
NetBase SQL

Shadowing Handbook

610 Newport Center Drive, Suite 1400, Newport Beach, CA 92660

This manual contains proprietary information which is protected by copyright. The information in this
manual is subject to change without notice and does not represent a commitment on the part of Quest
Software. The software described in this manual is furnished under a license or nondisclosure agreement.
This software may be used or copied only in accordance with the terms of this agreement. No part of this
manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose other than the purchaser’s personal use without
the written permission of Quest Software.

 1995 Quest Software. All Rights Reserved.
Quest is a trademark of Quest Software.

Quest Software
610 Newport Center Drive, Suite 1400

Newport Beach, CA 92660
USA

Tel. (714) 720-1434 / Fax. (714) 720-0426

Quest Software International, LTD
Oakmoore Court, Kingswood Road, Hampton Lovett

Droitwich, Worcs. WR90QH
UK

Tel. +44 (0) 1905 797935 / Fax. +44 (0) 1905 797936

Quest is a trademark of Quest Software. NetBase is a trademark of Quest Software. Other trademarks
and registered trademarks used in this guide are property of their respective owners.

NetBase SQL Shadowing Handbook - Revision A0195

ver A0195 QUEST Software, Inc.

NetBase SQL Shadowing
Table of Contents

Chapter 1 - Introduction
Who should use this handbook? ...1-1
NetBase SQL Shadowing ...1-1

Chapter 2 - Installation
Installation Summary..2-1
1. Restore NetBase from the Installation Tape...2-2
2. Stream the Installation Job ..2-2
3. Configure NetBase Operational Parameters ..2-3
4. Configure Network Nodes..2-4
5. Make Directory Entries ..2-6

SQLOUT ...2-6
SQLIN ...2-7
Examples: Single Direction SQL Shadowing..2-8
Examples: Renaming DBEs...2-9
Examples: Distributed SQL Shadowing..2-10
Examples: Multi-Directional SQL Shadowing ...2-12
Examples: Pseudo-Node Shadowing ...2-14
Examples:Excluding Tables...2-15

6. Enable Warm Standby Logging ...2-18
7. Add Additional Required Log Files...2-21
8. Start SQL Shadowing ..2-23
Backups With WSL ..2-24
Sample Startup and Backup Jobs...2-25

Chapter 3 - User Exits
Overview..3-1
WSL Flags ...3-3
Notes on User Exit Structure ..3-4
Export Exit Procedure Calling Conventions ..3-5
Post Exit Procedure Calling Conventions ...3-9
Sample User Exit ...3-13

Chapter 4 - Troubleshooting
Common Mistakes..4-1
Termination Conditions...4-3
SQL Errors ...4-12
Error Recovery ...4-12
Resync’ing..4-13

ver A0195 QUEST Software, Inc. 1-1

Chapter 1
Introduction
Who should use this handbook?
The purpose of this handbook is to address the issues of customers who are interested in SQL
shadowing without using any of the other NetBase features. For customers who are adding SQL
shadowing to their other NetBase services, such as NFA, shadowing, spooling, or statistics, the
NetBase reference manual is the appropriate text.

NetBase SQL shadowing uses a small fraction of the NetBase product. By default, when you
initiate NetBase, it expects you to be using some of the other services. From this handbook, you
will learn to modify those defaults, instructing NetBase to perform only SQL shadowing. This
handbook will outline all of the steps necessary to fully implement SQL shadowing, giving
examples of applications of all of the options.

NetBase SQL Shadowing
NetBase SQL shadowing consists of an export process and an import process which call routines
from the Warm Standby Logging library in order to shadow an ALLBASE DBE. Warm Standby
Logging (WSL) is a feature of SQL provided by HP. Warm Standby Logging with NetBase can
be used to shadow a DBE on one node to copies on more than one node, or it may be used to
shadow DBEs on multiple nodes to one consolidated copy. Also, it can be used for concurrent
updating of multiple DBEs.

NetBase SQL shadowing can involve an entire DBE, or you may use it to include or exclude
specific tables within a DBE. In addition, you may invoke user exits to re-route or ignore shadow
information before it is passed into the network. You may read transactions out of the logfile,
without sending them across to shadow machines by setting up an export user exit in a design
we refer to as a "pseudo-node." Using a pseudo-node user exit, you can log all updates or
deletes (or both), or perform other analysis of the DBE activity without transmitting to the remote
nodes.

On the remote side, you can write user exits that ignore data, re-route data to other nodes, or do
additional processing before the data is posted to the database. Finally, a user exit may be called
if an error was encountered during the update of the shadow.

The key to all of this is the partition number. Updates made to a DBE by users are identified by
the home partition number. Updates made to a DBE by the WSL routines will be identified by the
home partition number on the originating machine. In this way two DBEs can be shadowed both
ways. The export process should be configured on each machine to only send the updates made
by the local users.

__
ver A0195 QUEST Software, Inc. 2-1

Chapter 2
Installation
Installation Summary
Typically, installation of the software and configuration of each system can be accomplished in
less than 20 minutes per system.

NOTE: This installation process assumes that the part of WSL which is a set of routines
provided by HP has been installed into an XL and that the databases to be shadowed
via SQL exist.

In general, the following steps comprise the installation process:

1. Restore the NetBase software from tape.
2. Stream the installation job.
3. Configure NetBase operational parameters.
4. Define all nodes in the network.
5. Make SQLOUT, SQLIN, and TABLE entries in NBDIR.
6. Run ISQL, enabling Warm Standby Logging.
7. Run SQLUtil, adding additional archive logs.
8. Start SQL shadowing within NBCTRL.

Note: NetBase requires that the Loopback network interface must be configured and activated.
Consult your NS manuals for information on the Loopback network interface.

Installation NetBase SQL

__
2-2 QUEST Software, Inc. ver A0195

NetBase SQL Installation

1. Restore NetBase from the Installation Tape

To create NetBase's environment and install the software, you will restore a job into
PUB.SYS. This job is then streamed to create and restore the NetBase account.

 Log on to MANAGER.SYS, and restore the job stream file:

: HELLO MANAGER.SYS,PUB
: RESTORE ;NETACCT.JOB.@;LOCAL

<<reply to the tape request>>

Special Note!

For users of VESOFT's STREAMX utility: To allow the NETACCT job to execute
successfully if streamed using the VESOFT STREAMX utility, the following JCW must
be set prior to streaming the NETACCT job:

: SETJCW STREAMXTEMPNONEST = 1

Special Note!

For users of SECURITY/3000: Prior to streaming the installation job, please enter the
following command:

: NEWACCT NETBASE,MGR;PASS=QUEST

 If necessary, add any required passwords to the file NETACCT.PUB.SYS.

2. Stream the Installation Job

The job will build the NETBASE account and restore the required files. Prior to streaming
the job, place the tape back on-line.

: STREAM NETACCT

This job will request the tape and print a message to the console when done. If the job
encounters any errors, a message telling what action is necessary will be displayed to
the console.

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-3

3. Configure NetBase Operational Parameters

Minimally, NetBase must be instructed to perform SQL shadowing. This is accomplished
using the CONFIG subsystem in the NBCTRL program. All configuration must be
performed from the NETBASE account.

: HELLO MGR.NETBASE
: RUN NBCTRL
NetBase Control Program [v.u.f] Update n (C) QUEST Software 1987

*> CONFIG
C> MODIFY SQL

SQL - Enable SQL Shadowing......... [N] Y

C>

If this parameter is set, the control process will look for SQLOUT and SQLIN entries in
the directory and start up a process for each record. The program that is run for
SQLOUT records is NBSQLEXP.NB. The program that is run for SQLIN records is
NBSQLIMP.NB.

Installation NetBase SQL

__
2-4 QUEST Software, Inc. ver A0195

4. Configure Network Nodes
For NetBase to communicate to the other systems on the network, all systems must be
defined to each other. This is accomplished using the CONFIG subsystem in the
NBCTRL program. All configuration must be performed from the NETBASE account.

Now, each computer in the network, including the local computer being configured, must
be entered into the configuration. Some definitions:

• The System Name is an arbitrary name, and can be up to eight characters long. It is
referenced in NetBase displays, reports and commands.

• The Node Name must be the fully-qualified NS node name defined in your NS

network configuration. NetBase will not operate if the node name is incorrect.

To get started, select a node number for each computer being configured. Node
numbers can be assigned arbitrarily, however, once a number is assigned to a particular
node, that number should be used consistently for that node throughout the configuration
for all nodes.

On each system, you must first define the local node number.

C> M GLOBAL

GLOBAL - Local Node Number......... [20] 3
GLOBAL - Error Enhancements........ [IR]
GLOBAL - Maximum Local Users....... [32]

Assuming three computers (named FOX, BUNNY, and SQUIRREL) are involved, on
each computer, to add each node into the configuration:

C> ADD 3

System Name........................ FOX
Startup Access (S/I/O/A/W)......... [A]
Line Type (N/H).................... [N]
Node Name.......................... FOXTROT.QUEST.SOFTWARE
Node Connection Timeout............ [180]

Note: In the above example, node FOXTROT is the local node and has now been
assigned node number 3 and should continue to be defined as node 3 in the node
configuration on each system in the network.

 C> ADD 1

System Name........................ SQUIRREL
Startup Access (S/I/O/A/W)......... [A]
Line Type (N/H).................... [N]
Node Name.......................... SQUIRREL.QUEST.SOFTWARE
Node Connection Timeout............ [180]

Note: Again, as in the previous example, node SQUIRREL should continue to be
defined as node 1 throughout the configurations for each system in the network.

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-5

C> ADD 2

System Name........................ BUNNY
Startup Access (S/I/O/A/W)......... [A]
Line Type (N/H).................... [N]
Node Name.......................... BUNNY.QUEST.SOFTWARE
Node Connection Timeout............ [180]

This procedure must be repeated for each system in the network to be accessed by
NetBase. The LIST command can be used to display the configured nodes.

C> L NODES

Node Sys name Line Type Startup Spool Shadow
 1 SQUIRREL N N N N
 2 BUNNY N N N N
 3* FOX N N N N

Currently 3 Nodes are defined

The asterisk (*) indicates the local node.

Installation NetBase SQL

__
2-6 QUEST Software, Inc. ver A0195

5. Make Directory Entries

Instruct NetBase as to which DBEs are to be shadowed. This is accomplished using the
NBDIR program. The SQLOUT command is used to define which DBEs are exporting
updates to which nodes. For each DBE, a separate SQLIN record must be entered for
each node importing updates. These entries take effect with the next SQL shadowing
session (started with either START NETBASE or START SQL within NBCTRL).

In addition to defining which DBEs are to be shadowed, you may use the SQLIN and
SQLOUT commands to invoke user exits and to define pseudo nodes. User exits may
be invoked prior to sending the transaction to the importing machine, prior to applying
the imported transaction, or after applying a troublesome transaction. User exits are
explained in detail in chapter 3, User Exits.

SQLOUT

Defines DBEs for outbound SQL Shadowing

SYNTAX:

D> SQLOUT dbename,node;HOME=home-partition[,part2[,...]]
 [;EXECPRI={BS|CS|DS|ES}]
 [;FREQ=wakeup-seconds]
 [;{INCLUDE|EXCLUDE}]
 [;USEREXIT]
 [;RESET]

The node name should be specific, unless you are creating a pseudo node. In such
cases, the node must be "@". This is the node to which you are sending the data.

The home partition number is the number of the local copy of the DBE.

The EXECPRI defines the execution priority for the SQL export process. The default is a
linear priority of 152.

The FREQ option allows the user to specify the length of time that the export process
will pause between checks to see if new records have been added to the log file. The
pause only takes effect after a call to get the latest record from the log file does not find
new records. The default is 20 seconds.

INCLUDE/EXCLUDE instructs NetBase to shadow or exclude the tables specified in the
TABLE command for this database.

The USEREXIT parameter specifies that for each transaction received for the defined
file, a user exit routine, named export_user_exit, should be called prior to the
transaction being exported to the other nodes.

The RESET parameter may be used when a previous SQLOUT entry has become
obsolete.

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-7

SQLIN

Defines DBEs for inbound SQL Shadowing

SYNTAX:

D> SQLIN dbename[=remname],node [;PRI=transaction-priority]
 [;EXECPRI={BS|CS|DS|ES}]
 [;USEREXIT]
 [;RESET]

The node, in this case, is the node from which data is coming.

The PRI option is used to set the priority on the BEGIN WORK for the transaction being
applied. This is important in the case of deadlocks. The import process should have the
highest priority of all the processes on the system, because HP resolves a deadlock by
aborting the process with the lowest priority. The valid range is 0 to 255 with the highest
priority going to the lowest number. The default is 0.

The EXECPRI option defines the execution priority for the SQL export process. The
default is CS.

The USEREXIT parameter specifies that an import user exit routine, named either
post_sql_exit_before or post_sql_exit_after, should be called with each transaction
received for the defined file. (The post_sql_exit_before routine is applied prior to
posting the imported transaction. The post_sql_exit_after routine is called only if an
apply fails.)

The RESET parameter may be used when a previous SQLIN entry has become
obsolete.

On the following pages are examples of the necessary NBDIR entries for different
shadowing scenarios.

Installation NetBase SQL

__
2-8 QUEST Software, Inc. ver A0195

EXAMPLES:

The simplest form of SQL shadowing is to shadow a DBE to another machine. Let's say
we are shadowing DBE PRODDBE from node SYSA to SYSB.

