Migration Guide

NetIPC to BSD
Sockets and DSCOPY
to FTP

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Legal Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is subject to change without notice.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 for DoD agencies,
and subparagraphs (¢)(1) and (¢)(2) of the Commercial Computer Software
Restricted Rights clause at FAR 52.227-19 for other agencies.

Hewlett-Packard Company
19420 Homestead Road
Cupertino, CA 95014 U.S.A.

© Copyright Hewlett-Packard Company, 1993. All rights reserved.

FINAL TRIM SIZE : 7.5 in x 9.0 in

Printing History

New editions are complete revisions of the manual. Updates, which are
issued between editions, contain additional and replacement pages to be
merged into the manual. The dates on the title page change only when a new
edition or a new update is published.

Note that many product updates and fixes do not require manual changes
and, conversely, manual corrections may be done without accompanying
product changes. Therefore, do not expect a one-to-one correspondence
between product updates and manual updates.

Edition 1. October 1993

iv

FINAL TRIM SIZE : 7.5 in x 9.0 in

In This Guide

This guide provides information about how to migrate NetIPC client/server
applications to Berkeley Software Distribution (BSD) Sockets and about how
to migrate from DSCOPY/9000 to FTP/9000. This guide also describes how
to port UNIX BSD Socket applications to the HP 3000 MPE/iX platform.
Although both AF_UNIX and AF_INET are address families used with BSD
Sockets, this guide only discusses the AF_INET address family.

Chapter 1 Introduction
This chapter explains the purpose of migration and
presents a basic comparison of NetIPC and BSD
Sockets.

Chapter 2 NetIPC to BSD IPC Migration
This chapter provides the details of NetIPC to BSD
IPC migration.

Chapter 3 NetIPC and BSD IPC Communication
This chapter explains how MPE/iX NetIPC
applications communicate with BSD IPC applications.

Chapter 4 BSD IPC Porting
This chapter describes the procedures for porting
BSD IPC applications to HP 3000 systems.

Chapter 5 DSCOPY/9000 to FTP/9000 Migration
This chapter provides information about migrating
from DSCOPY to F'TP.

Appendix A NetIPC Sample Programs
This appendix provides examples of working NetIPC
client and server programs.

Appendix B BSD IPC Sample Programs
This appendix provides examples of working BSD
IPC client and server programs.

Appendix C NetIPC Sample Include File
This appendix provides an example of an HP 3000
NetIPC include file.

FINAL TRIM SIZE : 7.5 in x 9.0 in

FINAL TRIM SIZE : 7.5 in x 9.0 in

Contents

1. Introduction

Before You Begin . 1-4
Additional References 1-4
HP 9000 Manuals 1-4
HP 3000 Manuals 1-4
HP 1000 Manuals 1-4
PC Manuals . . 1-4
NetIPC to BSD Sockets Call Mappmg 1-5
The Socket Registry . .. 1-6
2. NetIPC to BSD IPC Migration
Migration Overview . 2-2
Configuration C0n51derat10ns 2-3
Name to IP Address Resolution . . 2-3
Port Name to Port Address Resolution . 2-4
IP to LAN Address Resolution 2-b
Overall Socket Differences 2-6
Include Files 2-7
NetIPC Include Flles . 2-7
BSD IPC Include Files . 2-7
Setting Up Connections 2-9
Call Mapping . 2-9
ipcname() 2-10
ipclookup() . 2-11
ipccreate() 2-12
ipcdest() 2-13
optoverhead() . 2-14
initopt() 2-14
addopt() 2-14
readopt() . 2-14
Establishing Connections . 2-15
Call Mapping . 2-16
ipcconnect() 2-17
ipcrecven() 2-18
ipccontrol() . 2-19
Transferring Data 2-20
Contents-1

FINAL TRIM SIZE : 7.5 in x 9.0 in

HP 3000 Include File

Call Mapping .

iperecv()o

ipesend() .
ipeselect()
Terminating Connections .
Call Mapping .
ipeshutdown() Coe
Byte Order Conversion Routines
ConvertNetworkLong() .
ConvertNetworkShort()

3. NetIPC and BSD IPC Communication
BSD IPC Client and NetIPC Server
Creating a Well-Known Port . .
NetIPC Client and BSD IPC Server

Connecting To a Well-known Port .

4. BSD IPC Porting
BSD Sockets Overview .
Establishing Connections .
Transferring Data
Terminating Connections .
Utility Calls
Porting BSD Apphcatlons to HP 3000 MPE/lX
Environment . . Coe e .
MPE/iX 4.0 Supported Calls
Modifying Current Applications .
Establishing Connections for Datagram Sockets
Transferring Data for Datagram Sockets
Vectored Data Calls
READ and WRITE
FORK and EXEC .
Considerations for Different Compllers
BSD Sockets Compilation Procedure .

2-21
2-22
2-23
2-24
2-26
2-27
2-27
2-28
2-28
2-28

3-3
3-4
3-5
3-6

4-3
4-4
4-5
4-5
4-6

4-7
4-8
4-9
4-9
4-9
4-9
4-10
4-10
4-11
4-12

Contents-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

DSCOPY/9000 to FTP/9000 Migration

HP 3000 Include File

DSCOPY Options and FTP Commands 5-3

NetIPC Sample Programs

NetIPC Client Program A-3

NetIPC Server Program A-13

BSD IPC Sample Programs

BSD IPC Client Program . B-3

BSD IPC Server Program B-11

NetIPC Sample Include File

HP 3000 Include File C-3
Contents-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Figures

3-1. BSD Sockets to NetIPC Communication 3-2
3-2. NetIPC to BSD Sockets Communication 3-5
4-1. BSD Socket to Socket Communication 4-4
4-2. Porting BSD Applications to HP 3000 Systems 4-7
Tables
1-1. NetIPC to BSD Sockets Call Mapping 1-5
4-1. BSD Sockets Implementations - Calls 4-13
4-2. BSD Sockets Implementations - Routines 4-14
5-1. DSCOPY Options and Equivalent FTP Commands 5-4
Contents-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Introduction

FINAL TRIM SIZE : 7.5 in x 9.0 in

Introduction

To prevent unnecessary maintenance of different versions of applications
for different vendor’s platforms, Hewlett-Packard provides the components,
tools, and solutions for application developers to move from proprietary to
open client/server solutions. To accomplish this, HP encourages application
developers to transition from HP’s existing proprietary client/server
Application Programmatic Interfaces (APIs) to HP’s standards based
client/server tools on HP 9000 systems, HP 3000 MPE/iX systems, HP 1000
RTE systems, and PCs.

HP recommends that you migrate all existing NetIPC applications on HP
9000 and PC platforms to BSD Sockets. For the PC windows-based platform,
you should migrate NetIPC and WSOCKETS implementations to Microsoft’s
WINSOCK interface. HP also recommends that all new applications on HP
3000 MPE/iX and HP 1000 platforms use BSD Sockets; however, HP does not
recommend migration to BSD Sockets for existing NetIPC applications on HP
3000 MPE/iX and HP 1000 platforms.

By migrating the recommended applications from the proprietary NetIPC API
to the BSD Sockets API, you can take advantage of the following benefits.

e Lower development costs.

BSD Sockets improve application portability. This allows support of a wider
range of systems in multi-vendor environments without maintaining several
different versions of your applications for each vendor’s platform.

e Increased application access.

Applications based on BSD Sockets can be accessed from anywhere on the
network, providing increased accessibility to better meet your needs. The
NetIPC ipclookup() call uses the proprietary PXP protocol, which is not
supported on all routers.

e Reduced configuration requirements.

Applications based on BSD Sockets fit into your existing multi-vendor
environments. NetIPC requires that a proprietary naming scheme be
configured and maintained in addition to industry standard domain naming
used in multi-vendor environments.

1-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Introduction

e Reduced support costs.

BSD applications use standard protocols. This makes troubleshooting easier.
Additionally, the BSD Sockets API is an industry standard with reference
books and courses available from a variety of different sources.

The intent of this guide is to make the transition to standards based
client/server APIs easier for application developers. In some cases, your
applications may have to communicate with NetIPC applications running
on MPE-based or RTE-based systems. For this reason, this guide includes
interoperability information about how NetIPC and BSD IPC applications
communicate with each other.

1-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

Before You Begin

Before you begin the process of migrating your applications, you may need to
review the following sections:

Additional references.
NetIPC to BSD Sockets call mapping.
The Socket Registry.

HP 9000 Manuals

HP 3000 Manuals

HP 1000 Manuals

PC Manuals

Additional References

You may need to refer to one or more of the following manuals in addition to
the information contained in this guide:

HP 9000 Networking Berkeley IPC Programmer’s Guide
HP 9000 Networking NetIPC Programmer’s Guide

NetIPC 3000/XL Programmer’s Reference Manual
BSD Sockets/iX Programmer’s Guide

NS-ARPA/1000 Usey/Programmer Reference Manual
NS-ARPA/1000 BSD IPC Reference Manual

PC Sockets Programmer’s Guide
PC NetIPC Programmer’s Guide

1-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

Introduction
Before You Begin

NetIPC to BSD Sockets Call Mapping

NetIPC and BSD Sockets are simply interfaces to the TCP/IP transport
protocol; they are not end-to-end protocols in themselves. As a result, BSD
applications can communicate with NetIPC applications. While a one-to-one
mapping of NetIPC and BSD calls is not possible, both NetIPC and BSD
Sockets provide similar functionality.

The following table shows the relationship between NetIPC and BSD Sockets
calls. Mapping does not imply that a one-to-one replacement of BSD Sockets
calls is sufficient to migrate from a NetIPC application to a BSD application.
Rather, the entire program must be examined and may have to be altered
depending on the circumstances.

Table 1-1. NetIPC to BSD Sockets Call Mapping

NetIPC Calls BSD Sockets Calls
socket ()
ipccreate() maps o bind()
listen()
ipcrecven() maps o accept()
ipcdest()
ipclookup() maps to connect ()

ipcconnect ()

ipcsend() maps to send ()
sendto()

ipcrecv() maps o recv()
recvirom()

ipcshutdown() maps to shutdown()
close()

getsockname ()
getpeername()
socketpair()

File system call

fentl()

ioctl()
iowait() maps 10 select()

1-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

Introduction
Before You Begin

The Socket Registry

A NetIPC feature that has no direct BSD Sockets equivalent is the facility for
named sockets, called the Socket Registry. The Socket Registry enables users
to dynamically name sockets and register them, so other users can find the
socket by name.

The system calls to access and modify this registry are IPCLOOKUP () and
IPCNAME(). A server program, for instance, could allocate a socket without
specifying a port number to get a random port, name the socket, and register
it in the Socket Registry by calling IPCNAME() . Now the client does not need
to know the specific port number of the server. Instead, the client simply
calls IPCLOOKUP () with the name of the socket and the name of the remote
machine.

The closest BSD sockets equivalent is the getservbyname () function.
getservbyname (), combined with gethostbyname, provides the
functionality of IPCLOOKUP (). Because it does not provide the functionality
of IPCNAME (), however, getservbyname () is not dynamic. To name

a BSD socket, you must modify the flat ASCII file /etc/services
(SERVICES.NET.SYS on MPE/iX) to include an entry for the socket on the
client and server systems. Once these entries are made, the server calls
getservbyname () to get the specific port number and then calls bind ()

to bind to that port address. The client uses getservbyname() to get the
specific port and then calls connect () to that port.

1-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC
Migration

FINAL TRIM SIZE : 7.5 in x 9.0 in

Migration
Overview

NetIPC to BSD IPC Migration

The following is a brief overview that outlines the process of migrating
NetIPC client/server applications to BSD Sockets.

Install and configure ARPA Services on your HP 9000 system or your PC.

For information on installing ARPA Services/9000 refer to Installing and
Administering ARPA Services. For information on installing PC ARPA
Services, refer to the PC Sockets Programmer’s Guide.

Add the server’s hostname to the /etc/hosts file (HOSTS.NET.SYS file for
MPE/iX) on the client system or configure the client to use a Domain Name
Server (DNS).

Test connectivity to the server using the ping command (PING.NET.SYS for
MPE/iX).

If you are using an HP 3000 or HP 1000 NetIPC client or server application,
you will need to modify it to use a well-known port.

Refer to chapter 4 for more information about creating and connecting to
well-known ports.

If the server is an HP 3000 system, configure Ethernet support.

Convert the client/server application from NetIPC to BSD IPC using the
information contained in this chapter.

Test the BSD client program with the NetIPC or BSD server.

NOTE

For MPE/V-based client/server applications, you must continue to use NetIPC. Existing HP 3000 MPE/iX
and HP 1000 applications should also continue using NetIPC. HP recommends that HP 9000, PC, new
HP 3000, and new HP 1000 applications move to BSD sockets applications. Interoperability between

NetlPC and BSD Sockets applications is supported for backward compatibility.

2-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

Configuration Considerations

To allow client/server applications to run on different platforms, you must
consistently configure both the client and server systems. The following
sections describe the required configuration for converting a NetIPC
client/server application to BSD Sockets.

Name to IP Address Resolution

Client applications typically identify systems using a hostname. Prior to
communicating with the host, the client must convert the hostname to an
IP address before the connection with the remote host can be established.
This is accomplished differently in NS and BSD. With NS, the hostname to
IP address mapping is accomplished using either Probe, Probe Proxy, or the
HP 3000 Network Directory. With BSD Sockets, the hostname to IP address
mapping is accomplished by configuring hostnames and IP addresses in the
/etc/hosts file (HOSTS.NET.SYS for MPE/iX).

Alternatively, you can configure the system to use the Domain Name System
(DNS). In this case, the /etc/hosts file (HOSTS.NET.SYS for MPE/iX)

will be bypassed and the hostname mapping requests will be sent to a
domain name server. The domain name server must have the requested
hostname configured to return its IP address. The DNS alternative used is
transparent to the BSD application. The BSD client application uses the
BSD gethostbyname() call to resolve the hostname to IP address regardless of
which method is used. The /etc/hosts file (HOSTS.NET.SYS for MPE/iX)
approach is recommended for small networks and the domain name server
approach is recommended for medium to large networks.

On an HP 9000 system, the nodername command shows the NS nodename.
This name is distinct from hostname which is a Internet Domain term. All
the BSD services including BSD IPC recognize hostnames and not nodenames.
Usually the HP-only nodename is the same as the hostname of a HP host, but
this is not necessarily true. You should always check the correctness of the
hostname by looking up the name in the /etc/hosts file on the HP 9000

2-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Configuration Considerations

system (HOSTS .NET. SYS for MPE/iX) or by using the nslookup command on
an HP 9000 system to determine if a name server is used.

Port Name to Port Address Resolution

Client applications identify a service residing on a remote host using a service
name. The service name must be converted to a port address before the
request is sent to the host.

With NetIPC, the server application registers a server name by calling
ipcname(). The NetIPC client applications connect to the server by calling
ipclookup(), without having to know the port address of the server. The
server name-to-address mapping information is stored in the Socket Registry.
Alternatively, the NetIPC server application can create a port address
(well-known port) using the 4pccreate() call. The NetIPC client applications
connect these well-known ports using the épcdesi() call. With BSD Sockets,
the server application is assigned a unique service name and port address.
The service name and port address must be configured in each client’s
/etc/services file (SERVICES.NET.SYS for MPE/iX). The BSD client
application calls getservbyname() to resolve the service name-to-address
mapping. The getservbyname() call will use the /etc/services file
(SERVICES.NET.SYS for MPE/iX) on the client system.

The well-known address must be unique. For HP 3000 and HP 1000 systems,
the port addresses available to non-privileged users are in the range of 1024
through 32767 (decimal). For HP 9000 systems, the port addresses available
for non-super user access are in the range of 1024 through 65535 (decimal).
To ensure interoperability between different platforms, you should use
addresses in the range of 30767 through 32767 (decimal).

2-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Configuration Considerations

IP to LAN Address Resolution

NetIPC uses the proprietary Probe protocol to resolve IP addresses and may
optionally use the industry standard ARP protocol. Begining with MPE/iX
Release 4.0, the proprietary Probe protocol can be turned off, allowing only
the ARP protocol to be used to resolve IP addresses. BSD Sockets use the
industry standard ARP protocol. When NetIPC clients are converted to

use BSD Sockets, you must configure the client and server systems to use

the ARP protocol. For HP 9000 and HP 3000 systems to support the ARP
protocol, you should configure Ethernet. For HP 1000 systems, 802 uses the
Probe protocol only, Ethernet uses the ARP protocol only, and LAN uses both
Probe and ARP protocols.

2-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

Overall Socket Differences

Sockets are a generic term used in NetIPC and BSD IPC to describe an
endpoint for network communications. In NetIPC, there is a distinct
difference between the connecting call sockets (referenced by source and
destination descriptors) and the Virtual Circuit (VC) sockets (referenced by
connection descriptors). In BSD IPC, all the sockets involved are simply BSD
sockets.

NetIPC has VC connection descriptors for referencing local VC sockets and
destination descriptors for carrying all the addressing information required
to connect to a remote call socket. BSD IPC has only one form of descriptors,
namely socket descriptors.

