
HP 3000 MPE/iX Computer Systems

TurboIMAGE/XL

Database Management System

Reference Manual

ABCDE

HP Part No. 30391-90001

Printed in U.S.A. August 1997

Sixth Edition

E0897

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.
This document contains proprietary information which is protected
by copyright. All rights reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c1985, 1987, 1989, 1990, 1992, 1994, 1997 by

Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DOD U.S. Government Departments and
Agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

Printing History

The following table lists the printings of this document, together with the respective release
dates for each edition. The software version indicates the version of the software product
at the time this document was issued. Many product releases do not require changes to the
document. Therefore, do not expect a one-to-one correspondence between product releases
and document editions.

Edition Date Software Version

First Edition December 1987 30391C.00.00

Second Edition October 1989 30391C.00.80

Third Edition December 1990 30391C.03.08

Fourth Edition June 1992 30391C.04.00

Fifth Edition April 1994 30391C.05.04

Sixth Edition August 1997 30391C.07.04

iii

iv

Preface

This manual describes the TurboIMAGE/XL Database Management System for the HP 3000
Series 900 computers. It is the reference document for anyone designing, creating, and
maintaining a database and for application programmers writing database access programs.

TurboIMAGE/V users will �nd information and instructions on how to move from
TurboIMAGE/V to TurboIMAGE/XL in appendix H.

Designers of TurboIMAGE/XL databases will �nd knowledge of the HP 3000 MPE/iX
operating and �le systems useful in determining the amount of system resources, such as
disk space and computation time, needed to maintain a speci�c database. Because access to
TurboIMAGE/XL databases requires the use of a host programming language, application
programmers need familiarity with at least one of the programming languages available on the
HP 3000 computer: BBASIC, C, COBOL II, FORTRAN 77, Pascal, or RPG.

Note In this manual, a word is a 32-bit storage unit and a halfword is a 16-bit
storage unit. One byte is 8 bits.

MPE/iX

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in a series of
forward-compatible operating systems for the HP 3000 line of computers.

In Hewlett-Packard documentation and in talking with HP 3000 users, you will encounter
references to MPE XL, the direct predecessor of MPE/iX. MPE/iX is a superset of MPE XL.
All programs written for MPE XL will run without change under MPE/iX, and you can
continue to use MPE XL system documentation.

You may encounter references to MPE V, an HP 3000 operating system that is not based on
the PA-RISC architecture. MPE V software can be run on the PA-RISC (Series 900) HP 3000
computers in what is known as compatibility mode (CM).

v

What's New in this Edition

TurboIMAGE/XL version C.07.04 or later includes the following enhancements:

Jumbo Data Sets

By using the JUMBO option of $CONTROL, data sets can be greater than 4 GBytes.

B-Tree Indices

Provides the capability for wildcard and range searches. A new chapter 11 was added on this
topic.

Dynamic Roll-Back of Multiple Database Transactions

This enhancement is an extension of the dynamic roll-back (DBX) feature to include multiple
databases.

Dynamic Master Data Set Expansion

Dynamic master data set expansion allows a master data set to be expanded dynamically
(up to a new maximum capacity speci�ed in the root �le) during DBPUT when the data
set space is exhausted. To facilitate the dynamic master data set expansion enhancement,
DBSCHEMA, DBUTIL, and some of the TurboIMAGE/XL intrinsics are enhanced.

Support for TurboSTORE/iX 7x24 True-Online Backup in DBRECOV

TurboSTORE/iX 7x24 True-Online Backup can be used to backup the database even when
open if the option ONLINE=START or ONLINE=END is used. DBRECOV will recover such
a database using log�les.

Native-mode Utilities

DBUTIL and DBSCHEMA are now native-mode utility programs.

New Modes for DBINFO and DBFIND

DBINFO, DBFIND, and DBCONTROL have additonal modes for handling B-Tree index �les
and master data set expansion.

New DBUTIL Commands and Options

These new DBUTIL commands are added: DETACH, REDO, DO, LISTREDO, ADDINDEX,
DROPINDEX, and REBUILDINDEX. A new INDEXED option is added for the SHOW
command.

Enhanced Database Integrity

The DBPUT and DBUPDATE intrinsics check the integrity of neighboring entries to detect
possible data corruption before inserting into a chain.

Scalability

TurboIMAGE/XL is enhanced to increase the concurrency of modi�cation intrinsics, DBPUT,
DBDELETE, and DBUPDATE (Critical Item Update feature ON).

vi

How to Use This Manual

The information in this manual is presented in the order you will use the various
TurboIMAGE/XL modules. A text discussion of the overall purpose of a module and
de�nitions of terms used to describe the module precede the reference speci�cations. Each
chapter assumes a knowledge of the material presented in preceding chapters.

Chapter 1 Introduces the TurboIMAGE/XL Database Management System.

Chapter 2 Describes database concepts useful for new users of the TurboIMAGE/XL
database structure.

Chapter 3 Discusses design implementations and includes a schema listing for the
sample database used throughout the book.

Chapter 4 Provides a discussion on using the database. It is useful for both new and
existing TurboIMAGE/XL users.

Chapter 5 Contains the TurboIMAGE/XL procedures with syntax and examples.

Chapter 6 Provides executable sample programs in C, COBOL II, and RPG;
provides sample routines in Pascal and FORTRAN 77.

Chapter 7 Discusses database recovery and logging options.

Chapter 8 Contains the TurboIMAGE/XL utilities with syntax and examples.

Chapter 9 Provides information about accessing a database residing on another
MPE/iX or MPE V system. Use this chapter if your system has Network
Services (NS3000 or NS3000/XL) capability.

Chapter 10 Presents the internal structure of TurboIMAGE/XL elements and
the methods used to perform certain functions. You do not need to
understand all the material in this chapter to use TurboIMAGE/XL, but
refer to it as needed.

Chapter 11 Discusses the key points for the B-Tree index enhancement that is new
with this edition. It addresses the changes in TurboIMAGE/XL utilities
and intrinsics. It explains how to create and maintain B-Tree indices and
perform searches with DBFIND.

Appendix A Contains a description of the error messages issued by the various
TurboIMAGE/XL modules.

Appendix B Provides additional information about sharing the database.

Appendix C Contains a summary of important considerations for designing a database.

Appendix D Contains information about the special locking (multiple RIN) capability.

Appendix E Contains TurboIMAGE/XL log record formats to aid in interpreting log
and user recovery �les.

Appendix F Contains MPE/iX log record formats to aid in interpreting log and user
recovery �les.

Appendix G Provides a quick reference guide of recovery and logging processes.

Appendix H Contains a detailed discussion of the di�erences between TurboIMAGE/V
and TurboIMAGE/XL.

vii

Other Information Sources

You may need to consult the following manuals:

Migration Process Guide (30367-90007)

MPE/iX Intrinsics Reference Manual (32650-90028)

MPE/iX Commands Reference Manual (32650-90003)

Native Language Programmer's Guide (32650-90022)

NLS/3000 Reference Manual (32214-90001)

Query/V Reference Manual (30000-90042)

NS3000/XL User/Programmer Reference Manual (36920-90001)

TurboIMAGE/XL Database Management System DBChange Plus User's Guide
(36386-90001)

TurboIMAGE/XL Database Management System DBChange Plus Technical Addendum for
MPE/iX Release 4.0 (36386-90005)

Volume Management Reference Manual (32650-90045)

Training

For current information on available training courses, see the HP Education Catalog .

viii

Conventions

UPPERCASE In a syntax statement, commands and keywords are shown in
uppercase characters. The characters must be entered in the order
shown; however, you can enter the characters in either uppercase or
lowercase. For example:

COMMAND

can be entered as any of the following:

command Command COMMAND

It cannot, however, be entered as:

comm com_mand comamnd

italics In a syntax statement or an example, a word in italics represents a
parameter or argument that you must replace with the actual value.
In the following example, you must replace �lename with the name
of the �le:

COMMAND �lename

punctuation In a syntax statement, punctuation characters (other than brackets,
braces, vertical bars, and ellipses) must be entered exactly as shown.
In the following example, the parentheses and colon must be entered:

(�lename):(�lename)

underlining Within an example that contains interactive dialog, user input and
user responses to prompts are indicated by underlining. In the
following example, yes is the user's response to the prompt:

Do you want to continue? >> yes

{ } In a syntax statement, braces enclose required elements. When
several elements are stacked within braces, you must select one. In
the following example, you must select either ON or OFF:

COMMAND

�
ON

OFF

�

[] In a syntax statement, brackets enclose optional elements. In the
following example, OPTION can be omitted:

COMMAND �lename [OPTION]

When several elements are stacked within brackets, you can select
one or none of the elements. In the following example, you can select
OPTION or parameter or neither. The elements cannot be repeated.

COMMAND �lename

�
OPTION

parameter

�

ix

Conventions (continued)

[. . .] In a syntax statement, horizontal ellipses enclosed in brackets
indicate that you can repeatedly select the element(s) that appear
within the immediately preceding pair of brackets or braces. In the
example below, you can select parameter zero or more times. Each
instance of parameter must be preceded by a comma:

[,parameter][...]

In the example below, you only use the comma as a delimiter if
parameter is repeated; no comma is used before the �rst occurrence
of parameter :

[parameter][,...]

| . . . | In a syntax statement, horizontal ellipses enclosed in vertical bars
indicate that you can select more than one element within the
immediately preceding pair of brackets or braces. However, each
particular element can only be selected once. In the following
example, you must select A, AB, BA, or B. The elements cannot be
repeated.�

A

B

�
| . . . |

. . . In an example, horizontal or vertical ellipses indicate where portions
of an example have been omitted.

t In a syntax statement, the space symbol t shows a required blank.
In the following example, parameter and parameter must be
separated with a blank:

(parameter)t(parameter)

� � The symbol � � indicates a key on the keyboard. For example,
�RETURN� represents the carriage return key or �Shift� represents the
shift key.

�CTRL�character �CTRL�character indicates a control character. For example, �CTRL�Y
means that you press the control key and the Y key simultaneously.

x

Contents

1. Introduction
General Overview . 1-1
Data Security . 1-1
Rapid Data Retrieval and Formatting 1-2
Program Development . 1-2
Program Maintenance . 1-2
Program File Independence . 1-3
File Consolidation . 1-3
Special Information Needs . 1-3

Database Personnel . 1-4
How to Use TurboIMAGE/XL . 1-5

2. Database Structure and Protection
Database Elements . 2-1
Data Items . 2-1
Data Entries . 2-1
Data Sets . 2-2

Data Set Types and Relationships . 2-4
Master Data Sets . 2-4
Automatic and Manual Masters 2-6
Manual versus Automatic Data Sets 2-6

Detail Data Sets . 2-7
Paths . 2-7
Primary Paths . 2-8
Sort Items . 2-8

Jumbo Data Sets . 2-9
The ORDERS Database . 2-11

Database Files . 2-13
Root File . 2-13
Data Files . 2-13
Media Record Length . 2-13
Blocks . 2-14

Protecting the Database . 2-15
Privileged File Protection . 2-15
Account and Group Protection . 2-15
De�ning Database Security . 2-15
User Classes and Passwords . 2-15
Read and Write Class Lists . 2-16
Write Access . 2-16
Update Access . 2-17
Read Access . 2-17
No Access . 2-17

Extended Utility Program Unconditional Messages Contents-1

Creator-Only Access . 2-17
Sample Read and Write Class Lists 2-17

Null and Absent Lists . 2-18
Database Access Modes and Data Set Write Lists 2-18
Granting a User Class Access . 2-19
User Classes and Locking . 2-24
Protection in Relation to Library Procedures 2-24
Protection Provided by the TurboIMAGE/XL Utilities 2-24

3. De�ning a Database
Database Description Language . 3-1
Language Conventions . 3-2
Schema Structure . 3-2

Password Part . 3-3
Item Part . 3-4
Data Item Length . 3-5
TurboIMAGE/XL and Program Language Data Types 3-6
Data Items of Type P . 3-8
Complex Numbers . 3-8
Business BASIC Decimal Numbers 3-8
QUERY/3000 and Data Types 3-8

Data Item Identi�ers . 3-9
Set Part . 3-10
Master Data Sets . 3-10
Detail Data Sets . 3-13
Master Key and Detail Search Items 3-16
Data Set Identi�ers . 3-16

Schema Processor Operation . 3-17
Creating the Text File . 3-18
The Database Creator . 3-19

Schema Processor Commands . 3-20
Continuation Records . 3-20

$PAGE . 3-21
$TITLE . 3-22
$CONTROL . 3-23
Selecting the Block Size . 3-24

Schema Processor Output . 3-25
Summary Information . 3-25
Schema Errors . 3-27
Schema Processor Example . 3-28

4. Using the Database
Opening the Database . 4-1
Database Control Blocks . 4-2
Passwords . 4-3
Database Access Modes . 4-3
Concurrent Database Access Modes 4-4
Database Operations . 4-5
Selecting a Database Access Mode 4-7
Locking within a Database Process 4-8

User Transaction Logging . 4-8

Contents-2 Extended Utility Program Unconditional Messages

Entering Data in the Database . 4-9
Sequence for Adding Entries . 4-9
Coordinating Additions to a Database 4-10
Access Mode and User Class Number 4-10
Key and Search Items . 4-11

Reading the Data . 4-12
Current Path . 4-12
Reading Methods . 4-12
Directed Access . 4-13
Serial Access . 4-14
Calculated Access . 4-15
Chained Access . 4-15
Sorted Sequential Access . 4-16

Rereading the Current Record . 4-17
Updating Data . 4-18
Access Modes and User Class Number 4-18
Updating Key, Search, and Sort Items 4-19
Critical Item Update . 4-19

Deleting Data Entries . 4-22
Sequence for Deleting Entries . 4-22
Coordinating Deletions from a Database 4-22
Access Modes and User Class Numbers 4-23

Using the Locking Facility . 4-24
Lock Descriptors . 4-24
How Locking Works . 4-25
Conditional and Unconditional Locking 4-26
Access Modes and Locking . 4-26
Automatic Masters . 4-27
Locking Levels . 4-27
Deciding on a Locking Strategy . 4-27
Choosing a Locking Level . 4-28
Locking at the Same Level . 4-28
Length of Transactions . 4-28
Locking During User Dialog . 4-28
Strong Locking and Dynamic Transactions 4-29

Choosing an Item for Locking . 4-29
Examples of Locking . 4-29
Add a New Customer . 4-30
Update Inventory Information 4-30
Insert a New Product with a New Supplier 4-30
Interactively Modify a Customer Account Order 4-31

Issuing Multiple Calls to DBLOCK 4-31
Releasing Locks . 4-32

TurboIMAGE/XL Logging Services 4-33
What User Logging Does . 4-33
How User Logging Works . 4-33
User Logging and Logical Transactions 4-34
Transaction Numbers . 4-35
User Logging and Process Suspension 4-35

Obtaining Database Structure Information 4-36
Special Uses of DBINFO . 4-37

Extended Utility Program Unconditional Messages Contents-3

Checking Subsystem Flag . 4-37
Closing the Database or a Data Set 4-37
Checking the Status of a Procedure 4-38
Interpreting Errors . 4-39
Abnormal Termination . 4-39

5. TurboIMAGE/XL Library Procedures
Using TurboIMAGE/XL Intrinsics 5-1
Intrinsic Numbers . 5-3
Database Protection . 5-3
Unused Parameters . 5-4
The Status Array . 5-4
Transactions . 5-4

DBBEGIN . 5-5
DBCLOSE . 5-8
DBCONTROL . 5-11
DBDELETE . 5-16
DBEND . 5-19
DBERROR . 5-23
DBEXPLAIN . 5-36
DBFIND . 5-39
DBGET . 5-46
DBINFO . 5-50
DBLOCK . 5-69
DBMEMO . 5-76
DBOPEN . 5-78
DBPUT . 5-84
DBUNLOCK . 5-90
DBUPDATE . 5-92
DBXBEGIN . 5-95
DBXEND . 5-98
DBXUNDO . 5-100

6. Host Language Access
Model Program . 6-2
ORDERS Database Schema . 6-2
Model Program Conventions . 6-5

ORDERS Database Model Program 6-7
Main Body of Program . 6-7
Opening the Database . 6-8
Retrieving All the Records on a Chain (with Item Level Locking) 6-9
Retrieving a Data Entry Using a Record Number 6-11
Retrieving Master Data Using a Key Value 6-12
Retrieving Data Serially (with Set Level Locking) 6-12
Adding an Entry . 6-13
Updating an Entry . 6-14
Deleting an Entry . 6-16
Rewinding a Data Set . 6-17
Obtaining Database Information 6-18
Obtaining Error Messages and Explanations 6-18
Closing the Database . 6-19

Contents-4 Extended Utility Program Unconditional Messages

C . 6-20
COBOL II . 6-26
FORTRAN 77 . 6-47
Pascal . 6-53
RPG . 6-59

7. Logging and Recovery
Database Utilities Used in Logging and Recovery 7-1

Recovery Options . 7-3
Logging and Recovery Considerations 7-5

Logical Transactions . 7-6
A De�nition . 7-6
Locking Requirements for Logical Transactions 7-9
Locking and Transaction Interdependence 7-10
Locking Examples . 7-11
Locking and Dynamic Transactions 7-11

Dynamic Roll-Back Recovery . 7-13
Intrinsic Level Recovery . 7-15
Logging Preparation . 7-16
Step 1|Checking MPE/iX Logging Con�guration 7-16
Step 2|Acquiring Logging Capability 7-16
Step 3|Logging to Tape or Disk 7-17
Step 4|Building a Log File for Logging to Disk 7-17
Step 5|Creating the Log Identi�er 7-18
Step 6|Setting the Log Identi�er 7-21
Step 7|Setting Flags for the Database Backup Copy 7-21
Step 8|Making a Database Backup Copy 7-23
Using DBSTORE . 7-23

TurboSTORE/iX 7x24 True-Online Backup 7-24
Bene�ts of TurboSTORE/iX 7x24 True-Online Backup 7-26

Logging Status . 7-28
Logging Maintenance . 7-30
Starting the Logging Process . 7-30
Re-enabling Logging . 7-31

Setting Database Flags . 7-31
CHANGELOG Capability . 7-31
Recovering the Database . 7-33

Ending the Logging Maintenance Cycle 7-33
Logging Results . 7-35
Log Records . 7-35
Log File Time Stamps . 7-35

Roll-Forward Recovery . 7-36
Enabling the Roll-Forward Feature 7-37
Restoring the Database Backup Copy 7-37
Performing Roll-Forward Recovery 7-39
Recovery from a Stream File . 7-42
MPE/iX Cleanup Mode and Roll-Forward Recovery 7-42

Roll-Back Recovery . 7-44
Enabling the Roll-Back Feature . 7-45
Disabling the Roll-Back Feature 7-46
Performing Roll-Back Recovery . 7-46

Extended Utility Program Unconditional Messages Contents-5

MPE/iX Cleanup Mode and Roll-Back Recovery 7-48
DBRECOV Commands Used with Roll-Forward and Roll-Back Recovery . . 7-49
CONTROL Command . 7-49
FILE Command . 7-50
PRINT Command . 7-51
RECOVER Command . 7-51
ROLLBACK Command . 7-51
RUN Command . 7-52

Recovery Tables . 7-53
Post-Recovery Options . 7-55
The Mirror Database . 7-56
Transferring Log Files . 7-56
Maintaining the Mirror Database 7-58
Performing DBRECOV STOP-RESTART 7-59
Stopping DBRECOV . 7-59
Storing the Databases . 7-60
Restarting DBRECOV . 7-61
Aborting DBRECOV . 7-63
Purging a RESTART File . 7-65

Controlling the Logging Process 7-66
Log File Size . 7-66

8. Using the Database Utilities
Restructuring the Database with TurboIMAGE/XL Utilities 8-1
Supported Structural Changes Using DBUNLOAD and DBLOAD 8-2
Unsupported Structural Changes Using DBUNLOAD and LOAD 8-2

Summary of Utility Routines . 8-3
Utility Program Operation . 8-6
Backup Files . 8-6
Error Messages . 8-6

DBLOAD . 8-7
DBRECOV . 8-11
>CONTROL . 8-14
>EXIT . 8-18
>FILE . 8-19
>PRINT . 8-21
>RECOVER . 8-22
>ROLLBACK . 8-24
>RUN . 8-26
DBRESTOR . 8-28
DBSTORE . 8-30
DBUNLOAD . 8-34
DBUTIL . 8-40
>>ACTIVATE . 8-41
>>ADDINDEX . 8-43
>>CREATE . 8-44
>>DEACTIVATE . 8-46
>>DETACH . 8-47
>>DISABLE . 8-48
>>DROPINDEX . 8-50
>>ENABLE . 8-51

Contents-6 Extended Utility Program Unconditional Messages

>>ERASE . 8-53
>>EXIT . 8-54
>>HELP . 8-55
>>MOVE . 8-56
>>PURGE . 8-58
>>REBUILDINDEX . 8-60
>>REDO . 8-61
>>RELEASE . 8-62
>>SECURE . 8-63
>>SET . 8-64
>>SHOW . 8-68
>>VERIFY . 8-77

9. Using a Remote Database
Access Through a Local Application Program 9-2
Method 1|Establishing Communications Link and Remote Session

Interactively . 9-2
Method 2|Using the COMMAND Intrinsic 9-2
Method 3|Using a Database-Access File 9-3
Creating a Database-Access File 9-5
Activating a Database-Access File 9-8
Deactivating a Database-Access File 9-9
Referencing the Database . 9-9

Access Using QUERY/3000 . 9-12

10. Internal Structures and Techniques
Data Set Internal Structures . 10-1
Pointers . 10-1
Data Chains . 10-1
Chain Heads . 10-1
Media Records . 10-2
Media Records of Detail Data Sets 10-2
Media Records of Master Data Sets 10-2

Primary Entries . 10-3
Secondary Entries . 10-3
Synonym Chains . 10-3
Blocks and Bit Maps . 10-4

Dynamic Data Set Expansion . 10-5
Detail Data Sets . 10-6
Master Data Sets . 10-6

Scalability . 10-8
Approach in Version C.07.00 . 10-8

Run-Time TurboIMAGE/XL Control Blocks 10-10
Local Database Access . 10-10
Remote Database Access . 10-12
Control Block Sizes . 10-12

Internal Techniques . 10-13
Primary Address Calculation . 10-13
Migrating Secondaries . 10-14
Space Allocation for Master Data Sets 10-14
Space Allocation for Detail Data Sets 10-15

Extended Utility Program Unconditional Messages Contents-7

Bu�er Management . 10-15
Locking Internals . 10-16
Accessor Entries . 10-16
Set Entries . 10-16
Descriptor Entries . 10-16

MPE/iX Transaction Management 10-17

11. B-Tree Indices
Overview of B-Tree Indices . 11-1
Terminology . 11-1
Key Points . 11-2

External Commands and Utilities A�ected 11-5
Root File . 11-5
DBSCHEMA . 11-5
New Syntax for DBSCHEMA . 11-5

DBUTIL . 11-5
Syntax for ADDINDEX . 11-5
Syntax for DROPINDEX . 11-6
Syntax for REBUILDINDEX . 11-6
Discussion . 11-6
Other DBUTIL Commands . 11-6
New Syntax for SET . 11-7
New Syntax for SHOW . 11-8

DBCONTROL . 11-8
Mode 13 . 11-9
Mode 14 . 11-10
Mode 15 . 11-10
Mode 16 . 11-10

DBFIND . 11-11
Supported Modes of DBFIND 11-11
TPI Modes of DBFIND Not Supported for B-Tree Indices 11-12
DBFIND Modes . 11-12
DBFIND Arguments . 11-13
DBFIND Structured Argument 11-14

DBGET . 11-17
DBINFO . 11-17
Mode 113 . 11-17
Mode 209 . 11-17

DBPUT, DBDELETE, and DBUPDATE 11-18
Limits . 11-19
Quick Start for Using B-Tree Indices 11-20

Contents-8 Extended Utility Program Unconditional Messages

A. Error Messages
Schema Processor Error Messages . A-1
Schema Processor File Errors . A-2
Schema Processor Command Errors A-4
Schema Syntax Errors . A-6

Library Procedure Error Messages A-18
Abort Conditions . A-19
I and J Files . A-19
Library Procedure File System and Memory Management A-20
Library Procedure Calling Errors A-23
Library Procedure Exceptional Conditions A-62
Library Procedure Abort Condition Messages in I File A-74

Utility Error Messages . A-77
Utility Program Conditional Messages A-77
Utility Unconditional Error Messages A-107
Extended Utility Program Unconditional Messages A-118

B. Results of Multiple Access

C. Database Design Considerations

D. Multiple Calls to DBLOCK
Sort Sequence for Lock Descriptors D-2
Conditional Locks . D-2
Remote Databases . D-3

E. TurboIMAGE/XL Log Record Formats

F. MPE/iX Log Record Formats

G. Recovery and Logging Quick Reference
Recovery Quick Reference . G-1
Dynamic Roll-Back Recovery . G-1
Intrinsic Level Recovery (ILR) . G-2
Roll-Forward Recovery . G-2
Roll-Forward Flag Settings . G-3

Roll-Back Recovery . G-3
Roll-Back Flag Settings . G-4

Recovery . G-4
Logging Device Quick Reference . G-5
Logging to Tape . G-5
Logging to Disk . G-5

Sample Job Streams . G-7

Extended Utility Program Unconditional Messages Contents-9

H. TurboIMAGE/XL versus TurboIMAGE/V
Overview . H-1
Moving to TurboIMAGE/XL . H-2

Intrinsic Level Recovery . H-5
Control Blocks . H-7
Status Area . H-9
Moving from MPE/iX to MPE V . H-11
Bu�er Speci�cations . H-11

Index

Contents-10 Extended Utility Program Unconditional Messages

Figures

1-1. How to Use TurboIMAGE/XL . 1-6
2-1. CUSTOMER Data Set Sample . 2-3
2-2. Master and Detail Data Set Relationships 2-4
2-3. Master and Detail Data Sets Example 2-5
2-4. Adding Entries to a Sorted Chain 2-10
2-5. ORDERS Data Sets and Paths . 2-11
2-6. A Sample Entry for Each Data Set in the ORDERS Database 2-12
2-7. Granting Capability to User Class 11 2-19
2-8. Security Flowchart . 2-22
3-1. Database De�nition Process . 3-1
3-2. Sample Schema Creation Session 3-19
3-3. Schema Processor Batch Job Stream 3-20
3-4. Data Set Summary Table . 3-25
3-5. ORDERS Database Schema . 3-29
4-1. Sample Data Entries from ORDERS Database 4-10
4-2. Reading Access Methods (DBGET Procedure) 4-13
4-3. Lock Descriptor List . 4-26
5-1. Sample DBEXPLAIN Messages . 5-38
5-2. Quali�er Array Format for Locking Modes 5 and 6 5-72
5-3. Lock Descriptor Format . 5-72
6-1. ORDERS Database Schema Listing 6-3
7-1. Transactions and Transaction Blocks 7-9
7-2. Suppression of Transactions Due to Inadequate Locking 7-10
7-3. Transferring Log Files to the Secondary System 7-57
8-1. DBUNLOAD File: Sequence of Entries 8-39
9-1. Using a Remote Program . 9-1
9-2. Using Method 1 . 9-2
9-3. Using Method 2 . 9-3
9-4. Using Method 3 . 9-4
9-5. Preparing a Database-Access File 9-10
9-6. Using a Database-Access File . 9-11
10-1. Media Record for Detail Entry . 10-2
10-2. Media Record for Primary Entry 10-2
10-3. Media Record for Secondary Entry 10-3
10-4. Block with Blocking Factor of Four 10-4
10-5. Independent Sub-Databases for Concurrency 10-8
B-1. Actions Resulting from Multiple Access of Databases B-2
C-1. Selected Prime Numbers . C-3
G-1. Sample Job Stream for Starting Logging Cycle G-7
G-2. Sample Job Stream for Roll-Forward Recovery G-8
G-3. Sample Job Stream for Roll-Back Recovery G-9
G-4. Sample Job Stream for Starting Logging Cycle G-10

Extended Utility Program Unconditional Messages Contents-11

G-5. Sample Job Stream for Backup with Database Open for Access G-10
G-6. Sample Job Stream for Roll-Forward Recovery G-11
G-7. Sample Job Stream for Roll-Back Recovery G-12

Contents-12 Extended Utility Program Unconditional Messages

Tables

2-1. Sample Read/Write Class Lists . 2-18
2-2. Enabling a User Class to Perform a Task 2-20
2-3. Sample Read and Write Class Lists 2-23
3-1. Additional Conventions . 3-2
3-2. Type Designators . 3-5
3-3. TurboIMAGE/XL Data Types and Programming Languages 3-6
3-4. Examples of an Item Part . 3-9
3-5. Schema Processor Files . 3-17
3-6. Examples of RUN and FILE Commands 3-18
3-7. Data Set Summary Table Information 3-26
4-1. Database Access Mode Summary 4-4
4-2. Logged Intrinsics . 4-8
4-3. Locking in Shared-Access Environments 4-30
4-4. Types of Logical Transactions . 4-34
5-1. TurboIMAGE/XL Procedures . 5-2
5-2. Calling a TurboIMAGE/XL Procedure 5-3
5-3. Types of Transactions . 5-4
5-4. DBBEGIN Return Status Values 5-7
5-5. DBCLOSE Modes 2 and 3 Functions 5-9
5-6. DBCLOSE Return Status Values 5-10
5-7. DBCONTROL Return Status Values 5-15
5-8. DBDELETE Return Status Values 5-18
5-9. DBEND Return Status Values . 5-22
5-10. DBERROR Messages . 5-24
5-11. DBEXPLAIN Message Format . 5-37
5-12. DBFIND Return Status Values . 5-45
5-13. DBGET Return Status Values . 5-49
5-14. DBINFO Return Status Values . 5-51
5-15. Locking Mode Options . 5-71
5-16. Lock Descriptor Fields . 5-73
5-17. DBLOCK Return Status Values 5-75
5-18. DBMEMO Return Status Values 5-77
5-19. DBOPEN Return Status Values 5-82
5-20. Special list Parameter Constructs 5-85
5-21. DBPUT Return Status Values . 5-88
5-22. DBUNLOCK Return Status Values 5-91
5-23. DBUPDATE Return Status Values 5-94
5-24. DBXBEGIN Return Status Values 5-97
5-25. DBXEND Return Status Values 5-99
5-26. DBXUNDO Return Status Values 5-102
7-1. Types of Logical Transactions . 7-7
8-1. TurboIMAGE/XL Utilities . 8-3
11-1. DBFIND Mode Summary Chart 11-12

Extended Utility Program Unconditional Messages Contents-13

G-1. Roll-Forward Flag Settings . G-3
G-2. Roll-Back Flag Settings . G-4
H-1. TurboIMAGE/XL Di�erences . H-3
H-2. DBINFO Mode 402 Changes . H-6
H-3. Condition Code �9 Status Array H-9
H-4. Status Area Changes for MPE/iX Applications H-10

Contents-14 Extended Utility Program Unconditional Messages

1

Introduction

General Overview

TurboIMAGE/XL is a set of programs and procedures that you can use to de�ne, create,
access, and maintain a database. A database is a collection of logically-related �les containing
both data and structural information. Pointers within the database allow you to gain access
to related data and to index data across �les.

The primary bene�t of the TurboIMAGE/XL database management system is time savings.
These savings are typically provided in the following areas:

Data security
Rapid data retrieval and formatting
Program development
Program maintenance
Program �le independence
File consolidation
Special information needs

This chapter describes each of these topics in detail.

E�ective use of TurboIMAGE/XL can remove a large portion of the overhead associated with
integrated system design from application analysts and programmers. TurboIMAGE/XL can
channel system design talents into functional rather than structurally-supportive design tasks.

Data Security

Conventional �le management systems have limited data security provisions. Access to
computer readable data can only be denied to individuals with system access by providing
physical protection for the media upon which the �le is stored, such as using a data vault for
storing sensitive data stored on magnetic tape or disk.

TurboIMAGE/XL, in conjunction with MPE/iX, provides security at account, group, data
item, and data set levels. Implementing security at the item level allows sensitive data to be
stored online under the control of TurboIMAGE/XL, a database manager or designer, and
system manager, with minimal regard for additional security provisions. TurboIMAGE/XL
security provisions can limit programmer or operator access to sensitive information.

Introduction 1-1

Rapid Data Retrieval and Formatting

Conventional �le organization frequently requires using multiple �le extracts, sorts, and report
programs to produce meaningful output. Information requests frequently require weeks to
implement, during which time the usefulness of the requested data can decrease.

QUERY/3000, the Hewlett-Packard database inquiry facility, or user-written inquiry programs
that use the TurboIMAGE/XL procedures, allow instant interrogation of the database by
individuals with access to the system. Other ad-hoc reporting packages are also available.

Program Development

The database structure can be de�ned and built without using special purpose application
level programming. Because control of the linkage portion of the database is under
TurboIMAGE/XL software control, the programmer does not need to be concerned with
testing the structure and can concentrate on the functional programming task. QUERY/3000
can be used to build test data, as well as to interrogate the results of program and system
tests. This feature eliminates the requirement that �le-related programs be completed before
meaningful functional programs can be written. It is no longer necessary to hold up functional
program testing until �le building or �le maintenance programs are completed. More modules
of a given system can be tested at the same time.

A speci�c bene�t in the COBOL environment is program coding time. The programmer
need only de�ne File Division entries for those �les that exist outside the control of
TurboIMAGE/XL. Typically, such �les are concerned with original entry into the processing
cycle (data entry �les) and with report �les. All data under the control of TurboIMAGE/XL
is implicitly de�ned in every program that accesses the database. The programmer need not
code the Data Division entries associated with anything except the detail data used by a given
program. The time savings generated in correct data de�nition the �rst time the program is
coded, as well as in the correct description of the physical location of the data to be processed,
will reap signi�cant bene�ts in the program test cycle.

Program Maintenance

Throughout the life of a system, processing requirements evolve as the usefulness of the data
is explored. As �le organization concepts change with the needs of the application, some data
restructuring can be done with little impact on existing programs. Changes to the structure
of an existing database a�ect only those programs that process the changed data; no other
programs in the system need to be recompiled to reect the new database structure.

The evolution of the database is not limited by the need to balance the cost of changing an
existing system against the bene�ts to be derived from the new structure. It is not necessary
to do a \where-used" evaluation on a data item carried in multiple �les to assess the impact of
a data change on existing systems.

Finally, the accessibility of data is not limited by design decisions made during initial system
design. The structure of a database can evolve with the needs of the application user. The
application designer no longer has to anticipate the needs of the user across the full life of the
system.

1-2 Introduction

Program File Independence

Conventional �le structures tend to be rigid and inexible. The nature of conventional �le
management systems requires that the logic of application programs be intricately interwoven
with �le design. When it is necessary to alter the structure of a �le, a program must be
written to change the �le and programs that access the �le must be changed to reect the
�le change. Because change is the rule rather than the exception in data processing, a large
percentage of total time and manpower is spent reprogramming.

TurboIMAGE/XL allows the data structure to be independent of the application program.
Data item relationships are independently de�ned. Changes in the database structure need
only be incorporated into those programs that manipulate the changed data. User programs
need to view only that portion of the database description that pertains to each program's
processing requirements. Because all references to the database are resolved at execution time,
only those programs a�ected by changes to the database description need to be changed.

File Consolidation

Most information processing systems that serve more than one application area contain
duplicate data. For example, a vendor's name can appear in an Inventory �le, an Accounts
Payable �le, and an Address Label �le.

The data stored in these three �les probably varies slightly from �le to �le, resulting not
only in wasted �le space but also inconsistent program output. Redundant and inconsistent
information severely impedes any system's capacity to deal with large amounts of data.

File consolidation into a database eliminates most data redundancy. Through the use of
pointers, logically related items of information are chained together, even if they are physically
separated. In the example of vendor names and addresses, only one set of data would be
stored. Using logical associations, the data can be used by any program needing it. Because
there is only one record to retrieve, the work required for data maintenance is greatly reduced.
Finally, all reports drawn from that item of information are consistent.

Special Information Needs

The requirement for one-time information in a format that has never been requested is no
longer a problem for data processing users. The user with a special data requirement can
get to any subset of information on the database, frequently without the intervention of a
programmer.

Volatile analytical data requirements can be �lled in a minimal amount of time by the people
who need the data. The time savings in programming overhead and report speci�cation
generation can be enormous.

Native Language Support (NLS/3000) can be used with TurboIMAGE/XL, which allows
character sets other than US ASCII to be used in de�ning a database and allows data to be
sorted in a database according to the local alphabet. NLS enhancements are recognized by
four TurboIMAGE/XL utilities: DBSCHEMA, DBUTIL, DBUNLOAD, and DBLOAD. For
more information on these utilities, refer to the NLS/3000 Reference Manual and chapters 6
and 8 in this manual.

Introduction 1-3

Database Personnel

The terms database administrator or database manager, database creator, and database
designer can refer to one or more persons involved in administering, creating, or designing
the database. The database administrator coordinates database use. This person knows the
passwords and can authorize others to use the database by making a password available if
it is needed for a particular application. The database administrator is also responsible for
system backup and recovery. The database creator is de�ned by the MPE/iX user name,
account, and group used when executing the Schema Processor to create the root �le and
when executing the DBUTIL program to create the database �les. The database creator and
administrator can be the same person. If not, the administrator will probably have access to
the user name and account in which the database resides or to the maintenance word that is
de�ned in chapter 8.

1-4 Introduction

How to Use TurboIMAGE/XL

The following steps summarize how to use TurboIMAGE/XL. Refer to Figure 1-1 for an
illustration of each of the steps.

1. Design the Database.
A database designer (system analyst) or team of designers determine what data is required
by all the application projects that will share the database. They determine which data
should be protected from unauthorized access and how the data will be used. These design
considerations and others described in appendix C determine the database content and
structure.

2. Describe the Database.
After the design is complete, it is described using the TurboIMAGE/XL Database
De�nition Language (DDL). This external de�nition is called a schema. The database
creator processes the schema using the TurboIMAGE/XL Schema Processor which creates
an internal de�nition of the database called a root �le. The person who creates the root
�le is identi�ed as the database creator and can subsequently create and initialize the
database. Chapter 3 contains the description language syntax and operating instructions
for the Schema Processor.

3. Create the Database Files.
DBUTIL, a TurboIMAGE/XL utility program, builds the database �les according to
requirements of the database structure speci�ed in the root �le. The �les contain no data
initially.

4. Store and Retrieve the Data.
TurboIMAGE/XL provides a set of library procedures that can be called from BBASIC, C,
COBOL II, FORTRAN 77, Pascal, or TRANSACT/V language application programs. The
database can also be used with RPG programs but the Report Program Generator issues
the calls to TurboIMAGE/XL procedures.

The application project members can design and write programs in the programming
language which best suits their needs and call the TurboIMAGE/XL procedures to store,
modify, retrieve, and delete data. These procedures rapidly locate the data, maintain
pointer information, manage the allocated �le space, and return status information about
the activity requested. Each procedure is described in detail in chapter 5, and examples of
calling several procedures from the di�erent languages are given in chapter 6.

5. Maintain the Database.
The TurboIMAGE/XL utility programs can be used to maintain backup copies of the
database and perform other utility functions such as logging, recovering, or restructuring
the database. These programs are described in chapters 7 and 8. You can also use the
TurboIMAGE/XL procedures to write your own maintenance programs, or you can acquire
a database restructuring facility.

Introduction 1-5

Figure 1-1. How to Use TurboIMAGE/XL

1-6 Introduction

2

Database Structure and Protection

This chapter describes the structure of a TurboIMAGE/XL database. The discussion de�nes
the elements of a database and describes how they are related and how they can be accessed.
If you are designing a TurboIMAGE/XL database, use this chapter with chapter 3 which
describes how to de�ne a database.

Database Elements

A database is a named collection of related data. The formal description of this data is called
a schema. The database is de�ned in terms of data items, data entries, and data sets which
are described in the text below.

Data Items

A data item is the smallest accessible data element in a database. Each data item consists of
a value referenced by a data item name. The name is usually selected to describe the data
value. Many data item values can be referenced by the same data item name with each value
existing in a di�erent data entry.

A compound data item is a named group of identically de�ned, adjacent items within the
same data entry. Each occurrence of the data item is called a sub-item, and each sub-item
can have a value. A compound item is similar to an array in programming languages such
as FORTRAN 77 and BBASIC. For example, a data entry might contain a compound item
named MONTHLY-SALES with 12 sub-items in which the total sales for each month are
recorded.

Critical items are de�ned as the key item in a master data set and the search and sort items
in detail data sets. These are described later in this chapter.

A data item type can be one of several types of integers, real or oating-point numbers, or
ASCII character information. The database designer de�nes each data item as a particular
type depending on what kind of information is to be stored in the item. The data types are
described in detail in the next chapter and are summarized in Tables 3-2 and 3-3.

Data Entries

A data entry is an ordered set of related data items (sometimes referred to as a record).
Specify the order of data items in an entry when you de�ne the database. Data entries can
be de�ned with at most 255 data item names; none can be repeated. The length of the data
entry is the combined length of the data items it contains and cannot exceed 2348 half-words
or 4696 bytes.

Database Structure and Protection 2-1

Data Sets

A data set is a collection of data entries where each entry contains values for the same data
items. For example, a customer data set can contain entries composed of the same nine data
items: ACCOUNT, LAST-NAME, INITIAL, STREET-ADDRESS, CITY, STATE, ZIP, and
CREDIT-RATING. Normally, each data set is associated with some real-world entity, such as
orders, customers, employees, and so forth.

A database can contain up to 199 data sets. Each data set is referenced by a unique data set
name that follows certain naming conventions. The data set names are made up of the root
�le name appended by two characters. For example, if the root �le is named XXXX , the �rst
data set de�ned in the schema is named XXXX 01, the second data set is named XXXX 02,
and so on. To name the maximum of 199 data sets per database, names are incremented from
XXXX 01-99, XXXXA0-A9, XXXXB0-B9, up to XXXX J9.

If the data set is a jumbo data set, the additional �les created for the data set are named by
appending POSIX extensions such as .001, .002, and so on to the data set name. For example,
if the jumbo data set XXXX02 requires two additional �les, they are named XXXX02.001 and
XXXX02.002. The additional �les are called chunks.

Each data set is stored in one disk �le, or more if a jumbo data set, consisting of storage
locations called records. When you describe the database with the database de�nition
language, you specify the maximum capacity, or number of records, of each data set. Each
record is identi�ed by a record number that can be used to retrieve the entry within it.

Figure 2-1 shows a sample of one data set from a database named ORDERS which will be
used as an example throughout this manual. The data set is named CUSTOMER. The
information in this data set pertains to the customers of a business. All the data about a
particular customer is contained in a data entry. Each piece of information such as account
number or last name is a data item. Many data item values can be referenced by the same
data item name if each value exists in a di�erent data entry. For example, the data item
FIRST-NAME has the value JAMES in one data entry and ABIGAIL in another data entry.

2-2 Database Structure and Protection

Figure 2-1. CUSTOMER Data Set Sample

Database Structure and Protection 2-3

Data Set Types and Relationships

A TurboIMAGE/XL data set is either a master or a detail data set; these data sets are
described in this section. Figure 2-2 illustrates the relationships and the types of six data sets
in the ORDERS database. Master data sets are identi�ed by triangles and detail data sets by
trapezoids.

Figure 2-2. Master and Detail Data Set Relationships

Master Data Sets

Master data sets have the following characteristics:

They are used to keep information relating to a uniquely identi�able entity. For example,
the CUSTOMER data set contains information describing customers.

They allow for rapid retrieval of a data entry because one of the data items in the entry,
called the key item, determines the location of the data entry. A key item cannot be a
compound item. In Figure 2-3 on the next page, the CUSTOMER data set contains a
key item named ACCOUNT. The location of each entry is determined by the value of the
customer's account number.

They can serve as indexes to the detail data set (that is, they can be related to one or more
detail data sets). The ACCOUNT key item in the CUSTOMER master data set is related
to the ACCOUNT search item in the SALES detail data set in Figure 2-3. The entry for a
customer named Abigail Brighton with account number 95430301 serves as an index to two
entries in the SALES detail data set which contain information about purchases she made.

Although there are unused storage locations in the CUSTOMER master data set,
TurboIMAGE/XL disallows any attempt to add another data entry with account number
95430301. The key item value of each entry must remain unique. The values of other data
items in the master data set are not necessarily unique because they are not key items and are
not used to determine the location of the data entry.

2-4 Database Structure and Protection

Figure 2-3. Master and Detail Data Sets Example

Database Structure and Protection 2-5

Automatic and Manual Masters

A master data set is de�ned as either automatic or manual. The characteristics of both are
described below:

Manual Master Automatic Master

Can be standalone (not related to any detail data
set) or can serve as an index for one or more
detail data sets.

Must serve as an index to one or more detail data
sets.

Must contain a key item and can contain other
data items.

Must contain only one data item, the key item.

The user must explicitly add or delete all entries.
A related detail data set entry cannot be added
until a manual master data set entry with
matching key item value has been added. When
the last detail entry related to a master entry is
deleted, the manual master entry still remains in
the data set. Before a master entry can be
deleted, all related detail entries must be deleted.

TurboIMAGE/XL automatically adds or deletes
entries when needed based on the addition or
deletion of related detail data set entries. When a
detail entry is added with a search item value
di�erent from all current key item values, a
master entry with matching key item value is
automatically added. Deletions of detail entries
trigger an automatic deletion of the matching
master entry if it is determined that all related
detail entries have been deleted.

The key item values of existing master entries
serve as a table of legitimate search item values
for all related detail data sets. A nonstandalone
manual master can be used to prevent the entry of
invalid data into the related detail data sets.

In Figure 2-3, CUSTOMER is a manual master data set, and DATE-MASTER is an
automatic master data set. Before the SALES entry for account 12345678 is added to
SALES, CUSTOMER must contain an entry with the same account number. However, the
DATE-MASTER entries for DATE equal to 910927 and 910928 are automatically added by
TurboIMAGE/XL when the detail entry is added to SALES unless they are already in the
DATE-MASTER data set.

DATE-MASTER, an automatic master, contains only one data item which is the key item
DATE. CUSTOMER, a manual master, contains several data items in addition to the key
item.

If the SALES entry with account number 95430301 and stock number 35624AB3 are deleted,
and no other SALES entry contains a PURCH-DATE or DELIV-DATE value of 910905, the
DATE-MASTER entry with that value is automatically deleted by TurboIMAGE/XL.

Manual versus Automatic Data Sets

Database designers can choose a manual or automatic master data set depending on the
following:

Manual masters help ensure that valid search item values are entered for related detail
entries. They can also serve as indexes to detail data sets.

2-6 Database Structure and Protection

Automatic masters serve as indexes to detail data sets and save time when the search item
values are unpredictable or so numerous that manual addition and deletion of master entries
is undesirable.

Whenever a single data item is su�cient for a master data set, the database designer must
decide between the control of data entry available through manual masters and the program
simplicity o�ered by automatic masters. For example, because DATE-MASTER is an
automatic data set, erroneous dates such as 331299 can be accidentally entered.

Detail Data Sets

Detail data sets have the following characteristics:

They are used to record information about related events such as information about all sales
to the same account.

They allow retrieval of all entries pertaining to a uniquely identi�able entity. For example,
account number 95430301 can be used to retrieve information about all sales made to Ms.
Brighton.

They can be de�ned with from zero to 16 search items (unlike a master data set which
contains at most one key item). The values of a particular search item need not be unique.
Generally, a number of entries will contain the same value for a speci�c search item.

They can be de�ned for automatic expansion of their capacity.

The SALES data set contains four search items: ACCOUNT, STOCK#, PURCH-DATE,
and DELIV-DATE. Two entries in the example in Figure 2-3 have identical values for the
ACCOUNT item in the SALES data set. TurboIMAGE/XL stores pointer information with
each detail data entry that links all entries with the same search item value. Entries linked
in this way form a chain. A search item is de�ned for a detail data set to retrieve all entries
with a common search item value (that is, all entries in a chain). The SALES entries with
ACCOUNT equal to 95430301 form a two-entry chain. The number of entries in a single chain
is limited only by the maximum number of entries in a data set.

Paths

A master data set key item can be related to a detail data set search item of the same type
and size. This relationship forms a path. A path contains a chain for each unique search item
value. In Figure 2-3, the ACCOUNT key item in CUSTOMER and the ACCOUNT search
item in SALES form a path to link the CUSTOMER master data set to the SALES detail
data set. One chain links all SALES entries for account number 95430301. The chain for
account number 12345678 consists of one entry. Both chains belong to the same path.

Because a detail data set can contain as many as 16 search items, it can be related to at
most 16 master data sets. Each master-to-detail relationship must be relative to a di�erent
detail search item. The SALES data set is related to the CUSTOMER, PRODUCT, and
DATE-MASTER data sets.

A detail data set can be multi-indexed by a single master data set. For example, SALES
is indexed twice by DATE-MASTER. The DATE search item forms one path with the
PURCH-DATE search item and one path with the DELIV-DATE search item. Each master
data set can serve as an index to one or more detail data sets. No master data set can be
related to more than 16 detail data sets. For each such relationship, TurboIMAGE/XL keeps
independent chain information with each master entry. This information consists of pointers

Database Structure and Protection 2-7

to the �rst and last entries of the chain whose search item value matches the master data set
entry's key item value and a count of the number of entries in the chain. This is called a chain
head. The format of chain heads is given in chapter 10. For example, the DATE-MASTER
data entries each contain two sets of pointers, one for PURCH-DATE chains and one for
DELIV-DATE chains. TurboIMAGE/XL automatically maintain the chain heads.

Primary Paths

One of the paths of each detail data set can be designated by the database designer as the
primary path. The main reason for designating a primary path is to maintain the entries of
each chain of the path in contiguous storage locations. To maintain contiguous locations,
occasionally use the DBUNLOAD utility program to copy the database to tape, the DBUTIL
utility program to erase the database, and the DBLOAD program to reload the database from
the tape. When the database is reloaded, contiguous storage locations are assigned to entries
of each primary path chain. Therefore, the database designer should designate the path most
frequently accessed in chained order as the primary path. This type of access is discussed in
chapter 5.

A primary path also serves as the default path when accessing a detail data set if no path is
speci�ed by the calling program. This characteristic of primary paths is described with the
DBGET procedure in chapter 5.

Sort Items

For any path, it is possible to designate a data item other than the search item as a sort item.
If a sort item is speci�ed, each of the chains of the path are maintained in ascending sorted
order based on the values of the sort item. Di�erent paths can have di�erent sort items, and
one path's sort item can be another path's search item. Only data items of type logical or
character can be designated as sort items.

For example, chains in the SALES data set composed of entries with identical ACCOUNT
values are maintained in sorted order by PURCH-DATE. When information about sales to a
particular customer is required, the SALES data entries for that customer's account can be
retrieved in sorted order according to purchase date. PURCH-DATE is a meaningful sort item
because the dates are stored in a properly form for collating (year-month-day).

The sorted order of entries is maintained by logical pointers rather than physical placement of
entries in consecutive records. Figure 2-4 illustrates the way that TurboIMAGE/XL maintains
sorted paths. When an entry is added to a detail data set, it is added to or inserted in a
chain. If the path does not have a sort item de�ned, the entry follows all existing entries in
the chain. If the path has a sort item, the entry is inserted in the chain according to the value
of that item.

If the entry's sort item value matches the sort item values of other entries in the chain, the
position of the entry is determined by an extended sort �eld consisting of the sort item value
and the values of all items following the sort item in the entry. If the extended sort �eld
matches another extended sort �eld, the entry is inserted chronologically following the other
entries with the same extended sort �eld value. This also occurs if the sort item is the last
item in the entry and its value matches another entry's sort item value. Note that Native
Language Support does not support extended sort items. The only database language that
supports extended sort �elds is Native-3000 which uses US ASCII. If an extended sort �eld is
used, the sort is done in ASCII collating sequence (negative integers sort higher than positive).

2-8 Database Structure and Protection

If you depend on extended sort �elds to sort a chain, do not call DBUPDATE to modify any
of the values in the extended sort �elds because the chain will not be automatically resorted
according to the new extended sort data values. Instead, call DBDELETE and DBPUT
to re-enter the records with modi�ed values. DBUPDATE only recognizes extended sort
items when the actual search or sort item is changed. Chapter 5 describes DBUPDATE,
DBDELETE, and DBPUT in detail.

If you do not want TurboIMAGE/XL to sort chains by extended sort �elds, structure the data
record so that the sort item is in the last �eld of the record.

When the database content is copied to magnetic tape using the TurboIMAGE/XL utility
program DBUNLOAD, the pointers that de�ne an entry's position in a chain are not copied
to the tape. When the data is loaded back into the database, the chains are re-created.
Therefore, entries that were previously ordered chronologically will not necessarily be in
that same order. The new chronological ordering is based on the order the entries are read
from the tape. The chains of a primary path are an exception; the order of these chains is
preserved if the tape was created with DBUNLOAD in the chained mode. See chapter 8 for
more information about DBUNLOAD.

Note It is important to limit the use of sorted chains to paths consisting of
relatively short chains or chronological sort items that are usually added to
the end of chain (for example, date). It is not intended that sorted paths be
used for multiple key sorts or for sorting entire data sets. These functions are
handled more e�ciently by user-written routines or the MPE/iX HP Sort
subsystem.

Jumbo Data Sets

You can create data sets greater than 4 GB in size. A data set of this type, called a jumbo
data set, can span more than one MPE �le. The naming convention uses POSIX extensions.
For example, a dataset named SALES03 with four multiple �les results in a total of �ve �les
with the following names and �lecodes:

SALES03 filecode -408

SALES03.001 filecode -409

SALES03.002 filecode -409
SALES03.003 filecode -409

SALES03.004 filecode -409

SALES03 is the Chunk Control �le. It has information about the other �les, but no user data
of its own. The remaining �les in the data set are called Chunk Data �les or chunks.

To specify a jumbo data set, the JUMBO option must be included in the schema before
de�ning a jumbo data set. Then any data set whose capacity is greater than 4 GB
automatically becomes a jumbo data set. Use the NOJUMBO option of DBSCHEMA to
turn-o� the jumbo option. Then any data set whose capacity is greater than 4 GB will
generate an error. For existing databases, you must use a third-party tool to create jumbo
data sets.

Note Any third-party and diagnostic tools used must support jumbo data sets.
DBSTORE does not store a jumbo data set; to store a jumbo data set, use the
STORE command, and specify POSIX names.

Database Structure and Protection 2-9

Figure 2-4. Adding Entries to a Sorted Chain

2-10 Database Structure and Protection

The ORDERS Database

Figures 2-5 and 2-6 illustrate the complete ORDERS database. Figure 2-5 lists the data
items within each data set as de�ned in the schematic of the ORDERS database shown in
Figure 2-2. The data types (in parentheses) are described in chapter 3 with the item part
of the schema. Paths are indicated by arrows. CUSTOMER, SUP-MASTER, PRODUCT,
and DATE-MASTER are master data sets and SALES and INVENTORY are detail
data sets. Figure 2-6 shows a sample entry from each data set and two sample entries for
DATE-MASTER.

Chains of the path formed by CUSTOMER and SALES are maintained in sorted order
according to the value of PURCH-DATE. The primary path for INVENTORY is the one
de�ned by SUP-MASTER and the primary path for SALES is the one de�ned by PRODUCT.

Figure 2-5. ORDERS Data Sets and Paths

Database Structure and Protection 2-11

Figure 2-6. A Sample Entry for Each Data Set in the ORDERS Database

2-12 Database Structure and Protection

Database Files

Database elements are stored in privileged MPE/iX disk �les. In addition to the root �le
which contains the database de�nition, other �les that contain data are called data sets.

Root File

The root �le serves as a common point of entry to, and a source of information about, the
database. The root �le is a single-extent MPE/iX disk �le; that is, the entire �le occupies
contiguous sectors on the disk.

The person who creates the root �le is the database creator and can subsequently create and
initialize the database. The root �le is created within the database creator's logon group and
account when the Schema Processor is executed. The root �le has a local �le name identical
to the database name. Thus, the name of the root �le for the ORDERS database is ORDERS.
Refer to the MPE/iX Commands Reference Manual for more information about MPE/iX
account and logon groups.

Data Files

For non-jumbo data sets, there is one data �le for each data set of a database. The size of
each record and number of records in the �le are de�ned by the database schema, and that
information is recorded in the root �le. The data �les are created and initialized by the
DBUTIL utility.

Each data �le is created within the same group and account as the root �le. Local �le
names are created by appending two characters to the local name of the root �le. These
two characters are assigned to the data sets according to the order de�ned in the schema.
For example, the ORDERS database is de�ned with DATE-MASTER and CUSTOMER
as the �rst two data sets. These data sets are in data �les ORDERS01 and ORDERS02.
For jumbo sets and sets with B-Tree indices, the chunks or index �les are created using
POSIX �le format. For chunks, the local �le name is appended with \.001", \.002", and
so on. For example, ORDERS01.001 and ORDERS01.002 for two chunks of ORDERS01.
For index �les, the local �le name of the master is appended with \.idx" (lowercase). For
example, ORDERS02.idx for the master set CUSTOMER with a B-Tree index. (Refer to the
>>CREATE command of DBUTIL in chapter 8.)

Each data �le is physically constructed with as many extents of contiguous disk sectors as
needed to meet the capacity requirements of the �le, subject to the constraints of the MPE/iX
�le system. Each data �le contains a user label in a disk sector maintained and used by the
TurboIMAGE/XL library procedures. The label contains structural pointers and counters
needed for dynamic storage allocation and deallocation.

Media Record Length

Media record lengths vary between data sets but are constant within each �le. Each record
is large enough to contain a data entry and the associated TurboIMAGE/XL pointer
information. The amount of pointer information depends on the way the data set is de�ned.
Pointer information is described in chapter 10. The maximum number of records in a data set
�le depends on the media record size, the available disk space, and the MPE/iX �le system
constraints.

Database Structure and Protection 2-13

Blocks

The media records in a data �le physically reside together in a group called a block. Each
block corresponds to one MPE �le record. The number of media records in each block is
called the blocking factor. The Schema Processor determines the blocking factor during
creation of the root �le. Chapter 3 contains more information about block size and blocking
factors. The format of blocks is given in chapter 10.

2-14 Database Structure and Protection

Protecting the Database

TurboIMAGE/XL prevents unauthorized persons from gaining access to the database.
It provides external protection through the MPE/iX privileged �le, account, and group
constructs and, in addition, provides the database designer and database manager with
methods to re�ne security within the database.

Privileged File Protection

All TurboIMAGE/XL database �les are privileged �les. (Refer to the MPE/iX Intrinsics
Reference Manual for a description of the MPE/iX privileged �le capability.) Access by
unprivileged processes or through most MPE/iX �le system commands is not allowed.
Therefore, non-privileged users are prevented from accidentally or deliberately gaining access
to the database.

Using MPE/iX commands that permit copying TurboIMAGE/XL �les to tape represents
a potential breach of database privacy, and their use should be controlled. In particular,
anyone who uses the MPE/iX SYSGEN, STORE, or RESTORE commands should notify
the database manager. The SYSGEN and STORE commands permit system supervisors,
system managers, and other privileged users to copy �les to tape. The RESTORE command
can purge and replace a database �le with a di�erent �le from tape if the �les have the same
name.

Account and Group Protection

To gain access to a TurboIMAGE/XL database, you must be able to access the �les in the
account and group in which the database resides. The system manager and account manager
administer the security levels for accounts and groups. The system manager creates accounts,
and either the system or account manager creates new groups and users.

The system and account managers can prevent members of other accounts from accessing the
database by specifying access as user type AC (account member) for the account and group
containing the database. They can prevent users who are members of the account, but not of
the group, containing the database from accessing it by specifying GU (group user) for the
group access. On the other hand, they can allow access from other accounts by specifying user
type ANY at both the account and group levels.

Defining Database Security

After the data items, data sets, and paths for the database have been de�ned, database
security can be addressed. De�ning security involves the following two steps:

1. De�ning user classes and passwords

2. Setting up read and write class lists

User Classes and Passwords

Consider who will be using the database. Do all users perform the same tasks or are the tasks
varied? Do all users need to read and update the same data items? The answers to these
questions will help de�ne how many user classes are needed.

For each type of user, de�ne a password and user class number. Each user class is identi�ed
by an integer from 1 to 63. Because more than one user at a time can use the same password,

Database Structure and Protection 2-15

you may only need to de�ne a few passwords for your database. You may want to relate the
user class number to the user's job position; for example, the ORDERS database is de�ned
with these user classes and passwords:

User Class Password
11 CREDIT;
12 BUYER;
13 SHIP-REC;
14 CLERK;
18 DO-ALL;

When you initiate access to the database, you must supply a password to establish the user
class. If the password is null or does not match any password de�ned for the database, the
user class assigned is zero which has read access to unprotected data sets.

Note Because user class 0 has read access, calls requiring read access to an item or
set will complete successfully (condition word 0) even if an invalid password
was supplied.

The database creator does not need to supply a password. If you are the logged on as the
database creator and enter a semicolon in place of a password, you are granted full access to
all data sets in the database. TurboIMAGE/XL uses the number 64 to identify the database
creator and the numbers 0 to 63 to identify all others.

Read and Write Class Lists

After you have de�ned user classes and passwords, de�ne the type of access allowed by each
password to the data items and data sets in the database. Establish security in the schema by
including or excluding the user class numbers in the read or write class list of the data items
and data sets, or by omitting a user class list entirely. Omitting a user class list (known as an
absent list) has the same e�ect as including all user classes, including user class 0, in the read
class list.

The combinations of the data set and data item user class lists result in one of the following
�ve types of access:

Write access
Update access
Read access
No access
Creator-only access

Write Access. A user class that has write access can add entries to or delete from the data
set. Write access means that update and read access are also granted, and is sometimes
referred to as full data access. To grant write access to a user class for a data set, include the
user class number in the write list of the data set. The speci�ed user class then needs to open
the database using mode 1, 3, or 4 to take advantage of write access. The user class is ignored
if it appears in the user class lists of data items that belong to the data set because write
access to a user class at the data set level supersedes that at the item level.

2-16 Database Structure and Protection

Note Database access modes 2, 5, 6, 7, and 8 do not allow write access. Programs
that open the database in these modes must pass data set and data item level
security. For additional information, refer to chapter 4 and to \Database
Access Modes and Data Set Write Lists" later in this chapter.

Update Access. A user class that has update access can change the values of a particular data
item in an existing data entry. However, the user class cannot add or delete entries from the
data set. Update access means that read access is also granted. To grant update access to
a user class for a data item, include the user class in the read list of the data set and in the
write list of the data item. The speci�ed user class then needs to open the database in mode
1, 2, 3, or 4 to take advantage of this type of access. The user class can have update, read, or
no access to other data items in the data set depending on the user class lists of the other
data items.

Note TurboIMAGE/XL provides an option called critical item update (CIUPDATE)
which lets you update the values of detail data set search and sort items if the
database access mode is 1, 3, or 4 and if permitted for the current process.
You can restrict update of these data items by assigning read-only access
at the set level and controlling write or update access at the item level. See
chapter 4 for more information on CIUPDATE.

Read Access. A user class that has read access can only view the values of a particular data
item. To grant read access to a user class for a data item, include the user class in the read
class list of the data set and in the read class list of the data item. This user class can have
update, read, or no access to other data items in the data set depending on the user class lists
of the other items.

No Access. A user class that has no access cannot read data item values. No access to a user
class can be de�ned for an entire data set or for speci�c data items in a data set. Specify no
access for a user class to an entire data set by excluding the user class from the read and write
class lists of the data set. To allow no access to a speci�c data item, include the user class in
the read class list of the data set and exclude the user class from the read and write class lists
of the data item.

Note that the read or write portions of the user class list can be left empty; this is known as a
null list. In the example below, only the database creator has write access:

(11,14/) The write class list is null.

Creator-Only Access. If you specify an empty data set user class list, as shown below, only the
database creator has access:

(/) This is called a null list.

Sample Read and Write Class Lists. Table 2-1 contains sample lists for the CUSTOMER data
set and CREDIT-RATING data item in the ORDERS database.

Database Structure and Protection 2-17

Table 2-1. Sample Read/Write Class Lists

Read Class List Write Class List

CUSTOMER (data set) 11,14 11,18

CREDIT-RATING (data item) 14 14

Because a write class list of 14 implies that user class 14 is in the read class list, the
CREDIT-RATING read class list is redundant. However, it could be included as a reminder in
the schema of the total capability granted to user class 14.

Table 2-2 later in this chapter contains examples of the e�ects of read and write class lists.
Note that the examples take into account how the database access mode a�ects the data set
write list.

Null and Absent Lists

A distinction is made between the absence of both read and write class lists (which by default
allows read access) and a null list. When you specify the lists in the schema, they are enclosed
in parentheses and separated by a slash, for example, (11,14/15). A null list can be one of the
following:

(/) Both read and write class lists are null.

(11,14/) The write class list is null.

Because the existence of a write class list implies a read class list, even if no user classes are
listed in the read list and at least one user class is speci�ed in the write list, the read class list
is not considered null.

An absent list and the following null write list, in which the read portion contains all user
classes and the write portion is null, yield the same result:

(0,1,2,3, . . . 63/)

The e�ect of null and absent lists is illustrated in Figure 2-8 later in this chapter.

Database Access Modes and Data Set Write Lists

Before you can gain access to a database, you must open it specifying a password that
establishes your user class number and an access mode that de�nes the type of database
tasks you want to perform. Access modes are described in chapter 4 with the instructions for
opening a database. At this time it is necessary only to note that some of the eight available
access modes do not allow write or update access even if the user class is allowed these
capabilities through the user class lists. If the database is opened in access mode 2, 5, 6, 7, or
8, all data set write class lists are merged into the read class lists, and the merged read class
lists are used for all data sets.

2-18 Database Structure and Protection

Granting a User Class Access

Figure 2-7 and Table 2-2 illustrate the use of read and write class lists from two di�erent
perspectives. Figure 2-7 shows what capability user class 11 has if it appears in the lists as
shown. The same rules apply to any user class. The access mode must be as indicated.

Figure 2-7. Granting Capability to User Class 11

A null read and write class list can be used by the database creator at the data set level to
deny access to the data set by all user classes; that is, only the database creator will be able
to use the data set.

Table 2-2 presents the same rules organized by the task that the user class is to perform. It
lists the required access modes and the security rules at both the data set and data item level.
For simplicity, assume there are always read and write class lists even if they are the default
lists (0, 1, 2, . . . 63 /) resulting when the lists are omitted in the schema (absent lists).

Database Structure and Protection 2-19

Table 2-2. Enabling a User Class to Perform a Task

Task Database Access
Mode

Data Set
Security Rules

Data Item
Security Rules

Read Data Item 1, 3, or 4 User class must be in data set
write list, or

User class must be in data set
read list and pass data item
security.

User class must be in read or
write list.

2, 5, 6, 7, or 8 User class must be in data set
read or write list and pass data
item security.

User class must be in read or
write list.

Update Data
Item

1, 3, or 4 User class must be in data set
write list, or

User class must be in data set
read list and pass data item
security.

User class must be in write list.

2 User class must be in data set
read or write list and pass data
item security.

User class must be in write list.

Add or Delete
Data Entries

1, 3, 4 User class must be in data set
write list.

In summary, the database designer can grant access to a data set in the following ways:

Specify the user class number in the data set read class list (or omit both read and write
lists entirely). This grants the user class read access to the data set that is controlled at
the data item level as described later. If both read and write class lists are absent, the user
class is granted this type of access because the lists are (0,1,2, . . . 63/) by default. Opening
the database in access mode 2, 5, 6, 7, or 8 is the same as specifying the user class number
in the data set read class list only.

Specify the user class number in the data set write class list. If the database is opened in
access mode 1, 3, or 4, this grants the user class complete access to the data set. Users
in this class can add and delete entries, update the value of any data item, and read any
item, regardless of the data item read and write class lists. Master data set key item values
cannot be updated. Detail data set search or sort item values can be updated if permitted
by the critical item update (CIUPDATE) option settings for the database and the current
process. A user class number must be in the data set write list in order to add and delete
entries. For information about critical item update (CIUPDATE), refer to chapter 4.

Exclude the user class number from both the speci�ed read and write class lists of the data
set. This denies the user class any type of access to the data set.

Assuming the database designer has granted only read access at the data set level as
summarized above, control at the data item level is established in the following ways:

Specify the user class number in the data item read class list (or omit both read and write
class lists entirely). This grants the user class read access to the data item.

2-20 Database Structure and Protection

Specify the user class number in the data item write class list. This grants the user class
the ability to update or change the data item value. Master data set key item values cannot
be updated. Detail data set search or sort item values can be updated in database access
mode 1, 3, or 4 if permitted by the critical item update (CIUPDATE) option settings for
the database and the current process. Because the user class is implied to be in the read
class list, the user class can also read the item. A user class number must be in the data
item write list in order to update the value.

Exclude the user class number from both the speci�ed read and write class lists of the data
item. This denies the user class any type of access to the data item.

The protection of data set and data item values is designed so that the database designer
must explicitly specify the user class number to allow that class to make any type of change
to the database. Read access can be granted by default in some situations, for example, by
omitting the lists entirely (also known as absent lists). To deny read access to a data set or
data item, the database designer must specify a list and deliberately exclude the user class
number.

Figure 2-8 provides a security owchart. The database has been opened in modify access
mode 1, 3, or 4; these are the only allowable access modes for CIUPDATE which allows
update of detail data set search and sort items. As you read the owchart, consider the
following examples based on the sample ORDERS database:

Only user classes 11 and 18 can add and delete CUSTOMER data entries because these are
the only user class numbers in the data set write list as shown earlier in Table 2-1. To do
so, they must open the database in access mode 1, 3, or 4.

User class 14 can update the CREDIT-RATING data item in the CUSTOMER data set
because it is in the data item write list and the data set read list. To do so, the database
must be opened in access mode 1, 2, 3, or 4.

Database Structure and Protection 2-21

Figure 2-8. Security Flowchart

2-22 Database Structure and Protection

Table 2-3 contains more illustrations of the e�ects of read and write class lists. These are
general examples that are not based on the ORDERS database shown in this manual.

Note that these examples take into account the e�ects of the access mode in which the
database is opened. The database creator and user class 9 (in access mode 1, 3, or 4)
have complete access to data set 1, but only the creator has complete access to data set 2.
Complete access includes the ability to add and delete entries, read all items, and update the
values of all items with the following exceptions. Master data set key item values cannot be
updated. Detail data set search and sort item values can be updated only in database access
mode 1, 3, or 4, and only if permitted by the CIUPDATE option settings for the database and
the current process. Note that except where user class 9 is speci�cally identi�ed in a read and
write class list, user class 9 has complete access to data set 1 only when the database access
mode is 1, 3, or 4.

Table 2-3. Sample Read and Write Class Lists

Data Item Read/Write List Item Read Access Item Update Access*

Data Set 1 (0,18,13/9)

A 0,13,18,9 9y

B (13/) 13,9y 9y

C (/) 9y 9y

D (/19) 9y 9y

E (18/13) 13,18,9y 13,9y

F (/13,18) 13,18,9y 13,18,9y

G (12/0) 0,9y 0,9y

H (13/) 13,9y 9y

Data Set 2z

A 0,1, . . . ,63

I (13/9) 13,9 9

* User has access only if the database access mode is 1, 2, 3, or 4. For access modes 1, 3, and 4,
the CIUPDATE option settings for the database and the current process need to permit
updates of any items that are detail data set search or sort items.

y User has access only if the database access mode is 1, 3, or 4. For update access, the
CIUPDATE option settings for the database and the current process need to permit updates of
any items that are detail data set search or sort items.

z Data set 2 has an absent list. The database creator has full access to the data set if the
database access mode is 1, 3, or 4. If the database is opened in access mode 2, the user has
item update access to all items, except master data set key items or detail data set search and
sort items even if the CIUPDATE option settings for the database and the current process
permit updates of search and sort item values.

Database Structure and Protection 2-23

User Classes and Locking

TurboIMAGE/XL does not consider user classes when locking a database entity. Any data set
or any data item can be referenced in a lock request by any user of a database regardless of
his or her user class.

Protection in Relation to Library Procedures

All access to a database is achieved through database control blocks that reside in privileged
MPE/iX �les which are not directly accessible to database users. Because no user process can
read or modify these control blocks, TurboIMAGE/XL guarantees protection of the database
from unauthorized programmatic access. Refer to the detailed description of these control
blocks in chapter 10. For more information about MPE/iX �les and privileged mode, refer to
the MPE/iX Intrinsics Reference Manual .

All TurboIMAGE/XL library procedures that structurally modify the database execute
in critical mode. This defers any requested process termination while modi�cations
are in progress. If any �le system failures occur during such database modi�cation,
TurboIMAGE/XL causes process termination because the database integrity is questionable.

The Database Bu�er Area Control Block (DBB) contains pointers to the data set blocks that
are used to transfer data (see chapter 10 for additional information). All data set blocks
whose contents are changed, reecting a modi�cation of the database, are always logged by an
internal MPE/iX service called Transaction Management (XM) before the library procedure
returns to the calling program. This guarantees database integrity despite any program
termination that might occur between successive procedure calls. However, deferred output
(AUTODEFER) allows the user to override this scheme. When AUTODEFER is enabled,
the database does not use MPE/iX Transaction Management. Instead, AUTODEFER uses
the MPE/iX �le system default recovery mode. This mode keeps data pages in memory for
as long as possible until �le close time. In this mode, a system failure can cause the loss of
database integrity. For more information about AUTODEFER, refer to the >>ENABLE
command of DBUTIL in chapter 8.

Protection Provided by the TurboIMAGE/XL Utilities

The TurboIMAGE/XL utilities perform various checks to ensure database integrity:

They acquire exclusive or semi-exclusive access to the database being processed. (Chapter 4
contains more information about types of access in the discussion of opening a database.)

Only the database creator or a user supplying the correct maintenance word can execute the
utilities. The database creator de�nes the maintenance word when the database is created
with the DBUTIL utility (refer to chapter 8). In addition, anyone without system manager
(SM) capability intending to use the DBUTIL >>SHOW command or anyone running
the utilities other than DBRECOV must be logged on to the group in which the database
resides (refer to chapter 8).

If no maintenance word is de�ned, only the database creator can execute the utilities. The
exception to this rule is that a user with system manager (SM) capability can use the
DBUTIL >>SHOW command on any database without having to supply the maintenance
word.

Unrecoverable disk or tape problems are treated as functional failures rather than limited
successes and result in program termination.

2-24 Database Structure and Protection

3

Defining a Database

After the database has been designed, it must be described with the database description
language and processed by the Schema Processor to create the root �le. Figure 3-1 illustrates
the steps in de�ning the database.

Figure 3-1. Database Definition Process

Database Description Language

The database description, called a schema, can exist in the MPE/iX system as an ASCII
�le. Regardless of the actual physical record size of the �le, the Schema Processor reads,
prints, and processes only the �rst 72 characters of each record. Any remaining character
positions in the record are available for your convenience, to be used for comments or collating
information. The database description language is a free-format language; you can insert
blanks anywhere in the schema to improve its appearance, except within symbolic names and
reserved words.

Defining a Database 3-1

Language Conventions

The conventions used in describing the database language are the same as those described on
the conventions page at the beginning of this manual. In addition, these conventions apply.

Table 3-1. Additional Conventions

Convention Description

Punctuation All punctuation appearing in format statements must appear exactly as
shown.

Comments Comments take this form: <<comment>>

Comments can contain any characters and can appear anywhere in the
schema except embedded in another comment. They are included in the
schema listing but are otherwise ignored by the Schema Processor program.

Data Names Data names can consist of from 1 to 16 alphanumeric characters, the �rst of
which must be alphabetic. Characters after the �rst must be chosen from
this set:

Letters A through Z, digits 0 through 9, or + � * / ? ' # % & @

Upshifting All alphabetic input to the Schema Processor is upshifted (converted to
uppercase) with the exception of passwords which can contain lowercase
characters. Because the Schema Processor upshifts alphabetic characters,
programs must specify data set and data item names in all uppercase
characters. Take note of this if the programming language you use does not
require uppercase characters.

Schema Structure

The overall schema structure is:

BEGIN DATABASE database name[,LANGUAGE: language];

PASSWORDS: password part

ITEMS: item part

SETS: set part

END.

The database name is an alphanumeric string from 1 to 6 characters. The �rst character must
be alphabetic.

The language is the native language de�nition name or number for the database. Refer to the
Native Language Support Programmer's Guide for further information. The default language
is NATIVE-3000 which uses the US ASCII character set.

Note When using DBLOAD, the database language must match the language ID
stored in the backup media. If they do not match, DBLOAD will give you a
warning message in a session, and if you reply Y, the DBLOAD will continue.
However, in a job, DBLOAD does not load the database.

The password part, item part, and set part are described on the following pages. Figure 3-5
contains a complete schema for the ORDERS database used in the examples in this manual.

3-2 Defining a Database

Password Part

The password part de�nes user classes and passwords. Chapter 2 contains a description of
user classes and how they are used to protect data elements from unauthorized access.

Syntax

user class number [password];
...

user class number [password];

Parameters

user class
number

is an integer between 1 and 63, inclusive. User class numbers must be unique
within the password part.

password contains from 1 to 8 ASCII characters including lowercase characters and
excluding carriage return, slash, semicolon, and blank. Blanks are removed by
the Schema Processor and are not counted in the password length. If you
include blanks in your password, the following message is displayed:

BLANKS HAVE BEEN REMOVED

Example

11 CREDIT;

12 BUYER;

14 CLERK;

Description

If the same password is assigned to multiple user class numbers, the highest numbered class
is used. It is not an error to omit the password, but the Schema Processor ignores lines
containing only a user class number.

Defining a Database 3-3

Item Part

The item part de�nes data items including the data item name, length, and the user classes
that have access to the item. The data set(s) in which the data item appears is de�ned in the
set part de�nition.

Syntax

item name, [sub-item count] type designator [sub-item length]

[(read class list/write class list)];

Parameters

item name is the data item name. It must be a valid TurboIMAGE/XL data name as
described earlier in Table 3-1. It must be unique within the item part.

sub-item count is an integer from 1 to 255 that denotes the number of sub-items within
an item. If omitted, the sub-item-count equals one by default. A data item
whose sub-item count is 1 is a simple item. If the sub-item count is greater
than 1, it is a compound item.

type
designator

de�nes the form in which a sub-item value is represented in the computer.
The type designators E, I, J, K, P, R, U, X, and Z are described in Table 3-2
in the section \Data Item Length."

sub-item
length

is an integer from 1 to 255. It is the number of halfwords, bytes, or nibbles
(depending on the type designator) in a sub-item. If omitted, it is equal to 1
by default.

read class list is a group of user class numbers between 0 and 63, inclusive, separated by
commas. User class numbers are described in chapter 2.

write class list is a group of user class numbers between 0 and 63, inclusive, separated by
commas. User class numbers are described in chapter 2.

Example

FIRST-NAME, X10 (12,14/11);

Description

There can be no more than 1023 data items in a database. A data item name can appear
in more than one data set de�nition. For example, a data item named ACCOUNT appears
in both the CUSTOMER and SALES data sets of the ORDERS database. The complete
ORDERS database schema appears at the end of this chapter.

3-4 Defining a Database

Data Item Length

Each data item value is allotted a storage location whose length is equal to the product of the
item's sub-item length and its sub-item count. The unit of measure for the length depends
upon the type designator and can be a halfword, a byte, or a nibble. A halfword is 16 bits, a
byte is eight bits, and a nibble is four bits or a half-byte.

Note In this manual, a word is a 32-bit storage unit and a halfword is a 16-bit
storage unit. One byte is 8-bits.

Table 3-2 describes the type designators and the unit of measure used for each.

Table 3-2. Type Designators

Unit Bits Type
Designator

Description

Halfword 16-bit E A real (IEEE oating point) number.

I A signed binary integer in 2's complement form.

J Same as I, but QUERY/3000 allows only numbers
conforming to speci�cations for COBOL II
COMPUTATIONAL data to be entered.

K An absolute binary quantity (no negative values).

R A real (HP 3000 oating point) number.

Nibble 4-bit P A packed decimal number.

Byte 8-bit U An ASCII character string containing no lowercase
alphabetic characters.

X An unrestricted ASCII character string.

Z A zoned decimal format number.

A data item must be an integral number of halfwords in length regardless of the type
designator and its unit of measure. In other words, data items of type P, which are measured
in nibbles, must have a sub-item length and sub-item count such that their product is evenly
divisible by 4, because 4 nibbles equal 1 halfword. Data items of type U, X, or Z, which are
measured in bytes, must have a sub-item length and sub-item count such that their product
is an even number. If a data item is de�ned as U3, it cannot be a simple item and must
have an even numbered sub-item count so that the data item length is an integral number of
halfwords.

A data item cannot exceed 2047 halfwords in length. The entire item, whether simple or
compound, is always handled as a unit by TurboIMAGE/XL.

Defining a Database 3-5

TurboIMAGE/XL and Program Language Data Types

The type designator, sub-item count, and sub-item length you specify for a data item de�nes
its length. TurboIMAGE/XL does not perform any conversions of data or examine the
item to check its validity as it is being added to the database. The only data item values
that TurboIMAGE/XL checks are those speci�ed as part of a lock descriptor in calls to
the DBLOCK procedure. Refer to the discussion on DBLOCK in chapter 5. There are no
rules requiring that a speci�c type of data de�ned by a programming language must be
stored in a speci�c type of TurboIMAGE/XL data item. However, for consistency, R-type
items are recommended for storing item values in HP 3000 real format and E-type items are
recommended for storing values in IEEE format.

Table 3-3 relates TurboIMAGE/XL type designators and sub-item lengths to the data types
typically used to process them in the available programming languages.

Note that the UNIT-COST item (P8) in the INVENTORY data set is easier to process
with COBOL II or RPG programs than with the other languages because packed data is a
standard data type in COBOL II and RPG. An actual database can be designed so that some
data sets are processed by programs coded in one language and others by programs coded in
another language. Another data set can be conveniently processed by programs written in any
of the languages.

Table 3-3. TurboIMAGE/XL Data Types and Programming Languages

Data
Type

BBASIC C COBOL II FORTRAN 77 Pascal RPG

E2 Short real oat Real Real

E4 Real double Double precision Longreal*

I Short
integer

short int Computational S9
to S9(4)

Integer*2 �32768..32767
[subrange]

Binary

I2 Integer int Computational
S9(5) to S9(9)

Integer*4 Integer Binary

I4 Computational
S9(10) to S9(18)

Longint Binary

J Short
integer

short int Computational S9
to S9(4)

Integer*2 �32768..32767
[subrange]

Binary

J2 Integer int Computational
S9(5) to S9(9)

Integer*4 Integer Binary

J4 Computational
S9(10) to S9(18)

Longint Binary

K1 unsigned
short

Logical 0..65535
[subrange]

Kny Logical Integerz

3-6 Defining a Database

Table 3-3.

TurboIMAGE/XL Data Types and Programming Languages (continued)

Data
Type

BBASIC C COBOL II FORTRAN 77 Pascal RPG

P4 char[2] Computational-3
S9(3)

Packed array

[1..2] of charz

P8 char[4] Computational-3
S9(7)

Packed array

[1..4] of charz

Pn Computational-3
S9(n-1)

Numeric

R2x Short real Real Real

R4x Real Double precision Longreal*

U String char Display Picture A Character Char[subrange] Character

X String char Display Picture X Character Char Character

Xn char[n] Display Picture
X(n)

Packed array
[1..n] of char

Z Display Picture S9 Character

Zn Display Picture
S9(n)

Packed array

[1..n] of charz

* The Pascal long real is an extension for double-word oating point.

y For data type Kn, n is a length quali�er ranging from 2 to 255, inclusive. Note that,
although the Schema Processor, DBSCHEMA, allows you to de�ne a Kn data type, not
all languages support it. Be sure to select an appropriate data type based on your
programming language and report writer requirements.

z These Pascal declarations provide correct storage allocation.

x The Schema Processor, DBSCHEMA, allows you to de�ne an E or R data type ranging in
length from 1 to 255, inclusive. However, not all languages support these data types. Be
sure to select an appropriate data type based on your programming language and report
writer requirements. Compiler options are usually required to choose between HP 3000
oating point and IEEE reals. Be sure your program is compiled correctly and check your
data values with QUERY/3000.

Defining a Database 3-7

Data Items of Type P

The bits used to represent the sign of a packed decimal value can vary depending on whether
the value is entered using QUERY/3000, a COBOL II program, or an RPG program. Here is
a summary of what happens in each case:

For values entered using QUERY/3000:

NO sign speci�ed: Sign is 11112
PLUS sign speci�ed: Sign is 11002
MINUS sign speci�ed: Sign is 11012

For values entered using COBOL II:

PICTURE clause speci�es NO sign: Sign is 11112
PICTURE clause speci�es PLUS sign: Sign is 11002
PICTURE clause speci�es MINUS sign: Sign is 11012

For values entered using RPG:

NO sign or PLUS speci�ed: Sign is 11002
MINUS sign speci�ed: Sign is 11012

When using TurboIMAGE/XL to locate all packed data items with a particular value (as
described under \DBLOCK" in chapter 5), you must be aware that TurboIMAGE/XL
di�erentiates between unsigned, positive, and negative data items with the same absolute
value. For example, if you search for all data items with the value +2, TurboIMAGE/XL will
not retrieve any items with the unsigned value 2.

In general, TurboIMAGE/XL treats any two values with di�erent binary representations as
unequal regardless of their type.

Complex Numbers

Applications programmed in BBASIC or FORTRAN 77 can de�ne and manipulate complex
numbers by using data type R2 with a sub-item count of 2, storing the real part in the �rst
sub-item and the imaginary part in the second sub-item.

Business BASIC Decimal Numbers

BBASIC decimal numbers should be stored as K2 or K4 data types if QUERY/3000 is to
be used on the decimal numbers. QUERY/3000 processes these decimals via a run-time
parameter.

QUERY/3000 and Data Types

QUERY/3000 supports only a subset of the available data item types. If you intend to use
QUERY/3000, you should consult the QUERY/V Reference Manual for speci�c information
about the way QUERY/3000 handles the various TurboIMAGE/XL data types, including
compound data items.

3-8 Defining a Database

Data Item Identifiers

When using the TurboIMAGE/XL procedures described in the chapter 5, you can reference
a data item by name or number. The data item number is determined by the item's position
in the item part of the schema. The �rst item de�ned is item 1, the second is item 2, and so
forth.

It is more exible to use data item names because a change in the order of the item de�nitions
or deleting an item de�nition from the schema might require changes to all application
programs referencing the data items by number. Thus, to maintain program �le independence,
it is recommended that you use data item names if possible.

Table 3-4 shows examples of item parts.

Table 3-4. Examples of an Item Part

Item Example Description

A,I2; 32-bit signed integer.

MELVIN,3I(1,20/44); Compound item. Three single halfword signed integers. Read classes
are 1 and 20; write class is 44. (Write classes can also read.)

BLEVET,J; Single halfword signed integer between �9999 and 9999 (COBOL II).

COSTS,2X10; Compound item. Two 10-character ASCII strings.

DATE,X6; Six-character ASCII string.

VALUES,20R2(1/8); Compound item. 20 two-halfword real (HP 3000 oating point)
numbers. Read class is 1; write class is 8. (Write classes can also read.)

PURCHASE-MONTH,U8; Eight-character ASCII string with no lowercase alphabetics.

MASK,K2; 32-bit absolute binary quantity.

TEMPERATURE,17R4; Compound item. 17 four-halfword real (HP 3000 oating point)
numbers.

SNOW*#@,Z4; Four-digit zoned decimal (numeric display) number.

POPULATION,P12; Eleven decimal digits plus a sign in the low order nibble. Occupies
three halfwords.

ATOMIC-WEIGHT,E4; 64-bit IEEE real.

Defining a Database 3-9

Set Part

The set part of the schema de�nes data sets. It indicates which data items listed in the item
part belong to which sets and links the master data sets to the detail data sets by specifying
key and search items. In addition, it de�nes security at the set level and at the item level
within each data set.

Master Data Sets

The set part syntax and parameters for master data sets are provided below.

Syntax

�
NAME:

N:

�
set name,

�
M
�
ANUAL

�
A
�
UTOMATIC

�
��

/INDEXED
� �

(read class list/write class list)
�

�
,device class

�
;

�
ENTRY:

E:

�
item name

�
(path count)

�
,

...

item name;

�
CAPACITY:

C:

�
maximum capacity

�
(blocking factor)

�� ,initial capacity�
,increment

�
�
;

Parameters

set name is the data set name. It must be a valid TurboIMAGE/XL data name as
described earlier in \Data Sets" in chapter 2 and in the discussion of the
DBUTIL >>CREATE command in chapter 8. A maximum of 199 data
sets, including both masters and details, is allowed.

MANUAL (or M) denotes a manual master data set. Each entry within a manual master
must be created manually and can contain one or more data items.

AUTOMATIC (or A) denotes an automatic master data set. Each data entry within an
automatic master is created automatically by TurboIMAGE/XL and
contains only one data item.

/INDEXED denotes that a B-Tree index is desired for the master data set key item.

read class list is a group of user class numbers between 0 and 63, inclusive, separated by
commas. User class numbers are described in chapter 2.

write class list is a group of user class numbers between 0 and 63, inclusive, separated by
commas. User class numbers are described in chapter 2.

device class is the class name of the MPE/iX device on which the data set resides.
The device must be a member of the volume set on which the database
resides.

item name is the name of a data item de�ned in the item part.

path count is an integer between 0 and 16, inclusive, which is used with the key item
only. It indicates the number of paths that will be established to various

3-10 Defining a Database

detail data sets. Refer to chapter 2 for more information about paths. A
path count must be speci�ed for one, and only one, item in the master
set. A zero path count can be used with a manual master data item to
indicate the key item. A manual master de�ned in this way is not linked
to any detail data set. An automatic master has one item that must have
a path count greater than zero.

maximum capacity is the maximum number of entries the data set can contain: that is, the
data set's capacity. It must be less than or equal to 231 �1 (2,147,483,647)
and is limited by the size of the entry as well as the maximum size of an
MPE/iX �le, jumbo or non-jumbo.

For non-jumbo data sets, if the capacity expansion parameter, initial
capacity, is speci�ed and is less (not zero) than the maximum capacity,
the data set is enabled for dynamic expansion. Note that specifying
initial capacity for a jumbo data set will generate an error. When
enabled for dynamic expansion, the maximum capacity is adjusted by
TurboIMAGE/XL to represent an even multiple of the blocking factor.
Otherwise, it remains unchanged.

blocking factor is the number of data set media records in one block. If a value is not
speci�ed, it is calculated by DBSCHEMA.

initial capacity is the initial capacity for the data set, that is, the number of entries for
which space will be allocated and initialized when the data set is created.
This number must be between 1 and 231 �1 inclusive but must be less
than or equal to the maximum capacity. Specifying initial capacity for a
jumbo data set will generate an error. This parameter should be used to
closely approximate the current volume of data. If it is very low, there
can be frequent expansions leading to severe disk fragmentation. If it is
very high, DBPUT may take a long time to complete which could impact
other database users. The initial capacity is adjusted to represent an even
multiple of the blocking factor. Initial capacity is an optional parameter.
If initial capacity is not speci�ed, or if initial capacity is either zero or
equal to the maximum capacity, then dynamic capacity expansion is not
enabled for the data set, and maximum capacity is used for the data set
�le creation.

increment is either the number of entries or the percentage of the initial capacity
by which the data set will be expanded each time its initialized space
is exhausted. If a percentage is used, the percent sign (%) must follow
the incremental amount. This increment parameter can only be used if
the initial capacity parameter is also speci�ed. This number must be 1
to 32767 inclusive for percent, or 1 to 231 �1 (2,147,483,647) inclusive
for number of entries. If it is very low, there can be frequent expansions
leading to severe disk fragmentation. If it is very high, DBPUT may take
a long time to complete which could impact other database users.

The number of entries de�ned, or the entries calculated from the percent,
cannot exceed the maximum entry count minus the initial allocation. The
increment is adjusted to represent an even multiple of the blocking factor.
The increment is an optional parameter. If the increment is not speci�ed
for the data set, or is zero, but the initial capacity is greater than zero,
then the increment for each expansion is defaulted to ten percent (10%) of

Defining a Database 3-11

the initial capacity for the data set. If the initial capacity is equal to the
maximum capacity, or the initial capacity is zero, then this indicates the
data set cannot be expanded and increment is ignored.

Examples

NAME: SUP-MASTER,MANUAL /INDEXED (13/12,18),DISC1;

ENTRY: SUPPLIER(1),

STREET-ADD,

CITY,

STATE,

ZIP;

CAPACITY: 2001,501,20%;

Description

The example also shows the data set SUP-MASTER which will reside on Disc1. Assigning
the device class where a data set will reside can provide greater performance for the
TurboIMAGE/XL database and can aid in better use of system resources. An understanding
of how to spread the data sets over multiple disk devices can be obtained from your system
manager. Your system manager will be able to give you a listing of logical devices and their
corresponding device class names (each logical device can have up to eight names).

To retrieve information on where each data set resides after specifying device classes in the
schema, you can use the MPE/iX command LISTF,3 (after the database is created). This
command lists the device type, logical device number, and the device class name for each
data set in the database. The DBUTIL >>SHOW command can also be used to display the
devices on which data sets reside.

The data set SUP-MASTER will have a B-Tree index created on the key item, SUPPLIER.
B-Tree DBFINDs can be done using SUPPLIER for SUP-MASTER. Also, B-Tree DBFINDs
will be allowed using all of its corresponding search items in the detail sets. In the above
example, SUPPLIER has only one path. Hence, B-Tree DBFIND can be done using the
related search item and the detail data set. The presence of capacity expansion parameters
indicate that it is enabled for dynamic data set expansion.

The example also shows that the maximum capacity is 2001, the initial capacity is 501, and
the increment is 20%.

Another example is capacity de�ned as follows:

CAPACITY: 2001,501,25;

The maximum capacity is set at 2001, has an initial capacity of 501, and will be automatically
expanded by 25 when the initialized space is exhausted.

To allow dynamic expansion for a master data set, specify the maximum capacity and the
initial capacity when de�ning the data set. If dynamic expansion is not needed for the data
set, the maximum capacity is the only required parameter.

Verify that there is enough disk space for a data set to be expanded. Performance may
be impacted by the number of entries incremented when a master data set is dynamically
expanded. The number of disk extents used for the data set �le may also impact the
performance of TurboIMAGE/XL.

3-12 Defining a Database

Note For existing databases, use DBChange Plus or a third-party utility to specify
the expansion parameters.

Detail Data Sets

The set part syntax and parameters for detail data sets are provided below. The maximum
capacity, the initial capacity, and the incremental amount are new parameters for the detail
data set CAPACITY de�nition. These parameters allow a detail data set to be expanded
dynamically (up to a new maximum capacity speci�ed in the root �le) during DBPUT when
the detail data set space is exhausted.

Syntax

�
NAME:

N:

�
set name, D

�
ETAIL

��
(read class list/write class list)

��
,device class

�
;

�
ENTRY:

E:

�
item name

�
(
�
!
�
master set name

�
(sort item name)

�
)
�
,

...

item name [(master set name [(sort item name)])];

�
CAPACITY:

C:

�
maximum capacity

�
(blocking factor)

��,initial capacity�
,increment

�
�
;

Parameters

set name is the data set name. It must be a valid TurboIMAGE/XL data name as
de�ned in \Data Sets" in chapter 2 and in the discussion of the DBUTIL
>>CREATE command in chapter 8. A maximum of 199 data sets,
including both masters and details, is allowed.

DETAIL (or D) denotes a detail data set.

read class list is a group of user class numbers between 0 and 63, inclusive, separated by
commas. User class numbers are described in chapter 2.

write class list is a group of user class numbers between 0 and 63, inclusive, separated by
commas. User class numbers are described in chapter 2.

device class is the class name of the MPE/iX device on which the data set resides.
The device must be a member of the volume set on which the database
resides.

item name is the name of a data item de�ned in the item part. Each item de�ned as
a search item must be a simple item. Up to 16 items can be search items.
(Refer to master set name for more information about search items.)

! (exclamation
point)

denotes a primary path. Only one path in each detail data set can be
designated as a primary path. If no path is designated as primary, the
�rst unsorted path is the primary path by default. If all of the paths are
sorted, the default primary path is the �rst sorted path.

Defining a Database 3-13

master set name is the name of a previously de�ned master data set. When a master set
name follows an item name, the data item is a search item linking the
detail set to the named master. Up to 16 search items can be de�ned for a
detail data set. If no data items have a master name following them, the
detail is not related to any master. In this case, the combined length of all
data items in the data set must equal or exceed two halfwords.

sort item name is the name of a detail data item of type U, K, or X which is a part of
the data set being de�ned. A sort item de�nes a sorted path. Each entry
added to a chain of a sorted path will be linked logically in ascending
order of the sort item values. If sort item is omitted, the path order is
chronological; that is, new entries are linked to the end of chains. For
performance reasons, sorted chains should be kept short. (Refer to \Sort
Items" in chapter 2.)

maximum capacity is the maximum number of entries allowed in a data set (data capacity).
It must be less than or equal to 231 �1 (2,147,483,647) and is limited by
the size of the entry as well as the maximum size of a data set, jumbo or
non-jumbo. This number can di�er from the number of entries speci�ed
in the schema itself because the capacity of each detail is adjusted to
represent an even multiple of the blocking factor. Selecting a very large
maximum capacity minimizes the chances that the set will run out of
space.

For non-jumbo data sets, if the capacity expansion parameter, initial
capacity, is speci�ed and is less (not zero) than the maximum capacity,
the data set is enabled for dynamic expansion. Note that specifying initial
capacity for a jumbo data set will generate an error.

blocking factor is the number of data set records in one block. If a value is not speci�ed,
it is calculated by DBSCHEMA.

initial capacity is the initial capacity for the data set, that is, the number of entries for
which space will be allocated and initialized when the data set is created.
This number must be between 1 and 231 �1 inclusive but must be less
than or equal to the maximum capacity. Specifying initial capacity for a
jumbo data set will generate an error. This parameter should be used to
closely approximate the current volume of data. If it is very low, there
can be frequent expansions leading to severe disk fragmentation. If it is
very high, DBPUT may take a long time to complete which could impact
other database users. The initial capacity is adjusted to represent an even
multiple of the blocking factor. Initial capacity is an optional parameter.
If initial capacity is not speci�ed, or if initial capacity is either zero or
equal to the maximum capacity, then dynamic capacity expansion is not
enabled for the data set, and maximum capacity is used for the data set
�le creation.

increment is either the number of entries or the percentage of the initial capacity
by which the data set will be expanded each time its initialized space
is exhausted. If a percentage is used, the percent sign (%) must follow
the incremental amount. This increment parameter can only be used if
the initial capacity parameter is also speci�ed. This number must be 1
to 32767 inclusive for percent, or 1 to 231 �1 (2,147,483,647) inclusive
for number of entries. If it is very low, there can be frequent expansions

3-14 Defining a Database

leading to severe disk fragmentation. If it is very high, DBPUT may take
a long time to complete which could impact other database users.

The number of entries de�ned, or the entries calculated from the percent,
cannot exceed the maximum entry count minus the initial allocation. The
increment is adjusted to represent an even multiple of the blocking factor.
The increment is an optional parameter. If the increment is not speci�ed
for the data set, or is zero, but the initial capacity is greater than zero,
then the increment for each expansion is defaulted to ten percent (10%) of
the initial capacity for the data set. If the initial capacity is equal to the
maximum capacity, or the initial capacity is zero, then this indicates the
data set cannot be expanded and increment is ignored.

Example

NAME: SALES,DETAIL(11/14,18),DISC1;

ENTRY: ACCOUNT(CUSTOMER(PURCH-DATE)),

STOCK#(!PRODUCT),

QUANTITY,

PRICE,

TAX,

TOTAL,

PURCH-DATE (DATE-MASTER),

DELIV-DATE (DATE-MASTER);

CAPACITY: 1008,504,112;

Description

The example above shows the detail data set SALES which will reside on Disc1. The
maximum capacity is 1008, the initial capacity is 504, and the increment is 112.

Another example is a detail data set de�ned as follows:

CAPACITY: 500000(10),10000,25%;

The maximum capacity is set at 500000 with a blocking factor of 10. It has an initial capacity
of 10000, but will be automatically expanded by 2500 when the initialized space is exhausted.
Since the incremental amount is de�ned as a percent, the percent is calculated as a constant
number based on the initial (or original) capacity (25% of 10000 is 2500.)

To allow dynamic expansion for a detail data set, specify the maximum capacity and the
initial capacity when de�ning the data set. If dynamic expansion is not needed for the data
set, the maximum capacity is the only required parameter.

Verify that there is enough disk space for a data set to be expanded. Performance may
be impacted by the number of entries incremented when a detail data set is dynamically
expanded. The number of disk extents used for the data set �le may also impact the
performance of TurboIMAGE/XL.

Note For existing databases, use DBChange Plus or a third-party utility to specify
the expansion parameters.

Defining a Database 3-15

Master Key and Detail Search Items

The master key items and detail search items (also called critical items) that de�ne a path
between two data sets must have identical type designators and simple sub-item lengths when
they are de�ned in the item part. The sub-item lengths must be simple because the key and
search items cannot be compound items. Because the same data item name can appear in
more than one data set, you can use the same data item name and de�nition for both the
master key items and detail search items. For example, the data item ACCOUNT is used
as the key item in the CUSTOMER master and as the search item in the SALES detail
data sets. If you want to make a distinction between the search items, they can be de�ned
separately. An example of this technique is found in the ORDERS database. The key item
DATE links the DATE-MASTER data set to the SALES data set through two paths and two
search items, PURCH-DATE and DELIV-DATE. These three data items look like this in the
item part:

DATE, X6;

DELIV-DATE, X6 (/14);

PURCH-DATE, X6 (11/14);

Each data item has type designator X and sub-item length 6. However, the item names, read
class lists, and write class lists di�er. Figure 3-5 at the end of this chapter contains the listing
printed by the Schema Processor when the ORDERS database schema is processed. Refer to
this �gure for examples of the schema parts.

Data Set Identifiers

Similar to data items, data sets can be referenced by name or number. The data set number
is determined by the set's position in the set part of the schema. It is more exible to use
data set names in order to maintain program �le independence.

3-16 Defining a Database

Schema Processor Operation

The Schema Processor is a program that accepts a text�le containing the schema as input,
scans the schema and if no errors are detected, optionally produces a root �le. The Schema
Processor prints a heading, an optional list of the schema, and summary information on a
list�le.

The Schema Processor executes as either an MPE/iX job or session. For further information
about sessions and jobs, refer to the MPE/iX Commands Reference Manual . In either case,
you must use the following MPE/iX command to initiate execution of the Schema Processor:

:RUN DBSCHEMA.PUB.SYS

Table 3-5 lists the formal �le designators and default actual �le designators that the Schema
Processor uses for the text �le and list �le. The input/output devices to which $STDINX and
$STDLIST refer depend upon the way the system is generated. However, $STDINX is the
standard job or session input device and $STDLIST is the standard job or session output
device.

Table 3-5. Schema Processor Files

File Use Formal File
Designator

Default Actual
File Designator

text�le Schema and Schema Processor commands DBSTEXT $STDINX

list�le Output listing DBSLIST $STDLIST

If you want to equate these �les to some other actual �le designator, you can use the MPE/iX
FILE command. If a FILE command is included in the job stream, you must inform the
Schema Processor of this in the RUN command in the following way:

:RUN DBSCHEMA.PUB.SYS;PARM=n

where:

n = 1 if an actual �le designator has been equated to DBSTEXT.

n = 2 if an actual �le designator has been equated to DBSLIST.

n = 3 if actual �le designators have been equated to both DBSTEXT and DBSLIST.

Note Parm equals 1 or 3 is recommended for large schema �les.

Table 3-6 shows sample combinations of MPE/iX RUN and FILE commands that can be used
to initiate DBSCHEMA execution.

Defining a Database 3-17

Table 3-6. Examples of RUN and FILE Commands

:RUN DBSCHEMA.PUB.SYS Uses all default �les. Prompts for lines of schema in session
mode.

:FILE DBSTEXT=ORDERSSC Processes schema from a user disk text �le named
:RUN DBSCHEMA.PUB.SYS;PARM=1 ORDERSSC. Outputs listing to $STDLIST.

:FILE DBSLIST;DEV=LP Prompts for lines of schema and outputs the listing to a
:RUN DBSCHEMA.PUB.SYS;PARM=2 line printer.

:FILE DBSTEXT=ORDERSSC Processes schema from user text �le named ORDERSSC;
:FILE DBSLIST=ORDERLST outputs the listing to a disk text �le named ORDERLST.
:RUN DBSCHEMA.PUB.SYS;PARM=3

Only the �rst 72 characters of each text �le record are processed.

If the schema is error-free, a root �le is created, given the same name as the one speci�ed for
the database in the schema, initialized, and saved as a catalogued disk �le. To process the
schema without creating a root �le, use the NOROOT option of the $CONTROL command.
For more information, refer to \Schema Processor Commands" later in this chapter.

Creating the Text File

A convenient method for creating the input �le is to use a text editor, for example,
EDIT/3000, to enter the commands and schema in a disk �le. Figure 3-2 illustrates this
process in a sample session that also executes the Schema Processor. The example shown in
Figure 3-2 uses EDIT/3000.

The steps to follow are listed below and correspond to the numbers in Figure 3-2:

1. Initiate an MPE/iX session by logging on with the appropriate user name and account.

2. Initiate text editor execution. Enter an Editor ADD command in response to the �rst
prompt.

3. Enter Schema Processor commands and the schema itself into records of the Editor work
�le.

4. Save the work �le in a disk �le named ORDERSSC. Then terminate the Editor.

5. Use the MPE/iX FILE command to equate the formal �le designator DBSLIST to the line
printer and DBSTEXT to the disk �le ORDERSSC.

6. Initiate execution of DBSCHEMA and indicate that the text �le and list �le have been
de�ned in FILE commands. When the Schema Processor has �nished processing the
schema, it prints the number of error messages and veri�es that the root �le has been
created.

The Schema Processor can also be executed in batch mode. See \Schema Processor
Commands" later in this chapter.

3-18 Defining a Database

1 :HELLO USER.ACCOUNT

HP3000 RELEASE: B.30.00 . . . TUE, SEP 10, 1991, 1:49 PM

MPE/iX HP31900 B.08.14 Copyright (C) Hewlett-Packard 1987. . . .

2 :EDITOR

HP32201A.00.00 EDIT/3000 TUE, SEP 10, 1991, 2:07 PM

(C) HEWLETT-PACKARD CO. 1985

3 /ADD

1 $PAGE "SCHEMA OF DATA BASE ORDERS"

2 $CONTROL ERRORS=5, BLOCKMAX=256

3 BEGIN DATABASE ORDERS;.
.
.

59 END.

60 //

...

4 /KEEP ORDERSSC

/EXIT

5 :FILE DBSLIST;DEV=LP

:FILE DBSTEXT=ORDERSSC

6 :RUN DBSCHEMA.PUB.SYS;PARM=3

HP30391C.03.02

NUMBER OF ERROR MESSAGES: 0

ROOT FILE ORDERS CREATED

END OF PROGRAM

:BYE

Figure 3-2. Sample Schema Creation Session

The Database Creator

The person who creates the root �le is identi�ed as the database creator and can subsequently
create and initialize the database. To do so, the database creator must log on with the same
account, user name, and group used to create the root �le and execute the TurboIMAGE/XL
utility program DBUTIL. This program is described in chapter 8.

Defining a Database 3-19

Schema Processor Commands

TurboIMAGE/XL provides several commands that you can use anywhere in the schema to
specify options available while processing the schema. The commands are: $PAGE, $TITLE,
and $CONTROL. The dollar sign ($) must always be the �rst character of the record,
immediately followed by the command name, which must be completely spelled out.

If a parameter list is included with the command, it must be separated from the command
name by at least one blank. Parameters are separated from each other by commas. Blanks
can be freely inserted between items in the parameter list.

Command records cannot contain comments.

Figure 3-3 illustrates the order of commands and other input required when executing the
Schema Processor in batch mode. The job can also be stored in a disk �le and executed from
a terminal.

!JOB USER.ACCOUNT � Job command

!RUN DBSCHEMA.PUB.SYS � Run command

$PAGE � Schema Processor commands (optional)

$TITLE

$CONTROL

BEGIN DATABASE B; � Schema
...

!EOJ � EOJ command

Figure 3-3. Schema Processor Batch Job Stream

Continuation Records

To continue a command to the next record, use an ampersand (&) as the last non-blank
character in the current record. The following record must begin with a $. The records are
combined and the $ and & are deleted and replaced by one blank character. A command
name or parameter cannot be broken by &. Characters beyond the 72nd character of each
record are ignored.

3-20 Defining a Database

$PAGE

The $PAGE command causes the list �le to eject to the top of the next page, print
character-strings that you can optionally specify, and skip two more lines before continuing
the listing.

Syntax

$PAGE [["character-string"],...]

Parameters

character-string is a list of characters enclosed in quotation marks. When the command is
executed, the quotation marks are stripped and the character-strings are
concatenated. A quotation mark within a character-string is speci�ed by a
pair of quotation marks.

Example

$PAGE "ORDERS DATABASE SCHEMA", "VERSION 3"

$PAGE "MASTER DATA SETS"&

$,"ACCOUNTING APPLICATION"

$PAGE

Description

The $PAGE command is e�ective only if the LIST option of the $CONTROL command is on.
The LIST option is on by default until a $CONTROL command sets NOLIST. The $PAGE
command itself is not listed.

The contents of the character-strings replace those speci�ed by a previous $PAGE or $TITLE
command. If no character-strings are speci�ed, the character-strings speci�ed in the preceding
$PAGE or $TITLE command, if any, are printed at the top of the next page.

Defining a Database 3-21

$TITLE

The $TITLE command speci�es a list of characters to be printed each time a heading is
printed on a new page. It does not cause a page eject.

Syntax

$TITLE [["character-string"],...]

Parameters

character-string is a list of characters enclosed in quotation marks. When the command is
executed, the quotation marks are stripped and the character-strings are
concatenated. A quotation mark within a character-string is speci�ed by a
pair of quotation marks.

Example

$TITLE"""PRELIM""ORDERS DATABASE"

$TITLE "ORDERS DATABASE SCHEMA JULY, 1991"

Description

The $TITLE command can be overridden by a subsequent $TITLE or $PAGE command. If
no character-string is speci�ed, no title is printed after the command is encountered until
another $TITLE or $PAGE command speci�es one.

3-22 Defining a Database

$CONTROL

The $CONTROL command allows you to specify options in relation to processing the schema.

Syntax

$CONTROL

�
LIST

NOLIST

��
,ERRORS=nnn

��
,LINES=nnnnn

�� ,ROOT
,NOROOT

�

�
,BLOCKMAX=nnnn

�� ,TABLE
,NOTABLE

��
,JUMBO

,NOJUMBO

�

Parameters

LIST causes each source record of the schema to be printed on the list �le.

NOLIST speci�es that only source records with errors be printed on the list �le. An
error message is printed after these records.

ERRORS=nnn sets the maximum number of errors to nnn . If more than nnn errors are
detected, the Schema Processor terminates. nnn can have a value between
0 and 999, inclusive. The default value is 100.

LINES=nnnnn sets the number of lines per page on the list �le to nnnnn which can be
between 4 and 32767, inclusive. The default value is 60 if the list �le is a
line printer and 32767 if it is not.

ROOT causes the Schema Processor to create a root �le if no errors are detected
in the schema. This is the default.

NOROOT prevents the Schema Processor from creating a root �le.

BLOCKMAX=nnnn sets the maximum physical block length (in halfwords) for any data set in
the database. nnnn can have a value between 128 and 2560, inclusive.
The default value is 512. This is an important parameter and is discussed
in detail in the section \Selecting the Block Size."

TABLE causes the Schema Processor to write a table of summary information
about the data sets to the list �le device if no errors are detected. This is
the default.

NOTABLE suppresses the TABLE option.

JUMBO allows a data set, de�ned following this option whose capacity is greater
than 4 GB, to automatically become a jumbo data set.

NOJUMBO disallows data sets, de�ned following this option, to be jumbo data sets.

Defining a Database 3-23

Description

The default parameters are LIST, ROOT, TABLE, and NOJUMBO. If no $CONTROL
command is used, the results are the same as if the following $CONTROL command is used:

$CONTROL LIST,ERRORS=100,LINES=60,ROOT,BLOCKMAX=512,TABLE

The parameters can be placed in any order but must be separated by commas.

To specify a jumbo data set, the JUMBO option must be included in the schema before
de�ning any jumbo data sets. Then any data set whose capacity is greater than 4 GB
automatically becomes a Jumbo data set. If the JUMBO option is not speci�ed, an error is
generated for the data sets exceeding the 4 GB limit. Use the NOJUMBO option to turn o�
the jumbo feature.

DBSTORE does not store jumbo data sets; instead use
TurboSTORE/iX 7x24 True-Online Backup using ONLINE=START or ONLINE=END
option.

Note Use only third-party utilities and diagnostic tools that are enhanced to handle
Jumbo data sets.

Selecting the Block Size

The data set records are transferred from the disk to memory in 4096-byte pages in
TurboIMAGE/XL blocks. The block format is described in chapter 10. When you specify a
maximum block size with the $CONTROL command, you should consider:

E�cient disk space utilization.

Localizing the block's bit map to the actual data entries within a 4096-byte page.

The Schema Processor determines the number of data records that �t in a block. Note that
DBSCHEMA chooses a block size (less than or equal to the maximum block size) that makes
the best use of disk space, and which can be substantially less than the maximum block size
speci�ed by $CONTROL BLOCKMAX (or the default of 512 halfwords). If the record size is
greater than 512 halfwords, BLOCKMAX must be set greater than or equal to the record size.
A certain amount of tuning may be necessary to determine the best block size. In general, the
default block size of 512 halfwords yields reasonable performance on TurboIMAGE/XL and
should be changed only when needed.

3-24 Defining a Database

Schema Processor Output

The Schema Processor prints the following heading on the �rst page of the listing:

PAGE 1 HEWLETT-PACKARD 30391C.05.00 TurboIMAGE/3000: DBSCHEMA

MON, JAN 10, 1994, 3:32 PM (C) HEWLETT-PACKARD CO. 1987

If your standard output device ($STDLIST) is di�erent from the list �le, an abbreviated
product identi�cation is also printed on $STDLIST. Subsequent pages of the list �le are
headed by a page number, the database name if it has been encountered, and the title most
recently speci�ed by a $TITLE or $PAGE command.

If the LIST option is active, a copy of each record of the schema is sent to the list �le.
However, if the text �le and list �le are the same, as for example they are when you enter
the schema source from your terminal in session mode, the records are not listed. If you are
entering the schema in this way, the Schema Processor prompts for each line of input with a
right angle bracket (>).

Summary Information

After the entire schema has been scanned, several types of summary information can be
printed on the list �le.

If some of the items de�ned in the item part are not referenced in the set part, and if no
errors are encountered, the message UNREFERENCED ITEMS:list of items is printed to the list
�le. The list includes all items de�ned but not referenced in a data set. Although they are
not considered errors, these extraneous items should be removed to reduce the size of the
tables in the root �le and the size of the control blocks used by the library procedures.

If no errors are detected in the schema, the Schema Processor prints a table of summary
information about the data sets. Figure 3-4 contains a sample printout of this information.
Table 3-7 describes the information contained in the summary. The NOTABLE parameter
of the $CONTROL command suppresses printing of this table.

DATA SET TYPE FLD PT ENTR MED MAXIMUM BLK BLK DISC

NAME CNT CT LGTH REC CAPACITY FAC LGTH SPACE

EMPLOYEE Mi 4 1 7 17 500 30 512 72

PROJECT-MASTER M 2 1 10 20 75 19 382 15

LABOR D 4 2 10 18 20048 28 506 1436

INITIAL CAPACITY: 10024 INCREMENT ENTRIES: 2016

TOTAL DISC SECTORS INCLUDING ROOT: 1532

Figure 3-4. Data Set Summary Table

Defining a Database 3-25

Table 3-7. Data Set Summary Table Information

Headings Description

DATA SET NAME The name of the data set.

TYPE A for automatic, M for manual, or D for detail. A small letter \i"
adjacent to the \M" or \A" indicates the data set has a B-Tree index
on the key item.

FLD CNT The number of data items (�elds) in each entry of the data set.

PT CT Path count. For a master data set, this is the number of paths
speci�ed for the data set key item. For a detail data set, it is the
number of search items de�ned for the data set.

ENTR LNGTH The length in halfwords of the data portion of the data entry (not
including any of the TurboIMAGE/XL pointers or structure
information associated with a data entry).

MED REC The total length in halfwords of a media record of the data set. This
length includes the entry length plus any of the TurboIMAGE/XL
pointers associated with the data entry. Media records are discussed in
chapter 10.

MAXIMUM CAPACITY The maximum number of entries allowed in the data set. For master
data sets speci�ed for dynamic expansion and for detail data sets, this
number can di�er from the number of entries speci�ed in the schema
itself, because the capacity is adjusted to represent an even multiple of
the blocking factor (see below).

BLK FAC The number of media records that are blocked together for transfer to
and from the disk.

BLK LGTH The total length in halfwords of the physical block as de�ned in BLK
FAC. This includes the media records and a bit map. Bit maps are
discussed in chapter 10.

DISC SPACE The amount of disk space occupied by the MPE/iX �le containing the
data set.

INITIAL CAPACITY The number of entries for which space will be allocated or initialized
when the data set is created.

INCREMENT ENTRIES The number of entries by which the data set will be expanded each
time its space is exhausted.

TOTAL DISC SECTORS
INCLUDING ROOT: nnnn

The total number of disk sectors that will be occupied by the database
when created using the DBUTIL program.

Two lines of summary totals are printed on the list �le. For example:

NUMBER OF ERROR MESSAGES: 0

ITEM NAME COUNT: 23 DATA SET COUNT: 6

The error count includes both errors in the schema and in the Schema Processor commands.
The error count is also sent to $STDLIST if it is di�erent from the list �le.

3-26 Defining a Database

If no schema syntax or logical errors are encountered, a third line is printed. The form of
this line is:

ROOT LENGTH: r BUFFER LENGTH: b TRAILER LENGTH: t

ROOT LENGTH is the length in halfwords of the body of the root �le. BUFFER
LENGTH is the length in halfwords of each of the data bu�ers (unused by
TurboIMAGE/XL but provided for compatibility with TurboIMAGE on MPE V; refer to
the discussion on bu�er speci�cations in appendix H). TRAILER LENGTH is the length in
halfwords of an area in the control block used by TurboIMAGE/XL to transfer information
to and from a calling program's stack.

If no errors are detected and the ROOT option is active, the following message is sent to the
list �le:

ROOT FILE database name CREATED

where database name is the name given in the BEGIN DATABASE statement in the
schema.

The initial capacity and increment entries are optional parameters. If dynamic expansion
is required, include these parameters when de�ning the detail data set (See chapter 3.)
For existing databases, use DBChange Plus or other third-party tools you may be using
to specify the expansion parameters. For more information, refer to MPE/iX Release 5.0
Communicator .

Schema Errors

When the Schema Processor detects an error, it prints a message to the list �le. If the LIST
option is active, it is printed immediately after the o�ending statement. If NOLIST is active,
the current line of the schema is printed, followed by the error message.

Schema Processor error messages are explained in appendix A. The root �le is not created if
any of the listed errors are detected. However, the Schema Processor attempts to continue
checking the schema for logical and syntactical correctness.

One error can obscure detection of subsequent errors, particularly if it occurs early in a data
set. It may be necessary to process the schema again after the error is corrected to �nd
subsequent errors. Conversely, some errors early in the schema can generate subsequent
apparent errors which will disappear after the original error has been corrected.

If schema errors prohibit creation of the root �le, the following message is sent to the list �le
and to $STDLIST if it is not the same as the list �le:

PRECEDING ERRORS -- NO ROOT FILE CREATED

A few conditions, including the number of errors exceeding the total number allowed, cause
immediate termination of the Schema Processor without the normal summary lines. In this
case, the following message is printed:

SCHEMA PROCESSING TERMINATED

Defining a Database 3-27

Schema Processor Example

Figure 3-5 contains the list �le output printed when the schema of the sample ORDERS
database is processed. The database has 5 passwords and contains 23 data item de�nitions
and 6 data set de�nitions. The Schema Processor summary information is printed following
the schema.

3-28 Defining a Database

PAGE 1 HEWLETT-PACKARD 30391C.05.00 TurboIMAGE/3000: DBSCHEMA

MON, JAN 10, 1994, 3:32 PM (C) HEWLETT-PACKARD CO. 1987

$CONTROL LIST,LINES=46

$PAGE "SCHEMA FOR DATABASE ORDERS"

BEGIN DATABASE ORDERS;

PASSWORDS:

11 CREDIT; << CUSTOMER CREDIT OFFICE >>

12 BUYER; << BUYER - RESPONSIBLE FOR PARTS INVENTORY >>

13 SHIP-REC; << WAREHOUSE - SHIPPING AND RECEIVING >>

14 CLERK; << SALES CLERK >>

18 DO-ALL; << FOR USE BY MGMT >>

ITEMS: << IN ALPHABETICAL ORDER FOR CONVENIENCE >>

ACCOUNT, J2 ; << CUSTOMER ACCOUNT NUMBER>>

BINNUM, Z2 (/13); << STORAGE LOCATION OF PROD>>

CITY, X12 (12,13,14/11); << CITY>>

CREDIT-RATING, R2 (/14); << CUSTOMER CREDIT RATING>>

DATE, X6 ; << DATE (YYMMDD)>>

DELIV-DATE, X6 (/14); << DELIVERY DATE (YYMMDD)>>

DESCRIPTION, X20 ; << PRODUCT DESCRIPTION>>

FIRST-NAME, X10 (14/11); << CUSTOMER GIVEN NAME>>

INITIAL, U2 (14/11); << CUSTOMER MIDDLE INITIAL>>

LAST-NAME, X16 (14/11); << CUSTOMER SURNAME>>

LASTSHIPDATE, X6 (12/); << DATE LAST REC D(YYMMDD)>>

ONHANDQTY, J2 (14/12); << TOTAL PRODUCT INVENTORY>>

PRICE, J2 (14/); << SELLING PRICE (PENNIES)>>

PURCH-DATE, X6 (11/14); << PURCHASE DATE (YYMMDD)>>

QUANTITY, I (/14); << SALES PURCHASE QUANTITY>>

STATE, X2 (12,13,14/11); << STATE -- 2 LETTER ABB>>

STOCK#, U8 ; << PRODUCT STOCK NUMBER>>

STREET-ADDRESS, X26 (12,13,14/11); << NUMBER AND STREET ADDRESS>>

SUPPLIER, X16 (12,13/); << SUPPLYING COMPANY NAME>>

TAX, J2 (14/); << SALES TAX (PENNIES)>>

TOTAL, J2 (11,14/); << TOTAL AMOUNT OF SALE(PENNIES)>>

UNIT-COST, P8 (/12); << UNIT COST OF PRODUCT>>

ZIP, X6 (12,13,14/11); << ZIP CODE>>

SETS:

NAME: DATE-MASTER,AUTOMATIC,DISC1; <<DATE MASTER>>

ENTRY: DATE(3);

CAPACITY: 365;

NAME: CUSTOMER,MANUAL /INDEXED (14/11,18),DISC1; <<CUSTOMER MASTER>>

ENTRY: ACCOUNT(1),

LAST-NAME,

FIRST-NAME,

INITIAL,

STREET-ADDRESS,

CITY,

STATE,

ZIP,

CREDIT-RATING;

CAPACITY: 201;

Figure 3-5. ORDERS Database Schema

Defining a Database 3-29

PAGE 2 SCHEMA FOR DATABASE ORDERS

NAME: PRODUCT,MANUAL(13,14/12,18),DISC1;<<PRODUCT MASTER>>

ENTRY: STOCK#(2),

DESCRIPTION;

CAPACITY: 300;

NAME: SUP-MASTER,MANUAL(13/12,18),DISC1; <<SUPPLIER MASTER>>

ENTRY: SUPPLIER(1),

STREET-ADDRESS,

CITY,

STATE,

ZIP;

CAPACITY: 201;

NAME: INVENTORY,DETAIL(12,14/13,18),DISC2; <<INVENTORY DETAIL>>

ENTRY: STOCK#(PRODUCT),

ONHANDQTY,

SUPPLIER(!SUP-MASTER), <<PRIMARY PATH>>

UNIT-COST,

LASTSHIPDATE(DATE-MASTER),

BINNUM;

CAPACITY: 1800,450,10%;

NAME: SALES,DETAIL(11/14,18),DISC2; <<SALES DETAIL>>

ENTRY: ACCOUNT(CUSTOMER(PURCH-DATE)),

STOCK#(PRODUCT),

QUANTITY,

PRICE,

TAX,

TOTAL,

PURCH-DATE(DATE-MASTER),

DELIV-DATE(DATE-MASTER);

CAPACITY: 1008,504,112;

END.

DATA SET TYPE FLD PT ENTR MED MAXIMUM BLK BLK DISC

NAME CNT CT LGTH REC CAPACITY FAC LGTH SPACE

DATE-MASTER A 1 3 3 26 365 19 496 96

CUSTOMER Mi 9 1 41 52 201 7 365 96

PRODUCT M 2 2 14 31 300 16 497 80

SUP-MASTER M 5 1 31 42 201 12 505 80

INVENTORY D 6 3 20 32 1800 15 481 128

INITIAL CAPACITY: 450 INCREMENT ENTRIES: 45

SALES D 8 4 19 35 1008 14 491 160

INITIAL CAPACITY: 504 INCREMENT ENTRIES: 112

TOTAL DISC SECTORS INCLUDING ROOT: 672

NUMBER OF ERROR MESSAGES: 0

ITEM NAME COUNT: 23 DATA SET COUNT: 6

ROOT LENGTH: 1176 BUFFER LENGTH: 505 TRAILER LENGTH: 256

ROOT FILE ORDERS CREATED.

Figure 3-5. ORDERS Database Schema (Continued)

3-30 Defining a Database

4

Using the Database

After you design the database, create the root �le, and build the data sets, you can write
application programs to enter and use the data. Programs written in BBASIC, C, COBOL II,
FORTRAN 77, or Pascal gain access to the database through calls to TurboIMAGE/XL
procedures. RPG programs contain speci�cations used by the Report Program Generator
to make calls to the TurboIMAGE/XL procedures for you. This chapter contains a text
discussion of the procedures used to open the database and to enter, read, update, and delete
data; it also contains information on locking, transaction logging, checking procedure status,
and interpreting errors. Use this chapter with chapter 5 which gives details about each
procedure call, its parameters, and status information.

Note Before application programs can be executed, the database must be created
using the TurboIMAGE/XL utility program DBUTIL described in chapter 8.

Opening the Database

Before you can gain access to the data, the process you are running must open the database
with a call to the DBOPEN procedure. A process is a unique execution of a particular
program by a particular user at a particular time, as described in the MPE/iX Intrinsics
Reference Manual . In opening a database, DBOPEN establishes an access path between the
database and your program by doing the following:

Verifying your right to use the database under the security provisions provided by the
MPE/iX �le system and the TurboIMAGE/XL user-class-password scheme.

Determining that the access mode you have requested in opening the database is compatible
with the access modes of other users currently using the database.

Opening the root �le and constructing the control blocks to be used by all other
TurboIMAGE/XL procedures when they are executed. The root �le remains open until the
database is closed.

