
MPE/iX 5.5 Operating System Limits

AIFs:

Item Limit Description Resource Table
1 2048 AIF User Port per System AIF Ports ID Table
2 32768 AIF Port open senders AIF Ports Open Table
3 32768 AIF Port open receivers AIF Ports Open Table
4 8144 AIF Port message length(User) AIF Port Message Table
5 200 Installed Vendor ID’s AIF Known Vendor Table

(1) AIF Ports id table

The Architected Interface Ports facility has it's own KSO_AIF_PORTS ($123,#291) to
keep track of user ports. The KSO_AIF_PORTS is created the first time AIFPORTOPEN
is called to create a port. This KSO is also called GPD_TABLE (Global Port Data table),
it contains several pointers to other AIF ports tables. The first of these is the PortId table.
This one keeps track of all open AIF ports. A software constant limits the maximum
number of open ports to 2048.

(2) AIF ports open table

The AIF Port Open table keeps track of open accessors. One entry is allocated for send
access and one for receive access. The maximum number of concurrently open receivers
is 32,768. The maximum number of concurrently open senders is 32,768. The maximum
number of open entries per system is 65,536.

(3) AIF port message table

The maximum message size a user can specify is 8144 bytes. The AIF subsystem adds on
envelope information to the user message of 48 bytes making the maximum message size
#8192.

The AIF ports reside on top of the system ports functionality. When an AIF port is
created this results in a call to the lower level ports subsystem. The ports subsystem will
create the port out of the non-resident port descriptor table. Each AIF port is created in a
single object. This object contains the following:

Port Record
Server Control Block
Pool Record

Table Management Header
Message Pool (Table Management Body)

This object is restricted to a 4MB size and is allocated out of SR6/SR7 space. It is very
important for the application developer to use this space wisely. Most system data
structures are allocated out of SR6/SR7 and this space is limited to 2 gigabytes.

Example:

$188 port record
2C server control block
40 (for cache alignment)
40 pool record
24C table management header
nnn message pool size

where nnn = (message size + 30 + message_frame_rec) * number of
messages

(default $100 + $30 + $10) * $20 = $2800

This creates a $2c80 total size object which would use a 32K allocation unit. When a user
specifies a #8144 message size at port creation it is possible to allow #510 messages. This
will fit in the 4 MB object. However, it is not possible to create 2048 ports which use 4
MB objects.

(4) AIF known vendor table - KSO290

KSO #290 keeps track of all the installed Vendor Ids on the system. The number of
Vendor Ids in this table has been set to 200.

CM object management:
Item Limit Description Resource Table
1 2047 Code Segments (Loaded CM Libraries) Code Segment Table
2 255 Code Segments (Physically Mapped) Code Segment Table
3 255 Code Segments (Per Loaded CM Pgm) Code Segment Table
4 16383 Data Segments Data Segment Table

(1) Code segment table - KSO253

The Code Segment Table (CST) is used to manage Compatibility Mode (CM) code
segments which are a part of a Segmented Library (SL). There are 255 entries reserved
for physically mapped segments. Physically mapped segments are reserved for use by the
system. These typically reside in SL.PUB.SYS. The remaining entries are available for
user library segments. These are referred to as logically mapped segments.

A CST entry is allocated whenever an SL segment is loaded for the first time. This occurs
when:

- A CM program is executed via the :RUN command with the ;LIB= option.
- SL segments are :ALLOCATEd.
- A procedure (in an SL) is loaded via the LOADPROC intrinsic.

CST entries are shared. Loading an SL segment after the first time will not result in the
allocation of a CST entry. Share counts on segments are maintained in the Loader
Segment Table (LST). The share count for a segment is decremented when the segment is
unloaded. When the share count for a particular segment drops to zero, the CST entry for
that segment is released.

The CST table limits the number of compatibility mode library segments.

(2) Code segment table ext

The Code Segment Table Extension (CSTX) is used to manage Compatibility Mode
(CM) code segments which are a part of a CM program. There is one CSTX for each CM
program that is loaded or :ALLOCATEd. Each CM program can reference up to 255
logically mapped segments. Logically mapped segments include those that are a part of
the program file and any user SL segments that are referenced. Each logically mapped
segment that is a part of the program file will use an entry in the processes' CSTX.
Logically mapped user SL segments will count toward the maximum number of 255
logically mapped segments, but will use CST entries instead of CSTX entries.

This table limits the number of logically mapped compatibility mode segments in any
program file to 255.

(3) Data segment table - KSO192

The Data Segment Table (DST Table) is used to manage Compatibility Mode (CM) Data
Segments (DSTs). There is a maximum of 16383 entries in the DST Table.

Several DSTs are used by the Operating System (and other system software, eg: Data
Communications software) for global system data structures. It is difficult to estimate

how many global DSTs will be required on a particular system. Below are some
examples of system DSTs:

- 63 Reserved system DSTs (eg. FMAVT, LOG TABLE, etc)
- Up to 118 File System Control Block Tables
- Dynamically allocated system DSTs (eg. BIPC DST, LOG BUF DST, LSTX)
- CM Stacks for system processes (eg. SESSION, JOB, PROGEN)

Each Job uses 4 DSTs and each Session uses 5 DSTs to get to the Command Interpreter
prompt. Running additional programs will require additional DSTs. The DSTs required
for a Job or a Session are listed below:

- Job Information Table (JIT)
- Job Directory Table (JDT)
- CM Stack for JSMAIN process
- CM Stack for CI process
- [FOR SESSIONS ONLY] 1 PACB for the $STDIN/$STDLIST device

Each additional user process uses 1 or more DSTs. At a minimum each process will
require 1 DST for a CM Stack. ALL processes need a CM stack (including those created
from NM program files). Process DST usage is summarized below:

- CM Stack
- DSTs explicitly allocated using GETDSEG
- PACBs for CM files (RIO, Circular, Message, & Device Files) opened
for
Buffered Access

In order to estimate the number of DSTs used by the system we will use the following
assumptions:

- The system has the number of sessions logged on is 1700
- 1700 of these sessions are "active"
See the Total Concurrent Logons - Concurrent Process Limit discussion
in the JOB/SESSION section.

- 500 global system DSTs are used by the operating system.
(500 is NOT an exact number, but is an educated guess.)

For the model above the number of DSTs used by the system would be equal to the
following formula:

Of System DSTs = 500 + (1700 * 6) = 10700

NOTE: Each of the 1700 application programs executing in the above example may
require additional DSTs. Since the maximum number of DSTs is 16383, this leaves
approximately 5683 (16383-10700) DSTs for use by user applications. This is
approximately 3 per application (5684/1700). This limitation of 3 DSTs available for the
user application can be a problem on systems that run CM applications.

Here is another sernario with different assumptions.

- The system has 1000 sessions logged on via DTCs.
- The system has 700 sessions logged remotely via virtual terminals.
- The system has 50 jobs logged on.
- All jobs and sessions are active.
- 500 global system DSTs.

For the model above the number of DSTs used by the system would be equal to the
following formula:

Of System DSTs = 500 + (1000 * 6) + (700 * 8) + (50 * 5)
= 12350

Remember that your mileage may vary depending on: the number of processes per logon,
the number of CM files open, and the number of extra data segments an application uses.

Devices:
Item Limit Description Resource Table

 1 ~4000 Device Classes DCT DST
2 255 Disc Drives Max Tested Configuration
 3 4679 Logical Devices 3 Digit LDev Numbers

 2 127 Mirrored Disc Pairs Max Tested Configuration
 4 4649 Terminals Connected via DTCs. NMMGR Config Limit

(1) Dct DST - DST040

The Device Class Table (DCT) is used to map device classes to their respective logical
devices. For devices configured in SYSGEN, there is a limit of 256 ldevs for each unique
device class. In addition, SYSGEN limits the number of different device classes that can
be assigned to a specific ldev to 8.

(2) Max tested configuration

The maximum number of disc drives (255) and the maximum number of mirrored disc
pairs (127) which are supported is based on the maximum tested configurations. Software
or hardware limits may be reached if these values are exceeded.

NOTE: Although it is possible to mount this number of disk drives on a system, putting
them all in a single volume set with a heavy transaction load may cause problems. Please
see your systems consultant.

(3) 3 digit ldev numbers

In MPE iX 5.5 the maximum number of devices is limited to 4679. This value will also
be the maximum LDEV number tolerated by NMMGR and SYSGEN. The maximum
number of terminal devices connected via DTCs is 4649, which leaves 30 empty device
numbers for other peripherals.

