered, status returns 32 bits of zero. If errors or warnings are
encountered, status is interpretted as two 16-bit fields.
Bits (0:16) comprise status.info. A negative value indicates an error condi-
tion, and a positive value indicates a warning condition.

Bits (16:16) comprise status.subsys. The value represents the subsystem
that set the status information.

Operation Notes

When calling the HPFMOVEDATA intrinsic it is important to ensure that the source and
target buffers are not overlapping. The results of a HPFMOVEDATA call when source and
target buffers are overlapping are undefined. If source and target buffers are overlapping,
the HPFMOVEDATALTOR or HPFMOVEDATARTOL intrinsics should be used.

Related Information

Manual Accessing Files Programmer's Guide

HPFMOVEDATALTOR

NM callable only.

This routine can be used to efficiently move data from a source buffer to a target buffer. If
the source and target buffers were viewed horizontally, like a line of text, the data
movement is performed by starting at leftmost position of the source buffer (to the leftmost
position of the target buffer) and proceeding to the rightmost

Syntax

I64 @64 @64 I32
 HPFMOVEDATALTOR(count, source_ptr , target_ptr , status ,

Parameters

count 64-bit signed integer by reference (required)

The count parameter allows the caller to specify the number of bytes to
move from the source buffer to the target buffer.

source_ptr 64-bit pointer by value (required)

The source_ptr can be a 64-bit pointer to any valid object that the calling
process has access to. The buffer may be in the caller’s stack, heap, or
obtained by opening a file with user mapped access

target_ptr 64-bit pointer by value (required)

The target_ptr can be a 64-bi pointer to any valid object that the calling
process has access to. The buffer may be in the caller’s stack, heap, or
obtained by opening a file with user mapped access.

status 32-bit signed integer by reference (optional)
Chapter 11 149

Accessing a File Using Mapped Access
New Intrinsics
Returns the status of the HPFMOVEDATALTOR call. If no errors or warn-
ings are encountered, status returns 32 bits of zero. If errors or warnings
are encountered, status is interpretted as two 16-bit fields.
Bits (0:16) comprise status.info. A negative value indicates an error condi-
tion, and a positive value indicates a warning condition.

Bits (16:16) comprise status.subsys. The value represents the subsystem
that set the status information.

Operation Notes

This intrinsic is especially useful when the source and target buffers are overlapping. The
HPFMOVEDATALTOR intrinsic is typically used when the target buffer’s address is to
the left (smaller) of the source buffer’s address. Moving the data from the left to the right
ensures that the data in the source buffer is copied to the target buffer before it is
overwritten itself.

Related Information

Manual Accessing Files Programmer's Guide

HPFMOVEDATARTOL

NM callable only.

This routine can be used to efficiently move data from a source buffer to a target buffer. If
the source and target buffers were viewed horizontally, like a line of text, the data
movement is performed by starting at rightmost position of the source buffer (to the
rightmost position of the target buffer) and proceeding to the leftmost

Syntax

I64 @64 @64 I32
 HPFMOVEDATARTOL(count, source_ptr , target_ptr , status ,

Parameters

count 64-bit signed integer by reference (required)

The count parameter allows the caller to specify the number of bytes to
move from the source buffer to the target buffer.

source_ptr 64-bit pointer by value (required)

The source_ptr can be a 64-bit pointer to any valid object that the calling
process has access to. The buffer may be in the caller’s stack, heap, or
obtained by opening a file with user mapped access

target_ptr 64-bit pointer by value (required)

The target_ptr can be a 64-bi pointer to any valid object that the calling
process has access to. The buffer may be in the caller’s stack, heap, or
obtained by opening a file with user mapped access.

status 32-bit signed integer by reference (optional)
150 Chapter 11

Accessing a File Using Mapped Access
New Intrinsics
Returns the status of the HPFMOVEDATARTOL call. If no errors or
warnings are encountered, status returns 32 bits of zero. If errors or warn-
ings are encountered, status is interpretted as two 16-bit fields.
Bits (0:16) comprise status.info. A negative value indicates an error condi-
tion, and a positive value indicates a warning condition.

Bits (16:16) comprise status.subsys. The value represents the subsystem
that set the status information.

Operation Notes

This intrinsic is especially useful when the source and target buffers are overlapping. The
HPFMOVEDATARTOL intrinsic is typically used when the target buffer’s address is to
the right (larger) of the source buffer’s address. Moving the data from the right to the left
ensures that the data in the source buffer is copied to the target buffer before it is
overwritten itself.

Related Information

Manual Accessing Files Programmer's Guide
Chapter 11 151

Accessing a File Using Mapped Access
New Intrinsics
152 Chapter 11

12 Sharing a File

Accessing and controlling a file that is open only to you is a relatively simple matter. When
your file is being accessed by several users simultaneously, each user must be aware of
special considerations for this shared file. As you read this chapter, keep these
considerations in mind:

• How will others be allowed concurrent access to your file?

• Will the concurrent access need special management?

NOTE In most cases, the following discussions pertain only to non-message files. For
more information about using message files; refer to the Interprocess
Communication Programmer's Guide.

Simultaneous Access of Files
When an HPFOPEN/FOPEN request is issued for a file, that request is regarded as an
individual accessor of the file and a unique file number and other file control information is
established for that file. Even when the same program issues several different
HPFOPEN/FOPEN calls for the same file, each call is treated as a separate accessor. Under
the normal (default) security provisions of MPE/iX, when an accessor opens a file not
presently in use, the access restrictions that apply to this file for other accessors depend
upon the access mode requested by this initial accessor:

• If the first accessor opens the file for Read-only access, any other accessor can open it for
any other type of access (such as Write-only or Append), except that other accessors are
prohibited Exclusive access.

• If the first accessor opens the file for any other access mode (such as Write-only,
Append, or Update), this accessor maintains Exclusive access to the file until it closes
the file; no other accessor can access the file in any mode.

Programs can override these defaults by specifying other options in HPFOPEN/FOPEN
intrinsic calls. Users running those programs can, in turn, override both the defaults and
programmatic options through the FILE command. The options are listed in Table 12-1. on
page 154 The actions taken by MPE/iX when these options are in effect, and simultaneous
access is attempted by other HPFOPEN/FOPEN calls, are summarized in Figure 12-1. The
153

Sharing a File
Simultaneous Access of Files
action taken depends upon the current use of the file versus the access requested.

Exclusive access

This option is useful when you wish to update a file and wish to prevent other users or
programs from reading or writing on the file while you are using it; thus, no user can read
information that is about to be changed, nor can he alter that information. To override the
programmatic option under which the file would be opened and request exclusive access,
you could use the EXC keyword parameter in the FILE command:

FILE DATALIST;EXC <---- Requests exclusive access
RUN FLUPDATE

NOTE In all cases, when the first accessor to a file opens it with Exclusive (EXC)
access, all other attempts to open the file fails.

Table 12-1. File Sharing Restriction Options

ACCESS
RESTRICTION

FILE\
PARAMETER

DESCRIPTION

Exclusive Access EXC After file is opened, prohibits concurrent access in any mode
through another HPFOPEN/FOPEN request, whether issued
by this or another program, until this program issues
FCLOSE or terminates.

Exclusive Write
Access

SEMI After file is opened, prohibits concurrent Write access
through another HPFOPEN/FOPEN request, whether issued
by this or another program, until this program issues
FCLOSE or terminates.

Shareable
Access

SHR After file is opened, permits concurrent access to file in any
mode through another HPFOPEN/FOPEN request issued by
this or another program, in this or any session or job.
154 Chapter 12

Sharing a File
Simultaneous Access of Files
Figure 12-1. Requested Access Granted, Unless Noted

Semi-exclusive access

This option allows other accessors to read the file, but prevents them from altering it.
When appending new part numbers to a file containing a parts list, for instance, you might
use this option to allow other users to read the current part numbers at the same time that
you are adding new ones to the end of the file. You could request this option as follows:

FILE PARTSLST;SEMI <---- Requests semi-exclusive access
RUN FLAPPEND

Shared access

When opened with the share option, a file can be shared (in all access modes) among
several HPFOPEN/FOPEN requests, whether they are issued from the same program,
different programs within the same job or session, or programs running under different
jobs or sessions. Each accessor transfers its input/output to and from the file with its own
unique buffer, using its own set of file control information and specifying its own buffer
size and blocking factor. Effectively, each accessor accesses its own copy of that portion of
the file presently in its buffer. Thus, share access is useful for allowing several users to
read different parts of the same file. It can, however, present problems when several users
try to write to the file. For instance, if two users are updating a file concurrently, one could
easily overwrite the other's changes when the buffer content from the first user's output is
overwritten on the file by the buffer content from the second user's output.
Chapter 12 155

Sharing a File
Simultaneous Access of Files
To use Write access most effectively with shared files, specify the multiaccess option as
discussed below.

To request share access for a file, use the SHR parameter in the FILE command, as follows:

FILE RDFILE;SHR <---- Requests shared access
RUN RDPROG

Multiaccess

This option extends the features of the share access option to allow a deeper level of
multiple access. Multiaccess not only makes the file available simultaneously to other
accessors (in the same job or session), but permits them to use the same data pointers,
blocking factor, and other file-control information. Thus, transfers to and from the file
occur in the order they are requested, regardless of which program in your job or session
does the requesting. When several concurrently running programs (processes) are writing
to the file, the effect on the file is the same as if one program were performing all output;
truly sequential access by several concurrently running programs.

NOTE Multiaccess allows the file to be shared (in all access modes) among several
HPFOPEN/FOPEN requests from the same program, or from different
concurrently running programs in the same job or session. Unlike share,
access, however, multiaccess does not permit the file to be shared among
different sessions and jobs.

Global multiaccess

This option extends the features of the multiaccess option to permit simultaneous access of
a file by processes in different jobs or sessions. As in multiaccess, accessors use the same
data pointer, blocking factor, and other file-control information. You can request this option
as follows:

 FILE GFILE;GMULTI <---- Requests global multi access
 RUN GPROG

NOTE To prohibit the use of MULTI or GMULTI access, use the NOMULTIkeyword in
a FILE command. When the NOMULTI keyword is used, different processes
may share the data in a file, but they maintain separate buffers and pointers.

Note that it is the first accessor to a file that sets the allowable access to a file. For
example, if the first accessor specifies share access, that is, the access that will be allowed
to all future accessors. However, if a subsequent accessor specifies an access option that is
more restrictive than the first opener's access option, it remains in effect until the user
that requested it closes the file.
156 Chapter 12

Sharing a File
Sharing the File Using FLOCK and FUNLOCK
Sharing the File Using FLOCK and FUNLOCK
Sharing a file among two or more processes may be hazardous. When a file is being shared
among two or more processes and is being written to by one or more of them, care must be
taken to ensure that the processes are properly interlocked. For example, if process A is
trying to read a particular record of the file, and at that time process B should execute and
try to write that record, the results are not predictable. process A may see the old record or
the new record, and not know whether it has read good data. If buffering is being done,
please bear in mind that an output request (FWRITE) does not cause physical I/O to occur
until a block is filled, which typically contains several records. A process trying to read
such a file could, for example, read past the last record of the file which has been written
on the disk because the end-of-file pointer is not kept in the file, but is kept in core where it
can be updated quickly as writes occur. The necessary interlocking is provided by the
intrinsics FLOCK and FUNLOCK, which use a resource identification number (RIN) as a flag
to interlock multiple accessors.

In the simple case of a file shared between a writer process and a reader process, where the
writer is merely adding records to the file, the writer calls FLOCK prior to writing each
record and FUNLOCKafter writing. The reader calls FLOCKprior to reading each record, and
FUNLOCK after reading. If the writing process should execute while the reader is in the
middle of a read, the writer will be impeded on its FLOCK call until the reader signals that
it is done by calling FUNLOCK. Similarly, if the reader should execute while the writer is
performing a write, the reader will be impeded on its FLOCK call until the writer calls
FUNLOCK. FUNLOCK ensures that all buffers are posted on the disk so that the reading
processes can see all of the data.

More complicated cases arise when a file has two or more writing processes, or when the
writer may write more than one record at a time. If, for example, it should be necessary to
write pairs of records, with read prohibited until both records of the pair are written, the
writing process can call FLOCKbefore writing the first record of the pair, and FUNLOCKafter
writing the second.

The shared file management scheme that MPE/iX provides you through the use of the
FLOCK and FUNLOCK intrinsics guarantees you exclusive access to a file being shared by a
set of processes that may be located in different jobs or sessions. MPE/iX also provides you
with RINs you can use to manage anything you may consider a resource to your program,
be it portions of a file, a device, or a segment of code in your program. Managing shared
resources with RINs is described in Resource Management Programmer's Guide.

For more information about the FLOCK and FUNLOCK intrinsics, consult the MPE/iX
Intrinsics Reference Manual.
Chapter 12 157

Sharing a File
Sharing the File Using FLOCK and FUNLOCK
158 Chapter 12

13 Maintaining File Security

MPE/iX provides two methods of establishing and maintaining file security.

• access control definitions (ACD) for file and devices

• traditional file security for disk files only

ACDs are implemented to provide a security mechanism that meets standards set forth by
the National Computer Security Center. Traditional file security works through the
mechanism long available on MPE systems. ACDs override any security measures
implemented by traditional means. In addition, MPE/iX now provides logging facilities to
track ACD security-related transactions.

ACDs are discussed first in this chapter, followed by topics relating to the traditional
mechanisms of file security.

Access Control Definition Security (ACD)
MPE/iX implements a discretionary access control (DAC) mechanism that is consistent
with the guidelines laid down by the National Computer Security Center.

The MPE/iX implementation, access control definitions (ACD), is a subset of the DAC
mechanism. ACDs maintain a list of users and the access modes that each user has to files
and devices.

ACD scope

An ACD that is associated with a file overrides the classic MPE file access matrix and
lockwords, which are described later in Chapter 13 , “Maintaining File Security.”

By associating an ACD with a file or a device, the owner of the file or device may define
which users have access to that file or device and which modes of access are available to
other users. When a file is associated with an ACD, the ACD is put into its file label
extension. The ACD contains a list of access modes paired with users .

Owners

Only those who own a file or a device may associate it with an ACD.
159

Maintaining File Security
Access Control Definition Security (ACD)
Files

the owner of a file is any one of these three users:

• The creator of the file with which an ACD is associated

• The user who as am capability in the account in which the file resides

• The user who has sm capability on the system in which the file resides

Devices

The System Manager (SM) is the owner of all of the devices on a system.

How acds work

When a user attempts to access a file or to acquire a device, HPFOPEN or FOPEN is called,
and the system makes the following checks:

• Is the user an owner of the file or device; that is, is the user the creator of the file, the
account manager (AM capability), where the file resides or the system manager (SM
capability)? If so, permission is granted, and the checking ends.

• If not, is there an ACD associated with the file or device?

— If there is no ACD, the system looks for authorization in the traditional MPE/iX file
access matrix and lockwords.

— If there is an ACD, the system searches, in this order, for the user:

1. specific names (username.accountname)

2. account groupings (@.accountname)

3. system groupings (@.@)

If a match is found, the user can access the device or file--as authorized (read,
write, execute, and so on)--and no further checking is done.

If there is no match, the user is denied entry, and no further checking is done.

It is important to note that if an ACD exists, the MPE/iX file access matrix and lockwords
are never consulted.

ACD modes

Any device or a file can be paired with an ACD.

An ACD is associated with a file or a device by pairing access modes with users. A user is
any username.accountname specification.

The modes of access are:

R Read

W Write

A Append

L Lock
160 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
X Execute

NONE None

RACD Read and copy the ACD permission file

You could define an ACD as follows:

 ACD = (R,W:MGR.ACCTING, DENNIS.LEE; R:@.PAYROLL; A:@.@)

The users MGR.ACCTINGand DENNIS.LEE can read and write to the file associated with this
example ACD. Anyone in the PAYROLL account can read it, and anyone on the system can
append to it. For example, no one but DENNIS.LEE and the owners can overwrite the file,
and only the owners can lock it.

NOTE If an ACD exists and if you are not explicitly given permission to access a file
or a device, you do not have access.

Managing ACDs with commands and intrinsics

Use MPE/iX commands to manage ACDs interactively, through the command interpreter.
Use MPE/iX intrinsics to manage ACDs in a program.

Commands

These MPE/iX commands accept ACD-related parameters or incorporate ACD associations
in their operation:

ALTSECT Permits the addition, creation, deletion, modification, copying, and listing
of ACD attributes.

COPY Always copies the ACD associated with the source file to the target file, if
an ACD is present.

FCOPY Permits copying ACD attributes.

