
900 Series HP 3000 Computer Systems

Accessing Files

Programmer's Guide

ABCDE

HP Part No. 32650-90017
Printed in U.S.A. 1992

Fifth Edition
E0692

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1992 by Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DoD U.S. Government Departments and agencies are as
set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software
Version

First Edition November 1987 A.01.00

Update July 1988 A.10.00

Second Edition June 1992 B.40.00

iii

iv

Preface

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of
forward-compatible operating systems for the HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will encounter references to MPE
XL, the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL. All programs written
for MPE XL will run without change under MPE/iX. You can continue to use MPE XL system
documentation, although it may not refer to features added to the operating system to support
POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating system for HP 3000s,
not based on PA-RISC architecture. MPE V software can be run on the PA-RISC (Series 900) HP
3000s in what is known as compatibility mode.

Accessing Files Programmer's Guide (32650-90017) is written for an experienced programmer
who has a working knowledge of MPE/iX and is familiar with:

a text editor

at least one programming language

compiling, linking, and executing a program on MPE/iX

This manual describes how you can use the MPE/iX File System to create �les and manage the
data stored in those �les. In addition to discussing �le system methods and operations involved
with �le and data manipulation, this manual describes system intrinsics and commands useful
for �le management and data transfer. Examples are provided throughout this manual that
demonstrate how to use �le system intrinsics and commands in various applications.

This manual is part of the MPE/iX Programmer's Series. This series consists of the MPE/iX
Intrinsics Reference Manual (32650-90028) and a set of task-oriented programmer's guides.

This manual contains the following chapters and appendix:

Chapter 1 Introduction provides an overview of the MPE/iX File System.

Chapter 2 Creating a File discusses �le creation considerations and describes how to
create a �le.

Chapter 3 Specifying a File Designator describes how you designate an MPE/iX �le.

Chapter 4 Specifying a Domain describes how you can specify your �le as being either
a new �le, a temporary �le, or an old �le. MPE/iX then places the �le in the
appropriate �le directory.

Chapter 5 Opening a File illustrates through program examples how you can open a �le.

Chapter 6 Closing a File illustrates, through program examples, how you close a �le.

Chapter 7 Record Selection and Data Transfer introduces system intrinsics you can use
to select records and transfer data between your program and a �le.

Chapter 8 Writing to a File illustrates, through program examples, how you can transfer
data from your program to a �le.

Chapter 9 Reading from a File illustrates, through program examples, how you can
transfer data to your program from a �le.

Chapter 10 Updating a File illustrates, through program examples, how you can update
records in a �le.

Chapter 11 Accessing a File Using Mapped Access describes how you use the mapped
access method to access a �le.

v

Chapter 12 Sharing a File discusses methods you can use to share a �le with other users.

Chapter 13 Maintaining File Security describes how you can maintain secure �les and
restrict �le access.

Chapter 14 Getting File Information describes the intrinsics you can use to obtain
information about �le.

Appendix A HP Pascal Program Example o�ers you HP Pascal program examples to help
you better understand how to use �le system intrinsics to perform �le access
tasks.

vi

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the
order shown; however, you can enter the characters in either
uppercase or lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics
represents a parameter or argument that you must replace
with the actual value. In the following example, you must
replace �lename with the name of the �le:

COMMAND �lename

bold italics In a syntax statement, a word in bold italics represents a
parameter that you must replace with the actual value. In the
following example, you must replace �lename with the name
of the �le:

COMMAND(�lename)

punctuation In a syntax statement, punctuation characters (other than
brackets, braces, vertical bars, and ellipses) must be entered
exactly as shown. In the following example, the parentheses
and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input
and user responses to prompts are indicated by underlining. In
the following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select
one. In the following example, you must select either ON or
OFF:

COMMAND

�
ON

OFF

�

vii

Conventions (continued)

[] In a syntax statement, brackets enclose optional elements. In
the following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can
select one or none of the elements. In the following example,
you can select OPTION or parameter or neither. The elements
cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that
appear within the immediately preceding pair of brackets or
braces. In the example below, you can select parameter zero or
more times. Each instance of parameter must be preceded by a
comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst
occurrence of parameter:

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical
bars indicate that you can select more than one element within
the immediately preceding pair of brackets or braces. However,
each particular element can only be selected once. In the
following example, you must select A, AB, BA, or B. The
elements cannot be repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where
portions of an example have been omitted.

� In a syntax statement, the space symbol � shows a required
blank. In the following example, parameter and parameter
must be separated with a blank:

(parameter)�(parameter)

� � The symbol � � indicates a key on the keyboard. For
example, �RETURN� represents the carriage return key or �Shift�
represents the shift key.

�CTRL�character�CTRL�character indicates a control character. For example,
�CTRL�Y means that you press the control key and the Y key
simultaneously.

viii

NOTATION DESCRIPTION

base pre�xes The pre�xes %, -, and $ specify the numerical base of the value that follows:

%num speci�es an octal number.

-num speci�es a decimal number.

$num speci�es a hexadecimal number.

When no base is speci�ed, decimal is assumed.

Bit (bit:length) When a parameter contains more than one piece of data within its bit �eld,
the di�erent data �elds are described in the format Bit (bit:length), where bit
is the �rst bit in the �eld and length is the number of consecutive bits in the
�eld. For example, Bits (13:3) indicates bits 13, 14, and 15:

most significant least significant
--
| 0 | | | | | | | | | | | | | 13 | 14 | 15 |
--

Bit(0:1) Bits(13:3)

ix

1

Introduction

Almost every kind of organization in our modern society is concerned in some way with
information. Corporations keep track of their business dealings, political groups keep lists of
potential voters, and families remember whose turn it is to do the dishes. When an organization
needs to deal with large amounts of information in an e�cient, dependable manner, a
computer can be an indispensable aid. This manual describes the MPE/iX �le system that is
responsible for handling information in the 900 Series of the HP 3000 Family.

Figure 1-1 shows the relationships among your program, the MPE/iX �le system, the MPE/iX
I/O System, and the actual hardware of the system. Notice that the MPE/iX �le system serves
as the interface between you and the rest of the system.

Figure 1-1. File System Interface

The �le system is the part of the MPE/iX operating system that manages information being
transferred or stored with peripheral devices. It handles various input/output operations, such
as the passing of information to and from user processes, compilers, and data management
subsystems. Conceptually, these data transfers are very simple: information is arranged into
data elements within a record; this record is then input, processed, and output as a single unit.
Logically related records are grouped into sets known to the �le system as �les, which may be
kept in any storage medium or sent to any input/output peripheral (as illustrated in Figure 1-2,
below).

Introduction 1-1

Figure 1-2. Records/Files Relationship

Since all input/output operations are done through the mechanism of �les, you may access
very di�erent devices in a standard, consistent way. It does not make much di�erence to you
whether you read your �le from a disk or from a magnetic tape, because the �le system permits
you to treat all �les in the same way. This property of the �le system gives your program
device independence; the name and characteristics assigned to a �le when it is de�ned in a
program do not restrict that �le to residing on the same device every time the program is run.
You, the user, need only reference the �le by the �le name assigned to it when it was created,
and the �le system determines the device or disk address where the �le is stored and access
the �le for you. (Of course, you should be aware of the properties of the device you're using.
For example, the MPE/iX �le system permits you to read a �le from a line printer.)

1-2 Introduction

Disk Files and Device Files

The �le system recognizes two basic types of �les, classi�ed on the basis of the media on which
they reside when processed:

1. Disk �les, which are �les residing on disk, are immediately accessible by the system and
potentially shareable by several jobs/sessions at the same time.

2. Device �les are �les currently being input to or output from any peripheral device except a
disk. When information exists on such a device but is not being processed, the �le system
cannot recognize it as a �le. Thus, information on a magnetic tape is not identi�ed as a �le
until the tape is loaded onto a tape drive and reading begins; data being written to a line
printer is no longer regarded as a �le when output to the printer terminates. A device �le is
considered nonshareable; it is accessed exclusively by the job or session that acquires it, and
is owned by that job/session until the job/session explicitly releases it or terminates.

Note Spooled device �les, although temporarily residing on disk, are considered
device �les in the fullest sense because they are always originated on or
destined for devices other than disk, and because you generally remain
unaware of their storage on disk as an intermediate step in the spooling
process. Whether they deal with spooled or unspooled device �les, your
programs handle input/output as if the �les reside on nonshareable devices.
The console operator, not the user, controls the spooling operation.

Topics in this Manual

When you create a �le, you specify certain permanent attributes that the �le will have based
upon its intended use. Chapter 2, \Creating a File" describes the physical characteristics that
are determined when you create a �le and the intrinsics and commands you use to specify
those physical characteristics

What name do you give a �le that you create? How does MPE/iX recognize your �le? Chapter
3, \Specifying a File Designator" describes how you designate a �le name in your program and
discusses �le naming conventions maintained by MPE/iX.

You may classify your �le as a new, temporary, or permanent �le. Chapter 4, \Specifying a
Domain" discusses these classi�cations.

Before your program can access or otherwise manipulate a �le, the program must open that
�le. Program examples illustrating various ways you can open a �le are described in Chapter 5,
\Opening a File."

Once your program is �nished accessing or manipulating a �le,the �le must be closed. Program
examples illustrating various ways you can close a �le are described in Chapter 6, \Closing a
File."

One of the �le system's principal concerns is the transfer of information to and from your �les.
Chapter 7, \Record Selection and Data Transfer" discusses how you can use MPE/iX �le system
intrinsics to select records and transfer data between your program and �les.

Program examples illustrating various ways to write data from your program to a �le are
described in chapter 8, \Writing to a File."

Program examples illustrating various ways to read data from a �le are described in chapter 9,
\Reading From a File."

Introduction 1-3

A special method of accessing a �le, called update access, is discussed in chapter 10,
\Updating a File."

You can access a �le mapped directly through memory loads and stores, thus bypassing
the overhead associated with accessing the �le through �le system intrinsics. Chapter 11,
\Accessing a File Using Mapped Access" describes mapped access of a �le and the applications
where mapped access may increase your program's performance.

There are special considerations you must take into account when you are accessing a �le that
is being shared concurrently by others. Chapter 12 ,\Sharing a File" discusses �le sharing
methods available to you.

Associated with each account, group, and individual �le, is a set of security provisions that
speci�es any restrictions on �les in that account or group, or to that particular �le. These
provisions are discussed in chapter 13, \Maintaining File Security."

MPE/iX provides a number of commands and intrinsics that enable you to obtain information
about your �les. You can use the commands and intrinsics described in chapter 14, \Getting
File Information" for a variety of purposes.

The HP Pascal/iX program examples found in appendix A, \HP Pascal/XL Program Examples"
are provided to help you better understand how to use �le system intrinsics to perform �le
access tasks.

1-4 Introduction

2

Creating A File

When you create a �le, you choose the attributes that �le will have; your choices are made on
the basis of how the �le will be used. A �le's physical characteristics are determined by the
parameters you choose when you create the �le with the HPFOPEN/FOPEN intrinsic or the BUILD
command, or when you specify the �le with the FILE command.

Once a �le has been created, its physical characteristics cannot be changed. The �le can be
renamed or purged, but the only way to change its physical characteristics is by building a new
�le and copying the contents of the old �le into the new.

File equations and HPFOPEN/FOPEN calls cannot alter physical characteristics of an existing
�le, but they can alter the way the �le is to be used. Other characteristics of the �le that you
create can be rede�ned each time you open the �le. Those characteristics are discussed in later
chapters in this manual.

In this chapter, we will address the following questions:

What intrinsics and commands can you use to specify a �le's physical characteristics?

What are the physical characteristics that are determined when you create a �le?

The HPFOPEN Intrinsic

The HPFOPEN intrinsic establishes access to a disk or device �le and enables you to create a �le
on a shareable device. HPFOPEN is used to de�ne a �le's physical characteristics, including �le
and record structure. Its syntax is

HPFOPEN (�lenum, status, [, itemnum, item]...);

The HPFOPEN optional parameters are a superset of the options provided in the FOPEN intrinsic
and provide more e�cient access to �les.

NOWAIT I/O

Sometimes a programmer wants an application to read or write a record, but does not want it
to wait for I/O to complete. For such an application, waiting is wasting time when it could be
doing other processing. Timeouts do not adequately address this problem. The programmer
wants this application to start an I/O, continue processing immediately, and check periodically
to see if the I/O has �nished

MPE/iX provides a way to solve this problem with NOWAIT I/O. This feature is requested by
enabling the NOWAIT I/O option (item #16) in HPFOPEN.

When using NOWAIT I/O, the process must make at least two intrinsic calls to perform the
I/O, one to start it and one to �nish it. MPE/iX still handles the �le in the same way; but
instead of waiting for the I/O to complete, MPE/iX returns control to the application so that the
application can do some useful processing.

Creating A File 2-1

NOWAIT I/O has been available to users of standard �les for a long time, but to use it on
standard �les requires privileged mode. On standard �les the mechanics of NOWAIT I/O prevent
MPE/iX from protecting a process from corrupting its own stack; however, because message
�les work di�erently, NOWAIT I/O on message �les does not require privileged mode.

NOWAIT I/O intrinsics

To perform a NOWAIT I/O, the FREAD or FWRITE intrinsic must be called to initiate the transfer.
These intrinsics return immediately, and no data is transferred yet. The return value for FREAD
is set to zero and is not needed. To complete the transfer, either IODONTWAIT or IOWAIT must
be called. IODONTWAIT tests whether the I/O has �nished. If it has, the intrinsic returns a
condition code of CCE and the �le number as the return value. If the I/O has not completed,
CCE and a zero return value are passed back. If IOWAIT is called, it waits until the I/O has
�nished, like a normal WAIT I/O FREAD or FWRITE.

Only one NOWAIT I/O can be outstanding against a �le by a particular accessor at a time;
however, an accessor can have NOWAIT I/Os outstanding against several �les at the same
time. These I/Os can be completed by a \generalized" IODONTWAIT or IOWAIT: the �le number
parameter is zero or is omitted. In this case, these intrinsics report on the �rst I/O to complete,
returning the �le number for that �le. If the call to one of these intrinsics is in a loop, then
that one call can be used to complete all the NOWAIT I/Os.

Aborting NOWAIT I/O

Occasionally, after a process has started a NOWAIT I/O with FREAD or FWRITE, something occurs
that causes completion of that I/O to be no longer needed. Perhaps the process is \shutting
down" and does not want to wait for the I/O (that is, to issue IOWAIT or IODONTWAIT).

MPE/iX lets the process abort NOWAIT I/Os that have not yet completed by using FCONTROL
with a control code of 43. A condition code of CCE is returned if the I/O was aborted; in this
case, nothing more needs to be done. CCG is returned if the I/O has already completed; in this
case, IODONTWAIT or IOWAIT must be called to clear it. CCL and FSERR 79, No NOWAIT I/O
pending for special file are returned if there was nothing to abort.

Limitations

Currently, MPE/iX does not support NOWAIT I/O to message �les across a network. In most
cases, this is not an important limitation, because it is rare that both readers and writers to the
same message �le need to use NOWAIT I/O. If the �le is made local to the accessor that needs
NOWAIT I/O, the other accessor can then do WAIT I/O across the network.

More information on these intrinsics is found in the MPE/iX Intrinsics Reference Manual
(32650-90028). For detailed information about WAIT and NOWAIT, consult the Interprocess
Communications Programmers' Guide (32650-90019).

The following table lists the optional parameters you can use to specify a �le's physical
characteristics, as well as the default values for each.

2-2 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values

Itemnum Mnemonic Item Description

0 End of option list:

There is no corresponding item. The absence of an itemnum
after the last itemnum,item pair is equivalent to specifying
this option.

2 CA Formal designator:

Passes a formal �le designator, following MPE/iX �le naming
conventions. The �le name must begin with an alphabetic
character and contain alphanumeric characters, slashes, or
periods.

(ASC) It is recommended that this itemnum,item pair be used
for asynchronous devices.

Default: A nameless �le that can be read from or written to,
but not saved, is assigned. (The domain of a nameless �le
must be new.)

3 I32 Domain:

Passes a value indicating which �le domain MPE/iX searches
to locate the �le. A nameless disk �le must always be a new
�le. A device �le (such as, a tape or terminal) always resides
in the system �le domain (permanent �le directory). Always
specify a device �le as old or permanent.

Default: 0

5 I32 Designator:

Passes a value indicating a special �le opening. Any of the
following special �les can be speci�ed with the itemnum=2.
For example, a �le name of $STDLIST opens the standard list
device.

Default: 0

(ASC) Select $STDLIST, $STDIN, or $STDINX for terminals,
and $STDLIST for printers.

6 I32 Record format:

Passes a value indicating the internal record structure desired
for the �le. This option is applicable only at �le creation.

Default: 0

(ASC) This itemnum,item pair is ignored for �les opened on a
terminal; records of �les on terminals are of unde�ned
length. If the �le is to be redirected to tape or disk, set the
value to 0 (�xed-length).

Creating A File 2-3

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

7 I32 Carriage-control:

Passes a value indicating whether or not a carriage-control
directive is supplied in the calling sequence of each FWRITE
call that writes records onto the �le. This option is applicable
only at �le creation.

Carriage-control is de�ned only for ASCII �les. This option
and itemnum=53 are exclusive, and attempts to open new
�les with both binary and carriage-control directives result in
an access violation.

8 CA Enable tape label:

Passes the tape label name of a labeled tape. The name must
follow the ANSI standards for tape label names. The name
consists of <=6 printable characters that identify the volume.
In a multivolume set, only the �rst tape label can be speci�ed.

Default: a null tape label

(ASC) Not used for asynchronous devices.

9 I32 Disallow �le equation:

Passes a value indicating whether or not MPE/iX �le
equations are allowed. A leading * in a formal �le
designator overrides the setting to disallow FILE.

Default: 0

10 I32 File type:

Passes a value indicating the internal record structure used to
access records in the �le. If the �le is old, this option is
ignored. Specifying an itemnum=5 value other than zero
overrides this option. This option is applicable only at �le
creation.

12 I32 Dynamic locking:

Passes a value enabling/disabling �le locking for the �le.
When speci�ed, the FLOCK and FUNLOCK intrinsics can be used
to dynamically permit/restrict concurrent access to a disk �le
by other processes at speci�ed times.

(ASC) Not used for asynchronous devices.

2-4 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

13 I32 Exclusive:

Passes a value indicating continuous exclusive access to the
�le, from open to close. Use this option when performing a
critical operation (for example, updating the �le).

Default: 0

(ASC) This option is not used for printers.

14 I32 Multiaccess:

Passes a value indicating how the �le's record pointer is to be
shared. This option is useful for sharing standard input
devices where there is some natural sequence of access to the
�le. This option permits processes located in di�erent jobs or
sessions to open the same �le and share that �le's record
pointer.

Default: 0

(ASC) Not used for asynchronous devices.

15 I32 Multirecord:

Passes a value indicating that individual read or write
requests are not con�ned to record boundaries.

(ASC) This option is not used for printers.

16 I32 NOWAIT I/O:

Allows the accessor to initiate an I/O request and to have
control returned before the completion of the I/O. This option
implies the inhibit bu�ering option; if NOBUF is not speci�ed,
the �le system does it. Multirecord access is not available.
This option is not available if the �le is located on a remote
computer. When opening nonmessage �les, the process must
be running in PM (execution level 2) to specify this option.
Set itemnum=24 to 3 if the �le is to be accessed while in
user mode (execution level 3).

Default: 0

17 I32 Copy mode:

Passes a value that determines if any �le should be treated as
a standard sequential �le so that it can be copied by logical
record or physical block to another �le.

(KSAM) Not allowed for KSAM XL �les.

Default: 0

Creating A File 2-5

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

18 @32 Short-mapped:

Returns a short pointer to the beginning of the data area of
the �le. This option maps the �le into short pointer space. A
short-mapped �le can be 4 megabytes in length. The calling
process can have up to 6 megabytes of short-mapped �les
open at a time. Use the pointer as a large array of any type to
e�ciently access the �le.

Default: No short pointer returned

(ASC) Not used for asynchronous devices.

19 I32 Record size:

Passes the size, in bytes, of the logical records in the �le.
Valid range is dependent upon both storage format (ASCII or
binary) and record format. For �xed-length and
unde�ned-length ASCII �les, a record size can be speci�ed in
the range 1..32,767. For variable-length ASCII �les, and for
�xed-length, variable-length, and unde�ned-length binary
�les, a record size can be speci�ed in the range 1..32,766.

HPFOPEN rounds up odd values to the next-highest even
number (equivalent to the nearest half-word boundary) if the
�le is ASCII with variable-length record format, or binary
with �xed-length, variable-length, or unde�ned-length record
format.

Default: 256

(ASC) For terminal and printer �les, no rounding up occurs if
a record size consisting of an odd number of bytes is
speci�ed. The record size can be di�erent from the port
con�guration. The default is the con�gured record size
(normally 40 words for terminals, 66 words for printers).

2-6 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

20 CA Device name:

Passes the logical device number, in ASCII form, of a speci�c
device. The �le is assumed to be permanent. If the device
name option is speci�ed, the nonshareable device should be
ready prior to the HPFOPEN call (otherwise, an error results).

Only one of the following options can be in e�ect when a �le
is opened:

itemnum=20
itemnum=22
itemnum=23
itemnum=42

Default: Disk �le located on the volume class DISC associated
with the group in which �le resides.

Default: Not returned

(ASC) Not used for asynchronous devices.

22 CA Volume class:

Passes a character array representing a volume class name
where the �le space is to be restricted. This option is
applicable only at �le creation.

A volume class is a subset of volumes within a volume set.
The volume class name must be a valid volume class name
residing on the volume set bound to the volume (the volume
set is an attribute of the group in which the �le resides).

Only one of the following options can be in e�ect when a �le
is opened with this option:

itemnum=20
itemnum=22
itemnum=23
itemnum=42

Default: A disk �le located on the volume class DISC
associated with the group in which �le resides.

(ASC) Not used for asynchronous devices.

Creating A File 2-7

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

23 CA Volume name:

Passes a character array representing a volume name that
restricts the �le speci�ed to a speci�c volume. The volume
must reside within the volume set of the group where the �le
resides. This option is applicable only at �le creation.

Only one of the following options can be in e�ect when a �le
is opened with this option:

itemnum=20
itemnum=22
itemnum=23
itemnum=42

Default: A disk �le located on the volume class DISC
associated with the group in which the �le resides. (ASC)
Not used for asynchronous devices.

24 I32 Density:

Passes the tape density required when writing to a tape �le.
This option is applicable only when writing to a tape on a
drive that supports more than one density. When reading
from a tape, the density of the tape overrides this option

Default: The highest density available on the device opened.

(ASC) Not used for asynchronous devices.

25 CA Printer environment:

Passes the name of a �le that contains a printer environment.
This option is valid only for speci�ed printer devices.

If opening an Hewlett-Packard 268x page printer �le, specify
an optional printing environment for the job. Any
environment selected remains active until replaced by a new
environment, or until a call to FCLOSE (close the printer).

Default: No printer environment �le speci�ed

A character placed in the �rst element designates the
delimiter used by HPFOPEN to search for the end of the
character array. The delimiter can appear again only
following the last valid character of the character array.

2-8 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

26 CA Remote environment:

Passes the node name of the remote computer where the �le
is located. This option is used when referencing a �le located
on a remote computer.

Default: No node name passed (local �le access).

A character placed in the �rst element designates the
delimiter used by HPFOPEN to search for the end of the
character array. The delimiter can appear again only
following the last valid character of the character array.

27 I32 Output priority:

Passes the output priority to be attached to the �le for
spooled output. This option is applicable only to spooled
devices. The output priority must be a number between 1
(lowest priority) and 13 (highest priority), inclusive. If the
value speci�ed is less than the current outfence set by the
system operator, �le printing is deferred until the operator
raises the output priority of the �le or lowers the outfence.
This option can be speci�ed for a �le already opened (for
example, $STDLIST), where the highest value supplied before
the last FCLOSE takes e�ect. This option is ignored for
nonspooled devices.

Default: 8

28 CA Spooled message:

Passes a spooler message associated with a spool �le. For
example, a message is passed that can be used for telling the
system operator what type of paper to use in the line printer.
This message must be displayed to the system operator and
veri�ed before the �le can be printed on a line printer. The
number of characters allowed <=48; any quantity > 48
characters is truncated.

Default: No spooled message speci�ed.

A character placed in the �rst element designates the
delimiter used by HPFOPEN to search for the end of the
character array. The delimiter can appear again only
following the last valid character of the character array, for
example:

%message% (% is the delimiter, message is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

Creating A File 2-9

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

29 I32 Privileged access:

Passes a value that temporarily restricts access to the �le
number returned from HPFOPEN to a calling process whose
execution level is equal to or less than the value speci�ed in
this option. This restriction lasts until the �le associated with
the restricted �le number is closed. Do not specify a value
less than the execution level of the calling process.

Default: The execution level of the calling process

30 I32 Labeled tape type:

Passes a value that indicates tape label type information. This
option is valid only for labeled tapes.

Default: 0

(ASC) Not used for asynchronous devices.

31 CA Labeled tape expiration:

Passes the date of the expiration of the �le or the date after
which the information in the �le is no longer useful, in the
format mm/dd/yy. The �le can be overwritten after this date.
If the default is speci�ed, the �le can be overwritten
immediately. In a volume set, �le expiration dates must
always be equal to or earlier than the date on the previous
�le.

Default: No expiration date speci�ed.

A character placed in the �rst element designates the
delimiter used by HPFOPEN to search for the end of the
character array. The delimiter can appear again only
following the last valid character of the character array, for
example,

%expdate% (% is the delimiter, expdate is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

(ASC) Not used for asynchronous devices.

2-10 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

32 CA Labeled tape sequence:

Passes one of the following character arrays indicating the
position of the �le in relation to other �les on the tape:

0 Causes a search of all volumes until the �le is found.

1..
9999

Speci�es the position of the �le relative to the current
�le on the tape.

ADDF Causes the tape to be positioned so as to add a new �le
at the end of the volume or last volume in a
multivolume set.

NEXT Positions the tape at the next �le on the tape. If this is
not the �rst HPFOPEN/FOPEN for the �le and a rewind
occurred on the last close, then the position remains at
the beginning of the previous �le.

Default: No array passed (no sequence indicated)

A character placed in the �rst element designates the
delimiter used by HPFOPEN to search for the end of the
character array. The delimiter can appear again only
following the last valid character of the character array, for
example,

%position% (% is the delimiter, position is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

(ASC) Not used for asynchronous devices.

33 I32 User labels:

Passes the number, in the range 0..254, of user-label records
to be created for the �le. Applicable for new disk �les only.

Default: 0

(ASC) Not used for asynchronous devices.

Creating A File 2-11

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

34 I32 Spooler copies:

Passes a value in the range 1..127 indicating the number of
copies of the entire �le to be produced by the spooling
facility. This option is applicable to spooled devices only. This
option can be speci�ed for a �le already opened (for example,
$STDLIST), where the highest value supplied before the last
FCLOSE takes e�ect. The copies do not appear continuously if
the system operator intervenes or if a �le of higher output
priority becomes READY before the last copy is complete. This
option is ignored for nonspooled output devices.

Default: 1

35 I32 File size:

Passes the maximum �le capacity:

For variable-length records, the capacity is expressed in
blocks (blockitem#=recordsize * blockfactor).
For �xed-length and unde�ned-length records, the capacity
is expressed in logical records.
The maximum �le size for standard and KSAM �les is 4
gigabytes.
The maximum �le size of 500 megabytes for RIO, circular,
and message �les is dependent upon both the record size
and the number of extents de�ned for the �le:
For circular and RIO �les, recsize=256 bytes and
numextent=32.
For message �les, recsize=128 bytes and numextent=32.

This option is applicable only at �le creation.

Default: 4 gigabytes

(ASC) Not used for asynchronous devices.

36 I32 Initial allocation:

Passes a positive integer value indicating the number of
records to be allocated to the �le initially. This option is
applicable only at �le creation.

Default: 0

(ASC) Not used for asynchronous devices.

2-12 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

37 I32 File code:

Passes a value that can be used as a �le code to identify the
type of �le. This code is recorded in the �le label and is
accessible through the FFILEINFO intrinsic. This option is
applicable only at �le creation (except when opening an old
�le that has a negative �le code).

If the program is running in user mode, specify a �le code in
the range 0..32,767 to indicate the �le type being created.
Programs running in user mode can access �les with positive
�le codes only.

If the program is running in privileged mode, specify a �le
code in the range -32,768..32,767. Programs running in
privileged mode can access �les with a �le code in the range
-32,768..32,767. If an old �le is opened that has a negative
�le code in its �le label, the �le code speci�ed must match
the �le code in the �le label (otherwise, an error results).

Default: 0

(ASC) Not used for asynchronous devices.

38 I32 File privilege:

Passes a value that determines a permanent privilege level to
be associated with a newly created �le. This option
permanently restricts �le access to a process whose execution
level is less than or equal to the speci�ed value. A value
cannot be speci�ed for less than the execution level of the
calling process. This option is applicable only at �le creation.

Default: 3

A �le created with levels 0, 1, or 2 can be opened only with
the HPFOPEN intrinsic; the FOPEN intrinsic cannot be used.

Creating A File 2-13

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

39 I32 Access type:

Passes a value indicating how to use the �le, either
sequentially or randomly. The �le system uses this
information to determine the most e�cient prefetching
algorithm to improve the performance of the �le access.

Default: 0

(ASC) Not used for asynchronous devices.

40 I32 Block factor:

Passes the number of logical records to be contained in one
physical record (block). This value is used to calculate the
physical record size (block size) for disk and magnetic tape
�les. Valid ranges are 1..32,767. This option is applicable only
at �le creation.

Default: 1 for �les opened NOBUF; for �les opened BUF, it is
calculated by dividing the speci�ed records into the block size
con�gured for the device.

(ASC) Not used for asynchronous devices.

41 Reserved for MPE/iX

42 CA Device class:

Passes a device class where the �le resides. The �le system
uses the device class name to select a nonshareable device
from a con�gured list of available devices. The name can
have a length of up to eight alphanumeric characters,
beginning with a letter (for example, TAPE). If a device class
is speci�ed, the �le is allocated to any available device in that
class.

Only one of the following options can be in e�ect when a �le
is opened:

itemnum=20
itemnum=22
itemnum=23
itemnum=42

Default: A disk �le located on the volume class DISC
associated with the group in which �le resides.

A character placed in the �rst element designates the
delimiter used by HPFOPEN to search for the end of the
character array. The delimiter can appear again only
following the last valid character of the character array, for
example:

%devclass% (% is the delimiter, devclass is the designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

2-14 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

43 record UFID:

Passes a unique �le identi�er (UFID) to provide a fast opening
of an old disk �le. A UFID is a record structure, 20 bytes in
length, that uniquely identi�es a disk �le. Using this option
avoids a directory search. Obtain the UFID of an opened �le
by calling FFILEINFO. The UFID can then be passed to
HPFOPEN. The �le represented by the UFID must be accessible
to the process calling HPFOPEN. (All �le system security checks
are made.) New �les cannot be opened with this option. If
the �le to be opened by the UFID contains a lockword, use
itemnum=2 to specify the �le name with the lockword.

Default: No UFID passed (a directory search is performed).

(ASC) Not used for asynchronous devices.

44 I32 Numbu�ers:

Passes the number of bu�ers to allocate to the �le. Ignored
for standard disk �les. This option is useful only for slow
devices (such as tapes) used in a bu�ered mode. Not
applicable for �les representing interactive terminals; a
system-managed bu�ering method is always used.

This option must not specify a number of bu�ers whose
combined size exceeds the physical capacity of the �le.

Default: 2

(ASC) Not used for asynchronous devices.

45 CA Fill character:

Passes two ASCII characters that determine what padding
character to use at the end of blocks or unused pages, and
the padding used by itemnum=53. Do not use delimiter
characters for this option. The �ll character must be a 2 byte
array. The �rst character only is used as the padding
character. The second character is reserved for future use.
This option is applicable only at �le creation.

Default: Null characters and ASCII blanks.

Creating A File 2-15

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

46 I32 Inhibit bu�ering:

Passes a value enabling/disabling automatic bu�ering by
MPE/iX. If NOBUF is speci�ed, I/O is allowed to take place
directly between the data area and the applicable hardware
device.

Default: 0

(ASC) Not used for asynchronous devices.

47 I32 Numextents:

Passes a value in the range 1..32 that determines the number
of extents for the �le. If a value of 1 is speci�ed, the �le is
created as one contiguous extent of disk space. If a value
greater than 1 is speci�ed, a variable number of extents (with
varying extent sizes) is allocated on a need basis. This option
is applicable only at �le creation.

(ASC) Not used for asynchronous devices.

Default: 1

48 I32 Reverse VT:

Passes a value indicating whether or not the given device
name is to be allocated on a remote machine. Specify the
remote environment in the same open request, using either
the formal designator option or the remote environment
option. Reverse VT behaves nearly the same as a terminal
opened through remote �le access, except that no session is
required on the remote machine.

Default: 0

49 Reserved for MPE/iX

50 I32 Final disposition:

Passes a value indicating the �nal disposition of the �le at
close time (signi�cant only for �les on disk and magnetic
tape). A corresponding parameter in a FILE command can
override this option, unless �le equations are disallowed with
itemnum=9.

Default: 0

For more information on �le disposition at close time, refer to
the description of the FCLOSE intrinsic.

(ASC) Not used for asynchronous devices.

2-16 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

51 Pascal/iX string:

Passes a formal �le designator, following MPE/XL �le naming
conventions, but using the Pascal/iX STRING type format.
This option is identical to itemnum=2 except for the type of
item. No delimiters are needed.

Default: No string passed.

Only one of the following options can be in e�ect when a �le
is opened:

itemnum=2
itemnum=51

52 CA File equation string:

Passes a character string that matches the MPE/XL �le
equation speci�cation syntax exactly. (Refer to the FILE
command in the MPE/iX Commands Reference Manual
Volumes 1 and 2 (32650-90003 and 32650-90364).) This option
allows the speci�cation of options available in the FILE
command.

Default: No string passed.

A character placed in the �rst element designates the
delimiter used by HPFOPEN to search for the end of the
character array. The delimiter can appear again only
following the last valid character of the character array, for
example:

%�leequation% (% is the delimiter, �leequation is the
designator)
fabcxyzf (f is the delimiter, abcxyz is the designator)

53 I32 ASCII/binary:

Passes a value indicating whether ASCII or binary code is to
be used for a new �le when it is written to a device that
supports both codes. For disk �les, this a�ects padding that
can occur when issuing a direct-write intrinsic call
(FWRITEDIR) to a record that lies beyond the current logical
end-of-�le indicator. By default, magnetic tape and �les are
treated as ASCII �les. This option is applicable only at �le
creation.

The following values are valid:

0 Binary �le

1 ASCII �le

Default: 0

(ASC) Not used for asynchronous devices.

Creating A File 2-17

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

54 REC KSAM parm:

Passes a record that de�nes the keys for a new KSAM �le.

(KSAM XL) For KSAM XL �les, refer to the parm parameter
discussion in the Using KSAM XL (32650-90168).

(KSAM/3000) The record must be at least 34 bytes in size. For
details, refer to the ksamparam parameter discussion in the
KSAM/3000 Reference Manual (30000-90079).

Default: No record passed

(ASC) Not used for asynchronous devices.

55 Reserved for MPE/iX

56 I32 Object class:

Passes a user object class number, in the range 0..10, that is
associated with the �le.

Default: Determined by the �le code for system and
subsystem �les, and by the �le type and record type for
normal user �les.

57 Reserved for MPE/iX

58 Reserved for MPE/iX

59 Reserved for MPE/iX

60 Reserved for MPE/iX

61 Reserved for MPE/iX

64 BA ACD:

Passes a byte array de�ning the access control de�nition
(ACD) to be attached to a new �le. The byte array has a
length of 1 to 279 bytes. Unlike other HPFOPEN options that
expect a delimiter at both the beginning and the end of the
byte array, this option only expects a trailing carriage-return
character as a delimiter, for example,

(X:@.@;R,W:MGR.SYS;RACD:JOHN.SMITH)<cr>

Where, the <cr> is the carriage-return character (13, 0x0D).

2-18 Creating A File

Table 2-1. HPFOPEN Itemnum/Item Values (continued)

Itemnum Mnemonic Item Description

74 Header/Trailer:

Enable/disable standard headers/trailers:

0 Enable header and trailer (default)

1 Disable header

2 Disable trailer

3 Disable header and trailer

Provides a standard way for the spooler to control the
printing banners.

Valid only for the initial HPFOPEN call to the printer and
prevents the header from being printed. On the last FCLOSE,
the trailer is not printed.

Optional parameters you can use to specify �le access and device control characteristics are
described elsewhere in this manual. For more details on the HPFOPEN intrinsic, refer to the
MPE/iX Intrinsics Reference Manual (32650-90028).

The FOPEN Intrinsic

The FOPEN intrinsic is the other programmatic interface for supplying the �le system with
information about your �le. Its syntax is:

�lenum := FOPEN (formaldesignator, foptions, aoptions,
recsize, device, formmsg, userlabels,

blockfactor, numbu�ers, �lesize,

numextents, initialloc, �lecode);

The following table shows the correspondence between the optional parameters of FOPEN
and HPFOPEN that you can use to specify a �le's physical characteristic at �le creation. For
more details on using the FOPEN intrinsic, refer to the MPE/iX Intrinsics Reference Manual
(32650-90028).