(4) NMMGR config limit

The utility program NMMGR.PUB.SYS will not allow a user to configure more than
4649 terminals (connected via DTCs). This value was chosen to be 30 less than the
maximum number of devices. Being able to configure 4649 terminals does not mean that
MPE will support 4649 sessions. (See the JOB/SESSION section of this document for
more information).

NOTE: Serial printers are also configured as terminals using NMMGR. The total number
of serial printers and terminals cannot exceed 4649. The maximum number of serial
printers that is supported varies, depending on the system model and the types of printers
that are being connected. Refer to the Systems Configuration Guide for specific details.

File system:

Item Limit Description Resource Table
1 16384 Concurrent Writers of Msg File NM Writer ID Table
2 16384 File Open (G-Multi or Job-Multi Access FS GDPD Table
3 1024 File Open (per process) PLFD
4 ~8000000 Open Msg Files (w/o timed reads) NM IPC Table
4 ~5714285 Open Msg Files (w/timed reads) NM IPC Table
5 5460 Open Multi Access CM Files FMAVT DST
6 2330 Open non Sharable Devices I/O Device Directory
7 128 User Logging IDs Log ID Table
8 128 User Logging Processes Log Table
9 1140 Process Per user Logging ID Log Buf DST

(1) NM writer id table

The new native mode Writer ID Table (KSO227), contains a maximum of 16,384 entries.
Each concurrent writer of a message file requires one entry. As a result a maximum of
16384 processes can concurrently open an IPC file with write access.

(2) Fs gdpd table - KSO222

Every file that is opened gets a Global Data Pointer Descriptor (GDPD) entry. Most
GDPD entries are allocated within the Process Local File Descriptor (PLFD) table. Each
PLFD entry is paired with a GDPD entry within the PLFD table. However, if a native
mode file is opened with Multi Access (intra-job) or G-Multi Access (inter-job), then the
GDPD entry is allocated from the System GDPD table. Subsequent opens of the same
Multi Access file will share the same GDPD entry. If the file is a CM type file (eg.
Message file, RIO, Circular, or Device file), then the GDPD entry is allocated in the
PLFD, and the FMAVT table (DST 44) manages the Multi Access.

The GDPD table limits the number of unique NM files that can be opened simultaneously
with Multi Access or G-Multi Access to 16,384.

(3) Plfd - kpo017

There used to be a Process Local File Descriptor (PLFD) table allocated for each process.
Every file that is opened gets a PLFD entry. (For those of you familiar with, MPE VE,
this is analogous to an AFT entry). In MPE iX 4.0 in order to save SR6/SR7 space, the
Process Local File Descriptor was modified to allocate files in 64 file chunks. The KPO
#17 in the PIBX will still point to the PLFD, but it will now point to a PLFD index. The
PLFD index is a data structure that poinDIVto the plfdare 64es. The index value for a
filenum will be the file number div 64 (there is 64 files per PLFD).

The maximum number of files that can be opened simultaneously by each process has
been set to 1024.

(4) NM ipc table

The FSIPC Object (KSO225) is used as an internal data structure for message files (IPC)
to pass data between processes. Within this data structure, one or more port entries are
allocated for processes that open message files and to send WAIT or REPLY messages
under EOF conditions. As a result, two processes accessing a single message file may use
anywhere from 5 to 7 FSIPC entries in the FSIPC object.

The FSIPC obeject is created when the files system is intialized during system bootup.
The FSIPC object can contain a maximum of 40,000,000 (40 million) entries. The
number of entries required to open a file depends on several factors explained below.

There are four different types of entries in the FSIPC object: message queue entries
(MQE), timer list entries (TLE), port entries, and free blocks. These entries are described
in more detail below.

Port entries

The first time a particular message file is opened, three port entries will be allocated in
this table. One of the port entries serves as the communication port for the process that
opened the message file. The other two ports are global read and write queues for the file.
Additional opens of the same message file will only require one port entry per open,
which will be used as a communication port.

Message files are not particularly useful unless they are opened by at least two processes.
As a result, at least four port entries will usually be required per message file in the
simplest case. If more than two processes have the file open, more port records will be
required.

Message queue entries

MQEs are allocated when an EOF condition is encountered during a read or write
operation. For reads, this occurs when a process tries to read from an empty message file.
For writes, this occurs when a process tries to write to a message file which is full (ie. has
hit the LIMIT for the file).

Usually, message files will have one or more MQE entries. The exact number of MQE
entries will depend on the nature of the application. Applications which use message files
tend to be structured as "producer/consumer" applications. One or more processes will
"produce" records for the message file (eg. writers), and one or more processes will
"consume" them (eg. readers).

If the writer processes are faster than the reader processes, then the message file may
reach the EOF. If an EOF condition is encountered when a writer is attempting to write a
new record to the message file, the process will block, and an MQE entry will be
allocated. This will happen for each writer that blocks. The number of MQE entries
required for any given message file will be less than or equal to the number of writer
processes. One way to minimize the possibility that this situation will occur is to ensure

that the file limit of each message file is large enough so that the writer processes will not
have to block on an EOF condition.

If the reader processes are faster than the writer processes, then an MQE entry will be
required as soon as a reader attempts to read the message file when it is empty. If the
readers "lead" the writers (ie. always requesting data before it is actually written to the
message file), then the number of MQE entries required will probably be equal to the
number of reader processes for that message file.

In either case above, the number of MQE entries will vary according to how many
processes are using the message file, and what they are doing.

Timer list entries

TLEs are allocated when timeouts are specified (via the FCONTROL intrinsic). TLEs are
deallocated when the timed read or write completes (either normally or when the timer
expires).

If an application does use timed reads and writes, the maximum number of TLE entries is
equal to the number of processes which have the message file open minus one.

Estimating maximum number of message files

The maximum number of open message files on a system is limited by the equation
below:

OPEN MESSAGE FILES = # FSIPC ENTRIES / (# FSIPC ENTRIES PER FILE)

The number of FSIPC ENTRIES is a constant for all systems (40,000,000). The number
of FSIPC ENTRIES PER FILE will depend on the application(s) used on the system. For
our calculation we will assume the following model:

- Each application using message files has N processes accessing the
files.

- The number of port entries required is N+2 (One per process plus the
two global read/write queues).

- The number of MQE entries is N-1 (All processes should not be blocked
on an EOF condition).

- Each application either uses timed reads and writes uniformly, or it
does not use them at all. If timed reads and writes are used then the
number of TLE entries will be N.

For applications which do not use timed reads and writes, the number of FSIPC
ENTRIES PER FILE will be (N+2)+(N-1) or 2N+1. For applications which do use timed
reads and writes, the number of FSIPC ENTRIES PER FILE will be (N+2)+(N-1)+N or
3N+1.

Let's assume that ALL the applications are simple applications with two processes
accessing each message file, (N = 2), and that the applications are not using timed reads
and writes. Then, the maximum number of OPEN MESSAGE FILES would be
40,000,000 / 5 = 8,000,000.

If the applications are using timed reads, (and N = 2), then the maximum number of
OPEN MESSAGE FILES would be 40,000,000 / 7 = 5,714,285.

(5) Fmavt DST - DST044

One FMAVT entry is allocated for each unique Compatibility Mode (CM) file that is
opened for Multi Access. Currently, this means the following file types: Message files,
Circular files, RIO files, and Device files.

Note that $STDIN and $STDLIST are opened for Multi Access. Since terminals are still
considered to be CM Device files, each session will require one entry in the FMAVT,
assuming that $STDIN and $STDLIST are the same terminal. (The FMAVT entry is
shared between them in this case).

This table limits the number of unique CM files that can be opened simultaneously for
Multi Access to 5460. Files that are opened more than once will share an FMAVT entry.

(6) Input/output device directory

The Input Device Directory (IDD) and Output Device Directory (ODD) data structures
are kept in CM DSTs. The IDD is DST 45, and the ODD is DST 46. The format/layout of
the IDD and the ODD are identical. For this reason they are often referred to using the
generic acronym XDD.

The maximum number of entries in the XDD is limited by the maximum size to which
the table can grow. Since the XDD is a CM table, this section will use CM words (16-
bits) for all size calculations. The table is managed in "sectors" (128 CM word chunks).
The maximum size of the table is 255 "sectors" times 128 CM words per "sector", or
32640 CM words. This is only slightly less than the maximum size of a CM DST (32764
CM words) so it does not significantly reduce the maximum number of entries. The XDD

now supports 4679 devices. The entry size is 5 CM words. Subentries do not exist since
4.7.

The XDD has one 5 CM word header for the table itself. This contains various linkage
information, as well as information about the current number of "sectors" allocated.
There is an entry for each LDEV on the system. Non-sharable devices which include all
terminals (both nailed and non-nailed), virtual terminals (VT), non-spooled printers and
tape drives can have a reallocation entry.