FILE Permits the equation of one file/device-ACD specification to another
file/device-ACD specification.

LISTFILE Permits the listing of the ACD attributes associated with a file or device.

RELEASE Returns a warning when an ACD is associated with a file.

RESTORE Accomodates ACDs.

SECURE Returns a warning when an ACD is associated with a file.

SHOWDEV Permits the listing of ACD attributes associated with a device.

STORE Accomodates ACDs.

Detailed discussions of these commands are found in the MPE/iX Commands Reference
Manual.

Intrinsics

HPACDPUT Permits the addition, creation, deletion, modification, copying, and listing
Chapter 13 161

Maintaining File Security
Access Control Definition Security (ACD)
of ACD attributes.

HPACDINFO Returns security attributes.

HPFOPEN Permits the creation of of an ACD.

The intrinsic FOPEN cannot be modified to give it the option of creating an ACD. You must
use HPFOPEN.

Detailed discussions of these intrinsics are found in the MPE/iX Intrinsics Reference
Manual.

Preserving ACDs

Device ACDs are not permanent objects; you must redefine them every time that the
system is rebooted. The easiest way to do this is to put ALTSEC commands into the
SYSSTART file, either directly or in a command file.

File ACDs are permanent objects; they do survive a reboot. When you store files to tape,
FCOPY and STORE save the files' ACDs, too–unless you specify otherwise. If you are not an
owner of the file and you do not have RACD permission, you get an error if you try to copy
the ACD. Instead, choose the NOACD parameter.

Managing ACDs

You may manage ACDs interactively through MPE/iX commands or programmatically
through MPE/iX intrinsics.

Creating ACDs

Examples

To assign Read access to user SAM.DOE, Write access to JOE.DOE, no access (None) to all
users in the DESIGN account, and Execute access to all users in all accounts (except those
users in the DESIGN account, enter this:

ALTSEC
FILEA.XX.DESIGN;NEWACD=(R:SAM.DOE;W:JOE.DOE;NONE:@.DESIGN;X:@.@)

To add an ACD that prevents any user except OPERATOR.SYS from accessing LDEV 7 (a
tape drive), enter this:

ALTSEC 7,LDEV;NEWACD=(R,W:OPERATOR.SYS)

The user must have SM capability to do this.

This short program uses HPACDPUT in creating an ACD for a file called TARGET:

 program acdput(input, output);

Command Intrinsic Purpose

ALTSEC Create an ACD for an existing device or file

HPACDPUT Create an ACD for an existing device or file
162 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
 var
 status : integer;
 filename : packed array [1..28] of char;
 ACD : packed array [1..256] of char;

 procedure HPACDPUT;intrinsic;

 begin
 filename := 'TARGET';
 ACD := '(x:@.@;r,w:mgr.sys)'
 ACD[20] := #m;
 HPACDPUT(status, 1, filename, 20, ACD)
 if status <> 0 then
 writeln('HPACDPUT failed. Status = ', status);
 end.

When you create a new file with the COPY, FCOPY, STORE, or RESTORE commands, you can
use the command parameters to create the ACDs for the new file.

• COPY

The COPYcommand automatically copies any ACD attributes from the source file to the
target file, provided that the user is an owner of the source file or has RACD access to
that file.

 COPY FILEA,FILEB

• FCOPY

The ;COPYACD parameter of the FCOPY command permits the user to copy a file and its
ACD, provided that the user is an owner or has RACD permission.

 FCOPY <;fcopycommand>;COPYACD

• STORE

To store all of the files on a system to tape, including their ACDs, enter this:

 FILE T;DEV=TAPE
 STORE @.@.@;*T;COPYACD

COPYACD is the default. You must have access to any ACD-protected files being stored.

— SM and OP can store any ACD-protected file on the system.

— AM can store any ACD-protected file in the manager's account.

— Users can store any ACD-protected files that they own, provided that they have
Read access to the file and RACD access to the file if ;COPYACD is specified.

— Others can store ACD-protected files for which they have RACD permission,
provided that they have Read access to the file and RACD access to the file if
;COPYACD is specified.

— You must have PM access to a PM file in order to store it.

• RESTORE
Chapter 13 163

Maintaining File Security
Access Control Definition Security (ACD)
To restore all of the files on tape and copies the ACD attributes of the file to disk, enter
this:

FILE T;DEV=TAPE
RESTORE *T;@;KEEP;SHOW;COPYACD

COPYACD is the default. NOACD prevents the copying of the ACD attributes.

— SM and OP can restore any ACD-protected file on the system.

— AM can restore any ACD-protected file in the manager's account.

— Users can restore any ACD-protected files that they own, provided that they have
Read access to the file and RACD access to the file if ;COPYACD is specified.

— Others can restore ACD-protected file for which they have RACD permission,
provided that they have Read access to the file and RACD access to the file if
;COPYACD is specified.

— You must have PM access to a PM file in order to store it.

Listing ACDs

Examples

The LISTFILE command with option 4 shows the ACD status of a file in this fashion:

 LISTFILE FILEA,4

 FILEA.XX.DESIGN

 SYSTEM READ: ANY
 SECURITY--WRITE: AC
 (ACCT) APPEND: AC
 LOCK: AC
 EXECUTE: ANY

 SYSTEM READ: GU
 SECURITY--WRITE: GU
 (GROUP) APPEND: GU
 LOCK: GU
 EXECUTE: GU

 SYSTEM READ: ANY FCODE: 0
 SECURITY--WRITE: ANY CREATOR: **
 (FILE) APPEND: ANY LOCKWORD: **
 LOCK: ANY **SECURITY IS ON
 EXECUTE: ANY **ACD EXISTS

Command Intrinsic Purpose

LISTFILE Show ACDs for files

SHOWDEV Show ACDs for devices

HPACDINFO Show ACDs for files and devices

HPACDPUT Show ACDs for files and devices
164 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
 FOR XX.DESIGN: NONE

(Other ACD status reports are NO ACD and ACD CORRUPTED.)

The LISTFILE command with option -2 gives a detailed ACD report on a file in this
fashion:

 LISTFILE FILEA,-2

 FILE = FILEA ************** ACD ENTRIES **************

 SAM.DOE : R
 JOE.DOE : W
 @.DESIGN : NONE
 @.@ : X

The SHOWDEV command displays the ACD attributes of a device in this fashion:

 SHOWDEV 14;ACD
 LDEV AVAIL OWNERSHIP VOLID DEN ASSOCIATION

 14 SPOOLED SPOOLER OUT
 ACD ENTRIES: @.@ : R,W,X

This short program uses HPACDINFO to retrieve the number of entries and first user in the
ACD of a file called TARGET:

 program acdinfo(input, output);

 type
 shortint = -32768..32767;

 var
 status : integer;
 filename : packed array [1..28] of char;
 numentry : shortint;
 firstuser : packed array [1..18] of char;

 procedure HPACDINFO;intrinsic;

 begin
 filename := 'TARGET';
 HPACDINFO(status, 1, filename, 21, numentry, firstuser);
 if status = 0 then
 begin
 writeln('Number of Entires: ', numentry:1);
 writeln('First UserSpec : ', firstuser);
 end;
 end.
Chapter 13 165

Maintaining File Security
Access Control Definition Security (ACD)
Copying ACDs

Examples

To copy the ACD associated with FILEB to FILEA , enter this:

ALTSEC FILEA.XX.DESIGN;COPYACD=FILEB.XX.DESIGN

Only an owner, or a user granted RACD (read ACD) authorization, can copy the ACD from
FILEB .

To copy the ACD attributes of LDEV 7 to LDEV 23, enter this:

ALTSEC 23,LDEV;COPYACD=7,LDEV

Only users with SM capability may do this. By definition, users having SM capability are
owners of all the files and devices on a system. Those users may give themselves access to
any file or device on the system.

Modifying ACDs

Adding ACD pairs

To confer Read access on JOE.DESIGN for FILEA, enter this:

ALTSECT FILEA.XX.DESIGN;ADDPAIR=(R:JOE.DESIGN)

Replacing ACDs

To change the (previous) Read access for SAM.DOE to Write access enter this:

ALTSECT FILEA.XX.DESIGN;REPPAIR(W:SAM.DOE)

To assign Read and Write access to SAM.DOE, do this:

ALTSEC FILEA.XX.DESIGN;REPPAIR(W,R:SAM.DOE)

Deleting ACDs

To remove @.DESIGN from the ACD attributes of FILEA, enter this:

Command Intrinsic Purpose

;COPYACD parameter of
the ALTSEC command

Copy an ACD from one file to another

Command Intrinsic Purpose

ALTSEC To change an ACD

HPACDPUT To change an ACD

Command Intrinsic Purpose

ALTSEC To delete an ACD

HPACDPUT To delete an ACD
166 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
ALTSEC FILEA.XX.DESIGN;DELPAIR(NONE:@.DESIGN)

To deny OPERATOR.SYS any access to LDEV 7, enter this:

ALTSEC 7,LDEV;DELPAIR=(R,W:OPERATOR.SYS)

Only an owner can delete an ACD associated with a file. Only the system manager can
delete an ACD associated with a device..

Migrating ACDs

Device ACDs should not be migrated, because they are tied to their system's configuration.

You can move file ACDs between MPE V/E and MPE/iX by using the STORE and RESTORE
commands, where COPYACD is the default.

These are the steps CM RESTORE takes during forward migration:

1. reads the MPE V/E store format.

2. calls a routine to convert it to MPE/iX internal format.

3. calls the file label extension write routine, which puts the ACD into effect.

These are the steps CM STORE takes during backward migration:

1. reads the ACD from the security file label extension.

2. calls a routine to convert it into MPE V/E format.

3. writes it out to the STORE tape.

Be aware that MPE/iX allows more user-mode pairs than MPE V/E does.

You must have authorization to use the ;COPYACD parameter of the STORE and RESTORE
commands. If you are not an owner of the file or do not have RACD permission, you get an
error. The STORE command checks the ACD on disk for permission. RESTORE checks the
ACD from the tape.

For more details, refer to the MPE/iX Commands Reference Manualand the MPE/iX
Intrinsics Reference Manual.

Logging system events

The following list shows the types of logs that you can request.

Table 13-1. SYSGEN System Logging

System Log Events Event Type

System logging enabled 100

System up record 101

Job initiation record 102

Job termination record 103

Process termination record 104
Chapter 13 167

Maintaining File Security
Access Control Definition Security (ACD)
All log information is kept in records. Each record begins with a standard header and ends
with identification information. The information between is different for each log type. The
LOGTOOL utility has a standard format to display information.

File close record 105

System shutdown record 106

Power failure record 107

Spooling log record 108

I/O error record 111

Physical mount/dismount 112

Logical mount/dismount 113

Tape labels record 114

Console log record 115

Program file event 116

New commercial spooling 120

Architected interface 130

Password changes 134

System logging configuration 135

Restore logging 136

Printer access failure 137

ACD changes 138

Stream initiation logging 139

User logging 140

Process creation 141

Chgroup record 143

File open record 144

Maintenance request log 146

Diagnostic information record 150

High priority machine check 152

Low priority machine check 152

CM file close record 160

Table 13-1. SYSGEN System Logging

System Log Events Event Type
168 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
Log of system logging configuration

This log gives you an audit trail of changes to the logging configuration. This log is initially
enabled (ON). The following is the log record format:

Log of restore

This log traces file restorations. Files can be restored from tape or serial disk to the
system. This log type is initially disabled (OFF). It can be enabled by SYSGEN followed by
a START command. The following is the log record format:

Table 13-2. Type 135 Record Format

Length, in 16-bit
words

Record Content

1 Record type (135)

1 Record length

1 Process identification number

3 Time stamp

2 Job type/job number

1 (Reserved)

1 LDEV number

4 System logging masking words

8 User name

8 Group name

8 Account name

8 job or session name

Table 13-3. Type 136 Record Format

Length, in 16-bit
words

Record Content

1 Record type (136)

1 Record length

1 Process identification number

3 Time stamp

2 Job type/job number

8 File name

8 File group

8 File account
Chapter 13 169

Maintaining File Security
Access Control Definition Security (ACD)
Log of printer access failure

This log keeps track of failed attempts attaching spool files to printers. New spool files,
which are logged by FOPEN as event #144, are not logged here.

This log is initially disabled, but can be enabled by SYSGEN followed by a START command.

8 Creator

17 Volume identification

1 Access type

8 User name

8 Group name

8 Account name

8 job or session name

Table 13-4. Type 137 Record

Length, in 16-bit
words

Record Content

1 record type (137)

1 record length

1 process identification number

3 time stamp

2 job type/job number

2 creator job number

8 creator job name

8 creator user name

8 creator account name

25 spool file name

8 target device name/class

1 (reserved)

2 file size

1 status

8 user name

Table 13-3. Type 136 Record Format

Length, in 16-bit
words

Record Content
170 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
8 group name

8 account name

8 job or session name

Table 13-4. Type 137 Record

Length, in 16-bit
words

Record Content
Chapter 13 171

Maintaining File Security
Access Control Definition Security (ACD)
Log of stream initiation

This log records the name of a streamed job, its number, the user that initiates it (and the
logon), and the scheduled date and time.

This log is initially disabled, but can be enabled by SYSGEN followed by a START
command.

Table 13-5. Type 139 Record

Length, in 16-bit
words

Record Content

1 Record type (139)

1 record length

1 process identification number

3 time stamp

2 job type/job number

1 input LDEV

25 job file name

2 job logon job or session number

8 job logon user

8 job logon group

8 job logon account

8 job name

2 input spool file id

1 scheduled date

2 scheduled time

8 user name

8 group name

8 account name

8 job or session name
172 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
Log of user logging

This log keeps a record of all OPENLOG and CLOSELOG intrinsic calls. The system manager
can use it to see who accesses, or tries to access, the user logging facility.

This log is initially disabled, but can be enabled by SYSGEN followed by a START
command.

The LOG ID field in the log record is "XXXXXX" for CLOSELOG intrinsic when the index is
bad.

Log of process creation

You can use this log to record all process creations. This log is initially disabled, but can be
enabled by SYSGEN followed by a START command.

Table 13-6. Type 140 Record Format

Length, in 16-bit
words

Record Content

1 record type (140)

1 record length

1 process identification number

3 time stamp

2 job type/job number

25 program file name

4 intrinsic

2 index

4 log id

1 mode

1 status

8 user name

8 group name

8 account name

8 job or session name

Table 13-7. Type 141 Record

length, in 16-bit words Record Content

1 record type (141)

1 record length

1 process identification number
Chapter 13 173

Maintaining File Security
Access Control Definition Security (ACD)
*The capabilities mask is read as follows:

 User File access Program/group
bit capability bit capability bit capability

 0 SM 6 CV 23 BA
 1 AM 7 UV 24 IA
 2 AL 8 LG 25 PM
 3 GL 9 SP 28 MR
 4 DI 10 PS 30 DS
 5 OP 11 NA 31 PH
 12 NM
 13 CS
 14 ND

15 SF

Logging a specific user

The LOGTOOL utility command LIST shows you the output of log records in a standard
format. If you like, you can filter the output of LOGTOOL utility to show you information
about only a specific user or users. The syntax for this is shown below.

 LIST {LOG= log_name }[;JSNAME= job or session_name
 ;USER= user_name
 ;ACCOUNT= account_name][...]

The input for these commands should be no longer than 80 characters. Default for all

3 time stamp

2 job type/job number

25 file name

1 (reserved)

2 priority

2 process space id

4 parent PID

2 NM_Heap_Size

2 capabilities mask*

8 (reserved)

8 user name

8 group name

8 account name

8 job or session name

Table 13-7. Type 141 Record

length, in 16-bit words Record Content
174 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
parameters is the wildcard @.

For example, to select log records from log files 1 through 5, with log information about
password changes (log type 134), and user identification JTEST,MARIA.PAYROLL, you
would enter the following.

 > LIST LOG=1/5;TYPE=134;JSNAME=JTEST;USER=MARIA;ACCOUNT=PAYROLL

This selection option is valid for the log types listed below:

102, job initiation

103, job termination

104, process termination

105, file close (also 160)

108, spooling log

112, physical mount/dismount

113, logical mount/dismount

114, tape labels

115, console log

116, program file event

120, new commercial spooling

130, architecture interface

134, password change

135, system logging configuration

136, restore

137, printer access failure

138, ACD changes

139, stream initiation

140, user logging access

141, process initiation

143, change group

144, file open

Logging file security related events

MPE/iX permits logging of system and user events. The events that relate directly to file
security are:

• password changes (event type 134)

• printer access failure (event type 137)

• ACD changes (event type 138)
Chapter 13 175

Maintaining File Security
Access Control Definition Security (ACD)
Logging begins whenever the system is rebooted; however, not all events are automatically
enabled. Some, including those listed above, are initially disabled. You can, however,
request that a new file be started.