On SYSA we run NBDIR, and enter the following record:

: RUN NBDIR.PUB.NETBASE
NetBase Directory Program [v.u.f] Update n (C) QUEST Software 1987

D> SQLOUT PRODDBE.DATA.PROD,SYSB;HOME=1

On SYSB we enter into NBDIR:

D> SQLIN PRODDBE.DATA.PROD,SYSA

SINGLE DIRECTION SQL SHADOWING

SYSA

D> SQLOUT DBE.DATA.PROD,SYSB;HOME=1

SYSB

D> SQLIN DBE.DATA.PROD,SYSA

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-9

Renaming DBEs
It should be noted that the link between the SQLOUT and SQLIN matching pair is formed by the
name of the DBE on the shadow (or import) side combined with the export node and the import
node. If the name of the DBE on the import side is not the same as the name of the DBE on the
export side, the SQLOUT record needs to specify the remote name. For instance, if the name of
the master DBE is DBE and the name of the shadow DBE is PRODDBE, the following record
should be entered on the export machine:

D> SQLOUT DBE.DATA.PROD,SYSB;HOME=1

Note that only the file name is used, not the group or account. So, multiple entries with the same
file name (with different groups and accounts) may not be used, as the directory entry only keeps
the file name (and assumes the group and account). The SQLIN record on the import machine
would be:

D> SQLIN PRODDBE.DATA.PROD=DBE,SYSA

SYSA

D> SQLOUT DBE.DATA.PROD,SYSB;HOME=1

SYSB

D> SQLIN PRODDBE.DATA.PROD=DBE,SYSA

Installation NetBase SQL

__
2-10 QUEST Software, Inc. ver A0195

Distributed SQL Shadowing
Another way a network may be set up is to shadow a DBE from one node to a number of other
nodes. If we are shadowing PRODDBE from MASTER to SHAD1, SHAD2, and SHAD3, then on
MASTER, we enter:

D> SQLOUT PRODDBE.DATA.PROD,SHAD1;HOME=1
D> SQLOUT PRODDBE.DATA.PROD,SHAD2;HOME=1
D> SQLOUT PRODDBE.DATA.PROD,SHAD3;HOME=1

And on each of the other systems, we enter:

D> SQLIN PRODDBE.DATA.PROD,MASTER

MASTER

D> SQLOUT PRODDBE.DATA.PROD,SHAD1;HOME=1
D> SQLOUT PRODDBE.DATA.PROD,SHAD2;HOME=1
D> SQLOUT PRODDBE.DATA.PROD,SHAD3;HOME=1

SHAD1

D> SQLIN PRODDBE.DATA.PROD,MASTER

SHAD2

D> SQLIN PRODDBE.DATA.PROD,MASTER

SHAD3

D> SQLIN PRODDBE.DATA.PROD,MASTER

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-11

Consolidated SQL Shadowing
Or, you may want to export updates from DBEs on a number of nodes to a master (consolidated)
copy on one machine. Notice that in this case our terminology involving the word "shadow" is
reversed. In this set up, the DBEs on each of the export machines is unique, and the master
copy is a combination of them all. For example, let's export updates to DBE from SYSA, SYSB,
and SYSC to SYSD. On SYSA we enter:

D> SQLOUT DBE.DATA.PROD,SYSD;HOME=1

On SYSB:

D> SQLOUT DBE.DATA.PROD,SYSD;HOME=2

On SYSC:

D> SQLOUT DBE.DATA.PROD,SYSD;HOME=3

And on SYSD:

D> SQLIN DBE.DATA.PROD,SYSA
D> SQLIN DBE.DATA.PROD,SYSB
D> SQLIN DBE.DATA.PROD,SYSC

SYSA

D> SQLOUT DBE.DATA.PROD,SYSD;HOME=1

SYSB

D> SQLOUT DBE.DATA.PROD,SYSD;HOME=2

SYSC

D> SQLOUT DBE.DATA.PROD,SYSD;HOME=3

SYSD

D> SQLIN DBE.DATA.PROD,SYSA
D> SQLIN DBE.DATA.PROD,SYSB
D> SQLIN DBE.DATA.PROD,SYSC

Installation NetBase SQL

__
2-12 QUEST Software, Inc. ver A0195

Multi-Directional SQL Shadowing
The most complex use of SQL shadowing is when you want to export updates from all machines
in a network to all other machines in the network. To reduce the chances of synchronization
problems, you should consider some form of partitioning. The idea behind partitioning is that
master copies of different sections of a DBE are kept on different systems. This may be
accomplished using user exits or by using TABLE entries in NBDIR.

In the example using user exits below, let's say we have PRODDBE on SYSA, SYSB and SYSC,
and we want to have each node updated from the other two nodes.

On SYSA, we enter:

D> SQLOUT PRODDBE.DATA.PROD,SYSB;HOME=1;USEREXIT
D> SQLOUT PRODDBE.DATA.PROD,SYSC;HOME=1;USEREXIT
D> SQLIN PRODDBE.DATA.PROD,SYSB;USEREXIT
D> SQLIN PRODDBE.DATA.PROD,SYSC;USEREXIT

On SYSB we enter:

D> SQLOUT PRODDBE.DATA.PROD,SYSA;HOME=2;USEREXIT
D> SQLOUT PRODDBE.DATA.PROD,SYSC;HOME=2;USEREXIT
D> SQLIN PRODDBE.DATA.PROD,SYSA;USEREXIT
D> SQLIN PRODDBE.DATA.PROD,SYSC;USEREXIT

On SYSC we enter:

D> SQLOUT PRODDBE.DATA.PROD,SYSA;HOME=3;USEREXIT
D> SQLOUT PRODDBE.DATA.PROD,SYSB;HOME=3;USEREXIT
D> SQLIN PRODDBE.DATA.PROD,SYSA;USEREXIT
D> SQLIN PRODDBE.DATA.PROD,SYSB;USEREXIT

See the next page for an illustration of this example.

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-13

SYSA

D> SQLOUT DBE.DATA.PROD,SYSB;HOME=1;USEREXIT
D> SQLOUT DBE.DATA.PROD,SYSC;HOME=1;USEREXIT

D> SQLIN DBE.DATA.PROD,SYSB;USEREXIT
D> SQLIN DBE.DATA.PROD,SYSC;USEREXIT

SYSB

D> SQLOUT DBE.DATA.PROD,SYSA;HOME=2;USEREXIT
D> SQLOUT DBE.DATA.PROD,SYSC;HOME=2;USEREXIT

D> SQLIN DBE.DATA.PROD,SYSA;USEREXIT
D> SQLIN DBE.DATA.PROD,SYSC;USEREXIT

SYSC

D> SQLOUT DBE.DATA.PROD,SYSA;HOME=3;USEREXIT
D> SQLOUT DBE.DATA.PROD,SYSB;HOME=3;USEREXIT

D> SQLIN DBE.DATA.PROD,SYSA;USEREXIT
D> SQLIN DBE.DATA.PROD,SYSB;USEREXIT

Installation NetBase SQL

__
2-14 QUEST Software, Inc. ver A0195

Pseudo-Node Shadowing
If we want to have a pseudo-node process running on each of the machines, on each of the
machines we would also enter the following record:

D> SQLOUT PRODDBE.DATA.PROD,@;PART=1,2,3

The user exit interprets the @ as node zero (0), and may perform whatever is defined for that
node. A common application is to log all update transactions (without logging any of the rest).

SYSA

D> SQLOUT DBE.DATA.PROD,SYSB;HOME=1;USEREXIT
D> SQLOUT DBE.DATA.PROD,SYSC;HOME=1;USEREXIT

D> SQLOUT DBE.DATA.PROC,@;HOME=1,2,3

D> SQLIN DBE.DATA.PROD,SYSB;USEREXIT
D> SQLIN DBE.DATA.PROD,SYSC;USEREXIT

SYSB

D> SQLOUT DBE.DATA.PROD,SYSA;HOME=2;USEREXIT
D> SQLOUT DBE.DATA.PROD,SYSC;HOME=2;USEREXIT

D> SQLOUT DBE.DATA.PROC,@;HOME=1,2,3

D> SQLIN DBE.DATA.PROD,SYSA;USEREXIT
D> SQLIN DBE.DATA.PROD,SYSC;USEREXIT

SYSC

D> SQLOUT DBE.DATA.PROD,SYSA;HOME=3;USEREXIT
D> SQLOUT DBE.DATA.PROD,SYSB;HOME=3;USEREXIT

D> SQLOUT DBE.DATA.PROC,@;HOME=1,2,3

D> SQLIN DBE.DATA.PROD,SYSA;USEREXIT
D> SQLIN DBE.DATA.PROD,SYSB;USEREXIT

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-15

Excluding Tables
The previous examples have assumed complete shadowing of DBEs. Thanks to the INCLUDE
and EXCLUDE options on the SQLOUT commands, you may limit the shadowing of tables or set
up vertical partitioning. If you specify INCLUDE on an SQLOUT command, the corresponding
TABLE records for that DBE reflect the only tables to be included in shadowing for that DBE.
Conversely, if you use the EXCLUDE option on the SQLOUT command, the corresponding
TABLE records reflect the tables to be omitted from shadowing.

TABLE

This command is used to enter TABLE records to be included or excluded from SQL shadowing.

SYNTAX:

D> TABLE dbename,node,tablename[,RESET]

The tablename entry designates the table being included/excluded (depending on the associated
SQLOUT command) from shadowing.

The RESET option removes the table entry from the directory.

Installation NetBase SQL

__
2-16 QUEST Software, Inc. ver A0195

EXAMPLES:

For our example, let's assume DBE includes five tables, and we are shadowing it from SYSA to
SYSB.

To exclude table5 (shadowing the rest), you could enter:

On SYSA:

D> SQLOUT DBE.DATA.PROD,SYSB;HOME=1;EXCLUDE
D> TABLE DBE.DATA.PROD,SYSB,TABLE5

On SYSB:

D> SQLIN DBE.DATA.PROD,SYSA

SYSA

DBE

TABLE 1, TABLE 2, TABLE 3, TABLE 4

 D> SQLOUT DBE.DATA.PROD,SYSB;HOME=1;EXCLUDE
D> TABLE DBE.DATA.PROD,SYSB,TABLE5

TABLE 5

SYSB

D> SQLIN DBE.DATA.PROD,SYSA

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-17

If DBE2 includes 7 tables, and you want to shadow only TABLE1 and TABLE 5, the INCLUDE
option is your best choice:

On SYSA:

D> SQLOUT DBE2.DATA.PROD,SYSB;HOME=1;INCLUDE
D> TABLE DBE2.DATA.PROD,SYSB,TABLE1
D> TABLE DBE2.DATA.PROD,SYSB,TABLE5

On SYSB:

:NBDIR.PUB.NETBASE
D> SQLIN DBE2.DATA.PROD,SYSA

SYSA

DBE2

TABLE 2, TABLE 3, TABLE 4, TABLE 6, TABLE 7

 D> SQLOUT DBE2.DATA.PROD,SYSB;HOME=1;INCLUDE
D> TABLE DBE2.DATA.PROD,SYSB,TABLE1
D> TABLE DBE2.DATA.PROD,SYSB,TABLE5

TABLE 1
TABLE 5

SYSB

D> SQLIN DBE2.DATA.PROD,SYSA

Installation NetBase SQL

__
2-18 QUEST Software, Inc. ver A0195

6. Enable Warm Standby Logging

Prior to enabling WSL, each DBE should be checked to verify that it has a valid WSL ID
and Home Partition ID number, and the Maximum Number of Partitions is set. When an
SQL database is created (via the START DBE NEW command in ISQL), by default
these elements are initialized to zero. (Actually, WSL ID is initialized to blanks.) Each of
these items must have bona fide values for standby logging to work.

1. To verify that these variables have valid values:

: SQLUTIL
>> SHOWDBE
DBEnvironment Name: <<your dbe's name>>
Maintenance Word: <CR>
Output File Name (opt): <CR>
-> ALL
Maintenance word:
DBEnvironment Language: NATIVE-3000
AutoStart: ON
Warm Standby Logging Is: OFF
Warm Standby Logging ID is: MYDBE
Home partition ID Is: 1
Maximum number of Partitions Is: 2
User Mode: MULTI
DBEFile0 Name: CCDBES
DDL Enabled: YES
No. of Runtime Control Block Pages: 37
No. of Data Buffer Pages: 240
Data Buffer Pages Memory Resident: NO
No. of Log Buffer Pages: 120
Max. Transactions: 50
Maximum Timeout: NONE
Default Timeout: MAXIMUM
Authorize Once per Session: OFF
-> E
>> E

If WSL ID is blank, if Home partition ID or Maximum number of Partitions is zero,
you must modify the DBE.

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-19

Below are some tips on setting these values:

WSL ID This name must be unique across the network. Once
this is set, it should never be changed, unless a master
DBE is being restored on a shadow machine.
(Maximum 8 characters.)

Home partition ID This must be a number between 1 and 32767 (inclusive),
and each copy of the DBE must have a unique home
partition number. Once this is set, it should never be
changed.

Maximum number of Partitions The number of partition instances with which the DBE
may resync. This must be a number between 1 and
880 (inclusive). This number is used to calculate the
size of the log file used by Standby Checkpoint Records.
[MaxNumParts * 72 = number of bytes in the log file].

NOTE: Prior to enabling standby logging, the initial state of the DBE should be set up. All tables
and authorization should be defined, and the database tables should be loaded.

To modify these values and enable Warm Standby Logging:

Enter the following:

: ISQL
isql=> START DBE 'dbenvironmentName' NEWLOG <CR>
> HOMEPARTITION = partitionID, <CR>
> MAXPARTITIONS = maxnumparts, <CR>
> WSLID = 'WSLID name', <CR>
> STANDBY LOG <CR>
> LOG DBEFILE oldtempnameforlog <CR>
> WITH PAGES = logsizeinpages, <CR>
> NAME = 'newnameforlog'; <CR>
isql=> GRANT DBA TO MGR@NETBASE; <CR>
isql=> COMMIT WORK; <CR>
isql=> BEGIN ARCHIVE; <CR>
isql=> COMMIT ARCHIVE; <CR>

Syntax Notes:

No comma after NEWLOG

No comma after STANDBY LOG
No comma after the old log file
name

Semicolon at the end
Semicolon at the end
Semicolon at the end
Semicolon at the end
Semicolon at the end

Installation NetBase SQL

__
2-20 QUEST Software, Inc. ver A0195

For example:

: ISQL
isql=> START DBE 'ourdbe.data' NEWLOG <CR>

> HOMEPARTITION = 2, <CR>
> MAXPARTITIONS = 3, <CR>
> WSLID = 'SQLACE', <CR>
> STANDBY LOG <CR>
> LOG DBEFILE sqltemp <CR>
> WITH PAGES = 5000, <CR>
> NAME = 'sqlalog.log'; <CR>

isql=> GRANT DBA TO MGR@NETBASE; <CR>

isql=> COMMIT WORK; <CR>

isql=> BEGIN ARCHIVE; <CR>
isql=> COMMIT ARCHIVE; <CR>

Explanation:

For the DBE named "ourdbe.data" (in the
login account)
use home partition ID "2",
maximum number of partitions of "3",
and WSL ID "SQLACE".
Enable standby logging.
Use the temporary log file named "sqltemp,"
setting the log size to 5000 pages,
and save the log file as a permanent log
named "sqlalog.log."

Since the DBE was created by a user other
than MGR.NETBASE, give MGR.NETBASE
full access to the DBE.

Act on the previously entered commands.

Invoke archive logging. (Must be perfomed on
the master machine; optional on shadow
systems.)

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-21

7. Add Additional Required Log Files
Once WSL is enabled, you have created a single log file. WSL requires a minimum of
two log files. To add additional log files, you should run SQLUtil.