Summary of values

- Size of header for XDD table is 5 CM words
- Size of entry for each device configured is 5 CM words
- Size of reallocation entry for each device configured is 5 CM words

The maximum number of XDD entries is the maximum number of LDEVS which is
4679. The maximum number of reallocation entries is 1847.

(7) Log id table - DST033

When a user creates a new logid through the :GETLOG command, an entry is added to
the LOG ID table. This table is created large enough to contain 128 entries. This limits
the system to a total of 128 user logging IDs.

(8) Log table - DST027

When a User Logging process is started through the :LOG command (with either the
START or RESTART option) an entry is added to the LOG Table. The log table is
created large enough to contain 128 entries. This limits the system to a maximum of 128
User Logging IDs in use concurrently.

NOTE: A single User Logging ID can be used by multiple processes/programs
concurrently. See discussion of Processes Per User Logging ID - LOG BUF DST - in this
section.

(9) Log buf DST

A unique User Logging process is created for each active Log ID. Each User Logging
process has a LOG BUF DST associated with it. User Logging processes are started
using the :LOG command with the START or RESTART option (see the discussion of
User Logging Processes - LOG TABLE - in this section).

The maximum number of processes logging to a single User Logging ID is configurable
in SYSGEN (log section, ulog command, NLOGPROCS parameter). The maximum
value for NLOGPROCS is 1140. This limit is based on the maximum possible size of the
LOG BUF DST.

Job/session:

Item Limit Description Resource Table
1 500 Console Requests Reply Info Table
2 1365 RINs, Global RIN DST
2 5459 RINs, Total RIN DST
3 2700 Total Concurrent Logons (Local only) Concurrent Process Limit
4 ~2700 Total Concurrent Logons (Remote&Local)NS/Concurrent PRocesses

(1) Reply info table - KSO166

The Reply Information Table (RIT) contains one entry for each console request. There is
a limit of 500 console requests at any one time.

(2) Rin DST - DST022

Entries in the RIN table are allocated whenever a Global RIN or Local RIN is acquired
using the :GETRIN command or GETLOCRIN intrinsic. Global RINs are deallocated
with the :FREERIN command, and Local RINs are deallocated by the FREELOCRIN
intrinsic. The CM file system also uses RINs (called File RINs) whenever a CM type file
is opened for FLOCK access.

The total number of RINs that are available on the system is 5,459, of which a maximum
of 1365 can be used as Global RINs.

(3) Concurrent process limit

Release 5.5 supports a maximum of 2700 active logons. The term "active" implies that
the job or session is running a program. Additionally, the process limit has increased to
8190. For planning purposes, you should allow 100 processes for the operating system's
use (this is not an exact number, but should be enough). This leaves 8090 processes for
jobs and sessions.

Each direct logon requires a minimum of 2 processes; a JSMAIN and a CI. If the job or
session runs a simple program (which does no process handling), then it requires a total
of 3 processes per logon. This allows for a maximum of approximately 2700 active
logons (3*2700=8100) with processes to spare.

It is very important to note that many applications and third party products use process
handling. You must determine how many processes will be used by each session or job in
order to accurately predict the number of jobs or sessions that the system will support.

Below is a worksheet which can be used to estimate the concurrent process requirements
for your system. If your active users are running programs which do process handling,
then you will need to change the multipliers used for active jobs and sessions.

Active Jobs _____ x 3 = _____
Inactive Sessions _____ (<= 2500) x 2 = _____
Active Sessions _____ (<= 2500) x 3 = _____

+ system processes + 100
===
Total Connections _____ Total Processes _____
(<= 8190)

Although it is possible to configure more than 2500 terminal I/O devices, neither the
inactive sessions nor the active sessions should exceed 2500. An HP support
representative should be contacted before exceeding these limits.

(4) NS/concurrent processes

The exact number of remote sessions which can be supported on a given system will
depend on the exact mix of jobs and sessions (remote and local, active and inactive) on
that system.

The maximum number of concurrent processes may limit the number of remote logons
before the maximum number of data communications servers does. Likewise, the server
limit may be reached before the concurrent process limit. This section will address the
question of total concurrent jobs and sessions on a system with a mixture of local and
remote logons.

Concurrent process limit

A remote logon to another MPE/iX system, (logon via a Virtual Terminal), requires 3
processes on the host system and 3 on the remote system. There will be a JSMAIN, a CI,
and a VTSERVER process on both sides. If the user runs a simple program (which does
no process handling), then there will be a total of 4 processes per logon.

Release 5.5 supports 2000 Virtual Terminal (VT) sessions. With 1250 active VT logons,
it is estimated that 8100 processes are used ((2000*4)+100). With a maximum of 8190
processes, it is possible to achieve a maximum of 2280 active logons if 2000 of these
active logons are VT logons.

8190 - 100 system processes - (2000 * 4) = 90 processes leftover.

With 2000 active VT logons it is estimated that a maximum of 30 additional active
logons is possible (90 processes/3 processes per non-local connection).

It is very important to note that many applications and third party products use process
handling. You must determine how many processes will be used by each session or job in
order to accurately predict the number of users that the system will support.

Below is a worksheet which can be used to estimate the concurrent process requirements
for a system with networked connections. If the active users are running programs which
do process handling, then the multipliers used for active jobs and sessions (local or
remote) will need to be modified.

Active Jobs _____ x 3 = _____
Inactive Local Sessions _____ (<- ~2500) x 2 = _____
Active Local Sessions _____ (<- ~2500) x 3 = _____
Inactive Remote Sessions _____ (<= 2000) x 3 = _____
Active Remote Sessions _____ (<= 2000) x 4 = _____

+ system processes + 100
===

Total Connections _____ Total Processes _____ (<= 8190)

Although it is possible to configure more than 2500 terminal I/O devices, neither the
inactive local sessions nor the active local sessions should exceed 2500. An HP support
representative should be contacted before exceeding these limits. Also, the sum of all
remote sessions cannot exceed 2000 due to the limit on Network Servers imposed by the
NS transport layer.

Data communication servers

In addition to application programs, data communication servers also require processes.

The table above takes into account VTSERVER processes created for the purpose of
initiating a remote logon. Using additional network services may require additional server
processes as shown in the table below.

For example, if the user is using Network File Transfer (DSCOPY), there will be an NFT
server created on both sides. Also, a VT session must be established or the auto logon
feature must be used. Unless a VT session is required, the auto logon feature is preferable
since it will reduce the number of servers required.

SERVERS REQUIRED
Service Used Local Side Remote Side Function
--
NFT NFT NFT

RFA - RASERVER

NSSTAT - NSSTATUS

LOOPBACK LOOPINIT LOOPBACK

RPM - DSSERVER
RPMDAD

PTOP - DSSERVER

VTR VTSERVER VTSERVER

VT VTSERVER VTSERVER

Access local ALLBASE ALLBASE
data

Access remote MPE ALLBASE,NS ALLBASE,NS ALLBASE/NET
ALLBASE Data ISQL,PPs

Access remote Unix ALLBASE,NS ALLBASE,NS ALLBASE/NET
ALLBASE Data ISQL,PPs

Access local Turbo IMAGE/SQL
data via ALLBASE

Access remote Turbo ALLBASE IMAGE/SQL ALLBASE/NET
data via ALLBASE

Access ALLBASE or DOS,NS,ARPA Svs,or IPX ALLBASE ALLBASE/NET
IMAGE/SQL from PC Windows 3.1 (HPIPDVR)

ALLBASE/SQL Netware/iX
PC API Gupta

or ODBC

Access ALLBASE or DOS,NS or ARPA Svs ALLBASE
IMAGE/SQL from PC Information Access (IASQL)

 Windows 3.1

Loader:

Item Limit Description Resource Table
1 2047 CM Code Segments (Loaded CM Libraries) Code Segment Table
1 255 CM Code Segments (Physically Mapped) Code Segment Table
2 255 CM Code Segments Per Loaded Program File Code Segment

Table Extension
3 519 Loaded Unique CM Program Files CST Block DST
4 (See text) Loaded CM Programs (& LOADPROCs) LST DST
5 ~22771 Loaded Unique NM Program Files (No XLs) Loaded File Table
5 ~90 Loaded Unique NM Pgms (1 Unique XL/PGM) Loaded File Table
6 88 NM User Libraries per Process PFL
6 ~10000 SG Data Exports/Process (75 avg imp/exp) PFL

(1) Code segment table - KSO253

The Code Segment Table (CST) is used to manage Compatibility Mode (CM) code
segments which are a part of a Segmented Library (SL). There are 255 entries reserved
for physically mapped segments. Physically mapped segments are reserved for use by the
system. These typically reside in SL.PUB.SYS. The remaining entries are available for
user library segments. These are referred to as logically mapped segments.