To keep a certain type of log, the system operator or system manager must change its
status to ON (configure it) in SYSDIAG. To see log records displayed, call the LOGTOOL
utility from SYSGEN.

For a discussion of these and other logging facilities, consult these topics in Performing
System Operator Tasks: SYSDIAG, the LOGTOOL utility, and SYSGEN System Logging.

Log of password changes

System logging records when a user, group, or account password is changed by an MPE/iX
command or a utility program. This log is initially disabled (OFF).

The information recorded in this logging includes

• header

— record type

— record length

— time stamp

— job or session number

— PIN

• Log information

— the identification of the user who changed a password: job or session name, user
name, group name, and account name

— the identification of a user whose password was changed: user name, group name,
and account name whenever the affected password changes

— input logical device number from which the password was changed

— program file name from which password change was executed

— type changed: 1 = user, 2 = group, 4 = account

In this example, JOHN.PAYROLL,DOE, job or session name JREPORT, successfully changed
the account password for PAYROLL through the command excutor. The change was made
from LDEV 21.

The LOGTOOL utility formats the following layout after the standard header:

 TARGET USER: TARGET GROUP:
 TARGET ACCOUNT: PAYROLL TYPE CHANGED: ACCOUNT
 LDEV: 21
 EXECUTED FROM: CI.PUB.SYS
 USER: JOHN GROUP: DOE
 ACCOUNT: PAYROLL JSNAME: JREPORT
176 Chapter 13

Maintaining File Security
Access Control Definition Security (ACD)
The following is the log record format:

NOTE The PASSWORD command, allows all users to change their own passwords. In
the past, only system managers and account managers could change any
passwords.

Log of ACD changes

This log type is activated when ACDs are changed (created, deleted, copied, or modified)
with MPE/iX commands or intrinsics. The log is initially disabled (OFF).

The information recorded in this logging includes

• header

— record type

— record length

— time stamp

— job or session number

Table 13-8. Type 134 Record Format

length, in 16-bit
words

Record Content

1 record type (134)

1 record length

1 process identification number

3 time stamp

2 job type/job number

8 target user name

8 target group name

8 target account name

1 type changed

1 input LDEV number

25 executed from

3 (reserved)

8 user name

8 group name

8 account name

8 job or session name
Chapter 13 177

Maintaining File Security
Access Control Definition Security (ACD)
— PIN

• log information

— the identification of the user who changed the ACD: job or session name, user name,
group name, and account name

— the object type and object name whose ACD was changed

— the object type and object name from which the ACD was copied

— the type of change to the ACD: create, add pair, replace pair, copy, delete pair, delete

— the program file name from which the ACD change was executed.

— status returned (HPE status)

In this example, user JOHN.PAYROLL,DOE, with job or session name JREPORT,
successfully created an ACD for a file called FTEST.TESTGP.PAYROLL, using the
command executor.

The LOGTOOL formats the following layout after the standard header:

 TARGET OBJECT: FTEST.TESTGP.PAYROLL
 SOURCE OBJECT:
 FUNCTION: CREATE
 EXECUTED FROM: CI.PUB.SYS
 STATUS SUCCESSFUL
 USER JOHN GROUP: DOE
 ACCOUNT: PAYROLL JSNAME: JREPORT

The following is the log record format:

Table 13-9. Type 138 Record Format

length, in 16-bit
words

Record Content

1 Record type (138)

1 Record length

1 Process identification number

3 Time stamp

2 Job type/job number

25 Target object name

25 Source object name

4 Function

25 Executed from

2 Status

8 User name

8 Group name
178 Chapter 13

Maintaining File Security
Traditional Mechanism for File Security
Traditional Mechanism for File Security
The traditional security mechanism (file access matrix and lockwords) associates with
each account, group, and individual files a set of security provisions that specifies any
restrictions on access to the files in that account or group, or to that particular file.

NOTE These provisions apply to disk files only. If a file is protected by the
traditional security mechanism and by an ACD definition, the ACD definition
overrides the traditional security mechanism. ACD security mechanism are
discussed at the beginning of this chapter under <Undefined
Cross-Reference>.

These restrictions are based on two factors:

• modes of access--reading, writing, or saving, for example.

• types of user--users with account librarian (AL) or group librarian (GL) capability, or
creating users, for example, to whom the access modes specified are permitted

The security provisions for any file describe what modes of access are permitted to which
users of that file.

Specifying and restricting file access by access mode

When a program opens or creates a file, it can define the way that the file can be accessed
by specifying a particular access mode (such as Read-only, Write-only, Update, and so
forth) for the file. These specifications apply to files on any device and can be changed or
overridden only by yourself, as the creator of the file. They are discussed in the following
paragraphs. In addition, for files on disk, a program can also restrict access so that only
one access attempt (HPFOPEN/FOPEN call) or process (running program) can open it at one
time, or can allow it to be shared among several accessors.

The access types that can be specified by a program are listed in Table 13-10. on page 180

When specifying the access mode for a file, it is important to realize where the current
end-of-file is before and after the file is opened, and where the logical record pointer
indicates that the next operation will begin. These factors depend upon the access mode
that you select. Because they are best explained by example, the effects of each access
mode upon these factors are summarized in Table 13-1. on page 167 for a sample file. This

8 Account name

8 job or session name

Table 13-9. Type 138 Record Format

length, in 16-bit
words

Record Content
Chapter 13 179

Maintaining File Security
Traditional Mechanism for File Security
file contains 10 logical records of data (numbered 0 through 9). The table shows that the
current end-of-file (EOF) lies at Record 10 before the file is opened, indicating that if
another record were appended to the file, that would be the eleventh record. When you
open the file in the Write-only mode, however, all records presently in the file are deleted
and the logical record pointer and current EOF move to record 0. Now when you write a
record to the file, this will be the first record in that file.

Suppose that you are running a program that opens a magnetic tape file for Write-only
access, but you wish to append records to that file rather than to delete existing records.

You can override the programmatic specifications by using the FILE command to request
Append access to the file, as follows:

 FILE TASK; DEV=TAPE; ACC=APPEND
 RUN PROGN \
 Requests append access

Suppose that you run a program that opens a disk file for write-only access, copies records
into it, and closes it as a permanent file. Under the standard file system security
provisions, the access mode is automatically altered so that the file permits the read, write,
and append access modes (among others). Now, suppose that you run the program a second

Table 13-10. Traditional File Access Mode Types

ACCESS MODE :FILE\
PARAMETER

DESCRIPTION

Read-only IN Permits file to be read but not written on. Used for device
files, such as card reader and paper tape reader files, as well
as magnetic tape, disk, and terminal output files.

Write-only OUT Permits file to be written on but not read. Any data already
in the file is deleted when the file is opened. Used for device
files, such as card punch and line printer, as well as tape,
disk, and terminal output files.

Write-SAVE OUTKEEP Permits file to be written on but not read, allowing you to
add new records both before and after current end-of-file
indicator. Data is not deleted, but a normal write replaces
it.

Append-only APPEND Permits information to be appended to file, but allows
neither overwriting of current information nor reading of
file. Allows you to add new records after current end-of-file
indicator only. Used when present contents of file must be
preserved.

Read/Write INOUT Permits unrestricted input and output access of file;
information already on file is saved when the file is opened.
(In general, combines features of IN and OUTKEEP.)

Update UPDATE Permits the use of FUPDATEintrinsic to alter records in file.
Record is read into your data stack, altered, and rewritten
to file. All data already in file is saved when the file is
opened.
180 Chapter 13

Maintaining File Security
Traditional Mechanism for File Security
time, but wish to correct some of the data in the file rather than delete it. You could use the
FILE command to override the programmatic specification, opening the file for update
access:

 FILE REPFILE; ADD=UPDATE
 RUN PROGN \
 Requests update access

Consider a program that reads input from a terminal (file name INDEV) directs output to a
line printer (OUTDEV). You can redirect the output so that it is transmitted to the terminal
by entering:

 FILE INDEV; DEV=TERM; ACC=INOUT <---- Respecifies INDEV for
 both input and output access

 FILE OUTDEV=*INDEV <---- Equates INDEV to OUTDEV

 RUN PROGO <---- Runs program

Specifying and restricting file access by type or user

Restrictions on who can access a file are established when the file is created according to
the default prescribed for the group and account where the file resides. The capabilities of
the user who accesses a file may determine the security restrictions that apply to him. The
types of users recognized by the MPE/iX security system, the mnemonic codes used to
reference them, and their complete definitions are listed in Table 13-12. on page 181

Table 13-11. Effects of Access Modes

ACCESS MODE CURRENT EOF LOGICAL RECORD
POINTER

EOF AFTER OPEN

Read-only 10 0 10

Write-only 10 0 0

Write-SAVE 10 0 10

Append 10 10 10

Read/Write 10 0 10

Update 10 0 10

Table 13-12. User Type Definitions (Traditional Security)

USER TYPE MNEMONIC
CODE

MEANING

Any User ANY Any user defined in the system; this includes all categories
defined below.

Account
Librarian User

AL User with Account Librarian capability, who can manage
certain files within his account that may or may not all belong
to one group.
Chapter 13 181

Maintaining File Security
Traditional Mechanism for File Security
Users with system manager or account manager capability bypass the standard security
mechanism. A system manager has unlimited file access to any file in the system
(R,A,W,L,X:ANY), but can save files only in his own account (S:AC); an account manager
user has unlimited access to any file within the account (R,A,W,L,X,S:ANY). One exception
is that in order to access a file with a negative file code (a privileged file), the account
manager must also have the privileged mode (PM) capability.

The user-type categories that a user satisfies depend on the file he is trying to access. For
example, a user accessing a file that is not in his home group is not considered a group
librarian for this access even if he has the group librarian user attribute.

NOTE In addition to the above restrictions in force at the account, group, and file
level, a file lockword can be specified for each file. Users then must specify the
lockword as part of the file name to access the file.

The security provisions for the account and group levels are managed only by users with
the system manager and the account manager capabilities respectively, and can only be
changed by those individuals.

Account-level security

The security provisions that broadly apply to all files within an account are set by a system
manager user when creating the account. The initial provisions can be changed at any
time, but only by that user.

At the account level, five access modes are recognized:

• reading (R)

• appending (A)

• writing (W)

• locking (L)

• executing (X)

Also at the account level, two user types are recognized:

Group
Librarian User

GL User with Group Librarian capability, who can manage
certain files within his home group.

Creating User CR The user who created this file.

Group User GU Any user allowed to access this group as his logon or home
group, including all GL users applicable to this group.

Account
Member

AC Any user authorized access to the system under this account;
this includes all AL, GU, GL, and CR users under this
account.

Table 13-12. User Type Definitions (Traditional Security)

USER TYPE MNEMONIC
CODE

MEANING
182 Chapter 13

Maintaining File Security
Traditional Mechanism for File Security
• any user (ANY)

• account member (AC)

If no security provisions are explicitly specified for the account, the following provisions
are assigned by default:

• For the system account (named SYS), through which the system manager user initially
accesses the system, reading and executing access are permitted to all users;
appending, writing, and locking access are limited to account members.

NOTE Symbolically, these provisions are expressed as follows:

(R,X:ANY;A,W,L:AC)

In this format, colons are interpreted to mean, "...is permitted only to..." or "...
is limited to" Commas are used to separate access modes or user types
from each other. Semicolons are used to separate entire access mode/user type
groups from each other.

• For all other accounts, the reading, appending, writing, locking, and executing access
modes are limited to account members (R, A, W, L, X: AC).

Group-level security

The security provisions that apply to all files within a group are initially set by an account
manager user when creating the group. they can be equal to or more restrictive than the
provisions specified at the account level. (The group's security provisions also can be less
restrictive than those of the account–but this effectively results in equating the group
restrictions with the account restrictions, since a user failing security checking at the
account level is denied access at that point and is not checked at the group level.) The
initial group provisions can be changed at any time, but only by an account-managing user
for that group's account.

At the group level, six access modes are recognized:

• reading (R)

• appending (A)

• writing (W)

• locking (L)

• executing (X)

• saving (S)

Also at the group level, five user types are recognized:

• any user (ANY)

• account librarian user (AL)

• group librarian user (GL)

• group user (GU)
Chapter 13 183

Maintaining File Security
Traditional Mechanism for File Security
• account member (AC)

If no security provisions are explicitly specified, the following provisions apply by default:

• For a public group (named PUB), whose files are normally accessible in some way to all
users within the account, reading and executing access are permitted to all users;
appending, writing, saving, and locking access are limited to account librarian users
and group users (including group librarian users). (R, X: ANY; A, W, L, S: AL, GU).

• For all other groups in the account, reading, appending, writing, saving, locking, and
executing access are limited to group users. (R, A, W, L, X, S: GU).

File-level security

When a file is created, the security provisions that apply to it are the default provisions
assigned by MPE/iX at the file level, coupled with the user-specified or default provisions
assigned to the account and group to which the file belongs. At any time, however, the
creator of the file (and only this individual) can change the file-level security provisions, as
described in the following pages; thus, the total security provisions for any file depend
upon specifications made at all three levels, the account, group, and file levels. A user must
pass tests at all three levels–account, group, and file security, in that order–to successfully
access a file in the requested mode.

If no security provisions are explicitly specified by the user, the following provisions are
assigned at the file level by default:

• For all files, reading, appending, writing, locking, and executing access are permitted to
all users. (R, A, W, L, X: ANY).

Because the total security for a file always depends on security at all three levels, a file not
explicitly protected from a certain access mode at the file level may benefit from the
default protection at the group level. For example, the default provisions at the file level
allow the file to be read by any user–but the default provisions at the group level allow
access only to group users; thus, the file can be read only by a group user.

In summary, the default security provisions at the account, group, and file levels combine
to result in overall default security provisions as listed in Table 13-13. on page 185 Stated
another way, when the default security provisions are in force at all levels, the standard
user (without any other user attributes) has:

• unlimited access (in all modes) to all files in his logon group and home group

• reading and executing access (only) to all files in the public group of his account and the
public group of the system account

The important file security rules may be defined as follows:

• Users can create files in their own accounts.

• Only the creator can modify a file's security.

• If a lockword is present on a file, then it is required in order to access the file.

• Account managers have unlimited access to the files within their accounts.

• System managers have unlimited access to any file, but can save files only in their
184 Chapter 13

Maintaining File Security
Traditional Mechanism for File Security
account.

Changing security provisions of disk files

The security provisions for both the account and group levels are managed only by users
with the system manager capability, while group level security is managed by users with
account manager capability. Even if you have only standard capabilities (IA, BA, SF), you
can change the security provisions for any disk file that you have created. You do this by
using the ALTSEC command, which permanently deletes all previous provisions specified
for this file at the file level, and replaces them with those defined as the command
parameters. This command does not, however, affect any account-level or group-level
provisions that may cover the file. Furthermore, it does not affect the security provided by
the lockword (if one exists).

For example, suppose that you want to alter the security provisions for the file FILEX to
permit the ability to read, execute, and append information to the file only to the creating
user and the logon or home group users. You can do this with the following ALTSEC
command:

ALTSEC FILEX; (A,R,X:CR,GU)

Any parameters not included in the ALTSEC command are cleared.

To restore the default security provisions to this file, you would enter:

ALTSEC FILEX

Suppose that you have created a file named FILEZ for which you have allowed yourself
program-execute access only. You now wish to change this file's security provisions so that
any group user can execute the program stored within it, but only the group librarian can
read and write on it. Even though you do not have Read or Write access to the file, you can
still alter its security provisions by entering:

ALTSEC FILEZ; (X:GU;R,W:GL)

Table 13-13. Default Security Provisions (Traditional)

FILEREFEREN
CE

FILE ACCESS\PERMI
TTED

SAVE
ACCESS\TO

GROUP

filename .PUB.
SYS

Any file in
public group of
system account

(R,X:ANY;
W:AL,GU)

AL,GU

filename .
groupname .
SYS

Any file in any
group in system
account

(R,W,X:GU) GU

filename
.PUB.
accountname

Any file in
public group of
any account

(R,X:AC;
W:AL,GU)

AL,GU

filename .
groupname .
accountname

Any file in any
group in any
account

(R,W,X:GU) GU
Chapter 13 185

Maintaining File Security
Traditional Mechanism for File Security
You always retain the ability to change the security provisions of a file that you have
created, even when you are not allowed to access the file in any mode; thus, you can even
change the provisions to allow yourself access.