1. Run SQLUtil.

:SQLUTIL
>> ADDLOG
DBEnvironment Name: <<your dbe's name>>
Maintenance Word: <CR>
Name of Log file: <<your log file's name>>
Size of Log file: <<size in pages>>
Okay to add? Y
>> EXIT

The ADDLOG command creates additional log files either in archive mode or non-
archive mode, depending on the mode of the DBE. If your DBE is in archive mode (as
your master DBE should be), the ADDLOG command will create archive log files. If your
DBE is in non-archive mode (as your shadow machine may be), the resulting log files
will be created as non-archive ones.

Non-archive log files are circular files which cannot be used for data recovery. Their
size must be sufficient to handle the maximum number of concurrent transactions. You
may use non-archive log files on your shadow systems only.

Archive log files are required for disaster recovery, and they are recommended on the
master machine. Archive log files contain records for every addition, modification, or
deletion of a tuple in the DBE. Archive log files retain this information until they are
backed up using the STORE command in SQLUtil. Consequently, your system must
have enough log files to accommodate all transactions between backups.

Sizing Log Files

If the space allocated for log files is inadequate, a LOG FULL condition will occur. If it is
on the shadow side, the transactions will be queued on the master, but they will not be
applied to the shadow. Additionally the import process on the shadow machine will be
stopped. If LOG FULL happens on the master machine, processing will halt.

Sizes of archive and non-archive log files are stated in log pages. A log page is 512
bytes. You may build a maximum of 36 log files per DBE, and the maximum size of a
log file is currently 524.287 pages.

The size of a non-archive log file may be calculated as follows:

[(Max. size of a transaction) x (Max. Number of Concurrent Transactions)] + 38
pages

Max. size of a transaction =
[(DBE size in pages) x (%inserted + %deleted + %changed) x 2] / 500 bytes per
page

Installation NetBase SQL

__
2-22 QUEST Software, Inc. ver A0195

To calculate the size of archive log files, use the following formula:

[(Max size of a transaction) x (Max Transactions per period)] + 38 pages = Archive
Logsize

You may build several log files to handle your data storage requirements (between
backups), rather than two large ones. (Remember: Replicate requires a minimum of two
log files.)

For more information on sizing log files, please consult your AllBase/SQL Database
Administration Guide from Hewlett Packard.

To monitor the availability of log files (whether they are waiting for backup or are
available for use), use the SHOWLOG command in SQLUtil.

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-23

8. Start SQL Shadowing
Once WSL is enabled, you may start and stop it within the NetBase control utility,
NBCTRL.

If NetBase is running, to start SQL shadowing import and export processes for all
configured nodes:

: NBCTRL.PUB.NETBASE
*> START SQL
*> EXIT

If NetBase is not running, you may start it which, in turn, will start SQL shadowing.

: NBCTRL.PUB.NETBASE
*> START NETBASE
*> EXIT

To stop SQL shadowing:

: NBCTRL.PUB.NETBASE
*> STOP SQL
*> EXIT

Below are examples of the few other commands you may enter within NBCTRL for more
information on SQL shadowing.

If you wanted to start importing SQL transactions from a specific node, you could enter:

*> START SQLIN <node>

Or, if you wanted to start exporting SQL transactions to a specific node, you would enter:

*> START SQLOUT <node>

The same options are available on the STOP command. You may stop importing
transactions from a specific node by entering:

*> STOP SQLIN <node>

Or, if you wanted to stop exporting SQL transactions to a specific node, you would enter:

*> STOP SQLOUT <node>

Installation NetBase SQL

__
2-24 QUEST Software, Inc. ver A0195

To review SQL shadowing:

*> SHOW SQL

Exporting Status:

 # Node DBE Name State PIN

 7 CLIENT1 BRN1DBE.PUB.QDBEBRN1 ACTIVE 73
 8 DBSERVER CCDBE.ROBIN.NETBASE ACTIVE 39
 8 DBSERVER XXDBE.ROBIN.NETBASE INACT 47

Importing Status:

 # Node DBE Name State PIN

 7 CLIENT1 BRN1DBE.PUB.QDBEBRN1 ACTIVE 119
 7 CLIENT1 FOO.PUB.NETBASE ACTIVE 133
 7 CLIENT1 HRMSDB.HRMSDTA.REP01 INACT 99
 8 DBSERVER CCDBE.SHADOW.NETBASE DOWN
 8 DBSERVER SHDBE.SHADOW.NETBASE DOWN

In the above display the STATE field indicates the operating mode for the different exporting and
importing nodes.

• ACTIVE indicates that the local process is running, as is the necessary remote process.

• INACTIVE identifies the situation in which the local process is running, but the remote
process is not.

• DOWN indicates that the local process is not running.

Backups With WSL
When performing backups of an ALLBASE DBE, the SQL shadowing processes should be
stopped. Both the export and import processes open the DBE and the log file.

The STORE command in SQLUTIL does not store the WSL log files; to accomplish that, the
STORELOG command should be used. The STORELOG command stores a single (available)
log file to tape.

WARNING! Do not use STOREONLINE to store the DBE while users are updating the DBE,
because the stored log files are likely to be out of synchronization with the stored DBE.

NetBase SQL Installation

__
ver A0195 QUEST Software, Inc. 2-25

Sample Startup and Backup Jobs
Sample jobs for starting SQL and backing it up may be found in the JOB group of the NetBase
account. Please note that the jobs reflect a simple shadowing scenario from master to shadow,
building archive log files on the master, and non-archive (small) log files on the shadow.

The naming convention is as follows:

SQLINITM.JOB.NETBASE Start (initialize) SQL for the Master machine
SQLINITS.JOB.NETBASE Start SQL for a shadow machine
SQLBACKM.JOB.NETBASE Backup routine for the master machine
SQLBACKS.JOB.NETBASE Backup routine for the shadow machine

These files are templates. They must be customized to work on your system, using your DBE
names, home partition numbers, WSLIDs, account names, log file names, and sizes. The syntax
for many of the commands is critical. Please modify the values, but maintain the same syntax,
being careful to keep single quotes, commas, and semicolons where they are.

__
ver A0195 QUEST Software, Inc. 3-1

Chapter 3
User Exits
Overview
Four different types of user exits may be used with SQL shadowing; two are considered export
user exits, and two are post user exits. If the USEREXIT option is specified on the SQLOUT
command in NBDIR, the export process, NBSQLEXP.NB, will call the userexit
(export_sql_exit) before sending the transaction to the import process on the other machine.

: NBDIR
D> SQLOUT dbe,node;PART=part1;...;USEREXIT

NetBase SQL shadowing has a way of allowing the customer to look at all updates to a DBE as
they are made. The export process can be run so that it will read the transactions out of the
logfile without sending them across to the shadow machine. In this case we say that the process
is shadowing to a pseudo-node. In order to get all updates to the local DBE, the pseudo-node
process must have a list of partition numbers; the home partition number and all the partition
numbers for the nodes that transport their updates to this node.

If the node specified is "@", a pseudo node design is anticipated, and the USEREXIT option is
assumed in the SQLOUT command. The export user exit, exprt_sql_exit is called, and if it
contains logic for node zero (the pseudo-node), that logic is performed for the DBE.

D> SQLOUT dbe,@;PART=part1;...

If the USEREXIT option is specified on the SQLIN command in NBDIR, the import process,
NBSQLIMP.NB, will call the user exit (post_sql_exit_before) before applying the transaction.
Another post user exit (post_sql_exit_after) will be called if the apply fails.

D> SQLIN dbe,node;PART=part1;...;USEREXIT

User exits Description

export_sql_exit Export user exit for processing prior to sending the transaction
to remote nodes. This exit may include logic for pseudo-nodes
if it handles node zero (0).

post_sql_exit_before Post user exit which processes the received transaction (on
the "remote" node) prior to applying it to the DBE.

post_sql_exit_after Post user exit which is invoked (on the "remote" node) if the
apply fails. This user exit may send warnings to the console
and retry the apply, or it may log the troublesome transaction
and continue processing.

User Exits NetBase SQL

__
3-2 QUEST Software, Inc. ver A0195

The names of the user exits must be as stated above, and they should reside in one of the
following libraries:

XL.NB.NETBASE XL.PUB.SYS (not recommended)
XL.PUB.NETBASE

The default library can be overridden by setting variables in NETBASE.JOB.NETBASE. You
may override the location for export_sql_exit by setting EXPORTSQLPROC to the name of the
library where the exit procedure resides. For post_sql_exit_before and post_sql_exit_after
you may define a new library using the POSTSQLPROC variable. Examples of these statements
are included in the job listed below.

!JOB NETBASE,MGR.NETBASE,PUB;HIPRI;OUTCLASS=,1;PRI=CS
!SETVAR EXPORTSQLPROC=XL.SPECIAL.PLACE
!SETVAR POSTSQLPROC=XL.SOMEWHER.ELSE
!SETJCW USEREXITTRACE=1
!
!COMMENT *** NETBASE job - Version 0.9.4 Upd 0
!
!CONTINUE
!PURGEGROUP TEMP
!CONTINUE
!NEWGROUP TEMP
!CONTINUE
!
!PURGE NBLOGBK.DATA
!CONTINUE
!RUN COPYN.LIB;INFO="FROM=NBLOG.DATA;TO=NBLOGBK.DATA"
!IF JCW >= FATAL THEN
! CONTINUE
! PURGE NBLOG.DATA
! CONTINUE
! BUILD NBLOG.DATA;REC=254,,V;DISC=256,1,1;CIR
!ENDIF
!SETDUMP
!
!CONTINUE
!RUN NBCOP.NB
!
!CONTINUE
!PURGEGROUP TEMP
!CONTINUE
!RUN PURGE.LIB
NBSE?#@.IPC
!EOJ

The user exits will be dynamically loaded by the import and export programs as needed.
Consequently, in order to update the user exits, you must stop exporting and posting in order to
unload the procedures and replace them.

All records that pass through the shadow export transport are sent to the export_sql_exit
procedure. The user exit can determine the disposition of each record, and it can individually
control logging if necessary. Since only one user exit procedure name is currently supported, the

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-3

procedure must have the logic necessary to process all tables simultaneously. Typically, this
requires simple switching logic to other procedures.

WSL Flags
Three flags in the WSL routines may be set by one of the NetBase processes or by a user exit.
Normally, WSL performs several tests to validate an update before the update is applied on the
shadow copy of the DBE. One check is to verify that the actual transaction length matches the
transaction length in the transaction. If the user exit tells NetBase to delete one of the records in
the transaction, NetBase will set the NO_TRX_LEN_CHK flag.

The WSL routines use before image information from the logfile to find the record being updated
or deleted. In an environment performing concurrent updating of the same tuples, the user may
want NetBase to set the KEY_COL_SRCH_OK flag. This flag tells WSL to search for the row
using only the unique columns and the columns that have changed. The user can tell NetBase to
set this flag through the USEREXIT.

The post_sql_exit_after procedure affects the NetBase's reaction when it encounters an error
applying the transaction on the shadow copy. Normally, the posting process (NBSQLIMP) prints
an error and terminates. If the USEREXIT flag is set on the SQLIN record and if a
post_sql_exit_after procedure is found by the posting process, NetBase calls the user exit and
continues applying the transaction. The default action is to delete the problem record and go on.
If invoked, the user exit must decide what action should be taken and alert any other process if
necessary.

The third flag that pertains to the WSL routines is set by NetBase if the post_sql_exit_after
procedure is being used. It tells the apply procedure to, in the case of an error, return pointers to
the record that caused the error. As a result, when NetBase calls the USEREXIT, it passes
information about the problem record.

User Exits NetBase SQL

__
3-4 QUEST Software, Inc. ver A0195

Notes on User Exit Structure
All of the user exits (both export user exits and post user exits) have the same set of parameters.

The sqlca parameter is the same as the sqlca as defined in the SQL manual for the language of
your choice.

The comarea parameter has flags that are returned by the user exit. These flags control the
processing of that record. The action field of the comarea should always be set by the user exit,
since it is not initialized by the calling program. The comarea contains a large area (512 bytes)
set aside for the user exit which is not in any way affected by the program calling it.

The header record contains all of the information about the record, the name of the DBE, the
name of the Table (for UPDATE, INSERT, and DELETE records), the name of the user, and the
time the record was originally committed. The header record also has pointers into the data
records.

The data parameter has the record that was UDPATED, INSERTED, or DELETED.

The upd_data is used only for UPDATE records, and it contains the data which was updated.

A transaction consists of a BEGIN record, one or more INSERT, UPDATE, or DELETE records,
and a COMMIT record. The user exit is called for each of these records. One of the options of
the user exit is to delete the current record. It is not valid to delete a BEGIN or a COMMIT
record.

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-5

Export Exit Procedure Calling Conventions

 REC REC REC REC REC
export_sql_exit(sqlca,comarea,header,data,upd_data)

sqlca HP SQL communication area for the DBE. This field can be used
by the user exit to perform dynamic SQL commands on the DBE.
See the SQL manual for the language in which the user exit is
written for the definition of this field.

comarea An array of various information used to control the exporting of
shadow information. Some fields are reserved and must not be
modified. Format is (C format):

struct {
 int action;
 int status;
 int error1;
 int error2;
 int export_node;
 int import_node;
 union {
 byte all[16];
 struct {
 byte first_time;
 byte key_col_search;
 } id;
 } flags;
 int user_area[512];
} comarea;

The individual fields are defined as follows:

action Set by user exit procedure to cause various actions by the
exporting process. The valid values are:

0 Process record normally. Record wil be sent to
the specified destinations.

1 Ignore record completely. The record will be
thrown away. This can easily cause
synchronization errors.

2 Disable all subsequent calls to the user exit

facility.

4 Exclude the table. Do not send updates for this
table to the remote machine.

 -1 Abort exporting. This is a drastic situation which
can cause later sync errors.