With NetIPC, establishing the client end of a connection requires a minimum
of two socket descriptors: one destination descriptor and one VC socket
descriptor. Establishing the server end of a connection with NetIPC requires
a minimum of three socket descriptors: one call socket descriptor, one
destination descriptor, and one VC socket descriptor. With BSD IPC, setting
up the client end of a connection requires only one socket, and setting up the
server end of a connection requires only two socket descriptors: one for the
listen() call and one for each connection established.

The maximum number of file and socket descriptors owned by an HP 9000
process at any given time is 2048 (total). The HP 3000 maximum is 1024
(total), the PC maximum is 21 (total), and the HP 1000 maximum is 31

(total). These maximum numbers include call socket, VO socket, and open file
descriptors and are independent of the number of open files.

2-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

Include Files

NetIPC and BSD Sockets use different include files. The following lists the
include files used for each type of application.

NetIPC Include Files

NetIPC applications use the following include files:

HP 9000 #include <sys/ns_ipc.h>

HP 3000 #include <sys/ns_ipc.h>
See Appendix C for an example.

HP 1000 None

PC #include <mscipc.h>

BSD IPC Include Files

BSD IPC applications use the following include files:

HP 9000 #include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/fcntl.h>
#include <netinet/in.h>
#include <netdb.h>

FINAL TRIM SIZE : 7.5 in x 9.0 in

2-7

NetIPC to BSD IPC Migration
Include Files

HP 3000 #include <sys/types.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <sys/ioctl.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>

HP 1000 #include <types.h>
#include <socket.h>
#include <in.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <netdb.h>
#include <string.h>
#include <time.h>
#include <socket.ftni>
#include <socket.pasi>
#include <extcalls.pasi>

PC #include <sys\socket.h>
#include <winsock.h>
#include <netinet\in.h>
#include <netdb.h>
#include <sock_err.h>

2-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

Setting Up Connections

When calling ¢pcdesi() or ipclookup(), you must use the NS nodename for the
location parameter on an HP 9000 system. An HP 3000 MPE/iX system allows
you to use an Internet hostname. NetIPC uses the Probe protocol or the HP
3000 Network Directory to resolve hostname to IP address. Probe proxy

can also be used to accomplish address resolution. On an HP 3000 running
MPE/iX 4.0 or later, you can disable the Probe protocol. This means that all
location parameters in the ¢pcdesi() and ipclookup() calls will be resolved
using DNS or HOST.NET.SYS.

When creating a BSD IPC socket, you must specify the remote host by its
Internet hostname or Internet address (IP address). If you specify an
Internet hostname, the gethostbyname() function is called to return the IP
address information. The name-to-address resolution is done by looking up
the hostname in the /etc/hosts file (HOSTS.NET.SYS for MPE/iX). When
you specify a name server (except on HP 1000 systems), the routine will use
the Domain Name System (DNS) protocol to resolve the hostname.

Call Mapping

The following explains how NetIPC and BSD Sockets calls “map” for setting
up connections. Here is an overview of the differences.

e The socket kind parameter (NS_CALL) of the ipcereate() call “maps” to the
type parameter (SOCK_STREAM) of the BSD sockei() call.

e The protocol parameter (NSP_TCP) of the ipccreate() call “maps” to the
protocol parameter of the BSD sockei() call. Since SOCK_STREAM implies a
TCP connection, the last argument about protocol in sockel() is supplied
with a zero.

e The flags parameter of the ipcereate() call is not defined for PC NetIPC and
should be replaced by 0 or NULL.

2-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

ipcnamel)

NetIPC to BSD IPC Migration
Setting Up Connections

e The opt parameter of the ipccreaie() call “maps” to the address parameter
of the BSD bind() call. To ensure the interoperability between different
platforms, you should use addresses in the range of 30767 through 32767
(decimal).

e The location parameter (nodename) of the ipcdest() call “maps” to the
name parameter of the BSD gethostbyname() call. You can also use the
BSD gethostbyaddr() call if the IP address is given or explicitly fill in the
sockaddr_in structure

e The prot_addr parameter of the ¢pcdesi() call “maps” to the service port
address of getservbyname.

e The destination descriptor parameter of the ipcdesi() call “maps” to the
hostent and servent structures returned by the BSD gethostbyname() and
getservbyname() calls.

e For PC BSD applications, the hostent and servent structures must be
defined as far pointers:

struct hostent far *hp;
struct servent far *sp;

On a NetIPC server, the ipcname() call is used to register a socket name in
the Socket Registry (see chapter 1). Since BSD IPC applications have no
access to the Socket Registry, you should create a well-known port with
ipcereate() on the HP 3000 server.

NetIPC Example

descriptor_type call_sd; /#* call socket
descriptor */

char *socketname;

int result;

socketname = "ABCDEFGH";
ipcname (call_sd, socketname, 8, &result);

/* Also see the discussion below on ipccreate(). */

2-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

ipclookupl)

NetIPC to BSD IPC Migration
Setting Up Connections

On a NetIPC client, the ¢pclookup() call is used to look up the socket name in
the server’s Socket Registry (see chapter 1). It is similar to the combination
of the BSD gethostbyname() and getservbyname() calls. The getservbyname()
call returns a structure containing the port address of the service. The
following examples assume that the service name and the well-known port
are configured together in the /etc/services file (SERVICES.NET.SYS for
MPE/iX) on the client node.

NetIPC Example

descriptor_type desc_sd;
char *socketname, *nodename;
int flags, protocol, socket_kind, result;

socketname = "ABCDEFGH";

nodename = "REMOTE";

flags = O;

ipclookup (socketname, 8, nodename,
strlen(nodename), &flags, &desc_sd, &protocol,
&socket_kind, &result);

/* Also see the discussion below on ipccreate(). */

BSD Example

struct hostent hp;

struct servent sp;

char *host_name, *serv_name;
host_name = "REMOTE";

hp = gethostbyname(host_name) ;

Sp = getservbyname(serv_name, proto);

FINAL TRIM SIZE : 7.5 in x 9.0 in

ipccreate()

NetIPC to BSD IPC Migration
Setting Up Connections

On a NetIPC server, the 2pccreate() call is used to create a source socket
descriptor. It is similar to the BSD socket() and bind() calls. sockel() creates a
BSD socket and returns the socket descriptor for the socket. On a server the
socket is usually bound to a well-known address through the bind() call. The
server then listens at the address. The bind() call is optional on the client
side. If omitted, the bind function will be performed by the conneci() call.

NetIPC Example

flag_type flags;

opt_type opt;

descriptor_type call_sd; /* call socket descriptor */
int opt_num_argument, result;

opt_num_arguments = 2;
initopt(opt, opt_num_arguments, &result);

opt_data = TCP_WELL_KNOWN_PORT; /* a hardcoded constant */
addopt (opt, O, NSO_PROTOCOL_ADDRESS, 2, &opt_data, &result);
opt_data = MAX_BACKLOG; /* a hardcoded constant; max = 5 */
addopt (opt, 1, NSO_MAX_CONN_REQ_BACK, 2,

&opt_data, &result);

flags = O;
ipccreate(NS_CALL, NSP_TCP, &flags, opt, &call_sd, &result);

BSD Example

int 1sd; /* listen socket descriptor */
int result;

struct sockaddr_in myaddr_in;

int backlog;

myaddr_in.sin_family = AF_INET;

myaddr_in.sin_addr.s_addr = INADDR_ANY;
/* any remote hosts */

myaddr_in.sin_port = TCP_WELL_KNOWN_PORT;

1sd = socket(AF_INET, SOCK_STREAM, 0)

result = bind(lsd, &myaddr_in, sizeof(struct sockaddr_in));
backlog = 5

result = listen(lsd, backlog);

2-12

FINAL TRIM SIZE : 7.5 in x 9.0 in

ipcdest()

NetIPC to BSD IPC Migration
Setting Up Connections

On a NetIPC client, the ¢pcdesi() call is used to create a destination descriptor
on a call to Zpcconnect(). This destination descriptor contains the information
necessary to connect to a remote socket (IP address and port address). For
BSD Sockets, the sockaddr_in structure contains similar information that
you must explicitly fill in.

NetIPC Example

#define TCP_WELL_KNOWN_PORT 32000
char *node_name; /* remote node name */
int flags, result;

prot_addr;

descriptor_type *dd;

flags = O;
prot_addr = TCP_WELL_KNOWN_PORT;
node_name = "REMOTE";

ipcdest (NS_CALL, node_name, strlen(node_name),
NSP_TCP, (char #*) &prot_addr,
sizeof (prot_addr), &flags, opt, &dd,
&result);

BSD Example
struct sockaddr_in peeraddr;

You must fill in the sockaddr_in structure prior to the call to connect. You
should set the address family in the sockaddr_in structure to AF_INET (this
is defined in SYS/SOCKET .h. Here is an example.

peeraddr.sin_family = AF_INET

The IP address could be hardcoded, but is typically obtained by
gethostbyname(). Here is an example.

hp = gethostbyname(host_name) ;

peeraddr.sin_addr.s_addr = ((struct in_addr *)
(hp->h_addr))->s_addr;

2-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

optoverhead()

initopt()

addopt()

readopt()

NetIPC to BSD IPC Migration
Setting Up Connections

The port could also be hardcoded or obtained by getservbyname(). Here is an
example.

peeraddr.sin_port = sp -> s_port;

OR

peeraddr.sin_port = TCP_WELL_KNOWN_PORT;

The NetIPC optoverhead() call returns the number of bytes required in the
option record. This feature is not required in applications that use BSD
Sockets and should be removed.

The NetIPC #nitopi() call initializes the option record. This feature is not
required in applications that use BSD Sockets and should be removed.

The NetIPC addopt() call adds an option to the option record. It is typically
used to add a well-known port address to the option record. This feature is
not required in applications that use BSD Sockets and should be removed.

The NetIPC readopt() call reads the specified entry from an option record.
This feature is not required in applications that use BSD Sockets and should
be removed.

2-14

FINAL TRIM SIZE : 7.5 in x 9.0 in

Establishing Connections

To start a connection, the NetIPC server must create a call socket. The socket
can be created for a well-known address (port) or registered with a name in
the Socket Registry. A client looks up the socket name and uses the protocol
and destination address information to establish a connection.

With BSD IPC, when a socket is created on a server, it is bound to a
well-known port. Clients establish connection by sending connection requests
to the port.

After a NetIPC socket is created, by default, it is placed in synchronous
(block) mode, that is, the calling process will be blocked if requests cannot be
immediately satisfied. A blocked process will remain suspended until the
request is satisfied, a signal arrives, an error occurs, or an asynchronous
timeout occurs. NetIPC sockets have timeout values associated with them.
The default timeout value is 60 seconds and can be set by users. The timeout
values may be changed through 7pcconirol(). You can set the value so NetIPC
calls will be blocked indefinitely, if necessary. You can also set a shorter or
longer value so NetIPC calls will timeout and return a SOCKET_TIMEOUT
error when some condition cannot be fulfilled.

BSD Sockets are also created in blocking mode by default. BSD Sockets do not
have a timeout value associated with them. A recy() will block until there is

a message to be received, and a send() will block until there is a message to
transmit. The BSD socket calls either block indefinitely (blocked 1/0 mode)

or fail if some conditions cannot be satisfied immediately (rnon-blocked 1/0
mode). Blocked or non-blocked mode can be set by users with the ‘octl() or
JSenil() calls.

2-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Establishing Connections

Call Mapping

The following explains how NetIPC and BSD Sockets calls “map” for
establishing connections. Here is an overview of the differences.

The source socket descriptor parameter of the 7pcconnect() call “maps” to
the socket descriptor parameter of the BSD conneci() call.

]

The destination socket descriptor parameter of the ¢pcconnect() call “maps’
to the server address parameter of the BSD conneci() call.

The equivalent to the connection descriptor parameter of the ¢pcconneci()
call is contained in the socket descriptor parameter of the BSD conneci()
call.

The hp and sp pointers refer to the structures returned by gethostbyname()
and getservbyname() described under zpcdest().

With NetIPC, the server is listening at the call socket. It returns a VC
socket when it accepts the connection request from the client. With BSD
IPC, the server explicitly calls listen(). When it returns, the server calls
acceplt() to accept the client connection request.

With NetIPC, the ¢pcconirol() call can be used by the server application to
identify the nodename and TCP port of a client requesting a connection.
With BSD Sockets, this information is provided to the server application at
the time connection is accepted with accepi().

2-16

FINAL TRIM SIZE : 7.5 in x 9.0 in

ipcconnect()

NetIPC to BSD IPC Migration
Establishing Connections

On the client, the ¢pcconneci() call is used to establish a virtual circuit
between the source descriptor and the socket described by the destination
descriptor. It is equivalent to the BSD connect() call.

NetIPC Example

descriptor_type sd, dd, cd;

int result;

ipcconnect(sd, dd, NULL, NULL, cd, &result);
BSD Example

struct hostent hp;

int sd, addr_len, result;
struct sockaddr_in server_addr;
char *host_name

hp = gethostbyname(host_name) ;

server_addr.sin_family = AF_INET;
server_addr.sin_addr.s_addr =

((struct in_addr *)(hp->>h_addr))->>s_addr;
server_addr.sin_port = sp->>s_port;

result = connect(sd, &server_addr,
sizeof (struct sockaddr_in));

2-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

ipcrecven()

NetIPC to BSD IPC Migration
Establishing Connections

On the server, the 2pcrecven() call is used to wait for connection requests
from clients after a call socket has been created. The corresponding BSD IPC
call is accepl(). accept() may be called after a lzsten() has been performed on
the socket.

NetIPC Example
descriptor_type call_sd, vc_sd;

int opt_num_arguments, flags, result;

opt_num_arguments = O;
initopt(opt, opt_num_arguments, &result);

flags = O;
ipcrecven(call_sd, &vc_sd, &flags, opt, &result);
BSD Example

descriptor_type 1lsd, vc_sd;
struct sockaddr_in client_addr;

listen(lsd, MAX_BACKLOG);

memset ((char *)&client_addr, O,
sizeof (sturct sockaddr_in));
/* to clear client address struct */

vc_sd = accept(lsd, &client_addr,
sizeof (struct sockaddr_in));
/* client address info now in &client_addr */

When accept() returns, the client’s address information is readily available in
the client_addr parameter.

2-18

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Establishing Connections

ipccontroll) The 2pccontrol() call is used to modify connection characteristics. It is similar
to the BSD doctl() and setsockopt() calls.

NetIPC Example

descriptor_type call_sd;
int flags, timeout, result;

flags = O;

timeout 0; /* block mode; wait indefinitely */

ipccontrol(call_sd, NSC_TIMEQUT_RESET,
&timeout, 2, NULL, NULL, &flags, &result);

BSD Example
int sd, flag, result;

flag

1;
result =

t ioctl(sd, FIOSNBIO, &flag);
/* block mode; wait indefinitely */

2-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

Transferring Data

For HP 3000 applications, the NetIPC #pcrecv() and ipcsend() calls correspond
to the BSD recv() and send() calls (respectively). With the MPE/iX 4.5 release,
this functionality is also performed by the BSD read() and write() calls. For
HP 9000, HP 1000, and PC applications, NetIPC has the ability to wait for a
specified amount of data to receive, while the BSD recy() call will return as
long as more than 1 byte of data transferred on a socket.

BSD IPC supports partial data transfer. For example, when you call send() to
transfer 1000 bytes and at that time the socket buffer has only 800 bytes of
space in it, then 800 bytes will be transferred first. The send() call will either
block awaiting space for the remaining 200 bytes in BLOCKED MODE, or will
return immediately to the user in NON-BLOCKED MODE to indicate that the
first 800 bytes have been transferred.

NetIPC does not support this partial data transfer policy; data is transferred
all at once. Using the same example, NetIPC will not transfer a byte of

data until either timeout occurs or 1000 bytes of space become available in
the socket buffer This behavior may result in a degradation of the NetIPC
throughput when the message size is greater than half of the socket buffer
size. To be more efficient, you can set the socket buffer size to double the
largest message being sent for NetIPC sockets. This is not necessary for BSD
IPC sockets.

With NetIPC, the HP 9000 and HP 1000 send and receive size range is 1 to
32,767 bytes. The HP 3000 send and receive size range is 1 to 30,000 bytes.
The PC range is 1 to 65,535 bytes. A socket buffer size should be specified
within the correct range for the respective system.

2-20

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Transferring Data

Call Mapping

The following explains how NetIPC and BSD Sockets calls “map” for
transferring data. Here is an overview of the differences. The code examples
assume that you are using blocked mode.

By default zpcrecv() blocks for 60 seconds while recv() blocks indefinitely.
However, recy() users can have timeouts by enabling signals and using the
alarm() function.

In non-blocked mode, the select() call can be used to detect the readiness of
sending the next segment of data.

With BSD IPC on HP 9000 systems, the flags parameter is set to MSG_PEEK
(for peeking incoming data), MSG_00B (for sending out-of-band data), both,
or zero. On HP 3000 systems running MPE/iX 4.5 or later and on HP 1000
systems, the flags parameter is set to MSG_PEEK or zero.

The seleci() bitmap mask in NetIPC is an array of integers. BSD IPC has a
pre-defined structure and several macros to manipulate bitmap masks. HP
recommends that you use the existing macros.