Note that DBOPEN does not open the individual data sets that compose a database.

DBOPEN also determines if the operating system supports the native language as de�ned in
the root �le. The following error message is returned if the language attribute of the database
is not supported by the current system con�guration:

Language is not supported

Refer to chapter 6 for more information on Host Language Access and appendix A for more
information on error messages.

Using the Database 4-1

Database Control Blocks

TurboIMAGE/XL executes using data stored in di�erent types of control blocks stored in
privileged mapped �les or virtual data objects: the Database System Control Block (DBS),
the Database Globals Control Block (DBG), the Database Bu�er Area Control Block (DBB),
the Database User Local Control Block (DBU), the Remote Database Control Block (DBR),
Database User Local Index Control Block (DBUX), the Lock Table (TURBOLKT), Global
Dynamic Multi-database Transaction Table (TURBOGTX), DBQUIESCE and DBOPEN
Table (QOPEN), and DBQUIESCE Lock Table (QLOCK). These are described below:

The Database System Control Block (DBS) is created by DBOPEN if it does not already
exist. The DBS is used as a system-wide table to locate the current Database Globals
Control Block (DBG) for any opened database. Each system has only one DBS, created
as a permanent �le called TURBODBS in the PUB group and the SYS account on that
system.

The Database Globals Control Block (DBG) is created for a particular database when the
�rst user's process calls the DBOPEN procedure to open the database. The DBG contains
global information required by TurboIMAGE/XL intrinsics during run-time, including
a pointer to the Database Bu�er Area Control Block (DBB). Each open database has
exactly one DBG regardless of the number of concurrent access paths to the database.
All TurboIMAGE/XL procedures on a particular database (except DBERROR and
DBEXPLAIN) reference the DBG. In addition, the DBG contains the lock table which
holds user-level locking information. The DBG is purged when the last user's process closes
the database (DBCLOSE).

The Database Bu�er Area Control Block (DBB) is created for a particular database when
the �rst user's process calls the DBOPEN procedure to open the database. The DBB
contains a set of bu�er headers which point to data in memory from any of the data sets,
and contains a pointer to the DBG. Global information regarding logging and recovery is
also contained within the DBB. The DBB is used to retrieve, log, and update data located
in the data set �les on disk. The DBB is purged when the last user closes the database
(DBCLOSE).

One Database User Local Control Block (DBU) is created each time a user's process
successfully calls DBOPEN. Each DBU contains information about the user's individual
access to the database and contains pointers to the DBS, DBG, and DBB. The privileged
mapped �le containing the DBU is associated with this DBOPEN. The DBU is purged
when the corresponding DBCLOSE closes the database. A process can open a maximum of
127 databases (or one database 63 times), depending upon the system resources; therefore, a
maximum of 127 DBUs can be created. It is recommended that a process close a database
once it is no longer needed for that process.

One Remote Database Control Block (DBR) is created on the local system each time a
user's process successfully opens a remote database. The DBR contains database set and
item information as well as the work areas necessary to set up communications to the
remote computer.

The Database User Local Index Control Block (DBUX) is created the �rst time the user's
process calls DBOPEN. One DBUX exists for each user's process. Its purpose is to keep
track of the addresses of all the DBUs and/or DBRs for that process. Because a maximum
of 127 entries are allowed in the DBUX, each process is allowed 127 DBOPENs (63 per
database) depending on the availability of system resources. The DBUX remains allocated
until the user's process is terminated.

4-2 Using the Database

The TurboLock Table is a permanent �le, TURBOLKT.PUB.SYS, that is created by
DBOPEN (if it does not exist beforehand). Thereafter, it is opened when the �rst user
opens any database on the system. It is purged when the system is rebooted. Each system
has only one TURBOLKT �le. It is used to avoid deadlocks for all IMAGE/SQL users.
Additionally, it is also used to detect potential deadlock for TurboIMAGE/XL users if, and
only if, deadlock detection is activated by DBCONTROL mode 7.

The Global Dynamic Multi-database Transaction Table is a permanent �le,
TURBOGTX.PUB.SYS, that is created by DBXBEGIN (if it does not exist beforehand).
Thereafter, it is opened for all users who employ dynamic multi-database transaction(s)
(DMDBX). Each system has only one TURBOGTX �le, and it remains on the system even
after the system is rebooted. It is used for tracking DMDBX.

The DBQUIESCE and DBOPEN Table, QOPEN, is an unnamed global object and is �rst
created by DBOPEN when the �rst writer of any database enabled for user logging opens a
database. It is subsequently accessed only by writers of databases enabled for user logging.
Each system has only one QOPEN table, and it is purged when all processes accessing it
are terminated. It contains information pertaining to DBOPEN and user logging process.
This information is used to write to log records for DBRECOV and to coordinate with
DBQUIESCE called by TurboSTORE/iX 7x24 True-Online Backup.

The DBQUIESCE LOCK Table, QLOCK, is an unnamed permanent global structure
that is created by DBOPEN (if it does not exist beforehand). There is one per system,
and it is accessed by all writers to all databases. It is purged only at system reboot
time. It is used for containing database information required to quiesce database(s) for
TurboSTORE/iX 7x24 True-Online Backup.

All TurboIMAGE/XL intrinsics process on the DBU except accesses for global and bu�er area
information found in the two global blocks (DBG and DBB).

Passwords

When you open the database you must provide a valid password to establish your user class
number. If you do not provide one, you will be granted user class number 0. If you are the
database creator and supply a semicolon as a password, you are assigned user class 64, which
grants you unlimited database access privileges. Passwords and user classes are discussed in
chapter 2.

Database Access Modes

There are eight di�erent access modes for opening the database with the DBOPEN procedure.
Each mode determines the type of operation that you can perform on the database, as well as
the types of operations other users can perform concurrently. To simplify the de�nition of the
various DBOPEN modes, the following terminology is used:

Read access modes (5, 6, 7, and 8) allow the user to locate and read data entries.

Update access mode (2) allows read access and permits the user to replace values in all
data items except master data set key items and detail data set search and sort items. The
critical item update (CIUPDATE) option, which can permit the values of detail data set
search and sort items to be updated and which is discussed later in this chapter, is not
available in this mode.

Using the Database 4-3

Modify access modes (1, 3, and 4) allow updates and permit the user to add and delete
entries. For access modes 1, 3, and 4 only, users can update the values of detail data set
search and sort items if the critical item update (CIUPDATE) option settings for the
database and the current process permit them to do so. CIUPDATE is discussed later in
this chapter.

The TurboIMAGE/XL library procedures (also called intrinsics) that can be used with each
type of DBOPEN mode are as follows:

Library Procedures DBOPEN Modes

DBOPEN Mode Library Procedures Available

Read DBFIND and DBGET

Update DBFIND, DBGET, and DBUPDATE

Modify DBFIND, DBGET, DBUPDATE, DBPUT, and DBDELETE

Table 4-1 summarizes the type of database access granted in each access mode, provided the
MPE/iX security provisions and your password permit it. Access modes 3 and 7 provide
exclusive access to the database; all other modes allow shared access.

Table 4-1. Database Access Mode Summary

Access
Mode

Type of Access
Mode Granted

Concurrent Access
Modes Allowed

Special
Requirements

1 Modify 1, 5 Modify (with
locking)

Locking must be used for update or
modify.

2 Update 2, 6 Update

3 Modify None Exclusive Access

4 Modify 6 Read

5 Read 1, 5 Modify (with
locking)

TurboIMAGE/XL does not require
locking, but it should be used to
coordinate access with users who are
modifying the database.

6 Read 2, 4, 6, 8 Modify

7 Read None Exclusive Access

8 Read 6, 8 Read

Concurrent Database Access Modes

A database can only be shared in certain well-de�ned environments. The access mode
speci�ed when a process opens a database must be acceptable for the environment established
by others who are already using the database. Here is a summary of the acceptable
environments:

Multiple access mode 1 and access mode 5 users

4-4 Using the Database

Multiple access mode 6 and access mode 2 users

Multiple access mode 6 users and one access mode 4 user

Multiple access mode 6 and access mode 8 users

One access mode 3 user

One access mode 7 user

Subsets of these environments are also allowed. For example, all users can be access mode 5,
6, or 8 users; or there could be one access mode 1 user; and so on.

If an access mode 3 or 7 user is currently accessing the database, it cannot be opened until
that user closes the database. This is true any time an attempt is made to open a database in
an access mode that is not compatible with the access modes of others using the database.

Database Operations

This section explains in detail what occurs when a database is opened in a particular mode.
Locking is available in all modes. In the discussion that follows, brief suggestions are given
as to when locking can be used. Refer to the discussion of the locking facility later in this
chapter for more information.

Access Mode 1. The database is opened for shared modify access. Opening in mode 1
succeeds only if all other current users of the database are using access modes 1 or 5.

All TurboIMAGE/XL procedures are available in this mode. The critical item update
(CIUPDATE) option, which can permit you to update the values of detail data set
search and sort items, is available in this mode. A program must obtain temporary
exclusive control of the data entries before calling any procedure that changes them,
such as, DBUPDATE, DBPUT, or DBDELETE. In this way, changes to the database
are synchronized and carried out properly. This exclusive control must subsequently
be relinquished to permit other access mode 1 or mode 5 users to access these entries.
Acquiring and relinquishing is referred to as locking and unlocking, respectively. These
functions are supplied by the TurboIMAGE/XL library procedures, DBLOCK and
DBUNLOCK. The locking requirements can be met by locking the a�ected entries, the sets
containing the entries, or the whole database.

A mode 1 (and mode 5) user who has all or part of the database locked is assured that no
concurrent user is modifying that part of the database.

It is possible to read entries in the database using calls to DBFIND and DBGET without
locking, but the calling program must provide for the possibility that another process could
be simultaneously modifying the database. This can result in an entry being deleted from a
chain which the calling program is reading.

Access Mode 2. The database is opened for shared update access. The DBOPEN call
succeeds only if all current users of the database are using access modes 2 and 6. All
TurboIMAGE/XL procedures are available to the access mode 2 user except DBPUT and
DBDELETE which are disallowed in this mode. The critical item update (CIUPDATE)
option, which can permit you to update the values of detail data set search and sort items,
is not available in this mode. Therefore, the access mode 2 user is able to read all data
entries and update some data entries, but is not permitted to add or delete data entries in
any data set.

Using the Database 4-5

The programmer must be aware of the possibility that other access mode 2 users are
simultaneously updating data entries. In many applications, it may be possible to arrange
for each user's process to update unique data entries or data items so that the database
will correctly reect all changes, even data items in the same entry updated by di�erent
processes. On the other hand, if two or more processes update the same data items of the
same entry, the database will reect only the latest values. Locking can be used, if desired,
to coordinate update sequences to an entry or to coordinate with access mode 6 readers.

Access Mode 3. The database is opened for exclusive modify access. If any other users are
accessing the database, it cannot be opened in this mode. All TurboIMAGE/XL procedures
are available to the access mode 3 user. The critical item update (CIUPDATE) option,
which can permit you to update the values of detail data set search and sort items, is
available in this mode. No other concurrent process is permitted to gain any type of access
to the database.

Access Mode 4. The database is opened for semi-exclusive modify access. Only one access
mode 4 user can access the database, and all other current users must be in access mode 6
(read only). The access mode 4 user is permitted to call any TurboIMAGE/XL procedure
and has complete control over database content. The critical item update (CIUPDATE)
option, which can permit you to update the values of detail data set search and sort items,
is available in this mode. Other read-only users are permitted concurrent access to the
database in mode 4, but not in mode 3. Locking can be used to coordinate with access
mode 6 readers.

Access Mode 5. The database is opened for shared read access. All other concurrent users
must be in access mode 1 or 5. Access mode 5 operates the same as access mode 1, except
that the DBUPDATE, DBPUT, and DBDELETE procedures, which alter the database, are
disabled for the access mode 5 user. Locking can be used, if desired, to ensure that data is
not being modi�ed while you are reading it.

Access mode 5 is appropriate for inquiry-type applications if they can tolerate the
possibility of database modi�cations taking place simultaneously with access mode 1 users.

Access Mode 6. The database is opened for shared read access. Concurrent users must be
in access mode 2, 4, 6, or 8. Access mode 6 can also be used while the database is being
stored with the TurboIMAGE/XL utility program DBSTORE. Some of these modes are
incompatible with each other as shown in the preceding discussion of concurrent access
modes. All TurboIMAGE/XL procedures that alter the database are disabled. Locking can
be used to synchronize with users who are concurrently updating.

Access mode 6 is appropriate for inquiry-type applications if they can tolerate the
possibility of database modi�cations taking place simultaneously with access mode 2 and 4
users.

Access Mode 7. The database is opened for exclusive read access. No other users can access
the database concurrently. Access mode 7 operates the same as access mode 3, except that
the DBUPDATE, DBPUT, and DBDELETE procedures, which alter the database, are
disabled for the access mode 7 user.

Access Mode 8. The database is opened for shared read access. Concurrent users must
either be in access mode 6 or 8, or using the TurboIMAGE/XL utility, DBSTORE.
TurboIMAGE/XL procedures that alter the database are not permitted. Because access
mode 8 allows only concurrent readers, a user program with this access mode can be assured
that the database values it reads are unchanging.

4-6 Using the Database

Selecting a Database Access Mode

When deciding which access mode to use, the following are two important considerations:

Use the minimum capability required to accomplish the task. For example, select a
read-only access mode (5, 6, 7, or 8) if the program does not alter the database in any
way. Read access modes allow concurrent database STORE operations and do not set the
MPE/iX \�le modi�ed" ag.

Allow concurrent users to have as much capability as is required for successful completion
of the task. If the task is merely browsing through the database, producing a quick report,
or accessing an unchanging portion of the database, choose an access mode that allows
concurrent users to make database modi�cations to other parts of the database. Allowing
concurrent read-only access (modes 2, 4, and 8) can be appropriate in many situations.
For programs that must be assured of no concurrent structural changes, but can tolerate
simultaneous updates to entries, mode 2 is suitable. Locking can be used to control
simultaneous updates to a data entry. If it is necessary to make additions or deletions to a
database from concurrent multiple processes, modes 1 and 5 must be used. Fully exclusive
operation (modes 3 and 7) are available if needed.

The following access mode selection guidelines are organized according to the task to be
performed. For some tasks, one of several modes can be selected depending on the concurrent
activity allowed with each mode.

Programs that perform operations, which include adding and deleting entries or which need
to update detail data set search and sort items via the critical item update (CIUPDATE)
option, should open with mode 1, 3, or 4. Consider the following when choosing among
access modes 1, 3, and 4:

Access Mode 1 Can be used if other processes need to add and delete entries
simultaneously. In this case, the a�ected parts of the database must be
locked while performing updates, additions, or deletions.

Access Mode 3 Can be used if the program must have exclusive access to the database.

Access Mode 4 Can be used if exclusive ability to change the database is required but
access mode 6 processes need to be able to read the database while
changes are being made.

Programs that locate, read, and replace data in existing entries but do not need to add or
delete any entries, and do not want any other processes to do so, should open the database
in access mode 2. Consider the following when choosing access mode 2:

Access Mode 2 Can be used if processes are allowed to update the database
concurrently. Locking should be used to coordinate updates. The
critical item update (CIUPDATE) option, which can permit you
to update the values of detail data set search and sort items, is not
available in this mode.

Programs that only locate and read or report on information in the database should open
with one of the read-only access modes. In this case, the access mode selected depends upon
either the type of process running concurrently or the need for an unchanging database
while the program is running. Consider the following when choosing among access modes 5,
6, 7, and 8:

Access Mode 5 Can be used if concurrent processes will operate in access mode 1 or
5. Parts or all of the database should be locked to prevent concurrent

Using the Database 4-7

changes during one or more read operations. Because concurrent access
mode 1 processes are allowed, programs performing chained reads
should lock the chain (see the discussion of DBGET in chapter 5).

Access Mode 6 Can be used if it is not important what other processes are doing to the
database. In this case, access mode 2 processes can update entries; one
access mode 4 user can update, add, or delete entries; or access mode 6
or 8 users can read entries while the program is using the database.

Access Mode 7 Can be used if the program must have exclusive read access to the
database.

Access Mode 8 Can be used if other processes are allowed to read but not modify the
database. In this case, access mode 6 and 8 users can read entries while
the program is using the database.

Locking within a Database Process

Refer to the locking discussion later in this chapter for considerations when locking and
unlocking transactions within a database process.

User Transaction Logging

Users opening the database in access modes 1 through 4 use the MPE/iX user logging facility
if the database administrator has enabled the database for logging (a procedure described
in chapter 7). In this case, calls to the TurboIMAGE/XL intrinsics listed in Table 4-2 are
automatically logged to a log �le. Note that nothing is logged for programs opening the
database with read-only access modes (5 through 8), regardless if the database was enabled for
logging. The logging facility is described more fully later in this chapter and in chapter 7.

Table 4-2. Logged Intrinsics

DBBEGIN DBCLOSE DBDELETE DBEND DBMEMO

DBOPEN DBPUT DBUPDATE DBXBEGIN DBXEND

DBXUNDO

The DBBEGIN and DBEND intrinsics are used to designate or block logical, static
transactions for logging and recovery purposes. The DBXBEGIN and DBXEND intrinsics
are used to mark logical, dynamic transactions spanning one database, or multiple databases
up to �fteen, for dynamic roll-back recovery. Refer to Table 4-4 later in this chapter for a
de�nition of TurboIMAGE/XL transaction types.

In addition to the above intrinsics, log records for DBQUIESCE procedures called by
True-Online Backup to quiesce and unquiesce the database can also be logged to a log �le.

Dynamic roll-back uses the MPE/iX Transaction Management (XM) facility to roll back
transactions online while other database activity is occurring. User logging is not required for
this type of recovery, but is recommended to guard against a hard disk failure. See chapter 7
for a discussion of logging and recovery methods.

4-8 Using the Database

Entering Data in the Database

Data is added to the database, one entry at a time, using the DBPUT procedure. You can
add data entries to manual master and detail data sets. Entries are automatically added to
automatic master data sets when you add entries to the associated detail data sets.

To add an entry, you specify the data set name or number, a list of data items in the set, and
the name of a bu�er containing values for these items. Values must be supplied for search and
sort items but are optional for other data items in the entry. If no value is supplied, the data
item value is set to binary zeroes.

Sequence for Adding Entries

Before you can add an entry to a detail data set indexed by a manual master data set, the
manual master must contain an entry with a key item value equal to the search item value you
intend to put in the detail. If more than one manual master is used to index the detail, entries
that have a key item value identical to the detail search item value for the same path must
exist in each master. To illustrate, consider the ORDERS database again. Figure 4-1 contains
sample data entries in four of the ORDERS data sets.

Before the SALES data entry can be added to the data set, the CUSTOMER manual master
data set must contain an entry with ACCOUNT equal to 12345678 because ACCOUNT is the
search item used to index the SALES detail. Similarly, the SALES data set is indexed by the
PRODUCT manual master through the STOCK# search item, so the entry with STOCK#
equal to 34624AB3 must be added to PRODUCT before a sales transaction for that STOCK#
can be entered in SALES.

Once the entry for customer account 12345678 has been entered, the next sales transaction
can be entered in the SALES detail set without changing the CUSTOMER master. This
entry will be chained to the previous entry for the account. If a di�erent customer buys a
bicycle tire pump, the PRODUCT data set will not require any additional entries, but if the
customer's account is not yet in the CUSTOMER data set, it must be added before entering
the sales transaction in SALES.

When the entry for account 12345678 and stock number 35624AB3 is added to SALES,
TurboIMAGE/XL automatically adds entries to the DATE-MASTER with a DATE item
value of 910927 and 910928 if such entries do not already exist. If the entries do exist, each
chain head is modi�ed to include the entry added to the chain.

Using the Database 4-9

Figure 4-1. Sample Data Entries from ORDERS Database

Coordinating Additions to a Database

A single DBPUT call involves chain maintenance and other activity that can span multiple
data sets and multiple blocks within data sets even if an application is only adding entries to a
single data set. TurboIMAGE/XL coordinates calls to DBPUT to ensure that one database
user's DBPUT activity does not interfere with calls made by other users accessing the same
database. Each DBPUT request �nishes processing before TurboIMAGE/XL moves on to the
next one. DBPUT calls are serialized even if they access unrelated data sets.

TurboIMAGE/XL provides a data prefetching option to enhance DBPUT (and DBDELETE)
processing. You can enable this option with the DBUTIL utility and are recommended to do
so only when all of the following conditions are true:

Multiple processes are accessing the database.

The processes are adding data with the DBPUT intrinsic (or deleting data with the
DBDELETE intrinsic).

Adequate CPU and memory resources are available on your system.

For additional information, refer to the discussion of DBPUT in chapter 5 and the description
of the DBUTIL >>ENABLE command in chapter 8.

Access Mode and User Class Number

An entry cannot be added to a data set unless the user class number established when the
database is opened grants write access to the data set. The user class number must be in the
data set write class list.

The database must also be opened with an access mode allowing entries to be added. These
access modes are 1, 3, and 4. If it is opened with access mode 1, the DBLOCK procedure
must be used to establish a lock covering the entry to be inserted. For detail data sets, this
can be a data entry, data set, or database lock. For master data sets, this can be a data set or

4-10 Using the Database

a database lock. Note that the locking mechanism accepts a request to lock a data entry that
does not yet exist; therefore, you can lock a data entry before you add it.

Key and Search Items

TurboIMAGE/XL performs checks on the values of detail data set search items before adding
an entry to a data set. When adding records to a manual master, TurboIMAGE/XL veri�es
that the master data set key item value is unique for the set (that is, no entry currently
contains a key item with the same value). If the data set is a detail, TurboIMAGE/XL veri�es
that the value of each search item forming a path with a manual master has a matching key
value in that master. It also checks to be sure that room is available to add an entry to any
automatic master data sets linked to the detail if a matching search item value does not exist.

Using the Database 4-11

Reading the Data

When you read data from the database, you specify which data set and which entry in that
data set you want. If the user class number with which you opened the database grants you
read access, you can read the entire entry or speci�c data items from the entry. You specify
the items to be read and the array where the values should be stored. You can read items or
entries in any access mode if your user class grants read access to the data element.

To understand the various ways you can select the data entry to be read, it is important to
know a little about the data set structure. Each data set consists of one or more disk �les
depending on whether or not the set is jumbo, and each data entry is a logical record in that
�le. Each entry is identi�ed by the relative record number in which it is stored. The �rst
record in the data set is record number 1 and the last is record number n, where n is the
capacity of the data set.

At any given time, a record may or may not contain an entry. TurboIMAGE/XL maintains
internal information indicating which records of a data set contain entries and which do not.

Current Path

TurboIMAGE/XL maintains a current path for each detail data set and for each database
accessor (that is, each DBOPEN). The current path is established by the DBFIND procedure,
or if no call has been made to this procedure, it is the primary path for the data set. Each
time an entry is read, no matter what read method is used, TurboIMAGE/XL saves the
entry's backward and forward chain pointers for the current path. For more information about
how the current path is used, refer to the discussion of chained access later in this chapter.

If an entry is read from a master data set, the chain pointers are synonym chain pointers and
have no relationship to a path.

Reading Methods

The methods for requesting a data entry are categorized as follows:

Directed access
Serial access
Calculated access
Chained access
Sorted sequential access

All of these methods are available through the TurboIMAGE/XL library procedure DBGET.
The chained access method also requires the use of the DBFIND procedure. Figure 4-2
illustrates the access methods using two data sets from the ORDERS database.

4-12 Using the Database

Figure 4-2. Reading Access Methods (DBGET Procedure)

Directed Access

The directed access method of selecting the data entry to be read requires that you specify
the record number of that entry. Record numbers are returned in status halfwords 3-4
by a successful call to the TurboIMAGE/XL intrinsic DBPUT (refer to the discussion of
DBPUT in chapter 5). Other numbers that can be used for directed reads are the forward
and backward pointers returned in status halfwords 7-8 and 9-10. To use these numbers for
directed reads, you need to save them because subsequent TurboIMAGE/XL procedure calls
can overwrite the status area.

During directed access the calling program speci�es a record number or address. If any entry
exists at this address, TurboIMAGE/XL returns the values for the data items requested in the

Using the Database 4-13

calling program's bu�er. If no such entry exists, the program is noti�ed by an exceptional
condition return, such as end-of-�le, beginning-of-�le, or no entry.

This access method can be used with any type of data set and is useful in situations where
the calling program has already determined the record number of the entry to be read. For
example, if a program surveys several entries using another access method to determine which
one it wants to use in a report, it can save each record number and use the record number of
the entry it selects to read the entry again using the directed access method.

If a program performs a directed read of record 3 of the INVENTORY data set, the entry
marked with a hollow arrow in Figure 4-2 is read. If a directed read of the SUP-MASTER
data set record 7 is performed, the entry in that set marked with the same type of arrow is
read.

Note When using directed access with master data sets, you should be aware of
migrating secondaries. These are described in chapter 10.

Locking. If concurrent users are allowed to add to or delete from a data set, locking should be
used during the search and report sequence to ensure the record numbers do not change before
they are used. In this type of application, a data set lock is usually the most appropriate.

Serial Access

In this mode of retrieval, TurboIMAGE/XL starts at the most recently accessed storage
location for the data set, called the current record, and sequentially examines adjacent
records until the next entry is located. Data items from this entry are returned to the calling
program, and its location becomes the current record.

You can use both forward and backward serial access. Forward serial access consists of
retrieving the next greater-numbered entry, and backward serial access consists of retrieving
the previous lower-numbered entry. If no entry is located, TurboIMAGE/XL returns an
end-of-�le if requested access is forward, or a beginning-of-�le if it is backwards.

Because no current record exists the �rst time a program requests an entry from a data set, a
request for forward serial access causes TurboIMAGE/XL to search from record 1. Similarly, a
backward serial retrieval begins at the highest numbered record.

The entries connected by curved arrows in Figure 4-2 are read by a program using the serial
access method. If a forward serial read is performed on the INVENTORY data set before any
other type of read, the entry in record number 2 is read. If another forward serial read is
performed on the same data set, the entry in record 3 is read. On the other hand, if a serial
read is performed and the current record is 6, the entry in record 9 is read. The next forward
serial read returns an end-of-�le.

The serial access method can be used with any type of data set and is very useful if most or
all of the data in the data set is to be retrieved, for example, to be used in a report. It is
e�cient to retrieve all the data in a serial manner, copy it to a �le, and sort it with routines
external to TurboIMAGE/XL before printing the report. The availability of serial access
e�ectively allows you to use a data set in the same way you would use an MPE/iX �le. Thus,
you have the advantages of TurboIMAGE/XL database organization and the e�ciency of
serial access.

4-14 Using the Database

Note When using serial access with master data sets, you should be aware of
migrating secondaries. These are described in chapter 10.

Locking. If concurrent users are allowed to modify the data set (access mode 1), you may wish
to lock the data set or database before you begin the serial access sequence. Locking prevents
entries from being added, modi�ed, moved, or removed by the other processes.

Calculated Access

The calculated access method allows you to retrieve an entry from a master data set by
specifying a particular key item value. For example, the SUP-MASTER data entry for the
supplier Acme shown in Figure 4-2, can be retrieved with this method because SUPPLIER is
a key item in the SUP-MASTER data set. TurboIMAGE/XL locates the entry in the data
set whose key item value matches the requested value. The exact technique used to perform
calculated access is described in chapter 10.

Calculated access can be used only with master data sets. It is very useful for retrieving
a single entry for some special purpose. For example, a program used infrequently to get
information about a particular customer or supplier could use calculated access to quickly
locate the information in the ORDERS database.

Chained Access

The chained access method is used to retrieve the next entry in the current chain. To perform
chained access of detail data set entries, you must �rst locate the beginning of the chain you
want to retrieve, and thus establish the current chain, by calling the DBFIND procedure. The
calling program speci�es the name of the detail search item that de�nes the path to which the
chain belongs and a value for the item. TurboIMAGE/XL determines which master set forms
a path with the speci�ed search item and locates the entry in that master data set whose
key item value matches the speci�ed value. The entry it locates contains pointers to the �rst
and last entries in the desired chain and a count of the number of entries in the chain. This
information is maintained internally and de�nes the attributes of the current path.

If a program uses chained access to read the INVENTORY data set entries pertaining to
the supplier H&S SURPLUS shown in Figure 4-2, it must �rst call the DBFIND procedure
to locate the chain head in the SUP-MASTER data set. The program speci�es the
INVENTORY data set, the SUPPLIER search item in the INVENTORY data set, and the
value H&S SURPLUS for that item. TurboIMAGE/XL uses a calculated read to locate the
SUP-MASTER entry with a key item value of H&S SURPLUS. If the program then requests
a forward chained read using the DBGET procedure, the entry in record 9 of INVENTORY,
which is set at the beginning of the chain, is read. If a backward chained read is requested,
the entry in record 5 is read.

If the last call to DBGET used chained access to read the entry in record 9, the next forward
chained read reads the entry in record 2 of the INVENTORY data set.

Once a current path and chain have been established for a detail data set, the calling
program can use the chained access method of retrieving data. You can use both forward
and backward chained access. In either case, if there are no more entries in the chain when
you request the next one, DBGET returns an exceptional condition, beginning-of-chain or
end-of-chain for backward and forward access, respectively.

Using the Database 4-15

Chained access to master data sets retrieves the next entry in the current synonym chain.
The use of synonym chains applies to only a limited number of special situations. They are
discussed in chapter 10.

Chained access to detail data sets is particularly useful when you want to retrieve information
about related events such as all inventory records for the H&S Surplus supplier in the
ORDERS database. When a B-Tree index is created on the key item of the master set,
chained access following a DBFIND can also be done on the master data set. More detailed
information on B-trees is given in chapter 11.

Locking. If concurrent users are allowed to modify data entries in the chain you are currently
accessing, you can use locking to ensure data consistency. For example, suppose a chain
consists of several data entries, each containing a line item from a particular order. If user
A is performing a series of chained reads while user B is canceling the order by deleting
data entries one by one, user A could retrieve an incomplete order. To prevent this from
happening, a lock can be established covering the group of data entries to be retrieved (the
chain, in this case). This can usually be done with a single DBLOCK call. Refer to the
discussion of the locking facility later in this chapter.

Sorted Sequential Access

The sorted sequential access is used for B-Tree indices and can be used both for master and
detail data sets. It is used for retrieving records in a sorted sequential order of the key item
or search item value. For masters, each key item value is di�erent and the records retrieved
will be in a sorted sequential order of the key item value. The order can be ascending when
DBGET mode 5 is used, and it is descending when DBGET mode 6 is used following a B-Tree
DBFIND. For detail data sets, the B-Tree search can result into traversing multiple chains of
the detail data set. Each chain has the same search item value. The subsequent chain will
have a di�erent search item value in a sorted sequential order. Therefore, even for detail data
sets, the records retrieved will be in a sorted sequential order of the search item value. Note
that within each such chain of the detail data set, the order of the records is chronological.

For example, when a B-Tree index is created on the key item SUPPLIER of SUP-MASTER,
DBFIND can be used with SUP-MASTER in the dset parameter and the key item
SUPPLIER in the item parameter. If the argument is equivalent to \Greater than BAY
PAPER CO.", the order of records retrieved will be record number 5, the entry pertaining to
the supplier H & S SURPLUS and record number 1 pertaining to JAKE'S SHOP in Figure
4-2. IF the DBFIND is for the detail data set, INVENTORY, and the same argument, the
order of records retrieved will be 9, 2, 5, and 6 in Figure 4-2. The record numbers 9, 2, and
5 are pertinent to the supplier H & S SURPLUS (one chain) and 6 is pertinent to JAKE'S
SHOP (second chain). The second chain has only 1 record. The chain head for H & S
SURPLUS in SUP-MASTER contains record number 9 for beginning entry and 5 as ending
entry for the path related to detail data set INVENTORY.

4-16 Using the Database

Rereading the Current Record

The DBGET library procedure allows you to read the entry from the most recently accessed
record again. You may want to do this in a program that has unlocked the data entry and
locked it again and needs to check if the contents of the current entry have been changed.

Note that if a DBFIND procedure call has been made, the current record is zero and a request
to reread the entry causes DBGET to return an exceptional condition indicating that the
current record contains no entry. Refer to table 5-13 for more information on DBGET return
status values.

Using the Database 4-17

Updating Data

TurboIMAGE/XL allows you to change the values of data items if the user class number with
which you opened the database grants this capability to you. These items cannot be master
data set key items or detail data set search or sort items, unless you take advantage of the
critical item update (CIUPDATE) option. Depending on the CIUPDATE option settings for
the database and the current process, you could change the values of detail data set search
and sort items if the database access mode is 1, 3, or 4. This option is described later in this
section.

Before you call the DBUPDATE library procedure to change the item values, you must call
DBGET to locate the entry you intend to update. This sets the current record address for the
data set. The DBUPDATE library procedure uses the current record address to locate the
data items whose values are to be changed.

A lock can be established before the call to DBGET to guard against accidental modi�cation
of the record by another user. This is recommended in any shared access mode (as discussed
below).

When the program calls DBUPDATE, it speci�es the data set name, a list of data items to be
changed, and the name of a bu�er containing values for the items. For example, if a program
changes the street address of a customer in the CUSTOMER data set of the ORDERS
database, the program can �rst locate the entry to be changed by calling DBGET in
calculated access mode with the customer's account number and then calling the DBUPDATE
procedure to change the value of the STREET-ADDRESS data item in that entry.

Access Modes and User Class Number

To update data items, the database must be opened in access mode 1, 2, 3, or 4. If it is
opened in access mode 1, the data entry, data set, or database must be locked while the
update is occurring. If the CIUPDATE option settings for the database and the current
process permit updates of detail data set search and sort items, the database must be opened
in access mode 1, 3, or 4 to take advantage of this option.

TurboIMAGE/XL guarantees that all updates to a data entry will be carried out even if
they are requested by di�erent users concurrently and locking is not used. To ensure this,
TurboIMAGE/XL always completes the processing of one DBUPDATE request before it
begins processing under another. However, data consistency problems can still occur if an
update is based on data values that are not current. For example, while withdrawing 10 items
from the stock, two users may read the same data entry from the INVENTORY data set. If
the current value of ONHANDQTY is 30 and they each subtract 10 from it and then update
the entry, both updates will operate successfully but the new value will be 20 rather than 10.
To prevent such errors, a lock covering the data entry can be put in e�ect before it is read and
released after it is updated.

TurboIMAGE/XL attempts to enforce this locking technique for users in database access
mode 1 by checking to see if an appropriate lock is in e�ect before executing an update.
However, to have its proper e�ect, the lock should be made before the call to DBGET.

Note To avoid locking around terminal reads, you may need to establish the lock,
perform a mode 1 DBGET, check the value, update the entry, then remove the
lock.

4-18 Using the Database

The password you use to open the database must grant update capability to the data items
you intend to change. The user class number associated with the password must either be in
the write class list of the data set containing the items to be updated, or in both the read
class list of the data set and in the write class list of the data item.

Updating Key, Search, and Sort Items

For compatibility and security reasons, by default you cannot use the DBUPDATE library
procedure to update a master data set key item, or a detail data set search or sort item.
However, in database access mode 1, 3, or 4, you can update search or sort items if permitted
by the CIUPDATE option settings for the database and the current process; refer to the
following discussion of CIUPDATE. If you do not or cannot take advantage of the CIUPDATE
option and need to change search or sort items, or if you need to change master data set
key items, you can �rst delete the selected entry with DBDELETE (see the section entitled
\Deleting Data Entries"), and then add the entry back into the database with DBPUT.
However, keep in mind that this method places the new record at the end of each unsorted
chain, which disturbs the chronological order of each path.

The new entry must be complete. That is, you cannot delete an entry and then add a new
entry with only the item you want changed. If you do this, the rest of the entry will be set to
binary zeros by DBPUT. Furthermore, make sure the current list is truly current when using
an asterisk (*) to reference the list; otherwise, if items have been added or deleted, you could
cause DBPUT to write binary zeros over existing data. Note that using the commercial \at
sign" (@) to write all the items in a data entry avoids this problem.

To facilitate updates of detail data set critical items, you should design any new databases to
take advantage of the CIUPDATE option. Applications to be used with these databases can
be written as described in the next section.

Critical Item Update

TurboIMAGE/XL provides an option called critical item update (CIUPDATE) which,
depending on the settings for the database and the current process, can permit you to update
the values of detail data set search and sort items. To take advantage of this option, you �rst
need to set it through the TurboIMAGE/XL utility DBUTIL. Use the DBUTIL >>SET
command, and set the CIUPDATE option equal to ON or ALLOWED.

Note The default setting is now ALLOWED. It was DISALLOWED in releases
before C.07.00.

The ON setting permits any process to use critical item update on the database unless the
process explicitly disables the option by calling the DBCONTROL procedure in mode 6;
this call disables the option for the duration of the process or until a call to DBCONTROL
in mode 5 enables the option. The ALLOWED setting requires that a process �rst call
DBCONTROL in mode 5 to enable the CIUPDATE option for the duration of the process or
until a call to DBCONTROL in mode 6 disables the option. Using DBCONTROL modes 5
and 6 does not alter the permanent setting set with the DBUTIL >>SET command. The
database must be opened in access mode 1, 3, or 4; and your user class must have write access
at the set level, or both read access at the set level and write access at the item level.

Using the Database 4-19

Programmers should review the design of any of their applications that are used to update the
values of data items to ensure that the data will be updated as expected. Applications that
open the database in access mode 2 do not need to be modi�ed, because only access modes 1,
3, and 4 can be used with CIUPDATE. Applications that rely on TurboIMAGE/XL to restrict
update of detail data set search and sort items can continue to do so as long as the database
access mode is not 1, 3, or 4, or the CIUPDATE option is set as follows:

DISALLOWED, or

ALLOWED and the process does not call DBCONTROL in mode 5.

Otherwise, these applications need to be modi�ed to call the DBINFO procedure to check
the CIUPDATE ags for the database and the current process, and (if need be) to disable
CIUPDATE for the current DBOPEN via the DBCONTROL procedure in mode 6. Another
method of restricting access to search and sort items is by granting read-only access at the
data set level and limiting write access at the data item level.

Applications that allow the sort item for the current chain to be updated must allow the
current entry to be moved within the chain. An entry which is moved can be encountered
twice within one chained read.

To update a detail data set search or sort item, the following sequence of operations is
recommended for your programs:

1. Call DBOPEN in access mode 1, 3, or 4.

2. Call DBLOCK to lock all data which must not be changed by other processes.

3. If this is a logical transaction, you need to declare the beginning of modi�cations by
calling DBBEGIN or, if you are using dynamic roll-back, DBXBEGIN (see the discussion
of logical transactions later in this chapter).

4. Read data using DBFIND and DBGET to determine what needs to be modi�ed.

5. Call DBINFO to check the speci�c CIUPDATE option setting for the database and the
setting for the current DBOPEN.

6. If the CIUPDATE setting is ON and has not been disabled by a DBCONTROL mode 6,
go to the next step. If the setting is ALLOWED, call DBCONTROL mode 5 to enable
the option. Note that if the CIUPDATE setting is ON and the option has not been
disabled, you can still call a DBCONTROL mode 5 successfully.

7. If the CIUPDATE option is permitted, call DBUPDATE.

8. If the CIUPDATE option is not permitted, call DBDELETE and DBPUT.

9. Check the status code.

10. If the status code is not 0, call DBERROR and take appropriate action. For example, if
this is a dynamic transaction, you must call DBXUNDO to roll back the transaction.

Note If this is a dynamic transaction, a call to DBXUNDO must be processed if an
error occurs or if the transaction needs to be rolled back for any other reason.
TurboIMAGE/XL will not go on to the next transaction in the event of a
transaction abort unless an intervening call to DBXUNDO occurs.

4-20 Using the Database

11. If the status code is zero and this is a logical transaction, call DBEND or, alternatively,
DBXEND to declare the end of the modi�cations. However, if this is a dynamic
transaction and DBXUNDO was used to roll back the transaction, your program logic
should ensure that the subsequent call to DBXEND is not processed.

12. Call DBUNLOCK to release all of the locks.

Using the Database 4-21

Deleting Data Entries

Data is deleted from the database using the DBDELETE procedure. You can delete entries
from manual master and detail data sets. Entries are automatically deleted from automatic
master data sets as explained below.

To delete an entry from a data set, you must �rst locate the entry to be deleted by reading
it with the DBGET library procedure, or the DBFIND and DBGET procedures if it is
advantageous to use chained access to locate the entry. You then call the DBDELETE
procedure specifying the data set name. TurboIMAGE/XL veri�es that your password and
associated user class number allow you to delete the current entry of the speci�ed data set.

Sequence for Deleting Entries

If the detail data entry deleted is the only member of a detail chain linked to an automatic
master, and all other chains linked to the same automatic master entry are empty,
TurboIMAGE/XL automatically deletes the master entry.

If the data entry is in a manual master data set, TurboIMAGE/XL veri�es that the detail
chains associated with the entry's search item, if any, are empty. If not, it returns an
error condition to the calling program. For example, if a program attempts to delete the
SUP-MASTER entry in Figure 4-2 that contains a SUPPLIER value of H&S SURPLUS, an
error condition is returned because a three-entry chain still exists in the INVENTORY detail
data set.

To delete the CUSTOMER data set entry with ACCOUNT equal to 75757575, the program
can call DBGET in calculated access mode specifying the CUSTOMER data set and the
key item value 75757575. If the procedure executes successfully, the program then can call
DBDELETE specifying the CUSTOMER data set to delete the current entry, provided no
chains in the related SALES detail data set contain search item values of 75757575.

Coordinating Deletions from a Database

A single DBDELETE call involves chain maintenance and other activity that can span
multiple data sets and multiple blocks within data sets even if an application is only deleting
entries from a single data set. TurboIMAGE/XL coordinates calls to DBDELETE to ensure
that one database user's DBDELETE activity does not interfere with calls made by other
users accessing the same database. Each DBDELETE request �nishes processing before
TurboIMAGE/XL moves on to the next one. DBDELETE calls are serialized even if they
access unrelated data sets.

TurboIMAGE/XL provides a data prefetching option to enhance DBDELETE (and DBPUT)
processing. You can enable this option with the DBUTIL utility and are recommended to do
so only when all of the following conditions are true:

Multiple processes are accessing the database.

The processes are deleting data with the DBDELETE intrinsic (or adding data with the
DBPUT intrinsic).

Adequate CPU and memory resources are available on your system.

For additional information, refer to the discussion of DBDELETE in chapter 5 and the
description of the DBUTIL >>ENABLE command in chapter 8.

4-22 Using the Database

Access Modes and User Class Numbers

To update data items, the database must be opened with access mode 1, 3, or 4. If it is
opened with access mode 1, the DBLOCK procedure must be used to lock the detail data
entry, data set, or database before an entry can be deleted and DBUNLOCK should be
called after one or all desired entries have been deleted. As a general rule, the lock should
be established before the whole delete sequence, that is, before the call to DBGET that
establishes which record is to be deleted. This will ensure that another user does not delete
the data entry between the call to DBGET and the call to DBDELETE.

An entry cannot be deleted from a data set unless the user has write access to the data set.
Write access to the data set means the database was opened in a write access mode and the
user class number associated with the DBOPEN password is on the set write class list.

Using the Database 4-23

Using the Locking Facility

The DBLOCK procedure applies a logical lock to a database or one or more data sets or data
entries. The DBUNLOCK procedure releases these locks.

Locking can be viewed as a means of communication and control to be used by mutually
cooperating users. The locking facility provides a method for protecting the logical integrity
of the data shared in a database. With the DBLOCK procedure, application programs
can isolate temporarily a subsection of the database in order to perform a transaction
against the isolated data. Locking is not required to protect the structure of the database.
TurboIMAGE/XL has internal mechanisms that do this.

If a program opens the database in access mode 1 and locks a part of the database, it can
perform the transaction with the certain knowledge that no other user will modify the data
until the application program issues a DBUNLOCK call. This is because TurboIMAGE/XL
does not allow changes in access mode 1 unless a lock covers the data to be changed. If one
process has the database opened in access mode 1, TurboIMAGE/XL requires that all other
processes that modify the database must also operate in access mode 1.

The DBLOCK procedure operates in one of six modes. Modes 1 and 2 can be used for locking
the database and modes 3 and 4 for locking a data set. In modes 5 and 6, you describe the
database entity or entities to be locked using lock descriptors.

At the data entry level, locking is performed on the basis of data item values. For example,
suppose a customer requests a change in an order the customer has placed. The data entries
for the customer's account that are in the SALES data set could be locked while the order is
changed and other database activity can continue concurrently.

Lock Descriptors

A lock descriptor is used to specify a group of data entries that are to be locked. It consists
of a data set name or number, a data item name or number, a relational operator, and an
associated value. For purposes of this discussion, the notation dset : ditem relop value is used.
For example, the lock descriptor SALES:ACCOUNT = 89393899 requests locking of all the
data entries in the SALES data set with an ACCOUNT data item equal to 89393899. Note
that the result of specifying a single lock descriptor can be that none, one, or many entries are
locked depending on how many entries qualify.

The following relational operators can be used:

less than or equal (<=)

greater than or equal (>=)

equal (= t or t =), where t indicates a space character

The value must be speci�ed exactly as it is stored in the database. A lock will succeed even
if no data item with the speci�ed value exists in the data set; no check is made during the
DBLOCK procedure to determine the existence of a particular data item value. This allows
you to use techniques such as issuing a lock to cover a data entry before you actually add it to
a data set.

With the exception of compound items, any data item can be used in a lock descriptor; that
is, the lock item need not be a search item.

4-24 Using the Database

TurboIMAGE/XL does not require that you have read or write access to a data set or data
item in order to specify it in a lock request.

A process can specify any number of lock descriptors with a single DBLOCK call. For
example, the following lock descriptors can be speci�ed in one DBLOCK call:

CUSTOMER: ACCOUNT = 89393899

SALES: ACCOUNT = 89393899

SUP-MASTER: STATE = AZ

INVENTORY: ONHANDQTY <= 100

INVENTORY: ONHANDQTY >= 1500

Note Multiple calls to DBLOCK without intervening calls to DBUNLOCK are
not allowed unless the program has Multiple RIN (MR) capability. Refer to
\Issuing Multiple Calls to DBLOCK" later in this chapter.

How Locking Works

The internal implementation of locking does not involve reading or writing to the database
element to be locked. TurboIMAGE/XL keeps a table of everything that is locked by all
processes that have the database opened. One table is associated with each database. This
table serves as a global list of lock descriptors. In locking mode 5 or 6, a database lock is
speci�ed with the descriptor @:@ and a data set lock with dset:@ . If you call DBLOCK in
locking mode 1, 2, 3, or 4, TurboIMAGE/XL sets up the appropriate lock descriptor and puts
it in the lock descriptor table. Figure 4-3 illustrates the contents of this list in a situation
where one process has locked all SALES data entries with ACCOUNT equal to 12121212 or
equal to 33334444. Another process has locked all INVENTORY data entries with STOCK#
equal to 6650D22S. A third process has locked the whole SUP-MASTER data set. The �gure
illustrates what the table represents, not the actual internal format.

When a lock request is made, TurboIMAGE/XL compares the newly speci�ed lock descriptors
with those that are currently in the list. If a conict exists, TurboIMAGE/XL noti�es the
calling process that the entity cannot be locked or, if the process has requested unconditional
locking, it is placed in a waiting state until the entity can be locked. If there are no conicts,
TurboIMAGE/XL adds the new lock descriptors to the list.

Users whose programs have MR capability and issue multiple DBLOCK calls, without a
DBUNLOCK call between the DBLOCK calls, may cause a deadlock if DBLOCK calls are
not done carefully. Recovery from a deadlock requires a restart of the operating system. If it
is desired to activate the database for automatic deadlock detection, DBCONTROL mode 7
must be done prior to the �rst DBLOCK call for the database. In this case, when a possibility
of a potential deadlock is detected by the DBLOCK procedure, a status code of 26 is returned
to the calling process. The calling process must call DBUNLOCK to release all locks acquired
by DBLOCK(s) for the same access path.

Using the Database 4-25

Figure 4-3. Lock Descriptor List

Conditional and Unconditional Locking

You can request conditional or unconditional locking. If you request unconditional locking,
TurboIMAGE/XL returns control to your calling program only after the speci�ed entity has
been locked. If you request conditional locking, TurboIMAGE/XL returns immediately. In
this case, the condition code must be examined to determine whether or not the requested
locks have been applied. If multiple lock descriptors are speci�ed, the status area indicates
the numbers that have been applied. The calling program should call DBUNLOCK if only a
subset of the requested locks succeeded.

Access Modes and Locking

It is anticipated that access mode 1 will typically be used by applications implementing a
locking scheme. In this mode, TurboIMAGE/XL enforces the following rules:

To modify (DBPUT, DBDELETE, or DBUPDATE) a data entry, you must �rst issue a
successful lock covering the a�ected data entry. It can be a data entry, data set, or database
lock.

To add to or delete from (DBPUT or DBDELETE) a manual master data set, you must
�rst successfully lock the data set or database. To update (DBUPDATE) a master data set,
data entry level locks are su�cient.

If your application opens the database in access mode 2, it is recommended that you use
locking to coordinate updates with other users.

TurboIMAGE/XL does not prevent any process from reading data even though another
process holds a lock on it. If you want to ensure that no modi�cations are in progress while
you are reading from the database, you should place an appropriate lock on the data before
starting. Therefore, you may want to use locking in access modes 2, 4, 5, and 6 to coordinate
the reading and modifying sequences and ensure that they do not occur concurrently.

Because access mode 3 and 7 users have exclusive control of the database and access mode 8
users allow concurrent reading only, locking need not be used in these modes.

4-26 Using the Database

Automatic Masters

When adding or deleting entries from a detail data set, you need not have locks covering the
implicit additions or deletions that occur in any associated automatic masters.

Locking Levels

Locking can be viewed as operating on three levels: the whole database, whole data sets, or
data entries. TurboIMAGE/XL allows mixed levels of locking. For example, one user could
be locking data entries and another locking the data set. In this situation, a request to lock
the data set cannot succeed until all the currently locked data entries have been released.
Subsequent requests to lock data entries, those that are made while the data set lock is
pending, are placed in a queue behind the data set lock.

This principle is followed for database locks also. If data set or data entry locks are in e�ect
at the time a database lock is requested, the database lock must wait until they are released
and all subsequent locking requests must wait behind the pending database lock. In either
case, if the request is for a conditional lock, an exceptional condition is generated. (Refer to
the \Locking Mode Options" table in chapter 5.)

Deciding on a Locking Strategy

It is important, especially for on-line interactive applications, to establish a locking strategy
at application design time. In general, locking is related to the transaction, the basic unit
of work performed against a database. TurboIMAGE/XL transactions are either single or
logical, and logical transactions can be static, multiple database, or dynamic. Refer to \User
Logging and Logical Transactions" later in this chapter for more details and to chapter 5 for
additional information.

Typically a transaction consists of several calls to TurboIMAGE/XL intrinsics to locate and
modify data. For example, a transaction to add a new order with three line items could
require several reads to locate customer information and several DBPUT calls to add the
order detail records.

One characteristic of a transaction is that the data in the database is consistent both before
and after the transaction, but not while it is in progress. For example, a user reading the
detail data set being modi�ed by the above order transaction may only see some of the line
items and may get no indication that the transaction is incomplete. This type of problem is
referred to as logical inconsistency of data and can be prevented by using the locking facilities.

The general principle that should be applied for any transaction in a shared-access
environment is: At the start of any transaction, establish locks that cover all data entries that
you intend to modify (with DBPUT, DBDELETE, or DBUPDATE) and/or all data entries
which must not be changed by other processes during the transaction.

Using the Database 4-27

Choosing a Locking Level

Because TurboIMAGE/XL needs more information to lock data entries than to lock the whole
database, program complexity tends to increase as locks are employed at lower and lower
levels. Locking the whole database or a single data set is the simplest operation, followed
in increasing order of complexity by locking multiple data sets and locking data entries. At
system design time, a compromise must be made between the bene�ts of low-level locking and
the extra programming e�ort required.

Data entry locking should give the best concurrency; however, there are situations in which
the extra programming e�ort for data entry locking is not worthwhile. Concurrency is
least optimum at the higher level of the lock. Concurrency and programming e�ort should
be considered; some other considerations that could a�ect your choice of locking level are
discussed below.

Locking at the Same Level

All programs concurrently accessing a database should lock at the same level most of the
time. For example, one process locking a data set will hold up all other processes that are
attempting to lock entries in that set. Therefore, the attempt by the process locking at the
data entry level to allow other processes to share the database is nulli�ed by the process
locking at the data set level and the e�ect is as if all processes were locking at the data set
level. The rule of locking at the same level can be violated for infrequent operations such as
exception handling or rare transactions.

Length of Transactions

Generally, the longer the lock is to be held, the lower the level it should be. In other words,
if you are performing lengthy transactions, you should probably lock at the entry level.
For shorter transactions, you can use locks at either the database or data set level with
satisfactory results.

An extreme case of a long transaction is one in which user dialog takes place while a lock is
held. For example, a program can read some data entries, interact with a terminal operator,
and modify some or all of the entries. A lock to cover this transaction can last several minutes
which is an unacceptable amount of time to stop all database or data set activity. In this
situation, data entry level locking should be used.

Because the length of di�erent transactions varies, the longest transaction (that is also
frequently used) should guide the choice of locking level.

Locking During User Dialog

In the situation described above, where a lock is held during interactive dialog with a terminal
operator, the terminal time-out feature of MPE/iX can be used to avoid having the locked
entity inaccessible when the terminal operator is interrupted in the middle of the dialog. The
time-out feature can be used to cause the terminal read to terminate automatically if no
response is received within a certain time period. Refer to the discussion of \FCONTROL" in
the MPE/iX Intrinsics Manual .

4-28 Using the Database

Strong Locking and Dynamic Transactions

Dynamic transactions, which are described later in this chapter, are only allowed with a
database access mode that enforces locking, because strong locking is required for this type of
transaction. TurboIMAGE/XL requires that dynamic transactions be independent of all other
types of transactions. This is guaranteed when the database access mode is 3 or 4, because
the mode guarantees exclusive modify access.

When a database is opened in access mode 1, the programmer must ensure that strong locks
are in place. In other words, any call to DBUNLOCK must occur after the call to DBXEND,
or the dynamic transaction is aborted.

Note A call to DBXUNDO must be processed if an error occurs or if the transaction
needs to be rolled back for any other reason, because TurboIMAGE/XL will
not go on to the next transaction in the event of a transaction abort unless
an intervening call to DBXUNDO occurs. Furthermore, if DBXUNDO was
used to roll back a transaction, the program logic should ensure that the
subsequent call to DBXEND is not processed.

Choosing an Item for Locking

An important convention to follow in designing a locking scheme is that all programs sharing
the database concurrently use the same data item to lock data entries in a particular data
set. At any one time, TurboIMAGE/XL allows no more than one data item per data set
to be used for locking purposes. However, several values of the data item can be locked at
the same time. For example, if one process has successfully locked SALES:ACCOUNT =
54321000, another process could lock SALES:ACCOUNT = 11111111. If a request is made
to unconditionally lock SALES:STOCK# = 8888X22R, the requesting process will be made
to wait until all entries locked by ACCOUNT number are unlocked. Furthermore, any new
requests for locking other SALES:ACCOUNT values will wait until SALES:STOCK# =
8888X22R is successfully locked and unlocked again.

With this in mind, it is apparent that it is more e�cient if all processes locking data entries
in the SALES data set use the same data item because it is much less likely that one process
will have to wait until another process �nishes using the data. Therefore, at system design
time, decide which item will be used in each data set for lock speci�cation purposes. It can
be useful to add comments in the schema indicating which item is the locking item for each
set. If a chain is used heavily for chained reads, its search item is a prime candidate for a lock
item.

Examples of Locking

The examples in this section show the order in which TurboIMAGE/XL intrinsics can be
called when locking is used. The ORDERS database is used in the examples. (Refer to the
ORDERS database schema in chapter 3.) For descriptions of the procedures used in these
examples, refer to chapter 5.

Table 4-3 contains guidelines that can be helpful in designing locking schemes for
shared-access environments which include users who might modify the database. Although
data entry level locks are recommended in this table and illustrated in the following examples,
data set or database locks could be more appropriate for similar tasks depending upon other
application requirements.

Using the Database 4-29

Table 4-3. Locking in Shared-Access Environments

Action Recommended Locks

Chained DBGET calls Lock all data entries in the chain. This usually requires one
lock descriptor.

Serial DBGET calls Lock the data set.

Update a data entry (DBUPDATE) Lock the data entry before calling DBGET to read the data
entry. Unlock after the update.

Directed reads (DBGET calls) These are not recommended in a shared environment. Lock
the data set before determining which data entry is needed.

Add a data entry to a detail data set
(DBPUT)

Any lock which covers this data entry, but preferably uses
the data item that was decided on as the \lock item" for the
data set.

Add to or delete from a master data set
(DBPUT and DBDELETE)

Lock the data set or database. This is mandatory if the
database is open in access mode 1.

Add a New Customer

1. DBLOCK the CUSTOMER data set or the whole database.

2. DBPUT new data entry in CUSTOMER data set.

3. DBUNLOCK.

Note that TurboIMAGE/XL requires a data set or database lock to cover the addition of an
entry to a master data set.

Update Inventory Information

1. DBLOCK INVENTORY: STOCK# = 6650D22S. (Alternatively, the INVENTORY set or
the whole database can be locked.)

2. DBFIND and DBGET the data entry that is locked in step 1.

3. Compute new UNIT-COST = UNIT-COST + .12 * UNIT-COST.

4. DBUPDATE the data entry that is locked.

5. DBUNLOCK.

Insert a New Product with a New Supplier

1. DBLOCK the PRODUCT master data set, the SUP-MASTER data set, and the data item
STOCK# = 4444A33B in the INVENTORY detail data set. (This can be done in one
DBLOCK mode 5 call.)

2. DBBEGIN.

3. DBPUT a new data entry in PRODUCT master data set. (For example: 4444A33B
CALIPER).

4. DBPUT a new data entry in SUP-MASTER data set.

5. DBPUT a new data entry in INVENTORY data set for STOCK# = 4444A33B.

6. DBEND.

4-30 Using the Database

7. DBUNLOCK.

The locking in the above example was done around the entire transaction to maintain data
consistency during the multistep transaction.

Interactively Modify a Customer Account Order

1. DBLOCK SALES: ACCOUNT = 89393899.

2. DBFIND the CUSTOMER master data set entry with ACCOUNT = 89393899 in order to
prepare to read the chain of SALES data entries with the same ACCOUNT value.

3. DBGET each entry in the chain and display it to the user until the correct order is located.

4. DBUPDATE the contents of the data entry according to the user's request.

5. DBUNLOCK.

In this interactive example, all data entries for ACCOUNT 89393899 in the SALES data
set are locked. Note that these locks are held while a dialog takes place with the terminal
operator; therefore, the lock could be held for several minutes. For this type of transaction,
it may be best to �rst perform a conditional lock to determine if the records are accessible.
For example, when a mode 6 DBLOCK is called with lock descriptor SALES: ACCOUNT =
89393899 and the lock does not succeed, a message similar to the one below can be displayed
by the program:

RECORDS BEING MODIFIED. WANT TO WAIT?

If the response is NO, then proceed with other processing. If the answer is YES, call
DBLOCK again with mode 5.

Issuing Multiple Calls to DBLOCK

In order to guarantee that two processes cannot deadlock, TurboIMAGE/XL does not allow
two DBLOCK calls to be made without a DBUNLOCK between the DBLOCK calls. Two
exceptions to this rule are stated here:

A redundant call can be made to lock the whole database with DBLOCK mode 1 or 2
provided the call relates to the same access path. The redundant call will have no e�ect.
(This is allowed in order to maintain compatibility with earlier versions of IMAGE.)

More than one DBLOCK call can be made if the program from which multiple DBLOCK
calls are issued has the MPE/iX Multiple RIN (MR) capability.

The DBLOCK procedure is similar to the MPE/iX FLOCK procedure in that DBLOCK can
put a process into a waiting state and thus can cause a deadlock to occur. For example, a
deadlock can occur if process A is waiting for an MPE/iX �le to be freed by process B, and
process B is waiting for a database entity to be unlocked by process A. Therefore, issuing a
DBLOCK in conjunction with a lock applied by an MPE/iX intrinsic, such as FLOCK, or
by the COBOLLOCK procedure requires MR capability. The use of MR capability is not
recommended unless absolutely necessary.

Users whose programs have MR capability and issue multiple DBLOCK calls are responsible
for deadlock prevention. This type of locking must be done very carefully. Recovery from a
deadlock requires a restart of the operating system. No matter how many descriptors are
listed in a single DBLOCK call, TurboIMAGE/XL guarantees that deadlocks will never occur
provided that no executing program that accesses the database has MR capability. Programs

Using the Database 4-31

that execute successfully using TurboIMAGE/XL locks in a single process environment will
not execute in a process-handling environment without MR (Multiple RIN) capability. (Refer
to appendix D for more information on the MR capability.)

Releasing Locks

The locks held by a process for a particular access path of a database are relinquished when
the process calls DBUNLOCK; they are automatically relinquished when the process closes
the database, terminates, aborts, or is aborted by an operator. Failure of a program to
release locks will result in other programs waiting inde�nitely for any conicting locks. These
programs, while in a waiting state, cannot be aborted by the operating system. An attempt
to abort such a waiting process will result in the abort taking e�ect as soon as the process
obtains the lock for which it was waiting.

Note Any program that executes a DBGET in mode 5 or 6 should lock the chain
in the detail data set. This prevents the execution of any DBPUTs or
DBDELETEs to the detail data set from modifying the current chain, thereby
preventing a status 18 (broken chain) error.

4-32 Using the Database

TurboIMAGE/XL Logging Services

TurboIMAGE/XL provides logging through the following two MPE/iX services:

Transaction Management (XM) logging

User logging

XM logging is used to ensure the physical integrity of the database. It is transparent to the
user because it is automatically enabled unless AUTODEFER is enabled . Dynamic roll-back
recovery (explained in chapter 7) works in conjunction with XM and ensures the logical
integrity of the database. Dynamic roll-back uses XM to roll back dynamic transactions
online while other database activity is occurring. Dynamic transactions are de�ned later in
this chapter. User logging, which is described below, is not required for dynamic roll-back
recovery, but is recommended to guard against a hard disk crash.

User logging is used to ensure the logical integrity of the database. It is initiated by the
user and can be used for several purposes. For example, user logging is required to perform
roll-forward recovery. It can also be used to keep a record of individual database transactions
(see the description of the >FILE command of DBRECOV in chapter 8). In addition, it is
sometimes used for audit purposes to keep a record of all database transactions. Because some
user logging considerations are important to applications, they are discussed below. For a
more complete discussion of TurboIMAGE/XL logging services, refer to chapter 7.

What User Logging Does

The user logging and recovery facility enables all database modi�cations to be logged
automatically to a tape or disk log �le. In the event of a system failure the log �le is read
to re-execute transactions or identify incomplete transactions, depending on what type of
recovery process is being used. In addition, the transaction logging system can be a useful
tool for auditing. The log �le is actually a record of all modi�cations to the database. The
intrinsic DBMEMO, capable of logging user text, facilitates interpretation of the log �les for
future reference.

The database administrator is responsible for enabling or disabling the logging and recovery
processes and generating backup database copies, thus making logging a global function
controlled at the database level rather than at the individual user level. A process is said to
be logging if all of the following are true:

The database has been enabled for logging by the database administrator.

A logging process has been initiated from the system console.

The user is accessing the database in one of modes 1 through 4.

How User Logging Works

The following TurboIMAGE/XL intrinsics are automatically logged when the database is
enabled for logging and a user opens the database in a mode which permits modi�cations:
DBOPEN, DBCLOSE, DBPUT, DBUPDATE, DBDELETE, DBBEGIN, DBEND,
DBMEMO, DBXBEGIN, DBXEND, and DBXUNDO. In addition, DBQUIESCE procedures
called by True-Online Backup to quiesce and unquiesce the database are also logged to the
logging �le.

Using the Database 4-33

TurboIMAGE/XL calls the MPE/iX logging intrinsics OPENLOG, WRITELOG, and
CLOSELOG in order to log information to the log �le. When a database is opened, DBOPEN
calls the OPENLOG intrinsic using the log identi�er and password stored in the database
root �le. If this call succeeds, DBOPEN calls WRITELOG to log a DBOPEN log record
containing information about the database and the new user. The WRITELOG intrinsic is
also used to log information when the TurboIMAGE/XL intrinsics DBPUT, DBDELETE,
and DBUPDATE are called. WRITELOG is called after all error checks are made, but before
actually modifying the working database. Consequently, a log record is not written until the
TurboIMAGE/XL procedure has committed itself to succeed. WRITELOG is also used by
the TurboIMAGE/XL intrinsics DBBEGIN, DBEND, DBMEMO, DBXBEGIN, DBXEND,
DBXUNDO, and DBQUIESCE procedures.

DBCLOSE (mode 1) calls WRITELOG to log a DBCLOSE log record, and then calls
CLOSELOG to terminate access to the log �le. If a transaction initiated with DBBEGIN fails
to call DBEND, or a DBXBEGIN does not have a matching DBXEND, DBCLOSE causes an
abnormal DBEND or DBXEND log record to terminate access to the log �le. DBCLOSE also
causes an abnormal DBEND or DBXEND log record to be written if the program aborts with
an un�nished transaction.

User Logging and Logical Transactions

TurboIMAGE/XL transactions are of two basic types|single and logical. A single transaction
is a single call to an intrinsic. It is not delimited by begin and end intrinsics. A logical
transaction can be considered as the basic work unit performed against a database. A logical
transaction could consist of a single modi�cation, but more typically consists of several calls
to TurboIMAGE/XL intrinsics which lock, read, modify, and unlock information. Logical
transactions transfer the database from one consistent state to another, but in the midst of a
multiple-step transaction, the database could be temporarily inconsistent with itself. (For an
example, see \Logical Transactions" in chapter 7.)

TurboIMAGE/XL logical transactions are de�ned in Table 4-4.

Table 4-4. Types of Logical Transactions

Transaction De�nition

Static A logical transaction that begins with a DBBEGIN call and ends with a
DBEND call. A static transaction spans only one database. This type of
transaction can be recovered with DBRECOV.

Multiple database A logical transaction that spans more than one database. A multiple
database transaction begins with a DBBEGIN call and ends with a DBEND
call. This type of transaction is recovered with DBRECOV.

Dynamic A logical transaction that begins with a DBXBEGIN call and ends with a
DBXEND call. Unlike non-dynamic transactions (that is, static and
multiple database transactions), dynamic transactions can be rolled back
with a call to the DBXUNDO procedure and are automatically rolled back
in the event of a system failure or program abort.

In the event of a system failure and subsequent recovery, only complete logical transactions
are re-executed, returning the database to a consistent state. Therefore, it is essential that
an application program use the intrinsics DBBEGIN and DBEND, or DBXBEGIN and

4-34 Using the Database

DBXEND, to mark the beginning and end of a sequence of calls which constitute a single
logical transaction.

For reasons explained more fully under \Locking Requirements for Logical Transactions" in
chapter 7, the following sequence of operations should be followed as closely as possible when
performing modi�cations:

1. Call DBLOCK to lock all data which must not be changed by other processes during the
transaction. This includes data to be read and data to be modi�ed.

2. If you wish, read data using DBFIND and DBGET to determine the necessary
modi�cations.

3. Call DBBEGIN or DBXBEGIN to declare the beginning of modi�cations.

4. Make modi�cations using DBPUT, DBDELETE, or DBUPDATE.

5. If this is a dynamic transaction, call DBXUNDO in the event an error is encountered or the
modi�cations should be backed out for any other reason.

6. Call DBEND or DBXEND to declare the end of the modi�cations. However, if this is a
dynamic transaction and DBXUNDO was used to roll back a transaction, your program
logic should ensure that the subsequent call to DBXEND is not processed.

7. Call DBUNLOCK to release all of the locks.

Note The call to DBUNLOCK must occur after the call to DBXEND in the case of
a dynamic transaction when the database is opened in access mode 1, because
TurboIMAGE/XL requires strong locking for dynamic transactions.

Transaction Numbers

TurboIMAGE/XL maintains a transaction number for each user accessing the database.
Transaction numbers enable the DBRECOV recovery program to associate one access
path's log records with a particular transaction. This number is initialized by DBOPEN
and incremented each time DBBEGIN or DBXBEGIN is called, or for each single call to
DBPUT, DBUPDATE, or DBDELETE if it is not included in a transaction delimited by
DBBEGIN and DBEND, or DBXBEGIN or DBXEND. Transaction numbers are included
in all DBBEGIN, DBXBEGIN, DBPUT, DBUPDATE, DBDELETE, and DBMEMO log
records. The transaction number is always incremented as described, regardless of whether the
user's process is actually logging. A user's process can determine its transaction count (and
whether the database and user is logging) by calling DBINFO using mode 401.

User Logging and Process Suspension

The MPE/iX logging intrinsics will suspend a calling process if the logging bu�ers become
full. Consequently, a user's process which calls TurboIMAGE/XL can become suspended, for
example, if a tape log �le reaches the end of a reel and logging bu�ers become full before a
new tape can be mounted.

Using the Database 4-35

Obtaining Database Structure Information

The DBINFO library procedure allows you to acquire information programmatically about the
database. It provides information about database settings, data items, data sets, data paths,
B-Tree indices, and third-party indices. The information returned is restricted by the user
class number and access mode established when the database is opened.

Any data items, data sets, or paths of the database inaccessible to that user class or in that
access mode are considered to be non-existent. For example, if the access mode grants only
read access, this procedure will indicate that no data sets can have entries added. The
information that can be obtained through separate calls to DBINFO is summarized below.

In relation to data items , DBINFO can be used to:

Determine whether the user class number established when the database is opened allows
a speci�ed data item value to be changed in at least one data set, or allows a data entry
containing the item to be added or deleted.

Get a description of a data item including the data item name, type, sub-item length, and
sub-item count. This information corresponds to that which is speci�ed in the item part of
the schema.

Determine the number of items in the database available to the current user and to get a
list of numbers identifying those items. The numbers indicate the position of each data
item in the item part of the schema. The type of access, for example read-only, can also be
determined.

Determine the number of items in a particular data set available to the current user and get
a list of those item numbers and the type of access available for each one.

In relation to data sets , DBINFO can be used to:

Determine whether the current user can add or delete entries to a particular data set.

Get a data set description including the data set name, type, length in halfwords and
blocking factor for data entries in the set, number of entries in the set, and the capacity.

Determine the number of data sets the current user can access and get a list of the data set
numbers indicating the position of the data set de�nition in the set part of the schema. The
type of access to each set is also indicated.

Determine in which data sets a particular data item is available to the current user. The
number of data sets, a list of data set numbers, and the type of access available for each set
is returned.

Obtain capacity information. Determine if a data set is jumbo, and if so, information on
chunks.

Determine if master data set has a B-Tree index.

In relation to paths , DBINFO can be used to:

Get information about the paths associated with a particular data set including the number
of paths. If the data set is a master set, the information includes the data set number,
search item number, and sort item number for each related detail. If the data set is a detail
set, the information includes the master data set number of the related master data set, the
detail search item number and sort item number for each path.

4-36 Using the Database

Determine the key item number of a master data set or the search item number for the
primary path of the detail and the data set number of the related master. In either case, if
the search item is inaccessible to the current user, no information is returned.

Special Uses of DBINFO

If the application program uses data items and data set numbers when calling the other
TurboIMAGE/XL procedures, it is good practice to determine these numbers by calling
DBINFO at the beginning of the program to set up the numbers. It is not practical to code
the numbers into the program because a change to the database structure might require
extensive changes to the application programs. Likewise, it is ine�cient and time consuming
to call DBINFO throughout the program to determine these numbers. Many application
programmers prefer the convenience and exibility of using the data item and data set names
in procedure calls.

DBINFO is useful when writing general inquiry applications similar to the QUERY/3000
database inquiry facility. DBINFO can also be used to obtain information regarding the
logging facility, dynamic transactions, third-party indexing, and the critical item update
(CIUPDATE) option settings for a database and the current process. In relation to Native
Language Support (NLS), DBINFO can be used to get the MPE/iX numeric code that de�nes
the native language supported by the database. (Refer to \Database Description Language"
and \Schema Structure" in chapter 3.)

Checking Subsystem Flag

A subsystem ag can be set with the DBUTIL >>SET command. This ag indicates whether
subsystems, including user programs, can access the TurboIMAGE/XL database and, if access
is allowed, whether it is read only or both read and write. Because the ag does not actually
allow or prevent access, the subsystem or user program must include a call to DBINFO to test
this ag. QUERY/3000 is the primary subsystem which uses the subsystem ag.

Closing the Database or a Data Set

After you have completed all the tasks with the database, use the DBCLOSE library
procedure to terminate access to the database. When DBCLOSE is used for this purpose, all
data sets and the root �le are closed, and the DBU control block is released to the MPE/iX
system. If there are no other concurrent users of the database, the DBB and DBG control
blocks are also released. All locks that you could still have on the database through the closed
access path are automatically released.

The DBCLOSE procedure can also be used to rewind or close access to a data set.
Rewinding consists of resetting to its initial state the dynamic status information kept by
TurboIMAGE/XL. If a detail data set is closed or rewound, the current path does not change
when the status information is initialized.

The purpose of closing a data set completely is to return the resources required by that data
set to the MPE/iX system without terminating access to the database. A typical reason
for rewinding a data set is to start at the �rst or last entry again when doing a forward or
backward serial read.

Using the Database 4-37

Checking the Status of a Procedure

Each time a procedure is called, TurboIMAGE/XL returns status information in a bu�er
speci�ed by the calling program and, if the program is in Compatibility Mode, sets the CM
condition code maintained by MPE/iX. The CM condition code, or the TurboIMAGE/XL
return status (described later), should be checked immediately after TurboIMAGE/XL returns
from the procedure to the calling program before another procedure call is made.

A CM condition code is always one of the following and has the general meaning shown:

CM Condition Code General Meaning

CCE The procedure performed successfully. No exceptional
condition was encountered.

CCG An exceptional condition, other than an error, was
encountered.

CCL The procedure failed due to an invalid parameter or a
system error.

The �rst word of the status information returned in the calling program's bu�er is a return
status whose value corresponds to the CM condition code as follows:

CM Condition Code Return Status Value

CCE 0

CCG >0

CCL <0

The calling program must check either the CM condition code or the TurboIMAGE/XL return
status to determine the success or failure of the procedure. The return status is also used to
indicate various exceptional conditions and errors. See appendix A for a summary.

The other elements of status information vary with the outcome of the call and from one
procedure to another. The content of these elements is described in detail with each procedure
de�nition later in chapter 5 and in appendix A, which describes error conditions.

4-38 Using the Database

Interpreting Errors

TurboIMAGE/XL provides two library procedures, DBEXPLAIN and DBERROR, which
can be used to interpret status information programmatically. DBEXPLAIN prints on the
$STDLIST device an English language error message which includes the name of the database
and the name of the procedure that returned the status information. DBERROR returns the
English language error message contained in a bu�er speci�ed by the calling program.

Abnormal Termination

Under certain conditions, the calling process can be terminated by TurboIMAGE/XL.
Conditions giving rise to process termination and a description of the accompanying error
messages are presented in appendix A.

Using the Database 4-39

5

TurboIMAGE/XL Library Procedures

Using TurboIMAGE/XL Intrinsics

This chapter contains the reference speci�cations for the TurboIMAGE/XL library procedures
(also known as intrinsics), arranged alphabetically. Table 5-1 gives a summary of the
procedures with a brief description of their function.

On the following pages, the calling parameters for each procedure are de�ned in alphabetical
order for easy look-up rather than the order in which they appear in the call statement. Every
parameter must be included when a call is made because a parameter's meaning is determined
by its position.

Note All parameters must be on halfword boundaries. Database names, data
set names, and data item names that are passed to the TurboIMAGE/XL
intrinsics must be in uppercase.

TurboIMAGE/XL Library Procedures 5-1

Table 5-1. TurboIMAGE/XL Procedures

Procedure Function

DBBEGIN When logging, designates the beginning of a transaction and optionally
writes user information to the log �le.

DBCLOSE Terminates access to a database or a data set, or resets the pointers of a
data set to their original state.

DBCONTROL Allows a process operating in exclusive mode to enable or disable the
deferred output (AUTODEFER) option. Also allows a process to enable or
disable the critical item update (CIUPDATE) option, activate deadlock
detection, and set wildcard character and BTREEMODE1 option for
database, or for the current DBOPEN without a�ecting other processes
operating on the same database.

DBDELETE Deletes an existing entry from a data set.

DBEND When logging, designates the end of a transaction and optionally writes user
information to the log �le.

DBERROR Supplies an ASCII language message that interprets the status information
set by any callable TurboIMAGE/XL procedure. The message is returned
to the calling program in a bu�er.

DBEXPLAIN Examines status information returned by a TurboIMAGE/XL procedure
and prints a multiline message on the $STDLIST device.

DBFIND Locates the �rst and last entries of a data chain in preparation for access to
entries in the chain for non-B-Tree searches. For B-Tree searches, master
and detail data sets can be included.

DBGET Reads the data item values of a speci�ed entry.

DBINFO Provides information about the database being accessed, such as the name
and description of a data item or data set. It also provides information on
logging, including logging of dynamic and multiple database transactions,
and on third-party indexing, critical item update, and other options.

DBLOCK Locks one or more data entries, a data set, or an entire database (or a
combination of these) temporarily to allow the process calling the procedure
to have exclusive access to the locked entities.

DBMEMO When logging, writes user information to the log �le.

DBOPEN Initiates access to a database. Speci�es the user access mode and user class
number for the duration of the process.

DBPUT Adds a new entry to a manual master or detail data set.

DBUNLOCK Releases those locks obtained with previous call(s) to DBLOCK.

5-2 TurboIMAGE/XL Library Procedures

Table 5-1. TurboIMAGE/XL Procedures (continued)

Procedure Function

DBUPDATE Modi�es the values of data items. Cannot be used to update master data
set key items. Can be used to update detail data set search and sort items
in database access mode 1, 3, or 4 if permitted by the critical item update
(CIUPDATE) option settings for the database and the current process.

DBXBEGIN Designates the beginning of a dynamic transaction. Refer to \Transactions"
later in this chapter for a description of dynamic transactions.

DBXEND Designates the end of a dynamic transaction.

DBXUNDO Rolls back the active dynamic transaction.

Table 5-2 illustrates the forms of the call statements for the languages that can be used to
call the procedures. Chapter 6 contains examples of using the procedures and speci�cations
for declaration of parameters for some of these languages. It also provides a sample RPG
program.

Table 5-2. Calling a TurboIMAGE/XL Procedure

COBOL II CALL \name" USING parameter,parameter, . . . ,parameter .

FORTRAN 77 CALL name (parameter,parameter, . . . ,parameter)

Pascal name (parameter,parameter, . . . ,parameter);

BBASIC linenumber CALL name (parameter,parameter, . . . ,parameter)

C name (parameter,parameter, . . . ,parameter);

All procedures can be called from programs in any of the host languages.

Intrinsic Numbers

An intrinsic number is provided for each procedure. This number, which uniquely identi�es
the procedure within TurboIMAGE/XL and the MPE/iX operating system, is returned with
other status information when an error occurs. You can use it to identify the procedure that
caused the error or call DBEXPLAIN to interpret the number and other information.

Database Protection

When each procedure is called, TurboIMAGE/XL veri�es that the requested operation is
compatible with the user class number and access mode established when the database is
opened.

TurboIMAGE/XL Library Procedures 5-3

Unused Parameters

When calling some procedures for a speci�c purpose, one of the parameters can be ignored;
however, it still must be listed in the call statement. An application program may �nd it
useful to set up a variable named Not Used Parm or DUMMY to be listed as the unused
parameter as a reminder that the value of the parameter does not a�ect the procedure call.
Refer to the examples in chapter 6.

The Status Array

The status array is a communication area. If the procedure executes successfully, the contents
of the array reect this as described under each intrinsic discussion in this chapter. If the
procedure fails, standard error information is returned in the array as described in this
chapter and appendix A.

Transactions

TurboIMAGE/XL transactions are de�ned below:

Table 5-3. Types of Transactions

Transaction De�nition

Single A single call to an intrinsic. A single transaction is not delimited by
DBBEGIN and DBEND, or DBXBEGIN and DBXEND.

Logical A sequence of one or more procedure calls that begins with a DBBEGIN or
DBXBEGIN call and ends with a DBEND or DBXEND call. A logical
transaction can contain several intrinsic calls, but is logically considered one
transaction.

Static A logical transaction that begins with a DBBEGIN call and ends with a
DBEND call. A static transaction spans only one database, and can be
recovered with DBRECOV.

Dynamic A logical transaction that begins with a DBXBEGIN call and ends with a
DBXEND call. A dynamic transaction can be rolled back dynamically with
DBXUNDO. A dynamic transaction spans only one database.

Multiple database A logical transaction that spans more than one database. A multiple
database transaction begins with a DBBEGIN call and ends with a DBEND
call. A multiple database transaction can be recovered with DBRECOV.

Refer to chapters 4 and 7 for more information on transactions.

5-4 TurboIMAGE/XL Library Procedures

DBBEGIN

DBBEGIN

INTRINSIC NUMBER 412

Designates the beginning of a sequence of TurboIMAGE/XL procedure calls regarded as a
static or multiple database transaction (based on the mode) for the purposes of logging and
recovery. The text parameter can be used to log user information to the log �le. DBBEGIN is
used in conjunction with DBEND to begin and end a static or multiple database transaction.

Syntax

DBBEGIN,

�
base

baseidlist

�
,text,mode,status,textlen

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.) Use
base when calling DBBEGIN mode 1 (static transaction).

baseidlist is the name of the integer array containing the base IDs of the databases
which are involved in a multiple database transaction. Use baseidlist when
calling DBBEGIN mode 3 or 4 (multiple database transaction). The layout of
this array is shown here (each element is a halfword or two bytes):

Element Contents

1-2 The application program must set these two halfwords to binary
0s before calling DBBEGIN. After returning to the calling
program, these two halfwords contain the transaction ID. This ID
can be used in order to end the transaction by calling DBEND.

3 The number of base IDs involved in the multiple database
transaction. This must be a number between 1 and 15, inclusive.

4-n Base IDs of the databases involved in the transaction.
Base ID is the �rst halfword of the base parameter used to call
TurboIMAGE/XL intrinsics.

text is the name of an array up to 256 halfwords long which contains user ASCII
or binary data to be written to the log �le as part of the DBBEGIN log
record. The text argument is used to assign each particular transaction a
distinct name. (Refer to \Discussion" below for more information.)

mode is an integer indicating the type of transaction desired as follows:

Mode 1: Indicates a static transaction.

Mode 3: Indicates a multiple database transaction with one log record
per database. If user logging is enabled for the databases,
mode 3 generates multiple entries in the log �le in order to
mark multiple database transactions. For example, assume
that base IDs 11, 12, and 13 are involved in a multiple

TurboIMAGE/XL Library Procedures 5-5

DBBEGIN

database transaction. DBBEGIN mode 3 (with base IDs 11,
12, and 13 speci�ed in the baseidlist parameter) generates the
following log record sequence:

DBBEGIN (11, 1/3)

DBBEGIN (12, 2/3)

DBBEGIN (13, 3/3)
...

database updates
...

DBEND (11, 1/3)

DBEND (12, 2/3)

DBEND (13, 3/3)

where the notations 1/3, 2/3, 3/3 in the log records indicate
\�rst of three," \second of three," and \third of three." Refer
to chapter 7 for more details about user logging.

Mode 4: Indicates a multiple database transaction. If user logging is
enabled for the databases, mode 4 generates one entry in the
log �le in order to mark multiple database transactions. For
example, assume that base IDs 11, 12, and 13 are involved in
a multiple database transaction. DBBEGIN mode 4 (with
base IDs 11, 12, and 13 speci�ed in the baseidlist parameter)
generates the following log record sequence:

MDBXBEGIN (11, 12, 13)
...

database updates
...

MDBXEND (11, 12, 13)

Refer to chapter 7 for more details about user logging.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL returns
status information. If the procedure executes successfully, the status array
contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-4
describes the contents of element 1 when the procedure does not
succeed.

2-4 Unchanged from previous procedure call using this array.

5-10 Procedure call information. Refer to \Library Procedure Error
Messages" in appendix A for a description of this information.

textlen is an integer equal to the number of halfwords to be logged from the text
parameter, or is a negative integer equal to the number of bytes to be logged.
Length can be zero.

5-6 TurboIMAGE/XL Library Procedures

DBBEGIN

Discussion

DBBEGIN is called to designate the beginning of a sequence of TurboIMAGE/XL procedure
calls which are jointly considered a single logical transaction. The transaction is either a
static or multiple database transaction, based on the mode. The end of such a sequence is
designated by a matching call to DBEND. If the calling process is logging, DBBEGIN causes
a log record to be written to the log �le which includes such information as the time, date,
and user text bu�er. DBBEGIN log records are used by the database recovery program
DBRECOV to identify the beginning of all logical transactions.

DBBEGIN returns an error condition if it is called twice without an intervening call to
DBEND or if it is called while a dynamic transaction is still active, whether the process is
actually logging or not.

Table 5-4. DBBEGIN Return Status Values

Calling Errors: -11

-31

-139

-140

-141

-142

-143

-144

-145

-151

-152

-221

-222

Bad database reference.
Bad mode.
Invalid number of base IDs.
Bad base ID list.
All MDBX databases must be on the same system.
All MDBX databases must log to the same log �le.
Logging must be enabled or disabled for all MDBX
databases.
MUSTRECOVER must be enabled or disabled for all
MDBX databases.
Roll-back must be enabled or disabled for all MDBX
databases.
Text length greater than 512 bytes.
Transaction is in progress.
Cannot begin transaction when a dynamic transaction is
active.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-106

-107

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Logging System Failures: -111 WRITELOG failure.

Exceptional Conditions: -193

-332

62

63

DBU control block is full.
Error in QLOCK table operation.
DBU full.
DBG disabled; potential damage; only DBCLOSE allowed.

Consult appendix A for more information about these conditions.

TurboIMAGE/XL Library Procedures 5-7

DBCLOSE

INTRINSIC NUMBER 403

Terminates access to a database or a data set, or rewinds a data set. DBCLOSE is used in
conjunction with DBOPEN to establish and terminate access to a database.

Syntax

DBCLOSE,base,dset,mode,status

Parameters

base is the name of an array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.)

dset is the name of an array containing the left-justi�ed name of the data set to be
closed, or is an integer referencing the data set by number if mode equals 2 or
3. If mode equals 1, this parameter is ignored. The data set name can be up
to 16 characters long. If shorter, it must be terminated by a semicolon or a
blank.

mode is an integer equal to 1, 2, or 3 indicating the type of termination desired as
follows:

Mode 1: Access to the database is terminated. Any locks held by this
user for this base ID are released. If DBCLOSE mode 1 is
called while a dynamic transaction is still active, an error
is returned, the transaction is aborted, and the database is
closed automatically. You do not need to call DBXEND or
DBXUNDO.

Mode 2: The data set referenced by the dset array is closed, but locks
held in the data set are not released. If DBCLOSE mode 2
is called while a dynamic transaction is still active, an error
is returned. You must check the error and decide to use
DBXEND, DBXUNDO, or continue with the transaction even
if DBCLOSE mode 2 failed. DBXUNDO will abort the entire
dynamic transaction. DBXEND will terminate the dynamic
transaction; the modi�cations completed thus far within the
transaction will remain in the database.

Mode 3: If mode equals 3, the data set referenced by the dset array is
reinitialized but not closed.

If your database is enabled for third-party indexing (TPI), refer to your
vendor documentation for additional DBCLOSE mode information. The
section on DBUTIL in chapter 8 of this book has a brief description of the
TPI option.

5-8 TurboIMAGE/XL Library Procedures

DBCLOSE

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-6
describes the contents of element 1 when the procedure does not
succeed.

2-4 Unchanged from previous procedure call using this array.

5-10 Procedure call information. Refer to \Library Procedure Error
Messages" in appendix A for a description of this information.

Discussion

You must call DBCLOSE mode 1 to terminate access to the database when you have
completed all the tasks you want to perform. If a process has issued multiple calls to
DBOPEN for the same database, only the access path speci�ed in the DBCLOSE base
parameter is a�ected by the call to DBCLOSE.

The capability to reset and close a data set is provided to perform functions such as
reinitializing dynamic status information for a process accessing a particular data set and
returning system resources. In both modes 2 and 3, status information is reinitialized,
but system resources are returned in mode 2 only. The current list is not reset. Table 5-5
summarizes the functions performed in each mode.

Table 5-5. DBCLOSE Modes 2 and 3 Functions

Function Mode 2 Mode 3

Reinitialize dynamic status information for the data set
(chain count, forward and backward pointers, current record
number and last return status).

YES YES

Close the data set. YES NO

Release locks held within the data set. NO NO

Current list reset. NO NO

Because mode 3 does not close and reopen a data set, it is more e�cient than mode 2 if the
data set is to be accessed again before the database is closed.

Only mode 3 is allowed within a dynamic transaction; mode 2 will return an error, and mode
1 will abort the transaction.

If the process is logging, a mode 1 DBCLOSE causes a DBCLOSE log record to be written
to the log �le. DBCLOSE log records contain such information as the time, date, and user
log identi�cation number. A DBCLOSE log record is also written if the process aborts or
terminates without closing the database. If the process aborts before completing an active
transaction, a special DBEND log record is written prior to the DBCLOSE.

DBCLOSE returns an error condition if the process has not completed an active transaction;
in other words, the process has called DBBEGIN without a matching call to DBEND.

TurboIMAGE/XL Library Procedures 5-9

DBCLOSE

Transactions that abort in this manner are not automatically suppressed by DBRECOV
during recovery in order to salvage as many subsequent transactions that may depend on the
aborted transaction as possible.

Table 5-6. DBCLOSE Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-2

-3

-5

-6

FCLOSE failure.
FREADDIR failed.
FWRITEDIR failure.
FWRITELABEL failure.

Calling Errors: -11

-21

-31

-222

-232

-235

-420

Bad database reference.
Bad data set reference.
Bad mode.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.
Illegal DBCLOSE mode 2 used during an active dynamic
transaction.
Dynamic transaction aborted due to DBCLOSE mode 1;
database closed.
Feature not implemented.

Communications Errors: -101

-102

-103

-106

-107

DSCLOSE failure.
DSWRITE failure.
Remote 3000 stack space insu�cient.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Logging System Failures: -111

-112

-152

WRITELOG failure.
CLOSELOG failure.
Transaction is in process.

Exceptional Conditions: -194

-332

-333

63

Invalid DBB.
Error in QLOCK table operation.
Error in QOPEN table operation.
DBG disabled; potential damage; only DBCLOSE allowed.

Consult appendix A for more information about these conditions.

5-10 TurboIMAGE/XL Library Procedures

DBCONTROL

DBCONTROL

INTRINSIC NUMBER 411

Allows a process accessing the database to have control over some DBUTIL options. In
exclusive mode (DBOPEN mode 3), DBCONTROL can be used to enable or disable the
deferred output (AUTODEFER) option and perform several B-Tree related tasks such as
adding, dropping, or rebuilding a B-Tree index. It can also be used to set BTREEMODE1
option to ON or OFF and specify the wildcard character for the current DBOPEN or for the
database (permanent).

For database access modes 1, 3, and 4, DBCONTROL can be used to temporarily enable
or disable the critical item update (CIUPDATE) option, depending on the setting for
the database, without impacting other processes operating on the same database. Using
DBCONTROL does not alter the permanent AUTODEFER or CIUPDATE settings for the
database set with DBUTIL. However, the permanent setting for BTREEMODE1 and wildcard
character can be altered based on the DBCONTROL mode.

Syntax

DBCONTROL,base,quali�er,mode,status

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.)

quali�er used only for certain DBCONTROL modes.

mode must be an integer equal to 1, 2, 5, 6, 7, 9, 10, 13, 14, 15, or 16 indicating the
following:

Mode 1: Turn on the deferred output option. If AUTODEFER has not
been enabled for the database (using DBUTIL >>ENABLE),
mode 1 enables the deferred output option for the duration
of only the current DBOPEN. When the database is closed,
AUTODEFER will no longer be enabled. Mode 1 is not
allowed while a dynamic transaction is active.

Mode 2: Turn o� the deferred output option. If AUTODEFER has
been enabled for the database (using DBUTIL >>ENABLE),
mode 2 disables the deferred output option for the duration
of only the current DBOPEN. When the database is closed,
AUTODEFER will again be enabled.

Mode 5: Enable the critical item update option. If CIUPDATE is
ALLOWED for the database (default or by using DBUTIL
>>SET), mode 5 enables the option for the current
DBOPEN until either a DBCONTROL mode 6 call disables
the option or the database is closed. You can call mode 5
successfully if the CIUPDATE setting for the database equals
ON, but the call has no impact on the option setting for the

TurboIMAGE/XL Library Procedures 5-11

DBCONTROL

current process unless an intervening call to DBCONTROL
mode 6 disabled the option. If the CIUPDATE ag is
DISALLOWED, a call to mode 5 returns an error. The
CIUPDATE option is available only in database access modes
1, 3, and 4.

Mode 6: Disable the critical item update option. If CIUPDATE has
been set to ON for the database (using DBUTIL >>SET),
mode 6 disables the option for the current DBOPEN until
either a DBCONTROL mode 5 call enables the option or
the database is closed. If the CIUPDATE option setting for
the database equals ALLOWED and the process has called
DBCONTROL in mode 5 to enable the option, then mode 6
disables the option for that same process. The CIUPDATE
option is available only in database access modes 1, 3, and 4.

Mode 7: Allow the database to be included in the dynamic multiple
database transaction (DMDBX). DBCONTROL mode 7
needs to be done once, for every database, before including
it in DBXBEGIN mode 3 call for DMDBX. Mode 7 is used
programmatically to allow it for DMDBX and remains
activated until the database is closed or the application
terminates.

Mode 7 also activates the database for deadlock detection. In
case of a deadlock, DBLOCK will return an error, 26, instead
of causing a process hang. Note that mode 7 will activate
both deadlock detection and inclusion in DMDBX. If you only
want deadlock detection and not DMDBX, your DBXBEGIN
call can use mode 1 instead of 3.

Mode 9: Enable the HWMPUT option of DBPUT for the current
DBOPEN. This causes DBPUT to try placing entries at the
high-water mark �rst instead of at the delete chain head �rst.

Mode 10: Disable the HWMPUT option of DBPUT for the current
DBOPEN. This causes DBPUT to try placing entries at
the delete chain head �rst. This is the default action if
DBCONTROL is not called.

Mode 13: Allow a privileged mode caller to perform B-Tree related
tasks such as adding, dropping, rebuilding, releasing, or
securing a B-Tree index �le. Exclusive database access is
required to add, drop, or rebuild a B-Tree index. Quali�er
has a structured record containing dataset information and
directives. Refer to chapter 11, \B-Tree Indices" for the
quali�er layout.

Mode 14: Allow a privileged mode caller to set BTREEMODE1 option
to ON or OFF and set wildcard character for the database
(permanent). Refer to chapter 11, \B-Tree Indices" for the
quali�er layout.

Mode 15: Enable B-Tree wildcard search for DBFIND mode 1, X
and U types, for the master data set's key item and its

5-12 TurboIMAGE/XL Library Procedures

DBCONTROL

corresponding search items in details, if the key item has a
B-Tree index. In other words, turn on the BTREEMODE1
ag for the current database open. The �rst byte of the
quali�er is examined. If it is null or blank, then the current
wildcard character is not changed. If it is in the ASCII range
(33 . . . 126), then the wildcard character is changed to that
value for the current DBOPEN. If the quali�er is any other
value, DBCONTROL returns an error. A�ects only the
current database open. It needs to be done once per database
and remains activated until the database is closed or the
application terminates. This mode allows you to perform
B-Tree searches on ASCII types without making application
changes.

Mode 16: Disable B-Tree wildcard search for DBFIND mode 1
regardless of the existence of a B-Tree index. That is, turn
o� the BTREEMODE1 ag for the current database open.
The quali�er is ignored, and BTREEMODE 1 is turned o�.
A�ects the current database open only. It needs to be done
once per database and remains activated until the database is
closed or the application terminates.

If your database is enabled for third-party indexing (TPI), refer to your
vendor documentation for additional DBCONTROL modes. The section on
DBUTIL in chapter 8 of this book has a brief description of the TPI option.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL returns
status information. If the procedure executes successfully, the status array
contents are as follows:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-7
describes the contents of element 1 when the procedure does not
succeed.

2-4 Unchanged from previous procedure call using this array.

5-10 Procedure call information. Refer to \Library Procedure Error
Messages" in appendix A for a description of this information.

Discussion

DBCONTROL can be called by a program for the following purposes:

To enable or disable the AUTODEFER option for the current mode 3 DBOPEN.

To enable or disable the critical item update option for the current process accessing the
database in mode 1, 3, or 4 depending on the CIUPDATE setting for the database.

To enable or disable the HWMPUT for the current DBOPEN.

To include a database in dynamic multiple database transaction.

To activate deadlock detection for the database.

To perform B-Tree index related tasks.

TurboIMAGE/XL Library Procedures 5-13

DBCONTROL

In TurboIMAGE/XL default mode, MPE/iX Transaction Management (XM) is used to log
database modi�cations (DBPUTs, DBDELETEs, DBUPDATEs) to the XM log �le. With
deferred output, MPE/iX Transaction Management is not used. Instead, the MPE/iX �le
system default mode is used. This mode keeps data pages in memory for as long as possible,
either until �le close time or until no more memory is available.

Thus, with deferred output, database modi�cations caused by calls to DBPUT, DBUPDATE,
or DBDELETE cannot be written to the disk (or can only be partially written). Although
TurboIMAGE/XL generally operates more e�ciently in this mode, a system failure while the
database is operating in this mode has a very high probability of causing internal structural
damage to the database.

A program that opens the database exclusively can call DBCONTROL mode 1 to enter
the deferred mode of operation, except when a dynamic transaction is active. In this case,
all database modi�cations will be kept in memory for as long as possible, either until the
database is closed or until no more memory is available.

A program that opens the database exclusively can call DBCONTROL mode 2 to turn o�
the deferred mode of operation. In this case, all database modi�cations will be written to the
MPE/iX Transaction Management log �le until the database is closed.

Programs that are designed to modify the values of detail data set search and sort items can
call DBCONTROL mode 5 if the CIUPDATE setting for a database equals ALLOWED. The
CIUPDATE option is available only in database access modes 1, 3, and 4. The mode 5 call
enables CIUPDATE for only this process until either a DBCONTROL mode 6 call disables
the option for the process or the database is closed. Other processes operating on the same
database are not impacted by these calls.

A program, which must ensure that the values of detail data set search and sort items remain
unchanged for the duration or a portion of the process, can call DBCONTROL mode 6
to disable CIUPDATE if this option has been set to ON for the database, or if the option
is ALLOWED (default or set by DBUTIL) and an earlier call to DBCONTROL mode 5
enabled the option. CIUPDATE is available only in database access modes 1, 3, and 4. When
DBCONTROL mode 6 is used to disable CIUPDATE, the option is disabled for that process
alone until a call to DBCONTROL mode 5 enables the option for the process or the database
is closed. Other processes operating on the same database are not a�ected by these calls.

Note If HWMPUT is enabled, DBPUT will not inform you when it has reached the
end of �le and has started using the delete chain head. In general, it is not a
good practice to toggle HWMPUT.

If you plan to use roll-forward recovery, do not toggle HWMPUT after storing
the database.

By default, DBPUT �rst checks the delete chain head, then if it is empty, DBPUT places the
new entry at the high-water mark. If the high-water mark option (HWMPUT) is enabled,
DBPUT will place the entry at the high-water mark �rst; after the high-water mark reaches
the �le limit, DBPUT will use the delete chain head. Use DBCONTROL mode 9 to enable or
mode 10 to disable this feature.

DBCONTROL allows DBUTIL and privileged callers to perform several B-Tree index �le
related functions such as adding, deleting, or rebuilding of a B-Tree index �le for a speci�ed
master dataset. There are four new DBCONTROL modes pertaining to B-Tree indices:
modes 13, 14, 15, and 16. Refer to chapter 11, \B-Tree Indices," for more information.

5-14 TurboIMAGE/XL Library Procedures

DBCONTROL

Consult appendix A for more information about the conditions for the return status values
shown in Table 5-7.

Table 5-7. DBCONTROL Return Status Values

File System, Memory -4 FREADLABEL failure.

Management, and -168 Cannot attach n to MPE XL XM: �le system error nn.

Transaction Management -175 Cannot attach n to MPE XL XM: XM error nn.

Failures: -176 Cannot detach n from MPE XL XM: XM error nn.

-178 Cannot detach n from MPE XL XM: �le system error nn.

-179 Cannot begin MPE XL transaction for attach: XM error nn.

-189 Cannot begin MPE XL transaction for detach: XM error nn.

Calling Errors: -11 Bad database reference.

-14 Illegal intrinsic in current access mode.

-31 Bad mode.

-80 Output deferred not allowed when ILR enabled.

-81 Output deferred not allowed with roll-back enabled.

-82 CIUPDATE is set to DISALLOWED; cannot use critical
item update.

-222 Only DBXUNDO allowed when a dynamic transaction
encounters an error.

-224 DBCONTROL mode 1 not allowed inside a dynamic
transaction.

-421 BTE: unknown quali�er value for DBCONTROL mode 13.

-422 BTE: data set# not in valid range.

-423 BTE: B-Tree already exists.

-424 BTE: Failed to create B-Tree.

-425 BTE: DB not opened exclusively.

-426 BTE: B-Tree doesn't exist.

-427 BTE: FCLOSE, purge failed.

-428 BTE: Rebuildindex failed.

-432 BTE: Bad wildcard character.

-434 BTE: Data set is detail and not master.

-436 BTE: Failed to extract data from root �le.

-440 BTE: XM Attach of index �le failed

-441 BTE: XM Detach of index �le failed.

-442 BTE: RELEASE of index �le failed.

-443 BTE: SECURE of index �le failed.

-451 BTE: Root version less than \C"4.

-452 BTE: Key length greater than 252 bytes (maximum index
key size).

92 Need PM capability.

Communications Errors: -102 DSWRITE failure.

Exceptional Conditions: 63 DBG disabled; potential damage; only DBCLOSE allowed.

TurboIMAGE/XL Library Procedures 5-15

DBDELETE

INTRINSIC NUMBER 408

Deletes the current entry from a manual master or detail data set. The database must be
opened in access mode 1, 3, or 4.

Syntax

DBDELETE,base,dset,mode,status

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.)

dset is the name of an array containing the left-justi�ed name of the data set from
which the entry is to be deleted, or is an integer referencing the data set by
number. The data set name can be up to 16 characters long. If shorter, it
must be terminated by a semicolon or a blank.

mode must be an integer equal to 1.

If your database is enabled for third-party indexing (TPI), refer to your
vendor documentation for additional DBDELETE mode information. The
section on DBUTIL in chapter 8 of this book has a brief description of the
TPI option.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-8
describes the contents of element 1 when the procedure does not
succeed.

2 Zero.

3-4 Unchanged current record number.

5-6 Number of entries in a chain.

If master data set, the number is zero unless the deleted entry
was a primary entry with synonyms. In this case, the number is
one less than its previous value.

If detail data set, the number is unchanged from the preceding
procedure call.

7-10 Unchanged preceding and succeeding record numbers of a chain.
If master data set and the new synonym chain count is greater
than zero, the numbers reference the last and �rst synonym chain
entries, respectively.

5-16 TurboIMAGE/XL Library Procedures

DBDELETE

Discussion

When deleting entries from detail data sets, and if the database is open in access mode 1, you
must establish a lock covering the data entry to be deleted, the data set, or the database.

When deleting entries from master data sets, the following rules apply:

All pointer information for chains indexed by the entry must indicate that the chains are
empty. In other words, there cannot be any detail entries on the paths de�ned by the
master which have the same search item value as the key item in the master entry to be
deleted.

If the database is open in access mode 1, a lock must be in e�ect on the data set or the
whole database.

DBDELETE to an indexed master triggers a similar operation to the indexed master's B-Tree
�le and is considered atomic with the DBDELETE intrinsic.

Because of the way TurboIMAGE/XL handles synonym chains, it is possible to write a
routine to read and delete all the entries in a master data set and still leave some entries in
the set. If the deleted entry is a primary with synonyms, TurboIMAGE/XL moves the �rst
synonym in the chain to the deleted primary's location. A subsequent DBGET mode 3 will
read the next sequential entry, leaving an entry (the new primary) in the previous location.

A solution to this problem is to check elements 5 and 6 of the status parameter following each
DBDELETE call. If the synonym count in these elements is not zero, reread the location
(using DBGET, mode 1) and call DBDELETE again. Repeat the reread and DBDELETE
until the count is zero, then continue reading and deleting in a serial manner. (Refer to
chapter 4 for a discussion of serial access and to chapter 10 for a discussion of synonym
chains.)

TurboIMAGE/XL performs the required changes to chain linkages and other chain
information, including the chain heads in related master data sets. If the last member of each
detail chain linked to the same automatic master entry has been deleted, DBDELETE also
deletes the master entry containing the chain heads.

If a primary data entry with synonyms is deleted from a master data set and a secondary
migrates, the backward and forward pointers reect the new primary. In all other cases, the
backward and forward pointers are unchanged when an entry is deleted.

The execution of a call to DBDELETE could require extensive resources depending on the
amount of chain maintenance required. For example, when an entry is deleted from a detail
data set, the links connecting that entry to all other related entries with the same key values
and to all other related master entries are eliminated. This operation could involve many
blocks of data. TurboIMAGE/XL prevents data block access conicts with all other users
and ensures data integrity by applying a temporary lock against other processes until the call
to DBDELETE completes. The timing of this temporary lock can be controlled with the
PREFETCH option of DBUTIL. Refer to \Coordinating Deletions to a Database" in chapter
4 for what to consider when enabling or disabling this option.

If the process is logging, a call to DBDELETE causes a log record to be written with such
information as the time, date, user identi�cation number, and a copy of the record to be
deleted.

In a dynamic transaction, DBDELETE causes a log record to be written after the physical
transaction has been successfully completed. If DBDELETE cannot complete within a

TurboIMAGE/XL Library Procedures 5-17

DBDELETE

dynamic transaction, an error is returned. This error condition must be checked, and you
must decide to use DBXUNDO, DBXEND, or continue with the remainder of the dynamic
transaction. DBXUNDO will abort the entire transaction. DBXEND will terminate the
dynamic transaction; the modi�cations completed thus far within the transaction will remain
in the database.

Table 5-8. DBDELETE Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-1

-3

-4

-5

-6

-167

-168

-169

-175

-176

-178

-199

-209

FOPEN failure.
FREADDIR failure.
FREADLABEL failure.
FWRITEDIR failure.
FWRITELABEL failure.
Cannot begin MPE XL XM transaction: XM error nn.
Cannot attach n to MPE XL XM: �le system error nn.
Invalid mode for XM attach options.
Cannot attach n to MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: �le system error nn.
Cannot end MPE XL XM transaction: XM error nn.
Invalid mode for XM detach options.

Calling Errors: -11

-12

-14

-21

-23

-24

-31

-222

Bad database reference.
No lock covers the data entry to be deleted. (Occurs only if
database open in access mode 1.)
Illegal intrinsic in current access mode.
Bad data set reference.
Data set not writable.
DBDelete not allowed on Auto Master.
Bad mode.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-106

-107

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Logging System Failures: -111 WRITELOG failure.

Exceptional Conditions: -193

-196

-264

-3nn
-314

-322

-332

17

44

63

DBU control block is full.
DBB control block is full.
Error while writing to TPI �les.
Internal error.
Error while obtaining patch information for set.
Error while validating quali�er parameter.
Error in QLOCK table operations.
No entry.
Can't delete master entry with non-empty detail chains.
DBG disabled; potential damage; only DBCLOSE allowed.

Consult appendix A for more information about these conditions.

5-18 TurboIMAGE/XL Library Procedures

DBEND

DBEND

INTRINSIC NUMBER 413

Designates the end of a sequence of TurboIMAGE/XL procedure calls regarded as a static or
multiple database transaction (based on the mode) for the purposes of logging and recovery.
The text parameter can be used to log user information to the log �le. DBEND is used in
conjunction with DBBEGIN to begin and end a static or multiple database transaction.

Syntax

DBEND,

8<
:
base

baseidlist

transid

9=
; ,text,mode,status,textlen

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.) Use
with DBEND mode 1 or 2.

baseidlist is the name of an integer array containing the list of base IDs which are
involved in a multiple database transaction. Use with DBEND mode 3 or 4,
and set the �rst two halfwords to binary zeroes. The layout of this array is
shown here (each element is a halfword, or two bytes):

Element Contents

1-2 Must be set to binary zeroes.

3 The number of base IDs involved in the multiple database
transaction. Must be a number between 1 and 15, inclusive.

4-n Base IDs of the databases involved in the transaction. Base
ID is the �rst halfword of the base parameter used to call
TurboIMAGE intrinsics.

transid is the name of the integer array containing the two-halfword transaction ID.
The transaction ID was returned by DBBEGIN mode 3 or 4. Use with
DBEND mode 3 or 4, and do not set the �rst two halfwords to binary zeroes.

text is an array up to 256 halfwords long which contains user ASCII or binary data
to be written to the log �le as part of the DBEND log record.

mode must be an integer equal to 1, 2, 3, or 4.

Mode 1: End of static transaction.

Mode 2: Write contents of the logging bu�er in memory to disk, and end
the static transaction.

TurboIMAGE/XL Library Procedures 5-19

DBEND

Mode 3: End of multiple database transaction. If user logging is enabled
for the databases, mode 3 generates multiple entries in the log �le
in order to mark multiple database transactions. For example,
assume that base IDs 11, 12, and 13 are involved in a multiple
database transaction. DBEND mode 3 (with base IDs 11, 12, and
13 speci�ed in the baseidlist parameter) generates the following
log record sequence:

DBBEGIN (11, 1/3)

DBBEGIN (12, 2/3)

DBBEGIN (13, 3/3)
...

database updates
...

DBEND (11, 1/3)

DBEND (12, 2/3)

DBEND (13, 3/3)

where the notations 1/3, 2/3, 3/3 in the log records indicate
\�rst of three," \second of three," and \third of three." Refer to
chapter 7 for more information about user logging.

Mode 4: Write contents of the logging bu�er in memory to disk, and end
the multiple database transaction. If user logging is enabled for
the databases, mode 4 generates one entry in the log �le in order
to mark multiple database transactions. For example, assume
that base IDs 11, 12, and 13 are involved in a multiple database
transaction. DBEND mode 4 (with base IDs 11, 12, and 13
speci�ed in the baseidlist parameter) generates the following log
record sequence:

MDBXEND (11, 12, 13)
...

database updates
...

MDBXEND (11, 12, 13)

Refer to chapter 7 for more information about user logging.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are as follows:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-9
describes the contents of element 1 when the procedure does not
succeed.

2-4 Unchanged from previous procedure call using this array.

5-10 Procedure call information. Refer to \Library Procedure Error
Messages" in appendix A for a description of this information.

5-20 TurboIMAGE/XL Library Procedures

DBEND

textlen is an integer equal to the number of halfwords to be logged from the text
parameter, or is a negative integer equal to the number of bytes to be logged.
Length can be zero.

Discussion

DBEND is called to designate the end of a sequence of TurboIMAGE/XL procedure calls
which are collectively considered a static or multiple database transaction. The beginning of
such a sequence is designated by a previous call to DBBEGIN.

Note DBEND is not valid if a transaction was begun with DBXBEGIN. DBEND
checks for any active dynamic transactions before executing.

If the process is logging, DBEND causes a log record to be written to the log �le which
includes such information as the time, date, and user text bu�er. DBEND log records are
used by the database recovery program DBRECOV to identify the end of static and multiple
database transactions. However, if a program aborts, a static or multiple database transaction
that has not been completed by a call to DBEND will be recovered by default. For additional
information, refer to the discussion of the ABORTS and NOABORTS options under the
description of the DBRECOV >CONTROL command in chapter 8.

If you call DBEND with mode 2 or 4 and logging is enabled, DBEND forces the log bu�er
to be written from memory to disk before returning to the calling process. This ush of the
log bu�er occurs after the intrinsic has logged the end of the logical transaction. Use this
option only for critical transactions; too many mode 2 or mode 4 DBEND calls can degrade
performance by causing a disk access each time a static or multiple database transaction ends.

Note When you call DBEND with mode 2 or 4 to force writing a static or multiple
data base transaction to disk, logging must have been enabled prior to
executing the transaction.

DBEND returns an error condition if it is called without a prior matching call to DBBEGIN,
whether the process is actually logging or not.

TurboIMAGE/XL Library Procedures 5-21

DBEND

Table 5-9. DBEND Return Status Values

Calling Errors: -11

-31

-146

-147

-148

-151

-153

-216

-222

Bad database reference.
Bad mode.
Invalid transaction ID.
Mode doesn't match DBBEGIN mode.
Base ID list doesn't match DBBEGIN base ID list.
Text length greater than 512 bytes.
No transaction in progress to end.
Cannot end a dynamic transaction with a DBEND.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-106

-107

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Logging System Failures: -111

-113

WRITELOG failure.
FLUSHLOG returned error number to DBEND.

Exceptional Conditions: -193

63

DBU control block is full.
DBG disabled; potential damage; only DBCLOSE allowed.

Consult appendix A for more information about these conditions.

5-22 TurboIMAGE/XL Library Procedures

DBERROR

DBERROR

INTRINSIC NUMBER 419

Moves a message, as an ASCII character string, to a bu�er speci�ed by the calling program.
The message interprets the contents of the status array as set by a call to a TurboIMAGE/XL
procedure.

Syntax

DBERROR,status,bu�er,length

Parameters

status is the name of the array used as the status parameter in the
TurboIMAGE/XL procedure call about which information is requested.

bu�er is the name of an array in the calling program's data area, at least 36
halfwords long, in which the message is returned.

length is a short, 16-bit integer variable which is set by DBERROR to the positive
byte length of the message placed in the bu�er array. The length will never
exceed 72 characters.

Note The call to DBERROR must be made immediately after receiving an error
status before any other intrinsics are executed to ensure the display of valid
messages.

Discussion

Like DBEXPLAIN, DBERROR messages are appropriate and helpful when debugging
application programs. The errors they describe are, for the most part, errors that do not
occur in a debugged and running program.

Some errors or exceptional conditions are expected to occur, even in a production
environment. For example, the MPE/iX intrinsic DBOPEN can fail due to concurrent
database access. In this case, printing the following DBERROR message:

DATABASE OPEN EXCLUSIVELY

can be perfectly acceptable, even to the person using the application program. However, in
many cases a speci�c message produced by the application program is preferable to the one
produced by DBERROR. A DBFIND error generated by the application program, such as:

THERE ARE NO ORDERS FOR THAT PART NUMBER

would be more meaningful to a user entering data at a terminal than the DBERROR message:

THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE

Table 5-10 lists all messages that can be returned by DBERROR with their corresponding
return status values. Variable information is represented by a lowercase word or phrase.
Several messages can correspond to one return status and the interpretation of the value

TurboIMAGE/XL Library Procedures 5-23

DBERROR

depends on the context in which it is returned; the message returned depends on additional
information returned by the TurboIMAGE/XL intrinsic.

Table 5-10. DBERROR Messages

Return Status DBERROR Message

0 SUCCESSFUL EXECUTION - NO ERROR

-1 NO SUCH DATABASE

DATABASE OPEN IN AN INCOMPATIBLE MODE

BAD ACCOUNT REFERENCE or BAD GROUP REFERENCE

BAD ROOT FILE REFERENCE

INSUFFICIENT DISC SPACE

VIRTUAL MEMORY NOT SUFFICIENT TO OPEN ROOT FILE

DATABASE ALREADY OPEN FOR MORE THAN READ

DATABASE IN USE

DATABASE OPEN EXCLUSIVELY

MPE SECURITY VIOLATION

MPE FILE ERROR decimal integer RETURNED BY FOPEN

ON

�
ROOT FILE

DATA SET # decimal integer

�

-2 EXCEEDS GROUP DISC SPACE

EXCEEDS ACCOUNT GROUP DISC SPACE

DUPLICATE FILE NAME

MPE FILE ERROR decimal integer RETURNED BY FCLOSE

ON

�
ROOT FILE

DATA SET # decimal integer

�

-3 MPE FILE ERROR decimal integer RETURNED BY FREADDIR

ON

�
ROOT FILE

DATA SET # decimal integer

�

-4 MPE FILE ERROR decimal integer RETURNED BY FREADLABEL

ON

�
ROOT FILE

DATA SET # decimal integer

�

-5 MPE FILE ERROR decimal integer RETURNED BY FWRITEDIR

-6 MPE FILE ERROR decimal integer RETURNED BY FWRITELABEL

-7 PREVIOUS MPE FILE ERROR decimal integer FOUND IN DESIRED BUFFER

-8 MPE FILE ERROR decimal integer RETURNED BY FUNLOCK

-9 CANNOT CREATE control block name: MPE ERROR nn

-10 MPE FILE ERROR decimal integer RETURNED BY FFILEINFO

-11 BAD DATABASE NAME OR PRECEDING BLANKS MISSING

BAD DATABASE REFERENCE (FIRST 2 CHARACTERS)

5-24 TurboIMAGE/XL Library Procedures

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-12 DATABASE MUST BE IN LOGON GROUP AND ACCOUNT

intrinsic name CALLED WITHOUT COVERING LOCK IN EFFECT

-13 NOT ALLOWED; MUST BE CREATOR OF ROOT FILE OR DATABASE

-14 CALLS TO intrinsic name NOT ALLOWED IN ACCESS MODE decimal integer

-15 DSLINE OR REMOTE HELLO FAILURE: SETUP FOR RDBA FAILED

-21 BAD PASSWORD - GRANTS ACCESS TO NOTHING

DATA ITEM NONEXISTENT OR INACCESSIBLE

SPECIFIED INTRINSIC CANNOT ACCESS THE DATA SET

DATA SET NONEXISTENT OR INACCESSIBLE

BAD MAINTENANCE WORD (CONTAINS COMMA OR DOES NOT MATCH)

ILLEGAL NUMBER OF BUFFERS REQUESTED

-22 MAINTENANCE WORD REQUIRED

-23 USER (CLASS) LACKS WRITE ACCESS TO DATA SET

-24 OPERATION NOT ALLOWED ON AUTOMATIC MASTER DATA SET

-30 MPE V ILR ENABLED; ONLY DBOPEN (MODE 1-8) AND DBUTIL

DISABLE ILR ALLOWED

-31 DBGET MODE decimal integer ILLEGAL FOR DETAIL DATA SET

DBGET MODE decimal integer BAD--SPECIFIED DATA SET LACKS CHAINS

BAD (UNRECOGNIZED) intrinsic name MODE: decimal integer

-32 UNOBTAINABLE ACCESS MODE: AOPTIONS REQUESTED:%octal integer ,
GRANTED:%octal integer

-33 MODE 7 DIAGNOSTICS NOT ALLOWED

-34 DATABASE MUST BE RECOVERED BEFORE ACCESS IS ALLOWED.

-51 LIST TOO LONG OR NOT PROPERLY TERMINATED

-52 ITEM SPECIFIED IS NOT AN ACCESSIBLE SEARCH ITEM IN THE

SPECIFIED SET

BAD LIST - CONTAINS ILLEGAL OR DUPLICATED DATA ITEM

REFERENCE

-53 DBPUT LIST IS MISSING A SEARCH OR SORT ITEM

-60 ILLEGAL FILE EQUATION FOR ROOT FILE

-61 ERROR WHILE OBTAINING INFORMATION ABOUT FILE EQUATION.

-80 OUTPUT DEFERRED NOT ALLOWED WITH ILR ENABLED

-81 OUTPUT DEFERRED NOT ALLOWED WITH ROLLBACK ENABLED

-82 CIUPDATE IS SET TO DISALLOWED; CANNOT USE CRITICAL ITEM UPDATE

-88 DATABASE BAD: THIRD PARTY INDEXING WAS IN PROCESS (INDEX AGAIN)

-89 DATABASE BAD RESTRUCTURING WAS IN PROCESS (RESTORE DATABASE)

-90 ROOT FILE BAD: UNRECOGNIZED STATE: %octal integer

TurboIMAGE/XL Library Procedures 5-25

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-91 ROOT FILE (DATABASE) NOT COMPATIBLE WITH CURRENT TURBOIMAGE

INTRINSICS

-92 DATABASE REQUIRES CREATION (VIRGIN ROOT FILE)

-93 DATABASE ALREADY EXISTS.

-94 DATABASE BAD: OUTPUT DEFERRED, MAY NOT BE ACCESSED IN MODE

decimal integer

-95 DATABASE BAD - CREATION WAS IN PROCESS (CREATE AGAIN)

-96 DATABASE BAD - ERASE WAS IN PROCESS (ERASE AGAIN)

-97 DATABASE BAD - ILR ENABLE IN PROGRESS (ENABLE AGAIN)

-98 DATABASE BAD - ILR DISABLE IN PROGRESS (DISABLE AGAIN)

-99 UNSUPPORTED FEATURE.

-100 MPE ERROR decimal integer RETURNED BY DSOPEN

-101 MPE ERROR decimal integer RETURNED BY DSCLOSE

-102 MPE ERROR decimal integer RETURNED BY DSWRITE

-103 REMOTE 3000 STACK SPACE INSUFFICIENT

-104 REMOTE 3000 DOES NOT HAVE TURBOIMAGE/XL.

-105 REMOTE 3000 CANNOT CREATE TURBOIMAGE CONTROL BLOCK

-106 REMOTE 3000 DATA INCONSISTENT

-107 NS/3000 OR DS/3000 SYSTEM ERROR

-108 HPUNLOADCMPROCEDURE CALL FAILED

(The bracketed numbers in the following messages �110 to � 112 refer to
the value in halfword 2 of the status array. For other error numbers, refer to
WRITELOG in the MPE/iX Intrinsics Manual.)

-109 ERROR RETURNED BY LOGINFO INTRINSIC.

-110 OPENLOG RETURNED ERROR NUMBER nn TO DBOPEN

LOGGING ENABLED AND NO LOG PROCESS RUNNING [3]
DATABASE CONTAINS INVALID LOGID PASSWORD [8]
LOG FILE CAN'T OBTAIN NECESSARY DISC SPACE [12]
MAXIMUM USER COUNT PER LOG PROCESS REACHED [13]
END OF FILE ON LOGFILE [15]
DATABASE CONTAINS INVALID LOG IDENTIFIER [16]

-111 WRITELOG RETURNED ERROR NUMBER nn TO intrinsic name
LOG PROCESS TERMINATED [3]
LOG FILE CAN'T OBTAIN NECESSARY DISC SPACE [12]
END OF FILE ON LOGFILE [15]

5-26 TurboIMAGE/XL Library Procedures

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-112 CLOSELOG RETURNED ERROR NUMBER nn TO intrinsic name
LOG PROCESS TERMINATED [3]
LOG FILE CAN'T OBTAIN NECESSARY DISC SPACE [12]
END OF FILE ON LOGFILE [15]

-113 FLUSHLOG RETURNED ERROR NUMBER nn TO DBEND

-114 ROLLBACK ENABLED WITHOUT ENABLING LOGGING

-120 OUT OF STACK SPACE TO PROCV.

-121 ILLEGAL LOCK DESCRIPTOR COUNT

-123 ILLEGAL RELATIONAL OPERATOR

-124 DESCRIPTOR LENGTH ERROR; MUST BE 9 OR MORE

-125 ILLEGAL SET NAME OR NUMBER IN DESCRIPTOR

-126 ILLEGAL ITEM NAME OR NUMBER IN DESCRIPTOR

-127 ILLEGAL ATTEMPT TO LOCK ON A COMPOUND ITEM

-128 VALUE FIELD TOO SHORT FOR THE ITEM SPECIFIED

-129 P28 IS LONGEST P-TYPE ITEM THAT CAN BE LOCKED

-130 ILLEGAL DECIMAL DIGIT IN TYPE 'P' DATA VALUE

-131 LOWERCASE CHARACTER IN TYPE 'U' DATA VALUE

-132 ILLEGAL DIGIT IN TYPE 'Z' DATA VALUE

-133 ILLEGAL SIGN CHARACTER IN TYPE 'Z' DATA VALUE

-134 TWO LOCK DESCRIPTORS CONFLICT IN SAME REQUEST

-135 DBLOCK CALLED WITH LOCKS ALREADY IN EFFECT IN THIS JOB/SESSION

-136 DESCRIPTOR LIST LENGTH EXCEEDS 4094 BYTES

-137 USER ABOUT TO WAIT FOR SELF.

-139 INVALID NUMBER OF BASE IDs.

-140 BAD BASE ID LIST.

-141 ALL MDBX DATABASES MUST BE ON THE SAME SYSTEM.

-142 ALL MDBX DATABASES LOG TO THE SAME LOG FILE.

-143 LOGGING MUST BE ENABLED OR DISABLED FOR ALL MDBX DATABASES.

-144 MUSTRECOVER MUST BE ENABLED OR DISABLED FOR ALL MDBX DATABASES.

-145 ROLL-BACK MUST BE ENABLED OR DISABLED FOR ALL MDBX DATABASES.

-146 INVALID TRANSACTION ID.

-147 MODE DOESN'T MATCH DBBEGIN MODE.

-148 BASE ID LIST DOESN'T MATCH DBBEGIN BASE ID LIST.

-151 TEXT LENGTH GREATER THAN 512 BYTES

TurboIMAGE/XL Library Procedures 5-27

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-152 DBCLOSE CALLED WHILE A TRANSACTION IS IN PROGRESS

DBBEGIN CALLED WHILE A TRANSACTION IS IN PROGRESS

DBXBEGIN CALLED WHILE A TRANSACTION IS IN PROGRESS

-153 DBEND CALLED WHILE NO TRANSACTION IS IN PROGRESS

-160 FILE CONFLICT: A FILE ALREADY EXISTS WITH THE ILR LOG FILE NAME

-161 CANNOT CHECK FOR AN ILR LOG FILE CONFLICT: FILE SYSTEM ERROR nn

-166 CANNOT PURGE ILR LOG FILE: FILE SYSTEM ERROR nn

-167 CANNOT BEGIN MPE XL XM TRANSACTION: XM ERROR nn

-168 CANNOT ATTACH DATA SET # decimal integer to MPE XL XM: FILE

SYSTEM ERROR nn

-169 INVALID MODE FOR XM ATTACH OPTIONS

-170 CANNOT OPEN ILR LOG FILE: FILE SYSTEM ERROR nn

-172 CANNOT READ ILR LOG FILE: FILE SYSTEM ERROR nn

-173 UNABLE TO OBTAIN WRITE ACCESS TO THE DATABASE (NEEDED FOR

ILR RECOVERY)

-174 THE DATABASE MUST BE OPENED IN MODE 1 - 4 SINCE ILR RECOVERY

IS NECESSARY

-175 CANNOT ATTACH DATA SET # decimal integer TO MPE XL XM: XM ERROR nn

-176 CANNOT DETACH DATA SET # decimal integer FROM MPE XL XM: XM ERROR

nn

-177 USER LOG FILE IS NOT ON THE SAME VOLUME SET AS DATABASE

-178 CANNOT DETACH DATA SET # decimal integerFROM MPE XL XM: FILE

SYSTEM ERROR nn

-179 CANNOT BEGIN MPE XL XM TRANSACTION FOR ATTACH: XM ERROR nn

-180 ILR LOG INVALID - ILR INCOMPATIBLE IN MPE XL

-181 ILR LOG FILE INVALID - INTERNAL GROUP NAME DOES NOT MATCH

ROOT FILE

-182 ILR LOG FILE INVALID - INTERNAL ACCOUNT NAME DOES NOT MATCH

ROOT FILE

-183 ILR LOG FILE INVALID - INTERNAL CREATION DATE DOES NOT MATCH

ROOT FILE

-184 ILR LOG FILE INVALID - INTERNAL LAST ACCESS DATE DOES NOT MATCH

ROOT FILE

-187 ILR ALREADY ENABLED FOR THIS DATABASE

-188 ILR ALREADY DISABLED FOR THIS DATABASE

5-28 TurboIMAGE/XL Library Procedures

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-189 CANNOT BEGIN MPE XL TRANSACTION FOR DETACH: XM ERROR nn

-190 BAD DATABASE REFERENCE OR INVALID SYSTEM DATABASE CONTROL BLOCK

-191 SYSTEM DATABASE CONTROL BLOCK FULL

-192 INVALID DBU

-193 DBU CONTROL BLOCK IS FULL

-194 INVALID DBB

-195 INVALID DBG

-196 DBB CONTROL BLOCK IS FULL

-197 DBG CONTROL BLOCK IS FULL

-198 TOTAL DBOPEN COUNT PER USER EXCEEDS LIMIT

-199 CANNOT END MPE XL XM TRANSACTION: XM ERROR nn

-200 DATABASE LANGUAGE NOT SYSTEM SUPPORTED

-201 NATIVE LANGUAGE SUPPORT NOT INSTALLED

-202 MPE NATIVE LANGUAGE SUPPORT ERROR nn
RETURNED BY NLINFO

-204 USER STACK IS TOO SMALL FOR RECOVERY IN DBOPEN.