A CST entry is allocated whenever an SL segment is loaded for the first time. This occurs
when:

- A CM program is executed via the :RUN command with the ;LIB= option.
- SL segments are :ALLOCATEd.
- A procedure (in an SL) is loaded via the LOADPROC intrinsic.

CST entries are shared. Loading an SL segment after the first time will not result in the
allocation of a CST entry. Share counts on segments are maintained in the Loader
Segment Table (LST). The share count for a segment is decremented when the segment is
unloaded. When the share count for a particular segment drops to zero, the CST entry for
that segment is released.

The CST table limits the number of compatibility mode library segments.

(2) Code segment table ext

The Code Segment Table Extension (CSTX) is used to manage Compatibility Mode
(CM) code segments which are a part of a CM program. There is one CSTX for each CM

program that is loaded or :ALLOCATEd. Each CM program can reference up to 255
logically mapped segments. Logically mapped segments include those that are a part of
the program file and any user SL segments that are referenced. Each logically mapped
segment that is a part of the program file will use an entry in the processes' CSTX.
Logically mapped user SL segments will count toward the maximum number of 255
logically mapped segments, but will use CST entries instead of CSTX entries.

This table limits the number of logically mapped compatibility mode segments in any
program file to 255.

(3) CST block DST - DST035

The CST Block table contains a pointer to the CSTX object for each CM program that is
loaded or allocated. An entry is used whenever a program is loaded or :ALLOCATEd for
the first time. The entry is deallocated when the program is terminated for the last time or
when the program is :DEALLOCATEd.

This table limits the number of concurrently running CM programs to 519.

(4) Lst DST - DST018

There is an SL File entry in the LST for every loaded SL (including SL.PUB.SYS). These
entries are deleted when all SL segments are unloaded. An SL File entry may expand if it
was previously loaded and an unloaded segment is loaded. There is a Program File entry
for every loaded/allocated program file. These entries are deleted when all processes
running the file terminate and it is no longer allocated. There is a Sharer entry for every
process running a CM program file. These entries are deleted when the process
terminates. Loading, Waiter, and Loaded entries are created and deleted during the
load/allocate of a program file. Extension and Loadproc Master entries are normally
stored in the LSTX DSTs. However, during a LOADPROC operation, they are created in
the LST before being transfered to the LSTX. (Switching to CM by name causes a
LOADPROC operation to occur.) The maximum size of the LST is #65528 bytes. As the
entry size is variable, here is the LST internal description you may use to evaluate the
number of entries used. The LST is made up of two parts: a fixed-sized area for overhead
information and a variable-sized area for directory entries. The overhead area is #197 CM
words in size at the beginning of the LST. The LST directory entries are variable in size
(size in CM words, includes 3 word overhead):

Garbage : size of free area
System SL File : #41+3*(number of loaded segments+#10)
Other SL File : #25+3*(number of loaded segments+#10)
Program File : #13+#35+#19*(number of group/pub SLs

loaded)+1+
(number of loaded program/SL segments)

Loading : 6
Waiter : 8
Sharer : 7
Extension : 8+(procedure name length)+1+#35+
[in LSTX] #19*(number of group/pub SLs loaded)+1+

(number of referenced program/SL segments,
min #32)

LOADPROC Master: #38+2+2*(number of group/pub SLs loaded)+2+
[in LSTX] 2*(number of loaded program/SL segments)

Also, the LOAD process permanently allocates two entries in the LST directory that are
NOT linked into the entry type headers: a maximum-sized LOADPROC Master entry
(#563 CM words, incl. overhead) and a maximum-sized Extension entry (#349 CM
words, incl. overhead).

(5) Loaded file table - KSO145

There is one entry in the Loaded File Table (LFT) for every NM program file and NM
library file that are loaded. Each entry consists of a primary LFT entry (40 bytes) and an
LFT Extension entry (44 bytes * maximum number of SOMs for that program or library).
NOTE: For a program file, the maximum number of SOMs is one. For library files, the
maximum number of SOMs can be specified when the library is created (the default
value is 500). Therefore, a typical LFT entry for a program file will be 84 bytes. A typical
entry for a library file (maxsoms = 500) will be 22,040 bytes.

SUMMARY OF VALUES:

- Size of an LFT entry =
40 bytes
- Size of an LFT Extension entry =
44 bytes
- Size of LFT entry for a program file = (40+ 44)
84 bytes
- Size of typical LFT entry for a library file = (40+(44*500))
22,040 bytes
- Size of LFT table available for user libraries =
2,003,928 bytes
(LFT entries for NL.PUB.SYS and XL.PUB.SYS assumed to be allocated)

Each symbol can have any value, subject to the following limit:

LFT FORMULA

(P x (40 + 44)) + (L x (40 + (44 x N))) <= 2003928

SYMBOLS

P = The number of unique program files
L = The number of unique library files
N = Maximum number of SOMs in the library. The default is 500.

(6) Pfl - kpo018

The semantic of the Process File List (PFL) has been redefined in the following ways:
First, the term is used for an object that holds the original PFL and a Process Data
Dictionary (PDD). Secondly, the term is used for the chain of PFL entries that record the
load status of each executable file for the process.

For each process, an PFL object is created with a size of 20,971,520 bytes. From this
object, a PFL chain and a PDD are built.

An PFL chain is composed of a PFL header, the main PFL entries, and an PFL extension
for each SOM in the file.

The PDD is composed of a PDD header, a PDD hash table, main PDD entries for each
data export, and attached to each data export is its list of data imports.

The executable files for a process are generally the program file and the Native Mode
(NM) libraries required by the program, including XL.PUB.SYS and NL.PUB.SYS.

SUMMARY OF VALUES FOR THE PFL ENTRIES:

- Size of the PFL header = 100 bytes
- Size of an PFL entry = 184 bytes
- Size of an PFL extension = 32 bytes

The size requirement for the PFL chain is given as follows:

PFL CHAIN FORMULA

PFL chain length = PFL header + F * (pfl_entry size +
pfl_extension size * N)

SYMBOLS

F = The number of executable files

N = The average number of SOMs per Library. The default set by the
MPE/iX Link Editor is 500.

SUMMARY OF VALUES FOR THE PDD:

- Size of the PDD header = 96 bytes
- Size of the PDD hash table = 16,000 bytes
- Size of an PDD export data entry = 84 bytes
- Size of an PDD import data entry = 24 bytes

The size requirement for PDD is given as follows:

PDD FORMULA

PDD size = PDD header + PDD hash table + E *
(PDD export data entry size + PDD import data entry

size * I)

SYMBOLS

E = The number of shared global data exports
I = The average number of data imports per data export

Considering both the PFL chain and the PDD, each symbol can be of any value--subject
to the limits above.

PFL LIMIT FORMULA

PFL chain length + PDD size <= 20,971,520

The primary limit on the number of executable files that can be opened for a process is
the system limit imposed by the Loaded File Table (LFT). (See that section in this
document.)

We can use the limits imposed by the LFT to calculate the number of libraries a process
can have opened.

LFT LIMIT FORMULA

(P * (40 + 44) + (L * (40 + (44 * N)) <= 2,003,928

84 + L * (40 + 22,000) <= 2,003,928

L <= 90

L = The number of unique library files
N = Maximum number of SOMs in the library. The default is 500.

Using 90 libraries plus the program file, or 91 executable files, and assuming 10,000
shared global data exports, we can calculate the average number of data imports per data
export before exhausting all the space available in the PFL object.

PFL chain length = 100 + 91 * (184 + 32 * 500)
= 1,472,844 bytes

PDD size = 96 + 16,000 + 10,000 * (84 + 24 * L)
= 856,096 + 240,000 * L

1,472,844 + (856,096 + 240,000 * L) <= 20,971,520

L <= 75 average data imports per data export

From this calculation, the PFL contains a maximum of 91 executable files with 10,000
shared global data exports with an average of 75 data imports per data export. But, any
combination of values for the listed items may be used as long as they satisfy the limits
outlined above.

Label management:

Item Limit Description Resource Table
1 262144 Entries in Label Table Label Table

(1) Label table

There is one label table for each volume on the system. The Label table exits on disc and
it is mapped into a virtual space when the volume is mounted. The label table contains for
each file on a volume the LABEL itself and the extent descriptors of the file (each extent
block describes up to 20 extents of the file and there is no theorical limit for the number
of extent descriptors of a file.)