User Exits NetBase SQL

__
3-6 QUEST Software, Inc. ver A0195

status Set by user exit procedure to send a message to the console.
If a positive value is set, this message in the catalog file
NBEXPSQL.CAT, set 5, will be sent to the console.

error1 Set by user exit procedure. If status is non-zero, these values
will be error2 inserted in the message sent to the console.

export_node Set by calling procedure to indicate the node number from
which transactions are being exported. This is the local node.

import_node Set by calling procedure to indicate the node number to which
transactions are being sent. This is the remote node. If the
node is zero, it is assumed to be the pseudo-node for
capturing transactions from a DBE without transferring them
elsewhere.

first_time This flag is set by the calling process. It is TRUE only the first
time that the user exit is called.

key_col_search This flag is set by the user exit. It tells the export process to
set the KEY_COL_SRCH_OK flag when the transaction is
applied.

user_area This is a comarea provided to the USEREXIT for its own use.

header Contains all non-data information about the original update. This field
contains the following:

 struct {
 char DBEname[26];
 char owner_name[20];
 char table_name[20];
 char user_name[20];
 char commit_time[24];
 short record_type;
 short num_columns;
 short upd_columns;
 struct {
 short column_type;
 short column_length;
 } column_array[256];
 struct {
 short column_num;
 short column_type;
 short column_length;
 } update_array[256];
 }

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-7

The individual fields within header are defined as follows:

DBEname Name of the DBE (fully-qualified).

owner_name Owner of the table.

table_name Name of the table.

user_name User name of the entity that committed the transaction. Only
valid if record_type = 1.

commit_time Time the record was committed. Only valid if record_type = 1.
This field is in the same format as the SQL DATETIME data
type.

record_type Type of record. Defined as:

 1 COMMIT TRANSACTION record
 15 BEGIN TRANSACTION record
 24 INSERT tuple
 25 DELETE tuple
 26 UPDATE tuple

num_columns Number of columns in "data" buffer.

upd_columns Number of columns in "upd_data" buffer. This will be 0 unless
"record_type" is 26.

column_array Describes all columns in the "data" buffer. The first entry
describes the first column, the second describes column #2,
etc.

column_type Defined as one of the following:

 -1 Column contains a NULL value
 0 Binary data
 1 Character data
 2 Integer data
 3 Floating point data
 4 Packed decimal data
 6 NLS character data

column_length Length of the column in bytes.

update_array Description of the updated columns. Only the columns being
updated appear in this array, unlike the "column_array" which
contains all columns.

column_num Identifies the column number in the "upd_data" array.

Note: Currently, tables with up to 256 columns are supported.

User Exits NetBase SQL

__
3-8 QUEST Software, Inc. ver A0195

dat A buffer containing all columns of the record concatinated
together. The description of the columns is found in the
"column_array". For UPDATE records, the original data is
stored here.

upd_data A buffer containing all updated columns. Unlike the "data"
buffer, this field contains only the updated columns. Note that
if a column was not updated, it will not appear in this buffer.
This is why the column number is specified in the
"update_array" field.

Note: If a transaction contains updates that will be sent to more than one computer, it is
necessary to send the BEGIN and COMMIT records to all remote nodes. Pairs of
BEGIN and COMMIT transactions with no intervening updates will be ignored by the
posting process.

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-9

Post Exit Procedure Calling Conventions

 REC REC REC REC REC
post_sql_exit_before(sqlca,comarea,header,data,upd_data);

 REC REC REC REC REC
post_sql_exit_after (sqlca,comarea,header,data,upd_data);

Parameters are defined as follows:

sqlca HP SQL communication area for the DBE. This field can be used by the user
exit procedure to perform dynamic SQL commands on the DBE. See the HP
SQL manual for the language in which the user exit is written for a description of

 this field.

comarea An array of various information used to control the posting of shadow
information. Some fields are reserved and must not be modified. Format is (C
format):

 struct {
 int action;
 int status;
 int error1;
 int error2;
 int export_node;
 int import_node;
 union {
 byte all[16];
 struct {
 byte first_time;
 byte key_col_search;
 } id;
 } flags;
 int user_area[512];
 } comarea;

User Exits NetBase SQL

__
3-10 QUEST Software, Inc. ver A0195

The individual fields are defined as follows:

 action Set by user exit procedure to cause various actions by the exporting
process. The valid values are:

0 Process record normally. Post the record as normal (before
only) or continue with next record (after).

1 Ignore record completely. The record will be thrown away.
This can easily cause synchronization errors. Used by "before"
only.

2 Disable all subsequent calls to the user exit facility.

3 Roll back transaction. Ignore all subsequent updates in this
transaction.

4 Do not post for this table. This is used if a table goes out of
sync, but would allow posting of other tables.

5 Retry this transaction, setting UNIQUE CONSTRAINTS to
"DEFERRED." ("after" only.)

6 Retry this transaction, setting REFERENCIAL CONSTRAINTS
to "DEFERRED." ("after" only.)

7 Tells the import process to rollback and reapply. Used when
the apply log fails because the pre-image could not be found
and the post_sql_exit_after userexit fixes up the data in the
buffer so that it will succeed. ("after" only.)

Note: The import process cannot perform this function if the
BEGIN record for the transaction is not in its internal buffers.
In this case it will call the userexit again with the
header.record_type set to 10000.

-1 Stop posting. This should normally be done only on a BEGIN
or COMMIT transaction to prevent rollbacks.

-2 Do not post for this table. This is used if a table goes out of
sync, but would allow posting of other tables. Sets the SYNC
flag for the table.

 status Set by user exit procedure to send a message to the console. If a
positive value is set, this message in the catalog file NBEXPSQL.CAT,

 set 5, will be sent to the console.

error1 / error2 Set by user exit procedure. If status is non-zero, these values will be
inserted in the message sent to the console.

export_node Set by calling procedure to indicate the node number that transactions
are being exported from. This is the remote node.

import_node Set by calling procedure to indicate the node number that transactions
are being applied to. This is the local node.

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-11

first_time This flag is set by the calling process. It is TRUE only the first time
that the user exit is called.

key_col_search This flag is set by the user exit. It tells the import process to set the
KEY_COL_SRCH_OK flag when the transaction is applied.

user_area This is a comarea provided to the USEREXIT for its own use.

header Contains all non-data information about the original update. This field
contains the following:

 struct {
 char DBEname[26];
 char owner_name[20];
 char table_name[20];
 char user_name[20];
 char commit_time[24];
 short record_type;
 short num_columns;
 short upd_columns;
 struct {
 short column_type;
 short column_length;
 } column_array[256];
 struct {
 short column_num;
 short column_type;
 short column_length;
 } update_array[256];
 }

 The individual fields are defined as follows:

DBEname Name of the DBE (fully qualified).

owner_name Owner of the table.

table_name Name of the table.

user_name User name of the entity that committed the transaction. Only valid if
record_type = 1.

commit_time Time the transaction was committed. Only valid if record_type = 1.
This field is in the same format as SQLs DATETIME data type.

record_type Type of record. Defined as:

1 COMMIT TRANSACTION record
15 BEGIN TRANSACTION record
24 INSERT tuple
25 DELETE tuple
26 UPDATE tuple

User Exits NetBase SQL

__
3-12 QUEST Software, Inc. ver A0195

num_columns Number of columns in "data" buffer.

upd_columns Number of columns in "upd_data" buffer. This will be 0 unless
"record_type" is 26.

column_array Describes all columns in the "data" buffer. The first entry describes the
first column, the second describes column #2, etc.

column_type Defined as one of the following:

-1 Column contains a NULL value
0 Binary data
1 Character data
2 Integer data
3 Floating point data
4 Packed decimal data
6 NLS character data

column_length Length of the column in bytes.

update_array Description of the updated columns. Only the columns being updated
appear in this array, unlike the "column_array" which contains all
columns.

column_num Identifies the column number in the "upd_data" array.

Note: Currently, tables with up to 256 columns are supported.

data A buffer containing all columns of the record concatinated together.
The description of the columns is found in the "column_array". For
UPDATE records, the original data is stored here.

upd_data A buffer containing all updated columns. Unlike the "data" buffer, this
field contains only the updated columns. Note that if a column was not
updated, it will not appear in this buffer. This is why column number is
specified in the "update_array" field.

Note: Error values returned be the posting procedure for the "after" user exit are described in
the HP SQL manuals. Additional errors may be defined and will be added to this documentation.

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-13

Sample User Exit

The following sample user exit performs three functions:

1. It disables shadowing for the table named "LOCAL_TABLE".

2. Sets the WSL flag "KEY_COL_SEARCH_OK" on each update applied.

3. Prints a message to the console when the "CUST_NUM" column in the
"CUSTOMERS" table is updated.

Your user exit could write a record to the DBE. If it does, that table should be excluded from
shadowing.

#pragma list off

#define _MPEXL_SOURCE
#pragma intrinsic PRINT, PRINTOP
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <mpe.h>

#define byte unsigned char
#define MAX_COM_FLAGS 16
typedef struct {
 int action;
 int status;
 int error1;
 int error2;
 int orignode;
 int shadnode;
 union { /* 16 bytes of flags */
 byte all[MAX_COM_FLAGS];
 struct {
 byte first_time;
 byte key_col_search;
 } id;
 } flags;
 int user_area[512];
} comarea_rec;

typedef struct { /* column array record */
 short column_type;
 short column_length;
} col_rec;

typedef struct { /* update column record */
 short upd_col_num;
 short upd_col_type;
 short upd_col_length;
} upd_rec;

User Exits NetBase SQL

__
3-14 QUEST Software, Inc. ver A0195

typedef struct {
 char DBEname [26];
 char owner_name [20];
 char table_name [20];
 char user_name [20];
 char commit_time [24];
 short record_type;
 short num_columns;
 short upd_columns;
 col_rec column_array [256];
 upd_rec update_array [256];
} header_rec;

#pragma list on

void export_sql_exit (sqlca_type sqlca, comarea_rec *comarea,
 header_rec *header, char *data, char *upd_data)
{
 int rec,upd = 0;
 int upd_offset = 0;
 int rec_offset = 0;
 char msg[130];

 comarea->action = 0; /* default to no action */

 if (comarea->shadnode == 0) {

/* THIS BLOCK HANDLES THE PSEUDO-NODE PROCESS */
/* IT IS IMPORTANT TO KNOW WHEN THE COLUMN "CUST_NUM" IN THE */
/* "CUSTOMERS" TABLE IS MODIFIED. PRINT TO THE CONSOLE IF IT IS. */
/* CUST_NUM IS THE FOURTH COLUMN IN TABLE "CUSTOMERS". */

 if (header->record_type == 26 && /* UPDATE */
 strncmp (header->table_name, "CUSTOMERS ", 10) == 0) {
 while (upd < header->upd_columns &&
 header->update_array[upd].upd_col_num != 4) {
 upd++;
 upd_offset += header->update_array[upd].upd_col_length;
 }
 if (upd < header->upd_columns) {
 for (rec = 0;rec < 3; rec++)
 rec_offset += header->column_array[rec].column_length;
 strcpy (msg, "USEREXIT CUSTDBE : CUST_NUM.CUSTOMERS modified at ");
 memcpy (msg+strlen(msg), header->commit_time, 24);
 PRINTOP (msg, -strlen(msg), 0);
 strcpy (msg, "USEREXIT CUSTDBE : Pre-update ");
 memcpy (msg+30, data+rec_offset, 6);
 strcpy (msg+36, " Post-update: ");
 memcpy (msg+50, upd_data+upd_offset, 6);
 PRINTOP (msg, -56, 0);
 }
 }
 return; /* This ends pseudo-node processing */

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-15

 }

/* DISABLE SHADOWING FOR THE TABLE "LOCAL_TABLE" */

 if (header->record_type != 15 && /* not BEGIN */
 header->record_type != 1 && /* not COMMIT */
 strncmp (header->table_name, "LOCAL_TABLE ", 12) == 0)
 comarea->action = 4; /* disable table */

/* TABLE "GLOBAL_TABLE" IS SHADOWED BOTH WAYS AND IS PARTITIONED */
/* VERTICALLY. ANY UPDATES TO THIS TABLE REQUIRE THAT THE */
/* KEY_COL_SEARCH_OK FLAG BE SET ON THE APPLY */

 if (header->record_type != 15 && /* not BEGIN */
 header->record_type != 1 && /* not COMMIT */
 strncmp (header->table_name, "GLOBAL_TABLE ", 13) == 0)
 comarea->flags.id.key_col_search = 1; /* set KEY_COL_SEARCH_OK */

} /* end export_sql_exit */

void post_sql_exit_before (sqlca_type sqlca, comarea_rec *comarea,
 header_rec *header, char *data, char *upd_data)
{
 char *loc_code;
 char msg[130];

 comarea->action = 0; /* default to no action */

/* TABLE "CUSTOMERS" IS SHADOWED BOTH WAYS AND IS PARTITIONED */
/* HORIZONTALLY. RECORDS WITH A LOCATION-CODE OF "NW" MAY ONLY BE */
/* UPDATED HERE. IF ANY OF THESE RECORDS COME IN FROM ANOTHER */
/* NODE, PRINT A MESSAGE TO THE CONSOLE AND THROW AWAY THE RECORD. */
/* LOCATION_CODE IS THE SECOND COLUMN IN CUSTOMERS. */

 if (header->record_type != 15 && /* not BEGIN */
 header->record_type != 1 && /* not COMMIT */
 strncmp (header->table_name, "CUSTOMERS ", 10) == 0) {
 if (header->column_array[1].column_type == 1 && /* char data */
 header->column_array[1].column_length == 2) { /* length is 2 */
 loc_code = data + header->column_array[0].column_length;
 if (strncmp (loc_code, "NW", 2) == 0) {
 sprintf (msg, "%s %d",
 "USEREXIT CUSTDBE : LOCAL CUSTOMER MODIFIED BY NODE",
 comarea->orignode);
 PRINTOP (msg, -strlen(msg), 0);
 comarea->action = 1; /* Throw away this record */
 }
 }
 }
} /* end post_sql_exit_before */

void post_sql_exit_after (sqlca_type sqlca, comarea_rec *comarea,
 header_rec *header, char *data, char *upd_data)
{

User Exits NetBase SQL

__
3-16 QUEST Software, Inc. ver A0195

EXEC SQL BEGIN DECLARE SECTION;
char SQLMsg[130];
EXEC SQL END DECLARE SECTION;

 comarea->action = 0;

/* IF IT'S NOT AN ERROR, RETURN */

 if (sqlca.sqlcode >= 0) /* Not an error */
 return;

/* PRINT OUT ALL THE ERROR MESSAGES ASSOCIATED WITH THIS ERROR */
/* IF THE ERROR OCCURED ON AN INSERT, UPDATE OR DELETE THEN CHECK */
/* THAT IT IS NOT AN INVALID TABLE */

 do { /* Print the error */
 EXEC SQL SQLEXPLAIN :SQLMsg;
 PRINT (SQLMsg, -strlen(SQLMsg), 0);
 PRINTOP (SQLMsg, -strlen(SQLMsg), 0);
 } while (sqlca.sqlcode != 0);

 if (header->record_type >= 24 && /* INSERT, UPDATE, OR DELETE */
 header->record_type <= 26) {
 if (header->record_type == 24)
 strcpy (SQLMsg, "INSERT ");
 else if (header->record_type == 25)
 strcpy (SQLMsg, "DELETE ");
 else if (header->record_type == 26)
 strcpy (SQLMsg, "UPDATE ");
 strcpy (SQLMsg+7, "error occured on table ");
 memcpy (SQLMsg+30, header->table_name, 20);
 SQLMsg[50] = '\0';
 PRINT (SQLMsg, -strlen(SQLMsg), 0);
 PRINTOP (SQLMsg, -strlen(SQLMsg), 0);

 if (strncmp (header->table_name, "LOCAL_TABLE ", 12) == 0)
 comarea->action = 4; /* this table is disabled !!! */
 }
 else { /* BEGIN OR COMMIT RECORD */
 if (header->record_type == 1)
 strcpy (SQLMsg, "Error occured on COMMIT record");
 else
 strcpy (SQLMsg, "Error occured on BEGIN record");
 PRINT (SQLMsg, -strlen(SQLMsg), 0);
 PRINTOP (SQLMsg, -strlen(SQLMsg), 0);
 }

} /* end post_sql_exit_after */

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-17

Sample User Exit

Below is a sample PASCAL user exit which performs the same functions as the previous
example.