With BSD IPC, select() connection requests are treated as reads. They are
detected through the read mask. With NetIPC, connection requests are
notified through the exception mask. NetIPC on the HP 3000, however,
also uses the read mask.

2-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

ipcrecvl)

NetIPC to BSD IPC Migration
Transferring Data

The #perecu() call is used to receive a response to a connection request and
to receive user data on a connection. Its equivalents in BSD are recu(),
recyfrom(), and recomsg(). Only recv() will be presented in the code
examples.

NetIPC Example

descriptor_type sd;

char data_buff[BUFF_LEN+1];

unsigned int buff_len;

flags_type flags,

opt_type opt;

int opt_num_arguments, result, time, request;

opt_num_arguments = O;
initopt(opt, opt_num_arguments, &result);

flags = O;

buff_len = BUFF_LEN;

ipcrecv(sd, data_buff, &buff_len,
&flags, opt, &result);

BSD Example

int sd;

char data_buff[BUFF_LEN+1];

char xbuff_ptr;

int amount_to_recv, amt_recvd, flags;

amount_to_recv = BUFF_LEN;
buff_ptr = data_buff[0];
amt_recvd = 0;

while (amount_to_recv > 0)

{
flags = O;
amt_recvd = recv(sd,
buff_ptr, amount_to_recv, flags);
amount_to_recv -= amt_recvd;
buff_ptr += amt_recvd;
}

date_buff [BUFF_LEN] = ’\0’;

2-22

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Transferring Data

ipcsend() The 2pcsend() call is used to transmit data on a connection. Its equivalents in

BSD are send(), sendto(), and sendmsg(). Only send() will be presented in the
code examples.

NetIPC Example

descriptor_type sd;
data_buffer data_buff;
unsigned int buff_len;
int result

flags = O;
ipcsend(sd, data_buff, buff_len,
&flags, opt, &result);
BSD Example

int flags, num, sd, buff_len;
char data_buff[BUFF_LEN+1];

flags = O;
num = send(sd, data_buff, buff_len, flags);

2-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Transferring Data

ipcselect() On the server, the 2pcselect() (select() for MPE/iX and also HP 9000) call is
used to provide a synchronous multiplexing mechanism. The ipcselect() call
returns when at least one socket is ready for reading or writing or the socket
has received a connection request. It is equivalent to the BSD select() call.

NetIPC Example

/* The following shows an implementation of

selecting from a maximum of 60 sockets. */

/* The arrays form the bitmap masks for keeping track
of read, write, and connection request conditions. */
int rmap[2], wmap[2], xmap[2];

/* Working bitmap masks */

int curr_rmap[2], curr_wmap[2], curr_xmap[2];

short timeout;

int i, offset, sbound, result;

for (i = 0; 1 << 2; i++) {
curr_rmap[i] = rmap[i];
curr_wmap[i] = wmap[i];
curr_xmap[i] = xmap[i];}

timeout = -1;

/* indefinite wait; block mode select*/

ipcselect(&sbound, curr_rmap, curr_wmap,
curr_xmap, timeout, &result);

/* If some socket is ready for read */
if ((curr_rmapl[0] || curr_rmap[1])) {
/* Find out which bit is set in the returned
bitmap mask */
for (offset = 0; offset << sbound; offset++) {
if (curr_rmaplofset/32] &
((unsigned int)0x80000000 >> (offset % 32))) {
SR

2-24

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Transferring Data

BSD Example

/* The following code segment uses the pre-defined
structs and macros to manipulate bitmap masks. */
int offset, result;

int sbound;

struct fd_set read_mask, write_mask;

struct fd_set curr_read_mask, curr_write_mask;

curr_read_mask = read_mask;
curr_write_mask = write_mask;

/* indefinite wait; block mode select */
result = select(sbound, &curr_read_mask,

&curr_write_mask, 0, (struct timeval *) 0);

for (offset = 0; offset << nfds; offset++)

{
if (FD_ISSET(offset, &curr_read_mask)) {
R
else if (FD_ISSET(offset, &curr_write_mask)) {
R

2-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

Terminating Connections

When you call ¢pcshutdown(), all the data remaining in the socket queue
may be lost without notice. To ensure that no data is lost during connection
shutdown, you must specify the NSF_GRACEFUL_RELEASE flag.

BSD IPC supports the shutdown() system call on HP 9000, HP 3000, and HP
1000 systems. However, BSD IPC shutdown() is not equivalent to NetIPC
ipcshutdown(). This shutdown() call provides a means to stop either sending
or receiving data or both. It does not shut down a connection. NetIPC does
not provide a facility equivalent to BSD IPC shuidown().

In a BSD IPC application, use close() to shut down a connection. close()
decrements the file descriptor reference count. When the last close() is
executed on a socket descriptor, any data not previously sent are transferred
before the socket is closed. This is called “graceful close,” however, any
unreceived data may be lost.

BSD IPC also supports abrupt close, all data not previously sent are
immediately lost. To control the closing actions, use the setsockopt() call to
turn on the SO_LINGER value with a zero or nonzero timeout value. The
SO_LINGER option, however, is not available on the HP 1000. A zero timeout
interval is for abrupt (hard) close. A nonzero value is to block the close() call
for the specified time for “graceful close.”

2-26

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC to BSD IPC Migration
Terminating Connections

ipcshutdownl)

Call Mapping

The following explains how NetIPC and BSD Sockets calls “map” for
terminating connections.

The ipcshutdown() call is similar to the BSD IPC close() call. For PC BSD
sockets, use the close_sockel() call.

NetIPC Example

flags = O; /* or flags = NSF_GRACEFUL_RELEASE */
ipcshutdown(sd, &flags, &result);

BSD Example
close(sd);

To use the SO_LINGER option in BSD IPC, call the following after a BSD
socket is created:

struct linger linger = {1, 1};

/* set linger flag & graceful disconnect */
setsockopt(sd, SOL_SOCKET, SO_LINGER, &linger,
sizeof (linger));

With BSD IPC, a connection can be gracefully disconnected or abruptly
disconnected. Use setsockopi() to achieve this. You can also use it to modify
the socket characteristics. getsockopi() retrieves the socket characteristics.
Here is an example.

int sd, result;

struct linger linger = {1, 1};

result = setsockopt(sd, SOL_SOCKET,
SO_LINGER, &linger, sizeof(linger));

2-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

Byte Order Conversion Routines

HP RISC-based and Motorola 680X0-based computers process bytes in
standard TCP/IP byte order, known as network byte order. PCs, however, use
Intel architecture and process bytes in reverse order, known as host byte
order.

PC programmers, therefore, must be aware of this difference, especially when
filling in socket address structures. The PC socket developer’s kits provide
library routines for converting between the two architectures. To ensure
source code portability, programmer’s should use the following calls.

ConvertNetworkLong()

The ConveriNetworkLong() call is similar to the BSD htonl() and ntohl() calls.

NetIPC Example long num;
ConvertNetworkLong (num) ;
BSD Example long num;
htonl (num) ;

ConvertNetworkShort()

The ConveriNetworkShori() call is similar to the BSD hions() and niohs() calls.

NetIPC Example short num;
ConvertNetworkShort (num) ;

BSD Example short num;
htons (num) ;

2-28

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC and BSD IPC
Communication

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC and BSD IPC Communication

Figure 3-1 illustrates how a BSD Sockets application communicates with a
NetIPC application.

socket() ipccreatel)
1 gethostoynamel
getservbynamel)
2¢ connect) ipcrecven)
3¢ write/send() ipcrecvl)
readl/recvi) ipcsendl)
4c closel) ipcshutdown()
Figure 3-1. BSD Sockets to NetlPC Communication
3-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Client and NetIPC Server

The NetIPC server must create a well-known port rather than relying on
ipcname() which uses the Socket Registry. The BSD client will not be able
find the NetIPC server if the server relies on ipcname(), since BSD Sockets

to

cannot access the Socket Registry. The NetIPC server creates its socket at a

well-known port during the 4pcereate() call.

The conneci() call from the BSD client may or may not return successfully
before ipcrecven() is called on the NetIPC server side, depending on the
server system being used. If the NetIPC server system is an HP 9000 or
HP 1000, then connect() will return successfully even before ipcrecven()

is called. On an HP 3000, the connect() call will block (in blocked mode)
until Zpcrecven() has been called on the NetIPC side, or it will fail with an
EWOULDBLOCK error (in non-blocked mode). This is due to differences in
the implementation of TCP on HP 3000 and HP 9000 systems.

FINAL TRIM SIZE : 7.5 in x 9.0 in

3-3

NetIPC and BSD IPC Communication
BSD IPC Client and NetIPC Server

Creating a Well-Known Port

On a NetIPC server, 7pccreate() with an appropriate option containing the
well-known port, is used. The option record is created using the #nitopt() and
addopi() calls. The NetIPC initopi() call initializes the option record, and the
NetIPC addopt() call adds the well-known port to the option record.

The following example does not include any error checking. HP recommends
that including error checking in all programs is good practice.

NetIPC Server Example

short TCP_port = 31767 /* example port # */;
short opt[100];

short flags, result;

int call_desc, vc_desc;

initopt (opt, 1, &result);

/* Set up the option record */

addopt (opt, O, NSO_PROTOCOL_ADDRESS, 2,
&TCP_port, &result);

/* Create a call socket at the well-known port */
flags = O;

ipccreate (NS_CALL, NSP_TCP, &flags, opt,
&call_desc, &result);

/* Listen at the well known port then
generate a VC socket */

initopt (opt, O, &opterr);

flags = O;

ipcrecvn (call_desc, &vc_desc, &flags, opt,
&result);

3-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC Client and BSD IPC Server

Similar to the BSD client to NetIPC server communications, a NetIPC client
process can connect to a BSD server. Figure 3-2 shows the communications
between the NetIPC client and the BSD Sockets application server.

qc Ipccreatel socket()

ipcdest(1s bind(
listen()

pc ipcconect() 2s acceptl)
ipcrecv() —_—

3¢ ipcsend(- 5 read0/recvi)
ipcrecvi) ® write(/sendo)

4c pcshutdowm()‘ % . 4s closel)

Figure 3-2. NetlPC to BSD Sockets Communication

The NetIPC client cannot use ¢pclookup() to find the server node and service
by name. Since BSD Sockets do not support the Socket Registry, the client
must use Zpcdest() with a well-known socket. At the time of the accepi() call
in BSD IPC, the receiver can determine the information about the socket
requesting the connection.

NetIPC and BSD IPC are simply interfaces to the transport protocol; they are
not end to end protocols in themselves. When a client calls ¢pcconnect() and
tpcrecy(), tperecu() will return when a connection has been established at the
transport level. This implies that l#sten() has been called. The server process

3-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC and BSD IPC Communication
NetIPC Client and BSD IPC Server

may not have called accepi() by the time the ipcrecv() returns even though
ipcconnect() returns without an error. You can try to send and receive data
after the initial Zpcrecv() call, but ipcsend() and ipcrecv() may block before the
BSD IPC application has called accepi() to actually accept the connection.

Connecting To a Well-known Port

On a NetIPC client, the 2pcdesi() call is used to connect to a well-known port
created by a BSD server application. The 7pcdesi() call creates a destination
descriptor.

NetIPC Example

char *node_name; /* remote node name */
int flags, result;

char prot_addr;

descriptor_type *dd;

flags = O;
prot_addr = TCP_WELL_KNOWN_PORT;

ipcdest (NS_CALL, node_name, strlen(node_name),
NSP_TCP, (char #*) &prot_addr, sizeof(prot_addr),
&flags, opt, &dd, &result);

3-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting

The 4.3 version of Berkeley Software Distribution (BSD) offers a rich set of
interprocess-communication (IPC) facilities referred to as Berkeley Sockets
or BSD sockets. This chapter provides an overview of BSD Sockets and
information about porting applications to the HP 3000 MPE/iX environment.
In addition, this chapter discusses how to modify existing applications.

4-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD Sockets Overview

Berkeley Sockets provide a C language application program interface (API)
that is used as a de facto standard in writing many of the current distributed
applications. This API provides a general interface to allow node-isolated and
network-based applications to be constructed independently of the underlying
communication facilities.

With the 4.0 release of MPE/iX, HP introduced the first portion of Berkeley
Sockets/iX. This first portion supports stream and datagram communication
types, and can operate on Local and Internet domains.

The basic building block for BSD communication is the socket. Sockets are
communication endpoints that allow programs running on the same or
different nodes to exchange messages and data.

The two common socket types are stream sockets and datagram sockets.

A stream socket is a connection oriented model that supports reliable,
sequenced flow of data. A datagram socket is a connectionless model that can
potentially result in an unreliable and unsequensed flow of data.

Sockets can operate on different communication domains. Sockets exchange
only with sockets in the same domain. The common socket domains are
UNIX(Local) domain, and Internet(DARPA) domain. Sockets on Local domain
can only be used to communicate with processes on the same node. Sockets
on Internet domain can communicate with processes on the same or different
nodes. Refer to the following figure for an illustration of how sockets
communicate.

4-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting
BSD Sockets Overview

socket()
1c gethostbyname
getservbyname

2¢C connect{
writef)/send()
3¢ read{)/recv()

4c¢ closel/shutdown)

socket()

bind{)
Listen()

acceptl

read{)/recv()
writef)/send()

shutdownfclose

Figure 4-1. BSD Socket to Socket Communication

Establishing Connections

To establish a connection, the client process calls sockei() to create the local
data structure (see figure 4-1, step 1c). socket() creates an endpoint for
communication and returns a descriptor which is used in all subsequent

socket-related calls: s=socket (AF_INET, SOCK_STREAM, 0);

The server calls sockei() to create the local data structure. It calls bind()
to associate the socket with the server’s protocol address: bind(1ls,
gmyaddr_in, sizeof (struct sockaddr_in)). Then it calls listen() to

have the transport protocol accept connection requests on the server’s socket.

With the listen() call, a queue for incoming connections is specified. The

4-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting
BSD Sockets Overview

listen queue is established for the socket specified by the s parameter (see
figure 4-1, step 1s): listen(ls,5).

The client requests a connection to the server’s socket by calling connect()
and blocking until the server has accepted the request (see figure 4-1, step
2c): connect (s, &peeraddr_in, sizeof (struct sockaddr_in))

The server calls accept(), and completes the “connection establishment
phase” (see figure 4-1, step 2s). accept() extracts the first connection on the
queue of pending connections, creates a new socket with the same properties
as s, and allocates a new file descriptor ns for the socket: accept(ls,
g&peeraddr_in, @adrlen);

Transferring Data

At this point, data can be transferred by calling send() and recv() or the Unix
file system calls read() and write() (see figure 4-1, steps 3¢ and 3s). send() is

used to transmit a message to another socket: send(s, buf, 10, 0). recv()
is used to receive messages from a socket: recv(s, buf, 10, 0).

Terminating Connections

Finally, either the client or the server process can terminate the connection
by calling the BSD shuidown() call or the file system close() call (see figure
4-1, steps 4c and 4s): shutdown(s, 1).

4-5

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting
BSD Sockets Overview

Utility Calls

The gethostent, gethostbyname, and gethostbyaddyr subroutines return a
pointer to an object with the fields that reflect information obtained from
either the /etc/hosts (HOSTS.NET.SYS for MPE/iX) database or one of the
name services identified in the /etc/services (SERVICES.NET.SYS for
MPE/iX) file.

The getservent, getservbyname, and getservbyport subroutines each returns a
pointer to an object with the fields of a line in the network services database,
etc/services (SERVICES.NET.SYS for MPE/iX).

4-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

Porting BSD Applications to HP 3000 MPE/iX
Environment

The following steps describe the process of porting BSD IPC applications
from HP 9000 to HP 3000 systems. Refer to the flowchart in figure 4-2 for an
illustration of this process.

e Identify unsupported BSD calls in the HP 9000 application.
e Modify the HP 9000 application to run on the HP 3000.
e Ensure that all the necessary include files are in the same group/account.

e Test the client/server applications.

Identify
BSD Calls

Are they

supported Modiy

Unsupported Calls

Put Files in Correct
Group/Account

Put Files in Correct
Group/Account

Files in
Place
?

Compile/Link/Run
Application

Figure 4-2. Porting BSD Applications to HP 3000 Systems

4-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting
Porting BSD Applications to HP 3000 MPE/iX Environment

MPE/iX 4.0 Supported Calls

The 4.0 release of the MPE/iX operating system introduced the first portion of
Berkeley Sockets system calls. All of these calls and intrinsics are used in the
MPE/iX environment exactly as in the UNIX environment, for example, the
same parameters apply.

Stream Sockets Datagram Sockets
socket () socket ()
bind() bind()
listen() listen()
accept() accept()
connect ()

send() sendto()
recv() recvfrom()
shutdown () shutdown ()
getpeername() getpeername()
socketpair() socketpair()

The following naming routines are also supported:

Stream Sockets Datagram Sockets

gethostbyxxx() gethostbyxxx()
getnetbyxxx () getnetbyxxx ()
getprotbyxxx() getprotbyxxx()
getservbyxxx() getservbyxxx()

Of the Naming Service Routines listed above, gethostbyname and
gethostbyaddr are part of the MPE/iX Operating System. The rest of the
routines are bundled with the Link products and must be purchased
separately.