-205 WRONG VERSION OF DS SUBSYSTEM.

-206 REMOTE TURBOIMAGE DATABASE EXCEEDS IMAGE/3000 LIMITATION

-208 MPE ERROR nn RETURNED BY FLABELINFO FOR MPE XL XM

-209 INVALID MODE FOR MPE XL XM DETACH

-210 MPE ERROR nn WHILE GETTING LOG FILE NAME

-211 INVALID OR NO USER LABEL.

-212 DATABASE CORRUPTION DETECTED

-213 DBXEND ENCOUNTERED XM ERROR nn WHEN ENDING DYNAMIC TRANSACTION

-214 CANNOT CALL DBXUNDO WHEN A TRANSACTION IS STARTED BY DBBEGIN.

-215 XM ERROR nn ENCOUNTERED WHEN ROLLING OUT DYNAMIC TRANSACTION

-216 CANNOT END A DYNAMIC TRANSACTION WITH A DBEND

-217 DBOPEN MODE n INCOMPATIBLE WITH DYNAMIC ROLLBACK

-218 OUTPUT DEFERRED IS INCOMPATIBLE WITH DYNAMIC ROLLBACK

-219 REMOTE DATABASE ACCESS IS INCOMPATIBLE WITH DYNAMIC ROLLBACK

-220 DATABASE AND USER LOG NOT ATTACHED TO THE SAME XM LOG SET

-221 CANNOT BEGIN A TRANSACTION WHEN A DYNAMIC TRANSACTION IS ACTIVE

TurboIMAGE/XL Library Procedures 5-29

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-222 ONLY DBXUNDO ALLOWED WHEN A DYNAMIC TRANSACTION ENCOUNTERS AN

ERROR

-223 CANNOT DBXEND OR DBXUNDO A TRANSACTION WHICH WAS NOT ACTIVE

-224 DBCONTROL MODE 1 NOT ALLOWED INSIDE A DYNAMIC TRANSACTION

-225 RECORD TABLE FULL FOR DYNAMIC ROLLBACK

-226 ERROR OCCURRED WHEN CREATING THE 00 FILE

-227 ERROR OCCURRED IN 00 FILE RECOVERY

-228 DBXBEGIN ENCOUNTERED XM ERROR nn WHEN STARTING A DYNAMIC

TRANSACTION

-229 CANNOT DELETE MANUAL MASTER WITH EMPTY CHAINS.

-230 A DBUNLOCK INSIDE A DYNAMIC TRANSACTION IS NOT ALLOWED

-231 DURING DYNAMIC ROLLBACK RECOVERY, INTERNAL PROCEDURE FAILED;

ERROR nn

-232 ILLEGAL DBCLOSE MODE 2 USED DURING AN ACTIVE DYNAMIC

TRANSACTION

-233 KEY DATA FOUND IN THE DATABSE DOES NOT MATCH THAT IN THE MEMO

RECORD

-234 CANNOT PURGE THE 00 FILE

-235 DYNAMIC TRANSACTION ABORTED DUE TO DBCLOSE MODE 1; DATABASE

CLOSED

-236 INTERNAL ERROR OCCURRED WHEN OPENING THE AUX FILE; ERROR nn

-237 CANNOT DBXEND OR DBXUNDO A DBBEGIN TRANSACTION

-238 MDBX, MODES OF DBXBEGIN/DBXEND DON'T MATCH.

-240 ERROR IN DYNAMIC ROLLBACK.

-241 BAD TAG FOR TURBOLKT TABLE.

-242 ERROR IN TURBOGTX FILE OPERATION.

-243 INVALID DYNAMIC ROLLBACK TRANSACTION ID.

-244 BASE COUNT OVER 15 FOR DMDBX.

-245 OUT OF SPACE FOR TURBOGTX FILE.

-246 ERROR IN TURBOGTX OPERATION RELATED TO ATC TRANSACTION.

-250 CBINIT FAILED ON nn

-251 DBS WAS OBTAINED BUT NOT RELEASED.

-253 DATABASE ENABLED FOR INDEXING, BUT THIRD-PARTY INDEXING IS NOT

CONFIGURED

5-30 TurboIMAGE/XL Library Procedures

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-254 ROLLBACK OF THIRD-PARTY INDEX FAILED; INDEXING DISABLED FOR

DATA SET

-255 THIRD-PARTY INDEXING DISABLE FAILED; INDEXING DISABLED FOR

DATABASE

-256 THIRD-PARTY INDEX FOR PATH decimal integer: nn IS FULL

-257 THIRD-PARTY INDEX FOR PATH decimal integer: nn IS DAMAGED

-258 INVALID ARGUMENT FOR INDEX

-259 INVALID MODE FOR INDEX

-260 NO PREVIOUS LIST OF QUALIFIED DATA ENTRIES

-261 DYNAMIC PROCEDURE LOAD ERROR FOR INTRINSIC ROLLBACK.

-262 OLDER/INCOMPATIBLE VERSION OF IMAGE/SQL.

-263 INVALID PCODE RETURNED BY TPI.

-264 WRITE ERROR FOR TPI FILES.

-265 ERROR IN THIRD-PARTY SHADOWING PACKAGE.

-266 ERROR WHILE DISABLING THIRD-PARTY SHADOWING.

-267 DAMAGED FILE ERROR RETURNED BY THIRD-PARTY SHADOWING.

-268 INVALID PCODE RETURNED BY TPS.

-269 WRITE ERROR FOR TPS FILES.

-3nn INTERNAL TURBOIMAGE ERROR RETURNED (#n)

-305 INVALID DATA SET NUMBER.

-306 INVALID DATA SET TYPE.

-307 INVALID RECORD NUMBER FOUND.

-308 ERROR RELATED TO BEGINNING OF FILE.

-309 BUFFER IO NOT YET COMPLETE.

-310 ERROR RELATED TO END OF FILE.

-312 INTERNAL ERROR ENCOUNTERED WHILE READING DATABASE BLOCK.

-314 ERROR WHILE OBTAINING PATH INFORMATION FOR SET.

-322 INTERNAL TURBOIMAGE ERROR RETURNED nn

-323 UNEXPECTED EMPTY RECORD FOUND.

-331 DSET CAPACITY INFORMATION NOT CURRENT.

TurboIMAGE/XL Library Procedures 5-31

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-332 ERROR IN QLOCK OPERATION.

-333 ERROR IN QOPEN OPERATION.

-420 FEATURE NOT IMPLEMENTED.

-421 BTE:UNKNOWN QUALIFIER VALUE FOR DBCONTROL MODE 13.

-422 BTE: DATA SET # NOT IN VALID RANGE.

-423 BTE: B-TREE ALREADY EXISTS.

-424 MESSAGEnBTE: FAILED TO CREATE B-TREE.

-425 MESSAGEnBTE: DB NOT OPENED EXCLUSIVELY.

-426 BTE: B-TREE DOESN'T EXIST.

-427 BTE: FCLOSE, PURGE FAILED.

-428 BTE: REBUILDINDEX FAILED.

-429 BTE: DBFIND ARGUMENT VERSION IS BAD.

-430 BTE: DBFIND (mode 4/24) ARGUMENT TYPE IS BAD.

-431 BTE: DBFIND (mode 4/24) ARGUMENT #1 LENGTH IS BAD.

-432 BTE: WILDCARD NOT ASCII.

-433 BTE: DBFIND (MODE 4/24) ARGUMENT #2 LENGTH IS BAD.

-434 DATASET DETAIL INSTEAD OF MASTER.

-436 BTE: FAILED TO EXTRACT DATA FROM ROOT FILE.

-437 BTE: FAILED TO CONVERT @c TO [] DBFIND.

-438 BTE: BAD ITEM # IN INIT BTREE.

-439 BTE: CONVERSION OF KEY FROM EXTERNAL TO INTERNAL FORMAT FAILED.

-440 BTE: XM ATTACH OF INDEX FILE FAILED.

-441 BTE: XM DETACH OF INDEX FILE FAILED.

-442 BTE: RELEASE OF INDEX FILE FAILED.

-443 BTE: SECURE OF INDEX FILE FAILED.

-444 BTE: DBFIND ON NON-KEY FIELD OF MASTER.

5-32 TurboIMAGE/XL Library Procedures

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

-446 BTE: ARGUMENT 2 SPECIFIED FOR RELOP OF (</<=/=/>=/>).

-447 BTE: FAILED TO BUILD RECORD HOLDING ROOT DATA INFORMATION.

-448 BTE: FAILED TO SETUP INFORMATION FOR USERLABEL 0 OF DATASET.

-449 BTE: FAILED TO POSITION INDEX AT START OF KEY RANGE.

-451 BTE: ROOT VERSION LESS THAN "C4".

-452 BTE: KEY LENGTH GREATER THAN 252 BYTES (MAXIMUM INDEX KEY

SIZE).

-458 DBOPEN FAILED. OUT OF DISK SPACE

-1000 SWITCH TO NM FAILED ON intrinsic name, INFO nn SUBSYS nn

-1001 SWITCH TO CM FAILED ON CX'PCBXIMAGE

-1002 HPLOADCMPROCEDURE FAILED ON CX'PCBXIMAGE

-1003 SWITCH TO NM FAILED ON intrinsic name, INFO nn SUBSYS nn

-1004 HPLOADNMPROC FAILED ON CM intrinsic name

-3999 to -3000 ERROR RETURNED BY THIRD-PARTY INDEXING PRODUCTS.

10 BEGINNING OF FILE

11 END OF FILE

12 DIRECTED BEGINNING OF FILE

13 DIRECTED END OF FILE

14 BEGINNING OF CHAIN

15 END OF CHAIN

16 THE DATA SET IS FULL

(The following messages are returned only if capacity expansion is speci�ed
for the data set. Dataset# and FSERR # are replaced by the actual
number.)

DBPUT CANNOT EXPAND dataset#: DATA SET AT MAXIMUM CAPACITY

DBPUT dataset# INCOMPLETE EXPANSION: FILE SYSTEM ERROR #

DBPUT CANNOT EXPAND dataset#: OUT OF DISC SPACE (FSERR #)

TurboIMAGE/XL Library Procedures 5-33

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

17 THERE IS NO CHAIN FOR THE SPECIFIED SEARCH ITEM VALUE

THERE IS NO ENTRY WITH THE SPECIFIED KEY VALUE

THERE IS NO PRIMARY SYNONYM FOR THE SPECIFIED KEY VALUE

NO CURRENT RECORD OR THE CURRENT RECORD IS EMPTY (CONTAINS

NO ENTRY)

THE SELECTED RECORD IS EMPTY (CONTAINS NO ENTRY)

18 BROKEN CHAIN - FORWARD AND BACKWARD POINTERS

NOT CONSISTENT

20 DATABASE CURRENTLY LOCKED

SETS OR ENTRIES LOCKED WITHIN DATABASE

22 DATA SET ALREADY LOCKED

23 CANNOT LOCK SET DUE TO LOCKED ENTRIES WITHIN IT

(Conditional Locks Only)

24 ENTRIES CURRENTLY LOCKED USING DIFFERENT ITEM

(Conditional Locks Only)

25 CONFLICTING DATA ENTRY LOCK ALREADY IN EFFECT

26 IMMINENT DEADLOCK.

41 DBUPDATE ATTEMPTED TO MODIFY VALUE OF CRITICAL ITEM--KEY,

SEARCH OR SORT

(The following messages are returned only if the critical item update
(CIUPDATE) option is permitted for the database and the current process.
The bracketed numbers after the messages refer to the value in halfword 3 of
the status array. The nn in the value represents the path number returned.)

DBUPDATE: NO CHAIN HEAD (MASTER ENTRY) FOR

PATH decimal integer: nn [1nn]
DBUPDATE: FULL CHAIN FOR PATH decimal integer: nn
(CONTAINS 2,147,483,647 ENTRIES) [2nn]

DBUPDATE: FULL AUTOMATIC MASTER FOR PATH decimal integer: nn [3nn]

DBUPDATE: FULL AUTOMATIC MASTER SYNONYM CHAIN FOR

PATH decimal integer: nn [4nn]

42 DBUPDATE WILL NOT ALTER A READ-ONLY DATA ITEM

43 DUPLICATE KEY VALUE IN MASTER

44 CAN'T DELETE A MASTER ENTRY WITH NON-EMPTY DETAIL CHAINS

49 ILLEGAL BUFFER ADDRESS

50 USER'S BUFFER IS TOO SMALL FOR REQUESTED DATA (only returned if
bu�er is too small and the data transfer would write over in the user's stack)

5-34 TurboIMAGE/XL Library Procedures

DBERROR

Table 5-10. DBERROR Messages (continued)

Return Status DBERROR Message

51 STACK OVERFLOW FOR BASIC - IMAGE INTERFACE.

52 INVALID PARAMETER FOR BASIC - IMAGE INTERFACE.

53 INVALID PARAMETER TYPE FOR BASIC - IMAGE INTERFACE.

60 DATABASE ACCESS DISABLED

61 PROCESS HAS THE DATABASE OPEN 63 TIMES;

NO MORE ALLOWED

62 DBG CONTROL BLOCK FULL

63 DBG DISABLED; POTENTIAL DAMAGE; ONLY DBCLOSE ALLOWED

64 NO ROOM FOR DBG ENTRY IN PCBX (MPE PORTION OF STACK)

65 CAN'T GRANT BUFFER REQUEST.

66 DBG POINTED TO BY ROOT FILE DOES NOT MATCH

67 DBU DISABLED; POTENTIAL DAMAGE; ONLY DBCLOSE ALLOWED

68 DBB DISABLED; POTENTITIAL DAMAGE; ONLY DBCLOSE

ALLOWED

69 BAD DATABASE (if database does not close normally and AUTODEFER is
active)

71 LOGGING NOT ENABLED FOR USER.

72 TURBOLKT TABLE FULL.

73 ERROR IN TURBLKT TABLE OPERATION.

1nn NO CHAIN HEAD (MASTER ENTRY) FOR PATH decimal integer: nn

2nn FULL CHAIN FOR PATH decimal integer: nn
(CONTAINS 2,147,483,647 ENTRIES)

3nn FULL AUTOMATIC MASTER FOR PATH decimal integer: nn

4nn FULL AUTOMATIC MASTER SYNONYM CHAIN FOR

PATH decimal integer: nn

944 WARNING: ASSUMING NO MESSAGE CATALOG

3000|3999 ERRORS RETURNED BY THIRD-PARTY INDEXING PRODUCTS

Others UNRECOGNIZED RETURN STATUS: decimal integer

TurboIMAGE/XL Library Procedures 5-35

DBEXPLAIN

INTRINSIC NUMBER 418

Prints a multiline message on the $STDLIST device describing a TurboIMAGE/XL procedure
call and explaining the call's results as recorded in the calling program's status array.

Syntax

DBEXPLAIN,status

Parameters

status is the name of the array used as the status parameter in the
TurboIMAGE/XL procedure call about which information is requested.

Note The call to DBEXPLAIN must be made immediately after receiving an error
status before any other intrinsics are executed to ensure the display of valid
messages.

Discussion

Table 5-11 contains the general format for lines 2 through 6 of the message which is sent to
$STDLIST. Elements surrounded by brackets are sometimes omitted. Braces indicate that
only one of the choices shown will be printed. Lines 5 and 6 are printed only if, during the
preparation of lines 2, 3, and 4, TurboIMAGE/XL detects that the status array contents are
invalid, unrecognizable, or incomplete, or if a message must be truncated to �t on a single
line.

If the status array contents appear to be the result of something other than a
TurboIMAGE/XL procedure call or if the array is used by the called procedure for
information other than that discussed here, the second choice for line 3 is printed. This would
be the case for a successful call to DBGET which uses all 10 status elements to return a
return status, lengths, and record numbers.

If the status array contains an unrecognized error code, the second line 4 choice is printed. If
the return status is greater than or equal to zero, the word ERROR in line 2 is replaced by
RESULT because non-negative return statuses indicate success or exceptional conditions, such
as end-of-chain. Return status values are explained in appendix A.

You can use the o�set information to locate the speci�c call statement that generated the
status array contents if the call is made with a programming language which enables you
to determine displacements of program statements or labels within the code. The identity
of the code segment is not printed because it cannot be determined by DBEXPLAIN.
Therefore, you need to be familiar with the program's functioning in order to locate the
correct call. The o�set portion of line 2 is printed only if the status array appears to be set by
a TurboIMAGE/XL library procedure call and contains valid o�set information.

5-36 TurboIMAGE/XL Library Procedures

DBEXPLAIN

Table 5-11. DBEXPLAIN Message Format

Line Format

1 (a blank line)

2 TurboIMAGE

�
ERROR

RESULT

��
AT o�set

�
RETURN STATUS=retstat

3

8<
:

intrinsicname,MODE x,ON
�
setname OF

�
basename�

;PASSWORD=password
�

TurboIMAGE CALL INFORMATION NOT AVAILABLE

9=
;

4

�
message

UNRECOGNIZED RETURN STATUS: retstat

�

5

�
HEX DUMP OF STATUS ARRAY FOLLOWS

OCTAL DUMP OF STATUS ARRAY FOLLOWS

�

6

�
hex display

octal display

�

7 (a blank line)

Parameter Explanation

o�set The code o�set of the TurboIMAGE/XL procedure call in a CM procedure. It is the
virtual memory address of the TurboIMAGE/XL procedure call in a NM procedure.

retstat The return status (from the �rst element of status) printed as a decimal integer and
corresponding to the return statuses described in appendix A.

intrinsicname The name of the TurboIMAGE/XL library procedure (intrinsic) which was called
and which sets the contents of the status array.

x The value of the mode parameter as a decimal integer.

setname The value of the second parameter, usually a data set name or number, as passed to
the procedure which set the status array contents. The second parameter can be a
data item name or number if the procedure in question is DBINFO. If the procedure
is DBOPEN, DBLOCK, DBUNLOCK, or certain modes of DBINFO or DBCLOSE,
setname is omitted.

password The word printed at the end of line 3 only if the error relates to the password
parameter of DBOPEN.

basename The database speci�ed in the procedure which was called and set the status array
contents.

TurboIMAGE/XL Library Procedures 5-37

DBEXPLAIN

Table 5-10. DBEXPLAIN Message Format (Continued)

Parameter Explanation

message A description of the result based on the condition word and other status array
information. The message is generated by the DBERROR procedure which is also
described in this chapter. See Table 5-9 for all possible messages returned in line 4.

hex display A listing of each halfword of status printed as a string of 4 hex digits. Adjacent
status elements are separated by a blank and the entire line is 49 characters long.
The hex display is generated for NM applications only.

octal display A listing of each halfword of status printed as a string of 6 octal digits. Adjacent
status elements are separated by a blank and the entire line is 49 characters long.
The octal display is generated for CM applications only.

Figure 5-1 contains four examples of messages generated by DBEXPLAIN for a Native Mode
application.

TURBOIMAGE RESULT AT $0001d76c: RETURN STATUS=0 DBOPEN=intrinsic name

DBOPEN,MODE1, ON ORDERS ORDERS=database name

SUCCESSFUL EXECUTION - NO ERROR NO ERROR=message

TURBOIMAGE ERROR AT $0001d76c: RETURN STATUS=-12

DBPUT,MODE1, ON DATE-MASTER OF ORDERS DATE-MASTER=data set name

DBPUT CALLED WITHOUT COVERING LOCK IN EFFECT

TURBOIMAGE RESULT AT $0001d76c: RETURN STATUS=16

DBPUT,MODE1, ON #1 OF ORDERS #1=data set number

THE DATA SET IS FULL

TURBOIMAGE RESULT: RETURN STATUS=4792

TURBOIMAGE CALL INFORMATION NOT AVAILABLE

UNRECOGNIZED RETURN STATUS: 4792

HEX DUMP OF STATUS ARRAY FOLLOWS:

12b8 0040 0c63 ff82 4d33 02a7 32e8 0000 0000 0000

...............hex display...................

Figure 5-1. Sample DBEXPLAIN Messages

Because the application is in Native Mode, the display is in hex. For Compatibility Mode
applications, the display is in octal.

5-38 TurboIMAGE/XL Library Procedures

DBFIND

DBFIND

INTRINSIC NUMBER 404

Can be used both when B-Tree index exists on a key item of the master and when B-Tree
index does not exist. For a detailed discussion on B-Trees, refer to chapter 11, \B-Tree
Indices."

In the absence of a B-Tree index, or when the B-Tree index exists but the BTREEMODE1
ag is o�, locates related master set key item entry that matches the speci�ed search item
value and sets up pointers to the �rst and last entries of a detail data set chain in preparation
for chained access to the data entries which are members of the chain. The path is determined
and the chain pointers are located on the basis of a speci�ed search item and its value.

When a B-Tree index exists for the master (explicit), DBFIND can be used for B-Tree
searches both for the master data set as well as its corresponding detail data sets (implicit).
The dset parameter determines if the DBFIND is for the master or one of its corresponding
detail data sets. A B-Tree DBFIND using mode 1 on binary items (not X or U) will be
treated as non-B-Tree search regardless of the presence of a B-Tree index as well as the
BTREEMODE1 option. To do B-Tree index searches on binary items, use modes 4 or 24 in
conjunction with a structured argument.

Syntax

DBFIND,base,dset,mode,status,item,argument

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about base ID.)

dset is the name of an array containing the left-justi�ed name of the master or
the detail data set to be accessed, or is an integer referencing the data set by
number. The data set name can be up to 16 characters long. If shorter, it
must be terminated by a semicolon or a blank.

TurboIMAGE/XL Library Procedures 5-39

DBFIND

mode must be an integer equal to 1, 4, 10, 21, or 24. If your database is enabled
for third-party indexing, refer to your vendor's documentation for additional
DBFIND modes.

Mode Method

1 Used for both B-Tree or non-B-Tree DBFIND. Perform a B-Tree
DBFIND if ALL of the following conditions prevail:

Item type is X or U (ASCII).

DBFIND is for master and a B-Tree index exists on the key
item or DBFIND is for detail and B-Tree index exists on the
key item of the master to which the search item has a path.

BTREEMODE1 ag is set ON by DBUTIL or DBCONTROL
mode 15.

Argument contains a wildcard character.

The chain count is accurate in halfword 5-6, and status halfwords
7-8 and 9-10 record the last entry in the last chain, and the �rst
entry in the �rst chain of the super-chain for detail data sets. For
master data sets, the status halfwords 5-6 (chain-count for detail)
reect the total number of entries quali�ed in the master data set.
All other �elds of the status array return zeroes.

4 For B-Tree searches on numeric as well as ASCII types. For
detail data sets, returns accurate chain (super-chain) counts and
record numbers of last entry in last chain and �rst entry in �rst
chain. For masters, returns the total number of quali�ed entries
in status halfword 5-6. Other �elds return zeroes. Requires a
structured argument format described under argument .

10 Allows you to simulate the current DBFIND mode 1, as in
versions prior to B-Trees, as if there were no B-Tree index, even
when the item has B-Tree index, BTREEMODE1 is on, and
the argument contains a wildcard character. It returns accurate
chain count. This is the same as TPI mode 10. Requires a simple
argument.

21 Same as mode 1, except it is a faster version and does not return
accurate chain count or record numbers of �rst entry and last
entries. Requires a simple argument.

For details, the chain count and status halfwords 7-8 and 9-10
will have 231�1. For master data sets, the status halfwords
5-6 (chain-count for detail) reect the total number of entries
quali�ed in the master data set. All other �elds of the status
array return zeroes. A DBFIND mode 21 on a non-ASCII key
returns an error.

24 Same as mode 4, except it is a faster version and does not return
accurate chain counts and record numbers of last entry and �rst
entry in super-chain. For detail data set, the halfwords 5-6, 7-8,
and 9-10 will have 231�1. For master data set, the halfword 5-6

5-40 TurboIMAGE/XL Library Procedures

DBFIND

will have 231�1 and 7-8 and 9-10 will have zeroes. The argument
is in structured format described under argument .

The third-party indexing (TPI) modes of DBFIND which are NOT supported
for B-Trees are: 11, 12, and various TPI DBFIND modes 1nn, 2nn, 3nn,
4nn, and 5nn. If your database is enabled for TPI, refer to your vendor
documentation for additional DBFIND modes. The section on DBUTIL in
chapter 8 of this book has a brief description of the TPI option.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-12
describes the contents of element 1 when the procedure does not
succeed.

2 Zero.

3-4 Word current record number set to zero.

5-6 Word count of number of entries in chain or quali�er. For modes
21 and 24, 231�1.

7-8 Word record number of last entry in chain. For modes 21 and 24,
231�1 for details. Always zeroes for masters.

9-10 Word record number of �rst entry in chain. For modes 21 and 24,
231�1 for details. Always zeroes for masters.

item is the name of an array containing a left-justi�ed name of the detail data set
search item or is an integer referencing the search item number that de�nes
the path containing the desired chain. The speci�ed search item de�nes the
path to which the chain belongs. For a B-Tree DBFIND on a master, it is the
key item name or a number. The name can be up to 16 characters long. If
shorter, it must be terminated by a semicolon or a blank.

argument contains a value for the key item to be used in calculated access to locate the
desired chain head in the master data set for non-B-Tree index searches. This
is referred to as a simple argument. For B-Tree index searches, there are two
formats. One is for mode 1 wildcard searches on X and U types and allows a
trailing wildcard character. The argument is scanned for the �rst occurrence
of the wildcard character, for example, an @ character. Subsequent text in the
item value is ignored.

The other is for modes 4 and 24, which requires a structured format as
follows:

TurboIMAGE/XL Library Procedures 5-41

DBFIND

Bytes Meaning

1-2 Type of generic search. An ASCII character pair is in this �eld:

=t search for key values equal to argument1 (similar to a
DBFIND mode 1)

<t search for key values less than argument1

<= search for key values less than or equal to argument1

>t search for key values greater than argument1

>= search for key values greater than or equal to argument1

[] search for key values greater than or equal to argument1
AND less than or equal to argument2

@c wildcard search when the wildcard character is c. Scan
argument for the �rst wildcard character c. If a wildcard
character is found in position n, 1-based, search for keys
that match �rst n�1 characters of argument.

If c is non-blank and non-null, then it is the wildcard
character that will be used. Some examples are: @* and
@@.

If c is a blank or null, then the one set by DBCONTROL
mode 15, if any, is used. Otherwise, the current default
wildcard character (stored in the root �le) is used. The
wildcard character is changeable via the DBUTIL SET
command or DBCONTROL mode 15.

PK Partial Key search. Search for key values that match
n characters in argument1 (n is length of argument1
provided in bytes 4 and 5 described later). Argument1
need not contain a wildcard. If it does within the n
characters, it will be considered as one character part
of the search value. For example, if n is 4, argument1
is ABC@, and the wildcard to be used is @, DBFIND
will return records containing ABC@ as the �rst four
characters in the key value.

3-4 version number. Must be numeric zero, or an error is returned.

5-6 The size (in bytes) of argument1 (not including these two bytes)
for search types =t, <t, <=, >t, >=, @c, PK.

7-8 The size (in bytes) of argument2 (not including these two bytes)
for the search type []. Must be numeric zero for other search
types, or an error is returned.

9 . . .
9+n-1

Argument1. The n bytes of argument data (for example, for an
X10 �eld, n = 10).

9+n . . .
9+n+m-1

Argument2. For search-type [] only. The m bytes of the second
argument's data (for example, for an X10 �eld, m = 10, n must
match m).

5-42 TurboIMAGE/XL Library Procedures

DBFIND

If a wildcard character is present in the argument(s), the wildcard will be
considered as part of the value for these B-Tree search types: =t, <t, <=,
>t, >=, [], or PK on ASCII types.

If your database is enabled for third-party indexing (TPI), refer to your
vendor documentation for information on DBFIND arguments. The section
on DBUTIL in chapter 8 of this book has a brief description of the TPI
option.

Discussion

When the DBFIND is not for a B-Tree index, the current values of chain count, backward
pointer, and forward pointer for the detail data set referenced in dset are replaced by the
corresponding value from the chain head.

A current path number, which is maintained internally, is set to the new path number and
the current record number for the data set is set to zero. Refer to chapter 10 for further
information about chain heads and internally maintained data set information.

Although a master set entry with the speci�ed key item value exists, the data set chain may
be empty.

For B-Tree DBFINDs, there could be multiple quali�ed chain heads. The chained access could
traverse multiple chains, referred to as super-chain. When using modes 1 or 4 for B-Tree
DBFINDs, the quali�ed chain heads are retrieved, and the chain count becomes a cumulative
chain count of the super-chain. The record number of last entry is obtained from the last
entry of the last chain and the record number of the �rst entry is obtained from the �rst entry
of the �rst chain. For modes 21 and 24, the quali�ed chain-heads are retrieved only during
DBGETs, and hence, inaccurate chain counts and record numbers of last entry and �rst entry
are returned for DBFIND.

For B-Tree DBFINDs:

Can be used both for master data set and detail data sets.

Allows wildcard search, relational operators, as well as range search.

DBFIND mode 1 will result in a B-Tree wildcard search, if all of the following are true:

Item type is X or U (ASCII).

DBFIND is for master and a B-Tree index exists on the key item or DBFIND is for detail
and B-Tree index exists on the key item of the master to which the search item has a
path.

BTREEMDODE1 ag is set ON by DBUTIL or DBCONTROL mode 15.

Argument contains a wildcard character.

Status array reects information based on set, mode, and search type. B-Tree searches
for modes 1 and 4 for details give super-chain (multiple detail chain) counts and record
numbers of the �rst entry in �rst detail chain and last entry in last detail chain. For
masters, modes 1 and 4 give a count of entries quali�ed in the master and zeroes for the
�rst and last quali�ed entries in the master.

TurboIMAGE/XL Library Procedures 5-43

DBFIND

Note A call to DBOPEN does not open individual data sets. Thus, a call to
DBFIND (or DBGET) that accesses a data set for the �rst time (or after the
data set has been closed), must open the data set, as well as the B-Tree index
�le (if applicable). This causes extra overhead not incurred by subsequent
calls to the same data set by DBFIND or DBGET.

Consult appendix A for more information about the conditions for the DBFIND return status
values shown in Table 5-12.

5-44 TurboIMAGE/XL Library Procedures

DBFIND

Table 5-12. DBFIND Return Status Values

File System, Memory -1 FOPEN failure.

Management, and -3 FREADDIR failure.

Transaction Management -4 FREADLABEL failure.

Failures: -168 Cannot attach n to MPE XL XM: �le system error nn.

-169 Invalid mode for XM attach options.

-175 Cannot attach n to MPE XL XM: XM error nn.

-176 Cannot detach n from MPE XL XM: XM error nn.

-178 Cannot detach n from MPE XL XM: �le system error nn.

-209 Invalid mode for XM detach options.

Calling Errors: -11 Bad database reference.

-21 Bad data set reference.

-31 Bad mode.

-51 Bad list length.

-52 Bad item.

-222 Only DBXUNDO allowed when a dynamic transaction
encounters an error.

-258 Invalid argument for index.

-259 Invalid mode for index.

-260 No previous list of quali�ed data entries.

-426 BTE: B-Tree doesn't exist.

-429 BTE: DBFIND argument version is bad.

-430 BTE: DBFIND (mode 4/24) argument type is bad.

-431 BTE: DBFIND (mode 4/24) argument #1 length is bad.

-432 BTE: Bad wildcard character.

-433 BTE: DBFIND (mode 4/24) argument #2 length is bad.

-434 BTE: Data set detail instead of master.

-436 BTE: Failed to extract data from root �le.

-437 BTE: Failed to convert @c to db�nd.

-438 BTE: Invalid item number.

-439 BTE: Conversion error.

-444 BTE: DBFIND on non-key �eld of master.

-446 BTE: Argument 2 speci�ed for relop of (</<=/=/>=/>).

-449 BTE: Failed to position index at start of key range.

Communications Errors: -102 DSWRITE failure.

-106 Remote 3000 data inconsistent.

-107 NS 3000 or DS 3000 system error.

Exceptional Conditions: -193 DBU control block is full.

-3nn Internal error.

-314 Error in patch information for set.

17 No master entry.

63 DBG disabled; potential damage; only DBCLOSE allowed.

TurboIMAGE/XL Library Procedures 5-45

DBGET

INTRINSIC NUMBER 405

Provides eight di�erent methods for accessing the entries of a data set.

Syntax

DBGET,base,dset,mode,status,list,bu�er,argument

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about base ID.)

dset is the name of an array containing the left-justi�ed name of the data set to
be read, or is an integer referencing the data set by number. The data set
name can be up to 16 characters long. If shorter, it must be terminated by a
semicolon or a blank.

mode contains an integer between 1 and 8, inclusive, which indicates the reading
method. The methods are:

Mode Method

1 Re-read. Read the entry at the internally maintained current
record number (argument parameter is ignored).

2 Serial Read. Read the �rst entry whose record number is greater
than the internally maintained current number (argument
parameter is ignored).

3 Backward Serial Read. Read the �rst entry whose record number
is less than the internally maintained current number (argument
parameter is ignored).

4 Directed Read. Read the entry, if it exists, at the record number
speci�ed in the argument parameter (argument is treated as a
32-bit record number).

5 Chained Read or Next Quali�ed Entry Read. Read the next
entry in the current chain, or read the next quali�ed entry for a
B-Tree DBFIND. This is the entry referenced by the internally
maintained forward pointer (argument parameter is ignored).
Super-chains are traversed for detail data sets.

If your database is enabled for third-party indexing (TPI), refer
to your vendor documentation for additional information.

6 Backward Chained Read.

Read the previous entry in the current chain, or the previous
quali�ed entry for a B-Tree DBFIND. This is the entry referenced
by the internally maintained backward pointer (argument

5-46 TurboIMAGE/XL Library Procedures

DBGET

parameter is ignored). Super-chains are traversed for detail data
sets.

If your database is enabled for third-party indexing (TPI), refer
to your vendor documentation for additional information.

7 Calculated Read. (Master data sets only.) Read the entry with a
key item value that matches the value speci�ed in argument . The
entry is in the master data set speci�ed by dset .

8 Primary Calculated Read. (Master data sets only.) Read the
entry occupying the primary address of a synonym chain using
the key item value speci�ed in argument to locate the entry.
The key item value returned is always that of the primary entry
and might not match the value speci�ed in argument . (Refer to
chapter 10 for synonym chain description.)

If your database is enabled for third-party indexing (TPI), refer to your
vendor documentation for additional DBGET modes. The section on
DBUTIL in chapter 8 of this book has a brief description of the TPI option.

status is the name of a 10-halfword array in which TurboIMAGE/XL returns status
information about the procedure. If the procedure executes successfully, the
status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-13
describes the contents of element 1 when the procedure does not
succeed.

2 Length of the logical entry read into the bu�er array in halfwords.

3-4 Word record number of the data entry read.

5-6 Word zero, unless the entry read is a primary entry in which case
it is the number of entries in the synonym chain.

7-8 Word record number of the preceding entry in the chain of the
current path for the detail data sets. Zeroes for master data sets.

9-10 Word record number of the next entry in the chain of the current
path for the detail data sets. Zeroes for master data sets.

list is the name of an array containing an ordered set of data item identi�ers,
either names or numbers. The values for these data items are placed in the
array speci�ed by the bu�er parameter in the same order as they appear in
the list array.

The list array can contain a left-justi�ed set of data item names, separated by
commas and terminated by a semicolon or blank. No embedded blanks are
allowed and no name can appear more than once.

When referencing by number, the �rst element of the list array is an integer
n which is followed by n unique data item numbers (one-halfword positive
integers).

The list not only speci�es the data items to be retrieved immediately but is
saved internally by TurboIMAGE/XL as the current list for this data set.

TurboIMAGE/XL Library Procedures 5-47

DBGET

The current list is unchanged until a di�erent list is speci�ed in a subsequent
call to DBGET, DBPUT, or DBUPDATE for the same access path and data
set.

Some special list constructs are allowed. These are described in Table 5-20
with the DBPUT procedure. List processing is a relatively high overhead
operation which can be shortened in subsequent calls by using the asterisk
construct to specify that the current list is to be used. Use of this construct
can save considerable processing time. However, be sure a current list exists
before using the asterisk or TurboIMAGE/XL will assume a null list. If
a DBCLOSE mode 2 is used after DBGET, using the asterisk construct,
TurboIMAGE/XL uses the previously de�ned item list.

bu�er is the name of the array to which the values of data items speci�ed in the list
array are moved. The values are placed in the same order as speci�ed in the
list array. The number of elements occupied by each value corresponds to the
number required for each data type multiplied by the sub-item count.

argument is ignored except when mode equals 4, 7, or 8.

If mode is 4, argument contains a word record number of the entry to be read.

If mode is 7 or 8, argument contains a key item value for the master data set
referenced by dset .

Discussion

The internal backward and forward pointers for the data set are replaced by the current
path's chain pointers from the entry just read. If the data set is a master, and not a B-Tree
index, they are synonym chain pointers (refer to chapter 10). If it is a detail with at least one
path, the current path is the one established by the last successful call to DBFIND; or, if no
call has been made, it is the primary path. If there are no paths de�ned, the internal pointers
are set to zeros.

The location of the entry just read becomes the current record for the data set. DBGET
mode 5 or 6 will reread the current record and will try to continue the chain read if it
encounters a broken chain.

Note A call to DBOPEN does not open individual data sets. Thus, a call to
DBGET (or DBFIND) that accesses a data set for the �rst time (or after the
data set has been closed), must open the data set as well as jumbo �les and
B-Tree index �les. This causes extra overhead not incurred by subsequent
calls to the same data set by DBFIND or DBGET.

5-48 TurboIMAGE/XL Library Procedures

DBGET

Table 5-13. DBGET Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-1

-3

-4

-168

-169

-175

-176

-178

-209

FOPEN failure.
FREADDIR failure.
FREADLABEL failure.
Cannot attach n to MPE XL XM: �le system error nn.
Invalid mode for XM attach options.
Cannot attach n to MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: �le system error nn.
Invalid mode for XM detach options.

Calling Errors: -11

-21

-31

-51

-52

-222

Bad database reference.
Bad data set reference.
Bad mode.
Bad list length.
Bad list or bad item.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-106

-107

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Exceptional Conditions:
10

11

12

13

14

15

17

18

49

50

62

63

-193

-3nn
-332

-333

Beginning of �le.
End of �le.
Directed beginning of �le.
Directed end of �le.
Beginning of chain/quali�er entries.
End of chain/quali�er entries.
No entry.
Broken chain.
Illegal bu�er address.
Bu�er is too small (will only be
returned if bu�er is too small and the
data transfer would write over stack
markers in the user's stack).
DBG full.
DBG disabled; potential damage; only
DBCLOSE allowed.
DBU control block is full.
Internal error.
Error in QLOCK table operation.
Error in QOPEN table operation.

DBGET Modes
(3)
(2)
(4)
(4)
(6)
(5)
(1,4,7,8)
(5,6)

Consult appendix A for more information about these conditions.

TurboIMAGE/XL Library Procedures 5-49

DBINFO

INTRINSIC NUMBER 402

Provides information about the database being accessed. The information returned is
restricted by the user class number established when the database is opened; any data items,
data sets, or paths of the database which are inaccessible to that user class are considered to
be non-existent.

Syntax

DBINFO,base,quali�er,mode,status,bu�er

Parameters

base is the array name used as the base parameter when opening the database;
must contain the base ID returned by DBOPEN. (Refer to DBOPEN for
additional base ID information.)

quali�er is the name of an array containing a data set/data item name or an integer
referencing a data item/data set, depending on the value of the mode
parameter (refer to \Discussion" for mode/quali�er relationship). This
parameter form is identical to the dset and item parameters for DBFIND, and
the dset and list parameters for DBPUT.

mode is an integer indicating the type of information desired. Refer to \Discussion"
for mode integer information (data item modes 1nn ; data set modes 2nn ;
path modes 3nn; logging, dynamic roll-back recovery, and multiple database
transaction modes 4nn ; subsystem and critical item update modes 5nn ;
third-party indexing modes 8nn ; and language modes 9nn .)

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-14
describes the contents of element 1 when the procedure does not
succeed.

2 Length of information in bu�er array (in halfwords).

3-4 Unchanged from previous procedure call using this array.

5-10 Information about the procedure call and its results. Refer
to \Library Procedure Error Messages" in appendix A for a
description of this information.

bu�er is the name of an array in which the requested information is returned. The
contents of the bu�er array vary according to the mode parameter used. They
are also described in \Discussion" on the following pages.

5-50 TurboIMAGE/XL Library Procedures

DBINFO

Table 5-14. DBINFO Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-1

-4

-168

-169

-175

-176

-178

-209

FOPEN failure.
FREADLABEL failure.
Cannot attach n to MPE XL XM: �le system error nn.
Invalid mode for XM attach options.
Cannot attach n to MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: �le system error nn.
Invalid mode for XM detach options.

Calling Errors: -11

-21

-31

-222

Bad database reference.
Bad data set reference.
Bad mode.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-106

-107

-206

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.
Remote TurboIMAGE/XL database exceeds IMAGE/3000
limits.

Exceptional Conditions: 49

50

63

Illegal bu�er address.
Bu�er too small for requested data.
DBG disabled; potential damage; only DBCLOSE allowed.

Consult appendix A for more information about these conditions.

Discussion

This section provides mode integer information for the following modes (note that the
mode/quali�er relationship is provided):

1nn { Data item modes
2nn { Data set modes
3nn { Path modes
4nn { Logging, dynamic roll-back recovery, and multiple database transaction modes
5nn { Subsystem and critical item update modes
8nn { Third-party indexing modes
9nn { Language modes

TurboIMAGE/XL Library Procedures 5-51

DBINFO

Mode 101: Item Number

Mode 101 de�nes the type of access available for a speci�c item.

Quali�er identi�es the data item name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 +/� Data item number

If the data item number is positive, the user class has only read access to the
data item. If the number is negative, the data item can be updated or the entry
containing it can be added or deleted in at least one data set.

Mode 102: Item Name

Mode 102 describes a speci�c data item.

Quali�er identi�es the data item name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1{8 Data item name

9 One of the following data types followed
by a blank:

I, J, K, R, U, X, Z, P

10 Sub-item length

11 Sub-item count

12 0

13 0

The data item name is left-justi�ed and will be padded with blanks if the name is
shorter than 16 characters.

5-52 TurboIMAGE/XL Library Procedures

DBINFO

Mode 103: Items in Database

Mode 103 identi�es data items available in the database and displays the type of access
allowed. This mode does not identify unreferenced data items, that is, those items that are
de�ned in the item section of the schema but are not referenced by at least one data set.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Item count x

2 +/� Data item number 1
...

...

n + 1 +/� Data item number n

If the data item number is positive, the user class has only read access to the data
item. If the number is negative, the user class has both read and write access to
the given data set. The data items are listed in data item number order.

Mode 104: Items in Data Set

Mode 104 identi�es data items available in a speci�c data set and the type of access allowed.

Quali�er identi�es the data set name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Item count x

2 +/� Data item number 1
...

...

n + 1 +/� Data item number n

If the data item number is positive, the user class has only read access to the data
item. If the number is negative, the user class has both read and write access in
the given data set. The data items are listed in order of occurrence in data entry.

TurboIMAGE/XL Library Procedures 5-53

DBINFO

Mode 113: BTREEMODE1 and Wildcard Character

Mode 113 gives the settings of BTREEMODE1 and wildcard character in the root �le as well
as current DBOPEN (DBU).

Quali�er is ignored.

Bu�er must be at least 32 bytes and returns the following (each element is a halfword or
2 bytes):

Element Contents

1 0 if BTREEMODE1 is o� in the root
�le

1 if BTREEMODE1 is on in the root
�le

2 The �rst byte (8 bits) is always 0. The
second byte (8 bits) represents c, where
c is the current wildcard character. For
example, if the current wildcard
character is @, the element's hex value
will be $0040, or decimal 64. This is
from the root �le.

3 Highest B-Tree argument version
supported (0 for the �rst B-Tree release
version).

4 Number of sets with B-Trees indices
attached.

5 0 if BTREEMODE1 is o� for current
DBOPEN

1 if BTREEMODE1 is on for current
DBOPEN

6 The �rst byte (8 bits) is always 0. The
second byte (8 bits) represents c, where
c is the current wildcard character.
This is for the current DBOPEN.

7 . . . 16 (reserved)

5-54 TurboIMAGE/XL Library Procedures

DBINFO

Mode 201: Set Number

Mode 201 de�nes the type of access available for a speci�c data set.

Quali�er identi�es the data set name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 +/� Data set number

If the data set number is positive, the user class has only read access. If the
number is negative, the user class has both read and write access.

Mode 202: Set Name

Mode 202 describes a speci�c data set.

Quali�er identi�es the data set name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1{8 Data set name

9 One of the following set types followed
by a blank:

M, A, D

10 Entry length

11 Blocking factor

12 0

13 0

14{15 Number of entries in set

16{17 Capacity of set. If data set is
dynamically expandable, current
capacity for detail, and initial capacity
(also primary capacity) for master.
Note that for master, it is always
primary capacity regardless of
expansion.

The data set name is left-justi�ed and will be padded with blanks if the name is
shorter than 16 characters.

TurboIMAGE/XL Library Procedures 5-55

DBINFO

Mode 203: Sets in Database

Mode 203 identi�es all data sets available in a database and the type of access allowed. If you
are using third-party indexing, this mode does not show third-party index �les.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Set count x

2 +/� Data set number 1
...

...

n + 1 +/� Data set number n

If the data set number is positive, the user class has only read access to the data
set and possibly is in the write class list of speci�c data item(s). If the number is
negative, the user class has both read and write access. The data sets are listed in
data set number order.

Mode 204: Sets with Item

Mode 204 identi�es all data sets available which contain a speci�ed data item and indicates
the type of access allowed.

Quali�er identi�es the data item name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Set count x

2 +/� Data set number 1
...

...

n + 1 +/� Data set number n

If the data set number is positive, the user class has only read access to the data
set and possibly is in the write class list of speci�c data item(s). If the number is
negative, the user class has both read and write access. The data sets are listed in
data set number order.

5-56 TurboIMAGE/XL Library Procedures

DBINFO

Mode 205: Set Capacity

Mode 205 is an extension of mode 202 with dynamic capacity expansion information.

Quali�er identi�es the data set name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1-8 Data set name

9 One of the following set types followed
by a blank:

M, A, D

10 Entry length

11 Blocking factor

12 0

13 0

14-15 Number of entries in set

16-17 Current capacity of set, including
expansions

18-19 High-water mark

20-21 Maximum capacity

22-23 Initial capacity (primary capacity for
master)

24-25 Incremental number of entries

26 Incremental percent

27 Dynamic capacity expansion ag
(0 = o�, 1 = on)

The data set name is left-justi�ed and will be padded with blanks if the name is
shorter than 16 characters.

Mode 205 can be used for any master or detail data set with or without dynamic
capacity expansion capability.

Mode 205 allows users to obtain information on dynamic data set capacity
expansion programmatically. It is an extension of mode 202 to include dynamic
capacity expansion information such as maximum capacity, initial capacity,
incremental number of entries, incremental percent, and the dynamic capacity
expansion ag (0 for o� and 1 for on) for the data set.

TurboIMAGE/XL Library Procedures 5-57

DBINFO

Mode 206: Number of Data Set Chunks

Mode 206 gives the number of chunks in a data set in short format.

Quali�er identi�es the data set name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

DBINFO Mode 206

Element Contents

1 # of chunks in a jumbo data set

If the data set is not a jumbo data set, zero is returned for the number of chunks.

Mode 207: Size of Data Set Chunks

Mode 207 identi�es the size of each chunk in terms of IMAGE records in addition to providing
the number of chunks.

Quali�er identi�es the data set name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 # of chunks in a jumbo data set

2 0

3-4 Size of chunk 1 (# entries, not # of blocks!)

5-6 Size of chunk 2 (# entries, not # of blocks!)

7-8 . . .

2n + 3 Size of chunk n (# entries, not # of blocks!)

Total size: (n + 1) * 4 bytes.

If the data set is not a jumbo data set, then zero is returned for the number of
chunks.

5-58 TurboIMAGE/XL Library Procedures

DBINFO

Mode 208: Primary and Actual Capacity

Mode 208 returns the primary and actual capacity.

Quali�er identi�es the data set name or number for which the information is requested.

Bu�er must be at least a 64-byte record and returns the following (each element is a
32-bit Word):

Element Contents

1 Primary (hashing) capacity for masters, 0 for
details

2 Current capacity, including expansions

3 Maximum capacity

4 Expansion threshold:

-1 . . . 100 percentage

-1 this value means expansion is not
triggered by percentage, or it is a
non-expandable set

5 Delete chain free head (0 for non-expanded
masters)

6 high-water mark (0 for non-expanded masters)

7 Expansion threshold:

-1 . . . 2 billion blocks

-1 this value means expansion not
triggered by traversing # blocks
without success, or it is a
non-expandable set

8 . . . 16 Reserved; 0 is returned

DBINFO mode 208 does not return an expandable ag, while DBINFO 205
returns an expandable ag. The ag can also be deduced by comparing the
current and maximum capacities in DBINFO 208.

DBINFO mode 208 returns information about internals which will be meaningful
to only a few customers.

TurboIMAGE/XL Library Procedures 5-59

DBINFO

Mode 209: B-Tree Attachment

Mode 209 informs whether or not a B-Tree exists for a master.

Quali�er is a master data set name or number.

Bu�er must be at least a 64-byte record and returns the following (each element is a
32-bit Word):

Element Contents

1 0 if no B-Tree index exists

1 if B-Tree index exists

2 0 if attached B-Tree not damaged or
index does not exist

1 if the attached B-Tree index is
damaged

3 . . . 32 For internal use

5-60 TurboIMAGE/XL Library Procedures

DBINFO

Mode 301: Paths

Mode 301 identi�es the paths de�ned for a speci�ed data set.

Quali�er identi�es the data set name or number for which the information is requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Path count x

2 Data set number of path 1

3 Search item number of path 1

4 Sort item number of path 1
...

...

3n{1 Data set number of path n

3n Search item number of path n

3n+1 Sort item number of path n

Elements 2 to 4 are repeated for each path.

If quali�er speci�es a master data set, the set number identi�es the detail data
set.

If quali�er speci�es a detail data set, the set number identi�es the master data
set.

If quali�er speci�es a master data set, the item numbers identify items in the
detail data sets. If you do not have access to a search item, it is not included in
the path count and the path information is not returned. If a sort item does not
exist or you do not have access to it, the sort item number is zero.

Path designators are presented in the order in which they appear in the schema.

TurboIMAGE/XL Library Procedures 5-61

DBINFO

Mode 302: Key or Search Item

Mode 302 identi�es the key or search item for a speci�ed data set. For this mode the two
quali�ers are shown separately.

Quali�er identi�es the master data set name or number for which the information is
requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Key item number

2 0

If quali�er speci�es a master data set, the key item number is the number in the
master set. The number is 0 if you do not have access to the key item.

OR

Quali�er identi�es the detail data set name or number for which the information is
requested.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Search item number

2 Master data set number

If quali�er speci�es a detail data set, the primary search item and the related
master data set number are returned. Both numbers are 0 if you do not have
access to the search item.

5-62 TurboIMAGE/XL Library Procedures

DBINFO

Mode 401: Logging

Mode 401 obtains information related to logging.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1{4 Log identi�er name

5 Database log ag

6 User log ag

7 Transaction ag

8{9 User transaction number

The log identi�er name is left-justi�ed and padded with blanks if shorter than 8
characters.

If the database is enabled for logging, the database log ag is 1; otherwise it is 0.

If you are logging, the user log ag is 1; otherwise it is 0.

If you have a transaction in progress, the transaction ag is 1; otherwise it is 0.

The user transaction number is one word.

TurboIMAGE/XL Library Procedures 5-63

DBINFO

Mode 402: ILR

Mode 402 returns information about Intrinsic Level Recovery (ILR).

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 ILR log ag

2 Calendar date (mmddyy)

3{4 Clock time (one word in format
hhmmsstt)

5 0

6{14 t

15{16 Reserved

If the database is enabled for ILR, the ILR log ag is 1; otherwise it is 0.

The calendar date is the date ILR was enabled.

The clock time is the time ILR was enabled.

Element 5 is always 0.

t indicates blank. Elements 6 to 14 are always blank.

Elements 15 and 16 are reserved.

5-64 TurboIMAGE/XL Library Procedures

DBINFO

Mode 403: Dynamic Roll-Back

Mode 403 obtains information related to dynamic transaction activity on a given database.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1{4 Log identi�er name

5 Database log ag

6 User log ag

7 Logical transaction ag

8{9 User transaction number

10{11 XM log set size (in megabytes)

12 XM log set type

13 Database attached ag

14 Dynamic transaction ag

15{26 XM log set name

The log identi�er name is left-justi�ed and padded with blanks if shorter than 8
characters.

If the database is enabled for logging, the database log ag is 1; otherwise it is 0.

If you are logging, the user log ag is 1; otherwise it is 0.

If no logical transaction is in progress, the transaction ag is 0. If a static
transaction is in progress, the ag is set to 1; if a multiple database transaction is
in progress, the ag is set to 2.

The user transaction number is one word.

The Transaction Management (XM) log set is measured in megabytes.

If the XM log set is circular, the log set type is CR; otherwise it is LN indicating
a linear log.

If the database is attached to XM, the database attached ag is 1; otherwise it is
0.

If the user is processing a dynamic transaction, the dynamic transaction ag is 1;
otherwise it is 0.

If the database is associated with the default XM user log set, the XM log set
name element contains blanks; otherwise it contains the name of the XM log set.

TurboIMAGE/XL Library Procedures 5-65

DBINFO

Mode 404: Logging Subsystem Information

Mode 404 returns information about multiple database transactions.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Database log ag

2 User log ag

3 Roll-back log ag

4 ILR log ag

5 MUSTRECOVER ag

6 Database remote ag

7 Logical transaction ag

8{11 Log identi�er name

12{13 Log index

14{15 Multiple database transaction ID

16 Number of databases involved in the
multiple database transaction

17{31 Base IDs of the databases involved in
the multiple database transaction

If the database is enabled for logging, the database log ag is 1; otherwise it is 0.

If you are logging, the user log ag is set to 1; otherwise it is 0. If a user accesses
the database with a DBOPEN mode 5, this ag is set to 0.

If the database is enabled for roll-back logging, the roll-back log ag is set to 1;
otherwise it is 0.

If the database is enabled for ILR, the ILR log ag is set to 1; otherwise it is 0.

If the database is enabled for MUSTRECOVER, the MUSTRECOVER ag is set
to 1; otherwise it is 0.

If the database resides on a remote system, the database remote ag is set to 1. If
the database resides on the local system, the ag is set to 0.

If no logical transaction is in progress, the transaction ag is set to 0. If a static
transaction is in progress, the ag is set to 1. If a multiple database transaction is
in progress, the ag is set to 2.

The log index is used to call the WRITELOG intrinsic. It is set to 0 if logging is
not used.

The transaction ID represents a multiple or single database transaction.

Elements 16-31 are set when a multiple database transaction is in progress.

5-66 TurboIMAGE/XL Library Procedures

DBINFO

Mode 406: Database Information

Mode 406 returns information about fully quali�ed database name and open mode.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1-14 Fully quali�ed database name, left
justi�ed, blank trailing.

15 Open mode for current DBOPEN.

16 Root �le version of the database. In the
form Cn where C is uppercase ASCII
and n is a number. For example, C2 or
C3.

17-24 For internal use.

25-32 Reserved.

Mode 501: Subsystem Access

Mode 501 checks subsystem access to the database. Refer to the DBUTIL >>SHOW and
>>SET commands described in chapter 8 for more information.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Subsystem access

The following values are used for subsystem access:

0 No access
1 Read access
3 Read/write access

TurboIMAGE/XL Library Procedures 5-67

DBINFO

Mode 502: Critical Item Update

Mode 502 checks the critical item update (CIUPDATE) option settings for the database and
the current DBOPEN. The CIUPDATE option is set for the database with the DBUTIL
>>SET command and then, depending on the setting, can be enabled or disabled with
DBCONTROL for the current DBOPEN. Refer to the discussion of DBCONTROL in this
chapter and the descriptions of the DBUTIL >>SHOW and >>SET commands in chapter 8
for more information.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Critical item update ag

2 Current setting for accessor

For element 1, the following values are used for the CIUPDATE option setting
speci�ed with DBUTIL for the database:

0 Critical item update is disallowed.
1 Critical item update is allowed (default).
2 Critical item update is on.

For element 2, the following values are used for the current DBOPEN setting
speci�ed with DBCONTROL:

0 Critical item update is disabled for this accessor.
1 Critical item update is enabled for this accessor.

Modes 8nn: Third-Party Indexing

Modes 8nn are used to return information related to third-party indexing (TPI). If your
database is enabled for TPI, refer to your vendor documentation for additional DBINFO mode
information. The section on DBUTIL in chapter 8 of this book has a brief description of the
TPI option.

Mode 901: Language

Mode 901 obtains the Native Language attribute of the database. It returns the MPE/iX code
for the language attribute.

Quali�er is ignored.

Bu�er returns the following (each element is a halfword or two bytes):

Element Contents

1 Language ID

5-68 TurboIMAGE/XL Library Procedures

DBLOCK

DBLOCK

INTRINSIC NUMBER 409

Applies a logical lock to a database, one or more data sets, or one or more data entries.

Syntax

DBLOCK,base,quali�er,mode,status

Parameters

base is the name of the array used for the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about base ID.)

quali�er Modes 1 and 2: Ignored.

Modes 3 and 4: An integer variable referencing the data set number or the
name of an array containing a data set name. Could also be \@", when
applying a database lock.

Modes 5 and 6: The name of the array containing the lock descriptors. The
format for lock descriptors is given in Figure 5-2.

Use care when changing modes. The quali�er parameter can also change.

mode contains an integer indicating the type of locking desired (refer to Table 5-15).

Note If the database is open in user access mode 1, a lock must be in e�ect on
either the data set or the whole database when adding to or deleting from
master data sets. If a data entry level lock is speci�ed, any subsequent
DBPUTs or DBDELETEs will fail with error number �12 and the following
message is returned:

intrinsic name CALLED WITHOUT COVERING LOCK IN EFFECT

Note, however, that a lock on either the entire database or data set can be
achieved with a data entry lock when an @ sign is used to specify either all
data sets or all data items.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-17
describes the contents of element 1 when the procedure does not
succeed.

2 The number of lock descriptors that were successfully applied in
the DBLOCK request. For successful locks in modes 1 through 4
this will be 1.

TurboIMAGE/XL Library Procedures 5-69

DBLOCK

3 If the return status is 20, this element contains 0 if the database
is locked, 1 if the data set or entries are locked.

4 Reserved: Contents unde�ned.

5-10 Information about the procedure call and its results. Refer
to \Library Procedure Error Messages" in appendix A for a
complete description of this information.

Note Concurrent processes running in a process-handling environment must have
MR capability if they call DBLOCK.

Discussion

The format of the array containing a list of lock descriptors is illustrated in Figure 5-2 and
applies only for locking modes 5 or 6. The number of lock descriptors (n) is a one-halfword
binary integer. Only the �rst n lock descriptors are processed. If n is zero, DBLOCK returns
without taking any action. The format of a lock descriptor is illustrated in Figure 5-3, and the
lock descriptor �elds are described in Table 5-16.

The shortest possible descriptor is 9 halfwords long consisting of the length �eld and a
dset �eld containing @. Although the dset �eld only contains an at-sign, it must still be 8
halfwords long. The length of the entire descriptor array cannot exceed 4094 bytes.

Lock descriptors are sorted by data set number, then by value provided for the lock item.
TurboIMAGE/XL does not sort by item within the set, because more than one item per data
set constitutes a conicting lock descriptor (TurboIMAGE/XL error �134).

5-70 TurboIMAGE/XL Library Procedures

DBLOCK

Table 5-15. Locking Mode Options

Lock
Mode

Lock
Level

Locking
Type Description

1 Base Unconditional DBLOCK applies an unconditional lock to the whole
database, returning to the calling program only after the
lock is successful (or if an error occurs). The quali�er
parameter is ignored.

2 Base Conditional DBLOCK applies a conditional lock to the database and
returns immediately. A return status of zero indicates
success. A non-zero return status indicates the reason for
failure. (Refer to Table 5-17.)

3 Set Unconditional DBLOCK applies an unconditional lock to a data set. The
quali�er parameter must specify the name of an array
containing the left-justi�ed name of the data set or the
name of an integer referencing the data set number. The
data set name can be 16 characters long or, if shorter,
terminated by a semicolon or blank.

The data set need not be accessible for read or write access
to the user requesting the lock.

4 Set Conditional DBLOCK applies a conditional lock of the same type as
mode 3. It always returns to the calling program
immediately. A return status of zero indicates success and a
non-zero return status indicates a reason for failure. (Refer
to Table 5-17.)

5 Entry Unconditional DBLOCK applies unconditional locks to the data entries
speci�ed by lock descriptors. The quali�er parameter must
specify the name of an array containing the lock descriptors.
The format of the array is shown in Figure 5-2. It returns
only when all the locks have been acquired.

6 Entry Conditional DBLOCK applies conditional locks of the same type as
mode 5. If multiple lock descriptors are speci�ed and
DBLOCK encounters a lock descriptor that it cannot apply,
it returns. All locks that have been applied until that point
are retained.

Because the locks are not executed in the order supplied by
the user, it is not predictable which locks are held and which
are not after an unsuccessful mode 6 DBLOCK. Status
element 2 indicates how many lock descriptors were actually
successful. It is recommended that a DBUNLOCK be issued
after any unsuccessful mode 6 DBLOCK.

Note Be careful when changing modes. The quali�er parameter can change.

TurboIMAGE/XL Library Procedures 5-71

DBLOCK

Figure 5-2. Qualifier Array Format for Locking Modes 5 and 6

Figure 5-3. Lock Descriptor Format

5-72 TurboIMAGE/XL Library Procedures

DBLOCK

Table 5-16. Lock Descriptor Fields

Field Name Description

length A halfword integer specifying the physical length in halfwords of the lock
descriptor, including the length �eld itself.

dset Describes the data set in which locks are placed. It is always 8 halfwords long
and can be one of the following:

A data set name, left-justi�ed, 16 characters long or, if shorter, terminated
with a blank or semicolon (for example, SALES;).

A data set number, an integer in the range of 1 to 199 stored in the �rst
element.

An at-sign (@) stored in the �rst byte of the dset and a lock descriptor length
of 2 indicating that the whole database is to be locked. All unused bytes are
ignored. In this case, the ditem, relop, and value �elds are ignored and can be
omitted if desired.

A blank or semicolon (�rst byte) or binary zero (�rst halfword) indicating that
the whole lock descriptor is to be ignored. (It is counted as one of the n
descriptors.)

The data set, if speci�ed, need not be accessible for read or write access to the
user requesting the lock.

ditem Always 8 halfwords long unless an @ is stored in the �rst byte. It can be one of
the following:

A data item name, left-justi�ed, 16 characters long or, if shorter, terminated
with a blank or semicolon.

A data item number stored as an integer in the �rst halfword. It can be in the
range of 1 to 1023.

An at-sign (@) stored in the �rst byte of the dset indicating that the whole
data set speci�ed in dset is to be locked. All unused bytes are ignored and can
be omitted if desired.

The data item need not be a search item, nor does it have to be accessible to the
user requesting the lock. However, it cannot be a compound item or a P-type
item longer than P28.

relop One halfword long, it contains one of the three relational operators represented as
two ASCII characters:

<= less than or equal

>= greater than or equal

=t or t= equal (t indicates space character)

value The value of the data item to be locked. It must be stored in exactly the same
way as it is stored in the database. TurboIMAGE/XL extracts as many
halfwords as required by the corresponding data item de�nition (in the schema).
The rest (if any) are ignored.

TurboIMAGE/XL Library Procedures 5-73

DBLOCK

If you specify a data item of type P, U, or Z in a lock descriptor, TurboIMAGE/XL checks
that the value is valid for that data item type. The following checks are made:

If the data item is type P, the right half of the right most byte must contain a sign and all
preceding nibbles must contain decimal digits represented in Binary Coded Decimal (BCD)
format. For example, if a data item is de�ned as type P with a length of 20, the format
must be as shown here:

This would be declared in COBOL II as 19 digits plus a sign or 20 nibbles (P20 in the
schema):

S9(19) COMP-3

Type P data item used in a lock descriptor cannot exceed 28 nibbles (7 halfwords) in length.
The locking system treats all sign digits other than 11012 as identical. 11012 is assumed to
be a negative sign.

If the data item is type U, the value cannot contain any lowercase alphabetic characters in
the range of a through z (for non-native language use only).

If the data item is type U or X, and a lock speci�es an inequality, the language of the
database is used.

If the data item is type Z, each byte preceding the last one must contain an 8-bit digit
represented in ASCII format and the last byte must contain a value representing a digit and
a sign.

If the data item is type R, it is sorted based on the HP 3000 oating point number format.

5-74 TurboIMAGE/XL Library Procedures

DBLOCK

Table 5-17. DBLOCK Return Status Values

Calling Errors: -11

-31

-121

-123

-124

-125

-126

-127

-128

-129

-130

-131

-132

-133

-134

-135

-136

-222

Bad database reference.
Bad mode value.
Descriptor count error.
Illegal relop in a descriptor.
Descriptor too short. Must be greater than or equal to 9.
Bad set name/number.
Bad item name/number.
Attempt to lock using a compound item.
Value �eld too short in a descriptor.
P-type item longer than P28 speci�ed.
Illegal digit in a P-type value.
Lowercase character in type U value.
Illegal digit in type Z value.
Illegal sign in type Z value.
Two descriptors conict.
DBLOCK called when locks already in e�ect.
Descriptor list exceeds 4094 bytes.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-103

-106

-107

DSWRITE failure.
Remote 3000 stack too small.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Exceptional Conditions:
20

22

23

24

25

26

62

63

-192

-241

Database locked or contains locks.
(Status element 3: 0 = database locked
1 = data set or entries locked)
Data set locked by another process.
Entries locked within set.
Item conicts with current locks.
Entry or entries already locked.
Lock not performed since deadlock
would occur.
DBG full.
(If this error occurs when multiple lock
descriptors are speci�ed, some of the
descriptors may have been successfully
completed. If so, they are not unlocked
by TurboIMAGE/XL before returning
the error. Therefore, issue a
DBUNLOCK after any
positive-numbered error, unless you
have reason to do otherwise.)
DBG disabled; potential damage; only
DBCLOSE allowed.
Invalid DBU.
Bad tag for TurboLKT table.

Applicable Modes
(2,4,6)

(3,4,5,6)
(4)
(6)
(6)
(1,2,3,4,5,6)

(5,6)

Appendix A contains more information about these conditions.

TurboIMAGE/XL Library Procedures 5-75

DBMEMO

INTRINSIC NUMBER 414

Used to log user data (ASCII or binary) to the log �le.

Syntax

DBMEMO,base,text,mode,status,textlen

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.)

text is an array of up to 512 bytes that contains user data (ASCII or binary) to be
written to the log �le as part of the DBMEMO log record.

mode must be an integer equal to 1.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL returns
status information. If the procedure executes successfully, the status array
contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-18
describes the contents of element 1 when the procedure does not
succeed.

2-4 Unchanged from previous procedure call using this array.

5-10 Procedure call information. Refer to \Library Procedure Error
Messages" in appendix A for a description of this information.

textlen is an integer equal to the number of halfwords to be logged from the text
parameter, or is a negative integer equal to the number of bytes. Length can
be zero.

Discussion

DBMEMO is used to log user data to the log �le when the user process is logging. No action
occurs if the process is not logging. DBMEMO can be used to add additional auditing
information to the log �le or to facilitate the identi�cation of transactions in the event of a
failure and subsequent recovery.

5-76 TurboIMAGE/XL Library Procedures

DBMEMO

Table 5-18. DBMEMO Return Status Values

Calling Errors: -11

-31

-151

-222

Bad database reference.
Bad mode.
Text length greater than 512 bytes.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-106

-107

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Logging System Failures: -111 WRITELOG failure.

Exceptional Conditions: -193

63

DBU control block is full.
DBG disabled; potential damage; only DBCLOSE allowed.

Consult appendix A for more information about these conditions.

TurboIMAGE/XL Library Procedures 5-77

DBOPEN

INTRINSIC NUMBER 401

Initiates access to the database and establishes the user class number and access mode for all
subsequent database access. DBOPEN is used in conjunction with DBCLOSE to establish
and terminate access to a database.

Syntax

DBOPEN,base,password,mode,status

Parameters

base is the name of an integer array containing a string of ASCII characters.
The string must consist of two blanks followed by a left-justi�ed database
name (maximum 6 characters) and terminated by a semicolon or blank
(t), for example, \t t orders;". If the database is successfully opened,
TurboIMAGE/XL replaces the two blanks with a value called the base ID.
The base ID uniquely identi�es this access path between the database and
the process calling DBOPEN. In all subsequent accesses to the database, the
�rst halfword of base must be this base ID; therefore, the array should not be
modi�ed. The base ID contains a number that distinguishes between the 63
access paths allowed for each process for accessing a given database.

Note The base ID cannot be passed between processes in an attempt to reduce the
number of required DBOPEN calls.

To access a database catalogued in a group other than the user's log-on group,
the database name must be followed by a period and the group name, for
example, ORDERS.GROUPX. If the database is in an account other than the
user's account, the group name must be followed by a period and the account
name, for example, ORDERS.GROUPX.ACCOUNT1.

You can use an MPE/iX FILE command before executing the application
program to equate the database name or the database-access �le name
to another database or database-access �le name. You can use only the
formal �le designator, actual �le designator, and the DEV= parameters. For
additional information on the database-access �le, refer to chapter 9.

password is the name of an integer array containing a left-justi�ed string of ASCII
characters consisting of an optional password followed by an optional user
identi�er.

The following constructs are valid for the password and user identi�er (a t
represents a blank):

t[/USERIDENT] Access class zero (0).

;[/USERIDENT] Creator access.

password[/USERIDENT] Password access.

5-78 TurboIMAGE/XL Library Procedures

DBOPEN

If either the password or the user identi�er string is less than eight characters
long, it must be terminated with a semicolon or a blank.

The password establishes a user class number as described in chapter 2.
A semicolon supplied as the password implies creator class 64. The user
identi�er is used by the program DBRECOV to distinguish between users
logged on under the same name and account.

The following are valid examples:

;

CLERKt
CLERK;

CLERK;/JOE;

CLERKt/JOE;
t/DBA

mode is an integer between 1 and 8, inclusive, corresponding to the valid
TurboIMAGE/XL access modes described in chapter 4. Here is a brief
summary:

Access
Mode

Associated
Capabilities

Concurrent
Modes
Allowed

1 Modify with enforced locking.
Allow concurrent modify.

1,5

2 Update, allow concurrent update. 2,6

3 Modify exclusive. none

4 Modify, allow concurrent read. 6

5 Read, allow concurrent modify. 1,5

6 Read, allow concurrent modify. 6 and either
2, one 4, or 8

7 Read, exclusive. none

8 Read, allow concurrent read. 6,8

Note If the database is open in database access mode 1, a lock must be in e�ect
on either the data set or the whole database when adding to or deleting
from master data sets. If a data entry level lock is speci�ed, any subsequent
DBPUTs or DBDELETEs will fail with error number �12 and the following
message is returned:

intrinsic name CALLED WITHOUT COVERING LOCK IN EFFECT

Lock either the entire database or data set with a data entry lock by using an
@ sign to specify all data sets or all data items.

The �gure in appendix B summarizes the results of multiple access to the
same database. If a database cannot be opened successfully in a particular
mode, this information can be used to determine the problem and to select an
alternate mode.

TurboIMAGE/XL Library Procedures 5-79

DBOPEN

If your database is enabled for third-party indexing (TPI), refer to your
vendor documentation for additional DBOPEN mode information. The
section on DBUTIL in chapter 8 of this book has a brief description of the
TPI option.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-19
describes the contents of element 1 when the procedure does not
succeed.

2 User class number, 0 to 63 (or a 64 if the database creator enters
a semicolon \;" in place of a password).

3 Current size of the DBG (in halfwords) or 32767, whichever
is smaller. If it is 32767, the DBG size exceeds the maximum
halfword value limit.

4 Size of the DBU (in halfwords) or 32767, whichever is smaller. If
it is 32767, the DBU size exceeds the maximum half-word value
limit.

5-10 Information about the current procedure call and its results. This
same information is returned for all TurboIMAGE/XL procedures
if an error occurs. It is described in \Library Procedure Error
Messages" in appendix A.

Discussion

A process can concurrently use the database through independent, unique access paths by
issuing as many as 127 calls to DBOPEN (63 calls per database) and specifying a di�erent
base array in each call. Subsequent calls to other TurboIMAGE/XL procedures must use the
appropriate base array so that the correct base ID is used.

Caution Although a single process can call DBOPEN a maximum of 127 times (63 per
database), DBOPEN can encounter an MPE/iX system limit and fail. For
example, DBOPEN would fail if the limit was exceeded for mapped �le space
or if the process attempted to open more than the allowable number of �les.

The database activity controlled on one access path relates to that controlled on other access
paths in the same way the database activity of one process relates to that of another. The
access modes established by each DBOPEN call must be compatible, but otherwise the
activity controlled by each access path and the pointers maintained by it are completely
independent. The only exception to this access path independence relates to locking. If a
process makes a lock request on one access path, it cannot issue a lock on another access path
unless the program has multiple RIN capability (CAP=MR) or �rst calls DBUNLOCK to
release the locks on the �rst access path.

DBOPEN performs expansion recovery if necessary. During the �rst open of the database
using any open mode, DBOPEN automatically performs expansion recovery for any detail
data set with the \expansion in progress" ag turned on and a previous DBPUT capacity

5-80 TurboIMAGE/XL Library Procedures

DBOPEN

expansion had not completed. Recovery correctly adjusts the data set free count and the root
�le data set capacity �elds using the actual data set �le size. Use the SHOW CAPACITY
command in DBUTIL to detect if recovery is required for the data set. If the message,
\dynamic capacity expansion in progress ag is on," is displayed for the data set, and
asterisks are in the \no. of entries" and \%max cap" �elds, then recovery is required for the
data set(s). QUERY or any application performing the �rst DBOPEN of the database can be
used to recover the detail data set capacity. Use DBChange Plus or a third-party application
to change an existing detail data set to have parameters for dynamic expansion. For more
information on DBChange Plus, see MPE/iX Release 5.0 Communicator .

If the database is enabled for logging, and the program calls DBOPEN in one of modes 1-4,
then TurboIMAGE/XL attempts to access a log �le using the MPE/iX OPENLOG intrinsic.
OPENLOG succeeds only if the following have been completed:

1. A valid log identi�er and log password have been set into the database root �le using the
DBUTIL >>SET command, and

2. A corresponding system log process has been initiated by the console operator to handle
any calls to the logging system.

If OPENLOG fails, DBOPEN also fails and returns an appropriate error condition. If
OPENLOG succeeds, DBOPEN causes a log record to be written which includes such
information as time, date, user name, user program, mode, and security class. (Refer to
appendix E for a full description of log record contents and formats.)

A process is logging if it successfully opens a database in one of modes 1-4, and the database
is enabled for logging. A program does not log if it opens in one of modes 5-8, or if the
database is not enabled for logging.

If DBRECOV roll-back recovery is enabled, the �rst DBOPEN checks if the user logging �le
and the database are attached to the same Transaction Management (XM) user log set. The
database and the user logging �le must be kept synchronized at the XM level in order for
DBRECOV roll-back recovery to work.

DBOPEN initiates recovery of the incomplete dynamic transactions, if necessary; then
DBRECOV rolls back the incomplete static transactions.

Dynamic transactions are not allowed with DBOPEN mode 2.

TurboIMAGE/XL Library Procedures 5-81

DBOPEN

Table 5-19. DBOPEN Return Status Values

File System, Memory
Management, and
Transaction
Management Failures:

-1

-2

-3

-4

-5

-6

-8

-9

-10

-168

-169

-175

-176

-177

-178

-179

-198

-208

-209

-210

-211

HPFOPEN or FOPEN failure.
FCLOSE failure.
FREADDIR failure.
FREADLABEL failure.
FWRITEDIR error.
FWRITELABEL error.
FUNLOCK failure.
Cannot create a control block.
FFILEINFO failure.
Cannot attach n to MPE XL XM: �le system error nn.
Invalid mode for XM attach options.
Cannot attach n to MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: XM error nn.
User log �le is not in the same volume set as database.
Cannot detach n from MPE XL XM: �le system error nn.
Cannot begin MPE XL XM transaction for attach.
Total DBOPEN count/user exceeds limit.
FLABELINFO failure.
Invalid mode for XM detach.
MPE error decimal integer while getting log �le name.
Invalid or no userlabel.

Calling Errors: -11

-13

-21

-22

-31

-32

-34

-90

-91

-92

-94

-95

-96

-220

Bad database reference.
Must be creator of root �le or database.
Bad password.
Maintenance word required.
Bad mode.
Unobtainable mode.
Database must be recovered before access is allowed.
Root �le bad: unrecognized state: % octal integer .
Bad root modi�cation level.
Database not created.
Database bad: Was being modi�ed with output deferred, may
not be accessed in mode decimal integer .
Database bad: Creation was in process (create again).
Database bad: Erase was in process (erase again).
Database and user log not attached to the same XM log set.

Communications Errors: -15

-60

-61

-100

-101

-102

-103

-104

-105

-106

-107

DSLINE or remote HELLO failure; setup for RDBA failed.
Illegal �le equation on root �le.
Error while obtaining information about �le equation.
DSOPEN failure.
DSCLOSE failure.
DSWRITE failure.
Remote 3000 space insu�cient.
Remote system does not support TurboIMAGE/XL.
Remote 3000 cannot create control block.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

5-82 TurboIMAGE/XL Library Procedures

DBOPEN

Table 5-19. DBOPEN Return Status Values (continued)

Logging System
Failures:

-110

-111

-114

OPENLOG failure.
WRITELOG failure.
Roll-back enabled without logging.

Native Language
Support Errors:

-200

-201

-202

Database language not system supported.
Native Language Support not installed.
MPE Native Language Support error decimal integer returned
by NLINFO.

Exceptional Conditions: -167

-191

-199

-220

-226

-227

-234

-236

-250

-253

-331

-332

-333

60

61

62

63

64

66

68

Cannot begin MPE XL XM transaction: XM error nn.
DBS control block is full.
Cannot end MPE XL XM transaction: XM error nn.
User log and database not attached to same XM log.
Error occurred when the 00 �le was created.
Error occurred in 00 �le recovery.
Cannot purge the 00 �le.
Internal error occurred when opening the AUX �le: error nn.
Failure in semaphore initialization.
Database enabled for indexing, but third-party indexing is not
con�gured.
Invalid DSET Capacity.
Error in QLOCK table operation.
Error in QOPEN table operation.
Database access disabled.
This database opened more than 63 times by the same process.
DBG full.
DBG disabled; potential damage; only DBCLOSE allowed.
PCBX full.
The current DBG for the database does not appear correct
(TurboIMAGE internal error).
DBB disabled by an abort.

Consult appendix A for more information about these conditions and appendix B for results of
multiple access.

TurboIMAGE/XL Library Procedures 5-83

DBPUT

INTRINSIC NUMBER 407

Adds new entries to a manual master or detail data set. The database must be opened in
access mode 1, 3, or 4.

Syntax

DBPUT,base,dset,mode,status,list,bu�er

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about base ID.)

dset is the name of an array containing the left-justi�ed name of the data set to
which the entry is to be added, or is an integer referencing the data set by
number. The data set name can be up to 16 characters long. If shorter, it
must be terminated by a semicolon or a blank.

mode must be an integer equal to 1.

If your database is enabled for third-party indexing (TPI), refer to your
vendor documentation for additional DBPUT mode information. The section
on DBUTIL in chapter 8 of this book has a brief description of the TPI
option.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-21
describes the contents of element 1 when the procedure does not
succeed.

2 Length of logical entry in bu�er array (in halfwords).

3-4 Word record number of new entry.

5-6 Word count of number of entries in chain. If master data set,
chain is synonym chain. If detail data set, chain is current chain
of new entry.

7-8 If master, word record address of predecessor on synonym chain.
If detail, word record number of predecessor on current detail
chain.

9-10 If detail, word record number of successor on current chain. If
master, word zero.

list is the name of an array containing an ordered set of data item identi�ers;
names or numbers. The new entry contains values supplied in the bu�er array

5-84 TurboIMAGE/XL Library Procedures

DBPUT

for data items in the list array. Search or sort items de�ned for the entry
must be included in the list array. Fields of unreferenced items are �lled with
binary zeros.

The list array can contain a left-justi�ed set of data item names, separated by
commas and terminated by a semicolon or blank; no embedded blanks are
allowed, and no name can appear more than once. For example:

ACCOUNT,LAST-NAME,CITY,STATE;

When referencing by number, the �rst halfword of the list array is an integer
n that is followed by n single positive integers identifying unique data item
numbers. Example: 4 1 10 3 16 lists for the four data item numbers 1, 10, 3,
and 16.

The list speci�es data items for which values are supplied in the bu�er array,
and is saved internally by TurboIMAGE/XL as the current list for the
data set. The current list is unchanged until a di�erent list is speci�ed in a
subsequent call to DBGET, DBPUT, or DBUPDATE for the same access
path and data set.

Some special list constructs are allowed. These are described in Table 5-20
and illustrated in the programs in chapter 6. List processing is a relatively
high overhead operation which can be shortened in subsequent calls by using
the asterisk construct to specify that the current list is to be used. Be sure a
current list exists before using the asterisk construct, or a null list is assumed.

bu�er is the name of an array containing data item values to be added. The values
must be in the same order as their data item identi�ers in the list array. The
number of halfwords for each value must correspond to the number required
by its type; for example, I2 values must be 2 halfwords long.

Table 5-20. Special list Parameter Constructs

Construct list Array Contents Purpose

Empty 0; or 0t or ; or t
(0 must be ASCII.)

Request no data transfer.

Empty Numeric 0 (n, length of data item identi�er
list, is zero)

Request no data transfer.

Asterisk *; or *t Request procedure to use previous list and
apply it to same data set. This construct
saves TurboIMAGE/XL processing time,
especially if more than one or two items are
involved. If *" is used to de�ne the list in
the �rst call to DBGET and DBPUT,
TurboIMAGE/XL treats it as a zero.

Commercial
At-Sign

@; or @t Request procedure to use all data items of
the data set in the order of their occurrence
in the entry.

Note:

t indicates blank.

TurboIMAGE/XL Library Procedures 5-85

DBPUT

Discussion for Master Data Sets

When adding entries to master data sets, the following rules apply:

The data set must be a manual master.

The key item must be referenced in the list array and its value in the bu�er array must be
unique in relation to other entries in the master.

Space must be available in the master set, or must be dynamically expandable to add an
entry.

If dynamic capacity expansion parameters are speci�ed for the master data, when the
master data set is almost full, expansion is done by the incremental amount. If the
expansion is successful, the new record is added to the database. If the expansion is not
successful, an error message is displayed, and the record is not added to the database.
If there is insu�cient disc space to expand the data set to the full incremental amount,
DBPUT will perform a partial expansion up to the disc space available. DBPUT will
terminate if there is no available group or account disc space even if there is enough system
disc space. (The current capacity for a data set can be displayed by the SHOW CAPACITY
command in DBUTIL or the output bu�er from DBINFO modes 202 and 205.)

The order of data item values in the new entry is determined by the set de�nition in the
schema and not by the order of the items' occurrence in the list and bu�er arrays.

Values for data items not included in the list array are �lled with binary zeros.

The caller must have a lock on the data set or the database if the database is open in access
mode 1.

DBPUT to an indexed master triggers a similar operation to indexed master's B-Tree index
�le.

Discussion for Detail Data Sets

When adding entries to detail data sets, the following rules apply:

The data set must have free space for the entry.

If the database is opened in access mode 1, the caller must have a lock covering the entry to
be added.

All search and sort items de�ned for the entry must be referenced in the list array.

Each related manual master data set must contain a matching entry for the corresponding
search item value. If any automatic master does not have a matching entry, it must have
space to add one. This addition occurs automatically.

The order of data item values in the new entry is determined by the set de�nition in the
schema and not by the order of the items' occurrence in the list and bu�er arrays.

Values for data items not included in the list array are �lled with binary zeros.

The new entry is linked into one chain for each search item, or path, de�ned according to
the search item value. It is linked to the end of chains having no sort items and into its
sorted position according to the collating sequence of the sort item values in the chain. If
two or more entries have the same sort item value, their position in the chain is determined
by the values of the items following the sort item in the entry. The position of an entry on

5-86 TurboIMAGE/XL Library Procedures

DBPUT

a sorted chain is determined by a backward search of the chain beginning at the last entry.
The position is maintained by logical pointers rather than physical placement in the �le.

Proper Native Language collating sequence must be maintained for chain sorting.

If dynamic capacity expansion is allowed for the detail data set, when the detail data set
reaches the end of the current allocation (that is, data set free count is zero), expansion
is requested by the incremental amount. If the expansion is successful, the new record is
added to the database. If the expansion is not successful, an error message is displayed,
and the record is not added to the database. If there is insu�cient disc space to expand the
data set to the full incremental amount, DBPUT will perform a partial expansion up to the
disc space available. DBPUT will terminate if there is no available group or account disc
space even if there is enough system disc space. (The current capacity for a data set can
be displayed by the SHOW CAPACITY command in DBUTIL or the output bu�er from
DBINFO modes 202 and 205.)

The record in which the new data entry is placed becomes the current record for the data set.
The forward and backward pointers reect the new entry's position. Refer to the description
of status elements 7 through 10.

The record number of the new data entry is returned to status halfwords 3-4; and its forward
and backward pointers are returned in status halfwords 7-8 and 9-10, respectively. If you
intend to use these numbers for directed reads (see \Directed Access" in chapter 4), save them
because subsequent TurboIMAGE/XL procedure calls can overwrite the status area.

The execution of a call to DBPUT could require extensive resources depending on the amount
of chain maintenance required. For example, when an entry is added to a detail data set, the
new entry must be linked to all other related entries with the same key values and to all of its
related master entries. This operation could involve many blocks of data. TurboIMAGE/XL
prevents data block access conicts with all other users and ensures data integrity by applying
a temporary lock on other processes until the call to DBPUT completes. The timing of
this temporary lock can be controlled with the PREFETCH option of DBUTIL. Refer to
\Coordinating Additions to a Database" in chapter 4 for considerations when enabling or
disabling this option.

Performance may be impacted by the number of entries incremented when DBPUT is used to
dynamically expand the detail data set. The number of disc extents used for the data set �le
may also impact the performance of TurboIMAGE/XL.

If the process is logging, a call to DBPUT causes a log record to be written with such
information as the time, date, user identi�cation number, and a copy of the new record to be
added.

If DBPUT is called within a dynamic transaction, a log record is written after the physical
transaction has been successfully completed. If the intrinsic cannot be completed, an error
is returned. This error condition must be checked, and you must decide to use DBXUNDO,
DBXEND, or continue with the remainder of the dynamic transaction. DBXUNDO will
abort the entire dynamic transaction. DBXEND will terminate the dynamic transaction; the
modi�cations completed thus far within the transaction will remain in the database.

TurboIMAGE/XL Library Procedures 5-87

DBPUT

Table 5-21. DBPUT Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-1

-3

-4

-5

-6

-167

-168

-169

-175

-176

-178

-199

-209

FOPEN failure.
FREADDIR failure.
FREADLABEL failure.
FWRITEDIR failure.
FWRITELABEL failure.
Cannot begin MPE XL XM transaction: XM error nn.
Cannot attach n to MPE XL XM: �le system error nn.
Invalid mode for XM attach options.
Cannot attach n to MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: �le system error nn.
Cannot end MPE XL XM transaction: XM error nn.
Invalid mode for XM detach options.

Calling Errors: -11

-12

-14

-21

-23

-24

-31

-51

-52

-53

-222

Bad database reference.
No lock covers the data entry to be added. (Occurs only if
database is open in access mode 1.)
Illegal intrinsic in current access mode.
Bad data set reference.
Data set not writable.
Operation not allowed on automatic master data set.
Bad mode.
Bad list length.
Bad list or bad item.
Missing search or sort item.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-106

-107

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Logging System Failures: -111 WRITELOG failure.

5-88 TurboIMAGE/XL Library Procedures

DBPUT

Table 5-21. DBPUT Return Status Values (continued)

Exceptional Conditions: -193

-196

-212

-264

-312

-314

-322

-332

16

18

43

62

63

1nn
2nn
3nn
4nn

DBU control block is full.
DBB control block is full.
Database corruption detected.
XM write procedure returned 1030 or 1040.
Internal error encountered while reading database block.
Error while obtaining path information for set.
Error returned by process list.
Error in QLOCK table operation.
Data set full.
(In the following messages, dataset# and FSERR # will be
replaced by the actual number.)
DBPUT cannot expand dataset#: dataset at maximum
capacity.
DBPUT dataset# incomplete expansion: File system
error #.
DBPUT cannot expand dataset#: Out of disc space
(FSERR #).
Broken chain; forward and backward pointers not
consistent.
Duplicate key item value.
DBG control block is full.
DBG disabled; potential damage; only DBCLOSE allowed.
Missing chain head for path number nn.
Full chain for path number nn.
Internal error.
Full synonym chain.

Refer to appendix A for more information about these conditions.

TurboIMAGE/XL Library Procedures 5-89

DBUNLOCK

INTRINSIC NUMBER 410

Relinquishes the locks acquired by all previous calls to DBLOCK. Redundant calls are
ignored. If the calling process has the same database opened multiple times, only those locks
put into e�ect for the speci�ed access path are unlocked.

If DBUNLOCK is called when a dynamic transaction is active and a modify intrinsic
(DBPUT, DBDELETE, or DBUPDATE) has already been used in the dynamic transaction
(that is, the database is modi�ed), the DBUNLOCK fails. You must check the error
condition. You may use DBERROR or DBEXPLAIN to display the error message. When
a DBUNLOCK fails within the dynamic transaction, dynamic intrinsic rollback allows the
following choices:

Use DBXEND to end the dynamic transaction.

Continue with the remainder of the dynamic transaction taking into account that
DBUNLOCK failed and locks are still in place.

Use DBXUNDO to rollback the entire dynamic transaction.

Syntax

DBUNLOCK,base,dset,mode,status

Parameters

base is the name of the array used for the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN.

dset is currently unused. Use the Not Used Parm or DUMMY variable as
recommended at the beginning of this chapter or any dset array used for other
procedures.

mode must be an integer equal to 1.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-22
describes the contents of element 1 when the procedure does not
succeed.

2 Number of lock descriptors released by this call. Each data set
lock or database lock is counted as one descriptor.

3-4 Reserved for internal use.

5-10 Information about the procedure call and its results. Refer
to \Library Procedure Error Messages" in appendix A for a
description of this information.

5-90 TurboIMAGE/XL Library Procedures

DBUNLOCK

Table 5-22. DBUNLOCK Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-4

-6

-167

-199

MPE �le error nn returned by DBUNLOCK on
FREADLABEL.
MPE �le error nn returned by DBUNLOCK on
FWRITELABEL.
Cannot begin MPE XL XM transaction: XM error nn.
Cannot end MPE XL XM transaction: XM error nn.

Calling Errors: -11

-31

-215

-222

-230

-231

Bad database reference.
Bad mode.
XM error nn encountered when rolling out dynamic
transaction.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.
A DBUNLOCK inside a dynamic transaction is not
allowed.
During Dynamic Rollback recovery, internal procedure
failed; error nn.

Communications Errors: -102

-106

-107

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Exceptional Conditions: 63 DBG disabled; potential damage; only DBCLOSE allowed.

Appendix A contains more information about these conditions.

TurboIMAGE/XL Library Procedures 5-91

DBUPDATE

INTRINSIC NUMBER 406

Modi�es values of data items in the entry residing at the current record address of a speci�ed
data set. To call DBUPDATE, you must open the database in access mode 1, 2, 3, or 4. The
update is always carried out correctly against the latest version of the data, regardless of
modi�cations made by other users.

In database access mode 1, 3, or 4, you can use DBUPDATE to modify the values of detail
data set search and sort items if permitted by the critical item update (CIUPDATE) option
settings for the database and the current process. Master data set key item values cannot be
modi�ed even if CIUPDATE is permitted.

Syntax

DBUPDATE,base,dset,mode,status,list,bu�er

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about base ID.)

dset is the name of an array containing the left-justi�ed name of the data set to
be read, or is an integer referencing the data set by number. The data set
name can be up to 16 characters long. If shorter, it must be terminated by a
semicolon or a blank.

mode must be an integer equal to 1.

If your database is enabled for third-party indexing (TPI), refer to your
vendor documentation for additional DBUPDATE mode information. The
section on DBUTIL in chapter 8 of this book has a brief description of the
TPI option.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure operates
successfully, the status array contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-23
describes the contents of element 1 when the procedure does not
succeed.

2 Length of the values in bu�er (in halfwords).

3-10 Same word values set by preceding procedure call which
positioned the data set at the current entry. If critical item
update is permitted, the value contained in element 3 determines
the message returned.

list is the name of an array containing an ordered set of data item identi�ers,
either names or numbers. Values supplied in the bu�er array replace the

5-92 TurboIMAGE/XL Library Procedures

DBUPDATE

values of data items occupying the same relative position in the list array.
The user class established when the database is opened must allow at least
read access to all the items included in the list array.

If the corresponding bu�er array values are the same as the current data item
values, the list array can include data items to which the user has read access
only, such as, key, search and sort items. This feature permits reading and
updating with the same list array contents. Those items to be updated must
allow write access and cannot be key, search, or sort items.

The list array can contain a left-justi�ed set of data item names, separated by
commas and terminated by a semicolon or a blank. No embedded blanks are
allowed and no name can appear more than once.

When referencing by number, the �rst element of the list array is an integer n
followed by n unique data item numbers (one-halfword positive integers).

The list not only speci�es the data items to be updated immediately but is
saved internally by TurboIMAGE/XL as the current list for this data set. The
current list is unchanged until a di�erent list is speci�ed in a subsequent call
to DBGET, DBPUT, or DBUPDATE for the same access path and data set.

Some special list constructs are allowed. These are described in Table 5-20
with the DBPUT procedure. List processing is a relatively high overhead
operation that can be shortened substantially in subsequent calls by using the
asterisk construct to specify that the current list is to be used.

bu�er is the name of an array containing concatenated values to replace the values
of data items occupying the same relative position in the list array. The
number of halfwords for each value must correspond to the number of
halfwords required by its type multiplied by the sub-item count. Search and
sort item values can be included in this update list if their values will not
change.

Discussion

Before performing an update for a database opened in access mode 1, TurboIMAGE/XL
veri�es that locks are in e�ect to cover the data entry both before and after it is modi�ed.

The current record number, forward and backward pointers are unchanged. (Refer to the
description of status words 3 through 10.)

If the process is logging, a call to DBUPDATE causes a log record to be written with such
information as the time, date, user identi�cation number, and a copy of both the old and new
data item values.

When DBUPDATE is called within a dynamic transaction, a log record is written after
the successful completion of the physical transaction. If the intrinsic cannot be completed,
an error is returned. This error condition must be checked, and you must decide to use
DBXUNDO, DBXEND, or continue with the remainder of the dynamic transaction.
DBXUNDO will abort the entire transaction. DBXEND will terminate the dynamic
transaction; the modi�cations completed thus far within the transaction will remain in the
database.

TurboIMAGE/XL Library Procedures 5-93

DBUPDATE

Table 5-23. DBUPDATE Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-1

-3

-4

-5

-167

-168

-169

-175

-176

-178

-199

-209

FOPEN failure.
FREADDIR failure.
FREADLABEL failure.
FWRITEDIR failure.
Cannot begin MPE XL XM transaction: XM error.
Cannot attach n to MPE XL XM: �le system error nn.
Invalid mode for XM attach options.
Cannot attach n to MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: XM error nn.
Cannot detach n from MPE XL XM: �le system error nn.
Cannot end MPE XL XM transaction: XM error nn.
Invalid mode for XM detach options.

Calling Errors: -11

-12

-14

-21

-31

-51

-52

-82

-222

Bad database reference.
No locks cover the data entry to be updated.
(Occurs only if database is open in access mode 1.)
Illegal intrinsic in current access mode.
Bad data set reference.
Bad mode.
Bad list length.
Bad list or bad item.
CIUPDATE is set to DISALLOWED; cannot use critical
item update.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.

Communications Errors: -102

-106

-107

DSWRITE failure.
Remote 3000 data inconsistent.
NS 3000 or DS 3000 system error.

Logging System Failures: -111 WRITELOG failure.

Exceptional Conditions: -193

-264

-3nn
-312

-314

-332

17

41

42

49

50

62

63

68

DBU control block is full.
Error while writing to TPI �les.
Internal error.
Error while reading database �le.
Error while getting path information for set.
Error in QLOCK table operation.
No entry.
DBUPDATE attempted to modify value of critical item|
key, search or sort.
Read only item.
Illegal bu�er address.
Bu�er too small.
DBG full.
DBG disabled; potential damage; only DBCLOSE allowed.
DBB disabled.

Appendix A contains more information about these conditions.

5-94 TurboIMAGE/XL Library Procedures

DBXBEGIN

DBXBEGIN

INTRINSIC NUMBER 420

Designates the beginning of a sequence of TurboIMAGE/XL procedure calls that are to be
regarded as a dynamic transaction of a single database or dynamic transaction spanning
multiple databases (DMDBX) for the purposes of logging and dynamic roll-back recovery.
The text parameter can be used to log user information to the log �le. DBXBEGIN is used in
conjunction with DBXEND to begin and end a dynamic transaction.

Syntax

DBXBEGIN,

�
base

baseidlist

�
,text,mode,status,textlen

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.)

baseidlist is the name of the integer array containing the base IDs of the databases
which are involved in a DMDBX. Use baseidlist when calling DBXBEGIN
mode 3 (DMDBX). The layout of this array is shown here (each element is a
halfword or two bytes):

Element Contents

1-2 Application program must set these two halfwords to binary
0s before calling DBXBEGIN. After returning to the calling
program, these two halfwords contain the transaction ID. Use this
same baseidlist with the corresponding DBXEND or DBXUNDO
intrinsics.

3 Number of base IDs involved in the DMDBX. This must be a
number between 1 and 15 inclusive.

4-n Base IDs of the databases involved in the DMDBX. Each base ID
occupies one half-word or 2 bytes and it is the �rst halfword of
the base parameter used to call TurboIMAGE/XL intrinsics.

text is the name of an array up to 256 halfwords long that contains user ASCII or
binary data to be written to the log �le as part of the DBXBEGIN log record.
The text argument is used to assign each particular transaction a distinct
name. (Refer to \Discussion" below for more information.)

mode is an integer indicating the transaction type:

Mode 1: Indicates a dynamic transaction which spans only one
database.

Mode 3: Indicates a dynamic transaction spanning multiple databases
(DMDBX). If user logging is enabled for the databases,

TurboIMAGE/XL Library Procedures 5-95

DBXBEGIN

mode 3 generates multiple entries in the log �le, one for each
database.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL returns
status information. If the procedure executes successfully, the status array
contents are:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-24
describes the contents of element 1 when the procedure does not
succeed.

2-4 Unchanged from previous procedure call using this array.

5-10 Procedure call information. Refer to \Library Procedure Error
Messages" in appendix A for a description of this information.

textlen is an integer equal to the number of halfwords to be logged from the text
parameter, or is a negative integer equal to the number of bytes. Length can
be zero.

Discussion

DBXBEGIN is called to designate the beginning of a sequence of TurboIMAGE/XL procedure
calls that are jointly considered a single dynamic transaction. The end of such a sequence
is designated by a matching call to DBXEND. DBXBEGIN cannot be called if another
transaction started by DBXBEGIN or DBBEGIN is active. The intrinsic does not begin a
dynamic transaction if AUTODEFER is enabled for the database.

Before including a database in a DMDBX, DBXBEGIN mode 3, DBCONTROL mode 7 needs
to have been done once for each of the databases in the DMDBX. DBCONTROL mode 7
remains active until the database is closed or the application terminates. DBCONTROL mode
7 also enables the database for deadlock detection. If deadlock is encountered, it returns an
error 26, instead of triggering a process hang.

Note DBXBEGIN is not allowed with DBOPEN mode 2 nor with AUTODEFER
enabled.

Logging and DBRECOV are not needed with dynamic transactions, because the database can
be recovered dynamically. However, if the calling process is logging, DBXBEGIN causes a
record to be written to the log �le to identify the beginning of a dynamic transaction.

5-96 TurboIMAGE/XL Library Procedures

DBXBEGIN

Table 5-24. DBXBEGIN Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-4

-228

FREADLABEL error.
DBXBEGIN encountered XM error nn when starting
dynamic transaction.

Calling Errors: -11

-31

-139

-140

-151

-152

-217

-218

-219

-221

-222

-242

Bad database reference.
Bad (unrecognized) DBXBEGIN mode: n.
Invalid number of base IDs.
Bad base ID list.
Text length greater than 512 bytes.
DBXBEGIN called while a transaction is in progress.
DBOPEN mode n incompatible with Dynamic Rollback.
Output deferred not compatible with DBX.
Remote database access incompatible with Dynamic
Rollback.
Cannot begin transaction when a dynamic transaction is
active.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.
Error in TurboGTX �le operation.

Logging System Failures: -111 WRITELOG intrinsic failure.

Exceptional Conditions: 67

-332

DBU disabled; potential damage; only DBCLOSE allowed.
Error in QLOCK table operation.

Consult appendix A for more information about these conditions.

TurboIMAGE/XL Library Procedures 5-97

DBXEND

INTRINSIC NUMBER 421

Designates the end of a sequence of TurboIMAGE/XL procedure calls regarded as a dynamic
transaction for the purposes of logging and dynamic roll-back recovery. The text parameter
can be used to log user information to the log �le. DBXEND is used in conjunction with
DBXBEGIN to begin and end a dynamic transaction.

Syntax

DBXEND ,

�
base

baseidlist

�
text,mode,status,textlen

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.)

baseidlist is the name of the integer array containing the base IDs of the databases
which are involved in the DMDBX. Use the same baseidlist used with
DBXBEGIN when calling DBXEND mode 3 to end the DMDBX. The layout
of this array is same as in DBXBEGIN, except that the transaction ID is
already set in the �rst two halfwords by DBXBEGIN.

text is an array up to 256 halfwords long that contains user ASCII or binary data
to be written to the log �le as part of the DBXEND log record.

mode must be a halfword equal to 1, 2 or 3.

Mode 1: End of dynamic transaction spanning one database.

Mode 2: End of dynamic transaction spanning one database, started
with DBXBEGIN mode 1, and write contents of the transaction
management (XM) logging bu�er in memory to disk. If logging is
enabled, the contents of the logging bu�er in memory will also be
written to disk.

Mode 3: Indicates the end of a DMDBX started with DBXBEGIN mode
3. If user logging is enabled for the databases, mode 3 generates
multiple entries in the log �le, one for each database in the
DMDBX, in order to mark the end of a dynamic transaction.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are as follows:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-25
describes the contents of element 1 when the procedure does not
succeed.

2-4 Unchanged from previous procedure call using this array.

5-98 TurboIMAGE/XL Library Procedures

DBXEND

5-10 Procedure call information. Refer to \Library Procedure Error
Messages" in appendix A for a description of this information.

textlen is an integer equal to the number of halfwords to be logged from the text
parameter, or is a negative integer equal to the number of bytes. Length can
be zero.

Discussion

DBXEND is called to designate the end of a sequence of TurboIMAGE/XL procedure calls
that are collectively considered a dynamic transaction. If an intrinsic fails within a dynamic
transaction, you may use DBXEND to end the dynamic transaction at that point. The
modi�cations completed until that point will remain in the database(s). The beginning of
such a sequence is designated by a previous call to DBXBEGIN. DBXEND cannot be called
to end a transaction started by DBBEGIN.

Logging and DBRECOV are not needed with dynamic transactions, because the database can
be recovered dynamically. However, if the calling process is logging, DBXEND causes a record
to be written to the log �le to identify the end of a dynamic transaction.

If you call DBXEND with mode 2, DBXEND forces the XM log bu�er (and user log bu�er
if the process is logging) to be written from memory to disk before returning to the calling
process. Use this option only for critical transactions; too many mode 2 DBXEND calls can
degrade performance by causing a disk access each time a dynamic transaction ends.

DBXEND returns an error condition if it is called without a prior matching call to
DBXBEGIN. DBXEND is not necessary after a DBXUNDO.

Table 5-25. DBXEND Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-213 DBXEND encountered XM error nn when ending dynamic
transaction.

Calling Errors: -11

-31

-140

-151

-219

-222

-223

-237

-238

Bad database reference.
Bad (unrecognized) DBXEND mode: n.
Bad baseid list.
Text length greater than 512 bytes.
Remote database access incompatible with Dynamic
Rollback.
Only DBXUNDO allowed when a dynamic transaction
encounters an error.
Cannot DBXEND or DBXUNDO a transaction which was
not active.
Cannot DBXEND or DBXUNDO a DBBEGIN transaction.
MDBX DBXBEGIN, DBXEND mode mismatch.

Logging System Failures: -111 WRITELOG failure.

Exceptional Conditions: 67

-213

-242

-332

DBU disabled; potential damage; only DBCLOSE allowed.
XM error on DBXEND.
Error in TurboGTX �le operation.
Error in QLOCK table operation.

Consult appendix A for more information about these conditions.

TurboIMAGE/XL Library Procedures 5-99

DBXUNDO

INTRINSIC NUMBER 422

Rolls back the active sequence of TurboIMAGE/XL procedure calls which are considered a
dynamic transaction.

Syntax

DBXUNDO ,

�
base

baseidlist

�
,text,mode,status,textlen

Parameters

base is the name of the array used as the base parameter when opening the
database. The �rst element of the array must contain the base ID returned by
DBOPEN. (Refer to DBOPEN for more information about the base ID.)

baseidlist Name of the integer array containing the base IDs of the databases which are
involved in the DMDBX. Use the same baseidlist parameter of DBXBEGIN
mode 3, when calling DBXUNDO to roll back a DMDBX.

text is an array up to 256 halfwords long that contains user ASCII or binary data
to be written to the log �le as part of the DBXUNDO log record.

mode Must be a halfword equal to 1 when employing base as the base parameter or
3 when using baseidlist with the matching DBXBEGIN call.

Mode 1: Dynamically roll back DBPUT, DBDELETE, and DBUPDATE
intrinsics which completed successfully since the matching
DBXBEGIN mode 1 call.

Mode 3: Dynamically roll back DBPUT, DBDELETE, and DBUPDATE
intrinsics which completed successfully inside the DMDBX to
their respective databases since the matching DBXBEGIN mode
3 call. If user logging is enabled for the databases, mode 3
generates multiple entries in the log �le, one for each database, in
order to mark the roll back of the dynamic transaction.

status is the name of an array of 10 halfwords in which TurboIMAGE/XL
returns status information about the procedure. If the procedure executes
successfully, the status array contents are as follows:

Element Contents

1 If the procedure succeeds, the return status is 0. Table 5-26
describes the contents of element 1 when the procedure does not
succeed.

2-4 Unchanged from previous procedure call using this array.

5-10 Procedure call information. Refer to \Library Procedure Error
Messages" in appendix A for a description of this information.

5-100 TurboIMAGE/XL Library Procedures

DBXUNDO

textlen is an integer equal to the number of halfwords to be logged from the text
parameter, or is a negative integer equal to the number of bytes. Length can
be zero.

Discussion

DBXUNDO is called to dynamically roll back a sequence of TurboIMAGE/XL procedure calls
that completed successfully inside a dynamic transaction. The beginning of such a sequence
is designated by a previous call to DBXBEGIN. DBXUNDO cannot be called to roll back a
transaction started by DBBEGIN or if the database is enabled for AUTODEFER.

Logging and DBRECOV are not needed with dynamic transactions, because the database
can be recovered dynamically. However, if the calling process is logging, DBXUNDO causes
a record to be written to the log �le to identify the transaction in the event it needs to be
recovered.

TurboIMAGE/XL Library Procedures 5-101

DBXUNDO

Caution After DBXUNDO is called, the current record pointer, current path, current
list, and chronological order prior to the call to DBXBEGIN may not be
restored.

DBXUNDO cannot be called to roll back a transaction started by DBBEGIN. DBXUNDO
returns an error condition if it is called without a prior matching call to DBXBEGIN.
DBXEND is not necessary after DBXUNDO. DBXUNDO rolls back the entire transaction,
and then transactions continue according to the logic of the program. In general, DBXUNDO
or DBXEND must be the last intrinsic for a dynamic transaction to be executed. It designates
the end of that dynamic transaction.

Table 5-26. DBXUNDO Return Status Values

File System, Memory
Management, and
Transaction Management
Failures:

-215 XM error nn encountered when rolling out dynamic
transaction.

Calling Errors: -11

-31

-140

-151

-218

-219

-223

-237

-238

-240

Bad database reference.
Bad (unrecognized) DBXUNDO mode n.
Bad baseid list.
Text length greater than 512 bytes.
Output deferred is incompatible with Dynamic Rollback.
Remote database access is incompatible with Dynamic
Rollback.
Cannot DBXEND or DBXUNDO a transaction which was
not active.
Cannot DBXEND or DBXUNDO a DBBEGIN transaction.
MDBX DBXBEGIN, DBXEND mode mismatch.
MDBX mode mismatch.

Logging System Failures: -111 WRITELOG failure.

Exceptional Conditions: -231

-242

-332

67

During DBX recovery, internal procedure failed; error nn.
Error in TurboGTX �le operation.
Error in QLOCK table operation.
DBU disabled; potential damage; only DBCLOSE allowed.

Consult appendix A for more information about these conditions.

5-102 TurboIMAGE/XL Library Procedures

6

Host Language Access

You can access TurboIMAGE/XL from Compatibility Mode or Native Mode application
programs. Compilers are available on MPE/iX in one or both modes in BASIC, BBASIC, C,
COBOL, COBOL II, FORTRAN 66, FORTRAN 77, Pascal, RPG, and SPL. This chapter
focuses on speci�c programming languages for use with Native Mode only. For Compatibility
Mode examples, refer to the TurboIMAGE/V Database Management System Reference
Manual .

The �rst section of this chapter presents a model program written in pseudo code; the
subsequent sections discuss using TurboIMAGE/XL with speci�c programming languages.

Note If you are an experienced TurboIMAGE/XL programmer, you can skip the
model program and go directly to the section containing the language in which
you write your application.

The following languages are presented in alphabetical order in this chapter:

C
COBOL II
FORTRAN 77
Pascal
RPG

Each discussion includes:

A presentation of any needed language-speci�c TurboIMAGE/XL information.

An example showing some of the various model program routines written in the particular
language. Note that the COBOL II program example shows all of the routines included in
the model program.

The COBOL II program is a complete, executable program. The RPG program is also
executable, although it contains only a subset of the model program routines. The other
language examples show only portions of the model program but do demonstrate many of the
TurboIMAGE/XL procedures. All of the examples are designed to illustrate the most simple
and direct way TurboIMAGE/XL procedures are called. They are not intended as examples
of the best way to code the tasks that are illustrated; this will vary with the application
requirements and an individual programmer's coding methods.

A knowledge of the programming language is assumed. If you have questions about
the language itself, consult the appropriate language manual. For information on the
TurboIMAGE/XL data types to be used with these languages, refer to chapter 3.

Note In this manual a word is a 32-bit storage unit and a halfword is a 16-bit
storage unit. One byte is 8 bits.

Host Language Access 6-1

Model Program

This section shows the model for the example programs that run against the ORDERS
database. You may wish to skip this section if you are an experienced TurboIMAGE/XL
programmer.

The main entry point for the application is a numbered list of functions that can be performed
by calling the various routines. Each routine is made up of one or more tasks that are
implemented through TurboIMAGE/XL intrinsic calls. Each call contains one or more
parameters, some of which are used to pass their assigned values to TurboIMAGE/XL
intrinsics. These values determine the outcome of the intrinsic. Other parameters are used to
receive data and status information from TurboIMAGE/XL intrinsics.

This model attempts to familiarize you with generic techniques for making TurboIMAGE/XL
intrinsic calls. Additionally, the model reiterates the importance of de�ning TurboIMAGE/XL
transactions for logging and recovery.

The conventions used throughout the model and the structure of the program are explained
immediately preceding the model program.

ORDERS Database Schema

Figure 6-1 contains the list �le output printed when the schema of the sample ORDERS
database is processed. This schema is shown earlier in chapter 3, but is repeated here for easy
reference when reading through the model program. Use it to refer to the data set and data
item names used in the model program.

Note Because the Schema Processor, DBSCHEMA, upshifts alphabetic characters,
programs must specify data set and data item names in all uppercase
characters. Take note of this if the programming language you use does not
require uppercase characters.

6-2 Host Language Access

PAGE 1

HEWLETT-PACKARD 30391C.05.00 TurboIMAGE/3000: DBSCHEMA TUE, JAN 11

$CONTROL LIST,LINES=46

$PAGE "SCHEMA FOR DATABASE ORDERS"

BEGIN DATABASE ORDERS;

PASSWORDS:

11 CREDIT; << CUSTOMER CREDIT OFFICE >>

12 BUYER; << BUYER - RESPONSIBLE FOR PARTS INVENTORY >>

13 SHIP-REC; << WAREHOUSE - SHIPPING AND RECEIVING >>

14 CLERK; << SALES CLERK >>

18 DO-ALL; << FOR USE BY MGMT >>

ITEMS: << IN ALPHABETICAL ORDER FOR CONVENIENCE >>

ACCOUNT, J2 ; << CUSTOMER ACCOUNT NUMBER>>

BINNUM, Z2 (/13); << STORAGE LOCATION OF PROD>>

CITY, X12 (12,13,14/11); << CITY>>

CREDIT-RATING, R2 (/14); << CUSTOMER CREDIT RATING>>

DATE, X6 ; << DATE (YYMMDD)>>

DELIV-DATE, X6 (/14); << DELIVERY DATE (YYMMDD)>>

DESCRIPTION, X20 ; << PRODUCT DESCRIPTION>>

FIRST-NAME, X10 (14/11); << CUSTOMER GIVEN NAME>>

INITIAL, U2 (14/11); << CUSTOMER MIDDLE INITIAL>>

LAST-NAME, X16 (14/11); << CUSTOMER SURNAME>>

LASTSHIPDATE, X6 (12/); << DATE LAST REC D(YYMMDD)>>

ONHANDQTY, J2 (14/12); << TOTAL PRODUCT INVENTORY>>

PRICE, J2 (14/); << SELLING PRICE (PENNIES)>>

PURCH-DATE, X6 (11/14); << PURCHASE DATE (YYMMDD)>>

QUANTITY, I (/14); << SALES PURCHASE QUANTITY>>

STATE, X2 (12,13,14/11); << STATE -- 2 LETTER ABB>>

STOCK#, U8 ; << PRODUCT STOCK NUMBER>>

STREET-ADDRESS, X26 (12,13,14/11); << NUMBER AND STREET ADDRESS>>

SUPPLIER, X16 (12,13/); << SUPPLYING COMPANY NAME>>

TAX, J2 (14/); << SALES TAX (PENNIES)>>

TOTAL, J2 (11,14/); << TOTAL AMOUNT OF SALE (PENNIES)>>

UNIT-COST, P8 (/12); << UNIT COST OF PRODUCT>>

ZIP, X6 (12,13,14/11); << ZIP CODE>>

SETS:

NAME: DATE-MASTER,AUTOMATIC,DISC1; <<DATE MASTER>>

ENTRY: DATE(3);

CAPACITY: 365;

NAME: CUSTOMER,MANUAL(14/11,18),DISC1; <<CUSTOMER MASTER>>

ENTRY: ACCOUNT(1),

LAST-NAME,

FIRST-NAME,

INITIAL,

STREET-ADDRESS,

CITY,

STATE,

ZIP,

CREDIT-RATING;

CAPACITY: 201;

Figure 6-1. ORDERS Database Schema Listing

Host Language Access 6-3

PAGE 2 SCHEMA FOR DATABASE ORDERS

NAME: PRODUCT,MANUAL(13,14/12,18),DISC1;<<PRODUCT MASTER>>

ENTRY: STOCK#(2),

DESCRIPTION;

CAPACITY: 300;

NAME: SUP-MASTER,MANUAL(13/12,18),DISC1; <<SUPPLIER MASTER>>

ENTRY: SUPPLIER(1),

STREET-ADDRESS,

CITY,

STATE,

ZIP;

CAPACITY: 201;

NAME: INVENTORY,DETAIL(12,14/13,18),DISC2; <<INVENTORY DETAIL>>

ENTRY: STOCK#(PRODUCT),

ONHANDQTY,

SUPPLIER(!SUP-MASTER), <<PRIMARY PATH>>

UNIT-COST,

LASTSHIPDATE(DATE-MASTER),

BINNUM;

CAPACITY: 1800, 450, 10%;

NAME: SALES,DETAIL(11/14,18),DISC2; <<SALES DETAIL>>

ENTRY: ACCOUNT(CUSTOMER(PURCH-DATE)),

STOCK#(PRODUCT),

QUANTITY,

PRICE,

TAX,

TOTAL,

PURCH-DATE(DATE-MASTER),

DELIV-DATE(DATE-MASTER);

CAPACITY: 1800, 504, 112;

END.

DATA SET TYPE FLD PT ENTR MED MAXIMUM BLK BLK DISC

NAME CNT CT LGTH REC CAPACITY FAC LGTH SPACE

DATE-MASTER A 1 3 3 26 365 19 496 96

CUSTOMER M 9 1 41 52 201 7 365 96

PRODUCT M 2 2 14 31 300 16 497 80

SUP-MASTER M 5 1 31 42 201 12 505 80

INVENTORY D 6 3 20 32 1800 15 481 128

INITIAL CAPACITY: 450 INCREMENT ENTRIES: 45

SALES D 8 4 19 35 1008 14 491 160

INITIAL CAPACITY: 504 INCREMENT ENTRIES: 112

TOTAL DISC SECTORS INCLUDING ROOT: 672

NUMBER OF ERROR MESSAGES: 0

ITEM NAME COUNT: 23 DATA SET COUNT: 6

ROOT LENGTH: 1176 BUFFER LENGTH: 505 TRAILER LENGTH: 256

ROOT FILE ORDERS CREATED.

Figure 6-1. ORDERS Database Schema Listing (Continued)

6-4 Host Language Access

Model Program Conventions

The following conventions are used throughout the model.

�n� Refers to the option number assigned to each function shown
in the main body of the program.

t Indicates an intentional blank.

ACCESS Indicates the user access mode, or how the database was
opened for a particular routine. Note that for this model the
user access mode is always 1 (shared modify access).

Bu�er Name is made up of Indicates that a data structure is being used. Bu�er Name is
data item name the name given to the structure, and data item name is the
data item name name given to the individual parts of that record.
data item name
data item name

BEGIN MAIN LINE Indicates the beginning of the main body of the program.

BEGIN ROUTINE Indicates the beginning of a routine.

CALL procedure Calls the speci�c TurboIMAGE/XL intrinsic or internal
procedure to be used in this particular portion of the routine,
and speci�es the values for each parameter.

CALLED BY Refers to that portion of the program which called the routine.

CALLS Speci�es the TurboIMAGE/XL intrinsic (library procedure) or
the internal program procedure called by the routine. Note
that the intrinsics are listed in the order in which they are used
in the routine; as a result, some may be listed more than once.
Note that the mode for each call is also shown.

DISPLAY Displays any speci�ed data.

END LOOP Indicates the end of an iterative block.

END MAIN LINE Indicates the end of the main body of the program.

END ROUTINE Indicates the end of a routine.

ERROR CHECKING If error found, calls a routine that checks the contents of the
status array to determine what action to take.

EXIT LOOP condition Indicates the condition which terminates an iteration.

Not Used Parm Indicates a dummy parameter when a particular intrinsic call
does not use a speci�c parameter.

OBJECTIVE States the purpose of each routine.

OBTAIN �user input Allows the user to enter the required information interactively.

OBTAIN parameter �value Indicates the assignment of a value to a parameter.

Note For Pascal programmers only: Note that parameters cannot be odd-byte
aligned.

Host Language Access 6-5

RETURN Transfers control to the beginning of the iterative block in
which it is used.

START LOOP Indicates the beginning of an iterative block.

6-6 Host Language Access

ORDERS Database Model Program

ORDERS Database Model Program

Main Body of Program

BEGIN MAIN LINE

* OBJECTIVE: The main line contains the logic of this application.

* It displays all functions, accepts a selection,

* then calls the appropriate routines. The execution

* of this program stops after the database is closed.

*

* ACCESS: Not applicable.

*

* CALLED BY: Not applicable.

*

* CALLS: Open_The_Database

* Get_Sales_For_Date

* Get_A_Customer_Record

* Get_A_Product_Record

* List_All_Customers

* Add_A_Product

* Update_A_Customer

* Delete_A_Product

* Rewind_Customer_Set

* Get_Data_Item_Info

* Get_Error_And_Explain

* Close_The_Database

START LOOP

DISPLAY the list of functions

The following illustration depicts one way of displaying the list of functions for this program.

OBTAIN option � user input

If option = 1

Then CALL Open_The_Database

and RETURN

If option = 2

Host Language Access 6-7

ORDERS Database Model Program

Then CALL Get_Sales_For_Date

and RETURN

If option = 3

Then CALL Get_A_Customer_Record

and RETURN

If option = 4

Then CALL Get_A_Product_Record

and RETURN

If option = 5

Then CALL List_All_Customers

and RETURN

If option = 6

Then CALL Add_A_Product

and RETURN

If option = 7

Then CALL Update_A_Customer

and RETURN

If option = 8

Then CALL Delete_A_Product

and RETURN

If option = 9

Then CALL Rewind_Customer_Set

and RETURN

If option = 10

Then CALL Get_Data_Item_Info

and RETURN

If option = 11

Then CALL Get_Error_And_Explain

and RETURN

If option = 12

Then CALL Close_The_Database

and RETURN

EXIT LOOP if option = 12

END LOOP

END MAIN LINE

Opening the Database

(USER SELECTS �1� TO OPEN THE DATABASE)

ROUTINE: Open_The_Database

* OBJECTIVE: This routine opens the ORDERS database in mode 1

* for this application.

*

* ACCESS: Mode 1 - Shared Modify Access (SMA) with locking required

*

* CALLED BY: Main Line

*

* CALLS: DBOPEN in mode 1 (SMA)

BEGIN ROUTINE

6-8 Host Language Access

ORDERS Database Model Program

OBTAIN DBname � "ttORDERS;"

OBTAIN Password � "DO-ALL;"

CALL DBOPEN (DBname, Password, Mode1_SMA, Status)

ERROR CHECKING

END ROUTINE

Retrieving All the Records on a Chain (with Item Level Locking)

(USER SELECTS �2� TO RETRIEVE SALES DATA)

ROUTINE: Get_Sales_For_Date

* OBJECTIVE: This routine demonstrates chained access, forward chained

* read, and data item locking.

*

* The routine retrieves all sales records generated

* on a particular purchase date. The value for date is

* provided by the user and is used as the search item.

* Due to concurrency issues, a data item lock is acquired

* on all sales records identified by the date.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBLOCK in mode 5 (unconditional)

* DBFIND in mode 1 (chained access)

* DBGET in mode 5 (forward chained read)

* DBUNLOCK in mode 1 (unlock)

BEGIN ROUTINE

Sales_Buffer is made up of:

Account

Stock#

Quantity

Price

Tax

Total

Purch-Date

Deliv-Date

Lock_Descriptor_Sales_Type is made up of:

Length_Of_Descriptor

Data_Set_Of_Descriptor

Data_Item_Of_Descriptor

Relative_Operator_For_Data_Item

Value_For_Data_Item

Lock_Descriptor_Sales_Array_Type is made up of:

Number_Of_Elements

Lock_Descriptor_Sales_Type

The following illustration shows the layout for a lock descriptor array formats after the actual
values have been assigned. Note that the date is stored in YYMMDD format.

Host Language Access 6-9

ORDERS Database Model Program

OBTAIN Number_Of_Elements � 1

OBTAIN Length_Of_Descriptor � 21

OBTAIN Data_Set_Of_Descriptor � "SALES;"

OBTAIN Data_Item_Of_Descriptor � "PURCH-DATE;"

OBTAIN Relative_Operator_For_Data_Item � "t="

OBTAIN Value_For_Data_Item � "881012"

OBTAIN List � "@;"

OBTAIN Search_Item_Name � "PURCH-DATE;"

OBTAIN Search_Item_Value � "881012"

CALL DBLOCK (DBname, Lock_Descriptor_Sales_Array_Type,

Mode5_Unconditional, Status)

ERROR CHECKING

CALL DBFIND (DBname, Sales_Detail, Mode1_Chained_Read,

Status, Search_Item_Name, Search_Item_Value)

ERROR CHECKING

START LOOP

CALL DBGET (DBname, Sales_Detail, Mode5_Forward, Status,

List, Sales_Buffer, Not_Used_Parm)

ERROR CHECKING

DISPLAY the Sales_Buffer

6-10 Host Language Access

ORDERS Database Model Program

__

Account Stock# Quantity Price Tax Total Purch-Date Deliv-Date

EXIT LOOP if end of chain

END LOOP

CALL DBUNLOCK (DBname, Lock_Desc_Array, Mode1_Unlock, Status)

ERROR CHECKING

END ROUTINE

Retrieving a Data Entry Using a Record Number

(USER SELECTS �3� TO RETRIEVE CUSTOMER DATA)

ROUTINE: Get_A_Customer_Record

* OBJECTIVE: This routine demonstrates directed access by retrieving

* a customer record with a known record number. Note

* that the record number is first obtained using a DBGET

* call, which in this case is a calculated mode 7.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBGET in mode 7 (calculated read)

* DBGET in mode 4 (directed read)

BEGIN ROUTINE

Customer_Buffer is made up of:

Account

Last-Name

First-Name

Initial

Street-Address

City

State

Zip

Credit-Rating

OBTAIN List � "@;"

OBTAIN Key_Item_Value � 315578

CALL DBGET (DBname, Customer_Master, Mode7_Calculated, Status, List,

Customer_Buffer, Key_Item_Value)

ERROR CHECKING

OBTAIN Record_Num � Status [element 3]

CALL DBGET (DBname, Customer_Master, Mode4_Directed, Status, List,

Customer_Buffer, Record_Num)

ERROR CHECKING

DISPLAY the Customer_Buffer

Host Language Access 6-11

ORDERS Database Model Program

__

Account Last-Name First-Name Initial Street-Address City. . .