Creating A File 2-19

Table 2-2. FOPEN/HPFOPEN Parameter Equivalents

FOPEN Parameter HPFOPEN Itemnum,Item

�lenum (functional return) �lenum (parameter)

formaldesig 2, formaldesig

foption:

Bits (14:2) domain
Bit (13:1) ASCII/binary
Bits (10:3) �le designator
Bits (8:2) record format
Bit (7:1) carriage-control
Bit (6:1) labeled tape
Bit (5:1) disallow �le equation
Bits (2:3) �le type

3, domain

53, ASCII/binary

5, �le designator

6, record format

7, carriage-control

8, labeled tape

9, disallow �le equation

10, �le type

aoption:

Bits (12:4) access type
Bit (11:1) multirecord
Bit (10:1) dynamic locking
Bits (8:2) exclusive
Bit (7:1) inhibit bu�ering
Bits (5:2) multiaccess mode
Bit (4:1) nowait I/O
Bit (3:1) �le copy

11, access type

15, multirecord

12, dynamic locking

13, exclusive

46, inhibit bu�ering

14, multiaccess mode

16, nowait I/O

17, �le copy

recsize 19, record size

device 20, device name

22, volume class

23, volume name

24, density

25, printer environment

26, remote environment

42, device class

48, reverse VT

formmsg 8, labeled tape label

28, spooled message

30, labeled tape type

31, labeled tape expiration

32, labeled tape sequence

54, KSAM parms

userlabels 33, user labels

blockfactor 40, block factor

2-20 Creating A File

Table 2-2. FOPEN/HPFOPEN Parameter Equivalents (continued)

FOPEN Parameter HPFOPEN Itemnum,Item

numbu�ers:

Bits (11:5) numbu�ers
Bits (4:7) spooler copies
Bits (0:4) output priority

44, numbu�ers

34, spooler copies

27, output priority

�lesize 35, �lesize

numextent 47, numextent

initialloc 36, initial allocation

�lecode 37, �lecode

Table 2-3. Determining a File's Physical Characteristics Using FOPEN

Characteristic Parameter Description Default Value

Record Structure foptions: ASCII/binary option
foptions: record format option
foptions: carriage-control option
recsize parameter

Binary
Fixed-length
None
256 bytes

File Structure foptions: �le type option
device parameter
blockfactor parameter
�lesize parameter
initialloc parameter
numextents parameter

Standard
Volume class DISC
128/recsize rounded down
4 gigabytes
0 extents
A variable number of
extents is allocated

File Identi�cation userlabels parameter
�lecode parameter

No user labels
�lecode = 0

The BUILD Command

The BUILD command creates a �le in much the same way as the HPFOPEN/FOPEN intrinsic,
except that HPFOPEN/FOPEN is used within a program and BUILD is entered as an MPE/iX
command.

The parameters for BUILD have meanings and applications that are similar to the corresponding
parameters for HPFOPEN/FOPEN. For more information about how to use the BUILD command,
refer to the MPE/iX Commands Reference Manual (32650-90003).

Creating A File 2-21

The FILE Command

The FILE command is used to determine how a �le will be accessed. You may use FILE to
describe any of the characteristics available with HPFOPEN/FOPEN or BUILD, but you cannot
actually create a �le with the FILE command. While HPFOPEN/FOPEN and BUILD physically
allocates space for a �le and de�ne its characteristics, the FILE command may only de�ne how
a �le will be accessed at run time.

To be e�ective, a FILE command must be issued before your �le is opened; it takes e�ect
when the �le is opened. A FILE command remains in e�ect until the job or session ends,
until it is canceled with a RESET command, or until it is overridden by another command for
the same �le. Thus, if you enter a FILE command equating the formal designator DATAFL
to the actual designator DISCFILE (indicating a disk �le) and then run three programs that
reference DATAFL, all three programs will access the �le DISCFILE. If you wish to de�ne other
characteristics for the �le, simply issue another FILE command; if you want to nullify the FILE
command completely so that the formal designator has the characteristics originally speci�ed
by the program that is using it, issue a RESET command.

For example, suppose that you run two programs, both referencing a new temporary �le named
DFILE located on disk. Before you un the �rst program, you want to rede�ne the �le so that
it is output to the standard list device. To do this, you would issue a FILE command equating
DFILE with the actual designator $STDLIST. In the second program, the �le is again to be a
temporary �le on disk. You issue a RESET command so that the speci�cations supplied by the
second program (rather than those in the FILE command) apply.

JOB JNAME,UNAME.ANAME...
FILE DFILE=$STDLIST
RUN PROG1...
RESET DFILE
RUN PROG2...

A comparison of the parameters for FILE, FOPEN, and HPFOPEN is given in Table 2-4. For more
information about using the FILE command, refer to the MPE/iX Commands Reference Manual
(32650-90003).

2-22 Creating A File

Table 2-4. FILE, FOPEN, and HPFOPEN Parameters

CHARACTERISTIC :FILE
PARAMETER

FOPEN
PARAMETER

HPFOPEN
PARAMETER

Formal �le designator formaldesignator formaldesignator formaldesignator
option
(itemnum=2)

Actual �le designator �lereference
$NEWPASS
$OLDPASS
$NULL
$STDIN
$STDINX
$STDLIST

Default �le designator
foption (Bits 10:3)

designator option
(itemnum=5)

Domain NEW
OLD
OLDTEMP

Domain foption (Bits
14:2)

domain option
(itemnum=3)

Logical record size recsize recsize record size option
(itemnum=19)

Block/bu�er size blockfactor blockfactor block factor
option
(itemnum=40)

Record format F
V
U

Record format foption
(Bits 8:2)

record format
option
(itemnum=6)

ASCII/Binary Code ASCII
Binary

ASCII/Binary foption
(Bits 13:1)

ASCII/Binary option
(itemnum=53)

Carriage-control
characters supplied in
FWRITE

CCTL
NOCCTL

Carriage-control
foption (Bits 7:1)

carriage-control
option
(itemnum=7)

Access mode IN
OUT
OUTKEEP
APPEND
INOUT
UPDATE

Access-type aoption
(Bits 12:4)

access type option
(itemnum=11)

Number of bu�ers numbu�ers
NOBUF

numbu�ers (Bits 11:5) numbu�ers option
(itemnum=44)

Exclusive/Share
access

EXC
SEMI
SHR

EXCLUSIVE access
aoption (Bits 8:2)

exclusive option
(itemnum=13)

Multi access MULTI
NOMULTI
GMULTI

Multiaccess mode
aoption (Bits 5:2)

multiaccess option
(itemnum=14)

Creating A File 2-23

Table 2-3. :FILE, FOPEN, and HPFOPEN Parameters (Continued)

CHARACTERISTIC :FILE
PARAMETER

FOPEN
PARAMETER

HPFOPEN
PARAMETER

Multirecord MR
NOMR

Multirecord aoption
(Bits 11:1)

multirecord option
(itemnum=15)

File disposition DEL
SAVE
TEMP

N/A �nal disposition
option
(itemnum=50)

Device class name or
logical device number

device device device class option
(itemnum=42)
device name option
(itemnum=20)

Output priority outputpriority numbu�ers (Bits 0:4) output priority
option
(itemnum=27)

NOWAIT input/output NOWAIT
WAIT

NOWAIT I/O aoption
(Bits 4:1)

nowait I/O option
(itemnum=16)

Number of copies numcopies numbu�ers (Bits 4:7) spooler copies option
(itemnum=34)

File code �lecode �lecode �lecode option
(itemnum=37)

File capacity numrec �lesize �lesize option
(itemnum=35)

Total number of
extents

numextents numextents numextents option
(itemnum=47)

Extents initially
allocated

initalloc initalloc initial allocation
option
(itemnum=36)

FILE command
prohibition

N/A Disallow FILE
equation foption (Bits
5:1)

disallow �le equation
option
(itemnum=9)

Dynamic �le locking LOCK
NOLOCK

Dynamic locking
aoption (Bits 10:1)

disallow �le equation
dynamic locking
option
(itemnum=12)

Forms-alignment
message

FORMS formmsg spooled message option
(itemnum=28)

User labels for disk �le N/A userlabels user labels option
(itemnum=33)

File labels for
magnetic tape �les

LABEL
NOLABEL

Labeled tape foption
(Bit 6:1)

labeled tape label
option
(itemnum=8)

File type STD CIR
MSG RIO

�le type foption (Bits
2:3)

�le type option
(itemnum=10)

2-24 Creating A File

Table 2-3. :FILE, FOPEN, and HPFOPEN Parameters (Continued)

CHARACTERISTIC :FILE
PARAMETER

FOPEN
PARAMETER

HPFOPEN
PARAMETER

Mapped access
method

N/A N/A short mapped option
(itemnum=18)
long mapped option
(itemnum=21)

Restrict �le access
according to execution
level

N/A N/A privileged access
option
(itemnum=29)
�le privilege
option
(itemnum=38)

Determine optimum
pre-fetch algorithm

N/A N/A will access option
(itemnum=39)

Fast �le open N/A N/A UFID option
(itemnum=43)

Fill character for
record padding

N/A N/A �ll character option
(itemnum=45)

Formal �le designator
Pascal/iX string type

N/A N/A Pascal/iX string
option
(itemnum=51)

File equation string
for �le open

N/A N/A �le equation string
option
(itemnum=52)

KSAM key �le record N/A KSAM param KSAM parm option
(itemnum=54)

User object class
number

N/A N/A object class option
(itemnum=56)

Summary of Overrides

If a FILE command has been entered that contradicts some of the HPFOPEN/FOPEN parameters
for a �le, which takes precedence? What happens if some parameters are left out? The �le
system maintains a hierarchy of overrides for just such situations (illustrated in Figure 2-1):

Creating A File 2-25

Figure 2-1. File System Hierarchy of Overrides

Since the physical characteristics of a �le cannot be changed after it has been created, it makes
sense that the �le label would take precedence over all commands. Other determinants are
e�ective only when a new �le is being created.

Note FILE commands and HPFOPEN/FOPEN calls cannot alter physical characteristics
of an existing �le.

Specifying a Record Format

A �le can contain records written in only one of three formats: �xed-length, variable-length,
and unde�ned-length. You can specify the format that you want for your records, either
with the HPFOPEN/FOPEN intrinsic or the MPE/iX BUILD or FILE commands. Files residing
on disk or magnetic tape may contain records in any of the three formats. For �les on other
devices, the �le system overrides any speci�cations that you supply, and treats the records as
unde�ned-length records.

2-26 Creating A File

Fixed-length records

When you create a �le and request �xed-length records, all the records in the �le will be the
same size. The �le system knows how much space has been allocated for each record, and that
all of the space is to be available for data.

Figure 2-2 depicts a �le with �xed-length records. A record size of n bytes has been speci�ed.
Note that each record is the same size and contains the same amount of information.

Figure 2-2. Fixed-Length Records

Creating A File 2-27

Variable-length records

There may be a time when you want a disk �le in which the logical records need not be the
same size. In this case, you can request that the format of the records be variable-length. The
�le system knows the size of each logical record because each record is preceded by a two-byte
(16-bit) counter giving the length of the record in bytes; thus, the data for each record is
accompanied by an indication of its length. When you build a �le containing variable-length
records, specify a record size at least large enough to accommodate your longest record.

Figure 2-3 depicts a �le with variable-length records. The byte count preceding the �rst byte of
each record gives its record's length.

Figure 2-3. Variable-length Records

2-28 Creating A File

Unde�ned-length records

When your �le contains unde�ned-length records, the �le system does not know the amount
of good data in any given logical record. The data length is \unde�ned." Unde�ned-length
records are especially useful when you are reading tapes of unknown record length produced
on other systems.

The �le system knows the maximum room available in each record because the same amount
of space is allocated for each record; however, the data in the records may vary in length,
so MPE/iX pads the unused space with \�ller" instead of good data. The �le system supplies
this �ller during writes to the �le when the length of the data being written is less than the
maximum record length. The �le system cannot distinguish between valid data and �ller. When
you read data from a �le you must be able to distinguish between the valid data and the �ller.

Figure 2-4 depicts a �le with unde�ned-length records. When data does not �ll the space
allocated, �ller occupies the unused space.

Figure 2-4. Unde�ned-Length Records

The three record formats, �xed-length, variable-length, and unde�ned-length are summarized
in Table 2-5.

Creating A File 2-29

Table 2-5. Comparison of Logical Record Formats

Fixed-Length Variable-Length Unde�ned-Length

Data length known to �le
system.

Data length known to �le
system.

Data length not known to �le
system.

Same length for all records. Record length varies. Same length for all records.

Record space contains data
only.

Record space contains data
plus byte count.

Record space contains data
plus �ller.

Request actual size for
records.

Request maximum size for
records.

Request maximum size for
records.

Specifying a File Type

When you create, a �le the �le system imposes a structure and access method on the contents
of the �le. The �le system allows you to access the records in a �le only in the manner dictated
by the �le type that you speci�ed at �le creation. Depending upon your intended use of the
�le, you can specify four special �le types in addition to the standard �le type: KSAM �les, RIO
�les, circular �les, and message �les.

Standard �les

By far the most common type of �le is the standard �le, a structure comprised simply of
a group of records beginning with record 0 and ending with record n - 1 (where n is the
maximum speci�ed in the �lesize option). Examples of standard �les are Editor �les and
program �les. A standard �le is the default �le type created when you �rst open a �le.

KSAM �les

The keyed sequential access method (KSAM) is a method of organizing records in a �le
according to the content of key �elds within each record. Every record in a KSAM �le contains
a primary key �eld whose contents determine the primary logical sequence of records in the
�le. Other key �elds can also be de�ned so that the �le can be sequenced in alternate orders.
The order in that the records are physically written to the �le, the chronological order, can be
the same as the primary key sequence or it can be unrelated to any logical sequence.

KSAM �les are not dealt with in this manual. Instead, the creation and application of KSAM
�les are discussed in great detail in the KSAM/3000 Reference Manual (30000-90079).

RIO �les

RIO is a random access method that permits individual �le records to be deactivated. These
inactive records retain their relative position within the �le. RIO �les are intended for use
primarily by COBOL programs; however, you can access these �les by programs written in any
language.

RIO �les may be accessed in two ways: RIO access and non-RIO access. RIO access ignores the
inactive records when the �le is read sequentially using the FREAD intrinsic, and these records
are transparent to you; however, they can be read by random access using FREADDIR. They
may be overwritten both serially and randomly using FWRITE, FWRITEDIR, or FUPDATE. With
RIO access, the internal structure of RIO blocks is transparent.

2-30 Creating A File

Circular �les

Circular �les are wrap-around structures that behave as standard sequential �les until they are
full. As records are written to a circular �le, they are appended to the tail of the �le; when
the �le is �lled, the next record added causes the block at the head of the �le to be deleted
and all other blocks to be logically shifted toward the head of the �le. Circular �les may not
be simultaneously accessed by both readers and writers. When the �le has been closed by all
writers, it may be read; a reader takes records from the circular �le one at a time, starting at
the head of the �le.

Circular �les are particularly useful as history �les, when a user is interested in the information
recently written to the �le and is less concerned about earlier material that has been deleted.
These history �les are frequently used as debugging tools. Diagnostic information may be
written to the �le, and the most recent and relevant material can be saved and studied.

Creating a circular �le is similar to creating a message �le. When a user process opens a new
�le and indicates that it will be a circular �le, the HPFOPEN/FOPEN intrinsic creates the new
circular �le. In order to create a circular �le with the BUILD command, use the CIR keyword;
for example, to build a circular �le named CIRCLE, enter:

BUILD CIRCLE;CIR

A new circular �le may also be speci�ed with a FILE command. Use the CIR keyword for a
new �le:

FILE ROUND, NEW; CIR

A circular �le named ROUND is indicated.

When you perform a LISTFILE,2 command, circular �les are identi�ed by an \O" in the TYP
�eld; CIRCLE is identi�ed here:

FILENAME CODE -----------LOGICAL RECORD----------- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS #X MX

CIRCLE 256B FBO 0 1023 1 0 0 8

Message �les

Message �les are used by interprocess communication (IPC), a facility of the �le system that
permits multiple-user processes to communicate with one another in an easy and e�cient
manner. Message �les act as �rst-in-�rst-out queues of records, with an entry made by FWRITE
and a deletion made by FREAD; one process may submit records to the �le with the FWRITE
intrinsic while another process takes records from the �le using the FREAD intrinsic.

Message �les are not dealt with in this manual. Instead, the creation and application of
message �les are discussed in great detail in the Interprocess Communication Programmer's
Guide (32650-90019).

Creating A File 2-31

Specifying Record Size

You can specify the size of the records in your �le by using the BUILD (for disk �les) or FILE
commands, or the HPFOPEN/FOPEN intrinsic; however, the interpretation of the requested
record size can be a�ected by the record structure and data format chosen as well as the
device for the �le.

Note Within MPE/iX and in various subsystems, the record size for an ASCII �le is
usually identi�ed in terms of bytes (8 bits) and the record size for a binary
�le is identi�ed in terms of half-words (16 bits). This convention is a matter
of convenience only, since most users think of ASCII �les as being character
oriented.

When you specify the record size for a �xed-length ASCII �le, the record size determined for
the �le is the same as that which you speci�ed for it. The maximum record size allowed for
�xed-length ASCII �les is 32767 bytes.

To maintain compatibility with pre-900 Series HP 3000 computer systems, the following �le
types always begin records on half-word boundaries:

ASCII �les with variable-length or unde�ned-length record format

binary �les with �xed-length, variable-length, or unde�ned-length record format

For these �le types, when you specify an odd-byte record size, the �le system rounds up the
value to an even number to reect the fact that these records always begin on half-word
boundaries. The maximum record size you can specify for these �le types is 32766 bytes.

When the �le is a binary �le or a variable-length ASCII �le, the extra byte is available to be
used for data. Figure 2-5 illustrates the placement of odd-bytes records and the disposition of
the added byte.

2-32 Creating A File

Figure 2-5. Record Placement for ASCII Files

Rather than specify your own record size, you can accept the default record size for the device
that you are using. Default record sizes are listed in Table 2-6. Note that subsystem defaults
may be di�erent from MPE defaults; for example, the Editor default may be 72 or 80 bytes
(depending on text format) while the MPE standard default is the record size con�gured for the
device.

Table 2-6. Standard Default Record Sizes

DEVICE RECORD SIZE (BYTES)

Disk 256

Magnetic Tape Unit 256

Terminals (most cases) 80

Line Printer 132

Plotter 510

Programmable Controller 256

Synchronous Single-Line
Controller

256

Creating A File 2-33

Specifying Disk Volume Restrictions

MPE/iX makes a distinction between the device and the media. The device is the disk drive
and the media is the disk pack. The MPE/iX volume management facility controls the media
and divides the media into three entities:

Volume set, a set of related disk packs assigned to the group in which you create your �le.

Volume class, a subset of a volume set. A volume can be assigned to more than one volume
class.

Volume, a single disk pack. Each volume on a system is a member of a volume set.

By default, when you create (or otherwise access) a disk �le and data is posted to disk, new
extents are placed wherever space is available on any volume within the volume class DISC
assigned to the group in which your �le resides.

You can use either the volume name option or the volume class option of HPFOPEN, or the
device parameter of FOPEN, to specify either a volume name or a volume class name, thus
restricting the placement of your �le's extents to either the speci�ed volume or to the speci�ed
volume class within the volume set.

The device parameter of FOPEN also allows you to specify a volume name or a volume class
in an additional manner, due to the necessity of maintaining FOPEN compatibility with MPE
V/E based computer systems. If an LDEV (a logical device number used to identify a device)
is passed into FOPEN, MPE/iX translates the LDEV into the volume name that is currently
mounted on the disk device and places the volume name in the �le's label. Similarly, a device
class that is associated to a disk device is translated into the volume class name.

Note HPFOPEN fails if, when creating a disk �le, an LDEV is passed to volume name
option for a mounted disk or a device class is passed to volume class option.

Specifying a File Code

MPE/iX subsystems often create special-purpose �les whose functions are identi�ed by
four-digit integers called �le codes, written in their system �le labels. HPFOPEN/FOPEN, BUILD,
and FILE have parameters that enable you to specify a �le code for your �le when you �rst
create it. For user �les, you can use as a �le code any number from 0 through 1023. Numbers
above 1023 listed in Table 2-7 are prede�ned by Hewlett-Packard for special system �les and
should not be rede�ned for your use. If you do not specify a �le code when you create a �le,
the MPE/iX default value of zero applies.

For instance, compilers create Native Mode Object (NMOBJ) �les, written in a special format
and identi�ed by the code 1461, upon which they compile object programs. User programs
sometimes create �les that must be identi�ed in some unique way, too. Such a program might
produce a permanent disk �le identi�ed by the integer 1. If you were to run this program
several times and want to uniquely identify the �le produced on each run (or set of runs) by a
special class, purpose, or function, you could use a FILE command to supply a unique �le code
for each run (or group of runs).

2-34 Creating A File

For instance, on the second run, you might wish to classify the �le with the �le code 2, as
follows:

File code
|

FILE DESGX=DESGB;CODE=2

RUN FILEPROD

If you later wished to determine the classi�cation to which this �le belonged, you could
use the LISTFILE command with an information level of 1, which prints the �le name, �le
code, and other information about the �le. Alternatively, you could determine the �le code
by calling the FFILEINFO intrinsic. Both LISTFILE and FFILEINFO are discussed in Getting
System Information Programmer's Guide (32650-90018). The �le codes that have particular
Hewlett-Packard-de�ned meanings are listed in Table 2-7.

Creating A File 2-35

Table 2-7. Reserved File Codes

Integer Mnemonic Meaning

1024 USL User Subprogram Library

1025 BASD Basic Data

1026 BASP Basic Program

1027 BASFP Basic Fast Program

1028 RL Compatibility Mode Relocatable Library

1029 PROG Compatibility Mode Program File

1031 SL Segmented Library

1035 VFORM VPLUS Forms File

1036 VFAST VPLUS Fast Forms File

1037 VREF VPLUS Reformat File

1040 XLSAV Cross Loader ASCII File (SAVE)

1041 XLBIN Cross Loader Relocated Binary File

1042 XLDSP Cross Loader ASCII File (DISPLAY)

1050 EDITQ Edit Quick File

1051 EDTCQ Edit KEEPQ File (COBOL)

1052 EDTCT Edit TEXT File (COBOL)

1054 TDPDT TDP Diary File

1055 TDPQM TDP Proof Marked QMARKED

1056 TDPP TDP Proof Marked Non-COBOL File

1057 TDPCP TDP Proof Marked COBOL File

1058 TDPQ TDP Work File

1059 TDPXQ TDP Work File (COBOL)

1060 RJEPN RJE Punch File

1070 QPROC QUERY Procedure File

1080 KSAMK KSAM Key File

1083 GRAPH GRAPH Speci�cation File

1084 SD Self-Describing File

2-36 Creating A File

Reserved File Codes (cont.)

Integer Mnemonic Meaning

1090 LOG User Logging Log File

1100 WDOC HP WORD Document

1101 WDICT HP WORD Hyphenation Dictionary

1102 WCONF HP WORD Con�guration File

1103 W2601 HP WORD Attended Printer Environment

1110 PCELL IFS/3000 Character Cell File

1112 PENV IFS/3000 Environment File

1113 PCCMP IFS/3000 Compiled Character Cell File

1114 RASTR Graphics Image in RASTER Format

1130 OPTLF OPT/3000 Log File

1131 TEPES TEPE/3000 Script File

1132 TEPEL TEPE/3000 Log File

1133 SAMPL APS/3000 Log File

1139 MPEDL MPEDCP/DRP Log File

1140 TSR HPToolset Root File

1141 TSD HPToolset Data File

1145 DRAW Drawing File for HPDRAW

1146 FIG Figure File for HPDRAW

1147 FONT Reserved

1148 COLOR Reserved

1149 D48 Reserved

1152 SLATE Compressed SLATE File

1153 SLATW Expanded SLATE Work File

1156 DSTOR RAPID/3000 DICTDBU Utility Store File

1157 TCODE Code File for Transact/3000 Compiler

1158 RCODE Code File for Report/3000 Compiler

1159 ICODE Code File for Inform/3000 Compiler

1166 MDIST HP Desk Distribution List

1167 MTEXT HP Desk Text

1168 MARPA ARPA Messages File

1169 MARPD ARPA Distribution List

Creating A File 2-37

Reserved File Codes (cont.)

Integer Mnemonic Meaning

1170 MCMND HP Desk Abbreviated Commands File

1171 MFRTM HP Desk Diary Free Time List

1172 None Reserved

1173 MEFT HP Desk External File Transfer Messages File

1174 MCRPT HP Desk Encrypted Item

1175 MSERL HP Desk Serialized (Composite) Item

1176 VCSF Version Control System File

1177 TTYPE Terminal Type File

1178 TVFC Terminal Vertical Format Control File

1192 NCONF Network Con�guration File

1193 NTRAC Network Trace File

1194 NTLOG Network Log File

1195 MIDAS Reserved

1211 NDIR Reserved

1212 INODE Reserved

1213 INVRT Reserved

1214 EXCEP Reserved

1215 TAXON Reserved

1216 QUERF Reserved

1217 DOCDR Reserved

1226 VC VC File

1227 DIF DIF File

1228 LANGD Language De�nition File

1229 CHARD Character Set De�nition File

1230 MGCAT Formatted Application Message Catalog

1236 BMAP Base Map Speci�cation File

1242 BDATA HP Business BASIC/V Data File

1243 BFORM HP Business BASIC/V Field Order File for VPLUS

1244 BSAVE HP Business BASIC/V SAVE Program File

1245 BCNFG Con�guration File for Default Options for HP
Business BASIC Programs

2-38 Creating A File

Reserved File Codes (cont.)

Integer Mnemonic Meaning

1246 BKEY Function Key De�nition File for Terminal

1258 PFSTA Pathow STATIC File

1259 PFDYN Pathow Dynamic File

1270 RFDCA Revisible Form DCA Data Stream

1271 FFDCA Final Form DCA Data Stream

1272 DIU Document Interchange Unit File

1273 PDOC HP WORD/150 Document

1275 DFI DISOSS Filing Information File

1276 SRI Search Restart Information File

1401 CWPTX Chinese Word Processor Text File

1421 MAP HP MAP/3000 Map Speci�cation File

1422 GAL Reserved

1425 TTX Reserved

1428 RDIL HP Business Report Writer (BRW) Dictionary File CM

1429 RSPEC BRW Speci�cation File

1430 RSPCF BRW Speci�cation File

1431 REXCL BRW Execution File

1432 RJOB BRW Report 509 File

1433 ROUT1 BRW Intermediate Report File

1434 ROUTD BRW Dictionary Output

1435 PRINT BRW Print File

1436 RCONF BRW Con�guration File

1437 RDICN BRW NM Dictionary File

1438 REXNUM BRW NM Execution File

1441 PIF Reserved

1476 TIFF Tag Image File Format

1477 RDF Revisible Document Format

1478 SOF Serial Object File

1479 GPF Chart File for Charting Gallery Chart

1480 GPD Data File for Charting Gallery Chart

Creating A File 2-39

Reserved File Codes (cont.)

Integer Mnemonic Meaning

1483 VCGPM Virtuoso Core Generator Processed Macro File

1484 FRMAT Formatter

1485 DUMP Dump Files Created and Used by IDAT and DPAN

1486 NNMD0 New Wave Mail Distribution List

1491 X4HDR X.400 Header for HP Desk Manager

1500 WP1 Reserved

1501 WP2 Reserved

1502 LO123 Lotus 123 Spread Sheet

1514 FPCF Form Tester Command Spec File

1515 INSP Spooler/XL Input Spool File

1516 OUTSP Spooler/XL Output Spool File

1517 CHKSP Spooler/XL Checkpoint Spool File

1521 DSKIT HP Desk Intrinsics Transaction File

1526 MSACK Man Server Acknowledgement

1527 MSNON Man Server Non-Delivery Noti�cation

1528 MSTRC Man Server Trace File

3333 Reserved

Note Default is the unreserved �le code of 0.

Using 1090 (LOG) as a designated �le code may not yield the number of records that you
specify in the DISC= parameter. Most �les use the number of records speci�ed in the DISC=
parameter as the maximum limit; user logging uses this speci�ed number as a minimum.

2-40 Creating A File

Specifying Storage Format

Devices on the HP 3000 can transmit information in ASCII (American Standard Code for
Information Interchange) and/or binary code, depending on the device.

For example, a line printer handles ASCII formatted data, while a disk can transmit and store
data in either format. You can use appropriate optional parameters in HPFOPEN/FOPEN to
specify the code (ASCII or binary) in which a new �le is to be recorded when it is written to a
device that supports both codes.

Note It is even possible to transmit and store data in EBCDIC, as long as the
application program or subsystem (FCOPY, for example) handles the
decoding/encoding. EBCDIC is not handled automatically by MPE/iX.

With many devices, there is no restriction on the data actually transferred to or from the �le;
you can write ASCII data to a binary �le, or binary data to an ASCII �le. You can specify the
type of code that you want, or accept the MPE/iX default for the device that you are using.

When the allocated record space is not �lled by data, MPE/iX pads the unused space with a �ll
character instead of good data. If you accessed this unused portion of a record (for example,
with the inhibit bu�ering option set to NOBUF), you would �nd in the unallocated record space
the �ll character speci�ed at �le creation.

The �ll character may be di�erent depending upon the mechanism you used to create the �le.
If you create the �le with FOPEN or BUILD, MPE/iX pads an ASCII �le with blanks and a binary
�le with zeros. If you create the �le with HPFOPEN, MPE/iX pads the �le with the �ll character
speci�ed by the �ll character option (if not speci�ed, the default �ll character for �les created
with HPFOPEN is blanks for ASCII �les and NULL characters for binary �les). Examples of
ASCII �les on the HP 3000 include program source �les, general text and document �les, and
MPE/iX stream �les containing MPE/iX commands. Examples of binary �les include program
�les containing linked object code, and application data �les.

Creating A File 2-41

3

Specifying a File Designation

The name by which a program recognizes your �le is its formal �le designator. This is the �le
name that is coded into the program, along with the program's speci�cations for the �le.

The formal �le designator is the name by which your program recognizes the �le, but there
must also be a means by which the �le system can recognize it, allowing it to be referenced by
various commands and programs. This chapter discusses the various ways MPE/iX allows you
to designate a name for your �le.

As you read this chapter, keep these considerations in mind:

How will the �le be referenced?

How will the �le be used?

How does MPE/iX associate formal and actual �le designators?

MPE/iX File Designators

The �le system recognizes two general classes of �les:

user-de�ned �les, which you or other users de�ne, create, and make available for your own
purposes

system-de�ned �les, which the �le system de�nes and makes available to all users to indicate
standard input/output devices

These �les are distinguished by the �le names and other descriptors (such as group or
account names) that reference them, as discussed below. You may use both the �le name
and descriptors, in combination, as either formal designators within your programs or as
actual designators that identify the �le to the system. Generally, however, most programmers
use only arbitrary names as formal designators, and then equate them to appropriate actual
�le designators at run time. In such cases, the formal designators (user �le names) contain
from one to eight alphanumeric characters, beginning with a letter; the actual designators
include a user or system �le name, optionally followed by a group name, account name, and/or
security lockword, all separated by appropriate delimiters. This technique facilitates maximum
exibility with respect to �le references.

Specifying a File Designation 3-1

User-De�ned Files

You can reference any user-de�ned �le by writing its name and descriptors in the �lereference
format, as follows:

�lename[/lockword][.groupname][.accountname]

In no case must any �le designator written in the �lereference format exceed 35 characters,
including delimiters.

When you reference a �le that belongs to your logon account and group, you need only use
the�lereference format in its simplest form, which includes only a �le name that may range
from one to eight alphanumeric characters, beginning with a letter (unless, of course, the �le
has a lockword, in which case you must specify the lockword and a delimiter). In the following
examples, both formal and actual designators appear in this format:

Formal designator
|

FILE ALPHA=BETA <---- Actual designator
FILE REPORT=OUTPUT
FILE X=AL126797
FILE PAYROLL=SELFL

A �le reference is always quali�ed, in the appropriate directory, by the names of the group
and account to which the �le belongs, so you need ensure only that the �le's name is unique
within its group. For instance, if you create a �le named FILX under GROUPA and ACCOUNT1, the
system recognizes your �le as FILX.GROUPA.ACCOUNT1; a �le with the same �le name, created
under a di�erent group, could be recognized as FILX.GROUPB.ACCOUNT1.

File groups serve as the basis for your local �le references; thus, when you log on, if the
default �le system �le security provisions are in e�ect, you have unlimited access to all �les
assigned to your logon group and your home group. Furthermore, you are permitted to read,
and execute programs residing in, the public group of your logon account. This group, always
named PUB, is created under every account to serve as a common �le base for all users of the
account. In addition, you may read and execute programs residing in the PUB group of the
System Account. This is a special account available to all users on every system, always named
SYS.

When you reference a �le that belongs to your logon account, but not to your logon group,
you must specify the name of the �le's group within your reference. In this form of the
�lereference format, the group name appears after the �le name, separated from it by a period.
Embedded blanks within the �le or group names, or surrounding the period, are prohibited. As
an example, suppose your program references a �le under the name LEDGER, which is recorded
in the system by the actual designator GENACCT. This �le belongs to your home group, but you
are logged on under another group when you run the program. To access the �le, you must
specify the group name as follows:

FILE LEDGER=GENACCT.XGROUP <------- Group name

RUN MYPROG <------- Program file (in logon group)

As another example, suppose that you are logged on under the group name XGROUP but wish to
reference a �le named X3 that is assigned to the Public Group of your account. If your program
refers to this �le by the name FILLER, you would enter:

FILE FILLER=X3.PUB

When you reference a �le that does not belong to your logon account, you must use an even
more extensive form of the �lereference format. With this form, you include both group name
and account name. The account name follows the group name, and is separated from it by a

3-2 Specifying a File Designation

period. Embedded blanks are not permitted. As an example, suppose you are logged on under
the account named MYACCT but wish to reference the �le named GENINFO in the public group
of the system account. Your program references this �le under the formal designator GENFILE.
You would enter:

FILE GENFILE=GENINFO.PUB.SYS

A �le reference that includes the �le name, group, and account is called a fully quali�ed �le
name.

Note You can create a new �le only within your logon account; therefore, if you
wish to have a new �le under a di�erent account, you log on to the other
account and create the �le in that account and group.

In summary, remember that if you do not supply a group name or account name in your
�lereference, MPE/iX supplies the defaults of the group and account in which you are currently
logged on.

Lockwords

When you create a disk �le, you can assign to it a lockword that must thereafter be supplied
(as part of the �lereference format) to access the �le in any way. This lockword is independent
of, and serves in addition to, the other �le system security provisions governing the �le.

You assign a lockword to a new �le by specifying it in the �lereference parameter of the BUILD
command or the formaldesignator parameter of the HPFOPEN/FOPEN intrinsic used to create the
�le. For example, to assign the lockword SESAME to a new �le named FILEA, you could enter
the following BUILD command:

BUILD FILEA/SESAME <---- Lockword

From this point on, whenever you, or another user, reference the �le in an MPE/iX command
or HPFOPEN/FOPEN intrinsic, you must supply the lockword. It is important to remember
that you need the lockword even if you are the creator of the �le. Lockwords, however, are
required only for old �les on disk.

When referencing a �le protected by a lockword, supply the lockword in the following manner:

In batch mode, supply the lockword as part of the �le designator (�lereference format)
speci�ed in the FILE command or HPFOPEN/FOPEN intrinsic call used to establish access to
the �le. Enter the lockword after the �le name, separated from it by a slash mark. Neither
the �le name nor the lockword should contain embedded blanks. In addition, the slash mark
(/) that separates these names should not be preceded or followed by blanks. The lockword
may contain from one to eight alphanumeric characters, beginning with a letter. If a �le is
protected by a lockword and you fail to supply that lockword in your reference, you are
denied access to the �le. In the following example, the old disk �le XREF, protected by the
lockword OKAY, is referenced:

FILE INPUT=XREF/OKAY <---- Lockword

In session mode, you can supply the lockword as part of the �le designator speci�ed in the
FILE command or HPFOPEN/FOPEN intrinsic call that establishes access to the �le, using the
same syntax rules described above. If a �le is protected by a lockword and you fail to supply
it when you open the �le, the �le system interactively requests you to supply the lockword
as shown in the example below:

LOCKWORD: YOURFILE.YOURGRP.YOURACCT?

Always bear in mind that the �le lockword relates only to the ability to access �les, and not
to the account and group passwords used to log on. Three examples of FILE commands

Specifying a File Designation 3-3

referencing lockwords are shown below; the last command illustrates the complete, fully
quali�ed form of the �lereference format.

FILE AFILE=GOFILE/Z22 <---- Lockword
FILE BFILE=FILEM/LOCKB.GRO7

|
|---- Lockwords
|

FILE CFILE=PAYROLL/X229AD.GROPN.ACCT10

A �le may have only one lockword at a time. You can change or remove the lockword by using
the RENAME command or the FRENAME intrinsic. You can also initially assign a lockword to an
existing �le with this command or intrinsic.

To accomplish these tasks, you must be the creator of the �le.

Backreferencing �les

Once you establish a set of speci�cations in a FILE command, you can apply those
speci�cations to other �le references in your job or session simply by using the �le's formal
designator, preceded by an asterisk (*), in those references. For example, suppose you use a
FILE command to establish the speci�cations shown below for the �le FILEA, used by program
PROGA. You then run PROGA. Now you wish to apply those same speci�cations to the �le FILEB,
used by PROGB, and run that program. Rather than specify all those parameters again in a
second FILE command, you can simply use FILE to equate the FILEA speci�cations to cover
FILEB, as follows:

FILE FILEA;DEV=TAPE;REC=-80,4,V;BUF=4 Establishes speci�cations.

RUN PROGA Runs program A.

FILE FILEB=*FILEA Backreferences speci�cations for
FILEA.

RUN PROGB Runs program B.

This technique is called backreferencing �les, and the �les to which it applies are sometimes
known as user prede�ned �les. Whenever you reference a prede�ned �le in a �le system
command, you must enter the asterisk before the formal designator if you want the
prede�nition to apply.

3-4 Specifying a File Designation

System-De�ned Files

System-de�ned �le designators indicate those �les that the �le system uniquely identi�es
as standard input/output devices for jobs and sessions. These designators are described in
Table 3-1. When you reference them, you use only the �le name; group or account names and
lockwords do not apply.

Table 3-1. System-De�ned File Designators

FILE
DESIGNATOR

(NAME)

DEVICE/FILE REFERENCED

$STDIN The standard job or session input device from which
your job/session is initiated. For a session, this is always
a terminal. For a job, it may be a disk �le or other input
device. Input data images in this �le should not contain
a colon in column 1, because this indicates the
end-of-data. (When data is to be delimited: use the EOD
command, which performs no other function.)

$STDINX Same as $STDIN except that MPE/iX command images
(those with a colon in column 1) encountered in a data
�le are read without indicating the end-of-data;
however, the commands :EOD and EOF (and in batch
jobs, the commands JOB, EOJ and DATA) are exceptions
that always indicate end-of-data, but are otherwise
ignored in this context|they are never read as data.
$STDINX is often used by interactive subsystems and
programs to reference the terminal as an input �le.

$STDLIST The standard job or session listing device, nearly always
a terminal for a session and a printer for a batch job.

$NULL The name of a nonexistent ghost �le that is always
treated as an empty �le. When referenced as an input
by a program, that program receives an end-of-data
indication upon each access. When referenced as an
output �le, the associated write request is accepted by
MPE/iX but no physical output is actually done. Thus,
$NULL can be used to discard unneeded output from a
running program.

As an example of how to use some of these designators, suppose you are running a program
that accepts input from a �le programmatically de�ned as INFILE and directs output to a �le
programmatically de�ned as OUTFILE. Your program speci�es that these are disk �les, but you
wish to respecify these �les so that INFILE is read from the standard input device and OUTFILE
is sent to the standard listing device.