The label table is managed by the Table Management. Each table entry is three sectors.
With the introduction of Cascade Disk Array, the capacity of a disk volume was
increased. That's why the maximum number of entries per label table was increased from
32,768 in MPE/iX 3.0 to 262,144 in MPE/iX 4.0. The table's maximum size is
201,326,592 bytes. The initial allocation of the table is 790,528 bytes and the increment
size is 786,432 bytes.

Misc:

Item Limit Description Resource Table
1 16384 Timer Entries Timer Table

(1) Timer table

Timer entries are used throughout the system to manage events. Jobs, sessions, file
system, i/o and networking subsystems all generate timer requests. Additionally, users
can utilize intrinsics such as FREAD for timed reads or PAUSE to request a timer entry.

The Timer Globals (KSO 80) contains a pointer to the timer table. The maximum number
of timer entries is 16384.

Memory management:

Item Limit Description Resource Table
1 13104 MIB Entries in the MIB Table MIB
2 32768 IO Notification Entries NM IO Notify Object
3 12288 IO Request Entries MM IO Request Object
4 55000 Entries in Process Locality List MM LL Object
5 523600 Entries in VS Locality List Table MM VS LL Header

(1) Mib - KSO204

The MIB table is a MEMORY Management data structuure that contains one entry for
each Memory Information Block on the system. A MIB is a global data structure used by
the Memory Manager, the Virtual Space Management, and the I/O subsystem to handle
requests for I/O. MIBs are allocated by VSM in response to Memory Manager requests to
execute an I/O. Each of the three subsystems contains their own areas of the MIB for
which they are responsible. MIB entries will be created at I/O request time and will be
released when the I/O has completed. The MIB table contains 13104 MIB entries.

(2) MM IO notify object - KSO008

The MM IO Notification Table contains one entry per page for each io request on that
page (a page can be requested by several processes at a time) The entry is added when a
process needs to be notified of an I/O completion. It is added before the I/O is sent to
HLIO. It is deleted when the process has been notified or when we determine that a
process need not to be notified for a particular page.

(3) MM IO request object - KSO009

The I/O request table contains one entry for each I/O request on the system, The entry
keeps track of the status of the request. The entries are added at the time the I/O request is
sent out to HLIO. This table contains in general one entry per MIB chain. The entries are
deleted when the processes have been notified. This table is different from the IO
Notification table as far as the IO notification table has one entry per process that has
requested an I/O (the same page can be requested several times by different processes)
whereas the I/O request table holds one entry per MIB chain (I/O request).

(4) MM ll object - KSO010

When a process needs to have pages brought in in order to continue execution, these
pages will be added to its locality list. Before a process is launched, MPE/iX scans the
locality list, bring the pages in to memory and then allow the process to run. This will
avoid the process to faulting on page it already faulted on recently. The entries in this
table are added each time the process page faults on a virtual address or when a process
prefetches an object. They are deleted when the pages have been brought into memory.

(5) MM VS ll headers - KSO026

MPE/iX maintains the process locality lists in the MM locality table. These lists are
deleted when a process is launched. But when a process releases a sharable object that is
also linked into other processes locality lists, MPE/iX needs to remove from all these
locality lists the entries that correspond to this object. This case is possible since an object
may be in a process locality list as part of a prefetch request, but the pages have not yet
been brought into memory, and the process does not need the object anymore or the
process has died. In that case removing this object from all the process locality lists
would mean scanning its locality list for each process on the system and removing this
entry if it's there. As this would be very expensive, another table was created for Memory
Management and Virtual Space Management. This table is the MM_VS_LL_HEADERS
table. It consists of headers that point to a linked list of entries into the MM_LL_TABLE.
As this table exists, releasing an object consists of just scanning the corresponding list of
entries pointed to by the header entry and removing each entry from the locality list.

In this table at least one entry is needed per swappable object (including files), and up to
three entries for transient objects with shared pages.

Process locality lists
__________________/____________________
/ \

Process1 ---> Page1----> Page2----> Page3
 \ \ \
 ________ \ \

 \ | /
Process2 ---> Page4----> Page1----> Page5/

| | | /\
| | | / \
| | | / |

Process3 ---> page4----> Page1----> Page3----> Page6
/ / | | | |

________/ _________/ | | | |__
| / _______/ | \ \ \
| / / | \ \ |

--- |
I Page4 I Page1 I Page2 I ... I Page3 I Page5 I Page6 I \ MM_VS
locality
I I I I I I I I /
Headers
--- |

 |
/

Process management:

Item Limit Description Resource Table
1 5460 Concurrent Processes PCB DST

(1) Pcb DST - DST003

There is one entry in the PCB (Process Control Block) table for every process on the
system. The maximum number of entries in the PCB is 5460.

The PCB indirectly limits the number of jobs/sessions (remote or local) you can have on
your system. For more information on how to calculate the maximum number of
jobs/session see the Job/Session section of this document.

Since 4.0, the maximum number of process on the system is no longer a hard coded
constant but it is calculated at system intitialization time is a function of the memory size.
The following table gives you the maximum number of process on the system depending
on the available main memory.

Main Memory Max # of Processes
< 24 MB 200

<= 24 MB 1000
<= 32 MB > 32MB 8190

Spooler:

Item Limit Description Resource Table
1 ~9900 Spool Files, Input Input Spool File Dir
2 ~9900 Spool Files, Linked Output Output Spool File Dir
3 4679 Spooler Processes Spooler Info Table

(1) Input spool file dir - KSO287

There is an entry in the Input SPFDIR table for each input spoolfile on the system. All
input spoolfiles reside in the group IN.HPSPOOL, and have an entry in the Input
SPFDIR.

Entries are added to the Input SPFDIR whenever an input spoolfile is created. This may
be due to accessing an input spooled device or typing in the STREAM command.

Entries are deleted whenever access to the input spoolfile is complete or when the input
spoolfile is deleted.

The Input SPFDIR limits the system to just over 9900 input spoolfiles.

NOTE: the actual number of input spoolfiles may be less than 9900 due to other system
limitations. One of these is disc space. It is difficult to estimate the amount of disc space
input spoolfiles will require. If the IN.HPSPOOL group or the HPSPOOL account has a
filespace limit specified (via the :ALTGROUP or :ALTACCT command) then the
number of input spoolfiles may be less than 9900. In addition the total amount of disc
space available on your system may limit the number of input spoolfiles.

Another limitation is the number of jobs allowed on the system. There is one input
spoolfile per job. There is a current limit of approximately 3500 JMAT entries, so this is
a de facto upper limit to the number of input spoolfiles (if we ignore :DATA files). Note
that although the JMAT is limited to 3500 entries, not all of these can be logged on
concurrently, and some entries are probably devoted to sessions. This further limits the
number of input spoolfiles on the system.

(2) Output spool file dir - KSO286

There is an entry in the Output SPFDIR table for each 'linked' output spoolfile on the
system. You can think of a 'linked' spoolfile as one that will print automatically if the
outfence is low enough and the printer is online and ready. A spoolfile will be linked
automatically when a user accesses a spooled output device or issues the
SPOOLF;PRINT command on an existing output spoofile. Now that spoofiles are just
ordinary disc files (although they do have a special variable length record structure), they
may reside in any group and account. However, to be 'linked', the spoolfile must reside in
OUT.HPSPOOL and have an entry in the Output SPFDIR.

Entries are deleted from the Output SPFDIR when a user enters the SPOOLF; DELETE
command or because all copies of the spoolfile were printed and the spoolfile was not
flagged to be saved after printing.

The Output SPFDIR limits the system to just over 9900 'linked' output spoolfiles.

NOTE: the actual number of output spoolfiles may be less than 9900 due to disc space
limitations. It is difficult to estimate the amount of disc space output spoolfiles will
require. If the OUT.HPSPOOL group or the HPSPOOL account has a limit specified (via

the :ALTGROUP or :ALTACCT command) then the number of output spoolfiles may be
less than 9900. In addition the total amount of disc space available on your system may
limit the number of output spoolfiles.

(3) Spooler info table - KSO285

There is one Spooler Information Table (SPIT) entry allocated for each active spooler
process (input or output).

The SPIT limits the number of spoolable devices to the maximum number of logical
devices allowed on the system. For release 5.5, this is 4679. Note that the SPIT should
never grow this large, as this number includes disks, terminals, and tape drives, none of
which are spoolable (except tapes, which can be spooled for input).

The number was increased from 5.5 (fixed) so that large configurations on consolidated
systems do not encounter it as a limit, nor does it require periodic maintenance to keep
increasing this number as systems grow larger.