END ROUTINE

Retrieving Master Data Using a Key Value

(USER SELECTS �4� TO RETRIEVE PRODUCT DATA)

ROUTINE:Get_A_Product_Record

* OBJECTIVE: This routine demonstrates calculated access by

* retrieving a product record from a master data

* set based on a user-defined key item value.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBGET in mode 7 (calculated read)

BEGIN ROUTINE

Product_Buffer is made up of:

Stock#

Description

OBTAIN List � "@;"

OBTAIN Key_Item_Value � "STK30040"

CALL DBGET (DBname, Product_Master, Mode7_Calculated, Status, List,

Product_Buffer, Key_Item_Value)

ERROR CHECKING

DISPLAY the Product_Buffer

__

Stock# Description

END ROUTINE

Retrieving Data Serially (with Set Level Locking)

(USER SELECTS �5� TO RETRIEVE CUSTOMER DATA)

ROUTINE: List_All_Customers

* OBJECTIVE: This routine demonstrates serial access by listing

* all customer records. For the sake of consistency,

* the data set is locked for exclusive access,

* then the data is read serially.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBLOCK in mode 3 (unconditional)

* DBGET in mode 2 (forward read)

* DBUNLOCK in mode 1 (unlock)

BEGIN ROUTINE

6-12 Host Language Access

ORDERS Database Model Program

Customer_Buffer is made up of:

Account

Last-Name

First-Name

Initial

Street-Address

City

State

Zip

Credit-Rating

CALL DBLOCK (DBname, Customer_Master, Mode3_Unconditional, Status)

ERROR CHECKING

OBTAIN List � "Account, Last-Name, First-Name, Initial;"

START LOOP

CALL DBGET (DBname, Customer_Master, Mode2_Forward, Status, List,

Customer_Buffer, Not_Used_Parm)

ERROR CHECKING

DISPLAY List

__

Account Last-Name First-Name Initial

EXIT LOOP if first word of Status buffer <> 0

END LOOP

CALL DBUNLOCK (DBname, Customer_Master, Mode1_Unlock, Status)

ERROR CHECKING

END ROUTINE

Adding an Entry

(USER SELECTS �6� TO DO A PUT)

ROUTINE: Add_A_Product

* OBJECTIVE: This routine adds one entry to the Product master data

* set. After obtaining user input, the data set is locked

* for exclusive access. A transaction starts, and

* new values are added by a call to DBPUT. At the end

* of the routine, the transaction is ended and locks

* are released.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBLOCK in mode 3 (unconditional)

* DBBEGIN in mode 1 (transaction begin)

* DBPUT in mode 1 (put)

* DBEND in mode 1 (transaction end)

* DBUNLOCK in mode 1 (unlock)

BEGIN ROUTINE

Host Language Access 6-13

ORDERS Database Model Program

Product_Buffer is made up of:

Stock#

Description

OBTAIN Stock# � user input

OBTAIN Description � user input

OBTAIN List � "@;"

CALL DBLOCK (DBname, Product_Master, Mode3_Unconditional, Status)

ERROR CHECKING

OBTAIN Text � "Add entry to Product set Begintt"

OBTAIN Textlen � 16

CALL DBBEGIN (DBname, Text, Mode1_Xbegin, Status, TextLen)

ERROR CHECKING

CALL DBPUT (DBname, Product_Master, Mode1_Put, Status, List,

Product_Buffer)

ERROR CHECKING

OBTAIN Text � "Add entry to Product set End"

OBTAIN Textlen � 14

CALL DBEND (DBname, Text, Mode1_Xend, Status, Textlen)

ERROR CHECKING

CALL DBUNLOCK (DBname, Product_Master, Mode1_Unlock, Status)

ERROR CHECKING

END ROUTINE

Updating an Entry

(USER SELECTS �7� TO DO AN UPDATE)

ROUTINE: Update_A_Customer

* OBJECTIVE: This routine updates a customer record interactively.

* Updating is achieved by using the key item value to

* locate the proper entry. It then displays the contents

* to be updated.

*

* To perform the actual update, a TurboIMAGE/XL

* transaction is started. The entry is retrieved using

* a re-read mode, and an item level lock is obtained using

* the search value. A contents check of the new values

* is done against the old values. If the contents have

* changed, the user can choose to abort the process. Otherwise,

* the transaction proceeds and the update takes place.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

6-14 Host Language Access

ORDERS Database Model Program

*

* CALLS: DBGET in mode 7 (calculated)

* DBLOCK in mode 5 (unconditional)

* DBBEGIN in mode 1 (transaction begin)

* DBGET in mode 1 (re-read)

* DBUPDATE in mode 1 (update)

* DBEND in mode 1 (transaction end)

* DBUNLOCK in mode 1 (unlock)

BEGIN ROUTINE

Customer_Buffer,

Customer_Buffer_New, and

Customer_Buffer_Old are made up of:

Account

Last-Name

First-Name

Initial

Street-Address

City

State

Zip

Credit-Rating

Lock_Descriptor_Customer_Type is made up of:

Length_Of_Descriptor

Data_Set_Of_Descriptor

Data_Item_Of_Descriptor

Relative_Operator_For_Data_Item

Value_For_Data_Item

Lock_Descriptor_Customer_Array_Type is made up of:

Number_Of_Elements

Lock_Descriptor_Customer_Type

OBTAIN List � "@;"

OBTAIN Key_Item_Value � user input

CALL DBGET (DBname, Customer_Master, Mode7_Calculated, Status, List,

Customer_Buffer, Key_Item_Value)

ERROR CHECKING

Customer_Buffer_Old � Customer_Buffer

DISPLAY Customer_Buffer

OBTAIN Customer_Buffer_New � user input

OBTAIN Number_Of_Elements � 1

OBTAIN Length_Of_Descriptor � 22

OBTAIN Data_Set_Of_Descriptor � "CUSTOMER;"

OBTAIN Data_Item_Of_Descriptor � "ACCOUNT;"

OBTAIN Relative_Operator_For_Data_Item � "t="

OBTAIN Value_For_Data_Item � Key_Item_Value

CALL DBLOCK (DBname, Lock_Descriptor_Customer_Array_Type,

Mode5_Unconditional, Status)

ERROR CHECKING

OBTAIN Text � "Update entry on Customer set Begintt"

Host Language Access 6-15

ORDERS Database Model Program

OBTAIN Textlen � 18

CALL DBBEGIN (DBname, Text, Mode1_Xbegin, Status, Textlen)

ERROR CHECKING

CALL DBGET (DBname, Customer_Master, Mode1_Reread, Status, List,

Customer_Buffer, Not_Used_Parm)

ERROR CHECKING

If Customer_Buffer is the same as Customer_Buffer_Old

Then continue

Otherwise

Let the user know that the entry has been modified by

another user, end the transaction, and release the locks.

CALL DBUPDATE (DBname, Customer_Master, Mode1_Update, Status, List,

Customer_Buffer_New)

ERROR CHECKING

OBTAIN Text � "Update entry on Customer set End"

OBTAIN Textlen � 16

CALL DBEND (DBname, Text, Mode1_Xend, Status, Textlen)

ERROR CHECKING

CALL DBUNLOCK (DBname, Customer_Master, Mode1_Unlock, Status)

ERROR CHECKING

END ROUTINE

Deleting an Entry

(USER SELECTS �8� TO DELETE AN ENTRY)

ROUTINE: Delete_A_Product

* OBJECTIVE: This routine deletes an entry from the Product master

* data set. The entry is specified by its key item value.

* Identifying the entry and deleting it are preceded by

* calls to DBLOCK and DBBEGIN to obtain locks and to start

* a new transaction.

*

* When the entry is located, the deletion of the record

* at the current record pointer is done by a call to

* DBDELETE.

*

* The completion of a transaction is achieved by a call

* to DBEND, and outstanding locks on this data set are

* released by a call to DBUNLOCK.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBLOCK in mode 3 (unconditional)

6-16 Host Language Access

ORDERS Database Model Program

* DBBEGIN in mode 1 (transaction begin)

* DBGET in mode 7 (calculated read)

* DBDELETE in mode 1 (delete)

* DBEND in mode 1 (transaction end)

* DBUNLOCK in mode 1 (unlock)

BEGIN ROUTINE

Product_Buffer is made up of:

Stock#

Description

CALL DBLOCK (DBname, Product_Master, Mode3_Unconditional, Status)

ERROR CHECKING

OBTAIN List � "@;"

OBTAIN Text � "Delete entry from Product set Begint"

OBTAIN Textlen � 18

OBTAIN Key_Item_Value � "STK30040"

CALL DBBEGIN (DBname, Text, Mode1_Xbegin, Status, Textlen)

ERROR CHECKING

CALL DBGET (DBname, Product_Master, Mode7_Calculated, Status, List,

Product_Buffer, Key_Item_Value)

ERROR CHECKING

CALL DBDELETE (DBname, Product_Master, Mode1_Delete, Status)

ERROR CHECKING

OBTAIN Text � "Delete entry from Product set Endttt"

OBTAIN Textlen � 18

CALL DBEND (DBname, Text, Mode1_Xend, Status, Textlen)

ERROR CHECKING

CALL DBUNLOCK (DBname, Product_Master, Mode1_Unlock, Status)

ERROR CHECKING

END ROUTINE

Rewinding a Data Set

(USER SELECTS �9� TO REWIND A DATA SET)

ROUTINE: Rewind_Customer_Set

* OBJECTIVE: This routine rewinds the customer data set by calling

* DBCLOSE in mode 2.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBCLOSE in mode 2 (rewind)

Host Language Access 6-17

ORDERS Database Model Program

BEGIN ROUTINE

CALL DBCLOSE (DBname, Customer_Master, Mode2_Rewind, Status)

ERROR CHECKING

END ROUTINE

Obtaining Database Information

(USER SELECTS �10� TO OBTAIN INFORMATION ABOUT A DATA ITEM)

ROUTINE: Get_Data_Item_Info

* OBJECTIVE: This routine obtains information about a data item

* by calling DBINFO in mode 102.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBINFO in mode 102 (item access)

BEGIN ROUTINE

DBINFO_Buffer is made up of:

Data_Item_Name

Data_Type

Sub_Item_Length

Sub_Item_Count

OBTAIN Data_Item_Name � "PURCH-DATE;"

CALL DBINFO (DBname, Data_Item_Name, Mode102_Item, Status, DBINFO_Buffer)

ERROR CHECKING

DISPLAY the DBINFO_Buffer

__

Data_Item_Name Data_Type Sub_Item_Length Sub_Item_Count

END ROUTINE

Obtaining Error Messages and Explanations

(USER SELECTS �11� TO OBTAIN ERROR MESSAGES AND ADDITIONAL

ERROR-RELATED INFORMATION)

ROUTINE:Get_Error_And_Explain

* OBJECTIVE: This routine generates an error message, corresponding

* to the existing value in the first word of the status

* parameter, by calling the DBERROR intrinsic.

* Additionally, the routine generates a description

* regarding the outstanding error message by calling the

* DBEXPLAIN intrinsic.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBERROR

* DBEXPLAIN

6-18 Host Language Access

ORDERS Database Model Program

BEGIN ROUTINE

Error_Buffer is made up of:

Error_Message

CALL DBERROR (Status, Error_Buffer, Error_Length)

DISPLAY the Error_Buffer

__

Error_Message

CALL DBEXPLAIN (Status)

END ROUTINE

Closing the Database

(USER SELECTS �12� TO CLOSE THE DATABASE)

ROUTINE: Close_The_Database

* OBJECTIVE: This routine closes the ORDERS database by calling

* the DBCLOSE intrinsic.

*

* ACCESS: Mode 1 - Shared Modify Access

*

* CALLED BY: Main Line

*

* CALLS: DBCLOSE in mode 1 (close)

BEGIN ROUTINE

CALL DBCLOSE (DBname, Not_Used_Parm, Mode1_Close, Status)

ERROR CHECKING

END ROUTINE

Host Language Access 6-19

C

This section shows, in C, portions of the model program presented at the beginning of this
chapter. The examples perform speci�c tasks to illustrate the use of TurboIMAGE/XL
intrinsics. The C example does not illustrate everything in the COBOL example. Some blocks
of code may be appropriate only if expanded to a full program.

Data items are de�ned at the beginning of the sample program. TurboIMAGE/XL intrinsics
must be declared for C as external procedures. The procedure name is identi�ed by the word
\Intrinsic."

Type declarations declare names for data structure forms that will be used in allocating
variables. Variable declarations allocate the variables of the program. Variables are de�ned
with precise types or forms. C string literals are delimited with double quotation marks
(" "). Field and record names are separated with a dot (.) when referenced (for example,
base name.baseid).

Note Because the Schema Processor, DBSCHEMA, upshifts alphabetic characters,
programs must specify data set and data item names in all uppercase
characters. Take note of this because C does not require that you use
uppercase characters.

For information on TurboIMAGE/XL data item lengths and type designators, refer to chapter
3. Tables 3-2 and 3-3 show the TurboIMAGE/XL type designators, sub-item lengths, and
data types typically used to process them in C.

Note All parameters must be on halfword boundaries.

Defining Data Types, Variables, and Intrinsics

The following is part of the C example program; it de�nes type declarations, variable
declarations, and TurboIMAGE/XL intrinsics.

#pragma list off

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#pragma list on

/* Define all TurboIMAGE/XL procedure calls that */

/* will be used in your application program */

#pragma intrinsic DBBEGIN, DBEND, DBOPEN, DBCLOSE, DBGET, DBPUT,DBFIND, DBINFO

#pragma intrinsic DBEXPLAIN, DBERROR, DBDELETE, DBUPDATE, DBLOCK,DBUNLOCK

/* Define all your TurboIMAGE/XL constants */

#define End_Of_Chain 15 /* For DBGET Mode 5 */

#define End_Of_Data_Set 11 /* For DBGET Mode 2 */

#define No_Chain_Head 17 /* For DBFIND */

#define No_Such_Entry 17 /* For DBGET Mode 7 */

#define Entry_Has_No_Data 17 /* For DBGET Mode 4 */

short DBname[6]

Password[4]

Sales_D_Set[4];

char

*Purch_Date = "PURCH-DATE;",

6-20 Host Language Access

C

*Equal_Op = " =",

*Item_List ="ACCOUNT,STOCK#,PRICE,TAX,TOTAL,PURCH-DATE;";

/* Define all your global variables. */

struct

Database_Status_Type { short Condition;

short Length;

int Record_Number;

int Chain_Count;

int Back_Pointer;

int Forward_Pointer;

} Status;

struct

Sales_Data_Set_Type {int Account_Number;

char Stock_Number[8];

int Price;

int Tax;

int Total;

char Purch_Date[6];

};

struct

Lock_Descriptor_Type {short Num_Of_Elements;

short Length_Of_Descriptor;

char Data_Set_Of_Descriptor[16];

char Data_Item_Of_Descriptor[16];

char Relop_For_Data_Item[2];

char Value_For_Data_Item[6];

};

short Mode;

Main Body of Program

/* Beginning of the main program */

main()

{

/* Initialize the database and set information */

strcpy ((char *)DBname," ORDERS; ");

strcpy ((char *)Password,"DO-ALL;");

strcpy ((char *)Sales_D_Set,"SALES;");

Open_The_Database();

Get_Sales_For_Date();

exit (0);

}

Obtaining Error Messages and Explanations

The following paragraph implements the GET-ERROR-AND-EXPLAIN routine of the
sample program. This routine calls DBEXPLAIN and DBERROR. DBEXPLAIN interprets
the contents of the status parameter and prints a message on $STDLIST. DBERROR
returns a message in the ERROR-BUFFER, explaining the condition code returned by
TurboIMAGE/XL. At the end the routine, users can choose to abort or continue the
execution of this program.

Host Language Access 6-21

C

/* Beginning of subroutines */

Get_Error_And_Explain()

{

/*

Access : Mode 1 - Shared Modified Access

The Orders database was opened in mode 1

Called by: Open_The_Database

Get_Sales_For_Date

Get_A_Product_Record

List_All_Customers

Add_A_Product

Update_A_Customer

Delete_A_Product

Rewind_Customer_Set

Get_Data_Item_Info

Close_The_Database

Calls : DBERROR

DBEXPLAIN

*/

short Error_Buffer[80];

short Error_Length;

int Answer;

DBERROR(&Status,Error_Buffer,&Error_Length);

printf("---\n");

printf("%.*s\n",Error_Length, (char *)Error_Buffer);

printf("---\n");

DBEXPLAIN(&Status);

Answer=0;

printf("---Enter, <1> to ABORT..., <2> to Continue >\n");

scanf("%d",&Answer);

if (Answer != 1)

printf(" Continuing\n");

else

exit(0);

}

Opening the Database

This paragraph implements the OPEN-THE-DATABASE routine of the sample program in
C. All required values, such as the password, are de�ned in the \static char" section of the
program. Note that the password DO-ALL establishes user class number 18. The password
DO-ALL is followed by a semicolon because it is less than eight characters long; a blank can
be substituted for the semicolon. OPEN-THE-DATABASE uses open mode 1, which is the
shared modify access mode. Error trapping is done by referring all non-zero conditions to the
GET-ERROR-AND-EXPLAIN procedure.

6-22 Host Language Access

C

Open_The_Database()

{

/*

ACCESS : Mode 1 - Shared Modify Access (SMA) with locking required

Called By: Main Line

Calls : DBOPEN in mode 1 (SMA)

Get_Error_And_Explain

*/

Mode =1;

DBOPEN(DBname,Password,&Mode,&Status);

if (Status.Condition != 0)

Get_Error_And_Explain();

}

Retrieving All the Records on a Chain (with Item Level Locking)

This paragraph implements the GET-SALES-FOR-DATE routine of the sample program.
Chain access is achieved using a call to DBFIND to determine the location of the �rst and last
entries in the chain. The search item used for this call is PURCH-DATE. An item level lock is
obtained on the value of the search item before the DBFIND call. After that, individual chain
items are retrieved, until the end of the chain is encountered. This is done using multiple calls
to the DBGET procedure.

The routine traps two exceptional conditions:

1. Status condition 17 from the DBFIND call, indicating that the chain head cannot be
located.

2. Status 15 from the DBGET call, indicating the end of the chain.

The status interpretation routine permits you to either abort or continue with the execution
after viewing all error messages.

Get_Sales_For_Date()

/*

ACCESS : Mode 1 - Shared Modify Access

The Orders database was opened in mode 1

Called By: Main Line

Calls : DBLOCK in mode 5 (unconditional item level locking)

DBFIND in mode 1 (chained access)

DBGET in mode 5 (forward chained read)

DBUNLOCK in mode 1 (unlock)

Get_Error_And_Explain

*/

{

struct Lock_Descriptor_Type Lock_Descriptor;

struct Sales_Data_Set_Type Sales_Buffer;

short Search_Item_Value[3];

short Search_Item_Name[8];

short List[40];

short Dummy;

size_t srch_len = 6;

/* Prepare the lock descriptor buffer for obtaining item

Host Language Access 6-23

C

level locks on the Sales data set.

*/

Lock_Descriptor.Num_Of_Elements = 1;

Lock_Descriptor.Length_Of_Descriptor = 21;

strcpy(Lock_Descriptor.Data_Set_Of_Descriptor,(char *)Sales_D_Set);

strcpy(Lock_Descriptor.Data_Item_Of_Descriptor,(char *)Purch_Date);

Lock_Descriptor.Relop_For_Data_Item[0] = Equal_Op[0];

Lock_Descriptor.Relop_For_Data_Item[1] = Equal_Op[1];

printf("Enter The Date of Purchase as (YYMMDD) >>> \n");

scanf("%6c", (char *)Search_Item_Value);

/* Request item level locks (mode 5) */

Mode = 5;

/* Append the user's input to the lock descriptor buffer */

strncpy(Lock_Descriptor.Value_For_Data_Item,

(char *)Search_Item_Value,srch_len);

/* Place item level locks on all entries identified by

the value in the Search_Item_Value

*/

DBLOCK(DBname,&Lock_Descriptor,&Mode,&Status);

if (Status.Condition != 0)

Get_Error_And_Explain();

Mode = 1;

strcpy((char *)Search_Item_Name, Purch_Date);

/* Locate the chain identified by the value in the

Search_Item_Value

*/

DBFIND(DBname,Sales_D_Set,&Mode,&Status,

Search_Item_Name, Search_Item_Value);

if (Status.Condition != 0)

{

if (Status.Condition == No_Chain_Head)

{

printf("***************************************\n");

printf("* No Such Entry in the Sales Dataset *\n");

printf("* Please Try Again. *\n");

printf("***************************************\n");

}

else

Get_Error_And_Explain();

}

else

{

/* Start retrieving all records in the current chain */

printf("\n");

printf("Acct-Number Stock_Number Price Tax Total Purch-Date \n");

printf("---\n");

Mode = 5;

strcpy((char *)List,Item_List);

while (Status.Condition != End_Of_Chain)

{

DBGET(DBname,Sales_D_Set,&Mode,&Status,List,&Sales_Buffer,

&Dummy);

6-24 Host Language Access

C

if (Status.Condition == 0)

{

printf("\n");

printf("%11d",Sales_Buffer.Account_Number);

printf("%13.8s",Sales_Buffer.Stock_Number);

printf("%8d",Sales_Buffer.Price);

printf("%6d",Sales_Buffer.Tax);

printf("%7d",Sales_Buffer.Total);

printf("%12.6s",Sales_Buffer.Purch_Date);

}

else

{

if (Status.Condition == End_Of_Chain)

{

printf("\n\n\n");

printf ("----> End Of Chain.\n");

}

else

Get_Error_And_Explain();

}

} /* while */

} /* else */

/* Release all locks acquired at the beginning of the process */

Mode = 1; = 1;

DBUNLOCK (DBname,Sales_D_Set,&Mode,&Status);

if (Status.Condition != 0)

Get_Error_And_Explain();

}

Host Language Access 6-25

COBOL II

COBOL II

The model program presented at the beginning of this chapter is now shown here in
COBOL II. The program performs speci�c tasks to illustrate the use of TurboIMAGE/XL
intrinsics. Note that the code, although broken out by task, can be combined to make up a
complete, executable program.

Data items are de�ned at the beginning of the sample program. The parameters for the
TurboIMAGE/XL intrinsics are de�ned in the data division, and their values are de�ned when
the procedure is called or, in some cases, after it is executed.

The database identi�er is described as follows:

01 DBNAME.

05 BASEID PIC X(02).

05 BASENAME PIC X(06).

05 TERMINATOR PIC X(02).

To access a database catalogued in a group other than the user's log-on group, the database
name must be followed by a period and the group name, for example, ORDERS.GROUPX. If
the database is in an account other than the user's account, the group name must be followed
by a period and the account name, for example, ORDERS.GROUPX.ACCOUNT1.

Once the database has been opened and the database identi�er has been moved to the �rst
halfword of the element (as shown in \Opening the Database"), it remains the same for all
subsequent calls illustrated.

The status record is de�ned in the same way for all tasks but its content varies depending
upon which procedure is called and the results of that procedure. The status record is de�ned
as follows:

01 STATUS1.

05 CONDITION PIC S9(4) COMP.

05 LENGTH1 PIC S9(4) COMP.

05 RECORD-NUMBER PIC S9(9) COMP.

05 CHAIN-COUNT PIC S9(9) COMP.

05 BACK-POINTER PIC S9(9) COMP.

05 FORWARD-POINTER PIC S9(9) COMP.

NOT-USED-PARM appears as a reminder when a parameter is not used by a procedure
performing the task being illustrated. NOT-USED-PARM is de�ned in this program as
follows:

01 NOT-USED-PARM-16 PIC S9(4) COMP.

01 NOT-USED-PARM-32 PIC S9(9) COMP.

Note Because the Schema Processor, DBSCHEMA, upshifts alphabetic characters,
programs must specify data set and data item names in all uppercase
characters. Take note of this because COBOL II does not require that you use
uppercase characters.

For information on TurboIMAGE/XL data item lengths and type designators, refer to
chapter 3. Tables 3-2 and 3-3 show the TurboIMAGE/XL type designators, sub-item lengths,
and data types typically used to process them in COBOL II.

6-26 Host Language Access

COBOL II

Note All parameters must be on halfword boundaries.

Defining Data Types, Variables, and Intrinsics

The following is part of the COBOL II program; it de�nes all the data items and records.

IDENTIFICATION DIVISION.

PROGRAM-ID. RECEIVE.

DATE-COMPILED.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SPECIAL-NAMES.

SYMBOLIC CHARACTERS CLEAR, SCREEN IS 28, 86.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 END-OF-CHAIN PIC S9(4) COMP VALUE 15.

01 END-OF-DATA-SET PIC S9(4) COMP VALUE 11.

01 NO-CHAIN-HEAD PIC S9(4) COMP VALUE 17.

01 NO-SUCH-ENTRY PIC S9(4) COMP VALUE 17.

01 ENTRY-HAS-NO-DATA PIC S9(4) COMP VALUE 17.

01 DBNAME.

05 BASEID PIC X(02).

05 BASENAME PIC X(06).

05 TERMINATOR PIC X(02).

01 PASSWORD PIC X(10).

01 STATUS1.

05 CONDITION PIC S9(4) COMP.

05 LENGTH1 PIC S9(4) COMP.

05 RECORD-NUMBER PIC S9(9) COMP.

05 CHAIN-COUNT PIC S9(9) COMP.

05 BACK-POINTER PIC S9(9) COMP.

05 FORWARD-POINTER PIC S9(9) COMP.

01 OPTION PIC S9(4) COMP.

01 DB-MODE PIC S9(4) COMP.

01 LIST PIC X(80).

01 ERROR-BUFFER PIC X(80).

01 ERROR-LENGTH PIC S9(9) COMP.

01 ANSWER PIC S9(4) COMP.

01 LOCK-DESCRIPTOR-ARRAY.

05 NUM-OF-ELEMENTS PIC S9(4) COMP.

05 LOCK-DESCRIPTOR-SALES.

10 LENGTH-OF-DESCRIPTOR PIC S9(4) COMP.

10 DATA-SET-OF-DESCRIPTOR PIC X(16).

10 DATA-ITEM-OF-DESCRIPTOR PIC X(16).

10 RELOP-FOR-DATA-ITEM PIC X(02).

10 VALUE-FOR-DATA-ITEM PIC X(6).

10 NUM-VALUE-FOR-DATA-ITEM REDEFINES

VALUE-FOR-DATA-ITEM PIC S9(9) COMP.

01 SALES-DETAIL PIC X(16).

01 SEARCH-ITEM-NAME PIC X(16).

01 SEARCH-ITEM-VALUE PIC X(6).

01 SALES-BUFFER.

05 ACCOUNT-NUMBER PIC S9(9) COMP.

05 STOCK-NUMBER PIC X(8).

05 QUANTITY PIC S9(4) COMP.

05 PRICE PIC S9(9) COMP.

05 TAX PIC S9(9) COMP.

05 TOTAL PIC S9(9) COMP.

05 PURCH-DATE PIC X(6).

05 DELIV-DATE PIC X(6).

01 SALES-BUFFER-OUT.

05 ACCOUNT-NUMBER-OUT PIC Z(9)9.

Host Language Access 6-27

COBOL II

05 STOCK-NUMBER-OUT PIC B(7)X(8).

05 QUANTITY-OUT PIC Z(5)9.

05 PRICE-OUT PIC Z(6)9.

05 TAX-OUT PIC Z(4)9.

05 TOTAL-OUT PIC Z(6)9.

05 PURCH-DATE-OUT PIC B(6)X(6).

05 DELIV-DATE-OUT PIC B(6)X(6).

01 SALES-BUFFER-HEADER.

05 ACCOUNT-NUMBER-HEAD PIC X(13)

VALUE "Acct-Number ".

05 STOCK-NUMBER-HEAD PIC X(15)

VALUE "Stock-Number ".

05 QUANTITY-HEAD PIC X(05)

VALUE "QTY ".

05 PRICE-HEAD PIC X(07)

VALUE "Price ".

05 TAX-HEAD PIC X(06)

VALUE "Tax ".

05 TOTAL-HEAD PIC X(07)

VALUE "Total ".

05 PURCH-DATE-HEAD PIC X(13)

VALUE "Purch-Date ".

05 DELIV-DATE-HEAD PIC X(14)

VALUE "Delive-Date ".

01 LINE-HEADER.

05 PIC X(40)

VALUE "--".

05 PIC X(38)

VALUE "--------------------------------------".

01 NOT-USED-PARM-16 PIC S9(4) COMP.

01 NOT-USED-PARM-32 PIC S9(9) COMP.

01 FOUND-VALUE PIC S9(4) COMP.

88 NOT-FOUND VALUE 0.

88 FOUND VALUE 1.

01 CUSTOMER-MASTER PIC X(16).

01 CUSTOMER-BUFFER.

05 ACCOUNT-NUMBER PIC S9(9) COMP.

05 LAST-NAME PIC X(16).

05 FIRST-NAME PIC X(10).

05 INITIAL1 PIC X(02).

05 STREET-ADDRESS PIC X(26).

05 CITY PIC X(12).

05 STATE PIC X(02).

05 ZIP PIC X(06).

05 CREDIT-RATING PIC X(08).

01 CUSTOMER-BUFFER-OUT.

05 ACCOUNT-NUMBER-CUST-OUT PIC 9(6).

05 FIRST-NAME-CUST-OUT PIC X(15) JUST RIGHT.

05 PIC X.

05 INITIAL1-CUST-OUT PIC X(02).

05 LAST-NAME-CUST-OUT PIC X(16) JUST RIGHT.

01 KEY-ITEM-VALUE-PRODUCT PIC X(08).

01 KEY-ITEM-VALUE PIC S9(9) COMP.

01 LIST-NO-ITEM PIC S9(9) COMP.

01 SAVED-RECORD-NUMBER PIC S9(9) COMP.

01 PRODUCT-MASTER PIC X(16).

01 PRODUCT-BUFFER.

05 STOCK-NUMBER PIC X(08).

05 DESCRIPTION PIC X(20).

6-28 Host Language Access

COBOL II

01 DONE-VALUE PIC S9(4) COMP.

88 NOT-DONE VALUE 0.

88 DONE VALUE 1.

01 TEXT1 PIC X(80).

01 TEXTLEN PIC S9(9) COMP.

01 CUSTOMER-BUFFER-NEW.

05 ACCOUNT-NUMBER PIC S9(9) COMP.

05 LAST-NAME PIC X(16).

05 FIRST-NAME PIC X(10).

05 INITIAL1 PIC X(02).

05 STREET-ADDRESS PIC X(26).

05 CITY PIC X(12).

05 STATE PIC X(02).

05 ZIP PIC X(06).

05 CREDIT-RATING PIC X(08).

01 CUSTOMER-BUFFER-OLD.

05 ACCOUNT-NUMBER PIC S9(9) COMP.

05 LAST-NAME PIC X(16).

05 FIRST-NAME PIC X(10).

05 INITIAL1 PIC X(02).

05 STREET-ADDRESS PIC X(26).

05 CITY PIC X(12).

05 STATE PIC X(02).

05 ZIP PIC X(06).

05 CREDIT-RATING PIC X(08).

01 DATA-ITEM-NAME-IN PIC X(16).

01 M-102-BUFFER.

05 DATA-ITEM-NAME PIC X(16).

05 DATA-ITEM-TYPE PIC X(02).

05 DATA-ITEM-LENGTH PIC S9(4) COMP.

05 DATA-ITEM-COUNT PIC S9(4) COMP.

05 NOT-USED-ITEM PIC S9(4) COMP.

01 MENU.

05 MENU-LINE-1 PIC X(62) VALUE

"--".

05 MENU-LINE-2 PIC X(62) VALUE

"| |".

05 MENU-LINE-3 PIC X(62) VALUE

"| Entry Point |".

05 MENU-LINE-4 PIC X(62) VALUE

"| O R D E R S D A T A B A S E |".

05 MENU-LINE-5 PIC X(62) VALUE

"|--|".

05 MENU-LINE-6 PIC X(62) VALUE

"| 1)OPEN DATABASE 2)GET SALES RECORD FOR DATE |".

05 MENU-LINE-7 PIC X(62) VALUE

"| 3)GET A CUSTOMER RECORD 4)GET A PRODUCT RECORD |".

05 MENU-LINE-8 PIC X(62) VALUE

"| 5)LIST ALL CUSTOMERS 6)ADD A PRODUCT |".

05 MENU-LINE-9 PIC X(62) VALUE

"| 7)UPDATE CUSTOMER RECORD 8)DELETE A PRODUCT |".

05 MENU-LINE-10 PIC X(62) VALUE

"| 9)REWIND/RESET CUSTOMER SET 10)OBTAIN DATA ITEM INFORMATION|".

05 MENU-LINE-11 PIC X(62) VALUE

"| 11)GENERATE ERROR MESSAGES 12)CLOSE DATABASE |".

Host Language Access 6-29

COBOL II

Main Body of Program

PROCEDURE DIVISION.

10-MAIN-LINE.

PERFORM WITH TEST AFTER UNTIL OPTION = 12

PERFORM 20-DISPLAY-MENU

PERFORM 30-DO-ACTION

END-PERFORM

STOP RUN.

20-DISPLAY-MENU.

DISPLAY CLEAR SCREEN

DISPLAY MENU-LINE-1

DISPLAY MENU-LINE-2

DISPLAY MENU-LINE-3

DISPLAY MENU-LINE-4

DISPLAY MENU-LINE-5

DISPLAY MENU-LINE-2

DISPLAY MENU-LINE-6

DISPLAY MENU-LINE-7

DISPLAY MENU-LINE-8

DISPLAY MENU-LINE-9

DISPLAY MENU-LINE-10

DISPLAY MENU-LINE-11

DISPLAY MENU-LINE-2

DISPLAY MENU-LINE-1

DISPLAY SPACE.

30-DO-ACTION.

DISPLAY " Enter your option : "

WITH NO ADVANCING

ACCEPT OPTION FREE

EVALUATE OPTION

WHEN 1 PERFORM 100-OPEN-THE-DATABASE

WHEN 2 PERFORM 200-GET-SALES-FOR-DATE

WHEN 3 PERFORM 300-GET-A-CUSTOMER-RECORD

WHEN 4 PERFORM 400-GET-A-PRODUCT-RECORD

WHEN 5 PERFORM 500-LIST-ALL-CUSTOMERS

WHEN 6 PERFORM 600-ADD-A-PRODUCT

WHEN 7 PERFORM 700-UPDATE-A-CUSTOMER

WHEN 8 PERFORM 800-DELETE-A-PRODUCT

WHEN 9 PERFORM 900-REWIND-CUSTOMER-SET

WHEN 10 PERFORM 1000-GET-DATA-ITEM-INFO

WHEN 11 PERFORM 1100-GET-ERROR-AND-EXPLAIN

WHEN 12 PERFORM 1200-CLOSE-THE-DATABASE

WHEN OTHER

DISPLAY "-----------------------------------"

DISPLAY "| Please enter an option between |"

DISPLAY "| 1 and 12. |"

DISPLAY "-----------------------------------"

DISPLAY "Press Enter to Continue... "

NO ADVANCING

ACCEPT OPTION FREE

END-EVALUATE.

6-30 Host Language Access

COBOL II

Opening the Database

This paragraph implements the OPEN-THE-DATABASE routine of the sample program in
COBOL II. All required values, such as the password, are provided by the routine. Note that
the password DO-ALL establishes user class number 18. The password DO-ALL is followed
by a semicolon because it is less than eight characters long; a blank can be substituted for
the semicolon. OPEN-THE-DATABASE uses open mode 1, which is the shared modify
access mode. Error trapping is done by referring all non-zero conditions to paragraph
1100-GET-ERROR-AND-EXPLAIN.

**

* ACCESS : Mode 1 - Shared Modify Access (SMA) with locking required

*

* Called By: 30-DO-ACTION

*

* Calls : DBOPEN in mode 1 (SMA)

* 1100-GET-ERROR-AND-EXPLAIN

100-OPEN-THE-DATABASE.

MOVE SPACES TO BASEID

MOVE "ORDERS" TO BASENAME

MOVE ";" TO TERMINATOR

MOVE "DO-ALL;" TO PASSWORD

MOVE 1 TO DB-MODE

CALL "DBOPEN" USING DBNAME, PASSWORD, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF.

Retrieving All the Records on a Chain (with Item Level Locking)

This paragraph implements the GET-SALES-FOR-DATE routine of the sample program.
Chain access is achieved using a call to DBFIND to determine the location of the �rst and last
entries in the chain. The search item used for this call is PURCH-DATE. An item level lock is
obtained on the value of the search item before the DBFIND call. After that, individual chain
items are retrieved, until the end of the chain is encountered. This is done using multiple calls
to the DBGET procedure.

The routine traps two exceptional conditions:

1. Status condition 17 from the DBFIND call, indicating that the chain head cannot be
located.

2. Status 15 from the DBGET call, indicating the end of the chain.

The status interpretation routine permits you to either abort or continue with the execution
after viewing all error messages.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBLOCK in mode 5 (unconditional item level locking)

* DBFIND in mode 1 (chained access)

* DBGET in mode 5 (forward chained read)

* DBUNLOCK in mode 1 (unlock)

* 1100-GET-ERROR-AND-EXPLAIN

200-GET-SALES-FOR-DATE.

Host Language Access 6-31

COBOL II

MOVE 1 TO NUM-OF-ELEMENTS

MOVE 21 TO LENGTH-OF-DESCRIPTOR

MOVE "SALES;" TO DATA-SET-OF-DESCRIPTOR

MOVE "PURCH-DATE;" TO DATA-ITEM-OF-DESCRIPTOR

MOVE " =" TO RELOP-FOR-DATA-ITEM

DISPLAY CLEAR SCREEN

DISPLAY " Enter The Date of Purchase as (YYMMDD) >>> "

NO ADVANCING

ACCEPT SEARCH-ITEM-VALUE FREE

MOVE 5 TO DB-MODE

MOVE SEARCH-ITEM-VALUE TO VALUE-FOR-DATA-ITEM

CALL "DBLOCK" USING DBNAME, LOCK-DESCRIPTOR-ARRAY, DB-MODE,

STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE "SALES;" TO SALES-DETAIL

MOVE 1 TO DB-MODE

MOVE "PURCH-DATE;" TO SEARCH-ITEM-NAME

CALL "DBFIND" USING DBNAME, SALES-DETAIL, DB-MODE, STATUS1,

SEARCH-ITEM-NAME, SEARCH-ITEM-VALUE

IF CONDITION = 0 THEN

SET FOUND TO TRUE

ELSE

SET NOT-FOUND TO TRUE

IF CONDITION = NO-CHAIN-HEAD THEN

DISPLAY CLEAR SCREEN

DISPLAY "**"

DISPLAY "* No Such Entry in the Sales Data Set. *"

DISPLAY "* Please Try Again. *"

DISPLAY "**"

DISPLAY "Press Enter to Continue -------------->"

NO ADVANCING

ACCEPT OPTION FREE

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

END-IF

IF FOUND THEN

DISPLAY CLEAR SCREEN

DISPLAY SALES-BUFFER-HEADER

DISPLAY LINE-HEADER

PERFORM WITH TEST BEFORE UNTIL CONDITION = END-OF-CHAIN

MOVE 5 TO DB-MODE

MOVE "@;" TO LIST

CALL "DBGET" USING DBNAME, SALES-DETAIL, DB-MODE,

STATUS1, LIST, SALES-BUFFER,

NOT-USED-PARM-16

IF CONDITION NOT = 0 THEN

IF CONDITION = END-OF-CHAIN THEN

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "-----> End of Chain, " NO ADVANCING

DISPLAY "Hit Enter to Continue" NO ADVANCING

ACCEPT OPTION FREE

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

END-IF

6-32 Host Language Access

COBOL II

MOVE ACCOUNT-NUMBER OF SALES-BUFFER

TO ACCOUNT-NUMBER-OUT

MOVE STOCK-NUMBER OF SALES-BUFFER

TO STOCK-NUMBER-OUT

MOVE QUANTITY OF SALES-BUFFER TO QUANTITY-OUT

MOVE PRICE OF SALES-BUFFER TO PRICE-OUT

MOVE TAX OF SALES-BUFFER TO TAX-OUT

MOVE TOTAL OF SALES-BUFFER TO TOTAL-OUT

MOVE PURCH-DATE OF SALES-BUFFER TO PURCH-DATE-OUT

MOVE DELIV-DATE OF SALES-BUFFER TO DELIV-DATE-OUT

DISPLAY SALES-BUFFER-OUT

END-PERFORM

END-IF

MOVE 1 TO DB-MODE

CALL "DBUNLOCK" USING DBNAME, SALES-DETAIL, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF.

Retrieving a Data Entry Using a Record Number

This paragraph implements the GET-A-CUSTOMER-RECORD routine of the sample
program. The record number for the directed read is obtained by calling DBGET in mode 7.
The saved record number is then used as the argument value for a call to DBGET in mode 4.
Status 17 indicates two di�erent conditions for DBGET in modes 4 and 7, as follows:

1. For mode 7, this value means that no entry exists with the speci�ed search value.

2. For mode 4, this value means that the entry at the speci�ed record number is empty.

Note that for increased performance, the calculated access call is made with a list parameter
equal to zero.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBGET in mode 7 (calculated read)

* DBGET in mode 4 (directed read)

* 1100-GET-ERROR-AND-EXPLAIN

300-GET-A-CUSTOMER-RECORD.

SET NOT-FOUND TO TRUE

DISPLAY CLEAR SCREEN

DISPLAY "Enter the Account # For The Customer Master"

NO ADVANCING

DISPLAY "------------> " NO ADVANCING

ACCEPT KEY-ITEM-VALUE FREE

MOVE 7 TO DB-MODE

MOVE ZERO TO LIST-NO-ITEM

MOVE "@;" TO LIST

MOVE "CUSTOMER;" TO CUSTOMER-MASTER

CALL "DBGET" USING DBNAME, CUSTOMER-MASTER, DB-MODE, STATUS1,

LIST-NO-ITEM, CUSTOMER-BUFFER,

KEY-ITEM-VALUE

IF CONDITION = 0 THEN

SET FOUND TO TRUE

Host Language Access 6-33

COBOL II

MOVE RECORD-NUMBER TO SAVED-RECORD-NUMBER

ELSE

IF CONDITION = NO-SUCH-ENTRY THEN

DISPLAY CLEAR SCREEN

DISPLAY "***"

DISPLAY "* No Such Entry in the Customer Data Set."

DISPLAY "* Please Try Again. "

DISPLAY "***"

DISPLAY "Press Enter to Continue ------------>"

NO ADVANCING

ACCEPT OPTION FREE

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

END-IF

IF FOUND THEN

MOVE 4 TO DB-MODE

MOVE "@;" TO LIST

MOVE "CUSTOMER;" TO CUSTOMER-MASTER

CALL "DBGET" USING DBNAME, CUSTOMER-MASTER, DB-MODE,

STATUS1, LIST, CUSTOMER-BUFFER,

SAVED-RECORD-NUMBER

IF CONDITION NOT = 0 THEN

IF CONDITION = ENTRY-HAS-NO-DATA THEN

DISPLAY CLEAR SCREEN

DISPLAY "***************************************"

DISPLAY "* Entry At The Specified Record Number "

DISPLAY "* Has Been Deleted. "

DISPLAY "***************************************"

DISPLAY "Press Enter To Continue ------------->"

NO ADVANCING

ACCEPT OPTION FREE

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

ELSE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

MOVE KEY-ITEM-VALUE TO ACCOUNT-NUMBER-CUST-OUT

DISPLAY "Data On Account# = ",

ACCOUNT-NUMBER-CUST-OUT

DISPLAY "**"

DISPLAY "* *"

MOVE ACCOUNT-NUMBER OF CUSTOMER-BUFFER TO

ACCOUNT-NUMBER-CUST-OUT

DISPLAY "* Account # = ", ACCOUNT-NUMBER-CUST-OUT

DISPLAY "* Last Name = ", LAST-NAME

OF CUSTOMER-BUFFER

DISPLAY "* First Name = ", FIRST-NAME

OF CUSTOMER-BUFFER

DISPLAY "* Initial = ", INITIAL1

OF CUSTOMER-BUFFER

DISPLAY "* Address = ", STREET-ADDRESS

OF CUSTOMER-BUFFER

DISPLAY "* City = ", CITY OF CUSTOMER-BUFFER

DISPLAY "* State = ", STATE OF CUSTOMER-BUFFER

6-34 Host Language Access

COBOL II

DISPLAY "* Zip = ", ZIP OF CUSTOMER-BUFFER

DISPLAY "* *"

DISPLAY "**"

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "Press Enter to Continue ------------------>"

NO ADVANCING

ACCEPT OPTION FREE

END-IF

END-IF.

Retrieving Master Data Using a Key Value

This paragraph implements the GET-PRODUCT-RECORD routine of the sample program.
The calculated access is achieved by a call to DBGET in mode 7. The exceptional condition
in this routine is indicated by status 17 for search values which do not have any corresponding
entries. Error trapping calls 1100-GET-ERROR-AND-EXPLAIN upon detection of a
non-exceptional condition.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBGET in mode 7 (calculated read)

* 1100-GET-ERROR-AND-EXPLAIN

400-GET-PRODUCT-RECORD.

SET NOT-FOUND TO TRUE

DISPLAY CLEAR SCREEN

DISPLAY "Enter the Stock # in the Product Master ----->"

NO ADVANCING

ACCEPT KEY-ITEM-VALUE-PRODUCT FREE

MOVE 7 TO DB-MODE

MOVE "@;" TO LIST

MOVE "PRODUCT;" TO PRODUCT-MASTER

CALL "DBGET" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1,

LIST, PRODUCT-BUFFER,

KEY-ITEM-VALUE-PRODUCT

IF CONDITION = 0 THEN

SET FOUND TO TRUE

ELSE

SET NOT-FOUND TO TRUE

IF CONDITION = NO-CHAIN-HEAD THEN

DISPLAY CLEAR SCREEN

DISPLAY "**"

DISPLAY "* No Such Entry in the Product Data Set."

DISPLAY "* Please Try Again. "

DISPLAY "**"

DISPLAY "Press Enter To Continue ------------->"

NO ADVANCING

ACCEPT OPTION FREE

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

END-IF

IF FOUND THEN

DISPLAY SPACE

DISPLAY "Data On Stock # = ", KEY-ITEM-VALUE-PRODUCT

Host Language Access 6-35

COBOL II

DISPLAY "**"

DISPLAY "* *"

DISPLAY "* Stock # = ", STOCK-NUMBER OF PRODUCT-BUFFER

DISPLAY "* Product = ", DESCRIPTION OF PRODUCT-BUFFER

DISPLAY "* *"

DISPLAY "**"

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "Press Enter To Continue ------------->"

NO ADVANCING

ACCEPT OPTION FREE

END-IF.

Retrieving Data Serially (with Set Level Locking)

This paragraph implements the LIST-ALL-CUSTOMERS routine of the sample program.
Serial read of the Customer data set is achieved using multiple calls to the DBGET procedure
in mode 2. Using the list parameter the routine requests only the ACCOUNT, FIRST-NAME,
LAST-NAME, and INITIAL data items.

This procedure locks the Customer data set exclusively using a call to the DBLOCK
procedure in mode 3. The subsequent DBUNLOCK releases this lock. This is done when the
exceptional condition, end of data set, is encountered. Locking in a shared modify access
environment guarantees that no other user is modifying the data that you are reading. Error
trapping calls 1100-GET-ERROR-AND-EXPLAIN for any non-exceptional condition codes.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBLOCK in mode 3 (unconditional)

* DBGET in mode 2 (forward read)

* DBUNLOCK in mode 1 (unlock)

* 1100-GET-ERROR-AND-EXPLAIN

500-LIST-ALL-CUSTOMERS.

DISPLAY CLEAR SCREEN

DISPLAY SPACE

DISPLAY "Acct-Number N A M E"

DISPLAY "---"

SET NOT-DONE TO TRUE

MOVE 3 TO DB-MODE

MOVE "@;" TO LIST

MOVE "CUSTOMER;" TO CUSTOMER-MASTER

CALL "DBLOCK" USING DBNAME, CUSTOMER-MASTER, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE 2 TO DB-MODE

MOVE "ACCOUNT,LAST-NAME,FIRST-NAME,INITIAL;" TO LIST

PERFORM WITH TEST AFTER UNTIL DONE

CALL "DBGET" USING DBNAME, CUSTOMER-MASTER, DB-MODE,

STATUS1, LIST, CUSTOMER-BUFFER,

NOT-USED-PARM-32

IF CONDITION NOT = 0 THEN

IF CONDITION = END-OF-DATA-SET THEN

6-36 Host Language Access

COBOL II

SET DONE TO TRUE

DISPLAY SPACE

DISPLAY "*End of Data Set"

DISPLAY "* Press Enter to Continue ------->"

NO ADVANCING

ACCEPT OPTION FREE

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

ELSE

MOVE ACCOUNT-NUMBER OF CUSTOMER-BUFFER TO

ACCOUNT-NUMBER-CUST-OUT

MOVE FIRST-NAME OF CUSTOMER-BUFFER TO

FIRST-NAME-CUST-OUT

MOVE INITIAL1 OF CUSTOMER-BUFFER TO

INITIAL1-CUST-OUT

MOVE LAST-NAME OF CUSTOMER-BUFFER TO

LAST-NAME-CUST-OUT

DISPLAY CUSTOMER-BUFFER-OUT

END-IF

END-PERFORM

MOVE 1 TO DB-MODE

CALL "DBUNLOCK" USING DBNAME, CUSTOMER-MASTER, DB-MODE,

STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF.

Adding an Entry

This paragraph implements the ADD-A-PRODUCT routine of the sample program to add a
data entry to the Product manual master data set. The add entry operation is achieved using
a call to DBPUT. Before this call, the paragraph initiates a TurboIMAGE/XL transaction
and locks the product master data set. The beginning and end of the transaction are
indicated by calls to DBBEGIN and DBEND. Locking is done exclusively at the set level.
For error trapping, 1100-GET-ERROR-AND-EXPLAIN is called when any status code is not
equal to zero.

Note that the list contains an at-sign (@) which requests TurboIMAGE/XL to return all �elds
of the data set in the order de�ned in the schema. Other valid lists are the null list ('0;')
which returns no data, and same list ('*;') which returns the same �elds listed in the previous
call.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBLOCK in mode 3 (unconditional)

* DBBEGIN in mode 1 (transaction begin)

* DBPUT in mode 1 (put)

* DBEND in mode 1 (transaction end)

* DBUNLOCK in mode 1 (unlock)

* 1100-GET-ERROR-AND-EXPLAIN

600-ADD-A-PRODUCT.

MOVE 0 TO ANSWER

PERFORM WITH TEST BEFORE UNTIL ANSWER = 1

DISPLAY CLEAR SCREEN

Host Language Access 6-37

COBOL II

DISPLAY " Please Provide the Following Values "

DISPLAY "**"

DISPLAY "* *"

DISPLAY "* Stock # = " NO ADVANCING

ACCEPT STOCK-NUMBER OF PRODUCT-BUFFER FREE

DISPLAY "* Product = " NO ADVANCING

ACCEPT DESCRIPTION OF PRODUCT-BUFFER FREE

DISPLAY "* *"

DISPLAY "**"

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "Enter, <1> to Continue, <2> to Retry >"

NO ADVANCING

ACCEPT ANSWER FREE

END-PERFORM

MOVE "PRODUCT;" TO PRODUCT-MASTER

MOVE 3 TO DB-MODE

CALL "DBLOCK" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE "Add Entry to Product Set Begin" TO TEXT1

MOVE 16 TO TEXTLEN

MOVE 1 TO DB-MODE

CALL "DBBEGIN" USING DBNAME, TEXT1, DB-MODE, STATUS1, TEXTLEN

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE "@;" TO LIST

CALL "DBPUT" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1,

LIST, PRODUCT-BUFFER

IF CONDITION = 0 THEN

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "*************************************"

DISPLAY "Stock ", STOCK-NUMBER OF PRODUCT-BUFFER,

"Was Successfully Added to the Product Set"

DISPLAY "*************************************"

DISPLAY "Enter to Continue>"

NO ADVANCING

ACCEPT OPTION FREE

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE "Add Entry to Product Set End" TO TEXT1

MOVE 14 TO TEXTLEN

CALL "DBEND" USING DBNAME, TEXT1, DB-MODE, STATUS1, TEXTLEN

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

CALL "DBUNLOCK" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF.

6-38 Host Language Access

COBOL II

Updating an Entry

This paragraph implements the UPDATE-A-CUSTOMER routine of the sample program.
The update process takes place in two phases.

In the �rst phase, the requested entry is located and retrieved. This is achieved by a call to
DBGET in mode 7. Then, the user provides the new values.

In the second phase, the recently modi�ed values replace the existing entry. This is
implemented using a call to DBUPDATE. Before this call, the paragraph starts a
TurboIMAGE/XL transaction bracketed by calls for locking the volatile item. To retrieve the
entry, DBGET is called in mode 1. This call retrieves the entry located in the previous stage.

The paragraph must con�rm that values retrieved in the �rst stage are still residing in the
same entry. This should be done before the actual update. If the contents of the bu�ers
are the same, the paragraph can continue with the operation. Otherwise, it should end the
transaction and release the locks.

The exceptional condition for this paragraph is status 17. This indicates that the requested
entry does not exist or is empty.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBGET in mode 7 (calculated)

* DBLOCK in mode 5 (unconditional)

* DBBEGIN in mode 1 (transaction begin)

* DBGET in mode 1 (re-read)

* DBUPDATE in mode 1 (update)

* DBEND in mode 1 (transaction end)

* DBUNLOCK in mode 1 (unlock)

* 1100-GET-ERROR-AND-EXPLAIN

700-UPDATE-A-CUSTOMER.

SET NOT-FOUND TO TRUE

DISPLAY CLEAR SCREEN

DISPLAY "Enter the Account # for The Customer Master"

NO ADVANCING

DISPLAY "---------> " NO ADVANCING

ACCEPT KEY-ITEM-VALUE FREE

MOVE 7 TO DB-MODE

MOVE 0 TO LIST-NO-ITEM

MOVE "@;" TO LIST

MOVE "CUSTOMER;" TO CUSTOMER-MASTER

CALL "DBGET" USING DBNAME, CUSTOMER-MASTER, DB-MODE, STATUS1,

LIST, CUSTOMER-BUFFER, KEY-ITEM-VALUE

IF CONDITION = 0 THEN

SET FOUND TO TRUE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "Data On Account # = ", KEY-ITEM-VALUE

DISPLAY "**"

DISPLAY "* *"

DISPLAY "* Account # = ", ACCOUNT-NUMBER

OF CUSTOMER-BUFFER

DISPLAY "* Last Name = ", LAST-NAME

Host Language Access 6-39

COBOL II

OF CUSTOMER-BUFFER

DISPLAY "* First Name = ", FIRST-NAME

OF CUSTOMER-BUFFER

DISPLAY "* Initial = ", INITIAL1

OF CUSTOMER-BUFFER

DISPLAY "* Address = ", STREET-ADDRESS

OF CUSTOMER-BUFFER

DISPLAY "* City = ", CITY OF CUSTOMER-BUFFER

DISPLAY "* State = ", STATE OF CUSTOMER-BUFFER

DISPLAY "* Zip = ", ZIP OF CUSTOMER-BUFFER

DISPLAY "* *"

DISPLAY "**"

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "Press Enter to Continue ------------------>"

NO ADVANCING

ACCEPT OPTION FREE

ELSE

IF CONDITION = NO-SUCH-ENTRY THEN

DISPLAY CLEAR SCREEN

DISPLAY "***"

DISPLAY "* No Such Entry in the Customer Data Set."

DISPLAY "* Please Try Again. "

DISPLAY "***"

DISPLAY "Enter to Continue --------->" NO ADVANCING

ACCEPT ANSWER FREE

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

END-IF

IF FOUND THEN

MOVE CORRESPONDING CUSTOMER-BUFFER TO CUSTOMER-BUFFER-OLD

MOVE 0 TO ANSWER

PERFORM WITH TEST BEFORE UNTIL ANSWER = 1

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "Provide New Values For the Following"

DISPLAY "**"

DISPLAY "* *"

DISPLAY "* Account # = " NO ADVANCING

ACCEPT ACCOUNT-NUMBER OF CUSTOMER-BUFFER-NEW FREE

DISPLAY "* Last Name = " NO ADVANCING

ACCEPT LAST-NAME OF CUSTOMER-BUFFER-NEW FREE

DISPLAY "* First Name = " NO ADVANCING

ACCEPT FIRST-NAME OF CUSTOMER-BUFFER-NEW FREE

DISPLAY "* Initial = " NO ADVANCING

ACCEPT INITIAL1 OF CUSTOMER-BUFFER-NEW FREE

DISPLAY "* Address = " NO ADVANCING

ACCEPT STREET-ADDRESS OF CUSTOMER-BUFFER-NEW FREE

DISPLAY "* City = " NO ADVANCING

ACCEPT CITY OF CUSTOMER-BUFFER-NEW FREE

DISPLAY "* State = " NO ADVANCING

ACCEPT STATE OF CUSTOMER-BUFFER-NEW FREE

DISPLAY "* Zip = " NO ADVANCING

ACCEPT ZIP OF CUSTOMER-BUFFER-NEW FREE

DISPLAY "* *"

DISPLAY "**"

DISPLAY SPACE

DISPLAY SPACE

6-40 Host Language Access

COBOL II

DISPLAY "Enter <1> to Continue, <2> to Retry >"

NO ADVANCING

ACCEPT ANSWER FREE

IF ANSWER = 2 THEN

DISPLAY CLEAR SCREEN

END-IF

END-PERFORM

MOVE 1 TO NUM-OF-ELEMENTS

MOVE 22 TO LENGTH-OF-DESCRIPTOR

MOVE "CUSTOMER;" TO DATA-SET-OF-DESCRIPTOR

MOVE "ACCOUNT;" TO DATA-ITEM-OF-DESCRIPTOR

MOVE " =" TO RELOP-FOR-DATA-ITEM

MOVE KEY-ITEM-VALUE TO NUM-VALUE-FOR-DATA-ITEM

MOVE 5 TO DB-MODE

CALL "DBLOCK" USING DBNAME, LOCK-DESCRIPTOR-ARRAY, DB-MODE,

STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE "Update Entry In Customer Set Begin" TO TEXT1

MOVE 17 TO TEXTLEN

MOVE 1 TO DB-MODE

CALL "DBBEGIN" USING DBNAME, TEXT1, DB-MODE, STATUS1,

TEXTLEN

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

CALL "DBGET" USING DBNAME, CUSTOMER-MASTER, DB-MODE,

STATUS1, LIST, CUSTOMER-BUFFER,

NOT-USED-PARM-32

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

ELSE

IF CUSTOMER-BUFFER = CUSTOMER-BUFFER-OLD THEN

CALL "DBUPDATE" USING DBNAME, CUSTOMER-MASTER,

DB-MODE, STATUS1, LIST,

CUSTOMER-BUFFER-NEW

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

ELSE

DISPLAY CLEAR SCREEN

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "***************************************"

DISPLAY "** During Terminal Interaction *"

DISPLAY "** Data On Account Number ",

KEY-ITEM-VALUE

DISPLAY "** Has Been Modified."

DISPLAY "** *"

DISPLAY "** Please Try Again. *"

DISPLAY "Press Enter to Continue ---------->"

NO ADVANCING

ACCEPT OPTION FREE

END-IF

END-IF

Host Language Access 6-41

COBOL II

MOVE "Update Entry On Customer Set End" TO TEXT1

MOVE 16 TO TEXTLEN

CALL "DBEND" USING DBNAME, TEXT1, DB-MODE, STATUS1, TEXTLEN

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

CALL "DBUNLOCK" USING DBNAME, CUSTOMER-MASTER, DB-MODE,

STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

END-IF.

Deleting an Entry

This paragraph implements the DELETE-A-PRODUCT routine of the sample program.
The delete operation is achieved by a call to DBDELETE. This call is preceded by a call
to DBGET in mode 7, which locates the entry for the delete operation. These calls are
bracketed by calls to DBBEGIN and DBEND, which designate the beginning and the end of a
TurboIMAGE/XL transaction.

Using calls to DBLOCK and DBUNLOCK in mode 3, the required resources are locked before
the start of the transaction and released after its end.

Exceptional condition code 17 is trapped after the DBGET call. This indicates that the
requested entry does not exist in the Product data set.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBLOCK in mode 3 (unconditional)

* DBBEGIN in mode 1 (transaction begin)

* DBGET in mode 7 (calculated read)

* DBDELETE in mode 1 (delete)

* DBEND in mode 1 (transaction end)

* DBUNLOCK in mode 1 (unlock)

* 1100-GET-ERROR-AND-EXPLAIN

800-DELETE-A-PRODUCT.

DISPLAY CLEAR SCREEN

DISPLAY "Enter the stock # in the Product Master ----> "

NO ADVANCING

ACCEPT KEY-ITEM-VALUE-PRODUCT FREE

MOVE 3 TO DB-MODE

MOVE "@;" TO LIST

MOVE "PRODUCT;" TO PRODUCT-MASTER

CALL "DBLOCK" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE 1 TO DB-MODE

MOVE "Delete Entry From The Product Set Begin " TO TEXT1

MOVE 18 TO TEXTLEN

CALL "DBBEGIN" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1,

TEXTLEN

IF CONDITION NOT = 0 THEN

6-42 Host Language Access

COBOL II

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE 7 TO DB-MODE

CALL "DBGET" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1,

LIST, PRODUCT-BUFFER,

KEY-ITEM-VALUE-PRODUCT

IF CONDITION NOT = 0 THEN

IF CONDITION = NO-CHAIN-HEAD THEN

DISPLAY CLEAR SCREEN

DISPLAY "***"

DISPLAY "* No Such Entry in the Product Data Set. *"

DISPLAY "* Please Try Again. *"

DISPLAY "***"

ELSE

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

ELSE

MOVE 1 TO DB-MODE

CALL "DBDELETE" USING DBNAME, PRODUCT-MASTER, DB-MODE,

STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

ELSE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY "***"

DISPLAY "Product Record ", KEY-ITEM-VALUE-PRODUCT

NO ADVANCING

DISPLAY "Was Successfully Deleted."

DISPLAY "***"

END-IF

END-IF

MOVE 1 TO DB-MODE

MOVE "Delete Entry From the Product Set End" TO TEXT1

MOVE 18 TO TEXTLEN

CALL "DBEND" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1,

TEXTLEN

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

MOVE 1 TO DB-MODE

CALL "DBUNLOCK" USING DBNAME, PRODUCT-MASTER, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

DISPLAY "Press Enter to Continue -----------> " NO ADVANCING

ACCEPT OPTION FREE.

Host Language Access 6-43

COBOL II

Rewinding a Data Set

This paragraph implements the REWIND-CUSTOMER-SET routine of the sample program.
Resetting the data set pointer is achieved by a call to DBCLOSE in mode 2. No special
condition is trapped.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBCLOSE in mode 2 (rewind)

* 1100-GET-ERROR-AND-EXPLAIN

900-REWIND-CUSTOMER-SET.

MOVE "CUSTOMER;" TO CUSTOMER-MASTER

MOVE 2 TO DB-MODE

CALL "DBCLOSE" USING DBNAME, CUSTOMER-MASTER, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF.

Obtaining Database Information

This paragraph implements the GET-DATA-ITEM-INFO routine of the sample program.
This information is obtained using a call to DBINFO in mode 102. The data item name
passed through the DBINFO bu�er identi�es the data item under inquiry.

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBINFO in mode 102 (item access)

* 1100-GET-ERROR-AND-EXPLAIN

1000-GET-DATA-ITEM-INFO.

DISPLAY CLEAR SCREEN

DISPLAY "Enter your data item name------> " NO ADVANCING

ACCEPT DATA-ITEM-NAME-IN FREE

MOVE 102 TO DB-MODE

CALL "DBINFO" USING DBNAME, DATA-ITEM-NAME-IN, DB-MODE, STATUS1,

M-102-BUFFER

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF

DISPLAY SPACE

DISPLAY SPACE

DISPLAY SPACE

DISPLAY DATA-ITEM-NAME-IN, " Data Item"

DISPLAY "--"

DISPLAY "Data Item Name = ", DATA-ITEM-NAME

DISPLAY "Data Item Type = ", DATA-ITEM-TYPE

DISPLAY "Data Item Length = ", DATA-ITEM-LENGTH

DISPLAY "Data Item Count = ", DATA-ITEM-COUNT

DISPLAY "--"

DISPLAY "Press Enter to Continue... " NO ADVANCING

ACCEPT OPTION FREE.

6-44 Host Language Access

COBOL II

Obtaining Error Messages and Explanations

The following paragraph implements the GET-ERROR-AND-EXPLAIN routine of the sample
program. This paragraph calls DBEXPLAIN and DBERROR. DBEXPLAIN interprets
the contents of the Status parameter and prints a message on $STDLIST. DBERROR
returns a message in the ERROR-BUFFER, explaining the condition code returned by
TurboIMAGE/XL. At the end the paragraph, users can choose to abort or continue the
execution of this program.

**

* Access : Mode 1 - Shared Modified Access

*

* Called by: 100-OPEN-THE-DATABASE

* 200-GET-SALES-FOR-DATE

* 300-GET-A-CUSTOMER-RECORD

* 400-GET-PRODUCT-RECORD

* 500-LIST-ALL-CUSTOMERS

* 600-ADD-A-PROUDCT

* 700-UPDATE-A-CUSTOMER

* 800-DELETE-A-PRODUCT

* 900-REWIND-CUSTOMER-SET

* 1000-GET-DATA-ITEM-INFO

* 1200-CLOSE-THE-DATABASE

*

* Calls : DBERROR

* DBEXPLAIN

1100-GET-ERROR-AND-EXPLAIN.

MOVE SPACES TO ERROR-BUFFER

CALL "DBERROR" USING STATUS1, ERROR-BUFFER, ERROR-LENGTH

DISPLAY "---"

DISPLAY ERROR-BUFFER

DISPLAY "---"

DISPLAY SPACE

CALL "DBEXPLAIN" USING STATUS1

MOVE ZERO TO ANSWER

DISPLAY "---Enter, <1> to Abort..., <2> to Continue > "

NO ADVANCING

ACCEPT ANSWER FREE

IF ANSWER NOT = 1 THEN

DISPLAY "Continuing....."

ELSE

STOP RUN

END-IF.

Closing the Database

This paragraph implements the CLOSE-THE-DATABASE routine of the sample program.
Closing the database is achieved by a call to DBCLOSE in mode 1. Error handling is done
by referring all non-zero returned conditions to the 1100-GET-ERROR-AND-EXPLAIN
paragraph.

Host Language Access 6-45

COBOL II

**

* ACCESS : Mode 1 - Shared Modify Access

*

* Called By: 30-DO-ACTION

*

* Calls : DBCLOSE in mode 1 (close)

* 1100-GET-ERROR-AND-EXPLAIN

1200-CLOSE-THE-DATABASE.

MOVE 1 TO DB-MODE

CALL "DBCLOSE" USING DBNAME, PASSWORD, DB-MODE, STATUS1

IF CONDITION NOT = 0 THEN

PERFORM 1100-GET-ERROR-AND-EXPLAIN

END-IF.

6-46 Host Language Access

FORTRAN 77

FORTRAN 77

Portions of the model program presented at the beginning of this chapter are now shown
here in FORTRAN 77. The examples perform speci�c tasks to illustrate the use of
TurboIMAGE/XL intrinsics.

Data items are de�ned at the beginning of the sample program. Explicit declaration of
intrinsics is not required. Other global variables in this program are placed in a COMMON
�le.

Note Because the Schema Processor, DBSCHEMA, upshifts alphabetic characters,
programs must specify data set and data item names in all uppercase
characters. Take note of this if FORTRAN 77 does not require that you use
uppercase characters.

For information on TurboIMAGE/XL data item lengths and type designators, refer to
chapter 3. Tables 3-2 and 3-3 show the TurboIMAGE/XL type designators, sub-item lengths,
and data types typically used to process them in Pascal.

Note All parameters must be on halfword boundaries.

Because FORTRAN 77 requires that the parameters be on halfword boundaries, they must be
integer arrays equivalent to character strings if necessary.

Defining Data Types, Variables, and Intrinsics

The following declarations are placed in a FORTRAN 77 COMMON �le. This �le enables
di�erent subroutines to import all necessary declarations. In this program, the COMMON �le
is called comon1 and is included with the directive $Include 'comon1'.

C**** TurboIMAGE/XL's Global Declaration

C**** Set up for the Database name parameter.

Integer*2 DBname(10)

Character BaseName*16

Equivalence(DBname(1),BaseName)

Common /Database_Name_Type / DBname

C**** Set up for the Password parameter.

Character Pass_Word*10

Integer*2 Password(5)

Equivalence (Password(1),Pass_Word)

Common /Database_password_type/ password

C**** Set up for the Mode parameter.

Integer In,Out,Not_Used_Parm

Integer*2 Mode

Integer*2 Mode1_SMA, Mode5_Unconditional, Mode1_Chained_Read

Integer*2 Mode5_Forward, Mode1_Unlock

C**** Set up for the Status parameter.

Integer*2 Status(10)

Host Language Access 6-47

FORTRAN 77

Integer*2 Condition

Integer*2 Length

Integer*4 Record_Number

Integer*4 Chain_Count

Integer*4 Back_Pointer

Integer*4 Forward_Pointer

Equivalence(Status(1),Condition),(Status(2),Length)

Equivalence(Status(3),Record_Number),(Status(5),Chain_Count)

Equivalence(Status(7),Back_Pointer),(Status(9),Forward_Pointer)

Common /Database_Status_Type/ Status

C**** Set up for the Lock_Descriptor_Array of the Sales data set.

Integer*2 Lock_Descriptor_Array(22)

Integer*2 Length_Of_Descriptor, Num_Of_Elements

Character Data_Set_Of_Descriptor*16

Character Data_Item_Of_Descriptor*16

Character Relative_Operator*2

Character Value_For_Data_Item*6

Equivalence (Lock_Descriptor_Array(1), Num_Of_Elements)

Equivalence (Lock_Descriptor_Array(2), Length_Of_Descriptor)

Equivalence (Lock_Descriptor_Array(3), Data_Set_Of_Descriptor)

Equivalence (Lock_Descriptor_Array(11),Data_Item_Of_Descriptor)

Equivalence (Lock_Descriptor_Array(19),Relative_Operator)

Equivalence (Lock_Descriptor_Array(20),Value_For_Data_Item)

C**** Set up for the Sales_Buffer of the Sales data set.

Integer*2 Sales_Buffer(19)

Integer*4 Account_Number

Character Stock_Number*8

Integer*2 Quantity

Integer*4 Price

Integer*4 Tax

Integer*4 Total

Character Purch_Date*6

Character Deliv_Date*6

Equivalence (Sales_Buffer(1), Account_Number)

Equivalence (Sales_Buffer(3), Stock_Number)

Equivalence (Sales_Buffer(7), Quantity)

Equivalence (Sales_Buffer(8), Price)

Equivalence (Sales_Buffer(10),Tax)

Equivalence (Sales_Buffer(12),Total)

Equivalence (Sales_Buffer(14),Purch_Date)

Equivalence (Sales_Buffer(17),Deliv_Date)

Main Body of Program

In the following portion of the program, the $hp3000_16$ compiler directive allows the
FORTRAN 77 compiler to change the data alignment from a four-byte limit to a two-byte
limit. For example, the non-alignment caused by the Quantity �eld in the Sales data set can
be resolved using this directive.

$hp3000_16$

Program Fortran_For_TurboIMAGEXL

C

C This area will contain the main line for the

C FORTRAN 77 example.

C

6-48 Host Language Access

FORTRAN 77

Obtaining Error Messages and Explanations

The following procedure implements the Get Error And Explain routine of the sample
program. In this procedure, DBEXPLAIN and DBERROR are called using FORTRAN
77. DBEXPLAIN interprets the contents of the status parameter and prints a message on
$STDLIST. DBERROR returns a message in ERROR Bu�er, explaining the condition
code returned by TurboIMAGE/XL. At the end of the procedure, users can choose to abort
or continue the execution of this program. Note that aborting a process from within a
transaction would result in an incomplete transaction. It is good programming practice to
end your transaction, release your locks, and close any open database(s) before aborting your
process.

C***

Subroutine Get_Error_And_Explain

C Access : Mode 1 - Shared Modified Access

C

C

C Called By : Open_The_Database

C Get_Sales_For_Date

C Get_A_Customer_Record

C Get_A_Product_Record

C List_All_Customers

C Add_A_Product

C Update_A_Customer

C Delete_A_Product

C Rewind_Customer_Set

C Get_Data_Item_Info

C Close_The_Database

C

C

C Calls : DBERROR

C DBEXPLAIN

C

$list Off

$Include 'comon1'

$list On

C Prepare the error buffer for calls to DBERROR

C

Character Error_Buffer_Text*80

Integer*2 Error_Buffer(40)

Equivalence (Error_Buffer(1),Error_Buffer_Text)

Integer*4 Error_Length

Integer*2 Answer

Parameter (In=5,Out=6)

Call DBERROR (Status,Error_Buffer,Error_Length)

Write(Out,*)'--------------------------------------'

Write(Out,10)Error_Buffer_Text

10 Format(A60)

Write(Out,*)'--'

Call DBEXPLAIN (Status)

Answer=0

Write(Out,*)'---Enter, <1> to ABORT..., <2> to Continue >'

Read (In,20) Answer

20 Format(I2)

Host Language Access 6-49

FORTRAN 77

If (Answer.NE.1) Then

Write(Out,*)' Continuing......'

Else

Stop

Endif

Return

End

Opening the Database

This procedure implements the Open The Database procedure of the sample program. All
required values, such as, the password, are provided by the routine. Note that the password
DO-ALL is followed by a semicolon because it is less that eight characters long; a blank
can be substituted for the semicolon. Open The Database uses open mode 1, which is the
shared modify access mode. Error trapping is done by referring all non-zero conditions to the
Get Error And Explain procedure.

C***

Subroutine Open_The_Database

C

C ACCESS : Mode 1 - Shared Modify Access (SMA) with locking required

C

C CALLED BY : Main Line

C

C CALLS : DBOPEN in mode 1 (SMA)

C Get_Error_And_Explain

C

$List Off

$Include 'comon1'

$List On

C**** Prepare the Base parameter of the DBOPEN.

C

Mode1_SMA = 1

BaseName=' ORDERS; '

Pass_Word='DO-ALL;'

Call DBOPEN (DBname,Password,Mode1_SMA,Status)

If (Condition.NE.0) Then

Call Get_Error_And_Explain

EndIf

Return

End

Retrieving All the Records on a Chain (with Item Level Locking)

This procedure implements the Get Sales For Date routine of the sample program. Chained
access is achieved using a call to DBFIND. The search item used for this call is Purch-Date.
An item level lock is obtained on the value of the search item before the DBFIND call. After
that, individual chain items are retrieved, until the end of chain is encountered. This is done
using multiple calls to the DBGET procedure.

This routine traps two exceptional conditions:

1. Status condition from the DBFIND call, indicating that the chain head cannot be located.

6-50 Host Language Access

FORTRAN 77

2. Status 15 from DBGET, indicating the end of the chain.

The status interpretation routine permits you to either abort or continue with the execution
after viewing all error messages.

C***

Subroutine Get_Sales_For_Date

C ACCESS : Mode 1 - Shared Modify Access

C

C CALLED BY : Main Line

C

C CALLS : DBLOCK in mode 5 (unconditional item level locking)

C DBFIND in mode 1 (chained access)

C DBGET in mode 5 (forward chain read)

C DBUNLOCK in mode 1 (unlock)

C***** Get_Error_And_Explain (chained access)

$list off

$include 'comon1'

$list on

C** The Input/Output indicator values

Parameter (In=5,Out=6)

Integer*4 End_Of_Chain,No_Chain_Head

C** Set up for the data set parameter.

Character Data_Set_Name_Is*16

Integer*2 Sales_Detail(8)

Equivalence (Sales_Detail(1),Data_Set_Name_Is)

C** Set up for the search item parameter.

Character Search_Item_Name_Is*16

Integer*2 Search_Item_Name(8)

Equivalence (Search_Item_Name(1),Search_Item_Name_Is)

C** Set up for the search value/argument parameter.

Character Search_Item_Value_Is*6

Integer*2 Search_Item_Value(3)

Equivalence (Search_Item_Value(1),Search_Item_Value_Is)

Parameter (End_Of_Chain=15,No_Chain_Head=17)

C** Set up for the predicate buffer used in item level locking.

Num_Of_Elements = 1

Length_Of_Descriptor = 21

Data_Set_Of_Descriptor ='SALES;'

Data_Item_Of_Descriptor='PURCH-DATE;'

Relative_Operator =' ='

C** Accept the search value.

Print*,' Enter The Date of Purchase as (YYMMDD) >>> '

Read (5,10) Search_Item_Value_Is

10 Format(A6)

C** Request item level locks on all items identified by the search

C** value. A mode value of 5 indicates an item level lock request.

Mode5_Unconditional =5

Value_For_Data_Item = Search_Item_Value_Is

Call DBLOCK (DBname,Lock_Descriptor_Array,Mode5_Unconditional,

& Status)

If (Condition.NE.0) then

Call Get_Error_And_Explain

EndIf

C** Locate all entries identified by the search value.

Host Language Access 6-51

FORTRAN 77

Data_Set_Name_Is = 'SALES;'

Mode1_Chained_Read = 1

Search_Item_Name_Is = 'PURCH-DATE;'

Call DBFIND (DBname,Sales_Detail,Mode1_Chained_Read,Status,

& Search_Item_Name,Search_Item_Value)

If (Condition.NE.0) Then

If (Condition.EQ.No_Chain_Head) Then

Print*,'___'

Print*,'| |'

Print*,'| No Such Entry In the Sales Data Set |'

Print*,'| |'

Print*,'|___|'

Print*,'Hit Enter to Continue '

Read(5,*)

Else

Call Get_Error_And_Explain

EndIf

Else

Write(6,20)

Write(6,30)

20 Format (' Acct-Number Stock-Number Qty Price Tax Total ',

&'Purch-Date Deliv-Date ')

30 Format (' --- ',

&'------------------------ ')

Mode5_Forward = 5

List = '@;'

Do While (Condition.NE.End_Of_Chain)

Call DBGET (DBname,Sales_Detail,Mode5_Forward, Status,

& List, Sales_Buffer, Not_Used_Parm)

If (Condition.NE.0) Then

If (Condition.EQ.End_Of_Chain) Then

Print *,'-->End Of Chain, Hit Enter to Continue'

Read (5,*)

Else

Call Get_Error_And_Explain

EndIf

Else

Print*

Print*,Account_Number,' ',

& Stock_Number,' ',

& Quantity,' ',Price,' ',Tax,' ',Total,' ',

& Purch_Date,' ',Deliv_Date

EndIf

End Do

EndIf

Mode1_Unlock =1

Call DBUNLOCK (DBname,Sales_Detail,Mode1_Unlock,Status)

If (Condition.NE.0) Then

Call Get_Error_And_Explain

EndIf

Return

End

6-52 Host Language Access

Pascal

Pascal

Portions of the model program presented at the beginning of this chapter are now shown
here in Pascal. The examples perform speci�c tasks to illustrate the use of TurboIMAGE/XL
intrinsics.

Data items are de�ned at the beginning of the sample program. TurboIMAGE/XL intrinsics
must be declared for Pascal as external procedures. The procedure name is followed by the
word \Intrinsic."

Type declarations declare names for data structure forms that will be used in allocating
variables. Variable declarations allocate the variables of the program. Variables are
de�ned with precise types or forms. Pascal string literals are delimited with single quotes
(' '). Field and record names are separated with a dot (.), when referenced (for example,
\base name.baseid").

Note Because the Schema Processor, DBSCHEMA, upshifts alphabetic characters,
programs must specify data set and data item names in all uppercase
characters. Take note of this because Pascal does not require that you use
uppercase characters.

For information on TurboIMAGE/XL data item lengths and type designators, refer to
chapter 3. Tables 3-2 and 3-3 show the TurboIMAGE/XL type designators, sub-item lengths,
and data types typically used to process them in Pascal.

Note All parameters must be on halfword boundaries and cannot be odd-byte
aligned.

Defining Data Types, Variables, and Intrinsics

The following is part of the Pascal example program; it de�nes type declarations, variable
declarations, and TurboIMAGE/XL intrinsics.

$Standard_Level 'HP_MODCAL'$

$hp3000_16$

Program Pascal_For_TurboIMAGEXL (Input,Output);

Label 100;

(* Define all your TurboIMAGE/XL constants. *)

Const

End_Of_Chain =15; (* For DBGET Mode 5 *)

End_Of_Data_Set =11; (* For DBGET Mode 2 *)

No_Chain_Head =17; (* For DBFIND *)

No_Such_Entry =17; (* For DBGET Mode 7 *)

Entry_Has_No_Data =17; (* For DBGET Mode 4 *)

(* Define all your TurboIMAGE/XL record structures. *)

Type

(* for the base parameter *)

Database_Name_Type = Packed Record

BaseId : Packed Array [1..2] of Char;

BaseName : Packed Array [1..16] of Char;

End;

(* for the password parameter *)

Database_Password_Type = Packed Array [1..10] of Char;

(* for the status parameter *)

Host Language Access 6-53

Pascal

Database_Status_Type = Packed Record

Condition : ShortInt;

Length : ShortInt;

Record_Number : Integer;

Chain_Count : Integer;

Back_Pointer : Integer;

Forward_Pointer : Integer;

End;

(* for the data set name parameter *)

Data_Set_Name_Type = Packed Array [1..16] of Char;

(* for data item names *)

Data_Item_Name_Type = Packed Array [1..16] of Char;

(* for the list parameter *)

Data_Item_List_Type = Packed Array [1..80] of Char;

(* for key items in manual masters *)

Key_Item_Type = Packed Array [1..40] of Char;

(* for the Sales data set of Orders DB *)

Sales_Data_Set_Type = Packed Record

Account_Number: Integer;

Stock_Number : Packed Array [1..8] of Char;

Quantity : ShortInt;

Price : Integer;

Tax : Integer;

Total : Integer;

Purch_Date : Packed Array [1..6]of Char;

Deliv_Date : Packed Array [1..6]of Char;

End;

(* for item level locks in the Sales set *)

Lock_Descriptor_Sales_Type = Packed Record

Length_Of_Descriptor : ShortInt;

Data_Set_Of_Descriptor : Data_Set_Name_Type;

Data_Item_Of_Descriptor : Data_Item_Name_Type;

Relative_Operator : Packed Array [1..2]Of Char;

Value_For_Data_Item : Packed Array [1..6]Of Char;

End;

(* for the lock buffer for the Sales set *)

Lock_Descriptor_Sales_Array_Type = Packed Record

Num_Of_Elements : ShortInt;

Lock_Descriptor_Sales : Lock_Descriptor_Sales_Type;

End;

Var

(* Define all your global variables. *)

DBname : Database_Name_Type;

Password : Database_Password_Type;

Status : Database_Status_Type;

Option : ShortInt;

Mode : ShortInt;

List : Data_Item_List_Type;

(* Define all TurboIMAGE/XL procedure calls that *)

(* will be used in your application program. *)

Procedure DBBEGIN ; Intrinsic;

Procedure DBEND ; Intrinsic;

Procedure DBOPEN ; Intrinsic;

Procedure DBCLOSE ; Intrinsic;

Procedure DBGET ; Intrinsic;

Procedure DBPUT ; Intrinsic;

Procedure DBFIND ; Intrinsic;

6-54 Host Language Access

Pascal

Procedure DBEXPLAIN ; Intrinsic;

Procedure DBERROR ; Intrinsic;

Procedure DBDELETE ; Intrinsic;

Procedure DBUPDATE ; Intrinsic;

Procedure DBLOCK ; Intrinsic;

Procedure DBUNLOCK ; Intrinsic;

Procedure DBINFO ; Intrinsic;

Obtaining Error Messages and Explanations

The following procedure implements the Get Error And Explain routine of the sample
program. In this procedure, DBEXPLAIN and DBERROR are called using Pascal.
DBEXPLAIN interprets the contents of the Status parameter and prints a message on
$STDLIST. DBERROR returns a message in Error Bu�er, explaining the condition code
returned by TurboIMAGE/XL. At the end of the procedure, users can choose to abort
or continue the execution of this program. Note that aborting a process from within a
transaction would result in an incomplete transaction. It is good programming practice to
end your transaction, release your locks, and close any open database(s) before aborting your
process.

$Page$

Procedure Get_Error_And_Explain;

(*

Access : Mode 1 - Shared Modified Access

The Orders database was opened in mode 1

Called by: Open_The_Database

Get_Sales_For_Date

Get_A_Customer_Record

Get_A_Product_Record

List_All_Customers

Add_A_Product

Update_A_Customer

Delete_A_Product

Rewind_Customer_Set

Get_Data_Item_Info

Close_The_Database

Calls : DBERROR

DBEXPLAIN

*)

Var

Error_Buffer : Packed Array [1..80] of Char;

Error_Length : Integer;

Answer : ShortInt;

Begin

DBERROR (Status,Error_Buffer,Error_Length);

Writeln('---');

Writeln(Error_Buffer);

Writeln('---');

Writeln;

DBEXPLAIN (Status);

Answer:=0;

Prompt('---Enter, <1> to ABORT..., <2> to Continue >');

Readln(Answer);

If Answer <> 1 Then Writeln(' Continuing')

Else Halt;

End;

Host Language Access 6-55

Pascal

Opening the Database

This procedure implements the Open The Database procedure of the sample program. All
required values, such as the password, are provided by the routine. Note that the password
DO-ALL is followed by a semicolon because it is less than eight characters long; a blank
can be substituted for the semicolon. Open The Database uses open mode 1, which is the
shared modify access mode. Error trapping is done by referring all non-zero conditions to the
Get Error And Explain procedure.

$Page$

Procedure Open_The_Database;

(* Access : Mode 1 - Shared Modify Access (SMA) with locking required

Called By: Main Line

Calls : DBOPEN in mode 1 (SMA)

Get_Error_And_Explain *)

Begin

Mode1_SMA : Integer;

DBname.BaseID :=' ';

DBname.BaseName :='ORDERS; ';

Password :='DO-ALL;';

Mode1_SMA :=1;

DBOPEN (DBname,Password,Mode1_SMA,Status);

If Status.Condition <> 0 Then

Get_Error_And_Explain;

End;

Retrieving All the Records on a Chain (with Item Level Locking)

This procedure implements the Get Sales For Date routine of the sample program. Chained
access is achieved using a call to DBFIND. The search item used for this call is Purch-Date.
An item level lock is obtained on the value of the search item before the DBFIND call. After
that, individual chain items are retrieved, until the end of chain is encountered. This is done
using multiple calls to the DBGET procedure.

The routine traps two exceptional conditions:

1. Status condition 17 from the DBFIND call, indicating that the chain head cannot be
located.

2. Status 15 from the DBGET call, indicating the end of chain.

The status interpretation routine permits you to either abort or continue with the execution of
the program after viewing all error messages.

$Page$

Procedure Get_Sales_For_Date;

(* Access : Mode 1 - Shared Modify Access

The Orders database was opened in mode 1.

Called By: Main Line

Calls : DBLOCK in mode 5 (unconditional item level locking)

DBFIND in mode 1 (chained access)

DBGET in mode 5 (forward chained read)

DBUNLOCK in mode 1 (unlock)

6-56 Host Language Access

Pascal

Get_Error_And_Explain *)

Var

Lock_Descriptor_Array : Lock_Descriptor_Sales_Array_Type;

Sales_Detail : Data_Set_Name_Type;

Search_Item_Name : Data_Item_Name_Type;

Search_Item_Value : Packed Array [1..6]of Char;

Sales_Buffer : Sales_Data_Set_Type;

Not_Used_Parm : Shortint;

Mode1_Chained_Read : Shortint;

Mode5_Unconditional : Shortint;

Mode5_Forward : Shortint;

Mode1_Unlock : Shortint;

Begin

(* Prepare the lock descriptor buffer for obtaining item level *)

(* locks on the Sales data set. *)

With Lock_Descriptor_Array Do

Begin

Num_Of_Elements := 1;

With Lock_Descriptor_Sales Do

Begin

Length_Of_Descriptor := 21;

Data_Set_Of_Descriptor :='SALES;';

Data_Item_Of_Descriptor :='PURCH-DATE;';

Relative_Operator :=' =';

End;

End;

Prompt (' Enter The Date of Purchase as (YYMMDD) >>> ');

Readln (Search_Item_Value);

Mode5_Unconditional :=5; (* Request item level locks. *)

(* Append the user's input to the lock descriptor buffer. *)

Lock_Descriptor_Array. Lock_Descriptor_Sales.Value_For_Data_Item

:=Search_Item_Value;

(* Place item level locks on all entries identified by *)

(* the value in the Search_Item_Value. *)

DBLOCK (DBname,Lock_Descriptor_Array,Mode5_Unconditional,Status);

If Status.Condition <> 0 then

Get_Error_And_Explain;

Sales_Detail :='SALES;';

Search_Item_Name :='PURCH-DATE;';

Mode1_Chained_Read :=1;

(* Locate the chain identified by the value in the *)

(* Search_Item_Value. *)

DBFIND (DBname,Sales_Detail,Mode1_Chained_Read,Status,

Search_Item_Name,Search_Item_Value);

If Status.Condition <>0 Then

Begin

If Status.Condition = No_Chain_Head Then

Begin

Writeln('***************************************');

Writeln('* No Such Entry in the Sales Dataset *');

Writeln('* Please Try Again. *');

Writeln('***************************************');

Prompt ('Hit Enter To Continue ---------------->');

Readln;

End

Else Get_Error_And_Explain;

Host Language Access 6-57

Pascal

End

Else

Begin

Write('Acct-Number');

Write('Stock-Number':14);

Write('Qty':6);

Write('Price':7);

Write('Tax':5);

Write('Total':8);

Write('Purch-Date':12);

Write('Delive-Date':14);

Write('---);

Write('---------------------------');

Writeln;

(* Start retrieving all records in the current chain. *)

Mode5_Forward :=5;

List :='@;';

While Status.Condition <> End_Of_Chain Do

Begin

(* Retrieve the contents of the entry which is at the *)

(* current record pointer. *)

DBGET (DBname,Sales_Detail,Mode5_Forward,Status,List,Sales_Buffer,

Not_Used_Parm);

If Status.Condition= 0 Then

Begin

With Sales_Buffer Do

Begin

Writeln;

Write(Account_Number:10);

Write(Stock_Number:15);

Write(Quantity:6);

Write(Price:7);

Write(Tax:5);

Write(Total:7);

Write(Purch_Date:12);

Write(Deliv_Date:12);

End;

End (* Check the status buffer for any condition *)

Else (* codes not equal to zero. *)

Begin

If Status.Condition= End_Of_Chain Then

Begin

Writeln;

Writeln;

Writeln;

Prompt ('----> End Of Chain, Hit Enter to Continue');

Readln;

End

Else Get_Error_And_Explain;

End;

End;

End;

(* Release all locks acquired at the beginning of the process. *)

Mode1_Unlock :=1;

DBUNLOCK (DBname,Sales_Detail,Mode1_Unlock,Status);

If Status.Condition<>0 Then

Get_Error_And_Explain

End;

$Page$

6-58 Host Language Access

RPG

RPG

RPG contains language constructs that make calls to TurboIMAGE/XL intrinsics, rather
than having the user code do the intrinsic calls directly. For example, RPG opens all �les at
the beginning of program execution, thereby calling DBOPEN for any databases named on
File Description speci�cations. Likewise, DBCLOSE is automatically called for databases at
the end of program execution. Another example is the RPG CHAIN operation which calls
DBFIND and/or DBGET, depending on its usage.

A small set of TurboIMAGE/XL intrinsics have no RPG language equivalent and so cannot
be accessed at the present time. These include DBERROR, DBEXPLAIN, DBBEGIN,
DBEND, and DBMEMO. Because the sample program on which this RPG program is based
contains calls to DBERROR and DBEXPLAIN, the RPG version cannot exactly match
the functionality of the sample program. Instead, it displays the status value returned by
TurboIMAGE/XL when an error occurs.

Note Because the Schema Processor, DBSCHEMA, upshifts alphabetic characters,
programs must specify data set and data item names in all uppercase
characters. Take note of this as RPG does not require that you use uppercase
characters.

For information of TurboIMAGE/XL data item lengths and type designators, refer to
chapter 3. Tables 3-2 and 3-3 show the TurboIMAGE/XL type designators, sub-item lengths,
and data types typically used to process them in RPG.

Defining Data Types, Variables, and Intrinsics

The �rst �ve F-specs implement the OPEN-THE-DATABASE routine of the sample program
in RPG. RPG automatically opens all databases (by calling DBOPEN) at the beginning of
program execution. F-specs are used to declare how each database/set is to be opened and
accessed.

In this program, the database is opened with mode 1 (shared modify access) by entry of
L in column 66 on the KIMAGE line. This entry also allows user-controlled locking of the
database/set/item to occur.

The data set is opened for chained sequential read accesses by entry of C in column 67 of the
KIMAGE line. If an error occurs during opening of the database, the program will abort.

Note that RPG also closes all databases (by calling DBCLOSE) at the end of program
execution, so there is no need for the user to call a separate routine to do this.

$CONTROL NOINFO,MAP,NAME=RTURBO

H L 1

**

* Program name: RTURBO *

* Description : Example of RPG access to TurboIMAGE/XL *

**

FSALES IC F 38R 6AI 27 DISC

F KIMAGE ORDERSLC

F KITEM PURCH-DATE

F KLEVEL DO-ALL

F KSTATUSSTAT

FTERMIN ID F 79 $STDIN

FTERMOUT O V 79 $STDLST

Host Language Access 6-59

RPG

**

* TABLE/ARRAY DECLARATIONS *

**

E ESC 1 1 1 Escape = 27

**

* INPUT RECORD LAYOUTS *

**

ISALES NS

I B 1 40ACCT#

I 5 12 STOCK#

I 6 13 140QTY

I 7 15 180$PRICE

I 5 19 220$TAX

I 8 23 260$TOTAL

I 27 320PDATE

I 33 380DDATE

ITERMIN NS

I 1 8 OPTION

Main Body of Program

**

* CALCULATIONS MAINLINE *

**

C* Execute GETSAL subroutine, then end program.

C*

C EXSR GETSAL

C SETON LR

Retrieving All the Records on a Chain (with Item Level Locking)

This subroutine implements the GET-SALES-FOR-DATE routine of the sample program.
Chained access is achieved using the CHAIN operation which performs a DBFIND call and a
DBGET call on the �rst execution, and then DBGET calls on subsequent executions for the
same search value. Thus a loop is done on the CHAIN operation in order to retrieve all the
entries in the data item chain. The routine traps two exceptional conditions: failure to �nd a
chain head, and reaching end-of-chain.

**

* G E T S A L S U B R O U T I N E *

**

C GETSAL BEGSR

C*--

C* Display prompt for date and read user input from screen.

C*

C EXCPT CLEAR

C EXCPT GETDAT

C READ TERMIN H0

C MOVELOPTION DATE 6

C*--

C* Do unconditional data item lock on DATE.

C*

C DATE LOCK SALES 21

C 21 EXSR GETERR

C LR GOTO END1

C*--

C* Loop on CHAIN operation to get all entries in chain. On

C* first occurrence of CHAIN for a unique value of DATE, RPG

C* calls DBFIND, followed by DBGET. On subsequent uses of

C* CHAIN with the same value for DATE, only DBGET is called.

C*

6-60 Host Language Access

RPG

C SETOF 202122

C LOOP1 TAG

C DATE CHAINSALES 2122

C*--

C* No chain head found.

C*

C 21 EXCPT CLEAR

C 21 EXCPT NOHEAD

C 21 READ TERMIN H0

C 21 GOTO SKIP

C*--

C* End-of-chain found.

C*

C 22 EXCPT EOC

C 22 READ TERMIN H0

C 22 GOTO SKIP

C*--

C* Any other error.

C*

C STAT,1 IFGT 0

C EXSR GETERR

C LR GOTO END1

C END

C*--

C* Print headings and data record.

C*

C N20 EXCPT CLEAR

C N20 EXCPT SALHDR

C N20 EXCPT LINHDR

C N20 SETON 20

C EXCPT SALREC

C*--

C* Loop back to do another CHAIN operation (DBGET).

C*

C GOTO LOOP1

C SKIP TAG

C*--

C* Unlock the data item.

C*

C DATE UNLCKSALES 24

C N24 EXSR GETERR

C*

C END1 ENDSR

Obtaining Error Messages and Explanations

The following subroutine implements the GET-ERROR-AND-EXPLAIN routine of the sample
program. Because RPG as yet does not have access to DBEXPLAIN and DBERROR, this
subroutine simply displays the TurboIMAGE/XL error number from the status array and
then allows the user to either abort the the program or continue its execution. If the user
elects to abort, the LR indicator is set ON and the code which called this subroutine must
test for LR and exit immediately to its caller, which in turn must exit to its caller, and so on.

**

* G E T E R R S U B R O U T I N E *

**

C GETERR BEGSR

C EXCPT ERRBUF

C GETOPT TAG

C READ TERMIN H0

C OPTION IFEQ "1"

C SETON LR

C ELSE

Host Language Access 6-61

RPG

C OPTION IFEQ "2"

C EXCPT ERRCON

C ELSE

C EXCPT BADOPT

C GOTO GETOPT

C END

C END

C*

C ENDSR

Defining Output

**

* OUTPUT RECORD LAYOUTS *

**

O*--

O* Display message for entry of invalid option.

O*

OTERMOUT E 1 BADOPT

O 23 "Invalid option - please"

O 33 " re-enter."

O*--

O* Send 'Home' (Escape h) and 'Clear' (Escape J) to screen.

O*

O E 1 CLEAR

O ESC 1

O 2 "h"

O ESC 3

O 4 "J"

O*--

O* Display message for IMAGE End-Of-Chain condition.

O*

O E 31 EOC

O 21 "-----> End of Chain, "

O 42 "Hit Enter to Continue"

O*--

O* Display error message.

O*

O E 1 ERRBUF

O 23 "-----------------------"

O 30 "-------"

O E 1 ERRBUF

O 11 "IMAGE ERROR"

O STAT,1 21 " *"

O 35 " HAS OCCURRED."

O E 2 ERRBUF

O 23 "-----------------------"

O 30 "-------"

O E 1 ERRBUF

O 23 "---Enter, <1> to Abort."

O 43 ".., <2> TO Continue"

O*--

O* Display message for continuing execution after error.

O*

O E 1 ERRCON

O 15 "Continuing....."

O*--

O* Display prompt for input of DATE.

O*

O E 1 GETDAT

O 23 "Enter The DATE of Purch"

O 38 "ase as (YYMMDD)"

O*--

O* Display Line Header (dashes).

6-62 Host Language Access

RPG

O*

O E 1 LINHDR

O 23 "-----------------------"

O *PLACE 46

O *PLACE 69

O 76 "-------"

O*--

O* Display message that no IMAGE chain head was found.

O*

O E 1 NOHEAD

O 23 "***********************"

O 39 "****************"

O E 1 NOHEAD

O 23 "* No Such Entry in the "

O 39 "Sales Dataset *"

O E 1 NOHEAD

O 23 "* Please Try Again. "

O 39 " *"

O E 1 NOHEAD

O 23 "***********************"

O 39 "****************"

O E 1 NOHEAD

O 23 "Press Enter To Continue"

O*--

O* Display Header line for listing of Sales records.

O*

O E 1 SALHDR

O 13 "Acct-Number "

O 28 "Stock-Number "

O 33 "QTY "

O 40 "Price "

O 46 "Tax "

O 53 "Total "

O 66 "Purch-Date "

O 79 "Deliv-Date "

O*--

O* Display Sales record line.

O*

O E 1 SALREC

O ACCT# 10 " 0 "

O STOCK# 25

O QTY 31 " 0 "

O $PRICE 38 " 0 "

O $TAX 43 " 0 "

O $TOTAL 51 " 0 "

O PDATE Y 62

O DDATE Y 75

** Following record contains Escape character (ASCII 27) in column 1

<--- ASCII 27

Host Language Access 6-63

7

Logging and Recovery

This chapter discusses how to maintain database consistency; that is, how to log logical
transactions and recover a TurboIMAGE/XL database from a system failure or program
abort. This chapter is divided into the following major sections:

Recovery Options

Logical Transactions

Dynamic Roll-Back Recovery

Intrinsic Level Recovery

Logging Preparation

Logging Status

Logging Maintenance

TurboSTORE/iX 7x24 True-Online Backup

Roll-Forward Recovery

Roll-Back Recovery

DBRECOV Commands Used With Roll-Forward and Roll-Back Recovery

Record Tables

Post-Recovery Options

The Mirror Database

A quick guide to recovery and logging options is found in appendix G, \Recovery and Logging
Quick Reference."

Database Utilities Used in Logging and Recovery

The TurboIMAGE/XL database is maintained using various TurboIMAGE/XL database
utilities which are fully described in chapter 8. Because the following database utilities are
used in logging and recovery, they are also referred to in this chapter:

DBUTIL Creates and maintains the database.

DBUNLOAD Copies data to specially formatted tape volumes.

DBLOAD Loads data from backup volumes (DBUNLOAD tape) into the database.

DBSTORE Stores a database to tape. You may also use TurboSTORE/iX 7x24
True-Online Backup with ONLINE=START or ONLINE=END option.

DBRESTOR Restores a database from backup volumes (DBSTORE tape) to disk.

Logging and Recovery 7-1

If you use TurboSTORE/iX 7x24 True-Online Backup with ONLINE=START
or ONLINE=END option to store your database, you can use the MPE
RESTORE command which invokes TurboSTORE/iX 7x24 True-Online
Backup to restore the database.

DBRECOV Recovers a database from a log �le, even when you used TurboSTORE/iX
7x24 True-Online Backup with ONLINE=START or ONLINE=END option
to store the database. The DBRECOV utility allows you to set control
commands and create individual user recovery �les. The information from
these �les enables you to inform each user where to resume transactions
within the database.

Database utilities can be run in either job or session mode. With the exception of
the DBUTIL >>SHOW command, the utilities DBUTIL, DBSTORE, DBRESTOR,
DBUNLOAD, and DBLOAD all require a logon in the group and account that contains
the database root �le. Consequently, these utilities cannot be used with a remote database
unless you initiate a remote session and run the utility as part of that session. The DBUTIL,
DBSTORE, and DBRESTOR utilities do not allow you to use the MPE/iX FILE command
to equate a database or database-access �le.

Caution DBUNLOAD and DBLOAD do allow MPE/iX FILE commands to equate
a database and can redirect the database to a di�erent �le. Except in a
controlled environment, you should not use the MPE/iX FILE command to
redirect a database or database-access �le to a di�erent �le because that �le
can be purged easily.

The DBRECOV utility is not included in the discussion above because it is an exception.
With DBRECOV, MPE/iX FILE commands are permissible and do not require a logon to the
same group and account as the log �le. However, DBRECOV must be invoked on the system
where the database resides.

You can operate the database utilities if you are the database creator or if you know the
maintenance word. If no maintenance word is de�ned, only the database creator can execute
the database utilities. The exception to this rule is that a user with system manager (SM)
capability can use the DBUTIL >>SHOW command on any database without having to
supply the maintenance word.

Use this chapter together with chapter 8 which gives the syntax of the database utilities and
commands.

7-2 Logging and Recovery

Recovery Options

The logging and recovery system is used to bring databases back to the same state at the time
of a system failure; this state does not include incomplete transactions. TurboIMAGE/XL
provides several types of recovery options:

Default recovery mode
Dynamic roll-back recovery
Intrinsic Level Recovery (ILR)
Roll-forward recovery
Roll-back recovery
Mirror database

The recovery options are described briey below. Dynamic roll-back recovery, ILR,
roll-forward recovery, roll-back recovery, and the mirror database are discussed in detail later
in this chapter. A brief description of these recovery and logging options is found in appendix
G, \Recovery and Logging Quick Reference." Use the information in this chapter and in
appendix G to determine which recovery and logging options to choose. The recovery option
is based on available database backup, logging resources, and performance requirements.

Default Recovery Mode. In default recovery mode, TurboIMAGE/XL uses an MPE/iX
�le system service, Transaction Management (XM), to ensure the structural integrity of
the database following a system failure. All modi�cations to the database (DBPUTs,
DBDELETEs, and DBUPDATEs) are automatically logged to an MPE/iX XM log �le.
However, this XM log �le is only written to disk when one of the following situations is true:

A system-speci�ed time has elapsed.

A request is made by a process to ush the log �le to disk, for example, a call to DBEND
mode 2 or 4.

The XM bu�er is full.

XM ensures that the TurboIMAGE/XL intrinsics are applied to the log �le in a serial manner.
If a system failure occurs, those completed intrinsics that have not been written to disk are
not recovered. Thus, one or more completed DBPUTs, DBDELETEs, and DBUPDATEs
can be lost, but the internal structure of the database remains consistent. Recovery with
DBRECOV must be performed at system startup time before anyone modi�es the database.

Dynamic Roll-Back Recovery. Dynamic roll-back recovery is a method of recovery that uses
XM. XM ensures the physical and logical integrity of the databases. Dynamic roll-back
allows a more timely recovery of databases than is possible with DBRECOV. Dynamic
roll-back eliminates the overhead incurred when a database is enabled for user logging and
permits database access to continue, even when recovering a database. It provides the most
thorough protection for logical database transactions. Dynamic transaction can span one or
more databases. The dynamic transaction spanning multiple databases is termed dynamic
multiple database transaction, or DMDBX. Dynamic roll-back handles both program aborts
and system failures without downtime for recovery, and your database will not be left with
an incomplete transaction. Dynamic roll-back also allows programs to selectively abort any
ongoing transaction.

TurboIMAGE/XL uses XM to dynamically roll back uncommitted dynamic transactions.
Dynamic roll-back requires using the three intrinsics: DBXBEGIN, DBXEND, and
DBXUNDO.

Logging and Recovery 7-3

Dynamic roll-back recovery can be used with roll-forward recovery to handle disk media
failures.

Intrinsic Level Recovery (ILR). Intrinsic Level Recovery (ILR) is a recovery method provided
within TurboIMAGE/XL. ILR ensures that all completed DBPUTs and DBDELETEs are
recovered. On TurboIMAGE/XL, ILR is equivalent to calling DBEND mode 2 after every
intrinsic. It is recommended that ILR not be used. It is not required for the DBRECOV
roll-back recovery. See \Intrinsic Level Recovery" in this chapter for more information.

Roll-Forward Recovery. Roll-forward recovery is another method of recovery provided within
TurboIMAGE/XL. It is used to ensure the structural and logical integrity of the database.
Roll-forward recovery is used after a hard system failure such as a disk head crash or after
problems occurring while roll-back recovery is in process.

Roll-forward recovery requires user logging and a backup copy of the database. The recovery
time needed is generally more than roll-back recovery. The database backup may have been
done using DBSTORE, TurboSTORE/iX 7x24 (with ONLINE=START or ONLINE=END
option), or other similar programs and must be synchronized with the current log �le.

If DBSTORE was used for storing the database, DBRESTORE needs to be used to restore
the database. The correct log �le is the �rst log �le and recovery commences from the
beginning of the log �le.

If TurboSTORE/iX 7x24 True-Online Backup was used (with ONLINE=START or
ONLINE=END option) to back up the database, the RESTORE command of MPE is used
to restore the database. The recovery may even commence from the middle of a log �le in
use when backup was initiated. To �nd out the log�le from which recovery will start, use the
SHOW databasename ALL command of DBUTIL. Refer to the TurboSTORE/iX True-Online
Backup discussion later in this chapter.

Roll-Back Recovery. Roll-back recovery is another method of recovery provided within
TurboIMAGE/XL. It is used to ensure the structural and logical integrity of the database.
Roll-back recovery is used after a \soft" system crash such as a system failure or loss of
working memory.

Roll-back recovery requires user logging. A backup copy of the database is recommended (for
protection in the event of a hard disk failure), but not required. The time taken to perform
roll-back is generally much less than roll-forward recovery.

Mirror Database. In addition to the recovery methods mentioned previously, roll-forward
recovery can be used to mirror a database for constant access or \high availability" while
providing controlled maintenance using a DBRECOV feature called STOP-RESTART.
Backups and down-time can be regulated with this maintenance method which consists of two
identical databases on two separate computer systems. The mirror database resides on the
secondary system and is maintained with user logging, DBRECOV, and periodic DBSTOREs.

7-4 Logging and Recovery

Logging and Recovery Considerations

To ensure database integrity, the following responsibilities need to be assigned to speci�c
individuals:

Enabling and disabling the logging and recovery processes.
Creating database backup copies and synchronizing with log �les.
Performing actual recoveries when required.

Note In the event of a system failure and subsequent recovery operation when using
private volumes, logging will not resume until these private volumes have been
mounted. Enter the MPE/iX VMOUNT command into the SYSSTART �le to
resume logging.

The overhead required by the logging process depends on the number and type of
modi�cations that are logged and the database structure. Both overhead and recovery time
also depend on the type of recovery being used. For roll-forward recovery, the time needed
for recovery depends on the number of transactions that were written to the log �le following
the last backup of the database. For roll-back recovery, the time needed to roll back the last
incomplete transaction is generally much less than roll-forward recovery.

Dynamic roll-back recovery can process program aborts. This is signi�cant because
the TurboIMAGE/XL logging and recovery system is not intended to be a solution for
transactions that fail to complete in real time due to a program abort. Because subsequent
transactions may be dependent on a transaction interrupted by a program abort, the recovery
system does not suppress transactions that fail for this reason. Instead, TurboIMAGE/XL
logs an abnormal DBEND to the log �le so that the transaction can be recovered.

Note Transactions that fail due to program aborts can be suppressed with the
NOABORTS control option in DBRECOV as long as all processes are stopped
immediately after a program abort and the database is recovered. Any delay
in executing recovery with the NOABORTS option could result in erroneous
data or recovery failure due to transaction interdependence.

Alternatively, when using roll-forward recovery, the STOPTIME option could be used to
recover transactions that logged up to a time preceding the program abort. See the discussion
on DBRECOV in chapter 8.

As a secondary function, the transaction logging system can be a useful tool for auditing. The
log �le is actually a programmatically accessible journal of all modi�cations to items in the
database. The log �le provides information about previous entries as well as the current state
of the database. The DBMEMO logging intrinsic, containing user text, provides a method of
accessing and interpreting the log �les.

Logging and Recovery 7-5

Logical Transactions

A Definition

TurboIMAGE/XL logging and recovery (via DBRECOV) provide the ability to restore the
database to a consistent state after a system failure. To understand how this is done, it
is important to understand the concept of a logical transaction. A logical transaction is a
sequence of one or more procedure calls that are considered one logical unit of work. Table 7-1
describes the types of logical transactions: static, multiple database, dynamic, and dynamic
multiple database.

7-6 Logging and Recovery

Table 7-1. Types of Logical Transactions

Transaction De�nition

Static A logical transaction that begins with a DBBEGIN call and ends with a
DBEND call. A static transaction spans only one database and uses
DBBEGIN mode 1 and DBEND mode 1 or 2.

Multiple database A logical transaction that begins with a DBBEGIN mode 3 or 4 call and
ends with a DBEND mode 3 or 4 call. A multiple database transaction
(MDBX) spans more than one database and can be recovered with roll-back
or roll-forward recovery.

Programmers may be tempted to call DBBEGIN twice (once for each
database), update both databases, and then call DBEND twice in an
attempt to implement this capability. However, a system failure during the
\window" between the two �nal calls to DBEND will result in the recovery
of the transaction for the �rst database and its suppression on the second.
To perform a transaction accessing multiple databases, use a multiple
database transaction.

Dynamic A logical transaction that begins with a DBXBEGIN mode 1 call and ends
with a DBXEND mode 1 or 2 call. A dynamic transaction spans only one
database. A call to DBXUNDO or a program abort will cause a dynamic
transaction to be rolled back dynamically. If a system failure occurs, the
dynamic transaction will be rolled back at the �rst call to DBOPEN for the
database after the system is restarted. However, in the event of a media
failure, DBRECOV roll-forward recovery can be used on dynamic
transactions as long as user logging has �rst been enabled.

Dynamic multiple
database

A dynamic transaction that spans multiple databases and begins with a
DBXBEGIN mode 3 call and ends with a DBXEND mode 3 call. The total
number of databases then can be included in a dynamic multiple database
transaction is 15. The baseid parameter of DBXBEGIN mode 3 includes the
number of databases and their respective base-ids. A call to DBXUNDO or
a program abort will cause a DMDBX to be rolled back dynamically. In
essence, modi�cations to all databases involved in DMDBX will be rolled
back. If a system failure occurs, the dynamic transaction will be rolled back
at the �rst call to DBOPEN for the databases after the system is restarted.
However, in the event of a media failure, DBRECOV roll-forward recovery
can be used on dynamic transactions as long as user logging has �rst been
enabled.

Unlike a dynamic transaction for one database, DMDBX requires that a
DBCONTROL mode 7 be done once for every database you want to include
in a DMDBX, after DBOPEN of that database and before using it in the
DBXBEGIN intrinsic. DBCONTROL mode 7 enables the database for
deadlock detection, which when encountered, returns an error 26 instead of
triggering a process hang.

If the calling process is logging, DBXBEGIN, DBXEND, and DBXUNDO
cause a log record to be written to the log �le to identify the beginning, end,
and roll-back, respectively, of a dynamic transaction. For DMDBX, logging
should be either disabled or enabled for all databases involved in the
DMDBX. In addition, if logging is enabled, the same logid needs to be used
for all databases in the DMDBX as well. In case of DMDBX when logging is
enabled, multiple log records, one for each database, will be written to the
log �le.

Logging and Recovery 7-7

If logging is speci�ed and DBBEGIN/DBEND (static transactions) or DBXBEGIN/DBXEND
(dynamic transactions) are not used, TurboIMAGE/XL considers each DBPUT, DBDELETE,
and DBUPDATE to be a single logical transaction. While a transaction is executing, the
database is considered to be in an inconsistent state. Thus, each transaction takes the
database from one consistent state to another.

For example, consider the manual master data set CUSTOMER in the ORDERS database,
with the addition of a new �eld, YTDSALES, indicating the total value of the year-to-date
sales for each customer. A one-step transaction might involve updating a particular
customer's address. Adding a new sales item is a two-step transaction: adding an entry to
the SALES detail data set and updating the YTDSALES item in the CUSTOMER master
set. The database is consistent before the transaction begins because the YTDSALES value
corresponds exactly with the sum of the TOTAL values in the SALES detail set that are
chained to that particular customer's account number. However, after the �rst modi�cation,
which might be adding the new SALES entry, this correspondence no longer holds, so the
database is said to be inconsistent. After the second step, modifying the YTDSALES item in
the CUSTOMER data set, the database is returned to a consistent state.

If the system fails while the database is being modi�ed, database integrity could be a�ected.
Logical inconsistency could result if the failure occurs between modi�cations of a multiple-
step transaction, as illustrated by the example in the preceding paragraph. Secondly, if
AUTODEFER is enabled, structural damage (such as, broken chains) can result if the failure
occurs during the execution of a TurboIMAGE/XL intrinsic.

Because the recovery system is designed to restore the database to a consistent state, those
modi�cations belonging to transactions that failed to complete due to a system failure
are suppressed by the recovery system. Consequently, although one or more database
modi�cations may be lost upon recovery, the resulting database will be consistent. To this
end, each user application should indicate the beginning and end of each transaction by using
a DBBEGIN and DBEND pair or a DBXBEGIN and DBXEND pair. (Refer to chapter 4 for
more information on transactions.)

Figure 7-1 illustrates the concept of a logical transaction using a static and a dynamic
transaction. Note that a transaction block is also illustrated. A transaction block consists of
all transactions between a call to DBOPEN and a call to DBCLOSE. For further information
about transaction blocks, refer to \FILE Command" later in this chapter.

7-8 Logging and Recovery

Figure 7-1. Transactions and Transaction Blocks

Locking Requirements for Logical Transactions

DBRECOV requires that all multiple-intrinsic database transactions execute independently
of all other transactions. Transaction independence within the database can be ensured in a
user program by locking data before a transaction and then releasing locks after a DBEND or
DBXEND is called, thus eliminating the possibility of another user modifying the same data
at the same time. The following example may clarify the need for locking data to be modi�ed.

Suppose transaction A consists of adding two records to the database that are later modi�ed
by transaction B. Transaction B is dependent upon transaction A, because the records must
exist before they can be modi�ed. Recall that a transaction is de�ned as a sequence of one
or more modi�cations that transfer the database from one consistent state to another. A
database may be in an inconsistent state during a transaction. Therefore, if transactions A
and B are executing concurrently without locking, transaction B may be viewing the database
in an inconsistent state and consequently could be generating invalid results. However,
if transaction A locks the data and completes properly, this problem is avoided because
transaction B cannot access the data until transaction A has released its locks.

A second problem due to inadequate locking a�ects suppression of transactions by the
recovery system (see Figure 7-2). Suppose transaction A intends to add six records to the
database, and after adding three records, transaction B is executed by another process.
Transaction B concurrently modi�es one of the records added by transaction A and then
completes. Suppose that at this time, the system fails and recovery is executed. Because
transaction A failed to complete, all of its record additions are suppressed. Because
transaction B is dependent upon the suppressed transaction A, it cannot be recovered.
DBRECOV is forced to suppress transaction B, even though it successfully completed during
real-time processing. This potential problem could be avoided if transactions modifying
the database employ locking correctly. Transactions attempting to access the same data
concurrently are serialized by the locking mechanism.

Logging and Recovery 7-9

Locking and Transaction Interdependence

To maximize the extent of recovery, locking should be used with logging to eliminate
interdependence of concurrent static and multiple database transactions. Locking by logical
transaction (that is, DBBEGIN and DBEND or DBXBEGIN and DBXEND) guarantees the
logical consistency of the database. For roll-back recovery, locking by logical transaction
ensures that all incomplete transactions are backed out of the database. For roll-forward
recovery, transaction locking is recommended.

Figure 7-2. Suppression of Transactions Due to Inadequate Locking

7-10 Logging and Recovery

Locking Examples

Examples of the two recommended locking schemes follow:

Single Lock Strategy

DBLOCK for account 2,18,34 Lock should precede DBBEGIN call.

DBBEGIN

DBGET data for account 2

DBPUT data for account 34

DBGET data for account 18

DBDELETE data for account 18

DBEND

DBUNLOCK for all accounts DBUNLOCK must be last call.

Multiple Lock Strategy

DBLOCK account 2,34

DBBEGIN

DBGET data for account 2

DBUPDATE data for account 2

DBPUT data for account 34

DBLOCK for account 18

DBGET data account 18

DBDELETE data account 18

DBEND

DBUNLOCK for all accounts DBUNLOCK must be last call.

Caution Use caution when employing a multiple lock strategy requiring Multiple RIN
(Resource Identi�cation Number) capability, also known as MR capability;
refer to appendix D for information. Hewlett-Packard does not accept
responsibility for possible deadlocks or system lockouts that could result from
improper use of the MR capability.

In the �rst example above, calling DBLOCK before DBBEGIN makes the transaction shorter
in duration. The recommendation is to call DBLOCK �rst, because there is no way of
knowing how long DBLOCK will have to wait to acquire the lock after the transaction has
begun. For additional locking information, refer to \Using the Locking Facility" in chapter 4.

Locking and Dynamic Transactions

Because dynamic transactions can be rolled back by calling DBXUNDO and are automatically
rolled back in case of a system failure or program abort, TurboIMAGE/XL requires that a
dynamic transaction be independent of all other transactions. When the database is opened in
access mode 3 or 4, transaction independence is guaranteed because the program is the only
modi�er of the database.

When the database is opened in access mode 1, dynamic transactions require the programmer
to use strong locking. A call to DBUNLOCK must occur after the call to DBXEND. Failure
to follow this sequence after a call to DBPUT, DBDELETE, or DBUPDATE will cause an
error. Intrinsic calls within the dynamic transaction must have covering locks. If an error is

Logging and Recovery 7-11

returned indicating the failure of the intrinsic, the status condition must be checked before
proceeding further or rolling back the entire transaction.

As with nondynamic transactions, the placement of DBLOCK calls either before or after
DBXBEGIN is up to the programmer. A program with Multiple RIN (MR) capability can
apply multiple locks with a dynamic transaction. MR capability is described in appendix D.

Dynamic transactions are not allowed when a database is opened in mode 2, because mode 2
does not enforce locking or guarantee transaction independence.

An example of strong locking follows:

DBLOCK for account 2,18,34 Lock should precede DBXBEGIN call.

DBXBEGIN

DBGET data for account 2

DBPUT data for account 34

DBGET data for account 18

DBDELETE data for account 18

DBXEND

DBUNLOCK for all accounts DBUNLOCK must follow DBXEND

call.

7-12 Logging and Recovery

Dynamic Roll-Back Recovery

Dynamic roll-back allows a more timely recovery of databases than is possible with
DBRECOV. Dynamic roll-back eliminates the overhead incurred when a database is enabled
for user logging and permits database access to continue, even while other users are accessing
a database.

Using XM, uncommitted logical transactions can be rolled back dynamically (online) while
other database activity is occurring. This is accomplished through the use of three intrinsics:
DBXBEGIN, DBXEND, and DBXUNDO.

DBXBEGIN and DBXEND mark the beginning and end of the dynamic transaction which
can be for one or multiple databases. The dynamic transaction can be rolled back in the
following ways:

Programmatically with a call to DBXUNDO.

Automatically when the application aborts or a system failure occurs within the transaction.

In any case, those transactions begun after the call to DBXBEGIN that do not have a
corresponding call to DBXEND will be rolled back. When you use DBXUNDO, your program
logic must ensure that it does not call DBXEND subsequently; otherwise, you will get an
error.

Use the following sequence of operations when modifying a database with dynamic
transactions:

1. Call DBLOCK for each database to be included in the dynamic transaction to lock all data
that must not be changed by other processes during the transaction. This includes data to
be read and data to be modi�ed.

2. If you wish, read data using DBFIND and DBGET to determine the necessary
modi�cations.

3. If this is a multiple database transaction, ensure that DBCONTROL mode 7 is done at
least once for each of the databases before including in the dynamic transaction.

4. Call DBXBEGIN to declare the beginning of modi�cations.

5. Make modi�cations using DBPUT, DBDELETE, or DBUPDATE.

For every DBPUT, DBDELETE, or DBUPDATE, the status must be checked before
proceeding further. If an error is returned indicating the failure of the intrinsic, the choices
are:

a. Call DBXEND. The successful modi�cations completed within this dynamic transaction
will not be rolled back.

b. Call DBXUNDO to roll back the entire transaction. Even successful modi�cations
completed within one or more databases included in this dynamic transaction will be
rolled back. That is, for DMDBX, DBXUNDO a�ects all databases included in the
DBXBEGIN call.

c. Continue with the remainder of the dynamic transaction even though this intrinsic
failed. As the application designer, you should be very cautious when taking this option
as the modi�cation to the database in this intrinsic did not take place.

Logging and Recovery 7-13

6. Call DBXEND to declare the end of the modi�cations. If DBXUNDO was used in step 4
to roll back a transaction, your program logic should ensure that the subsequent call to
DBXEND is not processed.

7. Call DBUNLOCK to release all of the locks.

Dynamic roll-back requires strong locking as discussed previously under \Locking and
Dynamic Transactions." Calling DBUNLOCK after a call to DBPUT, DBDELETE,
or DBUPDATE within a dynamic transaction will return an error because the call to
DBUNLOCK must occur after the call to DBXEND. If necessary locks are not acquired
before calling DBXBEGIN, covering locks must be used on the intrinsic calls within the
dynamic transaction, otherwise an error will be returned.

It is essential that you check the status after each intrinsic. If a database intrinsic fails, you
may end the transaction by calling DBXEND or roll back the entire transaction by calling
DBXUNDO. You may be able to continue with the transaction despite the intrinsic failure,
however, you must account for the intrinsic failure. The outcome varies based on your
application design.

Do not use DBCLOSE mode 1 (close the database) inside an active dynamic transaction.
This use of DBCLOSE will cause your dynamic transaction to be rolled back, the locks will
be released, the database will be closed, and subsequent use of DBXEND or DBXUNDO will
return an error.

If your dynamic transaction is very long causing XM to reach its limit of the log bu�er space
allowed per process, it will become a stalled transaction, and you cannot continue any further.
This stalled transaction will be rolled back and the process is terminated.

If the system aborts or TurboIMAGE/XL encounters an internal error, the active memo
records are saved in a �le. All of the unrecovered memo records for a particular database are
held in the dbname00 �le. It resides in the same group and account as the database, and each
database has only one dbname00 �le. The �rst DBOPEN of an unrecovered database initiates
the recovery using the dbname00 �le.

User logging (discussed later in this chapter) is not required for dynamic roll-back recovery,
but it is recommended to guard against a media failure.

7-14 Logging and Recovery

Intrinsic Level Recovery

Intrinsic Level Recovery (ILR), one of the TurboIMAGE/XL recovery options, closely
resembles default mode recovery. The distinction that ILR provides is an enforced ushing
of the Transaction Management (XM) log �le after every intrinsic. This enforced ushing
emulates the immediate posting of intrinsics by TurboIMAGE/V and should only be used if
immediate posting is required and DBEND mode 2 cannot be used to provide the immediate
posting.

Note Intrinsic Level Recovery is not recommended. This feature is included for
compatibility with MPE V programs only.

To enable a database for ILR, run DBUTIL and use the >>ENABLE command. For
example:

:RUN DBUTIL.PUB.SYS

>>ENABLE database name FOR ILR

ILR is enabled

When the database is enabled for ILR, TurboIMAGE/XL sets a ag in the database root
�le. To determine if ILR has been enabled for a database, either use the DBUTIL >>SHOW
command or programmatically call DBINFO with mode 402. Note that ILR is not required
for roll-back recovery.

To discontinue using ILR on a database, use the DBUTIL >>DISABLE command. When
ILR is disabled by the user, TurboIMAGE/XL clears the ag in the database root �le.

Note If you have enabled the AUTODEFER option in DBUTIL, ILR cannot be
used as the database recovery method. The following message is printed at the
terminal if the user attempts to enable ILR when AUTODEFER is already
enabled for the database:

AUTODEFER MUST BE DISABLED BEFORE ILR CAN BE ENABLED

The user should disable AUTODEFER and enable ILR using the DBUTIL
>>ENABLE command. For more information on AUTODEFER, refer to
chapter 8.

Logging and Recovery 7-15

Logging Preparation

User logging is required for roll-forward recovery, roll-back recovery, and to maintain a
mirror database. It is not required for dynamic roll-back recovery, but is recommended to
protect against a hard disk failure. To prepare a database for user logging, you must set a
log identi�er (logid) into the database root �le. The log identi�er can be associated with an
existing log �le, in which case you can begin with step 6 below if you know the log identi�er
and password. Note that to recover a database using a log �le, you must either be the creator
of the logid , or supply the maintenance word and have system manager (SM) or operator
(OP) capability.