 INPUT-OUTPUT SECTION.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 REC PIC S9(09) COMP VALUE 1.
 01 UPD PIC S9(09) COMP VALUE 1.
 01 UPD-OFFSET PIC S9(09) COMP VALUE 1.
 01 REC-OFFSET PIC S9(09) COMP VALUE 1.
 01 MESSAGE-BUFFER PIC X(130).
 01 HOLD-AREA PIC X(6).
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLMESSAGE PIC X(132).
 EXEC SQL END DECLARE SECTION END-EXEC.
 LINKAGE SECTION.
 EXEC SQL INCLUDE SQLCA END-EXEC.
 01 SQLCA-ARRAY.
 05 SQLCA-ENTRY PIC S9(09) COMP OCCURS 500 TIMES.
 01 COMAREA.
 05 ACTION PIC S9(09) COMP.
 05 COMAREA-STATUS PIC S9(09) COMP.
 05 ERROR1 PIC S9(09) COMP.
 05 ERROR2 PIC S9(09) COMP.
 05 ORIGNODE PIC S9(09) COMP.
 05 SHADNODE PIC S9(09) COMP.
 05 FLAGS PIC X(16).
 05 FLAGS-REDF REDEFINES FLAGS.
 10 FIRST-TIME PIC X(01).
 10 KEY-COL-SEARCH PIC X(01).
 10 FILLER PIC X(14).
 05 USER-AREA PIC S9(09) COMP OCCURS 512 TIMES.
 01 HEADER.
 05 DBENAME PIC X(26).
 05 OWNER-NAME PIC X(20).
 05 TABLE-NAME PIC X(20).
 05 USER-NAME PIC X(20).
 05 COMMIT-TIME PIC X(24).
 05 RECORD-TYPE PIC S9(04) COMP.
 05 NUMBER-COLUMNS PIC S9(04) COMP.
 05 UPDATE-COLUMNS PIC S9(04) COMP.
 05 HDR-COLUMN-ARRAY OCCURS 256 TIMES.
 10 COLUMN-TYPE PIC S9(04) COMP.
 10 COLUMN-LENGTH PIC S9(04) COMP.
 05 HDR-UPDATE-ARRAY OCCURS 256 TIMES.
 10 UPD-COL-NUM PIC S9(04) COMP.
 10 UPD-COL-TYPE PIC S9(04) COMP.
 10 UPD-COL-LENGTH PIC S9(04) COMP.
 01 UPDATE-ARRAY PIC X(2000).
 01 DATA-ARRAY PIC X(2000).
$PAGE

User Exits NetBase SQL

__
3-18 QUEST Software, Inc. ver A0195

* *
* PROCEDURE DIVISION *
* *

 PROCEDURE DIVISION.

 000-MAIN-LOGIC SECTION 01.
 000-EXIT.
 EXIT.
$PAGE
 A000-EXPORT-SQL-EXIT SECTION 01.

 ENTRY "export_sql_exit" USING SQLCA-ARRAY,
 COMAREA,
 HEADER,
 DATA-ARRAY,
 UPDATE-ARRAY.
 MOVE ZERO TO ACTION
 IN COMAREA.
 IF SHADNODE IN COMAREA = 0 THEN
* Display when customers dataset is modified. CUST_NUM is the
* forth column in table customers.
 IF RECORD-TYPE IN HEADER = 26 AND
 TABLE-NAME IN HEADER = "CUSTOMERS " THEN
 MOVE ZERO TO UPD-OFFSET
 PERFORM A100-COUNT-UPDATES
 UNTIL UPD > UPDATE-COLUMNS IN HEADER AND
 UPD-COL-NUM IN HDR-UPDATE-ARRAY(UPD) NOT = 4
 IF UPD < UPDATE-COLUMNS IN HEADER THEN
 PERFORM A200-INCREMENT-REC-COUNT
 UNTIL REC = 4
 PERFORM A300-DISPLAY-DATA
 GOBACK
 ELSE
 PERFORM A300-DISPLAY-DATA
 GOBACK
 ELSE
 GOBACK.
* Disable shadowing for the table "LOCAL_TABLE"
 IF RECORD-TYPE IN HEADER NOT = 15 AND
 RECORD-TYPE IN HEADER NOT = 1 AND
 TABLE-NAME IN HEADER = "LOCAL_TABLE " THEN
 MOVE 4 TO ACTION
 IN COMAREA.
* Table GLOBAL_TABLE is shadowed both ways and is partitioned
* vertically. Any updates to this table require that the
* KEY_COL_SEARCH_OK flag be set on the apply.
 IF RECORD-TYPE IN HEADER NOT = 15 AND
 RECORD-TYPE IN HEADER NOT = 1 AND
 TABLE-NAME IN HEADER = "GLOBAL_TABLE " THEN
 MOVE 1 TO KEY-COL-SEARCH
 IN FLAGS-REDF.
 GOBACK.

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-19

 A00A-EXIT.
 EXIT.
$PAGE
 A100-COUNT-UPDATES SECTION 01.
 COMPUTE UPD-OFFSET = UPD-OFFSET +
 UPD-COL-LENGTH IN HDR-UPDATE-ARRAY(UPD).
 ADD 1 TO UPD.
 A100-EXIT.
 EXIT.
$PAGE
 A200-INCREMENT-REC-COUNT SECTION 01.
 COMPUTE REC-OFFSET = REC-OFFSET +
 COLUMN-LENGTH IN HDR-COLUMN-ARRAY(REC).
 ADD 1 TO REC.
 A200-EXIT.
 EXIT.
$PAGE
 A300-DISPLAY-DATA SECTION 01.

 DISPLAY "USEREXIT CUSTDBE : CUST_NUM.CUSTOMERS modified at ",
 COMMIT-TIME IN HEADER.

 MOVE DATA-ARRAY(REC-OFFSET:6)
 TO HOLD-AREA.
 DISPLAY "USEREXIT CUSTDBE : Pre-update ",HOLD-AREA.

 MOVE UPDATE-ARRAY(REC-OFFSET:)
 TO HOLD-AREA.
 DISPLAY "USEREXIT CUSTDBE : Post-update ",HOLD-AREA.

 A300-EXIT.
 EXIT.
$PAGE
 B000-POST-SQL-EXIT-BEFORE SECTION 01.

 ENTRY "post_sql_exit_before" USING SQLCA-ARRAY,
 COMAREA,
 HEADER,
 DATA-ARRAY,
 UPDATE-ARRAY.
 MOVE ZERO TO ACTION
 IN COMAREA.
* Table "CUSTOMERS" is shadowed both ways and is partitioned
* horizontally. Records with a LOCATION-CODE of "NW" may only be
* updated here. If any of these records come in from another
* node, print a message and throw away the record. LOCATION-CODE
* is the second column in table CUSTOMERS.
 IF RECORD-TYPE IN HEADER NOT = 15 AND
 RECORD-TYPE IN HEADER NOT = 1 AND
 TABLE-NAME IN HEADER = "CUSTOMERS " THEN
 IF COLUMN-TYPE IN HDR-COLUMN-ARRAY(2) = 1 AND
 COLUMN-LENGTH IN HDR-COLUMN-ARRAY(2) = 2 THEN
 COMPUTE REC-OFFSET =
 COLUMN-LENGTH IN HDR-COLUMN-ARRAY(1) + 1

User Exits NetBase SQL

__
3-20 QUEST Software, Inc. ver A0195

 IF DATA-ARRAY(REC-OFFSET:2) = "NW" THEN
 DISPLAY "USEREXIT CUSTDBE:LOCAL CUST_NUM MODIFIED ",
 ORIGNODE IN COMAREA
 MOVE 1 TO ACTION IN COMAREA
 ELSE
 NEXT SENTENCE
 ELSE
 NEXT SENTENCE
 ELSE
 NEXT SENTENCE.

 GOBACK.
 B00A-EXIT.
 EXIT.
$PAGE
 C000-POST-SQL-EXIT-AFTER SECTION 01.

 ENTRY "post_sql_exit_after" USING SQLCA,
 COMAREA,
 HEADER,
 DATA-ARRAY,
 UPDATE-ARRAY.
 MOVE ZERO TO ACTION
 IN COMAREA.
* Return if not an error
 IF SQLCODE IN SQLCA = 0 THEN GOBACK.
* Display error message associated with error.
 EXEC SQL SQLEXPLAIN : SQLMESSAGE END-EXEC.
 DISPLAY SQLMESSAGE.
* Display type of transaction.
 IF RECORD-TYPE IN HEADER >= 24 AND
 RECORD-TYPE IN HEADER <= 26 THEN
 PERFORM C010-DISPLAY-TRANSACTION
 DISPLAY "Error occurred on table ",
 TABLE-NAME IN HEADER
 IF TABLE-NAME IN HEADER = "LOCAL_TABLE " THEN
 MOVE 4 TO ACTION
 IN COMAREA
 ELSE
 NEXT SENTENCE
 ELSE
 IF RECORD-TYPE IN HEADER = 1
 DISPLAY "Error occurred on COMMIT record"
 ELSE
 DISPLAY "Error occurred on BEGIN record".
 GOBACK.
 C00A-EXIT.
 EXIT.
$PAGE
 C010-DISPLAY-TRANSACTION SECTION 01.
 IF RECORD-TYPE IN HEADER = 24 THEN
 DISPLAY "INSERT"
 ELSE
 IF RECORD-TYPE IN HEADER = 25 THEN

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-21

 DISPLAY "DELETE"
 ELSE
 IF RECORD-TYPE IN HEADER = 26 THEN
 DISPLAY "UPDATE".
 C010-EXIT.
 EXIT.

User Exits NetBase SQL

__
3-22 QUEST Software, Inc. ver A0195

A sample user exit for batch update shadowing which alerts the shadow system that "all"
transactions have been processed by creating a "STOP" MPE file. In addition, the user
exit explains with which transaction it struggled to update the shadow copy (if any).

#pragma list off

#define _MPEXL_SOURCE
#pragma intrinsic FOPEN, FCHECK, FCLOSE, PRINT
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <mpe.h>

#define TRUE 1
#define FALSE 0
#define CHR0 '\0'
#define CCE 2

#define BEGIN 1
#define COMMIT 15
#define INSERT 24
#define DELETE 25
#define UPDATE 26

#define DATE 10
#define TIME 11
#define DATETIME 12

#define byte unsigned char
#define MAX_COM_FLAGS 16
typedef struct {
 int action;
 int status;
 int error1;
 int error2;
 int orignode;
 int shadnode;
 union { /* 16 bytes of flags */
 byte all[MAX_COM_FLAGS];
 struct {
 byte first_time;
 byte key_col_search;
 } id;
 } flags;
 int user_area[512];
} comarea_rec;

typedef struct { /* column array record */
 short column_type;
 short column_length;
} col_rec;

typedef struct { /* update column record */
 short upd_col_num;

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-23

 short upd_col_type;
 short upd_col_length;
} upd_rec;

typedef struct {
 char DBEname [26];
 char owner_name [20];
 char table_name [20];
 char user_name [20];
 char commit_time [24];
 short record_type;
 short num_columns;
 short upd_columns;
 col_rec column_array [256];
 upd_rec update_array [256];
} header_rec;

#pragma list on

EXEC SQL BEGIN DECLARE SECTION;
char SQLMsg[130]; /* Used by SQLExplain */
char tableName[20]; /* Used by various SQL commands */
EXEC SQL END DECLARE SECTION;

/* UTILITY FUNCTIONS */

/* uexit_datetime_convert */
/* */
/* Convert the DATE/TIME/DATETIME data type from the internal */
/* format into ascii. Return a pointer to the ascii string. */
/* */
char *uexit_datetime_convert (byte *data, int type)
{
 static char result[40];
 struct {
 unsigned year :14;
 unsigned month :4;
 unsigned day :6;
 } dt;

 struct {
 unsigned hour :6;
 unsigned minute :6;
 unsigned second :6;
 } tm;

 struct {
 unsigned fill :2;
 unsigned milli :20;
 unsigned filler :2;
 } mi;

 switch (type) {

User Exits NetBase SQL

__
3-24 QUEST Software, Inc. ver A0195

 case DATE:
 memcpy (&dt, data, sizeof(dt));
 sprintf (result, "%4.4d-%2.2d-%2.2d",
 dt.year, dt.month, dt.day);
 break;

 case TIME:
 memcpy (&tm, data+3, sizeof(tm));
 sprintf (result, "%2.2d:%2.2d:%2.2d",
 tm.hour, tm.minute, tm.second);
 break;

 case DATETIME:
 memcpy (&dt, data, sizeof(dt));
 memcpy (&tm, data+3, sizeof(tm));
 memcpy (&mi, data+5, sizeof(mi));
 sprintf (result,
 "%4.4d-%2.2d-%2.2d %2.2d:%2.2d:%2.2d.%3.3d",
 dt.year, dt.month, dt.day, tm.hour,
 tm.minute, tm.second, mi.milli);
 break;

 default:
 break;

 }
 return result;

} /* end uexit_datetime_convert */

/* uexit_BCD_convert */
/* */
/* Convert the passed data from BCD to ASCII. The function */
/* returns a pointer to the ASCII string. */
/* */
char *uexit_BCD_convert (char *data, short length, short precision,
 short scale)
{
#define ASCIIZero '0'
#define MinusSign 13
#define btod(d,i) ((i&1)?((d[i/2])&0xf):((d[i/2]>>4)&0xf))

 int i;
 int DecimalPlace;
 int PutPos = 0;
 int DataEnd;
 int DataStart;
 int SignPos;
 static
 char result[80];
 char *outStr = result + 2;

 DataEnd = (length * 2) - 2;