With MPE/iX release 4.0, connect(), send(), and recv() are not supported for
datagram type sockets, and recyfrom() and sendio() are not supported on
stream sockets.

4-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

Modifying Current Applications

Here is more specific information to help you modify your existing
applications.

Establishing Connections for Datagram Sockets

Since conmnect() and recv() are not supported for datagram sockets, you should
remove the connect() calls and replace the recv() calls with recyfrom() calls. If
the source address is not the desired address when data is received, then the
message is discarded and a new recufrom() is posted.

Transferring Data for Datagram Sockets

Since send() is not supported for datagram sockets, you should replace the
send() calls with sendio() calls. The destination address must be specified on
each sendio() call instead of on the connect() call, which you should have
removed.

Vectored Data Calls

If an application is using sendmsg() or recvmsg(), you should replace these
with a call to send() or recv(). Instead of using vectored data, you should
specify pointers to the actual data area. You should create a separate intrinsic
call for each vector. There is no limit to the number of vectors you can use. If

4-9

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting
Modifying Current Applications

you are using sendmsg() and recvmsg() to exchange file descriptors, there is
no recommended modification.

Here is an example of how to convert a vectored data call. Assume that MSG
points to the message structure used for sendmsg(). Within the structure is

a pointer to an array of vectors, and each vector consists of a pointer and
length. The message structure also contains a count of the number of vectors
in the send(). To convert this to a send() call, you can use a FOR loop. send()
will be called once for each vector. For each send() call, the current vector’s
pointer and length will be passed as the buff and len parameters for the
send(). After the send() call, the current vector pointer will be updated to
point to the next vector in the list.

READ and WRITE

read and write calls are not supported in MPE/iX release 4.0, but can be
converted to recv() and send() calls. Similarly, readv and writev calls can be
converted to recv() and send() calls, but the pointers to the actual data areas
must be specified instead of using data vectors.

FORK and EXEC

fork and exec calls are supported in MPE/iX release 4.5. You can replace

calls to fork and exec with calls to CREATEPROCESS and ACTIVATE . One
significant difference is that the parent’s data structures are not copied to the
new process. The new process must re-initialize variables or obtain access to
the parent’s data. Messages can be exchanged between the two processes
using SENDMAIL and RECEIVEMAIL.

4-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting
Modifying Current Applications

Considerations for Different Compilers

You may find that your HP 9000 application includes UNIX calls that need to
be translated to MPE/iX Operating System calls. Refer to the UNIX to MPE/iX
Cross Reference Guide. This cross-reference guide is meant to assist software
developers in porting their applications from UNIX platforms to MPE/iX
platforms.

Also, in some instances a parameter declared as constant in the UNIX
environment should be variable in the MPE/iX environment, for example:

vc_sd = accept (1sd, &peeraddr_in,
sizeof (struct sockaddr_in));

int x:

x=sizeof (struct sockaddr_in)

vc_sd = accept(lsd, &peeraddr_in, &x);

The MPE/iX equivalent to the etc/hosts file in the UNIX environment is the
HOSTS.NET.SYS file. If your application refers to etc/hosts, replace it with
HOSTS.NET.SYS as follows.

hp=gethostbyname (node_name);
if (hp == NULL) {

printf("%s not found in /etc/hosts\n'", node_name);
if (hp == NULL) {

printf("%s not found in hosts.net.sys", node_name);

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD Sockets Compilation Procedure

To compile a BSD IPC application, you need to create a library list file, called
rllist, by entering following line:

libc.net.sys, socketrl.net.sys.
After creating the file, use the following steps to compile an application.
1. ccxl file_name obj_file; info="-D_SOURCE-SOCKET"

2. 1link from=objc_file; to=exec_file; cap=ia,ba,ph;
rl="rllist;

The following tables summarize the BSD Sockets implementations for different
platforms.

4-12

FINAL TRIM SIZE : 7.5 in x 9.0 in

Table 4-1. BSD Sockets Implementations - Calls

BSD IPC Porting

BSD Sockets Compilation Procedure

Type of Call HP-UX BSD 4.3 BSD Sockets/iX PCBSD

Establish Connection Calls: | socket () socket () socket ()
bind () bind () bind ()
connect () connect () connect ()
listen() listen() listen()
accept () accept () accept ()
write() write()
writev()
send () send () send ()
sendto() sendto() sendto()
sendmsg ()
read() read()
readv()
recv() recv() recv()
recvfrom() recvfrom() recvfrom()
recvmsg()

Terminate Connection Calls: | close() close() close_socket ()
shutdown()

Utility Calls: getpeername() |getpeername() |getpeername()
getsockname() |getsockname() |getsockname()
getsockopt () getsockopt () getsockopt ()
setsockopt () setsockopt () setsockopt ()
gethostname() |gethostname() |gethostname()
sethostname()
getdomainname()
setdomainname()
ioctl() ioctl() ioctl()
fentl()

4-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting

BSD Sockets Compilation Procedure

Table 4-2. BSD Sockets Implementations - Routines

Type of Routine HP-UX BSD 4.3 BSD Sockets/iX PCBSD
Byte Order
Conversion Routines: | ntohs () ntohs () ntohs ()
ntohl() ntohl() ntohl()
htons() htons() htons()
htonl() htonl() htonl()

Internet Address

Routines: inet_addr() inet_addr()
inet_network() inet_network()
inet_ntoa() inet_ntoa()
inet_makeaddr() inet_makeaddr()
inet_netof () inet_netof ()
inet_inaof () inet_inaof ()

Domain Name

Routines: res_init()
res_send()
res_mkquery ()
res_query()
res_search()
dn_expand ()
dn_comp()

4-14

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Porting

BSD Sockets Compilation Procedure

Table 4-2. BSD Sockets Implementations - Routines {continued)

Type of Routine HP-UX BSD 4.3 BSD Sockets/iX PCBSD

Host Entry Routines: | gethostbyname() gethostbyname() gethostbyname()
gethostbyaddr() gethostbyaddr() gethostbyaddr()
gethostent () gethostent ()
sethostent () sethostent ()
endhostent () endhostent ()
getnetbyname () getnetbyname () getnetbyname ()
getnetbyaddr () getnetbyaddr () getnetbyaddr ()
getnetent () getnetent ()
setnetent () setnetent ()
endnetent () endnetent ()
getportbyname() getportbyname() getportbyname()
getportbynumber() |getportbynumber() |getportbynumber()
getportent () getportent ()
setportent () setportent ()
endportent () endportent ()
getservbyname() getservbyname() getservbyname()
getnetbyaddr () getnetbyaddr () getnetbyport ()
getservent () getservent ()
setservent() setservent()
endservent () endservent ()

FINAL TRIM SIZE : 7.5 in x 9.0 in

4-15

BSD IPC Porting
BSD Sockets Compilation Procedure

FINAL TRIM SIZE : 7.5 in x 9.0 in

DSCOPY/9000 to FTP/9000
Migration

FINAL TRIM SIZE : 7.5 in x 9.0 in

DSCOPY/9000 to FTP/9000 Migration

In the ongoing effort to promote standards for open systems networking,
Hewlett-Packard recommends migrating from DSCOPY on the HP 9000 to
FTP on the HP 9000. FTP/9000 is part of the well-known ARPA services and
is already the predominant standard for file transfers between HP 3000, HP
9000, and HP 1000 systems.

For more information on using FTP on the HP 9000, refer to Using ARPA
Services. For more information on using FTP on the HP 3000 S9xx, refer to
the HP ARPA Flile Transfer Protocol User’s Guide.

5-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

DSCOPY Options and FTP Commands

Following is a table that summarizes all of the DSCOPY options used on the
HP 3000 S9xx and HP 9000 and the equivalent F'TP commands that you can
use to achieve the same result. F'TP on the HP 9000 provides most of the
functionality that DSCOPY does.

FTP 3000/9000/1000 refers to the ARPA F'TP service on the HP 3000 S9xx,
HP 9000, and HP 1000. Note the differences between transfers to an HP 3000
S9xx or HP 1000 and transfers to an HP 9000.

NOTE

The ,code, ;rec, and ;disc functions are only applicable for transfers zo the HP 3000. File transfers to
the HP 9000 are only affected by the asci and binary commands.

* Option is the default action and has no effect.

*E Option is not available.

##% For the HP 1000, destination file attributes (file type, size, record
length) can be specified in the destination file descriptor in put or get
commands.

n/a Option is not applicable.

5-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

DSCOPY/3000 to FTP/3000 Migration
DSCOPY Options and FTP Commands

Tahle 5-1. DSCOPY Options and Equivalent FTP Commands

Option Mnemonic | DSCOPY 3000 | DSCOPY 9000 | DSCOPY 1000 | FTP 3000 | FTP 9000/1000

Ascii ASC -A AS ascii ascii
Append APP - - append append
Binary BIN -B BI binary binary
Checkpointing CHECKPT= " " " "
Clear CLEAR - o nfa nfa
Compress COMP - - - -
Direct DIR " " " "
File Code FCODE= " - code=<> nfal9000) ***
Fixed FIX -F Fl irec=,f nfal9000) ***
File Size FSIZE= " FS= ;disc= <> n/al9000} ***
Interactive Session [RETURN] i [RETURN] * *
Interchange INT " IN nfa nfa
Insert Character ICHAR= -d<char> IC=<char> nfa nfa
Move MOVE - MO get <file> get <file>
delete <file>>| delete <file>
Overwrite OVER - ov - -
Print results * -p * * *
Prompt Lockword - -P o o nfa
Quiet QUIET " au " "
Replace REP T RE delete <file>>| delete <file>
put <file> put <file>
Restart RESTART " " " "
Record Size RSIZE= -L RS=<recsize> | ;rec=<> n/a{8000) ***
Source Device SDEY= - - o nfa
Search Character SCHAR= -s<char> SC= nfa nfa
Sequential SEQ * * * *
Show globals SHOW " +SH nfa nfa
Strip STRIP " ST nfa nfa
Target Device TDEY= - o o nfa
Variable VAR - VA rec=,.v n/a{9000) ***

5-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC Sample Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC Sample Programs

This appendix includes two working NetIPC sample programs, a client
program and a server program. Use these programs as templates for your
own applications.

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC Client Program

e */
/* */
/* Client: NetIPC Client Sample Program (non-Windows) */
/* */
et */
et */
/* COPYRIGHT (C) 1988 HEWLETT-PACKARD COMPANY. */
/* All rights reserved. No part of this program may be photocopied, */
/* reproduced or translated into another programming language without */
/* the prior written consent of the Hewlett-Packard Company. */
e */
/*
* PURPOSE:
* Client to correspond with async Server example.
*
* REVISION HISTORY
*
* DESCRIPTION
* The Client uses NetIPC to send a user name to the Server and receive
* information associated with the user name from the Server.
*
* General Algorithm:
* 1. Get the name of the remote node from the user.
* 2. Create a call socket (IPCCREATE).
* 3. Get the path descriptor for the Server’s well-known socket
* (IPCDEST) .
* 4. Request connection to the Server (IPCCONNECT).
* 5. Receive connection verification (IPCRECV).
* 6. Loop--ask the user for user name for information retrieval
* (until the user enters the string literal ’EO0T’).
* 7. Send the user name to the Server (IPCSEND).
* 8. Receive the information associated with the user name
* (IPCRECV) .
*/

A-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Client Program

#define LINT_ARGS

#include <
#include <
#include <
#include <
#include <

#ifdef _MP
#include
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma
#pragma

ftelse /* _
#include

#endif /*

#define
#define
#define
#define
#define

#define
#define
#define
#define
tifdef _MP
#define
#define
#define
#define
#define
#define
#define
#define
#define
#tendif /=*

stdio.h> /* modified */
stdlib.h> /* added */
string.h> /* added */
sys/types.h>
sys/errno.h>

EIX

l|nsipcl|

intrinsic IPCSEND
intrinsic IPCRECV
intrinsic IPCRECVCN
intrinsic IPCERRMSG
intrinsic IPCCONNECT
intrinsic IPCCREATE
intrinsic IPCSHUTDOWN
intrinsic IPCDEST
intrinsic IPCCONTROL
intrinsic INITOPT
intrinsic ADDOPT
MPEIX */

<sys/ns_ipc.h>
_MPEIX */

BUFFERLEN 20
INFOBUFLEN 60
LENGTH_OF _DATA 20
MAX_BUFF_SIZE 1000
TCP_ADDRESS 31500
/* Well-known TCP address used by Server */
INACTIVE_DESCRIPTOR -1
INFINITE_WAIT 0
INTSIZE sizeof (short int)
NODENAME _LEN 256
EIX
ipcsend IPCSEND
ipccreate IPCCREATE
ipcdest IPCDEST
ipcconnect IPCCONNECT
ipccontrol IPCCONTROL
ipcrecv IPCRECY
initopt INITOPT
ipcshutdown IPCSHUTDOWN
ipcerrmsg IPCERRMSG
_MPEIX */

A-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Client Program

/[Fdkdokkokkkokkokkkkkkkkkkkkkkk FORWARD DECLARATTIONS skokokkok sk skokskokokokokskskokkok ok ok ok kk kk ok /

void
void
void
void
void

ErrorRoutine(char * , int , ns_int_t);
ReceiveData(ns_int_t , char *);
SetUp(char * , ns_int_t *);
ShutdownDescriptor(ns_int_t);
CleanUpQ);

[Fdkdokkokkkokkokkkkkkkkkkkkkkkk GLOBAL VARTABLES skokskokskokskok s skok skok skokokokok ok skok ok ok ok ok ok ok o /

static char version[] =
"@(#) PC NetIPC client program. Version B.00.00";
static char copyright[] =
"(C) Copyright 1988 Hewlett-Packard Company. All rights reserved.';

ns_int_t cd = INACTIVE_DESCRIPTOR;

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*

P

P

rocedure: main

urpose: Prompts the user for a remote node name. Sets up a
connection to the server. Continually prompts the
user for names to send to the server to lookup.
receives the information buffer associated with the
name from the server.

*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

main()

{

/*
*k

*/

char
char
char
int
ns_1i
ns_fT
int
int

Ask

data

prin
gets
prin

node_name [NODENAME _LEN] ;

requested_name [BUFFERLEN+1]; /#Allow room for extra NULLx*/

*data_buf; /*Allow room for extra NULLx*/
request;
nt_t dlen;
lags_t flags;
i;
result;

the user for the NS node name of the remote node

_buf = (char *)malloc (INFOBUFLEN + 1);

tf("Client: Enter the remote node name: '");
(node_name) ;
tf(”\n”);

FINAL TRIM SIZE : 7.5 in x 9.0 in

A-b

NetlPC Sample Programs
NetlPC Client Program

/*
**% Create call socket and connect to the server

*/
SetUp (node_name, &cd);

/*
Process any incoming requests until "EOT'" is received.
*/

requested_name[1] = °1’; /# just an initial value !'= to EOT */
while (strcmp(requested_name, "EOT") != 0) {

/*
** Ask the user for a name to be retrieved

*/

printf(""Client: Enter name for data retrieval (or EOT to exit):'");
gets(requested_name);

if (strcmp(requested_name, "EOT") !'= 0)
{
/*
** Pad the name with spaces.

*/

for (i = strlen(requested_name); i < BUFFERLEN; i++)
requested_name[i] = * ’;

/*
¥% Ask for the name the user requested.

*/

flags = 0;
ipcsend(cd, (char #)requested_name, BUFFERLEN, &flags, NULL,&result);
if (result '= NSR_NO_ERROR)

ErrorRoutine('main calling ipcSend", result, cd);

ReceiveData(cd, data_buf);

/*
** Print out the data received

*/

A-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Client Program

printf(""Client data is: %s\n", data_buf);
}
else {
printf ("Received EOT\n");
break;

}
} /* while (strcmp(requested_name, "EOT") != 0); */

CleanUpQ);
return 0;

} /* main */

/***/

/* */
/* Routine: SetUp */
/* */
/* Description: Perform setup operations: Create a TCP call socket, */
/* create destination descriptor for Server’s well-known */
/* call socket, establish VC with Server, set the VC */
/* timeout to infinity, call IPCRECV to verify the Server */
/* received the connect request, wait for the server to */
/* complete the VC. */
/* */
/* Input: node_name - name of remote node running server program. */
/* */
/* Output: cd - connection descriptor for VC. */
/* */
/* Global variables referenced: HNONE */
/* */
[ok ok ko ok ook ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o o ok ok ok ok ok ok ook o ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
void
SetUp (node_name, cd)
char *node_name;
ns_int_t *cd;
{

ns_int_t sd = INACTIVE_DESCRIPTOR;

ns_int_t dd = INACTIVE_DESCRIPTOR;

ns_int_t dlen;

int result;

short int proto_addr;

int timeout;

int request;

ns_flags_t flags;

dlen = 0;

A7

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Client Program

/*

#*% A call socket is created by calling IPCCREATE. The value returned

#* in the sd parameter will be used in the subsequent calls.