Suspending and restoring security provisions

You may temporarily suspend the suspending and restoring security:files| security
restrictions on any disk file that you create. This allows the file to be accessed in any mode
by any user; in other words, it offers unlimited access to the file. You suspend the security
provisions by entering the RELEASE command. (File lockword protection, however, is not
removed by this command.) The RELEASE command does not modify the file security
settings recorded in the system; it bypasses them temporarily. The RELEASE command
remains in effect until you enter the SECURE command in this or a later job or session.

To release the security provisions for the file named FILESEC in your logon group, enter:

RELEASE FILESEC

If the file has a lockword and that you wish to remove that as well as all account-level,
group-level, and file-level security provisions, you must use the RENAME command, as well
as the RELEASE command:

RENAME FILESEC/LOCKSEC,FILESEC <---- Removes lockword
RELEASE FILESEC <---- Removes security provisions

To restore the security provisions of a file, use the SECURE command. For example:

SECURE FILESEC

The original security restrictions for the file will be in effect.
186 Chapter 13

14 Getting File Information

MPE/iX provides a number of commands and intrinsics that enable you to obtain
information about your files. You can use the commands and intrinsics described in this
chapter to obtain file information for a variety of purposes.

This chapter is divided into two main sections:

• General File Information covers the commands and intrinsics that you use to obtain
information concerning the physical and operational characteristics of your file (defined
by device dependencies, a disk file's label, FILE commands, HPFOPEN/FOPEN intrinsic
parameters, and file system defaults), as well as access-dependent details about a
currently opened file (including EOF and logical record marker locations). Commands
and intrinsics described in this section are:

LISTFILE command

LISTEQ command

[CMD] INFO command

FFILEINFO intrinsic

FGETINFO intrinsic

FLABELINFO intrinsic

FRELATE intrinsic

• Error information covers the intrinsics that you use specifically to handle file system
errors–to identify an error and to display error information at the terminal. This can
include a description of the error condition returned by the last file access intrinsic call.
Intrinsics described in this section are:

FCHECK intrinsic

FERRMSG intrinsic

PRINTFILEINFO intrinsic

A number of commands and intrinsics return the same information. Which one you use in
a certain situation is by the context and by the purpose for which you wish to use the
information.
187

Getting File Information
Displaying General File Information
Displaying General File Information
Some questions that you may wish to answer in this section include

• Does a file by this name exist in my account or group?

• How large is this file?

• When and by whom was this file created?

• What security provisions exist for this file?

You can use this information in an interactive context, or you can use commands and
intrinsics within an executing program to obtain and utilize the information.

Displaying permanent file information with LISTFILE

The LISTFILE command is one of the most widely used commands in MPE/iX. You use
LISTFILE to display information about one or more permanent files that you specify.
LISTFILE has parameters that allow you to:

• specify a set of permanent or temporary files that you wish information about

• specify the amount, or level, of file information that you wish to see

• specify a file where the LISTFILE output is written to

Specifying a file reference

If you do not indicate otherwise, LISTFILE displays information about all of the permanent
files located in your logon group. You can optionally reference a file (or files) by specifying a
file name and qualifying it with the appropriate group and/or account name. For example,
if your logon group and account are MYGROUP.MYACCT, the following commands will return
information about the same file:

 LISTFILE MYFILE
 LISTFILE MYFILE,MYGROUP
 LISTFILE MYFILE,MYGROUP,MYACCT

In addition, you can use MPE/iX wildcard characters, in conjunction with a qualified file
reference, to specify a set of files you want LISTFILE to display information about. The
wildcard characters you can use are

@ = zero or more alphanumeric characters

= a single numeric character

? = a single alphanumeric character

You use: To obtain information about:

LISTFILE Characteristics of a permanent file

LISTFILE...;TEMP Characteristics of a temporary file

LISTEQ File equations in effect for current job or session
188 Chapter 14

Getting File Information
Displaying General File Information
Specifying the list level

If you do not indicate otherwise, LISTFILE displays only the unqualified file name. You can
optionally direct LISTFILE to display more detailed information about the file(s) that you
specify, depending upon the parameter value that you specify in the command, as listed in
Table 14-1. on page 189

Table 14-1. Format Selection

Option Name Displayed Information

−2 ACD Displays the file's ACD (access control definition). System
managers can view the ACD for any file. Account managers can
view the ACD for files in that account. File creators can view the
ACD for their files. Other users can view an ACD only if that ACD
specifies that the user has RACD (read ACD) access.

−1 LABEL Displays the hexadecimal listing of the file label, including all
lockwords. This level is available only to system managers and
account managers.

0 FILES Shows only the file name. This is the default.

1 SUMMARY Displays the file name, file code, record size, record format, and
other file characteristics such as ASCII or binary records,
carriage-control option, current end-of-file location, and the
maximum number of records allowed in the file.

2 DISC Displays the file name, file code, record size, record format, and
other file characteristics such as ASCII or binary records,
carriage-control option, current end-of-file location, and the
maximum number of records allowed in the file. It also displays the
blocking factor, number of sectors in use, number of extents
currently allocated, and the maximum number of extents allowed.
LISTF, 2 also displays KSAM XL file types with "K", and KASAM64
with “K”..

3 DETAIL Displays the file name, record size, extent size, number of records,
access rights for the user, and other file characteristics including
the date created, modified, and last accessed. The creator, lockword,
and label address are omitted. These can be obtained by specifying
-3 if you have AM capability (for files in your account) or SM
capability (for any file on the system).

4 SECURITY Displays the security matrix for the file. This includes account-,
group- and file-level security and the access rights for the user. If an
access control definition exists (ACD), a message stating that fact is
displayed.

5 DATA Shows LISTFILE,3 data and all file-specific data in LISTF , 3 type
format (that is, KSAM and SPOOL).

6 QUALIFY Shows only fully qualified file name.

7 UNIQUE Shows all file specific data in LISTFILE,3 type format, but does not
show LISTFILE,3 data.
Chapter 14 189

Getting File Information
Displaying General File Information
Specifying an alternate output file

If you do not indicate otherwise, LISTFILE sends its output to $STDLIST . You can
optionally specify a different output file to which the file descriptions are written.

LISTFILE examples

1. List all files in your logon account and group with file names that contain the characters
"INFO":

LISTFILE @INFO@

 INFOABST INFOUTLN INFOPREF PSMGINFO WINFOUTQ XLINFO

2. Show the file characteristics of all files with names beginning with "X" in a specified
account and group:

LISTFILE X@.INTRIN.LOZAR

 ACCOUNT= LOZAR GROUP= INTRIN

 FILENAME CODE ------------LOGICAL RECORD--- ----SPACE----

 SIZE TYP EOF LIMIT R/B SECTORS -X MX
 XLHPCICO 80B FA 39 39 3 8 1 1
 XLHPCIDE 80B FA 47 47 3 8 1 1
 XLHPCIGE 80B FA 27 27 3 8 1 1
 XLHPCIPU 80B FA 44 44 3 8 1 1

3. Display the label information for a specified file:

LISTFILE ODDITY,3

 FILE: ODDITY.INFO.LOZAR

 FILE CODE : 1030 FOPTIONS: BINARY,FIXED,NOCCTL,STD
 BLK FACTOR: 1 CREATOR :
 REC SIZE: 256(BYTES) LOCKWORD:
 BLK SIZE: 256(BYTES) SECURITY--READ : ANY
 EXT SIZE: 0(SECT) WRITE : ANY
 NUM REC: 7816 APPEND : ANY
 NUM SEC: 0 LOCK : ANY

8 ACCESS Shows all accessors for the file

9 LOCKS Shows all format 8 data plus more details about the proecsses
accessing the file, including locking data.

10 SUMMARY
WIDE

The same basic information as in the SUMMARY option, but in a
wider format to allow for larger values.

11 DISCWIDE The same basic information as in the DISC option, but in a wider
format to allow for larger values.

Table 14-1. Format Selection

Option Name Displayed Information
190 Chapter 14

Getting File Information
Displaying General File Information
 NUM EXT: 4 EXECUTE : ANY
 MAX REC: 31250 **SECURITY IS ON
 FLAGS : n/a
 NUM LABELS: 0 CREATED : TUE, JUN 3, 1986, 9:47 AM
 MAX LABELS: 0 MODIFIED: TUE, JUN 3, 1986, 9:48 AM
 DISC DEV -: 0 ACCESSED: WED, JUN 4, 1986, 2:38 PM
 CLASS : DISC LABEL ADDR: $00000010 $00004414
 SEC OFFSET: 0

4. Obtain a detailed ACD report on a file:

LISTFILE FILEA,-2

 FILE = FILEA ************** ACD ENTRIES **************

 SAM.DOE : R
 JOE.DOE : W
 @.DESIGN : NONE
 @.@ : X

In order to display information about such large files, two new file format options have
been introduced. The LISTF, LISTFILE, and LISTFTEMP commands will now support
options 10 and 11. File format option 10 is the large file equivalent of file option "1",
containing all the same information, but in a new format that allows for the expression of
larger values. Similarly, the format option 11 is the large file equivalent of file option "2".
Again, the same basic information is displayed, but the format has been changed to allow
for a greater range of values to be displayed.

The syntax of the LISTF, LISTFILE, and LISTFTEMP commands have not been changed
with the addition of the new 10 and 11 format options. The same syntax can be used with
the new values of 10 and 11 as the format. The output of the new formats will vary
depending on whether or not MPE syntax names are being displayed or HFS syntax
names are being displayed.

The format for each of MPE and HFS syntax varieties of the new formats 10 and 11 can be
seen from the examples shown below

:listf @,10
ACCOUNT= SYS GROUP= EXAMPLE

Name Access
ERWS

FCode RecSiz Type EOF File Limit

BIGFILE 1024 FA 0 1023456789

ICE E NMPRG 256 FB 832 832

XKSM64 80 FAk 1 1023

XKSMXL 80 FAK 1 1023

XRAND RW 80 FA 157 157

XRAND2 W 252 VA 386 49

YRAND NMOBJ 256 FB 22 4000
Chapter 14 191

Getting File Information
Displaying General File Information
:listfile ./@,10
 PATH= /SYS/EXAMPLE/

:listf @,11
ACCOUNT= SYS GROUP= EXAMPLE

listfile ./@,11
 PATH= /SYS/EXAMPLE/

Access
ERWS

FCode RecSiz Type EOF File Limit Name

1024 FA 0 1023456789 BIGFILE

E NMPRG 256 FB 832 832 ICE

80 FAk 1 1023 XKSM64

80 FAK 1 1023 XKSMXL

RW 80 FA 157 157 XRAND

W 252 VA 386 49 XRAND2

NMOBJ 256 FB 22 4000 YRAND

Name Access
ERWS

FCode RecSiz Type EOF File Limit Disk
Usage KB

Exts

BIGFILE 1024 FA 0 1023456789 0 0

ICE E NMPRG 256 FB 832 832 208 1

XKSM64 80 FAk 1 1023 64 1

XKSMXL 80 FAK 1 1023 52 1

XRAND RW 80 FA 157 157 16 1

XRAND2 W 252 VA 386 49 16 1

YRAND NMOBJ 256 FB 22 4000 8 1

Access
ERWS

FCode RecSiz Type EOF File Limit Disk
Usage KB

Exts Name

1024 FA 0 1023456789 0 0 BIGFILE

E NMPRG 256 FB 832 832 208 1 ICE

80 FAk 1 1023 64 1 XKSM64

80 FAK 1 1023 52 1 XKSMXL

RW 80 FA 157 157 16 1 XRAND

W 252 VA 386 49 16 1 XRAND2
192 Chapter 14

Getting File Information
Displaying General File Information

and

so,
te
in the
ndi-
 have
The display for the format options 10 and 11 is the same for each of the LISTF, LISTFILE,
LISTFTEMP commands. One of the unique additions of these two new options is the the
"ERWS" column. This column indicates whether or not the file is currently opened, and if
for what type of access. An "E" in the E column indicates that the file is opened for Execu
access, the "R" in the R column indicates that the file is opened for Read access, the "W"
W column indicates that the file is opened for Write access, and the "S" in the S column i
cates that the file is being Stored by the STORE or TurboSTORE utility. The column may
one or more of these characters specified, or none, depending on how the file is currently
accessed.

Displaying temporary file information with LISTFILE...(;TEMP)

The LISTFILE...(;TEMP) command is similar to LISTFILE , except that it displays
information about the specified temporary files. Syntax, parameters, and information
displayed are the same as LISTFILE , with the following exceptions:

Its display of file information includes the word TEMPORARY or the abbreviation TEMP.

Displaying file equations with LISTEQ

The LISTEQ command allows you to list all file equations in effect for the job or session
from which you issue the command. Here is an example of a LISTEQ call:

LISTEQ

 FILE EQUATIONS

 FILE LP;DEV=PP;ENV=ELITE.XQENV.SYS;CCTL
 FILE OFFLINE;DEV=PP;ENV=ELITE.XQENV.SYS;CCTL
 FILE EDTLIST;DEV=PP;ENV=ELITE.ENV2680.SYS

If you do not indicate otherwise, LISTEQ sends its output to $STDLIST . You can optionally
specify a different output file to which the file descriptions are written. For example, the
following command sends output to the temporary file MYFILE:

LISTEQ MYFILE

NMOBJ 256 FB 22 4000 8 1 YRAND

Access
ERWS

FCode RecSiz Type EOF File Limit Disk
Usage KB

Exts Name
Chapter 14 193

Getting File Information
Retrieving Specific File Information
Retrieving Specific File Information
The LISTFILE , LISTFILE...;TEMP and LISTEQ commands return formatted information to
your job or session list device. If you need to retrieve specific information about a
particular file, and you wish to place it in a variable available either to your CI or to your
program, then you'll be interested in the the CI evaluator function and intrinsics described
below.

[:CMD] FINFO

You can use the FINFO evaluator function interactively to retrieve information about a
specified file. FINFO is a function of the expression evaluator, a system procedure used by
the IF, WHILE, SETVAR, and CALC commands of the command interpreter.

FINFO has two parameters. The first is the file name of the file about which you wish to
obtain information; this is a string, and must be either a fully or partially qualified file
name, or a FILE equation backreference. The second parameter is an integer or integer
expression that indicates the nature of the information required. The options available are
listed in Table 14-2. on page 194

You use: To obtain information about:

[CMD]FINFO,FFILEINFO,FGETINFO Characteristics of a currently opened file

FLABELINFO Characteristics of a disk file (opened or not)

FRELATE Whether files are interactive and/or duplicative

Table 14-2. FINFO Options

Specify: FINFO returns:

0 True if rhw file exists; False if it does not

1 Fully qualified file designator

4 Name of file creator

6 Date of file creation in format (day,mmm,dd,yyyy)

-6 Date of file creation in format (yyyymmdd)

8 Date of last modification in format (day,mmm,dd,yyyy)

-8 Date of last modification in format (yyyymmdd)

9 File code mnemonic or file code as string

-9 File code as integer

12 File limit

13 FOPTIONS (same format as LISTFILE -3)

-13 FOPTIONS
194 Chapter 14

Getting File Information
Retrieving Specific File Information
For a more complete list of items that FINFO supports, type HELP FINFO at your
terminal.

The example below shows the steps you can use to retrieve the following information about
a file:

• the fully qualified file designator of the specified file

• the name of the file creator

• file characteristics, returned in the decimal, hexadecimal, and octal equivalents of the
foptions format described in the FOPEN intrinsic description located in the MPE/iX
Intrinsics Reference Manual.

• the file code, returned in decimal, hexadecimal, and octal equivalents

 CALC FINFO ('MYFILE',1)
 MYFILE.MYGROUP.MYACCT
 CALC FINFO ('MYFILE',4)
 SCOTT
 CALC FINFO ('MYFILE',-13)
 1029, $405, %2005
 CALC FINFO ('MYFILE',-9)
 0, $0, %0

FFILEINFO

Use this intrinsic to retrieve information about a specified file. The file can be on any
device, but it must be opened by the calling process at the time of the FFILEINFO call. If
you wish to return label information from a file that is not opened, use FLABELINFO
instead. FFILEINFO has one required parameter, filenum . This is the file number, which is
returned when you open a file using FOPEN or HPFOPEN. You can specify the information
that you wish to be returned by using up to five itemnum,item pairs. Each itemnum
designates a type of information (for example, logical device number, name of file creator,
or volume ID), which is then returned in the item parameter. The itemnum s can be
specified in any order.