Specifying a File Designation 3-5

You could enter the following commands:

FILE INFILE=$STDIN

FILE OUTFILE=$STDLIST

RUN MYPROG

Input/Output sets

All �le designators can be classi�ed as those used for input �les (Input Set), or those used for
output �les (Output Set). For your convenience, these sets are summarized in Table 3-2 and
Table 3-3.

Table 3-2. Input Set

File Designator Function/Meaning

$STDIN Job/session input device.

$STDINX Job/session input device with commands allowed.

$OLDPASS Last $NEWPASS �le closed. Discussed in the following
pages.

$NULL Constantly empty �le that returns end-of-�le indication
when read.

*formaldesignator Back reference to a previously de�ned �le.

�lereference File name, and perhaps account and group names and
lockword. May be a temporary �le created in current
job/session, created and saved in any job/session.

Table 3-3. Output Set

File Designator Function/Meaning

$STDLIST Job/session list device.

$OLDPASS Last �le passed. Discussed in following pages.

$NEWPASS New temporary �le to be passed. Discussed in the
following pages.

$NULL Constantly empty �les that returns end-of-�le indication
when read.

*formaldesignator Back reference to a previously de�ned �le.

�lereference File name, and perhaps account and group names and
lockword. Unless you specify otherwise, this is a
temporary �le residing on disk that is destroyed on
termination of the creating program. If closed as a
temporary �le, it is purged at the end of the job/session.
If closed as a permanent �le, it is saved until you purge
it.

An input �le and a list �le are said to be interactive if a real-time dialog can be established
between a program and a person using the list �le as a channel for programmatic requests, with
appropriate responses from a person using the input �le. For example, an input �le and a list

3-6 Specifying a File Designation

�le opened to the same teleprinting terminal (for a session) would constitute an interactive
pair. An input �le and a list �le are said to be duplicative when input from the former is
duplicated automatically on the latter. For example, input from a magnetic tape device is
printed on a line printer. You can determine whether a pair of �les is interactive or duplicative
with the FRELATE intrinsic call. (The interactive/duplicative attributes of a �le pair do not
change between the that time the �les are opened and the time they are closed.)

The FRELATE intrinsic applies to �les on all devices. To determine if the input �le INFILE and
the list �le LISTFILE are interactive or duplicative, you could issue the following FRELATE
intrinsic call:

ABLE := FRELATE(INFILE,LISTFILE);

INFILE and LISTFILE are identi�ers specifying the �le numbers of the two �les. The �le
numbers were assigned to INFILE and LISTFILE when the HPFOPEN/FOPEN intrinsic opened the
�les.

A half-word is returned to ABLE showing whether the �les are interactive or duplicative. The
half-word returned contains two signi�cant bits, 0 and 15:.

if bit 15 = 1, INFILE and LISTFILE form an interactive pair
if bit 15 = 0, INFILE and LISTFILE do not form an interactive pair
if bit 0 = 1, INFILE and LISTFILE form a duplicative pair
if bit 0 = 0, INFILE and LISTFILE do not form a duplicative pair

Passed �les

Programmers, particularly those writing compilers or other subsystems, sometimes create a
temporary disk �le that can be automatically passed to succeeding MPE/iX commands within
a job or session. This �le is always created under the special name $NEWPASS. When your
program closes the �le, MPE/iX automatically changes its name to $OLDPASS and deletes any
other �le named $OLDPASS in the job/session temporary �le domain. From this point on, your
commands and programs reference the �le as $OLDPASS. Only one �le named $NEWPASS and/or
one �le named $OLDPASS can exist in the job/session domain at any one time.

The automatic passing of �les between program runs is depicted in Figure 3-1. To illustrate
how �le passing works, consider an example where two programs, PROG1 and PROG2, are
executed. PROG1 receives input from the actual disk �le DSFILE (through the programmatic
name SOURCE1) and writes output to an actual �le $NEWPASS, to be passed to PROG2. ($NEWPASS
is referenced programmatically in PROG1 by the name INTERFIL.) When PROG2 is run, it
receives $NEWPASS (now known by the actual designator $OLDPASS), referencing that �le
programmatically as SOURCE2. Note that only one �le can be designated for passing.

Specifying a File Designation 3-7

Figure 3-1. Passing Files between Program Runs

...
FILE SOURCE1=DSFIL
FILE INTERFIL=$NEWPASS <---
RUN PROG1 |- Same File
FILE SOURCE2=$OLDPASS <---
RUN PROG2...

A program �le must pass through several steps as it is executed; passed �les are most
frequently used between these steps. A program �le must be compiled and linked before it
is executed. By default, the compiled form of a text �le is written to $NEWPASS. When the
compiler closes $NEWPASS, its name is changed to $OLDPASS; it is this �le that is linked for
execution. The linked form of the program �le is written to a new $NEWPASS, which is renamed
$OLDPASS when the �le is closed; the old $OLDPASS is deleted. Now, this �le is ready to be
executed. This $OLDPASS may be executed any number of times, until it is overwritten by
another $OLDPASS �le.

The steps that a program takes as it is run are depicted in Figure 3-2.

3-8 Specifying a File Designation

Figure 3-2. Passing Files within a Program Run

$NEWPASS and $OLDPASS are specialized disk �les with many similarities to other disk �les.
Comparisons of $NEWPASS to new �les, and $OLDPASS to old �les, are given in Table 3-4 and
Table 3-5.

Specifying a File Designation 3-9

Table 3-4. New Files Versus $NEWPASS

NEW $NEWPASS

Disk space allocated. Disk space allocated.

Disk address put into control block. Disk address put into control block.

Default close disposition:
Deallocate space.
Delete control block entry.

Default close disposition:
Rename to $OLDPASS.
Save disk address in current job or session
table. (Job Information Table)
Delete control block entry.

Disk address not saved
(Not in any directory).

Disk address saved for future
use in the current job session.

Table 3-5. Old Files Versus $OLDPASS

OLD $OLDPASS

Directory (job temporary or
system) searched for disk address

Disk address obtained from Job
Information Table (JIT)

Disk address put into control block. Disk address put into control block.

Default close disposition:
Delete control block.

Default close disposition:
Delete control block.

Disk address still in directory
for future use.

Disk address still in JIT for future
use in current job session.

Using Command Interpreter Variables and Expressions Within
File Designators

Your �le reference may also contain command interpreter variables and expressions that are
evaluated before the �le reference is parsed and validated. In the following �le equation, the
exclamation point (!) instructs MPE/iX to substitute the variable name MYFILE with the actual
�le designator assigned to that variable by the SETVAR command.

SETVAR MYFILE,'FILE2.MYGROUP.MYACCT'
FILE FILE1=!MYFILE

The HPFOPEN and FOPEN intrinsics also allow you to embed command interpreter variables and
expressions in the �le reference. The following �le references are valid when passed as formal
designators:

!MYFILE
!MYFILE.!HPGROUP.!HPACCT
!FILE1/![FINFO(-!FILE1",33)]

For more information about using command interpreter variables and expressions, refer to the
Command Interpreter Access and Variables Programmers' Guide (32650-90011).

3-10 Specifying a File Designation

Parsing and Validating File Designators

The FPARSE intrinsic parses and validates a �le designator string to determine if it is
syntactically correct. You can employ this intrinsic to check a formal �le designator
representing a �le before attempting to open the �le with HPFOPEN/FOPEN. MPE/iX �le
designators used for the �le system and two user interface commands include a remote
environment ID (envid). This allows the user to indicate that a �le is to be accessed from a
remote environment established by the user with the DSLINE or REMOTE HELLO command.
FPARSE facilitates the changes required for the �le designator extension. It provides the only
location within MPE/iX where �le designators are parsed and syntax is checked.

The following are examples of the items and the vectors array pair. The order of entries in
the vectors array corresponds to the order of items in the items array. Each 32-bit entry in
the vectors array returns the byte o�set of the item in the �rst half-word, and the length in
bytes of the item in the second half-word. However, the last entry of the vectors array has a
di�erent meaning from that of the other entries: the second half-word gives the total length of
the �le string, and the �rst half-word gives a system �le code when applicable.

In Figure 3-3 the �le string is "FILENAME/LOCKWORD.GROUP.ACCOUNT:ANIMAL.INDDCL.HPBCG":

Figure 3-3. Illustration of FPARSE Usage

The items array, as illustrated above, can be listed in any order or can be left unspeci�ed if not
required.

In Figure 3-4, below, the �le string is "*FILENAME:ANIMAL":

Specifying a File Designation 3-11

Figure 3-4. Illustration of FPARSE Usage

In Figure 3-5, below, the �le string is "$OLDPASS":

Figure 3-5. Illustration of FPARSE Usage

Note that \$" is a special exception to the rules of �le names and is considered part of the �le
name, unlike *", which is not.

3-12 Specifying a File Designation

4

Specifying a File Domain

One way to classify a �le is on the basis of its domain. A �le can be permanent or temporary,
or it may exist only to one particular process. The �le system maintains separate directories to
record the location of temporary �les and permanent �les. Of course, there is no �le system
directory for �les that exist only to their creating process (new �les).

In this chapter, we will address the following questions:

What do the various domains mean?

Can a �le's domain be changed?

How can the �les in various domains be listed?

New Files

When you create a �le, you can indicate to the �le system that it is a new �le; it has not
previously existed. Space for this �le has not yet been allocated. As a new �le, it is known
only to the program that creates it, and exists only while the program is being executed. When
the program concludes, the �le simply vanishes, unless you take actions to retain it.

Temporary Files

A temporary �le is one that already exists, but that is known only to the job or session that
created it. Some or all of the space for a temporary �le has already been allocated, and its
physical characteristics have already been de�ned. A �le in this domain is considered a job
temporary �le; it was created for some speci�c purpose by its job or session and may not be
needed when the job or session concludes. Like a new �le, it vanishes when its creating job or
session is over.

Specifying a File Domain 4-1

Permanent Files

A permanent �le exists as a �le in the system �le domain. Its existence is not limited to
the duration of its creating job or session, and depending on security restrictions, it may be
accessed by jobs or sessions other than the one that created it. Some or all of the space for a
permanent �le has already been allocated, and its physical characteristics have been de�ned.

Table 4-1. Features of New, Temporary, and Permanent Files

New Files Temporary Files Permanent Files

Exists only to creating
process.

Exists as job temporary �le. Exists as permanent �le in
system.

Space not allocated yet. Space (some or all) already
allocated.

Space (some or all) already
allocated.

Physical characteristics not
previously de�ned.

Physical characteristics
de�ned.

Physical characteristics
de�ned.

Known only to creating job or
session.

Known only to creating job or
session.

Known system-wide.

Exists only for duration of
program execution.

Exists only for duration of
creating job/session.

Permanent.

Table 4-2. File Domains Permitted

Device Type Domain Permitted

Disk new, temporary, or permanent

Magnetic Tape Device new * or permanent

Synchronous Single-Line Controller new * or permanent

Programmable Controller new * or permanent

Terminal new * or permanent

Line Printer new *

Plotter new *

The features of new, temporary and permanent �les are listed in Table 4-1.

In some cases, the domain you can specify for a �le may be restricted by the type of device on
which the �le resides. The domains permitted are summarized in Table 4-2.

Note * When you specify a �le domain using HPFOPEN, you should open only disk
�les with the domain option set to NEW. Device �les can be opened with the
domain option set to NEW (to maintain compatibility with with MPE V/E), but a
warning is returned in the status parameter.

4-2 Specifying a File Domain

Changing Domains

A �le need not always stay in the same domain. Any disk �le can be made permanent, or can
be deleted when it has served its purpose. The disposition parameter of the FCLOSE intrinsic
can specify a di�erent domain for a �le as it closes, or the FILE command can be used to
change the domain of a �le. The DEL, TEMP, and SAVE parameters determine what happens
to the �le when it is closed. For details about how the FCLOSE intrinsic handles �le domain
disposition, refer to chapter 6, \Closing a File".

A �le in any domain may be deleted if the DEL parameter is used in a �le equation. For
example, suppose that you have a permanent �le named OLDFL, and want to delete it after its
next use. Before running the program that uses OLDFL, enter:

FILE OLDFL;DEL

The �le may now be opened in your program, and when the program closes the �le, it is
deleted. If OLDFL were a new or temporary �le, it would be deleted in the same way.

New �les may be made temporary if the TEMP parameter is used in a �le equation. If you are
about to create a �le named NEWFL, and wish it to remain as a temporary �le after it is used,
enter:

FILE NEWFL,NEW;TEMP

After the �le is created in your program and is closed, the �le system maintains it as a
temporary �le. If you wish to keep a new or temporary �le as a permanent �le after it is used,
use the SAVE parameter in a �le equation. If you have a temporary �le named TEMPFL, and you
want it to be kept as an permanent �le in the system, enter:

FILE TEMPFL,OLDTEMP;SAVE

TEMPFL is kept as a permanent �le, so it will not be lost when your job or session concludes.

File equations are useful for determining the disposition of �les when the �les have been
programmatically accessed and closed. By using the MPE/iX SAVE command, you can keep
a temporary �le as permanent without opening and closing the �le. If you want to keep a
temporary �le named TEMPDATA, but do not need to use it in a program at this time, enter:

SAVE TEMPDATA

and the �le system immediately identi�es it as a permanent �le. If there were a lockword
associated with TEMPDATA, you would be prompted for it. You can use the SAVE command to
keep $OLDPASS and assign it a name for future reference by entering:

SAVE $OLDPASS,�lename

where �lename is any name that you choose.

For more information about the FILE and SAVE commands, consult the MPE/iX Commands
Reference Manual (32650-90003).

Specifying a File Domain 4-3

Searching File Directories

There are two directories with addresses of �les: the temporary �le directory (job �le domain)
for the addresses of temporary �les and the permanent �le directory (system �le domain) for
the addresses of permanent �les. There is no directory for new �les. When both directories are
searched for a �le address (for example, when you open a �le with the domain option set to
OLD), the temporary �le directory is searched �rst.

Listing Files

To obtain a list of your permanent �les, enter the LISTFILE command. Use the LISTFILE . . .
;TEMP command to list your temporary �les and the LISTEQ command to list FILE equations.
The LISTFILE, LISTFILE . . . ;TEMP, and LISTEQ commands are discussed in detail in the
Getting System Information Programmer's Guide (32650-90018) and in the MPE/iX Command
Reference Manual (32650-90003). .

4-4 Specifying a File Domain

5

Opening a File

Before your program can read, write, or otherwise manipulate a �le, the program must initiate
access to that �le by opening it with the HPFOPEN/FOPEN intrinsic call. This call applies to both
disk �les and device �les. This chapter discusses how you can use HPFOPEN to open various
types of �les supported by MPE/iX. Examples of program segments are provided to illustrate
HPFOPEN calls.

This chapter is divided into the following subjects:

how the �le system opens a �le

which to use: HPFOPEN or FOPEN?

opening a disk �le

opening a system-de�ned �le

opening a device �le

How the File System Opens a File

When you open a �le, HPFOPEN/FOPEN establishes a communication link between the �le and
your program by

Determining the device on which the �le resides.

Allocating to your process the device on which the �le resides. Disk �les generally can be
shared concurrently among jobs and sessions. Magnetic tape and unit-record devices are
generally allocated exclusively to the requesting job or session.

If the �le resides on a nonshareable device (such as magnetic tape) and you have
nonshareable device (ND) capability, HPFOPEN/FOPEN determines whether the system operator
must approve allocation of the device (such as an unlabeled magnetic tape) or provide a
particular media (such as a speci�c volume for a labeled magnetic tape request or special
forms for a line printer). If so, HPFOPEN/FOPEN requests the system operator to respond
appropriately.

Di�erent processes within the same job may open and have concurrent access to a �le on the
same magnetic tape or unit-record device if the �le has been opened with multiaccess option
set; however, this device cannot be accessed by another job until all accessing processes in
this job have issued a corresponding FCLOSE call.

Verifying your right to access the �le under the security provisions existing at the account,
group, and �le levels.

Determining that the �le has not been allocated exclusively to another process (by the
exclusive option in an HPFOPEN/FOPEN call issued by that process).

Processing user labels (for �les on disk). For new �les on disk, HPFOPEN/FOPEN speci�es the
number of user labels to be written.

Opening a File 5-1

Constructing the control blocks required by MPE/iX for this particular access of the �le. The
information in these blocks is derived by merging speci�cations from four sources, listed
below in descending order of precedence (and illustrated in Figure 5-1):

1. The �le label, obtainable only if the �le is an old �le on disk; otherwise, device-dependent
characteristics applicable to the nonshareable device. This information overrides
information from any other source.

2. The parameter list of a previous FILE command referencing the same formal �le
designator named in this HPFOPEN/FOPEN call, if such a command was issued in this job or
session. This is only true, if �le equations were not disallowed.

3. The parameter list of this HPFOPEN/FOPEN intrinsic call.

4. System default values provided by MPE/iX (when values are not obtainable from the
above sources).

When information from one of these four sources conicts with that from another, preempting
takes place according to the order of precedence illustrated in Figure 5-1. To determine the
speci�cations actually taking e�ect, you can call the FFILEINFO intrinsic. Certain sources do
not always apply or convey all types of information. For example, no �le label exists when a
new �le is opened, and so all information must come from the last four sources above.

Figure 5-1. File System Hierarchy of Overrides

Since the physical characteristics of a disk �le cannot be changed after it has been created, it
makes sense that the �le label would take precedence over information from any other source.
Likewise, when a device �le is opened, device-dependent characteristics override information
from any other source.

When the HPFOPEN/FOPEN intrinsic is executed, it returns to your program a �le number. If the
�le is opened successfully, the �le number returned is a positive integer. At this point, the �le
is ready to be accessed with system intrinsics (for example, FREAD or FWRITE). If the �le cannot
be opened, the �le number returned is zero, and the intrinsic returns an error condition.

If your process issues more than one HPFOPEN/FOPEN call for the same �le before it is closed,
this results in multiple, logically separate accesses of that �le, and MPE/iX returns a unique
�le number for each such access. Also, MPE/iX maintains a separate logical record pointer

5-2 Opening a File

(indicating the next sequential record to be accessed) for each access where you did not
request or permit the multiaccess option at HPFOPEN/FOPEN time.

Which to Use: HPFOPEN or FOPEN

The HPFOPEN intrinsic is the recommended intrinsic for creating and opening �les on an
MPE/iX-based computer system. HPFOPEN is designed to be more exible and extendible than
the FOPEN intrinsic. In addition, HPFOPEN's available options are a superset of the options
available through FOPEN. For example, mapped access is available through HPFOPEN but not
through FOPEN.

Note One HPFOPEN option, the �le privilege option, when used to set a new �le's
privilege level to other than 3 (least-privileged, or user level), disallows all
subsequent access of that �le by the FOPEN intrinsic. (For compatibility reasons,
FOPEN can only access a �le whose �le privilege level is three.)

You should use the FOPEN intrinsic only if you are planning to migrate your application between
MPE/iX-based systems and MPE V/E-based systems. HPFOPEN is not supported on an MPE
V/E-based system.

The examples in this chapter illustrate the use of the HPFOPEN intrinsic. The HPFOPEN intrinsic
uses an itemnum, item pair convention for optional parameter passing. The itemnum and
item parameters are paired, where the nth itemnum is immediately followed in the parameter
list by the nth item. The itemnum parameter passes by value an integer that the intrinsic
uses to de�ne the meaning and expected data type of the value passed by reference in the
corresponding item parameter.

For details on HPFOPEN and FOPEN parameters, refer to the respective intrinsics descriptions in
the MPE/iX Intrinsics Reference Manual (32650-90028).

Opening a Disk File

Disk �les are �les residing on volumes (disk packs). Disk �les are immediately accessible by the
system and potentially shareable by several jobs or sessions at the same time. The following
examples show how you can use the HPFOPEN intrinsic to open a disk �le:

\Opening a new disk �le" shows an example of an HPFOPEN call that creates a new disk �le
(see example 5-1).

\Opening a permanent disk �le" shows an example of an HPFOPEN call that opens a
permanent disk �le that is to be shared among multiple concurrent accessors (see example
5-2).

Opening a File 5-3

Opening a new disk �le

Example 5-1 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that opens a
new disk �le to be used with a text editor. The text editor accesses only standard ASCII text
�les with �xed-length records, each record 80 bytes in size.

Knowing this, you can specify the appropriate HPFOPEN options, and allow others (speci�cally,
domain option, record format option, and �le type option) to default to the desired
characteristics. Note that the HPFOPEN �nal disposition option is speci�ed to indicate that the
�le is to be saved as a temporary �le at close time.

Example 5-1. Opening a New Disk File

procedure open_new_disk_file;

const

formal_designator_option = 2; {defines HPFOPEN itemnum 2 }

record_size_option =19; {defines HPFOPEN itemnum 19 }

final_disposition_option =50; {defines HPFOPEN itemnum 50 }

ASCII_binary_option =53; {defines HPFOPEN itemnum 53 }

type

pac80 = packed array [1..80] of char;

var
file_num : integer; {required HPFOPEN �lenum parameter }

status : integer; {returns info if error/warning occurs}

file_name : pac80; {declares HPFOPEN itemnum 2 }

line_len : integer; {declares HPFOPEN itemnum 19 }
save_perm : integer; {declares HPFOPEN itemnum 50 }

ascii : integer; {declares HPFOPEN itemnum 53 }

begin
file_num :=0;

status :=0;

file_name :='&myfile/lock.mygroup&'; (�lereference format}

line_len :=80; {maximum record/line length }

save_temp :=2; {make temp file at close }
ascii :=1; {label indicates ASCII code }

HPFOPEN (file_num, status,

formal_designator_option,file_name, {formal designator option}

record_size_option, line_len, {record size option }

final_disp_option, save_temp, {�nal disposition option }
ASCII_binary_option, ascii {ASCII/binary option }

);

if status <> 0 then handle_file_error (file_num, status);

end;

5-4 Opening a File

If the HPFOPEN call is successful, a positive integer value is returned in file_num, and status
returns a value of zero. The new disk �le is now open and can be accessed with system
intrinsics. If an error or warning condition is encountered by HPFOPEN, status returns a
nonzero value, thus invoking the error-handling procedure handle_file_error.

In appendix A, \HP Pascal/iX Program Examples," Example A-1 uses a similar procedure to
open a new disk �le. For more information about HPFOPEN parameters, refer to the MPE/iX
Intrinsics Reference Manual (32650-90028).

Opening a File 5-5

Opening a permanent disk �le

Example 5-2 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that opens
a permanent disk �le that is to be shared among multiple concurrent accessors. Note the use
of the dynamic locking option to enable the use of �le-locking intrinsics (FLOCK and FUNLOCK)
with this �le. The �le is opened update access to allow opening the �le with Read/Write access
without a�ecting the current EOF. Thus, current data in the �le is retained.

Example 5-2. Opening a Permanent Disk File

procedure open_permanent_disk_file;

const

formal_designator_option = 2; {defines HPFOPEN itemnum 2 }
domain_option = 3; {defines HPFOPEN itemnum 3 }

access_type_option =11; {defines HPFOPEN itemnum 11 }

dynamic_locking_option =12; {defines HPFOPEN itemnum 12 }

exclusive_option =13; {defines HPFOPEN itemnum 13 }

ASCII_binary_option =53; {defines HPFOPEN itemnum 53 }

type

pac80 = packed array [1..80] of char;

var
file_num : integer; {required HPFOPEN �lenum parameter }

status : integer; {returns info if error/warning occurs}

file_name : pac80; {declares HPFOPEN itemnum 2 }

permanent : integer; {declares HPFOPEN itemnum 3 }
update : integer; {declares HPFOPEN itemnum 11 }

lockable : integer; {declares HPFOPEN itemnum 12 }

shared : integer; {declares HPFOPEN itemnum 13 }

ascii : integer; {declares HPFOPEN itemnum 53 }

begin

file_num :=0;

status :=0;

file_name :='&datafile/![FINFO("datafile",33)].!hpgroup&';

permanent :=1; {search in permanent file directory}
update :=5; {enable update access to file }

lockable :=1; {enable dynamic locking option }

shared :=3; {allow concurrent access by all }

ascii :=1; {label will indicate ASCII code }

5-6 Opening a File

HPFOPEN (file_num, status,
formal_designator_option,file_name, {formaldesignator option}

domain_option, permanent, {domain option}

access_type_option, update, {access type option}

dynamic_locking_option, lockable, {dynamic locking option}

exclusive_option, shared, {exclusive option}
ASCII_binary_option, ascii {ASCII/binary option}

);

if status <> 0 then handle_file_error (file_num, status);

end;

The �le name passed in the formaldesignator option contains MPE/iX command interpreter
variables and expressions that are evaluated by HPFOPEN before the �le name is parsed and
evaluated. HPFOPEN substitutes ![FINFO(datafile",33)] with the lockword associated with
�le datafile (if the security provisions in e�ect enable you to obtain the �le's password).
The exclamation point (!) before the variable name hpgroup instructs HPFOPEN to substitute
the value of the variable in place of the variable name. For more information about using
command interpreter variables and expressions, refer to the Command Interpreter Access and
Variables Programmer's Guide (32650-90011).

If the HPFOPEN call is successful, a positive integer value is returned in file_num, and status
returns a value of zero. The �le is now open and can be accessed with �le system intrinsics. If
an error or warning condition is encountered by HPFOPEN, status returns a nonzero value, thus
invoking the error-handling procedure handle_file_error.

In appendix A \HP Pascal/iX Program Examples," Example A-5 uses a similar procedure to
open a permanent disk �le. For more information about HPFOPEN parameters, refer to the
MPE/iX Intrinsics Reference Manual (32650-90028).

Opening a System-De�ned File

System-de�ned �le designators indicate those �les that the �le system uniquely identi�es as
standard input/output devices for jobs and sessions. System-de�ned �les are $STDIN, $STDINX,
$STDLIST, $NEWPASS, $OLDPASS, and $NULL. You cannot rede�ne characteristics for these
�les once the process executing your code has been created, nor can you backreference a
�le equation to rede�ne the characteristics for a system-de�ned �le designator. For more
information about system-de�ned �les, refer to Chapter 3, \Specifying a File Designator".

The following examples show two di�erent ways that you can open system-de�ned �les using
the indicated HPFOPEN options:

\Opening $STDIN" shows an example of an HPFOPEN call that uses the designator option to
open the job or session standard input device (see Example 5-3).

\Opening $STDLIST" shows an example of an HPFOPEN call that uses the formaldesignator
option to open the job or session standard list device (see example 5-4).

Opening a File 5-7

Opening $STDIN

Example 5-3 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that uses
only the designator option to open the system-de�ned �le $STDIN. $STDIN is the �le designator
associated with your job or session's standard input device. For an interactive session, $STDIN
is always a terminal keyboard. For a batch job, $STDIN may be a disk �le or other input device.
You can also open a system-de�ned �le using only the HPFOPEN formaldesignator option
(illustrated in Example 5-4).$STDIN, opening:�lesj

Example 5-3. Opening $STDLIST Using HPFOPEN designator option

procedure open_standard_input_device

const
designator_option = 5; {defines HPFOPEN itemnum 5}

var

inputfile_num : integer; {required HPFOPEN �lenum parameter}

status : integer; {returns info if error/warning occurs}

designator : integer; {declares HPFOPEN item 5 }

begin

inputfile_num := 0;
status := 0;

designator := 4; {Specifies $STDIN }

HPFOPEN (inputfile_num, status,

designator_option, designator, {HPFOPEN designator option}
);

if status <>0 then handle_file_error (inputfile_num, status);

end;

If the HPFOPEN call is successful, a positive integer value is returned in inputfile_num, and
status returns a value of zero. The �le is now open and can be read from. If an error or
warning condition is encountered by HPFOPEN, status returns a nonzero value, thus invoking
the error-handling procedure handle_file_error. For more information about HPFOPEN
parameters, refer to the MPE/iX Intrinsics Reference Manual (32650-90028).

5-8 Opening a File

Opening $STDLIST

Example 5-4 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that uses the
formaldesignator option to open the system-de�ned �le $STDLIST.

$STDLIST is the �le designator associated with your job or session's standard list device. For
an interactive session, $STDLIST is nearly always a terminal screen. For a batch job, $STDLIST
is usually a line printer. You can also open $STDLIST using the HPFOPEN designator option
(illustrated in Example 5-3).

Example 5-4. Opening $STDLIST Using HPFOPEN formaldesignator option

procedure open_standard_list_device

const
formal_designator_option = 2; {defines HPFOPEN itemnum 2}

type

pac80 = packed array [1..80] of char;

var

listfile_num : integer; {required HPFOPEN �lenum parameter}

status : integer; {returns info if error/warning occurs }

file_name : pac80; {declares HPFOPEN item 2 }

begin

listfile_num := 0;

status := 0;
file_name := '$stdlist'; {Specifies system-defined file }

{Blank is used as delimiter }

HPFOPEN (listfile_num, status,

formal_designator_option, file_name,
{formaldesignator option}

);

if status <>0 then handle_file_error (listfile_num, status);

end;

If the HPFOPEN call is successful, a positive integer value is returned in listfile_num, and
status returns a value of zero. The standard list device is now open and can be written to. If
an error or warning condition is encountered by HPFOPEN, status returns a nonzero value, thus
invoking the error-handling procedure handle_file_error.

In appendix A, \HP Pascal/iX Program examples," example A-1 uses a similar procedure
to open $STDLIST. For more information about HPFOPEN parameters, refer to the MPE/iX
Intrinsics Reference Manual (32650-90028).

Opening a File 5-9

Opening a Device File

Device �les are �les that are currently being input to or output from a nonshareable device
(any peripheral device except a disk). Because all �le open operations are accomplished
through the �le system, you can open �les on very di�erent devices in a standard, consistent
way, using the HPFOPEN or FOPEN intrinsics. Furthermore, the name and characteristics assigned
to a �le when it is de�ned in a program do not restrict that �le to residing on the same device
every time the program is run. In these cases, the �le system temporarily overrides the
programmatic characteristics with those characteristics required by the device.

The following topics provide you with further discussions concerning device �les, as well as
two program examples to illustrate how to open a magnetic tape �le:

\Device-Dependent File Characteristics" discusses those �le characteristics a�ected by
particular devices.

\New and permanent device �les" discusses the domains required by various input/output
devices.

\Opening an unlabeled magnetic tape �le" shows an example of an HPFOPEN call that opens
an unlabeled magnetic tape �le (see example 5-5).

\Opening a labeled magnetic tape �le" shows an example of an HPFOPEN call that opens a
labeled magnetic tape �le (see example 5-6).

Device-dependent �le characteristics

Certain physical and access characteristics for device �les are restricted by the devices on
which the �le resides. For your convenience, device-dependent restrictions for several devices
are summarized in Table 5-1.

Table 5-1. Device-Dependent Restrictions

DEVICE TYPE RESTRICTED FILE CHARACTERISTICS

Terminal
(parallel input/output device)

record format option = unde�ned-length records
block factor option = 1
inhibit bu�ering option = NOBUF
ASCII/binary option = ASCII

Magnetic tape drive
(serial input/output device)

No restrictions

Line printer/plotter
(serial output device)

domain option = NEW
record format option = unde�ned-length records
access type option = Write only
block factor option = 1

Laser printer
(serial output device)

Initially and always spooled
access type option = Write only
All other restrictions same as for line printer

5-10 Opening a File

New and permanent device �les

When a process accesses a device �le (a �le that resides on a nonshareable device), the device's
attributes may override information passed in the domain option of the HPFOPEN/FOPEN call.
Devices used for input only are considered permanent �les. Devices used for output only, such
as line printers, are considered new �les. Serial input/output devices, such as terminals and
magnetic tape drives, follow the domain option speci�cation in your HPFOPEN/FOPEN call.

Note The HPFOPEN intrinsic assumes that all �les on nonshareable devices (device
�les) are permanent �les. To maintain compatibility with MPE V/E, device �les
can be opened with the domain option specifying a new �le, but a warning is
returned in the status parameter.

When your job or session attempts to open a permanent �le on a nonshareable device, MPE/iX
searches for the �le in the input device directory (IDD). If the �le is not found, a message is
transmitted to the system console requesting the system operator to locate the �le by taking
one of the following steps:

Indicate that the �le resides on a device that is not in auto-recognition mode. No DATA
command is required; the System Operator simply allocates the device.

Make the �le available on an auto-recognizing device, and allocate that device.

Indicate that the �le does not exist on any device; in this case, your HPFOPEN/FOPEN request
is rejected.

When you use the device name option or device class option of HPFOPEN/FOPEN to open a �le
on a nonshareable device (other than magnetic tape), you are requesting that an unused device
be allocated to your job or session. The �rst available device is allocated to your job or session;
the System Operator is not required to intervene. The device is immediately available if it is
not being used by another job or session, or if is already allocated to your job or session by a
previous HPFOPEN/FOPEN call.

If the device is already allocated to your job or session, you can specify that device by passing
its logical device number (LDEV) in the device name option of HPFOPEN/FOPEN. Be certain,
though, that you don't invoke a �le equation that overrides the LDEV. (You can use the
FFILEINFO intrinsic to determine the LDEV assigned to an opened �le.)

When you use the device name option or device class option of HPFOPEN/FOPEN to open a
�le on a magnetic tape drive, operator intervention is usually required. The operator must
make the tape available, unless the tape is already mounted and recognized by MPE/iX, it is
auto-allocating, or if the tape drive is already allocated to the job or session.

Opening a File 5-11

Opening an unlabeled magnetic tape �le

Example 5-5 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that opens an
unlabeled magnetic tape �le TAPEFILE. The intrinsic call assumes that the tape drive associated
with device class TAPE supports a density of 1600 bpi.

Example 5-5. Opening an Unlabeled Magnetic Tape File

procedure open_unlabeled_magnetic_tape_file;

const

formal_designator_option = 2; {defines HPFOPEN itemnum 2 }

domain_option = 3; {defines HPFOPEN itemnum 3 }

access_type_option =11; {defines HPFOPEN itemnum 11 }
density_option =24; {defines HPFOPEN itemnum 24 }

device_class_option =42; {defines HPFOPEN itemnum 42 }

type

pac80 = packed array [1..80] of char;

var

tfile_num : integer; {required HPFOPEN �lenum parameter }

status : integer; {returns info if error/warning occurs}

file_name : pac80; {declares HPFOPEN itemnum 2 }

permanent : integer; {declares HPFOPEN itemnum 3 }

update only : integer; {declares HPFOPEN itemnum 11 }

device_class : pac80 {declares HPFOPEN itemnum 24 }

density : integer; {declares HPFOPEN itemnum 42 }

begin

tfile_num :=0;

status :=0;

file_name :='&tapefile&'; {delimiter is "&" }
permanent :=1; {search system file domain }

update_only :=5; {preserves existing data }

density :=1600; {select this tape density }

device_class :='&tape&'; {system-configured device class name }

HPFOPEN (tfile_num, status,

formal_designator_option, file_name, {formaldesignator option}

domain_option, permanent, {domain option}

access_type_option, update_only {access type option}

density_option, density, {density option}
device_class_option, device_class {device class option}

);

if status <> 0 then handle_file_error (tfile_num, status);

end;

If the HPFOPEN call is successful, a positive integer value is returned in tfile_num, and status
returns a value of zero. The �le is now open and can be accessed with �le system intrinsics. If

5-12 Opening a File

an error or warning condition is encountered by HPFOPEN, status returns a nonzero value, thus
invoking the error-handling procedure handle_file_error.

In appendix A, \HP Pascal/iX Program Examples," Example A-1 uses a similar procedure to
open an unlabeled magnetic tape �le. For more information about HPFOPEN parameters, refer to
the MPE/iX Intrinsics Reference Manual (32650-90028).

Opening a File 5-13

Opening a labeled magnetic tape �le

Example 5-6 is an HP Pascal/iX code segment containing an HPFOPEN intrinsic call that opens a
labeled magnetic tape �le labltape. Use of the HPFOPEN labeled tape label option indicates to
the �le system that the �le is opened as a labeled magnetic tape �le.

Example 5-6. Opening a Labeled Magnetic Tape File

procedure open_labeled_magnetic_tape_file;

const

formal_designator_option = 2; {defines HPFOPEN itemnum 2 }

domain_option = 3; {defines HPFOPEN itemnum 3 }

tape_label_option = 8; {defines HPFOPEN itemnum 8 }
tape_expiration_option =31; {defines HPFOPEN itemnum 31 }

device_class_option =42; {defines HPFOPEN itemnum 42 }

type

pac80 = packed array [1..80] of char;

var

file_num : integer; {required HPFOPEN �lenum parameter }

status : integer; {returns info if error/warning occurs }

file_name : pac80; {declares HPFOPEN itemnum 2 }

old : integer; {declares HPFOPEN itemnum 3 }

tape_label : pac80; {declares HPFOPEN itemnum 8 }

expire_date : pac80 {declares HPFOPEN itemnum 31 }

device_class : pac80 {declares HPFOPEN itemnum 42 }

begin

file_num :=0;

status :=0;

file_name :='&labltape&'; {delimiter is "&" }
old :=3; {equivalent to specifying permanent}

tape_label :='&tape01&'; {ANSI tape label }

expire_date :='&05/20/87&' {when data is no longer useful }

device_class :='&tape&'; {system-configured device name }

HPFOPEN (file_num, status,

formal_designator_option, file_name, {formaldesignator option}

domain_option, old, {domain option}

tape_label_option, tape_label, {labeled tape label option}

tape_expiration_option, expire_date, {labeled tape expiration option}
device_class_option, device_class {device class option}

);

if status <> 0 then handle_file_error (file_num, status);

end;

If the HPFOPEN call is successful, a positive integer value is returned in file_num and status
returns a value of zero. The magnetic tape �les is now open and ready to be accessed. If an

5-14 Opening a File

error or warning condition is encountered by HPFOPEN, status returns a nonzero value, thus
invoking the error-handling procedure handle_file_error.

In appendix A \HP Pascal/iX Program Examples," Example A-2 uses a similar procedure to
open a labeled magnetic tape �le. For more information about HPFOPEN parameters, refer to the
MPE/iX Intrinsics Reference Manual (32650-90028).

Opening a File 5-15

6

Closing a File

Once your program is �nished accessing a �le, the program can terminate access to the �le with
the FCLOSE intrinsic. This chapter discusses various ways that you can use the FCLOSE intrinsic
to close disk �les and device �les. Examples are provided to illustrate important features
available through the FCLOSE intrinsic. The following subjects are discussed in detail:

how the �le system closes a �le

closing a disk �le

closing a magnetic tape �le

How the File System Closes a File

You terminate access to a �le from your program with the FCLOSE intrinsic. The FCLOSE
intrinsic applies to both disk and device �les. FCLOSE also deallocates the device on which the
�le resides; however, if your program has several concurrent HPFOPEN/FOPEN calls issued to the
same �le, the device is not deallocated until the last \nested" FCLOSE intrinsic is executed.