Assuming you intend to create a new log identi�er, you should take the following steps:

1. Check MPE/iX logging con�guration.

2. Acquire logging capability.

3. Determine whether the log �le will reside on tape or disk.

4. If logging to disk, build the log �le.

5. Create the log identi�er.

6. Set the log identi�er into the database.

7. Set ags for the database backup copy.

8. Make a backup copy of the database. This step is required when using roll-forward
recovery and recommended (for protection in the event of a hard disk failure), but not
required, when using roll-back recovery.

This is a one-time procedure. The logging maintenance operations are performed on a regular
basis, perhaps daily (refer to \Logging Maintenance" later in this chapter).

Step 1|Checking MPE/iX Logging Configuration

It is recommended that you check the logging con�guration for adequate capacity before
using the MPE/iX LOG command described later in this section. This precautionary step
can prevent the downtime required to recon�gure the logging capacity. You need to check
the number of user logging processes allowed on the system and the number of users that can
access a single user logging process. For information on setting up these numbers at system
startup time, refer to the System Operation and Resource Management Reference Manual .

Step 2|Acquiring Logging Capability

You must have MPE/iX logging (LG) or operator (OP) capability to use the following
MPE/iX commands: GETLOG, RELLOG, ALTLOG, CHANGELOG, and LISTLOG. You
must have LG or OP capability also if you intend to open a database with logging enabled.
Logging capability is acquired through the MPE/iX system manager and account manager
commands.

First, the system manager provides the account logging capability by using the MPE/iX
NEWACCT command for a new account, or the ALTACCT command for an existing account,
as follows:

:NEWACCT acctname,mgrname;CAP=capability list (include LG)

:ALTACCT acctname;CAP=capability list (include LG)

7-16 Logging and Recovery

Next, the account manager can provide logging capability to individual users by using the
NEWUSER command for new users, or the ALTUSER command for an existing user, as
follows:

:NEWUSER username;CAP=capability list (include LG)

:ALTUSER username;CAP=capability list (include LG)

For example:

:NEWACCT CAPE,RICK;CAP=LG,AM,AL,GL,SF,ND,IA,BA

:NEWUSER ILSA;CAP=LG,AL,GL,SF,ND,IA,BA

Refer to the MPE/iX Commands Reference Manual for information on other MPE/iX user
logging commands, including these listed here:

RELLOG Removes a log identi�er.

ALTLOG Alters an existing log identi�er.

LISTLOG Lists the current log identi�ers.

Any messages that are followed by (ULOGERR#) or (ULOGMSG#) are MPE/iX errors or
system messages.

Step 3|Logging to Tape or Disk

You must choose whether to log to tape or disk. The overhead required by the logging
operation is comparable on disk or tape. However, other factors should be considered.

For roll-back recovery when logging to tape, the database must be in the system volume set.
For roll-back recovery when logging to disk, the database and the log �le must be in the
same volume set. Logging to tape is the more secure option, because a log �le residing on
tape is less susceptible to damage from possible system failure than a disk log �le. Refer to
appendix G for more information on considerations when logging to disk and tape.

For allocating resources, logging to tape requires that the system be able to make a tape
drive available as long as the database is accessible for modi�cation. If the decision is made
to log to disk, you must use the MPE/iX BUILD command to create a new �le and allocate
space on disk, as described in step 4. This allocation must be generous enough to avoid any
possibility of �lling the log �le to capacity.

Step 4|Building a Log File for Logging to Disk

This step is required only when logging to disk. You must build the new �le and allocate
space for it on disk by using the MPE/iX BUILD command below.

Syntax

:BUILD log�le;CODE=LOG;DISC=
�
numrec

��
,
�
numextents

��
,initial loc

� ��
;DEV=

�
device

� �

Parameters

log�le is the name of the log �le being built, as speci�ed in the MPE/iX GETLOG
command. If you specify the AUTO option with the GETLOG command, the
log �le name must end with 001 to designate the �rst �le in the log �le set.

Logging and Recovery 7-17

Note If you are using roll-back recovery, the log �le and the database must be in the
same volume set. To accomplish this, use the device parameter of the MPE/iX
BUILD command and then create the log �le in the appropriate group and
account.

numrec is the maximum number of logical records. Maximum value allowed is
2,147,483,647. Default is 1023.

numextents is the maximum number of disk extents (from 1 to 32, inclusive). Default is 8.

initialloc is the number of extents to be initially allocated to the �le at the time it is
opened. Default is 1.

device is the class of the device on which the log �le and database are to reside. This
parameter puts the log �le and database in the same volume set. Required for
roll-back recovery; is not used for roll-forward recovery.

If the default NOAUTO option is used in the GETLOG command, disk log �les must be
of su�cient size to prevent the end-of-�le from being reached, because MPE/iX causes
the associated log process to terminate when the log �le is �lled to capacity. Therefore,
subsequent calls to TurboIMAGE/XL intrinsics that require log records to be written to
the log �le will fail. If this occurs in the middle of a transaction, the database is left in an
inconsistent state. It then becomes necessary to recover transactions with roll-forward or
roll-back recovery. Because reaching the end of a disk log �le is similar in e�ect to a system
failure, disk log �les should be built with a total capacity far exceeding their required size
and consisting of as many extents of contiguous disk sectors as needed to meet the capacity
requirements of the �le, subject to the constraints of the MPE/iX �le system; of these extents
only enough to satisfy the expected capacity should be allocated initially.

Note When the NOAUTO option is used, the MPE/iX SHOWLOGSTATUS
command can be used to determine the space usage of the existing log �le and
when to create a new log �le using an MPE/iX CHANGELOG command.

Example

:BUILD ORDER001;CODE=LOG;DISC=200000,20,7

Step 5|Creating the Log Identifier

You create the log identi�er on MPE/iX by using the GETLOG command shown in this
section. A log identi�er (logid) is a unique logical name that identi�es a system logging
process to which log records are passed. Before using the GETLOG command, use the
MPE/iX LISTLOG command to check if the logid already exists on MPE/iX. The LISTLOG
command lists all logging identi�ers, including creator names, log �le names, and whether or
not the AUTO option is used.

If the logid exists and was created by someone else, you must specify a di�erent logid . If the
logid exists and was created by you, check the parameters to verify that they are the ones you
want. If you �nd, for example, that you used the default NOAUTO option and you want to
change it to AUTO, you can either change it with the MPE/iX ALTLOG command, or you
can release the logid with the MPE/iX RELLOG command and then re-create it with the
GETLOG command. You can release a logid only if you are the creator of that logid .

7-18 Logging and Recovery

The logid has a maximum of eight characters. Other users can access the log �le and records
in the same log �le by using the logid you acquire and its password. To access the logging
system directly through MPE/iX, you must have logging (LG) or operator (OP) capability
and supply the identi�er and password on the OPENLOG intrinsic.

If you use logging and create a backup copy using TurboSTORE/iX 7x24 True-Online Backup
(with ONLINE=START or ONLINE=END), you can use either the default NOAUTO
option or use the AUTO option. At database backup time, using TurboSTORE/iX 7X24
True-Online Backup (with ONLINE=START or ONLINE=END), the necessary information
(such as the DBSTORE ag, name of the log �le in use, the log record number, date, and
time stamps) is recorded in the database root �le before backup. At roll-forward recovery
time using DBRECOV, this information is used to determine the log �le to be used and the
position in the log �le from where roll-forward recovery must begin. With the NOAUTO
option, there is only one log �le. When using the AUTO option, the log �le next in sequence
in a round-robin fashion is automatically created. Hence there can be more than one log �le
needed for roll-forward recovery. In this case, it is very important to maintain a process of
synchronizing the log �les with the backup copy. It is required that the AUTO/NOAUTO
option be not changed after backup and while the log process is active. You can change it
only when starting a new log cycle. Refer to step 8 later in this chapter.

Syntax

:GETLOG logid;LOG=log�le,
�
DISC/TAPE

	 �
;PASS=password

��
;
�
AUTO/NOAUTO

	 �

Parameters

logid is the logging identi�er to be established on the system. It consists of a string
of up to eight characters that is meaningful to the user application.

Note Do not give the logid and the log �le the same name, because the logid is used
to name the RESTART �le (used for DBRECOV STOP/RESTART recovery
explained later in this chapter).

log�le is an MPE/iX �le reference that identi�es the actual �le to which the log
records are written. If the AUTO option is speci�ed, the last three digits are
numeric (001-999). The �rst log �le speci�ed with the MPE/iX GETLOG
command must end with the last three digits equal to 001 if the AUTO
option is used. (A warning message is issued if the log �le does not end
in 001.) When the AUTO option is used, the next log �le will be opened
automatically when the current one is full. The new log �le is numbered
consecutively. When the AUTO option is not used, the next log �le needs to
be built manually using the CHANGELOG command, when the current log
�le is almost full.

DISC is the class of the device on which the log �le is to reside. For roll-back
recovery, the log �le and the database must be in the same volume set. If the
log �le speci�ed for the logid is a serial �le, the AUTO/NOAUTO option is
ignored.

TAPE is the class of the device on which the log �le is to reside.

Logging and Recovery 7-19

password is the password to be associated with the logging identi�er. This parameter
protects the log �le from unauthorized access. Up to eight characters are
allowed.

AUTO performs an automatic CHANGELOG command when the disk log �le
becomes full. A new log �le is automatically created with the same log �le
name incremented by one in the digit portion; for example, if the current log
�le is ORDER001, the next �le will be ORDER002. This enables logging to
continue uninterrupted, also creating a sequence of log �les or a log �le set.

If you use TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END) to back up your database and plan on
using DBRECOV for roll-forward recovery, you must properly synchronize
the log �les with the backup copy because the log �les are automatically
created in a round-robin fashion. The SHOW database ALL command of
DBUTIL for the restored backup copy gives you the name of the log�le to
begin roll-forward recovery.

NOAUTO is the default. No CHANGELOG command is performed when the disk log
�le becomes full.

Example

In the following example, the logid is created with the default NOAUTO option and then
changed to specify the AUTO option. The log �le name follows the naming convention
required by the CHANGELOG command. The LISTLOG command is used to check if the
logid exists. The ALTLOG command is used to change the AUTO/NOAUTO option.

:LISTLOG

NO LOGGING IDENTIFIERS ASSIGNED (CIWARN 1231)

:GETLOG ORDERLOG;LOG=ORDER001,DISC;PASS=PASSLOG

:LISTLOG

LOGID CREATOR CHANGE AUTO CURRENT LOG FILE

ORDERLOG BEA.MKTG YES NO ORDER001.MKTG.SYS

:ALTLOG ORDERLOG;AUTO

:LISTLOG

LOGID CREATOR CHANGE AUTO CURRENT LOG FILE

ORDERLOG BEA.MKTG YES YES ORDER001.MKTG.SYS

Because NOAUTO is assumed by default in the GETLOG command, the disk log �le is closed
when it becomes full and logging is shut down unless you manually issue a CHANGELOG
command. When the NOAUTO default is used, you need to verify the capacity of the log �le
on a regular basis and issue a CHANGELOG command when necessary. When the AUTO
option is speci�ed as in the ALTLOG command above, logging automatically initiates a
CHANGELOG command when the current log �le becomes full.

In the example above, the AUTO option has been speci�ed. Here is what happens when
log �le ORDER001 becomes full. Logging initiates a CHANGELOG command causing
the log records to be written to ORDER002, the next log �le in the sequence. As each log
�le becomes full, logging initiates additional CHANGELOG commands creating log �les
automatically until log �le ORDER999 becomes full. At this point, the log �le name is reset
to ORDER001 and logging continues automatically.

7-20 Logging and Recovery

If you use TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END) to backup your database and DBRECOV to perform roll-forward recovery,
you must take precautions to synchronize the proper log �les with the stored database. Refer
to step 8 for more information.

If you speci�ed the AUTO option as in the preceding example, and you need to restart logging
at log�le001, you can issue an ALTLOG command as shown in the following example:

:LISTLOG

LOGID CREATOR CHANGE AUTO CURRENT LOG FILE

ORDERLOG BEA.MKTG YES YES ORDER026.MKTG.SYS

:ALTLOG ORDERLOG;LOG=ORDER001,DISC

Step 6|Setting the Log Identifier

The two previous steps were executed using MPE/iX commands. At this point, you must
notify the MPE/iX user logging system of the TurboIMAGE/XL logging intention by setting
the log identi�er and logid password into the database root �le, using the DBUTIL >>SET
command, as shown in the example below:

:RUN DBUTIL.PUB.SYS

>>SET ORDERS LOGID = ORDERLOG

PASSWORD:? PASSLOG If no logid password was previously speci�ed

in the GETLOG command, you would press �Return�
at the prompt.

DBUTIL checks the validity of the logid with MPE/iX, and reports a warning as follows if the
log identi�er is not valid or if its password is incorrect:

WARNING: non-existent LOGID

Once the log identi�er has been set into the database, the log identi�er parameters cannot be
altered for the logging and recovery system to function correctly.

Step 7|Setting Flags for the Database Backup Copy

In addition to setting the log identi�er, certain ags need to be set for the database before
creating the backup. Some ags such as LOGGING, ROLLBACK, and MUSTRECOVER
need to be set only once and can remain enabled unless you change your recovery plan.
However, the database access ag is disabled before the backup and enabled (access allowed)
after the backup. On the contrary, the recovery ag is enabled before the backup and
disabled after the database is recovered. This is done before someone starts accessing the
database to facilitate the recovery of the database after it is restored from the backup copy.
If you plan on using TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START
or ONLINE=END) option to back up the database, when it is open for access, you will not
be able to disable the database access ag and enable the recovery ag. If recovery becomes
necessary, you can set these two ags immediately after restoring from the backup and before
starting the recovery process. Use DBUTIL to set the following ags in the root �le before
making the backup copy of the database:

Enable Logging Flag. This ag ensures that all database modi�cations are logged and
available for later use by the recovery system, if necessary. When you enable the database

Logging and Recovery 7-21

for logging, DBUTIL checks whether a database backup copy has been stored with
DBSTORE or TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END). If not, DBUTIL issues a warning message. Because the database is stored
after logging has been �rst enabled, the DBUTIL warning message can be interpreted as a
prompt to store the database. If you plan to use roll-forward recovery, use the following
command to enable logging (implies roll-forward logging):

>>ENABLE database name FOR LOGGING

WARNING: database modified and not DBSTOREd

If you plan to use roll-back recovery, enabling the roll-back ag will automatically enable
the logging ag.

Remember that, if logging to disk, the log identi�er must be created before the preceding
command can execute successfully (refer to \Step 5|Creating the Log Identi�er").

Enable Rollback Flag. If you plan to use roll-back recovery, use the following command to
enable roll-back recovery:

>>ENABLE database name FOR ROLLBACK

After the logid is set and the log �le has been built, the >>ENABLE command for roll-back
recovery shown above automatically enables logging for the database. However, the
>>DISABLE database name FOR ROLLBACK command will not automatically disable
logging.

Enable MUSTRECOVER Flag. When the MUSTRECOVER ag is enabled, only readers
can access the database after a system failure until the database is recovered. This prevents
modi�cations to a potentially inconsistent database.

>>ENABLE database name FOR MUSTRECOVER

After the logid is set and the log �le has been built, logging is automatically enabled when
the ENABLE command is used to enable MUSTRECOVER. However, the >>DISABLE
database name FOR MUSTRECOVER command will not automatically disable logging.

Disable Access Flag. By disabling the database for user access, you ensure that
modi�cations cannot be made to the database after restoring it. Any attempt to open the
database with a call to DBOPEN returns an error message. Access to the database should
be disabled before storing the backup copy, so that in the event of a system failure the
database is restored with access disabled. This prevents users from opening the database
and making modi�cations before recovery is executed. Disabling access to the database is
also useful as a general security measure to prevent database access at unauthorized times.
(Read the note below.) The DBUTIL command for disabling access is shown below:

>>DISABLE database name FOR ACCESS

Enable Recovery Flag. Enabling the database for recovery allows the TurboIMAGE/XL
recovery system to access the database. The database is stored with recovery enabled so
that when it is restored, it is ready for recovery. (Read the note below.) The DBUTIL
command for enabling roll-forward recovery is shown below:

>>ENABLE database name FOR RECOVERY

7-22 Logging and Recovery

Note If you plan on using TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END) when the database is open for access,
you will not be able to set the DISABLE FOR ACCESS or ENABLE FOR
RECOVERY ags for the backup copy. In the event recovery becomes
necessary, set these ags immediately after restoring the database from
backup.

The database can be stored with DBSTORE or TurboSTORE/iX 7x24 True-Online Backup
(with ONLINE=START or ONLINE=END)|after the preceding ags have been set in the
database. Logging status can be checked by referring to the procedure in \Logging Status"
later in this chapter.

Step 8|Making a Database Backup Copy

This step is required for roll-forward recovery. It is recommended (for protection in the event
of a hard disk failure), but not required, for roll-back recovery. There are two ways to make a
database backup copy:

use DBSTORE
use TurboSTORE/iX 7X24 True-Online Backup with ONLINE=START or ONLINE=END
option

Using DBSTORE

This explains the backup process using DBSTORE. See the section after this for information
on using TurboSTORE/iX 7X24 True-Online Backup.

Make a database backup copy using DBSTORE to store a copy of the database with ags
(access disabled, recovery enabled, logging enabled) set as speci�ed in step 7. Because the
correspondence between log �les and database backup copies is crucial, DBSTORE sets a
DBSTORE ag in the database root �le, along with a time stamp designating the date and
time of the DBSTORE operation, before storing the database. DBSTORE can only store one
database at a time and requires that the database be closed during backup. Also, it does not
store all external �les, such as third-party index �les, along with the database.

Note The DBSTORE ag is cleared by the �rst modi�cation to the database
(DBPUT, DBDELETE, or DBUPDATE) indicating that the database no
longer corresponds to the stored copy.

Before logging is enabled, DBUTIL checks the DBSTORE ag to ensure that the working
database is the same as the database backup copy. For example, suppose a database is stored
and some modi�cations to the database are made before logging is enabled. If you then try
to enable logging, DBUTIL, determining that the DBSTORE ag has been cleared, prints a
message indicating that the present state of the (modi�ed) database does not correspond to
the stored version. If the message is ignored, the resulting log �le will not contain all of the
transactions that actually occurred against the working database. Consequently, a recovery
using the stored copy and the incomplete log �le may fail or yield erroneous results.

Logging and Recovery 7-23

The following is an example of how to run DBSTORE:

:RUN DBSTORE.PUB.SYS

WHICH DATABASE? ORDERS

DATABASE STORED

END OF PROGRAM

Note If you plan to restore the TurboIMAGE/XL database on an MPE V system,
use the TRANSPORT option of the DBSTORE or STORE command.
Chapter 8 contains detailed information about the DBSTORE command.
Refer to the MPE/iX Commands Reference Manual for more information
about STORE options.

TurboSTORE/iX 7x24 True-Online Backup

This section describes the use of TurboSTORE/iX 7x24 True-Online Backup with the
ONLINE=START or ONLINE=END option.

When multiple databases and related �les are involved, you may use the MPE/iX STORE
command (with or without the ONLINE=START or ONLINE=END option) to collectively
copy them to tape or other storage media and, if necessary, collectively restore them by using
the MPE/iX RESTORE command. You need to have either SM or OP capability to do this
and should have an understanding of the standard rules and features associated with STORE
and RESTORE. Note that when using the STORE command without the ONLINE=START
or ONLINE=END option, neither the DBSTORE ag nor the time stamp (signifying the date
and time the backup copy was made) is set in the database root �le.

When you use MPE/iX STORE command (with the option ONLINE=START or
ONLINE=END), you are using TurboSTORE/iX 7x24 True-Online Backup which does the
following:

1. Backs up multiple databases along with their related �les including the TC �le, third-party
index �les, jumbo data set �les, and B-Tree index �les.

2. Sets DBSTORE ag in the root �le(s)

3. Sets the time stamp designating the date and time of the backup operation before storing
the database.

4. Quiesces the database if it is open for write access. The database is quiesced at a point
when no active transaction is in progress.

5. Posts log records if enabled for logging, designating the beginning and end of quiesce.
DBRECOV uses these records to determine the starting point of the roll-forward recovery.

The most signi�cant advantage is that your database can even be open for access when you
start the backup process and can continue to remain open for access. The backup becomes a
True-Online Backup.

When performing a True-Online backup, there is a point in time when the backup occurred,
especially when the database is open for modi�cation. This is helpful when performing a
roll-forward recovery to ensure that all �les are in a logically consistent state at the same
time for backup and later a subsequent restore for recovery. This point is called the sync
point , where all data set �les are synchronized. Also, it means this is the point when the
TurboIMAGE/XL database is quiesced for a short duration, that is, it is in a logically

7-24 Logging and Recovery

consistent state and there is no active transaction in progress. All ongoing transactions, if any,
are allowed to be completed before the sync point .

The ONLINE=START option allows the sync point at the beginning of a True-Online backup,
and the ONLINE=END option permits the sync point at the end of a True-Online backup.
The ONLINE=START option has the following advantages over ONLINE=END:

Allows the database to be restored on an earlier version of MPE/iX.

Allows faster partial (selective, not @.@.@) restores, since sync point at end requires
RESTORE to read the log �les (used for backup) from the end of the last piece of media.

Spreads log data throughout the backup media, and hence, is less vulnerable to media
errors.

Note All True-Online backups created with the sync point at the beginning
(ONLINE=START) can be restored on any MPE/iX system. However,
backups created with the sync point at the end (ONLINE=END) can only
be restored on MPE/iX Release 5.5 or later. If you know at the time of
performing the backup that the database(s) must be restored onto an earlier
system, create the backup with the sync point at the beginning. This is
independent of using user logging and DBRECOV.

To perform roll-forward recovery of your database stored using True-Online backup, the
following requirements must be adhered to:

Your system must be on MPE/iX Release 5.5 or later.

If you used the AUTO option with the GETLOG command, ensure that the log �les
following the backup are properly synchronized with the backup, especially in a situation
when the last log �le number, 999, switches to 001. It is recommended that you remove
(STORE and PURGE) all log �les preceding (but not including) this backup. The SHOW
database ALL command gives the name of the log �le from which the recovery will begin.

LOG process must remain active when storing the database even when the database is not
open. That is, LOG logid ,STOP must not be issued before storing the database. This is
because the logging information which is dynamic in nature, is incorporated in the root �le
when the database is stored. This dynamic logging information can only be obtained when
the log process is active. It is used later when performing roll-forward recovery.

One of the new options, ONLINE=START or ONLINE=END of TurboSTORE/iX, must be
employed when performing the backup.

:FILE musicbk;dev=tape

:STORE music;*musicbk;ONLINE=START

After the backup is completed, purge all log �les preceding the one in use when the backup
was initiated. It is essential that you retain the one used when backup was initiated and the
ones following that. These are the log �les that will be needed later to perform roll-forward
recovery.

To �nd out the log �le used by True-Online backup, employ the SHOW database ALL
command of DBUTIL, which displays the time, date, and the log �le name used for the
True-online backup. An example is given below:

Logging and Recovery 7-25

Access is enabled..
.
.

Logging is enabled..
.
.

Database last stored using True-Online Backup and

log file NLOG007 on THU, JAN 18, 1996, 6:06 PM.

If you used the AUTO option with GETLOG command, you may purge log �les NLOG001
up to NLOG006. When you continue updating the database, log �les up to NLOG999 will
be automatically created when needed. After that, the log �le NLOG001 is automatically
created and used as is done today. If the log �le, next in sequence to be automatically
created, already exists, an error will be generated. As the log �les are automatically created
in a round-robin fashion as done today for the AUTO option, you will have to take extra
measures to ensure that the log �les, logically related to your database for recovery, are
properly maintained. One way is to always start a new log cycle beginning with the �rst log
�le, NLOG001, of the log �le set. If you did not use the AUTO option, you do not need to
purge any �les.

Example

Following is an example of how to store your database using this method:

:BUILD DBUSASF;DISC=5000

:STORE DBUSA;*DBUSASF;ONLINE=START

>> TURBO-STORE/RESTORE VERSION C.55.07 B5152AA <<

(C) 1986 HEWLETT-PACKARD CO.

STORE dbusa;*dbusasf;ONLINE=START

SUN, MAR 23, 1997, 4:05 PM

ONLINE BACKUP UTILIZED DISC SPACE FOR LOG ON THE FOLLOWING VOLSETS:

MPEXL_SYSTEM_VOLUME_SET : 0 KB

DATABASE INFORMATION:

TURBOIMAGE DATABASE: DBUSA .RECTOL .QALANG

FILES STORED : 4

FILES STORED : 4

TOTAL MEDIA WRITTEN : 1

Benefits of TurboSTORE/iX 7x24 True-Online Backup

The bene�ts of using True-Online backup to store TurboIMAGE/XL databases regardless of
logging enabled are as follows:

Stores the database when it is open for read/write access, or closed.

Stores one or more TurboIMAGE/XL databases, along with their related �les including the
TC �le, third-party index �les, jumbo data sets, and B-Tree index �les, if any.

Stores the database after setting DBSTORE ag, time stamp, and other necessary
information in the root �le.

Store without the need to stop the user log process before backup, if logging is enabled.
Also, you do not need to start a new log cycle after the backup. Therefore, the roll-forward

7-26 Logging and Recovery

recovery, if enabled for roll-forward, need not commence from the beginning of the �rst log
�le.

Note If your database is opened exclusively, such as with mode 3 or 7, True-Online
backup does not store your database, and reports an error:

DATABASE NOT STORED: UNABLE TO STORE SOME DATABASE FILES

BASED ON THE SELECTION CRITERIA, NO FILES WERE STORED. (S/R 1713)

Unlike DBSTORE, STORE with ONLINE=START or ONLINE=END option allows your
database(s) to be open for access when you perform the backup.

Logging and Recovery 7-27

Logging Status

The DBUTIL >>SHOW command can be used to display the log identi�er and the status of
the ags for access, recovery, and logging. If TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END option) is used to back up the database, it can also
display the date, time, and the log�le used during backup. The following example illustrates
roll-forward recovery and the commands used to set the logid and ags into the database, as
presented in this chapter. If the steps discussed earlier in this chapter have been followed, the
database can be stored. The password (denoted by *******) does not appear on the screen.

:RUN DBUTIL.PUB.SYS.
.
.

>>SET ORDERS LOGID=ORDERLOG

PASSWORD *******

LOGID: ORDERLOG IS VALID

PASSWORD IS CORRECT

>>DISABLE ORDERS FOR ACCESS

Access is disabled

>>ENABLE ORDERS FOR RECOVERY, LOGGING, MUSTRECOVER

WARNING: Database modified and not DBSTOREd

Recovery is enabled

Logging is enabled

Mustrecover is enabled

>>SHOW ORDERS ALL

For database ORDERS

Maintenance word is not present.

Access is disabled.

Autodefer is disabled.

Dumping is disabled.

Rollback recovery is disabled.

Recovery is enabled.

ILR is disabled.

Mustrecover is enabled.

Logging is enabled.

Prefetch is disabled.

Indexing is disabled.

HWMPUT is disabled.

Restart is disabled.

Database last stored using True-Online Backup and

Thu, JAN 18, 1996, 3:39 PM

Database has been modified since last store date.

Shadowing is disabled.

Subsystem access is READ/WRITE.

CIUPDATE is allowed.

Dynamic capacity expansion is not used.

Database has at least one indexed dataset.

BTREEMODE1 is off, wildcard = "@".

Logid: ORDERLOG is valid.

password is correct.

XM log set : default XM user log set

for volume set MPEXL_SYSTEM_VOLUME_SET

XM log set type : circular

XM log set size : 32 megabytes

The language is 0 - NATIVE-3000.

7-28 Logging and Recovery

Buffer specifications:

8(1/2),9(3/4),10(5/6),11(7/8),12(9/10),13(11/12),14(13/14),

15(15/16),16(17/18),17(19/120)

No other users are accessing the database.

Note The displayed bu�er speci�cations are the default TurboIMAGE/V values.
These speci�cations or any new ones that you set are displayed for MPE V
compatibility, but they are not used by TurboIMAGE/XL which uses a large
default value. See chapter 8 or appendix H for more information.

Logging and Recovery 7-29

Logging Maintenance

You should determine a log maintenance cycle for the database. For example, suppose the
database is maintained on a daily cycle. This means that, at the beginning of each day, the
log process is initiated from the console with the LOG command and the ags are set (see
the following discussion). At the end of the day, the log process is stopped from the console
and the ags are reset for storage of the database backup copy. If you use TurboSTORE/iX
7x24 True-Online Backup (with ONLINE=START or ONLINE=END option) to back up
the database, the log process must remain active; you will not need to start and stop the log
process every day.

The duration of this maintenance cycle depends on at least two considerations:

The amount of time needed to store the database periodically, and

The amount of time required to recover the database from the log �le using DBRECOV if
the system fails.

The more often the database backup copy is stored, the smaller the log �le and the shorter
recovery time will be. Regular backup of the database is recommended, though not required
when using roll-back recovery. Refer to appendix G for a brief overview of the disadvantages
and bene�ts of logging to disk and logging to tape. This appendix also includes sample job
streams for the logging cycle.

Starting the Logging Process

After a database backup copy has been stored as described earlier in \Logging Preparation,"
a logging process must be allocated to the log identi�er so that it can be activated. A log
process is an MPE/iX system process responsible for bu�ering log records in memory. If the
log �le is on tape, the log process also bu�ers the log records on disk before writing them to
the log �le. This process is initiated from the console using the MPE/iX LOG command.
To issue the LOG command, you must have logging (LG) or operator (OP) capability. The
ALLOW command can be used to transfer permission to enter this console command.

Syntax

:LOG logid,

8<
:

START

RESTART

STOP

9=
;

Parameters

logid is the name of the logid to be activated; the logid must have been set
previously into the database root �le.

START initiates a log process for the �rst time.

RESTART initiates a log process when appending new log records to an old log �le.

STOP terminates a log process. Termination does not take e�ect until all current
users have closed the log �le by calling the CLOSELOG intrinsic.

7-30 Logging and Recovery

Example

LOG ORDERLOG, START

If the log process is stopped using the LOG command, but a database backup copy is not
generated at that time, the RESTART option must be used to resume logging to the same log
�le.

To determine whether or not a log process is running, use the MPE/iX SHOWLOGSTATUS
command to determine the log identi�ers of active log processes. SHOWLOGSTATUS
displays the percentage of records in the log �le if the logid output is to disk. This
information may be helpful in determining when to perform a CHANGELOG command (see
\CHANGELOG Capability" in this section). The following sample listing was produced by a
SHOWLOGSTATUS command:

:SHOWLOGSTATUS

LOGID CHANGE AUTO USERS STATE CUR-RECS MAX-REC %USED CUR-SET

MYLOG NO NO 4 INACTIVE 100 1000 10% 1

TAPELOG YES 1 INACTIVE 5738 1

ORDERLOG YES YES 2 INACTIVE 500 1000 50% 2

Re-enabling Logging

In the event that logging for roll-forward recovery is disabled and needs to be re-enabled, the
database should be stored with DBSTORE or TurboSTORE/iX 7x24 True-Online Backup
(with ONLINE=START or ONLINE=END option) before logging is re-enabled. This ensures
that the DBSTORE ag and time stamp set when logging was �rst enabled are not reset
when logging is re-enabled.

Setting Database Flags

After logging is initiated, you can allow users to modify the database by running DBUTIL and
enabling the database for access. You should also disable recovery at this time. This provides
a safeguard against unintended recovery if DBRECOV is executed from a stream �le against
several databases simultaneously. For example:

:RUN DBUTIL.PUB.SYS
...

>>ENABLE ORDERS FOR ACCESS

Access is Enabled

>>DISABLE ORDERS FOR RECOVERY

Recovery is Disabled

CHANGELOG Capability

The MPE/iX CHANGELOG feature provides a continuous MPE/iX user logging process,
with the ability to change tape or disk log �les when they reach capacity without stopping the
user logging process. User logging also keeps track of the order of the �les in the log �le set.
Parts of the CHANGELOG record contain the �le set number (001-999) and the device type
of the �le names in the record. In addition, there are records for the previous �le in a set,
�rst �le in a set, and current �le in a set. This format allows recovery to always start at the
beginning of the �le set (or at any point within the �le set if the sequence number is used),
and reopen the log �les on the same device type that they were created.

Logging and Recovery 7-31

The user issuing the CHANGELOG command must be the creator of the logid . If the user
issuing CHANGELOG is not the creator of the logid , either LG or OP capability is required.
If the mirror database method (DBRECOV STOP/RESTART) is being used, CHANGELOG
makes logging without interruption on the primary system possible.

Note If the database needs to be recovered when you are using the MPE/iX
CHANGELOG feature, the DBRECOV recovery facility may start at the
�rst log �le in the logging cycle (for example, LOGF001), or at a di�erent
point (for example, LOGF013) if you used TurboSTORE/iX 7x24 True-Online
Backup. Keep this in mind when determining the length of your logging cycle.
See \Recovering the Database" later in this section for a sample scenario.

Syntax

:CHANGELOG logid
�
;DEV=device

�

Parameters

logid is the name of the currently active logging process.

device is the class of the device of the new log �le (DISC, TAPE). If the device class
speci�ed is DISC, the �le is created in the logid creator's logon group and
account.

Example

:CHANGELOG ORDERLOG; DEV=DISC

Note that the logid speci�ed must be that of the currently active logging process. If
the log �le is changed using ALTLOG, no linkage of the log �le set is provided. A
CHANGELOG command can only be used on a logid set up with the GETLOG command.
The CHANGELOG command terminates if the logging process state is INACTIVE,
INITIALIZING, or RECOVERING. The command will also terminate if a CHANGELOG
command is already pending. The following message is displayed on $STDLIST:

INVALID STATE OF PROCESS

After issuing the CHANGELOG command, if the logid is valid, CHANGELOG records are
posted to the current log �le. The current log �le is closed and the new log �le is opened.
A message similar to the following message is displayed on $STDLIST and the console to
con�rm the change:

Log file for !!logid!! ORDERLOG has been changed from ORDER001 to ORDER002

If the new log �le is a serial �le on tape, the following message appears on the console
requesting the mounting of a new log �le (in this case the logid is ORDERLOG):

Mount new tape for !!logid!! ORDERLOG

If a LISTLOG command is executed while the logging process is performing a CHANGELOG
command, the �le name displayed is that of the current log �le. The log �le name is not
updated until the CHANGELOG sequence successfully completes. The SHOWLOGSTATUS
command may be used to display the current status of a logging process to determine if a
CHANGELOG is taking place.

7-32 Logging and Recovery

The following example shows a LISTLOG display. A CHANGELOG is currently taking place
on log �le ORDER001; and, because the CHANGELOG to ORDER002 is not yet successfully
completed, ORDER001 is displayed:

:LISTLOG

LOGID CREATOR CHANGE AUTO CURRENT LOG FILE

MYLOG DATA.SYS NO NO MY.PUB.SYS

TAPELOG DATA.SYS YES TAPE001

ORDERLOG TST.MKTG YES YES ORDER001.MKTG.SYS

Recovering the Database

When a database needs to be recovered, DBRECOV starts with the �rst log �le written to
in a given logging cycle, or it may start with the log �le in use when backup was done using
TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or ONLINE=END
option). If you used True-Online Backup, the SHOW database ALL command of DBUTIL
displays the name of the log�le for starting recovery.

To illustrate this concept, consider the following scenario when logging cycle began with a
log�le LOGF001 and DBSTORE was used for backup.

The MPE/iX CHANGELOG command or the GETLOG AUTO feature is being used to log
transactions to a log �le called LOGF001. When LOGF001 �lls up, user logging automatically
appends LOGF001 with a CHANGELOG record indicating that TurboIMAGE/XL is now
logging to �le LOGF002. This process can continue until either LOGF999 is reached or
another �le is encountered that has the same name as the one being created by user logging.

Now, assume that the database needs to be recovered and the logging cycle is currently
writing to LOGF020. Note that DBRECOV will begin recovery at LOGF001, even if you
know or want to recover only the transactions from, for example, log �le LOGF013.

To illustrate another example when TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END option) was used to back up the database, assume that
the log �le in use during backup was LOGF041. If a database needs to be recovered and the
logging cycle is currently writing to LOGF065, DBRECOV will begin recovery with LOGF041
(following the backup) and will continue until LOGF065.

The resulting impact on recovery time is why serious consideration should be given to the
logging cycle. The shorter the logging cycle is, the shorter the recovery time.

Ending the Logging Maintenance Cycle

At the end of the speci�ed maintenance cycle (for example, the end of day) do the following:

1. If you plan on using TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START
or ONLINE=END option), omit this step. Otherwise, stop the logging process at the
console with the LOG command.

2. If you plan on using TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START
or ONLINE=END option) when the database is open for access , you must omit this step.
In other cases, including when using TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END option) when the database is closed , run DBUTIL
and do the following tasks:

Disable access to the database.

Logging and Recovery 7-33

Enable recovery of the database.

3. Store a database backup copy (required for roll-forward recovery) with DBSTORE or
TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or ONLINE=END
option).

Example

Example when using DBSTORE:

:LOG ORDERLOG,STOP

:RUN DBUTIL.PUB.SYS.
.
.

>>DISABLE ORDERS FOR ACCESS

Access is Disabled

>>ENABLE ORDERS FOR RECOVERY

Recovery is Enabled

>>EXIT

END OF PROGRAM

:RUN DBSTORE.PUB.SYS

WHICH DATA BASE? ORDERS

DATA BASE STORED

END OF PROGRAM

Example when using TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END option) and database is open for access:

:file orderssf;dev=disc

:store orders;*orderssf;online=start

>>TURBO-STORE/RESTORE VERSION C.55.07 B5152AA <<

(C) 1986 HEWLETT-PACKARD CO.

STORE orders;*orderssf;ONLINE=START

FRI, APR 18, 1997, 12:01 PM

ONLINE BACKUP UTILIZED DISC SPACE FOR LOG ON THE FOLLOWING VOLSETS:

MPEXL_SYSTEM_VOLUME_SET : 0 KB

DATABASE INFORMATION:

TURBOIMAGE DATABASE: ORDERS .RECTOL .QALANG

FILES STORED : 7

FILES STORED : 7

TOTAL MEDIA WRITTEN : 1

7-34 Logging and Recovery

Logging Results

All database modi�cations (DBPUTs, DBUPDATEs, and DBDELETEs) are logged; and
in modes 1 through 4 calls to DBOPEN, DBCLOSE, DBBEGIN, DBXBEGIN, DBEND,
DBXEND, and DBMEMO are logged to the log �le. Each DBBEGIN, DBXBEGIN, DBEND,
and DBXEND causes a log record to be written to the log �le that includes such information
as time, date, and user bu�er. These log records are used by DBRECOV to identify logical
transactions.

When using TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END option), log records designating the beginning and end of a quiesce point
triggered by True-Online backup are also written to the current log �le. DBRECOV uses
these log records to determine the starting point of recovery of the database. Transactions
following the quiesce point will be used to recover the database.

Log Records

DBOPEN log records contain a time stamp recorded in the database root �le, indicating the
date and the time of the last backup using DBSTORE or TurboSTORE/iX 7x24 True-Online
Backup (with ONLINE=START or ONLINE=END option) (this time stamp is referenced by
DBRECOV roll-forward recovery). DBOPEN log records also include the user identi�er, log
identi�er, and the name, group, and account of the user, database, and program.

DBUPDATE log records include both the new and the old data (before and after images);
DBDELETE includes a copy of the deleted data (before image); DBPUT includes the record
being added (after image).

Log File Time Stamps

The two log �le time stamps are as follows:

The DBSTORE time stamp set at the time the last database backup copy was made using
DBSTORE or TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END option). This time stamp is used by roll-forward recovery. The DBSTORE
time stamp is �xed and does not change once the database backup copy has been made.

The roll-back time stamp created at the time the �rst DBOPEN is executed against the
database. The roll-back time stamp is updated to the real time of the �rst DBOPEN
following each close of the database, providing a roll-back termination point should a
roll-back recovery be required.

Logging and Recovery 7-35

Roll-Forward Recovery

Roll-forward recovery can be executed to bring databases back to a likeness of their state at
the time of a hard system failure (for example, a disk head crash or a system failure while the
database is enabled for AUTODEFER). Roll-forward recovery requires a synchronized backup
copy of the database and the log �le. (Refer to \Logging Preparation" earlier in this chapter
for roll-forward logging information.)

When executing roll-forward recovery following a system failure, the TurboIMAGE/XL utility
DBRECOV recovers the database physical and logical integrity by re-applying (to a backup
copy of the database) all the completed transactions that were written to the log �le. It does
not re-apply incomplete transactions.

Recovery of the database requires restoring the backup copy and running the recovery system
to re-execute the database modi�cations from the log �le. In addition, the >FILE command
of the DBRECOV utility can be used to create individual user recovery �les and to return
information regarding the successful recovery or suppression of transactions. The information
from these �les lets each user know where to resume transactions within the database
following recovery. Refer to the discussion of the DBRECOV >FILE command in chapter 8.

Although the logging and recovery system is designed to successfully re-execute transactions
that completed before the system failure, some transactions may not be recovered. The
possible causes of this situation include the following:

One or more records could be lost in the log system bu�ers if the system fails before they
are written to the log �le.

A transaction may have originally failed to complete due to the failure, and is therefore
suppressed.

A transaction may depend upon some database modi�cation that was suppressed. This
condition indicates inadequate locking between processes.

An incorrect version of the database was restored. Recovery will yield invalid and erroneous
results if this occurs.

If any transaction fails to be recovered, all subsequent calls within the same transaction block
are suppressed as well. For information about transaction blocks, refer to \FILE Command"
later in this chapter.

Caution In the event of a system failure, do not restart logging before running
DBRECOV. Log records may have been lost due to the system failure. If
logging is resumed without a recovery, the resulting discontinuous log �le
would cause invalid results in the event of a subsequent recovery. The same
is true for making modi�cations to the database. The database should be
disabled for user access until recovery has completed. To prevent access to the
database after a system failure without recovery, enable the MUSTRECOVER
feature when you enable recovery.

7-36 Logging and Recovery

Enabling the Roll-Forward Feature

To enable the roll-forward feature, complete the following sequence:

1. Set the logid and build a log �le (if logging to disk) as shown in steps 2 through 6 of
\Logging Preparation" earlier in this chapter.

2. For each particular database, disable access and enable the logging and roll-forward
features by entering the following DBUTIL commands. You can also enable the
MUSTRECOVER option if you wish to use it.

>>DISABLE database name FOR ACCESS

>>ENABLE database name FOR LOGGING,RECOVERY

>>ENABLE database name FOR MUSTRECOVER

Enable any other appropriate ags as discussed in step 7 under \Logging Preparation."

If you plan on using TurboSTORE/iX 7x24 True-Online Backup, your database must be
closed so that you can set these ags to enable the roll-forward feature. For subsequent
true-online backups, you have an option to set the ACCESS and RECOVERY ags.
Remember that before you start the roll-forward recovery, the RECOVER ag must be
enabled and ACCESS ag be disabled.

3. Make a backup copy of the database as discussed in step 8 under \Logging Preparation."

4. Start the logging process and enable user access to the appropriate databases as shown in
\Logging Maintenance," earlier in this chapter.

Restoring the Database Backup Copy

After a hard system failure, and before roll-forward recovery can begin, you must restore
the database to the state it was in when backup was done. This is done by running the
DBRESTOR program (if DBSTORE was used for backup, as shown below) or by using the
MPE/iX RESTORE facility after purging the damaged database. All databases and �les must
be restored to their original group and account, and you must have privileged mode (PM)
capability. Ensure that recovery is enabled and access disabled to prevent user modi�cations
before the recovery system executes.

If you restored a database backed up with TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END option), you may need to enable recovery and disable
access. Refer to the DBUTIL >>SHOW command and the following example. If the ags
were set as recommended prior to making the backup copy, no changes are needed.

:RUN DBUTIL.PUB.SYS

.

.

.

>>PURGE ORDERS Note: this is damaged database.

Database ORDERS has been PURGED

>>EXIT

END OF PROGRAM

:RUN DBRESTOR.PUB.SYS

WHICH DATABASE? ORDERS

DATABASE RESTORED

END OF PROGRAM

:RUN DBUTIL.PUB.SYS

Logging and Recovery 7-37

>>SHOW ORDERS FLAGS

For database ORDERS

Access is disabled.

Autodefer is disabled.

Dumping is disabled.

Rollback recovery is disabled.

Recovery is enabled.

ILR is disabled.

Mustrecover is enabled.

Logging is enabled.

Prefetch is disabled.

Indexing is disabled.

HWMPUT is disabled.

Restart is disabled.

>>EXIT

END OF PROGRAM

In the above example, recovery is enabled and access is disabled. You do not need to change
ags.

If you used TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END option), you would use RESTORE command as follows:

:restore *orderssf;orders;show

>> TURBO-STORE/RESTORE VERSION C.55.07 B5152AA <<

(C) 1986 HEWLETT-PACKARD CO.

RESTORE *orderssf;orders;SHOW

FRI, APR 18, 1997, 12:03 PM

WILL RESTORE 7 FILES ; NUMBER OF FILES ON MEDIA 7

FILENAME GROUP ACCOUNT VOLUME RESTRICTIONS SECTORS CODE MEDIA

ORDERS .RECTOL .QALANG DISC :C 16 PRIV 1

ORDERS01.RECTOL .QALANG DISC :C 96 PRIV 1

ORDERS02.RECTOL .QALANG DISC :C 96 PRIV 1

ORDERS03.RECTOL .QALANG DISC :C 1584 PRIV 1

ORDERS04.RECTOL .QALANG DISC :C 80 PRIV 1

ORDERS05.RECTOL .QALANG DISC :C 128 PRIV 1

ORDERS06.RECTOL .QALANG DISC :C 160 PRIV 1

DATABASE INFORMATION:

TURBOIMAGE DATABASE: ORDERS .RECTOL .QALANG

FILES RESTORED : 7

FILES RESTORED : 7

:

:RUN DBUTIL.PUB.SYS

HP30391C.07.00 TurboIMAGE/XL: DBUTIL (C) COPYRIGHT HEWLETT-PACKARD COMPANY 1987

>>show orders flags

For database ORDERS

Maintenance word is not present.

Access is enabled.

Autodefer is disabled.

Dumping is disabled.

7-38 Logging and Recovery

Rollback recovery is disabled.

Recovery is disabled.

ILR is disabled.

Mustrecover is enabled.

Logging is enabled.

Prefetch is disabled.

Indexing is disabled.

HWMPUT is disabled.

Restart is disabled.

>>exit

In the above example, you will need to disable the access ag and enable the recovery ag.

Several databases can log to the same log �le simultaneously because each call to DBOPEN
speci�es the fully quali�ed name of the database. If all databases that logged to the same log
�le are to be recovered simultaneously, then the appropriate backup copy of each database
must be restored prior to running the recovery system. However, if the recovery system begins
execution before a database has been restored, accidental recovery is prevented if recovery has
been disabled on the working database, as speci�ed earlier in \Logging Maintenance."

The TurboIMAGE/XL logging and recovery systems depend upon the exact correspondence
between the stored database backup copy and the working database on disk at the time
logging was initiated. The DBSTORE ag and time stamp, properly used, enforce this
condition. Therefore, it is recommended that you use DBSTORE or TurboSTORE/iX 7x24
True-Online Backup (with ONLINE=START or ONLINE=END option) to generate backup
copies.

For exibility, in the event that you might use the STORE command without
ONLINE=START or ONLINE=END option to store the backup, the capability exists
to defeat the time stamp and DBSTORE ag mechanism, by using the NOSTAMP and
NOSTORE options of the >CONTROL command of DBRECOV. In this case, you must
assume responsibility for maintaining the correspondence between the backup copy and
the log �le. Note that a database recovered with the wrong log �le causes DBRECOV to
generate erroneous data in the database and that this condition cannot always be detected.
Modi�cations to the database before the database is recovered and with logging disabled also
cause the recovered database to be incorrect.

Performing Roll-Forward Recovery

To complete the transaction roll-forward process following a hard system failure, perform the
following steps:

1. Following a start recovery operation to bring up the system, locate the applicable log �le
medium to be used for roll-forward recovery.

If logging to tape, the correct tape needs to be mounted. If using the MPE/iX
CHANGELOG feature and there are multiple log �le tapes, this will be the �rst tape
in the series if DBSTORE was used. If TurboSTORE/iX 7x24 True-Online Backup
(with ONLINE=START or ONLINE=END option) was used to backup the database
and AUTO option is used, this may not be the �rst �le in the series. If logging to disk,
TurboIMAGE/XL automatically locates the �rst log �le in the given logging cycle after
checking for the logid in the root �le. When TurboSTORE/iX 7x24 True-Online Backup
(with ONLINE=START or ONLINE=END option) is used, necessary information such as
the log �le name in use, log �le record numbers, date, and time of backup is recorded in

Logging and Recovery 7-39

the root �le before backup. When the database is restored from this backup, the SHOW
database ALL command of DBUTIL displays this information.

Note that the system boot-up process writes a crash record to the last volume of the
user log set. If a start recovery operation is not performed, this will not occur, causing
DBRECOV to issue a warning.

2. Check your backup listings to see when your database was last stored. If time permits,
store your damaged database with DBSTORE. Having a current backup of your damaged
database is an extra measure to protect against lost data due to a damaged log �le.

3. Restore the backup of the database; this backup was created at the beginning of the
current logging maintenance cycle. Use the SHOW database command of DBUTIL to �nd
out which log �le will be used to start recovery. If the TurboSTORE/iX 7x24 True-Online
Backup (with ONLINE=START or ONLINE=END option) was used for backup, the log
�le name is displayed. Otherwise, it will be the �rst log �le in this logging cycle.

4. Enter the following MPE/iX command:

:RUN DBRECOV.PUB.SYS

5. If you used the MPE/iX STORE command without ONLINE=START or ONLINE=END
option to store the database when you started your logging cycle, enter the >CONTROL
NOSTORE command of DBRECOV.

6. Enter the DBRECOV >RECOVER command below (where database name is the name of
the individual database to be recovered):

>RECOVER database name [,database name2, . . . ,database nameN]

7. Enter all other desired DBRECOV commands (>FILE, >CONTROL with other options
except NOSTORE shown above, and >PRINT.) Refer to chapter 8 for more information.

8. If you want to recover the database(s), enter the DBRECOV >RUN command. Otherwise,
enter the >EXIT command; DBRECOV terminates, and no recovery takes place.

>RUN

After the >RUN command is given, DBRECOV recovers the speci�ed databases, creates
user recovery �les, and terminates. After entering the >RUN command, DBRECOV asks
you to mount the log tape (if the log �le medium is tape). Continue the roll-forward
process as directed by messages returned to both the console and the terminal screens.

9. If the CHANGELOG command or the GETLOG AUTO option was used during logging
and the logging �le medium is tape or the next disk �le in the log set is missing, the
following message appears on the terminal screen and the console:

Reply CONtinue on console when log�le is ready

When the required log �le is available, enter the response CON to the console request from
DBRECOV.

Note that the response is in a form similar to REPLY for a tape mount used when storing
or restoring tapes; that is, you need to supply the Process Identi�cation Number (PIN). For
recovery to succeed, you must have access to the log �le. This implies either knowing the
logging identi�er password and having system manager (SM) or operator (OP) capability, or
being the creator of the log identi�er with read access to the log �le if it resides in a di�erent
logon group and account. If the log �le is on tape, the operator must reply with the proper
volume identi�er.

7-40 Logging and Recovery

Note If the operator is unsure of the volume identi�er, it is displayed on the console
when the tape is mounted.

If the database creator and the creator of the log identi�er are not the same, and if the
disk log �le and the database are in two separate accounts, follow the steps listed below for
recovery to proceed:

1. Assign a maintenance word to the database.

2. Log on as the creator of the log identi�er.

3. Fully qualify the database name when issuing the >RECOVER command.

4. Specify the maintenance word.

If you want to use TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END option) for roll-forward recovery, follow the steps below. For this illustration,
it is assumed that you are starting with the �rst log cycle with the AUTO option, and
recovery is needed after two backups.

1. Create a logid with the AUTO option.

2. Build a log�le, LOGF001.

3. Use DBUTIL to set the logid and enable the logging ag. You may optionally set the
MUSTRECOVER ag as well.

4. Start the log process:

:LOG logid,START

5. Back up the database using TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END option) and log�le LOGF001. Let this be
backup number 1.

6. Access the database for modi�cations. The current log �le is LOGF005.

7. Back up the database, while open for access, using TurboSTORE/iX 7x24 True-
Online Backup (with ONLINE=START or ONLINE=END option). Let this be
backup number 2.

Note that LOGF005 was in use. At this point, you have an option to store log �les
LOGF001 to LOGF004 to another storage media for added protection. You can then
purge them from the system if you want to continue the log process beyond log�le
LOGF999.

8. Continue accessing the database until there is an interruption (for example, a system
failure). The current log �le is LOG009.

9. Reboot the system using the START RECOVERY option.

10. Optionally store the damaged database. Purge database using DBUTIL.

11. Restore the database from backup number 2.

12. Use DBUTIL to disable access and enable recovery. You may use SHOW database ALL to
get backup information.

Logging and Recovery 7-41

13. Use DBRECOV for roll-forward recovery. The root �le contains information about the
starting point for recovery. The recovery will start with the log�le LOGF005, following
the backup (DBQUIESCE log records).

14. You can back up the recovered database using TurboSTORE/iX 7x24 True-Online
Backup (with ONLINE=START or ONLINE=END option) to keep recovery time short.
Remember the access ag is disabled and recovery is enabled. When you restore from this
backup for roll-forward recovery, you will not need to execute step 12 above.

15. At this point, you can either restart the logging process (continue with LOGF009) or start
a new log process with LOGF001. If you want to start a new log process, you will need
to stop the log process and remove (optionally store and purge) the log �les used so far,
LOGF005 through LOGF009 (or LOGF001 through LOGF009, if you did not purge in
step 7).

Note that if you plan on using TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END option) for an existing database and logging is already
enabled, you will not need to execute steps 1 through 4.

Recovery from a Stream File

A stream �le may specify all of the databases logging to one log �le for roll-forward recovery.
If one of the databases has not been restored at the time the stream �le is run, recovery for
that database is prevented because recovery for that database is disabled if the recommended
procedures have been followed. Recovery can be completed for all of the other speci�ed
databases that have been restored from a backup copy and the recovery ag is enabled,
as long as >CONTROL ERRORS is set appropriately (see \DBRECOV >CONTROL"
in chapter 8). This means that ERRORS must be increased by one for each database
disabled for recovery, because an error message occurs each time a database speci�ed in the
>RECOVER command is not enabled for recovery.

MPE/iX Cleanup Mode and Roll-Forward Recovery

In the event of a system failure and subsequent start recovery operation, MPE/iX attempts to
clean up any user log �les that were open at the time of the failure. The cleanup procedure
involves writing any records left in the system log �le disk bu�er to the user log �le. When
using roll-forward recovery without this cleanup, records left in memory will still be lost. You
have the option to cancel (from the console) this cleanup procedure if the log �le is on tape.

The advantage of the cleanup procedure is that fewer user log records written just prior to the
failure are lost. For tape �les, the disadvantage is the time it takes for the tape to be rewound
and sequentially scanned until the end-of-�le is detected so that the remaining records can be
appended to the end.

The TurboIMAGE/XL recovery program DBRECOV does not require the cleanup to be
performed. If it is not performed, however, DBRECOV most likely will report a sequence or
checksum error when the discrepancy caused by the failure is encountered. This would cause
DBRECOV to assume the end-of-�le has been reached.

7-42 Logging and Recovery

DBRECOV Abort Message

If DBRECOV aborts before recovery completes, the following information is printed:

Abort occurred on database: dbname dbgroup dbaccount

Total database open count: #open Current open count: #open

Process user is: dbuser dbgroup dbaccount Running program: progname

Log file name: log�lename Logging ID: logid

Log file record number: nnnnnnnn Transaction type: xx

Transaction date/time from log record: day, month, dd, year, time

Last successful transaction #: nn

First log record # of last successful transaction: nn

Record the information, set the log �le, locate the database store, and contact your HP
support representative.

Logging and Recovery 7-43

Roll-Back Recovery

Roll-back recovery is another TurboIMAGE/XL recovery option. Roll-back recovery provides
rapid recovery of database data integrity following a \soft" system crash (that is, system
failure or loss of working memory). The roll-back feature is invoked through the DBRECOV
utility and requires only the current database log �les to restore data integrity. Note that ILR
is not needed for roll-back recovery.

Note For roll-back recovery, the user log �le and the database must be on the same
volume set when logging to disk. When logging to tape, the database and the
log �le must be on the system volume set.

A database backup copy is not required for roll-back recovery. Regular backup of the database
is recommended, however, and is always required for roll-forward recovery in the event of a
more serious problem (for example, a disk head failure, or problems occurring while roll-back
recovery is in progress).

With roll-back enabled prior to a system failure, a record of each user transaction in the
sequence of occurrence is available to determine which transactions were incomplete at the
time of failure. When invoked, the roll-back recovery feature will \roll back," or undo, any
incomplete database transactions in the log �le following a soft system crash.

Note A database must be enabled for roll-back before roll-back recovery can be
performed.

The following diagram illustrates the transactions of three di�erent users at the time of a
system failure:

In the above illustration, the �rst user has completed one transaction (T1) and aborted
another (T4) prior to the system failure. Users two and three have each completed two
transactions, and each has one incomplete transaction at the time of failure. Individual
database transactions T1, T2, T3, T5, and T6 were completed and are properly reected in
the database following system failure. Transactions T7 and T8, however, were incomplete at
the time of system failure, causing an incomplete modi�cation of data to be reected in the
database. These incomplete transactions (T7 and T8) are then rolled back (undone) to their
beginning, returning all a�ected data in the database to their original state before T7 and T8
began execution.

7-44 Logging and Recovery

When transaction T4 is aborted, TurboIMAGE/XL completes the transaction by issuing an
abnormal end (DBABEND). This transaction is then seen as completed by the roll-back
feature and is not normally rolled back. If the aborted transaction is also to be rolled back,
the following DBRECOV command must be issued before issuing the DBRECOV >RUN
command (refer to the discussion of DBRECOV in chapter 8):

>CONTROL NOABORTS

The above command string causes the aborted transaction to be treated as an incomplete
transaction during roll-back recovery. When >CONTROL NOABORTS is used, recovery must
be performed at system startup time before anyone modi�es the database. Refer to \Record
Numbers" under the DBRECOV >CONTROL discussion in chapter 8 for considerations when
using the >CONTROL command.

Enabling the Roll-Back Feature

To enable the roll-back feature complete the following sequence:

1. Set the logid and build a log �le (if logging to disk) as shown in steps 2 through 6 of
\Logging Preparation" earlier in this chapter.

2. For each particular database, disable access and enable the roll-back and recovery features
by entering the following DBUTIL commands. You can also enable the MUSTRECOVER
option if you wish to use it.

>>DISABLE database name FOR ACCESS

>>ENABLE database name FOR ROLLBACK,RECOVERY

>>ENABLE database name FOR MUSTRECOVER

Enable any other appropriate ags as discussed in step 7 under \Logging Preparation."

If the logid was not set and/or the log �le was not built before the >>ENABLE command
is issued for roll-back recovery, a warning message that the logid or the log �le is
non-existent is displayed on the screen. Enable any other appropriate ags as discussed
in step 7 under \Logging Preparation." Enabling for roll-back or MUSTRECOVER
automatically enables the database for logging.

3. Make a backup copy of the database as discussed in step 8 under \Logging Preparation."
You may use DBSTORE or TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END option) regardless of the database being open or
closed with roll-back recovery.

4. Start the logging process and enable user access to the appropriate databases as shown
in \Logging Maintenance," earlier in this chapter. After the logid has been set and the
log �le built, DBUTIL automatically enables logging when roll-back is enabled. Note that
ILR is not needed for roll-back recovery; however, if ILR is enabled together with roll-back
recovery, logging and ILR must be disabled separately.

When roll-back recovery is enabled, DBUTIL sets a roll-back ag in the root �le to indicate
that roll-back recovery is enabled for the database. DBUTIL also reserves six words in the
root �le for the roll-back time stamp (three words for the previous time stamp and three
words for the current time stamp). The roll-back time stamp is updated and logged in the log
�le and in the root �le when the database is �rst opened. Roll-back recovery then uses the
time stamp during recovery to verify the correct log �le for each database.

Note that if the database and the log �le are not on the same volume set, an error is issued.

Logging and Recovery 7-45

Caution In the event of a system failure, do not restart user logging before running
DBRECOV. Log records may have been lost due to the system failure. If user
logging is resumed without a recovery, the resulting discontinuous log �le
would cause invalid results in the event of a subsequent recovery. To prevent
access to the database after a system failure without recovery, enable the
MUSTRECOVER feature when you enable the roll-back feature.

Disabling the Roll-Back Feature

To disable the roll-back feature, make sure that no users are accessing the database involved.
Disable the roll-back feature by entering the following DBUTIL command string:

>>DISABLE database name FOR ROLLBACK

When roll-back is disabled, DBUTIL resets the roll-back ag and roll-back time stamp, but
not the logging ag; therefore, logging is still enabled.

Caution DO NOT DISABLE ROLL-BACK IF ROLL-BACK RECOVERY MUST BE
USED LATER. Disabling roll-back resets the logging time stamp. After the
logging time stamp is reset, roll-back recovery cannot be performed with the
current log �le on the named database. The data in the database is considered
correct and therefore cannot be rolled back.

When the >>DISABLE command is issued, DBUTIL prompts a warning to remind you that
the time stamp will be erased and prompts for a response as follows:

WARNING: ROLLBACK time stamp will be erased.

Please type Y to confirm your disable command>>

If you enter Y, DBUTIL continues to disable roll-back. If Y is not entered, the >>DISABLE
command is not performed.

Performing Roll-Back Recovery

To complete the transaction roll-back process following a system failure, perform the following
steps:

1. Following a start recovery operation to bring up the system, locate the applicable log �le
media to be used for transaction roll-back. If logging to tape, the correct tape needs to be
mounted. If using the MPE/iX CHANGELOG feature and there are multiple log �le tapes,
this will be the �rst tape of the series. If logging to disk, TurboIMAGE/XL automatically
locates the �rst log �le in the given logging cycle by checking the beginning of the root �le
for the logid .

Note that the system boot-up process writes a crash record to the last volume of the
user log set. If a start recovery operation is not performed, this will not occur, causing
DBRECOV to issue a warning.

2. Make a database backup copy in case a system failure occurs during the roll-back recovery
process.

3. Enter the following MPE/iX command string:

:RUN DBRECOV.PUB.SYS

7-46 Logging and Recovery

4. Enter the >CONTROL NOSTORE command of DBRECOV to allow recovery to proceed
whether or not the DBSTORE ag is set.

5. Enter the following DBRECOV command (where database name is the name of individual
databases to be rolled back):

>ROLLBACK database name [,database name2,. . . . ,database nameN]

6. Enter all other desired DBRECOV commands (>FILE, >CONTROL with other options
except NOSTORE shown above, and >PRINT). Note that the >FILE command's optional
parameter rmode is not used with the roll-back feature. Refer to chapter 8 for more
information.

7. If you want to recover the databases, enter the DBRECOV >RUN command. Otherwise,
enter the >EXIT command, and DBRECOV terminates, and no recovery takes place.

>RUN

After the >RUN command is given, DBRECOV asks you to mount the log tape (if the log
�le medium is tape). Continue the roll-back process as directed by messages returned to
both the console and the terminal screen.

8. If the CHANGELOG command or GETLOG AUTO option was used during logging and
the logging �le medium is tape, the following message appears on the terminal screen and
the console:

Reply CONtinue on console when log�le is ready

When the required log �le is available, enter the response CON to the console request from
DBRECOV.

Note that the response is in a form similar to REPLY for a tape mount used when storing or
restoring tapes; that is, you need to enter the Process Identi�cation Number (PIN). After the
>RUN command is given, the DBRECOV program recovers the speci�ed databases, creates
speci�ed user-recovery �les, and terminates. The DBRECOV program could be terminated
alternatively without any recovery taking place with an >EXIT command.

For recovery to succeed, you must have access to the log �le. This implies either knowing the
maintenance word and having system manager (SM) or operator (OP) capability, or being
the creator of the log identi�er with read access to the log �le if it resides in a di�erent logon
group and account. If the log �le is on tape, you must know the volume identi�er.

Note If the operator is unsure of the volume identi�er, it is displayed on the console
when the tape is mounted.

If the database creator and the creator of the log identi�er are not the same, and if the
disk log �le and the database are in two separate accounts, follow the steps listed below for
recovery to proceed:

1. Assign a maintenance word to the database.

2. Logon as the creator of the log identi�er.

3. Fully qualify the database name when issuing the >ROLLBACK command.

4. Specify the maintenance word.

Logging and Recovery 7-47

MPE/iX Cleanup Mode and Roll-Back Recovery

In the event of a system failure and subsequent start recovery operation, MPE/iX attempts to
clean up any user log �les that were open at the time of the failure. The cleanup procedure
involves writing any records left in the system log �le disk bu�er to the user log �le. Note
that for roll-back recovery without this cleanup, transactions are not lost during a start
recovery operation because they are not held in the memory bu�er. You should not cancel
(from the console) this cleanup procedure if the log �le is on tape. Canceling the start
recovery operation for tape log �les will cause rollback recovery to fail.

The advantage of the cleanup procedure is that fewer user log records written just prior to the
failure are lost. For tape �les, the disadvantage is the time it takes for the tape to be rewound
and sequentially scanned until the end-of-�le is detected so that the remaining records can be
appended to the end.

The TurboIMAGE/XL recovery program DBRECOV does not require the cleanup to be
performed. If it is not performed, however, DBRECOV most likely will report a sequence or
checksum error when the discrepancy caused by the failure is encountered. This would cause
DBRECOV to assume the end-of-�le has been reached.

DBRECOV Abort Message

If DBRECOV aborts before recovery completes, the following information is printed:

Abort occurred on database: dbname dbgroup dbaccount

Total database open count: #open Current open count: #open

Process user is: dbuser dbgroup dbaccount Running program: progname

Log file name: log�lename Logging ID: logid

Log file record number: nnnnnnnn Transaction type: xx

Transaction date/time from log record: day, month, dd, year, time

Last successful transaction #: nn

First log record # of last successful transaction: nn

Record the information, set the log �le, locate the database store, and contact your HP
support representative.

7-48 Logging and Recovery

DBRECOV Commands Used with Roll-Forward and Roll-Back
Recovery

The following DBRECOV commands are used for either roll-forward or roll-back recovery:

CONTROL Speci�es the conditions for recovery.

FILE Sorts the log �le by individual users and/or user identi�ers, and designates an
MPE/iX �le as the destination for each user's log records.

PRINT Displays information before you actually initiate recovery with the >RUN
command.

RECOVER Designates the name of a database to be recovered using roll-forward recovery.

ROLLBACK Designates the name of a database to be rolled back.

RUN Initiates recovery of the speci�ed database.

These commands are discussed below; refer to chapter 8 for more detailed information.

CONTROL Command

The >CONTROL command is used to specify the conditions for recovery. If the >CONTROL
command is not issued, the following default conditions must be met for recovery to succeed:

The database time stamp in the root �le must correspond with the time stamp in each
DBOPEN log �le record.

The DBSTORE ag must be set in the database root �le.

No errors are allowed in job (batch) execution.

Transactions that are incomplete due to program aborts are recovered.

The >CONTROL command can be used to override these conditions. Each override option
can be negated by specifying its default option, and vice versa, as follows:

Option Default Option

NOMDBX MDBX

NOSTAMP STAMP

NOSTORE STORE

NOABORTS ABORTS

MODE4 MODEX

STATS NOSTATS

ERRORS=nnnn ERRORS=0 (job) or
ERRORS=30,000 (session)

STOPTIME=dateX timeX STOPTIME=dateY timeY

EOF=pppp EOF=qqqq

The initial default condition for stop time and end-of-�le is that none is imposed on recovery.
When a particular date or record number has been speci�ed by STOPTIME or EOF, it can be
changed by specifying a new date or record number.

Logging and Recovery 7-49

The following provides an example of the override:

>CONTROL NOSTAMP,STAMP

Because STAMP was entered after NOSTAMP, STAMP negates NOSTAMP, so that recovery
proceeds with the time-stamp check intact.

For the options and form of the >CONTROL command, refer to the discussion of the
>CONTROL command of the DBRECOV utility in chapter 8. Note that the >CONTROL
command does not specify a database. Therefore, all >CONTROL options (except
NOSTORE which must be issued before recovery on a speci�ed database is performed) apply
to all databases being recovered.

FILE Command

The recovery �le facility is an interface between the recovery system and the application
program. With the >FILE command, you sort the log �le by individual users and/or user
identi�ers, and designate an MPE/iX �le as the destination for each user's log records.

The recovery �le facility is based on the concept of transactions within transaction blocks.
A transaction block consists of all transactions between a call to DBOPEN and a call
to DBCLOSE (see Figure 7-1 earlier in this chapter). Within each transaction block, a
transaction is de�ned as one of the following:

1. A single call to DBPUT, DBUPDATE, or DBDELETE if not preceded by a call to
DBBEGIN (or DBXBEGIN if logging is enabled), or

2. A sequence of calls beginning with a call to DBBEGIN or DBXBEGIN, followed by any
number of calls to DBPUT, DBUPDATE, or DBDELETE and ending with a call to
DBEND or DBXEND respectively.

For each transaction block, the >FILE command returns the initial DBOPEN log record to
the user recovery �le. The DBCLOSE record is returned as well, unless one of the following
occurs:

1. All of the transactions within the block could not be recovered, or

2. There was no DBCLOSE log record for this block on the log �le. This happens when the
system fails while the database is open.

Consequently, an application can determine the outcome of recovery to some extent by
examining the number of DBOPENs and DBCLOSEs or pairs of DBBEGIN and DBEND
or DBXBEGIN and DBXEND log records returned to the user recovery �le. If there are as
many calls to DBCLOSE as to DBOPEN, it is likely that all transactions were successfully
recovered. However, the possibility exists that an entire transaction block was lost due to the
system failure if the block was very short. Fewer calls to DBCLOSE indicate the possibility
that some transactions were lost and need to be re-entered. More information about recovery
can be inferred from the recovery �le by using the optional rmode and fmode parameters.
These parameters return transaction information to the user recovery �les in addition to the
intrinsics DBOPEN and DBCLOSE. Rmode refers to transactions that recovered successfully;
fmode refers to transactions that failed to be recovered. Refer to the DBRECOV >FILE
command for details of operation.

7-50 Logging and Recovery

PRINT Command

The >PRINT command is an option used to display information before actually initiating
recovery with the >RUN command. If DBTABLE is speci�ed in the >PRINT command,
the names of the databases speci�ed for recovery by >RECOVER commands are returned.
Note that no statistics are returned with the >PRINT DBTABLE command, because none
exist before the log �le is read. If you need these statistics without actually performing the
recovery, use >CONTROL STATS to display this information. If FILETABLE is speci�ed
in the >PRINT command, �le references, user references, fmodes and rmodes speci�ed by
>FILE commands are returned. These tables, along with statistics, are also printed when
recovery is complete.

RECOVER Command

The >RECOVER command designates the name of a database to be recovered using
roll-forward recovery. If more than one database has logged to the same log �le, they can be
recovered concurrently by entering the database names separated by a comma.

If the database copy was stored with a program other than DBSTORE or True-Online Backup
(for example, MPE/iX STORE without ONLINE=START or ONLINE=END option), the
DBSTORE ag will not have been set in the database root �le. If you are sure you have
restored the correct, unmodi�ed version of the database, and wish to use it for recovery, the
>CONTROL NOSTORE option must be entered before the >RECOVER command can
succeed (refer to the discussion of >CONTROL in chapter 8).

Other conditions necessary for the success of the >RECOVER command include:

The database must be accessible to you from your logon group and account.

The log identi�er must not have been altered since the log �le was generated (see
\Step 6|Setting the Log Identi�er," earlier in this chapter).

The database must be enabled for recovery.

All databases speci�ed for recovery must contain the same log identi�er.

You must be the database creator, or know the database maintenance word.

You must either be the creator of the log identi�er, or have system manager (SM) or
operator (OP) capability.

No other users are accessing the database. The database may be concurrently accessed by
users when the >CONTROL command is speci�ed with the MODE4 option. Refer to the
>CONTROL MODE4 command discussed with DBRECOV in the next chapter.

If the >RECOVER command succeeds, recovery can be initiated by typing the >RUN
command.

ROLLBACK Command

The >ROLLBACK command is used for roll-back recovery. It designates the name of a
database to be rolled back. Any incomplete transactions at the time of the system failure are
rolled out. Multiple databases may be roll-back recovered by entering more than one database
name after the command.

Logging and Recovery 7-51

Conditions necessary for the success of the >ROLLBACK command include the following:

The database must be accessible to you when running DBRECOV. If the database resides
in a group or account di�erent from the your logon, the MPE/iX �le security must permit
the user read and write access to the database �les.

The log identi�er characteristics (name, password, log �le name, and device type) must not
have been altered since the log �le was generated.

The database must be enabled for recovery and roll-back.

All databases speci�ed for roll-back recovery must contain the same log identi�er.

You must be the database creator, or know the database maintenance word.

You must either be the creator of the log identi�er, or have system manager (SM) or
operator (OP) capability.

No other users can be accessing the database when >ROLLBACK is called. The database
may be concurrently accessed by users when the >CONTROL command is speci�ed with
the MODE4 option.

Note that the >ROLLBACK command itself does not initiate recovery, but makes several
preparatory checks. The recovery system is actually initiated by the >RUN command.

RUN Command

After the >RUN command is given, the DBRECOV program recovers the speci�ed databases,
creates speci�ed user recovery �les, and terminates. The DBRECOV program could be
terminated alternatively without any recovery taking place with an >EXIT command.

For recovery to succeed, the person running DBRECOV (usually the database administrator)
must have access to the log �le. This implies either knowing the maintenance word and
having system manager (SM) or operator (OP) capability or being the creator of the log
identi�er with read access to the log �le if it resides on disk in a di�erent logon group and
account. If the log �le is on tape, the user must be able to provide the volume identi�er to the
operator mounting the tape.

7-52 Logging and Recovery

Recovery Tables

The �rst three of the following four tables are displayed, along with statistics, by every
execution of the recovery system. The last table is displayed only if the user recovery �le
feature is used.

LOGFILE PROCESS STARTED ON MON, AUG 14, 1989, 5:48 PM

LOGFILE PROCESS TERMINATED ON MON, AUG 14, 1989, 5:49 PM

**

* 1 PROCESS STATISTICS *

* *

*LOG# TIME NAME ACCOUNT PROGRAM DATABASE TRANS PUTS DELS UPS *

*---- ----- ---- ------- ------- --------- ----- ---- ---- --- *

* 1.1 15.45 TST MKTG INVENTRY ORDERS 145 145 0 0 *

* 2.1 15.47 TST MKTG ORDENTRY ORDERS 431 431 0 0 *

**

**

* 2 DATABASE STATISTICS *

* *

* NAME GROUP ACCOUNT OPENS TRANS PUTS DELETES UPDATES *

* ------ ----- ------- ----- ----- ---- ------- ------- *

* ORDERS TST MKTG 2 576 576 0 0 *

**

**

* 3 LOGGING SYSTEM *

* *

* ---CREATOR---- RECORDS DEV --------LOGFILE-------- *

* LOGID NAME ACCOUNT PROCESSED TYPE NAME GROUP ACCOUNT *

* ----- ---- ------- --------- ---- ---- ----- ------- *

* ORDERLOG TST MKTG 640 DISC ORDER001 TST MKTG *

**

**

* 4 RECOVERY SYSTEM *

* *

* FILE REFERENCE USER IDENT RMODE FMODE *

* -------------------- ------------- ----- ----- ----- *

* PART1 SYS MKTG TST MKTG P1D1 1 1 *

* PART2 SYS MKTG TST MKTG P1D2 1 1 *

* PART3 SYS MKTG TST MKTG P1D3 1 1 *

**

END OF PROGRAM

The tables provide the following information:

1 The PROCESS STATISTICS table lists the logging user process number assigned
to each process by the OPENLOG intrinsic, the logon name and account, program
name, and transaction statistics. This table contains one entry for each process that
logged transactions to the log �le. An asterisk appears for any process that issued a
DBOPEN without a corresponding DBCLOSE before the system failure. In roll-forward
recovery, the columns \TRANS, PUTS, DELS, UPS" indicate the number of transactions
recovered. In roll-back recovery, these columns and numbers indicate the number of
transactions rolled out.

2 In the DATABASE STATISTICS table, the total number of transactions is given for each
database recovered. The columns \TRANS, PUTS, DELETES, UPDATES" indicate the
number of transactions recovered in roll-forward recovery, or rolled back if using roll-back
recovery.

Logging and Recovery 7-53

Note If you need this table, along with statistics, without actually performing
the recovery, use >CONTROL STATS to display this information. The
>PRINT DBTABLE command also displays this table, but does not include
the statistics; use this command if you only need to list the names of the
databases speci�ed with >RECOVER commands.

3 The LOGGING SYSTEM table should have only one entry, the log identi�er for the log
�le that was accessed by the recovery system. The creator is the user who created the
log identi�er with the MPE/iX GETLOG command. The number of records processed is
usually greater than the number of transactions given in the other tables because some
transactions require more than one log record, and each log �le contains header and trailer
records.

4 The RECOVERY SYSTEM table references the �le to which the records were returned,
the user name and identi�er, and the rmode and fmode parameters speci�ed in the
MPE/iX FILE commands. Note that all of these tables can be returned without
recovering a database by using the >CONTROL STATS option when running the
recovery program. Roll-back recovery ignores the rmode parameter.

7-54 Logging and Recovery

Post-Recovery Options

After a recovery has completed, there are three procedural options. The option chosen
determines the recovery procedure in the event of a subsequent system failure. Together,
the database administrator and system manager or console operator should agree upon the
best post-recovery procedure to avoid confusion at recovery time. The options available after
recovery include:

1. Making a new database backup copy and starting a new log �le from the console with the
CHANGELOG command.

If you use TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END option), you can either start a new log cycle or restart with the same log
�le.

In the event of a subsequent system failure, the new database backup copy is restored
and recovered against the new log �le. This option allows for a straightforward recovery
procedure but delays users from accessing the database until the new backup copy has been
generated.

2. Resuming transaction logging to the same log �le using the RESTART option without
creating a new backup copy.

In the event of a subsequent system failure, the old database copy is restored and recovered
against the log �le. This procedure is the same as the original recovery, but takes longer
due to the additional log �le records. Users can access the database after the �rst system
failure without waiting for it to be stored.

3. Initiating logging to a new log �le without creating a new backup copy.

In the event of a system failure, the old database copy is restored and two recoveries
are executed: the �rst using the old log �le and the second using the new log �le. This
procedure is not recommended if option 2 is available.

Until a new database backup copy is generated, if you consistently start logging to a new
log �le after a system failure, a total recovery preceded by n failures requires n executions
of the recovery system.

The second and subsequent recoveries of a database against more than one log �le are not
permitted unless the DBSTORE ag is disabled. This is because the �rst modi�cation
executed again from the �rst log �le clears the DBSTORE ag from the database root
�le. Subsequent calls to DBRECOV can only succeed by specifying the >CONTROL
NOSTORE option. Ensure that the log �les are recovered in the proper consecutive order.

Note For options 2 and 3, do not restart a log �le before the database has been
recovered after a system failure because of the following reasons:

Some log records could have been lost in the system failure, and

The log �le may not be consistent with the true state of the database.

A recovery is necessary to bring the database and log �le into agreement
before restarting the log process.

Logging and Recovery 7-55

The Mirror Database

Transaction logging and regular backups are good maintenance. However, if databases
must be accessible at all times and cannot be down even for maintenance, then a di�erent
maintenance method is needed. A system can be set up for constant access or \high
availability," and still have controlled maintenance.

The mirror database is the fundamental element in creating a high availability database
system. This system consists of two identical databases on two separate computer systems.
One database is housed on a primary system and is constantly accessible to users and
application programs. The other \mirror" database resides on the secondary system and is
used for maintenance.

To establish a mirror database, the following requirements are necessary:

Two systems|one primary, one secondary.

Two identical copies of the database(s) are needed, one copy on the primary system, one on
the secondary system.

All transactions on the primary system must be logged to a permanent �le.

Periodically, the log �le containing the transactions must be moved or copied to the
secondary system, and used to update the database(s) on the secondary system. It is
recommended that the log �le be kept on a private volume separate from the database or on
magnetic tape.

After the secondary system is established, it can be used to make backups of the database.
The primary system never has to be brought down for maintenance.

Transferring Log Files

The GETLOG command with the AUTO option and the CHANGELOG command provide
the capability to schedule secondary system backups through various methods of logging.
Listed below are four ways of copying log �les from the primary to the secondary system. The
method chosen should depend on the maintenance needs.

1. Copying �les over a direct DSLINE from the primary to the secondary system.

2. Logging to a private volume, entering the CHANGELOG command to start a new log �le,
copying the closed log �le to another private volume, and physically transporting that
second private volume to the secondary system.

3. Logging to disk, entering the CHANGELOG command to start a new log �le, copying
the closed log �le from disk to tape, and restoring the log �le from tape to a disk on the
secondary system.

4. Logging directly to tape and mounting the tape on the secondary system.

Figure 7-3 illustrates the four methods of copying log �les as listed above.

7-56 Logging and Recovery

Figure 7-3. Transferring Log Files to the Secondary System

Logging and Recovery 7-57

Maintaining the Mirror Database

After the mirror database system is set up, the DBRECOV STOP-RESTART feature is used
to maintain the secondary database. To start the initial DBRECOV procedure, the user must
make sure logging is enabled on the primary system and that either the MPE/iX GETLOG
AUTO option or CHANGELOG is being used. These MPE/iX options make logging without
interruption on the primary system possible, thus increasing the availability of the databases.
For more information on logging options refer to \Logging Preparation" and \Logging
Maintenance" earlier in this chapter. Appendix G provides a brief outline of logging to disk
and logging to tape.

After the log �les are transferred to the secondary system (the mirror database system), they
are applied to the mirror database using the DBRECOV roll-forward recovery process. The
STOP-RESTART feature of DBRECOV is the key to making the mirror database system
a workable maintenance method; for a detailed discussion of this feature, refer to the next
section entitled \Performing DBRECOV STOP-RESTART." This feature adds the capability
to CON[TINUE] or STOP the recovery process on the secondary system if DBRECOV cannot
�nd the next log �le in the log set. Whenever DBRECOV cannot �nd the next log �le in a
log set, the recovery process on the secondary system can be stopped, the databases can be
backed up, and recovery can then be restarted from the point it was stopped. The primary
system never has to be brought down for backups.

DBRECOV applies the chained log �les starting with the �rst log �le created when logging
was enabled. It continues to process each log �le in the log set consecutively until it cannot
�nd the next log �le in the set. It then prompts the user at the console to CON[TINUE] or
STOP the recovery process.

If the reply is CON[TINUE], DBRECOV keeps searching for the next log �le. When the
next log �le is found, DBRECOV resumes roll-forward recovery on the mirror database. The
CON[TINUE] or STOP prompt appears as long as DBRECOV cannot �nd the next log �le
in the log set. DBRECOV is stopped if the STOP reply is entered and a RESTART �le
containing all the necessary information to restart recovery is created.

After the DBRECOV process is stopped, backup of the database in a consistent state can be
done and limited database maintenance on the secondary system can be performed. Some
DBUTIL functions cannot be performed while the DBRECOV process is stopped. If the
database is in RESTART mode, the following DBUTIL processes cannot be performed:

Access is not allowed in order to keep the database logically consistent.

Resetting the maintenance word is not allowed. If the maintenance word were to be reset,
RESTART would be impossible.

Purging or erasing the database is not allowed. If either of these options were
used in DBUTIL, the recovery process would be invalidated. (The user must run
DBRECOV,ABORT or DBRECOV,PURGE before purging or erasing the database.)

DBRECOV,RESTART restarts the roll-forward recovery process from the point it was
stopped. DBRECOV uses the information in the RESTART �le to restart recovery.
DBRECOV continues until, once again, it cannot �nd the next log �le in the log set. The
prompt to CON[TINUE] or STOP is displayed and backup of the database can again be done.

If RESTART recovery from the current STOP point cannot be done, DBRECOV,ABORT can
be used. Recovery can no longer be restarted from the same point that it was stopped once

7-58 Logging and Recovery

aborted because the RESTART �le is purged. The database ags are returned to the same
settings as before the recovery process was started.

If ABORT fails to abort recovery because of an inconsistent RESTART �le,
DBRECOV,PURGE can be used to delete the current RESTART �le before beginning the
mirror database process again.

Performing DBRECOV STOP-RESTART

The processes involved in using the STOP-RESTART feature of DBRECOV are discussed
here. They are broken down as follows:

Stopping DBRECOV

Storing the Databases

Restarting DBRECOV

The following sections are included if problems are encountered while performing
STOP-RESTART:

Aborting DBRECOV

Purging a RESTART �le

Stopping DBRECOV

DBRECOV rolls forward all log �les in the log set on the secondary system, one at a time.
When DBRECOV cannot �nd the next log �le in a log set, it prints the following message on
the console:

DBRECOV - Reply CON or STOP when �lexxx is ready.

A message for the user is displayed in the $STDLIST �le:

UNABLE TO OPEN LOG FILE �lexxx

REPLY 'CONTINUE' OR 'STOP' ON CONSOLE.

The �lexxx is the log �le that DBRECOV is trying to �nd. If that log �le has been closed on
the primary system and is ready to be moved over to the secondary system, transfer it to the
secondary system and reply CON or CON[TINUE] on the console. DBRECOV will look for
�lexxx again. The roll-forward process continues as long as the next log �le has been copied
over correctly and is available to DBRECOV.

The next log �le may not be ready yet. For example, the primary system might still be
logging transactions, or the log �le might have been renamed or be on a tape that was not
mounted. This provides an opportunity to STOP recovery and perform maintenance on
the database. Refer to \Storing the Databases" next in this chapter. To stop recovery,
simply reply STOP at the console. A list of the databases involved in recovery are displayed
in the $STDLIST �le. At this point, DBRECOV creates a RESTART �le containing all
the necessary information to continue the recovery process when the RESTART option is
requested; it also enables the RESTART ags and disables the access ags of the databases
that are recorded in the RESTART �le.

DATABASE(S) WITH RECOVERY SUSPENDED:

base1.group.acct

base2.group.acct
...

Logging and Recovery 7-59

This is a list of the databases that are in the RESTART �le. These database names are
speci�ed later when either the RESTART or ABORT options are used. The RESTART �le
name is the same as the logid name used in the GETLOG and the LOG,START commands
when logging was enabled on the primary system.

DBRECOV then prints the name of the log �le it needs to restart recovery, the record number
beginning an internal structure, the number of records currently in the staging �le, and the
actual �le name of the RESTART �le for that recovery process:

RESTART RECOVERY WITH LOG FILE: �lexxx

QUIET BLOCK BEGINS AT RECORD recordnumber

NUMBER OF RECORDS IN STAGING FILE numrecs

RESTART FILE NAME: �lename

The user is returned to MPE/iX, where the command DBUTIL >>SHOW database name
FLAGS can be used to display the recovery state, that is, whether the database in recovery
has been set for RESTART.

When running multiple recovery processes from the same log �le, the user needs to equate
the logid , that is the formal �le designator for the RESTART �le, to a unique �le name for
each recovery process. The new �le name is the RESTART FILE NAME for that speci�c recovery
process.

Storing the Databases

The databases can be backed up at this time. It is important to store all �les involved in
recovery since the last successful RESTART. In other words, the database administrator
should store the databases, the current RESTART �le, and all log �les that were processed
since the last successful DBRECOV,RESTART. If the RESTART �le is not stored with the
database backups, it is modi�ed when recovery is restarted. Without the previous RESTART
�le or the log �les, the database backup copies cannot be used to RESTART recovery in case
the current RESTART fails.

The RESTART �le and the databases have associated time stamps telling DBRECOV which
RESTART �le goes with which databases. When DBRECOV is restarted, the time stamp in
the RESTART �le is changed. If the RESTART �le is not stored, the time stamps will not
match, and the RESTART will not succeed.

The method used to store the databases, RESTART �le, and log �les depends on the medium
used for user logging, as follows:

If logging to tape, the log �les are already stored on a transportable medium and backing
them up is not necessary. However, the log �les must be grouped with the database and
RESTART �le backups. If the user does not keep track of which log �les go with which
databases, the RESTART of recovery from a backup is not possible. To restart recovery
from a backup, the user needs to restore the tapes containing the following:

The databases.

The RESTART �le.

All log �les processed since the last successful RESTART. When running DBRECOV, the
tapes containing the log �les must be mounted in the correct sequence according to the
tape volume labels.

If logging to disk, remember to store the log �les that were rolled forward since the last
successful RESTART along with the RESTART �le and the databases. Logging to disk

7-60 Logging and Recovery

makes it easier to keep the log �les grouped with the databases and RESTART �le because
all the log �les can be stored at the same time when recovery is stopped. Use an MPE/iX
STORE command with the \@" option (rather than a DBSTORE) to backup all the �les on
a minimum number of tapes. If it is necessary to restart from a backup, all the necessary
�les will be together.

Using naming conventions makes storing the �les to tape much easier. The logging naming
conventions should be used. For example, if the database is ORDERS, name the logid
ORDERRS (where RS represents RESTART), and the log �le ORDER001. The user can
store all the �les with one MPE/iX command as follows:

:STORE ORDER@

Note To avoid incompatible time stamps, it is important to store the RESTART �le
at the same time that the databases are stored. If logging to disk, also make
sure to store all log �les processed since the last successful restart.

Restarting DBRECOV

To restart the recovery process after the next log �le in the set is transferred, or the database
maintenance is completed, enter the following RUN command:

:RUN DBRECOV.PUB.SYS,RESTART

DBRECOV requests the name of one of the databases in the RESTART �le:

WHICH DATABASE?

If the user types in the name of a nonexistent database, another prompt for the database
recorded in the RESTART �le appears. Once again enter the name of a database in the
RESTART �le. From the database name that is entered, DBRECOV determines the name of
the RESTART �le, tries to open it, and restarts the recovery process. If the RESTART �le is
successfully opened but is not a RESTART �le, the following error message is printed:

�lename is not a DBRECOV RESTART file

and the user is returned to the MPE/iX prompt. This error usually occurs when another �le
with the same name as the RESTART �le has been created on the system. Make sure the
�le is a RESTART �le, and try RESTART again. If the RESTART �le cannot be located,
go back to the previous tape, restore the databases which should have their own RESTART
�le and log �les stored with them, and run DBRECOV,RESTART from that point. The log
�les between the previous and the current STOP point are reprocessed, and the roll-forward
process continues with the current log �le.

When the correct RESTART �le is opened, DBRECOV looks at the �le to make sure that
the version numbers are compatible with the version of DBRECOV being run. If the version
numbers do not match, DBRECOV prints the following error message:

RESTART FILE NOT COMPATIBLE WITH THIS VERSION OF DBRECOV

and the user is returned to the MPE/iX prompt. This message means that another version of
DBRECOV is running other than the version that created the current RESTART �le. Install
the correct version of TurboIMAGE/XL and run DBRECOV,RESTART again.

Logging and Recovery 7-61

If the user logon is not the same as the logon when DBRECOV was suspended, the following
message is printed:

must be logged on as same user and account where DBRECOV was
suspended

Log on using the same user and account names that were used when DBRECOV was
originally suspended, and run DBRECOV again.

When the RESTART �le is opened, DBRECOV tries to open all databases identi�ed in the
RESTART �le. For each database that cannot be opened, DBRECOV displays the following
message:

Can't re-open DATABASE basename

RESTART is terminated and the user is returned to the MPE/iX prompt. Make sure the
correct databases are on the system. If the databases are the correct ones, but they still
cannot be opened, use the DBRECOV,ABORT command (discussed in the next section) and
RESTART recovery from the previous STOP point.

When all the databases have been opened, DBRECOV checks to make sure all the databases
in the RESTART �le are set for RESTART. When DBRECOV encounters a database not in
RESTART mode, it displays the message:

DATABASE basename IS NOT IN RESTART MODE

RESTART TERMINATED

RESTART is terminated and the user is returned to the MPE/iX prompt. Make sure the
correct databases are loaded on the system. If the databases are the correct ones and
RESTART is still not accepted, use the DBRECOV,ABORT (discussed in the next section)
command and RESTART from the previous STOP point.

To start the recovery process again, �nd out why the databases are not in RESTART mode
and try to correct the problem. If the problem cannot be corrected, take either of the
following steps:

Go to the previous STOP point and use the databases and RESTART �le stored to restart
roll-forward recovery, or

ABORT the current RESTART process. Disable user access on the primary databases and
make a copy for the secondary system. Begin a new logging process on the primary system
and a new recovery process on the secondary system.

If all databases are found, and they are in RESTART mode, then the time stamps in the
database root �le are compared to the time stamp in the RESTART �le. If they do not agree,
the following DBRECOV error message is printed:

RESTART TIME STAMPS DON'T AGREE WITH DATABASE TIME STAMPS

This indicates incompatibility of the RESTART �le and the databases. The user is returned
to the MPE/iX prompt. Use the same steps given above to recover from a time stamp error.
After all the compatibility checks have passed, DBRECOV prints a table of the databases to
be recovered:

DATABASE(S) TO BE RESTARTED:

base1.group.acct

base2.group.acct
...

7-62 Logging and Recovery

The user is then prompted to con�rm the restart:

CONTINUE WITH RECOVERY (N/Y)?

Respond Y or YES to continue, or type N or NO (or press carriage return) to return to the
STOP point. If any of the databases cannot be opened during recovery, an MPE/iX �le error
is returned and DBRECOV RESTART is terminated. When this happens, go back to the
previous STOP point and use the databases, log �les, and the RESTART �le to RESTART
recovery. If a log �le in the log set has been damaged or the user cannot RESTART recovery
for any reason, ABORT the current recovery process and begin the mirror database process
again. When the recovery process terminates, the user is returned to the MPE/iX prompt.

Two ways of continuing to mirror the databases are listed here:

Go to the previous STOP point and use the databases, log �les, and RESTART �le stored
to restart roll-forward recovery. This option is not valid if there is a missing or damaged log
�le.

Disable user access on the primary databases and make a copy for the secondary system.
Begin a new logging process on the primary system and a new recovery process on the
secondary system.

Caution When recovery is aborted (refer to the following discussion), the current
RESTART �le is purged and RESTART must be done from the previous
STOP point.

Aborting DBRECOV

To run the ABORT option:

:RUN DBRECOV.PUB.SYS,ABORT

Just like the RESTART option the prompt for a database in the RESTART �le appears:

WHICH DATABASE?

If a nonexistent database name is entered, an error message is printed and the user is
prompted once again to enter the name of a database in the RESTART �le. Using the
database name entered, DBRECOV determines the name of the RESTART �le and tries to
open it. If the �le is opened and is not a RESTART �le, the following DBRECOV error
message is printed:

�lename is not a DBRECOV RESTART file.

and the user is returned to the MPE/iX prompt. This error usually occurs when another �le
with the same name as the RESTART �le has been created on the system. Make sure the �le
is a RESTART �le and try running DBRECOV,ABORT again.

When the correct RESTART �le is opened, DBRECOV looks at the �le to make sure that it
has the same version numbers as the version of DBRECOV being run. If the version numbers
do not match, DBRECOV prints the following error message:

RESTART FILE NOT COMPATIBLE WITH THIS VERSION OF DBRECOV

and the MPE/iX prompt is returned. This message means the version of DBRECOV is not
the same as the version that created the current RESTART �le. Install the correct version of
TurboIMAGE/XL and run DBRECOV,ABORT again.

Logging and Recovery 7-63

If the user logon is not the same as the logon when DBRECOV was suspended, the following
message is printed:

must be logged on as same user and account where DBRECOV was
suspended

Log on using the same user and account names that were used when DBRECOV was
originally suspended, and run DBRECOV again.

When the RESTART �le is successfully opened, DBRECOV identi�es all the databases in the
RESTART �le, and veri�es that they are in RESTART mode. DBRECOV then checks the
time stamps in the RESTART �le and the databases to make sure they match. If the time
stamps do not match, the following message is printed:

RESTART TIME STAMPS DON'T AGREE WITH DATABASE TIME STAMPS

This indicates incompatibility of the RESTART �le with the data bases. The MPE/iX
prompt is returned. Locate the correct RESTART �le, and run DBRECOV,ABORT again.

After the RESTART �le is opened, DBRECOV tries to open all databases identi�ed in the
RESTART �le. For each database that cannot be opened, DBRECOV displays the following
message:

Can't re-open DATABASE basename

CONTINUE WITH ABORT (N/Y)?

DBRECOV then allows the user to make sure that the ABORT is desired. If not all databases
are in the RESTART �le, it may mean that this a di�erent set of databases. Respond Y or
YES to continue the ABORT, and N, NO (or press carriage return) to stop the ABORT.

DBRECOV then checks to make sure all the databases in the RESTART �le are set for
RESTART. When DBRECOV encounters a database not in RESTART mode, it prompts:

DATABASE basename IS NOT IN RESTART MODE

CONTINUE (N/Y)?

Respond Y or YES to continue the ABORT, and N, NO (or press carriage return) to stop the
ABORT.

When all compatibility checks have passed, DBRECOV displays all databases in the
RESTART �le:

DATABASE(S) WITH RECOVERY TO BE ABORTED:

base1.group.acct

base2.group.acct
...

If not all of the databases can be opened, DBRECOV prints an MPE/iX �le error and
prompts the user to continue with the ABORT:

CONTINUE WITH ABORT (N/Y)?

Respond Y or YES to continue the ABORT, and N, NO (or press carriage return) to stop the
ABORT.

After ABORT is successfully completed, the current RESTART �le is purged, the MPE/iX
prompt is returned, and the user can issue a DBUTIL >>SHOW command. The RESTART
ag is disabled, and the database access ag is reset to the state it was in before DBRECOV
was run.

7-64 Logging and Recovery

Purging a RESTART File

If the RESTART option fails at the current STOP point, the user can ABORT the current
recovery process and RESTART the databases from the previous STOP point. However, if the
ABORT option fails, the DBRECOV,PURGE command can be used as a last resort to delete
the useless RESTART �le before restarting with a backup of the databases and RESTART �le
of a previous STOP point.

Caution When using PURGE on a RESTART �le, RESTART must be done from the
previous STOP point.

:RUN DBRECOV.PUB.SYS,PURGE

DBRECOV prompts for the name of the RESTART �le:

ENTER RESTART FILENAME?

Enter the �lename displayed when DBRECOV was stopped. DBRECOV opens the �le and
veri�es that it is actually a RESTART �le. If DBRECOV is unable to open the RESTART
�le, an error message is printed and DBRECOV is terminated. The user can either determine
that the �le is not a RESTART �le and delete it, or can RESTART recovery from a previous
STOP point. When a RESTART �le is restored from a backup, the previous RESTART �le
writes over the current RESTART �le.

If the RESTART �le is successfully opened, DBRECOV displays the table of databases in the
RESTART �le:

RESTART FILE CONTAINS FOLLOWING DATABASE(S):

base1.group.acct

base2.group.acct
...

All the databases will be opened, and DBRECOV checks if they are all enabled for
RESTART. If they are all in RESTART mode, the following message is printed and
DBRECOV is terminated:

DATABASE base1.group.acct IS IN RESTART MODE.

DATABASE base2.group.acct IS IN RESTART MODE.

RECOVERY SUSPENDED - USE DBRECOV,ABORT TO ABORT RECOVERY.

Run DBRECOV,ABORT to purge the RESTART �le.

If none of the databases in the RESTART �le are set for RESTART, the RESTART �le is
purged with no further con�rmation.

If some of the databases are not found, DBRECOV prompts for con�rmation to purge the
RESTART �le:

Can't re-open DATABASE basename.

CONTINUE WITH PURGE (N/Y)?

DBRECOV allows you to make sure that you wish to purge this recovery process. If not all
databases are in the RESTART �le, this could be a di�erent set of databases. Respond Y or
YES to purge the RESTART �le, or N, NO, (or press carriage return) to stop.

Logging and Recovery 7-65

Occasionally, DBRECOV can terminate abnormally due to a bad log �le in the log set or a
system failure. If the user cannot RESTART recovery from the previous STOP point because
of a damaged or missing log �le, PURGE the current RESTART �le and begin the mirror
recovery process again. Listed below are the four basic steps used to reestablish the mirror
database system after an abnormal termination of DBRECOV:

1. Disable user access on the primary system and store the databases from the primary
system.

2. Purge the databases on the secondary system.

3. Restore the databases from the primary system onto the secondary system.

4. Start a new log set, enable user access on the primary system and start roll-forward
recovery on the secondary system.

Controlling the Logging Process

Backups on the secondary system are made more e�cient by controlling the logging processes
on the primary system. Some important factors to consider before enabling logging on the
primary system follow:

When logging to tape and to allow roll-back recovery, the database must be on the system
volume set. Logging to tape eliminates the step of storing log �les with the databases once
they are rolled forward on the secondary system. However, keep track of log �le tapes that
correspond with each database and RESTART �le backup tapes. Logging to tape requires a
dedicated tape drive.

When logging to disk and to allow roll-back recovery, the database and the user log �le
must be on the same volume set. Logging to disk enables storing log �les and the databases
on a single tape using an MPE/iX STORE command rather than a DBSTORE command.
When logging to disk, remember to backup all log �les that were processed after the last
DBRECOV,RESTART along with the databases and RESTART �le.

When naming data sets, follow proper naming conventions. This will make storing the
databases, log �les, and RESTART �le much easier and eliminate the use of several di�erent
tapes for the log �les. If naming conventions are followed, an MPE/iX STORE command
using the \@" sign followed by the database name can be used to store the log �les,
database, and RESTART �le.

When changing log �les, either let the GETLOG AUTO option switch to the next log �le
automatically and/or manually issue a CHANGELOG command to close the current log �le
and open the next �le in the log set.

When using the STOP-RESTART option, the log �le name and the logid must be di�erent.

Log File Size

Determine the size of the log �les, based on how far behind the secondary system will be, and
how often backups will be done. To keep the secondary system as close to a mirror image of
the primary database as possible, log �les should be made small so that they will be �lled
quickly and can be sent to the secondary system frequently. Of course, making the log �les
small means spending more time transferring log �les from the primary to the secondary
system. It also means that the CHANGELOG maximum �le limit of 999 will be exhausted
quickly. In the event that this limit is exhausted, stop, backup the database, and reinitiate
logging on the primary system.

7-66 Logging and Recovery

One disadvantage of having several small log �les is in the application of STOP-RESTART.
DBRECOV prompts to CON[TINUE] or STOP recovery if it is between log �les in a log set,
and it cannot �nd the next log �le. Therefore, the prompts to CON[TINUE] or STOP are
more frequent when there are several small log �les.

An alternate logging option would be to set the log �le size very large and just manually
change to the next log �le by issuing the CHANGELOG command. The idea is to continually
�ll the log �le with transactions. When you are ready to copy the log �le over to the
secondary system, change to the next log �le on the primary system, copy the current one
to the secondary system, and start recovery. This method requires someone at the system
console to monitor the logging and database maintenance processes. If you want to schedule
backups on the secondary system around certain times of the day, for example, at the
beginning and end of a work day, use this logging procedure on the mirror database. You
can log a full shift's transactions and then manually issue a CHANGELOG command at the
system console to create a new log �le in the log set. Even if the GETLOG command AUTO
option was speci�ed when logging was enabled, a manual CHANGELOG command can also
be issued at any time. The closed log �le is transferred to the secondary system, and the
DBRECOV roll-forward recovery process can be continued on the secondary databases.

After the log �le has been processed, DBRECOV looks for the next log �le in the log set
on the secondary system. If the next log �le on the primary system is in use, the user
is prompted to CON[TINUE] or STOP. At this point, recovery can be stopped and the
secondary database can be stored and await the arrival of the next log �le at the end of the
shift. Remember to store the RESTART �le and the current, unprocessed log �les with the
databases.

Logging and Recovery 7-67

8

Using the Database Utilities

The TurboIMAGE/XL utilities create and initialize the database �les and perform various
maintenance functions, such as restructuring a database. This chapter discusses these utilities
and the syntax of each utility.

You must be the database creator to execute the >>CREATE command of the DBUTIL
utility program or to change or remove the maintenance word with the DBUTIL >>SET
command. The database creator is de�ned by the logon group and account that was used
when the Schema Processor created the root �le. To operate the other utilities or to enter
other DBUTIL commands (with the exception of the >>SHOW command), you need not be
the database creator provided you know the maintenance word. If no maintenance word is
de�ned, only the database creator can execute the other utilities and the DBUTIL commands
that require a maintenance word . The exception to this rule is that a user with system
manager (SM) capability can execute the DBUTIL >>SHOW command on any database
without having to supply the maintenance word.

Restructuring the Database with TurboIMAGE/XL Utilities

Using the utilities DBUNLOAD, DBUTIL, DBSCHEMA, and DBLOAD, certain changes
to the structure of an existing database, such as capacity changes, adding additional items
and sets, and repacking data sets, can be made without having to write special programs to
transfer data from the old database to the new one. The general sequence of operations to do
this is as follows:

1. Run DBUNLOAD on the old database, copying all the data entries to tape.

2. Purge the old database using the DBUTIL >>PURGE command.

3. Rede�ne the database using the same database name by modifying the schema �le, and
create a new root �le with the Schema Processor, DBSCHEMA.

4. Use the DBUTIL >>CREATE command to create and initialize the data sets of the new
database.

5. Run DBLOAD on the new database using the tape created in step 1 to put the data into
the new database.

The above procedure allows only the supported structural changes to the schema listed
below. DBLOAD does not prohibit other changes; however, the data is not guaranteed to be
consistent. Supported schema changes yield structurally intact databases and always result in
a good transformation. Commercial software packages are available that can perform other
structural changes without doing a DBUNLOAD and DBLOAD operation.

Using the Database Utilities 8-1

Supported Structural Changes Using DBUNLOAD and DBLOAD

Any of the following schema changes, alone or combined, always result in a successfully
transformed database:

Adding, changing, or deleting passwords and user class numbers.

Changing a data item or data set name and all references to it.

Changing data item or data set read and write class lists.

Adding new data item de�nitions.

Removing or changing de�nitions of unreferenced data items.

Increasing data set capacities.

Adding, deleting, or changing sort item designators.

Adding and deleting automatic master paths.

Unsupported Structural Changes Using DBUNLOAD and LOAD

The following structural changes are legitimate only in certain circumstances and can result in
data set discrepancies or lost data:

Changing primary paths.

Adding new data items to the original end of a data entry de�nition.

Removing data items from the original end of a data entry de�nition.

Changing an automatic master to a manual master or vice versa.

Adding or deleting a data set at the end of a schema.

Changing the native language de�nition for the database.

These are unsupported schema changes. DBLOAD does not prohibit these changes; however,
the data is not guaranteed to be consistent. A change must be judged in light of the
particular database and the functioning of DBUNLOAD and DBLOAD, described later in this
chapter.

Basically, all entries from an old data set are put into the corresponding new data set, except
that no entries are directly put into automatic masters. The entries are truncated or padded
with binary zeros as necessary to �t the entry length of the new data set. DBUNLOAD and
DBLOAD always handle full entries, without regard to item positions or lengths. If the new
data set entry is de�ned with the items in a di�erent order than the old data set, DBLOAD
may not fail but the data set entries, nevertheless, will be invalid. For example, data of type
real may now occupy the position of a character type item.

The number of the data set is determined by the order in which the data sets we re entered in
the schema �le. Therefore, because data sets are loaded by number, additions and deletions
should be made at the end of the schema. Data set one would correspond with the �rst data
set appearing in the schema. DBLOAD always returns a warning if it detects a discrepancy
between the number of data sets de�ned in the schema and the number of data sets on the
DBLOAD media, but you can allow DBLOAD to continue after the warning if you are
con�dent that the database will not be corrupted.

8-2 Using the Database Utilities

In some circumstances, the load completes, but data is lost. For example, data is lost if the
capacity of a data set is reduced in the new database to less than the number of data set
entries on the tape. If this is not desired, increase the capacity of the data base and restart
the DBLOAD process (refer to \Restructuring the Database with TurboIMAGE/XL Utilities"
earlier in this chapter.)

Summary of Utility Routines

Here is a brief summary of the utilities, their commands, and their functions.

Table 8-1. TurboIMAGE/XL Utilities

Program Commands Function

DBLOAD Loads data entries, which were copied to tape by
DBUNLOAD, back into the data sets.

DBRECOV Performs database recovery from log �les.

CONTROL Controls various options that a�ect the execution of
DBRECOV. Refer to the discussion of DBRECOV in this
chapter for valid options when executing.

EXIT Terminates DBRECOV without re-executing any
transactions.

FILE Routes log records to individual user �les and returns
information about recovery.

PRINT Prints information about databases or user �les speci�ed for
recovery.

RECOVER Designates name of database(s) to be roll-forward recovered.

ROLLBACK De�nes name of database(s) to be roll-back recovered.

RUN Initiates recovery process.

DBRESTOR Copies the database to disk from magnetic tape volumes
created by DBSTORE, or by the MPE/iX STORE or
SYSGEN command.

DBSTORE Copies entire database including root �le to magnetic tape
volumes.

DBUNLOAD Copies data entries to specially formatted magnetic tape
volumes; arranges entries in each data set via the primary
path if the chained entry point is used.

DBUTIL Allows you to perform several database functions, such as
setting database ags, changing database security, creating
or purging a database, and determining current users and
the status of locks.

Using the Database Utilities 8-3

Table 8-1. TurboIMAGE/XL Utilities (continued)

Program Commands Function

DBUTIL
(continued)

ACTIVATE Prepares a database-access �le which is used to access a
remote database.

ADDINDEX Adds the associated B-Tree index.

CREATE Creates and initializes a database �le for each data set.

DEACTIVATE Deactivates a database-access �le which is used to access a
remote database.

DETACH Detaches the database from the attached
DBEnvironment(s).

DISABLE Disables logging, roll-back recovery, ILR, AUTODEFER,
HWMPUT, MUSTRECOVER, PREFETCH, access,
third-party indexing, and dumping options.

DROPINDEX Drops the associated B-Tree index.

ENABLE Enables logging, roll-back recovery, ILR, AUTODEFER,
HWMPUT, MUSTRECOVER, PREFETCH, access,
third-party indexing, and dumping options.

ERASE Erases existing data entries from all data sets. Used before
loading stored data entries back into the database. Also
disables options, such as logging, ILR, roll-back recovery,
and third-party indexing.

EXIT Terminates DBUTIL program execution.

HELP Lists all DBUTIL commands.

MOVE Moves TurboIMAGE/XL �les across devices.

PURGE Purges entire database including root �le, data sets, and any
third-party indexes. Used before restoring a stored database
and before creating a new, restructured database.

REBUILDINDEX Rebuilds the B-Tree index �le for a speci�ed dataset that
should have an index �le.

REDO Same as MPE/iX REDO command.

8-4 Using the Database Utilities

Table 8-1. TurboIMAGE/XL Utilities (continued)

Program Commands Function

RELEASE Suspends MPE/iX security provisions for the root �le, data
sets, and any third-party indexes.

SECURE Restores MPE/iX security provisions suspended by
RELEASE.

SET Changes or removes the maintenance word or password,
stores log identi�er and password into root �le, speci�es the
setting for the critical item update (CIUPDATE) option,
and changes the native language of the database. For
databases that will be migrated to MPE V, speci�es the
number of bu�ers to be used.

SHOW Used to display information about a database, such as ags,
users, the status of locks, DBEnvironments to which the
database is attached, and if third-party indices are
registered.

VERIFY Used to determine whether a database-access �le is activated
or deactivated.

Using the Database Utilities 8-5

Utility Program Operation

Database utilities can be run in either job or session mode. With the exception of DBUTIL's
>>SHOW command, DBUTIL, DBSTORE, DBRESTOR, DBUNLOAD, and DBLOAD all
require you to be logged on in the group and account that contains the database root �le.
Consequently, these utilities cannot be used with a remote database unless you initiate a
remote session and run the utility as part of that session. The DBUTIL, DBSTORE and
DBRESTOR utilities do not allow you to use the MPE/iX FILE command to equate a
database or database-access �le.

Caution DBUNLOAD and DBLOAD do allow MPE/iX FILE commands to equate
a database and can redirect the database to a di�erent �le. Except in a
controlled environment, you should not use the MPE/iX FILE command to
redirect a database or database-access �le to a di�erent �le, because that �le
can be purged easily.

The DBRECOV utility is not included in the discussion above because it is an exception.
With DBRECOV, MPE/iX FILE commands are permissible and you need not be logged on
to the same group and account as the log �le. However, DBRECOV must be invoked on the
system where the database resides.

To execute the DBUTIL >>CREATE command or to change or remove the maintenance
word with the DBUTIL >>SET command, you must log on with the same user name
(including account name) that was used when the Schema Processor created the root �le; this
veri�es to TurboIMAGE/XL that you are the database creator. To operate the other database
utilities or enter other DBUTIL commands, you need not be the database creator provided
you know the maintenance word. If no maintenance word is de�ned, only the database creator
can execute the other utilities and the DBUTIL commands that require a maintenance word.
The exception to this rule is that a user with system manager (SM) capability can use the
DBUTIL >>SHOW command on any database without having to supply the maintenance
word.

Note To maintain compatibility with earlier versions of DBUTIL, the >>CREATE,
>>ERASE, and >>PURGE commands can also be executed by specifying
them as DBUTIL entry points.

Backup Files

The backup �les created by DBSTORE and DBUNLOAD can be written only to magnetic
tape volumes. In the discussion of the utilities that follows, the term volume refers to a
magnetic reel.

Error Messages

Some of the error messages are described with the operating instructions for the utilities.
Appendix A contains a complete listing of the error messages issued by these programs.

8-6 Using the Database Utilities

DBLOAD

DBLOAD

Loads data entries from the backup volume(s) created by the DBUNLOAD utility into data
sets of the database.

Operation

1 [:FILE DBLOAD[=�lename] [;DEV=device]]

2 :RUN DBLOAD.PUB.SYS.
.
.

3 WHICH DATABASE? database name [/maint word]

WARNING: The LANGUAGE of the database is DIFFERENT from

the language found on the DBLOAD MEDIA.

Continue DBLOAD operation? (Y/N):

4 DATA SET m: x ENTRIES.
.
.

5 END OF VOLUME n, y READ ERRORS RECOVERED

6 DBLOAD OPERATION COMPLETED

END OF PROGRAM

(Refer to \Operation Discussion" later in this section.)

The volume(s) must have been produced by the DBUNLOAD program, and the database
name on the volume must be exactly the same as the database name, or root �le name, in
the current session or in the group and account of the job. DBLOAD issues an error message
if the database name or maintenance word speci�ed is di�erent from the DBUNLOAD
�le. In addition, DBLOAD checks that the group and account speci�ed is the same as
that in the DBUNLOAD �le. To reload the identical data into the database, the DBUTIL
ERASE command must be used prior to DBLOAD unless the database has been purged and
re-created. Executing the >>ERASE command reinitializes the data sets to an empty state
while keeping the root �le and data sets as catalogued MPE/iX �les on the disk.

DBLOAD reads each entry from the backup volume and puts it into the respective data
set from which it was read by DBUNLOAD. If a data set in the receiving database is an
automatic master, no entries are directly put into it by DBLOAD, even though there are
entries on the volume associated with the data set's number. Automatic master entries are
created as needed in the normal fashion when entries are put into the detail data sets related
to the automatic master.

DBLOAD calls the DBPUT procedure to put the entries read from the backup volume into
the appropriate data sets. In every case, the DBPUT dset parameter is a data set number
and the list parameter is an at-sign followed by a semicolon (@;). Prior to calling DBPUT,
DBLOAD moves each entry from the backup volume into a bu�er. The length of the entry
is determined by the de�nition of entries in the target data set. When DBLOAD is calling
DBPUT, this length is less than, equal to, or greater than the length of an entry on the
backup volume. If the data set entry is larger than the backup entry, the data is left-justi�ed
and is padded out to the maximum entry length with binary zeros. If the data entry is smaller
than the backup entry, the backup volume record is truncated on the right and the truncated
data is lost.

The location of master set entries is based on their key item value which is hashed to an
internal location. The detail data set entries are put into consecutive data set records with the
appropriate new chain pointer information.

Using the Database Utilities 8-7

DBLOAD

DBLOAD requires exclusive access to the database. If the database is already open to any
other process, DBLOAD terminates and prints the message:

DATABASE IN USE

Parameters

�lename is the name (up to 8 characters) that replaces DBLOAD in the mount request
at the operator's console.

device is the device class name of the device from which the data entries are to be
loaded. Tape is the only supported device class.

database name is the name of a TurboIMAGE/XL database root �le created in the current
session or job's account and logon group.

maint word is the maintenance word de�ned by the database creator. This word must be
supplied by anyone other than the database creator.

Message Variables

m is the number of the last data set loaded from the backup volume.

x is the number of entries loaded into the speci�ed data set. x is zero if the
data set is an automatic master. Note: This number may not represent the
total number of records in the data set if entries existed prior to DBLOAD
execution.

n is the volume number.

y is the number of read errors from which DBLOAD recovered.

Operation Discussion

1 Is an optional �le equation that speci�es the device class name for the device from which
the data entries are to be loaded. The default is device class TAPE.

2 Initiates execution of the DBLOAD program in the PUB group and SYS account.

3 In session mode, DBLOAD prompts for the database name and maintenance word.
In job mode, the database name and maintenance word, if any, must be in the record
immediately following the RUN command.

The language ID of the database is stored along with data when DBUNLOAD has been
used to copy the database to tape. If the database native language (on disk) is not
consistent with the system level native language (on tape), the following message will
appear (refer to appendix A for more information):

WARNING: The LANGUAGE of the database is DIFFERENT from

the language found on the DBLOAD MEDIA.

Continue DBLOAD operation? (Y/N):

Note When using DBLOAD, the database language must match the language ID
stored in the backup media. If they do not match, DBLOAD will give you a
warning messages in a session, and if you reply Y, the DBLOAD will continue.
However, in a job, DBLOAD does not load the database.

8-8 Using the Database Utilities

DBLOAD

4 After each data set is copied, DBLOAD prints a message on the list �le device which
includes the data set number and the number of entries copied.

5 When the end of a volume is encountered, DBLOAD prints a message (where z is the
logical device number of the unit, XXXX is the database name, and n is the volume
number). DBLOAD also instructs the operator to mount a new tape with the following
message on the system console:

MOUNT DBLOAD VOLUME XXXXn ON LOGICAL DEVICE z

If the operator mounts the wrong volume, DBLOAD informs the operator with the
following message (where z is the logical device number):

WRONG VOLUME MOUNTED ON LOGICAL DEVICE z

DBLOAD then terminates and you must begin loading the database again. This requires
executing the DBUTIL >>ERASE command again if any entries have already been
loaded.

6 After the data entries have been successfully loaded, DBLOAD prints a completion
message.

Console Messages

After you supply the database name and DBLOAD opens the input �le, a message is
displayed on the system console. A tape must be mounted on the appropriate unit and
identi�ed through an operator reply. Refer to the Volume Management Reference Manual for
instructions about console interaction.

Using �Control�Y

When executing DBLOAD in session mode, �Control�Y can be pressed to request the
approximate number of entries in the current data set that have already been copied.
DBLOAD prints the following message on $STDLIST:

<CONTROL Y> DATA SET m:x ENTRIES HAVE BEEN PROCESSED

Example

:RUN DBLOAD.PUB.SYS

WHICH DATABASE? ORDERS/SELL

DATA SET 1: AUTOMATIC MASTER

DATA SET 2: 19 ENTRIES

DATA SET 3: 25 ENTRIES

DATA SET 4: 12 ENTRIES

DATA SET 5: 32 ENTRIES

DATA SET 6: 258 ENTRIES

END OF VOLUME 1, 0 READ ERRORS RECOVERED

DATABASE LOADED

END OF PROGRAM

Initiate execution of DBLOAD. Supply the database name and maintenance word. DBLOAD
indicates the number of entries copied. Data set 1 is an automatic master so 0 entries are
copied; the entries are created as related detail entries are copied to the database.

One volume was copied with no read errors.

Using the Database Utilities 8-9

DBLOAD

Note For optimum performance, DBLOAD uses deferred output when it adds
entries to a database. With deferred output, data and structural information
cannot be written back to disk each time DBPUT returns to the DBLOAD
program. As a result, the database is not considered to be logically or
structurally complete on disk until the DBLOAD is complete. During
DBLOAD the database being loaded is considered inconsistent (\bad")
and only at the completion of a DBLOAD run is the database considered
consistent (\good") again.

During a load if an MPE/iX or hardware failure occurs, the database is
de�nitely not structurally intact, and it returns its \bad" ag. After the
system is brought back up, TurboIMAGE/XL does not allow the database
to be opened for normal access. If you get a \bad database" error in such a
situation, erase the database with DBUTIL and then perform the load again.
(For more information on the error message \Bad Database" refer to appendix
A). Alternatively, the database can be purged with DBUTIL and then restored
from a backup copy.

8-10 Using the Database Utilities

DBRECOV

DBRECOV

The DBRECOV program usually is executed after a backup database copy has been restored
by running DBRESTOR in the event of a system failure. DBRECOV reads the log �le
containing records of all database modi�cations and re-executes the transactions against
the restored database(s). The DBRECOV >FILE command enables individual users to be
informed of the extent of recovery. For more information on roll-forward recovery, roll-back
recovery, and the DBRECOV STOP-RESTART feature, refer to chapter 7.

DBRECOV also uses a mirror database on a secondary system as a workable maintenance
method. The options used with DBRECOV for this type of recovery and maintenance method
are RESTART, ABORT and PURGE. Example 4 shows a step-by-step mirror database
maintenance.

DBRECOV can perform rollforward recovery of TurboIMAGE/XL databases stored using the
TurboSTORE/iX 7x24 True-Online Backup. No new option for DBRECOV is needed.

The commands associated with DBRECOV are >CONTROL, >EXIT, >FILE, >PRINT,
>RECOVER, >ROLLBACK and >RUN. Each command is discussed separately.

Operation

:RUN DBRECOV.PUB.SYS [,option]

Options

RESTART restarts the roll-forward recovery process. Information in the RESTART �le is
used by DBRECOV to restart recovery from the point it was stopped.

ABORT purges the RESTART �le and returns the ags to the same settings as before
the recovery process was started.

PURGE deletes the current RESTART �le before beginning the mirror database
process again. PURGE can also be used if ABORT fails to abort recovery
(possibly due to an inconsistent RESTART �le).

Initiates execution of the DBRECOV program in the PUB group and SYS account. The
recovery system prints a banner indicating the version, date, and time. It then prompts for a
command input.

Example 1

Roll-forward recovery of database ORDERS.

:RUN DBRECOV.PUB.SYS

>RECOVER ORDERS

DATABASE ORDERS LAST DBSTORED THURS, SEP 21, 1989, 8:30 AM

>RUN

Using the Database Utilities 8-11

DBRECOV

Example 2

Roll-forward recovery of multiple databases ORDERS and RETAIL. PART and SALES are
�lenames, ADMIN and MKTG are accounts in the FILE commands. The 0 is the rmode and
the 3 is the fmode.

:RUN DBRECOV.PUB.SYS

>RECOVER ORDERS

DATABASE ORDERS LAST DBSTORED MON, SEP 25, 1989, 6:40 PM

>CONTROL NOSTORE

>RECOVER RETAIL

>FILE PART,JOHN.ADMIN

>FILE SALES,MARY.MKTG,0,3

>RUN

Example 3

Roll-back recovery of multiple databases ORDERS and RETAIL.

:RUN DBRECOV.PUB.SYS

>CONTROL NOABORTS

>ROLLBACK ORDERS,RETAIL

DATABASE ORDERS LAST USED THURS, SEP 21, 1989, 6:00 PM

DATABASE RETAIL LAST USED FRI, SEP 22, 1989, 8:00 AM

>RUN

Example 4

DBRECOV STOP-RESTART recovery on database ORDERS. The recovery process is done
on a secondary system with the mirror database maintenance and recovery process. The
following example begins with a prompt for the user to continue or stop the roll-forward
recovery process on the secondary system. When DBRECOV cannot �nd the next log �le in
a log set, the user can stop the recovery process and back up the secondary system. In the
example, note that the restart �le ORDERLOG is named after the database logid .

UNABLE TO OPEN LOG FILE ORDER005

REPLY `CONTINUE' OR `STOP' ON CONSOLE.

STOP

DATABASE(S) WITH RECOVERY SUSPENDED:

ORDERS.DATAMGT.ADMIN

RESTART RECOVERY WITH LOG FILE: ORDER005

QUIET BLOCK BEGINS AT RECORD 1005

NUMBER OF RECORDS IN STAGING DISC 1810

RESTART FILE NAME: ORDERLOG

:FILE L;DEV=TAPE

:STORE ORDERS@;*L

:RUN DBRECOV.PUB.SYS,RESTART

WHICH DATABASE? ORDERS

DATABASE(S) TO BE RESTARTED:

ORDERS.DATAMGT.ADMIN

CONTINUE WITH RECOVERY (N/Y)? Y

8-12 Using the Database Utilities

DBRECOV

Text Reference

Chapter 7

Using the Database Utilities 8-13

DBRECOV

>CONTROL

Used to control various options that a�ect the execution of DBRECOV. The options are
STAMP, NOSTAMP, STORE, NOSTORE, ABORTS, NOABORTS, UNEND, NOUNEND,
STOPTIME, ERRORS, STATS, NOSTATS, MODEX, MODE 4, EOF, MDBX, and
NOMDBX.

Syntax

>CONTROL parameters [,parameters...]

Discussion

The >CONTROL options are described in detail on the next page. If the >CONTROL
command is not used, the following default conditions apply:

STAMP is the database time stamp and must correspond with the one written to the
log �le.

STORE is the DBSTORE ag set in the database root �le.

ABORTS causes transactions which failed to complete due to a program abort to be
recovered.

NOUNEND suppresses the posting of transactions which did not complete or were aborted
prior to a system failure.

ERRORS= during job (batch) execution allows zero errors (DBRECOV terminates), and
during interactive sessions allows 30,000 errors.

MODEX DBRECOV proceeds with exclusive access to the database, using deferred
output (see discussion under DBCONTROL in chapter 5).

NOSTATS if the database is not recovered, no tabulated information will be printed.

STOPTIME= DBRECOV will recover all log records, regardless of the time stamp.

EOF= DBRECOV will recover all log records in the log �le.

MDBX DBRECOV treats multiple database transactions contained in the log �le as
separate transactions.

The >CONTROL command is used to override the default conditions.

If a particular parameter is not speci�ed within a >CONTROL command, the default
condition remains in e�ect. Any number of parameters can be named in any order, but if
more than one condition is speci�ed for one parameter, the last condition entered applies. For
example:

>CONTROL NOSTAMP, STAMP

or

>CONTROL NOSTAMP

>CONTROL STAMP

In both cases, the STAMP condition cancels the previous NOSTAMP. Recovery proceeds with
the time stamp check intact.

8-14 Using the Database Utilities

DBRECOV >CONTROL

If additional databases are speci�ed for simultaneous recovery, they are all governed by the
same >CONTROL options.