14 Record size (negative value indicates bytes)

15 Block size

19 EOF marker location

24 Last modified time in format (hh:mm am/pm)

-24 Last modified time in format (hhmmss)

33 Lockword

Table 14-2. FINFO Options

Specify: FINFO returns:
Chapter 14 195

Getting File Information
Retrieving Specific File Information
Here is an example of an FFILEINFO intrinsic call. The information returned in this
example is the same information retrieved in theFINFO example above:

 HPFOPEN(FILENUM,STATUS);
 FORMALDESIGNATOR:= EMPTYARRAY;
 FILECODE:=0;
 FOPTIONS:=0;
 CREATOR:=EMPTYARRAY;
 FFILEINFO(FILENUM,1,FORMALDESIGNATOR,18,CREATOR,2,FOPTIONS,8,FILECODE);

Here is a description of the information returned in the parameters specified in the above
FFILEINFO call:

A complete description of the information that you can obtain using FFILEINFO is given in
the MPE/iX Intrinsics Reference Manual.

FGETINFO

This intrinsic, which returns some of the same information as FFILEINFO , is an MPE
V/E-based intrinsic that is currently supported only for compatibility reasons. When you
use a call to FGETINFO, MPE/iX now calls FFILEINFO to retrieve the file information. For
this reason, it is advisable for you to call FFILEINFO directly; however, there is no need to
rewrite existing programs that use FGETINFO unless there is a performance problem.

Here is an example of an FGETINFO intrinsic call that is the exact equivalent of the
FFILEINFO example shown above:

 HPFOPEN(FILENUM,STATUS);
 FORMALDESIGNATOR:= EMPTYARRAY;
 FILECODE:=0;
 FOPTIONS:=0;
 CREATOR:=EMPTYARRAY;

FGETINFO(FILENUM,FORMALDESIGNATOR,,FOPTIONS,,,,,FILECODE,,,,,,,,,,CREATOR);

A complete description of the information that you can obtain using FGETINFO is given in
the MPE/iX Intrinsics Reference Manual.

FILENUM A variable of type 16-bit signed integer that returns the file
number of the file about which information is requested.

FORMALDESIGNATOR A variable of type character array that returns the actual file
designator of the file, in the format
filename/groupname/accountname .

CREATOR A variable of type character array that returns the file creator
name.

FOPTIONS A variable of type 16-bit unsigned integer that returns file
characteristics in the format described in the FOPEN intrinsic
description.

FILECODE A variable of type 16-bit signed integer that returns the file code.
196 Chapter 14

Getting File Information
Determining Interactive/Duplicative Files with FRELATE
FLABELINFO

The FLABELINFOintrinsic returns information from the file label of a disk file. The file need
not be opened at the time of the intrinsic call. The information returned by this intrinsic is
a subset of the information returned by FFILEINFO .

Here is an example of a FLABELINFOintrinsic call that returns the same information as the
FFILEINFO and FGETINFO examples shown above:

 FORMALDESIGNATOR:='MYFILE.MYGROUP.MYACCT ';
 MODE:=0;
 FSERRORCODE:=0;
 ITEMNUMS[1]:=13; {Bytes 1..2 return characteristics }
 ITEMNUMS[2]:=9; {Bytes 3..4 return file code }
 ITEMNUMS[3]:=1; {Bytes 5..12 return file name }
 ITEMNUMS[4]:=2; {Bytes 13..20 return group name }
 ITEMNUMS[5]:=3; {Bytes 21..28 return account name }
 ITEMNUMS[6]:=4; {Bytes 29..36 return creator name }
 ITEMNUMS[7]:=0; {Zero indicates end of list }
 INITIALIZE_ITEMS; {Procedure initializes ITEMS fields}
 INITIALIZE_ITEMERRORS; {Procedure sets elements to zero }
 FLABELINFO(FORMALDESIGNATOR,MODE,
 FSERRORCODE,ITEMNUMS,ITEMS,ITEMERRORS);

The ITEMS parameter above is a record structure, exactly 36 bytes in length, that can be
declared in the following manner:

 TYPE ITEMS_TYPE = RECORD
 FOPTIONS: 0..65565; {2-byte unsigned integer}
 FILECODE: SHORTINT; {2-byte signed integer }
 FILENAME: PACKED ARRAY[1..8] OF CHAR;
 GROUPNAME: PACKED ARRAY[1..8] OF CHAR;
 ACCOUNTNAME: PACKED ARRAY[1..8] OF CHAR;
 CREATORNAME: PACKED ARRAY[1..8] OF CHAR;
 END;

A complete description of the information that you can obtain using FLABELINFO is given
in the MPE/iX Intrinsics Reference Manual.

Determining Interactive/Duplicative Files with FRELATE
This intrinsic is used for one specific purpose: determining whether a pair of files (input
file and list file) is interactive, duplicative, or both. Interactive means that the file
requires human intervention for all input operations. For example, an input file and a list
file opened to the same terminal would form an interactive pair. Duplicative means that
all input to the input file is echoed automatically to the list file. For example, input to a
keyboard is duplicated on the associated CRT.

The FRELATE intrinsic has two required parameters: infilenum is the file number of the
input file, and listfilenum is the file number of the list file. Both of these numbers are
returned when you create the files using HPFOPEN or FOPEN.
Chapter 14 197

Getting File Information
Displaying File Error Information
The intrinsic returns a 16-bit unsigned integer. If the files are an interactive pair, bit (15:1)
=1, or =0 if they are not. If the files are a duplicative pair, bit (0:1) =1, or =0 if they are not.

A file can be interactive, duplicative, or both. These attributes do not change between the
time the files are opened and the time they are closed. You can use FRELATE to obtain
information about files on all devices.

Displaying File Error Information
Several file system intrinsics are designed specifically for handling errors. If an I/O error
occurs, most file system intrinsics return a condition code indicating this.

FCHECK

The FCHECK intrinsic returns an error code that indicates the nature of a file system I/O
error. A table of error codes appears in the MPE/iX Intrinsics Reference Manual, or you
can use FERRMSG (described below) to display an error message.

FCHECK has five optional parameters. The filenum parameter indicates the file for which
error information is to be returned. If you set this parameter to zero, FCHECK assumes you
want information about the last failed FOPEN call. The error code is returned in the
errorcode parameter.

NOTE Do not use FCHECK to determine error conditions of you last failed HPFOPEN
intrinsic call. Error conditions associated with HPFOPEN are returned in the
HPFOPENstatus parameter. Instead, you can use the HPERRMSG intrinsic to
return a message explaining the nature of an HPFOPEN intrinsic error or
warning.

Three other parameters give additional information about file system errors. The tlog
parameter returns the number of half-words read or written if an I/O error occurs. The
blknum parameter gives the logical record count for a spool file, or the physical record
count for any other type of file. The numrecs parameter returns the number of logical
records in the bad block.

You must use this intrinsic prior to calling FERRMSG, since the error code returned by
FCHECK is used as a parameter in the call to FERRMSG.

You use: To obtain information about:

FCHECK File system intrinsic error number

FERRMSG File system intrinsic error message

PRINTFILEINFO File information error display
198 Chapter 14

Getting File Information
Displaying File Error Information
FERRMSG

This intrinsic is used following a call to FCHECK, to return an error message explaining the
nature of a file system error. It has three required parameters: errorcode is the error
number returned by FCHECK, msgbuf returns the error message, and msglgth returns the
length of the error message returned in msgbuf.

This example shows a call to FCLOSE. If this returns a CCL condition, a call to FCHECK
requests the error code; then FERRMSGreturns the error message associated with this code:

 FCLOSE(FILENUM,1,0);
 IF CCODE = CCL
 THEN BEGIN
 FCHECK(FILENUM,ERRNUM); {Returns error number }
 FERRMSG(ERRNUM,MESSAGE,LENGTH); {Returns error message }
 PRINT(MESSAGE,-LENGTH,0); {Prints error message to
 $STDLIST}
 TERMINATE; {Terminate process }
 END;

If the FCHECK code has no assigned meaning, the following message is returned:

 UNDEFINED ERROR errorcode

PRINTFILEINFO

This intrinsic prints a file information display on the job or session list device, $STDLIST .
The information shown depends upon whether or not a file is opened when the error
occurs. For files not yet opened, or for which the FOPENintrinsic fails, the display is shown
in Example 14-1.

Example 14-1. File Information Display, Unopened File

 +-F-I-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y+
 ! FILE NUMBER 5 IS UNDEFINED. ! Line #1
 ! ERROR NUMBER: 2 RESIDUE: 0 (WORDS) ! Line #2
 ! BLOCK NUMBER: 0 NUMREC: 0 ! Line #3
 +--+

The lines in this display show the following information:

For files that are open when a CCG (EOF error) or CCL (irrecoverable file error) was
returned, the file information display appears as shown in Example 14-2.

Example 14-2. File Information Display, Opened File

Line # Meaning

1 Warns that no corresponding file is open.

2 ERROR NUMBER indicates the last FOPEN error for the calling program.
RESIDUE is the number of words not transferred in an I/O request; since no
such request applies here, this is zero.

3 In this form, the BLOCK, NUMBER, and NUMREC fields are always zero.
Chapter 14 199

Getting File Information
Displaying File Error Information
 +-F-I-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y+
 ! FILE NAME IS TREEFILE.PSMG.LOZAR ! Line #1
 ! FOPTIONS: NEW,ASCII,FORMAL,F,NOCCTL,FEQ, ! Line #2
 ! NOLABEL ! Line #3
 ! AOPTIONS: INPUT,NOMR,NOLOCK,DEF,BUF,NOMULTI, ! Line #4
 ! WAIT,NOCOPY ! Line #5
 ! DEVICE TYPE: 0 DEVICE SUBTYPE: 9 ! Line #6
 ! LDEV: 2 DRT: 4 UNIT: 1 ! Line #7
 ! RECORD SIZE: 256 BLOCK SIZE: 256 (BYTES) ! Line #8
 ! EXTENT SIZE: 128 MAX EXTENTS: 8 ! Line #9
 ! RECPTR: 0 RECLIMIT: 1023 ! Line #10
 ! LOGCOUNT: 0 PHYSCOUNT: 0 ! Line #11
 ! EOF AT: 0 LABEL ADDR: %00201327630 ! Line #12
 ! FILE CODE: 0 ID IS PAULA ULABELS: 0 ! Line #13
 ! PHYSICAL STATUS: 1000000000000001 ! Line #14
 ! NUMBER WRITERS: 0 NUMBER READERS: 1 ! Line #15
 ! ERROR NUMBER: 0 RESIDUE: 0 ! Line #16
 ! BLOCK NUMBER: 0 NUMREC: 1 ! Line #17
 +--+

The lines on the above display show the information listed in Table 14-3. on page 200

Table 14-3. PRINTFILEINFO Information

Line # Meaning

1 The file name.

2,3 The foptions in effect.

4,5 The aoptions in effect.

6,7 The device type and subtype, logical device number, (LDEV),
device reference table (DRT), and unit of the device on which the
file resides. If the file is a spool file, the ldev is the virtual rather
than the physical device.

8 The record and block size of the offending record, in bytes and
words, as noted.

9 The size of the current extent and the maximum number of
records in the file.

10 The current record pointer, and limit on number of records in the
file.

11 The present count of logical and physical records.

12 The locations of the current EOF and header label of the file.

13 The file code, name of the file's creator, and number of
user-created labels.

14 The physical (hardware) status of the device on which the file
resides.
200 Chapter 14

Getting File Information
Displaying File Error Information
Writing a file system error-check procedure

Error checking intrinsics can be used throughout a program every time that there is an
intrinsic call. Instead of repeating a call to PRINTFILEINFO many times, it is more efficient
to write an error-check procedure and merely call this procedure where necessary.

The following example is a sample error-check procedure, named FILERROR. This
procedure is declared at the beginning of the program; from that point on, it can be called
with a single statement.

The procedure contains two parameters. FILENO is an identifier through which the file
number is passed. The PRINTFILEINFO intrinsic then prints a file information display for
that file. QUITNO is part of the abort message printed by the QUIT intrinsic. This enables
you to determine the point at which the process was aborted.

 PROCEDURE FILERROR(FILENO,QUITNO:SHORTINT);

 BEGIN
 PRINTFILEINFO(FILENO);
 QUIT(QUITNO);
 END;

15 NUMBER WRITERS is the number of FOPEN calls of the file with
some type of WRITE access. NUMBER READERS is the number of
FOPENcalls to the file with READ access. This field applies only to
message files; it does not appear for other files.

16 The error number and residue.

17 The block number and number of records (NUMREC) for the file.

Table 14-3. PRINTFILEINFO Information

Line # Meaning
Chapter 14 201

Getting File Information
Displaying File Error Information
202 Chapter 14

A Pascal/XL Program Examples

The HP Pascal/XL program examples in this appendix are provided to help you better
understand how to use MPE/iX file system intrinsics to perform common file access tasks.

Here is a short description of the task handled by each of the program examples in this
appendix:

• Program Example A-1 illustrates how you can open three different files–an unlabeled
magnetic tape file, $STDLIST, and a new disk file–and copy records sequentially from
the tape file to the disk file, while concurrently writing the records to $STDLIST.

• Program Example A-2 illustrates how you can open a labeled magnetic tape file and a
new disk file, print the user label to $STDLIST, then copy records sequentially from the
tape file to the disk file. Play close attention to how the program closes the new disk file
as a permanent file, and how it allows the user to specify alternate file designators if the
file name already exists.

• Program Example A-3 illustrates how you can use the sequential access method of
reading records from an old disk file, then use the random access method of writing the
records to a new labeled disk file.

• Program Example A-4 illustrates how you can read from a file using random access
method of data access. In addition, the program shows how you can use the FREADSEEK
intrinsic to increase program performance by prefetching records, thus minimizing I/O
wait-time.

• Program Example A-5 illustrates how you can allow a user to update records in a
shared data file. This program makes use of file locking intrinsics, FLOCK and
FUNLOCK, to ensure exclusive access to the shared file during the update process.

Program example A-1

This program illustrates how you can open three different files–an unlabeled magnetic
tape file, $STDLIST, and a new disk file–and copy records sequentially from the tape file to
the disk file while concurrently writing the records to $STDLIST.

Program Algorithm

The task specified above is accomplished by following the steps described below. Also
indicated are the intrinsics used to accomplish file access tasks and the name of the
procedure where the task is accomplished:

1. Open (HPFOPEN) three files--an unlabeled magnetic tape file, and new disk file, and
$STDLIST (see procedure open_unlabeled_tape_file and procedure open_file).

2. In a loop, sequentially read (FREAD) records from tape file, then write (FWRITE) them to
both disk file and $STDLIST (see procedure copy_tapefile_to_disk_file).
Continue loop till tape file's EOF is reached.
203

Pascal/XL Program Examples
3. Close (FCLOSE) the tape file and the disk file (see procedure
close_file).

If a file system intrinsic returns an unsuccessful condition code, procedure
handle_file_error is called to print file information and then abort the program.