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-25

 DataStart = DataEnd - precision + 1;
 SignPos = DataEnd + 1;
 memset (result, 0, 80);
 if ((DecimalPlace = precision - scale) == 0)
 outStr[PutPos++] = '.';

 for (i = DataStart; i <= DataEnd; i++) {
 outStr[PutPos] = ASCIIZero + btod(data,i);
 if (PutPos == DecimalPlace-1)
 outStr[++PutPos] = '.';
 PutPos++;
 }

 for (;*outStr && *outStr == '0'; outStr++);
 if (*outStr == 0)
 *outStr = '0';
 else {
 if (*outStr == '.')
 *(--outStr) = '0';
 if (btod(data,SignPos) == MinusSign)
 *(--outStr) = '-';
 }

 return outStr;

} /* end uexit_BCD_convert */

/* uexit_print_data */
/* */
/* Format and then print the data. The type of data and its */
/* length are passed in. */
/* */
void uexit_print_data (char *data, char *cname, short ctype,
 int clen, int precision, int scale)
{
 char msg[90];
 short sdata;
 int idata;
 struct {
 unsigned year :14;
 unsigned month :4;
 unsigned day :6;
 } dt;

 struct {
 unsigned hour :6;
 unsigned minute :6;
 unsigned second :6;
 } tm;

 struct {
 unsigned fill :2;
 unsigned milli :20;

User Exits NetBase SQL

__
3-26 QUEST Software, Inc. ver A0195

 unsigned filler :2;
 } mi;

 memcpy (msg, cname, 20);
 memcpy (msg+20, " ", 2);
 switch (ctype) {

 case 0:
 if (clen == 2) {
 memcpy (&sdata, data, 2);
 sprintf (msg+22, "%d", sdata);
 }
 else
 if (clen == 4) {
 memcpy (&idata, data, 4);
 sprintf (msg+22, "%d", idata);
 }
 else
 sprintf (msg+22, "CANNOT DISPLAY INTEGER DATA, LEN %d", clen);
 PRINT (msg, -strlen(msg), 0);
 break;

 case 2:
 memcpy (msg+22, data, clen);
 PRINT (msg, -(22+clen), 0);
 break;

 case 3:
 if (clen > 0)
 memcpy (msg+22, data, clen);
 PRINT (msg, -(22+clen), 0);
 break;

 case 5:
 strcpy (msg+22, uexit_BCD_convert(data,
 clen, precision, scale));
 PRINT (msg, -strlen(msg), 0);
 break;

 case DATE:
 strcpy (msg+22, uexit_datetime_convert (data, DATE));
 PRINT (msg, -strlen(msg), 0);
 break;

 case TIME:
 strcpy (msg+22, uexit_datetime_convert (data, TIME));
 PRINT (msg, -strlen(msg), 0);
 break;

 case DATETIME:
 strcpy (msg+22, uexit_datetime_convert (data, DATETIME));
 PRINT (msg, -strlen(msg), 0);
 break;

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-27

 default:
 sprintf (msg+22, "CANNOT DISPLAY DATATYPE %d", ctype);
 PRINT (msg, -strlen(msg), 0);
 break;
 }

} /* end uexit_print_data */

/* uexit_process_data */
/* */
/* Get the column information for the column number passed and */
/* print the data. The function returns FALSE if processing */
/* should stop. */
/* */
int uexit_process_data (sqlca_type sqlca, char *data, int *offset,
 int col, int lengthUsed, int *haveVAR)
{
EXEC SQL BEGIN DECLARE SECTION;
char columnName[21];
int colNumber;
int clen;
short ctype;
short precision;
short scale;
EXEC SQL END DECLARE SECTION;

 char msg[90];

 colNumber = col;
 EXEC SQL SELECT COLNAME, LENGTH, TYPECODE, PRECISION, SCALE
 INTO :columnName, :clen, :ctype, :precision, :scale
 FROM SYSTEM.COLUMN
 WHERE COLNUM = :colNumber AND TABLENAME = :tableName;
 if (sqlca.sqlcode == 100) {
 sprintf(msg, "NO ROWS QUALIFIED - SELECT OF SYSTEM.COLUMN FOR %d",
 col);
 PRINT (msg, -(strlen(msg)), 0);
 return FALSE;
 }
 else
 if (sqlca.sqlcode < 0) {
 sprintf (msg, "ERROR GETTING COLUMN INFORMATION FOR %d",col);
 PRINT (msg, -(strlen(msg)), 0);
 PRINT (msg, 0, 0);
 do { /* Print the error */
 EXEC SQL SQLEXPLAIN :SQLMsg;
 PRINT (SQLMsg, -strlen(SQLMsg), 0);
 } while (sqlca.sqlcode != 0);
 return FALSE;
 }

 if (ctype == 3) { /* VARCHAR */
 clen = lengthUsed;

User Exits NetBase SQL

__
3-28 QUEST Software, Inc. ver A0195

 *haveVAR = TRUE;
 }
 else
 if (*haveVAR && lengthUsed == 0) {
 strcpy (msg, "CANNOT DECODE DATA, NO COLUMN INFO AFTER VARCHAR");
 PRINT (msg, -(strlen(msg)), 0);
 return FALSE;
 }
 else
 if (lengthUsed > 0 &&
 lengthUsed != clen) {
 strcpy (msg, "CANNOT DECODE DATA, COLUMN LENGTHS DO NOT MATCH");
 PRINT (msg, -(strlen(msg)), 0);
 return FALSE;
 }

 uexit_print_data (data+*offset, columnName, ctype,
 clen, precision, scale);
 *offset += clen;
 return TRUE;

} /* end of uexit_process_data */

/* USEREXITS */

/* export_sql_exit */
/* */
/* If the UPDATE or INSERT is for the STATUS table, get the */
/* record and validate. If the record is valid, create a file */
/* using the SOURCE column of the status record in the name. */
/* */
void export_sql_exit (sqlca_type sqlca, comarea_rec *comarea,
 header_rec *header, char *data, char *upd_data)
{
EXEC SQL BEGIN DECLARE SECTION;
struct {
 char status_name [20];
 char source [4];
 char source_desc [16];
 char business_date [16];
 char start_time [16];
 char finish_time [16];
} log_data;
 char source_desc [17];
 char business_date [11];
 char start_time [24];
 char finish_time [24];
 char log_status_name [20];
 char log_source [4];
EXEC SQL END DECLARE SECTION;

 int log_offset, upd_offset;
 int unum, i, l;

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-29

 char fname[40];
 short err;
 char msg[80];
 char *logp = (char *)&log_data;

 comarea->action = 0; /* Default to no action */

/* PROCESS ONLY IF STATUS TABLE AND INSERT OR DELETE RECORD */

 if (memcmp (header->table_name, "STATUS ", 8) != 0 ||
 (header->record_type != INSERT && /* Check the status record */
 header->record_type != UPDATE))
 return;

/* GET THE NEW STATUS RECORD */

 memcpy (logp, data, sizeof(log_data));
 if (header->record_type == UPDATE) { /* Move in the updated cols */
 l = i = upd_offset = log_offset = 0;
 for (; l < header->upd_columns; l++) {
 unum = header->update_array[l].upd_col_num;
 for (; i < unum-1; i++)
 log_offset += header->column_array[i].column_length;
 memcpy (logp+log_offset, upd_data+upd_offset,
 header->update_array[l].upd_col_length);
 upd_offset += header->update_array[l].upd_col_length;
 }
 }

/* READ THE STATUS RECORD FROM THE DBE */

 memcpy (log_status_name, log_data.status_name, 20);
 memcpy (log_source, log_data.source, 4);
 EXEC SQL SELECT SOURCE_DESC,
 BUSINESS_DATE,
 START_TIME,
 FINISH_TIME
 INTO :source_desc,
 :business_date,
 :start_time,
 :finish_time
 FROM STATUS
 WHERE STATUS_NAME = :log_status_name
 AND SOURCE = :log_source;

 if (sqlca.sqlcode == 0 &&
 memcmp (source_desc, log_data.source_desc, 16) == 0 &&
 strcmp (business_date,
 uexit_datetime_convert(log_data.business_date,DATE)) == 0 &&
 strcmp (start_time,
 uexit_datetime_convert(log_data.start_time,DATETIME)) == 0 &&
 strcmp (finish_time,
 uexit_datetime_convert(log_data.finish_time,DATETIME)) == 0) {

User Exits NetBase SQL

__
3-30 QUEST Software, Inc. ver A0195

/* CREATE THE MPE FILE STOP<SOURCE>.PUB.NETBASE */

 strcpy (fname, "STOP");
 for (i = 0; i < 4 && log_source[i] != ' '; i++);
 memcpy (fname+4, log_source, i);
 fname[i+4] = CHR0;
 strcat (fname, ".PUB.NETBASE ");

 i = FOPEN (fname, 0);
 if (ccode() != CCE) { /* Open of the file failed */
 FCHECK (i, &err);
 sprintf (msg, "Error %d opening file %s", err, fname);
 PRINT (msg, -strlen(msg), 0);
 }
 else { /* Open succeeded, close perm */
 FCLOSE (i, 1, 0);
 if (ccode() != CCE) { /* Close failed */
 FCHECK (i, &err);
 if (err != 100) { /* Duplicate permanent file */
 sprintf (msg, "Error %d creating file %s", err, fname);
 PRINT (msg, -strlen(msg), 0);
 }
 else {
 sprintf (msg, "Cannot create %s, file already exists",
 fname);
 PRINT (msg, -strlen(msg), 0);
 }
 }
 }
 } /* end of if select record found */

} /* end export_sql_exit */

/* post_sql_exit_qfter */
/* */
/* Print out the type of record and call SQLEXPLAIN for all */
/* errors. If the record is an UPDATE, INSERT or DELETE, */
/* format and print out hte data. . */
/* */
void post_sql_exit_after (sqlca_type sqlca, comarea_rec *comarea,
 header_rec *header, char *data, char *upd_data)
{
EXEC SQL BEGIN DECLARE SECTION;
int numColumns;
EXEC SQL END DECLARE SECTION;

 int l, i, mlen;
 int col;
 char msg[90];
 int offset;
 int haveVAR = FALSE;

 comarea->action = 0;

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-31

/* IF IT'S NOT AN ERROR, RETURN */

 if (sqlca.sqlcode >= 0) /* Not an error */
 return;

/* PRINT A HEADER MESSAGE */

 sprintf (SQLMsg, "POST_SQL_EXIT_AFTER (%d) ", header->record_type);
 if (header->record_type == COMMIT)
 strcat (SQLMsg, "COMMIT WORK ");
 else
 if (header->record_type == BEGIN)
 strcat (SQLMsg, "BEGIN WORK ");
 else
 if (header->record_type == INSERT)
 strcat (SQLMsg, "INSERT INTO ");
 else
 if (header->record_type == DELETE)
 strcat (SQLMsg, "DELETE FROM ");
 else
 if (header->record_type == UPDATE)
 strcat (SQLMsg, "UPDATE ");
 else
 strcat (SQLMsg, "UNKNOWN ");

 if (header->record_type >= 24 && /* INSERT, UPDATE or DELETE */
 header->record_type <= 26) {
 for (l = 0; l < 20 && header->table_name[l] != ' '; l++);
 mlen = strlen(SQLMsg);
 memcpy (SQLMsg+mlen, header->table_name, l);
 mlen += l;
 SQLMsg[mlen++] = '/';
 for (l = 0; l < 20 && header->owner_name[l] != ' '; l++);
 memcpy (SQLMsg+mlen, header->owner_name, l);
 SQLMsg[mlen+l] = CHR0;
 }

 PRINT (SQLMsg, -strlen(SQLMsg), 0);

/* LET SQLEXPLAIN DISPLAY ALL THE ERRORS */

 do { /* Print the error */
 EXEC SQL SQLEXPLAIN :SQLMsg;
 PRINT (SQLMsg, -strlen(SQLMsg), 0);
 } while (sqlca.sqlcode != 0);

/* IF BEGIN OR COMMIT, OUR WORK IS DONE */

 if (header->record_type == BEGIN ||
 header->record_type == COMMIT ||
 header->num_columns == 0)
 return;

User Exits NetBase SQL

__
3-32 QUEST Software, Inc. ver A0195

/* READ THE NUMBER OF COLUMNS FOR THIS TABLE */

 memcpy (tableName, header->table_name, 20);
 EXEC SQL SELECT NUMC
 INTO :numColumns
 FROM SYSTEM.TABLE
 WHERE NAME = :tableName;

 if (sqlca.sqlcode == 100) {
 strcpy (msg, "NO ROWS QUALIFIED - SELECT OF SYSTEM.TABLE ");
 memcpy (msg+(mlen=strlen(msg)), tableName, 20);
 PRINT (msg, -(mlen+20), 0);
 return;
 }
 else
 if (sqlca.sqlcode < 0) {
 strcpy (msg, "ERROR GETTING NUMBER OF COLUMNS FOR ");
 memcpy (msg+(mlen=strlen(msg)), tableName, 20);
 PRINT (msg, -(mlen+20), 0);
 PRINT (msg, 0, 0);
 do { /* Print the error */
 EXEC SQL SQLEXPLAIN :SQLMsg;
 PRINT (SQLMsg, -strlen(SQLMsg), 0);
 } while (sqlca.sqlcode != 0);
 return;
 }

/* LOOP THROUGH THE COLUMN ARRAY, GETTING THE NAME AND OTHER INFO */
/* THEN PRINTING THE FORMATTED DATA */

 PRINT (msg, 0, 0);
 for (l = 0, offset = 0; l < header->num_columns; l++) {

 if ((col = l + 1) > numColumns) {
 sprintf (msg, "COLUMN %d NOT DEFINED", col);
 PRINT (msg, -strlen(msg), 0);
 continue;
 }

 uexit_process_data (sqlca, data, &offset, col,
 header->column_array[l].column_length, &haveVAR);

 } /* end of column array loop */
 PRINT (msg, 0, 0);

 if (header->record_type == UPDATE) {
 strcpy (msg, "UPDATED TO:");
 PRINT (msg, -strlen(msg), 0);
 PRINT (msg, 0, 0);
 for (l = 0, offset = 0; l < header->upd_columns; l++) {

 if (header->update_array[l].upd_col_num == 0 &&
 header->update_array[l].upd_col_type == 0 &&
 header->update_array[l].upd_col_length == 0) {

NetBase SQL User Exits

__
ver A0195 QUEST Software, Inc. 3-33

 strcpy (msg, "UPDATE INFORMATION NOT PROVIDED");
 PRINT (msg, -strlen(msg), 0);
 PRINT (msg, 0, 0);
 return;
 }

 col = header->update_array[l].upd_col_num;
 if (col > numColumns) {
 sprintf (msg, "COLUMN %d NOT DEFINED", col);
 PRINT (msg, -strlen(msg), 0);
 continue;
 }
 uexit_process_data (sqlca, upd_data, &offset, col,
 header->update_array[l].upd_col_length, &haveVAR);

 } /* end of update array loop */
 PRINT (msg, 0, 0);

 } /* end of if UPDATE record */

} /* end export_sql_exit */
/

__
ver A0195 QUEST Software, Inc. 4-1

Chapter 4
Troubleshooting
This chapter contains notes and tips concerning running NetBase SQL Shadowing, as well as
error messages which appear when the software has encountered a problem. If NetBase SQL is
not performing as you expect, review the notes in this section to determine what may need to be
changed. At the end of this section is a listing of the error messages associated with NetBase
SQL. Listed with each message is a description and a solution. At the end of this chapter is a
section on data recovery for the synchronization error situations.