Volume management:

Item Limit Description Resource Table
1 255 Mounted Disc Ldevs Mounted Volume Table
2 255 Mounted Volume Sets Mounted Volume Set Table
3 127 Mirrored Pair Mirrored Volumes
1 127 Mirrored Volume Sets Mounted Volume Table

(1) Mounted vol table - KSO223

The MVT is a permanent data structure in the Volume Management. It is created
INSTALL time, and will be mapped in at START time. The MVT will be re-created each
time the system is booted. There is one entry in the MVT per mounted volume on the
system. A new entry is allocated in the MVT when a volume is initialized or mounted on
the system. By default, the first entry is for system master volume. The max number of
entries is 255, which means that the system can theoricaly support 255 volumes.

(2) Mounted vol set table - KSO206

The MVST table is created at system boot time during the volume management initiation
process. A new entry is added to the MVST when a master volume is initialized or
mounted on the system. The entry will be added to the first free entry in the table, and all
the fields in entry will be initialized with information about the mounted volume set on
the system. The first entry is MPEXL_SYSTEM_VOLUME_SET. The max number of
entries is 255, which means that the system can theoricaly support 255 different volume
sets.

(3) Mirrored volumes

The maximum number of DISC LDEVs supported is 255, that means that the maximum
number of pairs of mirror disks will be 127 (LDEV 1 can't be mirrored). As a
consequence the maximum disc space avalailable on a system will be half of what is
available without mirror disks. This because a pair of mirror disks uses two ldevs and has
the storage of one.

NOTE: 127 is the absolute maximum number of mirrored pairs, but this leaves only ldev
1 as the entire system volume set. In most cases, this is not practical. All the necessary
transient space for the system must come from the system volume set.

Virtual space management:

Item Limit Description Resource Table
1 ~1973784 Extents for Objects (Fixed Access Rights) Extent B-Tree table
2 64520 Extents for Objects (Var Access Rights) Extent AR B-Tree Tbl
3 91180 File Objects VSOD GUFD Table
4 490637 Objects Allowed (files + transient objs) VSOD+VSOD GUFD Tbl
5 310689 Pages Mapped in Memory (Global A/R) VPN Cache Table
6 310689 Pages Mapped in Memory (Variable A/V) VPN AR Cache Tbl
1 246723 Swappable Objects (Fixed Access Rights) Extent B-Tree tbl
2 8065 Swappable Objects (Var Access Rights) Extent AR B-Tree Tbl
7 399457 Transient Objects Allowed VSOD Table
8 30840 VS B-Tree Entries VS B-Tree Table
9 80659 Virtual Space Domains VS Domain Desc Table

(1) Extent b-tree table - KSO055

Each entry in the Extent B-tree is a node, which can describe up to eight extents. If an
object contains more than eight extents, it will use additional entries (or nodes). Every
non-resident object (with fixed access rights), will obtain one or more entries in the
extent b-tree when it is mapped in (ie. opened). See the NOTE: below for a description of
access rights.

This table limits the maximum number of open non-resident objects with fixed access
rights to 246723. The total number may be less if one or more objects require more than
one entry (or node) due to the fact that they have more than eight extents.

This table also limits the maximum number of extents for open non-resident objects with
fixed access rights to 1973784. It is unlikely that this maximum number could be
obtained since it would imply that each object has a multiple of eight extents and the tree
is completely balanced and full. This number was obtained by multiplying the maximum
number of entries (246723) by the maximum number of extents per entry (8).

NOTE: Objects with fixed access rights are defined as those for which ALL pages have
identical read and/or write access as well as the same privilege level. Extent information
about objects with fixed access rights is kept in the Extent B-tree (KSO 55). All but two
types of objects have fixed access rights. However, NM program files and NM library
files have variable access rights. Page 0 has write access in addition to the read/execute
access that is given to the other pages of the file. Extent information about objects with
variable access rights is kept in the Extent AR B-Tree (KSO 57).

(2) Extent ar b-tree table - KSO057

Each entry in the Extent AR b-tree is a node, which can describe up to 8 extents. If an
object contains more than eight extents, it will use additional entries (or nodes). Every
non-resident object (with variable access rights), will obtain one or more entries in the
Extent AR B-tree when it is mapped in (ie. opened). See the NOTE: below which
describes access rights.

This table limits the maximum number of open non-resident objects with variable access
rights to 8065. The total number may be less if one or more objects require more than one
entry (or node) due to the fact that they have more than eight extents. Since there are only

two types of objects that have variable access rights, (NM program files and NM library
files), it is very unlikely that this limit can be reached.

This table also limits the maximum number of extents for open non-resident objects with
variable access rights to 64520. It is unlikely that this maximum number could be
obtained since it would imply that each object has a multiple of eight extents and the tree
is completely balanced and full. This number was obtained by multiplying the maximum
number of entries (8065) by the maximum number of extents per entry (8).

NOTE: Objects with fixed access rights are defined as those for which ALL pages have
identical read and/or write access as well as the same privilege level. Extent information
about objects with fixed access rights is kept in the Extent B-tree (KSO 55). All but two
types of objects have fixed access rights. However, NM program files and NM library
files have variable access rights. Page 0 has write access in addition to the read/execute
access that is given to the other pages of the file. Extent information about objects with
variable access rights is kept in the Extent AR B-Tree (KSO 57).

(3) VSOD GUFD table - KSO201

Every object in the system requires an entry in either the VSOD or VSOD GUFD table
(with the exception of certain resident objects that reside in the Disabled Expandable
VSOD table, kso #255). All file objects obtain an entry in the VSOD GUFD table when
they are mapped in (or opened). When the file is mapped out, the entry is linked onto a
list known as the 'LRU' (or Least Recently Used) list. If the same file is opened again, the
LRU list is searched to see if an entry already exists for that file. If so, we re-use the entry
and save the overhead of mapping the file in again. If the entry is not on the LRU list, a
new entry must be obtained. If there are no free entries in the table, an entry is obtained
from the LRU list. The object previously associated with that LRU list is now considered
to be mapped out.

This table limits the number of open file objects to 91180. Each entry in the VSOD
GUFD table will have a pointer to one node in the Extent B-tree or Extent AR B-tree
table. As discussed in the Extent B-tree documentation, one or more nodes of the B-tree
may be used for any given object, depending on the number of extents that have been
allocated for it.

(4) VSOD + VSOD GUFD tables

The VSOD contains one entry for every transient object on the system. Transient objects
are defined as objects that are required during the life of a process, that have disc space
allocated on their behalf, and are released when the process terminates. The
VSOD/GUFD table contains one entry for every permanent object (ie. file) that is
mapped in (opened) or that has recently been mapped in (on the LRU list). Refer to the
discussions on the VSOD and VSOD/GUFD tables for more details.

The total number of objects that can be mapped in at any given time is 490637, which is
the sum of the maximum number of objects that can be defined in the VSOD and
VSOD/GUFD.

(5) VPN cache table - KSO049

Each VPN cache entry corresponds to pages of an extent that are currently in memory (or
ready to be mapped in/out of memory), hence the VPN cache table indirectly related to
the memory manament's PDIR table and the VSM extend B tree table. Entries are
"added" (locked in) when pages of an extent are mapped in memory and they are
"deleted" (unlocked) when pages of an extent are mapped out of memory. The number of
entries per open file depend on the pattern of access to the file. The VPN cache table size
does not directly limit the number of open files, but does limit the total number of pages
from all these file that can be simultaneously present in memory.

(6) VPN ar cache table - KSO051

As VPN CACHE table keeps track of pages that are curently in memrory or in motion in
for the pages with fixed access rights. The VPN AR CACHE TABLE provides the same
function but for pages with variable access rights pages. The two tables have the same
size and are managed the same way.

(7) VSOD table - KSO053

Every object in the system requires an entry in either the VSOD or VSOD GUFD table
(with the exception of certain resident objects that reside in the Disabled Expandable

VSOD table, kso #255). All non file transient objects obtain an entry in the VSOD table
when they are mapped in (or created). When the object is mapped out, the entry is
released. There is no LRU list for the VSOD, as there is for the the VSOD GUFD.

This table limits the number of transient objects to 399457. Each entry in the VSOD
table, representing a non-resident object, will have a pointer to one node in the Extent B-
tree or Extent AR B-tree table. As discussed in the Extent B-tree documentation, one or
more nodes of the B-tree may be used for any given object, depending on the number of
extents that have been allocated for it.

(8) VS b-tree table - KSO047

Every object in the system requires an entry in VS B-tree. Each entry (or node) of this b-
tree can describe up to 32 different objects. Each object described by this b-tree will have
a corresponding entry in the VSOD, VSOD GUFD, or Disabled Expandable VSOD table.
When the object is mapped out, the entry is released.