In the speci�cations below, default options are shown in brackets []. The default conditions
for STOPTIME, ERRORS, and EOF are included with their descriptions.

Parameters

[STAMP] is the time stamp in the database root �le. It is compared with the time
stamp in each DBOPEN log record in the log �le. If the time stamps do
not match, DBRECOV returns an error message, and terminates recovery
for the o�ending database.

NOSTAMP disables the check of the database and log �le time stamps. Allows
recovery to proceed regardless of the database and log �le time stamps.

[STORE] is the DBSTORE ag in the database root �le and is checked to ensure
that the database has not been modi�ed between restoration and recovery.
If the ag has been cleared, the >RECOVER command fails. The
DBSTORE ag is set only when the database is stored using DBSTORE.
It is cleared when the database is accessed by DBDELETE, DBPUT, or
DBUPDATE.

NOSTORE disables the check of the DBSTORE ag. Allows recovery to proceed
whether or not the DBSTORE ag is set. Useful when the database has
been stored by the MPE/iX STORE command rather than DBSTORE.
Storing the database using the STORE command does not set the
DBSTORE ag, and is not recommended.

[ABORTS] when transactions do not complete due to a program abort,
TurboIMAGE/XL appends an abnormal DBEND (DBABEND) to the log
�le and considers the transactions completed. This enables DBRECOV to
recover these transactions and thereby avoids suppressing all subsequent
dependent transactions.

NOABORTS causes DBRECOV to suppress transactions not originally completed by
user programs. This option tells TurboIMAGE/XL a user or program
abort is abnormal, or incomplete. NOABORTS should only be used if
all database modi�cations were stopped immediately after the abort
and recovery was initiated. Otherwise, recovery can fail due to record
�le overow (see below). For more information on both ABORTS and
NOABORTS refer to chapter 7.

[NOUNEND] causes DBRECOV to suppress incomplete transactions. Recovery can fail
due to a record �le overow (see \Record Numbers" later in this section).

UNEND prevents DBRECOV from suppressing incomplete transactions.

STOPTIME=

mm/dd/yy hh:mm
causes DBRECOV to impose an arti�cial end-of-�le when the speci�ed log
record time stamp (supplied by MPE/iX) is encountered. All log records
with subsequent time stamps will not be recovered. This feature is useful
in the event of a user program failure; the database can be recovered to a
point in time before the suspect program began execution.

Default condition: Log record time stamps are not checked by
DBRECOV.

Using the Database Utilities 8-15

>CONTROL DBRECOV

ERRORS=nnnn controls the maximum number of non-fatal errors allowed during a job
(batch) execution. Should nnnn be exceeded, DBRECOV terminates and
sets the job control word to �1 to indicate an error. However, this check
does not take e�ect until all commands have been parsed and processed.

Default condition: ERRORS=0 for batch jobs and ERRORS=30,000
for interactive sessions. The number of errors allowed can be altered by
entering a revised ERRORS parameter.

STATS is used to obtain information from the log �le without actually recovering
a database. Requires use of a �le equation to specify the log �le. For
example:

:FILE LOGFILE=ORDER001;DEV=TAPE;LABEL=LOG001

:RUN DBRECOV.PUB.SYS

>CONTROL STATS

>RUN

This example shows the log �le ORDER001 residing on tape and
belonging to an expandable �le set (refer to the GETLOG command
with AUTO option in the MPE/iX Commands Reference Manual . The
recovery system responds by printing tabulated information from log �les,
similar to tables printed after a database recovery. However, no databases
are actually opened or recovered.

[NOSTATS] negates the STATS option; tabulated information is not printed unless a
database is recovered.

[MODEX] causes recovery to execute in exclusive (deferred) mode. No other users
can access the database concurrent with recovery.

MODE4 recovery proceeds in DBOPEN mode 4, allowing users in mode 6 to access
(read) the database while recovery is in process.

EOF=nnnn causes DBRECOV to impose an arti�cial end-of-log �le when the speci�ed
log record number is encountered. All log records with subsequent
numbers will not be recovered. This feature is useful in the event of a user
program failure; the database can be recovered up to a record number
preceding the suspect records. While logging is in progress, the MPE/iX
SHOWLOGSTATUS command can be used to determine the current
number of records logged before initiating a questionable program.

Default condition: All log records are recovered by DBRECOV.

[MDBX] causes DBRECOV to treat multiple database transactions contained in
the log �le as separate transactions. If all of the databases involved in
the multiple database transaction are not speci�ed in the >RECOVER
or >ROLLBACK command, DBRECOV will abort. It does not allow
partial recovery of multiple data base transactions. If a multiple database
transaction is dependent on any transaction that was not recovered, the
multiple database transaction will be rolled out.

NOMDBX causes DBRECOV to treat multiple database transactions contained
in the log �le as single transactions. Therefore, each database can be
recovered separately. This option is useful if only part of a multiple
database transaction is to be recovered.

8-16 Using the Database Utilities

DBRECOV >CONTROL

Record Numbers

DBRECOV identi�es detail records by their record number. Suppressing aborted or unended
transactions during recovery with the NOUNEND or NOABORTS options can cause
subsequent detail calls to DBPUT to use di�erent record numbers. In order to change old
record numbers into new ones, DBRECOV uses an internal record table. The record table
provides a \before" and \after" location of the record numbers for DBPUT calls.

Text Reference

Chapter 7

Using the Database Utilities 8-17

DBRECOV

>EXIT

Used to terminate DBRECOV without recovering any databases.

Syntax

>EXIT

Text Reference

Chapter 7

8-18 Using the Database Utilities

DBRECOV >FILE

>FILE

Routes log records to individual user �les, providing the application program with information
about the outcome of recovery; provides a useful tool for auditing previous entries. One �le
for each user can be opened simultaneously by re-entering the >FILE command once for each
user, or all users can be directed to a single �le.

Syntax

>FILE �leref,userref [,rmode,fmode]

Parameters

�leref is an MPE/iX �le reference: �lename [/lockword] [.group[.account]]. This
is the destination �le for each user's log records.

userref is a user reference, specifying which user's log records to copy to this user
recovery �le. The format is: username [/ident].account.

The optional identi�er, which also must be passed to DBOPEN as part of the
password parameter, uniquely identi�es persons using the same logon.

rmode is for roll-forward recovery only. Directs recovery system to copy log records
associated with transactions successfully recovered. rmode can take one of the
following values:

0 No records associated with recovered transactions are copied to the user
�le. (Default value.)

1 Log records corresponding to the last successfully recovered call to
DBEND of each transaction block are copied.

2 The sequence of log records associated with the last successfully recovered
transaction of each transaction block are copied. In addition, all
DBMEMO log records which immediately follow this transaction are
copied.

3 All log records associated with successfully recovered transactions for each
transaction block are copied.

fmode directs recovery system to copy log records associated with transactions that
failed to recover. Used with both roll-forward and roll-back recovery.

Caution The (roll-forward) recovery system cannot guarantee that all records
associated with unsuccessfully recovered transactions can be copied, because
log records which reside in the log system's memory bu�ers are lost in
the event of a system failure. When accessing the database for critical
transactions, use DBEND mode 2 for immediate posting of the log system's
memory bu�er.

fmode can take one of the following values:

0 No records associated with failed transactions are copied. (Default value.)

Using the Database Utilities 8-19

>FILE DBRECOV

1 Log records corresponding to the �rst unsuccessfully recovered call to
DBBEGIN of each transaction block are copied.

2 The sequence of log records associated with the �rst unsuccessfully
recovered transaction of each transaction block are copied.

3 All log records that could not be recovered are copied.

Discussion

The >FILE command copies quali�ed DBOPEN and DBCLOSE log records to each user's
recovery �le. See \File Command" in chapter 7 for a full discussion qualifying the return of
log records. The optional rmode and fmode parameters specify the copies of additional log
records.

Once the >FILE command is entered, the user recovery �le is opened and any existing
records are deleted. If the speci�ed user �le does not exist, an error is reported unless the
�le references the logon group and account, in which case the �le is automatically created.
The state of a log record (either recovered or not) is indicated by a ag set by DBRECOV
in the record itself. MPE/iX WRITELOG records returned by DBRECOV are variable
length, because DBRECOV eliminates the continuation records by appending their data to
the original WRITELOG record. Consequently, DBRECOV will create recovery �les with a
variable length record format. However, �xed length records are permitted if the �le already
exists or an MPE/iX FILE command is in e�ect. If a log record exceeds the record size of a
user �le with �xed length records, the log record is truncated and an error message is printed.

Example

>FILE PART/MGR,MARY/RYAN.MKTG,0,3

PART is the �lename . MGR is the lockword . MARY is the username and RYAN is the
identi�er . MKTG is the account. The 0 is the rmode, and the 3 is the fmode.

The >FILE command is repeated for each recovery �le to be created and for each user whose
records will be copied to a user recovery �le.

Text Reference

Chapter 7

8-20 Using the Database Utilities

DBRECOV >PRINT

>PRINT

Prints the names of databases speci�ed for recovery (DBTABLE option) or recovery �les
speci�ed (FILETABLE option). Can be used as a check before actually initiating recovery
with the >RUN command.

Note The >PRINT DBTABLE command produces the DATABASE STATISTICS
table, but does not include statistics. The table, along with statistics, is
automatically displayed by every execution of the recovery system. If you need
this table, along with statistics, without actually performing the recovery, use
the >CONTROL STATS command instead.

Syntax

>PRINT

�
DBTABLE

FILETABLE

�

Parameters

DBTABLE displays names of databases speci�ed for recovery

FILETABLE displays �le references, user references, rmodes and fmodes speci�ed in >FILE
commands.

Example

>PRINT DBTABLE

**

* DATABASE STATISTICS *

* *

* NAME GROUP ACCOUNT OPENS TRANS PUTS DELETES UPDATES *

* ---- ----- ------- ----- ----- ---- ------- ------- *

* ORDERS TST MKG 0 0 0 0 0 *

**

Text Reference

Chapter 7

Using the Database Utilities 8-21

DBRECOV

>RECOVER

Used to designate the name of a database to be roll-forward recovered; opens database root
�le, validates logid and password with MPE/iX, and checks the DBSTORE ag. Multiple
databases can be roll-forward recovered concurrently if they have all logged to the same log
�le by entering the >RECOVER command once for each database or as follows:

>RECOVER database name, database name

Syntax

>RECOVER database name[/maint word][.group[.account]]

Parameters

database name is the name of the TurboIMAGE/XL database to be recovered.

maint word is the maintenance word de�ned by the database creator. This word must be
supplied by anyone other than the database creator.

group is the group where the database(s) resides.

account is the account where the database(s) resides.

Discussion

If the >RECOVER command is accepted, the following message is returned:

DATABASE database name LAST DBSTORED day, date, time

The following conditions must be satis�ed before the >RECOVER command is accepted:

1. The database must be accessible to the user (database administrator) running DBRECOV.
This user must either be the creator of the database or know the maintenance word. If
the database resides in a group or account di�erent from the user's logon, the MPE/iX �le
security must permit the user read and write access to the database �les.

2. The database must be enabled for recovery.

3. The log identi�er characteristics (name, password, log �le name and device type) must not
have been altered since the log �le was generated. This restriction applies to MPE/iX log
commands as well as those provided for TurboIMAGE/XL by DBUTIL. This is necessary
because the MPE/iX log identi�er is used by TurboIMAGE/XL to obtain the name and
device type of the log �le.

The >RECOVER command will not be accepted if the logid is unknown to MPE/iX.
However, if the logid is known to MPE/iX but speci�es the wrong log �le, this condition
is not detected at this time and >RECOVER will be accepted. DBRECOV will generate
erroneous data in the database if the database is recovered with the wrong log �le.

4. The DBSTORE ag must be set, indicating that the database has not been modi�ed
between restoration and roll-forward recovery. This check can be overridden by the
NOSTORE option of the >CONTROL command.

5. No other users can be accessing the database when >RECOVER is called. Exception:
When the MODE4 option of the >CONTROL command is speci�ed, the database can be
concurrently accessed in mode 6 (read only).

8-22 Using the Database Utilities

DBRECOV >RECOVER

The >RECOVER command itself does not initiate recovery, but makes several preparatory
checks. The recovery system is actually initiated by the >RUN command.

Example

>RECOVER ORDERS, RETAIL

DATABASE ORDERS LAST DBSTORED THURS, SEP 7, 1989, 6:30 PM

DATABASE RETAIL LAST DBSTORED MON, SEP 11, 1989, 10:00 PM

ORDERS and RETAIL are database names .

Text Reference

Chapter 7

Using the Database Utilities 8-23

DBRECOV

>ROLLBACK

Rolls out any incomplete transactions following a system crash. Multiple databases can be
roll-back recovered concurrently by entering the command as follows:

>ROLLBACK dbname, dbname

Syntax

>ROLLBACK dbname[/maint word][.group[.account]]

Parameters

database name is the name of individual database(s) to be rolled-back.

maint word is the maintenance word de�ned by the database creator. This word must be
supplied by anyone other than the database creator.

group is the group where the database(s) resides.

account is the account where the database(s) resides.

Discussion

If the >ROLLBACK command is accepted, the following message is returned:

DATABASE database name LAST USED day, date, time

The following conditions must be satis�ed before the >ROLLBACK command is accepted:

1. The database must be accessible to the user (database administrator) running DBRECOV.
This user must either be the creator of the database or know the maintenance word. If
the database resides in a group or account di�erent from the user's on, the MPE/iX �le
security must permit the user read and write access to the database �les.

2. The database must have been enabled for roll-back recovery.

3. The log identi�er characteristics (name, password, log �le name and device type) must not
have been altered since the log �le was generated. This restriction applies to MPE/iX log
commands as well as those provided by TurboIMAGE/XL by DBUTIL. This is necessary
because the MPE/iX log identi�er is used by TurboIMAGE/XL to obtain the name and
device of the log �le.

4. When roll-back is enabled, DBUTIL sets a roll-back ag to indicate that roll-back is
enabled for the database. The roll-back time stamp is updated when the database is �rst
opened and is logged to the log �le. Roll-back recovery then uses the time stamp during
recovery to verify the correct log �le for each database.

5. No other users can be accessing the database when >ROLLBACK is called. The database
can be concurrently accessed by users when the >CONTROL command is speci�ed with
the MODE4 option.

The >ROLLBACK command itself does not initiate recovery, but makes several preparatory
checks. The recovery system is actually initiated by the >RUN command.

8-24 Using the Database Utilities

DBRECOV >ROLLBACK

The following commands are used with >ROLLBACK:

>FILE

>PRINT
>CONTROL

The >FILE command optional parameter rmode is not used with >ROLLBACK.

The following >CONTROL options are not applicable with >ROLLBACK:

STAMP, NOSTAMP, STORE, NOSTORE, STOPTIME

Example

>CONTROL NOSTATS

>ROLLBACK ORDERS

DATABASE ORDERS LAST USED THURS, SEP 7, 1989, 6:00 PM

>RUN

ORDERS is the database name.

Text Reference

Chapter 7

Using the Database Utilities 8-25

DBRECOV

>RUN

Initiates recovery-process. The recovery system opens the log �le and validates the log
identi�er before roll-forward recovery or roll-back recovery begins.

Syntax

>RUN

Discussion

For recovery to succeed, the log �le must be accessible to the database administrator. This
means that the database administrator must either be the creator of the log identi�er used to
create the log �le, or know the maintenance word and have system manager (SM) or operator
(OP) capability. If the database administrator does not have system manager capability,
and if the log �le resides on disk in a group and account di�erent from logon, then the
administrator must have read access to the log �le according to MPE/iX �le security. File
equations are permitted. However, the fully quali�ed �le name of the expected log �le must
be speci�ed. If the log �le resides on tape, the database administrator must know the volume
identi�er, so that the operator can respond to the log �le tape mount request.

If recovery succeeds, tabulated information is displayed and the program is terminated. A
table of process statistics includes the number of DBPUT, DBDELETE, and DBUPDATE log
records processed and the total transactions for each process.

When using roll-forward recovery, an asterisk (*) may appear next to any process indicating
that either a DBCLOSE record is missing or some transactions may not have been recovered.
Therefore, no asterisk for a process in the table of process statistics indicates that all
transactions were recovered.

The same table information is displayed when using roll-back recovery; however, there is
a slight di�erence. The database table will list all incomplete transactions or DBPUT,
DBDELETE, and DBUPDATE log records that were \rolled-out." An asterisk (*) will appear
next to these processes.

A table of database statistics includes the same information totaled for each database.
A logging system table includes the log identi�er, log �le information, and recovery �le
information if this facility is used. Refer to \Recovery Tables" in chapter 7 for more
information on Process, Database, Logging and Recovery Tables.

Example 1

Roll-forward recovery of database ORDERS.

:RUN DBRECOV.PUB.SYS

>RECOVER ORDERS

DATABASE ORDERS LAST DBSTORED FRI, SEP 22, 1989, 4:00 PM

>RUN

8-26 Using the Database Utilities

DBRECOV >RUN

Example 2

Roll-back recovery of database ORDERS.

:RUN DBRECOV.PUB.SYS

>ROLLBACK ORDERS

DATABASE ORDERS LAST USED THURS, SEP 21, 1989, 6:00 PM

>RUN

Using the Database Utilities 8-27

>RUN

DBRESTOR

Copies a database to disk from the backup volume(s) created by the DBSTORE program or
by the MPE/iX STORE command.

Operation

1
�
:FILE DBRESTOR

�
=�lename

��
;DEV=device

�
�
;REC=recsize

��
;
�
BUFNOBUF

	 �
�

2 :RUN DBRESTOR.PUB.SYS.
.
.

3 WHICH DATABASE? database name [/maint word]

4 DATABASE RESTORED

END OF PROGRAM

Parameters

�lename is a name (up to 8 characters) that replaces DBRESTOR in the mount
prompt at the operator's console.

device is the device class name of the device from which the database is to be
recorded.

recsize is the record size of the record to be restored. recsize must be at least as large
as the record written to the device to avoid losing data.

database name is the name of a TurboIMAGE/XL database root �le to be restored.

maint word is the maintenance word de�ned by the database creator. This word must be
supplied by anyone other than the database creator.

Operation Discussion

1 An optional �le equation that speci�es the device class name for the device from which
the database is to be restored, the record size of the records to be restored, and whether
the records are bu�ered or not. The default device class is TAPE.

2 Initiates execution of the DBRESTOR program in the PUB group of the SYS account.

3 In session mode, DBRESTOR prompts for the database name and maintenance word.
In job mode, the database name and maintenance word, if any, must be in the record
immediately following the RUN command.

4 After DBRESTOR has created the root �le and data sets and restored the data to these
�les, it prints a con�rmation message.

8-28 Using the Database Utilities

DBRESTOR

Console Messages

After you supply the database name and DBRESTOR opens the �le speci�ed by �lename, a
message is displayed on the system console. A tape must be mounted on the appropriate unit
and identi�ed through an operator reply. Refer to Volume Management Reference Manual for
instructions about console interaction.

If the database is on more than one volume, another message is displayed on the system
console. The operator must mount the next volume in the sequence. If the volume that is
mounted is not the correct format, the operator is noti�ed through a console message. If the
correct volume is available, the incorrect one should be removed and the correct one mounted.
The operator must enter a reply on the console.

Example

:JOB MRG.ACCOUNTA Initiate job.

:RUN DBRESTOR.PUB.SYS Initiate DBRESTOR.

ORDERS/SELL Specify database name and maintenance word.

:EOJ Terminate job.

After creating the �les and restoring the �le contents, DBRESTOR prints the following
message on $STDLIST:

DATABASE RESTORED

Note If there is already a copy of the database on disc, it must be purged using
DBUTIL before running DBRESTOR.

Using the Database Utilities 8-29

DBSTORE

Stores the database root �le and all data sets to a tape in a format compatible with backup
�les created by the MPE STORE and SYSGEN commands. DBSTORE di�ers from these
commands in that it handles only TurboIMAGE/XL databases.

Operation

1
�
:FILE DBSTORE

�
=�lename

��
;DEV=device

��
;REC=recsize

��
;

�
BUF

NOBUF

���

2 :RUN DBSTORE.PUB.SYS [;INFO="MPE STORE options"].
.
.

3 WHICH DATABASE? database name [/maint word]

4 DATABASE STORED

END OF PROGRAM

If you try to store a database that needs recovery, DBSTORE will do the recovery before
storing the database.

Before copying the �les, DBSTORE gains semiexclusive access to the referenced database;
that is, DBSTORE determines that the only other database activity consists of other users
executing DBSTORE or application programs that open the database in mode 6 or 8. If
DBSTORE cannot gain semiexclusive access, it terminates and prints the following message:

DATABASE IN USE

You must be the database creator or provide the maintenance word to use DBSTORE.

Parameters

�lename is the name (up to 8 characters) that replaces DBSTORE in the mount
request at the operator's console.

device is the device class name of the device on which the data entries are to be
stored.

recsize is the record size of the record to be written to the device; must be a multiple
of 512 bytes and less than the con�gured record size for the device.

database name is the name of a TurboIMAGE/XL database to be stored.

maint word is the maintenance word de�ned by the database creator. This word must be
supplied by anyone other than the database creator.

INFO= is used for the parameters that can be passed to the MPE
STORE/RESTORE process. For example, the TRANSPORT parameter
(INFO="TRANSPORT") allows you to migrate �les from MPE/iX to MPE V
with the MPE/iX STORE command.

8-30 Using the Database Utilities

DBSTORE

Operation Discussion

1 The optional �le equation that speci�es the device class name for the device on which the
database is to be stored, the record size of the records written to the device, and whether
records are to be bu�ered. The default device class is TAPE.

2 Initiates execution of the DBSTORE program in the PUB group of the SYS account.
The MPE STORE options are parameters that can be passed to the STORE/RESTORE
process. For example, the TRANSPORT option is used when moving a TurboIMAGE/XL
database to MPE V.

Note that the database may be too large to move to MPE V because, with the expanded
�le size available on MPE/iX, data sets can exceed the MPE V �le size limit. If the
database contains a data set larger than the MPE V limit, an MPE error is displayed.

3 In session mode, DBSTORE prompts for the database name and maintenance word.
In job mode, the database name and maintenance word, if any, must be in the record
immediately following the RUN command.

4 After DBSTORE has copied the root �le and all data sets, it prints a message to signal
completion.

Note DBSTORE does not store jumbo data sets or B-Tree index �les. Instead,
use the STORE command with POSIX names or use TurboSTORE/iX 7x24
True-Online Backup with ONLINE=START or ONLINE=END option.

Logging

DBSTORE updates a time stamp and store ag in the database root �le before storing the
database. The time stamp designates the date and time of the DBSTORE operation, and
is used by DBRECOV to help identify the correspondence between log �les and backup
databases.

The store ag is set by DBSTORE to indicate that the database has been stored; this ag
is cleared (reset) when the �rst modi�cation to the database occurs by a call to DBPUT,
DBUPDATE, or DBDELETE. Both DBRECOV and DBUTIL interrogate the status of the
DBSTORE ag. DBRECOV (roll-forward) checks this ag to ensure that no one has modi�ed
the backup database prior to recovery. DBUTIL checks this ag whenever logging and
recovery is enabled, because a valid database backup copy must exist for roll-forward recovery
to be possible. If the store ag is not set when a DBUTIL user enables the logging option a
warning is printed:

WARNING: database modified and not DBSTORED

This warning does not necessarily indicate that a valid backup does not exist, because either
an MPE SYSGEN or STORE command could have been used instead of DBSTORE. Because
neither SYSGEN or STORE update the database time stamp and store ag, the protection
a�orded by these mechanisms is not available if this form of backup is selected. For this
reason, it is highly recommended to use DBSTORE as the backup facility when logging. See
chapter 7 for further discussion of logging and recovery.

If the mirror database maintenance method is being used, storing the database on the
secondary system can be done di�erently than using the DBSTORE process. When using
DBRECOV STOP-RESTART recovery on the database, storing the database, RESTART

Using the Database Utilities 8-31

DBSTORE

�le, and the log �les that were processed since the last successful RESTART can be done
with an MPE STORE command. DBRECOV STOP-RESTART places a time stamp in
the RESTART �le and in the database to identify which RESTART �le to apply to which
database. If naming conventions have been followed, an MPE STORE @ command can be
used to store all the necessary �les and database(s). If DBSTORE is used, the user must
remember to use an MPE STORE command to store the RESTART �le and the log �les.
For more information on DBRECOV STOP-RESTART, refer to \The Mirror Database" in
chapter 7.

Console Messages

After you supply the database name and DBSTORE opens the output �le, a message is
displayed on the system console. A tape must be mounted on the appropriate unit and
identi�ed through an operator reply. Refer to the Volume Management Reference Manual for
instructions about console interaction.

If more than one volume is required to store the database, a request is displayed on the
console for the next one. The next tape must be mounted and the unit readied. The volume
that has been removed should be properly labeled with the database name and volume
number.

Example

:JOB MGR.ACCOUNTA Initiate job.

:RUN DBSTORE.PUB.SYS Initiate DBSTORE program.

ORDERS/SELL Supply database name and maintenance word.

:EOJ Terminate job.

After copying the ORDERS root �le and all data sets, DBSTORE prints the following
message on $STDLIST:

DATABASE STORED

Caution If you need to cancel a DBSTORE, reply zero to the tape request:

:REPLY pin#,0

Do not use �Break� and ABORT to abort the process when the tape mount is
requested. When DBSTORE is aborted by using �Break� and ABORT, the
date-time stamp and store ag in the root �le are updated even though the
database was not stored.

8-32 Using the Database Utilities

DBSTORE

TurboSTORE/iX 7x24 True-Online Backup

You can also use TurboSTORE/iX 7x24 True-Online Backup to back up your database. The
advantages of using the option ONLINE=START or ONLINE=END are:

You can store the database even when it is open for access.

The related �les including TC �le, third-party indexing �les, jumbo data set �les, and
B-Tree index �les are also stored along with it.

The DBSTORE ag and time stamp are also set before storing the database.

You can restore it using the MPE RESTORE command.

If the database is enabled for roll-forward logging, DBRECOV can recover the database.

You can store multiple databases with one command.

For more information, refer to the STORE and TurboSTORE/iX Products Manual .

Using the Database Utilities 8-33

DBUNLOAD

Copies the data entries from each data set to specially formatted tape volumes.

Operation

1 [:FILE DBUNLOAD[=�lename] [;DEV=device]]

2
:RUN DBUNLOAD.PUB.SYS

�
,CHAINED

,SERIAL

�

.

.

.

3 WHICH DATA BASE? database name [/maint word].
.
.

4 DATA SET m: x ENTRIES EXPECTED, x ENTRIES PROCESSED

5 END OF VOLUME n, y WRITE ERRORS RECOVERED

SAVE VOLUME ON LOGICAL DEVICE z AS n

6 DATABASE UNLOADED

END OF PROGRAM

(Refer to \Operation Discussion" later in this section.)

Parameters

�lename is the name (up to 8 characters) that replaces DBUNLOAD in the mount
prompt at the operator's console.

If you want information about your data set chains without actually
performing a DBUNLOAD, supply $NULL as the �lename . This causes a
simulated unloading of the database, preventing the need to mount a tape.

device is the device class name of the device to which the data entries are to be
copied.

database name is the name of the TurboIMAGE/XL database to be unloaded.

maint word is the maintenance word de�ned by the database creator. This word must be
supplied by anyone other than the database creator.

Message Variables

m is the number of data sets in the database.

x is the number of entries (expected) and the number of entries processed or
copied from the speci�ed data set.

n is the number of the volume.

y is the number of write errors from which DBUNLOAD has successfully
recovered.

z is the logical device number of the unit.

8-34 Using the Database Utilities

DBUNLOAD

DBUNLOAD is necessary if you want to modify the database structure to, for example,
increase the capacity of a data set. To increase a capacity,

1. Unload the entries.

2. Purge the database.

3. Change the schema and create a new root �le.

4. Execute the DBUTIL >>CREATE command.

5. Reload the data entries from the volumes created by DBUNLOAD.

The data sets are unloaded in the order that they were de�ned in the original schema. No
data set names are recorded on the backup volume(s); entries are merely associated with the
corresponding data set from which they are read. DBUNLOAD calls the DBGET procedure
to read each entry from each set of the database and, to read the complete entry, uses a list
parameter of an at-sign followed by a semicolon (@;). Values for data items appear in each
entry in the same order as the items were mentioned in the data set de�nition in the schema.
The language ID is copied along with the data of the database.

DBUNLOAD requires exclusive access to the database. If the database is already open by any
other process, DBUNLOAD prints the message:

DATABASE IN USE

and prompts again for a database name.

DBUNLOAD operates in either serial or chained mode as explained below. The mode is
determined by the entry point speci�ed with the RUN command; for example:

:RUN DBUNLOAD.PUB.SYS,CHAINED

The default entry, if none is speci�ed, is chained .

In serial mode, DBUNLOAD copies the data entries serially in record number order.
\Stand-alone" detail data sets, those which are not tied to any master data sets through
speci�ed search item paths, are always unloaded serially.

In chained mode, DBUNLOAD copies all of the detail entries with the same primary
path search item value to contiguous locations on the backup �le. The ordering of the
search item values from the primary path is based on the physical order of the matching
value in the associated master data set. Figure 8-1 (shown at the end of this section on
DBUNLOAD) illustrates the method for unloading a data set in chained mode. After the
database is reloaded, chained access along the primary path is more e�cient.

Broken Chains

If a chained DBUNLOAD encounters a broken chain, it will unload all entries in the chain
down to, but not including the break. It will then go to the end of the chain and follow
the chain backward to the break, then unload the remaining records of the chain. In
some instances, this will save all entries in the chain. In any case, the order of the entries
is preserved. Information about each broken chain in a data set is printed before the
end-of-the-data-set summary (see statement 4 under \Operation Discussion" in this section).

Using the Database Utilities 8-35

DBUNLOAD

Operation Discussion

1 An optional �le equation that speci�es the device class name for the device on which the
data entries are to be copied. The default is device class TAPE.

2 Initiates execution of the DBUNLOAD program in the PUB group of the SYS account.

3 In session mode, DBUNLOAD prompts for the database name and maintenance word.
In job mode, the database name and maintenance word, if any, must be in the record
immediately following the RUN command.

4 After copying a data set without detecting a broken chain, DBUNLOAD prints a message
that includes the data set number and the number of entries copied.

If DBUNLOAD detects a broken chain, the following messages are also returned:

DATA SET m: Broken Chain at Entry #p[,following Entry #q]

Chain Head is Entry #r of Data Set #s

Key = k

l entries [expected,j entries salvaged]

where:

p is the entry number where the break was detected.
q is the number of the entry last unloaded from the front of the chain, if any.
r is the entry number of the chain head.
s is the data set number of the chain head.
k is the value of the key of the broken chain.
l is the length of the chain according to the user label.
j is the number of entries salvaged from the chain.

These four message lines are repeated for every broken chain in the data set, followed by
the end-of-data-set summary that reports the number of lost entries, if any:

DATA SET m: x ENTRIES[EXPECTED, t LOST!!]

For example:

DATA SET 1: 3 ENTRIES

DATA SET 2: Broken Chain at Entry #2, following Entry #1

Chain Head is Entry #5 of Data Set #1

KEY = AA

4 entries expected, 3 entries salvaged

DATA SET 2: 11 ENTRIES EXPECTED; 1 LOST!!

5 When the end of a volume is encountered, DBUNLOAD prints this message:

END OF VOLUME n, y WRITE ERRORS RECOVERED

where n is the number of the volume and y is the number of write errors from which
DBUNLOAD successfully recovered. DBUNLOAD also instructs the operator to save
the current volume and mount a new one by printing the following two messages on the
system console (where z is the logical device number of the tape drive and n is the volume
number):

SAVE VOLUME ON LOGICAL DEVICE z AS n

MOUNT NEXT VOLUME ON LOGICAL DEVICE z.

8-36 Using the Database Utilities

DBUNLOAD

6 After the data sets have been successfully copied, DBUNLOAD issues a completion
message.

DATABASE UNLOADED

END OF PROGRAM

Console Messages

After you supply the database name and DBUNLOAD opens the output �le, a message
is displayed on the system console. A tape must be mounted on the appropriate unit and
identi�ed through an operator reply. Refer to the Volume Management Reference Manual for
instructions about console interaction.

Using �Control�Y

When executing DBUNLOAD in session mode, you can press �Control�Y to request the
approximate number of entries in the current data set that have already been written.
DBUNLOAD then prints the following message on $STDLIST:

<CONTROL Y>DATA SET m: x ENTRIES HAVE BEEN PROCESSED

Writing Errors

If an unrecoverable write error occurs, DBUNLOAD prints the message:

UNRECOVERABLE WRITE ERROR, RESTARTING AT BEGINNING OF VOLUME

and attempts to recover by starting the current volume again. It also sends this message to
the system operator (where z is the logical device number of the unit):

WRITE PROBLEMS TRY ANOTHER VOLUME ON LOGICAL DEVICE z

If an excessive number of non-fatal write errors occur, DBUNLOAD again attempts to recover
from the beginning of the volume after printing the following message on the $STDLIST and
sends the same message to the system operator as described for unrecoverable errors above:

EXCESSIVE WRITE ERROR RECOVERIES, RESTARTING AT BEGINNING OF VOLUME

Example (Session Mode)

:RUN DBUNLOAD.PUB.SYS.
.
.

WHICH DATABASE? ORDERS

DATA SET 1: 3 ENTRIES EXPECTED, 3 ENTRIES PROCESSED.

DATA SET 2: 11 ENTRIES EXPECTED, 11 ENTRIES PROCESSED.

END OF VOLUME 1, 0 WRITE ERRORS RECOVERED

DATABASE UNLOADED

END OF PROGRAM

Using the Database Utilities 8-37

DBUNLOAD

Example (Job Mode)

:JOB MGR.ACCOUNTA Initiate job.

:RUN DBUNLOAD.PUB.SYS Initiate execution of DBUNLOAD.

ORDERS Specify database name.

:EOJ Initiate end of job.

Because the user in this example is the database creator, a maintenance word is not provided.
The DBUNLOAD program is executed in chained mode by default because no entry is
speci�ed.

As the job executes, the following information is printed on the $STDLIST:

DATA SET 1: 50 ENTRIES EXPECTED, 50 ENTRIES PROCESSED.

DATA SET 2: 9 ENTRIES EXPECTED, 9 ENTRIES PROCESSED.

DATA SET 3: 24 ENTRIES EXPECTED, 24 ENTRIES PROCESSED.

DATA SET 4: 12 ENTRIES EXPECTED, 12 ENTRIES PROCESSED.

DATA SET 5: 5 ENTRIES EXPECTED, 5 ENTRIES PROCESSED.

DATA SET 6: 0 ENTRIES EXPECTED, 0 ENTRIES PROCESSED.

END OF VOLUME 1,0 WRITE ERRORS RECOVERED

DATABASE UNLOADED

END OF PROGRAM

8-38 Using the Database Utilities

DBUNLOAD

Figure 8-1. DBUNLOAD File: Sequence of Entries

Using the Database Utilities 8-39

DBUTIL

The DBUTIL program performs several di�erent functions according to the command you
enter. Each DBUTIL command is described separately on the following pages.

Operation

1 :RUN DBUTIL.PUB.SYS
2 >>command

Operation Discussion

1 Initiates execution of the DBUTIL program in the PUB group of the SYS account.

2 Prompts for a DBUTIL >>command . Enter one of the following:

HELP VERIFY ADDINDEX EXIT

CREATE SET DROPINDEX

ERASE ENABLE REBUILDINDEX

MOVE DISABLE REDO

PURGE RELEASE DO

DEACTIVATE SECURE LISTREDO
ACTIVATE SHOW DETACH

DBUTIL commands can be abbreviated to the �rst three characters or less. For example,
>>CREATE can be abbreviated to >>C or >>CRE. Enter the HELP command for the
minimum abbreviation for each command.

When using the >>CREATE, >>PURGE, or >>ERASE command, you can bypass the
command prompt by specifying the full command as an entry point with the RUN command;
for example,

:RUN DBUTIL.PUB.SYS,CREATE

If you use an entry point, TurboIMAGE/XL prompts you for the database name and,
optionally, for the maintenance word, as follows:

Database name: database name [/maint word]

where:

database name is the name of a TurboIMAGE/XL database root �le catalogued in the
current session or job's account and logon group.

maint word is an optional ASCII string, one to eight characters long with no commas
or semicolons, that de�nes a password to be used by anyone other than the
database creator to enable them to execute certain DBUTIL commands, and
operate other utilities. (The database creator can also de�ne or change the
maintenance word by using the >>SET command).

In job mode, the database name and maintenance word, if any, must be in the record
immediately following the RUN command. To perform any DBUTIL command except
>>SHOW, >>HELP, or >>EXIT, you must have exclusive access to the database or
database-access �le.

8-40 Using the Database Utilities

DBUTIL >>ACTIVATE

>>ACTIVATE

Activates the database-access �le for use with DBOPEN. Before using this command, read the
description of remote database access in chapter 9.

This command should be used to prepare a database-access �le before accessing a remote
database residing on another HP 3000.

Syntax

>>A[CTIVATE] database-access �le name

For example:

ACTIVATE ORDDBA

where ORDDBA is the database-access �le name

Parameter

database-access
�le name

is the name of the database-access �le that you created with an editor.

The database-access �le (created on the local system) can have any legal
MPE/iX �le name and is not dependent on the database name.

Unexpected Results

TurboIMAGE/XL checks that the following conditions are not violated:

File code is 0.

Record length does not exceed 128 characters.

File is unnumbered.

File has at least three records.

An appropriate error message is returned if any of these conditions is violated. If all of the
conditions are satis�ed, DBUTIL prints the message:

Verification follows:

and the syntax of the �le is checked record by record. The monitoring messages associated
with the �le records are of the form:

FILE command: <result>

DSLINE command: <result>

HELLO command: <result>

where <result> is \Looks good" if there are no errors associated with the record. Appendix A
lists the record errors (results) that would cause the �le to be rejected.

Using the Database Utilities 8-41

>>ACTIVATE DBUTIL

Example

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
.
.
.

>>ACT ORDDBA Enter abbreviated form of ACTIVATE command and database-access �le name.

Verification follows

FILE command: Looks good

DSLINE command: Looks good

HELLO command: Looks good

HELLO command: Looks good

ACTIVATED

>>

DBUTIL checks the structure of the �le named ORDDBA for correct format and activates
the �le. You will not be able to edit the �le unless you deactivate it using the DBUTIL
>>DEACTIVATE command.

8-42 Using the Database Utilities

DBUTIL >>ADDINDEX

>>ADDINDEX

The ADDINDEX command updates the root �le, and adds the associated B-Tree index �le.
When using the ALL option and there is no master dataset, a warning is generated, but the
command is considered to be successful.

Syntax

>>ADDI
�
NDEX

�
database name

�
/maintword

�
FOR

8<
:

ALL

setnamelist

setnumlist

9=
;

For example:

>>ADDINDEX ORDERS FOR ALL

where ORDERS is the database name.

Parameters

database name is the name of a TurboIMAGE database.

maintword is the maintenance password.

setnamelist is the list setname [, . . .]

setnumlist is the list setnum[, . . .]

ALL means all master data sets for the database.

Example

>>ADDINDEX ORDERS/secret FOR ALL

Found 4 master datasets.

Adding index to set# 1 (#entries = 162,730, capacity = 218,987)

Adding index to set# 2 (#entries = 84,164, capacity = 188,517)

Adding index to set# 3 (#entries = 18,784, capacity = 21,943)

Adding index to set# 4 (#entries = 783, capacity = 2583)

Done.

If the data set is big and DBUTIL is interactive, a progress report at an interval of every 5%
will be displayed.

5% done ...
10% done ...

It is always displayed on the same line. It will be overwritten by the next permanent line.

Adding index to ... or Done.

Using the Database Utilities 8-43

DBUTIL

>>CREATE

Creates and initializes a �le for each data set in the database.

Once the Schema Processor has created the root �le, the database creator must build a �le for
each data set in the database using the >>CREATE command. DBUTIL initializes each data
set to zeros and saves it as a catalogued MPE/iX �le in the same logon group as the root �le,
on the device classes speci�ed in the schema. The data set names are created by appending
two digits to the root �le name. If the root �le is named XXXX , then the �rst data set
de�ned in the schema is named XXXX 01, the second data set is named XXXX 02, and so on.
In order to save �les for the maximum of 199 data sets per database, �les are incremented
from XXXX 01-99, XXXXA0-A9, XXXXB0-B9, up to XXXX J9.

To execute the DBUTIL program to create and initialize the database, you must be the
database creator; that is, you must log on with the same user name, account and group that
was used to run the Schema Processor and create the root �le. After DBUTIL has created
and initialized the database �les, it prints a con�rmation message on the list �le device and
prompts for another command.

The CREATE command has been enhanced to create the required chunk control and chunk
data �les for jumbo data sets. To specify a jumbo data set, the JUMBO option must be
included in the schema before de�ning a jumbo data set. Then any data set whose capacity is
greater than 4GB automatically becomes a jumbo data set.

The CREATE command does an implicit ADDINDEX command for each dataset marked by
DBSCHEMA as indexed.

Syntax

>>C[REATE] database name [/maint word]

For example:

CREATE ORDERS

where ORDERS is the database name.

Parameters

database name is the name of a TurboIMAGE/XL database being created.

maint word is the maintenance word that can be de�ned by the database creator when the
database is created. To access the database, anyone other than the database
creator must supply this word.

Example (Session Mode)

:RUN DBUTIL.PUB.SYS Initiate DBUTIL executions.
.
.
.

>>CREATE ORDERS Respond to DBUTIL prompt with >> CREATE command and database name.

Database ORDERS has been CREATED

>>

DBUTIL creates, initializes, and saves �les named ORDERS01, ORDERS02, and so forth, one
�le for each data set. These constitute the empty database.

8-44 Using the Database Utilities

DBUTIL >>CREATE

Example (Job Mode)

:JOB MGR.ACCOUNTA Initiate job.

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.

CREATE ORDERS Enter >>CREATE command and database name.

EXIT Terminate DBUTIL.

:EOJ Terminate job.

After the data �les are created and initialized, DBUTIL prints the following message on the
list �le device:

DATABASE ORDERS HAS BEEN CREATED

Note >>CREATE will fail if the native language de�ned for the database is not
supported at the system level. (Refer to appendix A or the Native Language
Support Programmer's Guide for more information.)

Using the Database Utilities 8-45

DBUTIL

>>DEACTIVATE

Deactivates the database-access �le to allow modi�cations to the �le or to disallow remote
database access.

This command is used before you change the contents of the database-access �le. (Refer to
chapter 9 for more information about accessing remote databases.)

If DBUTIL successfully deactivates the �le, it prints a con�rmation message on the list �le
device.

Syntax

>>DE[ACTIVATE] database-access �le name

For example:

DEACTIVATE ORDDBA

where ORDDBA is the database-access �le name.

Parameter

database-access �le name is the name of the database-access �le to be deactivated.

Example

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
.
.
.

>>DEACTIVATE ORDDBA Enter a >>DEACTIVATE command and the database-access �le name.

DEACTIVATED

>>

8-46 Using the Database Utilities

DBUTIL >>DETACH

>>DETACH

The DETACH command detaches the database from the DBEnvironment(s) the database is
attached to. You can use one command of DBUTIL to detach a given database from all of the
DBEnvironments to which it is attached; you do not have to specify each DBEnvironment
name.

If you copy your database to a di�erent account or di�erent group, then issue a DETACH
command for the copied database, you will get an error stating that the detach failed from
dbename.group.account (ATCERR 32052). It is because the DETACH of the database triggers
a lookup of the TC �le (which contains the names of the DBE to which the database is
attached). However, DBUTIL's subsequent veri�cation of the original DBE shows the name of
the original database (not the name of the copied database) as the one attached to this DBE.
Due to this discrepancy, the following things happen:

DBUTIL reports an error and does not perform a real detach of the copied database.

The attached ag in the root�le (copy) as well as the entry in the TC �le is cleared, in spite
of the error.

The original production database still remains attached to the DBE.

The DETACH command updates the root �le. Therefore, use caution when copying an
attached database.

Syntax

>> DET[ACH] database name [/maintword]

For example:

>>DETACH ORDERS

where ORDERS is the database name.

Parameters

database name is the name of the database.

maint word is the maintenance password.

Example

>>DETACH ORDERS/secret

Database has been detached from these HP SQL DBEnvironments:

NEWDBE.BTRTESTS.IMAGESQL

TEMDBE.BTRTESTS.IMAGESQL

>>

Using the Database Utilities 8-47

DBUTIL

>>DISABLE

Disables the access, automatic deferred output, data prefetching, dumping, ILR, indexing,
MUSTRECOVER, logging, and recovery options.

Syntax

>>DI[SABLE] database name[/maint word] FOR option[,option...]

For example:

DISABLE ORDERS FOR LOGGING,RECOVERY

where ORDERS is the database name, and LOGGING and RECOVERY are the options .

Parameters

database name is the name of a TurboIMAGE/XL database root �le created in the current
session or job's account and logon group.

maint word is the maintenance word de�ned by the database creator when the database is
created with DBUTIL. This word must be supplied by anyone other than the
database creator.

option is an option from the list provided and described below. More than one
option can be speci�ed.

Options

ACCESS disables user access to the database.

AUTODEFER disables automatic deferred output for the database. AUTODEFER must be
disabled if ILR or roll-back recovery is to be enabled for a database.

DSEM disables the use of Dependency Semaphore employed to increase concurrency
of modi�cation intrinsics (DBPUT, DELETE, and DBUPDATE with CIU
ON).

DUMPING disables the automatic dumping of the user's stack and the database
control block in the event of a TurboIMAGE/XL abort. Unless requested
by Hewlett-Packard support representatives, under most circumstances
dumping should be disabled. When enabled, DUMPING creates �les (before
TurboIMAGE/XL aborts) that can prove helpful in determining the cause of
such problems as a corrupted control block.

HWMPUT disables DBPUT action of placing entries at the high-water mark �rst, instead
of at the delete chain head.

ILR disables Intrinsic Level Recovery facility.

INDEXING disables third-party indexing (TPI) for the database. Third-party indexing
provides the capability to do generic key searches, multiple keyword retrievals,
and sorted sequential searches on any database. Refer to your vendor
documentation for information on TPI.

LOGGING disables the database roll-forward logging facility. Roll-back and
MUSTRECOVER must be disabled �rst.

8-48 Using the Database Utilities

DBUTIL >>DISABLE

MUSTRECOVER disables the MUSTRECOVER option for the database. Logging is not
a�ected by disabling MUSTRECOVER. If the database needs recovery when
you disable MUSTRECOVER, you are prompted to con�rm the DISABLE
command. If you respond to continue, the consistency of the database cannot
be guaranteed. To ensure database consistency, respond with N, recover the
database, and then disable MUSTRECOVER after recovering the database.

PREFETCH disables the prefetching of data blocks required by the DBPUT and
DBDELETE intrinsics under certain conditions. Refer to \Coordinating
Additions to a Database" or \Coordinating Deletions from a Database" in
chapter 4 for additional information.

RECOVERY disables the database roll-forward recovery facility.

ROLLBACK disables the database roll-back logging facility. However, logging will not be
automatically disabled. To disable logging, use the >> database name FOR
LOGGING command. Otherwise, logging (roll-forward) will remain enabled.

Default Conditions

Access is Enabled

Autodefer is Disabled

Dumping is Disabled

HWMPUT is Disabled

ILR is Disabled

Indexing is Disabled

Logging is Disabled

Mustrecover is Disabled

Prefetch is Disabled

Recovery is Disabled

Roll-Back is Disabled

Example

:RUN DBUTIL.PUB.SYS.
.
.

>>DISABLE ORDERS FOR ACCESS

Access is Disabled

>>

Using the Database Utilities 8-49

DBUTIL

>>DROPINDEX

The DROPINDEX command drops the associated B-Tree index �le and updates the root �le.
When using the ALL option and there is no master dataset, a warning is generated, but the
command is considered to be successful.

Syntax

>>DROPI
�
NDEX

�
database name

�
/maintword

�
FOR

8<
:

ALL

setnamelist

setnumlist

9=
;

For example:

>>DROPINDEX ORDERS FOR 2

where ORDERS is the database name and 2 is set# 2.

Parameters

database name is the name of a TurboIMAGE/XL database.

maintword is the maintenance password.

setnamelist is the name of the set list.

setnumlist is the number of the set list.

ALL means all master data sets for the database.

Example

>>DROPINDEX ORDERS/secret FOR 2

Dropping index from set# 2 (#entries = 84,164, capacity = 188,517)

Done.

8-50 Using the Database Utilities

DBUTIL >>ENABLE

>>ENABLE

Enables the access, automatic deferred output, data prefetching, dumping, ILR, indexing,
MUSTRECOVER, logging, and recovery options.

Syntax

>>EN[ABLE] database name[/maint word] FOR option[,option...]

For example:

ENABLE RETAIL FOR LOGGING

where RETAIL is the database name and LOGGING is an option.

Parameters

database name is the name of a TurboIMAGE/XL database being enabled.

maint word is the maintenance word de�ned by the database creator when the database is
created with DBUTIL. This word must be supplied by anyone other than the
database creator.

option is an option from the list provided and described below. More than one
option can be speci�ed.

Options

ACCESS enables user access to the database.

AUTODEFER enables automatic deferred output for the database. With deferred output
the MPE/iX transaction manager is not used to log database modi�cations
to the transaction manager log �le. Instead, AUTODEFER uses the MPE/iX
�le system default mode. This mode keeps data pages in memory for as
long as possible until either lack of memory or the closing of a �le causes the
pages to be written to disk. In this mode a system failure can cause the loss
of database integrity. ILR is not compatible with AUTODEFER; therefore,
deferred output should be used only in a batch situation where the database
has been backed up prior to batch processing. ILR must be disabled prior to
enabling AUTODEFER.

AUTODEFER can be used to increase I/O performance by disabling
Transaction Management (XM). However, ILR and roll-back recovery must be
disabled. You must consider performance and the ability to recover data when
determining whether to use AUTODEFER. Roll-forward logging can be used
to preserve consistency.

DSEM enables use of Dependency Semaphore for increased concurrency of
modi�cation intrinsics (DBPUT, DELETE, and DBUPDATE with CIU ON).

DUMPING is an option for Hewlett-Packard support use, development, and debugging
only. When enabled, the TurboIMAGE/XL abort procedure copies the user's
stack and the database control blocks to �les if a TurboIMAGE/XL procedure
aborts.

Using the Database Utilities 8-51

>>ENABLE DBUTIL

HWMPUT enables DBPUT action of placing entries at the high-water mark �rst, instead
of at the delete chain head.

ILR enables the Intrinsic Level Recovery facility. TurboIMAGE/XL maintains
structural integrity without ILR enabled.

INDEXING enables third-party indexing (TPI) for the database if not already done by
the third-party software when con�guring the database for TPI. Third-party
indexing provides the capability to do generic key searches, multiple keyword
retrievals, and sorted sequential searches on any database. Refer to your
vendor documentation for information on TPI.

LOGGING enables the database roll-forward logging facility.

MUSTRECOVER enables the MUSTRECOVER option for the database. If logging is not
already enabled, it is automatically enabled when MUSTRECOVER is
enabled. While MUSTRECOVER is enabled, the database cannot be accessed
after a system failure until the database is recovered with roll-forward or
roll-back recovery.

PREFETCH enables the prefetching of data blocks required by the DBPUT and
DBDELETE intrinsics under certain conditions. Refer to \Coordinating
Additions to a Database" or \Coordinating Deletions from a Database" in
chapter 4 for additional information.

RECOVERY enables the database for recovery.

ROLLBACK enables the database roll-back logging facility. A warning displays if the log
�le does not exist, and the database remains disabled for roll-back recovery. If
logging is not in e�ect already, it will be enabled automatically.

Default Conditions

Access is Enabled

Autodefer is Disabled

Dumping is Disabled

HWMPUT is Disabled

ILR is Disabled

Indexing is Disabled

Logging is Disabled

Mustrecover is Disabled

Prefetch is Disabled

Recovery is Disabled

Roll-Back is Disabled

Example

:RUN DBUTIL.PUB.SYS.
.
.

>>ENABLE ORDERS FOR RECOVERY

Recovery is Enabled

>>

8-52 Using the Database Utilities

DBUTIL >>ERASE

>>ERASE

Reinitializes all data sets in the database to their empty condition and resets all ags
except the access, PREFETCH, and recovery ags (refer to the discussion of the DBUTIL
>>ENABLE command earlier in this chapter).

The data sets remain as catalogued MPE/iX �les. To execute DBUTIL to reinitialize the data
sets, you must be the database creator or supply the correct maintenance word. This utility
function should be performed before data that was saved by DBUNLOAD is loaded back into
the database unless it was re-created.

After DBUTIL has completely reinitialized the data sets, it prints a con�rmation message on
the list �le device.

Note The ERASE command erases any associated B-Tree index (.idx) �les, but will
not delete them.

Syntax

>>ER[ASE] database name [/maint word]

For example:

ERASE ORDERS/SELL

where ORDERS is the database name and SELL is the maint word .

Parameters

database name is the name of a TurboIMAGE/XL database being erased.

maint word is the maintenance word de�ned by the database creator when the database is
created with DBUTIL. This word must be supplied by anyone other than the
database creator.

Example

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
...

>>ERASE ORDERS/SELL Enter >>ERASE command, database name, and

maintenance word.

Database ORDERS has been ERASED

>>

DBUTIL reinitializes all the data sets in the ORDERS database to binary zeroes. With the
exception of the access, PREFETCH, and recovery ags, the database ags are reset to their
default conditions. The logging and MUSTRECOVER options are disabled if they were
previously enabled.

Note The execution of utilities is not logged. If you use DBUTIL to erase the
database, the >>ERASE command automatically disables logging, ILR,
third-party indexing, MUSTRECOVER, and roll-back recovery.

Using the Database Utilities 8-53

DBUTIL

>>EXIT

Terminates DBUTIL execution.

Syntax

>>E[XIT]

Example

>>CREATE ORDERS Create a database.

Database ORDERS has been CREATED

>>EXIT If no other DBUTIL functions are to be performed,

terminate DBUTIL with >>EXIT command.

END OF PROGRAM

8-54 Using the Database Utilities

DBUTIL >>HELP

>>HELP

Displays each of the DBUTIL commands.

>>H[ELP] [commandname]

Parameter

commandname is the name of a speci�c DBUTIL command whose format you want
to display. The name can be abbreviated to the minimum command
abbreviation permitted by DBUTIL.

If you do not specify a command, the >>HELP command lists the names of
all valid DBUTIL commands.

If you specify a command, the correct syntax for that command is displayed.

Example

>>HELP

Commands are:

ACTIVATE ADDINDEX CREATE DEACTIVATE DETACH

DISABLE DROPINDEX ENABLE ERASE EXIT

HELP MOVE PURGE REBUILDINDEX RELEASE

SECURE SET SHOW VERIFY REDO

Commands may be abbreviated.

For help on a particular command type: 'HELP command name'.

>>HELP CREATE

C[REATE] database name [/maint word]

>>

Using the Database Utilities 8-55

DBUTIL

>>MOVE

Moves TurboIMAGE/XL �les across devices within the same volume set.

Syntax

>>M[OVE] TurboIMAGE/XL �le name TO device

For example:

MOVE ORDERS05 to DISC2

where ORDERS05 is the �le name and DISC2 is a device.

Parameters

�le name is a TurboIMAGE/XL root �le, data set, or ILR �le. Enter the �le name
only; no group/account speci�cation is allowed. The user must be the creator
of the �le.

device is the class name of the MPE/iX device or the number of the logical device
to which the TurboIMAGE/XL �le should be moved. The device must be a
member of the volume set on which the database resides.

Discussion

It is recommended that you store the database with the DBSTORE command prior to
executing a MOVE command. This precaution is advisable in the event a system failure
occurs during the move operation. When a move has been initialized, the process checks the
root �le ag to determine if the database has been modi�ed since the last backup copy was
made. The program prompts the user to continue or to terminate the MOVE command and
proceed with a DBSTORE of the database before moving TurboIMAGE/XL �les to another
device. If the user responds NO to the continue prompt, the following message is printed on
the terminal:

MOVE operation stopped.

The following steps outline the process involved in moving TurboIMAGE/XL �les from one
device to another. The move process does the following:

1. Retrieves information from the old �le. Old indicates the �le on the originally speci�ed
device.

2. Checks the device speci�ed by the user for validity and existence, and determines if there is
su�cient space for the new �le. (New indicates the �le being moved to another device.)

3. Checks the root �le to determine the database state.

4. Copies the old �le to the new �le.

5. Sets the ag in the root �le.

6. Purges the old �le, then saves the new �le.

7. Resets the ag in the root �le.

For jumbo datasets, the MOVE command enables you to move either the chunk control �le or
a speci�c chunk data �le to a di�erent device.

8-56 Using the Database Utilities

DBUTIL >>MOVE

The MOVE command does not allow a B-Tree index (\.idx") �le to be moved.

Example

>>MOVE ORDERS05 to 3

Database last stored on FRI, SEP 22, 1989, 8:32 PM

Database has been modified since last store date.

The database should be backed up before doing a MOVE operation.

Do you still want to continue the MOVE operation (Y/N)? Y

Starting file copy ...

... file copy completed.

Purging old copy of file "ORDERS05"

New copy of file "ORDERS05" saved as a permanent file

File "ORDERS05" moved to device 3

The data set ORDERS05 has been moved to logical device number 3. This �le is the
INVENTORY data set and was originally assigned device class named DISC2 in the schema.

To obtain a listing of where all the data sets for the database reside, do a

>>SHOW ORDERS DEVICE

Using the Database Utilities 8-57

DBUTIL

>>PURGE

Purges the root �le and all the data sets of the referenced database. If you use third-party
indexing, the >>PURGE command also purges any existing third-party index �les regardless
of third-party indexing being enabled or disabled.

Purging removes the �les from the catalog and returns the disk space to the system. As with
>>ERASE, you must be the database creator or must provide the maintenance word to use
DBUTIL with the >>PURGE entry. Before running the DBRESTOR program to restore a
database, use this utility function to purge the database.

If DBUTIL successfully purges the database, it prints a con�rmation message on the list �le
device.

Note The PURGE command purges any associated B-Tree index (.idx) �les.

Syntax

>>P[URGE] database name [/maint word] [DETACH]

For example:

PURGE ORDERS/SELL

where ORDERS is the database name and SELL is the maint word .

Parameters

database name is the name of a TurboIMAGE/XL database being purged.

maint word is the maintenance word de�ned by the database creator when the database
is created with DBUTIL. This word must be supplied by anyone except the
database creator when using DBUTIL to access the database.

DETACH is an option speci�c to the IMAGE/SQL users. This option detaches the
database from all ALLBASE/SQL database environments (DBEnvironments)
to which it is attached via IMAGESQL. When DETACH is not used, the
database is purged without detaching from the DBEnvironment(s). For more
information, refer to the IMAGE/SQL Administration Guide.

Unexpected Results

The following messages are printed if an unexpected situation occurs (refer to appendix A for
other error messages):

8-58 Using the Database Utilities

DBUTIL >>PURGE

Message Meaning

No root file, >>PURGE operation

proceeding

DBUTIL was unable to locate the root �le, but will attempt
to purge data set, if any.

Data set XXXXk has been purged DBUTIL successfully purged the root �le and the n data
sets of the database. However, DBUTIL also discovered and
purged an unexpected data set named XXXXk , where k is a
number greater than the number of data sets de�ned for the
database (n).

Data set XXXXk is missing DBUTIL successfully purged the root �le and all existing
data sets but data set XXXXk is unexpectedly missing. In
this case k is less than the number of data sets de�ned for
the database.

Incomplete purge An error occurred while DBUTIL was attempting to purge
the database and any Third-party indexing �les. The
speci�c error message is printed above this one. Some of the
data sets and, if applicable, index �les have been purged.

Detach failed from DBEname This message is returned if you are using IMAGE/SQL.
DBUTIL was unable to detach the TurboIMAGE/XL
database from the ALLBASE/SQL database environment
(DBEnvironment) to which it was attached. However,
DBUTIL will continue executing the >>PURGE command.
For more information, refer to the IMAGE/SQL
Administration Guide.

Example

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
...

>>PURGE ORDERS Enter >>PURGE command and database name assuming there is

no maintenance word.

The next messages are returned if you are using IMAGE/SQL, and the DETACH option is
used with the >>PURGE command.

Database has been detached from these HP SQL DBEnvironments:

DBEname.group.account

DBEname.group.account

Database has been PURGED

DBUTIL con�rms that the user is logged on with the same user name, account, and group
which were used to create the database. It then determines whether the root �le exists and
if so, purges the root �le and any �les named ORDERS01, ORDERS02, and so forth. Even
if the root �le does not exist, any data sets with �le names based on the root �le name are
purged.

Using the Database Utilities 8-59

DBUTIL

>>REBUILDINDEX

REBUILDINDEX rebuilds the B-Tree index �le for a speci�ed dataset that should have an
index �le.

When using the ALL option and there is no master dataset, a warning is generated, but the
command is considered to be successful.

The KSAM �le built by REBUILDINDEX has the Native Language Support language
speci�ed to match the language of the database, if the key is a text (X or U) data type.

Syntax

>>REBUILDI
�
NDEX

�
database name

�
/maintword

�
FOR

8<
:

ALL

setnamelist

setnumlist

9=
;

For example:

REBUILDINDEX ORDERS FOR 3

where ORDERS is the database name, and 3 is set# 3.

Parameters

database name is the name of a TurboIMAGE/XL database.

maintword is the maintenance password.

ALL means all master data sets for the database.

setnamelist is the name of the set list.

setnumlist is the number of the set list.

Example 1

>>REBUILDINDEX ORDERS/secret FOR SalesrepName,Region,District

Example 2

>>REBUILDINDEX ORDERS/secret FOR 3

Rebuilding index for set# 3 (#entries = 18,784, capacity = 21,943)

Done.

8-60 Using the Database Utilities

DBUTIL >>REDO

>>REDO

Redo the previous command or the previous nth command. Redo follows exactly the MPE/iX
REDO syntax. REDO, LISTREDO, and DO work for DBUTIL the same was as the MPE/iX
commands.

Syntax

>>REDO [n]

For example:

>>REDO 8

where 8 is the eighth previous command.

Parameter

n is the backwards count of the command being repeated.

Using the Database Utilities 8-61

DBUTIL

>>RELEASE

Suspends �le system security provisions for the database root �le and data sets, allowing
access to the database from other groups and accounts. If you use third-party indexing, the
>>RELEASE command suspends the �le system security provisions for any existing index
�les.

Syntax

>>R[ELEASE] database name

For example:

RELEASE ORDERS

where ORDERS is the database name.

Parameter

database name is the name of a TurboIMAGE/XL database.

Discussion

The >>RELEASE command suspends �le system security provisions for all of the database
�les at the �le, group, and account levels, but leaves TurboIMAGE/XL security and MPE/iX
privileged �le security intact. Releasing the �le system security allows the database to be
accessed by users from other groups and accounts, without relinquishing the privacy of all
other �les in the database group. Only the creator of the database can release security. In
addition, the group's home volume set must be mounted.

The database �le security remains suspended until the creator issues a >>SECURE
command. Suspension remains valid after job termination, or system failure followed by a
system boot.

The RELEASE command applies to the associated B-Tree index (.idx) �les.

8-62 Using the Database Utilities

DBUTIL >>SECURE

>>SECURE

Restores security provisions that were released by a >>RELEASE command for the database
root �le and data sets. If you use third-party indexing, the >>SECURE command restores
the security provisions for any existing index �les.

Syntax

>>SE[CURE] database name

For example:

>>SECURE ORDERS

where ORDERS is the database name.

Parameter

database name is the name of a TurboIMAGE/XL database being secured.

Discussion

The >>SECURE command reinstates the �le system security provisions for the entire
database. These security provisions can only be suspended by the >>RELEASE command.
Only the creator of the database can successfully issue the >>SECURE command. In
addition, the group's home volume set must be mounted.

The SECURE command applies to the associated \.idx" �les.

Using the Database Utilities 8-63

DBUTIL

>>SET

Changes or removes the maintenance word; only the database creator can change or remove
the maintenance word. The >>SET command also sets the log identi�er into the root �le,
modi�es access class passwords, sets a subsystem ag, and sets the critical item update
(CIUPDATE) option. For databases that will be migrated to MPE V, the >>SET command
speci�es the number of input/output bu�ers to be allocated by TurboIMAGE in the Database
Bu�er Area Control Block (DBB) depending on the number of users concurrently accessing
the database.

Syntax

>>SET database name
�
/maint word

�

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

BUFFSPECS=num bu�ers (from-users/ to-users)�
,num bu�ers(from-users/to-users)

�
. . .

LOGID=log identi�er

MAINT=maintenance word

SUBSYSTEMS=

8<
:
NONE

READ

RW

9=
;

PASSWORD classnum=
�
password

�
LANGUAGE=language id

CIUPDATE=

8<
:
DISALLOWED

ALLOWED

ON

9=
;

BTREEMODE1=

�
ON

OFF

��
,
�
WILDCARD=

�
c
�

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

For example:

SET ORDERS MAINT=SELL

or

SET ORDERS/SELL CIUPDATE=DISALLOWED

where ORDERS is the database name and SELL is the maintenance word .

Parameters

database name is the name of a TurboIMAGE/XL database root �le catalogued in the
current session or job's account and logon group.

maint word is the current maintenance word for the database, and must be given by
anyone using DBUTIL to access the database other than the database creator.

BUFFSPECS is for MPE V compatibility only, because the TurboIMAGE/XL bu�er
speci�cations are �xed. For databases that will be migrated to MPE V, it
sets the number of bu�ers to be allocated by TurboIMAGE in the Database
Bu�er Area `Control Block (DBB). Refer to \Moving from MPE/iX to MPE
V" in appendix H for a discussion of BUFFSPECS and a description of its
parameters.

LOGID sets the MPE/iX log identi�er. The log identi�er is obtained using the
MPE/iX GETLOG command. Note that DBUTIL prompts for the logid

8-64 Using the Database Utilities

DBUTIL >>SET

password speci�ed in the GETLOG command before it checks the validity
of the log identi�er. Entry of the correct logid password causes the valid log
identi�er to be stored in the root �le and used whenever the logging capability
is enabled. However, if the log identi�er is left blank, it is removed from the
database.

MAINT sets the maintenance word for the database. The maintenance word is the
new maintenance word for the database. If omitted, the currently de�ned
maintenance word is removed and the database has no maintenance word.
Only the database creator can change or remove the maintenance word.

SUBSYSTEMS sets subsystem access to the database. The following options are valid:

NONE is the option used to prohibit use of any subsystem (for
example, QUERY) on TurboIMAGE/XL.

READ is the option that allows only read access to the database
by subsystems. The subsystem checks the root �le ag to
determine what access a subsystem is allowed.

RW is the option that allows read/write access to the database
by subsystems. The subsystem checks the root �le ag to
determine what access a subsystem is allowed.

PASSWORD sets the password. The following parameters are used with the PASSWORD
parameter.

classnum is the access class whose password is being changed. It can be
a number from 1 to 63, inclusive.

password is the new password being assigned to a particular access
class. Up to 8 characters are allowed. If omitted, any
password previously assigned to that class is removed. (You
must be the database creator.)

LANGUAGE sets the native language for the database. The following parameter is used
with the LANGUAGE parameter:

language id is the number that identi�es the native language. Refer to
the Native Language Support Programmer's Guide for name
and number information. The message \Language changed"
appears after using the >>SET command to change the
language ID. This command can be issued only on a virgin
root �le or an empty database.

Note When reloading the database, the language must match the language ID
stored in the backup media. A DBLOAD issued in a job fails if the language
of the media di�ers from the database language. A DBLOAD in session mode
provides a prompt to allow you to complete the DBLOAD operation when you
reply Y.

CIUPDATE sets critical item update for the database. The following option settings are
valid:

DISALLOWED prevents any process from using the critical item update
option on this database.

Using the Database Utilities 8-65

>>SET DBUTIL

ALLOWED indicates that programmatic enabling of the option is possible
through a call to DBCONTROL mode 5, but programs that
do not make this call are prevented from using critical item
update on this database. Programs that enable the option
do so temporarily for the duration of the process but can
subsequently disable it through a call to DBCONTROL
mode 6.

Note ALLOWED is now the default setting. It was DISALLOWED in releases prior
to C.07.00.

ON allows all processes to use the critical item update option on
this database without the need to call DBCONTROL mode 5.
Any process can explicitly disable the option temporarily for
the duration of the process through a call to DBCONTROL
mode 6 but can subsequently enable it through a call to
DBCONTROL mode 5. This setting allows the critical item
update option to be disabled in selected programs while
enabling it for the majority.

Critical item update is useful for those processes that need to update the
values of detail data set search or sort items; master data set key items cannot
be updated regardless of the CIUPDATE setting.

BTREEMODE1 sets the root �le ag for B-Trees to ON or OFF. If it is ON, then a DBFIND
mode 1 on ASCII types having a B-Tree index (explicit or implicit) and
having the wildcard character in the argument will be treated as a B-Tree
search. If set to OFF, then a DBFIND mode 1 will not be treated as a B-Tree
search, even if the item has a B-Tree. See chapter 11, \B-Tree Indices," for
more detailed information on BTREEMODE1.

WILDCARD is set with any printable ASCII character for c. When doing a B-Tree
DBFIND, mode-1-style arguments are scanned to �nd the �rst occurrence of
the current wildcard character in the argument text. If the wildcard is not
found, a non- B-Tree search is done (even if the DBFIND mode was 21). If
the wildcard is found, the rest of the argument text is ignored.

Note This does not match the functionality of \@" in commands such as the MPE
LISTF, but does match the functionality of current TPI implementations.

If the wildcard character is found at character k+1 (1-based), then the
quali�ed entries will consist of all keys that match the argument in character
positions 1..k.

When not doing a B-Tree �nd (even when mode=1 and BTREEMODE1=ON;
or mode=10), the entire argument, including any wildcard characters, will be
treated as the actual argument for a DBFIND mode 1.

The length of the argument may not exceed the item length.

8-66 Using the Database Utilities

DBUTIL >>SET

Example 1

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
...

>>SET ORDERS MAINT Remove current maintenance word.

Maintenance word changed

>>

Example 2

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
...

>>SET ORDERS CIUPDATE=ON Indicates that processes can update the values of detail data
set search or sort items in the ORDERS database without a
need to do DBCONTROL mode 5.

CIUPDATE is ON. DBUTIL con�rms the setting.

Example 3

:RUN DBUTIL.PUB.SYS Initiate DBUTIL.
...

>>SET ORDERS BTREEMODE1 = ON,% Sets BTREEMODE1 option on for B-Tree search for
DBFIND mode 1 on X or U type having a B-Tree
index (explicit or implicit) and in the presence of a
wildcard character in the argument. Sets the wildcard
character as % in the ORDERS database.

Using the Database Utilities 8-67

DBUTIL

>>SHOW

Displays information about the database on a terminal or line printer. This can include a list
of processes that have the database open, the status of locks in the database, the log identi�er
and ags, the current bu�er speci�cations, and the setting for the critical item update
option. Displays the capacity expansion information for the database and the data sets. If
you are using IMAGE/SQL, >>SHOW displays the names of any ALLBASE/SQL database
environments (DBEnvironments) to which the database is attached. This command should
be used with care because it obtains exclusive control of the database for several seconds
preventing all other access.

Syntax

>>SH
�
OW
�
dbname

�
.group

�
.account

� ��
/maint word

�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ALL

BUFFSPECS

CAPACITY

CIUPDATE

DEVICE

FLAGS

INDEX

INDEXES

INDICES

LANGUAGE

LOCKS

LOGID

LOGINFO

MAINT

PASSWORDS

SUBSYSTEMS

USERS

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

�
OFFLINE

�

For example:

SHOW ORDERS/SELL ALL OFFLINE

where ORDERS is the database name and SELL is the maint word .

Parameters

dbname is the name of a TurboIMAGE/XL database root �le catalogued in the
current session or job's account and logon group. If you have account
manager (AM) capability, you can qualify the database with the group name.
If you have system manager (SM) capability, you can qualify the database
with the group and account name.

group is the group where the database resides. To qualify the database name by
group, you must have AM or SM capability. If you have AM capability and
want to qualify the database name by group, the database must have a
maintenance word as you will be required to supply one.

account is the account where the database resides. To qualify the database name by
account, you must have SM capability.

8-68 Using the Database Utilities

DBUTIL >>SHOW

maint word is the current maintenance word for the database. The database creator or
the user with SM capability can omit the maintenance word.

ALL displays all the information provided with MAINT, BUFFSPECS,
LANGUAGE, LOCKS, USERS, LOGID, SUBSYSTEMS, FLAGS, and
the last-stored date. Displays number of detail data sets using dynamic
capacity expansion and if dynamic capacity expansion is used for master
data sets. Also, if the database is attached to any ALLBASE/SQL database
environments (DBEnvironments) via IMAGESQL, the DBEnvironment
names are displayed (refer to the IMAGE/SQL Administration Guide for
information).

BUFFSPECS displays the current bu�er speci�cations which can be either the
TurboIMAGE/V default setting or the values speci�ed with the DBUTIL
>>SET command for those databases that will be migrated to MPE V; the
TurboIMAGE/XL default setting is not displayed. Refer to the discussion
of BUFFSPECS in the earlier section on the >>SET command and also in
\Moving from MPE/iX to MPE V" in appendix H.

CAPACITY displays, for all data sets, capacity information including dynamic capacity
�elds. Information includes: data set name, type, number of entries, entries as
a percentage of the maximum capacity for the data set, maximum capacity,
current capacity, initial capacity, incremental number of entries and whether
or not dynamic capacity expansion is used.

CIUPDATE displays the setting for the critical item update option. Valid settings are
DISALLOWED, ALLOWED, and ON.

DEVICE displays the TurboIMAGE/XL root and data sets and where �les reside
(device class name or logical number) for a database.

FLAGS displays the state (enabled or disabled) of the logging, roll-back, ILR,
recovery, restart, subsystem access, AUTODEFER, access, dumping,
HWMPUT, PREFETCH, MUSTRECOVER, and third-party indexing
(TPI) options. If MUSTRECOVER is enabled, the ags option also displays
a message if the database needs recovery. In addition, it displays the last
database store date, and information on whether the database has been
modi�ed since the last-stored date (DBSTORE ag).

INDEX INDEXES

INDICES

displays the B-Tree indices for the database.

LANGUAGE displays state of the native language declaration for the database.

LOCKS displays the status of locks currently obtained (or requested).

LOGID displays the current MPE/iX log identi�er for the database.

LOGINFO displays information about all types of logging available with
TurboIMAGE/XL.

MAINT displays the maintenance word, if any.

PASSWORDS displays the access class numbers from 1 through 63 together with the
passwords assigned to them. (You must be the database creator.)

Using the Database Utilities 8-69

>>SHOW DBUTIL

SUBSYSTEMS indicates whether subsystems, including user programs, can access the
TurboIMAGE/XL database and, if access is allowed, whether it is read only
or both read and write. Subsystem access is enforced by the subsystem.

USERS displays a list of the processes that have the database open with the program
�le name and other information. (Refer to examples below.)

OFFLINE requests that the information be listed on the line printer. The formal
designator for the list �le is DBUTLIST. (Passwords and maintenance word
will not be printed.)

The >>SHOW database name USERS command can be executed at any time. The remaining
>>SHOW commands can be executed at any time except when another process has the
database opened in an exclusive access mode (mode 3 or 7).

Example (Show Users)

:RUN DBUTIL.PUB.SYS.
.
.

>>SHOW ORDERS USERS

1 2 3 4 5

PIN PATH EXECUTING PROGRAM JOBNUM MODE

21 1 INVENTRY.IMAGE.DATAMGT #S116 1

22 1 BROWSE.IMAGE.DATAMGT #S118 5

28 1 BROWSE.IMAGE.DATAMGT #S112 5

29 1 INVENTRY.IMAGE.DATAMGT #S115 1

31 1 ORDENTRY.IMAGE.DATAMGT #S117 1

Example Discussion

The columns of information are described as follows:

1 The Process Identi�cation Number (PIN). This is a number assigned to a process by the
operating system when the process is created. The table above indicates that the process
has opened the ORDERS database.

2 The access path number. The access paths for each process are numbered consecutively
beginning with 1. Refer to the discussion of access paths in chapter 4.

3 The name of the program �le, its group and account.

4 The number of the job or session in which the process is running.

5 The access mode in which the database is open.

DBUTIL does not call DBOPEN so it is not listed as an executing program.

8-70 Using the Database Utilities

DBUTIL >>SHOW

Example (Show All)
.
.
.

>>SHOW ORDERS ALL Display all information for ORDERS database.

For database ORDERS

MAINTENANCE WORD: SELL

Access is enabled.

Autodefer is disabled.

Dumping is disabled.

Rollback recovery is disabled.

Recovery is enabled.

ILR is disabled.

Mustrecover is enabled.

Logging is enabled.

Prefetch is disabled.

Indexing is disabled.

HWMPUT is disabled.

Restart is disabled.

Database last stored using True-Online Backup and

logfile NLOG001 on WED, MAR 26, 1997, 8:07 AM.

Database has been modified since last store date.

Shadowing is disabled.

Subsystem access is READ/WRITE.

CIUPDATE is allowed.

Dynamic capacity expansion is not used.

Database has at least one indexed dataset.

BTREEMODE1 is off, wildcard = "@".

Logid: NLOGID is valid.

password is correct.

XM log set : default XM user log set

for volume set MPEXL_SYSTEM_VOLUME_SET

XM log set type : circular

XM log set size : 32 megabytes

The language is 0 - NATIVE-3000.

Buffer specifications:

50(1/120)

No other users are accessing the database.

>>

where volname is the name of the volume set in which the database resides.

Using the Database Utilities 8-71

>>SHOW DBUTIL

Example Discussion

The listing above indicates that the current bu�er speci�cations provide for 50 bu�ers
to be allocated when there are between 1 and 120 concurrent users of the database. On
TurboIMAGE/XL the bu�er speci�cations remain �xed, so the information shown in the
above listing is useful only for databases that will be migrated to an MPE V system.
The list above also shows that the database is enabled for roll-forward recovery, logging,
MUSTRECOVER, and user access. It shows that the database was backed up using
TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or ONLINE=END
option), and the log�le in use at the time was NLOG001. In the example, PREFETCH and
third-party indexing (TPI) are disabled, critical item update (CIUPDATE) is allowed, and the
restart ag is disabled. The restart ag is set by DBRECOV when the user has requested
to suspend recovery between log �les. The logid is shown, the password is veri�ed, and the
maintenance word is displayed. The messages that appear during the SHOW command can
vary depending on what information is available on the database. If the maintenance word
and logid are not present, the following messages display:

Logid is not present.

Maintenance word is not present.

The message regarding the transaction manager (XM) log set will also vary. The following
message is printed if the database is not attached to transaction manager:

XM log set: this database is not attached to an XM log set

The following message is printed if the database does not support NLS:

This database has been created before support of Native Languages.

If an error has occurred during dynamic roll-back recovery, the following message is displayed:

Database is logically inconsistent.

The following message is printed if the database is attached to an ALLBASE/SQL database
environment (DBEnvironment) via the IMAGESQL utility:

Attached to these HP SQL DBEnvironments:

DBEname

DBEname

The following message is printed if the third-party indices are registered in the
DBEnvironments.

Third Party Indexes are registered in these HPSQL DBEnvironments:

DBEname

DBEname

Refer to the IMAGE/SQL Administration Guide for more information.

The example displays, \Dynamic capacity expansion is used for 2 detail sets." Enable this
feature for new databases by using the capacity parameters for detail data sets. See chapter 3
for more information. Enable this feature for existing databases by using DBChange Plus or a
third-party utility. Refer to the MPE/iX Release 5.0 Communicator for information on using
DBChange Plus.

8-72 Using the Database Utilities

DBUTIL >>SHOW

Example (Show Capacity)
.
.
.

>>SHOW ORDERS CAPACITY

No. of %Max --------------Capacity-------------- Dyn

Data Set Name Type Entries Cap Maximum Current Initial Increment Exp

(Hashing)

CUSTOMER M 20 10 200 200 200 0 NO

DATE-MASTER A 111 53 211 211 200 0 NO

PRODUCT M 15 5 300 300 200 0 NO

SALES D 100 2 5012 140 140 70 YES

SUP-MASTER M 60 3 2000 600 400 200 YES

INVENTORY D 4998 1 500000 5000 5000 10000 YES

>>

The example shows Maximum, Current, Initial and Increment Capacities. The \%Max Cap"
column shows how full the data set is as a percent of the maximum capacity for that set.
\Dyn Exp" column shows whether dynamic capacity expansion is enabled or not. Enable
this feature for new databases by using the capacity parameters when de�ning data sets.
See chapter 3 for more information. Enable this feature for existing databases by using
DBChange Plus or a third-party utility which supports this feature.

Format of Show Device List

The following example lists the TurboIMAGE/XL �les for the ORDERS database, along with
the data set names and the device where each resides. In the following example, the root �le
ORDERS and the data sets are shown. The �le devices are listed as speci�ed with the device
class names. The ORDERS05 data set was moved using the DBUTIL >>MOVE command to
logical device number 3; the device class name is displayed.

Example (Show Device)

>>SHOW ORDERS DEVICE

For database ORDERS

Volume set: volname

MPE/iX File Name Data Set Name Device

ORDERS.IMAGE.DATAMGT DISC

ORDERS01.IMAGE.DATAMGT Date-Master DISC1

ORDERS02.IMAGE.DATAMGT Customer DISC1

ORDERS03.IMAGE.DATAMGT Product DISC1

ORDERS04.IMAGE.DATAMGT Sup-Master DISC2

ORDERS05.IMAGE.DATAMGT Inventory DISC3

ORDERS06.IMAGE.DATAMGT Sales DISC2

>>

where volname is the name of the volume set in which the database resides.

Using the Database Utilities 8-73

>>SHOW DBUTIL

Format of Show Indices

The following example lists the data set names, type, and whether they are indexed.

Example (Show Indices)

>>SHOW ORDERS INDICES

For database ORDERS

Data Set Name Type Indexed?

DATE-MASTER A YES

CUSTOMER M YES

PRODUCT M YES

SUP-MASTER M YES

4 indexed datasets

>>

Format of Show Locks List

DBUTIL lists the locking information sequentially by locking level: database locks followed by
data set locks, followed by data entry locks. The names of locked entities (for example, the
database, data set, or lock descriptor for data entries) appear in uppercase followed by a list
of other processes waiting at that locking level. DBUTIL indicates in lowercase the reason
each process is waiting. This message is preceded by a hyphen so that it can be identi�ed on
terminals or listings from a line printer without lowercase.

If the term (PENDING) appears after a locked entity, it indicates that the lock has been
obtained but control cannot be returned to the caller until other locks have been released.
The same process identi�cation will appear elsewhere in the list together with an explanation
of why it is waiting.

Infrequently, the term (TEMP) may appear. TurboIMAGE/XL places a temporary lock on
a data set while it processes an existing data entry lock request. Temporary locks occur only
when a user requests data entry locks on di�erent items. Whenever the lock item changes,
TurboIMAGE/XL must wait until all existing locks on the current lock item are cleared before
it places a lock on the new lock item. During the wait the lock is termed \TEMP." These
locks are held very briey and only under rare circumstances. The Process Identi�cation
Numbers (PINs) and job/session numbers listed are the same as those shown by MPE/iX
commands, such as SHOWJOB and SHOWQ.

8-74 Using the Database Utilities

DBUTIL >>SHOW

Example 1 (Show Locks)
...

>>SHOW ORDERS LOCKS OFFLINE List the status of locks requested and held in the

ORDERS database on the line printer.

The line printer listing looks similar to this:

HP30391C.00.00 TurboIMAGE/XL: DBUTIL THURS, SEP 21, 1989, 5:06 PM

For database ORDERS

PIN/ PROGRAM

LOCKED ENTITY - (- waiting process) PATH NAME JOBNUM

1 DATA SET SALES 30/1 BROWSE #S126

2 -waiting for data set unlock: 17 INVENTRY #S128

-waiting for data set unlock: 32 ORDENTRY #S129

-waiting for data set unlock: 21 ORDENTRY #S118

3 DATA SET CUSTOMER 30/1 BROWSE #S126

DATA SET INVENTORY 30/1 BROWSE #S126

Example 1 Discussion

1 Indicates process 30 (program BROWSE executing in session 126) has the SALES data
set locked through access path 1.

2 Shows a queue of processes waiting for the SALES data set to unlock. For example, in the
�rst line, process 17 (program INVENTRY executing in session 128) is waiting. Because
it is listed �rst in the queue, it will be the next process to resume execution after the
SALES data set is unlocked. It could be waiting to place a lock on the data set or entries
in the set.

3 Indicates process 30 (program BROWSE, session 126, access path 1) has the CUSTOMER
data set locked. No processes are waiting for the lock to be released.

Example 2 (Show Locks)

Here is another example of a locking list that might appear when the >>SHOW LOCKS
command is entered.

HP30391C.00.00 TurboIMAGE/XL: DBUTIL THURS, SEP 21, 1989, 5:15 PM

For database ORDERS

PIN/ PROGRAM

LOCKED ENTITY - (- waiting process) PATH NAME JOBNUM

1 DATABASE (PENDING) 22 BROWSE #S118

-waiting for zero locks within database: 22 BROWSE #S118

2 DATA SET INVENTORY 29/1 INVENTRY #S115

3 SALES: QUANTITY<= 50 28/1 BROWSE #S112

4 CUSTOMER: CUST-NAME = DON'S MERCANTILE 31/1 ORDENTRY #S117

Using the Database Utilities 8-75

>>SHOW DBUTIL

Example 2 Discussion

1 Indicates process 22 (program BROWSE, session 118) has requested a lock on the
database and yet it cannot continue until existing locks held in the database are released.
In this example, the reason for the pending lock is listed on the line below.

2 Indicates process 29 (program INVENTRY, session 115, access path 1) has the
INVENTORY data set locked.

3 Indicates that process 28 (program BROWSE, session 112, access path 1) has all entries in
the SALES data set with QUANTITY less than or equal to 50 locked.

4 Indicates process 31 (program ORDENTRY, session 117, access path 1) has all entries in
the CUSTOMER data set with LAST-NAME equal to DON'S MERCANTILE locked.

All subsequent requests for locks must be made to wait until process 22 releases its database
lock.

8-76 Using the Database Utilities

DBUTIL >>VERIFY

>>VERIFY

Reports whether a remote database-access (RDBA) �le is activated or deactivated and checks
the validity of the RDBA �le.

Syntax

>>V[ERIFY] database-access �le name

For example:

VERIFY ORDDBA

where ORDDBA is the database-access �le name.

Parameter

database-access �le name is the name of a remote database-access �le.

Example

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution..
.
.

>>VERIFY ORDDBA Enter >>VERIFY command and database-access �le name.

Database-access file

ORDDBA is ACTIVATED

>>

When an RDBA �le is activated, it is changed to a privileged �le and cannot be edited; it is
changed back to an editor �le when it is deactivated.

Using the Database Utilities 8-77

9

Using a Remote Database

You can access a TurboIMAGE/XL database that resides on one HP 3000 computer system
while operating a session on another HP 3000 computer system if both systems are con�gured
with Network Services capability. You can access a TurboIMAGE/V database from an
MPE/iX system or a TurboIMAGE/XL database from an MPE V system. Programmatically
accessing an IMAGE/3000 database from a TurboIMAGE/XL database requires another
MPE V system with NS/3000 and TurboIMAGE/V acting as an intermediate node. The
limits on the remote database must not exceed those allowed on the local system, or
programmatic access will not be successful.

You can use a database on a remote HP 3000 either from a program that is running on the
remote system or from a program running on your local HP 3000. There are various ways
to open a communications line and initiate a remote session. For example, you can establish
a remote session through a communications link then run a remote program accessing a
database on the remote machine as illustrated in Figure 9-1.

Figure 9-1. Using a Remote Program

For details about using this method, refer to the NS3000/XL User/Programmer Reference
Manual .

Using a Remote Database 9-1

Access Through a Local Application Program

If you want to access a remote database using a local application program, you have three
methods to choose from.

Establishing communications link and remote session interactively.

Using the COMMAND intrinsic.

Using a database-access �le.

In all three cases, a local program accesses a remote database and the data is passed across
the communication line.

Method 1|Establishing Communications Link and Remote Session Interactively

To use the �rst method, interactively establish a communications link and a remote session
and enter a FILE equation for each remote database. The FILE equation speci�es which
database is to be accessed on which remote system and device. A local application program
can now access a remotely located database, as shown in Figure 9-2.

Figure 9-2. Using Method 1

For details about using this method refer to the NS3000/XL User/Programmer Reference
Manual.

Method 2|Using the COMMAND Intrinsic

The second method is very similar to the �rst, but you use the MPE/iX COMMAND intrinsic
within your application program to establish the communications link, remote session and
remote database access.

To use this method you must issue a REMOTE HELLO command (either with the DSLINE
parameter or issue the DSLINE as a separate command) and a FILE equation by calling
the COMMAND intrinsic for each of these commands. Use of the COMMAND intrinsic is
explained in the MPE/iX Intrinsics Reference Manual , and information about accessing

9-2 Using a Remote Database

remote �les is given in the NS3000/XL User/Programmer Reference Manual. Figure 9-3
contains a diagram of method 2.

Figure 9-3. Using Method 2

If you want to access more than one remotely located database with an application program,
you must enter one FILE equation for each remote database.

To terminate execution perform the following steps:

1. Close the database.

2. Log o� (REMOTE BYE).

3. Close the communication line.

Method 3|Using a Database-Access File

The third method involves creating a special privileged (PRIV) �le which is called the
database-access �le (DBA �le). This �le provides TurboIMAGE/XL with the necessary
information to establish a communications link and a remote session. It also speci�es the
remote database or database-access �le name so that the necessary TurboIMAGE/XL
intrinsics can be executed on the remote computer. Figure 9-4 illustrates method 3.

Using a Remote Database 9-3

Figure 9-4. Using Method 3

Using the database-access �le, only one database can be accessed using each database-access
�le per DSLINE. For example, if two computers are linked through two DSLINEs, you can
open one database on each line.

When the user or an application program calls DBOPEN with the database-access �le
name, the remote session is established and the remote database is opened. Then other
TurboIMAGE/XL intrinsics can perform desired operations on the database. Under this
method the remote session is automatically released when the database is closed (with or
without an explicit DBCLOSE call). A second REMOTE HELLO on one DSLINE terminates
the previous REMOTE HELLO. For multiple remote database access, method 1 or method 2
is recommended. If the database-access �le is used, an automatic REMOTE BYE and
DSLINE commands are issued on the communications line speci�ed in the database-access �le
when the application program closes the database or terminates execution.

Using method 3, the database administrator can set up a user-table that provides
more control over the database access and enhances database security. To create the
database-access �le, use an editor such as EDIT/3000. First use the SET LENGTH command
to accommodate the largest record to be included in the database-access �le if the record
exceeds the default length speci�ed for your editor. The length must be less than or equal to
128 characters.

The following sections discuss how to create, activate, deactivate, and reference a
database-access �le.

9-4 Using a Remote Database

Creating a Database-Access File

The content of the database-access �le should be created in the format shown below.

Syntax

Record 1 FILE dbname1=dbname2:nodename

Record 2 DSLINE nodename[; . . .]
(See NS3000/XL document for applicable parameters.)

Record 3 lusername.lacctname[,lgroupname]=HELLO rusername[/rup asw]
.racctname[/rapasw][,rgroupname[/rgpasw]] . . .
(See MPE/iX commands document for additional parameters.)

Record 4 Same format as record 3. Speci�es other \user.account,group" identi�cation....
Record n

Parameters

dbname1 is the name of the database-access �le on the local system or the database on
the remote system you want to access, or is the formal �le designator used in
the program if dbname2 is speci�ed. (Required parameter.)

dbname2 is the name of the database-access �le or the database on the remote system
you want to access. (Required parameter.)

nodename is the remote location of the database. This parameter is preceded by a colon
when used with the FILE command; if followed by options with the DSLINE
command, it is followed by a semicolon. (Required parameter.)

Refer to the NS3000/XL User/Programmer Reference Manual for additional
information.

lusername is a user name on the local HP 3000, as established by an account manager,
that allows you to log on under this account. This name is unique within the
account. It contains from 1 to 8 alphanumeric characters, beginning with a
letter. An at-sign (@) can be used to indicate the logon user name. (Required
parameter.)

lacctname is the name of your account on the local HP 3000 as established by a system
manager. It contains 1 to 8 alphanumeric characters, beginning with a
letter. An at-sign (@) can be used to indicate the logon account. (Required
parameter.)

lgroupname is the name of a �le group to be used for the local �le domain as established
by an account manager. It contains from 1 to 8 alphanumeric characters,
beginning with a letter. An at-sign (@) can be used to indicate the logon
group. (Optional parameter.)

rusername is a user name on the remote HP 3000 that allows you to log on under the
remote account. It follows the same rules as username. An at-sign (@) can be
used to indicate rusername as with lusername. (Required parameter.)

rupasw is the password assigned to username. (Optional parameter.)

Using a Remote Database 9-5

racctname is the name of the logon account on the remote HP 3000. It follows the same
rules as lacctname. An at-sign (@) can be used to indicate racctname is the
same as lacctname. (Required parameter.)

rapasw is the password assigned to racctname. (Optional parameter.)

rgroupname is the name of the logon group on the remote HP 3000. It follows the same
rules as lgroupname. An at-sign (@) can be used to indicate rgroupname is
the same as lgroupname. (Optional parameter.)

rgpasw is the password assigned to rgroupname. (Optional parameter.)

Discussion

The following syntax rules apply:

No spaces are allowed around any periods that could exist in the second �le reference in
record 1 (for example, dbname2.group).

Passwords are not allowed with the local user, account, and group names. They are not
necessary because the local user passes the security password checks when logging onto the
local system.

Note Remote logon parameters must de�ne a valid logon known to the remote
machine. For example, if a particular user name requires a password on the
remote machine, the password parameter is required in the database-access �le
and must be supplied in the HELLO command.

After you have created the �le with an editor, you must KEEP it UNNumbered. The �le
name must follow the same rules as a database name. It must be an alphanumeric string from
1 to 6 characters; the �rst character must be alphabetic.

Records 3 through n de�ne a table that tells TurboIMAGE/XL which user, account, and
group names on the local computer can access which user, account, and group names on the
remote computer. You can specify remote user identi�cation for more than one local user by
creating a record for each local \user.account,group" using the record 3 format shown earlier.
An at-sign (@) can be substituted for any user, account, or group name in the record. If an
at-sign is substituted for lusername, lacctname, or lgroupname, the name is replaced with the
corresponding name speci�ed at logon time.

TurboIMAGE/XL searches for a match between the local user, account and group names in
the user table and the names used to log on to the local session. When a match has been
found, TurboIMAGE/XL performs a REMOTE HELLO using the corresponding rusername,
racctname, rgroupname, and passwords, if present. If an at-sign is found, it is replaced
with the corresponding name to the left of =HELLO. For example, if the record contains
USERA.ACCTA,GROUPA=HELLO@.ACCTB,@, TurboIMAGE/XL replaces the �rst at-sign
with USERA and the second with GROUPA. If an at-sign is not found, no substitutions are
made. In either case, the information to the right of =HELLO is used as the remote logon
identi�cation.

9-6 Using a Remote Database

Example

Record 1 FILE ORDERS=ORDERS:NODEX

Record 2 DSLINE NODEX

Record 3 USERA.ACCTA,GROUPA=HELLO USERB.ACCTA,GROUPB

Record 4 @.ACCTA,GROUPA=HELLO USERA.ACCTA,GROUPA

Record 5 USERB.ACCTB,@=HELLO USERB.ACCTX,@

End of �le

If a user logs on with the logon identi�cation indicated in the �rst column below,
TurboIMAGE/XL uses the corresponding USER.ACCT,GROUP identi�cation in the second
column to establish communication with the remote system.

Logon Identi�cation Remote Identi�cation

User1 USERA.ACCTA,GROUPA USERB.ACCTA,GROUPB

User2 USERB.ACCTA,GROUPA USERA.ACCTA,GROUPA

User3 USERB.ACCTB,GROUPB USERB.ACCTX,GROUPB

User4 USERA.ACCTB,GROUPB None, no match found.

The �rst user's logon identi�cation matches the local user, account, and group names speci�ed
in record 3, so the remote names speci�ed in that record are used.

The second user's account matches record 3 but the user name does not, so TurboIMAGE/XL
looks for another table entry with account ACCTA. Because the entry in record 4 speci�es
any user (@) of ACCTA if their group is GROUPA, the second user's remote identi�cation
will be that speci�ed in record 4.

The third user logs on to ACCTB and a match is found in record 5 because it speci�es the
same user name and accepts any group in the account.

The fourth user's account matches record 5 but the user name does not match. Therefore, the
fourth user cannot access the remote database with this application program.

Using a Remote Database 9-7

Activating a Database-Access File

After you have constructed a database-access �le, you must use the DBUTIL utility program
to activate the �le. The complete syntax for running the utility program is given in chapter 8.
Here is a summary of the operating instructions:

:RUN DBUTIL.PUB.SYS
...

>>ACTIVATE database-access �le name

Verification follows:

FILE command: <result>

DSLINE command: <result>

HELLO command: <result>

ACTIVATED

>>EXIT

DBUTIL veri�es that the �le to be activated adheres to the following criteria:

Has a �le code of zero.

Is an unnumbered, ASCII �le.

Has a record length <=128 characters.

Has at least three records.

If any of these conditions is not satis�ed, activation fails, and the following message is printed:

�lename is NOT a suitable database-access file

If the �le has already been activated, the following message is printed:

�lename is already ACTIVE

If all of the above are satis�ed, DBUTIL prints the following message:

Verification follows:

Then the utility program veri�es the syntax of the following records:

Record 1.

Record 2 through nodename, which must be identical to the nodename speci�ed in record 1.

Records 3 through n, through the parameter rgpasw .

This means that for records 2 through n only the positional parameters (those whose function
is determined by their relative position within the command) are veri�ed by DBUTIL. The
remaining keyword parameters are checked by the command interpreter at DBOPEN time.

If all of the above conditions are met, DBUTIL successfully activates the database-access �le,
by changing the �le code to the TurboIMAGE/XL reserved code �402, which makes it a
privileged (PRI V) �le.

9-8 Using a Remote Database

Deactivating a Database-Access File

In order to deactivate the database-access �le, you use the DEACTIVATE command of the
DBUTIL utility program. Complete syntax for this program is given in chapter 8. Here is a
summary of the operating instructions:

:RUN DBUTIL.PUB.SYS
...

>>DEACTIVATE database-access �le name

DEACTIVATED

>>EXIT

You can do this if you want to edit the content of the database-access �le or to prevent access
through this �le to the remote database.

Referencing the Database

To reference the database from your local application program, use the database-access
�le name instead of the root �le name when calling the TurboIMAGE/XL procedure.
The word array speci�ed as the base parameter must contain a pair of blanks followed by
the left-justi�ed database-access �le name and terminated by a semicolon or blank (t).
TurboIMAGE/XL recognizes the �402 �le code and establishes a communications link to the
remote HP 3000. If the database is successfully opened, TurboIMAGE/XL replaces the pair of
blanks with the baseid of the assigned Remote Database Control Block. The base parameter
must remain unchanged for the remainder of the process. When the application program calls
the DBCLOSE procedure or terminates execution, automatic REMOTE BYE and DSLINE
commands are issued to terminate the session and close the communications line.

Example

The example in Figure 9-5 illustrates how to create and activate a database-access �le. A
description follows the example.

In this sample case, the �le named ORDDBA is to be used to gain access to the ORDERS
database residing on a remote system in the PAYACCT account. The remote system is
referenced by nodename NODEX.

After the database-access �le is created, it is enabled by using the DBUTIL utility program.

Using a Remote Database 9-9

1 :HELLO MEMBER1.PAYACCT
...

2 :EDITOR

HP32201A.00.00 EDIT/3000 FRI, SEP 6, 1991, 3:30 PM

(C) HEWLETT-PACKARD CO. 1985

3 /ADD

1 FILE ORDERS=ORDERS:NODEX

2 DSLINE NODEX

3 MEMBER1.PAYACCT=HELLO MEMBER1.PAYACCT

4 MEMBER2.PAYACCT=HELLO @.PAYACCT

5 //

4 /KEEP ORDDBA,UNN

/END

5 :RUN DBUTIL.PUB.SYS

>>ACTIVATE ORDDBA

Verification follows:

FILE command: Looks good

DSLINE command: Looks good
HELLO command: Looks good

HELLO command: Looks good

ACTIVATED

>>EXIT

END OF PROGRAM

Figure 9-5. Preparing a Database-Access File

Description

1 Initiate an MPE/iX session by logging on with appropriate user name and account.

2 Initiate text editor execution.

3 Enter the Editor ADD command in response to the �rst prompt, then enter the lines to
de�ne the database-access �le.

4 Save the work �le in a disk �le (ORDDBA in the above example). Remember to keep it
unnumbered. Then exit the Editor.

5 Initiate execution of DBUTIL and activate the database-access �le ORDDBA. Veri�cation
messages will follow (in session mode). Exit from DBUTIL.

Example

Figure 9-6 illustrates use of the database-access �le through a program named APPLICAN. A
description follows the example.

In this sample case, after logging on to the local system, the user runs the program named
APPLICAN from the local session. The base array in this program contains ttORDDBA.

9-10 Using a Remote Database

When a call to DBOPEN is executed, TurboIMAGE/XL establishes a communication line and
remote session. When the program closes the database, TurboIMAGE/XL closes the line and
terminates the remote session.

1 :HELLO MEMBER2.PAYACCT
...

2 :RUN APPLICAN

3 HP3000 / MPE/iX G.00.00 FRI SEP 6, 1991, 3:55 PM

ENVIRONMENT 1: ELECTRA.DOC.ITG

4 WELCOME TO SYSTEM B....
CPU=2. CONNECT=1. FRI, SEP 6, 1991, 3:59 PM

ENVIRONMENT 1: ELECTRA.DOC.ITG CLOSED

5 :BYE

Figure 9-6. Using a Database-Access File

Description

1 Initiate an MPE/iX session on the local system by logging on with the appropriate user
name and account.

2 Execute the application program APPLICAN. (The program calls DBOPEN using
ttORDDBA as the baseid .)

3 TurboIMAGE/XL establishes a communications line and remote session.

4 When the database is closed, TurboIMAGE/XL closes communications line and ends
remote session.

5 Log o� local system.

Using a Remote Database 9-11

Access Using QUERY/3000

When you use QUERY/3000 to retrieve information from a database, you must specify a
database name, password and access mode before you can actually access the database.
The \DATABASE=" prompt can be answered with a remote database name or the
database-access �le name. Note, however, that performance can be signi�cantly improved if
you run QUERY/3000 in a remote session, thereby accessing the database on the system
where it resides, rather than running QUERY/3000 locally to access a remote database. For
more information, refer to the QUERY/V Reference Manual .

9-12 Using a Remote Database

10

Internal Structures and Techniques

In addition to the data elements discussed in chapter 2, TurboIMAGE/XL uses a number
of internal structures and techniques to provide rapid and e�cient access to the database
content. This chapter describes these structures and techniques to give you an overview of the
way TurboIMAGE/XL works.

Note In this manual a word is a 32-bit storage unit and a halfword is a 16-bit
storage unit. One byte is 8 bits.

Data Set Internal Structures

The following internal structures are used by TurboIMAGE/XL to manage the information in
data sets.

Pointers

TurboIMAGE/XL uses pointers to link one data set record to another. A pointer is a value
containing the block number in the �rst three bytes plus one byte that contains the o�set
within the block for a given data entry.

Data Chains

A data chain is a set of detail data set entries that are bidirectionally linked together by pairs
of pointers. All entries with a common search item value are placed in the same chain. Each
chain has a �rst and a last member. The pointer pairs constitute backward and forward
links to the entry's predecessor and successor within the chain. The �rst member of a chain
contains a zero backward pointer and the last member of a chain contains a zero forward
pointer. A single chain can consist of at most 231�1 (2,147,483,647) entries.

Chain Heads

TurboIMAGE/XL locates the �rst or last member of a chain within a detail data set by using
a chain head. The chain head for a particular chain is stored in the corresponding master data
set with the entry whose key item value is the same as the detail search item value. Each
chain head is 12 bytes long. The �rst four bytes contain a count of the number of member
entries in the referenced chain. The count is zero if the chain is empty. The remaining eight
bytes contain two pointers. One points to the last chain entry, the other to the �rst chain
entry. If the count is zero, these pointers are both zero. If the count is one, these pointers
have the same value.

Internal Structures and Techniques 10-1

Media Records

TurboIMAGE/XL transfers information to and from a storage location on disk in 4096-byte
pages using the system storage manager. Access to the data in memory is synchronized
through blocks of media records. A media record consists of both a data entry and its
pointers or a null record if no data entry is present.

Media Records of Detail Data Sets

For each detail entry, the media record consists of the data entry itself preceded by all of its
related data chain pointer pairs. The number of pointer pairs corresponds to the number of
paths speci�ed for the data set within the schema. Figure 10-1 illustrates a media record for a
detail data set de�ned with two paths. The �rst set of pointers corresponds to the �rst path
de�ned in the set part of the schema and the second set corresponds to the second path.

Figure 10-1. Media Record for Detail Entry

Media Records of Master Data Sets

Media records of master data entries are composed of the following:

A 10-byte �eld serving as a synonym chain head for primary entries or a synonym chain link
for secondary entries.

A 3 times n word �eld in which the chain heads of all related detail chains are maintained.
n is the number of paths de�ned for the master data set. Between 0 and 16 paths can be
de�ned.

The data entry itself.

Figure 10-2 illustrates the media record for a primary entry of a master data set with two
paths de�ned.

Figure 10-2. Media Record for Primary Entry

10-2 Internal Structures and Techniques

Figure 10-3 illustrates a media record for a secondary entry of a master data set with two
paths de�ned.

Figure 10-3. Media Record for Secondary Entry

When more than one detail chain head is present, they are physically ordered left-to-right in
the order that the associated paths are speci�ed in the schema.

Primary Entries

Selection of record addresses for master entries begins with a calculated address determined by
a hashing algorithm applied to the value of each entry's key item. The algorithm is described
later in this chapter. Each such calculated address is known as a primary address and each
entry residing at its primary address is called a primary entry.

Secondary Entries

A new entry with a unique key item value will be assigned the same primary address as
an existing primary entry whenever the key item values of both entries generate the same
calculated address. When this occurs, the entries are considered synonyms of one another.
TurboIMAGE/XL assigns the new entry a secondary address obtained from unused records in
the vicinity of the primary entry. For master sets which are designated for dynamic expansion,
a secondary address may also be obtained from the expanded area. Each entry residing at a
secondary address is called a secondary entry.

Synonym Chains

When multiple data entries \arrive" at the same primary area, they are linked together to
form a synonym chain. A synonym chain consists of the primary entry and all of the data
entries with key values that hash to the same key location. Each synonym chain is maintained
by a 10-byte chain head in the media record of the primary entry and 10-byte links in the
media records of the secondary entries. A master data set entry can contain both a synonym
chain head and multiple detail chain heads. These are two distinct types of chain heads.

If no secondary entries are present, the synonym chain count is one (for the total number of
entries that hash to this location) and the pointers to the �rst and last secondary entries are
zeros. If one or more secondaries are present, the synonym chain count is equal to the total
number of entries that hash to the same primary address and the pointers reference the �rst
and last secondary entries.

Internal Structures and Techniques 10-3

The �rst two bytes of the 10-byte link in the media record of each secondary entry are always
zero. The remaining eight bytes consist of two pointers bidirectionally linking the secondary
entries of the synonym chain to each other. As with detail chains, the �rst member of this
chain of secondary entries contains a zero backward pointer, and the last member of the chain
contains a zero forward pointer.

Blocks and Bit Maps

Each group of media records involved in a single MPE �le record is a block. The �rst few
halfwords of each block contain a bit map employed by TurboIMAGE/XL to indicate whether
the corresponding media record is full or empty. There is one bit for each record in the block.
The bits occur in the bit map in the same order that the records occur in the block. The bit
map occupies as many integral halfwords as are required to contain one bit for each record
in the block. If a bit is zero, the corresponding record is empty. If a bit is one, the record
contains a data entry preceded by the associated structure information.

The format of a block is illustrated in Figure 10-4. The sample block contains four records
and the third record contains no entry.

Figure 10-4. Block with Blocking Factor of Four

10-4 Internal Structures and Techniques

Dynamic Data Set Expansion

The capacity of non-jumbo (less than or equal to 4 GB in size) master and detail data sets
can be expanded dynamically during DBPUT, or implied DBPUT for automatic master. The
expansion can occur only if the data set is enabled for dynamic expansion, that is, if the
required capacity parameters are set prior to the expansion.

The capacity parameters are:

maximum capacity

is a required parameter and is a maximum number of entries the data set can contain.
It must be less than or equal to 231�1 (2,147,483,647). The maximum capacity both for
masters and details is adjusted by TurboIMAGE/XL to represent an even multiple of the
blocking factor.

initial capacity

is a required parameter and is the initial capacity for the data set, that is, the number
of entries for which space will be allocated and initialized when the data set is created.
For a master data set, this is also the primary or hashing capacity. This number must be
between 1 and 231 �1 inclusive but must be less than or equal to the maximum capacity.
This parameter should be used to closely approximate the current volume of data. If it is
very low, there can be frequent expansions leading to severe disk fragmentation. If it is very
high, DBPUT may take a long time to complete which could impact other database users.
The initial capacity is adjusted to represent an even multiple of the blocking factor. If
initial capacity is not speci�ed, or if initial capacity is either zero or equal to the maximum
capacity, then dynamic capacity expansion is not enabled for the data set, and maximum
capacity is used for the data set �le creation.

increment

is an optional parameter and is either the number of entries or the percentage of the initial
capacity by which the data set will be expanded each time its initialized space is exhausted.
If a percentage is used, the percent sign (%) must follow the incremental amount. This
increment parameter can only be used if the initial capacity parameter is also speci�ed.
This number must be 1 to 32767 inclusive for percent, or 1 to 231 �1 (2,147,483,647)
inclusive for number of entries. If it is very low, there can be frequent expansions leading
to severe disk fragmentation. If it is very high, DBPUT may take a long time to complete
which could impact other database users.

The number of entries de�ned, or the entries calculated from the percent, cannot exceed the
maximum entry count minus the initial allocation. That is, the expansion must not result in
exceeding the maximum capacity. The increment is adjusted to represent an even multiple
of the blocking factor. If the increment is not speci�ed for the data set, or is zero, but the
initial capacity is greater than zero, then the increment for each expansion is defaulted to
ten percent (10%) of the initial capacity for the data set. If the initial capacity is equal to
the maximum capacity, or the initial capacity is zero, then this indicates the data set cannot
be expanded and increment is ignored.

In brief, a data set is enabled for dynamic expansion when both are true:

Both maximum capacity and initial capacity are speci�ed

Initial capacity is neither zero nor equal to the maximum capacity

You can select data sets which need dynamic expansion based on anticipated growth.

Internal Structures and Techniques 10-5

For new databases, the expansion parameters for data sets can be speci�ed using the
CAPACITY statement of DBSCHEMA as follows:�

CAPACITY:

C:

�
maximum capacity

�
(blocking factor)

�� ,initial capacity�
,increment

�
�
;

To specify the expansion parameters for data sets of existing databases, use DBChange Plus,
or other third-party tools which support this feature.

In order to use this feature from the user point of view, the only required step is to identify
and enable the data set(s) for dynamic expansion as described above.

When a data set enabled for dynamic expansion is �rst created, disk space for only the initial
capacity is allocated and initialized. Later when the data set is expanded during DBPUT,
or implied DBPUT for automatic master, additional disk space based on the increment
is allocated and initialized. It can grow up to the maximum capacity speci�ed for the set.
Following the expansion, TurboIMAGE/XL updates various �elds related to the expansion
such as current capacity including the expansion and free space counter in the user label.

The instant when the expansion is triggered and how record addresses are assigned to the new
entry vary in detail data sets from master data sets.

Detail Data Sets

For a detail data set, expansion takes place during DBPUT when the free space counter for
the set is zero. Following the expansion, TurboIMAGE/XL updates the expansion related
�elds in the user label such as the end-of-�le pointer (high-water mark) and the free space
counter. The expanded data set is perceived as one larger data set and the new record
addresses are assigned using the pointer to delete chain head and the end-of-�le pointer
(high-water mark) as done prior to the dynamic expansion feature. The new entry is assigned
the �rst record address in the expanded area.

Master Data Sets

For a master data set, expansion is triggered when the set is almost full. That is, when the set
has approximated its maximum capacity which will not allow DBPUT to be successful. For
an example, a DBPUT to a detail set with multiple paths to the same automatic master will
require multiple record additions to the automatic master.

Once the expansion is done, the master data set can be perceived as having two areas, original
area and expanded area, managed di�erently. The original area can have primary entries
and secondary entries, while the expanded area can only have the secondary entries. Note
that the primary capacity (also called hashing capacity or initial capacity), which is used to
calculate the primary address does not change. In essence, the dynamic expansion results in
allocating additional space for secondary entries which implicitly makes room for additional
primary entries in the original area. The primary address of a new entry is calculated using
the value of the entry's key item in the hashing algorithm. The new entry can reside either
at its primary address in the original area, or in the close vicinity of the primary address in
the original area, or in the expanded area. The use of expanded area is controlled using the
pointer to a delete chain head and an end-of-�le pointer (high-water mark) as in detail data
sets.

To elaborate further, when a DBPUT for manual master, or implied DBPUT to an automatic
master, is processed, the address where the new entry resides is based on the following:

10-6 Internal Structures and Techniques

1. If the primary address in the original area is not occupied, the new entry resides there. The
new entry also becomes a synonym chain head with a count of one.

2. If the primary address is occupied by another primary entry, TurboIMAGE/XL scans a few
blocks (quick search) in the close proximity of the primary address to �nd an unoccupied
address (empty record). If found, the new entry resides at this secondary address in the
original area. Otherwise, the pointer to the delete chain head and the end-of-�le pointer for
the expansion area are interrogated to determine the secondary address in the expansion
area for the new entry. When there is room, the new entry is assigned a secondary address
in the expanded area. If the expanded area is full and can be expanded, it is further
expanded to accommodate the new entry. When there is no room in the expanded area and
cannot be expanded further, however, there is room in the original area, the original area
is scanned once again (long search) to �nd a secondary address for the new entry. If an
unoccupied address is found, the new entry resides there, and it becomes the last entry in
the synonym chain. Otherwise, the set is full and DBPUT will fail.

3. If the primary address is occupied by a secondary entry, a secondary entry is relocated
to another secondary address in either the original area or the expansion area as
described above. The new entry becomes a synonym chain head with a count of one.
TurboIMAGE/XL performs synonym chain maintenance for the secondary entry which
relocates.

Internal Structures and Techniques 10-7

Scalability

In versions prior to C.07.00, TurboIMAGE/XL serialized the execution of DBPUT,
DBDELETE, and DBUPDATE when critical item update (CIU) is enabled, to protect
the structural integrity of the database. This serialization is done via a semaphore
known as PUTDELETE semaphore. This translates into processing only one DBPUT,
DBDELETE, or DBUPDATE with CIU enabled at a time for every database. This is
acceptable for the low-end machines but not for the high-end and multi-processor machines.
It became imperative that TurboIMAGE/XL scale to the performance of these high-end and
multi-processor machines. That is, TurboIMAGE/XL must increase the throughput of the
intrinsics, DBPUT, DBDELETE, and DBUPDATE with CIU enabled, which are collectively
termed modify intrinsics. In order to achieve this, the approach taken is to increase the
concurrency of the modify intrinsics.

Approach in Version C.07.00

The enhanced approach in TurboIMAGE/XL version C.07.00 (and later) is based strictly
on the database design and is optional. By default, TurboIMAGE/XL continues to work
the way it did in versions prior to C.07.00. For the revised approach, the database is
internally grouped by TurboIMAGE/XL into independent sub-databases based on physical
linkages/relationships or dependency of master and detail data sets. In addition, it uses
multiple semaphores as well as a speci�c criteria to lock the necessary semaphores for a
sub-database. The result is that the modify intrinsics can execute concurrently for these
independent sub-databases.

In brief, the criteria pertaining to semaphores is as follows:

1. Assign ONE semaphore for each data set.

2. When modifying a master set, lock only the semaphore for this master.

3. When modifying a detail data set, lock the semaphore for the detail as well as all its
related master sets, manual as well as automatic. This can result in locking 1 (minimum,
standalone detail) up to 17 (maximum, 1 + 16) semaphores.

To illustrate this, look at the following diagram:

------ ------ ------ ------ ------ ------

\ M1 / \ M2 / \ M3 / \ M4 / \ M5 / \ M6 /

\ / \ / \ / \ / \ / \ /

\/ \/ \/ \/ \/ \/

.

.

.

.

-------- -------- -------- -------- -------- --------

\ D1 / \ D2 / \ D3 / \ D4 / \ D5 / \ D6 /

\ / \ / \ / \ / \ / \ /

---- ---- ---- ---- ---- ----

Figure 10-5. Independent Sub-Databases for Concurrency

In the above diagram, the independent sub-databases are:

10-8 Internal Structures and Techniques

1. M1
2. D1
3. D2 and M2
4. D3 and M3
5. D4 and M3
6. D5, M4 and M5
7. D6, M5 and M6

There are several di�erent scenarios when concurrent modi�cations can be in progress. For
example:

M1 at all times as there is no dependency.

D1 at all times as there is no dependency.

Other masters M2, M3, M4, M5, and M6 if the depending detail is not being modi�ed.

Other details D2, D3 or D4, and D5 or D6. This is if the dependent master(s) are not being
modi�ed. Note that both D3 and D4, or D5 and D6 cannot be concurrently
modi�ed.

Based on this approach, the throughput is dependent on the number of sub-databases, the
more, the better. The worst case is a database which can be sub-divided into only one
sub-database. For example, one detail linked to 16 masters. The best case is when there are
several stand-alone masters or details.

With this approach, some databases may bene�t in throughput and some may not. Therefore,
by default, TurboIMAGE/XL continues to work the way it did in versions prior to C.07.00.

To use this enhancement, your database must be activated to use the Dependency Semaphore.
To achieve this, use the option, DSEM, with the ENABLE command of DBUTIL. The default
for DSEM is DISABLED.

New syntax:

EN
�
ABLE

�
database name

�
/maint word

�
FOR DSEM

DI
�
SABLE

�
database name

�
/maint word

�
FOR DSEM

After enabling your database for DSEM, if you feel that your database cannot bene�t by using
this feature, you may DISABLE it.

Internal Structures and Techniques 10-9

Run-Time TurboIMAGE/XL Control Blocks

As mentioned in chapter 4, TurboIMAGE/XL uses control blocks resident in privileged
mapped �les to provide and control user access to a database through the TurboIMAGE/XL
procedures. The contents of these control blocks are maintained by TurboIMAGE/XL.
Although it is not necessary to know the details in order to use the TurboIMAGE/XL
procedures, the following descriptions are provided for those who prefer to understand the
control blocks and their functions.

Local Database Access

The following structures are involved in local database access:

Database System Control Block (DBS)|Contains pointers to all of the DBGs on the
system.

Database Globals Control Block (DBG)|Contains global information required during
run-time and space for DBLOCK's lock descriptors. The DBG also contains a pointer to the
DBB and pointers to the DBUs.

Database Bu�er Area Control Block (DBB)|Contains a set of addresses and temporary
locks used to coordinate access to the data set, a set of bu�er headers, and a pointer to the
DBG.

Database User Local Control Block (DBU)|Contains information pertaining to each access
path (each DBOPEN) to the database. The DBU also contains pointers to the DBG, DBB,
and DBS.

Database User Local Index Control Block (DBUX)|Contains the addresses of all the DBUs
and DBRs (Remote Database Control Blocks) belonging to a speci�c process. The DBUX
also contains dynamic roll-back information.

Database Lock Table (TURBOLKT)|Contains information pertaining to locks on the
database and is used to avoid deadlocks.

Multi-Database Transactions (TURBOGTX)|Contains information pertaining to dynamic
transactions constituting multiple databases.

QOPEN Table (QOPEN)|Contains information about user logging process for active
DBOPENS of modes 1-4.

QLOCK Table (QLOCK)|Contains information about all writers to databases and a
pointer to QOPEN.

The DBS is a permanent �le, TURBODBS.PUB.SYS, that is created by DBOPEN if it does
not exist beforehand. Thereafter, it is opened when the �rst user opens any database on the
system. It is reinitialized after a system abort. Each system has only one DBS; it contains
pointers to the current DBGs for any currently open database(s).

Both the DBG and the DBB are created when the �rst user opens a database (DBOPEN).
They remain allocated until the last user closes the database. Each opened database has only
one DBB and one DBG, regardless of the number of users. Both of these control blocks are
part of a permanent mapped �le called dbnameGB located in the same group and account as
the database.

10-10 Internal Structures and Techniques

Note If you have an existing �le with the same name that TurboIMAGE/XL would
assign to the permanent mapped �le (that is, dbnameGB), you will get the
following message for status code �9:

CANNOT CREATE DBG : MPE ERROR <nnn>

The DBG is derived mostly from the root �le and contains global information required by
TurboIMAGE/XL intrinsics during run-time. In addition, the DBG contains the lock table
which holds user-level locking information. The DBG is used as a reference area for global
data and lock information.

The DBB is used to retrieve, log, and update data located within the data sets. It contains a
set of bu�er headers which are shared by all concurrent users accessing the database. These
bu�er headers contain information about data set blocks. The DBB also contains information
pertaining to logging and recovery.

A two-level resource priority locking scheme is used within the DBB to allow single data block
operations to access the control block concurrently. This involves DBGET, DBFIND and
DBUPDATE processes. DBPUT and DBDELETE operations, and DBUPDATE operations
on detail data set search or sort items made possible through the critical item update
(CIUPDATE) option, are unable to access the data blocks concurrently with other DBPUTs,
DBDELETEs, and search or sort item DBUPDATEs. These block put-delete lock operations
must hold a global lock on the DBB throughout part of the operation; therefore, there is less
concurrency when using DBPUT and DBDELETE and when using DBUPDATE on search or
sort items via the CIUPDATE option. When you update a search or sort item value, you get
the same net e�ect as performing a DBDELETE and DBPUT.

One DBU is created and stored in a privileged, unnamed temporary �le each time a user
issues a DBOPEN, and remains allocated until the corresponding DBCLOSE is issued. The
DBU contains information pertaining to the user's individual access to the database. This
includes information about the user's access mode, record position, list speci�cations, and
security table. All TurboIMAGE/XL intrinsics process on the DBU, except accesses for global
and bu�er area information found in the DBG and DBB.

The DBUX is created and stored in a privileged, unnamed temporary �le the �rst time the
user's process calls DBOPEN. One DBUX exists for each process. Its purpose is to keep
track of the addresses of all the DBUs belonging to that process. Because 127 entries are
allowed in the DBUX, each process is allowed a maximum of 127 DBOPENs (63 per database)
depending on the availability of system resources. The DBUX remains allocated until the
user's process is terminated.

When accessing a local database, the TurboIMAGE/XL procedures usually make use of, and
can modify information in all of the control blocks.

The TURBOLKT is a permanent �le, TURBOLKT.PUB.SYS, that is created by DBOPEN
(if it does not exist beforehand). Thereafter, it is opened when the �rst user opens any
database on the system. It is purged when the system is rebooted. Each system has only one
TURBOLKT �le. It is used to avoid deadlocks for all IMAGE/SQL users. Additionally, it is
also used to detect potential deadlock for TurboIMAGE/XL users if, and only if, deadlock
detection is activated by DBCONTROL mode 7.

The TURBOGTX is a permanent �le, TURBOGTX.PUB.SYS, that is created by
DBXBEGIN (if it does not exist beforehand). Thereafter, it is opened for all users who
employ dynamic multi-database transaction(s) (DMDBX). Each system has only one

Internal Structures and Techniques 10-11

TURBOGTX �le, and it remains on the system even after the system is rebooted. It is used
for tracking DMDBX.

The QOPEN table is an unnamed global object and is �rst created by DBOPEN when the
�rst writer of any database enabled for user logging opens a database. It is subsequently
accessed only by writers of databases enabled for user logging. Each system has only one
QOPEN table, and it is purged when all processes accessing it are terminated. It contains
information pertaining to user logging process for DBOPEN. This information is used
to write to log records for DBRECOV and to coordinate with DBQUIESCE called by
TurboSTORE/iX 7x24 True-Online Backup.

The QLOCK is an unnamed permanent global structure that is created by DBOPEN (if
it does not exist beforehand). There is one per system, and it is accessed by all writers to
all databases. It is purged only at system reboot time. It is used for containing database
information required to quiesce database(s) for TurboSTORE/iX 7x24 True-Online Backup.

Remote Database Access

TurboIMAGE/XL provides the capability of accessing a database on a remote HP 3000
system from a user program running on the local HP 3000 system, as described in chapter 9.
This capability is provided in conjunction with NS3000/XL and is accomplished by
transmitting TurboIMAGE/XL database access requests (DBGET, DBPUT, and so forth) to
the remote computer where they are executed and the results returned to the local calling
process. The control block structures used by TurboIMAGE/XL for the remote computer
which contains the database are those described in the preceding section.

On the local computer running the user application program, TurboIMAGE/XL constructs
and uses a structure called the Remote Database Control Block (DBR). One DBR is created
each time a user's process issues a DBOPEN accessing a remote TurboIMAGE/XL database
(each access path to a remote database); this DBR is released when the corresponding
DBCLOSE is issued. The DBR resides in a privileged, unnamed temporary �le associated
with the user application process on the local computer, and contains database, set, and item
information plus the work areas necessary to set up communication with the remote computer.
Returned data and status information is also processed in the DBR and is transferred to the
appropriate user stack areas before TurboIMAGE/XL returns to the local calling process.

Access to a TurboIMAGE/V database from an MPE/iX system or access to a
TurboIMAGE/XL database from an MPE V system is allowed provided both systems are
con�gured with Network Services (NS3000). To access an IMAGE/3000 database, an MPE V
system (with NS/3000 and TurboIMAGE/V) acting as an intermediary is required. However,
if the limits on the remote database exceed those allowed on the local system, access will not
be successful. This is because the DBR will be too small to handle remote capacities that
exceed the local limits.

Control Block Sizes

It is not necessary to predict the exact length of the control blocks used by TurboIMAGE/XL
to manage user accesses to databases. However, the exact length of the DBU and the exact
current length of the DBG are returned in the status array by DBOPEN. These lengths can
be truncated to 32767 if the control block is greater than 32767.

10-12 Internal Structures and Techniques

Internal Techniques

Although it is not necessary to know the following techniques to use TurboIMAGE/XL, an
understanding of them can help you design a more e�cient database.

Primary Address Calculation

TurboIMAGE/XL employs two distinct methods of calculating primary addresses in master
data sets. The intent of the �rst method is to spread master entries as uniformly as possible
throughout the record space of the data �le. This method is referred to as \hashing" and
applies only to master data sets with key items of type U, X, Z, or P. In this case, the entire
key item value regardless of its length is folded into a positive 32-bit value. This value is
reduced modulo the hashing capacity and then incremented by one to form a primary address.
The hashing capacity is the maximum capacity for a set not enabled for dynamic expansion,
or initial capacity for a set enabled for dynamic expansion of a new database, or the original
capacity (excluding expansions) for a set enabled for dynamic expansion of an existing
database.