You can use the FCLOSE intrinsic to specify (or change) the disposition of a disk or a magnetic
tape �le when it is closed. The disposition of a disk or magnetic tape �le can be new,
temporary, or permanent. If you do not change the disposition of a new �le when it is closed,
the �le and its contents are deleted from the system when the �le is closed using FCLOSE.

You can change the disposition of a new �le to be either temporary or permanent. A �le closed
with a temporary disposition is closed as a temporary �le. It is deleted from the system when
your job/session is terminated. A �le closed with a permanent disposition is closed and saved
as a permanent �le. It remains in the system domain after your job/session ends, and until you
purge it.

When you close a �le with either a temporary or permanent disposition, MPE/iX conducts a
search:

If the �le is to be closed as a temporary �le, the job �le domain is searched .

If the �le is to be closed as a permanent �le, the system �le domain is searched .

You are not allowed to have duplicate �le names in the same domain. If MPE/iX �nds a �le of
the same name in the searched directory, the �le is not closed, and the FCLOSE intrinsic returns
an error condition.

You can specify the disposition of a �le when it is opened when you use the �nal disposition
option or the �le equation option of the HPFOPEN intrinsic, or the FILE command. Both
HPFOPEN options provides the same choices as the disposition parameter of FCLOSE, except that
you can change the disposition of a �le when the �le is opened (as opposed to when the �le is
closed). For more information about HPFOPEN options, refer to the MPE/iX Intrinsics Reference
Manual (32650-90028).

Closing a File 6-1

Note Even though you are allowed to specify a �le's �nal disposition when the �le is
opened, MPE/iX does not search the appropriate directory until you attempt to
close that �le.

If a conict occurs between the dispositions speci�ed at �le-open time and �le-close time,
the disposition speci�cation that has the lower positive-integer value takes precedence. For
example, if a disposition of temporary (�nal disposition option = 2) is speci�ed by HPFOPEN,
and a disposition of permanent (disposition = 1) is speci�ed by FCLOSE , the disposition
speci�ed by FCLOSE takes precedence. Likewise, if there are conicts between the disposition
speci�cations of multiple FCLOSE calls on the same �le, the disposition speci�cation that has the
lower positive-integer value takes precedence when the �le is �nally closed.

If your program does not issue an FCLOSE intrinsic call on �les that have been opened, MPE/iX
closes all �les automatically when the program's process terminates. In this case, MPE/iX closes
all opened �les with the same disposition they had before being opened. New �les are deleted;
old �les are saved and assigned to the domain in which they belonged previously, either
permanent or temporary; however, if you speci�ed the �le's disposition when you opened it
with HPFOPEN, that disposition takes e�ect.

Closing a Disk File

The following examples show how you use the FCLOSE intrinsic to close a disk �le:

\Closing a New Disk File as Permanent" shows an example of an FCLOSE call that closes the
�le opened in Example 5-1.

\Closing a Permanent Disk File" shows an example of an FCLOSE call that closes the �le
opened in Example 5-2.

Closing a new disk �le as permanent

Example 6-1 is an HP Pascal/XL code segment containing an HPFOPEN call that opens a new
�le, and an FCLOSE intrinsic call that changes the disposition of the �le to permanent prior to
closing it. (Refer to Example 5-1 for details on this HPFOPEN call.)

In Example 6-1, there is a disposition conict between the FCLOSE call and the HPFOPEN call
that opened the �le identi�ed by file_num:

The disposition parameter of FCLOSE speci�es that the �le is to be closed as a permanent �le.

The �nal disposition option of the HPFOPEN call speci�es that the �le should be closed as a
temporary �le.

The disposition parameter of FCLOSE takes precedence over the �nal disposition option of
HPFOPEN because the integer value of FCLOSE's disposition (1) is a smaller positive value than
that of HPFOPEN's �nal disposition option (2).

6-2 Closing a File

Example 6-1. Closing a New Disk File as Permanent
...
save_temp := 2;

HPFOPEN(file_num, status,

formal_designator_option, file_name, {HPFOPEN formaldesignator option}
record_size_option, line_len, {HPFOPEN record size option}

final_disp_option, save_temp, {HPFOPEN �nal disp option }

ASCII_binary_option, ascii {HPFOPEN ASCII/binary option}

);...
error := 1;

disposition := 1; {close file as a permanent file }

security_code := 0; {No additional restrictions }

FCLOSE (file_num, {file_num returned by HPFOPEN }
disposition, {close file with permanent disposition }

security_code {no additional restrictions are added }

);

if ccode = error then handle_file_error (file_num, 0)...

If the �le could not be closed because an incorrect file_num was speci�ed, or another �le of
the same name and disposition already exists, ccode returns a value of one, thus invoking the
error-handling procedure handle_file_error.

In Appendix A, \Pascal/XL Program Examples," Example A-1 uses a similar procedure to close
a new disk �le. For more information about FCLOSE parameters, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028).

Closing a File 6-3

Closing a permanent disk �le

Example 6-2 closes the permanent �le opened in Example 5-2. (Refer to Example 5-2 for
details on this HPFOPEN call.) The disposition of the �le is not changed when it is closed. The
�le remains a permanent disk �le.

Example 6-2. Closing a Permanent Disk File
...
HPFOPEN(file_num, status,

formal_designator_option, file_name, {HPFOPEN formaldesignator option}

domain_option, permanent, {HPFOPEN domain option }

access_type_option, update, {HPFOPEN access type option}

dynamic_locking_option, lockable, {HPFOPEN dynamic locking option}
exclusive_option, shared {HPFOPEN exclusive option }

ASCII_binary_option, ascii {HPFOPEN ASCII/binary option}

);...
error := 1;
disposition := 0; {no change to disposition }

security_code := 0; {No additional restrictions }

FCLOSE (file_num, {file_num returned by HPFOPEN }

disposition, {don't change prior disposition }
security_code {no additional restrictions are added }

);

if ccode = error then handle_file_error (file_num, 0)...

If the �le could not be closed because an incorrect file_num was speci�ed, or another �le of
the same name and disposition already exists, ccode returns a value of one, thus invoking the
error-handling procedure handle_file_error.

In Appendix A, \Pascal/XL Program Examples," Example A-5 uses a similar procedure to close
a permanent disk �le. For more information about FCLOSE parameters, refer to the MPE/iX
Intrinsics Reference Manual (32650-90028).

6-4 Closing a File

Closing a Magnetic Tape File

The operation of the FCLOSE intrinsic as used with unlabeled magnetic tape is outlined in the
owchart of Figure 6-1.

Figure 6-1. Using the FCLOSE Intrinsic with Unlabeled Magnetic Tape

Note that a tape closed with the temporary no-rewind disposition is rewound and unloaded
if certain additional conditions are not met. It is possible for a single process to open a

Closing a File 6-5

magnetic tape device using the device class option of HPFOPEN/FOPEN, then again open the
already-allocated device by specifying its logical device number (ldev) using the device name
option of HPFOPEN/FOPEN. This may be done in such a manner that both magnetic tape �les are
open concurrently. The second HPFOPEN/FOPEN does not require any operator intervention to
allocate the device. When �le open and �le close calls are arranged in a nested fashion, tape
�les may be closed without deallocating the physical device, as follows:

HPFOPEN allocated tape

tape remains allocated

FCLOSE deallocated tape

Such nesting of HPFOPEN/FOPEN and FCLOSE pairs is required to keep from rewinding a tape
closed with FCLOSE. A tape closed with the temporary, no-rewind disposition is rewound and
unloaded unless the process closing it has another �le currently open on the device.

When a temporary no-rewind tape is deallocated, the �le system has not placed an EOF
(end-of-�le mark) at the end of the data �le.

The FCLOSE intrinsic can be used to maintain position when creating or reading a labeled tape
�le that is part of a volume set. If you close the �le with a disposition code of 0 or 3, the tape
does not rewind, but remains positioned at the next �le. If you close the �le with a disposition
code of 2, the tape rewinds to the beginning of the �le, but is not unloaded. A subsequent
request to open the �le does not reposition the tape if the sequence (seq) subparameter is NEXT
or default (1). A disposition code of 1 (save permanent) implies the close of an entire tape
volume set.

6-6 Closing a File

7

Record Selection and Data Transfer

The chief activities of the �le system involve the transfer of data. In this chapter we will
examine how this is accomplished. As you read this chapter, keep these considerations in mind:

How are records selected for transfer?

What intrinsics are used for data transfer?

How is the record pointer a�ected by intrinsics?

The last section of this chapter discusses the major points presented in this chapter as they
pertain to magnetic tape �les.

Record Pointers

The �le system uses record pointers to �nd speci�c records for your use. Physical record
pointers (also referred to as block pointers) are used to locate speci�c blocks on disk; logical
record pointers blocks and deblocks the logical records in a physical record and indicate speci�c
logical records within a �le. A �le opened with the inhibit bu�ering option parameter set
to BUF (the default) is accessed with a logical record pointer. A �le opened with the inhibit
bu�ering option parameter set to NOBUF is accessed with a physical record (or block) pointer.

Figure 7-1 shows how the physical and logical record pointers operate together to locate any
record in a �le. For any record, the physical record pointer indicates the correct block, and the
logical record pointer locates the logical record within the block.

The �le system uses both the physical and the logical record pointers to locate records. Future
references to \record pointer" in this manual will imply this combination.

When you open your �le the HPFOPEN/FOPEN intrinsic sets the record pointer to record 0 (the
�rst record in your �le) for all operations. If you have opened the �le with APPEND access,
though (using the access type option parameter available in HPFOPEN/FOPEN), MPE/iX moves the
record pointer to the end of the �le prior to a write operation; this ensures that any data that
you write to the �le is added to the end of the �le rather than written over existing data.

Record Selection and Data Transfer 7-1

Figure 7-1. Record Pointers

Following initialization, the record pointer may remain in position at the head of your �le, or it
may be moved by the intrinsics used in record selection.

Record Selection

How are records selected for transfer? The �le system intrinsics listed in Table 7-1 are designed
to move records to and from your �le, but how do they choose the records they want? The
record pointer indicates the speci�c location where a �le will be accessed; records can be
transferred to or from this location, or the pointer can be moved to another place in the �le
that you wish to access.

There are �ve methods of record selection that you can use to access your �le:

sequential access, in which you transfer data to and from the place the record pointer
currently indicates

random access, in which you move the record pointer before transferring data

update access, in which you choose a record and write a new record over it

RIO access, in which you access only records that are not deactivated.

Mapped access is a special type of access available only through the HPFOPEN intrinsic,
in which you bypass �le system data transfer mechanisms by referencing the �le as an

7-2 Record Selection and Data Transfer

array using a pointer declared in your program. Mapped �les are discussed in chapter 11,
\Accessing a File Using Mapped Access".

Sequential access

When you use this method of record selection, you assume that the record pointer is already
where you want it. You transfer your data using the FREAD or FWRITE intrinsic, and the record
pointer is automatically set to the beginning of the next record at the end of each read or
write; for this reason, this method is also called serial record selection. For �xed-length and
unde�ned-length record �les, the �le system updates the record pointer by adding the uniform
record length to the pointer after you read or write a record; for variable-length record �les,
the �le system takes the byte count from the record being transferred plus some bytes required
for overhead, and adds that to the record pointer, resulting in a pointer to the next record.

Random access

If the record pointer is not indicating the location that you want, you can use the random
access method to move the pointer and begin your transfer wherever that you like; for this
reason, this method is also called controlled record selection.

It is possible to access speci�c records in a disk �le with the FREADDIR and FWRITEDIR
intrinsics. The record number to be read or written is speci�ed as one of the parameters in the
FREADDIR or FWRITEDIR intrinsic call. Following the read or write operation, the record pointer
is set to the next record, as in the default case. Note that FREADDIR and FWRITEDIR may be
issued only for a disk �le composed of �xed-length or unde�ned-length records.

Update access

To update a logical record of a disk �le, you use the FUPDATE intrinsic. The FUPDATE intrinsic
a�ects the last logical record (or block for NOBUF �les) accessed by any intrinsic call for the �le
named and writes information from a bu�er in the stack into this record. Following the update
operation, the record pointer is set to indicate the next record position.

The record number need not be supplied in the FUPDATE intrinsic call; FUPDATE automatically
updates the last record referenced in any intrinsic call. Note that the �le system assumes the
record to be updated has just been accessed in some way.

You must open the �le containing the record to be updated with the access type option
parameter of the HPFOPEN/FOPEN call set to update access. In addition, the �le must not
contain variable-length records.

Record Selection and Data Transfer 7-3

Table 7-1. Intrinsics for Data Transfer

FREAD Used for sequential read.
May be used with �xed-length, variable-length, or unde�ned-length record �les.
File must be opened with Read, Read/Write, or Update access.
Successful read returns CCE condition code and transfer length; �le error
results in CCL condition code; end-of-�le results in CCG condition code and
returns a transfer length of zero.

FWRITE Used for sequential write.
May be used with �xed-length, variable-length, or unde�ned-length record �les.
File must be opened with Write, Write/SAVE, APPEND, Read/Write or Update
access.
Successful write returns CCE condition code; �le error results in CCL condition
code; end-of-�le results in CCG condition code.

FREADDIR Used for random-access read.
Used only with �xed or unde�ned-length record �les.
File must be opened with Read, Read/Write, or Update access.
Successful read returns CCE condition code; �le error results in CCL condition
code; end-of-�le results in CCG condition code. No transfer length is returned
because you get the amount requested unless an error occurs.

FREADSEEK Used for anticipatory random-access read into �le system bu�ers.
Used only with bu�ered �xed-length or unde�ned-length record �les.
File must be opened with Read, Read/Write, or Update access.
Successful read returns CCE condition code; �le error results in CCL condition
code; end-of-�le results in CCG condition code.

FWRITEDIR Used for direct write.
Use only with �xed-length or unde�ned-length record �les.
File must be opened with Write, Write/SAVE, Read/Write or Update access;
APPEND not allowed.
Successful write returns CCE condition code; �le error results in CCL condition
code; end-of-�le results in CCG condition code.

FUPDATE Used to update previous record (logical or physical).
Used only with �xed-length or unde�ned-length record �les.
File must be opened with Update access. No multirecord update allowed.
Successful update returns CCE condition code; �le error results in CCL
condition code; end-of-�le results in CCG condition code.

RIO access

RIO is an access method that permits individual �le records to be deactivated. These inactive
records retain their relative position within the �le. RIO access is intended for use primarily by
COBOL programs; however, you can access these �les by programs written in any language.
You create an RIO �le using the �le type option parameter of HPFOPEN/FOPEN.

RIO �les may be accessed in two ways, RIO access and non-RIO access. RIO access ignores the
inactive records when the �le is read sequentially using the FREAD intrinsic, and these records
are transparent to you; however, they can be read by random access using FREADDIR. They
may be overwritten both sequentially and randomly using FWRITE, FWRITEDIR, or FUPDATE.
With non-RIO access, the internal structure of RIO blocks is transparent.

7-4 Record Selection and Data Transfer

Multiple Record Transfers

In almost all applications, programs conduct input/output in normal recording mode, where
each read or write request transfers one logical record to or from the data stack. In certain
cases, however, you may want your program to read or write, in a single operation, data that
exceeds the logical record length de�ned for the input or output �le.

For instance, you may want to read four 128-byte logical records from a �le to your data stack
in a single 512-byte data transfer. Such cases usually arise in specialized applications. Suppose,
for example, that your program must read input from a disk �le containing 256-byte records.
This data, however, is organized as units of information that may range up to 1024 bytes long;
in other words, the data units are not con�ned to record boundaries. Your program is to read
these units and map them to an output �le, also containing 256-byte records.

You can bypass the normal record-by-record input/output, instead receiving data transfers of
1024 bytes each, by specifying multirecord mode (MR) using the multirecord option parameter
in your HPFOPEN/FOPEN call or FILE command. For example:

:FILE BIGCHUNK; REC=-256,1,U;NOBUF;MR
\
Specifies multirecord mode

The essential e�ect of multirecord mode is to make it possible to transfer more than one block
in a single read or write. This mode e�ectively ignores block boundaries, and permits transfers
of as much data as you wish; it does not, however, break up blocks. Your transfers must begin
on block boundaries. In order to take advantage of multirecord mode, you must also set the the
inhibit bu�ering option parameter to NOBUF in your HPFOPEN/FOPEN call or FILE command.

When you read from a �le in multirecord mode, you may not read beyond the EOF (end-of-�le
marker). When you write to a �le in multirecord mode, you may write only up to the block
containing the �le limit. If your transfer exceeds its limit, a condition code of CCG is returned,
data is transferred only up to the limit, and the FREAD intrinsic returns a transfer length of 0.

Note To obtain the actual transfer length for your data use the FCHECK intrinsic,
as described in the MPE/iX Intrinsics Reference Manual (32650-90028). The
transfer length is returned in the TLOG parameter of FCHECK.

Control Operations

There may be times when you want to move the record pointer to a particular place without
necessarily transferring any data. There are three general categories for this type of record
selection:

Spacing: Move the record pointer backward or forward.

Pointing: Reset the record pointer.

Rewinding: Reset the pointer to record 0.

Record Selection and Data Transfer 7-5

Spacing

To space forward or backward in your �le, use the FSPACE intrinsic. Its syntax is

FSPACE(filenum,displacement);

The displacement parameter gives the number of records to space from the current record
pointer. Use a positive number for spacing forward in the �le or a negative number for spacing
backward.

You can use the FSPACE intrinsic only with �les that contain �xed-length or unde�ned-length
records; variable-length record �les are not allowed. The FSPACE intrinsic may not be used
when you have opened your �le with APPEND access; the �le system returns a CCL condition if
you attempt to use it in this case. Spacing beyond the EOF results in a CCG condition, and the
record pointer is not changed.

Pointing

To request a speci�c location for the record pointer to indicate, use the FPOINT intrinsic. Its
syntax is

FPOINT(�lenum,recnum);

Use the recnum parameter to specify the new location for the record pointer; recnum is the
record number relative to the start of the �le (record 0).

You can use The FPOINT intrinsic only with �les that contain �xed-length or unde�ned-length
records; variable-length record �les are not allowed. The FPOINT intrinsic may not be used
when you have opened your �le with Append access; the �le system returns a CCL condition if
you attempt to use it in this case. Pointing beyond the EOF results in a CCG condition, and the
record pointer is not changed.

Rewinding

When you \rewind" your �le, you set the record pointer to indicate record 0, the �rst record in
your �le. Use the FCONTROL intrinsic with a control code of 5 to accomplish this. FCONTROL's
syntax in this case would be

FCONTROL(filenum,5,dummyparam);

Issuing this intrinsic call sets the record pointer to record 0. You can use FCONTROL with
�xed-length, variable-length, or unde�ned-length record �les; you can use it with any access
method.

Note FCONTROL's control code 5 has a special meaning when used with Append
access. The �le system sets the record pointer to record 0, as with other access
modes, but at the time of the next write operation to the �le, the record
pointer is set to the end of the �le so that no data is overwritten.

For more information about the FSPACE, FPOINT, and FCONTROL intrinsics, consult the MPE/iX
Intrinsics Reference Manual (32650-90028).

7-6 Record Selection and Data Transfer

Magnetic Tape Considerations

The most common medium for storage of a device �le is magnetic tape. This section describes
the matters that you should keep in mind when you work with your magnetic tape �les.

Every standard reel of magnetic tape designed for digital computer use has two reective
markers located on the back side of the tape (opposite the recording surface). As illustrated in
Figure 7-2, one of these marks is located behind the tape leader at the beginning-of-tape (BOT)
position, and the other is located in front of the tape trailer at the end-of-tape (EOT) position.
These markers are sensed by the tape drive itself and their position on the tape (left or right
side) determines whether they indicate the BOT or EOT positions:

Figure 7-2. Magnetic Tape Markers

As far as the magnetic tape hardware and software are concerned, the BOT marker is much
more signi�cant than the EOT marker because BOT signals the start of recorded information;
but EOT simply indicates that the remaining tape supply is running low, and the program
writing the tape should bring the operation to an orderly conclusion. The di�erence in
treatment of these two physical tape markers is reected by the �le system intrinsics when the
�le being read, written, or controlled is a magnetic tape device �le. The following paragraphs
discuss the characteristics of each appropriate intrinsic.

FWRITE. If the magnetic tape is unlabeled (as speci�ed in the HPFOPEN/FOPEN intrinsic or FILE
command) and a user program attempts to write over or beyond the physical EOT marker, the
FWRITE intrinsic returns an error condition code (CCL). The actual data is written to the tape,
and a call to FCHECK reveals a �le error indicating end-of-tape. All writes to the tape after the
EOT marker has been crossed transfer the data successfully, but return a CCL condition code
until the tape crosses the EOT marker again in the reverse direction (rewind or backspace).

If the magnetic tape is labeled (as speci�ed in the HPFOPEN/FOPEN intrinsic or FILE command),
a CCL condition code is not returned when the tape passes the EOT marker. Attempts to
write to the tape after the EOT marker is encountered cause end-of-volume (EOV) labels to be
written. A message then is printed on the operator's console requesting another reel of tape to
be mounted.

FREAD. A user program can read data written over an EOT marker and beyond the marker
into the tape trailer. The intrinsic returns no error condition code (CCL or CCG) and does not
initiate a �le system error code when the EOT marker is encountered.

DDS tape drives do not permit an FREAD past the marker. With DDS drives, every FWRITE
updates the EOT marker and does not permit a rewrite of previous data.

FSPACE. A user program can space records over or beyond the EOT marker without receiving
an error condition code (CCL or CCG) or a �le system error. The intrinsic does, however, return
a CCG condition code when a logical �le mark is encountered. If the user program attempts to
backspace records over the BOT marker, the intrinsic returns a CCG condition code and remains
positioned on the BOT marker.

Record Selection and Data Transfer 7-7

FCONTROL (Write EOF). If a user program writes a logical end-of-�le (EOF) mark on a
magnetic tape over the reective EOT marker, or in the tape trailer after the marker, hardware
status is saved to return END-OF-TAPE on the next FWRITE. The �le mark is actually written to
the tape.

FCONTROL (FORWARD SPACE TO FILE MARK). A user program that spaces forward to
logical tape marks (EOFs) with the FCONTROL intrinsic cannot detect passing the physical EOT
marker. No special condition code is returned.

FCONTROL (BACKWARD SPACE TO FILE MARK). The EOT reective marker is not detected
by FCONTROL during backspace �le (EOF) operations. If the intrinsic discovers a BOT marker
before it �nds a logical EOF, it returns a condition code of CCE and treats the BOT as if it
were a logical EOF. Subsequent backspace �le operations requested when the �le is at BOT
are treated as errors and return a CCL condition code and set a �le system error to indicate
INVALID OPERATION.

In summary, except for FCONTROL, only those intrinsics that cause the magnetic tape to write
information are capable of sensing the physical EOT marker. If a program designed to read
a magnetic tape needed to detect the EOT marker, it could be done by using the FCONTROL
intrinsic to read the physical status of the tape drive itself. When the drive passes the EOT
marker and is moving in the forward direction, tape status bit 5 (%2000) is set and remains on
until the drive detects the EOT marker during a rewind or backspace operation. Under normal
circumstances, however, it is not necessary to check for EOT during read operations. The
responsibility for detecting end-of-tape and concluding tape operations in an orderly manner
belongs to the program that originally created (wrote) the tape.

A program that needed to create a multiple reel tape �le would normally write tape records
until the status returned from FWRITE indicated an EOT condition. Writing could be continued
in a limited manner to reach a logical point at which to break the �le. Then several �le marks
and a trailing tape label would typically be added, the tape rewound, another reel mounted,
and the data transfer continued. The program designed to read such a multitape �le must
expect to �nd and check for the EOF and label sequence written by the tape's creator. Since
the logical end of the tape may be somewhat past the physical EOT marker, the format and
conventions used to create the tape are of more importance than determining the location of
the EOT.

7-8 Record Selection and Data Transfer

8

Writing to a File

This chapter describes, through program examples, various ways that you can use �le system
intrinsics to transfer data from your program to a disk �le or a device �le. This chapter is
intended to illustrate topics introduced in chapter 7, \Record Selection and Data Transfer".
This chapter is divided into the following topics:

\Sequential Access and Random Access" discusses two common methods of record selection
and data transfer, and uses examples to illustrate the use of the FWRITE and FWRITEDIR
intrinsics.

\Writing to $STDLIST" discusses how your program can use the PRINT and FWRITE intrinsics
to write data from your program to the job/session standard list device, $STDLIST. An
example illustrates the use of the PRINT intrinsic to write a character string to $STDLIST.

\Writing Messages to the system console" discusses how your program can send messages
from your program to the system console, and request a reply from the operator. Examples
illustrate the use of the PRINTOP and PRINTOPREPLY intrinsics.

\Writing to a Magnetic Tape File" discusses how you can write data to two kinds of magnetic
tape �les: unlabeled tape �les and labeled tape �les. Examples illustrate the use of the
FWRITE intrinsic to write data to both types of tape �les.

\Writing a File Label to a Labeled Tape File" provides an example of using the FWRITELABEL
intrinsic to write a user-de�ned �le label to a labeled magnetic tape �le.

Sequential Access and Random Access

Two of the most frequently used methods of transferring data to a �le from your program are
sequential access and random access.

When you use sequential access to write data to a �le, you write data to the record currently
pointed to by the record pointer. You use the FWRITE intrinsic to write data sequentially to a
disk �le or device �le. When you open a �le with any form of write access (except Append)
speci�ed in the access type option of HPFOPEN/FOPEN, the �le is opened with the record pointer
set to the �rst record in the �le. When you have accomplished the write operation, the �le
system automatically sets the record pointer to point to the beginning of the next record in the
�le. Both disk �les and device �les can be accessed with the FWRITE intrinsic.

When you use random access to write data to a disk �le, you write data to any record in the
�le by specifying where you want the �le system to set the record pointer prior to the write
operation. You use the FWRITEDIR intrinsic to write data randomly to a disk �le. You must
specify in FWRITEDIR which record that you want to write to. The �le system sets the record
pointer to the selected record, then transfers the data to the record from your program's stack.
When you have accomplished the write operation, the �le system automatically sets the record
pointer to point to the beginning of the next record in the �le. Only disk �les can be accessed
with the FWRITEDIR intrinsic.

Writing to a File 8-1

The following examples illustrate the use of �le system intrinsics to perform sequential access
writes and random access writes to a disk �le.

Writing to a disk �le using sequential access

Example 8-1 is an HP Pascal/iX code segment that copies logical records sequentially from an
unlabeled tape �le (indicated by variable tape_file_num) and uses FWRITE to write them to a
disk �le (indicated by variable disk_file_num). The operation is performed in a loop. The loop
ends when the FREAD intrinsic encounters an EOF marker on the tape (indicating the end of
the �le).

Example 8-1. Writing to a Disk File Using Sequential Access

procedure copy_tape_file_to_disk_file;

var
record : packed array [1..80] of char; {declare record }
end_of_file : boolean; {declare exit condition}
record_length : shortint; {size of record read }
length : shortint; {declare parameter }
control_code : 0..65535; {declare parameter }

begin
end_of_file := false; {initialize exit condition }
control_code := 0; {initialize to default }
length : -80; {size of record to be copied }

repeat {loop until exit condition }

record_length := FREAD (tape_file_num, record, length);
if ccode = ccl then {check condition code for error }

handle_file_error (tape_file, 3)
else

if ccode = ccg then {FREAD returns ccg if EOF }
end_of_file := true {exit condition encounter encountered}
else
begin

FWRITE(disk_file_num, {identity returned by HPFOPEN }
record, {read from tape_file_num }

record length, {actual size of record }
control_code {default }

);
if ccode <> cce then {check condition code for error }

handle_file_error (disk_file, 5);
end

until end_of_file;
end {end procedure }

If an error is encountered by either FWRITE or FREAD, the condition code CCL is returned to
the program, thus invoking the procedure handle_file_error. For more information about
FWRITE parameters, refer to the MPE/iX Intrinsics Reference Manual (32650-90028). For more
information about using the FREAD intrinsic, refer to chapter 9, \Reading from a File". For
more information about opening a �le, refer to chapter 5, \Opening a File". In appendix A,
\HP Pascal/iX Program Examples," example A-1 uses a similar procedure to copy records from a
tape �le to a disk �le.

8-2 Writing to a File

Writing to a disk �le using random access

Example 8-2 is an HP Pascal/iX code segment that reads records sequentially from
old_disk_file and writes them into new_disk_file. Assume that both �les have been
opened already with calls to HPFOPEN/FOPEN. The end-of-�le (EOF) using the FWRITEDIR
of old_disk_file is determined with the FGETINFO intrinsic and assigned to the variable
record_num.

Example 8-2. Writing to a Disk File Using Random Access.

procedure copy_from_old_file_to_new_file;

var
record_num : integer;
buffer : packed array [256] of char;
end_of_file : boolean;
read_length : integer;
length : shortint;

begin
end_of_file := false; {initialize exit condition }
record_num := 0; {initialize record pointer }
length := 128 {also means 256 bytes }

FGETINFO (old disk_file,,,,,,,,,,rec); {locate the EOF in old_disk_file}

if ccode = ccl then
handle_file_error (old_disk_file); {error check on intrinsic call}

repeat {Copy the records in the reverse}
{orders from old disk file }

{to the new disk file }

read_length := FREAD (old_disk_file, buffer, length);
if ccode = ccl then

handle_file_error (old_disk_file)
else
if ccode = ccg then {check for exit condition}

end_of_file := true
else begin

rec := rec - 1 {decrement record pointer}
FWRITEDIR(new_disk_file, buffer, read_length, record_num);
if ccode <> cce then

handle_file_error (new_discfile); {error check }
end

until end_of_file {exit loop if exit condition true}
end; {end procedure }

The operation is performed in a loop. Before each write operation, record_num is
decremented. The loop ends when the FREAD intrinsic encounters an EOF in old_disk_file
(indicating the end of the �le). For more information about FWRITEDIR intrinsic parameters,
refer to the MPE/iX Intrinsics Reference Manual (32650-90028). For more information about
the FREAD intrinsic, refer to chapter 9, \Reading from a File". In appendix A, \HP Pascal/iX
Program Examples", example A-3 uses a similar routine to copy records using the random
access method of data transfer to write date from one �le to another.

Writing to a File 8-3

Writing to $STDLIST

You can write data from your program to your program's standard list device $STDLIST using
two intrinsics:

PRINT

FWRITE

Normally, $STDLIST for jobs is a line printer and for sessions a terminal. You can write a string
of ASCII characters from an array in your program to $STDLIST with the PRINT intrinsic. You
do not need to use HPFOPEN/FOPEN to open the standard list device in order to use PRINT.

Note The PRINT intrinsic is limited in its usefulness in that FILE commands are not
allowed. In addition, you cannot use the FCHECK intrinsic to determine error
conditions encountered by PRINT. You may �nd it more convenient (and a
better programming practice) to use the HPFOPEN/FOPEN intrinsic to open the
�le $STDLIST, then write to this �le using FWRITE.

You can also use the FWRITE intrinsic to write data from your program to the standard
list device $STDLIST, if you opened $STDLIST with HPFOPEN/FOPEN. In this case, the
HPFOPEN/FOPEN call returns a �le number that identi�es $STDLIST. You would then write to
$STDLIST sequentially using FWRITE. For more information about opening $STDLIST, refer to
chapter 5, \Opening a File".

Example 8-3 is an HP Pascal/iX code segment that contains a PRINT intrinsic call that transmits
a message to $STDLIST.

Example 8-3. Writing to $STDLIST Using PRINT
...

var
message : packed array [1..72] of char; {declare PRINT parm}
message_length : shortint; {declare PRINT parm}
controlcode : 0..65535; {declare PRINT parm}...
message := 'WRITING A MESSAGE TO THE STANDARD LIST DEVICE.';
message_length := -46 {message is 46 bytes long }
control_code := 0;
PRINT (message, {message written to $STDLIST }

message_length, {number of bytes in message }
controlcode {set to default }

);...

For more information about PRINT parameters, refer to the MPE/iX Intrinsics Reference
Manual (32650-90028). In appendix A, \HP Pascal Program Examples," example A-2 uses the
PRINT intrinsic to write messages to $STDLIST.

8-4 Writing to a File

Writing Messages to the System Console

Two intrinsics are available that allow you to print a character string directly from your
program to the system console:

PRINTOP transmits an ASCII character string from your program to the system console.

PRINTOPREPLY transmits an ASCII character string from your program to the system console,
and solicits a reply from the system operator.

Writing a message to the system console

Example 8-4 is an HP Pascal/iX program segment that illustrates how your program can call the
PRINTOP intrinsic to transmit a message from a character array in your program to the System
Console.

Example 8-4. Writing a Message to the System Console
...

var
message : packed array [1..56] of char; {declare PRINTOP parm}
length : shortint; {declare PRINTOP parm}
controlcode : 0..65535; {declare PRINTOP parm}...
message := 'Message to Operator'; {message to transmit }
length := -19 {actual length in bytes }
controlcode := 0; {set to default }
PRINTOP (message,

length,
controlcode

);...

The PRINTOP intrinsic transmits a maximum of 56 ASCII characters to the system console.
Longer messages are truncated to 56 characters. For more information about PRINTOP intrinsic
parameters, refer to the MPE/iX Intrinsics Reference Manual (32650-90028).

Writing a message to the system console and requesting a reply

The PRINTOPREPLY intrinsic can be used to transmit a message from an array in your program
to the system console and to request that a reply be returned. The message that you send must
be no longer than 50 characters in length. PRINTOPREPLY can return a maximum of 31 ASCII
characters to your program. For example, a program could ask the system operator if the line
printer contains a certain type of form. If the response is a�rmative, the program could then
write information on these forms.

Example 8-5 is an HP Pascal/iX code segment containing a PRINTOPREPLY intrinsic call. The
program is asking the system operator if the line printer device LP contains the correct forms.
The program is requesting that the system operator respond with a simply YES or NO response.
The program takes appropriate action based upon the characters returned in reply.

Writing to a File 8-5

Example 8-5. Writing a Message to the System Console and Requesting a Reply
...

var
message : packed array [1..50] of char; {PRINTOREPLY parameter}
length : shortint; {PRINTOREPLY parameter}
zero : shortint; {PRINTOREPLY parameter}
reply : packed array [1..31] of char; {PRINTOREPLY parameter}
expected_length: shortint; {PRINTOREPLY parameter}
counter...
message := 'Does device LP contain the correct forms? [Y/N]';
length := -47 {length of message }
zero := 0;
reply := ' '; {initialize reply }
expected_length := -3 {expected reply Y/YES/N/NO }
PRINTOREPLY (message, {message sent to system console }

length, {length of message in range 0..50 }
zero, {required, but not used. Set to 0 }
reply {reply returned in this array }
expected_length {length of reply in range 0..31 }

);...

The actual length of the System Operator's reply is returned to expected_length. For more
information about PRINTOREPLY intrinsic parameters, refer to the MPE/iX Intrinsics Reference
Manual (32650-90028).

Writing to a Magnetic Tape File

The following discussion pertains to writing data to two di�erent types of magnetic tape �les.

unlabeled magnetic tape �les

labeled magnetic tape �les

Unless you speci�cally create and open a labeled magnetic tape �le, the �le system opens an
unlabeled magnetic tape �le when you specify a tape drive using either the device name option
or device class option of HPFOPEN/FOPEN. For more information about opening both unlabeled
and labeled magnetic tape �les, refer to chapter 5, \Opening a File".

When you are writing records to an unlabeled magnetic tape �le, you must take into
consideration characteristics of magnetic tape that do not apply to �les on other devices.
For example, if a user program attempts to write over or beyond the physical EOT marker,
the FWRITE intrinsic returns an error condition code (CCL). The actual data is written to the
tape, and a call to FCHECK reveals a �le error indicating END-OF-TAPE. All writes to the tape
after the EOT tape marker has been crossed transfer the data successfully, but return a CCL
condition code until the tape crosses the EOT marker again in the reverse direction (rewind
or backspace). For more information about magnetic tape considerations, refer to chapter 7,
\Record Selection and Data Transfer".

Writing records to a labeled tape �le di�ers slightly from writing to an unlabeled tape �le.
If the magnetic tape is unlabeled and a user program attempts to write over or beyond
the physical EOT marker, the FWRITE intrinsic returns an error condition code (CCL). The
actual data has been written to the tape, and a call to FCHECK reveals a �le error indicating
END-OF-TAPE. All writes to the tape after the EOT tape marker has been crossed transfer the

8-6 Writing to a File

data successfully, but return a CCL condition code until the tape crosses the EOT marker again
in the reverse direction (rewind or backward).

If the magnetic tape is labeled, a CCL condition code is not returned when the tape passes
the EOT marker. Attempts to write to the tape after the EOT marker is encountered cause
end-of-volume (EOV) labels to be written. A message then is printed on the operator's console
requesting another reel of tape to be mounted.

The following headings provide examples of �le system intrinsic calls that illustrate:

writing to an unlabeled magnetic tape �le

writing to a labeled magnetic tape �le

writing a user-de�ned �le label on a labeled tape �le

Writing to an unlabeled magnetic tape �le

Example 8-6 is an HP Pascal/iX code segment that writes user-supplied data to the unlabeled
magnetic tape �le opened in example 5-5. For information about the HPFOPEN call that returns
the �le number in the variable unlabeled_tape_file, refer to example 5-5.

Example 8-6. Writing to an Unlabeled Magnetic Tape File
...

var
control_code : 0..65535; {Declare FWRITE parm. }
record_length: shortint; {Declare FWRITE parm }
file_record : record_type; {Record to be written to file; }

{record_type is 256-byte }
{fixed-length record. }...

record_length:= -256; {Number of bytes in record. }
control_code := 0; {Default specified }
FWRITE (unlabeled_tape_file, {HPFOPEN returned file number. }

file_record {Record to be passed }
record_length {Size of file_record. }
control_code {Required, but ignored. }

);

if ccode = CCL {check FWRITE condition code }
then handle_file_error (labeled_tape_file);...

If the FWRITE intrinsic encounters an error condition (CCL), an error-handling procedure,
handle_file_error, is invoked. FWRITE returns a CCG condition code if the EOF is reached.
For details concerning FWRITE intrinsic parameters, refer to the MPE/iX Intrinsics Reference
Manual (32650-90028).

Writing to a File 8-7

Writing to a labeled magnetic tape �le

Example 8-7 is an HP Pascal/iX code segment that writes user-supplied data to the labeled
magnetic tape �le opened in Example 5-6. For information about the HPFOPEN call that returns
the �le number in the variable labeled_tape_file, refer to example 5-6.