This table contains 30840 entries, therefore, if it was completely full, it would limit the
total number of open objects on a system to 986880. This limit is obtained by multiplying
the the number of entries (30840) by the maximum number of entries per node (32).

(9) VS domain desc table - KSO061

VS domain descriptor table contains one entry per process or job on the system. Entries
are "added" when a new virtual space domain is needed, such as when a job or process is
created. Theoricaly, this table will never contain more entries that MAX number of
process on system (5460) + Max number of job or session on system (1700) + 1 (system
domain) = 7161 entries.

Transaction management:

Item Limit Description Resource Table
1 10 XM Control Block Locks per Transaction XM Locks
2 4096 Open Files during Recovery Open Files During Recovery
3 4096 Open Transactions during Recovery Open Transaction During

Recovery
4 ~48000 Copy forward user transactions per log XM Checkpoint Mechanism
5 255 System Logs XM Logfile/Volset

Restrictions

(1) XM locks

When a XM transaction is started a control block lock is done on the XM protected
object. Currently the number of XM cb_locks per transaction is limited to 10.

(2) Open files during recovery

At the recovery time, the maximum number of files that can be opened is set to 4096.

(3) Open transactions during recovery

The maximum number of transactions that can be open at any one point during recovery
is 4096.

(4) XM checkpoint mechanism

A transaction is considered to be long if it spans two checkpoints (how long it takes
depends on how fast the log fills up). If we do not do something about long transactions,
we will run out of log file space. Because of recycling of log space may overwrite log
records for a long running transaction. It will cause system abort 2200 for system log. For
user log, the solution is to "copy forward" log records of the long running transactions at
wrap log time.

At checkpoint time, all active transactions are examined. Transactions spanning one
checkpoint will be included in the checkpoint record; transactions spanning two
checkpoints will be copied forward. If a long transaction exists, a temporary object will
be created to hold the physical address of all chained log records for long transactions.
The physical log address list will be sorted and then be moved to the next half of log file
in ascending order. This algorithm reduces the size of these running transactions,
consequently reduces the stalled transaction risk. The number of copy forward user
transaction records per log file has been estimated to 48000.

The user process will be aborted if one of the three limits is reached: 1. the maximum
number of time a transaction was copied forward gets bigger than 100. 2. the maximum
size of a transaction gets bigger than 4 Mbytes. 3. the size of all the user transactions gets
bigger than log_file_size/2.

(5) XM logfile/Volset restrictions

As there is one XM system log file per volumeset, and the number of volumesets per
system is limited to 255, the maximum number of XM system logfile is 255.

MPE/iX 5.5 Data Communications Limits
The focus of this sections is the software limits imposed on the common Networking
products found on the MPE/iX operating system. These limits are current as of release
5.5 and all attempts have been made to provide information as accurate as possible.
While all attempts have been made to keep this document up-to-date with the latest
release of the operating system, it is possible that patches or new product introductions
may not be reflected in this information.

Structure of this section

You will notice that this section is divided into functional areas. The functional areas
represented in this version of the document include the following:

Network Services and Transport Limits

Virtual Terminal (VT) Limits

Terminal and Serial Printer I/O limits

Telnet/iX Limits

Within each functional area, one or more limits are stated along with the system table or
resource which imposes the limit. Using the number that corresponds to the particular
limit you are interested in, you may refer to a written description of that resource which is
also included within the section. If you see a '~' in front of a stated limit, this implies that
the limit is variable or approximate. Generally, limits tagged with a '~' character are
derived based on a (sometimes) formula. For most of these formulas there are several
variables which can on be estimated, modeled or assumed. The actual limit on your
system could be quite different. In these cases, you should definitely refer to written
descriptions.

NS transport & netipc/BSD sockets - limits

This section describes the system limits by the Sockets layer of the Operating system.
This Layer is interface between user applications and the network protocols. The
applications can use either NetIPC intrinsics or the BSD sockets intrinsics to acess the
services of the underlying network protocols,like TCP,UDP etc.,

The maximum number of sockets ,that can be created on MPE 6.0 is 8192. When a
process forks, the child inherites the parents open file descriptors,including the sockets.
These sockets are shared by the parent and the child process. Each such socket is
associated with an alias socket record.

The max number of such alias sockets is set to the MAX_PIN value of the system. The
value of MAX_PIN for MPE 6.0 is 8192.

MAX_NUM_WAITQ_ENTRIES := max_pin (8192)

The maximum data that can be sent or received through the SEND/RECV system calls is
30000 bytes.

SK_MAX_DATA_LEN = 30000; { max # of bytes in send/recv }

Nwtm (network type manager)

This is type manager layer which interfaces the socket layer with the underlying protocol
layer. On MPE, each file type has unique type manager, which handles the operations on
that file. NWTM is the sockets file type manager. The file system is aware of the
presence of NWTM and when user applications issues a read/write against a socket, the

file system recognizes the descriptor is sockets file type descriptor and then let NWTM
do the read/write operation as requested.

Each socket that is bound to a Network protocol, has a unique NWTM entry. Thus the
max.number of NWTM entries limits the number of sockets that could be concurrently
used by the applications on the system.

The max.number of NWTM entries ,as of MPE 6.0 ,is

MAX_NUM_TYPE_MGRS 5632

Notice that this value is significantly lower than the MAX_NUM_SOCKET_RECORD .
What this mean is that effectively the max number of sockets that could be in use is
limited to 5632.

NWTM entries are kept in the table management object that resides in the SR6/SR7
space. The max object size limits the max. number of NWTM entries to 5632.

Transport layer protocols

TCP - transmission control protocol

TCP keeps connection entry table, where one entry is allocated per connection. This
object is SR6/SR7 space. With 6.0, the maximum number of TCP connection supported
is 6090. This value is configurable through NMMGR.

#TCP_MAX_CONNECTIONS = 6090

One important thing to note here is that, for each connection there is one associated
NWTM entry. Since the maximum number of NMTM entries is limited to 5632, the
maximum number of connections that could be used is also limited to 5632.

The Maximum number of TCP call sockets supported is #6090.

#TCP_MAX_SOCKETS = 6090;

A call socket is a TCP socket created by a Upper Layer Protocol (ULP) , like
NetIPC/BSD Sockets to rendezvous with incoming connection requests Note that the
term 'socket' ,as mentioned at TCP level is different from the term 'socket' decribed at the
NetIPC/BSD sockets level. Here the term 'socket' refers to a logical entity which provides

an addressable access point for the establishment of TCP connections. TCP sockets are
refered to as SAP.(Service Access Points)

TCP IP/address/network connection table

#TCP_MAX_NETWORKS = 11

TCP_MAX_NETWORKS is a constant which defines the maximum number of
simultaneously active networks supported by TCP.

MAX_PATH_RETRIES = 20;

This indiactes the maximum number of attempts to resolve a path to reach the specified
destination,before TCP gives up and throws out path resolution error.

UDP - user datagram protocol

The maximum number of UDP sockets supported is 4096. This value is configurable
through NMMGR.

UDP obtains objects from VSM for its socket entries. Up to 16 objects are obtained to
contain the # 4096 socket entries. Each object contain 256 socket entries.{ 4096 / 16 =
256 }

UDP_MAX_OBJECTS = 16;

Network interface/path resolution modules

This section describes the limits encounterd in the Network layer and the MPE routing
related limits.

MAX_NUMBER_NETWORKS = 12; { maximum number of networks supported}

As of 6.0, the routing capablity of MPE is significantly increased. The maximum number
of Gateways that can be configured in system is 256. Earlier releases of MPE supports
only allows 14 gateways to be configured.

Virtual terminal limits

NS global tables

1) Session ID Table (SID)

2) Process Table (PTAB)

3) Process Table Extension (PTAB EXT)

4) Dsline Table

5) DSL DST Table

6) NSSTATUS Data Structures

7) Network Services Table (NEST)

8) Other dependencies -

a) TCP Connections

b) Sockets

c) Ports

d) Ports Dictionary.

e) NM IOWAIT COMPLETORS

f) Max ldev's

9) Effect of breaks & subsystem breaks.

1) Session id table(sid)

File : S14SNSCC

One table per node. Contains one entry for each session created with DSLINE &
REMOTE (Programmatic sessions not included). Accessed through AS global segment.
SID table is an XDS which is limited to 32764 CM words.

Table size determined by

InitSidTableSize = 3000

MaxSidTableSize = 30000 (Max = 32764)

IncrSidTableSize = 1000

SidHeaderLength = 23

SidEntryLength = 9

Total number of = (MaxSidTableSize - SidHeaderLength)/SidEntryLength entries in SID
table

Current max. entries = 3330

Using the max. XDS size of 32764 max entries possible is 3637. This means info. for
3637 sessions(dsline & remote) can be stored int SID table.