*/
ipccreate (NS_CALL, NSP_TCP, NULL, NULL, &sd, &result);

if (result '= NSR_NO_ERROR)
ErrorRoutine("SetUp calling ipcCreate', result, sd);

/*

** The server is waiting on a well-known address (TCP_ADDRESS).
#% Create the destination descriptor for the socket from the
** remote node.

*/

proto_addr = TCP_ADDRESS;
ipcdest(NS_CALL, node_name, strlen(node_name), NSP_TCP,
(short int *)&proto_addr, INTSIZE, NULL, NULL, &dd, &result);

if (result !'= NSR_NO_ERROR)
ErrorRoutine("SetUp calling ipcDest", result, dd);

/*
**% Now connect to the server

*/

*cd = INACTIVE_DESCRIPTOR;
ipcconnect(sd, dd, NULL, NULL, cd, &result);

if (result '= NSR_NO_ERROR)
ErrorRoutine("SetUp calling ipcConnect', result, *cd);

/*
#% Set the timeout to infinity with IPCCONTROL for later calls
*/

timeout = INFINITE_WAIT;
ipccontrol(*cd, NSC_TIMEQOUT_RESET, (char *)&timeout, INTSIZE,
NULL, NULL, NULL, &result);

if (result '= NSR_NO_ERROR)
ErrorRoutine("SetUp calling ipcControl", result, *cd);

/*
#% Verify the server received the connect request. Wait for the
** server to do an ipcrecvcn. (receive the ack/syn packet)

*/

A-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Client Program

ipcrecv(*cd, &request, &dlen, &flags, NULL, &result);

if (result !'= NSR_NO_ERROR)
ErrorRoutine("Setup calling ipcRecv", result, *cd);

/*
#% Shutdown the source and destination descriptors since we don’t
¥ need them any more.

*/

ShutdownDescriptor (sd) ;
ShutdownDescriptor (dd) ;

}
/e sk ok skok sk skok sk ok sk Kok ok ok ok ok ok ok ok ok ok s ok ok ok o ok skok sk sk ok ok sk ok ok ok ok o ok ok ok skok ok kR ok ok Kok K kK kK ok /
/* */
/* Routine: ReceiveData */
/* */
/* Description: Receives data from Server. Loops on IPCRECV until */
/* the total amount of data is received. */
/* */
/* Input: cd - connection descriptor to receive data on. */
/* */
/* Output: info_buf - buffer containing inbound data. */
/% */
/* Global variables referenced: HNONE */
/% */
/e sk ok skok sk skok sk ok sk Kok ok ok ok ok ok ok ok ok ok s ok ok ok o ok skok sk sk ok ok sk ok ok ok ok o ok ok ok skok ok kR ok ok Kok K kK kK ok /
void
ReceiveData(cd, info_buf)
ns_int_t cd;
char *info_buf;
{

ns_int_t amount_to_recv;

ns_int_t amt_recvd;

ns_flags_t flags;

int request;

char *buffer;

int result;

short int resl6;

short int opt [100] ;

ns_int_t rc;

/* Set up option array */

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Client Program

initopt(opt, 0, &resl6);
if (resi16 !'= NSR_NO_ERROR)
ErrorRoutine('"ReceiveData calling initopt",resl6, cd);

flags = 0;

amount_to_recv = INFOBUFLEN;
buffer = info_buf;
amt_recvd = 0;

while (amt_recvd < amount_to_recv)

{
rc = amount_to_recv; /* This is a two way value, input=max to recv,
** output = amount received.
*/
ipcrecv(cd, buffer, &rc, &flags, opt, &result);
if (result !'= NSR_NO_ERROR)
ErrorRoutine('"ReceiveData calling IPCRECV", result, cd);
flags = 0; /* Reset the flag, because NSF_MORE_DATA will always be set */
amt_recvd += rc;
buffer += rc;
}
/*
** Tack on an extra NULL so we can print the info out using printf().
*/
*(info_buf + INFOBUFLEN) = ’\0’;
}
/e sk ok skok sk skok sk ok sk ok ok ok ok ok ok ok ok skok skok sk ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ko ok ko ko k ok /
/* */
/* Routine: CleanUp */
/* */
/* Description: We have some problem, so we need to shutdown all of */
/* the descriptors and terminate the program. */
/* */
/* Input: HNONE */
/* */
/* Output: NONE */
/* */
/* Global variables referenced: cd */
/* */

/**/

A-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Client Program

void
CleanUp()
{

ShutdownDescriptor (cd) ;

exit(1);
}
[ok ok ko ok ook ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o o ok ok ok ok ok ok ook o ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
/* */
/* Routine: ErrorRoutine */
/* */
/* Description: We have some error, so print a message and then call */
/* CleanUp which will shutdown all descriptors and terminate */
/* the program. */
/* */
/* Input: Msg - string which contains the name of the routine who */
/* had the error. */
/* error - integer error number that occured. */
/* descr - descriptor for which the error occured. */
/* */
/* Output: NONE */
/* */
/* Global variables referenced: NONE */
/* */
[ok ok ko ok ook ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o o ok ok ok ok ok ok ook o ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
void
ErrorRoutine(msg, error, descr)
char *msg;
int error;
ns_int_t descr;
{

char buffer[80];

ns_int_t result;

int buffer_size;

buffer_size = 80;

printf("*Client: Error occurred in %s.\n", msg);
printf(""Client: The error code is: %d. The local descriptor is %d\n",
error, descr);
ipcerrmsg(error, buffer, &buffer_size, &result);
if (result)
printf ("ipcerrmsg failed\n');
else
printf(""Client: NetIPC error = %s\n'",buffer);

A-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Client Program

if (errno)
perror("\n'");

CleanUpQ);

}
[ok ok ko ok ook ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o o ok ok ok ok ok ok ook o ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
/* */
/* Routine: ShutdownDescriptor */
/* */
/* Description: Shutdowns a given descriptor. This descriptor can be */
/* either a source or connection descriptor. */
/* */
/* Input: desc - descriptor to be shutdown. */
/* */
/* Output: NONE */
/* */
/* Global variables referenced: HNONE */
/% */
[ok ok ko ok ook ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o o ok ok ok ok ok ok ook o ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
void
ShutdownDescriptor (descr)
ns_int_t descr;
{

int result;

/*

#* Don’t worry about errors here, since there isn’t much we can do.

*/

ipcshutdown(descr, NULL, NULL, &result);
} /* ShutdownDescriptor */

A-12

FINAL TRIM SIZE : 7.5 in x 9.0 in

/*
/*
/*

/*
/*
/*
/*
/*
/*

/

*

¥R K K X X K K K X X X K K K X X X K ¥ X X X X ¥ ¥ ¥ ¥

NetIPC Server Program

——— */
*/
SERVER: NetIPC Server Sample Program */
——— */
——— */
COPYRIGHT (C) 1988 HEWLETT-PACKARD COMPANY. */
All rights reserved. No part of this program may be photocopied, */
reproduced or translated into another programming language without */
the prior written consent of the Hewlett-Packard Company. */
——— */
PURPOSE:
To show the operation of asynchronous NetIPC calls.
REVISION HISTORY
DESCRIPTION
The Server uses IPC to receive a user name from a Client and sends
information associated with the user name back to the Client.
The Server can have connections to 5 Clients.
General Algorithm:
1. Create a well-known call socket (IPCCREATE).
2. Post a nowait ipcrecvCn to receive connection requests sent from
clients.
3. When the ipcrecvCn completes, receive the connection and post
a nowait ipcrecv to receive the requested user name.
4. Since the ipcrecv may complete before receiving all of the user
name, additional ipcrecv calls may have to be posted to receive
all of the user name.
5. Once all of the user name is received, open the file
named "datafile.'" Scan datafile until the user
record and information associated with the user name are found.
6. Call ipcsend (nowait) to send the information associated
with the user name.
7. Post a nowait ipcrecv on the VC to receive next user name or
shutdown notification from the remote (the ipcrecv completes
with error 65, REMOTE ABORT).
8. Upon receipt of shutdown notification, call ipcshutDown to
shut the VC.
A-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

* Since all IPC calls (except IPCCREATE) are done nowait, the main loop
* calls IPCWait, determines what type of event completed, and calls the
* appropriate procedure to handle the event.

#define LINT_ARGS

#include <stdio.h>

#ifdef _MPEIX
#include '"nsipc"
#pragma intrinsic IPCSEND
#pragma intrinsic IPCRECV
#pragma intrinsic IPCRECVCHN
#pragma intrinsic IPCERRMSG
#pragma intrinsic IPCCONNECT
#pragma intrinsic IPCCREATE
#pragma intrinsic IPCSHUTDOWN
#pragma intrinsic IPCDEST
#pragma intrinsic IPCCONTROL
#pragma intrinsic INITOPT
#pragma intrinsic ADDOPT

#else
#include <sys/ns_ipc.h>

#endif

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <sys/types.h>

#include <sys/errno.h>

#define FALSE 0
#define TRUE 'FALSE
#define INBUFFERLEN 20
#define OUTBUFLEN 60
#define LENGTH_OF_DATA 20
#define MAX_BUFF_SIZE 1000
#define MAX_NUM_VCS 5
#define INACTIVE_DESCRIPTOR -1
#tdefine INTSIZE sizeof (int)
#define INFINITE_WAIT 0

/*

This TCP address is in the user-allocatable range. BE SURE

*% THAT THIS ADDRESS IS NOT BEING USED BY ANOTHER APPLICATION.

*/

A-14

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

#define TCP_ADDRESS 31500
#define RECOVERABLE 1
#define IRRECOVERABLE 2
#define NSR_GRACEFUL_RELEASE 68

/* This is not defined in <sys/ns_ipc.h> */

#ifdef _MPEIX

#define ipcsend IPCSEND
#define ipccontrol IPCCONTROL
#define ipcrecv IPCRECY
#define ipcrecvcn IPCRECVCN
#define initopt INITOPT
#define addopt ADDOPT
#define ipccreate IPCCREATE
#define ipcshutdown IPCSHUTDOWN
#define ipcerrmsg IPCERRMSG
#endif

/[F ok dokkokkkokkokokkokkokkokkkkokkkkokkk GLOBAL VARTABLES sskokskokskokokokskokskokokkokkokok sk ok sk ok sk ok ok ok /

static char version[] =
"@(#) PC NetIPC server program. Version B.00.00";
static char copyright[] =
"(C) Copyright 1988 Hewlett-Packard Company. All rights reserved.';

int vcs_available;
fd_set readfds;
fd_set writefds;
fd_set exceptids;
ns_int_t sd = INACTIVE_DESCRIPTOR;
struct vc_type {
ns_int_t cd;
unsigned int amount_received;
char in_buffer [INBUFFERLEN+1] ;
/*Allow room for a NULL*/
char out_buffer[OUTBUFLEN] ;

} vc_table[MAX_NUM_VCS] = {INACTIVE_DESCRIPTOR, O, O, O};

A-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

/#*sxkkxkkkkk* PROTOTYPE DECLARATIONS FOR COMPILER PARAMETER CHECK INGs#skok sk ks /

void ErrorRoutine(char * , int , ns_int_t , int);
int HandleNewRequest(ns_int_t);

void ProcessRead(ns_int_t , unsigned);
void ReadData(char * , char *);

void SetUpQ);

void InitiateConnection(ns_int_t *);

void ShutdownDescriptor(ns_int_t *);

void CheckFile();

void CleanUp();

void RejectRequest(ns_int_t);

int FindVcInTable(ns_int_t , ns_int_t **);
char *sock_strerror(int);

/***/

main()
{
ns_flags_t flags;
int request;
ns_int_t dlen;
int result;
ns_int_t serving_cd;
ns_int_t *serving_cd_ptr;
int num_recvcns_posted = 0;
int read_result[64], except_result[64];
ns_int_t timeout;
int bound;
int i;
fd_set rfds;
fd_set efds;
int nfound;
char *errptr;

vcs_available = MAX_NUM_VCS;

/*
#*% Check that the data file can be opened.
*/

printf ("CheckFile()\n");
CheckFile();

A-16

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

FD_ZERO((fd_set *) &readfds);
FD_ZERO((fd_set *) &exceptfds);

/*

** Create a call socket with a well known address for the clients
** to use.

*/

SetUp();

/*
*k
*k
*k
*k

*/

The num_recvcns_posted variable keeps track of the number of
outstanding connection requested. We only want one at a time.
If we get up to the maximum number of VCs established, then we
will have zero recvcns posted.

num_recvcns_posted = 1;

/*
*k
*k
*k
*k
*k
*k
*k
*k
*k
*k

*/

Loop forever waiting to serve clients. The following cases
are possible:

- a new clients request service (request = IPCRECVCHN).
- a client asks for information (request = IPCRECV).

- a client receives the data (request = IPCSEND).
Handle each one of these cases in this loop.

If any other situations occur, exit out of the loop, and let the
clean up routine de-allocate the sockets for this server.

while (TRUE)

{

bound = MAX_NUM_VCS + sd ;

rfds = readfds;

efds = exceptids;

nfound = select(bound, (int *)&rfds, 0, (int *)&efds, 0);
printf ("connections: %d\n'",MAX_NUM_VCS - vcs_available);

if (nfound < 0){
errptr = sock_strerror(errno);
fprintf(stderr,"select(: %s (4d)\n",errptr, errno);
CleanUpQ);

}

A-17

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

/*

#*% Check the listen queue for any new connection requests.

¥% Decrement the recvcns_posted count, and handle the new

request. HandleNewRequest returns TRUE if it successfully
** created another session. If so, increment the count.

*ok

#% New NetIPC connections are indicated as an exception on

#% hp-ux, but as a read event on MPEiX.

*¥% TIf BSD Sockets where used, hp-ux would also handle a

#% connection request as a read event.

*/

#ifdef _MPEIX
if (FD_ISSET(sd, (fd_set *) &rfds))
ffelse
if (FD_ISSET(sd, (fd_set *) &efds))
#endif
{
if (vcs_available)
HandleNewRequest (sd) ;
else
RejectRequest(sd) ;

for (1 = 0; 1 < (bound - sd); i++)

{
/*
*% Process any requests.
*/
if (vc_table[i].cd '= -1)
if (FD_ISSET(vc_table[i].cd, (fd_set *) &rfds))
{
ProcessRead(vc_table[i].cd, 0);
}
}
} /* while */
return;
}
A-18

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

/***/

/* */
/* Routine: CheckFile */
/* */
/* Description: Check that the file can be opened. */
/* */
/* Input: HNONE */
/* */
/* Output: NONE */
/* */
/* Global variables referenced: */
/* */
[/ ok ok sk ok o ok s ok sk ok ok ook ok ook sk ok ok ok ok ook ok ok o ok sk sk ok ok ok ok ok ook sk ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok /
void

CheckFile ()

{

FILE *fd;
if ((£d = fopen('datafile", "r")) == NULL)

ErrorRoutine("CheckFile'", 0, 0, IRRECOVERABLE);
fclose(fd);

/***/

/* */
/* Routine: SetUp */
/* */
/* Description: Called when the server is first started up, SetUp */
/* initializes the vc_table and creates the server’s source */
/* descriptor. */
/* */
/* Input: HNONE */
/* */
/* OQutput: vc_table - initialized with INACTIVE_DESCRIPTOR and */
/* contains the cd for the first connection. */
/* */
/* Global variables modified: sd - source descriptor for the server. */
/* */

/***/

A-19

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

void
SetUp()
{
short int option[100], resi6;
int result;
short int timeout;
short int port_address;
int i;
/*
#% Set up the opt array for the parm we will use.
*/

initopt(option, 1, &resi6);
if (resi16 !'= NSR_NO_ERROR)
ErrorRoutine("InitOpt", result, 0, IRRECOVERABLE);

/*

#% Now add the option for the well-known address for the
** JPCCreate Call

*/

port_address = TCP_ADDRESS;
addopt (option, 0, NSO_PROTOCOL_ADDRESS, sizeof(short int),
(short int *)&port_address,&resl6);
if (result !'= NSR_NO_ERROR)
ErrorRoutine("AddOpt'", result, O, IRRECOVERABLE);

/*
#*% A call socket is created by calling IPCCREATE. The value returned
#% in the sd parameter will be used in the following calls.

*/

ipccreate (NS_CALL, NSP_TCP, NULL, option, &sd, &result);
if (result !'= NSR_NO_ERROR)
ErrorRoutine("IPCCreate', result, sd, IRRECOVERABLE);

/*
#% Set the sd timeout to infinity with IPCControl for later calls
*/

timeout = INFINITE_WAIT;
ipccontrol(sd, NSC_TIMEOUT_RESET, (char *)&timeout, sizeof(short int),
NULL, NULL, NULL, &result);
if (result '= NSR_NO_ERROR)
ErrorRoutine("SetUp: IPCControl", result, sd, IRRECOVERABLE);

A-20

FINAL TRIM SIZE : 7.5 in x 9.0 in

/*

* %

*/

NetlPC Sample Programs

NetlPC Server Program

Set the ’select’ bits.