Source code listing

Example A-1. Sequential Access

 $standard_level 'hp3000'$
 $lines 100$
 $code_offsets on$
 $tables on$
 $list_code on$
 program open_close_example(input,output);

 {***}
 { DECLARATION PART }
 {***}

 const
 ccg = 0; {Condition code warning }
 ccl = 1; {Condition code error }
 cce = 2; {Condition code successful }
 update = 5; {HPFOPEN item value }
 save_temp = 2; {HPFOPEN item value }
 save_perm = 1; {HPFOPEN item value }
 new = 0; {HPFOPEN item value }
 permanent = 1; {HPFOPEN item value }
 write = 1; {HPFOPEN item value }

 type
 pac256 = packed array [1..256] of char;
 pac80 = packed array [1..80] of char;
 status_type = record {HPFOPEN status variable type}
 case integer of
 0 : (info : shortint;
 subsys : shortint);
 1 : (all : integer);
 end;

 var
 disk_file : integer;
 tape_file : integer;
 filename : pac80;
 std_list : integer;
 std_in : integer;
 outbuf : pac80;

 function FREAD: shortint; intrinsic; {Read from mag tape file }
 procedure HPFOPEN; intrinsic; {Open tape, disk, $STDLIST files }
 procedure FCLOSE; intrinsic; {Close tape and disk files }
 procedure FWRITE; intrinsic; {Write to disk and $STDLIST files}
 procedure PRINTFILEINFO; intrinsic; {If unsuccessful intrinsic call }
 procedure QUIT; intrinsic; {If unsuccessful intrinsic call }
204 Appendix A

Pascal/XL Program Examples
 procedure handle_file_error
 (
 file_num : shortint;
 quit_num : shortint
);

 {**}
 { procedure handle_file_error is invoked when a file system intrinsic }
 { returns and unsuccessful condition code. File information is printed }
 { to $STDLIST, then the program aborts. }
 {**}
 begin
 PRINTFILEINFO (file_num);
 QUIT (quit_num);
 end; {end procedure }

 procedure open_unlabeled_tape_file
 (
 var file_num : integer
);

 {**}
 { procedure open_unlabeled_tape_file opens a permanent unlabeled mag }
 { tape file update access only. }
 {**}

 const
 {**define HPFOPEN item numbers **}
 formal_designator_option = 2;
 domain_option = 3;
 access_type_option = 11;
 device_class_optin = 42;
 density_option = 24;

 var
 {**define HPFOPEN items ** }
 file_name : pac80;
 permanent,update,density : integer;
 device_class : pac80;
 status : status_type;

begin
 file_name :='&tapefile&';
 permanent := 3;
 update := 5;
 device_class := '&TAPE&';
 density := 1600;
 HPFOPEN (file_num, status, formal_designator_option, file_name,
 domain_option, permanent,
 access_type_option, update
 device_class_option, device_class
 density_option, density);

 if status.all <> 0 then
 handle_file_error (file_num, 1);
 end; {end procedure }
Appendix A 205

Pascal/XL Program Examples
procedure open_file
 (
 var file_num : integer;
 file_name : pac80;
 domain : integer;
 access : integer
);

 {**}
 { procedure open_file acts as a generic file open procedure allowing }
 { you to specify the domain option and the access type option }
 {**}

 const
 {**define HPFOPEN item numbers**}
 formal_designator_option = 2;
 domain_option = 3;
 access_type_option = 11;
 ascii_binary_option = 53;

 var
 ascii : integer;
 {**define scratch variables ** }
 msgbuf : pac80;
 status : status_type;

begin
 ascii := 1;
 HPFOPEN (file_num, status, formal_designator_option, file_name,
 domain_option, domain,
 ascii_binary_option, ascii,
 access_type_option, access);

 if status.all <> 0 then
 handle_file_error (file_num, 2);
 end; {end procedure }

 procedure copy_tapefile_to_discfile
 (
 tape_file : integer;
 disk_file : integer
);

 {**}
 { procedure copy_tapefile_to_discfile copies logical records }
 { sequentially from tape file to disk file with concurrent print to }
 { stdlist. }
 {**}

 var
206 Appendix A

Pascal/XL Program Examples
 inbuf : pac80;
 end_of_file : boolean;
 read_length : integer;

begin
 end_of_file := false;
 repeat
 {**In a loop, do a simple sequential read from tape file to ***}
 {**disk file. **}

 read_length := FREAD (tape_file, inbuf, 80);
 if ccode = ccl then
 handle_file_error (tape_file, 3)
 else
 if ccode = ccg then
 end_of_file := true
 else
 begin
 FWRITE (std_list, inbuf, read_length, 0);
 if ccode <> cce then
 handle_file_error (std_list, 4);

 FWRITE (disk_file, inbuf, read_length,0);
 if ccode <> cce then
 handle_file_error (disk_file, 5);

 end
 until end_of_file;
 end; {end procedure }

 procedure close_file
 (
 file_num : integer;
 disp : integer
);

 {**}
 { procedure close_file is a generic file closing procedure that allows }
 { you to specify the final disposition of the file. }
 {**}

 var
 msgbuf : pac80;

 begin
 FCLOSE (file_num, disp, 0);
 if ccode = ccl then
 handle_file_error (file_num, 6);
 end; {end procedure }

{**}
 { MAIN PROGRAM }
 {**}
Appendix A 207

Pascal/XL Program Examples
Program Example A-2
 begin
 open_unlabeled_tape_file (tape_file); { STEP 1 }
 filename := '&$stdlist&'; { STEP 1 }
 open_file (std_list, filename, permanent,write); { STEP 1 }
 filename := '&dataone&'; { STEP 1 }
 open_file (disk_file, filename, new,update); { STEP 1 }
 copy_tapefile_to_discfile(tape_file,disk_file); { STEP 2 }
 close_file(disk_file, save_temp); { STEP 3 }
 close_file(tape_file, save_perm); { STEP 3 }
 end. {end program }

Program Example A-2
This Pascal/XL program example illustrates how you can use the HPFOPENintrinsic to open
a labeled magnetic tape file, then open a new disk file with a user-supplied name. After
records are sequentially copied from the tape file to the disk file, both files are closed, the
disk file is closed as a Permanent file. If the file system determines that another file of the
same name exists in the permanent file directory, the user is allowed to specify alternate
file names until the file close operation is successful.

Program Algorithm

The task specified above is accomplished using six steps. Also indicated are the intrinsics
used to accomplish file access tasks and the name of the procedure where the task is
accomplished:

1. Open (HPFOPEN) labeled magnetic tape file (see procedure open_tape_file).

2. Read from $STDIN (READ) a user-supplied file name, then open (HPFOPEN) a new disk
file using the given name (see procedure open_disk_file).

3. Read (FREADLABEL) the user label from the tape file and then print (PRINT) the label to
$STDLIST (see procedure print_user_label).

4. In a loop, use sequential access method to read (FREAD) records from tape file and write
(FWRITE) them to the disk file (see procedure copy_file_from_tape_to_disc).

5. Close (FCLOSE) the tape file (see procedure close_tape_file).

6. Close (FCLOSE) the new disk file as a permanent file (see procedure
close_disk_file). If an error occurs during the FCLOSE call, the user is given the
opportunity (CAUSEBREAK) to interactively fix the problem (see procedure
handle_fclose_error) before the program again attempts to close the disk file as a
permanent file.

This program makes extensive use of error handling routines to:

• return to the user a file system error number (FCHECK) associated with a file system
intrinsic error (refer to procedure print_fserr).

• interpret and return to the user error information returned by the status parameter of
a failed HPFOPEN call (see procedure print_hpfopen_error).
208 Appendix A

Pascal/XL Program Examples
Program Example A-2
• allow the user to specify an alternative file name if, during an FCLOSE call, the file
system determines that a duplicate permanent disk file exists (see procedure
handle_fclose_error).

• print file information (PRINTFILEINFO) before aborting (QUIT) the program (see
procedure handle_file_error).

Using these four error procedures, the program individually tailors error-handling
routines to meet different intrinsic needs.

Source code listing

Example A-2. Accessing a Magnetic Tape File

 $standard_level 'os_features'$
 $os 'mpe xl'$
 $code_offsets on$
 $tables on$
 $list_code on$

 program open_and_read_a_labeled_tape (input, output);

 {**}
 {* DECLARATION PART *}
 {**}

 const
 ccg = 0; {* condition code "greater than *}
 ccl = 1; {* condition code "less than" *}
 cce = 2; {* condition code "equal" *}

 type
 pac80 = packed array [1..80] of char;
 status_type = record
 case integer of
 0 : (info : shortint;
 subsys : shortint);
 1 : (all : integer);
 end;

 var
 tape_file : integer; {* file number for tape file *}
 disk_file : integer; {* file number for disk file *}

 function FREAD : shortint; intrinsic;
 function READ : shortint; intrinsic;
 procedure HPFOPEN; intrinsic;
 procedure FCHECK; intrinsic;
 procedure FCLOSE; intrinsic;
 procedure FWRITE; intrinsic;
 procedure PRINT; intrinsic;
 procedure PRINTFILEINFO; intrinsic;
 procedure QUIT; intrinsic;
 procedure CAUSEBREAK; intrinsic;
Appendix A 209

Pascal/XL Program Examples
Program Example A-2
 procedure FREADLABEL; intrinsic;

 procedure print_hpfopen_error
 (
 error : status_type
)
 option inline;

 {**}
 {* PURPOSE: *}
 {* This routine prints the status returned by HPFOPEN. *}
 {* PARAMETERS: *}
 {* error (input) *}
 {* - status returned by HPFOPEN *}
 {**}

 begin {* print_hpfopen_error *}
 writeln ('HPFOPEN status = (info: ', error.info:1,
 '; subys: ', error.subsys:1,')');
 end; {* print_hpfopen_error *}

 procedure print_fserr
 (
 file_num : integer
)
 option inline;

 {**}
 {* PURPOSE: *}
 {* This routine prints a File System error which occurred in a *}
 {* File System intrinsic. *}
 {* PARAMETERS: *}
 {* file_num (input) *}
 {* - file number of file which the intrinsic failed *}
 {**}

 var
 error : shortint; {* File System error number *}

 begin {* print_fserr *}
 FCHECK (file_num, error); {* call FCHECK to get the errornumber*}
 writeln ('FSERR = ', error:1);
 end;
 {* print_fserr *}

 procedure handle_file_error
 (
 file_num : shortint;
 quit_num : shortint
);

 {**}
 {* PURPOSE: *}
210 Appendix A

Pascal/XL Program Examples
Program Example A-2
 {* This routine displays File System information about a file *}
 {* and then calls QUIT to terminate the program. *}
 {* PARAMETERS: *}
 {* file_num (input) *}
 {* - file number. The routine will print info about this *}
 {* file. *}
 {* quit_num (input) *}
 {* - quit number. This number will be displayed by QUIT when *}
 {* the program is terminated. *}
 {**}

 begin {* handle_file_error *}
 PRINTFILEINFO (file_num);
 QUIT (quit_num);
 end; {* handle_file_error *}

 procedure handle_fclose_error;

 {**}
 {* PURPOSE: *}
 {* This routine informs the user that the disk file could not *}
 {* closed. Then CAUSEBREAK is called to break the program; *}
 {* this is done to give the user a chance to purge or rename *}
 {* an existing disk file which has the same name as the one the *}
 {* program is trying to save. When the user enters 'resume' *}
 {* this routine will return to the caller. *}
 {**}

 var
 msgbuf : pac80;

 begin {* handle_fclose_error *}
 {* print error messages *}
 {************************}

 msgbuf := 'Can''t close disk file';
 PRINT (msgbuf, -21, 0);
 msgbuf := 'Check for duplicate name';
 PRINT (msgbuf, -24, 0);
 msgbuf := 'Fix, then type "resume"';
 PRINT (msgbuf, -23, 0);

 {* break the program *}
 {*********************}
 CAUSEBREAK;
 end; {* handle_fclose_error *}

 procedure open_tape_file
 (
 var file_num : integer
);

 {**}
 {* PURPOSE: *}
 {* This routine opens a labeled tape file. *}
 {* PARAMETERS: *}
Appendix A 211

Pascal/XL Program Examples
Program Example A-2
 {* file_num (output) *}
 {* - file number of open tape file *}
 {**}

 const
 {* define HPFOPEN item numbers *}
 formal_designator_option = 2;
 domain_option = 3;
 tape_label_option = 8;
 access_type_option = 11;
 tape_type_option = 30;
 tape_expiration_option = 31;
 device_class_option = 42;

 var
 {* define HPFOPEN items *}
 read_only : integer;
 device_class : pac80;
 old : integer;
 file_name : pac80;
 tape_label : pac80;
 ansi_tape : integer;
 tape_expiration : pac80;

 {* define scratch varibles *}
 msgbuf : pac80;
 status : status_type;

 begin {* open_tape_file *}
 {* set up the item values for the HPFOPEN intrinsic *}
 {**}
 file_name := '&tapefile&';
 old := 3;
 read_only := 0;
 tape_label := '&tape01&';
 ansi_tape := 0;
 tape_expiration := '&05/20/87&';
 device_class := '&tape&';
 HPFOPEN (file_num, status, formal_designator_option, file_name,
 device_class_option, device_class,
 domain_option, old,
 tape_label_option, tape_label,
 tape_type_option, ansi_tape,
 access_type_option, read_only,
 tape_expiration_option, tape_expiration);

 if status.all <> 0 then {* check for error condition *}
 begin
 print_hpfopen_error (status);
 handle_file_error (file_num, 1);
 end;
 end; {* open_tape_file *}

 procedure open_disk_file
 (
 var file_num : integer
);
212 Appendix A

Pascal/XL Program Examples
Program Example A-2
 {**}
 {* PURPOSE: *}
 {* This routine prompts the user for a file name and opens a *}
 {* NEW disk file using the given name. *}
 {* PARAMETERS: *}
 {* file_num (output) *}
 {* - file number of the open disk file *}
 {**}

 const
 {* define HPFOPEN item numbers *}
 formal_designator_option = 2;
 access_type_option = 11;
 ascii_binary_option = 53;

 var
 {* define HPFOPEN items *}
 update : integer;
 ascii : integer;
 file_name : pac80;

 {* define scratch variables *}
 index : integer;
 msgbuf : pac80;
 read_length : integer;
 status : status_type;

 begin {* open_disk_file *}
 {* prompt user for a file name a read the user-specified name *}
 {***}

 msgbuf := 'Name of new disk file to be created?';
 PRINT (msgbuf, -36, 0);

 read_length := READ (file_name, -8);

 {* shift file name one character to the right to make room for the *}
 {* delimiters *}
 {**}

 for index := read_length downto 1 do
 file_name[index + 1] := file_name[index];

 {* add delimiters to file name *}
 {*******************************}

 file_name[1] := '&';
 file_name[read_length + 2] := '&';

{* set up the remaining item values for the HPFOPEN intrinsic *}
 {**}

 ascii := 1; {* the disk file is to be an ASCII file *}
 update := 5; {* update access will be used to write to the disk file*}

 HPFOPEN (file_num, status, formal_designator_option, file_name,
 ascii_binary_option, ascii,
 access_type_option, update);
Appendix A 213

Pascal/XL Program Examples
Program Example A-2
 if status.all <> 0 then {* check for error condition *}
 begin
 print_hpfopen_error (status);
 handle_file_error (file_num, 2);
 end;
 end; {* open_disk_file * }

 procedure print_user_label
 (
 file_num : integer
);

 {**}
 {* PURPOSE: *}
 {* This routine reads the user label from the tape file and *}
 {* then prints the user label to $STDLIST. *}
 {* PARAMETERS: *}
 {* file_num (input) *}
 {* - file number of open tape file *}
 {**}

 var
 inbuf : pac80; {* buffer for the user label *}

 begin {* print_user_label *}
 FREADLABEL (file_num, inbuf, 40); {* read the user label from tape*}

 if ccode <> CCE then {* check for error condition *}
 begin
 print_fserr (file_num);
 handle_file_error (file_num, 3);
 end;

 PRINT (inbuf, 40, 0); {* print the user label to $stdlist *}
 end; {* print_user_label *}

 procedure copy_file_from_tape_to_disk
 (
 tape_file : integer;
 disk_file : integer
);
 {**}
 {* PURPOSE: *}
 {* This routine copies a tape file to a disk file one record at *}
 {* a time (sequential access). *}
 {* PARAMETERS: *}
 {* tape_file (input) *}
 {* - file number of an open tape file *}
 {* disk_file (input) *}
 {* - file number of an open disk file *}
 {**}

 var
214 Appendix A

Pascal/XL Program Examples
Program Example A-2
 inbuf : pac80;
 msgbuf : pac80;
 end_of_file : boolean;
 read_length : integer;

 begin {* copy_file_from_tape_to_disk *}
 end_of_file := false;

 repeat
 {* copy a buffer from the tape file to the disk file until the *}
 {* end of the tape file is reached *}
 {***}

 read_length := FREAD (tape_file, inbuf, 40);
 {* read buffer from tape *}

 if ccode = ccl then {* check for error condition *}

 begin
 msgbuf := 'Can''t read tape file';
 PRINT (msgbuf, -20, 0);
 print_fserr (tape_file);
 handle_file_error (tape_file, 4);
 end
 else
 if ccode = ccg then {* check for end of file condition *}
 end_of_file := true
 else
 begin
 FWRITE (disk_file, inbuf, read_length, 0);
 {* write buffer to disk *}
 if ccode <> cce then {* check for error condition *}
 begin
 msgbuf := 'Can''t write to disk file';
 PRINT (msgbuf, -24, 0);
 print_fserr (disk_file);
 handle_file_error (disk_file, 5);
 end;
 end;
 until end_of_file;
 end; {* copy_file_from_tape_to_disk *}

 procedure close_tape_file
 (
 file_num : integer
);

 {**}
 {* PURPOSE: *}
 {* This routine closes the tape file. *}
 {* PARAMETERS: *}
 {* file_num (input) *}
 {* - file number of open tape file *}
 {**}

 var
Appendix A 215

Pascal/XL Program Examples
Program Example A-2
 msgbuf : pac80;

 begin {* close_tape_file *}
 FCLOSE (file_num, 1, 0); {* close file, rewind and unload tape*}
 if ccode = ccl then {* check for error condition *}
 begin
 msgbuf := 'Can''t close tape file';
 PRINT (msgbuf, -21, 0);
 print_fserr (file_num);
 handle_file_error (file_num, 6);
 end;
 end; { close_tape_file }

 procedure close_disk_file
 (
 file_num : integer
);

 {**}
 {* PURPOSE: }
 {* This routine closes the NEW disk file as PERMANENT disk }
 {* file. If an error occurs on the FCLOSE then the user is }
 {* given the opportunity to fix the problem and the FCLOSE is }
 {* retried. }
 {* PARAMETERS: }
 {* file_num (input) }
 {* - file number of the open disk file }
 {**}

 var
 file_closed : boolean;

 begin { close_disk_file }
 file_closed := false;
 repeat
 FCLOSE (file_num, 1, 0); { close disk file as a permanent file}

 if ccode = ccl then { check for error condition}
 handle_fclose_error
 else
 file_closed := true;
 until file_closed;
 end; { close_disk_file }

{**}
{ MAIN PROGRAM }

{**}

 begin
open_tape_file (tape_file); { STEP 1 }
open_disk_file (disk_file); { STEP 2 }
print_user_label (tape_file); { STEP 3 }
copy_file_from_tape_to_disk (tape_file, disk_file); { STEP 4
216 Appendix A

Pascal/XL Program Examples
Program Example A-3
}
close_tape_file (tape_file); { STEP 5 }
close_disk_file (disk_file); { STEP 6 }

end. { main }

Program Example A-3
This HP Pascal/XL program illustrates how you can use a sequential method of reading
records from an old disk file and use a random access method of writing the records in an
inverted order to a new user-labeled disk file, where record 1 of the first file is written to
location n of the second file, record 2 is written to location n-1, and so on.