Common mistakes

• LOOPBACK is not started. To start issue NETCONTROL START NET=LOOP at a
colon prompt.

• WSL ID is blank or duplicated elsewhere in the system. For successful WSL, for each
copy of each DBE, the WSL ID must be unique within the system.

• Home_partition is zero or duplicated elsewhere in the system. For successful WSL,
each copy of each DBE must have a unique home_partition ID.

• Max_num_partitions is zero. For successful WSL, this value must be between 1 and
880. It should not be too large as it is multiplied by 72 to define the size of the log file for
Standby Checkpoint Records. For more information, please see chapter 2.

• To insure that busy systems can continue to process without their connection with the
shadow machine for a day or two without creating a hard-resync situation, define at
least ten logfiles of 5,000 pages. (The maximum number of logfiles is 32)

• The SQL import process should have the highest transaction priority in case the system
becomes deadlocked, since HP resolves deadlocks by aborting processes with the
lowest priorities until the system is freed. (Highest priorities are the lowest numbers in
the range 0-255.)

• The SQLOUT commands attempt to rename multiple files with the same name (but
different groups and accounts). For example:

D> SQLOUT ACCTG.DATA.PROD=DBE1.DATA.PROD,SYSB
D> SQLOUT ACCTG.BACK.SYS=DBE2.DATA.PROD,SYSB

In the above example, the SQLOUT commands would build two files named ACCTG.
The import process on SYSB would not know which ACCTG file to apply where.

Troubleshooting NetBase SQL

__
4-2 QUEST Software, Inc. ver A0195

• Network Transport Tables (within NMMGR) - If many remote sessions or other
Network Services are being used, some NS tables may need increasing, especially
connection and socket tables.

• Retransmission Interval Lower Bound (within NMMGR) - It may be necessary to
increase this interval if excessive network time-outs are occurring.

• The DBE was created on a much older version of ALLBASE. As a result, the DBECon
file is too small to add the WSL information required to enable standby logging.

• Either the master or the shadow machine does not have two log files built. You must
build at least two log files on each system involved in SQL shadowing.

Use the NMMGR program to increase these tables. If these tables have been modified, it is
necessary to perform a system restart for all new values to take effect.

NetBase SQL Troubleshooting

__
ver A0195 QUEST Software, Inc. 4-3

Termination Conditions

Conditions that result in termination of an SQL export or import process are listed below.

1. A serious error is encountered during initialization. For instance, cannot connect to DBE,
error open log scan, etc.

2. The control process says to stop as a result of the user issuing a STOP command.

3. Transmit_log finds that somebody has called an WSL routine on the log file using hard
resync mode. The scan is closed.

4. If the USEREXIT option is not set on the SQLIN record for the import process, OR the
post_sql_exit_after routine cannot be found, AND there is an error applying the
transaction.

5. The USEREXIT says to terminate.

The following conditions may cause an abort.

1. An invalid action code is returned by a USEREXIT procedure.

2. Three attempts to apply a deadlocked transaction fails.

3. Audit_log returns an error. This seems likely to happen only in the case of a program
error.

4. Userexit says to disable a table but the import process can't.

Troubleshooting NetBase SQL

__
4-4 QUEST Software, Inc. ver A0195

NBSQLEXP may abort if it encounters:

 - Cannot find the directory entry for this DBE
 - DBE name is not a valid MPE file name
 - The export userexit returns an invalid action code
 - A hard resync point is encountered in the log scan

NBSQLEXP, pseudo node may abort if:

 - USEREXIT option not specified on directory entry
 - Userexit not found, must be there for pseudo node
 - SCR file is invalid for this DBE
 - Error opening, creating or accessing SCR file
 - No partition numbers specified in directory entry

NBSQLIMP may abort if:

 - Cannot find the directory entry for this DBE
 - DBE name is not a valid MPE file name
 - Invalid action code returned by a userexit
 - Cannot open transaction save file
 - Cannot disable table, action code from post-apply userexit, no pre-apply userexit

Almost all of the above errors occur during initialization. The rest are userexit errors. The
following errors are the errors returned by Apply_Log that will cause NBSQLIMP to abort:

 -2817 Invalid WSL log record found
 -2819 WSL is not enabled
 -10041 Invalid MODE specified
 -10042 Invalid FLAG specified
 -10044 Invalid log buffer size
 -10045 Invalid size_used value
 -10046 Invalid buffer offset passed
 -10047 Invalid record length
 -10048 Invalid BEGIN record out of seq
 -10049 Modify record with no begin
 -10053 Invalid # SCR slots specified
 -15002 Multiple DBE in same transaction

Almost all of the above errors would occur only if something was very wrong with the import
process.

NetBase SQL Troubleshooting

__
ver A0195 QUEST Software, Inc. 4-5

Error Messages
The error messages are listed in alphabetical order. Some error messages require assistance
from Quest Technical Support if they are encountered. The following list contains error
messages whose solutions you may perform. If you encounter a message that is not listed below,
please contact Quest Technical Support. Make a note of the error message, any details included
in the error message, and the version of NetBase you are running.

Some of these error messages and their explanations were provided by Hewlett-Packard, and
are reprinted here with permission.

ERROR MESSAGE SUGGESTION

A BEGIN WORK WSL record
encountered out of sequence.
(DBERR 10048)
 Causes Abort

Apply_Log encountered the BEGIN WORK WSL
record for a new transaction while a previous
Apply_Log transaction was still in progress. Probably,
a single Apply_Log process is applying transactions
received from multiple open scans (so the application
should be checked). Transmission errors can also
cause this problem. If the application is handling
transactions which span multiple log buffers correctly,
retry the transmission of the transactions being
applied.

A WSL record in the log buffer has
an invalid record length specified.
(DBERR 10047)
 Causes Abort

The Apply_Log intrinsic attempts consistency
checking on the lengths (among other parameters) of
the records encountered in the log buffer. If the
current position in the buffer plus the length of the
next log record takes it beyond the end of the used
buffer space, Apply_Log will generate this error. If the
BEGIN WORK op code of the next log record allows
its correct length to be predetermined, the specified
record length is checked against this value.

Active transactions found on
partition nnn
(DBERR 2821)

An attempt was made to hard resync a partition
(through Modify_SCR) that currently has transactions
active. This could also occur if the SCR array (for
update) or the partition array (for delete) contained
partition IDs that the user did not mean to hard
resync. Verify the SCR array (or partition array)
contains only partition IDs that are being hard
resync'ed. If so, verify the partitions being hard
resync'ed are inactive, and no transactions are active
(on those partitions) before calling Modify_SCR.

** Causes Abort ** indicates an error that aborts the apply. Other error messages (if a
post_user_exit_after is being used) are passed to the user exit, and the
apply continues.

ERROR MESSAGE SUGGESTION

Troubleshooting NetBase SQL

__
4-6 QUEST Software, Inc. ver A0195

Attempting to apply a log record
while WSL is not enabled.
(DBERR 2819)
 Causes Abort

The architecture of Apply_Log requires WSL to be
active at the slave (target). Use SQLUTIL
(SHOWDBE) to check the startup parameters, and
activate WSL (via START DBE NEWLOG) if
necessary.

Could not allocate heap space
needed for procedure.
(DBERR 10056)

Currently, only Open_Log_Scan can encounter this
error when allocating control blocks needed for
opened scans. This error simply states that the
routine was unable to allocate the necessary heap
space to be able to open the log scan. If the user is
opening multiple scans on the same DBE, each
opened scan receives a new set of control blocks
(which are allocated in the heap). Check the
application to see if an excessive amount of heap
space is being used, and modify it to use less. If the
heap allocation has previously worked on the system,
check the number of users on the system, and use
MONITOR to see global swap space utilization plus
heap usage for individual user processes. Combining
the opens into one scan will reduce the heap space
required.

Duplicate HOMEPARTITION clause
defined.
(DBERR 1080)

The START DBE NEW command contains more than
one HOMEPARTITION argument. Correct the
command syntax.

Duplicate MAXPARTITIONS clause
defined.
(DBERR 1081)

The START DBE NEW command or the START DBE
NEWLOG contains more than one MAXPARTITIONS
keyword. Correct the command syntax.

Duplicate partition instance found
in SCR array.
(DBERR 2822)

The SCR array passed to Modify_SCR contains two
rows with the same WSL_id/partition_id combination.
Check the array for duplicate rows, and check the
SCR information against the data returned by
Get_SCR (using mode 2 - HARD resync).

Duplicate STANDBY LOGGING
clause defined.
(DBERR 1082)

The START DBE NEW command or the START DBE
NEWLOG contains more than one STANDBY LOG
argument. Correct the command syntax.

Duplicate WSLID clause defined.
(DBERR 1084)

The START DBE NEW command contains more than
one WSLID keyword. Correct the command syntax.

Hard resync record encountered in
partition nnn. Scan aborted.
(DBERR 2815)

An open scan found a hard resync record. This
implies that a scan was not aborted on a partition that
was recently hard resync'ed. Resync the partition as
necessary across all soft resyncing nodes, and reopen
the scan.

ERROR MESSAGE SUGGESTION

NetBase SQL Troubleshooting

__
ver A0195 QUEST Software, Inc. 4-7

Insufficient space in log buffer to
return next log record.
(DBWARN 10077)

Transmit log was unable to transmit the log record
into the user's log buffer because the buffer did not
have enough space. This may occur only if the first
record to transmit will not fit. Allocate a larger log
buffer space, and call transmit_log again.

Invalid buffer offset passed.
(DBERR 10046)
 Causes Abort

Apply_Log determined that "buffer_offset" does not
point to a valid position in the user's log buffer. This
happens if buffer_offset contains a negative value or
a number greater than the size_used field.

Invalid FLAG specified.
(DBERR 10042)
 Causes Abort

The "flag" specified in the argument list is invalid.
Each intrinsic has a specified set of valid flags.
Correct the flag specification.

Invalid log buffer size.
(DBERR 10044)
 Causes Abort

The buffer size specified in the arglist is not large
enough to even contain the smallest WSL record.
This error can be encountered by either Transmit_Log
or Apply_Log. Check the buffer size field to see if it
was properly initialized. It is was, a large buffer should
be defined.

Invalid log scan id passed.
(DBERR 10043)

Either Transmit_Log or Close_Log_Scan had a
"scan_id" specified in the argument list which did not
match that of a valid log scan currently open by the
process. Check the scan ID specified in the arglist
against the scan IDs previously returned by
Open_Log_Scan.

Invalid MODE specified.
(DBERR 10041)
 Causes Abort

The "mode" specification is invalid. Each intrinsic has
a specified set of valid modes. Check the specified
mode against the command specifications.

Invalid number of partitions
specified.
(DBERR 10051)

Get_SCR or Modify_SCR encountered an invalid
"num_partitions" in the argument list. The values for
this field are dependent on the procedure begin called
in conjunction with the mode specified.

Invalid number of records in
column array.
(DBERROR 10075)

The num_columns field in the arglist has been
initialized to a negative number.

Invalid number of records in
update column array.
(DBERROR 10076)

The num_upd_cols field in the argument list has been
initialized to a negative number.

ERROR MESSAGE SUGGESTION

Troubleshooting NetBase SQL

__
4-8 QUEST Software, Inc. ver A0195

Invalid offset for last record
passed.
(DBERROR 10074)

Audit_Log returns this message when
Last_Rec_Offset contains an invalid value.

Invalid partition id encountered.
(DBERR 10052)

Get_SCR or Modify_SCR encountered an invalid
partition id passed in from the user. For Get_SCR, the
partition id in error must be in the array pointed to be
the "partition_array" field in the arglist. For
Modify_SCR, the partition id must be in the SCR
array for mode 1 (UPDATE SCR), or the partition
array for mode 2 (DELETE SCR). All partition ids are
required to be positive, non-zero numbers.

Invalid specification for maximum
number of log files.
(DBERR 10055)

The user specified an invalid number of
"max_logfiles" for the backward scan during
Open_Log_Scan. This parameter can be either -1 (the
default) or a non-zero positive number.

Invalid specification for number of
SCR slots used.
(DBERR 10054)

This error can be generated by Open_Log_Scan or
Modify_SCR when the "num_SCR_used" field
specified in the arglist is invalid. For Open_Log_Scan
and Modify_SCR (mode 1 only), "num_SCR_used"
must be within the range from 1 to "num_SCR" to
prevent this error.

Invalid value of used log buffer
space.
(DBERR 10045)
 Causes Abort

Apply_Log determined that the "size_used" specified
in the argument list was invalid. Either the size_used
is smaller than the smallest WSL record possible, or it
is greater than the number of bytes reserved in the
log buffer (as indicated in the buffer_size field in the
argument list). Verify the size_used field is less than
or equal to the buffer_size field. Also check the
size_used being passed to Apply_Log against the
value that was returned by Transmit_Log.

Invalid WSL log record found.
(DBERR 2817)
 Causes Abort

The log record being applied in an Apply_Log was not
a valid WSL log record. The log records being applied
must have come from a Transmit_Log from a master
instance. Check your application to verify that the log
records from the Transmit_Log are being passed
appropriately to the Apply_Log.

Log full The available space in the log files is insufficient for
the transaction.

To correct, either perform a backup of an archive log
file in "ready for backup" status (use the SQLUtil
STORE command), or create an addition log file
(either archive or non-archive) using the ADDLOG
command.

ERROR MESSAGE SUGGESTION

NetBase SQL Troubleshooting

__
ver A0195 QUEST Software, Inc. 4-9

More than one slot found for the
same partition
(DBERR 2813)

Open_Log_Scan has received an array of SCR slots
where some partition has multiple COMMIT records.
To correct, retrieve a set of slots from the node
performing a soft resync, by issuing a Get_SCR call
with the LATEST option. Then retry the
Open_Log_Scan call.