Example 8-7. Writing to a Labeled Magnetic Tape File
...

var
control_code : 0..65535; {Declare FWRITE parm. }
record_length: shortint; {Declare FWRITE parm }
file_record : record_type; {Record to be written to file; }

{record_type is 256-byte }
{fixed-length record. }...

record_length:= -256; {Number of bytes in record. }
control_code := 0; {Default specified }
FWRITE (labeled_tape_file, {HPFOPEN returned file number. }

file_record {Record to be passed }
record_length {Size of file_record. }
control_code {Required, but ignored. }

);

if ccode = CCL {check FWRITE condition code }
then handle_file_error (labeled_tape_file);...

If the FWRITE intrinsic encounters an error condition (CCL), an error handling procedure
handle_file_error is invoked. FWRITE returns a CCG condition code if the EOF is reached.
For more information about FWRITE intrinsic parameters, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028). For more information about opening �les, refer to chapter 5,
\Opening a File".

Writing a File Label to a Labeled Tape File

User-de�ned labels are used to further identify �les and may be used in addition to the
ANSI-standard labels. User-de�ned labels are written on �les with the FWRITELABEL intrinsic
instead of with the HPFOPEN/FOPEN intrinsic, as is the case for writing ANSI-standard labels.

User-de�ned labels for labeled tape �les di�er slightly from user-de�ned labels for disk �les, in
that user-de�ned labels for tape �les must be 80 bytes (40 half-words) in length. The tape label
information need not occupy all 80 bytes, however, and you can set unused portions of the
space equal to blanks.

In order to write a user-de�ned header label, the FWRITELABEL intrinsic must be called
before the �rst FWRITE to the �le. MPE/iX does, however, write user-de�ned trailer labels if
FWRITELABEL is called after the �rst FWRITE.

Note User-de�ned labels may not be written on unlabeled magnetic tape �les.

8-8 Writing to a File

Example 8-8 is an HP Pascal/iX code segment that writes a user-label to the labeled magnetic
tape �le opened in example 5-6. For information about the HPFOPEN call that returns the �le
number in the variable LABELED_TAPE_FILE, refer to example 5-6.

Example 8-8. Writing a User-Label to a Labeled Magnetic Tape File.
...

var

counter : integer; {Initialize counter }

label_length : shortint; {FWRITELABEL length parm }

user_label : packed array [1..80] of char;...
label_length := 40; {40 half-words required length }

for counter := 1 to 80 do {Loop to fill array with }

user_label [counter] := ' '; {ASCII blanks. }

user_label := 'tape01 user header label no. 1'; {Overwrite first }

{30 bytes with label name }

FWRITELABEL (labeled_tape_file, {Required parameter }

user_label, {Required parameter }

label_length {Optional parameter }

);

if ccode = CCL or CCG {check FWRITELABEL condition code }

then handle_file_error (labeled_tape_file);...

If ccode indicates that the FWRITELABEL intrinsic encountered an error condition (either CCL
or CCG), an error handling procedure handle_file_error is invoked. For more information
about FWRITELABEL intrinsic parameters, refer to the MPE/iX Intrinsics Reference Manual
(32650-90028). For more information about opening �les, refer to chapter 5, \Opening a File".

Writing User Data in ANSI Labels

It is possible to write data into bytes 5/21 of the HDR1 record of an ANSI tape label. In all, 17
bytes are available. If you write more than 8 bytes into the record, the 9th byte (Byte 13) must
be a period (\.").

For example, to write the string \FRANKSTN COUNCIL" into bytes 5/21, mount your tape and
then do this:

FILE FRANKSTN.COUNCIL;DEV=TAPE;REC=-80,,F,ASCII;LABEL=BUDGET,ANS

FCOPY FROM=data�le;TO=*FRANKSTN.COUNCIL

where data�le is the name of a disk �le. This coerces the string \FRANKSTN.COUNCIL" into
bytes 5/21 of the HDR1 record, and it places \BUDGET" into the VOL1 record of the tape.

The \�le" and \group" names are right-justi�ed.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

F R A N K S T N . C O U N C I L

Writing to a File 8-9

In order to retrieve the string recorded in bytes 5/21, you must create a program that uses the
intrinsics FOPEN (or HPFOPEN) and FFILEINFO. The program must do two things:

It must FOPEN (or HPFOPEN) the tape device.

It must employ FFILEINFO with option 45 to retrieve the \�le" identi�er.

The tape containing such a label must be mounted before you run the program.

8-10 Writing to a File

9

Reading from a File

This chapter describes, through program examples, various ways that you can use �le system
intrinsics to transfer data to your program from a disk �le or device �le. This chapter is
intended to illustrate topics introduced in chapter 7, \Record Selection and Data Transfer".
This chapter is divided into the following topics:

\Sequential Access and Random Access" discusses two common methods of record selection
and data transfer, and uses examples to illustrate the use of the FREAD and FREADDIR
intrinsics.

\Reading from $STDIN" discusses how your program can use the READ, READX, and FREAD
intrinsics to read data from the job/session standard input device, $STDIN. An example
illustrates the use of the READ intrinsic to read a character string from $STDIN.

\Reading from a Magnetic Tape File" provides an example of using the FREAD intrinsic to
read data from �le located on magnetic tape.

\Reading a File Label from a Labeled Tape File" provides an example of using the
FREADLABEL intrinsic to read a user-de�ned �le label located on a labeled magnetic tape �le.

Sequential Access and Random Access

Two of the most frequently used methods of transferring data from a �le to your program are
sequential access and random access.

When you use sequential access to read data from a �le, you read data from the record
currently pointed to by the record pointer. You use the FREAD intrinsic to read data
sequentially from a disk �le or device �le. When you open a �le with any form of Read access
speci�ed in the access type option of HPFOPEN/FOPEN, the �le is opened with the record pointer
set to the �rst record in the �le. When you have accomplished the read operation, the �le
system automatically sets the record pointer to point to the beginning of the next record in
the �le. Both disk �les and device �les can be accessed with the FREAD intrinsic. When you
use random access to read data from a disk �le, you read data from any record in the �le by
specifying where you want the �le system to set the record pointer prior to the read operation.
You use the FREADDIR intrinsic to randomly access records in a disk �le. You must specify in
FREADDIR which record that you want to read from. The �le system sets the record pointer to
the selected record, then transfers the data from the record to your program's stack. When
you have accomplished the read operation, the �le system automatically sets the record pointer
to point to the beginning of the next record in the �le. Only disk �les can be accessed with the
FREADDIR intrinsic

The following examples illustrate the use of �le system intrinsics to perform sequential access
reads and random access reads from a disk �le.

Reading from a File 9-1

Reading from a disk �le using sequential access

Example 9-1 is an HP Pascal/iX code segment that uses the FREAD intrinsic to read records
sequentially from a disk �le. Example 9-1 contains a loop construct, where records are read
sequentially from disk_file and written to the �le new_file (both �les opened elsewhere by
HPFOPEN/FOPEN calls). The �les are both standard ASCII �les with �xed-record format, each
record 256 bytes in length. When a logical end-of-�le (EOF) is reached, a condition code of
CCG is returned by FREAD. The loop ends when FREAD encounters the EOF and returns the CCG
condition to the program.

Example 9-1. Reading from a Disk File Using Sequential Access

.

.

.
var

expected_length: shortint; {required by FREAD }
record : packed array [1..256] of char; {declare record type }
control_code : 0..65535; {required by FWRITE }
record_length : shortint; {expected record length}
end_of_file : boolean; {declare exit condition}

.

.

.
begin

end_of_file := false; {initialize exit condition }
expected_length := -256; {record size of file }
control_code := 0 {set to default }

repeat {begin loop }
record_length := FREAD (disk_file, {file number from HPFOPEN }

record, {data transferred to here }
expected_length {record size of file }

);
if ccode = ccl then handle_file_error (disk_file) {error check }
else if ccode = ccg then end_of_file ;= true {exit condition check}

else begin
FWRITE(new_file, {file number from HPFOPEN }

record, {data transferred here }
record_length, {value returned by FREAD }
control_code {required; set to default }

);
end

until end_of_file; {loop ends when exit condition encounted }
.
.
.

If an error is encountered by either FREAD or FWRITE, the condition code CCL is returned to
the program, thus invoking the procedure handle_file_error. For more information about
FREAD parameters, refer to the MPE/iX Intrinsics Reference Manual (32650-90028). For more
information about using the FWRITE intrinsic, refer to chapter 8, \Writing to a File". For more
information about opening a �le, refer to chapter 5, \Opening a File".

9-2 Reading from a File

Reading from a disk �le using random access

Example 9-2 is an HP Pascal/iX code segment that, within a loop construct, calls the
FREADDIR intrinsic to read a record whose record number has been selected by the procedure
select_record and returned in the variable record_number. The example then prints the
selected record to the standard list device $STDLIST using the PRINT intrinsic.

Example 9-2. Reading from a Disk File Using Random Access

.

.

.
var

record : packed array [1..30] of char; {declare record type }
record_length : shortint; {expected record length }
read_length : shortint; {actual bytes read by FREAD}
record_number : integer; {which record to read }
control_code : shortint; {required by PRINT }
end_of_file : boolean; {declare exit condition }

.

.

.
control_code := 0; {default condition }
record_length := -30; {file record size 30 bytes }
record_number := 0; {initialize variable }
end_of_file := false; {initialize exit condition }

repeat {begin loop }
select_record (record_number);
read_length := FREADDIR (data_file, {HPFOPEN file number }

record, {record read from data_file }
record_length,{expected length of record }
record_number {returned from select_record }
);

if ccode = ccl then handle_file_error (data_file) {error check }
else if ccode = ccg then end_of_file := true {check for exit condition}

else begin
PRINT (record, {returned by FREADDIR }

read_length, {returned by FREADDIR }
control_code {set to default condition}

);
if ccode <> cce then handle_file_error (data_file)

end
until end_of_file; {exit if exit condition true }

.

.

.

Assume that a disk �le identi�ed by data_file has been opened elsewhere by an
HPFOPEN/FOPEN call. Also, assume that procedure select_record prompts the user for a valid
record number of a record in data_file. The loop is repeated until the FREADDIR intrinsic
encounters an end-of-�le condition, or an error condition is returned by an intrinsic.

If an error is encountered by either FREADDIR or PRINT, procedure handle_file_error is
invoked. For more information about FREADDIR parameters, refer to the MPE/iX Intrinsics
Reference Manual (32650-90028). For more information about using the PRINT intrinsic, refer to

Reading from a File 9-3

chapter 8, \Writing to a File". For more information about opening a �le, refer to chapter 5,
\Opening a File".

Increasing I/O performance using FREADSEEK

If you know in advance that a certain record is to be read from a �le with the FREADDIR
intrinsic, you can speed up the I/O process by issuing an FREADSEEK intrinsic call.

The FREADSEEK intrinsic moves the record from disk to virtual memory. Then, when the
FREADDIR intrinsic call is issued, the record is transferred from virtual memory to the bu�er
in the stack speci�ed by FREADDIR without having to perform I/O. The use of FREADSEEK
enhances the I/O process, because the FREADDIR call does not make the �le system perform a
physical I/O.

Reading From $STDIN

You can read data from your program's standard input device ($STDIN) by using one of the
following intrinsics:

READ

READX

FREAD

The job/session input device is the source of all MPE/iX commands relating to a job or session
and is the primary source of all ASCII information input to the job or session. You can read a
string of ASCII characters from the job/session input device into an array in your program with
the READ and READX intrinsics. The READ and READX intrinsics are identical, except that the
READX intrinsic reads input from $STDINX instead of $STDIN. The $STDINX �le is equivalent to
$STDIN, except that records with a colon (:) in the �rst column of a line indicate the end-of-�le
to $STDIN, and only the commands :EOD, and EOF indicate the end of �le for $STDINX.

Note The READ and READX intrinsics are limited in their usefulness in that FILE
commands are not allowed. In addition, you cannot use the FCHECK intrinsic
to determine error conditions encountered by READ or READX. You may
�nd it more convenient (and a better programming practice) to use the
HPFOPEN/FOPEN intrinsic to open the �les $STDIN or $STDINX, then issue FREAD
calls against these �les.

If the standard input device ($STDIN) and the standard list device ($STDLIST) are opened
with an HPFOPEN/FOPEN intrinsic call, the FREAD and FWRITE intrinsics can be used with these
devices. For example, the FREAD intrinsic can be used to transfer information entered from a
terminal to a bu�er in the stack, and the FREAD intrinsic can be used to transfer information
from your stack directly to the standard list device.

Example 9-3 is an HP Pascal/iX code segment that uses the PRINT intrinsic to prompt a user
for a �le designator, then uses the READ intrinsic to read the input from $STDIN. Assume that
the �le designator is then returned to a procedure that calls HPFOPEN to open a �le with the
formaldesignator option passing the �le name speci�ed by the user.

9-4 Reading from a File

Example 9-3. Reading from $STDIN Using READ

procedure get_file_designator (var file_name : packed array [1..80] of
char);

var
message : packed array [..80] of char; {holds prompt to user }
length : shortint; {length of prompt }
control_code : shortint; {required by PRINT }
read_length : shortint; {length read by READ }
expected_length : shortint; {size of message array}

begin
massage :='Please input a valid file reference'; {specify prompt }
length := -35; {length of prompt }
control_code := 0 {default condition }
expected_length := -80
PRINT (message,

length,
control_code

);
if ccode <> cce then handle_file_error;
else begin

read_length := READ (file_name, {read data to output parm}
expected_length {length of file_name }

);
if ccode <> cce then handle_file_error;

end
end;

If an error is encountered by either READ or PRINT, procedure handle_file_error is invoked.
For more information about READ parameters, refer to the MPE/iX Intrinsics Reference Manual
(32650-90028). For more information about using the PRINT intrinsic, refer to chapter 8,
\Writing to a File". For more information about opening a �le, refer to chapter 5, \Opening
a File". For more information about �le designators, refer to chapter 3, \Specifying a File
Designator". In appendix A, \HP Pascal/iX Program Examples", example A-2 uses a routine
similar to example 9-3 to prompt the user for a valid �le reference.

Reading from a File 9-5

Reading From a Magnetic Tape File

Example 9-4 is an HP Pascal/iX code segment that reads records sequentially from an unlabeled
magnetic tape �le (indicated by variable tape_file_num) and uses FWRITE to write them to a
disk �le (indicated by variable disk_file_num). The operation is performed in a loop. The loop
ends when the FREAD intrinsic encounters an EOF marker on the tape (indicating the end of
the tape �le).

Example 9-4. Reading From a Magnetic Tape File

procedure copy_tape_to_disk_file;

var
record : packed array [1..30] of char; {declare record }
end_of_file : boolean; {declare exit condition }
record_length : shortint; {size of record read }
length : shortint; {declare parameter }
control_code : 0..65535; {declare parameter }

begin
end_of_file := false; {initialize exit condition}
control_code := 0; {initialize to default }
length := -80; {size of record to be copied}

repeat {loop until exit condition}

record_length := FREAD (tape_file_num, record, length);
if ccode = ccl then

handle_file_error (tape_file, 3)
else

if ccode = ccg then {FREAD returns ccg if EOF }
end_of_file := true {exit condition encountered }
else
begin

FWRITE(disk_file_num, {identity returned by HPFOPEN }
record, {read from tape_file_num }
record_length, {actual size of record }
control_code {default }

);
if ccode <> cce then {check condition code for error}
handle_file_error (disk_file, 5);

end

entil end_of_file;
end; {end procedure }

If an error is encountered by either FREAD or FWRITE, procedure handle_file_error is
invoked. For more information about FREAD intrinsic parameters, refer to the MPE/iX
Intrinsics Reference Manual (32650-90028). For more information about the FWRITE intrinsic,
refer to chapter 8, \Writing to a File". In appendix A, \HP Pascal/iX Program Examples",
example A-1 uses a similar procedure to copy records from a tape �le to a disk �le.

9-6 Reading from a File

Reading a File Label from a Labeled Tape File

The FREADLABEL intrinsic is used to read a user-de�ned label located on a labeled magnetic
tape �le or a labeled disk �le. To read a user-de�ned header label, the FREADLABEL intrinsic
must be called before the �rst FREAD is issued for the �le. Execution of the �rst FREAD causes
MPE/iX to skip past any unread user-de�ned header labels.

Example 9-5 is an HP Pascal/iX code segment that reads a user label located in the user-de�ned
label portion of data_file, a labeled magnetic tape �le. The label is printed to `STDLIST
(identi�ed by list_file) using the FWRITE intrinsic. Assume that both data_file and
list_file have been opened elsewhere with calls to HPFOPEN/FOPEN.

Example 9-5. Reading a User Label from a Labeled Magnetic Tape File

procedure read_user_label;

var
label : packed array [1..80] of char; {holds label from file }
length : shortint; {length of label }
control_code : 0..65535; {required by FWRITE }

begin
length := 40 {required ANSI label size}
control_code := 0 {set to default }
FREADLABEL (data_file, {file number of tape file}

label, {returns label }
length {# of halfwords to read}

);
if ccode <> cce then handle_file_error (data_file);
FWRITE (list_file, {output to $STDLIST }

label, {label read by FREADLABEL }
length, {length of label }
control_code {default condition }

);
if ccode <> cce then handle_file_error (list_file);

end; {end read_user_label }

If an error is encountered by either FREADLABEL or FWRITE, procedure handle_file_error is
invoked. For more information about FREADLABEL intrinsic parameters, refer to the MPE/iX
Intrinsics Reference Manual (32650-90028). For more information about the FWRITE intrinsic,
refer to chapter 8, \Writing to a File". In appendix A, \HP Pascal/iX Program Examples",
example A-2 uses a similar procedure to read a user label from a labeled magnetic tape �le.

Reading from a File 9-7

10

Updating a File

You can use the FUPDATE intrinsic to update a logical record of a disk �le. FUPDATE a�ects the
last logical record (or block for NOBUF �les) accessed by any intrinsic call for the �le named,
and writes information from a bu�er in the stack into this record. Following the update
operation, the record pointer is set to indicate the next record position. The record number
need not be supplied in the FUPDATE intrinsic call; FUPDATE automatically updates the last
record referenced in any intrinsic call. Note that the �le system assumes that the record to be
updated has just been accessed in some way.

The disk �le containing the record to be updated must have been opened with the access type
option parameter of HPFOPEN/FOPEN set to update access. In addition, the �le must not contain
a variable-length record format. Example 10-1 is an HP Pascal/iX code segment that illustrates
how to use the FUPDATE intrinsic to update records in a disk �le being shared by multiple
concurrent accessors. The program segment also uses �le system locking intrinsics (FLOCK and
FUNLOCK) to guarantee exclusive access to the �le while the update occurs.

The pertinent code from Example 10-1 is shown below:
...
read_length := FREAD (disk_file_num, inbuf, 128);...
FUPDATE (disk_file_num, inbuf, 128);...

The statements above are in a loop that follows this algorithm:

1. Read the record from the �le identi�ed by disk_file_num using the FREAD intrinsic.

2. Write the record to STDLIST to be reviewed by user.

3. Read new data input to STDIN by user and modify record in program.

4. Using FUPDATE intrinsic, write the updated record to the location in disk_file_num
indicated by last intrinsic call (in this case, the FREAD call shown above).

Updating a File 10-1

Example 10-1. Updating a Disk File

procedure update_disk_file;

{**}
{ procedure update_disk_file updates records in the disk file }
{ with the replacement records read from $STDIN }
{**}

var
dummy : integer;
inbuf : array [1..80] of char;
end_of_file : boolean;
read_length : integer;

begin
{Lock the file and suspend }

end_of_file := false;
FLOCK (disk_file_num, 1);
if ccode = ccl then
handle_file_error (disk_file_num, 0);

{Begin loop }
repeat

{ Read record from disk file, then write record to $STDLIST; }
{ read updated record number from $STDIN and update }
{ the disk file with the input record and unlock disk file. }

read_length := FREAD (disk_file_num, inbuf, 128);
{read in record}

if ccode = ccg then
end_of_file := true {exit condition }

else
begin
FWRITE (std_list, inbuf, -20, octal('320'));

{user reviews record}
if ccode cce then

handle_file_error (std_list, 5);
dummy := FREAD (std_in, inbuf[20], 5);

{input updated field}
if ccode = ccl then

handle_file_error (std_list, 6);
else

if ccode = ccg then
end_of_file := true; {exit condition}

FUPDATE (disk_file_num, inbuf, 128); {update record }
if ccode cce then

handle_file_error (disk_file_num, 7);
end

until end_of_file; {test for EOF }
FUNLOCK (disk_file_num); {final unlock of disk file}

if ccode cce then
handle_file_error (disk_file_num, 2);

end: {end update_file }

10-2 Updating a File

In appendix A, \HP Pascal Program Examples," example A-5 is an HP Pascal/iX program that
uses the procedure in example 10-1 to update records in a disk �le. For more information about
FUPDATE parameters, refer to the MPE/iX Intrinsics Reference Manual (32650-90028).

Note A magnetic tape device is not designed to enable the update/replacement of a
single record in an existing �le. Problems occurs in maintaining the integrity of
tape records if you attempt to perform a record update operation directly to a
magnetic tape �le. You should update individual records of a magnetic tape �le
only when you are copying the entire contents of that �le to another �le.

Updating a File 10-3

11

Accessing a File Using Mapped Access

A major enhancement to the MPE/iX �le system is mapped �le access, a method that allows
you to access a �le directly through memory load and store instructions. Mapped �le access is
available through two HPFOPEN intrinsic optional parameters:

Item #18 short-mapped option returns a 32-bit value of type address.

Item #21 long-mapped option returns a 64-bit value of type address.

How to Access a File Mapped

You can access a �le mapped by declaring a short (32-bit) or long (64-bit) pointer variable
within a program and passing that variable to the appropriate HPFOPEN option. The HPFOPEN
intrinsic returns the variable pointing to the beginning of the data area of the opened �le.

After HPFOPEN returns the address of the �le, you simply reference the pointer as an array. The
machine architecture ensures integrity and protection of the �le.

The following �le types are allowed any type of access (Read, Write, Read/Write, and so forth)
when opened using mapped access options:

standard disk �les with �xed-length or unde�ned-length record formats

The following �le types are allowed read-only access when opened using mapped access
options:

standard disk �les with variable-length record formats

KSAM �les opened with copy mode option enabled

The following �le types are not allowed to be opened using mapped access options:

relative I/O (RIO) �les

message (MSG) �les

circular (CIR) �les

device �les

You can use all applicable �le system intrinsics mapped access, including all data transfer
intrinsics; however, when mixing data transfer intrinsic calls (such as FREAD and FWRITE) with
mapped access, you must take into consideration the data type (ASCII/binary) of the �le, the
record format, and the record size. Otherwise, data written to the �le using mapped access
may not make sense when read by FREAD.

When you open a �le using mapped access and write data to that �le, you must use the FPOINT
and FCONTROL intrinsics to reset the EOF before you close the �le. Otherwise, all data you
write to the �le after the EOF will be lost when you close the �le. In the case of a newly
created �le, the EOF initially points to record zero.

Accessing a File Using Mapped Access 11-1

Note When you access a �le with mapped access you are bypassing �le system
services that set various �le system pointers automatically, including the EOF
and the logical record pointer. You are responsible for resetting the EOF prior
to closing a �le that you have accessed mapped. Also, �le system posting is
bypassed; so, if data recovery is needed you should use FCONTROL controlcodes
2 and/or 6 to post data and update the EOF periodically. Heavy use of the
FCONTROL intrinsic to post data and set the EOF degrades performance due to
the overhead of the extra posting.

Advantages of mapped access

Mapped access to a �le can be much faster than access through normal �le system intrinsics.
This is especially the case when you are accessing a smaller �le randomly rather than
sequentially. When accessing a �le mapped, there is no �le system overhead associated with
a speci�c reference to the �le. The only di�erence between accessing a �le mapped and
accessing normal memory is the locality of the access and the protection strategy.

Note It is possible to show a degradation of performance if an application that
accesses �les sequentially is modi�ed to access those �les mapped. Normal
system reads prefetch multiple records per read. Mapped �le access has no
method of prefetching the data, consequently, some performance penalty is
paid by additional overhead on page faults.

There are two perspectives you can take on mapped �le access:

1. A �le is accessible as virtual memory. The advantages from this perspective are high
performance and fast response time from the �le system.

2. Virtual memory is accessed through the �le system. The advantages from this perspective
are

Virtual memory can be easily saved permanently.

Virtual memory can be checkpointed.

Virtual memory can be easily shared through a common naming convention.

Short-mapped access

Item #18 short-mapped option is available in the HPFOPEN intrinsic to provide you with shared
virtual memory. A short pointer is returned in an optional item parameter. You can use the
pointer as a large array of any type to e�ciently access the �le.

A �le created using the short-mapped option can be up to four megabytes in size. A process
can have open at the same time up to six megabytes of �les that are opened using the
short-mapped option. For larger �le needs, a �le created using the long-mapped option is
required.

An error results if you attempt to open a �le using the short-mapped option that you have
previously opened normally or with the long-mapped option.

You cannot access a loaded program �le or a loaded library �le using either mapped access
option. In addition, you cannot load a �le that is currently being accessed mapped.

11-2 Accessing a File Using Mapped Access

Long-mapped access

Item #21 long-mapped option is available in the HPFOPEN intrinsic to provide you with access to
large amounts of shared virtual memory. You can use the pointer as a large array of any type
to e�ciently access the �le.

A �le created using the long-mapped option can be up to two gigabytes in size. There is no
practical limit of the number of long-mapped access �les that a process can have open at a
time.

You cannot access a loaded program �le or a loaded library �le using either mapped access
option. In addition, you cannot load a �le that is currently being accessed mapped.

Advantages of long-mapped access over short-mapped access are:

You can access much larger �les than you can using the short-mapped option.

You can open �les that were opened previously with any options (as long as the exclusive
status of the �le is not violated)

The disadvantage of long-mapped access is that it may be slower than short mapped access
because of the need to load a space register to access the long-pointer space. long-mapped
access can be as much as four times slower than short-mapped access, although long-mapped
access still can be faster than accessing the �le through the �le system data transfer intrinsics.

The degradation can be minimized if you make the references to the long pointer space in a
localized part of your code. This way it may be possible for the system to keep the pointer to
the �le's virtual space loaded into a space register rather than to repeatedly load and unload it.

Opening a File Mapped

Example 11-1 illustrates how a �le is created and opened with short-mapped access. This HP
Pascal/XL program segment opens the �le, then writes data to the �le with assignments to the
array structure. The procedure then sets the EOF and closes the �le.

The �le is then reopened short-mapped, and data is retrieved before the �le is closed and
purged.

Accessing a File Using Mapped Access 11-3

Example 11-1. Opening a Mapped File

procedure Mapped_File_Example;
type

record_t = record {** defines an 80-byte record **}

a_record : packed array [1..80] of char;
end;

file_t = array [1..50000] of record_t;
{** define a 4,000,000 byte array **}

var
access,domain : integer;
dummy : shortint;
file_name : packed array [1..20] of char;
file_number : integer;
file_ptr :^file_t; {** pointer to the file **}
filesize : integer;
index, rec : integer;
create_domain_perm : integer;
read_write_access : integer;
domain_old : integer;
status : record

case integer of
0: (all: integer);
1: (info: shortint;

subsys: shortint);
end;

const
file_name_option = 2;
domain_option = 3;
filesize option = 35;
short_mapped_option = 18;
access_type_option = 11;

11-4 Accessing a File Using Mapped Access

begin
{** initialize item values for the HPFOPEN **}

file_name := '%EXAMPLE%';

create_domain_PERM := 4;

domain_OLD := 3;

filesize := 15265;
read_write_access := 4;

{** create a short-mapped file **}

HPFOPEN (

file_number, status,
file_name_option, file_name

domain_option,create_domain_PERM,

filesize option, filesize,

short_mapped_option, file_ptr,

access_type_option, read_write_access,
);

{** put some data into the file **}

for rec := 1 to 100 do

for index := 1 to 80 do

file_ptr^[rec].a_record[index] :=
Chr (((rec - 1) Mod 26) + 65);

{** set the logical record pointer **}

FPOINT (file_number, 33);
FCONTROL (file_number, 6, dummy); {** set the EOF **}

FCLOSE (file_number, 0, 0); {**close the file **}

{** re-open the same short-mapped file **}

HPFOPEN (
file_number, status,

file_name_option, file_name,

domain_option, domain_OLD,

short_mapped_option, file_ptr,

);

{** retrieve some data you put in file **}

for rec := 1 to 100 do

begin

write ('Record-', rec:4, ' ');
for index := 1 to 20 do

write (file_ptr^[rec].a_record[index];

writeln;

end;

{** close and purge the file **}
FCLOSE (file_number, 4, 0);

end;

Accessing a File Using Mapped Access 11-5

12

Sharing a File

Accessing and controlling a �le that is open only to you is a relatively simple matter. When
your �le is being accessed by several users simultaneously, each user must be aware of special
considerations for this shared �le. As you read this chapter, keep these considerations in mind:

How will others be allowed concurrent access to your �le?

Will the concurrent access need special management?

Note In most cases, the following discussions pertain only to non-message �les.
For more information about using message �les; refer to the Interprocess
Communication Programmer's Guide (32650-90019).

Simultaneous Access of Files

When an HPFOPEN/FOPEN request is issued for a �le, that request is regarded as an individual
accessor of the �le and a unique �le number and other �le control information is established
for that �le. Even when the same program issues several di�erent HPFOPEN/FOPEN calls for
the same �le, each call is treated as a separate accessor. Under the normal (default) security
provisions of MPE/iX, when an accessor opens a �le not presently in use, the access restrictions
that apply to this �le for other accessors depend upon the access mode requested by this initial
accessor:

If the �rst accessor opens the �le for Read-only access, any other accessor can open it for
any other type of access (such as Write-only or Append), except that other accessors are
prohibited Exclusive access.

If the �rst accessor opens the �le for any other access mode (such as Write-only, Append, or
Update), this accessor maintains Exclusive access to the �le until it closes the �le; no other
accessor can access the �le in any mode.

Programs can override these defaults by specifying other options in HPFOPEN/FOPEN intrinsic
calls. Users running those programs can, in turn, override both the defaults and programmatic
options through the FILE command. The options are listed in Table 12-1. The actions taken
by MPE/iX when these options are in e�ect, and simultaneous access is attempted by other
HPFOPEN/FOPEN calls, are summarized in Table 12-2. The action taken depends upon the
current use of the �le versus the access requested.

Sharing a File 12-1

Table 12-1. File Sharing Restriction Options

ACCESS
RESTRICTION

FILE
PARAMETER

DESCRIPTION

Exclusive Access EXC After �le is opened, prohibits concurrent access in any mode
through another HPFOPEN/FOPEN request, whether issued by
this or another program, until this program issues FCLOSE or
terminates.

Exclusive Write
Access

SEMI After �le is opened, prohibits concurrent Write access
through another HPFOPEN/FOPEN request, whether issued by
this or another program, until this program issues FCLOSE or
terminates.

Shareable Access SHR After �le is opened, permits concurrent access to �le in any
mode through another HPFOPEN/FOPEN request issued by this
or another program, in this or any session or job.

Exclusive access

This option is useful when you wish to update a �le and wish to prevent other users or
programs from reading or writing on the �le while you are using it; thus, no user can read
information that is about to be changed, nor can he alter that information. To override the
programmatic option under which the �le would be opened and request exclusive access, you
could use the EXC keyword parameter in the FILE command:

FILE DATALIST;EXC <---- Requests exclusive access

RUN FLUPDATE

Note In all cases, when the �rst accessor to a �le opens it with Exclusive (EXC)
access, all other attempts to open the �le fails.

12-2 Sharing a File

Table 12-2. Actions Resulting from Multiaccess of Files

Semi-exclusive access

This option allows other accessors to read the �le, but prevents them from altering it. When
appending new part numbers to a �le containing a parts list, for instance, you might use this
option to allow other users to read the current part numbers at the same time that you are
adding new ones to the end of the �le. You could request this option as follows:

FILE PARTSLST;SEMI <---- Requests semi-exclusive access

RUN FLAPPEND

Shared access

When opened with the share option, a �le can be shared (in all access modes) among several
HPFOPEN/FOPEN requests, whether they are issued from the same program, di�erent programs
within the same job or session, or programs running under di�erent jobs or sessions. Each
accessor transfers its input/output to and from the �le with its own unique bu�er, using its
own set of �le control information and specifying its own bu�er size and blocking factor.
E�ectively, each accessor accesses its own copy of that portion of the �le presently in its
bu�er. Thus, share access is useful for allowing several users to read di�erent parts of the
same �le. It can, however, present problems when several users try to write to the �le. For
instance, if two users are updating a �le concurrently, one could easily overwrite the other's
changes when the bu�er content from the �rst user's output is overwritten on the �le by the

Sharing a File 12-3

bu�er content from the second user's output. To use Write access most e�ectively with shared
�les, specify the multiaccess option as discussed below.

To request share access for a �le, use the SHR parameter in the FILE command, as follows:

FILE RDFILE;SHR <---- Requests shared access

RUN RDPROG

Multiaccess

This option extends the features of the share access option to allow a deeper level of multiple
access. Multiaccess not only makes the �le available simultaneously to other accessors (in the
same job or session), but permits them to use the same data pointers, blocking factor, and
other �le-control information. Thus, transfers to and from the �le occur in the order they
are requested, regardless of which program in your job or session does the requesting. When
several concurrently running programs (processes) are writing to the �le, the e�ect on the �le
is the same as if one program were performing all output; truly sequential access by several
concurrently running programs.

Note Multiaccess allows the �le to be shared (in all access modes) among
several HPFOPEN/FOPEN requests from the same program, or from di�erent
concurrently running programs in the same job or session. Unlike share, access,
however, multiaccess does not permit the �le to be shared among di�erent
sessions and jobs.

Global multiaccess

This option extends the features of the multiaccess option to permit simultaneous access of a
�le by processes in di�erent jobs or sessions. As in multiaccess, accessors use the same data
pointer, blocking factor, and other �le-control information. You can request this option as
follows:

FILE GFILE;GMULTI <---- Requests global multi access
RUN GPROG

Note To prohibit the use of MULTI or GMULTI access, use the NOMULTI keyword in a
FILE command. When the NOMULTI keyword is used, di�erent processes may
share the data in a �le, but they maintain separate bu�ers and pointers.

Note that it is the �rst accessor to a �le that sets the allowable access to a �le. For example, if
the �rst accessor speci�es share access, that is, the access that will be allowed to all future
accessors. However, if a subsequent accessor speci�es an access option that is more restrictive
than the �rst opener's access option, it remains in e�ect until the user that requested it closes
the �le.

12-4 Sharing a File

Sharing the File Using FLOCK and FUNLOCK

Sharing a �le among two or more processes may be hazardous. When a �le is being shared
among two or more processes and is being written to by one or more of them, care must be
taken to ensure that the processes are properly interlocked. For example, if process A is trying
to read a particular record of the �le, and at that time process B should execute and try to
write that record, the results are not predictable. process A may see the old record or the new
record, and not know whether it has read good data. If bu�ering is being done, please bear
in mind that an output request (FWRITE) does not cause physical I/O to occur until a block is
�lled, which typically contains several records. A process trying to read such a �le could, for
example, read past the last record of the �le which has been written on the disk because the
end-of-�le pointer is not kept in the �le, but is kept in core where it can be updated quickly
as writes occur. The necessary interlocking is provided by the intrinsics FLOCK and FUNLOCK,
which use a resource identi�cation number (RIN) as a ag to interlock multiple accessors.

In the simple case of a �le shared between a writer process and a reader process, where the
writer is merely adding records to the �le, the writer calls FLOCK prior to writing each record
and FUNLOCK after writing. The reader calls FLOCK prior to reading each record, and FUNLOCK
after reading. If the writing process should execute while the reader is in the middle of a read,
the writer will be impeded on its FLOCK call until the reader signals that it is done by calling
FUNLOCK. Similarly, if the reader should execute while the writer is performing a write, the
reader will be impeded on its FLOCK call until the writer calls FUNLOCK. FUNLOCK ensures that
all bu�ers are posted on the disk so that the reading processes can see all of the data.

More complicated cases arise when a �le has two or more writing processes, or when the writer
may write more than one record at a time. If, for example, it should be necessary to write pairs
of records, with read prohibited until both records of the pair are written, the writing process
can call FLOCK before writing the �rst record of the pair, and FUNLOCK after writing the second.

The shared �le management scheme that MPE/iX provides you through the use of the FLOCK
and FUNLOCK intrinsics guarantees you exclusive access to a �le being shared by a set of
processes that may be located in di�erent jobs or sessions. MPE/iX also provides you with RINs
you can use to manage anything you may consider a resource to your program, be it portions of
a �le, a device, or a segment of code in your program. Managing shared resources with RINs is
described in Resource Management Programmer's Guide (32650-90024).

For more information about the FLOCK and FUNLOCK intrinsics, consult the MPE/iX Intrinsics
Reference Manual (32650-90028).

Sharing a File 12-5

13

Maintaining File Security

MPE/iX provides two methods of establishing and maintaining �le security.

access control de�nitions (ACD) for �le and devices

traditional �le security For disk �les only

ACDs are implemented to provide a security mechanism that meets standards set forth by the
National Computer Security Center. Traditional �le security works through the mechanism long
available on MPE systems. ACDs override any security measures implemented by traditional
means. In addition, MPE/iX now provides logging facilities to track ACD security-related
transactions.

ACDs are discussed �rst in this chapter, followed by topics relating to the traditional
mechanisms of �le security.

Access Control De�nition Security (ACD)

MPE/iX implements a discretionary access control (DAC) mechanism that is consistent with the
guidelines laid down by the National Computer Security Center.

The MPE/iX implementation, access control de�nitions (ACD), is a subset of the DAC
mechanism. ACDs maintain a list of users and the access modes that each user has to �les and
devices.

ACD scope

An ACD that is associated with a �le overrides the classic MPE �le access matrix and
lockwords, which are described later in this chapter in \Traditional Mechanism for File
Security".

By associating an ACD with a �le or a device, the owner of the �le or device may de�ne which
users have access to that �le or device and which modes of access are available to other users.
When a �le is associated with an ACD, the ACD is put into its �le label extension. The ACD
contains a list of access modes paired with users.

Owners

Only those who own a �le or a device may associate it with an ACD.

Files

the owner of a �le is any one of these three users:

The creator of the �le with which an ACD is associated

The user who as am capability in the account in which the �le resides

The user who has sm capability on the system in which the �le resides

Maintaining File Security 13-1

Devices

The System Manager (SM) is the owner of all of the devices on a system.

How acds work

When a user attempts to access a �le or to acquire a device, HPFOPEN or FOPEN is called, and
the system makes the following checks:

Is the user an owner of the �le or device; that is, is the user the creator of the �le, the
account manager (AM capability), where the �le resides or the system manager (SM
capability)?