FD_SET(sd, &readfds);
FD_SET(sd, &exceptfds);

/*
*k

*/

Inititalize the vc_table

for (i=0; i < MAX_NUM_VCS; i++)

vc_table[i].cd = INACTIVE_DESCRIPTOR;

/***/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/*
/* Routine: CleanUp
/*
/* Description: We have some problem, so we need to shutdown all of
/* the descriptors and terminate the program.
/*
/* Input: HNONE
/*
/* Output: NONE
/*
/* Global variables referenced: vc_table
/*
/s sk sk sk ok ok sk sk sk sk ok ke o ek sk sk ok sk s ek sk ok sk sk sk sk ok ok sk sk sk sk sk s ek sk ek sk sk sk sk s ke o sk ok sk ok s ek sk ok /
void
CleanUp()
{
int i;
/*
#% Shutdown the source descriptor.
*/

ShutdownDescriptor (&sd) ;

/*
*k
*k

*/

Shutdown all of the VC’s that are active in the vc_table.
Once again, don’t worry about errors.

FINAL TRIM SIZE : 7.5 in x 9.0 in

A-21

NetlPC Sample Programs
NetlPC Server Program

for (i = 0; i < MAX_NUM_VCS; i++)

{
if (vc_table[i].cd !'= INACTIVE_DESCRIPTOR)
ShutdownDescriptor (&vc_table[i].cd);
}
exit(1);

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Routine: ErrorRoutine

Description:

We have some error, so print a message. If the severity is
IRRECOVERABLE, call CleanUp which will shutdown all descriptors

and terminate the program.

Input: routine - string which contains the name of the routine who

had the error.
error - integer error number that occured.

descr - descriptor for which the error occured.
severity - RECOVERABLE it we want to just log a message
else TRRECOVERABLE and we want to terminate execution

Output: NONE

Global variables referenced: NONE

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

#define BUFFSIZE 80

Vo
Er;

{

id
rorRoutine(routine, error, descr, severity)
char *routine;

int error;
ns_int_t descr;

int severity;

char buffer [BUFFSIZE];

ns_int_t result;

int buffer_size = BUFFSIZE;

printf ("Server: Error occurred in %s call.\n", routine);
printf ("Server: The error code is: %d. The descriptor is: %d\n",
error, descr);

A-22

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

ipcerrmsg(error, buffer, &buffer_size, &result);
if (result)

printf ("ipcerrmg failed!'\n");
else

printf ("Server: NetIPC error %s\n",buffer);

if (severity == IRRECOVERABLE)
CleanUpQ);
}
#undef BUFFSIZE

/***/

/* */
/* Routine: FindVcInTable */
/* */
/* Description: Searches the VC table for a given descriptor */
/* */
/* Input: cd - descriptor to search the VC table for */
/* */
/* Output: cd_ptr - pointer to the descriptor in the VC table found */
/* */
/* Return: TRUE if descriptor was found in table, else FALSE. */
/* */
/* Global variables referenced: vwc_table */
/* */
[sk ko ok ok sk ook ok ook ok ook o oK ok K ook ook o Kok KoK o ok ook o ook o o ok ok ok ook ok ook ok ok o ok KoK koK ok ok o ok ok ook o ok ok
int
FindVcInTable(cd, cd_ptr)

ns_int_t cd;

ns_int_t **cd_ptr;
{

int i;

for (i=0; i < MAX_NUM_VCS; i++)

{
if (cd == vc_table[i].cd)
{
*cd_ptr = &vc_table[i].cd;
break;
}
}

A-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC

Sample Programs

NetlPC Server Program

if (
{

r
}
else
{

r
}

i < MAX_NUM_VCS)

eturn(TRUE) ;

eturn(FALSE) ;

/***/

/* */
/* Routine: HandleNewRequest */
/* */
/* Description: A new client wants to talk to us, complete the vc */
/* establishment. */
/* */
/* Input: cd - descriptor for the newly completed virtual circuit. */
/* */
/* Output: NONE */
/* */
/* Returns: TRUE if another recvcn was posted, else FALSE. */
/* */
/* Global variables referenced: NONE */
/* */
[ok ok ko ok ook ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o o ok ok ok ok ok ok ook o ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
int
HandlelNewRequest (cd)
ns_int_t cd;
{
int result;
short int timeout;
int i;
ns_int_t dlen;
ns_flags_t flags;
ns_int_t temp;
/*
#*% Find an available place in the table.
*/
/*
#% Search for the next available vc descriptor in the vc_table.
*/
A-24

FINAL TRIM SIZE : 7.5 in x 9.0 in

}

NetlPC Sample Programs
NetlPC Server Program

for (i=0; i < MAX_NUM_VCS; i++)

{

if (vc_table[il.cd == INACTIVE_DESCRIPTOR)

break;

}
/*
#*% If we found an available vc descriptor in the vc_table, then
** 1initiate another connection. If we are out of available
#% descriptors, then skip it; We will then initiate a connection
as an existing connection is shutdown.
*/
if (i < MAX_NUM_VCS)
{

InitiateConnection(&vc_table[i].cd);

return(TRUE) ;
}
else /* This should never happen... */
{

}

printf (""HandleNewRequest: vcs_available = %d\n",vcs_available);
CleanUpQ);

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

void

*/
Routine: ProcessRead */
*/
Description: We have a client program which has send in a read */
request. So process the read. */
*/
Input: cd - descriptor for the virtual circuit. */
amt_recvd - amount of data received from completing Recv */
*/
Output: NONE */
*/
Global variables referenced: NONE */
*/
/3 kok Kok ok ok okok ok skok ok ok ok Kok ook ok KoK ok o Kok ok oKk ok ok skok ok sk ok ok ok ok KoK ko K ok sk sk ok sk okok koK ok skok ok /
ProcessRead(cd, amt_recvd)
ns_int_t cd;
unsigned int amt_recvd;

A-25

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

{
int result;
ns_int_t dlen;
char *buffer;
int i;
ns_flags_t flags;
/*

We have received data on the given VC.
** So determine which VC from the vc_table we have.

*/
for (1 = 0; 1 < MAX_NUM_VCS; i++)
{
if (cd == vc_table[i].cd)
break;
}

if (i == MAX_NUM_VCS)
ErrorRoutine("ProcessRead'", 0, cd, IRRECOVERABLE);

/*
** Receive the data

*/

for (vc_table[i].amount_received= 0 ;
vc_table[i] .amount_received < INBUFFERLEN;
vc_table[i] .amount_received += dlen) {

dlen = INBUFFERLEN - vc_table[i].amount_received;
buffer = vc_table[i].in_buffer + vc_table[i].amount_received;
flags = 0;

ipcrecv(cd, buffer, &dlen, &flags, NULL, &result);

/*
** Since MPEIX has Resets(aborts) and graceful releases on the
read instead of an exception, we account for that.

*/

if (result !'= NSR_NO_ERROR)

A-26

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

#ifdef _MPEIX
if ((result == NSR_REMOTE_ABORT) || (result == NSR_GRACEFUL_RELEASE))

{
ShutdownDescriptor (&vc_table[i].cd);
return;
}
else
#endif
ErrorRoutine('"ProcessRead calling ipcrecv", result, cd,
IRRECOVERABLE) ;
}
/*

#*% If we have all of the name from the client, then get the

** data we need from the file to send to the client. But first,
#*% NULL terminate the name field. So we can print it out in

** ReadData.

*/
vc_table[i].in_buffer [INBUFFERLEN] = °\0’;

ReadData(vc_table[i].in_buffer, vc_tablel[i].out_buffer);

/*
** And send the data back to the client
*/

ipcsend(cd, vc_table[i].out_buffer, OUTBUFLEN, NULL,NULL,&result);
if (result !'= NSR_NO_ERROR)
ErrorRoutine("ipcsend", result, cd, IRRECOVERABLE);

/*
*#% Clear the amount_received field since we may be receiving
**% more names from the user after the Send completes.

*/

vc_table[i] .amount_received = 0;

A-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

/***/

/* */
/* Routine: ReadData */
/* */
/* Description: From the file ’datafile’ look for the given name and */
/* if found return the information on the given name. If the */
/* given name is not found return a string that says so. */
/* */
/* Input: name - a string name keyword to search for in ’datafile’ */
/* */
/* Output: output_buffer - contains the information found for name. */
/* */
/* Global variables referenced: NONE */
/* */

/***/

void
ReadData(name, output_buffer)
char *name ;
char *output_buffer;
{
FILE *datafile;
char *ptr;
char input_buffer [INBUFFERLEN+OUTBUFLEN+2]; /* Allow room for name */
/* data, new-line, and */
/% NULL */

/*

#*% Open the file named '"datafile'. Search until the last record

** is found, or we match the user name the client wants. The

#% format of the file is characters 1 - 20 comprise the name field.
Characters 22 - 80 comprise the data field. If there is a match,
retreive the remaining data from the file, and send it back

** (be sure to pad the data field with spaces since NULL-terminated
** strings are not recognized by the HP3000 server program in Pascal.
** If there is no match, return "name not found" to the client.

*/

#ifdef _MPEIX
if ((datafile
ffelse
if ((datafile = fopen("datafile'", "rt")) == NULL)
#endif
ErrorRoutine("ReadData', 0, 0, IRRECOVERABLE);

fopen("DATAFILE", "r")) == NULL)

A-28

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

while (fgets(input_buffer, sizeof (input_buffer), datafile) != NULL)
{

/*
#% Now see if the name matches the name key. Compare at most
**k INBUFFERLEN characters and ignore cases during the compare.
*/
if (strncmp(name, input_buffer, INBUFFERLEN) == 0)
{
/*
#*% We found the name the client requested in the file. So fill
*#% the input line with spaces starting where the newline character
** which gets() puts on at the end of the line.
*/
ptr = &input_buffer [INBUFFERLEN+1];
while ((*¥ptr '= ’\n’) & (#ptr '= ’\0’))
{
ptr++;
}
while (ptr < &input_buffer [INBUFFERLEN+OUTBUFLEN])
{
¥ptr++ =’ 7
}
/*
Print a message to the server console.
*/
printf ("Server: %s information found.\n", name);
/*
Copy the data found into the given output_buffer, close
** the datafile and return.
*/
strncpy(output_buffer, &input_buffer [INBUFFERLEN+1],
OUTBUFLEN) ;
fclose(datafile);
return;
}

A-29

FINAL TRIM SIZE : 7.5 in x 9.0 in

}

NetlPC Sample Programs

NetlPC Server Program

/*
#* If we did not find the name, continue searching the file.
*/

} /% search the file */

/*
*k
*k
*k

*/

We’ve fallen out of the while loop because we reached the end
of the file. Print an error message and put a 60-byte error
message in the data buffer.

printf ("Server: %s not in file.\n", name);

strncpy(output_buffer,
"SERVER did not find the requested name in the datafile. "
OUTBUFLEN) ;

/*

** Close the datafile and return.

*/

fclose(datafile);
return;
/* ReadData */

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Routine: InitiateConnection

Description: Initiates a connection by calling ipcrecvCn
Input: NONE

Output: cd - connection descriptor for the new connection.
Global variables referenced:

sd - source descriptor
vcs_available - global number of vcs available

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

A-30

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

void
InitiateConnection(cd)
ns_int_t *cd;
{
int result;
/*

#*% Initiate the connection. NOTE: on a PC, the ipcrecvCn is always
** an unblocked call. So we do not need to enable NOWAIT I/0 here.
*/

printf ("ipcrecvCn()\n");
ipcrecven(sd, cd, NULL, NULL, &result);

FD_SET (*cd, &readfds);
vcs_available—-;

if (result '= NSR_NO_ERROR)
ErrorRoutine("ipcrecvCn', result, *cd, IRRECOVERABLE);

} /* InitiateConnection */

/***/

/* */
/* Routine: ShutdownDescriptor */
/* */
/* Description: Shutdowns a given descriptor. This descriptor can be */
/* either a source or connection descriptor. */
/* */
/* Input: desc - descriptor to be shutdown. */
/* */
/* Output: NONE */
/* */
/* Global variables referenced: */
/* vcs_available - global number of vcs available. */
/* */

/***/

A-31

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetlPC Sample Programs
NetlPC Server Program

void
ShutdownDescriptor (desc)
ns_int_t *desc;
{
int result;

ipcshutdown(*desc, NULL, NULL, &result);

/*
Don’t worry about errors here, since there isn’t much we can do.

*/

FD_CLR(*desc, &readfds);
vcs_available++;
*desc = INACTIVE_DESCRIPTOR;

}
void
RejectRequest (cd)
ns_int_t cd;
{
ns_int_t temp;
InitiateConnection(&temp) ;
ShutdownDescriptor (&temp) ;
}
char *

sock_strerror (error_num)
int error_num;

{
return (strerror(error_num));

}

A-32

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs

This appendix includes two working BSD IPC sample programs, a client
program and a server program. Use these programs as templates for your
own applications.

B-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Client Program

e */
/* */
/* Client: BSD Sockets Client Sample Program (non-Windows) */
/* */
et */
et */
/* COPYRIGHT (C) 1988 HEWLETT-PACKARD COMPANY. */
/* All rights reserved. No part of this program may be photocopied, */
/* reproduced or translated into another programming language without */
/* the prior written consent of the Hewlett-Packard Company. */
e */
/*
* PURPOSE:
* Client to correspond with async Server example.
*
* REVISION HISTORY
*
* DESCRIPTION
* The BSD client application sends a request to the server
* at a well-known port and receives the information requested.
* The host name used must be configured in the /etc/hosts file
* and the service name and well-known port must be configured
* in the /etc/services file.
*
* Note that PCs compiled with the small and medium models
* must declare some variables as far.
*
* General Algorithm:
* 1. Get the name of the remote node from the user.
* 2. Create a socket (socket).
* 3. Connect to the server’s well-known port (connect).
* 4. Loop -- ask the user to enter a request for information
* until the user enters the string literal ’EOT’.
* 5. Send the request to the Server (send).
* 6. Receive the information requested (recv).
*/

B-3

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Client Program

#include <sys/types.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* BSD Sockets Include Files */

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#include <sys/errno.h> /* needed for 3k and 9k systems */

#define BUFFERLEN 20
#define INFOBUFLEN 60
#define TCP_ADDRESS 31500 /* Well-known server address. For BSD

SOCKETS, you could add a service
** to the /etc/services file
** (services.net.sys for MPE/iX) and
** use getservbyname(). To use
this, compile with GETSERVBYNAME
** defined.

*/

[Fdkdokkokkkokkokkkkkkkkkkkkkkk PROTOTYPE DECLARATTONS skokskokskok ok s skok sk ok okokokok ok kok ok ok /

void SetUp(char *);

void ReceiveData(char *);
void CleanUp(void);

void ShutdownDescriptor(void);
char *sock_strerror(int);

[Fdkdokkokkkokkokkkkkkkkkkkkkkkk GLOBAL VARTABLES skskokskokskokskok ok ok ok sk ok okok ok kok ok ok ok /

static char version[] =
"@(#) PC BSD client program. Version B.00.00";
static char copyright[] =

"(C) Copyright 1988 Hewlett-Packard Company. All rights reserved.';

int sd; /* socket descriptor */
static char serv_name[] = "myserv'";
B-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Client Program

/**/

*/
*/
*/
*/
*/
*/
*/
*/

/*

/* Procedure: main

/*

/* Purpose: Prompts the user for a remote node name. Sets up a

/* connection to the server. Then continually prompts the
/* user for names to send to the server to lookup. Then
/* receives the information buffer associated with the

/* name from the server.

/ sk sk ok sk sk ok sk s ok sk sk ok ke o sk sk sk ok ke s ek sk ok skl sk sk sk ke ok sk sk sk sk ok ke o sk sk sk ok ke sk ook sk s sk sk sk ok ok sk sk sk ok ok /
main()

{

char requested_name[BUFFERLEN+1]; /#Allow room for extra NULLx*/
char data_buff[INFOBUFLEN + 1]; /*Allow room for extra NULLx*/
int i;

int num;

char *errptr;

char host_name[25];

/*

**k Ask the user for the host name of the remote node
*/

printf(""Client: Enter the remote host name: '");

gets(host_name);

/*
**k Create call socket and connect to the server

*/
SetUp (host_name) ;
do {
/*
#% Ask the user for a name to be retrieved

*/

printf(""Client: Enter name for data retrieval (or EOT to exit):
gets(requested_name) ;

");

FINAL TRIM SIZE : 7.5 in x 9.0 in

B-5

BSD IPC Sample Programs
BSD IPC Client Program

if (strcmp(requested_name, "EOT") != 0)

{

/*

** Pad the name with spaces so that send is always BUFFERLEN
*k in length.

*/

for (i = strlen(requested_name); i < BUFFERLEN; i++)

requested_name[i] = > 7;

/*

*% Send the request to the server.

*/

num = send(sd, requested_name, BUFFERLEN, 0);
if (num < 0)

{
errptr = sock_strerror(errno);
printf("send(): %s (4d)\n", errptr, errno);
CleanUpQ);

}

/*

*% Get information buffer from server.