Program Algorithm

The task specified above is accomplished by following the steps described below. Also
indicated are the intrinsics used to accomplish file access tasks and the name of the
procedure where the task is accomplished:

1. Open (HPFOPEN) a permanent disk file and a new user-labeled disk file (see procedure
open_disk_file).

2. Write (FWRITELABEL) a user-defined label to the new file (see procedure
write_user_label).

3. Get EOF (FGETINFO) of old file and assign that value to new file's record pointer; in a
loop, sequentially read (FREAD) records from old file and write (FWRITEDIR) them to a
location in the new file specified by the record pointer, then decrement the new file's
record pointer (see procedure copy_oldfile_to_newfile). Continue the loop till the
old file's EOF is reached.

4. Close (FCLOSE) the old file as deleted from the system, and close the new file as a
temporary file (see procedure close_disk_file).

If a file system intrinsic returns an unsuccessful condition code, procedure
handle_file_error is called to print file information (PRINTFILEINFO) and then abort
(QUIT) the program.

Source code listing

Example A-3. Random Access

 $standard_level 'hp3000'$
 $lines 100$
 $code_offsets on$
 $tables on$
 $list_code on$
 program write_read (input,output);

 {***}
Appendix A 217

Pascal/XL Program Examples
Program Example A-3
 { DECLARATION PART }
 {***}

 const
 ccg = 0; { condition code warning/EOF,/etc.. }
 ccl = 1; { condition code error }
 cce = 2; { condition code successful }
 permanent = 1;
 new = 0;
 temp = 2;
 delete = 4;

 type
 pac256 = packed array [1..256] of char;
 pac80 = packed array [1..80] of char;
 {HPFOPEN status parameter type }
 status_type = record
 case integer of
 0 : (info : shortint;
 subsys : shortint);
 1 : (all : integer);
 end;

 var
 old_file : integer;
 new_file : integer;
 filename : pac80;
 label_id : integer;
 label_len : integer;
 outbuf : pac80;

 function FREAD: shortint; intrinsic; { sequential read old file }
 procedure HPFOPEN; intrinsic; { open both disk files }
 procedure FCLOSE; intrinsic; { close both disk files }
 procedure FWRITEDIR; intrinsic; { random access write to new file }
 procedure FWRITELABEL; intrinsic; { write new user-defined label }
 procedure PRINTFILEINFO; intrinsic; { user in error-handler }
 procedure FGETINFO; intrinsic; { get EOF location }
 procedure QUIT; intrinsic; { use in error-handler }

 procedure handle_file_error
 (
 file_num : shortint;
 quit_num : shortint
);

{***}
 { procedure handle_file_error prints file information on the job/session}
 { list device, then aborts the program. }
 {***}

 begin
 PRINTFILEINFO (file_num);
 QUIT (quit_num);
 end; { end handle_file_error }

 procedure open_disk_file
 (
218 Appendix A

Pascal/XL Program Examples
Program Example A-3
 var file_num : integer;
 file_name : pac80;
 domain : integer
);

 {***}
 {procedure open_disk_file is a generic file open procedure that allows }
 {you to specify the file name, it's domain, type of access, and internal}
 {format - ASCII or binary. }
 {***}

 const
 {**define HPFOPEN item numbers** }
 formal_designator_option = 2;
 domain_option = 3;
 access_type_option = 11;
 ascii_binary_option = 53;

 var
 {**define HPFOPEN items********* }
 update : integer;
 ascii : integer;

 {**define scratch variables** }

 msgbuf : pac80;
 status : status_type;

 begin
 update := 5;
 ascii := 1;

 HPFOPEN (file_num, status, formal_designator_option, file_name,
 domain_option, domain,
 ascii_binary_option, ascii,
 access_type_option, update);

 if status.all <> 0 then
 handle_file_error (file_num, 1);
 end; { end open_disk_file }

procedure write_user_label
 (
 file_num : integer;
 buffer : pac80;
 length : integer;
 lnum : integer
);

 {**}
 { procedure write_user_label writes a user-defined label to the specified}
 { file. }
 {**}

 begin
 FWRITELABEL (file_num, buffer, length, lnum);
 if ccode <> cce then
 handle_file_error (file_num, 2);
Appendix A 219

Pascal/XL Program Examples
Program Example A-3
 end; { end write_user_label }

 procedure copy_oldfile_to_newfile
 (
 new_discfile : integer;
 old_discfile : integer
);

 {**}
 { procedure copy_oldfile_to_newfile gets EOF of old file & assigns record}
 { pointer to that value. In a loop, sequentially reads from old file; }
 { random access writes to new file. }
 {**}

 var
 rec : integer;
 inbuf : pac256;
 end_of_file : boolean;
 read_length : integer;

 begin

 {**Locate the EOF in old disk file** }
 end_of_file := false; { initialize loop control variable }
 rec := 0;

 FGETINFO (old_discfile,,,,,,,,,, rec);
 if ccode = ccl then
 handle_file_error (old_discfile, 3);

 repeat
 {**Copy the records in the reverse orders from old disk file**}
 {**to the new disk file** }

 read_length := FREAD (old_discfile, inbuf, 128);
 if ccode = ccl then
 handle_file_error (old_discfile, 4)
 else
 if ccode = ccg then
 end_of_file := true
 else

begin
 rec := rec - 1; { decrement record pointer }
 FWRITEDIR (new_discfile, inbuf, 128, rec);
 if ccode <> cce then
 handle_file_error (new_discfile, 5);
 end
 until end_of_file { check control variable EOF }
 end; { end copy_oldfile_to_newfile }

 procedure close_disk_file
 (
 file_num : integer;
 disp : integer
);
220 Appendix A

Pascal/XL Program Examples
Program Example A-4
 {**}
 { procedure close_disk_file is a disk file closing procedure that allowsa }
 { you to specify the final disposition of the file you are closing. }
 {**}

 var
 msgbuf : pac80;

 begin
 FCLOSE (file_num, disp, 0);
 if ccode = ccl then
 handle_file_error (file_num, 6);
 end; { end close_disk_file }

 {**}
 { Main Program }
 {**}

 begin
 filename := '&dataone&';
 open_disk_file (old_file, filename, permanent); { STEP 1 }
 filename := '&datatwo&';
 open_disk_file (new_file, filename, new); { STEP 1 }
 outbuf := 'Employee Data File';
 label_len := 9;
 label_id := 0;
 write_user_label(new_file, outbuf, label_len, label_id); { STEP 2 }
 copy_oldfile_to_newfile(new_file, old_file); { STEP 3 }
 close_disk_file(new_file, temp); { STEP 4 }
 close_disk_file (old_file, delete); { STEP 4 }
 end.

Program Example A-4
This HP Pascal/XL program illustrates how you can use the FREADSEEK intrinsic to
improve I/O performance during random access reads. The program opens a permanent
disk file containing data, and $STDLIST . Even numbered records are read from the data
file and printed to $STDLIST .

Program Algorithm

The task specified above is accomplished by following the steps described below. Also
indicated are the intrinsics used to accomplish file access tasks and the name of the
procedure where the task is accomplished:

1. Open (FOPEN) both the the Permanent disk file and $STDLIST (see procedure
open_files).

2. Read (FREADLABEL) the user label from the disk file and write (FWRITE) it to $STDLIST
Appendix A 221

Pascal/XL Program Examples
Program Example A-4
(see procedure read_user_label).

3. In a loop, read (FREADDIR) even numbered records from the disk file. Before writing
(FWRITE) the records to disk, prefetch the next record (FREADSEEK). Do this till EOF of
the disk file is reached (see procedure read_from_datafile).

4. Close (FCLOSE) both files (see procedure close_files).

If a file system intrinsic returns an unsuccessful condition code, procedure
handle_file_error is called to print file information (PRINTFILEINFO) and then abort
(QUIT) the program.

Source code listing

Example A-4. Random Access

 program Read_Example (input,output);
 {**}
 { DECLARATION PART }
 {**}

 const
 CCG = 0; { condition code warning }
 CCL = 1; { condition code error }
 CCE = 2; { condition code successful }
 type
 file_name = packed array [1..9] of char;
 buffertype = packed array [1..80] of char;

 var
 datafile_name: file_name;
 listfile_name: file_name;
 buffer : buffertype;
 message : buffertype;
 datafile : shortint;
 listfile : shortint;
 record_num : integer;

 function fopen:shortint; intrinsic; { open files }
 procedure freadlabel; intrinsic; { read user-defined label }
 procedure freaddir; intrinsic; { random access read file }
 procedure fwrite; intrinsic; { sequential write to $STDLIST }
 procedure fclose; intrinsic; { close files }
 procedure freadseek; intrinsic; { prefetch selected record }
 procedure printfileinfo; intrinsic; { used in error-handler }
 procedure quit; intrinsic; { used in error-handler }

 procedure error_handler (filenum, quitnum: shortint);
 {**}
 { procedure error_handler is a standard file system error handling }
 { procedure invoked after an unsuccessful file system intrinsic call. }
 { A file information display is printed to $STDLIST, then program aborts.}
 {**}
222 Appendix A

Pascal/XL Program Examples
Program Example A-4
 begin
 printfileinfo (filenum);
 quit (quitnum);
 end; {end error_handler }

 procedure open_files;
 {**}
 { procedure open_files opens the data file and $STDLIST using the FOPEN }
 { intrinsic. }
 {**}

 const
 permanent = 5;
 read_write = 4;
 stdlist = 12;
 write = 1;

 begin
 datafile_name:= 'datafile ';
 listfile_name:= 'listfile ';
 datafile:= fopen(datafile_name,permanent,read_write,-80);
 if ccode <> CCE then error_handler(datafile,1);
 listfile:= fopen(listfile_name,stdlist,write);
 if ccode <> CCE then error_handler(listfile,2);
 end; {end open_files }

 procedure read_user_label;
 {**}
 {procedure read_user_label reads the user label located in the }
 {user-defined label portion of the data file, then prints it to $STDLIST.}
 {**}

 begin
 freadlabel(datafile,buffer,-80);
 if ccode <> CCE then error_handler(datafile,101);
 fwrite (listfile,buffer,-80,0);
 if ccode <> CCE then error_handler(listfile,102);
 end; {end read_user_label }

 procedure read_from_datafile;
 {**}
 { procedure read_from_data_file first calls procedure read_user_label to }
 { print the label to $STDLIST, then enters a loop to select only even }
 { numbered records from the data file and writing them to $STDLIST. }
 {**}

 var end_of_file: boolean;

 begin

 end_of_file:= false; {initialize loop control }
 record_num:= 0;

 { enter loop, random access read even }
 { numbered record, freadseek next }
Appendix A 223

Pascal/XL Program Examples
Program Example A-5
 { selection, then sequential write }
 { to $STDLIST, till EOF. }

 while not end_of_file do
 begin
 freaddir(datafile,buffer,-80,record_num);
 if ccode <> CCE then error_handler(datafile,103);
 record_num:= record_num + 2;
 freadseek(datafile,record_num);
 if ccode = CCL then error_handler(datafile,104) else
 if ccode = CCG then end_of_file:= true;
 fwrite(listfile,buffer,-80,0);
 if ccode <> CCE then error_handler(listfile,105);
 end;
 end; {end read_from_datafile }

 procedure close_files;
 {**}
 { procedure close_files calls the fclose intrinsic twice to close bot }
 { files previously opened by procedure open_files. }
 {**}

 begin
 fclose(datafile,0,0);
 if ccode <> CCE then error_handler(datafile,1001);
 fclose(listfile,0,0);
 if ccode <> CCE then error_handler(listfile,1002);
 end;

 {**}
 { MAIN PROGRAM }
 {**}

 begin
 open_files; { STEP 1 }
 read_user_label; { STEP 2 }
 read_from_datafile; { STEP 3 }
 close_files; { STEP 4 }

 end. {end main program }

Program Example A-5
This HP Pascal/XL program example illustrates how you can update a particular record of
a shared data file. In addition, this program example uses file system locking intrinsics
(FLOCK, FUNLOCK) to ensure exclusive access to the file while the update occurs.
224 Appendix A

Pascal/XL Program Examples
Program Example A-5
Program Algorithm

The task specified above is accomplished by following the steps described below. Also
indicated are the intrinsics used to accomplish file access tasks and the name of the
procedure where the task is accomplished:

1. Open (HPFOPEN) three files, $STDLIST , $STDIN, and a permanent disk file containing
data to update (see procedure open_file).

2. In a loop, lock (FLOCK) a shared data file; read (FREAD) data from disk file; write
(FWRITE) data to $STDLIST ; read (FREAD) new data from $STDIN; update (FUPDATE)
shared data file with data read from $STDIN. The loop ends when EOF of disk file is
reached (see procedure update_file).

3. Close (FCLOSE) the disk file (see procedure close_disk_file); let normal program
termination close the other files.

If a file system intrinsic returns an unsuccessful condition code, procedure
handle_file_error is called to print file information (PRINTFILEINFO) and then abort
(QUIT) the program.