Note Because values are folded from right to left, applications should place values in
a type U, X, Z, or P �eld as follows:

Values that change should be placed �rst in the �eld.
Values that are static should be placed last in the �eld.

The intent of the second method is to permit you to control the primary address assignment.
This method applies only to master data sets with key items of type I, J, K, R, or E. In this
case, the right-most block of 32 bits of the key value is treated as a double integer. (If its sign
bit is not zero, it is set to zero. If the key item is only 16 bits long, a 32-bit value is created
by prefacing these 16 bits with 16 zero bits.)

This 32-bit integer is decremented by 1 and reduced modulo the data set hashing capacity
after which 1 is added to the result to form the primary address. If the application provides
key values whose right-most 32 bits take on values between 1 and N (where N is no greater
than the data set hashing capacity), the corresponding entries will be assigned primary
addresses 1 through N which is identical to the Direct Access Method (DAM). In this event,
there are no secondaries and performance is outstanding. However, if the application has no
control of the key value assignment and/or if N exceeds the hashing capacity, secondaries
will occur; this, along with the clustering typical of this method, may result in poor DBPUT
performance. This method should be used only if you have determined that the potential poor
performance consequences cannot occur.

The intent of the two primary address algorithms is to spread master entries as uniformly as
possible throughout the record space of the data �le. This uniform spread reduces the number
of synonyms occurring in the master data set.

Note In general, a master data set with a capacity equal to a prime number or to
the product of two or three primes can yield fewer synonyms than master data
sets with capacities consisting of many factors. Refer to appendix C for a list
of prime numbers. More information on dynamic data set expansion is given
earlier in this chapter.

Internal Structures and Techniques 10-13

Migrating Secondaries

In some cases, secondary entries of master data sets are automatically moved to storage
locations other than the one originally assigned. This most often occurs when a new master
data entry is assigned a primary address occupied by a secondary entry. By de�nition,
the secondary entry is a synonym to some other primary entry resident at their common
primary address. Thus, the new entry represents the beginning of a new synonym chain. To
accommodate this new chain, the secondary entry is moved to an alternate secondary address
and the new entry is added to the data set as a new primary entry. This move and the
necessary linkage and chain head maintenance is done automatically.

A move can also occur when the primary entry of a synonym chain that has one or more
secondary entries is deleted. Because retrieval of each entry occurs through a synonym chain,
each synonym chain must have a primary entry. To maintain the integrity of a synonym
chain, TurboIMAGE/XL always moves the �rst secondary entry to the primary address of the
deleted primary entry.

Space Allocation for Master Data Sets

Space allocation for each master data set is controlled by a free space counter resident in the
user label of the data set, by each bit map that monitors each block of the data set, and by
enabling of the data set for dynamic expansion.

When a data set is enabled for dynamic expansion, the expansion is triggered at run-time
during DBPUT (implied for automatic master) when the data set has reached its almost-full
capacity. Once an expansion is done, the master data set is partitioned into two areas: the
original area corresponding to the original initial capacity (hashing) and the expansion area
corresponding to all extents allocated as a result of run-time expansion. The original area has
a mixture of primary and secondary entries. The expansion area has only secondary entries
which are added using a delete chain head and end-of-�le pointer (high water mark), similar
to detail data sets.

The master data sets which are not enabled for dynamic expansion have only one area which
contains both primary and secondary entries.

When a new entry is added, TurboIMAGE/XL decrements the free space counter and sets the
bit corresponding to the newly assigned record address to a one. If the bit is a zero before
the record is added, the assigned record address is the primary address. If the bit is a one
before the record is added, it indicates that an entry already exists. If this existing entry is a
primary entry, a search is done to �nd a free location, secondary address, for the new entry.
However, if the existing entry is a secondary entry, this secondary entry is relocated to another
free secondary address, and the new entry is added at this location. If the data set is enabled
for dynamic expansion, the search for a free secondary address is done in the original as well
as expansion area. For the original (primary, hashing, or initial) area, a secondary address is
identi�ed by a serial search of the bit maps of blocks for a zero indicating an unused record.
For the expanded area, a secondary address is identi�ed using the pointer to a delete chain
and end-of-�le pointer, as in detail data sets.

10-14 Internal Structures and Techniques

Space Allocation for Detail Data Sets

Space allocation for each detail data set is controlled by a free space counter, an end-of-�le
pointer and a pointer to a delete chain. The end-of-�le pointer contains the record address of
the highest-numbered entry which has existed so far in the data set. The delete chain pointer
contains the record address of the entry which was most recently deleted. When each detail
data set is �rst created, the end-of-�le pointer and delete chain pointer are both zero.

When a new entry is added to a detail data set, TurboIMAGE/XL assigns to it the record
address referenced by the delete chain pointer, unless the pointer is zero or HWMPUT has
been enabled either using DBCONTROL or using DBUTIL. If the delete chain pointer is zero
or if the HWMPUT ag is enabled, the end-of-�le pointer is incremented and then used as the
assigned record address. The free space counter is decremented in either case. When a new
entry is to be added to a detail data set and the free space counter is zero, at run-time, the
data set is expanded according to the capacity expansion parameter speci�ed for this data set
(if any). The capacity expansion parameters can be set using DBSCHEMA for new databases
or by using DBCHANGE Plus or other third-party utilities for existing databases.

When an existing entry is deleted, its media record is zeroed, the �rst word is replaced with
the current delete chain pointer, and the block is written to disk. The delete chain pointer is
set to the address of the newly deleted entry and the free space counter is incremented.

The delete chain is, in e�ect, a \last-in{�rst-out" linked list of reusable media record space.
Reusable space is allocated in preference to the unused space represented by record addresses
beyond the end-of-�le pointer except when HWMPUT is enabled.

Addition and deletion of data entries also requires data chain maintenance and turning on or
turning o� the corresponding bit of the appropriate bit map. Both of these are necessary for
retrieval integrity but neither play a role in space allocation for detail data sets.

Buffer Management

TurboIMAGE/XL maintains a set of bu�er partitions in the DBB for all users of an open
database. DBFIND, DBGET, DBUPDATE, DBPUT, and DBDELETE locate a bu�er header
from one of these partitions.

Each partition is allocated its own bu�er header pool, hash table, and free list. The bu�er
header pool is a set of bu�er headers allocated for the accessors of its corresponding partition.
The hash table consists of linked lists of bu�er header addresses either in use or ready to be
released. The free list is a linked list of available bu�er headers. Initially, when the DBB is
created, all of the bu�er headers belonging to a partition are linked to a free list and all the
hash table chains are empty. TurboIMAGE/XL uses a two-level hashing algorithm based on
the block number of the data set to determine the partition number as well as the hash table
entry to be used.

When an intrinsic issues a request for a data set block, the bu�er manager starts the search
from its hash table entry. If the hash table chain is empty, it acquires a bu�er header from
the free list. The bu�er header is �rst allocated from the free list to build the bu�er header
for the data set block and link it to its appropriate hash table chain. When the hash chain,
as well as the free list search, is exhausted, the process pauses to wait for other processes to
release bu�ers then retries the bu�er header pool scan.

Internal Structures and Techniques 10-15

Locking Internals

Within the DBG is a large lock area that provides space for the entries described below.

Accessor Entries

One of these is created for each successful call to DBOPEN (each access path). Although
located in the lock area, each accessor entry is the link with which TurboIMAGE/XL controls
access to the database. An accessor entry is deleted when DBCLOSE is called for the access
path, and the space is reused.

Set Entries

One of these is created for every data set that is speci�ed in a lock request. Therefore, the
maximum number of set entries is equal to the number of data sets in the database. These
entries are never deleted.

Descriptor Entries

These entries contain the internal form of the lock descriptors speci�ed in locking mode 5 or
6. They disappear when the locks are released (when DBUNLOCK is called) and the space is
reused.

In addition to DBG, the global database lock table, TURBOLKT, is used to avoid deadlocks
by IMAGE/SQL users, and from TurboIMAGE/XL users (if deadlock detection is activated
by DBCONTROL mode 7). The TURBOLKT contains information pertaining to every lock
by every user on the system. In the event of a potential deadlock, an error is returned instead
of causing a system hang.

10-16 Internal Structures and Techniques

MPE/iX Transaction Management

When AUTODEFER is not enabled, TurboIMAGE/XL uses an internal MPE/iX service,
called Transaction Management (XM), to ensure physical consistency of the database, to
reduce physical disk I/O, to perform Intrinsic Level Recovery (ILR), and to perform dynamic
roll-back recovery.

When XM is used, modifying intrinsics (DBPUTs, DBDELETEs, and DBUPDATEs) are
bracketed as XM transactions. XM logs these transactions in its own XM log �le. The volume
set is the XM unit of logging and recovery. Each volume set has one XM log �le.

In default recovery mode, TurboIMAGE/XL uses XM to ensure the structural integrity of
the database. The writes of each database modi�cation (every DBPUT, DBUPDATE and
DBDELETE) are bracketed as an XM transaction and logged to XM log �le pages. XM log
�le pages are written to disk when one of the following occurs:

1. A system-speci�ed time has elapsed.

2. A request is made by a subsystem, such as, TurboIMAGE/XL, or another process to ush
the log �le to disk.

3. The XM bu�er (or log �le pages) is full.

Thus, intrinsics that have completed may not yet be written to disk. If a system failure
occurs, only completed modi�cations that have been written to disk are recovered.

When the operating system is restarted, the physical integrity of the database is recovered via
XM recovery. However, the \user de�ned" logical transactions a�ecting logical consistency
and needing recovery are not processed at this time. Instead, they are posted to a hidden
global �le called the \AUX" �le. When the very �rst DPOPEN is processed on the system,
this \AUX" �le is processed, and the transactions pertaining to the same database are posted
to their respective \00" �le (dbname00). Subsequently, when the �rst DBOPEN for a speci�c
database is done, its \00" �le will be processed to restore the logical consistency of the
database.

A dynamic transaction is denoted by the DBXBEGIN and DBXEND intrinsics. With
dynamic roll-back recovery, a dynamic transaction is rolled back with a program abort or with
a call to DBXUNDO. DBXUNDO can be called when other database activity is occurring.

ILR is similar to TurboIMAGE/XL in that it also uses XM. When ILR is enabled, changes
to data sets are bracketed as XM transactions and logged to XM log �le pages. With ILR,
however, XM log �le pages are written to disk at the end of each completed DBDELETE and
DBPUT. If a system failure occurs, only one DBPUT or DBDELETE will not be recovered.
(A completed DBUPDATE does not force a log write to disk.)

When AUTODEFER is enabled, MPE/iX Transaction Management is not used. Instead,
AUTODEFER uses the MPE/iX �le system defaults which keep data pages in memory until
lack of memory or the closing of a �le forces the pages to be written to disk. In this mode, a
system failure can cause the loss of database integrity unless roll-forward recovery is used .

Internal Structures and Techniques 10-17

11

B-Tree Indices

This chapter is new with the release which includes the enhancement to support B-Tree
indices (C.07.00). This chapter gives an overview of the B-Tree index enhancement. It
addresses changes in TurboIMAGE/XL utilities and intrinsics, and presents a quick start for
using B-Tree indices. This chapter has the following major sections:

Overview of B-Tree Indices
External Commands and Utilities A�ected
Limits
Quick Start for Using B-Tree Indices

Overview of B-Tree Indices

An index on an item allows generic and range searches. To optimize the search of an index, a
technique commonly know as \Binary Tree Searching" is used. Hence, the name B-Tree index
is used to refer to an index in TurboIMAGE/XL.

You can create a B-Tree index only on the master data set's key item. Nevertheless, you are
able to perform index searches using all of its corresponding detail data set search items as
well. A master data set key item is perceived as having an explicit B-Tree index and all of its
corresponding detail data set search items are perceived as having implicit B-Tree indices.
The index searches are done using DBFIND. If you create an index on a key item of the
master data set, you can use this master data set in the DBFIND intrinsic.

Terminology

Explicit B-Tree index is an index actually created on the key item of the master data set.
The index searches can be done using this key item in the DBFIND
intrinsic.

Implicit B-Tree index is an implied index, which does not physically exist, but index search
is allowed on the detail data set search item whose corresponding
master data set key item has a B-Tree index.

B-Tree DBFIND is a DBFIND on a master or detail data set using a key item or
a search item that has a B-Tree index (explicit or implicit). For
a master set, it is a set of entries in the master which satisfy the
DBFIND criteria. For a detail data set, DBFIND is also referred
to as a super-�nd which locates a set of master data set entries,
all of which have keys that satisfy the DBFIND criteria. The total
of all corresponding chains in a detail data set is referred to as a
super-chain. TurboIMAGE/XL fetches each qualifying master entry
in order to determine the total number of associated detail entries to
calculate the sum of the chain counts. To retrieve all quali�ed entries

B-Tree Indices 11-1

in a detail data set using DBGET, TurboIMAGE \walks" (traverses)
this super-chain.

B-Tree Search is the same as B-Tree DBFIND.

Super-chain is the sum of all detail data set chains involved in the B-Tree
DBFIND.

Trailing-@ Search is a B-Tree search where only the characters left of the @ (wildcard
character) of the argument are compared to qualify an entry. (For
example, \cat@" is a trailing-@ search, but \cat@dog" is not and the
result will be the same for both arguments. That is, \dog" will be
ignored.)

Wildcard Character refers to a printable ASCII character. The default is @ which means
\matches all trailing characters" (unlike \?" or \#" in MPE terms).

BTREEMODE1 is an option which can be turned ON or OFF using the SET command
of DBUTIL or programmatically using DBCONTROL. When it is ON,
DBFIND mode 1 of an item of X or U type having a B-Tree index
(explicit or implicit), and having a wildcard character in the argument
will result in a B-Tree search. The ON option allows applications to
bene�t from B-Tree indices without modifying applications. When it
is OFF, which is also the default, DBFIND mode 1 described above
works as it did in releases prior to a release with the B-Tree index
feature (C.07.00).

Simple Argument is a DBFIND argument that consists of a sequence of bytes, as in
DBFIND mode 1 argument in releases prior to a release with the
B-Tree index feature (C.07.00). This is used predominantly for
modes 1, 10, and 21. For DBFIND modes 1 and 21, an X or U
type item having B-Tree index (explicit or implicit) and having
the BTREEMODE1 option ON, the text is scanned for a wildcard
character, if any. If a wildcard is found, DBFIND is treated as a
B-Tree DBFIND. Otherwise, it is treated as DBFIND in releases prior
to a release with the B-Tree index feature (C.07.00).

Structured Argument is a DBFIND �xed format argument construct introduced with
B-Trees enhancement. It is de�ned as a record structure, containing
search control information as well as key data. This is used for
DBFIND modes 4 and 24, and is described later in this chapter.

Key Points

These are the key points of TurboIMAGE/XL B-Tree indices:

You can create a B-Tree index only on the key item of the master data set.

Although you can create a B-Tree index only for the key item of a master data set, you can
still perform a B-Tree search using the search items of all of its corresponding detail sets
as well. A master data set is perceived as having an explicit B-Tree index and each of its
corresponding detail data sets is perceived as having an implicit B-Tree index.

You may create B-Tree indices for zero, one, or more data sets.

DBSCHEMA has a new option, INDEXED, for the SET speci�cation.

11-2 B-Tree Indices

DBUTIL has new commands and options.

a. New ADDINDEX, DROPINDEX, and REBUILDINDEX commands (to be used for one,
more than one, or all masters)

b. The SET command has a new BTREEMODE1 option to set DBFIND mode 1 access ON
or OFF for a B-Tree wildcard search for X and U types. The default is OFF. The ON
setting allows you to use B-Tree indices for generic search without making application
changes.

c. The SET command allows you to de�ne your own database-wide wildcard character.

d. CREATE, ERASE, PURGE, SECURE, RELEASE, and SHOW commands include
B-Tree index �les in their operation.

e. The MOVE command does not allow moving the index �le.

DBCONTROL has these modes pertaining to B-Tree indices:

13 is for B-Tree index �le control. That is, to ADD, DROP, REBUILD, ATTACH,
or DETACH a B-Tree index �le.

14 is used to set database-wide BTREEMODE1 and wildcard character.

15 sets BTREEMODE1 ON for the current DBOPEN (base parameter), and
optionally allows the wildcard character to be set for the current DBOPEN.

16 sets BTREEMODE1 OFF for the current DBOPEN (base parameter).

DBINFO has these modes pertaining to B-Tree indices:

209 informs whether or not a B-Tree index exists for a master.

113 gives BTREEMODE1 setting and the wildcard character for the database as
well as current DBOPEN.

DBPUT or DBDELETE to an indexed master triggers a similar operation to indexed
master's B-Tree index �le. (DBUPDATE to a master data set to modify a key item, despite
CIPUDATE setting, is not allowed.)

DBFIND has these features pertaining to B-Tree indices:

a. Can be used for details as well as masters to specify B-Tree index searches.

b. DBFIND modes with added functionality pertaining to B-Tree indices:

1 can continue to work as it does in releases prior to the release of B-Tree
index feature (C.07.00), despite the presence of a B-Tree index, or it can be
used for a B-Tree search if BTREEMODE1 is ON.

4 used for B-Tree index searches on numeric as well as ASCII types and
returns accurate chain (super-chain) counts. Requires a structured
argument.

10 allows you to simulate the DBFIND mode 1 in releases prior to the release
with B-tree index feature even when the item has a B-Tree index (explicit
or implicit), BTREEMODE1 is on, and the argument contains a wildcard
character. It returns accurate chain count. This is the same as TPI mode
10. Requires a simple argument.

B-Tree Indices 11-3

21 is the same as B-Tree index search using DBFIND mode 1, except it is a
faster version and does not return accurate chain counts. Requires a simple
argument.

24 is the same as B-Tree index search using DBFIND mode 4, except it is
a faster version and does not return accurate chain counts. Requires a
structured argument.

c. Allows wildcard search, as well as range search (<t, <=, >t, >=,\PK", or [] for
between).

d. If BTREEMODE1 is ON, DBFIND mode 1 of X or U type item having a B-Tree index
(explicit or implicit) and the argument containing a wildcard character will result in a
B-Tree index search.

e. For wildcard (generic) search, the wildcard should be the terminating character in the
argument. Characters beyond that will be ignored.

f. Status array reects information based on data set, mode, and search type. B-Tree index
searches for modes 1 and 4 for details give super-chain (multiple detail chain) counts and
record numbers of �rst entry in �rst detail chain and last entry in last detail chain.

DBGET modes 5 and 6 can be used for B-Tree index retrieval for masters or details.
Super-chains are traversed for detail data sets.

KSAM/iX �les are used for B-Tree index �les. These are KSAM related key points:

a. There is one KSAM/iX privileged �le with a �lecode of -412 for each B-Tree index �le.
The size limit for this B-Tree index �le is 4 Gbytes. A jumbo master (larger than 4
Gbytes) can have a B-Tree index �le provided the B-Tree index �le remains within its 4
Gbyte limit.

b. KSAM/iX B-Tree index �le is named using the POSIX �le format with the \idx"
extension (lowercase). For example:

/ACTSALES/GRPSALES/ORDERS03.idx

c. KSAM/iX B-Tree index �le records consist only of a single key, which is a duplicate of
the master data set key value. No pointer information is present in the B-Tree index
records.

d. The KSAM �le has the Native Language Support language speci�ed to match the
language of the database, if the key is a text (X or U) data type.

Record zero of the root �le contains \C4" for the root �le version if at least one B-Tree
index �le exists for the database. When all B-Tree indices are dropped, it reverts to the
appropriate version: \C3" if at least one jumbo set exists, \C2" otherwise.

A new bit map is added in the root �le for B-Tree indices.

Third-party indices can coexist with B-Tree indices, that is, on the same item of the data
set.

11-4 B-Tree Indices

External Commands and Utilities Affected

The root �le, utilities, and intrinsics a�ected by the implementation of B-Tree index �les
include the following:

Root �le
DBSCHEMA
DBUTIL
DBCONTROL
DBFIND
DBGET
DBINFO
DBPUT
DBDELETE
DBUPDATE

Root File

The root �le version level will be \C4" if at least one master data set has a B-Tree index. If
there are no B-Tree indices, the root �le version will be \C3" if any jumbo data sets exist, and
\C2" otherwise. In other words, a value greater than \C2" indicates that at least one POSIX
named �le exists as part of the database.

DBSCHEMA

DBSCHEMA has an INDEXED option added to the data set NAME speci�cation.

New Syntax for DBSCHEMA

NAME: setname,

�
M
�
ANUAL

�
A
�
UTOMATIC

�
��

/INDEXED
� �

(read class list)/(write class list)
�

�
,device class

�
;

Example

NAME: Employeename, MANUAL /INDEXED(10,20/30);

DBUTIL

DBUTIL has three new commands:

ADDINDEX
DROPINDEX
REBUILDINDEX

Syntax for ADDINDEX

ADDI
�
NDEX

�
database name

�
/maintword

�
FOR

8<
:

ALL

setnamelist

setnumlist

9=
;

B-Tree Indices 11-5

Syntax for DROPINDEX

DROPI
�
NDEX

�
database name

�
/maintword

�
FOR

8<
:

ALL

setnamelist

setnumlist

9=
;

Syntax for REBUILDINDEX

REBUILDI
�
NDEX

�
database name

�
/maintword

�
FOR

8<
:

ALL

setnamelist

setnumlist

9=
;

Parameters

setnamelist is the list setname[, . . .]

setnumlist is the list setnum[, . . .]

ALL means all master data sets for the database.

Examples

>>ADDINDEX ORDERS/secret for ALL

>>DROPINDEX ORDERS/secret for 1,7

>>REBUILDINDEX ORDERS/secret FOR SalesrepName,Region,District

Discussion

The ADDINDEX command adds the associated B-Tree index �le and updates the root �le.

The DROPINDEX command drops the associated B-Tree index �le and updates the root �le.

REBUILDINDEX rebuilds the index �le for a master data set that has an index �le.

The KSAM �le has the Native Language Support language speci�ed to match the language of
the database, if the key is an ASCII (X or U) data type.

When using the ALL option and there is no master data set, a warning is generated, but the
command is considered to be successful.

Other DBUTIL Commands

The following lists the impact of B-Tree indices on other DBUTIL commands:

CREATE does an implicit ADDINDEX command for each data set marked by
DBSCHEMA as indexed.

ERASE erases any associated B-Tree index (.idx) �les, but will not delete them.

MOVE does NOT allow a B-Tree index (.idx) �le to be moved.

PURGE purges any associated B-Tree index (.idx) �les.

SECURE and RELEASE apply to the associated B-Tree index (.idx) �les.

SET has a new option, BTREEMODE1.

SHOW has a new option: INDEX, INDEXES, or INDICES.

11-6 B-Tree Indices

New Syntax for SET

SET database name
�
/maintword

�
BTREEMODE1=

�
ON

OFF

� �
,
�
WILDCARD=

�
c
�

where c is any printable ASCII character, and the default character is @.

The BTREEMODE1 option sets DBFIND mode 1 access ON or OFF for a B-Tree index
search for X and U types. The default is OFF, in which case DBFIND mode 1 with the
argument containing a wildcard character will continue to work the way it did in releases prior
to a release with the B-Tree index feature (C.07.00). When BTREEMODE1 is ON, DBFIND
mode 1 with the argument containing a wildcard character will be treated as a B-Tree index
search. Refer to the DBFIND section for more information on BTREEMODE1.

Examples

>>SET ORDERS/secret BTREEMODE1 = ON

>>SET ORDERS/secret BTREEMODE1 = ON,%

The DBUTIL SHOW ALL command shows if any B-Tree index �les exist and the value of
BTREEMODE1. Example output:

>> show ORDERS all

For database ORDERS

...

Dynamic capacity expansion is not used.

Database has at least one indexed data set.

BTREEMODE1 is off, wildcard = "@"

Logid is not present.

...

Example if no B-Tree index �les exist:

>> show ORDERS all

For database ORDERS

...

Dynamic capacity expansion is not used.

BTREEMODE1 is off, wildcard = "@"

Logid is not present.

...

B-Tree Indices 11-7

New Syntax for SHOW

SHOW has a new option INDEX, alternatively INDEXES or INDICES.

SHOW database name
�
/maintword

�
INDEX

>>SHOW ORDERS INDEX

For database ORDERS

Database root version < "C"4; there are no indexes.

>>addindex orders for all

Found 4 master datasets.

Adding index to set# 1 (#entries = 162,730, capacity = 218,987)

Adding index to set# 2 (#entries = 84,164, capacity = 188,517)

Adding index to set# 3 (#entries = 18,784, capacity = 21,943)

Adding index to set# 4 (#entries = 783, capacity = 2583)

Done.

>>

>>SHOW ORDERS INDICES

For database ORDERS

Data Set Name Type Indexed?

DATE-MASTER A YES

CUSTOMER M YES

PRODUCT M YES

SUP-MASTER M YES

4 indexed datasets

>>

DBCONTROL

DBCONTROL allows DBUTIL and privileged callers to perform several B-Tree index �le
related functions such as the addition, deletion, or rebuilding of a B-Tree index �le for a
speci�ed master data set. Some functions require exclusive database access.

There are four additional DBCONTROL modes pertaining to B-Trees:

Mode 13 B-Tree index �le functions.

Mode 14 obtain/control database-wide B-Tree index information.

Mode 15 sets BTREEMODE1 option ON and optionally sets the wildcard character for the
current DBOPEN.

Mode 16 sets BTREEMODE1 option OFF for the database for the current DBOPEN.

Note General use of privileged mode can seriously damage your system, if not used
wisely.

11-8 B-Tree Indices

Mode 13

Mode 13 is used to perform functions related to B-Tree index �les. The caller must be
privileged. Exclusive database access is required for adding, dropping, and rebuilding B-Tree
index, that is functions 1, 2, and 3. Quali�er has a structured record containing data set
information and directives. This is the quali�er layout (an element is 16-bits):

Element Contents

1 Function code:

0 mode 13 inquiry (returns \OK" in status indicating mode 13 is a
valid mode for the TurboIMAGE/XL version on the system. It also
means that the B-Tree index feature is available in the version of
TurboIMAGE/XL. Ignores the rest of the record).

1 add B-Tree index �le.

2 drop B-Tree index �le.

3 rebuild B-Tree index �le.

4 attach XM to B-Tree index.

5 for internal use only.

6 release B-Tree index �le (�le system security)

7 secure B-Tree index �le (�le system security)

2 ignored when function code is 0 in element 1
data set number (1..199) when function code is 1 through 7 in element 1

3-4 ignored on input, zeroed at entry to DBCONTROL mode 13, and used to return
a 32-bit status at exit if at least one of the internal B-Tree index �le routines was
executed.

5 ags for internal use only:
bit 15: 1 = report progress, if appropriate, when function code is 1 through 7 in
element 1

6-16 reserved; should be 0.

B-Tree Indices 11-9

Mode 14

Mode 14 is used to set BTREEMODE1 option ON or OFF for the database and set the
wildcard character for the database. The changes will be made in the root �le, unlike mode 15
and 16 of DBCONTROL. The caller must be privileged. The result is same as using the SET
command with BTREEMODE1 option of DBUTIL. This is the quali�er layout (16 halfwords):

Element Contents

1 Function code:

0 mode support inquiry (returns \OK" in status, and ignores the rest
of the record). That is, to validate if mode 14 is supported in the
TurboIMAGE software on the system.

1-6 reserved for internal use.

7 set wildcard (in root �le, not DBU). Wildcard is in lower 8 bits of the
second element of quali�er. An error is returned if the value is less
than ASCII 33, or greater than ASCII 126.

8 set BTREEMODE1 option ON (in root �le, not DBU).

9 set BTREEMODE1 option OFF (in root �le, not DBU).

2 ignored for function codes 0-6, 8, or 9.
wildcard in lower 8 bits for function code 7.

3-4 ignored on input, zeroed at entry to DBCONTROL mode 14, and used to return
a 32-bit status at exit ONLY IF the B-Tree index routines are executed. (This is
useful for debugging purposes only.)

5-16 reserved; should be 0.

Mode 15

Mode 15 sets BTREEMODE1 ON for the current database. It examines the �rst byte of
the quali�er. If it is null or blank, then the current wildcard character is not changed. If it
is in the ASCII range (33..126), then the wildcard character is changed to that value for the
current database open. If the quali�er byte is any other value, DBCONTROL returns an
error. Mode 15 a�ects just the current database open, not the root �le. The caller need not
be privileged. The setting remains in e�ect until the database is closed or the application
terminates.

Mode 16

For mode 16, the quali�er is ignored, and BTREEMODE1 is set to OFF for the current
database open. Mode 16 a�ects just the current database open, not the root �le. The caller
need not be privileged. The setting remains in e�ect until the database is closed or the
application terminates.

11-10 B-Tree Indices

DBFIND

Prior to a release with the B-Tree index feature, DBFIND required the caller to specify detail
data set on the quali�er and a search item in the item parameter. It used that pair of data to
determine the master set to search for the exact value in the item parameter. The B-Tree
index feature extends DBFIND to allow a master data set as well as the key item in that data
set. Also, it allows for searches other than just equality. This is useful for obtaining sorted
access by key value to entries in a master data set as well as detail data set.

Supported Modes of DBFIND

These are modes of DBFIND supported by the B-Tree index feature:

1 do a B-Tree DBFIND if all of the following are true:

BTREEMODE1 is on.
The item type is X or U.
The item has a B-Tree index (explicit or implicit).
The argument contains wildcard character.

Otherwise execute DBFIND as done without this feature.

For B-Tree DBFINDs, the argument is scanned for the �rst occurrence of the
wildcard character, and a trailing-@ search is done. Subsequent text in the key value
is ignored.

For B-Tree DBFINDs pertaining to detail data sets, the chain-count is accurate, and
status halfwords 7-8 and 9-10 give the record numbers of the last entry in the last
chain, and the �rst entry in the �rst chain of the super-chain.

For B-Tree DBFINDs pertaining to master data sets, the status halfwords 5-6
(chain-count for detail) reect the total number of entries quali�ed in the master data
set. All other �elds of the status array return zeroes.

4 do a B-Tree index search, and give accurate chain counts and record numbers in the
status array. For masters, the status array returns the same information as in B-Tree
DBFIND mode 1. The argument is in structured format described later.

10 do a non-B-Tree DBFIND mode 1 equivalent. This gives the same result as if there
were no B-Tree index.

21 is the same as mode 1, above, but the chain count and record numbers for last entry
and �rst entry are not accurate. (This is a high-speed version of mode 1.) For detail
data set, the halfwords 5-6, 7-8, and 9-10 have 231�1. For master data set, the
halfword 5-6 has 231�1 and 7-8 and 9-10 have zeroes.

Following this DBFIND, you may do DBGET mode 5 or 6.

24 is the same as mode 4, above, but the chain count and record numbers for last entry
and �rst entry are not accurate. (This is a high-speed version of mode 4.) For detail
data set, the halfwords 5-6, 7-8, and 9-10 will have 231�1. For master data set, the
halfword 5-6 has 231�1 and 7-8 and 9-10 have zeroes.

The argument is in structured format described later.

B-Tree Indices 11-11

TPI Modes of DBFIND Not Supported for B-Tree Indices

Third-Party Indexing (TPI) adds more DBFIND modes. The TPI modes 1 and 10 are similar
to B-Tree index modes 1 and 10.

Note These are the known Third Party Indexing (TPI) modes of DBFIND which
are NOT supported for B-Tree searches:

11 do a B-Tree index DBFIND when the key is binary.

12 is a keyword search.

other 1nn, 2nn, 3nn, 4nn, and 5nn are other unsupported TPI DBFIND
modes.

A B-Tree index search will never be done with a DBFIND mode 1 style argument if the key
item is binary (not X or U) (this a�ects DBFIND modes 1 and 21). For a B-Tree index search
on binary (non-ASCII) data, use modes 4 or 24 in conjunction with a structured argument.

A DBFIND mode 21 on a non-ASCII item returns an error.

All TurboIMAGE data types are allowed as keys for B-Tree searches.

DBFIND Modes

Following is a DBFIND mode summary table (see footnotes for explanations):

Table 11-1. DBFIND Mode Summary Chart

DBFIND
Mode

B-Tree index
search?

Accurate
Chain counts?

Argument
style

1 MAYBE#1 YES#2 or YES#3 mode 1#4

4 YES YES#3 mode 4#5

10 NO YES #2 mode 1#4

21 YES#6 NO#7 mode 1#4

24 YES NO#7 mode 4#5

Footnotes:

#1 If BTREEMODE1 is ON, a DBFIND mode 1 on an ASCII item with a B-Tree index
(explicit or implicit), and mode 1 style argument contains a wildcard character, it will
be treated as a B-Tree index search. If BTREEMODE1 is OFF, a DBFIND mode 1
in the above scenario will be treated as a non-B-Tree index search (as if there were
no B-Tree index feature). DBFIND mode 1 on binary items (not X and U) will be
treated as non-B-Tree search regardless of the presence of a B-Tree index as well as the
BTREEMODE1 option. To do B-Tree searches on binary items, use modes 4 or 24 in
conjunction with a structured argument.

#2 The chain count is the number of entries in the single chain (non-B-Tree DBFIND).
Record number for the last entry and �rst entry is obtained from the chain head.

11-12 B-Tree Indices

#3 The chain count is the sum of all chain counts (that is, the number of entries in the
super-chain for a B-Tree DBFIND). Record number for the last entry is obtained from
the last entry in the last chain. For �rst entry, record number of the �rst entry in the
�rst chain is obtained. For masters, the chain count reects the total number of master
entries quali�ed, and last entry and �rst entry values are zeroes.

#4 When doing a B-Tree index search, mode-1-style argument is scanned to �nd the �rst
occurrence of the wildcard character in the argument text. If the wildcard is not found, a
non-B-Tree index search is done. If the wildcard is found, the rest of the argument text is
ignored.

When not doing a B-Tree search (mode is 1 and BTREEMODE1 is OFF, or mode is
10), the entire argument, including any wildcard characters, will be treated as the actual
argument is for a DBFIND mode 1 in releases prior to the release with B-tree index
feature.

#5 See \DBFIND Structured Argument" description later in this chapter.

#6 For items that are text types (X, U), a B-Tree index search is done if the wildcard is
present in the argument. If the key item is a non-ASCII item, then a B-Tree index �nd
is not done, and a non-B-Tree index �nd (mode 1 with BTREEMODE1 is OFF) is done
instead. A programmer can do a B-Tree index �nd with non-ASCII items by explicitly
using DBFIND modes 4 or 24. (See \DBFIND mode 1-style and non-ASCII keys"
below.) This mode is similar to current TPI mode 21.

#7 For detail data set, the halfwords 5-6, 7-8, and 9-10 have 231�1. For master data set, the
halfword 5-6 has 231�1 and 7-8 and 9-10 have zeroes.

Note The length of the argument may not exceed the item length.

DBFIND Arguments

There are two distinct argument styles. The simple argument of the basic DBFIND mode 1
argument is generally interpreted as a sequence of bytes, perhaps containing a wildcard
character.

Another argument style, the structured argument, has been de�ned for DBFIND modes 4 and
24. This structure allows ranges of item values to be requested, and is explained below.

B-Tree Indices 11-13

DBFIND Structured Argument

The structure of the structured argument for DBFIND modes 4 and 24:

Bytes Meaning

1-2 Type of generic search. An ASCII character pair is in this �eld:

=t search for key values equal to argument1

<t search for key values less than argument1

<= search for key values less than or equal to argument1

>t search for key values greater than argument1

>= search for key values greater than or equal to argument1

[] search for key values greater than or equal to argument1 AND less than
or equal to argument2

@c wildcard search. Scan argument for the �rst wildcard character. (Call
that character position n, 1-based). Search for keys that match �rst n�1
characters of argument.

If c is non-blank and non-null, then it is the wildcard character that will
be used. Some examples are: @* and @@.

If c is a blank or null, then the current default wildcard (stored in the
root �le) is used. The wildcard character is changeable via the DBUTIL
SET command or DBCONTROL mode 15.

PK Partial Key search. Search for key values that match n characters in
argument1 (n is length of argument1 provided in bytes 5-6). Argument1
need not contain a wildcard. If it does within the n characters, it will be
included in the search. For example, if argument1 is ABC@, bytes 5-6
have 4 for length, and the wildcard for the database is @, DBFIND will
return records containing ABC@ as the �rst four characters in the key
value.

3-4 version number. It must be numeric zero, or an error will be returned.

5-6 The size (in bytes) of argument1 (not including these two bytes) for search types
<t, <=, =t, >=, >t, @c, PK.

7-8 The size (in bytes) of argument2 (not including these two bytes) for the between
search type [].

9 . . .
9+n-1

Argument1. The n bytes of argument data (for example, for an X10 �eld, n =
10).

9+n . . .
9+n+m-1

Argument2. For search-type [] only. The m bytes of the second argument's data
(for example, for an X10 �eld, m = 10, n must match m). Must be numeric zero
for other search types, or an error is returned.

If a wildcard character is present in the argument(s), the wildcard will be considered as part
of the value for these B-tree search types: =t, <t, <=, >t, >=, [], and PK on ASCII types.

11-14 B-Tree Indices

Pascal/iX Example

A Pascal/iX view of the above is:

type

dbfind_structured_arg_type = $alignment 2$ record

dbf_type : pac2; {e.g., "<="} {0 @ 2}

dbf_version : shortint; {must be 0} {2 @ 2}

dbf_arg1_bytes : shortint; {4 @ 2}

dbf_arg2_bytes : shortint; {6 @ 2}

{NOTE: arg1 data is variable sized...2 to 256 bytes}

{ and, arg2 data might not even be present. }

{ Still, the following serve to define a record}

{ that can hold the worst case arg1 & arg2... }

dbf_arg1_data : packed array [1..256] of {8 @ x}

char;

{*REAL* dbf_arg1_data is variable sized}

{*REAL* dbf_arg2_data is variable sized}

spare_area : packed array [1..256] of {8 @ x}

char;

{if present, arg2 data starts at record + 8 + arg1_bytes}

end; {8 + 256 + 256}

Examples of Structured Argument

Three examples of using the structured argument type are given below.

Example 1

X4 �eld, looking for <= \JOHN", using SPL:

move arg' := ("<=", 0, 4, 0, "JOHN");

Example 2

X4 �eld, looking for keys >= JOHN, <= STAN, using Pascal:

type

structured_argument_type = crunched record

search_type : pac2; {bytes 0, 1}

version : shortint; {bytes 2, 3}

arg1_bytes : shortint; {bytes 4, 5}

arg2_bytes : shortint; {bytes 6, 7}

arg1 : pac4;

arg2 : pac4;

end;

var

arg : structured_argument_type;

fast_fill (addr (arg), 0, sizeof (arg)); {optional}

arg.search_type := '[]'; {in-range search}

arg.arg1_bytes := sizeof (arg.arg1);

arg.arg1 := 'JOHN';

arg.arg2_bytes := sizeof (arg.arg2);

arg.arg2 := 'STAN';

B-Tree Indices 11-15

mode4 := 4;

item := 'FIRSTNAME;';

dbfind (base, set, mode4, status, item, arg);

Example 3

X20 �eld, looking for keys that start with \SMITH", using C:

char

arg [29]; /* 2 + 2 + 2 + 2 + 20 + 1 trailing null */

arg [0] = '@'; /* want a wildcard search */

arg [1] = '@'; /* use an @ as a wildcard character */

arg [2] = (char) 0; /* upper half of version */

arg [3] = (char) 0; /* bottom half of version */

arg [4] = (char) 0; /* upper half of arg1 size field */

arg [5] = (char) 20; /* bottom half of arg1 size field */

arg [6] = (char) 0; /* upper half of arg2 size field */

arg [7] = (char) 0; /* bottom half of arg2 size field */

strcpy (arg [8], "SMITH@");

Example 4

I2 �eld, looking for keys >= 123 and <= 45698, using SPL:

double array

arg'd (0 : 3); ! 4 byte prefix + three I2 fields

integer array

arg'i (*) = arg'd;

integer

mode4 := 4;

byte array

arg' (*) = arg'd;

! find super-chain for SALARY in range [123..45698]...

arg'i := "[]"; ! range search

arg'i (1) := 0; ! version

arg'i (2) := 4; ! size of arg1 (in bytes)

arg'i (3) := 4; ! size of arg2 (in bytes)

arg'd (2) := 123d; ! arg1

arg'd (3) := 45698d; ! arg2

move item := "SALARY;";

dbfind (base, set, mode4, status, item, arg'i);

11-16 B-Tree Indices

DBGET

DBGET has no changes to the calling sequence. It has the semantic change that chained
access modes can be used for both masters and details. For master data sets, DBGET mode 5
or 6 following a B-Tree DBFIND implies the next or previous quali�ed record of the master
data set. Also, DBGET mode 5 (forward chained read) and mode 6 (backward chained read)
may now traverse super-chains for a B-Tree index DBFIND on a detail data set.

Note After a super-chain (B-Tree index DBFIND) read has started, a directed
DBGET (mode 4), may perturb the super-chain.

DBINFO

DBINFO has new modes 113 and 209.

Mode 113

DBINFO mode 113 reports the wildcard character in use for the database, and the value of
BTREEMODE1. The quali�er is ignored.

The output bu�er for mode 113 must be at least 32 bytes in size and is shown below (elements
are 16-bits wide and are counted starting with 1):

Element Contents

1 0 if BTREEMODE1 is o� in the root �le

1 if BTREEMODE1 is on in the root �le

2 The �rst byte (8 bits) is always 0. The second byte (8 bits) represents c, where c
is the current wildcard character. For example, if the current wildcard character
is @, the element's hex value will be $0040, or decimal 64.

3 Highest B-Tree index argument version supported (currently 0)

4 Number of sets with B-Tree indices attached

5 0 if BTREEMODE1 is OFF for current DBOPEN
1 if BTREEMODE1 is ON for current DBOPEN

6 The �rst byte (8 bits) is always 0 for current DBOPEN. The second byte (8 bits)
represents c, where c is the current wildcard character.

7-16 (reserved)

Mode 209

DBINFO mode 209 reports whether or not a data set has a B-Tree index attached. The
quali�er is a data set number or name. The output bu�er is required to be 64 bytes (32
halfwords) or larger. The output bu�er for mode 209 is shown below (elements are 16-bits
wide, and are counted starting with 1):

B-Tree Indices 11-17

Element Contents

1 0 if no B-Tree index exists

1 if B-Tree index exists

2 1 if attached B-Tree is not damaged or index does not exist

3-32 For internal use

DBPUT, DBDELETE, and DBUPDATE

DBPUT and DBDELETE trigger similar operation to the associated B-Tree index �le for all
adds or deletes to or from a master data set. DBUPDATE to a master is not allowed even
when critical item update is on.

Adding a record to the B-Tree index �le is done with an FWRITE call. The KSAM �les do
not have the DUP option, so KSAM will reject FWRITEs that attempt to add a duplicate
key value. The KSAM �les are built with the REUSE option, which means that the space
occupied by deleted records will eventually be reused.

11-18 B-Tree Indices

Limits

These are some limits on the use of B-Tree indices:

Key limits

KSAM limits keys up to 255 bytes. TurboIMAGE/XL limits keys to 510 bytes (255
halfwords). TurboIMAGE items are always an even number of bytes in length, with 2 bytes
for internal use. This means that the maximum TurboIMAGE key that can be indexed is
252 bytes. Attempting to build an index for a master data set whose key is greater than 252
bytes will not succeed, and will generate an error message.

Maximum number of �le opens

MPE/iX currently limits a single process to opening a maximum of 1023 �les at a time. For
a database with 199 sets, 100 of which are master data sets with B-Tree indices, if all sets
are open at the same time, an additional 100 �les will be open.

Pattern matching

The only types of generic key pattern matching supported are:

=t search for item values equal to the speci�ed value

<t search for item values less than speci�ed value

<= search for item values less than or equal to the speci�ed value

>t search for item values greater than speci�ed value

>= search for item values greater than or equal to the speci�ed value

[] search for item values between and including two speci�ed values.

@c search for items with a common pre�x.

PK search for items with partial key.

The operator < > for \not equal to" and the range search () are not supported.

B-Tree Indices 11-19

Quick Start for Using B-Tree Indices

If you are interested in generic trailing-@ searches only and want to get started quickly
without making any application changes, you may use the following steps.

1. Identify the masters with ASCII key item and can bene�t from B-Tree indices.

2. Create B-Tree indices using either of these methods:

a. Use the INDEXED option of DBSCHEMA for new databases.

b. Use the ADDINDEX command of DBUTIL for existing databases.

3. Set the BTREEMODE1 option ON using DBUTIL as follows:

:Run DBUTIL.PUB.SYS

>SET database name [/maintword] BTREEMODE1=ON

If your database is new, you will need to add data. Then you are ready to perform B-Tree
index searches. You can include the wildcard character in your DBFIND argument and
observe the results.

11-20 B-Tree Indices

A

Error Messages

TurboIMAGE/XL issues three di�erent types of error messages:

Schema Processor Error Messages

Library Procedure Error Messages

Utility Error Messages

Schema processor error messages result from errors detected during processing of the database
schema. The library procedure error messages are returned to the calling program from
the library procedures. The utility error messages are caused by errors in execution of the
database utility programs.

Schema Processor Error Messages

The Schema Processor accesses three �les:

The text �le (DBSTEXT) containing the schema records and Schema Processor commands
for processing.

The list �le (DBSLIST) containing the schema listing, if requested, and error messages, if
any.

The root �le, if requested, created as a result of an error-free schema.

Any �le error which occurs while accessing any of these �les causes the Schema Processor to
terminate execution. A message indicating the nature of the error is sent to $STDLIST (and
to the list �le, if the list �le is di�erent from $STDLIST).

Schema Processor command errors can occur. They neither cause termination nor do they
prohibit the creation of a root �le. In some cases, however, the resultant root �le will di�er
from what might have occurred had the commands been error free. Command errors are
added to an error count which, if it exceeds a limit (see chapter 3), will cause the Schema
Processor to terminate execution.

Note that if the LIST option is active (see chapter 3), error messages for command errors and
syntax errors appear in the list �le following the o�ending statement. If the NOLIST option is
active, only the o�ending statement, followed by the error message, is listed.

Schema Processor Error Messages Error Messages A-1

Schema Processor File Errors

Various �le error messages are listed in this section. Each such message is preceded by the
character string:

****** FILE ERROR ******

Additionally, the Schema Processor prints a standard MPE �le information display on the
$STDLIST �le.

MESSAGE FILE ALREADY EXISTS; UNABLE TO CLOSE �le name

MEANING FCLOSE error occurred on speci�ed �le. Can be caused by duplicate �le in
group with same name as root �le.

ACTION Change database name or purge �le of same name. Or, be sure correct �le
and �le name used. Check MPE FILE commands used. If other cause,
consult MPE/iX Intrinsics Reference Manual for similar message.

MESSAGE READ ERROR ON �le name

MEANING FREAD error occurred on the speci�ed �le.

ACTION Check text �le or MPE FILE command.

MESSAGE UNABLE TO USE �le name

MEANING Speci�ed �le cannot be opened with FOPEN, or its characteristics make it
unsuitable for its intended use.

ACTION Change database name, or purge �le of same name. Or, be sure correct
�le and �le name used. Check MPE FILE commands used. If other cause,
consult MPE/iX Intrinsics Reference Manual for similar message.

MESSAGE UNABLE TO WRITE LABEL OF �le name

MEANING FWRITELABEL error occurred on speci�ed �le.

ACTION Change database name or purge �le of same name. Or, be sure correct �le
and �le name used. Check MPE FILE commands used. If other cause,
consult MPE/iX Intrinsics Reference Manual for similar message.

A-2 Error Messages Schema Processor File Errors

MESSAGE UNEXPECTED END-OF-FILE ON �le name

MEANING Call to FREAD or FWRITE on speci�ed �le has yielded unexpected end of
�le condition.

ACTION Change database name, or purge �le of same name. Or, be sure correct
�le and �le name used. Check MPE FILE commands used. If other cause,
consult MPE/iX Intrinsics Reference Manual for similar message.

MESSAGE WRITE ERROR ON �le name

MEANING FWRITE error occurred on the speci�ed �le.

ACTION Change database name or purge �le of same name. Or, be sure correct �le
and �le name used. Check MPE FILE commands used. If other cause,
consult MPE/iX Intrinsics Reference Manual for similar message.

Schema Processor File Errors Error Messages A-3

Schema Processor Command Errors

Various Schema Processor command error messages are listed in this section. Each such
message is preceded by the character string:

***** ERROR ******

MESSAGE COMMAND CONTINUATION NOT FOUND

MEANING If the schema processor command is continued to the next record, the last
non-blank character of the preceding line must be an ampersand (&) and the
continuation record must start with a dollar sign ($).

ACTION Examine the schema text �le to �nd any incorrect commands. Edit the text
�le, and run the Schema Processor again.

MESSAGE COUNT HAS BAD FORMAT

MEANING The numbers in ERRORS, LINES, or BLOCKMAX parameters of the
$CONTROL command are not properly formatted integer values.

ACTION Examine the schema text �le to �nd any incorrect commands. Edit the text
�le, and run the Schema Processor again.

MESSAGE ILLEGAL COMMAND

MEANING The Schema Processor does not recognize the command. Valid commands are
$PAGE, $TITLE, and $CONTROL.

ACTION Examine the schema text �le to �nd any incorrect commands. Edit the text
�le, and run the Schema Processor again.

MESSAGE IMPROPER COMMAND PARAMETER

MEANING One of the commands in the parameter is not valid.

ACTION Examine the schema text �le to �nd any incorrect commands. Edit the text
�le, and run the Schema Processor again.

MESSAGE MISSING QUOTATION MARK

MEANING Character string speci�ed in $PAGE or $TITLE command must be bracketed
by quotation marks (").

ACTION Examine the schema text �le to �nd any incorrect commands. Edit the text
�le, and run the Schema Processor again.

A-4 Error Messages Schema Processor Command Errors

MESSAGE SPECIFIED TITLE TOO LONG

MEANING Character string in $TITLE or $PAGE command exceeds 104 characters.

ACTION Examine the schema text �le to �nd any incorrect commands. Edit the text
�le, and run the Schema Processor again.

Schema Processor Command Errors Error Messages A-5

Schema Syntax Errors

Database de�nition syntax errors can be detected by the Schema Processor. Their existence
does not cause termination but does prohibit root �le creation. Discovery of one can trigger
others which disappear after the �rst is corrected. Also, detection of one can preclude
detection of others which appear after the �rst is corrected. Syntax errors are also added to
an error count which, if excessive, will cause Schema Processor termination.

Various syntax error messages are listed in this section. As with command errors, each syntax
error is preceded by the character string:

***** ERROR ******

MESSAGE AUTOMATIC MASTER MUST HAVE SEARCH ITEM ONLY

MEANING Automatic master data sets must contain entries with only one data item.
The data item must be a key item.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD BLOCKING FACTOR OR TERMINATOR

MEANING A bad blocking factor or terminator was speci�ed.

ACTION Examine the schema text �le to �nd any incorrect commands. Edit the text
�le, and run the Schema Processor again.

MESSAGE BAD CAPACITY (MAX, INIT, INCREMENT) OR TERMINATOR

MEANING One of the capacity parameters (maximum, initial, or increment) is incorrect,
or the terminator is not \;".

ACTION Change the maximum, initial, or increment capacity parameter, and use
\;" as the terminator. See \Set Part" in chapter 3 for correct values for the
parameters.

MESSAGE BAD CHARACTER IN USER CLASS NUMBER

MEANING User class number in password is not an integer from 1 to 63.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

A-6 Error Messages Schema Syntax Errors

MESSAGE BAD DATABASE NAME OR TERMINATOR

MEANING Database name in BEGIN DATABASE statement is not a valid database
name beginning with an alphabetic character and having up to 6
alphanumeric characters. Or, the name is not followed by a semicolon (;).

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD DATA SET TYPE

MEANING The data set type designator is not AUTOMATIC (or A), MANUAL (or M),
or DETAIL (or D).

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD DEVICE CLASS NAME

MEANING The device class name speci�ed contains an invalid character. The name must
be less than eight characters and begin with a letter.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD DEVICE CLASS NAME OR TERMINATOR

MEANING The device class name speci�ed contains an invalid character or was not ended
with a semicolon \;".

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD LANGUAGE

MEANING Language name contains invalid characters, or the language number is not a
valid integer.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD PATH CONTROL PART DELIMITER

MEANING Data item de�ned as sort item in detail data set is not properly delimited
with parentheses ().

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

Schema Syntax Errors Error Messages A-7

MESSAGE BAD PATH COUNT OR TERMINATOR

MEANING The path count in the master data set de�nition is not an integer from 1 to
16 (for an automatic master), or 0 to 16 (for a manual master). This message
can also mean the path count is not followed by a quotation mark (").

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD PATH SPECIFICATION DELIMITER

MEANING Name of master data set following search item name in detail data set
de�nition is not followed by a right parenthesis \)" or by a sort item name in
parentheses.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD READ CLASS OR TERMINATOR

MEANING Read user class number de�ned for either a data set or data item is not an
integer from 0 to 63, or it is not terminated by a comma (,) or slash (/).

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD SET NAME OR TERMINATOR

MEANING The data set name does not conform to naming rules. (Names must start
with a letter and can have up to 16 alphanumeric characters including + �
* / ? ' # % & @.) Or the data set name is not terminated by the correct
character for the context in which it appears.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD SUBITEM COUNT OR TERMINATOR

MEANING Subitem count for a data item de�ned in schema item part is not an integer
from 1 to 255.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

A-8 Error Messages Schema Syntax Errors

MESSAGE BAD SUBITEM LENGTH OR TERMINATOR

MEANING Subitem length for data item de�ned in schema item is not an integer from 1
to 255.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD TERMINATOR-';' EXPECTED

MEANING Password or capacity was not followed by a semicolon.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD TERMINATOR- ';' OR ',' EXPECTED

MEANING Items within an entry de�nition must be separated from each other with
commas and terminated with a semicolon.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD TYPE DESIGNATOR

MEANING Data item de�ned in schema item part is not de�ned as type I, J, K, R, U, X,
Z, or P.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE BAD WRITE CLASS OR TERMINATOR

MEANING Write user class number shown for the data set or data item is not an integer
from 0 to 63, or it is not terminated by a right parenthesis \)" or comma.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE 'BEGIN' EXPECTED

MEANING Missing 'Begin' in the schema.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

Schema Syntax Errors Error Messages A-9

MESSAGE BLANKS WILL BE REMOVED

MEANING A blank ' ' character in a password has been suppressed before writing the
password to the root �le.

ACTION Edit and remove.

MESSAGE 'CAPACITY:' EXPECTED

MEANING CAPACITY statement must follow entry de�nition in the de�nition of data
sets in the set part of schema.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE DATABASE HAS NO DATA SETS

MEANING No data sets were de�ned in the set part of schema. The database must
contain at least one data set.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE DATABASE NAME TOO LONG

MEANING Database name has more than six characters.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE DATA SET SIZE EXCEEDS MPE/XL FILE SIZE LIMITS

MEANING The data set size, which is calculated using the media record length, the
capacity, and the blocking factor, exceeds the limitation of the MPE/iX �le
size.

ACTION Decrease the capacity of the data set. Edit the text �le, and run the Schema
Processor again.

MESSAGE DUPLICATE ITEM NAME

MEANING A duplicate item name is speci�ed.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

A-10 Error Messages Schema Syntax Errors

MESSAGE DUPLICATE ITEM SPECIFIED

MEANING The same data item name was used more than once in the entry de�nition of
data sets.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE DUPLICATE SET NAME

MEANING The same data set name was used to de�ne more than one data set in the set
part of schema.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE 'ENTRY:' EXPECTED

MEANING Each set de�ned in the set part of schema must contain ENTRY statement
followed by the data item names of the data items in entry.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE ENTRY LENGTH SHOULD BE LESS THAN 2048

MEANING Entry length exceeds 2047 halfwords.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE ENTRY TOO BIG

MEANING The number and size of the data items de�ned for an entry makes an
entry too big for maximum block size. The block size is speci�ed by the
$CONTROL or BLOCKMAX= command, or by default.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE ENTRY TOO SMALL

MEANING A detail data set that is not linked to any master data set must have a data
entry length of two or more halfwords. This length is determined by adding
the size in halfwords of each data item de�ned in the data entry.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

Schema Syntax Errors Error Messages A-11

MESSAGE ILLEGAL CHARACTER IN PASSWORD

MEANING The password cannot contain a period, semicolon, slash, or carriage return.

ACTION Edit and remove.

MESSAGE ILLEGAL ITEM NAME OR TERMINATOR

MEANING The data item name does not conform to naming rules. (Names must start
with a letter and can have up to 16 alphanumeric characters including + � ?
/ # $ & * @). Or if in the item part, it is not followed by a comma.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE ILLEGAL USER CLASS NUMBER

MEANING User class number de�ned in schema password part is not an integer between
1 and 63.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE INCREMENT NUMBER TOO LARGE

MEANING The increment number of entries, or the entries calculated from the percent,
exceeded maximum capacity minus initial capacity.

ACTION Change the increment amount to a smaller number.

MESSAGE INCREMENT PARAMETER IGNORED (INITCAP = MAXCAP)

MEANING The increment parameter is not used, since initial capacity is equal to
maximum capacity and expansion is not on.

ACTION Warning only; delete the increment parameter.

MESSAGE INCREMENT PARAMETER NOT ALLOWED

MEANING The increment capacity parameter can only be de�ned if the initial capacity
parameter is also de�ned.

ACTION Either specify a number for initial capacity along with the increment, or do
not specify the increment parameter. De�ning initial capacity and increment
option means allowing dynamic expansion for the data set.

A-12 Error Messages Schema Syntax Errors

MESSAGE INITIAL CAPACITY = MAXIMUM CAPACITY, NO EXPANSION

MEANING The initial capacity is equal to the maximum capacity, no dynamic expansion
for the data set.

ACTION Warning only.

MESSAGE INITIAL CAPACITY EXCEEDS MAXIMUM CAPACITY

MEANING The initial capacity de�ned is greater than maximum capacity.

ACTION Either change the maximum capacity or the initial capacity. Initial capacity
must be less than or equal to the maximum capacity.

MESSAGE ITEM LENGTH NOT INTEGRAL WORDS

MEANING Item length is not in an even number of bytes.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE ITEM TOO LONG

MEANING The length of a single data item cannot exceed 2047 halfwords.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE 'LANGUAGE:' EXPECTED

MEANING The Schema Processor expected to �nd a LANGUAGE statement after the
comma following the BEGIN DATABASE name statement.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE LANGUAGE NOT SUPPORTED

MEANING Language speci�ed is not supported on your system, or is not a valid
language.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

Schema Syntax Errors Error Messages A-13

MESSAGE MASTER DATA SET LACKS EXPECTED DETAIL(S)

MEANING Master data set was de�ned with a non-zero data count, but the number of
detail search items which back-referenced the master is less than the value of
the path count.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE MASTER DATA SET LACKS KEY ITEM

MEANING A master data set was de�ned without de�ning one of the data items in the
set as a key item.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE MAXIMUM CAPACITY EXCEEDS MPE/IX FILE SIZE LIMITS

MEANING The maximum capacity de�ned exceeds MPE/iX �le size limits (currently
MPE/iX �le limit is 4 gigabytes).

ACTION Change the maximum capacity to a smaller number.

MESSAGE MORE THAN ONE KEY ITEM

MEANING A master data set cannot be de�ned with more than one key item.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE MORE THAN ONE PRIMARY MASTER

MEANING User has de�ned more than one primary path for a detail data set.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE 'NAME:' OR 'END.' EXPECTED

MEANING Schema Processor expected, at this point, to �nd the beginning of another
data set de�nition, or the end of schema.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE NATIVE LANGUAGE SUPPORT ERROR

MEANING NLS/3000 returned an error.

ACTION Notify the system manager

A-14 Error Messages Schema Syntax Errors

MESSAGE 'PASSWORDS:' NOT FOUND

MEANING PASSWORDS statement must immediately follow the BEGIN DATABASE
statement in schema. If it does not, DBSCHEMA terminates execution.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE PASSWORD TOO LONG

MEANING A password de�ned in data schema cannot exceed eight characters.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE PHYSICAL RECORD (BLOCK) TOO LARGE

MEANING Although the speci�ed data entry is within the limit of 2048 halfwords, the
path pointers cause the physical record size to exceed 2048 halfwords.

ACTION Examine the schema text �le to �nd the error. Edit the entry to a smaller
size, and run the Schema Processor again.

MESSAGE REFERENCED SET NOT MASTER

MEANING The data set referenced by the detail data set search item is another detail
data set instead of a master data set.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE SCHEMA PROCESSOR LACKS NEEDED TABLE SPACE

MEANING Schema Processor is unable to expand its data stack to accommodate all of
the translated information which will make up the root �le. It continues to
scan the schema for the proper form, but will not perform all of the checks for
correctness nor will it create a root �le. To process the schema correctly, the
operating system must be con�gured with a larger maximum stack size.

ACTION Ask system manager to increase maximum stack size.

MESSAGE SEARCH OR KEY ITEM NOT SIMPLE

MEANING All data items de�ned in data schema as master data set key or detail data
set search items must be simple items.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

Schema Syntax Errors Error Messages A-15

MESSAGE SEARCH AND KEY ITEMS NOT OF SAME LENGTH

MEANING Master key item must be the same length as any related detail data set search
item.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE SEARCH AND KEY ITEMS NOT OF SAME TYPE

MEANING Master key item must be of the same type as any related detail data set
search item.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE SET HAS NO PATHS AVAILABLE

MEANING More detail data set search items have speci�ed a relationship with a master
data set than the number speci�ed in the master set's path count.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE SORT ITEM OF BAD TYPE

MEANING Data item de�ned as sort item must be of type U, K, or X.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE SORT ITEM NOT IN DATA SET

MEANING Detail data set's entry de�nition does not include an item which is speci�ed as
a sort item for another item in the entry.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE SORT ITEM SAME AS SEARCH ITEM

MEANING The same item cannot be both a search and a sort item for the same path.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

A-16 Error Messages Schema Syntax Errors

MESSAGE TOO MANY DATA ITEMS

MEANING The item part of schema cannot have more than 1023 data item names.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE TOO MANY DATA SETS

MEANING The database cannot have more than 199 data sets.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE TOO MANY ERRORS

MEANING The speci�ed or default number of errors has been exceeded. Processing is
terminated.

ACTION Correct the errors, or increase the ERROR parameter value.

MESSAGE TOO MANY ITEMS SPECIFIED

MEANING The data set entry cannot have more than 255 data items.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE TOO MANY PATHS IN DATA SET

MEANING Detail data set entries cannot have more than 16 search items.

ACTION Examine the schema text �le to �nd the error. Edit the text �le, and run the
Schema Processor again.

MESSAGE UNDEFINED ITEM REFERENCED

MEANING A data item appearing in the data set de�nition was not previously de�ned in
the item part of schema.

ACTION Examine the schema text �le and �nd the incorrect statement. Edit the text
�le, and run the Schema Processor again.

MESSAGE UNDEFINED SET REFERENCED

MEANING Master data set referenced by detail search item was not previously de�ned in
the set part of schema.

ACTION Examine the schema text �le and �nd the incorrect statement. Edit the text
�le, and run the Schema Processor again.

Schema Syntax Errors Error Messages A-17

Library Procedure Error Messages

The success of each call to a TurboIMAGE/XL library procedure is reected upon return to
the user by the condition code and the value of the return status in the �rst element of the
status area.

If the procedure fails to execute properly, the condition code is set to CCL (Condition Code
Less) and the return status is a negative integer. In this section, \Library Procedure File
System and Memory Management" describes the negative integers resulting from �le system
and memory management failures, while \Library Procedure Calling Errors" describes the
negative integers resulting from calling errors and communications errors respectively.

If the procedure operates properly but encounters an exceptional condition, such as end-of-�le,
the condition code is set to CCG (Condition Code Greater) and the return status is a positive
integer. \Library Procedure Exceptional Conditions" describes the positive integers resulting
from exceptional conditions. If the procedure operates properly and normally, the condition
code is set to CCE (Condition Code Equal) and the return status is zero.

In addition to the return status, all TurboIMAGE/XL library procedures put information
about the procedure call into the �fth through tenth elements of the status area. This
information can be useful in debugging your programs, because it describes the conditions
under which the particular results were obtained. This information is used by DBEXPLAIN
and DBERROR when they are interpreting the results of TurboIMAGE/XL calls.

In a few cases this information is not returned by the TurboIMAGE/XL procedure because
it uses the same locations in the status area for returning other data. Speci�cally, successful
execution of DBFIND, DBGET, DBUPDATE, DBPUT, or DBDELETE puts other
information here as described in chapter 5 of this manual. For all other returns from a library
procedure, the speci�ed elements of the status area have the following contents:

Status Area Changes for MPE/iX Native Applications

Element TurboIMAGE/V and Compatibility Mode TurboIMAGE/XL

5 PB-relative address of the caller. 0

6 Bits 6{15: Intrinsic number of called library
procedure.
Bits 0{3: Zero or access mode in which
database is opened.

No change.

7 16-bit address of the database. First 16 bits of the database
address.

8 16-bit address of the data set name or
quali�er.

Second 16 bits of database
address.

9 Value of the mode parameter. No change.

10 PB-relative address of the library procedure
or the Compatibility Mode switch stub.

0

A-18 Error Messages Library Procedure Error Messages

Abort Conditions

In general, four types of error conditions can cause TurboIMAGE/XL to abort the calling
process:

1. A call from a Compatibility Mode user process with the hardware DB register not pointing
to the process stack.

2. A structurally damaged database.

3. An internal error in an MPE �le intrinsic which the calling procedure cannot correct.

4. An internal inconsistency in the database or the DBG, DBB, or DBU discovered by a
library procedure.

In case 1, the procedure prints the standard MPE run-time abort message. In cases 2, 3, and
4, TurboIMAGE/XL prints additional information on the standard list device about the error
prior to printing the standard MPE abort message. The �rst line of this information is:

ABORT: procedure name ON DATABASE name;

where procedure name is the name of the library procedure which caused the abort and name
is the name of the database being accessed at the time of the abort. \Library Procedure
Abort Condition Messages" describes additional lines of information which could appear prior
to the standard MPE abort message.

Some of the abort conditions are due to an error in one of the MPE �le intrinsics FOPEN,
FREADLABEL, FREADDIR, FWRITELABEL, FWRITEDIR, or FCLOSE. Aborts of
this type generally occur after the procedure has possibly altered the database so that the
database structure has been damaged in some way. Each of the messages in the section
entitled \Library Procedure Abort Condition Messages," which refer to a TurboIMAGE/XL
data �le, are followed by an MPE �le information display listing all of the characteristics of
the MPE data set or root �le where the error occurred, along with an MPE error number.

I and J Files

When TurboIMAGE/XL detects an internal inconsistency or other abnormal situation and the
database is enabled for dumping, it can create special \I" and \J" �les before it terminates.
The \I" �le consists of the user's stack and procedure call trace markers; the \J" �le consists
of the TurboIMAGE/XL database control blocks. TurboIMAGE/XL only creates these \I"
and \J" �les if a database user has run DBUTIL and speci�ed ENABLE database name FOR
DUMPING. So, if you want \I" and \J" �les, you must speci�cally request them through this
DBUTIL command. Note that \I" and \J" �les are useful for debugging only if the database
is known to be structurally sound.

Library Procedure Error Messages Error Messages A-19

Library Procedure File System and Memory Management

For return status values �1 through �6, the second element of the calling program's status
area is the data set number for which �le error occurred (zero indicates root �le). The
third element is the MPE failure code returned by the FCHECK intrinsic. Refer to MPE
documentation for meaning of this code.

-1 MESSAGE MPE file error nn returned by FOPEN on root file or data

set nn

MEANING For DBOPEN, error can indicate that database could not be
opened. Possible reasons:

Database name string not terminated with semicolon or blank.

Database does not exist or is secured against access by its
group or account security.

Database is already opened exclusively or in mode incompatible
with requested mode.

MPE �le system error occurred.

MPE �le system limit has been reached.

For DBOPEN, DBINFO, DBFIND, DBGET, DBUPDATE,
DBPUT, and DBDELETE, error can occur if:

The process has too many �les open external to the database.

Data set does not exist or is secured against access.

Some other MPE �le system error has occurred.

ACTION Determine which of probable causes applies and either modify
application program or see system manager about �le system
error.

-2 MESSAGE MPE file error nn returned by FCLOSE on root file or data

set nn

MEANING This is an exceptional error (should never happen) and is
returned only by DBOPEN or DBCLOSE. Indicates a hardware
or system software failure.

ACTION Notify system manager of error.

A-20 Error Messages Library Procedure File System and Memory Management

-3 MESSAGE MPE file error nn returned by FREADDIR on root file or data

set nn

MEANING This is an exceptional error (as �2 above) and is returned
by DBOPEN, DBFIND, DBGET, DBUPDATE, DBPUT,
DBDELETE.

ACTION Notify system manager of error.

-4 MESSAGE MPE file error nn returned by FREADLABEL on root file or

data set nn

MEANING This is an exceptional error (as �2 above) and is returned by
DBOPEN, DBINFO, DBFIND, DBGET, DBUPDATE, DBPUT,
DBDELETE, and DBUNLOCK.

ACTION Notify system manager of error.

-5 MESSAGE MPE file error nn returned by FWRITEDIR on root file or

data set nn

MEANING This exceptional condition could be returned when DBPUT,
DBDELETE, DBUPDATE, or DBCLOSE calls FWRITEDIR.

ACTION Notify system manager of error.

-6 MESSAGE MPE file error nn returned by FWRITELABEL on root file or

data set nn

MEANING This exceptional condition could be returned when
DBPUT, DBDELETE, DBUNLOCK, or DBCLOSE calls
FWRITELABEL.

ACTION Notify system manager of error.

-7 MESSAGE Previous MPE file error nn found in desired buffer

MEANING This exceptional condition could be returned due to corrupted
bu�er for multi-user environment from DBPUT, DBUPDATE, or
DBOPEN.

ACTION Notify your system manager of error.

-8 MESSAGE MPE file error nn returned by FUNLOCK on root file

MEANING This exceptional condition could be returned when DBOPEN
calls FUNLOCK on a remote database-access �le.

ACTION Notify system manager of error.

Library Procedure File System and Memory Management Error Messages A-21

-9 MESSAGE Cannot create control block name: MPE error %nn

MEANING This is an exceptional error returned when DBOPEN fails to call
HPFOPEN to create a control block.

ACTION Notify system manager or HP support personnel.

-10 MESSAGE MPE file error %nn returned by FFILEINFO on root file or

data set nn

MEANING This is an exceptional error returned when DBOPEN fails to call
FFILEINFO on the root �le.

ACTION Notify system manager or HP support personnel.

A-22 Error Messages Library Procedure File System and Memory Management

Library Procedure Calling Errors

-11 MESSAGE Bad base reference

MEANING For DBOPEN, the �rst two characters in base are not blank, or
database name contains special characters other than period. For
all other procedures, either �rst two characters in base do not
contain the value assigned by DBOPEN or the parameters passed
to the procedure are incorrect in type, sequence, or quantity.

ACTION Check application program's procedure call. Correct error in call.

-12 MESSAGE intrinsic name called without covering lock in effect

(See below for additional status code �12 message.)

MEANING For DBUPDATE, DBPUT, and DBDELETE, database has
been opened in DBOPEN mode 1 but there is no lock to cover
entry. DBPUT or DBDELETE to master requires data set or
database be locked. In all other cases, entry, set, or database can
be locked.

ACTION Modify program to apply proper lock or change mode.

-12 MESSAGE Database must be in logon group and account
(See above for additional status code �12 message.)

MEANING For DBOPEN, when the database has been opened in access
mode �2, the database must be in the user's logon group and
account.

ACTION Retry call to DBOPEN from group and account containing
database.

-13 MESSAGE Not allowed; must be creator of root file or database

MEANING DBOPEN failed because the caller is not the creator of the
database and no maintenance word is speci�ed.

ACTION Supply the correct maintenance word and retry call to DBOPEN.

Library Procedure Calling Errors Error Messages A-23

-14 MESSAGE Illegal intrinsic in current access mode

MEANING DBPUT and DBDELETE cannot be used with DBOPEN mode
2, 5, 6, 7, or 8. DBUPDATE cannot be used with DBOPEN
mode 5, 6, 7, or 8.

ACTION Modify program or notify current user that operation cannot be
performed.

-15 MESSAGE Setup for RDBA failed

MEANING DBOPEN will issue a DSLINE command and a REMOTE
HELLO on behalf of the user if a DBA �le is being used for
RDBA. One of these commands failed.

ACTION Check your DBA �le to make sure the DSLINE and REMOTE
HELLO commands are correct.

-21 MESSAGE Bad password

(See below for additional status code �21 messages.)

MEANING For DBOPEN, user class granted does not permit access to any
data in database. This is usually due to an incorrect or null
password or maintenance word.

ACTION Supply correct password and/or maintenance word.

-21 MESSAGE Bad data set reference

(See above or below for additional status code �21 messages.)

MEANING For DBINFO (modes 104, 201, 202, 301, and 302), DBCLOSE,
DBFIND, DBGET, DBUPDATE, DBPUT, DBDELETE, when
data set reference is:

Numeric but out of range of the number of data sets in
database

An erroneous data set name

A reference to data set which is inaccessible to user class
established when database opened

For DBFIND, this error is also returned if referenced data set is a
master. Erroneous data set name can arise when a terminating
semicolon or blank is omitted.

ACTION Check application program's procedure call. Correct error in call.

A-24 Error Messages Library Procedure Calling Errors

-21 MESSAGE Bad data item reference

(See above for additional status code �21 messages.)

MEANING For DBINFO (modes 101, 102, and 204), data item reference is:

Numeric but out of range of the number of data items in
database

An erroneous data item name

A reference to data item which is inaccessible to user class
established when database opened.

An erroneous data item name can arise when a terminating
semicolon or blank is omitted.

ACTION Check application program's procedure call. Correct error in call.

-22 MESSAGE Maintenance word required

MEANING For DBOPEN, maintenance word is required for non- creator to
access the database.

ACTION Supply the correct maintenance word.

-23 MESSAGE Data set not writable

MEANING For DBPUT and DBDELETE, database has been opened in
DBOPEN mode 1, 3, or 4 and user has read but not write access
to the referenced data set.

ACTION Modify access mode set in procedure call or notify current user
operation cannot be performed.

-24 MESSAGE Operation not allowed on automatic master data set

MEANING For DBPUT and DBDELETE, the referenced data set is an
automatic master.

ACTION Modify data set name in call or in data set type in schema.

-30 MESSAGE ILR enabled and bad access

MEANING The database has been ported from MPE V with ILR enabled.
The only allowable access to the database is DBOPEN, mode
1{8, or DBUTIL to disable ILR.

ACTION Open the database with mode 1{8 or disable ILR.

Library Procedure Calling Errors Error Messages A-25

-31 MESSAGE Bad mode

MEANING This error occurs in all procedures when the mode parameter
is invalid. For DBGET, mode is 7 or 8 and referenced data set
is a detail, or mode is 5 or 6 and referenced data set is a detail
without search items.

ACTION Correct mode in procedure call.

-32 MESSAGE Unobtainable access mode; AOPTIONS requested: n,
granted: m

MEANING For DBOPEN, root �le cannot be opened with FOPEN using
the access options (AOPTIONS) requested for the speci�ed
access mode. The second element of the calling program's status
area contains the requested AOPTIONS, and the third element
contains the AOPTIONS granted to DBOPEN by the MPE �le
system.

This error usually occurs either due to concurrent database
access by other users or due to MPE account or group security
provisions.

ACTION See the MPE/iX Intrinsics Reference Manual for meaning of
AOPTIONS values.

Action depends on program's design. Normally notify user that
requested access mode is not available.

-33 MESSAGE Mode 7 diagnostics not allowed

MEANING For DBGET, mode 7 is not appropriate for diagnostics.

ACTION Use a di�erent mode for DBGET when diagnostic item list is in
e�ect.

-34 MESSAGE Database must be recovered before access is allowed.

MEANING The system failed while the MUSTRECOVER option was
enabled. The MUSTRECOVER option prevents write access to
the database until it is recovered with DBRECOV.

ACTION Recover the database with DBRECOV.

A-26 Error Messages Library Procedure Calling Errors

-51 MESSAGE Bad list length

MEANING For DBGET, DBUPDATE, and DBPUT, the list is too long.
This can occur if list is not terminated with a semicolon or blank.
It can also occur for otherwise legitimate lists which are too long
for TurboIMAGE/XL's work area.

It will never occur for numeric lists.

ACTION Shorten list array contents. If necessary, change to numeric list.

-52 MESSAGE Bad list or bad item

MEANING For DBGET, DBUPDATE, or DBPUT, the list parameter is
invalid. list either has a bad format or contains a data item
reference which meets one of the following conditions:

It is out of range of the number of data items in the database.

It refers to an inaccessible data item.

It duplicates another reference in the list.

For DBFIND, the item parameter contains a data item reference
which meets one of the following conditions:

It is out of range of the number of data items in the database.

It is not a search item for the referenced data set.

ACTION Check procedure call. Correct error in call or parameter.

-53 MESSAGE Missing search or sort item

MEANING For DBPUT, a search or sort item of the referenced data set is
not included in list parameter.

ACTION Check procedure call. Correct error in call or parameter.

-60 MESSAGE Illegal file equation on root file

MEANING When using an MPE FILE command with the database name or
a database-access �le name, only the �le designators and DEV=
parameters are allowed.

ACTION Reenter the MPE FILE command without illegal parameters.

-61 MESSAGE Error while obtaining information about file equation.

MEANING HPSWITCHTOCM procedure failed while trying to evaluate the
�le equation used for DBOPEN.

ACTION Correct the �le equation. If that does not resolve the error, notify
your system manager.

Library Procedure Calling Errors Error Messages A-27

-80 MESSAGE Output Deferred not allowed with ILR enabled

MEANING DBCONTROL (mode 1) was used to request deferred output, but
deferred output cannot be used when ILR is enabled. Deferred
output is not initiated.

ACTION Do not use deferred output; or run DBUTIL and disable ILR.

-81 MESSAGE Output Deferred not allowed with ROLLBACK enabled

MEANING DBCONTROL (mode 1) was used to request deferred output, but
deferred output cannot be used when ROLLBACK is enabled.
Deferred output is not initiated.

ACTION Do not use deferred output; or run DBUTIL and disable
ROLLBACK.

-82 MESSAGE CIUPDATE is set to DISALLOWED; cannot use critical item

update

MEANING A process issued a call to DBCONTROL in mode 5 to use
the critical item update option, but CIUPDATE is set to
DISALLOWED for this database.

ACTION Do not use CIUPDATE. Or request that your database
administrator set CIUPDATE to ALLOWED for this database.

-88 MESSAGE Database bad: Third party indexing was in process (index

again).

MEANING Third party indexing is in progress or was in process but failed.

ACTION Notify database administrator. Reindex if failed.

-89 MESSAGE Database bad: Restructuring was in process (restore

database).

MEANING DBChangePlus is restructuring the database or was restructuring
the database but failed in the middle.

ACTION Notify database administrator. Restore the database and redo
restructuring if failed.

-90 MESSAGE Root file bad: unrecognized state: %octal integer

MEANING For DBOPEN, this error is returned if the root �le is in an
unrecognized state. The octal integer represents an ASCII error
code.

ACTION Restore old copy of the database.

A-28 Error Messages Library Procedure Calling Errors

-91 MESSAGE Bad root modification level

MEANING For DBOPEN, the software version of the DBOPEN procedure is
incompatible with version of Schema Processor which created root
�le.

ACTION Check with system manager that you have correct
TurboIMAGE/XL software. If necessary ask HP support
personnel about conversion.

-92 MESSAGE Database not created

MEANING For DBOPEN, the referenced database has not yet been created
and initialized by the DBUTIL CREATE command.

ACTION Run DBUTIL to create database. Try application program again.

-93 MESSAGE DATABASE ALREADY EXISTS.

MEANING Database already exists when attempted to create a new one.

ACTION Change the database name in the schema. If you want to create
in the same name, purge the existing one and then recreate.

-94 MESSAGE Database bad - Output deferred; may not be accessed in mode

nn

MEANING For DBOPEN, referenced database was damaged while being
modi�ed in deferred output.

ACTION Either DBLOAD from backup tape; or DBUNLOAD to ERASE
data and then DBLOAD.

-95 MESSAGE Database bad - Creation was in process (create again)

MEANING For DBOPEN, database was damaged by a �le system failure,
system failure, or TurboIMAGE/XL abort while DBUTIL
CREATE command was creating the database.

ACTION Because database was not created, run DBUTIL CREATE
command to create the database.

-96 MESSAGE Database bad - Erase was in process (erase again)

MEANING For DBOPEN, database was damaged by a �le system failure,
system failure, or TurboIMAGE/XL abort while DBUTIL
ERASE command was erasing the database.

ACTION Because data was not erased, run DBUTIL ERASE command to
erase the data from the database.

Library Procedure Calling Errors Error Messages A-29

-97 MESSAGE Database bad - ILR enable in process (enable again)

MEANING DBOPEN attempted to open a database but prior disable of ILR
was not complete.

ACTION Run DBUTIL with ENABLE command to enable ILR.

-98 MESSAGE Database bad - ILR disable in process (disable again)

MEANING DBOPEN attempted to open a database, but prior disable of ILR
was not complete.

ACTION Run DBUTIL with DISABLE command to disable ILR.

-99 MESSAGE UNSUPPORTED FEATURE.

MEANING A feature unavailable in TurboIMAGE is attempted.

ACTION Change the application to not use the feature that has not been
implemented.

Return statuses �100 through �107 are communication errors. For �100 through �102,
the third element of the calling program's status area is the MPE failure code returned by
DSCHECK intrinsics.

-100 MESSAGE DSOPEN failure

MEANING While executing a DBOPEN, TurboIMAGE/XL has encountered
a hardware failure trying to obtain a communications line.

ACTION Try opening the database again. If error persists, contact your
HP customer engineer.

-101 MESSAGE DSCLOSE failure

MEANING This is an exceptional error returned by DBOPEN or DBCLOSE.
It indicates a hardware or system software failure.

ACTION Notify system manager of problem.

-102 MESSAGE DSWRITE failure

MEANING A line failure has occurred while attempting an operation on
a remote database. Can be returned by DBOPEN, DBFIND,
DBGET, DBPUT, DBUPDATE, DBDELETE, DBLOCK,
DBUNLOCK, DBINFO, or DBCLOSE.

ACTION Try calling the procedure again. If error persists, notify system
manager.

A-30 Error Messages Library Procedure Calling Errors

-103 MESSAGE Remote 3000 stack too small

MEANING Command Interpreter on remote HP 3000 cannot obtain stack
space necessary to execute a DBOPEN or DBLOCK.

ACTION Ask system manager of remote system to increase available stack
size.

-104 MESSAGE Remote 3000 does not support TurboIMAGE/XL

MEANING This is an exceptional error and is returned by DBOPEN on the
remote system.

ACTION Notify system manager of problem.

-105 MESSAGE Remote 3000 cannot create TurboIMAGE control block.

MEANING This is an exceptional error and is returned by DBOPEN on the
remote system.

ACTION Notify system manager of problem.

-106 MESSAGE Remote 3000 data inconsistent

MEANING This is an exceptional error returned by same intrinsics as �102
(see message listed earlier in this appendix). It indicates a
hardware or system software failure.

ACTION Notify system manager of problem.

-107 MESSAGE NS 3000 or DS 3000 system error.

MEANING This is an exceptional error returned by same intrinsics as �102
(see above). It indicates a hardware or system software failure.

ACTION Notify system manager of problem.

-108 MESSAGE HPUNLOADCMPROCEDURE call failed.

MEANING This is an internal error encountered during switching to
Compatibility Mode.

ACTION Notify HP support personnel.

-109 MESSAGE ERROR RETURNED BY LOGINFO INTRINSIC.

MEANING LOGINFO intrinsic does not support the feature used by
DBOPEN. It is available in MPE/iX 5.5 and later releases.

ACTION The version of TurboIMAGE/XL can only be used on MPE/iX
5.5 or later. Notify your system administrator.

Library Procedure Calling Errors Error Messages A-31

-110 MESSAGE MPE OPENLOG intrinsic failure

MEANING OPENLOG returned error number nn to DBOPEN. This error
can occur following a call to DBOPEN when a database is
enabled for logging. Refer to MPE/iX Intrinsics Manual for
listing of second values of status array and error messages.

ACTION Notify system manager or HP support personnel.

-111 MESSAGE MPE WRITELOG intrinsic failure

MEANING When a database is enabled for logging, this error can be
returned by DBOPEN, DBCLOSE, DBPUT, DBUPDATE,
DBDELETE, DBMEMO, DBBEGIN, DBEND, DBXBEGIN,
DBXEND, DBXUNDO.

ACTION Notify database administrator.

-112 MESSAGE MPE CLOSELOG intrinsic failure

MEANING When a database is enabled for logging, this error can be
returned by DBCLOSE. Or CLOSELOG returned error number
nn to DBCLOSE.

ACTION Consult MPE error message documentation. Or notify database
administrator.

-113 MESSAGE FLUSHLOG returned error number nn to DBEND

MEANING User called DBEND in mode 2 to write the logging bu�er to disk,
but the MPE logging facility returned an error.

ACTION Consult MPE error message documentation.

-114 MESSAGE ROLLBACK without logging

MEANING DBOPEN has detected that ROLLBACK is enabled but logging
is not.

ACTION Notify your database administrator or HP support personnel.

-120 MESSAGE OUT OF STACK SPACE FOR A LOCK.

MEANING Available space is not su�cient to process a DBLOCK.

ACTION Notify HP support personnel.

A-32 Error Messages Library Procedure Calling Errors

-121 MESSAGE Descriptor count error

MEANING DBLOCK detected an error in the descriptor count (�rst element
of quali�er array) in locking mode 5 or 6.

ACTION Count must be a positive integer.

-123 MESSAGE Illegal relop in a descriptor

MEANING DBLOCK encountered a relop �eld containing characters other
than >=, <=, =t or t=.

ACTION Check contents of quali�er array.

-124 MESSAGE Descriptor too short. Must be greater than or equal to 9

MEANING DBLOCK encountered a lock descriptor less than 9 halfwords
long.

ACTION Check contents of quali�er array.

-125 MESSAGE Bad set name/number

MEANING DBLOCK quali�er array contains an invalid data set name or
number. (Refer to error �21 for rules.)

ACTION Check contents of quali�er array. Be sure names are delimited by
semicolon or space if less than 16 bytes long.

-126 MESSAGE Bad item name/number

MEANING DBLOCK quali�er array contains an invalid data item name or
number. (Refer to error �21 for rules.)

ACTION Check contents of quali�er array. Be sure names are delimited by
semicolon or space if less than 16 bytes long.

-127 MESSAGE Attempt to lock using a compound item

MEANING DBLOCK does not allow compound items in lock descriptors.

ACTION Modify locking strategy to lock on a non-compound item.

-128 MESSAGE Value field too short in a descriptor

MEANING A value �eld in a DBLOCK lock descriptor must be at least as
long as the data item for which it is speci�ed.

ACTION Check the length of the value �eld.

Library Procedure Calling Errors Error Messages A-33

-129 MESSAGE P-type item longer than P28 specified

MEANING DBLOCK does not allow P-type data items longer than 28 in
lock descriptors (27 digits plus sign).

ACTION Modify locking strategy to lock on a di�erent item.

-130 MESSAGE Illegal digit in a P-type value

MEANING DBLOCK has encountered a P-type value in a lock descriptor
with an invalid packed decimal digit.

ACTION Check quali�er array contents to determine why data is invalid.

-131 MESSAGE Lowercase character in type-U value

MEANING DBLOCK has encountered a lowercase character in a type-U
value speci�ed in a lock descriptor.

ACTION Check quali�er array contents to determine why data is invalid.

-132 MESSAGE Illegal digit in type Z value

MEANING Lock descriptor value speci�ed to DBLOCK contains an invalid
zoned decimal digit.

ACTION Check quali�er array contents to determine why data is invalid.

-133 MESSAGE Illegal sign in type Z value

MEANING Lock descriptor value speci�ed to DBLOCK contains an invalid
zoned decimal sign.

ACTION Check quali�er array contents to determine why data is invalid.

-134 MESSAGE Two descriptors conflict

MEANING DBLOCK has detected two lock descriptors in the same call that
lock the same or part of the same database entity. (For example,
lock on set and database in same request.)

ACTION Check quali�er array contents for conicting lock descriptors.

-135 MESSAGE Second lock without CAP=MR

MEANING A second call to DBLOCK has been made without an intervening
DBUNLOCK call and program does not have MR capability.

ACTION Read discussion of multiple calls to DBLOCK in chapter 4 of this
manual if you plan to use CAP=MR.

A-34 Error Messages Library Procedure Calling Errors

-136 MESSAGE Descriptor list exceeds 4094 bytes

MEANING DBLOCK allows a maximum length of 4094 bytes for lock
descriptor lists (quali�er array).

ACTION Change quali�er array contents so lock descriptor list is shorter.

-137 MESSAGE USER ABOUT TO WAIT FOR SELF.

MEANING There is a potential for an imminent deadlock situation.

ACTION Examine the locking scheme in your application; may need to call
DBUNLOCK and then DBLOCK.

-139 MESSAGE Invalid number of base IDs.

MEANING The number of base IDs involved in the multiple database
transaction is greater than 15.

ACTION Modify your application program so that not more than 15
databases are involved in a multiple database transaction.

-140 MESSAGE Bad base ID list.

MEANING The base IDs are not correctly formatted for a multiple database
transaction.

ACTION Modify your application program so that the base ID list is
correctly formatted. Refer to the discussion of DBBEGIN in
chapter 5 for more information.

-141 MESSAGE All MDBX databases must be on same system.

MEANING An attempt was made to begin a multiple database transaction
(MDBX) on remote databases when all databases were not
located on the same system (node).

ACTION Modify your application program to only perform multiple
database transactions on databases which are located on the same
system.

-142 MESSAGE All MDBX databases must log to the same log file.

MEANING All databases involved in a multiple database transaction
(MDBX) must have synchronized logging facilities.

ACTION Ask your database administrator or application programmer to
synchronize the logging facilities.

Library Procedure Calling Errors Error Messages A-35

-143 MESSAGE Logging must be enabled or disabled for all MDBX

databases.

MEANING All databases involved in a multiple database transaction
(MDBX) must have synchronized logging facilities.

ACTION Ask your database administrator or application programmer to
synchronize the logging facilities.

-144 MESSAGE MUSTRECOVER must be enabled or disabled for all MDBX

databases.' ' \MEANINGnAll databases involved in a multiple
database transaction (MDBX) must have synchronized logging
facilities.

ACTION Ask your database administrator or application programmer to
synchronize the logging facilities.

-145 MESSAGE Roll-back recovery must be enabled or disabled for all

MDBX databases.

MEANING All databases involved in a multiple database transaction
(MDBX) must have synchronized logging facilities.

ACTION Ask your database administrator or application programmer to
synchronize the logging facilities.

-146 MESSAGE Invalid transaction ID.

MEANING The transaction ID used in a call to DBBEGIN and in the call to
its corresponding DBEND do not match.

ACTION Contact your database administrator or application programmer.

-147 MESSAGE Mode doesn't match DBBEGIN mode.

MEANING The DBBEGIN mode and its corresponding DBEND mode must
match.

ACTION Contact your database administrator or application programmer.

-148 MESSAGE Base ID list doesn't match DBBEGIN base ID list.

MEANING The base ID list passed to DBBEGIN for a multiple database
transaction does not match the DBEND base ID list for the same
transaction.

ACTION Contact your database administrator or application programmer.

A-36 Error Messages Library Procedure Calling Errors

-151 MESSAGE Text length greater than 512 bytes

MEANING Text provided to DBBEGIN, DBEND, DBMEMO, DBXBEGIN,
DBXEND, DBXUNDO is too long.

ACTION Modify program.

-152 MESSAGE DBCLOSE called while a transaction is in process; DBBEGIN

called while a transaction is in process; DBXBEGIN called

while a transaction is in progress

MEANING A transaction is in process.

ACTION Call DBEND before DBCLOSE. Call DBEND before the next
DBBEGIN. Call DBXEND before the next DBXBEGIN.

-153 MESSAGE DBEND called while no transaction in progress

MEANING No DBBEGIN precedes the call to DBEND.

ACTION Call DBBEGIN before DBEND.

-160 MESSAGE ILR log file name conflict

MEANING A user �le has the same name as the ILR log �le name.

ACTION Replace the user �le with a valid MPE ILR log �le.

-161 MESSAGE Cannot check for an ILR log file conflict: file system

error nn

MEANING DBUTIL DISABLE command or call to DBOPEN failed to open
ILR log �le.

ACTION Check �le system error number.

-166 MESSAGE Cannot purge ILR log file: file system error nn

MEANING DBUTIL DISABLE, PURGE, or ERASE command could not
purge an ILR log �le because of a �le system error.

ACTION Check �le system error number.

-167 MESSAGE Cannot begin MPE XL XM transaction: XM error nn

MEANING The logical beginning of an MPE transaction failed. nn
represents the error number returned.

ACTION Notify HP support personnel.

Library Procedure Calling Errors Error Messages A-37

-168 MESSAGE Cannot attach n to MPE XL XM: file system error nn

MEANING Data set n could not be attached to the MPE transaction
recovery mechanism. MPE intrinsic FILEINFO or FLABELINFO
failed.

ACTION Notify HP support personnel.

-169 MESSAGE Invalid mode for XM attach options

MEANING An internal error has occurred.

ACTION Notify HP support personnel.

-170 MESSAGE Cannot open ILR log file: file system error nn

MEANING DBUTIL DISABLE command or call to DBOPEN was not able
to open ILR log �le due to �le system error.

ACTION Check �le system error number.

-172 MESSAGE Cannot read ILR log file: file system error nn

MEANING DBUTIL DISABLE command or call to DBOPEN was not able
to read ILR log �le due to �le system error.

ACTION Check �le system error number.

-173 MESSAGE Unable to obtain write access

MEANING DBOPEN has determined that it is necessary to perform ILR.
The current user does not have write access to the database.

ACTION Have the database opened by a user with write access.

-174 MESSAGE Bad mode for ILR

MEANING DBOPEN has determined that it is necessary to perform ILR.
The database must be opened for writing.

ACTION Open the database in mode 1{4.

-175 MESSAGE Cannot attach n to MPE XL XM: XM error nn

MEANING The data set n could not be attached to the transaction recovery
mechanism. nn is the MPE error number returned.

ACTION Notify HP support personnel.

A-38 Error Messages Library Procedure Calling Errors

-176 MESSAGE Cannot detach n from MPE XL XM: XM error nn.

MEANING The data set n could not be detached from the transaction
recovery mechanism. nn is the MPE error number returned.

ACTION Notify HP support personnel.

-177 MESSAGE MPE log file is not in the same volume set as the database.

MEANING MPE transaction recovery requires that the user log �le must
reside in the same volume set as the database.

ACTION Build the MPE user log �le in same volume set as database.

NOTE: Because all �les in a group are in same volume set, the
MPE LISTGROUP command indicates the volume set where a
database resides.

-178 MESSAGE Cannot detach n from MPE XL XM: file system error nn

MEANING The data set n could not be detached from the MPE transaction
recovery mechanism. The MPE intrinsic FLABELINFO failed.
nn is the �le system error number returned.

ACTION Notify HP support personnel.

-179 MESSAGE Cannot begin MPE XL transaction for attach: XM error nn

MEANING Before attaching the entire database to the MPE transaction
recovery mechanism, a logical beginning of a transaction is
speci�ed. The beginning of the transaction failed. nn is the error
number returned.

ACTION Notify HP support personnel.

-180 MESSAGE ILR log invalid - internal file name does not match root

file

MEANING DBUTIL DISABLE command or call to DBOPEN attempted
to open ILR log �le, but the �le names are inconsistent.
This is unlikely to occur unless the disk is corrupted, or the
TurboIMAGE/XL root �le or ILR log �le has been altered by a
privileged mode user.

ACTION Use DBRESTOR to restore database.

Library Procedure Calling Errors Error Messages A-39

-181 MESSAGE ILR log file invalid - internal group name does not match

root file

MEANING DBUTIL DISABLE command or call to DBOPEN attempted
to open ILR log �le, but group names do not match. (See error
�180 for possible cause.)

ACTION With ILR on, use the MPE RESTORE command with the
GROUP= option to restore the database.

To avoid this error, disable ILR when moving a database from
one group and account to another group and account.

-182 MESSAGE ILR log invalid - internal account name does not match root

file

MEANING DBUTIL DISABLE command or call to DBOPEN attempted to
open ILR log �le, but account names do not match. (See error
�180 for possible cause.)

ACTION With ILR on, use the MPE RESTORE command with the
ACC= option to restore the database.

To avoid this error, disable ILR when moving a database from
one group and account to another group and account.

-183 MESSAGE ILR log invalid - internal creation date does not match
root file

MEANING DBUTIL DISABLE command or call to DBOPEN was unable
to open ILR log �le because its creation date was not the same
as the creation date of the TurboIMAGE/XL root �le. Could
be caused by storing the database followed by a partial restore
with the MPE RESTORE command that excluded either the root
�le or the ILR log �le. If there was an intervening ENABLE or
DISABLE command, the creation dates will not match and only
a partial DBSTORE/DBRESTOR occurred.

ACTION To avoid this problem always store database with DBSTORE and
restore with DBRESTOR. Using these utilities assures that root
�le and ILR log �le are consistent.

A-40 Error Messages Library Procedure Calling Errors

-184 MESSAGE ILR log invalid - internal last access data access data

does not match root file

MEANING DBUTIL DISABLE command or call to DBOPEN was unable to
open ILR log �le because its last access date does not match the
date in the root �le. Possibly caused by a store and then a partial
restore (using the MPE RESTORE command) of the database .

ACTION Always store database with DBSTORE and restore with
DBRESTOR to assure consistent dates in root �le and log �le.

-187 MESSAGE ILR is already enabled for this database

MEANING DBUTIL ENABLE command attempted to enable a database for
ILR when ILR was already enabled.

ACTION Warning only.

-188 MESSAGE ILR is already disabled for this database

MEANING DBUTIL DISABLE command attempted to disable a database
for ILR when ILR was already disabled.

ACTION Warning only.

-189 MESSAGE Cannot begin MPE XL transaction for detach: XM error nn

MEANING Before detaching the entire database from the MPE transaction
recovery mechanism, a logical ending of a transaction is speci�ed.
The ending of the transaction failed. nn is the error number
returned.

ACTION Notify HP support personnel.

-190 MESSAGE Bad DBS

MEANING The Database System Control Block has been corrupted.

ACTION Notify HP support personnel.

-191 MESSAGE The DBS is full

MEANING DBOPEN has detected that there is no more room in the DBS to
hold any more DBG entries.

ACTION Notify HP support personnel.

Library Procedure Calling Errors Error Messages A-41

-192 MESSAGE Invalid DBU

MEANING The database user local control block has been corrupted.

ACTION Notify HP support personnel.

-193 MESSAGE DBU control block is full

MEANING The database user local control block is full.

ACTION Notify HP support personnel.

-194 MESSAGE Invalid DBB

MEANING The database bu�er control block has been corrupted.

ACTION Notify HP support personnel.

-195 MESSAGE Invalid DBG

MEANING The database global control block has been corrupted.

ACTION Notify HP support personnel.

-196 MESSAGE DBB control block is full

MEANING The database bu�er control block is full.

ACTION Notify HP support personnel.

-197 MESSAGE DBG control block is full

MEANING The database global control block is full.

ACTION Notify HP support personnel.

-198 MESSAGE Total DBOPEN count/user exceeds limit

MEANING The DBU index table, the DBUX, is full. This table is used to
map the baseid to the user's DBU. The DBUX holds a maximum
of 127 entries.

ACTION Notify HP support personnel.

A-42 Error Messages Library Procedure Calling Errors

-199 MESSAGE Cannot end MPE XL XM transaction: XM error nn

MEANING The logical ending of an MPE transaction failed. nn is the error
number returned. Any writes done on behalf of the intrinsic will
be rolled out.

NOTE: This error is only possible from DBOPEN, DBPUT,
DBDELETE, DBUNLOCK, or DBUPDATE.

ACTION Notify system manager.

-200 MESSAGE Database language not system supported

MEANING DBOPEN attempted to open the database and found that
the language of the database is not currently con�gured. The
collating sequence of the language is unavailable; DBOPEN
cannot open the database.

ACTION Notify system manager.

-201 MESSAGE Native Language Support not installed

MEANING NLS/3000 internal structures have not been built at system
start-up. The collating sequence table of the language of the
database is unavailable; DBOPEN cannot open the database.

ACTION Notify system manager.

-202 MESSAGE MPE Native Language Support error nn returned by NLINFO

MEANING The error number given was returned by NLS/3000 on a NLINFO
call in DBOPEN.

ACTION Notify system manager.

-204 MESSAGE USER STACK IS TOO SMALL FOR RECOVERY IN DBOPEN.

MEANING There is not su�cient stack space to perform dynamic transaction
recovery.

ACTION Increase the stack size for the user application.

-205 MESSAGE WRONG VERSION OF DS SUBSYSTEM.

MEANING Remote database access is done, however, the DS subsystem does
not support it.

ACTION Ensure that the DS subsystem is compatible with
TurboIMAGE/XL. Notify your system administrator.

Library Procedure Calling Errors Error Messages A-43

-206 MESSAGE Database exceeds limits

MEANING DBOPEN has detected that the remote TurboIMAGE/XL
database exceeds the local IMAGE limitations. Remote database
access cannot be completed. A TurboIMAGE/XL database can
only be accessed from a local node (which has IMAGE) if and
only if the remote database has not exceeded the IMAGE/3000
data set and data item limitations.

ACTION Access the remote TurboIMAGE/XL database from another local
node which also supports TurboIMAGE/XL.

-208 MESSAGE MPE error nn returned by FLABELINFO for MPE XL XM

MEANING MPE �le system error nn was returned by the intrinsic
FLABELINFO.

ACTION Notify HP support personnel.

-209 MESSAGE Invalid mode for MPE XL XM DETACH

MEANING An internal error has occurred.

ACTION Notify HP support personnel.

-210 MESSAGE MPE error nn on log file name

MEANING MPE �le system error nn was returned while trying to obtain the
user log �le name.

ACTION Notify HP support personnel.

-211 MESSAGE INVALID OR NO USER LABEL.

MEANING The dataset �le has no user label or a corrupted user label.

ACTION Notify your system administrator and HP support personnel.

-212 MESSAGE Database corruption was detected.

MEANING Internally, the target record either converted into a wrong slot
within a block or the record is beyond the dataset capacity.

ACTION Notify HP support personnel.

-213 MESSAGE DBXEND encountered XM error nn when ending a dynamic

transaction

MEANING This is an internal error.

ACTION Notify your system manager and HP support personnel.

A-44 Error Messages Library Procedure Calling Errors

-214 MESSAGE CANNOT CALL DBXUNDO WHEN A TRANSACTION IS STARTED BY

DBBEGIN.

MEANING DBXUNDO can be called only when DBXBEGIN is called and
not DBBEGIN. DBXBEGIN, DBXUNDO, and DBXEND are
compatible intrinsics. DBBEGIN can only be matched with
DBEND.

ACTION Correct the application.

-215 MESSAGE XM error nn encountered when rolling out a dynamic

transaction.

MEANING This is an internal error.

ACTION Notify your system manager and HP support personnel.

-216 MESSAGE Cannot end a dynamic transaction with DBEND

MEANING A transaction started by DBXBEGIN cannot use DBEND.

ACTION Replace the DBEND call with a call to DBXEND.

-217 MESSAGE DBOPEN mode n incompatible with Dynamic Rollback

MEANING Strong locking must be enforced for dynamic transactions.

ACTION Use DBOPEN mode 1, 3, or 4.

-218 MESSAGE Output deferred is incompatible with Dynamic Rollback

MEANING A database cannot be enabled for AUTODEFER when dynamic
roll-back intrinsics are used.

ACTION Either disable the database for deferred output or do not use
dynamic roll-back intrinsics.

-219 MESSAGE Remote database access is incompatible with Dynamic

Rollback

MEANING Remote database access cannot be used in conjunction with
dynamic roll-back.

ACTION Use either remote database access or dynamic roll-back intrinsics,
but not both.

Library Procedure Calling Errors Error Messages A-45

-220 MESSAGE Database and user log not attached to the same XM log set

MEANING When a database is enabled for DBRECOV roll-back recovery,
the database and user log must be attached to the same XM log
set.

ACTION Move the database and user log to the same XM log set.

-221 MESSAGE Cannot begin a transaction when a dynamic transaction is

active

MEANING Each DBOPEN can have only one dynamic transaction active at
one time.

ACTION Check the application to make sure that only one dynamic
transaction is active at one time.

-222 MESSAGE Only DBXUNDO allowed when dynamic transaction encounters

an error

MEANING A write intrinsic or DBUNLOCK error occurred while in an
active dynamic transaction. Only DBXUNDO can be called.

ACTION Change the application to call DBXUNDO when this type of
error occurs.

-223 MESSAGE Cannot DBXEND or DBXUNDO a transaction which was not

active

MEANING DBXEND or DBXUNDO called and no dynamic transaction is
active.

ACTION Do not call DBXEND or DBXUNDO unless the dynamic
transaction has been started by a DBXBEGIN.

-224 MESSAGE DBCONTROL mode 1 not allowed inside a dynamic transaction

MEANING DBCONTROL mode 1 enables a database for deferred output.
Deferred output and dynamic roll-back are incompatible.

ACTION Do not use DBCONTROL mode 1 when inside a dynamic
transaction.

-225 MESSAGE Record table full for Dynamic Rollback

MEANING The transaction de�ned in the user application exceeds the
maximum transaction size for dynamic transactions.

ACTION Shorten your dynamic transaction, or notify your system manager
and HP support personnel.

A-46 Error Messages Library Procedure Calling Errors

-226 MESSAGE Error occurred in when the 00 file was created

MEANING The transaction de�ned in the user application exceeds the
maximum transaction size for dynamic transactions.

ACTION Notify your database administrator and HP support personnel.

-227 MESSAGE Error occurred in 00 file recovery

MEANING An internal error has occurred.

ACTION Notify your database administrator and HP support personnel.

-228 MESSAGE DBXBEGIN encountered XM error nn when starting a dynamic

transaction

MEANING An internal error has occurred.

ACTION Notify your database administrator and HP support personnel.

-229 MESSAGE CANNOT DELETE MANUAL MASTER WITH EMPTY CHAINS.

MEANING Error occurred while deleting a manual master entry despite the
chain being empty.

ACTION Notify HP support personnel.

-230 MESSAGE A DBUNLOCK inside a dynamic transaction is not allowed

MEANING DBUNLOCK can only be performed when a dynamic transaction
has been completed with a DBXEND or DBXUNDO.

ACTION Change the application so that it does not call DBUNLOCK after
DBPUT, DBDELETE, or DBUPDATE is used inside a dynamic
transaction.

-231 MESSAGE During Dynamic Rollback recovery, internal procedure

failed; error nn

MEANING An internal error has occurred.

ACTION Notify your database administrator and HP support personnel.

-232 MESSAGE Illegal DBCLOSE mode 2 used during an active dynamic

transaction.

MEANING Only DBCLOSE mode 3 is allowed during an active dynamic
transaction.

ACTION Move the DBCLOSE call outside of the dynamic transaction, or,
if appropriate, change the DBCLOSE mode to 3.

Library Procedure Calling Errors Error Messages A-47

-233 MESSAGE Key data found in database does not match that in the memo

record

MEANING An internal error has occurred.

ACTION Notify your database administrator and Hewlett-Packard support
personnel.

-234 MESSAGE Cannot purge the 00 file

MEANING The 00 �le cannot be purged due to MPE �le system error.

ACTION Find out the �le system error number in element 2 of the status
array, and notify your database administrator and HP support
personnel.

-235 MESSAGE Dynamic transaction aborted due to DBCLOSE mode 1,

database closed.

MEANING Only DBCLOSE mode 3 is allowed during an active dynamic
transaction.

ACTION Move the DBCLOSE call outside of the dynamic transaction.

-236 MESSAGE Internal error nn occurred when opening the AUX file.

MEANING An internal error has occurred.

ACTION Notify your database administrator and Hewlett-Packard support
personnel.

-237 MESSAGE Cannot DBXEND or DBXUNDO a DBBEGIN transaction

MEANING A transaction started by a DBBEGIN cannot use DBXEND or
DBXUNDO.

ACTION Replace the DBXEND call with a call to DBEND or replace the
DBBEGIN call with a call to DBXBEGIN.

-238 MESSAGE MDBX, MODES OF DBXBEGIN/DBXEND DON'T MATCH.

MEANING DBXUNDO or DBXEND call, including the mode, does not
match with the dynamic multi-database transaction started by
DBXBEGIN.

ACTION Correct the application.

A-48 Error Messages Library Procedure Calling Errors

-240 MESSAGE ERROR IN DYNAMIC ROLLBACK.

MEANING The dynamic transaction could not be rolled back successfully.

ACTION Notify HP support personnel.

-241 MESSAGE BAD TAG FOR TURBOLKT TABLE.

MEANING The tag in the header record of the lock table,
TURBOLKT.PUB.SYS, appears to be corrupted.

ACTION Notify HP support personnel.

-242 MESSAGE Dynamic Rollback MDBX error.

MEANING Internal errors returned from various low level procedures which
handle dynamic multiple database transactions.

ACTION Notify HP support personnel.

-243 MESSAGE INVALID DYNAMIC ROLLBACK TRANSACTION ID.

MEANING The transaction id in the base parameter of the DBXUNDO call
does not match with its corresponding DBXBEGIN.

ACTION Correct the application.

-244 MESSAGE BASE COUNT OVER 15 FOR DMDBX.

MEANING The limit of the number of the databases to be included in a
dynamic multi-database transaction is 15.

ACTION Correct the application.

-245 MESSAGE OUT OF SPACE FOR TURBOGTX FILE.

MEANING The table, TURBOGTX.PUB.SYS, is full and additional
information cannot be added to this table.

ACTION Notify HP support personnel.

-246 MESSAGE ERROR IN TURBOGTX OPERATION RELATED TO ATC TRANSACTION.

MEANING Internal error encountered while updating the table,
TURBOGTX.PUB.SYS, as there is still an active SQL
transaction in the table.

ACTION Notify HP support personnel.

Library Procedure Calling Errors Error Messages A-49

-250 MESSAGE CBINIT FAILED ON nn

MEANING The initialization of a semaphore failed.

ACTION Notify HP support personnel.

-251 MESSAGE DBS WAS OBTAINED BUT NOT RELEASED.

MEANING There is an active lock granted on the �le,
TURBODBS.PUB.SYS, and not released.

ACTION Notify HP support personnel.

-253 MESSAGE Database enabled for indexing, but third-party indexing

is not configured

MEANING This message is returned if you are using third-party indexing
(TPI). The database has been enabled for indexing via DBUTIL,
but the third-party product or database is not con�gured
correctly.

ACTION Consult your third-party vendor documentation.

-254 MESSAGE Rollback of third-party index failed; indexing disabled

for data set

MEANING This message is returned if you are using third-party indexing
(TPI). The third-party product did not perform the necessary
roll-back function to maintain data set consistency.

ACTION Consult your third-party vendor documentation.

-255 MESSAGE Third-party indexing disable failed; indexing disabled

for database

MEANING This message is returned if you are using third-party indexing
(TPI). The third-party product did not perform the necessary
roll-back and single-index-disable functions to maintain database
consistency (see error �254).

ACTION Consult your third-party vendor documentation.

-256 MESSAGE Third-party index for path nn is full

MEANING This message is returned if you are using third-party indexing
(TPI). The index �le for the indicated path is full; nn represents
the path number.

ACTION Consult your third-party vendor documentation.

A-50 Error Messages Library Procedure Calling Errors

-257 MESSAGE Third-party index for path nn is damaged

MEANING This message is returned if you are using third-party indexing
(TPI). The index �le for the indicated path is damaged; nn
represents the path number.

ACTION Consult your third-party vendor documentation.

-258 MESSAGE Invalid argument for index

MEANING This message is returned if you are using third-party indexing
(TPI). The argument parameter contained an inappropriate value
for the speci�ed index.

ACTION Consult your third-party vendor documentation.

-259 MESSAGE Invalid mode for index

MEANING This message is returned if you are using third-party indexing
(TPI). The mode is not applicable to this type of index.

ACTION Consult your third-party vendor documentation.

-260 MESSAGE No previous list of qualified data entries

MEANING This message is returned if you are using third-party indexing
(TPI). The DBFIND mode speci�ed can only be used if a
quali�ed set of entries exists.

ACTION Consult your third-party vendor documentation.

-261 MESSAGE DYNAMIC PROCEDURE LOAD ERROR FOR INTRINSIC ROLLBACK.

MEANING There is a mismatch of the TurboIMAGE/XL version on the
system and MPE/iX. The failed DBPUT, DBDELETE, or
DBUPDATE could not be rolled back.

ACTION Notify your system administrator.

-262 MESSAGE OLDER/INCOMPATIBLE VERSION OF IMAGE/SQL.

MEANING The version of IMAGE/SQL on the system is incompatible with
TurboIMAGE/XL.

ACTION Notify your system administrator.

Library Procedure Calling Errors Error Messages A-51

-263 MESSAGE INVALID PCODE RETURNED BY TPI.

MEANING The third-party indexing product returned an unsupported or
invalid pcode to IMAGE/SQL.

ACTION Notify your system administrator or third-party vendor.

-264 TPIXMWRITERR

MESSAGE WRITE ERROR FOR TPI FILES.

MEANING Third-party indexing product encountered error from storage
management procedures. The transaction may be too big, causing
the transaction to stall.

ACTION Notify HP support personnel.

-265 MESSAGE ERROR IN THIRD-PARTY SHADOWING PACKAGE.

MEANING An internal error encountered while writing to third-party
shadowing �les.

ACTION Notify your HP personnel.

-266 MESSAGE ERROR WHILE DISABLING THIRD-PARTY SHADOWING.

MEANING An internal error encountered while disabling third-party
shadowing feature.

ACTION Notify your HP personnel.

-267 MESSAGE DAMAGED FILE ERROR RETURNED BY THIRD-PARTY SHADOWING.

MEANING The �les used for third-party shadowing appear to be corrupted.

ACTION Notify your HP personnel.

-268 MESSAGE INVALID PCODE RETURNED BY TPS

MEANING The third-party shadowing product returned an unsupported or
invalid pcode to IMAGE/SQL.

ACTION Notify your HP personnel.

-269 MESSAGE WRITE ERROR FOR TPS FILES.

MEANING The transaction management encountered error while writing to
third-party shadowing �les.

ACTION Notify your HP personnel.

A-52 Error Messages Library Procedure Calling Errors

-3nn MESSAGE Internal error returned

MEANING Internal error nn occurred while in an intrinsic.

ACTION Notify HP support personnel.

-305 MESSAGE INVALID DATA SET NUMBER.

MEANING Invalid set number for the master set. The internal error is
returned when trying to �nd the primary address in the set using
the key value.

ACTION Notify your HP personnel.

-306 MESSAGE INVALID DATA SET TYPE.

MEANING Invalid set type, must be master. The internal error is returned
when trying to �nd the primary address in the set using the key
value.

ACTION Notify your HP personnel.

-307 MESSAGE INVALID RECORD NUMBER FOUND.

MEANING The internal record pointer is bad.

ACTION Notify HP support personnel.

-308 MESSAGE ERROR RELATED TO BEGINNING OF FILE.

MEANING An internal error encountered while trying to obtain the
beginning of �le information.

ACTION Notify your HP personnel.

-309 MESSAGE BUFFER IO NOT YET COMPLETE.

MEANING An internal error encountered while performing internal bu�er
I/O of the data set.

ACTION Notify your HP personnel.

-310 MESSAGE ERROR RELATED TO END OF FILE.

MEANING An internal error encountered while obtaining the end of �le
information.

ACTION Notify your HP personnel.

Library Procedure Calling Errors Error Messages A-53

-312 MESSAGE INTERNAL ERROR ENCOUNTERED WHILE READING DATABASE BLOCK.

MEANING An internal error encountered while reading the data set �le.

ACTION Notify your HP personnel.

-314 MESSAGE ERROR WHILE OBTAINING PATH INFORMATION FOR SET.

MEANING An internal error encountered while obtaining the path
information for the set.

ACTION Notify your HP personnel.

-322 MESSAGE INTERNAL TURBOIMAGE ERROR RETURNED nn

MEANING TurboIMAGE internal procedure which processed the item list
encountered an unexpected error.

ACTION Notify HP support personnel.

-323 MESSAGE UNEXPECTED EMPTY RECORD FOUND.

MEANING An unexpected empty record found when expecting a data record.

ACTION Notify your HP personnel.

-331 MESSAGE DSET CAPACITY INFORMATION NOT CURRENT.

MEANING The data set capacity information appears to be incorrect in the
user label of the �le.

ACTION Notify your HP personnel.

-332 MESSAGE ERROR IN QLOCK OPERATION.

MEANING An internal error encountered while reading from or writing to
the QLOCK Table.

ACTION Notify your HP personnel.

-333 MESSAGE ERROR IN QOPEN OPERATION.

MEANING An internal error encountered while reading from or writing to
the QOPEN Table.

ACTION Notify your HP personnel.

A-54 Error Messages Library Procedure Calling Errors

-420 MESSAGE FEATURE NOT IMPLEMENTED.

MEANING Use of a feature not supported for B-Tree indices is detected.

ACTION Correct your application.

-421 MESSAGE BTE: unknown qualifier value for DBCONTROL mode 13.

MEANING The function code in the quali�er that passed to DBCONTROL
is invalid.

ACTION Modify the program.

-422 MESSAGE BTE: data set# not in valid range.

MEANING The data set number in the quali�er that passed to
DBCONTROL is invalid.

ACTION Modify the program.

-423 MESSAGE BTE: B-Tree already exists.

MEANING The data set you want to create a B-Tree for already has a
B-Tree associated with it.

ACTION Check which data set you wish to create a B-Tree for and correct
it.

-424 MESSAGE BTE: Failed to create B-Tree .

MEANING The creation of the B-Tree failed.

ACTION Check the third and fourth halfword of the quali�er parameter
passed to DBCONTROL for the status. This value should
provide extra error information in HPERRMSG format. Notify
HP support personnel.

-425 MESSAGE BTE: DB not opened exclusively.

MEANING The database is not opened exclusively while creating the B-Tree.

ACTION Modify the program. Creation of a B-Tree requires exclusive
access to the database.

-426 MESSAGE BTE: B-Tree doesn't exist.

MEANING A B-Tree does not appear to exist for a rebuildindex to work
with.

ACTION Check the existence of the B-Tree or modify the program.

Library Procedure Calling Errors Error Messages A-55

-427 MESSAGE BTE: FCLOSE, purge failed.

MEANING While trying to purge the B-Tree �le, FCLOSE failed.

ACTION Check the status of the B-Tree �le. This may indicate a problem
with the �le security of the B-Tree �le.

-428 MESSAGE BTE: Rebuildindex failed.

MEANING The process of rebuilding the B-Tree failed.

ACTION Check the third and fourth halfword of the quali�er parameter
you passed to DBCONTROL for the status. This value should
provide extra error information in HPERRMSG format. Notify
HP support personnel.

-429 MESSAGE BTE: DBFIND argument version is bad.

MEANING The version number in the argument parameter passed to
DBFIND is invalid. The version number tells DBFIND how to
interpret the argument data.

ACTION Modify the program. Refer to DBFIND in chapter 5.

-430 MESSAGE BTE: DBFIND (mode 4/24) argument type is bad.

MEANING The argument type in the argument parameter passed to
DBFIND is invalid.

ACTION Modify the program. Refer to DBFIND in chapter 5.

-431 MESSAGE BTE: DBFIND (mode 4/24) argument #1 length is bad.

MEANING The size (in bytes) for argument 1 in the argument parameter
passed to DBFIND is less than 0 or greater than the key length.

ACTION Modify the program.

-432 MESSAGE BTE: WILDCARD NOT ASCII

MEANING The wildcard is not a valid printable ASCII character (or a
decimal value in the range 33-126) in the DBCONTROL mode 14
call.

ACTION Correct your application.

A-56 Error Messages Library Procedure Calling Errors

-433 MESSAGE BTE: DBFIND (mode 4/24) argument #2 length is bad.

MEANING The size (in bytes) for argument 2 in the argument parameter
passed to DBFIND is less than 0 or greater than the key length,
or not valid for the search type.

ACTION Modify the program.

-434 MESSAGE BTE: Data set is a detail and not a master.

MEANING The data set being accessed is a detail data set and not a master
data set.

ACTION Correct application.

-436 MESSAGE BTE: Failed to extract data from root file.

MEANING The procedure to get information of the speci�ed data set failed.

ACTION Check the third and fourth halfword of the quali�er parameter
you passed to DBCONTROL for the status. This value should
provide extra error information in HPERRMSG format. Notify
HP support personnel.

-437 MESSAGE BTE: Failed to convert @c to [] dbfind.

MEANING Failed to convert wildcard or \greater than relation" into a
\range relation".

ACTION Notify HP support personnel.

-438 MESSAGE BTE: Bad item# in init btree.

MEANING The item number stored in the B-Tree control block is bad.

ACTION Notify HP support personnel.

-439 MESSAGE BTE: Conversion of key from external to internal format

failed.

MEANING An internal error occurred when converting a key from external
format to internal format. This conversion is done prior to
searching a B-Tree .

ACTION Notify HP support personnel.

Library Procedure Calling Errors Error Messages A-57

-440 MESSAGE BTE: XM Attach of index file failed.

MEANING Attaching a B-Tree to the Transaction Manager (XM) has failed.

ACTION Check the third and fourth halfword of the quali�er parameter
you passed to DBCONTROL for the status. This value should
provide extra error information in HPERRMSG format. Notify
HP support personnel.

-441 MESSAGE BTE: XM Detach of index file failed.

MEANING Detaching a B-Tree from the Transaction Manager (XM) has
failed.

ACTION Check the third and fourth halfword of the quali�er parameter
you passed to DBCONTROL for the status. This value should
provide extra error information in HPERRMSG format. Notify
HP support personnel.

-442 MESSAGE BTE: RELEASE of index file failed.

MEANING Releasing the B-Tree �le from GROUP/ACCOUNT security has
failed in DBCONTROL mode 13 call.

ACTION Check the third and fourth halfword of the quali�er parameter
you passed to DBCONTROL for the status. This value should
provide extra error information in HPERRMSG format. Notify
HP support personnel.

-443 MESSAGE BTE: SECURE of index file failed.

MEANING Securing the B-Tree �le (which makes normal
GROUP/ACCOUNT security apply to it) has failed in a
DBCONTROL mode 13 call.

ACTION Check the third and fourth halfword of the quali�er parameter
you passed to DBCONTROL for the status. This value should
provide extra error information in HPERRMSG format. Notify
HP support personnel.

-444 MESSAGE BTE: DBFIND on non-key field of master.

MEANING The item speci�ed in the parameter is not a key �eld in the
master data set. DBFIND on a master data set is allowed only if
there is a B-Tree for the data set, and if the DBFIND item is the
master data set's key item.

ACTION Modify the program, or add a B-Tree to the master data set.

A-58 Error Messages Library Procedure Calling Errors

-446 MESSAGE BTE: Argument 2 specified for relop of (</<=/=/>=/>).

MEANING A relational operator (<, <=, >, >=, =) was found in the
DBFIND argument, which implies that only one data argument
�eld is expected. However, the argument 2 length �eld is
non-zero, implying that a second argument data �eld was
unnecessarily passed into DBFIND. For relational operators,
DBFIND's argument 2 size must be zero.

ACTION Modify the program.

-447 MESSAGE BTE: Failed to build record holding root data information.

MEANING A procedure that extracts information from a root �le has failed.
(Several B-Tree internal routines depend upon this information.)

ACTION Notify HP support personnel

-448 MESSAGE BTE: Failed to setup information for userlabel 0 of data

set.

MEANING The procedure that writes data to user label #0 of a data set has
failed.

ACTION Notify HP support personnel.

-449 MESSAGE BTE: Failed to position index at start of key range.

MEANING The procedure to position the B-Tree pointer to the �rst key that
satis�es the current DBFIND has failed.

ACTION A REBUILDINDEX may solve the problem. If the problem
occurs again, notify HP support personnel.

-451 MESSAGE BTE: Root version less than "C4."

MEANING An attempt was made to add a B-Tree to a data set in an older
format database. Normally, DBUTIL's ADDINDEX command,
and DBCONTROL mode 13, will update an older format
database to \C4" level prior to adding a B-Tree.

ACTION Notify HP support personnel.

Library Procedure Calling Errors Error Messages A-59

-452 MESSAGE BTE: Key length greater than 252 bytes (maximum index key

size).

MEANING The key length of the data item you want to create a B-Tree
index on is too long. The length can not exceed 252 bytes.

ACTION Consider reducing the size of the item used as the data set key.
The 252 byte limitation is a result of a KSAM/iX limitation.
B-Trees are currently implemented using KSAM/iX �les.

-458 MESSAGE DBOPEN failed, out of disk space.

MEANING The system does not have enough disk space to create run-time
control blocks and global structures.

ACTION Notify your system administrator about the disk space and try
again after disk space is made available.

-1000 MESSAGE Switch failure, INFO nn, SUBSYS nn

MEANING The switch to Native Mode failed. SUBSYS nn is the subsystem
that failed. INFO nn is the error number returned from that
subsystem.

ACTION Notify HP support personnel.

-1001 MESSAGE Switch to CM failed on CX'PCBXIMAGE

MEANING Internal error. This error is returned when DBOPEN calls CM
CX'PCBXIMAGE and encounters a switch to CM failure.

ACTION Notify HP support personnel.

-1002 MESSAGE HPLOADCMPROCEDURE failed on CX'PCBXIMAGE

MEANING Internal error. This error is returned when DBOPEN calls
HPLOADCMPROCEDURE for CM CX'PCBXIMAGE and fails.

ACTION Notify HP support personnel.

-1003 MESSAGE Switch to NM failed on DBxxx, INFO nn SUBSYS nn

MEANING The switch to Native Mode failed. DBxxx is the
TurboIMAGE/XL intrinsic. SUBSYS nn is the subsystem
that failed. INFO nn is the error number returned from that
subsystem.

ACTION Notify HP support personnel.

A-60 Error Messages Library Procedure Calling Errors

-1004 MESSAGE HPLOADNMPROC FAILED ON CM intrinsic name

MEANING An internal error has occurred.

ACTION Notify HP support personnel.

Library Procedure Calling Errors Error Messages A-61

Library Procedure Exceptional Conditions

10 MESSAGE Beginning of file

MEANING DBGET has encountered beginning of �le during a backward
serial read. (No entries exist before the one previously accessed.)

ACTION Appropriate action depends on program design.

11 MESSAGE End of file

MEANING DBGET has encountered the end of �le during a forward serial
read. (No entries exist beyond the most recently accessed one.)

ACTION Appropriate action depends on program design.

12 MESSAGE Directed beginning of file

MEANING DBGET has been called for a directed read with a record number
less than 1.

ACTION Appropriate action depends on program design.

13 MESSAGE Directed end of file

MEANING DBGET has been called for a directed read with a record number
greater than the capacity of data set.

ACTION Appropriate action depends on program design.

14 MESSAGE Beginning of chain

MEANING DBGET has encountered end of chain during a backward chained
read.