If so, permission is granted, and the checking ends.

If not, is there an ACD associated with the �le or device?

If there is no ACD, the system looks for authorization in the traditional MPE/iX �le access
matrix and lockwords.

If there is an ACD, the system searches, in this order, for the user:

1. speci�c names (username.accountname)

2. account groupings (@.accountname)

3. system groupings (@.@)

If a match is found, the user can access the device or �le|as authorized (read, write,
execute, and so on)|and no further checking is done.

If there is no match, the user is denied entry, and no further checking is done.

It is important to note that if an ACD exists, the MPE/iX �le access matrix and lockwords are
never consulted.

ACD modes

Any device or a �le can be paired with an ACD.

An ACD is associated with a �le or a device by pairing access modes with users. A user is any
username.accountname speci�cation.

The modes of access are:

R Read
W Write
A Append
L Lock
X Execute
NONE None
RACD Read and copy the ACD permission �le

You could de�ne an ACD as follows:

ACD = (R,W:MGR.ACCTING, DENNIS.LEE; R:@.PAYROLL; A:@.@)

The users MGR.ACCTING and DENNIS.LEE can read and write to the �le associated with this
example ACD. Anyone in the PAYROLL account can read it, and anyone on the system can
append to it. For example, no one but DENNIS.LEE and the owners can overwrite the �le, and
only the owners can lock it.

13-2 Maintaining File Security

Note If an ACD exists and if you are not explicitly given permission to access a �le or
a device, you do not have access.

Managing ACDs with commands and intrinsics

Use MPE/iX commands to manage ACDs interactively, through the command interpreter. Use
MPE/iX intrinsics to manage ACDs in a program.

Commands

These MPE/iX commands accept ACD-related parameters or incorporate ACD associations in
their operation:

ALTSECT Permits the addition, creation, deletion, modi�cation, copying, and listing of
ACD attributes.

COPY Always copies the ACD associated with the source �le to the target �le, if an
ACD is present.

FCOPY Permits copying ACD attributes.

FILE Permits the equation of one �le/device-ACD speci�cation to another
�le/device-ACD speci�cation.

LISTFILE Permits the listing of the ACD attributes associated with a �le or device.

RELEASE Returns a warning when an ACD is associated with a �le.

RESTORE Accomodates ACDs.

SECURE Returns a warning when an ACD is associated with a �le.

SHOWDEV Permits the listing of ACD attributes associated with a device.

STORE Accomodates ACDs.

Detailed discussions of these commands are found in the MPE/iX Commands Reference Manual
(32650-90003).

Intrinsics

HPACDPUT Permits the addition, creation, deletion, modi�cation, copying, and listing of
ACD attributes.

HPACDINFO Returns security attributes.

HPFOPEN Permits the creation of of an ACD.

The intrinsic FOPEN cannot be modi�ed to give it the option of creating an ACD. You must use
HPFOPEN.

Detailed discussions of these intrinsics are found in the MPE/iX Intrinsics Reference Manual
(32650-90028).

Maintaining File Security 13-3

Preserving ACDs

Device ACDs are not permanent objects; you must rede�ne them every time that the system is
rebooted. The easiest way to do this is to put ALTSEC commands into the SYSSTART �le, either
directly or in a command �le.

File ACDs are permanent objects; they do survive a reboot. When you store �les to tape, FCOPY
and STORE save the �les' ACDs, too|unless you specify otherwise. If you are not an owner of
the �le and you do not have RACD permission, you get an error if you try to copy the ACD.
Instead, choose the NOACD parameter.

Managing ACDs

You may manage ACDs interactively through MPE/iX commands or programmatically through
MPE/iX intrinsics.

Creating ACDs

Command Intrinsic Purpose

ALTSEC Create an ACD for an existing device or �le

HPACDPUT Create an ACD for an existing device or �le

Examples

To assign Read access to user SAM.DOE, Write access to JOE.DOE, no access (None) to all users in
the DESIGN account, and Execute access to all users in all accounts (except those users in the
DESIGN account, enter this:.

ALTSEC FILEA.XX.DESIGN;NEWACD=(R:SAM.DOE;W:JOE.DOE;NONE:@.DESIGN;X:@.@)

To add an ACD that prevents any user except OPERATOR.SYS from accessing LDEV 7 (a tape
drive), enter this:

ALTSEC 7,LDEV;NEWACD=(R,W:OPERATOR.SYS)

The user must have SM capability to do this.

This short program uses HPACDPUT in creating an ACD for a �le called TARGET:

program acdput(input, output);

var
status : integer;
filename : packed array [1..28] of char;
ACD : packed array [1..256] of char;

procedure HPACDPUT;intrinsic;

begin
filename := 'TARGET';
ACD := '(x:@.@;r,w:mgr.sys)'
ACD[20] := #m;
HPACDPUT(status, 1, filename, 20, ACD);
if status <> 0 then

writeln('HPACDPUT failed. Status = ', status);
end.

13-4 Maintaining File Security

When you create a new �le with the COPY, FCOPY, STORE, or RESTORE commands, you can use
the command parameters to create the ACDs for the new �le.

COPY

The COPY command automatically copies any ACD attributes from the source �le to the target
�le, provided that the user is an owner of the source �le or has RACD access to that �le.

COPY FILEA,FILEB

FCOPY

The ;COPYACD parameter of the FCOPY command permits the user to copy a �le and its ACD,
provided that the user is an owner or has RACD permission.

FCOPY <fcopycommand>;COPYACD

STORE

To store all of the �les on a system to tape, including their ACDs, enter this:

FILE T;DEV=TAPE
STORE @.@.@;*T;COPYACD

COPYACD is the default. You must have access to any ACD-protected �les being stored.

SM and OP can store any ACD-protected �le on the system.

AM can store any ACD-protected �le in the manager's account.

Users can store any ACD-protected �les that they own, provided that they have Read
access to the �le and RACD access to the �le if ;COPYACD is speci�ed.

Others can store ACD-protected �les for which they have RACD permission, provided that
they have Read access to the �le and RACD access to the �le if ;COPYACD is speci�ed.

You must have PM access to a PM �le in order to store it.

RESTORE

To restore all of the �les on tape and copies the ACD attributes of the �le to disk, enter this:

FILE T;DEV=TAPE

RESTORE *T;@;KEEP;SHOW;COPYACD

COPYACD is the default. NOACD prevents the copying of the ACD attributes.

SM and OP can restore any ACD-protected �le on the system.

AM can restore any ACD-protected �le in the manager's account.

Users can restore any ACD-protected �les that they own, provided that they have Read
access to the �le and RACD access to the �le if ;COPYACD is speci�ed.

Others can restore ACD-protected �le for which they have RACD permission, provided that
they have Read access to the �le and RACD access to the �le if ;COPYACD is speci�ed.

You must have PM access to a PM �le in order to store it.

Maintaining File Security 13-5

Listing ACDs

Command Intrinsic Purpose

LISTFILE Show ACDs for �les

SHOWDEV Show ACDs for devices

HPACDINFO Show ACDs for �les and devices

HPACDPUT Show ACDs for �les and devices

Examples

The LISTFILE command with option 4 shows the ACD status of a �le in this fashion:

LISTFILE FILEA,4

FILEA.XX.DESIGN

SYSTEM READ: ANY
SECURITY--WRITE: AC
(ACCT) APPEND: AC

LOCK: AC
EXECUTE: ANY

SYSTEM READ: GU
SECURITY--WRITE: GU
(GROUP) APPEND: GU

LOCK: GU
EXECUTE: GU

SYSTEM READ: ANY FCODE: 0
SECURITY--WRITE: ANY CREATOR: **
(FILE) APPEND: ANY LOCKWORD: **

LOCK: ANY **SECURITY IS ON
EXECUTE: ANY **ACD EXISTS

FOR XX.DESIGN: NONE

(Other ACD status reports are NO ACD and ACD CORRUPTED.)

The LISTFILE command with option -2 gives a detailed ACD report on a �le in this fashion:

LISTFILE FILEA,-2

FILE = FILEA ************** ACD ENTRIES **************

SAM.DOE : R
JOE.DOE : W
@.DESIGN : NONE
@.@ : X

13-6 Maintaining File Security

The SHOWDEV command displays the ACD attributes of a device in this fashion:

SHOWDEV 14;ACD
LDEV AVAIL OWNERSHIP VOLID DEN ASSOCIATION

14 SPOOLED SPOOLER OUT
ACD ENTRIES: @.@ : R,W,X

This short program uses HPACDINDFO to retrieve the number of entries and �rst user in the ACD
of a �le called TARGET:

program acdinfo(input, output);

type
shortint = -32768..32767;

var
status : integer;
filename : packed array [1..28] of char;
numentry : shortint;
firstuser : packed array [1..18] of char;

procedure HPACDINFO;intrinsic;

begin
filename := 'TARGET';
HPACDINFO(status, 1, filename, 21, numentry, firstuser);
if status = 0 then

begin
writeln('Number of Entires: ', numentry:1);
writeln('First UserSpec : ', firstuser);
end;

end.

Copying ACDs

Command Intrinsic Purpose

;COPYACD parameter
of the ALTSEC
command

Copy an ACD from one �le to another

Examples

To copy the ACD associated with FILEB to FILEA, enter this:

ALTSEC FILEA.XX.DESIGN;COPYACD=FILEB.XX.DESIGN

Only an owner, or a user granted RACD (read ACD) authorization, can copy the ACD from
FILEB.

To copy the ACD attributes of LDEV 7 to LDEV 23, enter this:

ALTSEC 23,LDEV;COPYACD=7,LDEV

Only users with SM capability may do this. By de�nition, users having SM capability are
owners of all the �les and devices on a system. Those users may give themselves access to any
�le or device on the system.

Maintaining File Security 13-7

Modifying ACDs

Command Intrinsic Purpose

ALTSEC To change an ACD

HPACDPUT To change an ACD

Adding ACD pairs

To confer Read access on JOE.DESIGN for FILEA, enter this:.

ALTSECT FILEA.XX.DESIGN;ADDPAIR=(R:JOE.DESIGN)

Replacing ACDs

To change the (previous) Read access for SAM.DOE to Write access enter this:

ALTSECT FILEA.XX.DESIGN;REPPAIR(W:SAM.DOE)

To assign Read and Write access to SAM.DOE, do this:

ALTSEC FILEA.XX.DESIGN;REPPAIR(W,R:SAM.DOE)

Deleting ACDs

Command Intrinsic Purpose

ALTSEC To delete an ACD

HPACDPUT To delete an ACD

To remove @.DESIGN from the ACD attributes of FILEA, enter this:

ALTSEC FILEA.XX.DESIGN;DELPAIR(NONE:@.DESIGN)

To deny OPERATOR.SYS any access to LDEV 7, enter this:

ALTSEC 7,LDEV;DELPAIR=(R,W:OPERATOR.SYS)

Only an owner can delete an ACD associated with a �le. Only the system manager can delete
an ACD associated with a device..

Migrating ACDs

Device ACDs should not be migrated, because they are tied to their system's con�guration.

You can move �le ACDs between MPE V/E and MPE/iX by using the STORE and RESTORE
commands, where COPYACD is the default.

These are the steps CM RESTORE takes during forward migration:

1. reads the MPE V/E store format.
2. calls a routine to convert it to MPE/iX internal format.
3. calls the �le label extension write routine, which puts the ACD into e�ect.

These are the steps CM STORE takes during backward migration:

1. reads the ACD from the security �le label extension.
2. calls a routine to convert it into MPE V/E format.
3. writes it out to the STORE tape.

13-8 Maintaining File Security

Be aware that MPE/iX allows more user-mode pairs than MPE V/E does.

You must have authorization to use the ;COPYACD parameter of the STORE and RESTORE
commands. If you are not an owner of the �le or do not have RACD permission, you get an
error. The STORE command checks the ACD on disk for permission. RESTORE checks the ACD
from the tape.

For more details, refer to the MPE/iX Commands Reference Manual (32650-90003) and the
MPE/iX Intrinsics Reference Manual (32650-90028).

Logging system events

The following list shows the types of logs that you can request.

SYSGEN System Logging

System Log Events Event Type
System logging enabled 100
System up record 101
Job initiation record 102
Job termination record 103
Process termination record 104
File close record 105
System shutdown record 106
Power failure record 107
Spooling log record 108
I/O error record 111
Physical mount/dismount 112
Logical mount/dismount 113
Tape labels record 114
Console log record 115
Program �le event 116
New commercial spooling 120
Architected interface 130
Password changes 134
System logging con�guration 135
Restore logging 136
Printer access failure 137
ACD changes 138
Stream initiation logging 139
User logging 140
Process creation 141
Chgroup record 143
File open record 144
Maintenance request log 146
Diagnostic information record 150
High priority machine check 152
Low priority machine check 152
CM �le close record 160

All log information is kept in records. Each record begins with a standard header and ends
with identi�cation information. The information between is di�erent for each log type. The
LOGTOOL utility has a standard format to display information.

Maintaining File Security 13-9

Log of system logging con�guration

This log gives you an audit trail of changes to the logging con�guration. This log is initially
enabled (ON). The following is the log record format:

Type 135 Record Format

Length,
in 16-bit
words

Record Content

1 Record type (135)

1 Record length

1 Process identi�cation number

3 Time stamp

2 Job type/job number

1 (Reserved)

1 LDEV number

4 System logging masking words

8 User name

8 Group name

8 Account name

8 job or session name

Log of restore

This log traces �le restorations. Files can be restored from tape or serial disk to the system.
This log type is initially disabled (OFF). It can be enabled by SYSGEN followed by a START
command. The following is the log record format:

Type 136 Record Format

Length,
in 16-bit
words

Record Content

1 Record type (136)

1 Record length

1 Process identi�cation number

3 Time stamp

2 Job type/job number

8 File name

8 File group

8 File account

8 Creator

17 Volume identi�cation

1 Access type

8 User name

8 Group name

8 Account name

8 job or session name

13-10 Maintaining File Security

Log of printer access failure

This log keeps track of failed attempts attaching spool �les to printers. New spool �les, which
are logged by FOPEN as event #144, are not logged here.

This log is initially disabled, but can be enabled by SYSGEN followed by a START command.

Type 137 Record

Length,
in 16-bit
words

Record Content

1 record type (137)

1 record length

1 process identi�cation number

3 time stamp

2 job type/job number

2 creator job number

8 creator job name

8 creator user name

8 creator account name

25 spool �le name

8 target device name/class

1 (reserved)

2 �le size

1 status

8 user name

8 group name

8 account name

8 job or session name

Maintaining File Security 13-11

Log of stream initiation

This log records the name of a streamed job, its number, the user that initiates it (and the
logon), and the scheduled date and time.

This log is initially disabled, but can be enabled by SYSGEN followed by a START command.

Type 139 Record

Length,
in 16-bit
words

Record Content

1 Record type (139)

1 record length

1 process identi�cation number

3 time stamp

2 job type/job number

1 input LDEV

25 job �le name

2 job logon job or session number

8 job logon user

8 job logon group

8 job logon account

8 job name

2 input spool �le id

1 scheduled date

2 scheduled time

8 user name

8 group name

8 account name

8 job or session name

13-12 Maintaining File Security

Log of user logging

This log keeps a record of all OPENLOG and CLOSELOG intrinsic calls. The system manager can
use it to see who accesses, or tries to access, the user logging facility.

This log is initially disabled, but can be enabled by SYSGEN followed by a START command.

Type 140 Record

Length,
in 16-bit
words

Record Content

1 record type (140)

1 record length

1 process identi�cation number

3 time stamp

2 job type/job number

25 program �le name

4 intrinsic

2 index

4 log id

1 mode

1 status

8 user name

8 group name

8 account name

8 job or session name

The LOG ID �eld in the log record is \XXXXXX" for CLOSELOG intrinsic when the index is bad.

Maintaining File Security 13-13

Log of process creation

You can use this log to record all process creations. This log is initially disabled, but can be
enabled by SYSGEN followed by a START command.

Type 141 Record

length, in
16-bit words

Record Content

1 record type (141)

1 record length

1 process identi�cation number

3 time stamp

2 job type/job number

25 �le name

1 (reserved)

2 priority

2 process space id

4 parent PID

2 NM Heap Size

2 capabilities mask*

8 (reserved)

8 user name

8 group name

8 account name

8 job or session name

*The capabilities mask is read as follows:

User File access Program/group
bit capability bit capability bit capability

0 SM 6 CV 23 BA
1 AM 7 UV 24 IA
2 AL 8 LG 25 PM
3 GL 9 SP 28 MR
4 DI 10 PS 30 DS
5 OP 11 NA 31 PH

12 NM
13 CS
14 ND
15 SF

Logging a speci�c user

The LOGTOOL utility command LIST shows you the output of log records in a standard format.
If you like, you can �lter the output of LOGTOOL utility to show you information about only a
speci�c user or users. The syntax for this is shown below.

LIST
�
LOG=log name

	24;JSNAME=job or session name

;USER=user name

;ACCOUNT=account name

3
5� . . .

�

13-14 Maintaining File Security

The input for these commands should be no longer than 80 characters. Default for all
parameters is the wildcard @.

For example, to select log records from log �les 1 through 5, with log information about
password changes (log type 134), and user identi�cation JTEST,MARIA.PAYROLL, you would
enter the following.

>LIST LOG=1/5;TYPE=134;JSNAME=JTEST;USER=MARIA;ACCOUNT=PAYROLL

This selection option is valid for the log types listed below:

102, job initiation
103, job termination
104, process termination
105, �le close (also 160)
108, spooling log
112, physical mount/dismount
113, logical mount/dismount
114, tape labels
115, console log
116, program �le event
120, new commercial spooling
130, architecture interface
134, password change
135, system logging con�guration
136, restore
137, printer access failure
138, ACD changes
139, stream initiation
140, user logging access
141, process initiation
143, change group
144, �le open

Logging �le security related events

MPE/iX permits logging of system and user events. The events that relate directly to �le
security are:

password changes (event type 134)

printer access failure (event type 137)

ACD changes (event type 138)

Logging begins whenever the system is rebooted; however, not all events are automatically
enabled. Some, including those listed above, are initially disabled. You can, however, request
that a new �le be started.

To keep a certain type of log, the system operator or system manager must change its status
to ON (con�gure it) in SYSDIAG. To see log records displayed, call the LOGTOOL utility from
SYSGEN.

For a discussion of these and other logging facilities, consult these topics in Performing System
Operator Tasks (32650-90137): SYSDIAG, the LOGTOOL utility, and SYSGEN System Logging.

Log of password changes

System logging records when a user, group, or account password is changed by an MPE/iX
command or a utility program. This log is initially disabled (OFF).

Maintaining File Security 13-15

The information recorded in this logging includes

header

record type

record length

time stamp

job or session number

PIN

Log information

the identi�cation of the user who changed a password: job or session name, user name,
group name, and account name

the identi�cation of a user whose password was changed: user name, group name, and
account name whenever the a�ected password changes

input logical device number from which the password was changed

program �le name from which password change was executed

type changed: 1 = user, 2 = group, 4 = account

In this example, JOHN.PAYROLL,DOE, job or session name JREPORT, successfully changed the
account password for PAYROLL through the command excutor. The change was made from
LDEV 21.

The LOGTOOL utility formats the following layout after the standard header:

TARGET USER: TARGET GROUP:
TARGET ACCOUNT: PAYROLL TYPE CHANGED: ACCOUNT
LDEV: 21
EXECUTED FROM: CI.PUB.SYS
USER: JOHN GROUP: DOE
ACCOUNT: PAYROLL JSNAME: JREPORT

The following is the log record format:

13-16 Maintaining File Security

Table 13-1. Type 134 Record Format

Length,
in 16-bit
words

Record Content

1 record type (134)

1 record length

1 process identi�cation number

3 time stamp

2 job type/job number

8 target user name

8 target group name

8 target account name

1 type changed

1 input LDEV number

25 executed from

3 (reserved)

8 user name

8 group name

8 account name

8 job or session name

Note The PASSWORD command, allows all users to change their own passwords.
In the past, only system managers and account managers could change any
passwords.

Log of ACD changes

This log type is activated when ACDs are changed (created, deleted, copied, or modi�ed) with
MPE/iX commands or intrinsics. The log is initially disabled (OFF).

The information recorded in this logging includes

header

record type

record length

time stamp

job or session number

PIN

log information

the identi�cation of the user who changed the ACD: job or session name, user name, group
name, and account name

the object type and object name whose ACD was changed

the object type and object name from which the ACD was copied

Maintaining File Security 13-17

the type of change to the ACD: create, add pair, replace pair, copy, delete pair, delete

the program �le name from which the ACD change was executed.

status returned (HPE status)

In this example, user JOHN.PAYROLL,DOE, with job or session name JREPORT, successfully
created an ACD for a �le called FTEST.TESTGP.PAYROLL, using the command executor.

The LOGTOOL formats the following layout after the standard header:

TARGET OBJECT: FTEST.TESTGP.PAYROLL
SOURCE OBJECT:
FUNCTION: CREATE
EXECUTED FROM: CI.PUB.SYS
STATUS SUCCESSFUL
USER JOHN GROUP: DOE
ACCOUNT: PAYROLL JSNAME: JREPORT

The following is the log record format:

Table 13-2. Type 138 Record Format

Length,
in 16-bit
words

Record Content

1 Record type (138)

1 Record length

1 Process identi�cation number

3 Time stamp

2 Job type/job number

25 Target object name

25 Source object name

4 Function

25 Executed from

2 Status

8 User name

8 Group name

8 Account name

8 job or session name

13-18 Maintaining File Security

Traditional Mechanism for File Security

The traditional security mechanism (�le access matrix and lockwords) associates with each
account, group, and individual �les a set of security provisions that speci�es any restrictions on
access to the �les in that account or group, or to that particular �le.

Note These provisions apply to disk �les only. If a �le is protected by the traditional
security mechanism and by an ACD de�nition, the ACD de�nition overrides the
traditional security mechanism. ACD security mechanism are discussed at the
beginning of this chapter under \Access Control De�nition Security (ACD)".

These restrictions are based on two factors:

modes of access|reading, writing, or saving, for example.

types of user|users with account librarian (AL) or group librarian (GL) capability, or creating
users, for example, to whom the access modes speci�ed are permitted

The security provisions for any �le describe what modes of access are permitted to which users
of that �le.

Specifying and restricting �le access by access mode

When a program opens or creates a �le, it can de�ne the way that the �le can be accessed by
specifying a particular access mode (such as Read-only, Write-only, Update, and so forth) for
the �le. These speci�cations apply to �les on any device and can be changed or overridden
only by yourself, as the creator of the �le. They are discussed in the following paragraphs. In
addition, for �les on disk, a program can also restrict access so that only one access attempt
(HPFOPEN/FOPEN call) or process (running program) can open it at one time, or can allow it to
be shared among several accessors.

The access types that can be speci�ed by a program are listed in Table 13-3.

When specifying the access mode for a �le, it is important to realize where the current
end-of-�le is before and after the �le is opened, and where the logical record pointer indicates
that the next operation will begin. These factors depend upon the access mode that you select.
Because they are best explained by example, the e�ects of each access mode upon these
factors are summarized in Table 13-4 for a sample �le. This �le contains 10 logical records of
data (numbered 0 through 9). The table shows that the current end-of-�le (EOF) lies at Record
10 before the �le is opened, indicating that if another record were appended to the �le, that
would be the eleventh record. When you open the �le in the Write-only mode, however, all
records presently in the �le are deleted and the logical record pointer and current EOF move to
record 0. Now when you write a record to the �le, this will be the �rst record in that �le.

Suppose that you are running a program that opens a magnetic tape �le for Write-only access,
but you wish to append records to that �le rather than to delete existing records. You can
override the programmatic speci�cations by using the FILE command to request Append access
to the �le, as follows:

FILE TASK; DEV=TAPE; ACC=APPEND
RUN PROGN \

Requests append access

Maintaining File Security 13-19

Table 13-3. Traditional File Access Mode Types

ACCESS MODE :FILE
PARAMETER

DESCRIPTION

Read-only IN Permits �le to be read but not written on. Used for device
�les, such as card reader and paper tape reader �les, as well
as magnetic tape, disk, and terminal output �les.

Write-only OUT Permits �le to be written on but not read. Any data already
in the �le is deleted when the �le is opened. Used for device
�les, such as card punch and line printer, as well as tape,
disk, and terminal output �les.

Write-SAVE OUTKEEP Permits �le to be written on but not read, allowing you to
add new records both before and after current end-of-�le
indicator. Data is not deleted, but a normal write replaces it.

Append-only APPEND Permits information to be appended to �le, but allows
neither overwriting of current information nor reading of
�le. Allows you to add new records after current end-of-�le
indicator only. Used when present contents of �le must be
preserved.

Read/Write INOUT Permits unrestricted input and output access of �le;
information already on �le is saved when the �le is opened.
(In general, combines features of IN and OUTKEEP.)

Update UPDATE Permits the use of FUPDATE intrinsic to alter records in �le.
Record is read into your data stack, altered, and rewritten to
�le. All data already in �le is saved when the �le is opened.

Suppose that you run a program that opens a disk �le for write-only access, copies records into
it, and closes it as a permanent �le. Under the standard �le system security provisions, the
access mode is automatically altered so that the �le permits the read, write, and append access
modes (among others). Now, suppose that you run the program a second time, but wish to
correct some of the data in the �le rather than delete it. You could use the FILE command to
override the programmatic speci�cation, opening the �le for update access:

FILE REPFILE; ADD=UPDATE
RUN PROGN \

Requests update access

13-20 Maintaining File Security

Table 13-4. E�ects of Access Modes

ACCESS
MODE

CURRENT
EOF

LOGICAL
RECORD
POINTER

EOF
AFTER
OPEN

Read-only 10 0 10

Write-only 10 0 0

Write-SAVE 10 0 10

Append 10 10 10

Read/Write 10 0 10

Update 10 0 10

Consider a program that reads input from a terminal (�le name INDEV) directs output to a
line printer (OUTDEV). You can redirect the output so that it is transmitted to the terminal by
entering:

FILE INDEV; DEV=TERM; ACC=INOUT <---- Respecifies INDEV for
both input and output access

FILE OUTDEV=*INDEV <---- Equates INDEV to OUTDEV

RUN PROGO <---- Runs program

Specifying and restricting �le access by type or user

Restrictions on who can access a �le are established when the �le is created according to the
default prescribed for the group and account where the �le resides. The capabilities of the user
who accesses a �le may determine the security restrictions that apply to him. The types of
users recognized by the MPE/iX security system, the mnemonic codes used to reference them,
and their complete de�nitions are listed in Table 13-5.

Maintaining File Security 13-21

Table 13-5. User Type De�nitions (Traditional Security)

USER TYPE MNEMONIC
CODE

MEANING

Any User ANY Any user de�ned in the system; this includes all
categories de�ned below.

Account Librarian
User

AL User with Account Librarian capability, who can
manage certain �les within his account that may or may
not all belong to one group.

Group Librarian User GL User with Group Librarian capability, who can manage
certain �les within his home group.

Creating User CR The user who created this �le.

Group User GU Any user allowed to access this group as his logon or
home group, including all GL users applicable to this
group.

Account Member AC Any user authorized access to the system under this
account; this includes all AL, GU, GL, and CR users
under this account.

Users with system manager or account manager capability bypass the standard security
mechanism. A system manager has unlimited �le access to any �le in the system
(R,A,W,L,X:ANY), but can save �les only in his own account (S:AC); an account manager user
has unlimited access to any �le within the account (R,A,W,L,X,S:ANY). One exception is that in
order to access a �le with a negative �le code (a privileged �le), the account manager must also
have the privileged mode (PM) capability.

The user-type categories that a user satis�es depend on the �le he is trying to access. For
example, a user accessing a �le that is not in his home group is not considered a group librarian
for this access even if he has the group librarian user attribute.

Note In addition to the above restrictions in force at the account, group, and �le
level, a �le lockword can be speci�ed for each �le. Users then must specify the
lockword as part of the �le name to access the �le.

The security provisions for the account and group levels are managed only by users with the
system manager and the account manager capabilities respectively, and can only be changed by
those individuals.

Account-level security

The security provisions that broadly apply to all �les within an account are set by a system
manager user when creating the account. The initial provisions can be changed at any time,
but only by that user.

13-22 Maintaining File Security

At the account level, �ve access modes are recognized:

reading (R)

appending (A)

writing (W)

locking (L)

executing (X)

Also at the account level, two user types are recognized:

any user (ANY)

account member (AC)

Maintaining File Security 13-23

If no security provisions are explicitly speci�ed for the account, the following provisions are
assigned by default:

For the system account (named SYS), through which the system manager user initially
accesses the system, reading and executing access are permitted to all users; appending,
writing, and locking access are limited to account members.

Note Symbolically, these provisions are expressed as follows:

(R,X:ANY;A,W,L:AC)

In this format, colons are interpreted to mean, \ . . . is permitted only to . . . "
or \ . . . is limited to. . . . " Commas are used to separate access modes or user
types from each other. Semicolons are used to separate entire access mode/user
type groups from each other.

For all other accounts, the reading, appending, writing, locking, and executing access modes
are limited to account members (R, A, W, L, X: AC).

Group-level security

The security provisions that apply to all �les within a group are initially set by an account
manager user when creating the group. they can be equal to or more restrictive than the
provisions speci�ed at the account level. (The group's security provisions also can be less
restrictive than those of the account|but this e�ectively results in equating the group
restrictions with the account restrictions, since a user failing security checking at the account
level is denied access at that point and is not checked at the group level.) The initial group
provisions can be changed at any time, but only by an account-managing user for that group's
account.

At the group level, six access modes are recognized:

reading (R)

appending (A)

writing (W)

locking (L)

executing (X)

saving (S)

Also at the group level, �ve user types are recognized:

any user (ANY)

account librarian user (AL)

group librarian user (GL)

group user (GU)

account member (AC)

If no security provisions are explicitly speci�ed, the following provisions apply by default:

For a public group (named PUB), whose �les are normally accessible in some way to all users
within the account, reading and executing access are permitted to all users; appending,
writing, saving, and locking access are limited to account librarian users and group users
(including group librarian users). (R, X: ANY; A, W, L, S: AL, GU).

13-24 Maintaining File Security

For all other groups in the account, reading, appending, writing, saving, locking, and
executing access are limited to group users. (R, A, W, L, X, S: GU).

File-level security

When a �le is created, the security provisions that apply to it are the default provisions
assigned by MPE/iX at the �le level, coupled with the user-speci�ed or default provisions
assigned to the account and group to which the �le belongs. At any time, however, the creator
of the �le (and only this individual) can change the �le-level security provisions, as described in
the following pages; thus, the total security provisions for any �le depend upon speci�cations
made at all three levels, the account, group, and �le levels. A user must pass tests at all three
levels|account, group, and �le security, in that order|to successfully access a �le in the
requested mode.

If no security provisions are explicitly speci�ed by the user, the following provisions are
assigned at the �le level by default:

For all �les, reading, appending, writing, locking, and executing access are permitted to all
users. (R, A, W, L, X: ANY).

Because the total security for a �le always depends on security at all three levels, a �le not
explicitly protected from a certain access mode at the �le level may bene�t from the default
protection at the group level. For example, the default provisions at the �le level allow the �le
to be read by any user|but the default provisions at the group level allow access only to group
users; thus, the �le can be read only by a group user.

In summary, the default security provisions at the account, group, and �le levels combine to
result in overall default security provisions as listed in Table 13-6. Stated another way, when
the default security provisions are in force at all levels, the standard user (without any other
user attributes) has:

unlimited access (in all modes) to all �les in his logon group and home group

reading and executing access (only) to all �les in the public group of his account and the
public group of the system account

The important �le security rules may be de�ned as follows:

Users can create �les in their own accounts.

Only the creator can modify a �le's security.

If a lockword is present on a �le, then it is required in order to access the �le.

Account managers have unlimited access to the �les within their accounts.

System managers have unlimited access to any �le, but can save �les only in their account.

Maintaining File Security 13-25

Table 13-6. Default Security Provisions (Traditional)

FILEREFERENCE FILE ACCESS
PERMITTED

SAVE ACCESS
TO GROUP

�lename.PUB.SYS Any �le in public
group of system
account

(R,X:ANY; W:AL,GU) AL,GU

�lename. groupname.
SYS

Any �le in any group
in system account

(R,W,X:GU) GU

�lename .PUB.
accountname

Any �le in public
group of any account

(R,X:AC; W:AL,GU) AL,GU

�lename. groupname.
accountname

Any �le in any group
in any account

(R,W,X:GU) GU

Changing security provisions of disk �les

The security provisions for both the account and group levels are managed only by users with
the system manager capability, while group level security is managed by users with account
manager capability. Even if you have only standard capabilities (IA, BA, SF), you can change
the security provisions for any disk �le that you have created. You do this by using the ALTSEC
command, which permanently deletes all previous provisions speci�ed for this �le at the
�le level, and replaces them with those de�ned as the command parameters. This command
does not, however, a�ect any account-level or group-level provisions that may cover the �le.
Furthermore, it does not a�ect the security provided by the lockword (if one exists).

For example, suppose that you want to alter the security provisions for the �le FILEX to permit
the ability to read, execute, and append information to the �le only to the creating user and
the logon or home group users. You can do this with the following ALTSEC command:

ALTSEC FILEX; (A,R,X:CR,GU)

Any parameters not included in the ALTSEC command are cleared.

To restore the default security provisions to this �le, you would enter:

ALTSEC FILEX

Suppose that you have created a �le named FILEZ for which you have allowed yourself
program-execute access only. You now wish to change this �le's security provisions so that any
group user can execute the program stored within it, but only the group librarian can read and
write on it. Even though you do not have Read or Write access to the �le, you can still alter its
security provisions by entering:

ALTSEC FILEZ; (X:GU;R,W:GL)

You always retain the ability to change the security provisions of a �le that you have created,
even when you are not allowed to access the �le in any mode; thus, you can even change the
provisions to allow yourself access.

13-26 Maintaining File Security

Suspending and restoring security provisions

You may temporarily suspend the suspending and restoring security:�lesj security restrictions
on any disk �le that you create. This allows the �le to be accessed in any mode by any user;
in other words, it o�ers unlimited access to the �le. You suspend the security provisions by
entering the RELEASE command. (File lockword protection, however, is not removed by this
command.) The RELEASE command does not modify the �le security settings recorded in the
system; it bypasses them temporarily. The RELEASE command remains in e�ect until you enter
the SECURE command in this or a later job or session.

To release the security provisions for the �le named FILESEC in your logon group, enter:

RELEASE FILESEC

If the �le has a lockword and that you wish to remove that as well as all account-level,
group-level, and �le-level security provisions, you must use the RENAME command, as well as
the RELEASE command:

RENAME FILESEC/LOCKSEC,FILESEC <---- Removes lockword

RELEASE FILESEC <---- Removes security provisions

To restore the security provisions of a �le, use the SECURE command. For example:

SECURE FILESEC

The original security restrictions for the �le will be in e�ect.

Maintaining File Security 13-27

14

Getting File Information

MPE/iX provides a number of commands and intrinsics that enable you to obtain information
about your �les. You can use the commands and intrinsics described in this chapter to obtain
�le information for a variety of purposes.

This chapter is divided into two main sections:

General File Information covers the commands and intrinsics that you use to obtain
information concerning the physical and operational characteristics of your �le (de�ned
by device dependencies, a disk �le's label, FILE commands, HPFOPEN/FOPEN intrinsic
parameters, and �le system defaults), as well as access-dependent details about a currently
opened �le (including EOF and logical record marker locations). Commands and intrinsics
described in this section are:

LISTFILE command

LISTEQ command

[CMD] INFO command

FFILEINFO intrinsic

FGETINFO intrinsic

FLABELINFO intrinsic

FRELATE intrinsic

Error information covers the intrinsics that you use speci�cally to handle �le system errors|
to identify an error and to display error information at the terminal. This can include a
description of the error condition returned by the last �le access intrinsic call. Intrinsics
described in this section are:

FCHECK intrinsic

FERRMSG intrinsic

PRINTFILEINFO intrinsic

A number of commands and intrinsics return the same information. Which one you use
in a certain situation is by the context and by the purpose for which you wish to use the
information.

Getting File Information 14-1

Displaying General File Information

Some questions that you may wish to answer in this section include

Does a �le by this name exist in my account or group?

How large is this �le?

When and by whom was this �le created?

What security provisions exist for this �le?

You can use this information in an interactive context, or you can use commands and intrinsics
within an executing program to obtain and utilize the information.

You use: To obtain information about:

LISTFILE Characteristics of a permanent �le

LISTFILE . . .
;TEMP

Characteristics of a temporary �le

LISTEQ File equations in e�ect for current job or
session

Displaying permanent �le information with LISTFILE

The LISTFILE command is one of the most widely used commands in MPE/iX. You use
LISTFILE to display information about one or more permanent �les that you specify. LISTFILE
has parameters that allow you to:

specify a set of permanent or temporary �les that you wish information about

specify the amount, or level, of �le information that you wish to see

specify a �le where the LISTFILE output is written to

Specifying a �le reference

If you do not indicate otherwise, LISTFILE displays information about all of the permanent
�les located in your logon group. You can optionally reference a �le (or �les) by specifying a
�le name and qualifying it with the appropriate group and/or account name. For example,
if your logon group and account are MYGROUP.MYACCT, the following commands will return
information about the same �le:

LISTFILE MYFILE
LISTFILE MYFILE,MYGROUP
LISTFILE MYFILE,MYGROUP,MYACCT

In addition, you can use MPE/iX wildcard characters, in conjunction with a quali�ed �le
reference, to specify a set of �les you want LISTFILE to display information about. The
wildcard characters you can use are

@ = zero or more alphanumeric characters

= a single numeric character

? = a single alphanumeric character

14-2 Getting File Information

Specifying the list level

If you do not indicate otherwise, LISTFILE displays only the unquali�ed �le name. You can
optionally direct LISTFILE to display more detailed information about the �le(s) that you
specify, depending upon the parameter value that you specify in the command, as listed in
Table 14-1.

Table 14-1. Format Selection

Option Name Displayed Information

�2 ACD Displays the �le's ACD (access control de�nition). System
managers can view the ACD for any �le. Account managers
can view the ACD for �les in that account. File creators can
view the ACD for their �les. Other users can view an ACD
only if that ACD speci�es that the user has RACD (read ACD)
access.

�1 LABEL Displays the hexadecimal listing of the �le label, including all
lockwords. This level is available only to system managers and
account managers.

0 FILES Shows only the �le name. This is the default.

1 SUMMARY Displays the �le name, �le code, record size, record format,
and other �le characteristics such as ASCII or binary records,
carriage-control option, current end-of-�le location, and the
maximum number of records allowed in the �le.