Source code listing

Example A-5. Updating a Shared File

 $standard_level 'hp3000'$
 $lines 100$
 $code_offsets on$
 $tables on$
 $list_code on$
 program access_file3(input,output);

 {**}
 { DECLARATION PART }
 {**}

 const
 ccg = 0; { condition code warning }
 ccl = 1; { condition code warning }
 cce = 2; { condition code successful }
 { HPFOPEN item values}
 permanent = 1;
 read = 0;
 write = 1;
 update = 5;
 save = 1;
 shared = 4;
 locking = 1;

 type
 pac256 = packed array [1..256] of char;
 pac80 = packed array [1..80] of char;

 { HPFOPEN status type }
 status_type = record
 case integer of
 0 : (info : shortint;
Appendix A 225

Pascal/XL Program Examples
Program Example A-5
 subsys : shortint);
 1 : (all : integer);
 end;

 var
 disk_file : integer;
 filename : pac80;
 std_list : integer;
 std_in : integer;
 outbuf : pac80;

 function FREAD: shortint; intrinsic; { sequential reads }
 procedure HPFOPEN; intrinsic; { open files }
 procedure FCLOSE; intrinsic; { close files }
 procedure FWRITE; intrinsic; { sequential writes }
 procedure FWRITEDIR; intrinsic; { random access writes }
 procedure FUNLOCK; intrinsic; { unlock locked file }
 procedure PRINTFILEINFO; intrinsic; { use in error handler }
 procedure FLOCK; intrinsic; { lock file }
 procedure FUPDATE; intrinsic; { update record }
 procedure QUIT; intrinsic; { use in error handler }

 procedure handle_file_error
 (
 file_num : shortint;
 quit_num : shortint
);

{**}
{ procedure handle_file_errorPrints the file information on the

}
{ session/job list device. }

{**}

 begin
 PRINTFILEINFO (file_num);
 QUIT (quit_num);

end; { end handle_file_error }
 procedure open_file
 (
 var file_num : integer;
 file_name : pac80;
 domain : integer;
 access : integer;
 excl : integer
 lockable : integer;
);

{**}
 { procedure open_file is a generic file opening procedure that allows
you}

{ to specify the designator, domain, access type, ASCII/binary, and
226 Appendix A

Pascal/XL Program Examples
Program Example A-5
}
{ exclusive options for the file. }

{**}

 const
 {**define HPFOPEN item numbers**}
 formal_designator_option = 2;
 domain_option = 3;
 access_type_option = 11;
 ascii_binary_option = 53;
 exclusive_option = 13;
 dynamic_locking_option = 12;

 var
 ascii : integer;

{define scratch variables }

 msgbuf : pac80;
 status : status_type;

 begin
 ascii := 1;

 HPFOPEN (file_num, status, formal_designator_option, file_name,
 domain_option, domain,
 ascii_binary_option, ascii,
 access_type_option, access,
 exclusive_option, excl
 dynamic_locking_option, lockable);
 if status.all <> 0 then
 handle_file_error (file_num, 1);

 end; { end open_file }

 procedure update_file
 (
 old_discfile : integer
);

 {**}
 { procedure update_file pdates records in the disk file with the }
 { replacement read from the stdin. }
 ***}

 var
 dummy : integer;
 inbuf : array [1..80] of char;
 end_of_file : boolean;
 read_length : integer;

 begin
 {Lock the file and suspend }
Appendix A 227

Pascal/XL Program Examples
Program Example A-5
 end_of_file := false;
 FLOCK (old_discfile,1);
 if ccode = ccl then
 handle_file_error (old_discfile, 3);

 repeat

 { Read record from disk file, write employee name to $stdlist }
 { and read corresponding record number from $stdin and update }
 { the disk file with the input record and unlock disk file. }

 read_length := FREAD (old_discfile, inbuf, 128);
 if ccode = ccl then
 handle_file_error (old_discfile, 4)
 else
 if ccode = ccg then
 end_of_file := true
 else
 begin
 FWRITE (std_list, inbuf, -20, octal('320'));
 if ccode <> cce then
 handle_file_error (std_list, 5);
 dummy := FREAD (std_in, inbuf[20], 5);
 if ccode = ccl then
 handle_file_error (std_in, 6)
 else
 if ccode = ccg then
 end_of_file := true;
 FUPDATE (old_discfile, inbuf, 128);
 if ccode <> cce then
 handle_file_error (old_discfile, 7);
 end
 until end_of_file;
 FUNLOCK (old_discfile); { final unlock of disk file }
 if ccode <> cce then
 handle_file_error (file_num, 2);
 end; { end update_file }

procedure close_disk_file
 (
 file_num : integer;
 disp : integer
);

 {***}
 {procedure close_disk_file is a generic file closing procedure that }
 {allows you to specify the final disposition of the file you are closing. }
 {***}

 var
 msgbuf : pac80;

 begin
 FCLOSE (file_num, disp, 0);
 if ccode = ccl then
 handle_file_error (file_num, 8);
 end; { end close_disk_file }
228 Appendix A

Pascal/XL Program Examples
Program Example A-5
 {***}
 { MAIN PROGRAM }
 {***}

 begin
 filename := '&$stdlist&';
 open_file (std_list, filename, permanent,write,0,0); { STEP 1}
 filename := '&$stdin&';
 open_file (std_in, filename, permanent,read,0,0); { STEP 1}
 filename := '&dataone&';
 open_file (disk_file, filename, permanent,update,shared,locking);{STEP 1}
 update_file(disk_file); { STEP 2}
 close_disk_file(disk_file, save); { STEP 3}

 end. { end main program }
Appendix A 229

Pascal/XL Program Examples
Program Example A-5
230 Appendix A

Index
A
aborting NOWAIT I/O, 19
access

exclusive, 154
modes, 179, 180
multi, 153, 156, 157
random, 119, 130, 131
restricting, 179
restricting by type, 181
restricting by user, 181
semi-exclusive, 155
sequential, 119, 130
shared, 156
simultaneous, 153

access control definitions (ACD), 159, 178
accessing

files, 18, 48, 51
files, remote, 84

account security, 182
ACD

adding, 166
changes, logging, 177
commands related to, 161, 162
copying, 166
creating, 162
deleting, 166
device owners, 160
file owners, 160
intrinsics related to, 161, 162
listing, 164
managing, 161, 162
migrating, 167
modes, 160
modifying, 166
operation, 160
owners, 159
pairs, 160
preserving, 162
replacing, 166
scope, 159
traditional security, and, 159

ACD (access control definitions), 159, 178
adding

ACDs, 166
altering file use, 17
ASCII

files, 61, 70
transmission, 70

B
backreferencing files, 75, 76

binary
files, 61, 70
transmission, 70

BOT marker, 116
boundaries, half-word, 61

C
changing

file domains, 89
file security, 185

characteristics, files, 51
circular files, 60
class, volume, 63
closing

files, 103, 106, 108
permanent files, 106
tape file, 107
tape files, 107

command interpreter variables and
expressions, 83

commands
ACDs, and, 161, 162

comparing record types, 58
configuration, system, logging, 169
console

requesting reply, 124
writing messages to, 123, 124

copying
ACDs, 166

creating
ACDs, 162
files, 17

D
data elements, 13
data transfer, 13, 109, 117

intrinsics, 111
multiple records, 113

default record size
files, 62
line printer files, 62
magnetic tape files, 62
plotter files, 62
programmable controller files, 62
synchronous single-line controller files, 62
terminal files, 62

defining file characteristics, 18, 48
deleting

ACDs, 166
files, 89

device files, 15, 100
Index 231

Index
jobs and, 15
opening, 99
sessions and, 15

device owners
acds, 160

devices
ASCII transmission, 70
binary transmission, 70
EBCDIC transmission, 70
files, 15
peripheral, 13, 14
programs, 14
shareable, 18, 48
spooled, 15

directories, searching, 89
disk files, 15, 56

closing, 105, 107
opening, 94, 96

disk volume
specifying restrictions, 63

displaying
file equations, 193
file error information, 198
file information, 187

domains
changing, 89
new files, 87
permanent files, 88
temporary files, 87

duplicative files, 79, 197

E
EBCDIC transmission, 70
environment, remote, 84
EOT marker, 116
error check procedure, writing, 201
exclusive access, 154
expressions, 83

variables within file designators, 83

F
file

reading from labeled tape, 135
reading from tape, 134

file codes
reserved, 64, 69
specifying, 64, 69

file designators, 71, 85
file domains, 87, 90

changing, 89
features, 88

new files, 87
permanent files, 88
permitted, 88
temporary files, 87

file equations, 17, 75, 83
displaying, 193

file errors
displaying information, 198

file owners
acds, 160

file system interface, 13
files, 14

accessing, 18, 48, 51, 73, 75
accessing remote, 84
altering use, 17
ASCII, 61, 70
attributes, 17
backreferencing, 75, 76
binary, 61, 70
changing security, 185
characteristics, 51
circular, 60
closing, 103, 108
closing as permanent, 105
compatibility (pre- and post-900 series), 61
creating, 17, 74
default record sizes, 62
defining characteristics, 18, 48
deleting, 89
designators, 71, 83, 85
device-dependent characteristics, 99
devices, 15, 100
devices, opening, 99
disc, 56
disk, 15
displaying information, 187, 201
domains, 87, 90
duplicative, 79, 197
errors, displaying, 198
exclusive access, 154
getting information, 187, 201
half-word boundaries, 61
input, 14
interactive, 79, 197
jobs and sessions, 15
KSAM, 59
listing, 90
lockwords, 74, 75
magnetic tape, 56
mapped access, 141, 146
mapped, opening, 144
message, 60
232 Index

Index
multi access, 153, 156, 157
multi access, global, 156
names, 14, 73
nonshareable, 15
opening, 91, 94, 102
output, 14
overrides, 55
parsing designators, 84
passed, 79, 81
passing, 79
peripheral devices, 14, 15, 56
permanent, 106, 188
predefined, 75
qualified, 74
random access, 121
reading from, 129, 136
record structure, 14, 18
records, 14
referencing, 73
reserved codes, 64, 69
rewinding, 115
RIO, 59
saving, 89
searchign directories, 89
security, 159, 184, 186
security, ACD, 159, 178
security, traditional, 179, 186
semi-exclusive access, 155
sequential access, 120
shared, 15, 153, 156, 157
sharing, hazards of, 157
simultaneous access, 153
specifying codes, 64, 69
specifying type, 59, 60
spooled (devices), 15
standard, 59
suspending and restoring security, 186
system hierarchy of overrides, 92
system-defined, 72, 77, 81, 97
tape, 100, 102, 107
temporary, 79, 193
types, 15
updating, 137, 139
user-defined, 72, 73, 76
validating designators, 84
writing to, 119, 128

FINFO function, 194
formats

comparison of, 58
fixed-length, 56
records, 56, 58
storage, 70

undefined-length, 56, 57, 58
variable-length, 56, 57

function FINFO, 194

G
getting file information, 187
global multi access, 156
group security, 183

H
half-word boundaries

files, 61
hazards of file sharing, 157
hierarchy

overrides, 55

I
I/O performance, increasing, 132
idx endNOWAIT I/O, 47
increasing I/O performance, 132
input

files, 14
NOWAIT I/O, 18
sets, 78, 79
standard, 77

interactive files, 79, 197
interface, file system, 13
intrinsics

ACDs, and, 161, 162
data transfer, 111

J
jobs

devices files and, 15

K
KSAM files, 59

L
labeled tape, 102, 126

reading from, 135
limitations

file designators, 73
file names, 73
NOWAIT I/O, 18, 19

line printer files
default record size, 62

listing
ACDs, 164
files, 90
Index 233

Index
lockwords
changing, 75
files, 74, 75
removing, 75

log files
specifying number of records, 69

logging
ACD changes, 177
file security events, 175
password changes, 176
printer access failure, 170
process creation, 173
restores, 169
stream initiation, 172
system events, 167
system logging configuration, 169
user, 174
user logging, 173

long-mapped access, 144

M
magnetic tape, 115, 117

default (file) record size, 62
files, 56, 100
marker, 115
writing to, 125, 128

managing ACDs, 161, 162
mapped access

advantages, 143
long, 144
opening files, 144
restrictions, 142
short, 143
to files, 141, 146

marker
BOT, 116
EOT, 116
magnetic tape, 115

message files, 60
messages

writing to the console, 123, 124
migrating ACDs, 167
modes

access, 180
ACDs, 160

modifying
ACDs, 166

moving a record pointer, 114
multi access, 153, 156, 157

global, 156
restrictions, 154

multiple records, data transfer, 113

N
names of files, 14
networks, NOWAIT I/O, 19
new files

devices, 100
domains, 87
file domain, 87

nonshareable files, 15
NOWAIT I/O, 18

aborting, 19
input, 18
intrinsics, 18
limitations, 18, 19
networks, 19
output, 18

O
opening

device files, 99
files, 91, 102
files, mapped, 144
system-defined files, 97, 98
tape files, 100, 102

operation
ACDs, 160

output
files, 14
NOWAIT I/O, 18
sets, 78, 79
standard, 77

overrides
file system hierarchy, 92
files, 55
hierarchy, 55

owners
acds, 159

P
pairs

ACDs, 160
parsing file designators, 84, 85
passed files, 79, 81
passwords

changes, logging, 176
peripheral devices, 13, 56

files, 14, 15
permanent files

closing, 106
devices, 100
domains, 88
file domain, 88
234 Index

Index
plotter files
default record size, 62

pointing to a record, 114
predefined files, 75
preserving ACDs, 162
printer

access failure, logging, 170
procedure

file system error check, 201
process

creation, logging, 173
programmable controller files

default record size, 62
programs

devices, 14

Q
qualified file names, 74

R
random access, 119, 130, 131

record selection, 111
reading from

files, 129, 136
tapes, 134

record pointers
moving, 114

records
comparison of, 58
default sizes, 62
files and, 14
first, rewinding to, 115
fixed-length, 56
formats, 56
pointers, 109, 110
pointing to, 114
selection, 110, 113
selection, random access, 111
selection, RIO access, 113
selection, sequential access, 111
selection, update access, 111
spacing forward or backward, 114
specifying size, 61, 62
structure, 14, 18
undefined-length, 56, 57, 58
variable-length, 57

remote environment, 84
replacing

ACDs, 166
requesting console reply, 124
reserved file codes, 64, 69

restore
logging, 169

restoring security, 186
restricting access, 179

by type, 181
by user, 181

restrictions
mapped access, 142
multi access, 154
sharing files, 154

rewinding files, 115
RIO

access, record selection, 113
files, 59

S
saving files, 89
scope

ACDs, 159
searching directories, 89
security

account level, 182
changing, 185
file level, 184
files, 159, 186
group level, 183
logging file security events, 175
restoring, 186
suspending, 186
traditional, 179, 186

semi-exclusive access, 155
sequential access, 119, 130

files, 120
record selection, 111

sessions
device files and, 15

sets
input, 78, 79
output, 78, 79
volume, 63

shared
access, 156
devices, 18, 48
files, 15

sharing files, 153, 157
hazards, 157
restrictions, 154

short-mapped access, 143
specifying

disk volume restrictions, 63
file codes, 64, 69
file types, 59, 60
Index 235

Index
record format, 56
record size, 61, 62
storage format, 70

specifying file domain, 87, 90
spooled devices, 15
spooling

console operator, 15
user, 15

standard
files, 59
input files, 77
output files, 77

storage formats, 70
specifying, 70

stream
initiation, logging, 172

suspending security, 186
synchronous single-line controller files

default record size, 62
system

events, logging, 167
system-defined files, 72, 77, 81, 97

designators, 77
opening, 97, 98

T
tape

labeled, 126
unlabeled, 125

tape files
closing, 107
magnetic, 100
opening, 100, 102
reading from, 134

temporary files
domains, 87

terminal files
default record size, 62

traditional file security, 179, 186
transmission

ASCII and binary, 70
EBCDIC, 70

types of files, 15

U
undefined-length formats, 56, 57, 58
unlabeled tape, 125
update access

record selection, 111
updating files, 137, 139
user

logging, 174
logging, logging, 173
spooling, 15

user-defined files, 72, 73, 76

V
validating file designators, 84, 85
variable-length formats, 56, 57
variables, 83

expressions within file designators, 83
volume

class, 63
set, 63
single, 63

W
writing file system error check procedure, 201
writing to

files, 119, 128
magnetic tape, 125, 128
236 Index

	1� Introduction
	Disk Files and Device Files

	2� Creating A File
	The HPFOPEN Intrinsic
	The FOPEN Intrinsic
	The BUILD Command
	The FILE Command
	Summary of Overrides
	Specifying a Record Format
	Specifying a File Type
	Specifying Record Size
	Specifying Disk Volume Restrictions
	Specifying a File Code
	Specifying Storage Format

	3� Specifying a File Designation
	MPE/iX File Designators
	User-Defined Files
	System-Defined Files
	Using Command Interpreter Variables and Expressions Within File Designators
	Parsing and Validating File Designators

	4� Specifying a File Domain
	New Files
	Temporary Files
	Permanent Files
	Changing Domains
	Searching File Directories
	Listing Files

	5� Opening a File
	How the File System Opens a File
	Which to Use: HPFOPEN or FOPEN
	Opening a Disk File
	Opening a System-Defined File
	Opening a Device File

	6� Closing a File
	How the File System Closes a File
	Closing a Disk File
	Closing a Magnetic Tape File

	7� Record Selection and Data Transfer
	Record Pointers
	Record Selection
	Multiple Record Transfers
	Control Operations
	Magnetic Tape Considerations

	8� Writing to a File
	Sequential Access and Random Access
	Writing to $STDLIST
	Writing Messages to the System Console
	Writing to a Magnetic Tape File
	Writing a File Label to a Labeled Tape File
	Writing User Data in ANSI Labels

	9� Reading from a File
	Sequential Access and Random Access
	Reading From $STDIN
	Reading From a Magnetic Tape File
	Reading a File Label from a Labeled Tape File

	10� Updating a File
	11� Accessing a File Using Mapped Access
	How to Access a File Mapped
	Opening a File Mapped
	New Intrinsics

	12� Sharing a File
	Simultaneous Access of Files
	Sharing the File Using FLOCK and FUNLOCK

	13� Maintaining File Security
	Access Control Definition Security (ACD)
	Traditional Mechanism for File Security

	14� Getting File Information
	Displaying General File Information
	Retrieving Specific File Information
	Determining Interactive/Duplicative Files with FRELATE
	Displaying File Error Information

	A� Pascal/XL Program Examples
	Program Example A-2
	Program Example A-3
	Program Example A-4
	Program Example A-5