*/

ReceiveData(data_buff) ;

/*

*% Print out the data received

*/

printf(""Client data is: %s\n", data_buff);

}

} while (strcmp(requested_name, "EOT") != 0);

CleanUpQ);
return(0) ;

B-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Client Program

/**/

/* */
/* Routine: SetUp */
/* */
/* Description: Perform setup operations: Create a socket and */
/* connect to the server’s well-known port. */
/* */
/* Input: host_name - name of remote host running server program. */
/* */
/* Output: sd - socket descriptor. */
/* */
/* Global variables referenced: NONE */
/* */

/**/

void SetUp(host_name)
char *host_name;

{

int rc; /* return code */
int req;
int len;
int flag = 1; /# for ioctl on 9k */

char argp;
char *errptr;
char buff[100];

struct hostent *hp;
#ifdef GETSERVBYNAME
struct servent *sp;
#endif
struct sockaddr_in server;
struct sockaddr_in client;

/* allocate and clear out address structures for 3k and 9k

*/

memset ((char *)&server, 0, sizeof(struct sockaddr_in));
memset ((char *)&client, 0, sizeof(struct sockaddr_in));

/*
** The IP address is determined by calling gethostbyname().
*/

B-7

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Client Program

hp
if
{

}

= gethostbyname ((char *) host_name);
(hp == NULL)

printf (""Unable to locate host entry.\n');
CleanUpQ);

#ifdef GETSERVBYNAME

/*
*k
*k

*/

sp
if
{

}
#endif

/*
*k
*k

*/

sd

}
/*

* %

*/

The well-known port number is determined by calling

getservbyname ().

= getservbyname (serv_name, 'tcp'");
(sp == NULL)

printf (""Unable to locate service entry.\n');

CleanUpQ);

A socket is created by calling socket().
willl be used in subsequent calls.

= socket (AF_INET, SOCK_STREAM, 0);

(sd < 0)

errptr = sock_strerror(errno);

printf ("%d: %s\n", errno, errptr);
CleanUpQ);

Connect to the server.

server.sin_family = AF_INET;
#ifdef GETSERVBYNAME
server.sin_port = sp->s_port;

ffelse

server.sin_port = TCP_ADDRESS;

#endif

server.sin_addr.s_addr =

((struct in_addr *) (hp->h_addr))->s_addr;

The value returned

B-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Client Program

rc = connect(sd, &server, sizeof(struct sockaddr_in));

if (rc < 0)

{
errptr = sock_strerror(errno);
printf ("connect(): %s (%d)\n'", errptr, errno);
CleanUpQ);

}

/* Set sd for non-blocking i/o mode */

#ifdef _NONBLOCK
rc = ioctl(sd, FIOSNBIO, &flag);
if (rc < 0)
{
errptr = sock_strerror(errno);
printf("ioctl(): %s (%d)\n'", errptr, errno);

CleanUpQ);

}
#endif
}
[k ok ko ok sk ook ok ok sk ok ok ok ok sk ok ok ok o ok ok ok ok o ok ok o ok o ok ok ok ok o ok o ook o ok o ok o ok o ook o ok ook sk ook ok ok ok ok ok ok ook sk ok ok ok ok ok /
/* */
/* Routine: ReceiveData */
/* */
/* Description: Receives data from the server. Loops on recv until */
/* the total amount of data is received. */
/* */
/* Input: cd - connection descriptor to receive data on. */
/* */
/* Output: buff - buffer containing inbound data. */
/* */
/* Global variables referenced: sd */
/* */

/**/

void ReceiveData(buff)
char #*buff;
{
unsigned int amt_to_recv;
long amt_recvd;
int rc;
char *errptr;
int error;

amt_to_recv = INFOBUFLEN;

/* The server should always send INFOBUFLEN bytes. */

amt_recvd = 0;

FINAL TRIM SIZE : 7.5 in x 9.0 in

B-9

BSD IPC Sample Programs
BSD IPC Client Program

while (amt_recvd < amt_to_recv){
rc = recv(sd, buff, amt_to_recv, 0);
if (rc<0) {
if (errno !'= EWOULDBLOCK){ /* This is for Non-Blocked i/o */
error = errno;
errptr = sock_strerror(errno);
printf (""ReceiveData recv: %s (%d)\n",errptr, error);

}
rc = 0;
}
amt_recvd += rc;

}

/*

** Tack on an extra NULL so we can print the info out using printf().

*/

*(buff + INFOBUFLEN) = °\0’;
}
[ok ok ko ok ook ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o o ok ok ok ok ok ok ook o ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
/* */
/* Routine: CleanUp */
/* */
/* Description: We have some problem, so we need to shutdown the */
/* connection and terminate the program. */
/* */
/* Input: HNONE */
/* */
/* Output: NONE */
/* */
/* Global variables referenced: sd */
/* */

/***/

void CleanUp()
{
close(sd);
exit(1);
}

char #*sock_strerror (error_num)

int error_num;

{

return (strerror(errno));

B-10

FINAL TRIM SIZE : 7.5 in x 9.0 in

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

/

*

¥ O K X X K K K X X X K K K X X X ¥ ¥ X X X X ¥ ¥ ¥ ¥

BSD IPC Server Program

COPYRIGHT (C) 1988 HEWLETT-PACKARD COMPANY.

All rights reserved. No part of this program may be photocopied,
reproduced or translated into another programming language without
the prior written consent of the Hewlett-Packard Company.

PURPOSE:
To show the operation of BSD socket calls.

REVISTON HISTORY

DESCRIPTION
The Server uses BSD Sockets to receive a request from a client
send the response back. The server can accept connections from
up to 5 clients.

General Algorithm:

*/
*/
*/
*/

*/
*/
*/
*/
*/

1. Create a well-known call socket.
2. Select waiting for incoming connections requests or data.
3. When the select completes on the call socket, accept the connection
and wait on select again to receive the requested user name.
4. Since the recv may complete before receiving all of the user name,
additional recv calls may have to be called to receive all of
the user name.
5. Once all of the user name is received, open the file
named "datafile.'" Scan datafile until the user
record and information associated with the user name are found.
6. Call send (nowait) to send the information associated
with the user name.
7. Wait using select to receive next user name or
shutdown notification from the remote.
8. Upon receipt of shutdown notification, call close the VC
——— */
B-11

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

#include
#include
#include
#include
#include
#include

/* BSD S

#include
#include
#include
#include

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define

#define
VAT T LY
static ¢
||@(#)
static ¢

" (C)

/*
** Glob

<stdio.h>
<stdlib.h>
<string.h>
<time.h>
<sys/types.h>
<sys/errno.h>

ockets Include Files */

<sys/socket.h>

<netinet/in.h>

<netdb.h>

<errno.h> /* needed for 3k and 9k systems */
FALSE 0
TRUE 'FALSE
INBUFFLEN 20
OUTBUFFLEN 60
LENGTH_OF _DATA 20
MAX_NUM_SOCKETS 5
TCP_ADDRESS 31500
BACKLOG 5
MAXHOSTNAME 32
MAX_NUM_CONN 32
INACTIVE_DESCRIPTOR -1

dokdokdokkokkokkkokkkkkkkkkk GLOBAL VARTABLES skokskokskokskok sk skeok skok skokokokok ok ok ok ok ok ok o /

har version[] =

PC NetIPC server program. Version B.00.00";

har copyright[] =

Copyright 1988 Hewlett-Packard Company. All rights reserved.';

al variables for selecting the client sockets with I/0

pending.

*/

fd_set r
fd_set w
fd_set e

/% int r

eadfds;
ritefds;
xceptids;

eadfds, writefds, exceptfds; */

B-12

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

/*

#% The nfds variable is used by select.
*/

int nfds;

int vcs_available;
int sd; /#* server socket descriptor */

struct csd_type {

int sd;

struct sockaddr_in addr;
} csd_table[MAX_NUM_SOCKETS] ;

static char serv_name[] = "myserv'";

/*%*%*x**x*xx+ PROTOTYPE DECLARATIONS FOR COMPILER PARAMETER CHECKING *k*k**/

void CheckFile(void);

void SetUp(void);

int HandleNewRequest(void);
void InitiateConnection(int);
void ProcessRead(int, int);
void ReadData(char * , char *);
void ShutdownDescriptor(int);
void CleanUp(void);

char *sock_strerror(int);

/**/

main()

{
int i, dlen, csd;
char *errptr;
int nfound;
fd_set rfds;

dlen = LENGTH_OF_DATA;
vcs_available = MAX_NUM_SOCKETS;

B-13

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

/*

* %

*/
CheckF

/*

* %

*/

for (i
{
csd_t
}

/*

* %

*/

Check that the data file can be opened.

ileQ;

Initialize the client socket descriptor table.

= 0; i < MAX_NUM_SOCKETS; i++)

able[i].sd = INACTIVE_DESCRIPTOR;

Initialize the descriptor sets.

FD_ZERO((fd_set *) &readfds);

/*
*% Create a call socket with a well known address for the clients
*k to use.
*/
SetUp();
/*
*k Loop forever waiting to serve clients. The following cases are
** possible:
*ok
** - a new clients request service.
*k - a client asks for information.
*ok
*% Handle each one of these cases in this loop.
*ok
** If any other situations occur, exit out of the loop, and let the
*% clean up routine de-allocate the sockets for this server.
*/
B-14

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

nfds = sd + 1;

while (TRUE)

{

rfds = readfds;

nfound = select(nfds, (int *)&rfds, 0, 0, 0);

printf ("nfds: %d\n", nfds);
if (nfound < 0)

{
errptr = sock_strerror(errno);
fprintf(stderr, "select(): %s (4d)\n", errptr, errno);
CleanUpQ);

}

/*

#*% Check the listen queue for any new connection requests.

¥% Decrement the recvcns_posted count, and handle the new

request. HandleNewRequest returns TRUE if it successfully
** created another session. If so, increment the count.

*/

if (FD_ISSET(csd_table[0].sd, (fd_set *) &rfds))

{
if (vcs_available)
HandlelNewRequest () ;
}
for (1 = 1; 1 < MAX_NUM_SOCKETS; i++)
{
/*
*% Process any requests.
*/
if (csd_table[i].sd '= -1)
if (FD_ISSET(csd_table[i].sd, (fd_set *) &rfds))
{
ProcessRead(csd_table[i] .sd, dlen);
}
}
}
return(0) ;

B-15

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Routine: CheckFile

Description: Check that the file can be opened.
Input: NONE

Output: NONE

Global variables referenced:

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

void CheckFile()

{

}

FILE *fd;

if ((£d = fopen('datafile'", '"r")) == NULL)

{

fprintf(stderr, "Unable to open datafile.\n");
exit(1);

}

fclose(fd);

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Routine: SetUp
Description: Called when the server is first started up, SetUp
initializes the csd_table, creates the server’s source
descriptor and then initiates the first connection.

Input: NONE

Output: csd_table - initialized with INACTIVE_DESCRIPTOR and
contains the cd for the first connection.

Global variables modified: sd - source descriptor for the server.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

B-16

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

void SetUp(Q)

{
char option[40];
int result;
int timeout;
int port_address;
char *errptr;
int rc;

struct hostent *hp;
#ifdef GETSERVBYNAME

struct servent *sp;
#endif

struct sockaddr_in sa;

char localhost [MAXHOSTNAME] ;

/* allocate and clear out address structure for 3k and 9k
*/

memset ((char*)&sa, 0, sizeof(struct sockaddr_in));

#ifdef GETSERVBYNAME
/*
*% Lookup the well-known port to use.

*/

sp = getservbyname(serv_name, '"tcp");

if (sp == NULL)

{

errptr = sock_strerror(errno);

fprintf(stderr, "getservbyname(): %s (%d)\n", errptr, errno);

CleanUpQ);
}
#endif
/*
*% Initialize the socket structure.
*/

sa.sin_family = AF_INET;
#ifdef GETSERVBYNAME

sa.sin_port = sp->s_port;
ffelse

sa.sin_port = TCP_ADDRESS;
#endif

sa.sin_addr.s_addr = INADDR_ANY;

FINAL TRIM SIZE : 7.5 in x 9.0 in

B-17

BSD IPC Sample Programs
BSD IPC Server Program

/*

**k Create a socket.

*/

sd = socket (AF_INET, SOCK_STREAM, 0);
if (sd < 0)

{

errptr = sock_strerror(errno);
fprintf(stderr, "socket(): %s (4d)\n", errptr, errno);

CleanUpQ);
}
/*
*% Bind the socket to the well-known port.
*/
rc = bind(sd, (struct sockaddr_in *) &sa, sizeof(struct sockaddr_in));
if (rc < 0)
{

errptr = sock_strerror(errno);
fprintf(stderr, "bind(): %s (%d)\n'", errptr, errno);

CleanUpQ);

}

/*

** Listen creates a port at which connection requests come in
*% and sets the maximum number of connections the server will
*k queue.

*/

rc = listen(sd, BACKLOG);

if (rc < 0)

{

errptr = sock_strerror(errno);
fprintf(stderr, "listen(): %s (4d)\n", errptr, errno);

CleanUpQ);

}

/*

** Add the listen queue port to the descriptor set and initialize
*k the connection table.

*/

FD_SET(sd, &readfds);
csd_table[0].sd = sd;

B-18

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Routine: HandlelNewRequest

Description: A new client wants to talk, establish the vc.

Input: cd - descriptor for the newly completed virtual circuit.

OQutput: NONE
Returns: TRUE if another recvcn was posted, else FALSE.

Global variables referenced: NONE

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

int HandleNewRequest ()

{

int i;
int timeout;

/*

*k Search for the next available descriptor in the csd_table.
*/
for (i = 0; i < MAX_NUM_SOCKETS; i++)

{

if (csd_table[il].sd == INACTIVE_DESCRIPTOR)

break;

}

/*

*k If we found an available descriptor in the csd_table, then
*% initiate another connection. If we are out of available
** descriptors, skip it; we will initiate a connection when an
*k existing connection is shutdown.

*/

if (i < MAX_NUM_SOCKETS)

{

InitiateConnection(i);

return(TRUE) ;

}

else

{

fprintf(stderr, "Connect request queued.\n'");

return(FALSE) ;

}

FINAL TRIM SIZE : 7.5 in x 9.0 in

B-19

BSD IPC Sample Programs
BSD IPC Server Program

/***/

/* */
/* Routine: InitiateConnection */
/* */
/* Description: Initiates a connection by calling accept */
/* */
/* Input: HNONE */
/* */
/* Output: cd - connection descriptor for the new connection. */
/* */
/* Global variables referenced: sd - source descriptor */
/* */

/***/

void InitiateConnection(num)
int num;
{
int csd;
struct sockaddr *addrptr;
int addrlen;
char *errptr;

/*

** Accept the incoming connection request.

*/

addrptr = (struct sockaddr *) &csd_table[num].addr;
addrlen = sizeof(csd_table[num].addr);

csd_table[num] .sd = accept(sd, addrptr, &addrlen);

if (csd_table[num].sd < 0)

{

errptr = sock_strerror(errno);

fprintf(stderr, "accept(): %s (4d)\n", errptr, errno);

CleanUpQ);

}

/*

** Add the connection to the descriptor set.
*/

FD_SET(csd_table[num] .sd, (fd_set *) &readfds);

B-20

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

/*

*% The nfds global variable should be set to one more than the
*k highest numbered descriptor used.

*/

nfds++;

vcs_available—-;

}

/A kok sk sk s ook ook sk ko ok ok o ook ok ok ok ok ok o ook ok sk sk ok s ok ok ook ok sk ok ok ok o ok ko sk sk ok o sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok /
/* */
/* Routine: ProcessRead */
/* */
/* Description: We have a client program which has send in a read */
/* request. So process the read. */
/* */
/* Input: cd - descriptor for the virtual circuit. */
/* amt_recvd - amount of data received from completing Recv */
/* */
/* Output: NONE */
/* */
/* Global variables referenced: NONE */
/* */
/A kok sk sk s ook ook sk ko ok ok o ook ok ok ok ok ok o ook ok sk sk ok s ok ok ook ok sk ok ok ok o ok ko sk sk ok o sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk ok ok /
void

ProcessRead(csd, amt_to_recv)

int csd;

int amt_to_recv;

{

int rc, result;

int amt_recvd, dlen;
char inbuff[INBUFFLEN+1];
char outbuff[0UTBUFFLEN];
char *errptr;

int error;

int i, flags;

flags = 0;

/*

** Receive the request from the client.
*/

B-21

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs

BSDI

PC Server Program

amt_recvd = 0;
while (amt_recvd < amt_to_recv){

rc = recv(csd, inbuff, amt_to_recv, 0);
if ((xc == 0) || ((xc < 0) & (errno = ECONNRESET)))
{ /* Received a fin (bsd client) or a reset (NetIPC client) */
ShutdownDescriptor (csd) ;
return;
}
if (rc<0) {
if (errno !'= EWOULDBLOCK){ /* This is for Non-Blocked i/o */
error = errno;
errptr = sock_strerror(errno);
printf (""ReceiveData recv: %s (%d)\n",errptr, error);

}
rc = 0;
}
amt_recvd += rc;
}
/*
*% If we have all of the name from the client, then get the
*% data we need from the file to send to the client. But first,
*% NULL terminate the name field. So we can print it out in
**k ReadData.
*/
inbuff [INBUFFLEN] = °\0’;
ReadData(inbuff, outbuff);
/*
**k And send the data back to the client
*/
send(csd, outbuff, OUTBUFFLEN, flags);
if (rc < 0)
{
errptr = sock_strerror(errno);
fprintf(stderr, "send(): %s (%d)\n'", errptr, errno);
CleanUpQ);
}
}
B-22

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

Routine: ReadData */
*/

Description: From the file ’datafile’ look for the given name and */
if found return the information on the given name. If the */

given name is not found return a string that says so. */

*

Input: name - a string name keyword to search for in ’datafile’ *;
*

Output: output_buffer - contains the information found for name. *;
*

Global variables referenced: NONE *;
*/

/***/

void ReadData(name, output_buffer)
char #*name;
char *output_buffer;

{

FILE *datafile;

char *ptr;

char input_buffer [INBUFFLEN+QOUTBUFFLEN+2] ; /* Allow room for name */
/* data, new-line, and */

/% NULL */
/*
** Open the file named "datafile'. Search until the last record
*k is found, or we match the user name the client wants. The
** format of the file is characters 1 - 20 comprise the name field.
** Characters 22 - 80 comprise the data field. If there is a match,
*k retreive the remaining data from the file, and send it back
** (be sure to pad the data field with spaces since NULL-terminated
*% strings are not recognized by the HP3000 server program in Pascal.)
*k If there is no match, return '"name not found" to the client.
*/
if ((datafile = fopen('datafile", "r")) == NULL)
{
fprintf(stderr, "Unable to open datafile.\n");
}

while (fgets(input_buffer, sizeof (input_buffer), datafile) != NULL)
{

B-23

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

/*
#*% Now see if the name matches the name key. Compare at most
#% INBUFFLEN characters and ignore cases during the compare.