2 DISC Displays the �le name, �le code, record size, record format,
and other �le characteristics such as ASCII or binary records,
carriage-control option, current end-of-�le location, and the
maximum number of records allowed in the �le. It also
displays the blocking factor, number of sectors in use, number
of extents currently allocated, and the maximum number of
extents allowed. LISTF, 2 also displays KSAM XL �le types
with \K".

3 DETAIL Displays the �le name, record size, extent size, number of
records, access rights for the user, and other �le characteristics
including the date created, modi�ed, and last accessed. The
creator, lockword, and label address are omitted. These can be
obtained by specifying -3 if you have AM capability (for �les
in your account) or SM capability (for any �le on the system).

4 SECURITY Displays the security matrix for the �le. This includes
account-, group- and �le-level security and the access rights
for the user. If an access control de�nition exists (ACD), a
message stating that fact is displayed.

5 DATA Shows LISTFILE,3 data and all �le-speci�c data in LISTF, 3
type format (that is, KSAM and SPOOL).

6 QUALIFY Shows only fully quali�ed �le name.

7 UNIQUE Shows all �le speci�c data in LISTFILE,3 type format, but
does not show LISTFILE,3 data.

Getting File Information 14-3

Specifying an alternate output �le

If you do not indicate otherwise, LISTFILE sends its output to $STDLIST. You can optionally
specify a di�erent output �le to which the �le descriptions are written.

LISTFILE examples

1. List all �les in your logon account and group with �le names that contain the characters
\INFO":

LISTFILE @INFO@

INFOABST INFOUTLN INFOPREF PSMGINFO WINFOUTQ XLINFO

2. Show the �le characteristics of all �les with names beginning with \X" in a speci�ed account
and group:

LISTFILE X@.INTRIN.LOZAR

ACCOUNT= LOZAR GROUP= INTRIN

FILENAME CODE ------------LOGICAL RECORD--- ----SPACE----

SIZE TYP EOF LIMIT R/B SECTORS -X MX
XLHPCICO 80B FA 39 39 3 8 1 1
XLHPCIDE 80B FA 47 47 3 8 1 1
XLHPCIGE 80B FA 27 27 3 8 1 1
XLHPCIPU 80B FA 44 44 3 8 1 1

3. Display the label information for a speci�ed �le:

LISTFILE ODDITY,3

FILE: ODDITY.INFO.LOZAR

FILE CODE : 1030 FOPTIONS: BINARY,FIXED,NOCCTL,STD
BLK FACTOR: 1 CREATOR : **
REC SIZE: 256(BYTES) LOCKWORD: **
BLK SIZE: 256(BYTES) SECURITY--READ : ANY
EXT SIZE: 0(SECT) WRITE : ANY
NUM REC: 7816 APPEND : ANY
NUM SEC: 0 LOCK : ANY
NUM EXT: 4 EXECUTE : ANY
MAX REC: 31250 **SECURITY IS ON

FLAGS : n/a
NUM LABELS: 0 CREATED : TUE, JUN 3, 1986, 9:47 AM
MAX LABELS: 0 MODIFIED: TUE, JUN 3, 1986, 9:48 AM
DISC DEV -: 0 ACCESSED: WED, JUN 4, 1986, 2:38 PM
CLASS : DISC LABEL ADDR: $00000010 $00004414
SEC OFFSET: 0

14-4 Getting File Information

4. Obtain a detailed ACD report on a �le:

LISTFILE FILEA,-2

FILE = FILEA ************** ACD ENTRIES **************

SAM.DOE : R
JOE.DOE : W
@.DESIGN : NONE
@.@ : X

Displaying temporary �le information with LISTFILE . . . (;TEMP)

The LISTFILE . . . (;TEMP) command is similar to LISTFILE, except that it displays information
about the speci�ed temporary �les. Syntax, parameters, and information displayed are the
same as LISTFILE, with the following exceptions:

Its display of �le information includes the word TEMPORARY or the abbreviation TEMP.

Displaying �le equations with LISTEQ

The LISTEQ command allows you to list all �le equations in e�ect for the job or session from
which you issue the command. Here is an example of a LISTEQ call:

LISTEQ

FILE EQUATIONS

FILE LP;DEV=PP;ENV=ELITE.XQENV.SYS;CCTL
FILE OFFLINE;DEV=PP;ENV=ELITE.XQENV.SYS;CCTL
FILE EDTLIST;DEV=PP;ENV=ELITE.ENV2680.SYS

If you do not indicate otherwise, LISTEQ sends its output to $STDLIST. You can optionally
specify a di�erent output �le to which the �le descriptions are written. For example, the
following command sends output to the temporary �le MYFILE:

LISTEQ MYFILE

Retrieving Speci�c File Information

The LISTFILE, LISTFILE . . . ;TEMP and LISTEQ commands return formatted information to
your job or session list device. If you need to retrieve speci�c information about a particular
�le, and you wish to place it in a variable available either to your CI or to your program, then
you'll be interested in the the CI evaluator function and intrinsics described below.

You use: To obtain information about:

[CMD]FINFO,FFILEINFO,FGETINFO Characteristics of a currently opened �le

FLABELINFO Characteristics of a disk �le (opened or not)

FRELATE Whether �les are interactive and/or
duplicative

Getting File Information 14-5

[:CMD] FINFO

You can use the FINFO evaluator function interactively to retrieve information about a
speci�ed �le. FINFO is a function of the expression evaluator, a system procedure used by the
IF, WHILE, SETVAR, and CALC commands of the command interpreter.

FINFO has two parameters. The �rst is the �le name of the �le about which you wish to obtain
information; this is a string, and must be either a fully or partially quali�ed �le name, or a
FILE equation backreference. The second parameter is an integer or integer expression that
indicates the nature of the information required. The options available are listed in Table 14-2.

Table 14-2. FINFO Options

Specify: FINFO returns:

0 True if rhw �le exists; False if it does not

1 Fully quali�ed �le designator

4 Name of �le creator

6 Date of �le creation in format (day,mmm,dd,yyyy)

-6 Date of �le creation in format (yyyymmdd)

8 Date of last modi�cation in format (day,mmm,dd,yyyy)

-8 Date of last modi�cation in format (yyyymmdd)

9 File code mnemonic or �le code as string

-9 File code as integer

12 File limit

13 FOPTIONS (same format as LISTFILE -3)

-13 FOPTIONS

14 Record size (negative value indicates bytes)

15 Block size

19 EOF marker location

24 Last modi�ed time in format (hh:mm am/pm)

-24 Last modi�ed time in format (hhmmss)

33 Lockword

The example below shows the steps you can use to retrieve the following information about a
�le:

the fully quali�ed �le designator of the speci�ed �le

the name of the �le creator

�le characteristics, returned in the decimal, hexadecimal, and octal equivalents of the
foptions format described in the FOPEN intrinsic description located in the MPE/iX Intrinsics
Reference Manual (32650-90028)

the �le code, returned in decimal, hexadecimal, and octal equivalents

CALC FINFO ('MYFILE',1)
MYFILE.MYGROUP.MYACCT

CALC FINFO ('MYFILE',4)
SCOTT

14-6 Getting File Information

CALC FINFO ('MYFILE',-13)
1029, $405, %2005

CALC FINFO ('MYFILE',-9)
0, $0, %0

FFILEINFO

Use this intrinsic to retrieve information about a speci�ed �le. The �le can be on any device,
but it must be opened by the calling process at the time of the FFILEINFO call. If you wish to
return label information from a �le that is not opened, use FLABELINFO instead. FFILEINFO
has one required parameter, �lenum. This is the �le number, which is returned when you open
a �le using FOPEN or HPFOPEN. You can specify the information that you wish to be returned
by using up to �ve itemnum,item pairs. Each itemnum designates a type of information (for
example, logical device number, name of �le creator, or volume ID), which is then returned in
the item parameter. The itemnums can be speci�ed in any order.

Here is an example of an FFILEINFO intrinsic call. The information returned in this example is
the same information retrieved in theFINFO example above:

HPFOPEN(FILENUM,STATUS);

FORMALDESIGNATOR:= EMPTYARRAY;

FILECODE:=0;
FOPTIONS:=0;

CREATOR:=EMPTYARRAY;

FFILEINFO(FILENUM,1,FORMALDESIGNATOR,18,CREATOR,2,FOPTIONS,8,FILECODE);

Here is a description of the information returned in the parameters speci�ed in the above
FFILEINFO call:

FILENUM A variable of type 16-bit signed integer that returns the �le
number of the �le about which information is requested.

FORMALDESIGNATOR A variable of type character array that returns the actual �le
designator of the �le, in the format
�lename/groupname/accountname.

CREATOR A variable of type character array that returns the �le creator
name.

FOPTIONS A variable of type 16-bit unsigned integer that returns �le
characteristics in the format described in the FOPEN intrinsic
description.

FILECODE A variable of type 16-bit signed integer that returns the �le code.

A complete description of the information that you can obtain using FFILEINFO is given in the
MPE/iX Intrinsics Reference Manual (32650-90028).

FGETINFO

This intrinsic, which returns some of the same information as FFILEINFO, is an MPE V/E-based
intrinsic that is currently supported only for compatibility reasons. When you use a call to
FGETINFO, MPE/iX now calls FFILEINFO to retrieve the �le information. For this reason, it
is advisable for you to call FFILEINFO directly; however, there is no need to rewrite existing
programs that use FGETINFO unless there is a performance problem.

Here is an example of an FGETINFO intrinsic call that is the exact equivalent of the FFILEINFO
example shown above:

Getting File Information 14-7

HPFOPEN(FILENUM,STATUS);
FORMALDESIGNATOR:= EMPTYARRAY;

FILECODE:=0;

FOPTIONS:=0;

CREATOR:=EMPTYARRAY;

FGETINFO(FILENUM,FORMALDESIGNATOR,,FOPTIONS,,,,,FILECODE,,,,,,,,,,CREATOR);

A complete description of the information that you can obtain using FGETINFO is given in the
MPE/iX Intrinsics Reference Manual (32650-90028).

FLABELINFO

The FLABELINFO intrinsic returns information from the �le label of a disk �le. The �le need
not be opened at the time of the intrinsic call. The information returned by this intrinsic is a
subset of the information returned by FFILEINFO.

Here is an example of a FLABELINFO intrinsic call that returns the same information as the
FFILEINFO and FGETINFO examples shown above:

FORMALDESIGNATOR:='MYFILE.MYGROUP.MYACCT ';

MODE:=0;

FSERRORCODE:=0;
ITEMNUMS[1]:=13; {Bytes 1..2 return characteristics }

ITEMNUMS[2]:=9; {Bytes 3..4 return file code }

ITEMNUMS[3]:=1; {Bytes 5..12 return file name }

ITEMNUMS[4]:=2; {Bytes 13..20 return group name }

ITEMNUMS[5]:=3; {Bytes 21..28 return account name }
ITEMNUMS[6]:=4; {Bytes 29..36 return creator name }

ITEMNUMS[7]:=0; {Zero indicates end of list }

INITIALIZE_ITEMS; {Procedure initializes ITEMS fields}

INITIALIZE_ITEMERRORS; {Procedure sets elements to zero }

FLABELINFO(FORMALDESIGNATOR,MODE,
FSERRORCODE,ITEMNUMS,ITEMS,ITEMERRORS);

The ITEMS parameter above is a record structure, exactly 36 bytes in length, that can be
declared in the following manner:

TYPE ITEMS_TYPE = RECORD
FOPTIONS: 0..65565; {2-byte unsigned integer}
FILECODE: SHORTINT; {2-byte signed integer }
FILENAME: PACKED ARRAY[1..8] OF CHAR;
GROUPNAME: PACKED ARRAY[1..8] OF CHAR;
ACCOUNTNAME: PACKED ARRAY[1..8] OF CHAR;
CREATORNAME: PACKED ARRAY[1..8] OF CHAR;

END;

A complete description of the information that you can obtain using FLABELINFO is given in the
MPE/iX Intrinsics Reference Manual (32650-90028).

14-8 Getting File Information

Determining Interactive/Duplicative Files with FRELATE

This intrinsic is used for one speci�c purpose: determining whether a pair of �les (input �le
and list �le) is interactive, duplicative, or both. Interactive means that the �le requires human
intervention for all input operations. For example, an input �le and a list �le opened to the
same terminal would form an interactive pair. Duplicative means that all input to the input
�le is echoed automatically to the list �le. For example, input to a keyboard is duplicated on
the associated CRT.

The FRELATE intrinsic has two required parameters: in�lenum is the �le number of the input
�le, and list�lenum is the �le number of the list �le. Both of these numbers are returned when
you create the �les using HPFOPEN or FOPEN.

The intrinsic returns a 16-bit unsigned integer. If the �les are an interactive pair, bit (15:1) =1,
or =0 if they are not. If the �les are a duplicative pair, bit (0:1) =1, or =0 if they are not.

A �le can be interactive, duplicative, or both. These attributes do not change between the time
the �les are opened and the time they are closed. You can use FRELATE to obtain information
about �les on all devices.

Displaying File Error Information

Several �le system intrinsics are designed speci�cally for handling errors. If an I/O error occurs,
most �le system intrinsics return a condition code indicating this.

You use: To obtain information about:

FCHECK File system intrinsic error number

FERRMSG File system intrinsic error message

PRINTFILEINFO File information error display

FCHECK

The FCHECK intrinsic returns an error code that indicates the nature of a �le system I/O error.
A table of error codes appears in the MPE/iX Intrinsics Reference Manual (32650-90028), or
you can use FERRMSG (described below) to display an error message.

FCHECK has �ve optional parameters. The �lenum parameter indicates the �le for which error
information is to be returned. If you set this parameter to zero, FCHECK assumes you want
information about the last failed FOPEN call. The error code is returned in the errorcode
parameter.

Note Do not use FCHECK to determine error conditions of you last failed HPFOPEN
intrinsic call. Error conditions associated with HPFOPEN are returned in
the HPFOPEN status parameter. Instead, you can use the HPERRMSG intrinsic
to return a message explaining the nature of an HPFOPEN intrinsic error or
warning.

Three other parameters give additional information about �le system errors. The tlog
parameter returns the number of half-words read or written if an I/O error occurs. The blknum
parameter gives the logical record count for a spool �le, or the physical record count for any

Getting File Information 14-9

other type of �le. The numrecs parameter returns the number of logical records in the bad
block.

You must use this intrinsic prior to calling FERRMSG, since the error code returned by FCHECK is
used as a parameter in the call to FERRMSG.

FERRMSG

This intrinsic is used following a call to FCHECK, to return an error message explaining the
nature of a �le system error. It has three required parameters: errorcode is the error number
returned by FCHECK, msgbuf returns the error message, and msglgth returns the length of the
error message returned in msgbuf.

This example shows a call to FCLOSE. If this returns a CCL condition, a call to FCHECK requests
the error code; then FERRMSG returns the error message associated with this code:

FCLOSE(FILENUM,1,0);

IF CCODE = CCL

THEN BEGIN

FCHECK(FILENUM,ERRNUM); {Returns error number }

FERRMSG(ERRNUM,MESSAGE,LENGTH); {Returns error message }
PRINT(MESSAGE,-LENGTH,0); {Prints error message to

$STDLIST}

TERMINATE; {Terminate process }

END;

If the FCHECK code has no assigned meaning, the following message is returned:

UNDEFINED ERROR errorcode

PRINTFILEINFO

This intrinsic prints a �le information display on the job or session list device, $STDLIST. The
information shown depends upon whether or not a �le is opened when the error occurs. For
�les not yet opened, or for which the FOPEN intrinsic fails, the display shown in Figure 14-1.

Example 14-1. File Information Display, Unopened File

+-F-I-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y+
! FILE NUMBER 5 IS UNDEFINED. ! Line #1
! ERROR NUMBER: 2 RESIDUE: 0 (WORDS) ! Line #2
! BLOCK NUMBER: 0 NUMREC: 0 ! Line #3
+--+

The lines in this display show the following information:

Line # Meaning

1 Warns that no corresponding �le is open.

2 ERROR NUMBER indicates the last FOPEN error for the calling program. RESIDUE
is the number of words not transferred in an I/O request; since no such request
applies here, this is zero.

3 In this form, the BLOCK, NUMBER, and NUMREC �elds are always zero.

14-10 Getting File Information

For �les that are open when a CCG (EOF error) or CCL (irrecoverable �le error) was returned,
the �le information display appears as shown in example 14-2.

Example 14-2. File Information Display, Opened File

+-F-I-L-E---I-N-F-O-R-M-A-T-I-O-N---D-I-S-P-L-A-Y+
! FILE NAME IS TREEFILE.PSMG.LOZAR ! Line #1
! FOPTIONS: NEW,ASCII,FORMAL,F,NOCCTL,FEQ, ! Line #2
! NOLABEL ! Line #3
! AOPTIONS: INPUT,NOMR,NOLOCK,DEF,BUF,NOMULTI, ! Line #4
! WAIT,NOCOPY ! Line #5
! DEVICE TYPE: 0 DEVICE SUBTYPE: 9 ! Line #6
! LDEV: 2 DRT: 4 UNIT: 1 ! Line #7
! RECORD SIZE: 256 BLOCK SIZE: 256 (BYTES) ! Line #8
! EXTENT SIZE: 128 MAX EXTENTS: 8 ! Line #9
! RECPTR: 0 RECLIMIT: 1023 ! Line #10
! LOGCOUNT: 0 PHYSCOUNT: 0 ! Line #11
! EOF AT: 0 LABEL ADDR: %00201327630 ! Line #12
! FILE CODE: 0 ID IS PAULA ULABELS: 0 ! Line #13
! PHYSICAL STATUS: 1000000000000001 ! Line #14
! NUMBER WRITERS: 0 NUMBER READERS: 1 ! Line #15
! ERROR NUMBER: 0 RESIDUE: 0 ! Line #16
! BLOCK NUMBER: 0 NUMREC: 1 ! Line #17
+--+

The lines on the above display show the information listed in Table 14-3.

Getting File Information 14-11

Table 14-3. PRINTFILEINFO Information

Line # Meaning

1 The �le name.

2,3 The foptions in e�ect.

4,5 The aoptions in e�ect.

6,7 The device type and subtype, logical device number, (LDEV), device reference
table (DRT), and unit of the device on which the �le resides. If the �le is a spool
�le, the ldev is the virtual rather than the physical device.

8 The record and block size of the o�ending record, in bytes and words, as noted.

9 The size of the current extent and the maximum number of records in the �le.

10 The current record pointer, and limit on number of records in the �le.

11 The present count of logical and physical records.

12 The locations of the current EOF and header label of the �le.

13 The �le code, name of the �le's creator, and number of user-created labels.

14 The physical (hardware) status of the device on which the �le resides.

15 NUMBER WRITERS is the number of FOPEN calls of the �le with some type of
WRITE access. NUMBER READERS is the number of FOPEN calls to the �le with
READ access. This �eld applies only to message �les; it does not appear for
other �les.

16 The error number and residue.

17 The block number and number of records (NUMREC) for the �le.

Writing a �le system error-check procedure

Error checking intrinsics can be used throughout a program every time that there is an intrinsic
call. Instead of repeating a call to PRINTFILEINFO many times, it is more e�cient to write an
error-check procedure and merely call this procedure where necessary.

The following example is a sample error-check procedure, named FILERROR. This procedure is
declared at the beginning of the program; from that point on, it can be called with a single
statement.

The procedure contains two parameters. FILENO is an identi�er through which the �le
number is passed. The PRINTFILEINFO intrinsic then prints a �le information display for that
�le. QUITNO is part of the abort message printed by the QUIT intrinsic. This enables you to
determine the point at which the process was aborted.

PROCEDURE FILERROR(FILENO,QUITNO:SHORTINT);

BEGIN
PRINTFILEINFO(FILENO);
QUIT(QUITNO);

END;

14-12 Getting File Information

A

HP Pascal/XL Program Examples

The HP Pascal/XL program examples in this appendix are provided to help you better
understand how to use MPE/iX �le system intrinsics to perform common �le access tasks.

Here is a short description of the task handled by each of the program examples in this
appendix:

Program Example A-1 illustrates how you can open three di�erent �les|an unlabeled
magnetic tape �le, $STDLIST, and a new disk �le|and copy records sequentially from the
tape �le to the disk �le, while concurrently writing the records to $STDLIST.

Program Example A-2 illustrates how you can open a labeled magnetic tape �le and a new
disk �le, print the user label to $STDLIST, then copy records sequentially from the tape
�le to the disk �le. Play close attention to how the program closes the new disk �le as a
permanent �le, and how it allows the user to specify alternate �le designators if the �le
name already exists.

Program Example A-3 illustrates how you can use the sequential access method of reading
records from an old disk �le, then use the random access method of writing the records to a
new labeled disk �le.

Program Example A-4 illustrates how you can read from a �le using random access method
of data access. In addition, the program shows how you can use the FREADSEEK intrinsic to
increase program performance by prefetching records, thus minimizing I/O wait-time.

Program Example A-5 illustrates how you can allow a user to update records in a shared
data �le. This program makes use of �le locking intrinsics, FLOCK and FUNLOCK, to ensure
exclusive access to the shared �le during the update process.

HP Pascal/XL Program Examples A-1

Program example A-1

This program illustrates how you can open three di�erent �les|an unlabeled magnetic tape
�le, $STDLIST, and a new disk �le|and copy records sequentially from the tape �le to the disk
�le while concurrently writing the records to $STDLIST.

Program Algorithm

The task speci�ed above is accomplished by following the steps described below. Also indicated
are the intrinsics used to accomplish �le access tasks and the name of the procedure where the
task is accomplished:

1. Open (HPFOPEN) three �les|an unlabeled magnetic tape �le, and new disk �le, and $STDLIST
(see procedure open_unlabeled_tape_file and procedure open_file).

2. In a loop, sequentially read (FREAD) records from tape �le, then write (FWRITE) them to both
disk �le and $STDLIST (see procedure copy_tapefile_to_disk_file). Continue loop till
tape �le's EOF is reached.

3. Close (FCLOSE) the tape �le and the disk �le (see procedure close_file).

If a �le system intrinsic returns an unsuccessful condition code, procedure handle_file_error
is called to print �le information and then abort the program.

A-2 HP Pascal/XL Program Examples

Source code listing

Example A-1. Sequential Access

$standard_level 'hp3000'$
$lines 100$
$code_offsets on$
$tables on$
$list_code on$
program open_close_example(input,output);

{***}
{ DECLARATION PART }
{***}

const
ccg = 0; {Condition code warning }
ccl = 1; {Condition code error }
cce = 2; {Condition code successful }
update = 5; {HPFOPEN item value }
save_temp = 2; {HPFOPEN item value }
save_perm = 1; {HPFOPEN item value }
new = 0; {HPFOPEN item value }
permanent = 1; {HPFOPEN item value }
write = 1; {HPFOPEN item value }

type
pac256 = packed array [1..256] of char;
pac80 = packed array [1..80] of char;
status_type = record {HPFOPEN status variable type}

case integer of
0 : (info : shortint;

subsys : shortint);
1 : (all : integer);

end;

var
disk_file : integer;
tape_file : integer;
filename : pac80;
std_list : integer;
std_in : integer;
outbuf : pac80;

function FREAD: shortint; intrinsic; {Read from mag tape file }
procedure HPFOPEN; intrinsic; {Open tape, disk, $STDLIST files }
procedure FCLOSE; intrinsic; {Close tape and disk files }
procedure FWRITE; intrinsic; {Write to disk and $STDLIST files}
procedure PRINTFILEINFO; intrinsic; {If unsuccessful intrinsic call }
procedure QUIT; intrinsic; {If unsuccessful intrinsic call }

HP Pascal/XL Program Examples A-3

procedure handle_file_error
(

file_num : shortint;
quit_num : shortint

);

{**}
{ procedure handle_file_error is invoked when a file system intrinsic }
{ returns and unsuccessful condition code. File information is printed }
{ to $STDLIST, then the program aborts. }
{**}
begin

PRINTFILEINFO (file_num);
QUIT (quit_num);

end; {end procedure }

procedure open_unlabeled_tape_file
(

var file_num : integer
);

{**}
{ procedure open_unlabeled_tape_file opens a permanent unlabeled mag }
{ tape file update access only. }
{**}

const
{**define HPFOPEN item numbers **}

formal_designator_option = 2;
domain_option = 3;
access_type_option = 11;
device_class_optin = 42;
density_option = 24;

var
{**define HPFOPEN items ** }

file_name : pac80;
permanent,update,density : integer;
device_class : pac80;
status : status_type;

A-4 HP Pascal/XL Program Examples

begin
file_name :='&tapefile&';
permanent := 3;
update := 5;
device_class := '&TAPE&';
density := 1600;
HPFOPEN (file_num, status, formal_designator_option, file_name,

domain_option, permanent,
access_type_option, update
device_class_option, device_class
density_option, density);

if status.all <> 0 then
handle_file_error (file_num, 1);

end; {end procedure }

procedure open_file
(

var file_num : integer;
file_name : pac80;
domain : integer;
access : integer

);

{**}
{ procedure open_file acts as a generic file open procedure allowing }
{ you to specify the domain option and the access type option }
{**}

const
{**define HPFOPEN item numbers**}

formal_designator_option = 2;
domain_option = 3;
access_type_option = 11;
ascii_binary_option = 53;

var
ascii : integer;

{**define scratch variables ** }
msgbuf : pac80;
status : status_type;

HP Pascal/XL Program Examples A-5

begin
ascii := 1;
HPFOPEN (file_num, status, formal_designator_option, file_name,

domain_option, domain,
ascii_binary_option, ascii,
access_type_option, access);

if status.all <> 0 then
handle_file_error (file_num, 2);

end; {end procedure }

procedure copy_tapefile_to_discfile
(

tape_file : integer;
disk_file : integer

);

{**}
{ procedure copy_tapefile_to_discfile copies logical records }
{ sequentially from tape file to disk file with concurrent print to }
{ stdlist. }
{**}

var
inbuf : pac80;
end_of_file : boolean;
read_length : integer;

begin
end_of_file := false;
repeat

{**In a loop, do a simple sequential read from tape file to ***}
{**disk file. **}

read_length := FREAD (tape_file, inbuf, 80);
if ccode = ccl then

handle_file_error (tape_file, 3)
else

if ccode = ccg then
end_of_file := true

else
begin

FWRITE (std_list, inbuf, read_length, 0);
if ccode <> cce then

handle_file_error (std_list, 4);

FWRITE (disk_file, inbuf, read_length,0);
if ccode <> cce then

handle_file_error (disk_file, 5);

end

A-6 HP Pascal/XL Program Examples

until end_of_file;
end; {end procedure }

procedure close_file
(

file_num : integer;
disp : integer

);

{**}
{ procedure close_file is a generic file closing procedure that allows }
{ you to specify the final disposition of the file. }
{**}

var
msgbuf : pac80;

begin
FCLOSE (file_num, disp, 0);
if ccode = ccl then

handle_file_error (file_num, 6);
end; {end procedure }

{**}
{ MAIN PROGRAM }
{**}

begin
open_unlabeled_tape_file (tape_file); { STEP 1 }
filename := '&$stdlist&'; { STEP 1 }
open_file (std_list, filename, permanent,write); { STEP 1 }
filename := '&dataone&'; { STEP 1 }
open_file (disk_file, filename, new,update); { STEP 1 }
copy_tapefile_to_discfile(tape_file,disk_file); { STEP 2 }
close_file(disk_file, save_temp); { STEP 3 }
close_file(tape_file, save_perm); { STEP 3 }

end. {end program }

HP Pascal/XL Program Examples A-7

Program Example A-2

This Pascal/XL program example illustrates how you can use the HPFOPEN intrinsic to open a
labeled magnetic tape �le, then open a new disk �le with a user-supplied name. After records
are sequentially copied from the tape �le to the disk �le, both �les are closed, the disk �le is
closed as a Permanent �le. If the �le system determines that another �le of the same name
exists in the permanent �le directory, the user is allowed to specify alternate �le names until
the �le close operation is successful.

Program Algorithm

The task speci�ed above is accomplished using six steps. Also indicated are the intrinsics used
to accomplish �le access tasks and the name of the procedure where the task is accomplished:

1. Open (HPFOPEN) labeled magnetic tape �le (see procedure open_tape_file).

2. Read from $STDIN (READ) a user-supplied �le name, then open (HPFOPEN) a new disk �le
using the given name (see procedure open_disk_file).

3. Read (FREADLABEL) the user label from the tape �le and then print (PRINT) the label to
$STDLIST (see procedure print_user_label).

4. In a loop, use sequential access method to read (FREAD) records from tape �le and write
(FWRITE) them to the disk �le (see procedure copy_file_from_tape_to_disc).

5. Close (FCLOSE) the tape �le (see procedure close_tape_file).

6. Close (FCLOSE) the new disk �le as a permanent �le (see procedure close_disk_file). If
an error occurs during the FCLOSE call, the user is given the opportunity (CAUSEBREAK) to
interactively �x the problem (see procedure handle_fclose_error) before the program
again attempts to close the disk �le as a permanent �le.

This program makes extensive use of error handling routines to:

return to the user a �le system error number (FCHECK) associated with a �le system intrinsic
error (refer to procedure print_fserr).

interpret and return to the user error information returned by the status parameter of a
failed HPFOPEN call (see procedure print_hpfopen_error).

allow the user to specify an alternative �le name if, during an FCLOSE call, the
�le system determines that a duplicate permanent disk �le exists (see procedure
handle_fclose_error).

print �le information (PRINTFILEINFO) before aborting (QUIT) the program (see procedure
handle_file_error).

Using these four error procedures, the program individually tailors error-handling routines to
meet di�erent intrinsic needs.

A-8 HP Pascal/XL Program Examples

Source code listing

Example A-2. Accessing a Magnetic Tape File

$standard_level 'os_features'$
$os 'mpe xl'$
$code_offsets on$
$tables on$
$list_code on$

program open_and_read_a_labeled_tape (input, output);

{**}
{* DECLARATION PART *}
{**}

const
ccg = 0; {* condition code "greater than *}
ccl = 1; {* condition code "less than" *}
cce = 2; {* condition code "equal" *}

type
pac80 = packed array [1..80] of char;
status_type = record

case integer of
0 : (info : shortint;

subsys : shortint);
1 : (all : integer);

end;

var
tape_file : integer; {* file number for tape file *}
disk_file : integer; {* file number for disk file *}

function FREAD : shortint; intrinsic;
function READ : shortint; intrinsic;
procedure HPFOPEN; intrinsic;
procedure FCHECK; intrinsic;
procedure FCLOSE; intrinsic;
procedure FWRITE; intrinsic;
procedure PRINT; intrinsic;
procedure PRINTFILEINFO; intrinsic;
procedure QUIT; intrinsic;
procedure CAUSEBREAK; intrinsic;
procedure FREADLABEL; intrinsic;

HP Pascal/XL Program Examples A-9

procedure print_hpfopen_error
(

error : status_type
)

option inline;

{**}
{* PURPOSE: *}
{* This routine prints the status returned by HPFOPEN. *}
{* PARAMETERS: *}
{* error (input) *}
{* - status returned by HPFOPEN *}
{**}

begin {* print_hpfopen_error *}
writeln ('HPFOPEN status = (info: ', error.info:1,

'; subys: ', error.subsys:1,')');
end; {* print_hpfopen_error *}

procedure print_fserr
(

file_num : integer
)

option inline;

{**}
{* PURPOSE: *}
{* This routine prints a File System error which occurred in a *}
{* File System intrinsic. *}
{* PARAMETERS: *}
{* file_num (input) *}
{* - file number of file which the intrinsic failed *}
{**}

var
error : shortint; {* File System error number *}

begin {* print_fserr *}
FCHECK (file_num, error); {* call FCHECK to get the errornumber*}
writeln ('FSERR = ', error:1);

end;
{* print_fserr *}

A-10 HP Pascal/XL Program Examples

procedure handle_file_error
(

file_num : shortint;
quit_num : shortint

);

{**}
{* PURPOSE: *}
{* This routine displays File System information about a file *}
{* and then calls QUIT to terminate the program. *}
{* PARAMETERS: *}
{* file_num (input) *}
{* - file number. The routine will print info about this *}
{* file. *}
{* quit_num (input) *}
{* - quit number. This number will be displayed by QUIT when *}
{* the program is terminated. *}
{**}

begin {* handle_file_error *}
PRINTFILEINFO (file_num);
QUIT (quit_num);

end; {* handle_file_error *}

procedure handle_fclose_error;

{**}
{* PURPOSE: *}
{* This routine informs the user that the disk file could not *}
{* closed. Then CAUSEBREAK is called to break the program; *}
{* this is done to give the user a chance to purge or rename *}
{* an existing disk file which has the same name as the one the *}
{* program is trying to save. When the user enters 'resume' *}
{* this routine will return to the caller. *}
{**}

var
msgbuf : pac80;

begin {* handle_fclose_error *}
{* print error messages *}
{************************}

msgbuf := 'Can''t close disk file';
PRINT (msgbuf, -21, 0);
msgbuf := 'Check for duplicate name';
PRINT (msgbuf, -24, 0);
msgbuf := 'Fix, then type "resume"';
PRINT (msgbuf, -23, 0);

{* break the program *}
{*********************}

CAUSEBREAK;
end; {* handle_fclose_error *}

HP Pascal/XL Program Examples A-11

procedure open_tape_file
(
var file_num : integer
);

{**}
{* PURPOSE: *}
{* This routine opens a labeled tape file. *}
{* PARAMETERS: *}
{* file_num (output) *}
{* - file number of open tape file *}
{**}

const
{* define HPFOPEN item numbers *}

formal_designator_option = 2;
domain_option = 3;
tape_label_option = 8;
access_type_option = 11;
tape_type_option = 30;
tape_expiration_option = 31;
device_class_option = 42;

var
{* define HPFOPEN items *}

read_only : integer;
device_class : pac80;
old : integer;
file_name : pac80;
tape_label : pac80;
ansi_tape : integer;
tape_expiration : pac80;

{* define scratch varibles *}
msgbuf : pac80;
status : status_type;

begin {* open_tape_file *}
{* set up the item values for the HPFOPEN intrinsic *}
{**}

file_name := '&tapefile&';
old := 3;
read_only := 0;
tape_label := '&tape01&';
ansi_tape := 0;
tape_expiration := '&05/20/87&';
device_class := '&tape&';
HPFOPEN (file_num, status, formal_designator_option, file_name,

device_class_option, device_class,
domain_option, old,
tape_label_option, tape_label,
tape_type_option, ansi_tape,
access_type_option, read_only,
tape_expiration_option, tape_expiration);

A-12 HP Pascal/XL Program Examples

if status.all <> 0 then {* check for error condition *}
begin

print_hpfopen_error (status);
handle_file_error (file_num, 1);

end;
end; {* open_tape_file *}

HP Pascal/XL Program Examples A-13

procedure open_disk_file
(
var file_num : integer
);

{**}
{* PURPOSE: *}
{* This routine prompts the user for a file name and opens a *}
{* NEW disk file using the given name. *}
{* PARAMETERS: *}
{* file_num (output) *}
{* - file number of the open disk file *}
{**}

const
{* define HPFOPEN item numbers *}

formal_designator_option = 2;
access_type_option = 11;
ascii_binary_option = 53;

var
{* define HPFOPEN items *}

update : integer;
ascii : integer;
file_name : pac80;

{* define scratch variables *}
index : integer;
msgbuf : pac80;
read_length : integer;
status : status_type;

begin {* open_disk_file *}
{* prompt user for a file name a read the user-specified name *}
{***}

msgbuf := 'Name of new disk file to be created?';
PRINT (msgbuf, -36, 0);

read_length := READ (file_name, -8);

{* shift file name one character to the right to make room for the *}
{* delimiters *}
{**}

for index := read_length downto 1 do
file_name[index + 1] := file_name[index];

{* add delimiters to file name *}
{*******************************}

file_name[1] := '&';
file_name[read_length + 2] := '&';

A-14 HP Pascal/XL Program Examples

{* set up the remaining item values for the HPFOPEN intrinsic *}
{**}

ascii := 1; {* the disk file is to be an ASCII file *}
update := 5; {* update access will be used to write to the disk file*}

HPFOPEN (file_num, status, formal_designator_option, file_name,
ascii_binary_option, ascii,
access_type_option, update);

if status.all <> 0 then {* check for error condition *}
begin

print_hpfopen_error (status);
handle_file_error (file_num, 2);

end;
end; {* open_disk_file * }

procedure print_user_label
(

file_num : integer
);

{**}
{* PURPOSE: *}
{* This routine reads the user label from the tape file and *}
{* then prints the user label to $STDLIST. *}
{* PARAMETERS: *}
{* file_num (input) *}
{* - file number of open tape file *}
{**}

var
inbuf : pac80; {* buffer for the user label *}

begin {* print_user_label *}
FREADLABEL (file_num, inbuf, 40); {* read the user label from tape*}

if ccode <> CCE then {* check for error condition *}
begin

print_fserr (file_num);
handle_file_error (file_num, 3);

end;

PRINT (inbuf, 40, 0); {* print the user label to $stdlist *}
end; {* print_user_label *}

HP Pascal/XL Program Examples A-15

procedure copy_file_from_tape_to_disk
(

tape_file : integer;
disk_file : integer

);
{**}
{* PURPOSE: *}
{* This routine copies a tape file to a disk file one record at *}
{* a time (sequential access). *}
{* PARAMETERS: *}
{* tape_file (input) *}
{* - file number of an open tape file *}
{* disk_file (input) *}
{* - file number of an open disk file *}
{**}

var
inbuf : pac80;
msgbuf : pac80;
end_of_file : boolean;
read_length : integer;

begin {* copy_file_from_tape_to_disk *}
end_of_file := false;

repeat
{* copy a buffer from the tape file to the disk file until the *}
{* end of the tape file is reached *}
{***}

read_length := FREAD (tape_file, inbuf, 40);
{* read buffer from tape *}

if ccode = ccl then {* check for error condition *}

begin
msgbuf := 'Can''t read tape file';
PRINT (msgbuf, -20, 0);
print_fserr (tape_file);
handle_file_error (tape_file, 4);

end
else
if ccode = ccg then {* check for end of file condition *}

end_of_file := true
else

begin
FWRITE (disk_file, inbuf, read_length, 0);

{* write buffer to disk *}
if ccode <> cce then {* check for error condition *}

begin
msgbuf := 'Can''t write to disk file';
PRINT (msgbuf, -24, 0);
print_fserr (disk_file);

A-16 HP Pascal/XL Program Examples

handle_file_error (disk_file, 5);
end;

end;
until end_of_file;

end; {* copy_file_from_tape_to_disk *}

HP Pascal/XL Program Examples A-17

procedure close_tape_file
(

file_num : integer
);

{**}
{* PURPOSE: *}
{* This routine closes the tape file. *}
{* PARAMETERS: *}
{* file_num (input) *}
{* - file number of open tape file *}
{**}

var
msgbuf : pac80;

begin {* close_tape_file *}
FCLOSE (file_num, 1, 0); {* close file, rewind and unload tape*}
if ccode = ccl then {* check for error condition *}

begin
msgbuf := 'Can''t close tape file';
PRINT (msgbuf, -21, 0);
print_fserr (file_num);
handle_file_error (file_num, 6);

end;
end; { close_tape_file }

procedure close_disk_file
(

file_num : integer
);

{**}
{* PURPOSE: }
{* This routine closes the NEW disk file as PERMANENT disk }
{* file. If an error occurs on the FCLOSE then the user is }
{* given the opportunity to fix the problem and the FCLOSE is }
{* retried. }
{* PARAMETERS: }
{* file_num (input) }
{* - file number of the open disk file }
{**}

var
file_closed : boolean;

begin { close_disk_file }
file_closed := false;
repeat
FCLOSE (file_num, 1, 0); { close disk file as a permanent file}

if ccode = ccl then { check for error condition}
handle_fclose_error

A-18 HP Pascal/XL Program Examples

else
file_closed := true;

until file_closed;
end; { close_disk_file }

HP Pascal/XL Program Examples A-19

{**}
{ MAIN PROGRAM }
{**}

begin
open_tape_file (tape_file); { STEP 1 }
open_disk_file (disk_file); { STEP 2 }
print_user_label (tape_file); { STEP 3 }
copy_file_from_tape_to_disk (tape_file, disk_file); { STEP 4 }
close_tape_file (tape_file); { STEP 5 }
close_disk_file (disk_file); { STEP 6 }

end. { main }

A-20 HP Pascal/XL Program Examples

Program Example A-3

This HP Pascal/XL program illustrates how you can use a sequential method of reading records
from an old disk �le and use a random access method of writing the records in an inverted
order to a new user-labeled disk �le, where record 1 of the �rst �le is written to location n of
the second �le, record 2 is written to location n-1, and so on.