Procedure AS'ENV'CREATE'SID'TABLE creates SID table for the system.

No changes required for storing information of 2600 sessions since max possible entries
can go upto 3637.

2) Process table (ptab)

Contains NS related info. for each process. Resides in ASGLOBAL DST.

The size of Global DST is caluculated as :

memory'size := glob'w'len + as'plabel'size + p'tab'head'len + w'len'vt'mask

glob'dst := HPGetDataSeg(memory'size, memory'size,objcl'dcl'ss'global,
vsdomain'global,releaseable);

Max entries in PTAB table (using max DST size of 32764) = (Max DST size - glob'w'len
- as'plabel'size - p'tab'head'len - w'len'vt'mask)/pt'entry'size

Current max entries = 15888

Max processes supported on system currently is 8190.Therefore no changes are required
for PTAB.

3) Process extension table (ptab ext)

File : S15SNSCC

Procedure AS'Glob'Init allocates space for this table using max dst size (32764) :

extn'dst := HPGetDataSeg (as'memory'size,as'memory'size,
objcl'dcl'ss'global,vsdomain'global, releaseable);

Max PTAB Ext entries = 10,000.

This is more than the current max processes which is 8190.

4) Dsline table

File : S14SNSCC

DSLINE table holds the characteristics for environments defined by :DSLINE and
:REMOTE commands.

The DS Table is organized as an extra data segment buffer space.As such it is an extra
data segment, with the entries in the DS Table are allocated as buffers in the buffer space.
The maximum allowed buffers is currently 100.This puts an upper limit on the number of
concurrent environments for the session.

DsTabMaxSize = 29027 , DsTabMaxBuffers = 740

Procedure AS'ENV'CREATE'DSTABLE creates DSLINE Table for a session.

5) Dsl DST table

There is one global DSL DSTs Table for a node. It is created during system initialization
and exists as long as the system is up. There will be an entry in the table for each possible
process on the system. Every session on the system which creates a DSLINE table, stores
its DSLINE table DST# in its root process's PIN entry of this table.

Accessed through AS Global Data Segment.

Constants that determine table size :

DSL'DSTs'Size = 10000 , DSL'DSTs'HLength = 8

Max entries = ((DSL'DSTs'Size - DSL'DSTs'HLength)/ entrysize) - 1

where entrysize = 1;

Current max entries = 9991

Using Max DST size of 32764 max possible entries = 32755.

6) Nsstatus intrinsic

Can handle info. for only 120 NS servers. Very complicated to fix(according to previous
IR).

7) Network service table

File : S04MNSCN

Table size determined by the following constants :

InitNeSTsize = 65536,

IncreNeSTsize = 65536,

MaxNeSTsize = 393216

Currently supports 3000+ servers.

8) Other dependencies

a) TCP Connections : Require additional 600+ connections.

Number of TCP connections currently available : 6000+

b) Sockets : Require additional ~600 sockets.

c) Ports :

Each VTSERVER process on a system has the following ports :

1) Request port (CM Port, VTTM only)

2) VTSERVER main port(IOWAIT Port). (CM Port, VTTM & VTAM)

3) LDM port (Procedure server : vt_ldm, messages to LDM, VTAM only).

4) LDM reply port (Messages from LDM to AM,VTAM only).

5) Standard Signal Port (1) (VTTM & VTAM)

6) Standard Message Port (2) (VTTM & VTAM)

7) Standard Interrupt Port (3) (VTTM & VTAM)

Total number of ports requred : 15,600 (assuming all servers are VTSERVERS)

Number of ports available on system : 32,765

d) Port dictionary (for CM ports)

If all processes are VTTM then ~5500 entries are required in port dictionary.

If all processes are VTAM then ~2700 entries are required in port dictionary.

Additional Port dict entries = 5500 - 4000(current max) = 1500 (assuming all servers are
VTTM)

Number of Port dictionary entries reqd. : 5500

Number of Port dictionary entries available : To be increased to 8192.

e) Iowait completors

One NM_IOWAIT_COMPLETOR for each VTSERVER process. There is an IOWAIT
port procedure server and procedure name "iowait_port_server".This is bound to a PORT
wait entry.

DST & other information

Max DST's available on the system = 16,383

Max DST size = 32767(Value of 32764 is currently used in NS code)

Max Processes on the system = 8190

Max NM IOWAIT COMPLETORS = Dependent on MAX_CMPORTS

f) Max ldev's :

Requirement is 1 ldev for each remote session. Max ldev's available on 6.0 = 4649

9) Breaks & subsystem breaks :

The local VTSERVER(VTTM) steals breaks & ssbrk from CI. Breaks are disabled with
CI elimination. However subsystem break is enabled.The subsystem break is handled by
application.

Terminal and serial printer i/o limits

The Terminal and Serial Printer subsystem that is accessed via the DTC is comprised of
different software modules or managers. These managers access the DTC and the
operating system via data structures that are used to hold information and data about the
individual connections. Limits to this access are described below under the different
software managers;

Nodal manager

Nodal Manager is a Module in DTS Subsystem. This provides routing information for
connection establishment and implements the the DCProbe Protocol. It provides non-
nailed device capability for TIO and PAD. NDM also provides the routing information
for DTCM packets and inbound TIO packets. It maintains lists to perform these tasks.

The Nodal Manager(abbr. NDM) is a LLIO manager and it therefore has a Port Data
Area(abbr. PDA) of a fixed size. The NDM also has an auxiliary data area(abbr. ADA)
with a size which is dependent on the number of configured devices and AVESTA boxes.
Neither the PDA nor the ADA is frozen in memory.

The following is a measure of the size of NDM Routing Tbl object:

MAX_DEVS = 4649 + 520 (MAX DEVS + MAX BOX ENTRIES(DTCM)

Maximum number of entries in routing table = 5170

Maximum number of entries in dtcm_port_tbl (kso) = 512

Limits configurable from dcc/NMMGR with regards to
dts:

Max. No.of DTCs : 400 (NMCONFIG file limit)

The above value is being changed to support DTS in 5.5 from 120.

Max. No of Ldevs : 4649

This accounts to the number of devices configured through NMMGR.

Max No. of Classes : 2000 (Validation Performance limit)

The utility program NMMGR.PUB.SYS will not allow a user to configure more than
4649 terminals (connected via DTCs). This value was chosen to be 30 less than the
maximum number of devices. Being able to configure 4649 terminals does not mean that
MPE will support 4649 sessions.

Serial printers are also configured as terminals using NMMGR. The total number of
serial printers and terminals cannot exceed 4649. The maximum number of serial printers
that is supported varies, depending on the type and the system.

Although it is possible to configure more than 2500 terminal I/O devices, neither the
inactive sessions nor the active sessions should exceed 2500.

Buffers: Two buffer pools are created during system configuration

One for Inbound and the other for Outbound per system.

Inbound Buffers Max = 400(Performance Limit) Two 256 bytes buffers per ldev will be
used.

Outbound Buffers Min = 64(Max limited by BFM ??)

The exact formula for determining the number of buffers in this pool is still to
determined, but the total space is used by the pool is expected to be much smaller than
the space used by all the outbound buffer pools in previous releases(<4.0) This pool will
be used by for all outbound packets generated at any level in the driver.

For each session that is active, there is a per/session limit of 24 data output buffers that
can be allocated at one time. This is to prevent one greedy process from allocating all of
the output buffers that are shared among all DTC terminal and printer devices.

Other dependencies:

- Ports - System limit is 32765

- Processes - System limit is 8190

Telnet limits

Maximum no. of Telnet options which can be negotiated = 255. This is defined by the
Telnet spec and is not a limitation due to the MPE implementation.

Maximum buffer size = 4096 (Performance limit)

Maximum logical buffer pools = 8192 (Performance limit)

Maximum no. of buffers per logical buffer pool allowed = 32767 (Performance limit)

Maximum no. of telnet connections is limited by various factors.

1. No. of ldevs on the system Each connection requires an ldev.

2. No. of tcp connections supported Telnet runs on top of tcp. Each Telnet connection
requires one TCP connection

3. No. of tcp sockets One socket record is associated with every telnet connection.

4. No. of sessions supported One session will be created for one connection.

5. No. of PTID inbound buffers = 2048. Each connection will have one PTID inbound
buffer cached. Thus, at most there can be 2048 active Telnet connections at any one time.

This concludes the MPE/iX 5.5 Software Limits Documentation.