*/
if (strncmp(name, input_buffer, INBUFFLEN) == 0)
{
/* We found the name the client requested in the file. So
** £ill the input line with spaces starting where the newline
*% character which gets() puts on at the end of the line.
*/
ptr = &input_buffer [INBUFFLEN+1];
while ((*¥ptr '= ’\n’) & (#ptr '= ’\0’))
{
ptr++;
}
while (ptr <= &input_buffer [INBUFFLEN+OUTBUFFLEN])
{
*¥ptr++ = 2y
}
/*
*% Print a message to the server console.
*/
printf("Server: %s information found.\n", name);
/*
** Copy the data found into the given output_buffer,
*% close the datafile and return.
*/
strncpy(output_buffer, &input_buffer [INBUFFLEN+1],
OUTBUFFLEN) ;
fclose(datafile);
return;
}
/*
#*% If we did not find the name, continue searching the file.
*/
}

B-24

FINAL TRIM SIZE : 7.5 in x 9.0 in

}

/*
*k
*k
*k

*/

BSD IPC Sample Programs
BSD IPC Server Program

We’ve fallen out of the while loop because we reached the end

of the file. Print an error message and put a 60-byte error

message in the data buffer.

printf ("Server: %s not in file.\n", name);

strncpy(output_buffer,

/*
*k

*/

"SERVER did not find the requested name in the datafile.
OUTBUFFLEN) ;

Close the datafile and return.

* (output_buffer+0UTBUFFLEN-1) = NULL;
fclose(datafile);
return;

/***/

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Routine: ShutdownDescriptor

Description: Shutdowns a given descriptor. This descriptor
can be either a source or connection descriptor.

Input: desc - descriptor to be shutdown.
OQutput: NONE

Global variables referenced: NONE

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

void ShutdownDescriptor (csd)
int csd;

{

int rc, i;

for (i = 0; i < MAX_NUM_SOCKETS; i++)

{

FINAL TRIM SIZE : 7.5 in x 9.0 in

B-25

BSD IPC Sample Programs
BSD IPC Server Program

if (csd == csd_table[i].sd)

{
csd_table[i].sd = INACTIVE_DESCRIPTOR;
rc = TRUE;
break;

}

}

if (rc '= TRUE)

{

fprintf(stderr, "Unable to find socket descriptor in table.\n");
}

/*

** Remove client socket descriptor from the descriptor sets,
*% close down the descriptor, and decrement the number of open
** descriptors.

*/

FD_CLR(csd, (fd_set *) &readfds);
close(csd);

nfds--;

vcs_available++;

}

[sk ko ok ok sk ook ok ook ok ook o oK ok K ook ook o Kok KoK o ok ook o ook o o ok ok ok ook ok ook ok ok o ok KoK koK ok ok o ok ok ook o ok ok
/* */
/* Routine: CleanUp */
/* */
/* Description: We have some problem, so we need to shutdown all of */
/* the descriptors and terminate the program. */
/* */
/* Input: HNONE */
/* */
/* Output: NONE */
/* */
/* Global variables referenced: csd_table */
/* */

/***/

B-26

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

void CleanUp()

{

}

int i;

/*

*% Shutdown the source descriptor.
*/

ShutdownDescriptor (sd) ;

/*
*k Shutdown all of the VC’s that are active in the csd_table.
*% Once again don’t worry about errors.
*/
for (i = 0; i < MAX_NUM_SOCKETS; i++)
{
if (csd_table[i].sd !'= INACTIVE_DESCRIPTOR)
{
ShutdownDescriptor (csd_table[i].sd);
}
}
/*
*% Exit with a non-zero result.
*/
exit(1);

char #*sock_strerror (error_num)

int error_num;

{
}

return (strerror(error_num));

B-27

FINAL TRIM SIZE : 7.5 in x 9.0 in

BSD IPC Sample Programs
BSD IPC Server Program

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC Sample Include
File

FINAL TRIM SIZE : 7.5 in x 9.0 in

NetIPC Sample Include File

This appendix includes a sample NetIPC include file. Use this sample file as a
template for your own applications.

C-2

FINAL TRIM SIZE : 7.5 in x 9.0 in

HP 3000 Include File

/* $Header: ns_ipc.h,v 1.51.61.3 92/04/22 12:05:33 smp Exp $ */

#ifndef _SYS_NS_TPC_INCLUDED
#define _SYS_NS_TPC_INCLUDED

/* ns_ipc.h: NetIPC (NS) definitions */

#ifdef _KERNEL_BUILD
#include '"../h/stdsyms.h"
#else /% ! _KERNEL_BUILD */
#include "stdsyms"

#endif /* _KERNEL_BUILD #*/

#ifdef _INCLUDE_HPUX_SOURCE
/* Types */

#ifdef _KERNEL_BUILD

dinclude "../h/types.h"
#else /% ! _KERNEL_BUILD */
include <sys/types.h>
#endif /* _KERNEL_BUILD #*/

typedef int ns_int_t;
typedef int ns_flags_t;
typedef char #*ns_opt_t;
typedef char #*opt_t;

/* Function prototypes */

ifndef _KERNEL

ifdef _cplusplus
extern "C" {

endif /# _cplusplus */

FINAL TRIM SIZE : 7.5 in x 9.0 in

C-3

NetlPC Sample Include File

HP 3000 Include File

ifndef _MPEIX
ifdef _PROTOTYPES

extern
extern
extern
extern

extern

extern

extern

extern

extern

extern

extern
extern

extern

extern

extern

extern

extern

extern

extern
extern

void
void

addopt (short [1, short, short, short, short [], short *);
initopt(short [], short, short *);

int optoverhead(short, short *);
void readopt(short [], short, short *, short *, short [],

char

void

void

void

void

void

void
void

void
void
void
void
void

void

void
void

short *);

*ipcerrstr(int);

ipcerrmsg(int, char *, int *, int *);

ipcconnect(ns_int_t, ns_int_t, ns_int_t #, short [],
ns_int_t *, ns_int_t *);

ipccontrol(ns_int_t, ns_int_t, const char #, ns_int_t,
char *, ns_int_t *, ns_int_t *, ns_int_t *);

ipccreate(ns_int_t, ns_int_t, ns_int_t #, short [],
ns_int_t *, ns_int_t *);

ipcdest(ns_int_t, const char #, ns_int_t, ns_int_t,
short *, ns_int_t, ns_int_t *, short [],
ns_int_t *, ns_int_t *);

ipcgetnodename(char *, ns_int_t *, ns_int_t *);

ipclookup(const char *, ns_int_t, const char #, ns_int_t,
ns_int_t *, ns_int_t *, ns_int_t *, ns_int_t *,
ns_int_t *);

ipcname(ns_int_t, const char #, ns_int_t, ns_int_t *);

ipcnameerase(const char *, ns_int_t, ns_int_t *);

ipcrecv(ns_int_t, void *, ns_int_t *, ns_int_t #,
short [], ns_int_t *);

ipcrecven(ns_int_t, ns_int_t *, ns_int_t *, short [],
ns_int_t *);

ipcselect(ns_int_t *, int [2], int [2], int [2], ns_int_t,
ns_int_t *);

ipcsend(ns_int_t, const void *, ns_int_t, ns_int_t *,
short [], ns_int_t *);

ipcsetnodename (const char *, ns_int_t, ns_int_t *);

ipcshutdown(ns_int_t, ns_int_t *, short [], ns_int_t *);

C-4

FINAL TRIM SIZE : 7.5 in x 9.0 in

#

+

= o = H

else /* not _PROTOTYPES */
extern void addopt();
extern void initopt();
extern int optoverhead();
extern void readopt();
extern char #*ipcerrstr();
extern void ipcerrmsg();
extern void ipcconnect();
extern void ipccontrol();
extern void ipccreate();
extern void ipcdest();
extern void ipcgetnodename();
extern void ipclookup();
extern void ipcname();
extern void ipcnameerase();
extern void ipcrecv();
extern void ipcrecven();
extern void ipcselect();
extern void ipcsend();
extern void ipcsetnodename();
extern void ipcshutdown();

endif /# not _PROTOTYPES */

endif /# _MPEIX */

ifdef _cplusplus

}
endif /# _cplusplus */
endif /* not _KERNEL #*/

/*

* Naming constants

*/

define NS_MAX_NODE_NAME 50
define NS_MAX_NODE_PART 16

define NS_MAX_SOCKET_NAME 16

/*

NetlPC Sample Include File
HP 3000 Include File

* MAX TIMEOUT as enforced by itimerfix and hence by ipccontrol

*/

define NIPC_MAX_TIMEO 1000000

/*
* socket type definitions
*/

define NS_CALL 3

define NS_VC 6

define NS_DEST 7

(-

define NS_NULL_DESC 1)

FINAL TRIM SIZE : 7.5 in x 9.0 in

C-5

NetlPC Sample Include File
HP 3000 Include File

/*
* protocol IDs
*/
define NSP_TCP 4
/*
* flags values
*/
define NSF_VECTORED 0x00000001 /* Netipc std bit 31 */
define NSF_PREVIEW 0x00000002 /* Netipc std bit 30 */
define NSF_MORE_DATA 0x00000020 /* Netipc std bit 26 */
define NSF_DATA_WAIT 0x00000800 /* Netipc std bit 20 */
define NSF_GRACEFUL_RELEASE 0x00004000 /* Netipc std bit 17 */
define NSF_MESSAGE_MODE 0x40000000 /* Netipc std bit 1 =*/
/*
* ipccontrol() request values
*/
define NSC_NBIO_ENABLE 1 /* */
define NSC_NBIO_DISABLE 2 /* */
define NSC_TIMEOUT_RESET 3 /* */
define NSC_TIMEOUT_GET 4 /* not in std */
define NSC_SOCKADDR 16
define NSC_RECV_THRESH_RESET 1000 /* */
define NSC_SEND_THRESH_RESET 1001 /* */
define NSC_RECV_THRESH_GET 1002 /* */
define NSC_SEND_THRESH_GET 1003 /* */
define NSC_GET_NODE_NAME 9008 /* */
/*
* NS options
*/
define NSO_NULL (ns_opt_t)0/# null option structure */
define NSO_MAX_SEND_SIZE 3
define NSO_MAX_RECV_SIZE 4
define NSO_MAX_CONN_REQ_BACK 6
define NSO_DATA_OFFSET 8
define NSO_PROTOCOL_ADDRESS 128
C-6

FINAL TRIM SIZE : 7.5 in x 9.0 in

HHHEHAEHBPFEEEETEETEEEEERERAEHEAEEE ST SR

/*

* Netipc errors

*/
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define
define

NSR_NO_ERROR
NSR_BOUNDS_VIO
NSR_NETWORK_DOWN
NSR_SOCK_KIND
NSR_PROTOCOL
NSR_FLAGS
NSR_OPT_OPTION 8
NSR_PROTOCOL_NOT_ACTIVE 9
NSR_KIND_AND_PROTOCOL 10

~N O U WwO

NSR_NO_MEMORY 11
NSR_ADDR_OPT 14
NSR_NO_FILE_AVAIL 15
NSR_OPT_SYNTAX 18
NSR_DUP_OPTION 21
NSR_MAX_CONNECTQ 24
NSR_NLEN 28
NSR_DESC 29
NSR_CANT_NAME_VC 30
NSR_DUP_NAME 31

NSR_NAME_TABLE_FULL 36
NSR_NAME_NOT_FOUND 37

NSR_NO_OWNERSHIP 38
NSR_NODE_NAME_SYNTAX 39
NSR_NO_NODE 40

NSR_CANT_CONTACT_SERVER 43
NSR_NO_REG_RESPONSE 44
NSR_SIGNAL_INDICATION 45

NSR_PATH_REPORT 46
NSR_BAD_REG_MSG 47
NSR_DLEN 50
NSR_DEST 51

NSR_PROTOCOL_MISMATCH 52
NSR_SOCKET_MISMATCH 53
NSR_NOT_CALL_SOCKET 54

NSR_WOULD_BLOCK 56
NSR_SOCKET_TIMEQUT 59
NSR_NO_DESC_AVAIL 60
NSR_CNCT_PENDING 62
NSR_REMOTE_ABORT 64
NSR_LOCAL_ABORT 65
NSR_NOT_CONNECTION 66
NSR_REQUEST 74
NSR_TIMEOUT_VALUE 76
NSR_ERRNUM 85
NSR_VECT_COUNT 99

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

NetlPC Sample Include File
HP 3000 Include File

no error occurred */
parameter bounds violation */
network not initialized */
invalid socket kind value */
invalid protocol id */
error in flags parameter */
invalid opt array option */
protocol not active */
sock kind/protocol mismatch */
out of memory (mbufs) */
illegal proto addr in opt arr*/

no file table entries avail */
error in opt array syntax */
duplicate option in opt array*/
max cnct rqs err in opt array*/

invalid name length */
invalid descriptor */
can’t name vc socket */
duplicate name specified */
table is full */
specified name not matched */

user doesn_t own the socket */
invalid node name syntax */
node does not exist */
can’t contact remote server */
no response from remote reg */
syscall aborted due to signal*/
can’t interpret path report */
received garbage registry msg#*/
invalid data length value */
invalid dest descriptor */
source and dest have dif prot*/
dest has wrong type socket */

invalid socket descriptor */
would block to satisfy req. =*/
timer popped */
no file descriptos avail */
must call IPCRECV */

remote aborted the connection#*/
local side aborted the cnct */
not a connection descriptor */
invalid IPCCONTROL request */
invalid in IPCCONTROL */
invalid netipc error number */
invalid byte count in vector */

FINAL TRIM SIZE : 7.5 in x 9.0 in

C-7

NetlPC Sample Include File
HP 3000 Include File

define NSR_TOO_MANY_VECTS 100 /* too many vect data descripts */
define NSR_DUP_ADDRESS 106 /* address already in use */
define NSR_REMOTE_RELEASED 109 /* graceful release; can’t recv */
define NSR_UNANTICIPATED 110 /* netipc subsystem is disabled */
define NSR_DEST_UNREACHABLE 116 /* unable to reach destination */
define NSR_VERSION 118 /* version number mismatch */
define NSR_OPT_ENTRY_NUM 124 /* bad entry number specified */
define NSR_OPT_DATA_LEN 125 /* bad entry length specified */
define NSR_OPT_TOTAL 126 /* initopt(illegal total */
define NSR_OPT_CANTREAD 127 /* cant read option readopt(*/
define NSR_THRESH_VALUE 1002 /* bad integer to IpcControl */
define NSR_NOT_ALLOWED 2003 /* user not super-user */
define NSR_MSGSIZE 2004 /* message size too big */
define NSR_ADDR_NOT_AVAIL 2005 /* address not available */
/* used to map kernel errors to NSR equivalents */
define NIPC_ERROR_OFFSET 10000
/* these exist for historical reasons */
define NSO_MIN_BURST_IN 7 /* ignored in 8.0 */
define NSO_MIN_BURST_OUT 11 /* ignored in 8.0 */
define NSOL_MIN_BURST_IN 2
define NSOL_MIN_BURST_OUT 2
define NSOL_MAX_CONN_REQ_BACK 2
define NSOL_MAX_RECV_SIZE 2
define NSOL_MAX_SEND_SIZE 2
ifndef MIN
define MIN(a,b) (((a)<(®))7(a): (b))
endif

#endif /* _INCLUDE_HPUX_SOURCE */

#endif /* _SYS_NS_IPC_INCLUDED */

C-8

FINAL TRIM SIZE : 7.5 in x 9.0 in