Program Algorithm

The task speci�ed above is accomplished by following the steps described below. Also indicated
are the intrinsics used to accomplish �le access tasks and the name of the procedure where the
task is accomplished:

1. Open (HPFOPEN) a permanent disk �le and a new user-labeled disk �le (see procedure
open_disk_file).

2. Write (FWRITELABEL) a user-de�ned label to the new �le (see procedure
write_user_label).

3. Get EOF (FGETINFO) of old �le and assign that value to new �le's record pointer; in a loop,
sequentially read (FREAD) records from old �le and write (FWRITEDIR) them to a location in
the new �le speci�ed by the record pointer, then decrement the new �le's record pointer
(see procedure copy_oldfile_to_newfile). Continue the loop till the old �le's EOF is
reached.

4. Close (FCLOSE) the old �le as deleted from the system, and close the new �le as a temporary
�le (see procedure close_disk_file).

If a �le system intrinsic returns an unsuccessful condition code, procedure handle_file_error
is called to print �le information (PRINTFILEINFO) and then abort (QUIT) the program.

HP Pascal/XL Program Examples A-21

Source code listing

Example A-3. Random Access

$standard_level 'hp3000'$
$lines 100$
$code_offsets on$
$tables on$
$list_code on$
program write_read (input,output);

{***}
{ DECLARATION PART }
{***}

const
ccg = 0; { condition code warning/EOF,/etc.. }
ccl = 1; { condition code error }
cce = 2; { condition code successful }
permanent = 1;
new = 0;
temp = 2;
delete = 4;

type
pac256 = packed array [1..256] of char;
pac80 = packed array [1..80] of char;

{HPFOPEN status parameter type }
status_type = record

case integer of
0 : (info : shortint;

subsys : shortint);
1 : (all : integer);

end;

var
old_file : integer;
new_file : integer;
filename : pac80;
label_id : integer;
label_len : integer;
outbuf : pac80;

function FREAD: shortint; intrinsic; { sequential read old file }
procedure HPFOPEN; intrinsic; { open both disk files }
procedure FCLOSE; intrinsic; { close both disk files }
procedure FWRITEDIR; intrinsic; { random access write to new file }
procedure FWRITELABEL; intrinsic; { write new user-defined label }
procedure PRINTFILEINFO; intrinsic; { user in error-handler }
procedure FGETINFO; intrinsic; { get EOF location }
procedure QUIT; intrinsic; { use in error-handler }

A-22 HP Pascal/XL Program Examples

procedure handle_file_error
(

file_num : shortint;
quit_num : shortint

);

{***}
{ procedure handle_file_error prints file information on the job/session}
{ list device, then aborts the program. }
{***}

begin
PRINTFILEINFO (file_num);
QUIT (quit_num);

end; { end handle_file_error }

procedure open_disk_file
(

var file_num : integer;
file_name : pac80;
domain : integer

);

{***}
{procedure open_disk_file is a generic file open procedure that allows }
{you to specify the file name, it's domain, type of access, and internal}
{format - ASCII or binary. }
{***}

const
{**define HPFOPEN item numbers** }

formal_designator_option = 2;
domain_option = 3;
access_type_option = 11;
ascii_binary_option = 53;

var
{**define HPFOPEN items********* }

update : integer;
ascii : integer;

{**define scratch variables** }

msgbuf : pac80;
status : status_type;

begin
update := 5;
ascii := 1;

HPFOPEN (file_num, status, formal_designator_option, file_name,
domain_option, domain,
ascii_binary_option, ascii,
access_type_option, update);

HP Pascal/XL Program Examples A-23

if status.all <> 0 then
handle_file_error (file_num, 1);

end; { end open_disk_file }

A-24 HP Pascal/XL Program Examples

procedure write_user_label
(

file_num : integer;
buffer : pac80;
length : integer;
lnum : integer

);

{**}
{ procedure write_user_label writes a user-defined label to the specified}
{ file. }
{**}

begin
FWRITELABEL (file_num, buffer, length, lnum);
if ccode <> cce then
handle_file_error (file_num, 2);

end; { end write_user_label }

procedure copy_oldfile_to_newfile
(

new_discfile : integer;
old_discfile : integer

);

{**}
{ procedure copy_oldfile_to_newfile gets EOF of old file & assigns record}
{ pointer to that value. In a loop, sequentially reads from old file; }
{ random access writes to new file. }
{**}

var
rec : integer;
inbuf : pac256;
end_of_file : boolean;
read_length : integer;

begin

{**Locate the EOF in old disk file** }
end_of_file := false; { initialize loop control variable }
rec := 0;

FGETINFO (old_discfile,,,,,,,,,, rec);
if ccode = ccl then
handle_file_error (old_discfile, 3);

repeat
{**Copy the records in the reverse orders from old disk file**}

{**to the new disk file** }

read_length := FREAD (old_discfile, inbuf, 128);
if ccode = ccl then

HP Pascal/XL Program Examples A-25

handle_file_error (old_discfile, 4)
else

if ccode = ccg then
end_of_file := true

else

A-26 HP Pascal/XL Program Examples

begin
rec := rec - 1; { decrement record pointer }
FWRITEDIR (new_discfile, inbuf, 128, rec);
if ccode <> cce then

handle_file_error (new_discfile, 5);
end

until end_of_file { check control variable EOF }
end; { end copy_oldfile_to_newfile }

procedure close_disk_file
(

file_num : integer;
disp : integer

);

{**}
{ procedure close_disk_file is a disk file closing procedure that allowsa }
{ you to specify the final disposition of the file you are closing. }
{**}

var
msgbuf : pac80;

begin
FCLOSE (file_num, disp, 0);
if ccode = ccl then

handle_file_error (file_num, 6);
end; { end close_disk_file }

{**}
{ Main Program }
{**}

begin
filename := '&dataone&';
open_disk_file (old_file, filename, permanent); { STEP 1 }
filename := '&datatwo&';
open_disk_file (new_file, filename, new); { STEP 1 }
outbuf := 'Employee Data File';
label_len := 9;
label_id := 0;
write_user_label(new_file, outbuf, label_len, label_id); { STEP 2 }
copy_oldfile_to_newfile(new_file, old_file); { STEP 3 }
close_disk_file(new_file, temp); { STEP 4 }
close_disk_file (old_file, delete); { STEP 4 }
end.

HP Pascal/XL Program Examples A-27

Program Example A-4

This HP Pascal/XL program illustrates how you can use the FREADSEEK intrinsic to improve I/O
performance during random access reads. The program opens a permanent disk �le containing
data, and $STDLIST. Even numbered records are read from the data �le and printed to
$STDLIST.

Program Algorithm

The task speci�ed above is accomplished by following the steps described below. Also indicated
are the intrinsics used to accomplish �le access tasks and the name of the procedure where the
task is accomplished:

1. Open (FOPEN) both the the Permanent disk �le and $STDLIST (see procedure open_files).

2. Read (FREADLABEL) the user label from the disk �le and write (FWRITE) it to $STDLIST (see
procedure read_user_label).

3. In a loop, read (FREADDIR) even numbered records from the disk �le. Before writing
(FWRITE) the records to disk, prefetch the next record (FREADSEEK). Do this till EOF of the
disk �le is reached (see procedure read_from_datafile).

4. Close (FCLOSE) both �les (see procedure close_files).

If a �le system intrinsic returns an unsuccessful condition code, procedure handle_file_error
is called to print �le information (PRINTFILEINFO) and then abort (QUIT) the program.

A-28 HP Pascal/XL Program Examples

Source code listing

Example A-4. Random Access

program Read_Example (input,output);
{**}
{ DECLARATION PART }
{**}

const
CCG = 0; { condition code warning }
CCL = 1; { condition code error }
CCE = 2; { condition code successful }

type
file_name = packed array [1..9] of char;
buffertype = packed array [1..80] of char;

var
datafile_name: file_name;
listfile_name: file_name;
buffer : buffertype;
message : buffertype;
datafile : shortint;
listfile : shortint;
record_num : integer;

function fopen:shortint; intrinsic; { open files }
procedure freadlabel; intrinsic; { read user-defined label }
procedure freaddir; intrinsic; { random access read file }
procedure fwrite; intrinsic; { sequential write to $STDLIST }
procedure fclose; intrinsic; { close files }
procedure freadseek; intrinsic; { prefetch selected record }
procedure printfileinfo; intrinsic; { used in error-handler }
procedure quit; intrinsic; { used in error-handler }

procedure error_handler (filenum, quitnum: shortint);
{**}
{ procedure error_handler is a standard file system error handling }
{ procedure invoked after an unsuccessful file system intrinsic call. }
{ A file information display is printed to $STDLIST, then program aborts.}
{**}

begin
printfileinfo (filenum);
quit (quitnum);

end; {end error_handler }

HP Pascal/XL Program Examples A-29

procedure open_files;
{**}
{ procedure open_files opens the data file and $STDLIST using the FOPEN }
{ intrinsic. }
{**}

const
permanent = 5;
read_write = 4;
stdlist = 12;
write = 1;

begin
datafile_name:= 'datafile ';
listfile_name:= 'listfile ';
datafile:= fopen(datafile_name,permanent,read_write,-80);
if ccode <> CCE then error_handler(datafile,1);
listfile:= fopen(listfile_name,stdlist,write);
if ccode <> CCE then error_handler(listfile,2);

end; {end open_files }

procedure read_user_label;
{**}
{procedure read_user_label reads the user label located in the }
{user-defined label portion of the data file, then prints it to $STDLIST.}
{**}

begin
freadlabel(datafile,buffer,-80);
if ccode <> CCE then error_handler(datafile,101);
fwrite (listfile,buffer,-80,0);
if ccode <> CCE then error_handler(listfile,102);

end; {end read_user_label }

A-30 HP Pascal/XL Program Examples

procedure read_from_datafile;
{**}
{ procedure read_from_data_file first calls procedure read_user_label to }
{ print the label to $STDLIST, then enters a loop to select only even }
{ numbered records from the data file and writing them to $STDLIST. }
{**}

var end_of_file: boolean;

begin

end_of_file:= false; {initialize loop control }
record_num:= 0;

{ enter loop, random access read even }
{ numbered record, freadseek next }
{ selection, then sequential write }
{ to $STDLIST, till EOF. }

while not end_of_file do
begin

freaddir(datafile,buffer,-80,record_num);
if ccode <> CCE then error_handler(datafile,103);
record_num:= record_num + 2;
freadseek(datafile,record_num);
if ccode = CCL then error_handler(datafile,104) else
if ccode = CCG then end_of_file:= true;
fwrite(listfile,buffer,-80,0);
if ccode <> CCE then error_handler(listfile,105);

end;
end; {end read_from_datafile }

procedure close_files;
{**}
{ procedure close_files calls the fclose intrinsic twice to close bot }
{ files previously opened by procedure open_files. }
{**}

begin
fclose(datafile,0,0);
if ccode <> CCE then error_handler(datafile,1001);
fclose(listfile,0,0);
if ccode <> CCE then error_handler(listfile,1002);

end;

{**}
{ MAIN PROGRAM }
{**}

HP Pascal/XL Program Examples A-31

begin
open_files; { STEP 1 }
read_user_label; { STEP 2 }
read_from_datafile; { STEP 3 }
close_files; { STEP 4 }

end. {end main program }

A-32 HP Pascal/XL Program Examples

Program Example A-5

This HP Pascal/XL program example illustrates how you can update a particular record of a
shared data �le. In addition, this program example uses �le system locking intrinsics (FLOCK,
FUNLOCK) to ensure exclusive access to the �le while the update occurs.

Program Algorithm

The task speci�ed above is accomplished by following the steps described below. Also indicated
are the intrinsics used to accomplish �le access tasks and the name of the procedure where the
task is accomplished:

1. Open (HPFOPEN) three �les, $STDLIST, $STDIN, and a permanent disk �le containing data to
update (see procedure open_file).

2. In a loop, lock (FLOCK) a shared data �le; read (FREAD) data from disk �le; write (FWRITE)
data to $STDLIST; read (FREAD) new data from $STDIN; update (FUPDATE) shared data �le
with data read from $STDIN. The loop ends when EOF of disk �le is reached (see procedure
update_file).

3. Close (FCLOSE) the disk �le (see procedure close_disk_file); let normal program
termination close the other �les.

If a �le system intrinsic returns an unsuccessful condition code, procedure handle_file_error
is called to print �le information (PRINTFILEINFO) and then abort (QUIT) the program.

HP Pascal/XL Program Examples A-33

Source code listing

Example A-5. Updating a Shared File

$standard_level 'hp3000'$
$lines 100$
$code_offsets on$
$tables on$
$list_code on$
program access_file3(input,output);

{**}
{ DECLARATION PART }
{**}

const
ccg = 0; { condition code warning }
ccl = 1; { condition code warning }
cce = 2; { condition code successful }

{ HPFOPEN item values}
permanent = 1;
read = 0;
write = 1;
update = 5;
save = 1;
shared = 4;
locking = 1;

type
pac256 = packed array [1..256] of char;
pac80 = packed array [1..80] of char;

{ HPFOPEN status type }
status_type = record

case integer of
0 : (info : shortint;

subsys : shortint);
1 : (all : integer);

end;

var
disk_file : integer;
filename : pac80;
std_list : integer;
std_in : integer;
outbuf : pac80;

function FREAD: shortint; intrinsic; { sequential reads }
procedure HPFOPEN; intrinsic; { open files }
procedure FCLOSE; intrinsic; { close files }
procedure FWRITE; intrinsic; { sequential writes }
procedure FWRITEDIR; intrinsic; { random access writes }
procedure FUNLOCK; intrinsic; { unlock locked file }
procedure PRINTFILEINFO; intrinsic; { use in error handler }
procedure FLOCK; intrinsic; { lock file }

A-34 HP Pascal/XL Program Examples

procedure FUPDATE; intrinsic; { update record }
procedure QUIT; intrinsic; { use in error handler }

HP Pascal/XL Program Examples A-35

procedure handle_file_error
(

file_num : shortint;
quit_num : shortint

);

{**}
{ procedure handle_file_errorPrints the file information on the }
{ session/job list device. }
{**}

begin
PRINTFILEINFO (file_num);
QUIT (quit_num);

end; { end handle_file_error }
procedure open_file

(
var file_num : integer;

file_name : pac80;
domain : integer;
access : integer;
excl : integer
lockable : integer;

);

{**}
{ procedure open_file is a generic file opening procedure that allows you}
{ to specify the designator, domain, access type, ASCII/binary, and }
{ exclusive options for the file. }
{**}

const
{**define HPFOPEN item numbers**}

formal_designator_option = 2;
domain_option = 3;
access_type_option = 11;
ascii_binary_option = 53;
exclusive_option = 13;
dynamic_locking_option = 12;

var
ascii : integer;

{define scratch variables }

msgbuf : pac80;
status : status_type;

begin
ascii := 1;

HPFOPEN (file_num, status, formal_designator_option, file_name,
domain_option, domain,
ascii_binary_option, ascii,

A-36 HP Pascal/XL Program Examples

access_type_option, access,
exclusive_option, excl
dynamic_locking_option, lockable);

if status.all <> 0 then
handle_file_error (file_num, 1);

HP Pascal/XL Program Examples A-37

end; { end open_file }

procedure update_file
(

old_discfile : integer
);

{**}
{ procedure update_file pdates records in the disk file with the }
{ replacement read from the stdin. }
***}

var
dummy : integer;
inbuf : array [1..80] of char;
end_of_file : boolean;
read_length : integer;

begin
{Lock the file and suspend }

end_of_file := false;
FLOCK (old_discfile,1);
if ccode = ccl then
handle_file_error (old_discfile, 3);

repeat

{ Read record from disk file, write employee name to $stdlist }
{ and read corresponding record number from $stdin and update }
{ the disk file with the input record and unlock disk file. }

read_length := FREAD (old_discfile, inbuf, 128);
if ccode = ccl then

handle_file_error (old_discfile, 4)
else

if ccode = ccg then
end_of_file := true

else
begin

FWRITE (std_list, inbuf, -20, octal('320'));
if ccode <> cce then
handle_file_error (std_list, 5);

dummy := FREAD (std_in, inbuf[20], 5);
if ccode = ccl then
handle_file_error (std_in, 6)

else
if ccode = ccg then

end_of_file := true;
FUPDATE (old_discfile, inbuf, 128);
if ccode <> cce then
handle_file_error (old_discfile, 7);

end
until end_of_file;

FUNLOCK (old_discfile); { final unlock of disk file }
if ccode <> cce then

A-38 HP Pascal/XL Program Examples

handle_file_error (file_num, 2);
end; { end update_file }

HP Pascal/XL Program Examples A-39

procedure close_disk_file
(

file_num : integer;
disp : integer

);

{***}
{procedure close_disk_file is a generic file closing procedure that }
{allows you to specify the final disposition of the file you are closing. }
{***}

var
msgbuf : pac80;

begin
FCLOSE (file_num, disp, 0);
if ccode = ccl then
handle_file_error (file_num, 8);

end; { end close_disk_file }

{***}
{ MAIN PROGRAM }
{***}

begin
filename := '&$stdlist&';
open_file (std_list, filename, permanent,write,0,0); { STEP 1}
filename := '&$stdin&';
open_file (std_in, filename, permanent,read,0,0); { STEP 1}
filename := '&dataone&';
open_file (disk_file, filename, permanent,update,shared,locking);{STEP 1}
update_file(disk_file); { STEP 2}
close_disk_file(disk_file, save); { STEP 3}

end. { end main program }

A-40 HP Pascal/XL Program Examples

Index

1

1090 �le code, 2-40

A

aborting NOWAIT I/O, 2-2
access
exclusive, 12-2
modes, 13-19
multi , 12-1{5
random, 8-1{3, 9-1, 9-3{4
restricting, 13-19
restricting by type, 13-21
restricting by user, 13-21
semi-exclusive, 12-3
sequential, 8-1{3, 9-1, 9-2{3
shared, 12-3
simultaneous, 12-1

access control de�nitions (ACD), 13-1{18
accessing
�les, 2-1, 2-19, 2-22
�les, remote, 3-11

account security, 13-22
ACD
adding, 13-8
changes, logging, 13-17
commands related to, 13-3, 13-4
copying, 13-7
creating, 13-4
deleting, 13-8
device owners, 13-2
�le owners, 13-1
intrinsics related to, 13-3, 13-4
listing, 13-6
managing, 13-3, 13-4
migrating, 13-8
modes, 13-2
modifying, 13-8
operation, 13-2
owners, 13-1
pairs, 13-2
preserving, 13-4
replacing, 13-8
scope, 13-1
traditional security, and, 13-1

ACD (access control de�nitions), 13-1{18
adding

ACDs, 13-8
altering �le use, 2-1
ASCII
�les, 2-32, 2-41
transmission, 2-41

B

backreferencing �les, 3-4
binary
�les, 2-32, 2-41
transmission, 2-41

BOT marker, 7-7
boundaries, half-word, 2-32
BUILD command, 2-1, 2-21, 2-32, 2-34, 3-3

C

changing
�le domains, 4-3
�le security, 13-26

characteristics, �les, 2-22
circular �les, 2-31
class, volume, 2-34
closing
�les, 6-1{6
permanent �les, 6-4
tape �le, 6-5
tape �les, 6-5

command
BUILD, 2-1, 2-21, 2-32, 2-34, 3-3
FILE, 2-1, 2-22, 2-32, 2-34, 3-4
HELLO (remote), 3-11
LISTEQ, 14-5
LISTFILE, 14-2{5
RENAME, 3-4
SETVAR, 3-10

command interpreter variables and
expressions, 3-10

commands
ACDs, and, 13-3, 13-4

comparing record types, 2-29
con�guration, system, logging, 13-10
console
requesting reply, 8-5
writing messages to, 8-5{6

copying
ACDs, 13-7

Index-1

creating
ACDs, 13-4
�les, 2-1

D

data elements, 1-1
data transfer, 1-1, 7-1{8
intrinsics, 7-3
multiple records, 7-5

default record size
�les, 2-33
line printer �les, 2-33
magnetic tape �les, 2-33
plotter �les, 2-33
programmable controller �les, 2-33
synchronous single-line controller �les,

2-33
terminal �les, 2-33

de�ning �le characteristics, 2-1, 2-19
deleting
ACDs, 13-8
�les, 4-3

device �les, 1-3, 5-11
jobs and, 1-3
opening, 5-10
sessions and, 1-3

device owners
acds, 13-2

devices
ASCII transmission, 2-41
binary transmission, 2-41
EBCDIC transmission, 2-41
�les, 1-3
peripheral, 1-1, 1-2
programs, 1-2
shareable, 2-1, 2-19
spooled, 1-3

directories, searching, 4-3
DISC= parameter
with log �les, 2-40

disk �les, 1-3, 2-26
closing, 6-2{5
opening, 5-3{7

disk volume
specifying restrictions, 2-34

displaying
�le equations, 14-5
�le error information, 14-9
�le information, 14-1{12

domains
changing, 4-3
new �les, 4-1
permanent �les, 4-2
temporary �les, 4-1

duplicative �les, 3-7, 14-9

E

EBCDIC transmission, 2-41
environment, remote, 3-11
EOT marker, 7-7
error check procedure, writing, 14-12
exclusive access, 12-2
expressions, 3-10
variables within �le designators, 3-10

F

FCHECK intrinsic, 14-9
FCLOSE intrinsic, 6-1{6
FCONTROL intrinsic, 7-6
FERRMSG intrinsic, 14-10
FFILEINFO intrinsic, 14-7
FGETINFO intrinsic, 14-7
�le
reading from labeled tape, 9-7
reading from tape, 9-6{7

�le codes
1090, 2-40
LOG, 2-40
reserved, 2-35{40
specifying, 2-34{40

FILE command, 2-1, 2-22, 2-32, 2-34, 3-4
contradicting HPFOPEN/FOPEN, 2-25
�le equations, 2-22
limitations, 2-22, 2-26

�le designators, 3-1{12
$NEWPASS, 3-6, 3-7, 3-8, 3-9
$NULL, 3-5, 3-6
$OLDPASS, 3-6, 3-7, 3-8, 3-10
$STDIN, 3-5, 3-6
$STDINX, 3-5, 3-6
$STDLIST, 3-5, 3-6

�le domains, 4-1{4
changing, 4-3
features, 4-2
new �les, 4-1
permanent �les, 4-2
permitted, 4-2
temporary �les, 4-1

�le equations, 2-1, 3-4, 3-10
displaying, 14-5
FILE command, 2-22

�le errors
displaying information, 14-9

�le owners
acds, 13-1

FILE parameters, 2-22{25
mapped to HPFOPEN and FOPEN, 2-22{25

�les, 1-1
accessing, 2-1, 2-19, 2-22, 3-2, 3-3
accessing remote, 3-11

Index-2

altering use, 2-1
ASCII, 2-32, 2-41
attributes, 2-1
backreferencing, 3-4
binary, 2-32, 2-41
changing security, 13-26
characteristics, 2-22
circular, 2-31
closing, 6-1{6
closing as permanent, 6-2
compatibility (pre- and post-900 series),

2-32{33
creating, 2-1, 3-3
creating with BUILD, 2-21
creating with FOPEN, 2-19
creating with HPFOPEN, 2-1
default record sizes, 2-33
de�ning characteristics, 2-1, 2-19
deleting, 4-3
designators, 3-1{12
device-dependent characteristics, 5-10
devices, 1-3, 5-11
devices, opening, 5-10
disc, 2-26
disk, 1-3
displaying information, 14-1{12
domains, 4-1{4
duplicative, 3-7, 14-9
errors, displaying, 14-9
exclusive access, 12-2
getting information, 14-1{12
half-word boundaries, 2-32
input, 1-2
interactive, 3-7, 14-9
jobs and sessions, 1-3
KSAM, 2-30
listing, 4-4
lockwords, 3-3{4
magnetic tape, 2-26
mapped access, 11-1{5
mapped, opening, 11-3
message, 2-31
multi access, 12-1{5
multi access, global, 12-4
names, 1-2, 3-2
new versus $NEWPASS, 3-9
nonshareable, 1-3
old versus $OLDPASS, 3-10
opening, 5-1{15
output, 1-2
overrides, 2-25
parsing designators, 3-11
passed, 3-7{10
passing, 3-7
peripheral devices, 1-2, 1-3, 2-26

permanent, 6-4, 14-2
prede�ned, 3-4
quali�ed, 3-3
random access, 8-3
reading from, 9-1{7
records, 1-1
record structure, 1-1, 2-1
referencing, 3-2
reserved codes, 2-35{40
rewinding, 7-6
RIO, 2-30
saving, 4-3
searchign directories, 4-3
security, 13-1{27
security, ACD, 13-1{18
security, traditional, 13-19{27
semi-exclusive access, 12-3
sequential access, 8-2
shared, 1-3, 12-1{5
sharing, hazards of, 12-5
simultaneous access, 12-1
specifying codes, 2-34{40
specifying type, 2-30{31
spooled (devices), 1-3
standard, 2-30
$STDIN, 9-4{6
$STDIN, opening, 5-8
$STDINX, 9-4{6
$STDLIST, opening, 5-9
suspending and restoring security, 13-27
system-de�ned, 3-1, 3-5{10, 5-7
system hierarchy of overrides, 5-2
tape, 5-12, 5-14, 6-5
temporary, 3-7, 14-5
types, 1-3
updating, 10-1{3
user-de�ned, 3-1, 3-2{4
validating designators, 3-11
writing to, 8-1{9

�le system interface, 1-1
FINFO function, 14-6
FLABELINFO intrinsic, 14-8
FLOCK intrinsic, 10-1, 12-5
FOPEN intrinsic, 2-1, 2-19{21, 2-32, 2-34,

3-3, 3-10, 3-11, 5-1, 7-4
compared to HPFOPEN, 5-1{3
HPFOPEN equivalents, 2-19{21
limitations, 2-26
options mapped to HPFOPEN, 2-19{21

formats
comparison of, 2-29
�xed-length, 2-26, 2-27
records, 2-26, 2-29
storage, 2-41
unde�ned-length, 2-26, 2-29

Index-3

variable-length, 2-26, 2-28
FPARSE intrinsic, 3-11
FPOINT intrinsic, 7-6
FREADDIR intrinsic, 7-3, 9-3, 9-4
FREAD intrinsic, 2-2, 7-3, 9-2, 9-4
NOWAIT I/O, 2-2

FREADSEEK intrinsic, 9-4
FRELATE intrinsic, 3-7, 14-9
FSPACE intrinsic, 7-6
function FINFO, 14-6
FUNLOCK intrinsic, 10-1, 12-5
FUPDATE intrinsic, 7-3, 10-1
FWRITE intrinsic, 2-2, 7-3, 8-4
NOWAIT I/O, 2-2

FWRITELABEL intrinsic, 8-8

G

getting �le information, 14-1{12
global multi access, 12-4
group security, 13-24

H

half-word boundaries
�les, 2-32

hazards of �le sharing, 12-5
HELLO command (remote), 3-11
hierarchy
overrides, 2-25

HPACDINFO intrinsic, 13-3
HPFOPEN intrinsic, 2-1, 2-1{19, 2-32, 2-34,

3-10, 3-11, 5-1, 7-4, 11-1, 13-3
compared to FOPEN, 5-1{3
�les, 2-2
itemnum values, 2-2{19
item values, 2-2{19
limitations, 2-26
mnemonics, 2-2{19
options, 2-2{19

I

increasing I/O performance, 9-4
input
�les, 1-2
NOWAIT I/O, 2-1
sets, 3-6{7
standard, 3-5

interactive �les, 3-7, 14-9
interface, �le system, 1-1
intrinsic
FCHECK, 14-9
FCLOSE, 6-1{6
FCONTROL, 7-6
FERRMSG, 14-10
FFILEINFO, 14-7
FGETINFO, 14-7

FLABELINFO, 14-8
FLOCK, 10-1, 12-5
FOPEN, 2-1, 2-19{21, 2-32, 2-34, 3-10,

3-11, 5-1, 7-4
FPARSE, 3-11
FPOINT, 7-6
FREAD, 2-2, 7-3, 9-2, 9-4
FREADDIR, 7-3, 9-3, 9-4
FREADSEEK, 9-4
FRELATE, 3-7, 14-9
FSPACE, 7-6
FUNLOCK, 10-1, 12-5
FUPDATE, 7-3, 10-1
FWRITE, 2-2, 7-3, 8-4
FWRITELABEL, 8-8
HPACDINFO, 13-3
HPACDPUT, 13-3
HPFOPEN, 2-1, 2-1{19, 2-32, 2-34, 3-3,

3-10, 3-11, 5-1, 7-4, 11-1
PRINT, 8-4
PRINTFILEINFO, 14-10
PRINTOP, 8-5
PRINTOPREPLY, 8-5
READ, 9-4
READX, 9-4

intrinsics
ACDs, and, 13-3, 13-4
data transfer, 7-3

IODONTWAIT, 2-2
I/O performance, increasing, 9-4
IOWAIT, 2-2

J

jobs
devices �les and, 1-3

K

KSAM �les, 2-30

L

labeled tape, 5-14, 8-8
reading from, 9-7

limitations
FILE command, 2-22, 2-26
�le designators, 3-2
�le names, 3-2
FOPEN intrinsic, 2-26
HPFOPEN intrinsic, 2-26
NOWAIT I/O, 2-1, 2-2

line printer �les
default record size, 2-33

LISTEQ command, 14-5
LISTFILE command, 14-2{5
listing
ACDs, 13-6

Index-4

�les, 4-4
lockwords
changing, 3-4
�les, 3-3{4
removing, 3-4

LOG �le code, 2-40
log �les
DISC= parameter and, 2-40
specifying number of records, 2-40

logging
ACD changes, 13-17
�le security events, 13-15
password changes, 13-15
printer access failure, 13-11
process creation, 13-14
restores, 13-10
stream initiation, 13-12
system events, 13-9
system logging con�guration, 13-10
user, 13-14
user logging, 13-13

long-mapped access, 11-3

M

magnetic tape, 7-7{8
default (�le) record size, 2-33
�les, 2-26, 5-12
marker, 7-7
writing to, 8-6{9

managing ACDs, 13-3, 13-4
mapped access
advantages, 11-2
long, 11-3
opening �les, 11-3
restrictions, 11-1{2
short, 11-2
to �les, 11-1{5

marker
BOT, 7-7
EOT, 7-7
magnetic tape, 7-7

message �les, 2-31
messages
writing to the console, 8-5{6

migrating ACDs, 13-8
modes
access, 13-19
ACDs, 13-2

modifying
ACDs, 13-8

moving a record pointer, 7-5
multi access, 12-1{5
global, 12-4
restrictions, 12-1

multiple records, data transfer, 7-5

N

names of �les, 1-2
networks, NOWAIT I/O, 2-2
new �les
devices, 5-11
domains, 4-1
�le domain, 4-1

$NEWPASS, 3-6, 3-7, 3-8
versus new �le, 3-9

nonshareable �les, 1-3
NOWAIT I/O, 2-1{19
aborting, 2-2
FREAD intrinsic, 2-2
FWRITE intrinsic, 2-2
input, 2-1
intrinsics, 2-2
limitations, 2-1, 2-2
networks, 2-2
output, 2-1

$NULL, 3-5, 3-6

O

$OLDPASS, 3-6, 3-7, 3-8
versus old �le, 3-10

opening
device �les, 5-10
�les, 5-1{15
�les, mapped, 11-3
$STDIN, 5-8
$STDLIST, 5-9
system-de�ned �les, 5-7{10
tape �les, 5-12{15

operation
ACDs, 13-2

options
FOPEN intrinsic, 2-19{21
HPFOPEN intrinsic, 2-2{19

output
�les, 1-2
NOWAIT I/O, 2-1
sets, 3-6{7
standard, 3-5

overrides
FILE contradicting HPFOPEN/FOPEN, 2-25
�les, 2-25
�le system hierarchy, 5-2
hierarchy, 2-25

owners
acds, 13-1

Index-5

P

pairs
ACDs, 13-2

parsing �le designators, 3-11{12
passed �les, 3-7{10
passwords
changes, logging, 13-15

peripheral devices, 1-1
�les, 1-2, 1-3, 2-26

permanent �les
closing, 6-4
devices, 5-11
domains, 4-2
�le domain, 4-2

plotter �les
default record size, 2-33

pointing to a record, 7-6
prede�ned �les, 3-4
preserving ACDs, 13-4
printer
access failure, logging, 13-11

PRINTFILEINFO intrinsic, 14-10
PRINT intrinsic, 8-4
PRINTOP intrinsic, 8-5
PRINTOPREPLY intrinsic, 8-5
procedure
�le system error check, 14-12

process
creation, logging, 13-14

programmable controller �les
default record size, 2-33

programs
devices, 1-2

Q

quali�ed �le names, 3-3

R

random access, 8-1{3, 9-1, 9-3{4
record selection, 7-3

reading from
�les, 9-1{7
$STDIN, 9-4{6
$STDINX, 9-4{6
tapes, 9-6{7

READ intrinsic, 9-4
READX intrinsic, 9-4
record pointers
moving, 7-5

records
comparison of, 2-29
default sizes, 2-33
�les and, 1-1
�rst, rewinding to, 7-6
�xed-length, 2-26, 2-27

formats, 2-26
pointers, 7-1{2
pointing to, 7-6
selection, 7-2{4
selection, random access, 7-3
selection, RIO access, 7-4
selection, sequential access, 7-3
selection, update access, 7-3
spacing forward or backward, 7-6
specifying size, 2-32{33
structure, 1-1, 2-1
unde�ned-length, 2-26, 2-29
variable-length, 2-28

remote environment, 3-11
REMOTE HELLO, 3-11
RENAME command, 3-4
replacing
ACDs, 13-8

requesting console reply, 8-5
reserved �le codes, 2-35{40
restore
logging, 13-10

restoring security, 13-27
restricting access, 13-19
by type, 13-21
by user, 13-21

restrictions
mapped access, 11-1{2
multi access, 12-1
sharing �les, 12-1

rewinding �les, 7-6
RIO
access, record selection, 7-4
�les, 2-30

S

saving �les, 4-3
scope
ACDs, 13-1

searching directories, 4-3
security
account level, 13-22
changing, 13-26
�le level, 13-25
�les, 13-1{27
group level, 13-24
logging �le security events, 13-15
restoring, 13-27
suspending, 13-27
traditional, 13-19{27

semi-exclusive access, 12-3
sequential access, 8-1{3, 9-1, 9-2{3
�les, 8-2
record selection, 7-3

sessions

Index-6

device �les and, 1-3
sets
input, 3-6{7
output, 3-6{7
volume, 2-34

SETVAR command, 3-10
shared
access, 12-3
devices, 2-1, 2-19
�les, 1-3

sharing �les, 12-1{5
hazards, 12-5
restrictions, 12-1

short-mapped access, 11-2
specifying
disk volume restrictions, 2-34
�le codes, 2-34{40
�le types, 2-30{31
record format, 2-26
record size, 2-32{33
storage format, 2-41

specifying �le domain, 4-1{4
spooled devices, 1-3
spooling
console operator, 1-3
user, 1-3

standard
�les, 2-30
input �les, 3-5
output �les, 3-5

$STDIN, 3-5, 3-6
opening, 5-8
reading from, 9-4{6

$STDINX, 3-5, 3-6
reading from, 9-4{6

$STDLIST, 3-5, 3-6
opening, 5-9
writing to, 8-4

$STDLIST, opening
�les, 5-9

storage formats, 2-41
specifying, 2-41

stream
initiation, logging, 13-12

suspending security, 13-27
synchronous single-line controller �les
default record size, 2-33

system
events, logging, 13-9

system-de�ned �les, 3-1, 3-5{10, 5-7
designators, 3-5

opening, 5-7{10

T

tape
labeled, 8-8
unlabeled, 8-7

tape �les
closing, 6-5
magnetic, 5-12
opening, 5-12{15
reading from, 9-6{7

temporary �les
domains, 4-1

terminal �les
default record size, 2-33

traditional �le security, 13-19{27
transmission
ASCII and binary, 2-41
EBCDIC, 2-41

types of �les, 1-3

U

unde�ned-length formats, 2-26, 2-29
unlabeled tape, 8-7
update access
record selection, 7-3

updating �les, 10-1{3
user
logging, 13-14
logging, logging, 13-13
spooling, 1-3

user-de�ned �les, 3-1, 3-2{4

V

validating �le designators, 3-11{12
variable-length formats, 2-26, 2-28
variables, 3-10
expressions within �le designators, 3-10

volume
class, 2-34
set, 2-34
single, 2-34

W

writing �le system error check procedure,
14-12

writing to
�les, 8-1{9
magnetic tape, 8-6{9
$STDLIST, 8-4

Index-7