Multiple database environments
updated in the same transaction.
(DBERR 15002)

This can happen if a single transaction has a mixture
of Apply_Log records and direct updates, or a mixture
of Apply_Log records from multiple masters.

MUST BE CONFIGURED BEFORE
IT CAN BE STARTED

You must modify "SQL - Enable Standby Logging"
within the CONFIG subsystem of NBCTRL, setting it
to "Y" prior to issuing the START SQL command.

New partition instance found, and
the current SCR does not have any
more slots.
(DBERR 15001)

This typically happens on a system with a large
number of partition IDs. Also, if this system has
switched master-shadow states with a number of
other systems, it will have a large number of non-
empty partition instances. The transaction will be
aborted by the ALLBASE product, but the user
application will need to terminate at this point. Do a
START DBE NEWLOG with a larger SCR size, and
re-establish soft resync connection with the master.

No apply WSL records transaction
currently active.
(DBERR 10049)

Apply_Log encountered a WSL record that was not a
BEGIN WORK record, and the BEGIN WORK WSL
record has not been processed for the transaction.
This could occur if the Apply_Log transaction was
aborted and the user tried to continue applying log
records without starting at the beginning of the
transaction. Also, transmission errors could cause the
beginning of the transaction to be lost.

Check the application to verify transactions are
correctly re-applied (especially in cases of
transactions which span multiple log buffers). If it is
correct, try to re-transmit the transaction and apply it.
If the problem persists, closing and re-opening the log
scan may be in order (in case the problem was due to
transmission from HP SQL to the Transmit_Log
process).

NO CURRENT SQL ACCESS You must start SQL within NBCTRL before you may
issue the SHOW SQL command. Enter START SQL,
and re-issue the SHOW SQL command.

ERROR MESSAGE SUGGESTION

Troubleshooting NetBase SQL

__
4-10 QUEST Software, Inc. ver A0195

No more WSL records to transmit.
(DBWARN 10040)

A Transmit_Log reader has encountered the end of
log. No more records can be transmitted beyond this
point until some more are written. The application
should pause for a short period, and then retry.

Open_Log_Scan could not reserve
log for partitions found.
(DBERR 2816)

The starting point for one or more partitions was
overwritten by a direct update transaction. This
happens during a window for which a forward scan
will not lock the starting point of the attempted search.
The oldest partition must be hard resync'ed, or soft
resync'ed from a different system. Then you should
attempt the open log scan again.

Open_Log_Scan failed on ALL
specified partition. (DBERR 2814)

None of the specified partitions can be soft resync'ed.
Check the resync status, and perform data recovery
as necessary.

If this occurred when you first attempted to enable
WSL, you may have entered multiple START
NEWLOG commands on the master machine. To
reset the SCR, issue a START NEWLOG command
without the "STANDBY LOG" argument. Then issue a
complete START NEWLOG command.

Partition not found
(DBWARN 2062)

A partition requested in a GET_SCR call was not
found. For a GET_SCR with LATEST option call, an
initial SCR slot was inserted. To correct, if the
partition was wanted only if COMMITs are present,
remove the partition from the request.

Some partitions (but not all) failed
on Open_Log_Scan
(DBWARN 2063)

In a multi-partition Open_Log_Scan, at least one
partition succeeded, and at least one failed. (A scan
has been opened on the successful partitions.)

Check the resync status array, reviewing the return
parameters for the Open_Log_Scan. Depending on
the criticality of the failed partitions, the application
may need to take appropriate action.

There are still some active
transactions in the old SCR.
(DBERR 2812)

The old SCR (out of the DBECon file) still contains
some active transactions. Re-issue the START DBE
NEWLOG command when these transactions have
been completed.

Warm standby logging already
disabled
(DBWARN 2060)

A previous DISABLE STANDBY LOGGING
command is still in effect. Check the sequence of
operations.

ERROR MESSAGE SUGGESTION

NetBase SQL Troubleshooting

__
ver A0195 QUEST Software, Inc. 4-11

Warm standby logging already
enabled
(DBWARN 2061)

A previous ENABLE STANDBY LOGGING command
is still in effect. Check the sequence of operations.

Warm standby logging not set for
DBE
(DBERR 2810)

An ENABLE STANDBY LOGGING command was
issued for a session, but standby logging is turned off
for the DBEnvironment. Either a START DBE
NEWLOG needs to be issued to start standby logging
for the DBE, or the ENABLE STANDBY LOGGING is
invalid.

WSLID too long
(DBERR 1085)

The WSL ID was more than 8 characters. Correct the
command, and re-issue it.

Troubleshooting NetBase SQL

__
4-12 QUEST Software, Inc. ver A0195

SQL ERRORS

The export and the import processes may incur errors when reading records from the log file or
when updating the shadow copy of the DBE. These errors are printed to the console using
SQLEXPLAIN. A number of errors that may occur on the shadow machine are not recoverable.
In general, these are errors that indicate that the DBEs are out of sync. If the process receives
one of these errors, it prints a message and terminates.

ERROR RECOVERY

If a machine that is exporting or importing updates gets a datacomm failure, the SQL processes
will stay up and will attempt to reestablish communications with the remote node.

If a machine crashes, much the same is true. The SQL processes on the other machines will stay
up attempting to reestablish a connection. The machine that crashed will be restarted, NetBase
will be restarted, and NetBase will automatically start up the SQL processes. These processes
will connect to the remote nodes and SQL shadowing will continue.

In either case updates cannot be lost because the way that WSL works insures that shadowing
starts with the last complete update applied on the shadow machine. SQL is secure enough that
the system crash is unlikely to hurt the DBE.

If a DBE does become corrupt, or the disc fails, or the DBEs go out of sync, then the DBEs must
be resync'ed. The procedures for doing this depend on the type of failure and on the particular
system design. In general, what is required is to unload all the tables that make up the out-of-
sync partition from the master copy of the DBE. At the same time the checkpoint record must be
retrieved from the master copy's WSL log file. Then those same tables are loaded with the data
from the master copy before the logfile is updated with the checkpoint record from the master.

Remember that the partition number is a logical construct. Nothing in SQL or WSL associates a
particular table with a particular partition number. Speaking in those terms assumes that no two
master machines update the same table.

NetBase SQL Troubleshooting

__
ver A0195 QUEST Software, Inc. 4-13

Resync’ing

As an example, let's start with the simplest case. A shadow copy of a DBE is out of sync with the
master. There is only one shadow copy and one master copy. To get back into sync the following
steps should be taken:

1. Connect to the DBE on the master system.

2. Unload the DBE. This should be done while the DBE is completely quiesced. Do not
proceed until all activity with the DBE has ceased.

3. Get the checkpoint record from the log file. It is important that no other activity takes
place on the DBE between the start of step 2 and this step. Otherwise the DBEs will be
out of sync at the completion of this process.

To get the checkpoint record, you may use the NBSQLSYN utility.

: RUN NBSQLSYN.NB.NETBASE;INFO="GET,dbename,partition"

Specify the partition from which the data is being resync'ed (the home partition number
of the master). The results are placed in a file named SYNCSCR in the same location
as the DBE. So if the DBE is in DATA.PROD, the file will be SYNCSCR.DATA.PROD.

4. Connect to the DBE on the shadow system.

5. Again, make sure that the DBE is completely quiesced. Then delete the old data from
the DBE and load the tables with the data from the master DBE.

6. Update the checkpoint in the local log file from the checkpoint record retrieved from the
log file on the master machine.

To update the SCR using the SYNCSCR file, transfer it to the shadow machine. With
that accomplished, you may use the NBSQLSYN utility again.

: RUN NBSQLSYN.NB.NETBASE;INFO="UPDATE,dbename"

The whole DBE need not necessarily be replaced. Consider an installation that has three master
machines and one slave. In this case we may assume that each master only updates a particular
set of tables. For instance, the master on SYSA updates tables 1-3, the master on SYSB
updates tables 4-7, and the master on SYSC updates tables 8-9. In effect, the shadow machine
acts as the shadow copy for three different DBEs. If the shadow machine goes out of sync with
the database on SYSC, then the above steps are followed but only for tables 8-9.

If userexits are used to filter the data from the master copy, a simple unload and reload will not
suffice. In this case the best plan would be to restore the shadow copy to the last backup and
then restart SQL shadowing. The backups should always include the logfiles so that when SQL
shadowing is started, the checkpoint record on the shadow machine is a correct reflection of the
updates on that machine.

__
ver A0195 QUEST Software, Inc.

NetBase SQL Shadowing
Index

C
Concurrent updates.................................3-3
CONFIG...2-3, 2-4

commands
ADD ...2-4
LIST ...2-5
MODIFY2-4

fields
Node Name2-4
System Name.............................2-4

E
Enable SQL Shadowing2-3
Enable WSL..2-18
Error Messages4-5
Error Recovery......................................4-12

H
How to

Partially shadow DBEs by excluding
tables ...2-15
Partially shadow DBEs by including
tables ...2-15
Perform backups with WSL..............2-24
Rename DBEs2-9
Shadow from multiple masters to one
shadow (consolidated)......................2-11
Shadow from one master to multiple
shadows...2-10
Shadow in several directions............2-12
Size the SCR log file2-19
Start/Stop SQL Shadowing...............2-23
Store WSL logfiles2-24
Use a Pseudo-Node2-14
View SQL shadowing statuses..........2-24

How to Recover from an Out of Sync
Condition...4-13
How to Resync4-13

I
Installation

Loopback network interface................2-1
NMMGR concerns

Connection tables4-2
Network Transport Tables...........4-2
NS tables....................................4-2

Retransmission Interval Lower
Bound...4-2
Socket tables..............................4-2

SECURITY/3000................................2-2
STREAMX (from VESOFT)................2-2
Summary ...2-1

ISQL commands
START DBE NEW2-18

N
NBCTRL2-3, 2-4, 2-23

commands
SHOW SQL2-24
START/STOP SQL2-23
START/STOP SQLIN...............2-23
START/STOP SQLOUT2-23

NBDIR ...2-6, 2-8
entries

SQLIN2-3, 2-6, 2-9, 3-1, 3-3, 4-3
SQLOUT2-3, 2-6, 2-9, 2-15, 3-1
TABLE2-6, 2-15

NBEXPSQL.CAT3-6, 3-10
NBSQLEXP.NB2-3, 3-1, 4-4
NBSQLIMP.NB2-3, 3-1, 3-3, 4-4
NETACCT...2-2
NETBASE.JOB.NETBASE......................3-2

P
Partition number1-1, 2-18, 2-19, 3-1
Post Exit Procedure Calling
Conventions..3-9
post_sql_exit_before...............................3-2
post_user_exit_after4-5
Problems

Complications with SECURITY/3000..2-2
Complications with VESOFT's
STREAMX ...2-2
Datacomm failure4-12
Deadlock..4-1
Excessive network timeouts...............4-2

Pseudo-node......................1-1, 2-6, 3-1, 3-6

R
Resync’ing ..4-13
S
Solutions...4-1
SQL ERRORS4-12

Index NetBase SQL

__
QUEST Software, Inc. ver A0195

SQL shadowing tables 2-15
SQLEXPLAIN 4-12
SQLUTIL .. 2-18

commands
SHOWDBE 2-18
STORE 2-24
STORELOG............................. 2-24
STOREONLINE 2-24

fields
Home partition ID............ 2-18, 2-19
Home partition number............... 4-1
Maximum Number of
Partitions.................. 2-18, 2-19, 4-1
WSL ID 2-18, 2-19, 4-1

Standby Checkpoint Records................ 2-19
SYNC flag .. 3-10

T
Termination Conditions........................... 4-3
Transaction record

BEGIN............................... 3-4, 3-7, 3-11
COMMIT............................ 3-4, 3-7, 3-11
DELETE tuple.................... 3-4, 3-7, 3-11
INSERT tuple 3-4, 3-7, 3-11
UPDATE tuple 3-4, 3-7, 3-11

Troubleshooting...................................... 4-1

U
Unique column searches......................... 3-3
User Exits... 3-1

Calling Conventions for Export Exits.. 3-5
Calling Conventions for Post User
Exits .. 3-9
Export.. 3-1
export_sql_exit 3-1, 3-2
EXPORTSQLPROC 3-2
Post... 3-1
post_sql_exit_after 3-1, 3-2, 3-3, 4-3
post_sql_exit_before.......................... 3-1
POSTSQLPROC 3-2
Sample................................... 3-13, 3-17
Structure

action field 3-4
User exits - Structure 3-4

action field................................ 3-5, 3-10

Binary data............................... 3-7, 3-12
Character data.......................... 3-7, 3-12
column_array field.................... 3-7, 3-12
column_length field 3-7, 3-12
column_num field..................... 3-7, 3-12
column_type field 3-7, 3-12
comarea.............................. 3-4, 3-5, 3-9
commit_time field..................... 3-7, 3-11
data buffer................................ 3-4, 3-12
DBEname field 3-7, 3-11
export_node field...................... 3-6, 3-10
first_time flag 3-6, 3-11
Floating point data.................... 3-7, 3-12
header............................... 3-4, 3-6, 3-11
import_node field...................... 3-6, 3-10
Integer data 3-7, 3-12
key_col_search flag.................. 3-6, 3-11
NLS character data.......................... 3-12
NULL value 3-7, 3-12
num_columns field 3-7, 3-12
owner_name field 3-7, 3-11
Packed decimal data 3-7, 3-12
record_type field....................... 3-7, 3-11
sqlca 3-4, 3-5, 3-9
status field................................ 3-6, 3-10
Table... 3-4
table_name field....................... 3-7, 3-11
upd_columns field 3-7, 3-12
upd_data field.................... 3-4, 3-8, 3-12
update_array field..................... 3-7, 3-12
user_area field 3-6, 3-11
user_name field........................ 3-7, 3-11

W
Warm Standby Logging (WSL)............... 1-1
WSL flags .. 3-3

KEY_COL_SRCH_OK................ 3-3, 3-6
NO_TRX_LEN_CHK.......................... 3-3

X
XL.NB.NETBASE 3-2
XL.PUB.NETBASE................................. 3-2

	Table of Contents
	Introduction
	Installation
	Installation Summary
	Backups With WSL
	Sample Startup and Backup Jobs

	User Exits - Overview
	WSL Flags
	Notes on User Exit Structure
	Export Exit Procedure Calling Conventions
	Post Exit Procedure Calling Conventions
	Sample User Exit

	Troubleshooting
	Termination Conditions
	Error Messages
	SQL ERRORS
	ERROR RECOVERY
	Resync’ing

	Index