ACTION Appropriate action depends on program design.

A-62 Error Messages Library Procedure Exceptional Conditions

15 MESSAGE End of chain

MEANING DBGET has encountered end of chain during a forward chained
read.

ACTION Appropriate action depends on program design.

16 MESSAGE Data set full

MEANING DBPUT has discovered that data set is full and cannot add a
record as requested. (Message received when return status word 1
is 16, and word 3 is 0.)

ACTION Restructure database with larger capacity for this data set.
(See chapter 8 for information on changing data set capacity in
conjunction with DBUNLOAD and DBLOAD.)

16 MESSAGE DBPUT cannot expand dataset#: Data set at maximum capacity

MEANING The current capacity is at the maximum allowed, the data set
cannot be expanded. (Message received when return status word
1 is 16, and word 3 is 1.)

ACTION If necessary, use DBChange Plus or third-party software to
increase the maximum capacity. (See MPE/iX Release 5.0
Communicator for information on using DBChange Plus. See
chapter 3 for information on detail data set capacity parameters
and chapter 5 for DBPUT.)

16 MESSAGE DBPUT dataset# incomplete expansion: File system error #

MEANING DBPUT cannot expand to the incremental amount due to a �le
system error. (Message received when return status word 1 is 16,
and word 3 is 2.)

ACTION Determine the �le system error (see �le system manual) and
correct the problem identi�ed. (See chapter 3 for information on
detail data set capacity parameters and chapter 5 for DBPUT.)

16 MESSAGE DBPUT cannot expand dataset#: Out of disc space (FSERR #)

MEANING There is no disc space for DBPUT to expand the data set.
(Message received when return status word 1 is 16, and word 3 is
3.)

ACTION Increase disc space and rerun your application. (See chapter 3 for
information on detail data set capacity parameters and chapter 5
for DBPUT.)

Library Procedure Exceptional Conditions Error Messages A-63

17 MESSAGE No master entry

(See below for additional status code 17 message.)

MEANING DBFIND is unable to locate master data set entry (chain head)
for speci�ed detail data set's search item value.

ACTION Appropriate action depends on program design.

17 MESSAGE No entry

(See above for additional status code 17 message.)

MEANING DBGET mode 1 has been called to reread an entry, but no
\current record" has been established or a call to DBFIND has
set the current record to 0. DBGET is unable to locate master
data set entry with speci�ed key item value.

DBGET has discovered that selected record is empty (does not
contain an entry) when called with mode 4.

DBUPDATE or DBDELETE was called when the \current
record" was not established or was empty.

ACTION Appropriate action depends on program design.

18 MESSAGE Broken chain

MEANING For DBGET with mode parameter equal to 5 (forward chained
read), the \next entry" on current chain (as designated by
internally maintained forward pointer for data set) contains
backward pointer which does not point to most recently accessed
entry (or zero for �rst member of a chain).

For DBGET with mode parameter equal to 6 (backward chained
read), the \next entry" on current chain in a backward direction
(as designated by internally maintained backward pointer for data
set) contains a forward pointer which does not point to most
recently accessed entry (or zero for last entry in a chain).

This error can occur in DBOPEN access modes 1, 5, and 6
because another user can make database modi�cations concurrent
with this user's accesses. When this error occurs, no data is
moved to user's stack, although internal pointers maintained by
TurboIMAGE/XL in the DBB are changed to new \o�ending"
entry. (It becomes the current entry.) Note that this error check
does not detect all structural changes. DBGET (mode 5 or 6)
makes check only when preceding call on data set was successful
DBFIND or DBGET.

ACTION Begin reading chain again from �rst or last entry.

A-64 Error Messages Library Procedure Exceptional Conditions

20 MESSAGE Database locked or contains locks

MEANING DBLOCK Mode 2: The database cannot be locked. Refer to
value of status element three: If 0, database already locked; if 1,
database contains locked sets or entries. Mode 4, 6: The lock
cannot be granted because the whole database is already locked.

ACTION Appropriate action depends on program design.

22 MESSAGE Data set locked by another process

MEANING DBLOCK has detected that the data set is locked by another
process or this process through a di�erent access path. Returned
in DBLOCK modes 4 and 6 only.

ACTION Appropriate action depends on program design.

23 MESSAGE Entries locked within set

MEANING DBLOCK has detected that data entries within requested data
set are locked by another process or this process through a
di�erent access path. Returned in DBLOCK mode 4 or 6 only.

ACTION Appropriate action depends on program design.

24 MESSAGE Item conflicts with current locks

MEANING Lock descriptors passed to DBLOCK specify a data item that is
di�erent than one used to set existing locks. TurboIMAGE/XL
allows no more than one data item per data set to be used at one
time for locking purposes. Returned in DBLOCK modes 5 and 6
only.

ACTION Appropriate action depends on program design.

25 MESSAGE Entries already locked

MEANING DBLOCK has detected that data entries requested to be locked
are already locked by another process or this process through a
di�erent access path. Returned in DBLOCK mode 6 only.

ACTION Appropriate action depends on program design.

Library Procedure Exceptional Conditions Error Messages A-65

26 MESSAGE Lock not performed since deadlock would result.

MEANING If it is a self-deadlock, the database or data set is already locked
by the same process but with a di�erent open count.

If it is locked by another process, it is because of the DBLOCK
call from another user that the real deadlock is encountered.

ACTION To avoid the self-deadlock, modify the program. If it is a real
deadlock caused by another process, call DBUNLOCK.

Use the SHOW dbname LOCKS command of DBUTIL on all
databases that the process has opened in order to determine the
source of the deadlock.

41 MESSAGE DBUPDATE attempted to modify value of critical item--key,

search or sort

(See below for additional status code 41 messages.)

MEANING DBUPDATE has been asked to change the value of a master data
set key item or a detail data set search or sort item. For master
data sets and regardless of the critical item update (CIUPDATE)
option settings for the database and the current process, this
message is always returned if you attempt to use DBUPDATE on
key items. For detail data sets, this message is returned when
you attempt to use DBUPDATE on a search or sort item and
the CIUPDATE option setting for the database or a particular
process does not permit this type of modi�cation.

ACTION Correct call, or notify user that item cannot be updated. For
detail data sets only, the application can be redesigned to use the
CIUPDATE option.

41 MESSAGE DBUPDATE: No chain head (master entry) for path decimal
integer: nn
(See above and below for additional status code 41 messages.)

MEANING User has called DBUPDATE to update a detail data set entry
with a search item value that does not match any existing key
item value in the corresponding manual master data set. The
digits nn identify the o�ending path number established by
the sequence in which the detail data set search items appear
in the set part of the schema. This message is associated with
the critical item update (CIUPDATE) option; see chapter 4 for
information about this option.

ACTION Notify user that the new data item value must already exist in
the associated manual master data set. If the new value is to be
allowed, add the manual master data set entry and try again.

A-66 Error Messages Library Procedure Exceptional Conditions

41 MESSAGE DBUPDATE: Full chain for path decimal integer: nn (contains

2,147,483,647 entries

(See above and below for additional status code 41 messages.)

MEANING User has called DBUPDATE to update a detail data set entry
associated with an automatic master data set chain that already
contains 2,147,483,647 values, the maximum allowable entries.
The digits nn identify the o�ending path number established by
the sequence in which the detail data set search items appear
in the set part of the schema. This message is associated with
the critical item update (CIUPDATE) option; see chapter 4 for
information about this option.

ACTION Consult with your database administrator to ensure the database
has no structural damage. It is likely that the database contains
an invalid chain count.

41 MESSAGE DBUPDATE: Full automatic master for path decimal
integer: nn
(See above and below for additional status code 41 messages.)

MEANING Automatic master data set is full. User has called DBUPDATE
to update a search item in a detail data set, and the
corresponding key item value could not be added to the
automatic master data set. The digits nn identify the o�ending
path number established by the sequence in which the detail
data set search items appear in the set part of the schema. This
message is associated with the critical item update (CIUPDATE)
option; see chapter 4 for information about this option.

ACTION Your database administrator needs to restructure the database,
increasing the capacity of the automatic master data set.
Refer to chapter 8 in this manual for information on database
restructuring.

Library Procedure Exceptional Conditions Error Messages A-67

41 MESSAGE DBUPDATE: Full automatic master synonym chain for path

decimal integer: nn
(See above for additional status code 41 messages.)

MEANING User has called DBUPDATE to update a detail data set search
item associated with an automatic master data set that cannot
accommodate another new value on the synonym chain for that
path number. The digits nn identify the o�ending path number
established by the sequence in which the detail data set search
items appear in the set part of the schema. This message is
associated with the critical item update (CIUPDATE) option; see
chapter 4 for information about this option.

ACTION Ask your database administrator to verify that the synonym
chain is indeed full and inspect your database for possible
structural damage.

42 MESSAGE Read only item

MEANING DBUPDATE has been asked to change the value of a data item
for which the user does not have write access.

ACTION Notify user, cannot update item. Or change password in
program.

43 MESSAGE Duplicate key item value

MEANING DBPUT has been asked to insert a data entry into a master data
set with a key item value which already exists in the data set.

ACTION Appropriate action depends on program design.

44 MESSAGE Can't delete master entry with non-empty detail chains

MEANING DBDELETE has been asked to delete a master data set entry
which still has one or more non-empty chains.

ACTION Appropriate action depends on program design.

49 MESSAGE Illegal buffer address

MEANING Calling program's bu�er (identi�ed by bu�er parameter) address
of DBGET or DBINFO is an unsupported memory address.

ACTION Correct the bu�er parameter with a valid address. CM user
stack, NM user stack, and the NM heap are valid memory areas
in which to create a bu�er parameter.

A-68 Error Messages Library Procedure Exceptional Conditions

50 MESSAGE Buffer too small

MEANING Calling program's bu�er (identi�ed by bu�er parameter) is
too small to accommodate the amount of information that
DBGET or DBINFO wishes to return without extending into
the parameters area. This message is returned only if the bu�er
is the last item in the user's stack, and will overow the stack
boundaries.

ACTION Correct procedure call, or change bu�er name or size.

51 MESSAGE STACK OVERFLOW FOR BASIC - IMAGE INTERFACE.

MEANING Insu�cient stack spcace for the BASIC program to execute.

ACTION Increase the stack size using the NMSTACKSIZE option with the
LINK command.

52 MESSAGE INVALID PARAMETER FOR BASIC - IMAGE INTERFACE.

MEANING The call to TurboIMAGE/XL intrinsic has invalid parameters.

ACTION Correct the application.

53 MESSAGE INVALID PARAMETER TYPE FOR BASIC - IMAGE INTERFACE.

MEANING The call to TurboIMAGE/XL intrinsic has invalid type for the
parameter(s).

ACTION Correct the application.

60 MESSAGE Database access disabled

MEANING DBOPEN has been called when the database has been disabled
for access.

ACTION Notify database administrator.

61 MESSAGE Database opened more than 63 times by same process.

MEANING DBOPEN has been called when the speci�ed database has
already been opened 63 times by the same process.

ACTION Correct your program so that DBOPEN does not open the same
database more than 63 times.

62 MESSAGE DBG Control Block is Full

MEANING Lock area within DBG is full.

ACTION Notify your database administrator.

Library Procedure Exceptional Conditions Error Messages A-69

63 MESSAGE DBG disabled; potential damage; only DBCLOSE allowed

MEANING Another process sharing the database has aborted because of
logical inconsistency or internal error in TurboIMAGE/XL,
leaving DBG in potentially inconsistent state. All user accesses
through existing DBG are disabled (except for DBCLOSE,
mode 1). Returned by all intrinsics.

If the database has been enabled for dumping, an I and a J �le
should exist. These �les can help determine the cause of the
error. The database should be recovered. This error has the same
e�ect on a database as a system failure.

ACTION Issue a DBCLOSE, mode 1.

64 MESSAGE No room for DBG entry in PCBX (MPE portion of stack)

MEANING The PCBX is full.

ACTION Try again when system resources are available.

65 MESSAGE Can't grant buffer request

MEANING DBCONTROL cannot increase the number of bu�ers as
requested by the user. A current count is returned.

ACTION Request a smaller number of bu�ers.

66 MESSAGE DBG pointed to by root file does not match

MEANING Root �le is not compatible with DBG.

ACTION Notify HP support personnel.

67 MESSAGE DBU disabled; potential damage; only DBCLOSE allowed

MEANING The user's control block is in an inconsistent state.

ACTION Issue a DBCLOSE, mode 1.

A-70 Error Messages Library Procedure Exceptional Conditions

68 MESSAGE Bad DBB

MEANING Another process sharing the database has aborted because of
logical inconsistency or internal error in TurboIMAGE/XL,
leaving DBB in potentially inconsistent state. All user accesses
through existing DBB are disabled (except for DBCLOSE,
mode 1). Returned by all intrinsics.

If the database has been enabled for dumping, an I and a J �le
should exist. These �les can help determine the cause of the
error. The database should be recovered. This error has the same
e�ect on a database as a system failure.

ACTION Issue a DBCLOSE, mode 1.

69 MESSAGE Bad database

MEANING AUTODEFER is active, and the database did not close normally.
The database has been corrupted.

ACTION Notify your database administrator.

71 MESSAGE LOGGING NOT ENABLED FOR USER

MEANING In order to perform the operation, the user requires an LG (user
logging) capability.

ACTION Grant the user an LG capability.

72 MESSAGE TURBOLKT TABLE FULL.

MEANING The lock table used to track locks on databases system-wide,
TURBOLKT.PUB.SYS, is full.

ACTION Notify your HP personnel.

73 MESSAGE ERROR IN TURBOLKT TABLE OPERATION.

MEANING An internal error occurred while reading from or writing to the
lock table, TURBOLKT.PUB.SYS.

ACTION Notify your HP personnel.

Library Procedure Exceptional Conditions Error Messages A-71

1nn MESSAGE No chain head (master entry) for path decimal integer: nn

MEANING User has attempted to add detail data entry with a search
item value that does not match any existing key item value in
corresponding manual master data set. The digits represented by
nn identify the o�ending path number established by the order in
which the search items occur in the set part of the schema.

ACTION Notify user cannot add entry or add manual master entry and try
again.

2nn MESSAGE Full chain for path decimal integer: nn (contains

2,147,483,647 entries)

MEANING User has attempted to add detail data entry to a chain which
already contains the maximum allowable (2,147,483,647) entries.
The digits represented by nn identify the o�ending path number
established by the order in which the search items occur in the
set part of the schema.

ACTION Consult with the database manager. The database could contain
an invalid chain count.

3nn MESSAGE Full automatic master for path decimal integer: nn

MEANING Automatic master data set is full. Therefore, when the user
attempted to add a search item to a detail data set, the
corresponding key value could not be added to the automatic
master data set. The digits represented by nn identify the
o�ending path number established by the order in which the
search items occur in the set part of the schema.

ACTION Restructure database, increasing capacity of automatic master.
(See chapter 8).

4nn MESSAGE Full automatic master synonym chain for path decimal
integer: nn

MEANING User has attempted to add a detail data set search item
associated with an automatic master data set that cannot
accommodate another new value on the synonym chain for that
path number. The digits nn identify the o�ending path number
established by the sequence in which the detail data set search
items appear in the set part of the schema.

ACTION Ask your database administrator to verify that the synonym
chain is indeed full and inspect your database for possible
structural damage.

A-72 Error Messages Library Procedure Exceptional Conditions

944 MESSAGE Warning: Assuming no message catalog

MEANING No message catalog is available.

ACTION Notify your system administrator.

Others MESSAGE Unrecognized return status: nn

MEANING Return status could not be recognized.

ACTION Notify HP support personnel.

Library Procedure Exceptional Conditions Error Messages A-73

Library Procedure Abort Condition Messages in I File

MESSAGE BUFFER SUPPLY CRISIS

MEANING Internal software inconsistency caused TurboIMAGE/XL to mismanage its
bu�er space.

ACTION Notify the database administrator and possibly HP support personnel. Save
FID information if it is printed. You might need to perform database recovery
procedures. (See chapter 7).

MESSAGE CRITICAL LABEL READ ERROR ON data set

MEANING Unable to read label of database �le.

ACTION Notify the database administrator and possibly HP support personnel. Save
FID information if it is printed. You might need to perform database recovery
procedures. (See chapter 7).

MESSAGE CRITICAL READ ERROR ON data set

MEANING While reading database �le, MPE �le read error was encountered.

ACTION Notify the database administrator and possibly HP support personnel. Save
FID information if it is printed. You might need to perform database recovery
procedures. (See chapter 7).

MESSAGE ERROR intrinsic name STATUS return status; DBERROR/DBEXPLAIN FAILED

I info S subsys

MEANING The speci�ed intrinsic encountered an error. ERROR displays the intrinsic.
STATUS is the return status from the intrinsic. The application called either
DBERROR or DBEXPLAIN. The switch to Native Mode failed. I is the error
number returned by the subsystem. S is the subsystem that failed.

ACTION Notify HP support personnel.

MESSAGE ESCAPE FROM TURBOIMAGE/XL; PC: $pcode CODE: $escape code

MEANING A hardware or software trap occurred. pcode and escape code are hex
numbers. The �rst four hex digits represent the error code; the last four
represent the subsystem number.

ACTION Notify the database administrator and HP support personnel if necessary.
Save the escape code number.

A-74 Error Messages Library Procedure Abort Condition Messages in I File

MESSAGE HPUNLOADCMPROCEDURE FAILED ON intrinsic name INFO info SUBSYS subsystem

MEANING A problem was encountered when switching to Compatibility Mode (CM).
INFO is the error returned by the subsystem. SUBSYS is the subsystem
which failed.

ACTION Notify HP support personnel.

MESSAGE LABEL WRITE ERROR ON data set

MEANING Unable to complete the writing of a user label on database �le.

ACTION Notify the database administrator and HP support personnel if necessary.

MESSAGE LOST FREE SPACE IN data set

MEANING Internal software inconsistency caused unused record locations in data set to
become lost or unavailable. File information display is printed for the data
set.

ACTION Notify the database administrator and HP support personnel if necessary.

MESSAGE NEGATIVE MOVE ATTEMPT: n

MEANING An internal software inconsistency has been found while attempting to move
data to or from user's stack.

ACTION Notify the database administrator and HP support personnel if necessary.

MESSAGE THE intrinsic name parm PARAMETER NOT ALIGNED ON A 16-BIT BOUNDARY

MEANING The designated parameter, parm, is 8-bit aligned.

ACTION Modify your application so that the parm parameter is 16-bit (halfword)
aligned.

MESSAGE THE USER CANNOT BE IN SPLIT-STACK MODE

MEANING An application must be running on the user's stack when calling a
TurboIMAGE/XL intrinsic. It is not permitted to run in split-stack mode.
This message is only applicable if you are running in Compatibility Mode.

ACTION Modify your Compatibility Mode application so that it is not running in
split-stack mode.

MESSAGE UNABLE TO CLOSE DATA SET

MEANING Unable to close a database �le.

ACTION Modify your application so that the parm parameter is 16-bit (halfword)
aligned.

Library Procedure Abort Condition Messages in I File Error Messages A-75

MESSAGE UNABLE TO OPEN A data set

MEANING Unable to open database �le.

ACTION Modify your application so that the parm parameter is 16-bit (halfword)
aligned.

MESSAGE WRITE ERROR ON data set

MEANING While writing into database �le, MPE �le write error was found.

ACTION Modify your application so that the parm parameter is 16-bit (halfword)
aligned.

MESSAGE WRONG NUMBER OF PARAMETERS OR BAD ADDRESS FOR PARAM #n

MEANING An address referenced by one of the parameters is not within the user's
stack area in memory. The n is a positional number of the parameter in the
procedure's calling sequence. The �rst parameter is #1, the second #2, and
so on.

ACTION Modify your application so that the parm parameter is 16-bit (halfword)
aligned.

A-76 Error Messages Library Procedure Abort Condition Messages in I File

Utility Error Messages

Two types of error messages are generated by the utility programs. The �rst type is
conditional errors, which occur when a utility cannot begin a function. Conditional errors do
not cause utility program termination; this is discussed in more detail below. The second type
is unconditional errors, which occur when a utility cannot complete a function. Unconditional
errors usually cause program termination.

Conditional errors are associated with accessing the speci�ed database. If you are in session
mode, conditional errors can be corrected without terminating the run. After printing the
error message, all utility programs, with the exception of DBUTIL, reprompt with the
message \WHICH DATABASE?", allowing you to reenter the database reference. If you
wish to terminate the utility program at this point, you can type a carriage return with or
without leading blanks. DBUTIL, after printing the error message, reprompts with two
greater than symbols (>>) at which point you can exit or enter another command. When
DBUTIL encounters any errors while executing, a job control word (JCW) is set to 99. You
can check the JCW in batch mode to determine whether or not a command was accepted. If
you are in job mode and a conditional error occurs while a function is executing, that function
is terminated.

The messages associated with conditional and unconditional errors are described along with
their meanings in the sections entitled \Utility Program Conditional Messages" and \Utility
Program Unconditional Messages."

Utility Program Conditional Messages

MESSAGE ACCESS DISABLED UNTIL RECOVERY HAS COMPLETED

MEANING Database is disabled for access, and recovery is enabled.

ACTION Users will be able to access the database after the recovery process has
completed.

MESSAGE ACCT NAME MORE THAN 8 CHARACTERS

MEANING The acctname part of DBNAME2 is too long.

ACTION Use EDITOR to change the FILE command.

MESSAGE APPARENT BACKUP/LOGFILE MISMATCH

MEANING A call to DBPUT, DBUPDATE, or DBDELETE, that apparently succeeded
when logging to the original database has failed during recovery.

ACTION Make sure the proper backup database was restored and that the matching
log �le was used for recovery.

Utility Program Conditional Messages Error Messages A-77

MESSAGE AUTODEFER MUST BE DISABLED BEFORE ILR CAN BE ENABLED

MEANING AUTODEFER option in DBUTIL has been enabled for the database.
ROLLBACK or ILR cannot be enabled while deferred output is enabled.

ACTION Use DBUTIL to disable AUTODEFER and enable ILR or ROLLBACK for
the database.

MESSAGE AUTODEFER MUST BE DISABLED BEFORE ROLLBACK CAN BE ENABLED

MEANING The rollback recovery option cannot be used when the database has been
enabled for AUTODEFER.

ACTION Use DBUTIL to disable AUTODEFER and enable ROLLBACK for the
database. (Refer to chapters 7 and 8 for more information on roll-back
recovery.)

MESSAGE BACKUP DATABASE AND LOG FILE DO NOT MATCH

MEANING The logid of the log �le and the logid in the database being recovered do not
match; i.e., the correct log �le is not being used for recovery.

ACTION Make sure that the database is using the correct log �le.

MESSAGE BAD DATABASE REFERENCE

MEANING Database reference following the utility program :RUN command has a syntax
error.

ACTION Correct the error in session mode or press return to terminate the program.

MESSAGE BAD MAINTENANCE WORD

MEANING User invoking the utility is not the creator of the referenced database and has
not supplied the correct maintenance word.

ACTION Correct the error in session mode or press return to terminate the program.

MESSAGE CANNOT ENABLE BREAK KEY

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE CANNOT OPEN DATABASE

MEANING The database cannot be opened at this time. It could already be open in a
mode that does not allow concurrent access.

ACTION Try the DBUTIL command again later.

A-78 Error Messages Utility Program Conditional Messages

MESSAGE CANNOT PARSE LOG FILE NAME

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE Cannot process data set file filename

MEANING Cannot read/write to the �le due to a �le system error. Another process may
have exclusive access to the data set.

ACTION Check if the data set �le exists or is locked. Retry.

MESSAGE CAN'T RECOVER DATA BASES IN STATISTICAL MODE

MEANING The CONTROL STATS command was entered subsequent to a RECOVER
command.

ACTION Rerun DBRECOV without using statistical mode, or use statistical mode
without specifying databases or recovery.

MESSAGE CAN'T OPEN DATABASE- DBERROR message

MEANING Database cannot be opened.

ACTION Check the DBERROR message to determine the problem.

MESSAGE CHECKSUM FAILURE ON LOG RECORD #n -EOF ASSUMED

MEANING Can occur if the system failed and a startup recovery is not performed. Also
can occur if a statistical recovery is used against an open log �le.

ACTION You may want to use a start recovery operation in the future, but this is not
absolutely necessary.

MESSAGE COULD NOT FIND OPEN DATABASE IN DATABASE TABLE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE CURRENT SINGLE TRANSACTION DOESN'T MATCH LOG TRANSACTION

MEANING Internal error.

ACTION Contact your database administrator.

Utility Program Conditional Messages Error Messages A-79

MESSAGE CURRENT TRANSACTION DOESN'T MATCH LOG FILE TRANSACTION

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE DATABASE-ACCESS FILE DOES NOT EXIST

MEANING No such �le exists in the logon user or account.

ACTION Check the �les in group to determine the correct �le name.

MESSAGE DATABASE-ACCESS FILE NAME MAY NOT BE QUALIFIED

MEANING The DBA �le name cannot be quali�ed with group and account.

ACTION Log on in the same group and account as the database- access �le.

MESSAGE DATABASE-ACCESS FILENAME TOO LONG

MEANING The �le name has more than six characters.

ACTION Rename the �le and try DBUTIL again.

MESSAGE DATABASE ALREADY CREATED

MEANING You have invoked DBUTIL in the CREATE mode and speci�ed the name of a
database which already exists.

ACTION In session mode, correct the error or press return to terminate program.

MESSAGE DATABASE ALREADY DISABLED FOR option

MEANING The option has already been disabled for this database.

ACTION Press return to terminate the program.

MESSAGE DATABASE ALREADY ENABLED FOR INDEXING USING third-party product name

MEANING This message is returned if you are using third-party indexing (TPI). The
message is generated from the DBUTIL ENABLE database name FOR
INDEXING command if this database has already been enabled for indexing.

ACTION This message is generated from the DBUTIL ENABLE command, and you
can disregard it if you want the database to remain enabled for indexing. You
can use the DBUTIL SHOW command to verify whether or not indexing is
enabled for a particular third-party product.

A-80 Error Messages Utility Program Conditional Messages

MESSAGE DATABASE ALREADY ENABLED FOR option

MEANING The option has already been enabled for this database.

ACTION Press return to terminate the program.

MESSAGE DATABASE CANNOT BE ERASED UNTIL RECOVERY HAS COMPLETED

MEANING Erasing database is attempted when recovery was started but not completed,
or while recovery is in RESTART mode.

ACTION Press return to terminate program. After the recovery process has completed,
the user can run DBUTIL again.

MESSAGE DATABASE CANNOT BE PURGED UNTIL RECOVERY HAS COMPLETED

MEANING Purging the database is attempted when recovery was started but not
completed, or while recovery is in RESTART mode.

ACTION Press return to terminate program. After the recovery process has completed,
the user can run DBUTIL again.

MESSAGE DATABASE CONFIGURED FOR INDEXING USING third-party product name, BUT

NOT ENABLED FOR INDEXING

MEANING This message is returned if you are using third-party indexing (TPI). The
message is generated from the DBUTIL DISABLE database name FOR
INDEXING command if the database has not yet been enabled for indexing.
Even if the database is con�gured for indexing, by default it remains disabled
for indexing until the database is enabled for indexing either by the TPI
con�guration utility or the DBUTIL ENABLE command.

ACTION Disregard the message if you want the database to remain disabled for
indexing.

MESSAGE DATABASE CONTAINS INVALID LOGGING IDENTIFIER

MEANING The log identi�er in the database root �le does not exist in the MPE logging
identi�er table.

ACTION Use DBUTIL to set a valid log identi�er into the database.

MESSAGE DATABASE HAS BEEN MODIFIED SINCE LAST RESTORE

MEANING The DBSTORE ag has not been reset. This can mean a backup database
has not been restored, or that there have been modi�cations since the last
restoration.

ACTION Restore the backup database, or use the CONTROL NOSTORE option and
reenter the RECOVER command.

Utility Program Conditional Messages Error Messages A-81

MESSAGE DATABASE n HASN'T BEEN CREATED YET

MEANING The database creator must run DBUTIL and CREATE the database.

ACTION In session mode, correct the error or press return to terminate the program.

MESSAGE DATABASE IN USE

MEANING Utility program cannot get exclusive access to the referenced database due to
other current users.

ACTION In session mode, press return to terminate the program.

MESSAGE DATABASE IS NOT ATTACHED TO ANY HP SQL DBEnvironment

MEANING This message is returned if you are not using ALLBASE/Turbo CONNECT
(ATC) and specify an ATC-speci�c option. In this case, the DETACH option
of the DBUTIL PURGE command is speci�ed, but the database is not
attached to any ALLBASE/SQL database environment (DBEnvironment).

ACTION Contact your database administrator.

MESSAGE DATABASE IS NOT EMPTY. LANGUAGE CANNOT BE CHANGED

MEANING The language can be changed only on a virgin root �le or an empty database.

ACTION In session mode, press return to terminate the program.

MESSAGE DATABASE IS REMOTE

MEANING You must be logged on to the same group and account containing the root �le
to use DBUTIL.

ACTION Do a remote logon and run DBUTIL from your remote session.

MESSAGE DATABASE LANGUAGE NOT SYSTEM SUPPORTED

MEANING The language of the database is not currently con�gured on your system.

ACTION Notify the database administrator.

MESSAGE DATABASE NAME MAY NOT BE QUALIFIED

MEANING The database name cannot be quali�ed with group and account.

ACTION Log on to the same group and account as the database and reenter the
command.

A-82 Error Messages Utility Program Conditional Messages

MESSAGE DATABASE NAME TOO LONG

MEANING The database name you speci�ed has more than six characters.

ACTION Try the command again with the correct name.

MESSAGE DATABASE NOT ENABLED FOR RECOVERY

MEANING The recovery ag in the database root �le is disabled.

ACTION Be sure you are running recovery against the appropriately restored database.
You can override the disable ag with DBUTIL if necessary.

MESSAGE DATABASE OR ACCESS FILE DOES NOT EXIST

MEANING No such �le exists in logon group or account.

ACTION Check the �les in your group to �nd the correct �le name.

MESSAGE DATABASE OR FILE ACCESS NAME REQUIRED

MEANING The command must include the database or access �le name.

ACTION Reenter the command.

MESSAGE DATABASE OR FILE ACCESS NAME TOO LONG

MEANING File name has more than six characters.

ACTION Reenter the command with the correct name.

MESSAGE DATABASE REQUIRES CREATION

MEANING The database creator must run the DBUTIL program in CREATE mode prior
to executing DBUNLOAD, DBLOAD, or DBUTIL in ERASE mode.

ACTION In session mode, correct the error or press return to terminate the program.

MESSAGE DATA SET n IS MISSING

MEANING The data set could have been purged, or was not restored.

ACTION Contact your database administrator or system manager.

Utility Program Conditional Messages Error Messages A-83

MESSAGE DBLOAD TO DIFFERENT DATABASE NAME

MAINTENANCE WORD IS NOT ALLOWED

MEANING The DBLOAD database name and maintenance word must be the same as
those used for DBUNLOAD.

ACTION Use a database name and maintenance word which were used for the
DBUNLOAD.

MESSAGE DBLOAD TO DIFFERENT GROUP OR ACCOUNT IS NOT ALLOWED.

MEANING DBLOAD must be done from the same group and account as the
DBUNLOAD �le.

ACTION Log on to the same group and account from which the DBUNLOAD was
done. Then use DBLOAD again.

MESSAGE DBNAME DBSTORE OF TIME, DATE REQUIRED

MEANING DBSTORE timestamp in database does not match those in DBOPEN records.

ACTION Restore the proper database or use the proper log �le. You can also use the
NOSTAMP option in recovery.

MESSAGE DBNAME1 MORE THAN SIX CHARACTERS

MEANING dbname1 is too long.

ACTION Use EDITOR to change the FILE command.

MESSAGE DETACH FAILED FROM DBEnvironment name

MEANING This message is returned if you are using ALLBASE/Turbo CONNECT
(ATC). The message is generated from the DBUTIL PURGE command
used with the DETACH option. The database is attached to the indicated
ALLBASE/SQL database environment (DBEnvironment), but the DETACH
option is unsuccessful due to ATC error nn . The PURGE command will
continue processing after the warning is issued.

ACTION Notify your database administrator.

MESSAGE 'DEV' MISSING

MEANING Either the keyword DEV or the equal sign (=) following it was not found.

ACTION Use EDITOR to change the FILE command.

A-84 Error Messages Utility Program Conditional Messages

MESSAGE DEVICE NOT 'DISC'

MEANING The string following the \#" sign was not \DISC."

ACTION Use EDITOR to change the FILE command.

MESSAGE DSDEVICE DOESN'T MATCH FILE COMMAND

MEANING The dsdevice name in the DSLINE command was not the same as the
dsdevice name in the FILE command.

ACTION Use EDITOR to change the command which is in error.

MESSAGE DSDEVICE NAME MORE THAN 8 CHARACTERS

MEANING The dsdevice name is too long.

ACTION Use EDITOR to change the command which is in error.

MESSAGE DUPLICATE FILE NAME

MEANING The required �le name is already assigned to another �le. Example: If the
ORDERS database requires six data sets (ORDERS01{ORDERS06), then a
previously de�ned �le ORDERS03 will trigger this message. This can occur if
a database is not purged before running DBRESTOR.

ACTION In session mode, correct the error or press return to terminate the program.

MESSAGE EMBEDDED BLANK IN DBNAME2

MEANING One of the periods separating the user name from the group name or the
group name from the account name was preceded or followed by a blank.

ACTION Use EDITOR to change the MPE FILE command.

MESSAGE ERROR READING ROOT FILE LABEL

MEANING DBUTIL is unable to read the root �le.

ACTION Contact your HP systems engineer.

MESSAGE ERROR READING ROOT FILE RECORD

MEANING DBUTIL is unable to read a root �le record.

ACTION Contact your HP systems engineer.

Utility Program Conditional Messages Error Messages A-85

MESSAGE ERROR WRITING ROOT FILE LABEL

MEANING DBUTIL found an error while writing the root �le label.

ACTION Contact your HP systems engineer.

MESSAGE ERROR WRITING ROOT FILE RECORD

MEANING DBUTIL found an error while writing to a root �le record.

ACTION Contact your HP systems engineer.

MESSAGE EXCEEDS ACCOUNT DISC SPACE

MEANING Amount of space required by the database plus the space already assigned to
other �les exceeds the disk space available to the account.

ACTION Request the system manager to increase account's disk space.

MESSAGE EXCEEDS GROUP DISC SPACE

MEANING The amount of disk space required by the database plus the space assigned
to other �les in the group exceeds the amount of disk space available to the
account.

ACTION Request the system manager to increase the group's disk space.

MESSAGE EXPECTED DATABASE STATE TO BE "CLOSED"

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE FCHECK FAILURE

FCLOSE FAILURE
FCONTROL FAILURE

FENTRY FAILURE

FGETINFO FAILURE

MEANING These are exceptional errors indicating a hardware or software failure.

ACTION Notify your database administrator of the failure.

MESSAGE FFILEINFO INTRINSIC FAILED

MEANING Internal error.

ACTION Contact your database administrator.

A-86 Error Messages Utility Program Conditional Messages

MESSAGE FGETINFO CANNOT VERIFY THAT FILE IS TYPE "LOG"

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE FGETINFO INTRINSIC FAILED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE FILE CODE IS NOT 0.

MEANING The database-access �le to be activated has a �le code of other than 0.

ACTION Be sure you have the correct EDITOR �le.

MESSAGE FILE EQUATES ARE ILLEGAL FOR DATABASE AND DATABASE ACCESS FILE

MEANING DBUTIL does not allow you to equate the name of the database or
database-access �le to another �le with the MPE FILE command.

ACTION Use the MPE RESET command to cancel the FILE command. You can either
break and resume execution or exit DBUTIL and run it again.

MESSAGE FILE �le name RECSIZE TOO SMALL: LOG(S) TRUNCATED.

MEANING User recovery �le size is too small to hold the largest log record.

ACTION Increase record size or use variable length records.

MESSAGE FILE NAME MAY NOT BE QUALIFIED

MEANING The �le name cannot be quali�ed with group and account.

ACTION Log on to the same group and account and reenter the command.

MESSAGE FILE NAME MORE THAN SIX CHARACTERS

MEANING The �le name part of dbname2 is too long.

ACTION Use EDITOR to change the FILE command.

MESSAGE FOPEN FAILURE ON logfilename:ferrmsg

MEANING You cannot open the log �le.

ACTION Examine ferrmsg to determine the cause.

Utility Program Conditional Messages Error Messages A-87

MESSAGE FREAD ERROR ON ASCII ACCESS FILE

MEANING Exceptional errors indicate a hardware or software failure.

ACTION Notify the database administrator of the error.

MESSAGE FWRITE ERROR ON filename:ferrmsg

MEANING FWRITE failure on user recovery �le.

ACTION Check ferrmsg to determine the cause.

MESSAGE GROUP NAME MORE THAN 8 CHARACTERS

MEANING The group name part of dbname2 is too long.

ACTION Use EDITOR to change the FILE command.

MESSAGE ILR MUST BE DISABLED BEFORE AUTODEFER CAN BE ENABLED

MEANING Deferred output option (AUTODEFER) cannot be used when the database
has been enabled for ILR or ROLLBACK.

ACTION Use DBUTIL to disable ILR or ROLLBACK and enable AUTODEFER.
(Refer to chapters 7 and 8 for more information on AUTODEFER.)

MESSAGE INCOMPLETE

PURGE

RELEASE

SECURE

MEANING The operation was interrupted while in process.

ACTION Contact your database administrator.

MESSAGE INCOMPLETE DBNAME2

MEANING The �le name or group name is followed by a period and the rest of the record
is empty. Or the next character is a semicolon (;).

ACTION Use EDITOR to change the FILE command.

MESSAGE INCOMPLETE LOCAL PART

MEANING The period following the local user name was missing, or the account name
was missing, or a comma followed the account name and the group name was
missing.

ACTION Use EDITOR to change the HELLO command in the RDBA access �le.

A-88 Error Messages Utility Program Conditional Messages

MESSAGE INCOMPLETE REMOTE PART

MEANING The period following the rusername was missing, or the raccountname was
missing, or the raccountname was followed by a comma and the rgroupname
was missing.

ACTION Use EDITOR to change the HELLO command in the RDBA access �le.

MESSAGE INSUFFICIENT DISC SPACE

MEANING The amount of disk space required for the database is not available on the
system.

ACTION Consult with the database administrator about disk space requirements.

MESSAGE INSUFFICIENT VIRTUAL MEMORY

MEANING Not enough virtual memory is available to open and access the database.

ACTION Try running the utility later when the system is not as busy.

MESSAGE INTERNAL ERROR--DATABASE CONTAINS INVALID LOGGING IDENTIFIER

MEANING The logging ID con�gured in the database through DBUTIL is not con�gured
through the MPE GETLOG command.

ACTION Contact your database administrator.

MESSAGE INVALID ACCESS CLASS NUMBER

MEANING The access class should be a number between 1 and 63.

ACTION Reenter with a valid access class number.

MESSAGE INVALID CHARACTER IN PASSWORD

MEANING Password does not consist of allowed characters.

ACTION Check the password speci�ed and reenter the command.

MESSAGE INVALID COMMAND

MEANING Command is unknown to the utility.

ACTION Check spelling or see manual for legal commands.

Utility Program Conditional Messages Error Messages A-89

MESSAGE INVALID CONTENTS OF ASCII ACCESS FILE

ACTIVATION / DEACTIVATION FAILED

MEANING The �le speci�ed is either

1. Not a database-access �le, or

2. It does not contain the valid format and parameters.

ACTION Either

1. Verify the correct database-access �le, or

2. Use EDITOR to make the required changes and try accessing again.

MESSAGE INVALID DATABASE CONTROL BLOCK

MEANING TurboIMAGE/XL encountered an inconsistency in the control blocks.

ACTION Contact your system engineer.

MESSAGE INVALID DATABASE ACCESS FILE NAME

MEANING The �le name or database name must be 1 to 6 characters starting with a
letter.

ACTION Reenter the command with the correct name.

MESSAGE INVALID DATABASE NAME

MEANING The �le name or database name must be 1 to 6 characters starting with a
letter.

ACTION Reenter the command with the correct name.

MESSAGE INVALID DATABASE NAME OR ACCESS FILE NAME

MEANING The �le name or database name must be 1 to 6 characters starting with a
letter.

ACTION Reenter the command with the correct name.

MESSAGE INVALID DB INTRINSIC CODE IN LOG RECORD CODE FIELD

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INVALID DELIMITER

MEANING The command or a space is incorrectly positioned.

ACTION Use HELP to check command syntax and reenter the command.

A-90 Error Messages Utility Program Conditional Messages

MESSAGE INVALID FIRST LOG FILE NAME

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INVALID FIRST LOG FILE SEQUENCE NUMBER

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INVALID FIRST LOG FILE TIMESTAMP

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INVALID IMAGE LOG RECORD DETECTED

MEANING DBRECOV encountered an unde�ned log record code.

ACTION Notify the database administrator and HP support personnel.

MESSAGE INVALID LANGUAGE

MEANING Language name or number has invalid characters.

ACTION Retype the correct language name or number.

MESSAGE INVALID LOG CODE IN LOG RECORD

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INVALID LOG DEVICE TYPE IN LOG RECORD

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INVALID LOG FILE DEVICE TYPE

MEANING Internal error.

ACTION Contact your database administrator.

Utility Program Conditional Messages Error Messages A-91

MESSAGE INVALID MAINTENANCE WORD

MEANING An incorrect maintenance word was used.

ACTION Check the maintenance word speci�ed and reenter the command.

MESSAGE INVALID NUMBER OF BUFFERS SPECIFIED

MEANING The number of bu�ers must be between 4 and 255.

ACTION Reenter the DBUTIL SET command with a valid number.

MESSAGE INVALID NUMBER OF USERS SPECIFIED

MEANING The minimum number of users allowed is 1 and the maximum is 120. The
ranges of users speci�ed must be in ascending order.

ACTION Reenter the DBUTIL SET command with a valid number.

MESSAGE INVALID PARAMETER

MEANING You speci�ed an incorrect parameter.

ACTION Use HELP to check the command format and reenter the command.

MESSAGE INVALID PASSWORD FOR DATABASE LOGGING IDENTIFIER

MEANING Log password does not correspond with the log identi�er used with the MPE
GETLOG command.

ACTION Use DBUTIL to set the valid log identi�er password into the database.

MESSAGE INVALID SUBSYSTEM ACCESS FLAG IN ROOT FILE

MEANING TurboIMAGE/XL detected an invalid value for the subsystem access in the
root �le. Valid accesses are READ, R/W, and NONE.

ACTION Reset the subsystem access ag using the DBUTIL SET command.

MESSAGE INVALID (x) IN COLUMN y

MEANING The x represents the invalid character found in column y .

ACTION Use EDITOR to change the database-access �le record which returns the error
message.

MESSAGE LANGUAGE MUST NOT BE LONGER THAN 16 CHARACTERS

MEANING The language name is too long.

ACTION Retype the correct language name.

A-92 Error Messages Utility Program Conditional Messages

MESSAGE LANGUAGE NOT SUPPORTED

MEANING The language is not supported on your system or is not a valid language
name.

ACTION Check with your database administrator for the con�guration of the language,
or enter a valid language name or number.

MESSAGE LESS THAN 3 RECORDS IN FILE!

MEANING The database-access �le does not contain a FILE, DSLINE, or HELLO
command.

ACTION Use EDITOR to create the missing records.

MESSAGE LOCAL ACCT NAME IS TOO LONG

MEANING lacctname is more than eight characters.

ACTION Use EDITOR to change the lacctname.

MESSAGE LOCAL GROUP NAME IS TOO LONG

MEANING lgroupname has more than eight characters.

ACTION Use EDITOR to change the lgroupname.

MESSAGE LOCAL USER NAME TOO LONG

MEANING lusername has more than eight characters.

ACTION Use EDITOR to change the lusername.

MESSAGE LOG BUFFER OVERFLOW

MEANING Bu�er space is insu�cient to build the log record.

ACTION Notify the database administrator and HP support personnel.

MESSAGE LOG BUFFER OVERFLOW DURING GET NEXT LOGICAL LOG RECORD

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE LOG FILE AND DATABASE IDs DO NOT MATCH

MEANING Internal error. Database is not using the correct log �le.

ACTION Contact your database administrator.

Utility Program Conditional Messages Error Messages A-93

MESSAGE LOGFILE AND DATABASE LOGID'S DO NOT MATCH

MEANING The restored database does not match the log �le.

ACTION Be sure the log �le and the backup database are properly attached.

MESSAGE LOG FILE HEADER RECORD IS NOT FIRST RECORD

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE LOGFILE IS EMPTY

MEANING The log �le has no records.

ACTION Be sure you have correctly identi�ed the log �le.

MESSAGE LOG FILE OPEN FAILED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE LOG FILE RECORD SIZE IS IMPROPER

MEANING Internal error. The records are not 256 bytes with a �xed length.

ACTION Be sure this �le is actually a log �le. Contact your database administrator.

MESSAGE LOGID:logid IS INVALID

MEANING The database logid has been removed from the MPE table.

ACTION Set the database to an existing logid , or use the MPE GETLOG command to
establish the database logid on the MPE table.

MESSAGE LOGID MUST NOT BE LONGER THAN 8 CHARACTERS

MEANING The logid name is too long.

ACTION Retype the correct logid to set into the database.

MESSAGE LOGID PASSWORD IS INCORRECT

MEANING The password has been altered, or you are using the wrong password.

ACTION Set the logid with the correct password into the database.

A-94 Error Messages Utility Program Conditional Messages

MESSAGE LOGGING IS ENABLED, CAN NOT CLEAR LOGID

MEANING The logid cannot be changed while logging is in process in order to ensure
validity of recovery and logging.

ACTION Change the logid after the recovery process has completed.

MESSAGE LOG PERIOD DOES NOT EQUAL ONE (1)

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE MAINTENANCE WORD CANNOT BE CHANGED UNTIL RECOVERY HAS COMPLETED

MEANING Changing maintenance word was attempted when recovery was enabled.

ACTION After the recovery process has completed use the DBUTIL SET command to
change the maintenance word.

MESSAGE MAINTENANCE WORD REQUIRED

MEANING The user invoking the utility is not the creator of the referenced database and
has not supplied a maintenance word.

ACTION If DBUTIL, reenter the command with the maintenance word. Otherwise
correct the error or press return to terminate the program.

MESSAGE MAINTENANCE WORD TOO LONG

MEANING The speci�ed maintenance word has more than eight characters.

ACTION Reenter the command with the correct maintenance word.

MESSAGE MAXIMUM ERROR COUNT HAS BEEN EXCEEDED

MEANING DBRECOV keeps track of all the errors that were encountered. If the number
goes past a certain threshold (default is 0, but can be con�gured up to a
maximum of 3000), DBRECOV will abort.

ACTION Correct the problems causing the errors. If the user speci�es an error count,
this count could also be increased.

MESSAGE MAXIMUM WARNING COUNT HAS BEEN EXCEEDED

MEANING DBRECOV keeps track of all the warnings that were encountered. If the
number goes past a certain threshold, DBRECOV will abort.

ACTION If the user speci�es a warning count, this count could be increased.

Utility Program Conditional Messages Error Messages A-95

MESSAGE MISSING!!

MEANING The keyword FILE is not found in the �rst record; or the keyword DSLINE is
not found in the second record; or the keyword HELLO is not found in any of
the remaining records.

ACTION Use EDITOR to modify the record in the database-access �le that returned
the error message.

MESSAGE MISSING DBNAME1

MEANING An equal sign (=), semicolon (;), or end of line followed the keyword FILE.

ACTION Use EDITOR to change the FILE command.

MESSAGE MISSING DBNAME2

MEANING dbname1= was followed by a semicolon (;) or end of line.

ACTION Use EDITOR to change the FILE command.

MESSAGE MISSING DSDEVICE

MEANING DEV= was followed by a semicolon (;), #, or the rest of the record was blank.

ACTION Use EDITOR to change the FILE command.

MESSAGE MISSING LOCAL PART

MEANING No characters preceded the =HELLO command.

ACTION Use EDITOR to change the HELLO command.

MESSAGE MISSING REMOTE PART

MEANING The remote-ID-sequence of the database-access �le is missing.

ACTION Use EDITOR to add the remote part.

MESSAGE MISSING REMOTE PASWD

MEANING HELLO was not followed by text, or was followed by a semicolon (;).

ACTION Using the EDITOR, change the HELLO command.

MESSAGE MISSING SEMI-COLON

MEANING DEV= was not preceded by a semicolon (;)

ACTION Use EDITOR to change the FILE command.

A-96 Error Messages Utility Program Conditional Messages

MESSAGE MISSING # SIGN

MEANING dsdevice was not followed by a #.

ACTION Use EDITOR to change the FILE command.

MESSAGE MORE THAN ONE (1) LOG FILE HEADER RECORD IS FOUND

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE MULTIPLE LOG IDENTIFIERS NOT ALLOWED

MEANING You tried to simultaneously recover databases that logged to di�erent log �les.

ACTION Run DBRECOV once for each log �le.

MESSAGE MUSTRECOVER MUST BE DISABLED BEFORE LOGGING CAN BE DISABLED

MEANING Logging cannot be disabled while MUSTRECOVER is active.

ACTION Disable MUSTRECOVER �rst and then disable logging.

MESSAGE MUSTRECOVER & ROLLBACK MUST BE DISABLED BEFORE DISABLING LOGGING

MEANING Logging cannot be disabled if either MUSTRECOVER or roll-back recovery is
active.

ACTION Disable both MUSTRECOVER and roll-back recovery before disabling
Logging.

MESSAGE NEGATIVE CURRENT RECORD NUMBER IN BACKSPACE REQUEST

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE NEGATIVE NUMBER OF BACKSPACES REQUESTED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE NLS RELATED ERROR

MEANING An error was returned by NLS/3000 on a DBOPEN on the database.

ACTION Notify the database administrator.

Utility Program Conditional Messages Error Messages A-97

MESSAGE NLINFO FAILURE

MEANING An error was returned by NLS/3000.

ACTION Notify database administrator.

MESSAGE NO DATABASE HAS BEEN SPECIFIED FOR RECOVERY

MEANING RUN command has been entered and no databases have been speci�ed for
recovery.

ACTION Use the RECOVER command to specify database(s) or EXIT to terminate.

MESSAGE NO INDEXING PRODUCT CONFIGURED

MEANING This message is returned if you are not using third-party indexing (TPI) and
you attempted to disable the database for indexing. The message is generated
by the DBUTIL DISABLE database name FOR INDEXING command when
the database is not con�gured for third-party indexing.

ACTION Disregard the message if your database is not con�gured for third- party
indexing.

MESSAGE NO INDEXING PRODUCT CONFIGURED; CANNOT ENABLE INDEXING

MEANING This message is returned if you are using third-party indexing (TPI).
The message is generated by the DBUTIL ENABLE database name FOR
INDEXING command when the database is not yet con�gured for third-party
indexing using the third-party utility. The database must be con�gured for
indexing before it can be enabled for indexing.

ACTION Refer to your third-party vendor documentation for instructions on
con�guring the database for indexing. Once you have con�gured the database
for indexing, retry enabling the database for indexing.

MESSAGE NON-CREATOR ACCESS NOT PERMITTED

MEANING You must be the database creator to perform this function, or you must use
the maintenance word.

ACTION Log on as the database creator, or use the maintenance word with the
command. If the maintenance word is not set, have the creator set one.

MESSAGE NONEXISTENT LOGID

MEANING You are trying to set an unrecognized logid into the database, or the database
logid has been removed from MPE.

ACTION Use the MPE GETLOG command to put the database logid into the MPE
table, or set an existing logid into the database.

A-98 Error Messages Utility Program Conditional Messages

MESSAGE NO SUCH DATABASE

MEANING Speci�ed database does not exist in users logon group.

ACTION Check base name and logon account and group. Press return to terminate the
program.

MESSAGE NOT A DATABASE ACCESS FILE

MEANING The speci�ed �le is not a database-access �le.

ACTION Check the �le name and try the command again.

MESSAGE NOT A DATABASE OR DATABASE ACCESS FILE

MEANING The speci�ed database is invalid, or the speci�ed �le is not a database-access
�le.

ACTION Check the database or �le name and try the command again.

MESSAGE NOT A DATABASE ROOT FILE

MEANING The speci�ed �le is not a database root �le.

ACTION Check the speci�ed database name and try the command again.

MESSAGE NOT A PRIVILEGED DATABASE ACCESS FILE

MEANING The database-access �le has not been activated.

ACTION Check the command and reenter it correctly.

MESSAGE NOT ALLOWED; MUST BE CREATOR

MEANING The user invoking the utility is not the creator of the database and the
database has no maintenance word.

ACTION Log on with correct user name, account and group.

MESSAGE NOT AN UNPRIVILEGED DATABASE ACCESS FILE

MEANING The database-access �le is already activated.

ACTION Check the command and reenter it if necessary.

Utility Program Conditional Messages Error Messages A-99

MESSAGE OUTMODED ROOT

MEANING The root �le of the speci�ed database corresponds to a di�erent version of
IMAGE software and is not compatible with the utility program currently
executing.

ACTION Consult with your database administrator to verify the correct version of the
software. Ask HP support personnel about conversion process.

MESSAGE PARAMETER EXPECTED

MEANING The command you speci�ed calls for another parameter.

ACTION Use HELP to �nd the correct command syntax.

MESSAGE PARAMETER MUST BE A COMMAND

MEANING Only command names can be speci�ed with the HELP command.

ACTION Reenter the command.

MESSAGE PARAMETER SPECIFIED TWICE

MEANING The command speci�ed requires only one parameter entry.

ACTION Reenter the command.

MESSAGE PARSE OF FILE REFERENCE FAILED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE PASSWORD IS INCORRECT

MEANING The logid password in the database is not the same as the password in the
MPE table.

ACTION Set the logid and correct password into the database. Or, use the MPE
ALTLOG command to alter the password in the MPE table so it matches the
one in the database.

MESSAGE PASSWORD MUST NOT BE LONGER THAN 8 CHARACTERS

MEANING The password is too long so it is incorrect.

ACTION Retype the correct logid and password.

A-100 Error Messages Utility Program Conditional Messages

MESSAGE PREMATURE EOF ON ASCII ACCESS FILE

MEANING DBUTIL encountered an end of �le mark before at least one =HELLO record
in the database-access �le.

ACTION Use EDITOR to change the ASCII �le.

MESSAGE RECORD SIZE EXCEEDS 128 CHARACTERS!

MEANING The longest record in the database-access �le exceeds the allowable length.

ACTION Use EDITOR to modify the database-access �le.

MESSAGE RECORDS ARE NUMBERED!

MEANING The database-access �le is numbered.

ACTION Use EDITOR to keep the �le unnumbered.

MESSAGE RECORD TABLE OVERFLOW

MEANING More than 1000 detail records have been added and they have been given
relative record numbers di�erent from those originally assigned. Wrong
database could have been restored, or not all modi�cations to the database
were logged.

ACTION Run DBRECOV without the NOABORTS option or recover to a point before
the occurrence of the error. Or restore the correct database. Or restore
database and perform DBUNLOAD/DBLOAD.

MESSAGE RELEASE OF ENTRY FROM RECOVERY TABLE FAILED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE REMOTE ACCT racctname TOO LONG

MEANING racctname is more than eight characters long.

ACTION Use EDITOR to change the HELLO command.

MESSAGE REMOTE ACCT PASSWORD TOO LONG

MEANING rupasw is more than eight characters.

ACTION Use EDITOR to change the HELLO command.

Utility Program Conditional Messages Error Messages A-101

MESSAGE REMOTE GROUP rgroupname TOO LONG

MEANING rgroupname is more than eight characters.

ACTION Use EDITOR to change the HELLO command.

MESSAGE REMOTE GROUP PASSWORD TOO LONG

MEANING rgpasw is more than eight characters.

ACTION Use EDITOR to change the HELLO command.

MESSAGE REMOTE USER rusername TOO LONG

MEANING rusername is more than eight characters.

ACTION Use EDITOR to change the HELLO command.

MESSAGE REMOTE USER PASSWORD TOO LONG

MEANING rupasw is more than eight characters.

ACTION Use EDITOR to change the HELLO command.

MESSAGE RESTART FILE OPEN FAILED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE ROLLBACK MUST BE DISABLED BEFORE AUTODEFER CAN BE ENABLED

MEANING Deferred output option (AUTODEFER) cannot be used when the database
has been enabled for ROLLBACK.

ACTION Disable ROLLBACK and enable AUTODEFER using DBUTIL. (Refer to
chapters 7 and 8 for more information on AUTODEFER.)

MESSAGE ROLLBACK MUST BE DISABLED BEFORE LOGGING CAN BE DISABLED

MEANING An attempt was made to disable logging while rollback was still enabled.

ACTION Use the DBUTIL DISABLE command to disable the database for
ROLLBACK, then logging.

MESSAGE ROOT FILE DOES NOT EXIST

MEANING A root �le with the name of the speci�ed database does not exist in the logon
group and account.

ACTION Check the database name you speci�ed and reenter the command.

A-102 Error Messages Utility Program Conditional Messages

MESSAGE SEQUENCE ERROR ON LOG RECORD #n - EOF ASSUMED

MEANING Log record numbers are out of sequence.

ACTION Notify the database administrator and HP support personnel. One likely
cause is that a log �le has been altered, or that a start recovery operation was
not performed after a system failure.

MESSAGE TIMESTAMP OUT OF SEQUENCE ON LOG RECORD #n - EOF ASSUMED.

MEANING Log record timestamps are out of sequence.

ACTION Notify the database administrator and HP support personnel. One likely
cause is that a log �le has been altered, or that a start recovery operation was
not performed after a system failure.

MESSAGE TOO MANY PARAMETERS

MEANING Too many parameters were entered with the command.

ACTION Reenter the command with the correct number of parameters.

MESSAGE UNABLE TO COPY GLOBAL AND TABLE INFORMATION TO RESTART FILE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE UNABLE TO GET NEXT LOGICAL LOG RECORD

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE UNABLE TO GET PRIOR LOGICAL LOG RECORD

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE UNKNOWN COMMAND, TRY HELP

MEANING DBUTIL does not recognize the command you speci�ed.

ACTION Enter the HELP command to get the list of DBUTIL commands.

Utility Program Conditional Messages Error Messages A-103

MESSAGE USER IS NOT CREATOR OF LOGGING IDENTIFIER

MEANING A function or activity was attempted by someone other than the creator of
the log identi�er.

ACTION Log on to the system as the user who created the log identi�er or as a user
with database administrator (SM) or operator (OP) capability.

MESSAGE WARNING: DATABASE MODIFIED AND NOT DBSTORED

MEANING The database has been enabled for logging but a backup copy has not been
made by executing DBSTORE.

ACTION Execute DBSTORE to make a backup copy of the database.

MESSAGE WARNING: MUSTRECOVER DISABLED BUT DATABASE NEEDS RECOVERY

CANNOT GUARANTEE A CONSISTENT DATABASE

MEANING The system failed while the MUSTRECOVER option was enabled. The
database needs to be recovered to ensure database consistency.

ACTION To ensure database consistency, respond with N at the DBUTIL prompt
to discontinue the DISABLE command, then recover the database with
DBRECOV. To allow access to the database without ensuring database
consistency by recovering the database, respond with Y.

MESSAGE WARNING: MUSTRECOVER IS ENABLED AND DATABASE NEEDS RECOVERY

MEANING The database is enabled for MUSTRECOVER and the database needs to be
recovered.

ACTION Use DBRECOV to recover the database.

MESSAGE WARNING: ROOT FILE ATC FLAG IS ON, BUT dbnameTC FILE IS MISSING

MEANING This message is returned if you are using ALLBASE/Turbo CONNECT.
The message is generated from the DBSTORE and the DBUTIL SHOW
database name ALL commands. The ALLBASE/Turbo CONNECT (ATC)
ag in the root �le indicates that the database is attached to at least
one ALLBASE/SQL database environment (DBEnvironment), but its
corresponding ATC �le does not exist. Therefore, DBSTORE will not store
the TC �le and DBUTIL will not show all the DBEnvironments the database
is attached to.

ACTION Inform your database administrator. The ALLBASE/Turbo CONNECT ag
and the �le can be synchronized by using the IMAGE/SQL utility DETACH
and ATTACH commands.

A-104 Error Messages Utility Program Conditional Messages

MESSAGE WARNING: ROOT FILE ATC FLAG IS ON, BUT dbnameTC FILE IS MISSING,

CANNOT DETACH

MEANING This message is returned if you are using ALLBASE/Turbo CONNECT
(ATC). The message is generated from the DBUTIL PURGE command used
with the DETACH option. The ATC ag in the root �le indicates that the
database is attached to at least one ALLBASE/SQL database environment
(DBEnvironment), but its corresponding ATC �le does not exist. Therefore,
DBUTIL cannot detach the speci�ed database. The PURGE command will
continue processing after the warning is issued.

ACTION Inform your database administrator. The ALLBASE/Turbo CONNECT ag
and the �le can be synchronized by using the IMAGE/SQL utility DETACH
and ATTACH commands.

MESSAGE WARNING: ROOT FILE ATC FLAG IS OFF, BUT dbnameTC FILE EXISTS

MEANING This message is returned if you are using ALLBASE/Turbo CONNECT
(ATC). The message is generated from the DBSTORE and the DBUTIL
SHOW database name ALL commands. The ATC ag in the root �le
indicates that the database is not attached to an ALLBASE/SQL database
environment (DBEnvironment), but its corresponding ATC �le exists.
Therefore, DBSTORE will not store the TC �le and DBUTIL will not show
all the DBEnvironments the database is attached to.

ACTION Inform your database administrator. The problem could be caused by restore
activity in the group. The ATC ag and the �le can be synchronized by using
the IMAGE/SQL utility DETACH and ATTACH commands.

MESSAGE WARNING: THE LANGUAGE OF THE DATABASE IS DIFFERENT FROM THE LANGUAGE

FOUND ON THE DBLOAD MEDIA. CONTINUE DBLOAD OPERATION / (Y/N):

MEANING The user has changed language of database between DBUNLOAD and
DBLOAD. DBLOAD wants user to be aware of potential di�erences in sorted
chains of the collating sequence of the two languages. (The language of
database on disk and database on tape are di�erent).

In session mode you are asked if you want to continue operation. In job mode,
DBLOAD will terminate execution.

ACTION After looking at the information, DBLOAD returns with the result on the
sorted chains in the database. Continue the operation by answering Y (yes).

Utility Program Conditional Messages Error Messages A-105

MESSAGE WARNING: THE NUMBER OF DATA SETS DEFINED IN THE SCHEMA IS LESS THAN

(OR GREATER THAN) THE NUMBER OF DATA SETS FOUND ON THE DBLOAD MEDIA.

MEANING You have added or deleted data sets from the database between a
DBUNLOAD and a DBLOAD. DBLOAD will continue with the load, but
data can be lost or put into the wrong sets due to an invalid set change.

ACTION Stop the DBLOAD, correct the schema, and perform DBLOAD again. Or, if
you are sure the database is not corrupt, allow DBLOAD to continue.

A-106 Error Messages Utility Program Conditional Messages

Utility Unconditional Error Messages

MESSAGE AUTOMATIC MASTER IS FULL ON PATH #n

MEANING DBLOAD is unable to load a detail entry because the automatic master set
associated with path n of the detail set is full.

ACTION Re-create the root �le with a larger capacity for automatic master. Rerun the
necessary utilities.

MESSAGE ***BAD DATABASE***

MEANING This message is issued by DBSTORE, DBRESTOR, and DBUNLOAD. It
means the database is agged \bad" because of a known structural error
due to an abnormal termination or to a system failure during DBLOAD or
some other \deferred output" operation. The current operation (DBSTORE,
DBRESTOR, DBUNLOAD) continues to function normally. DBLOAD
additionally prints the message \SERIAL UNLOAD FOLLOWS" and
automatically operates in serial mode. The database on disk retains its \bad"
ag and cannot be accessed through DBOPEN.

ACTION The database is not usable in its current state. Purge it and restore a backup
copy, or erase it and then load a tape written by DBUNLOAD or another
external copy of the data.

MESSAGE BROKEN FILE EQUATION CHAIN FOR TAPE FILE

MEANING Issued by DBSTORE if, in a chain of �le equations, the actual device
designator cannot be found.

ACTION Check your MPE FILE commands and reenter them correctly before running
DBSTORE.

MESSAGE CANNOT GET EXTRA DATA SEGMENT NECESSARY FOR RESTORE OPERATION

MEANING DBRESTOR was unable to get the extra data segment it needed for the
bu�ers used in the restore operation.

ACTION Wait until system resources are available and then try again.

MESSAGE CANNOT OPEN TERMINAL, TERMINATING

MEANING DBUTIL is unable to access the terminal.

ACTION Call HP systems engineer.

Utility Unconditional Error Messages Error Messages A-107

MESSAGE CAN'T CREATE NEW COPY OF FILE x (FS ERROR #)

MEANING MPE intrinsic FOPEN failed while creating a temporary �le.

ACTION Check the �le system error. Possible reasons: The speci�ed device does not
exist or has insu�cient space.

MESSAGE CAN'T GET SPECIFICATIONS VIA FGETINFO FOR THIS FILE x (FS error #)

MEANING MPE intrinsic FGETINFO failed. DBUTIL cannot get information for the
speci�ed �le.

ACTION Check the �le system error to determine cause.

MESSAGE CAN'T OPEN FILE x (FS ERROR #)

MEANING MPE intrinsic FOPEN failed.

ACTION Check the �le system error to determine cause.

MESSAGE CAN'T PURGE OLD COPY OF FILE x (FS ERROR #)

MEANING MPE intrinsic FCLOSE failed while purging the \old" �le.

ACTION Check the �le system error to determine cause.

MESSAGE CAN'T RESET MOVE FLAG FOR FILE x IN THE ROOT FILE

MEANING Error occurred while writing root �le label to reset the database return status.

ACTION Contact your database administrator.

MESSAGE CAN'T SAVE NEW COPY OF FILE x (FS ERROR #)

MEANING MPE intrinsic FCLOSE failed while saving the temporary �le.

ACTION Check �le system error to determine the cause.

MESSAGE CAN'T SET MOVE FLAG FOR FILE x IN ROOT FILE

MEANING DBUTIL set the root �le ag, and an error occurred while writing the root
�le label.

ACTION Contact your database administrator.

MESSAGE CHAIN IS FULL ON PATH #n

MEANING DBLOAD is unable to load a detail entry because the chain count for path
number n of detail set exceeds 231 �1 (or 2,147,483,647 entries).

ACTION Delete some of the entries and reload or change the database design.

A-108 Error Messages Utility Unconditional Error Messages

MESSAGE ***COPY FAILED***

MEANING An error occurred while copying the �le. DBUTIL has encountered a problem
reading or writing the �les. (It is possible the disk pack is bad.)

ACTION Restore the database and try the move again. Contact your database
administrator if the copy fails again.

MESSAGE COULD NOT ATTACH DATA SET n TO XM LOG FILE: FILE SYSTEM ERROR nn

MEANING The data set could not be attached to the MPE transaction recovery
mechanism. nn is the �le system error number returned.

ACTION Notify HP support personnel.

MESSAGE COULD NOT ATTACH DATA SET n TO XM LOG FILE: XM ERROR nn

MEANING The data set n could not be attached to the MPE transaction recovery
mechanism. nn is the error number returned.

ACTION Notify HP support personnel.

MESSAGE COULD NOT DETACH DATA SET n FROM XM LOG FILE: FILE SYSTEM ERROR nn

MEANING The data set n could not be detached from the MPE transaction recovery
mechanism. The MPE intrinsic FLABELOPEN failed. nn is the �le system
error number returned.

ACTION Notify HP support personnel.

MESSAGE COULD NOT DETACH DATA SET n FROM XM LOG FILE: XM ERROR nn

MEANING The data set n could not be detached from the MPE transaction recovery
mechanism. nn is the error number returned.

ACTION Notify HP support personnel.

MESSAGE COULDN'T OPEN THE DATABASE

MEANING No root �le exists for the speci�ed �le. The �le speci�ed might not be part of
the database.

ACTION Check the �le or database. Try the operation again with the correct �le name.

MESSAGE DATABASE STATE DOES NOT ALLOW MOVE TO BE DONE

MEANING The database is in a state in which a move cannot be performed.

ACTION Check the database. If the database has not been created, use the DBUTIL
CREATE command to create it. If the database is damaged, run recovery.

Utility Unconditional Error Messages Error Messages A-109

MESSAGE DATA SET FULL

MEANING Data set currently being loaded is full.

ACTION Re-create root �le, increase the data set's capacity and run the utilities again.

MESSAGE DATABASE TABLE OVERFLOWED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE DATABASE TABLE TRANSACTION COUNT IS NEGATIVE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE DBBEGIN FOUND AN ALREADY ACTIVE TRANSACTION

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE DBBEGIN FOUND PROCESS ALIVE, BUT NOT ACTIVE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE DBEND FOUND TRANSACTION STILL ALIVE AND ACTIVE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE DBEND FOUND TRANSACTION WHICH ALREADY ENDED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE ***DBSTORE FAILED - NO DATABASE STORED***

MEANING A �le error or other message follows explaining the problem.

ACTION Contact your database administrator.

A-110 Error Messages Utility Unconditional Error Messages

MESSAGE Dynamic capacity expansion in progress flag is on

MEANING The data set is being expanded by DBPUT in another process. The number
of entries and the current capacity may not be accurate since the data set is
being expanded at this time. If asterisks (***) are in the \no. of entries" and
\%max cap" �elds, then a previous DBPUT may have aborted while DBPUT
was expanding this data set.

ACTION If there are positive numbers in the \no. of entries" and \% max cap"
�elds, nothing needs to be done. This message is for information only. If
the asterisks are in these two �elds, then a DBOPEN must be performed to
correct the capacity information for the data set. DBOPEN can be done via
QUERY/3000 or any application. This DBOPEN should be the �rst open of
the database in order to correctly adjust the data set free count and the root
�le data set capacity �elds using the actual data set �le size. (See chapter 3
for more information on capacity expansion and chapter 5 for DBOPEN.)

MESSAGE EOF SEEN, PROGRAM TERMINATING

MEANING An end-of-�le (EOF) has been entered.

ACTION Run DBUTIL again, and do not type :EOF interactively. Or correct job
stream which contains error.

MESSAGE FGETINFO FAILURE

MEANING DBUTIL received an error when calling MPE FGETINFO.

ACTION Contact your database administrator.

MESSAGE FILE EQUATE FOR

DBSTORE

DBRESTOR

DBLOAD

DBUNLOAD

ONLY MAY USE DEV

MEANING If you specify an input/output �le with an MPE FILE command for any of
these utility programs, only the �le designators and DEV= parameters are
allowed.

ACTION Enter the MPE FILE command again and rerun program.

MESSAGE FILE NOT ON TAPE

MEANING Issued by DBRESTOR if the database to be restored is not on the tape.

ACTION Check your MPE FILE command and/or the tape you mounted.

Utility Unconditional Error Messages Error Messages A-111

MESSAGE FILE x ALREADY RESIDES ON DEVICE x

MEANING The �le speci�ed already resides on the device.

ACTION Continue with the next desired command, or exit from DBUTIL.

MESSAGE FREADDIR FAILURE

MEANING This is an MPE exceptional failure and is returned when DBUTIL calls
FREADDIR.

ACTION Contact your database administrator.

MESSAGE HARD TERMINAL READ ERROR, TERMINATING

MEANING DBUTIL cannot read input from terminal.

ACTION Notify HP systems engineer.

MESSAGE INTERNAL ERROR--CURRENT TRANSACTION COUNT IS NEGATIVE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--DATABASE SHOULD NOT BE OPEN AT THIS TIME

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--DBBEGIN FOUND PROCESS ALIVE, BUT TRAN STATE INACTIVE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--EXPECTED DATABASE TO BE OPEN FOR THIS PROCESS

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--FCLOSE INTRINSIC FAILED

MEANING Internal error.

ACTION Contact your database administrator.

A-112 Error Messages Utility Unconditional Error Messages

MESSAGE INTERNAL ERROR--FOPEN FAILS IN F'HEADLOG

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--FOPEN INTRINSIC FAILED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--FREADLABEL FAILS IN F'HEADLOG

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--FREADLABEL INTRINSIC FAILED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--FWRITELABEL INTRINSIC FAILED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--HEAP STAGING AREA OVERFLOWED

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--INVALID DATABASE TABLE ADDRESS

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--INVALID DBTAB'PROC'TAIL

MEANING Internal error.

ACTION Contact your database administrator.

Utility Unconditional Error Messages Error Messages A-113

MESSAGE INTERNAL ERROR--INVALID PASSWORD FOR DATABASE LOGGING IDENTIFIER

MEANING Log password does not correspond with the log identi�er in the log �le.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--INVALID PROCTABLE INDEX FOUND IN PROC'ACTIVELINK

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--INVALID RECOVERY TABLE ADDRESS

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--LOGID'TO'FNAME FAILURE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--NO PROCESS TABLE ENTRY EXISTS

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--PROBLEM RETURNING HEAP

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--PROCESS NOT IN PROCESS TABLE

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--PROCESS TABLE IS FULL

MEANING Internal error.

ACTION Contact your database administrator.

A-114 Error Messages Utility Unconditional Error Messages

MESSAGE INTERNAL ERROR--RECORD TABLE IS FULL

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE INTERNAL ERROR--UNABLE TO ALLOCATE THE HEAP

MEANING Internal error.

ACTION Contact your database administrator.

MESSAGE ***INVALID SET COUNT***

MEANING TurboIMAGE/XL found an inconsistency in the data set count.

ACTION Notify HP systems engineer.

MESSAGE INVALID TRANSACTION SEQUENCE DETECTED

MEANING Internal error. The transaction numbers are not consecutive.

ACTION Notify your database administrator and HP support personnel.

MESSAGE MOVE OF FILE x NOT ALLOWED: FILE IS NOT CORRECT TYPE (FILE CODE #)

MEANING The �le speci�ed is not a database �le.

ACTION Try the MOVE operation again with the correct �le name.

MESSAGE NO MANUAL ENTRY FOR DETAIL ON PATH #n

MEANING DBLOAD is attempting to load detail data set entry n, which is the number
of the detail data set path referencing the manual master in question.

ACTION Add entry to manual master with application program or QUERY. Run
DBLOAD again.

MESSAGE PROCESS TABLE OVERFLOW

MEANING At some point more than 180 processes were logging at the same time.

ACTION Notify your database administrator and HP support personnel.

MESSAGE RECOVERY TABLE IS FULL

MEANING Internal error.

ACTION Contact your database administrator.

Utility Unconditional Error Messages Error Messages A-115

MESSAGE RECOVERY TABLE OVERFLOW

MEANING You tried to specify more than 100 user recovery �les.

ACTION Reduce the number of recovery �les needed.

MESSAGE RECSIZE MUST BE <=xxxx AND EVENLY DIVISIBLE BY 256.

MEANING Issued if the REC=recsize parameter for DBSTORE speci�ed a record size
not modulo 256 halfwords, or greater than the con�gured record size of the
device.

ACTION Check the REC=recsize parameter and correct it before running DBSTORE
again.

MESSAGE ROLLBACK LOG FILE MUST BE IN THE SAME VOLUME SET AS THE DATABASE

MEANING MPE transaction recovery requires that the MPE user log �le must reside on
the same volume set as the database.

ACTION Build the MPE user log �le in the same volume set as the database.

NOTE: Because all �les in a group are in the same volume set, the MPE
command LISTGROUP indicates the volume set where the database resides.

MESSAGE STAGING FILE OVERFLOW

MEANING The staging �le is not large enough. This message is generated by the
DBRECOV utility.

ACTION Use a �le equation to increase the TEMPLOG �le size. For example:

FILE TEMPLOG;DISC=7000000

If you still get this error after increasing the �le size, consult with your
database administrator and HP support personnel.

MESSAGE SWITCH TO NM TO ATTACH DATABASE TO XM LOG FILE FAILED: XM ERROR nn

MEANING It is necessary to switch to NM to attach the database to the MPE recovery
system. The switch failed. nn is the switch to NM error number returned.

ACTION Notify HP support personnel.

MESSAGE SWITCH TO NM TO DETACH DATABASE FROM XM LOG FAILED: SWITCH ERROR nn

MEANING It is necessary to switch to NM to detach the database from the MPE
transaction recovery mechanism. The switch failed. nn is the switch to NM
error number returned.

ACTION Notify HP support personnel.

A-116 Error Messages Utility Unconditional Error Messages

MESSAGE UNABLE TO CONTINUE

MEANING DBUTIL program (operating in PURGE mode) cannot continue execution
due to exceptional error in �le system. This information is followed by MPE
�le information display.

ACTION Save the �le information. Consult with database administrator and HP
support personnel.

MESSAGE UNABLE TO OBTAIN FILE LABEL INFORMATION FOR FILE x

MEANING MPE internal procedure failed. DBUTIL cannot obtain information for the
speci�ed �le.

ACTION Contact your database administrator.

MESSAGE UNEXPECTED ROOT FILE STATE

MEANING The MOVE process was unable to reset the database ag. The database could
be in an inconsistent state.

ACTION Contact your database administrator.

MESSAGE WARNING: USER LOG FILE IS NOT IN THE SAME VOLUME SET AS THE DATABASE

MEANING MPE transaction recovery requires that the MPE user log �le must reside on
the same volume set as the database.

ACTION Build the MPE user log �le in the same volume set as the database.

NOTE: Because all �les in a group are in the same volume set, the MPE
command LISTGROUP indicates the volume set where the database resides.

Utility Unconditional Error Messages Error Messages A-117

Extended Utility Program Unconditional Messages

A set of messages can be returned when an unusual condition causes TurboIMAGE/XL to fail
while a TurboIMAGE/XL utility is executing. In each of the following messages, the value
xxxxx is the location where TurboIMAGE/XL failed.

Error messages 401 through 414 are all TurboIMAGE/XL utility failures caused by failure of
the TurboIMAGE/XL intrinsic speci�ed in the message.

-3 MESSAGE TURBOIMAGE FAILURE

(FREADDIR FAILURE ON ROOT FILE AT xxxxx)

MEANING Root �le was not readable. Problem could be in hardware.

ACTION Notify the database administrator of the error.

-4 MESSAGE TURBOIMAGE FAILURE
(FREADLABEL FAILURE ON ROOT FILE AT xxxxx)

MEANING User's label was not readable. Problem could be in hardware.

ACTION Notify the database administrator of the error.

-64 MESSAGE SET NUMBERS ARE OUT OF SEQUENCE.

TURBOIMAGE FAILED AT xxxxx

MEANING The next set number on the backup volume was not what
DBLOAD expected. Status element 0 has the expected set
number; status element 1 has the next set number on the backup
volume.

ACTION An error for a known value that was written to tape with
FWRITE was found. The tape or tape drive could be defective.

-66 MESSAGE BLOCK NUMBERS ARE OUT OF SEQUENCE.

TURBOIMAGE FAILED AT xxxxx.

MEANING The next block on the backup volume was not what DBLOAD
expected. Status elements 0 and 1 have the expected block
number; elements 2 and 3 have the actual next block number;
element 4 has the set number.

ACTION An error for a known value that was written to tape with
FWRITE was found. The tape or tape drive could be defective.

A-118 Error Messages Extended Utility Program Unconditional Messages

-70 MESSAGE ENTRY NUMBERS ARE OUT OF SEQUENCE.

TURBOIMAGE FAILED AT xxxxx

MEANING The next block on the backup volume was not what DBLOAD
expected. Status elements 0,1 have the expected block number;
elements 2,3 have the actual next block number; element 4 has
the set number.

ACTION An error for a known value that was written to tape with
FWRITE was found. The tape or tape drive could be defective.

-74 MESSAGE THE RECORD JUST READ IS UNRECOGNIZABLE

TURBOIMAGE FAILED AT xxxxx

MEANING The record just read from the backup volume was not what
DBLOAD expected. The record could be an EOF, EOT, etc.
The status element 0 has one of the following codes for the record
expected:

0 { tape head
1 { data �le head
2 { data �le block
3 { data �le end
4 { tape end

ACTION An error for a known value that was written to tape with
FWRITE was found. The tape or tape drive could be defective.

97 MESSAGE ZSIZE ERROR WHILE CONTRACTING AT xxxxx

MEANING A TurboIMAGE utility called ZSIZE to contract the Z to DB
area of the stack. xxxxx is the octal location where TurboIMAGE
failed.

ACTION Notify HP support personnel.

98 MESSAGE ZSIZE ERROR WHILE EXPANDING AT xxxxx

MEANING A TurboIMAGE utility called ZSIZE to expand the Z to DB area
of the stack. xxxxx is the octal location where TurboIMAGE
failed.

ACTION Notify HP support personnel.

101 MESSAGE DBRESTOR FAILURE IN DBRESTOR AT xxxxx

MEANING The DBRESTOR utility called the MPE RESTORE command,
which encountered problems while restoring the database. A
detailed error message should follow this message.

ACTION Take appropriate action depending on the detail message.

Extended Utility Program Unconditional Messages Error Messages A-119

401 MESSAGE DBOPEN FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

402 MESSAGE DBINFO FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

403 MESSAGE DBCLOSE FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

404 MESSAGE DBFIND FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

405 MESSAGE DBGET FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

406 MESSAGE DBUPDATE FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

A-120 Error Messages Extended Utility Program Unconditional Messages

407 MEANING DBPUT FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

408 MESSAGE DBDELETE FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

409 MESSAGE DBLOCK FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

410 MESSAGE DBUNLOCK FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

411 MESSAGE DBCONTROL FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

412 MESSAGE DBBEGIN FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

Extended Utility Program Unconditional Messages Error Messages A-121

413 MESSAGE DBEND FAILURE AT xxxxx

MEANING A detailed error message can be retrieved by calling
DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

414 MESSAGE DBMEMO FAILURE AT xxxxx

MEANING A detail error message can be retrieved by calling DBEXPLAIN.

ACTION For more information, see \Library Procedure Error Messages"
earlier in this appendix.

A-122 Error Messages Extended Utility Program Unconditional Messages

B

Results of Multiple Access

When opening a database with DBOPEN, TurboIMAGE/XL returns information in the
status array describing the results of the procedure call. Figure B-1 can be used to interpret
these results when multiple processes are using the database.

Each box in Figure B-1 is associated with a requested mode or TurboIMAGE/XL utility
routine identi�ed at the far left of the row in which the box appears. It is also associated
with a possible current access mode or utility routine identi�ed at the top of the column in
which the box appears. The contents of the boxes can be used to determine the results of a
DBOPEN call.

If access is granted, condition code CCE is returned and the �rst element of the status array
contains a zero. The boxes containing G represent this situation.

If access is not granted, and the reason relates to current database activity, the results are like
those shown in the other boxes. Two types of situations can occur:

If the �rst two elements of the status array contain �1 and 0, respectively, the third element
of status will contain a single number. This number is the MPE/iX failure code returned
from the FCHECK intrinsic. See the MPE/iX Intrinsic Reference Manual for MPE/iX
failure code meanings. If that number is 48, 90, or 91, the failure occurred because current
access to the database does not permit it to be opened in the requested mode. Find the
boxes in the requested mode row which contain a number equal to the third status element.
The possible modes and utility routines which other processes could be using are the ones
which label the columns containing these boxes. For example, if the third status element
contains 48 and the requested mode is 2, the possible current modes are 1 and 5.

To �nd an alternate mode for accomplishing the task, look down the columns containing
these boxes for one containing a G. If the requested mode labeling the row in which the
G resides can be used, try opening the database with that mode. In the example above,
alternate modes would be 1 or 5 because these rows contain G in columns 1 and 5.

If the box with contents matching the third status element is in a column associated with
a utility, usually the only choice is to wait until execution terminates. When DBSTORE is
being run, it is possible to open the database with mode 6 or 8.

If the �rst element in the status array contains �32, the failure occurred because the
root �le could be opened but not with the necessary AOPTIONS. This value can also
be returned in situations not related to multiple access. See appendix A in this manual
and the description of the AOPTIONS parameter of the FOPEN intrinsic in the MPE/iX
Intrinsics Reference Manual . Use the same technique described above to determine the
possible current modes or other activity and to select a course of action. For example, if the
requested mode is 2 and the �rst element of status equals �32, possible current modes are 4
and 8, and the DBSTORE utility could be executing.

The messages enclosed in quotes are printed when the situation represented by the row and
column headings occurs.

Extended Utility Program Unconditional Messages Results of Multiple Access B-1

Figure B-1. Actions Resulting from Multiple Access of Databases

B-2 Results of Multiple Access Extended Utility Program Unconditional Messages

C

Database Design Considerations

Keep one-of-a-kind information, such as unique identi�ers, in master data sets. Keep
duplicate information, such as records of events (sales, purchases, shipments), in detail data
sets.

De�ne a search item in a detail data set if you want to retrieve all entries with a common
value for that data item.

Use manual master data sets to prevent entry of invalid data in the detail search item linked
to the master through a path.

Use automatic master data sets to save time if the detail search items are unpredictable or
too numerous to enter manually.

Limit the use of sort items to paths with relatively short chains in order to reduce the time
required to add and delete entries.

Select the path most frequently accessed in chained order as the primary path.

Remember that data items must be an integral number of halfwords in length.

When selecting the maximum block size, consider the environment in which the database
will be used. (Refer to the $CONTROL command in chapter 3 for more information.)

If you intend to use QUERY/3000 with your database, refer to the QUERY/V Reference
Manual for the data types that QUERY/3000 supports.

In application programs either reference data items and data sets by name or use DBINFO
at the beginning of the program to initialize the data item and data set numbers in order to
maintain data independence of the programs.

Refer to the discussion in chapter 4 to decide on appropriate access modes to use for your
application programs.

Analyze the time required to maintain the database, for example, the time required to
unload and load the database. A database restructuring tool can help keep the time spent
on maintenance to a minimum.

The capacity of each data set should be de�ned as realistically as possible because a
capacity that is too large wastes disk space. Data set can be expanded dynamically if
capacity expansion parameters are set. Otherwise, the capacity can be increased when
necessary by restructuring the database as described in chapter 8.

A master data set capacity equal to a prime number or to the product of two or three
primes can yield fewer synonyms than a master data set capacity of many prime factors.
See Figure C-1 for a partial list of prime numbers.

The account and group in which the database resides must have enough �le space available
to contain all the database �les.

Extended Utility Program Unconditional Messages Database Design Considerations C-1

If your application uses sorted paths, plan to add or delete entries (DBPUT, DBDELETE)
to sorted chains when the system is not very busy. If it is very busy, limit the database
activity on sorted chains to reading and updating (DBUPDATE).

Do all or most of your locking at one level (database, data set, or data entry).

If locking at the data entry level, do all or most of the locking using the same item in each
data set. Otherwise, performance will be the same as if you were locking at the data set
level.

Avoid holding locks around a terminal read.

Avoid beginning and ending logical transactions around a terminal read.

All databases involved in a multiple database transaction must reside on the same system.

If transaction logging is used, the database administrator must ensure that all databases
involved in a multiple database transaction adhere to the following criteria:

Are enabled for logging.

Log to the same log �le.

Are either enabled or disabled for roll-back recovery.

Are either enabled or disabled for MUSTRECOVER.

For remote database access (applications and databases are not on the same system), the
application's node, the database node, and all intermediate nodes where a multiple database
transaction is routed must be on TurboIMAGE/XL version C.04.00 or later.

C-2 Database Design Considerations Extended Utility Program Unconditional Messages

101 280,001 680,003 1,800,017 5,800,019

503 290,011 690,037 1,900,009 5,900,047

1,009 300,007 700,001 2,000,003 6,000,011

5,003 310,019 710,009 2,100,001 6,100,001

10,007 320,009 720,007 2,200,013 6,200,003

15,013 330,017 730,003 2,300,003 6,300,011

20,011 340,007 740,011 2,400,001 6,400,013

25,013 350,003 750,019 2,500,009 6,500,003

30,011 360,007 760,007 2,600,011 6,600,001

35,023 370,003 770,027 2,700,023 6,700,007

40,009 380,041 780,029 2,800,001 6,800,033

45,007 390,001 790,003 2,900,017 6,900,001

50,021 400,009 800,011 3,000,017 7,000,003

55,001 410,009 810,013 3,100,011 7,100,003

60,013 420,001 820,037 3,200,003 7,200,007

65,003 430,007 830,003 3,300,001 7,300,001

70,001 440,009 840,023 3,400,043 7,400,011

75,011 450,001 850,009 3,500,017 7,500,013
80,021 460,013 860,009 3,600,001 7,600,013

85,009 470,021 870,007 3,700,001 7,700,071

90,001 480,013 880,001 3,800,021 7,800,017

95,003 490,001 890,003 3,900,067 7,900,001

100,003 500,009 900,001 4,000,037 8,000,009

110,017 510,007 910,003 4,100,011 8,100,073

121,001 520,019 920,011 4,200,013 8,200,007

130,003 530,017 930,011 4,300,003 8,300,009

140,009 540,041 940,001 4,400,021

150,001 550,007 950,009 4,500,007

160,001 560,017 960,017 4,600,003

170,003 570,001 970,027 4,700,021

180,001 580,001 980,017 4,800,007

190,027 590,021 990,001 4,900,001

200,003 600,011 1,000,003 5,000,011

210,011 610,031 1,100,009 5,100,071

220,009 620,003 1,200,007 5,200,007

230,003 630,017 1,300,021 5,300,003

240,007 640,007 1,400,017 5,400,001

250,007 650,011 1,500,007 5,500,003

260,003 660,001 1,600,033 5,600,027

270,001 670,001 1,700,021 5,700,007

Figure C-1. Selected Prime Numbers

Extended Utility Program Unconditional Messages Database Design Considerations C-3

D

Multiple Calls to DBLOCK

For the purpose of deadlock prevention, the system views any call to DBLOCK in which
something is actually locked as a lock on a single resource, even though the call may have
speci�ed multiple lock descriptors. Any program which does not have the Multiple RIN
(Resource Identi�cation Number) capability (CAP=MR) can only have one resource locked at
a time, and thus can only call DBLOCK once without an intervening call to DBUNLOCK. It
may be necessary for some applications to violate this rule. The purpose of this appendix is to
tell you how to avoid problems that can arise if you prepare your application programs with
MR capability (CAP=MR).

Some typical situations in which CAP=MR could be required are the following:

A program has two or more databases open and wishes to lock part or all of each database
simultaneously. (One or more of the databases may be on a remote HP 3000.)

A program wishes to lock an MPE �le and a database simultaneously.

A program wishes to lock data entries in a database and, after reading their contents, to
apply further locks. This is very dangerous and is not recommended, because deadlocks can
occur very easily.

The danger in all cases is that a deadlock could occur. For example, suppose process A has
data set 1 locked and is trying to lock data set 9, and process B has data set 9 locked and is
waiting for data set 1. In this case, a deadlock has occurred and the only way to break it is to
restart the operating system.

To avoid restarting the operating system, use DBCONTROL mode 7 to activate deadlock
detection for all open databases. If a deadlock occurs, an error 26 is returned to the process
instead of causing a system hang. The process can subsequently call DBUNLOCK to release
all locks on the database placed by the access path.

TurboIMAGE/XL avoids deadlocks within single calls to DBLOCK by �rst sorting the lock
descriptors into an internally-de�ned sequence. It then applies the locks in ascending order
sorted by data set number, then by the value provided for the lock item. You can use the
same strategy in avoiding deadlocks. First de�ne an order in which entities should be locked
and then impose a rule on all programmers that this order be adhered to. The sequence of
unlocking is not important. The rule that you establish should apply to all of the following
lockable entities:

Databases, data sets, and data entries

Remote databases, data sets, and data entries

MPE �les (FLOCK), global RINs (LOCKGLORIN), KSAM �les (FLOCK), and �les locked
with the COBOLLOCK procedure

When applying multiple DBLOCK calls to the same database, extreme caution should be
exercised because the deadlock situations can be very subtle. For example, if a process locks a
data set and then attempts to lock the database, the process will wait for itself forever.

Extended Utility Program Unconditional Messages Multiple Calls to DBLOCK D-1

If it is absolutely necessary to make multiple DBLOCK calls, the following information about
how TurboIMAGE/XL performs locking may be useful.

Sort Sequence for Lock Descriptors

TurboIMAGE/XL internally sorts the lock descriptors in the order as follows:

Ascending data set number

Lower bound of data item value for each data set number

If a lock descriptor's relative operator (relop) �eld contains <=, it collates before any other
lock descriptors for the data set because it has the lowest possible lower bound for its value.
For example, a lock descriptor of SALES:QUANTITY <= 10 collates before a lock descriptor
of SALES:QUANTITY = 5, because the lower bound of the former is the lowest possible
integer for an I-type data item.

Conditional Locks

During a DBLOCK, if TurboIMAGE/XL discovers a lock descriptor that is identical to one
previously put into e�ect by the same user through the same access path, it ignores the latest
lock descriptor. For example, the lock descriptor SALES:ACCOUNT = 89393899 is ignored if
SALES:ACCOUNT = 89393899 was locked earlier on the same access path. However, it will
not be ignored if a lock descriptor such as SALES: @ has been speci�ed earlier.

If multiple lock descriptors are speci�ed with mode 6 (conditional data entry locking),
TurboIMAGE/XL indicates how many locks have been applied when it returns (status
element 1) to the calling process. It does not release the successful locks even though all
the requested locks have not been applied. Because TurboIMAGE/XL ignores identical
lock descriptors speci�ed a second time, it is possible to call DBLOCK again with the same
descriptor list (if the program has MR capability). Those lock descriptors that are already
in e�ect will be ignored and the others will be tried again. The second element of the status
array contains the number of descriptors successfully locked in each call. This technique will
not cause deadlocks provided the lock descriptor list is not altered.

D-2 Multiple Calls to DBLOCK Extended Utility Program Unconditional Messages

Remote Databases

Locking remote database entities is the same as locking database entities with the following
exception. If the local system has a user-created process structure, and each process is locking
a remote database independently, the programs must have Multiple RIN capability because
they are in the same job/session. The only e�ect using MR capability has on the local system
is that the rule prohibiting multiple DBLOCK calls is not enforced. However, to access remote
databases, each local process must issue a separate REMOTE HELLO to ensure that it has a
corresponding process in the remote system.

The system does not force you to establish corresponding remote processes, but failure to do
so can result in the remote session being suspended permanently which requires a remote
system restart to recover.

Caution Hewlett-Packard does not accept responsibility for system lockouts and
deadlocks when Multiple RIN capability is in use with TurboIMAGE/XL.

The following DBUTIL command can be useful in tracing deadlocks that occur when
CAP=MR is used.

>>SHOW database name LOCKS

Extended Utility Program Unconditional Messages Multiple Calls to DBLOCK D-3

E

TurboIMAGE/XL Log Record Formats

This appendix shows the TurboIMAGE/XL log record formats for the DBBEGIN, DBCLOSE,
DBDELETE, DBEND, DBMEMO, DBOPEN, DBPUT, DBUPDATE, DBXBEGIN,
DBXEND, and DBXUNDO intrinsics. Note that the recovery ag will always be zero in the
log �le records. This ag is used during recovery if user recovery �les are created.

Note All TurboIMAGE/XL records are contained within MPE/iX \WRITELOG"
records. Consequently, all information contained in the header portion of each
WRITELOG record is available, in addition to the information provided by
TurboIMAGE/XL.

DBBEGIN

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBBEGIN LOG RECORD CODE ("BE")

HALFWORD(11) - DATA SEGMENT NUMBER

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)

OR MULTIPLE DATABASE TRANSACTION SEQUENCE ID

HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - LENGTH OF USER BUFFER

HALFWORD(16) - START OF USER BUFFER

DBBEGIN Mode 4 (MDBXBEGIN)

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - MDBXBEGIN LOG RECORD CODE ("TB")

HALFWORD(11) - NOT USED
HALFWORD(12) - SEQUENCE ID

BITS 0-3 = RESERVED

BITS 4-9 = SEQUENCE NUMBER

BITS 10-15 = TOTAL NUMBER OF DBBEGIN/DBEND

LOG RECORDS IN THE SEQUENCE

HALFWORD(13-14) - TRANSACTION ID

HALFWORD(15) - LENGTH OF USER BUFFER

HALFWORD(16) - START OF USER BUFFER

HALFWORD(17) - NUMBER OF BASE IDs INVOLVED IN MDBX

HALFWORD(18) - DATA SEGMENT NUMBER OF FIRST BASE ID

HALFWORD(19-20) - TRANSACTION NUMBER FOR 1ST BASE ID

HALFWORD(21) - DATA SEGMENT NUMBER OF SECOND BASE ID

HALFWORD(22-23) - TRANSACTION NUMBER FOR 2ND BASE ID

Extended Utility Program Unconditional Messages TurboIMAGE/XL Log Record Formats E-1

DBCLOSE

HALFWORD(0-8) - MPE WRITELOG RECORD
HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBCLOSE LOG RECORD CODE ("CL")

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 15 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - USER PROCESS ABORT INDICATOR

HALFWORD(13) - RESERVED FOR DBRECOV RUN TIME USE

HALFWORD(14) - RESERVED FOR DBRECOV RUN TIME USE

DBDELETE

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBDELETE LOG RECORD CODE ("DE")

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 15 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)

HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - DATA SET NUMBER

HALFWORD(16) - DATA SET TYPE ("MA"-MASTER,"DE"-DETAIL)

HALFWORD(17) - RECORD NUMBER (1 WORD)

HALFWORD(19) - MODE PARAMETER

HALFWORD(20) - OFFSET TO KEY ITEM VALUE (IF MASTER TYPE)

HALFWORD(21) - OFFSET TO DELETED DATA

HALFWORD(22) - START OF KEY AND DATA BUFFER

DBEND

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBEND LOG RECORD CODE ("EN"), OR

("AE") IF ABORTED

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 15 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)

OR MULTIPLE DATABASE TRANSACTION SEQUENCE ID

HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - LENGTH OF USER BUFFER

HALFWORD(16) - START OF USER BUFFER

E-2 TurboIMAGE/XL Log Record Formats Extended Utility Program Unconditional Messages

DBEND Mode 4 (MDBXEND)

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - MDBXEND LOG RECORD CODE ("TE")

HALFWORD(11) - NOT USED

HALFWORD(12) - SEQUENCE ID

BITS 0-3 = RESERVED

BITS 4-9 = SEQUENCE NUMBER

BITS 10-15 = TOTAL NUMBER OF DBBEGIN/DBEND

LOG RECORDS IN THE SEQUENCE

HALFWORD(13-14) - TRANSACTION ID

HALFWORD(15) - LENGTH OF USER BUFFER

HALFWORD(16) - START OF USER BUFFER (pointer to beginning of user text)

HALFWORD(17) - NUMBER OF BASE IDs INVOLVED IN MDBX

HALFWORD(18) - DATA SEGMENT NUMBER OF FIRST BASE ID

HALFWORD(19-20) - TRANSACTION NUMBER FOR 1ST BASE ID

HALFWORD(21) - DATA SEGMENT NUMBER OF SECOND BASE ID

HALFWORD(22-23) - TRANSACTION NUMBER FOR 2ND BASE ID

DBMEMO

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBMEMO LOG RECORD CODE ("ME")

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 15 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)

HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - LENGTH OF USER BUFFER

HALFWORD(16) - START OF USER BUFFER

DBOPEN

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBOPEN LOG RECORD CODE ("OP")

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 15 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - USER NAME

HALFWORD(16) - USER GROUP

HALFWORD(20) - USER ACCOUNT

HALFWORD(24) - USER IDENTIFIER

HALFWORD(28) - DATABASE NAME

HALFWORD(31) - DATABASE GROUP

HALFWORD(35) - DATABASE ACCOUNT

HALFWORD(39) - SECURITY CLASS

Extended Utility Program Unconditional Messages TurboIMAGE/XL Log Record Formats E-3

DBOPEN (continued)

HALFWORD(40) - DBOPEN MODE PARAMETER

HALFWORD(41) - LOGGING IDENTIFIER
HALFWORD(45) - DBSTORE TIME STAMP (3 HALFWORDS)

HALFWORD(48) - USER PROGRAM NAME

HALFWORD(52) - USER PROGRAM GROUP

HALFWORD(56) - USER PROGRAM ACCOUNT

HALFWORD(60) - MODE FROM WHO INTRINSIC

HALFWORD(61) - CAPABILITY FROM WHO INTRINSIC

HALFWORD(63) - LOCAL ATTRIBUTE FROM WHO INTRINSIC

HALFWORD(65) - LOGICAL DEVICE OF JOB/SESSION INPUT

HALFWORD(66) - PREVIOUS ROLLBACK TIME STAMP (3 HALFWORDS)

HALFWORD(69) - CURRENT ROLLBACK TIME STAMP (3 HALFWORDS)

HALFWORD(72) - RESERVED FOR DBRECOV RUN TIME USE

HALFWORD(73) - RESERVED FOR DBRECOV RUN TIME USE

DBPUT

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBPUT LOG RECORD CODE ("PU")

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 15 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)

HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - DATA SET NUMBER

HALFWORD(16) - DATA SET TYPE ("MA"-MASTER,"DE"-DETAIL)

HALFWORD(17) - RECORD NUMBER (1 WORD)

HALFWORD(19) - MODE PARAMETER

HALFWORD(20) - OFFSET TO KEY ITEM VALUE (IF MASTER TYPE)
HALFWORD(21) - OFFSET TO ITEM LIST

HALFWORD(22) - OFFSET TO DATA

HALFWORD(23) - BEGIN OF KEY,ITEM LIST,AND DATA BUFFER

E-4 TurboIMAGE/XL Log Record Formats Extended Utility Program Unconditional Messages

DBQUIESCE

HALFWORD(0-8) - MPE WRITELOG RECORD
HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - QUIESCE CODE

QB - QUIESCE BEGIN

QE - QUIESCE END

UQ - UNQUIESCE

HALFWORD(11) - FOR INTERNAL USE

HALFWORD(12) - QUIESCE FLAG FROM QLOCK TABLE

HALFWORD(13) - USER NAME

HALFWORD(17) - USER GROUP

HALFWORD(21) - USER ACCOUNT

HALFWORD(25) - DATABASE NAME

HALFWORD(29) - DATABASE GROUP

HALFWORD(33) - DATABASE ACCOUNT

HALFWORD(37) - USER PROGRAM NAME

HALFWORD(41) - USER PROGRAM GROUP

HALFWORD(45) - USER PROGRAM ACCOUNT

HALFWORD(49) - TRUE ONLINE-BACKUP TIME

HALFWORD(51) - TRUE ONLINE-BACKUP DATE

DBUPDATE

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBUPDATE LOG RECORD CODE ("UP")

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 15 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)
HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - DATA SET NUMBER

HALFWORD(16) - DATA SET TYPE ("MA"-MASTER,"DE"-DETAIL)

HALFWORD(17) - RECORD NUMBER (1 WORD)

HALFWORD(19) - MODE PARAMETER

HALFWORD(20) - OFFSET TO KEY ITEM VALUE (IF MASTER TYPE)

HALFWORD(21) - OFFSET TO ITEM LIST

HALFWORD(22) - OFFSET TO NEW DATA

HALFWORD(23) - OFFSET TO OLD DATA

HALFWORD(24) - BEGIN OF KEY,ITEM LIST,AND DATA BUFFER

Extended Utility Program Unconditional Messages TurboIMAGE/XL Log Record Formats E-5

DBXBEGIN

HALFWORD(0-8) - MPE WRITELOG RECORD
HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBXBEGIN LOG RECORD CODE ("XB")

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 10 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)

HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - LENGTH OF USER BUFFER

HALFWORD(16) - START OF USER BUFFER

DBXEND

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - DBXEND LOG RECORD CODE ("XE"), OR

("XA") IF ABORTED

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 10 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)

HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - LENGTH OF USER BUFFER

HALFWORD(16) - START OF USER BUFFER

DBXUNDO

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH
HALFWORD(10) - DBXEND LOG RECORD CODE ("XU")

HALFWORD(11) - BASE LOGGING ID

BIT 0 TO 5 = USER DBOPEN COUNT

BIT 6 TO 10 = INDEX TO THE DBS FOR THE DBG

HALFWORD(12) - RECOVERY FLAG ("NO"-FAILED,"OK"-RECOVERED)

HALFWORD(13) - TRANSACTION NUMBER (1 WORD)

HALFWORD(15) - LENGTH OF USER BUFFER

HALFWORD(16) - START OF USER BUFFER

QOPEN

HALFWORD(0-8) - MPE WRITELOG RECORD

HALFWORD(9) - TURBOIMAGE/XL LOG RECORD LENGTH

HALFWORD(10) - QOPEN LOG RECORD CODE ("QO")

HALFWORD(11) - DBOPEN ACTIVE OR INACTIVE

HALFWORD(12-74)- DBOPEN INFORMATION AS IN DBOPEN LOG RECORD

HALFWORD(75) - UNIQUE USER LOGGING PROCESS NUMBER

E-6 TurboIMAGE/XL Log Record Formats Extended Utility Program Unconditional Messages

F

MPE/iX Log Record Formats

This appendix lists the MPE/iX Log Record Formats for log �les and user recovery �les.

HEADER

HALFWORD(0) - RECORD NUMBER (1 WORD)

HALFWORD(2) - CHECKSUM

HALFWORD(3) - SUBSYSTEM IDENTIFIER (1ST BYTE)

HALFWORD(3) - LOG RECORD CODE (2ND BYTE - 4)

HALFWORD(4) - TIME

HALFWORD(6) - DATE

HALFWORD(7) - LOGGING IDENTIFIER

OPENLOG

HALFWORD(0) - RECORD NUMBER (1 WORD)

HALFWORD(2) - CHECKSUM

HALFWORD(3) - SUBSYSTEM IDENTIFIER (1ST BYTE)

HALFWORD(3) - LOG RECORD CODE (2ND BYTE - 1)

HALFWORD(4) - TIME

HALFWORD(6) - DATE

HALFWORD(7) - LOGGING IDENTIFIER

HALFWORD(11) - LOG NUMBER

HALFWORD(12) - USER NAME,GROUP,ACCOUNT

HALFWORD(24) - PIN#

WRITELOG

HALFWORD(0) - RECORD NUMBER (1 WORD)

HALFWORD(2) - CHECKSUM

HALFWORD(3) - SUBSYSTEM IDENTIFIER (lST BYTE)

HALFWORD(3) - LOG RECORD CODE (2ND BYTE - 2)

HALFWORD(4) - TIME

HALFWORD(6) - DATE

HALFWORD(7) - LOG NUMBER

HALFWORD(8) - USER BUFFER LENGTH

HALFWORD(9) - USER BUFFER AREA

Extended Utility Program Unconditional Messages MPE/iX Log Record Formats F-1

WRITELOG CONTINUATION

HALFWORD(0) - RECORD NUMBER (1 WORD)
HALFWORD(2) - CHECKSUM

HALFWORD(3) - SUBSYSTEM IDENTIFIER (lST BYTE)

HALFWORD(3) - LOG RECORD CODE (2ND BYTE - 7)

HALFWORD(4) - TIME

HALFWORD(6) - DATE

HALFWORD(7) - LOG NUMBER

HALFWORD(8) - USER BUFFER LENGTH

HALFWORD(9) - USER BUFFER AREA

CLOSELOG

HALFWORD(0) - RECORD NUMBER (1 WORD)

HALFWORD(2) - CHECKSUM

HALFWORD(3) - SUBSYSTEM IDENTIFIER (1ST BYTE)

HALFWORD(3) - LOG RECORD CODE (2ND BYTE - 3)

HALFWORD(4) - TIME

HALFWORD(6) - DATE

HALFWORD(7) - LOGGING IDENTIFIER

HALFWORD(11) - LOG NUMBER

HALFWORD(12) - USER NAME, GROUP, ACCOUNT

HALFWORD(24) - PIN#

CHANGELOG

HALFWORD(0) - RECORD NUMBER (1 WORD)

HALFWORD(2) - CHECKSUM

HALFWORD(3) - 12 RECORD CONTAINS THE previous FILE IN THE SET

HALFWORD(3) - 13 RECORD CONTAINS THE next FILE IN THE SET
HALFWORD(4) - TIME

HALFWORD(6) - DATE

HALFWORD(7) - LOGID

HALFWORD(11) - SEQUENCE NUMBER OF THE CURRENT FILE

HALFWORD(12) - CREATION TIME OF THE FIRST FILE

HALFWORD(14) - CREATION DATE OF THE FIRST FILE

HALFWORD(15) - NAME OF THE FIRST FILE IN THE SET

HALFWORD(33) - LOG RECORD TYPE OF THE FIRST FILE IN THE SET

HALFWORD(34) - NAME OF THE next FILE IN THE SET

HALFWORD(34) - NAME OF THE previous FILE IN THE SET

HALFWORD(52) - LOG RECORD TYPE OF THE next FILE IN THE SET

HALFWORD(52) - LOG RECORD TYPE OF THE previous FILE IN THE SET

HALFWORD(53) - NAME OF THE CURRENT FILE IN THE SET

HALFWORD(71) - LOG RECORD TYPE OF THE CURRENT FILE IN THE SET

F-2 MPE/iX Log Record Formats Extended Utility Program Unconditional Messages

RESTART

HALFWORD(0) - RECORD NUMBER (1 WORD)
HALFWORD(2) - CHECKSUM

HALFWORD(3) - SUBSYSTEM IDENTIFIER (1ST BYTE)

HALFWORD(3) - LOG RECORD CODE (2ND BYTE - 6)

HALFWORD(4) - TIME

HALFWORD(6) - DATE

HALFWORD(7) - LOGGING IDENTIFIER

CRASH

HALFWORD(0) - RECORD NUMBER (1 WORD)

HALFWORD(2) - CHECKSUM

HALFWORD(3) - SUBSYSTEM IDENTIFIER (1ST BYTE)

HALFWORD(3) - LOG RECORD CODE (2ND BYTE - 9)

HALFWORD(4) - TIME

HALFWORD(6) - DATE

NULL

HALFWORD(0) - RECORD NUMBER (1 WORD)

HALFWORD(2) - CHECKSUM

HALFWORD(3) - RECORD CODE (BLANK BLANK)

TRAILER

HALFWORD(0) - RECORD NUMBER (1 WORD)

HALFWORD(2) - CHECKSUM

HALFWORD(3) - SUBSYSTEM IDENTIFIER (1ST BYTE)

HALFWORD(3) - LOG RECORD CODE (2ND BYTE - 5)
HALFWORD(4) - TIME

HALFWORD(6) - DATE

HALFWORD(7) - LOGGING IDENTIFIER

Extended Utility Program Unconditional Messages MPE/iX Log Record Formats F-3

G

Recovery and Logging Quick Reference

Recovery Quick Reference

The following pages o�er a very brief outline of the recovery options in TurboIMAGE/XL.
For more information regarding dynamic roll-back recovery, Intrinsic Level Recovery (ILR),
roll-forward recovery and roll-back recovery refer to chapter 7, \Logging and Recovery," and
chapter 8, \Using the Database Utilities."

You should determine which type of recovery to use based on the size of the database,
frequency of system failures, equipment availability, and other considerations.

Dynamic Roll-Back Recovery

Allows dynamic transactions to be rolled back online while other database activity is
occurring. If a system failure occurs, incomplete dynamic transactions will be rolled back at
the �rst call to DBOPEN for the database after the system is restarted.

Uses DBXBEGIN, DBXEND, and DBXUNDO intrinsics.

Requires strong locking. Calling DBUNLOCK after a call to DBPUT, DBDELETE
or DBUPDATE within a dynamic transaction will return an error because the call to
DBUNLOCK must occur after the call to DBXEND. If necessary locks are not acquired
before calling DBXBEGIN, covering locks must be used on the intrinsic calls within the
transaction, or the intrinsic will return an error.

Requires checking of the status condition before proceeding further after a modi�cation
using DBPUT, DBDELETE, DBUPDATE, or after DBUNLOCK, or DBCLOSE in mode 2.
If an error is returned indicating the failure of the intrinsic, the choices are:

Call DBXEND. The successful modi�cations completed within this dynamic transaction
will not be rolled back.

Call DBXUNDO to roll back the entire transaction. Even successful modi�cations
completed within this dynamic transaction will be rolled back.

Continue with the remainder of the dynamic transaction even though this intrinsic
failed. Be very cautious in your design when taking this option as the �nal result can be
unpredictable.

Cannot use deferred output (AUTODEFER). This ensures the structural integrity of the
database.

Can use user logging for roll-forward recovery purposes in the event of a disk media failure.

Can be used with remote databases.

Extended Utility Program Unconditional MessagesRecovery and Logging Quick Reference G-1

Intrinsic Level Recovery (ILR)

Should only be used to force ushing to disk after a call to DBPUT or DBDELETE.

Not required with TurboIMAGE/XL, because physical integrity is automatic and
transparent to the user. The same physical integrity is available through Transaction
Management (XM) on MPE/iX without enabling ILR. Using XM instead of ILR requires
less overhead.

Guarantees that at most one DBPUT and DBDELETE call per process will be lost. The
database is recovered automatically if recovery is needed the next time the system is
rebooted.

Cannot use deferred output (AUTODEFER). This ensures the structural integrity of the
database.

Cannot defer writing modi�cations to the database because deferred output cannot be used.

Is intrinsic driven; transaction locking is not necessary.

Incurs some overhead on DBPUTs and DBDELETEs due to the request to ush
Transaction Management (XM) log �le pages to disk at the end of each completed DBPUT
and DBDELETE.

Can be used with user logging.

Roll-Forward Recovery

Provides recovery of a database, both structurally and logically, to a likeness of its state at
the time of a hard system failure.

Uses DBSTORE and DBRESTOR or TurboSTORE/iX 7x24 True-Online Backup (with
ONLINE=START or ONLINE=END option) to backup the database and MPE/iX
RESTORE command to restore the database to a consistent state.

If True-Online Backup was not used to store the database, and the AUTO option is in use,
all log�les in the logging cycle must be present for recovery. All log�les starting with the
�rst one, XXXXX 001, are required regardless of some intermediate recovery or use of the
STOP/RESTART feature.

Requires logging be enabled. During recovery all log �les since the last database backup
copy must be applied.

TurboIMAGE/XL logging depends upon exact correspondence between the stored backup
database copy and the working database on disk at the time logging was interrupted. The
DBSTORE ag and log �le time stamp will enforce this condition.

Logging provides recovery of both intrinsics and transactions following a system failure.

Is initiated with the >RECOVER command of DBRECOV. The database must be purged
and restored before recovery is initiated.

During a start recovery operation all transactions in the memory bu�er will be lost.

Does not require logical transaction locking; however, it is recommended.

When the roll-forward process �nishes, the RESTART option in user logging can be used or
a new logging cycle can be started. Remember to purge the log �les before starting the new
logging cycle.

G-2 Recovery and Logging Quick Reference Extended Utility Program Unconditional Messages

May not recover all transactions. If using DBEND mode 2, transactions will be ushed to
the log �le at DBEND time; therefore, transactions will not be lost.

You should consider how often to store the database. The more frequent the backup, the
smaller the log �les will be, thus cutting the time required for recovery.

Roll-Forward Flag Settings

The recommended settings for TurboIMAGE/XL ags used for roll-forward recovery are
shown in the following table. Note that the ags change depending on whether you are storing
a database, running in production, or initiating a database recovery.

Table G-1. Roll-Forward Flag Settings

Flags True-Online
Backup

DBSTORE Production DBRECOV

Access Disabled/Enabled Disabled Enabled Disabled

AUTODEFER Disabled/Enabled Disabled Disabled/Enabled Disabled

Dumping Disabled Disabled Disabled Disabled

ILR Disabled Disabled Disabled Disabled

Logging Enabled Enabled Enabled Enabled

Recovery Disabled/Enabled Enabled Disabled Enabled

Roll-back Disabled Disabled Disabled Disabled

Roll-Back Recovery

Provides rapid recovery of database integrity following a soft system crash and restores
the database to a consistent state, physically and logically, by backing out any incomplete
transactions.

Requires logging. Storing the database is recommended but not required. (Logging is
automatically enabled when roll-back is enabled.)

If logging to disk, requires that the database and the user log �le be on the same volume
set.

If logging to tape, requires that the database be on the system volume set.

Is initiated with the >ROLLBACK command of DBRECOV.

When disabled, logging must be manually disabled using DBUTIL.

Requires all multiple-intrinsic database transactions to execute independently, using logical
transaction locking.

Uses the time stamp during recovery to verify the correct log �le for each database being
recovered. The time stamp is updated when the database is �rst opened and is logged to
the log �le and the root �le.

Should not be disabled if roll-back recovery must be used later because it will reset
the logging time stamp, therefore recovery cannot be performed. The database will be
considered correct and cannot be rolled back.

Extended Utility Program Unconditional Messages Recovery and Logging Quick Reference G-3

Transactions are not lost during a start recovery operation because they are not held in the
memory bu�er. (A start recovery operation must be performed after a system failure.)

When the roll-back process �nishes, the RESTART option in user logging can be used or a
new logging cycle can be started. Remember to purge the log �le before starting the new
logging cycle.

Roll-Back Flag Settings

The recommended settings for TurboIMAGE/XL ags used for roll-back recovery are shown
in the following table. Note that the ags change depending on whether you are storing a
database, running in production, or initiating a database recovery.

Table G-2. Roll-Back Flag Settings

Flags True-Online
Backup

DBSTORE Production DBRECOV

Access Disabled/Enabled Disabled Enabled Disabled

AUTODEFER Disabled Disabled Disabled Disabled

Dumping Disabled Disabled Disabled Disabled

ILR Disabled Disabled Disabled Disabled

Logging Enabled Enabled Enabled Enabled

Recovery Disabled/Enabled Enabled Disabled Enabled

Roll-back Enabled Enabled Enabled Enabled

Recovery

Without a database backup copy, recovery can be performed using DBUNLOAD (chained)
and DBLOAD to salvage all or most of a database.

G-4 Recovery and Logging Quick Reference Extended Utility Program Unconditional Messages

Logging Device Quick Reference

The lists below outline both the bene�ts and disadvantages of logging to disk and logging to
tape. Refer to chapter 7, \Logging and Recovery" for more information on user logging.

You must determine which type of logging device to use based on equipment, operations sta�,
number of users and size of the database, and other considerations listed here.

Logging to Tape

For roll-back recovery, requires the database be on the system volume set.

Does not take up disk space.

Requires a dedicated tape drive.

Requires a reliable tape drive and a library of \good" tapes.

Is more secure in terms of a hard crash.

Is more time consuming. After a system failure the tape must be rewound and sequentially
scanned until the end of �le is detected. The remaining records are then appended to the
�le.

The console operator must be available to respond to requests for tape mounts. If a request
is ignored and you run out of memory bu�er space, logging will suspend. Applications
requiring logging will get a WRITELOG error and will terminate.

Must do a start recovery operation after a soft system crash to write a crash log record to
the log �le.

During a start recovery operation, the console operator can respond with an option to
override or cancel the cleanup procedure on log �les. Fewer log records written just prior to
system failure are lost.

Does not provide any security measures to prevent overwriting the current tape. The
console operator should use care to mount a new tape before placing on-line. Read the
labels on the MPE/iX tapes for overwrite security information.

Has overhead similar to logging to disk.

Logging to Disk

For roll-back recovery, requires the database and the user log �le to be on the same volume
set.

Files are susceptible to a hard crash.

The integrity of the log �le may be no better than the current database state. The log �le
may contain inconsistencies, bad characters, or other invalid data.

If you are not using the GETLOG command AUTO option or the CHANGELOG
command, you must make sure disk �le space of the current log �le is su�cient so that end
of �le is not reached. If the end of �le is reached, logging will stop. Applications requiring
logging will get a WRITELOG error and will terminate.

Must do a start recovery operation after a soft system crash to write a crash log record to
the log �le.

Extended Utility Program Unconditional Messages Recovery and Logging Quick Reference G-5

Has overhead comparable to logging to tape.

Note In the event of a system failure and subsequent start recovery operation
and when using private volumes, logging will not resume until these private
volumes have been mounted. Enter the MPE VMOUNT command into the
SYSSTART �le to resume logging.

G-6 Recovery and Logging Quick Reference Extended Utility Program Unconditional Messages

Sample Job Streams

This section shows a sample job stream which can be used to initiate a logging cycle. Prior
to using this job stream, you should check the MPE/iX logging con�guration for adequate
capacity. Also shown in this section are sample job streams which can be used to recover
a database using either roll-forward recovery or roll-back recovery. You must decide which
recovery method to use and how often the database should be stored.

Note You must have logging (LG) or operator (OP) capability to use the following
MPE/iX commands: GETLOG, RELLOG, ALTLOG, CHANGELOG,
LISTLOG, and SHOWLOGSTATUS. You must have LG or OP capability also
if you intend to open a database with logging enabled. Logging capability is
acquired through the MPE system manager and account manager commands.

In the following example, roll-forward recovery is being used and DBSTORE is used to
backup the database. If using roll-back recovery, replace the line >>ENABLE ORDERS FOR
LOGGING with >>ENABLE ORDERS FOR ROLLBACK. This enables the database for
logging and for roll-back recovery.

:JOB MGR.DATAMGT

:GETLOG ORDERLOG;LOG=ORDER001,DISC Acquire log identi�er.

:BUILD ORDER001;DISC=200000,20,7;CODE=LOG Build new log �le.

:RUN DBUTIL.PUB.SYS

SET ORDERS LOGID=ORDERLOG

Response to logid password prompt.

ENABLE ORDERS FOR LOGGING Set the database ags in

DISABLE ORDERS FOR ACCESS the root �le.

ENABLE ORDERS FOR RECOVERY

ENABLE ORDERS FOR MUSTRECOVER

EXIT

:RUN DBSTORE.PUB.SYS Store the database.

ORDERS

:LOG ORDERLOG,START Start the logging process;

logid is ORDERLOG.

:RUN DBUTIL.PUB.SYS

ENABLE ORDERS FOR ACCESS Set the database ags

DISABLE ORDERS FOR RECOVERY in the root �le.

ENABLE ORDERS FOR MUSTRECOVER

EXIT

:EOJ

Figure G-1. Sample Job Stream for Starting Logging Cycle

The job stream above builds a new log �le. In this case, the log �le resides on disk and sets
the database ags. Note that because no logid password was speci�ed in the GETLOG
command, a blank line is left as a response to the password prompt. A backup copy of the
database is made (this sets the date and time the copy was made in the root �le), logging is
initiated with START, the database is enabled for access, and recovery is disabled.

Extended Utility Program Unconditional MessagesRecovery and Logging Quick Reference G-7

At the end of the logging cycle, stop logging, store the current log �le on tape for back-up,
purge the current log �le, build a new log �le, and store a database backup copy. To start
a logging cycle, the steps (except GETLOG command) shown in the previous job stream in
Figure G-1 are completed after you do the following:

:LOG ORDERLOG,STOP Stop logging.

Use STORE command to store the log �le to tape.

:PURGE ORDER001 Purge the current log �le.

The next example in Figure G-2 uses roll-forward recovery and DBSTORE/DBRESTORE. If
all recommended procedures have been followed, the database backup copy will have ags set
for enabling recovery and disabling access, so the step to set these ags would be unnecessary.
If this process is being done interactively, the following command in DBUTIL will show if the
ags for recovery and access are correctly set:

>>SHOW database name FLAGS

:JOB MGR.DATAMGT

:RUN DBUTIL.PUB.SYS If the database is to be stored prior

DISABLE ORDERS FOR ACCESS to recovery, set ags in the database

ENABLE ORDERS FOR RECOVERY and run DBSTORE.

EXIT

:RUN DBSTORE.PUB.SYS Current database on the system.

ORDERS Optional step.

:RUN DBUTIL.PUB.SYS

PURGE ORDERS Purge the current database.

EXIT

:RUN DBRESTOR.PUB.SYS Restore backup copy of the database for recovery.

ORDERS

:RUN DBUTIL.PUB.SYS

DISABLE ORDERS FOR ACCESS Set the ags in the database.

ENABLE ORDERS FOR RECOVERY

ENABLE ORDERS FOR MUSTRECOVER

EXIT

:RUN DBRECOV.PUB.SYS Use roll-forward recovery on

RECOVER ORDERS database ORDERS.

FILE PART1,SYS/P1D1.MKTG,0,3 The FILE command is used to

FILE PART2,SYS/P1D1.MKTG,0,3 route log records to individual

FILE PART3,SYS/P1D1.MKTG,0,3 user log �les.

RUN

EXIT

:LOG ORDERLOG,RESTART Restart current log �le and set the

:RUN DBUTIL.PUB.SYS database ags.

ENABLE ORDERS FOR ACCESS

DISABLE ORDERS FOR RECOVERY

ENABLE ORDERS FOR MUSTRECOVER

EXIT

:EOJ

Figure G-2. Sample Job Stream for Roll-Forward Recovery

Storing and purging the damaged database prior to restoring it is optional. After recovery
has completed, logging can either be restarted (from the current log �le) or the log �le can be
purged and a new log �le built.

G-8 Recovery and Logging Quick ReferenceExtended Utility Program Unconditional Messages

The next example in Figure G-3 uses roll-back recovery. If all recommended procedures have
been followed, the database will have ags set for enabling recovery and disabling access, so
the step to set these ags would be unnecessary. A backup of the database using DBSTORE
or TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or ONLINE=END
option) can be done at this time; however, this is optional. If this process is being done
interactively, the following command in DBUTIL will show if the ags for recovery and access
are correctly set:

>>SHOW database name FLAGS

:JOB MGR.DATAMGT

:RUN DBUTIL.PUB.SYS

DISABLE ORDERS FOR ACCESS Set the ags in the database

ENABLE ORDERS FOR RECOVERY root �le.

EXIT

A DBSTORE of the database at this time is recommended.

:RUN DBRECOV.PUB.SYS

CONTROL NOSTORE Allows recovery to proceed whether or not the DBSTORE ag is set.

ROLLBACK ORDERS Use roll-back recovery on database ORDERS.

FILE PART1,SYS/P1D1.MKTG,0,3 The FILE command is used to route log

FILE PART2,SYS/P1D1.MKTG,0,3 records to individual user �les.

FILE PART3,SYS/P1D1.MKTG,0,3

RUN

EXIT

:LOG ORDERLOG,RESTART Restart the current log �le and set

:RUN DBUTIL.PUB.SYS the database ags.

ENABLE ORDERS FOR ACCESS

DISABLE ORDERS FOR RECOVERY

EXIT

:EOJ

Figure G-3. Sample Job Stream for Roll-Back Recovery

After recovery has completed, logging can either be restarted (from the current log �le) or the
log �le can be purged and a new log �le built.

The following job stream shows how you can start a new log cycle for roll-forward recovery
using TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or ONLINE=END
option) to backup the database. If using roll-back recovery, replace the line >>ENABLE
ORDERS FOR LOGGING with >>ENABLE ORDERS FOR ROLLBACK. This enables the
database for logging and for roll-back recovery.

Extended Utility Program Unconditional Messages Recovery and Logging Quick Reference G-9

:JOB MGR.DATAMGT

:GETLOG ORDERLOG;LOG=ORDER001,DISC;AUTO Acquire log identi�er. AUTO is optional.

:BUILD ORDER001;DISC=200000,20,7;CODE=LOG Build new log �le.

:RUN DBUTIL.PUB.SYS

SET ORDERS LOGID=ORDERLOG Response to logid password prompt.

ENABLE ORDERS FOR LOGGING Set the database ags in the root �le

DISABLE ORDERS FOR ACCESS

ENABLE ORDERS FOR RECOVERY

ENABLE ORDERS FOR MUSTRECOVER

EXIT

:FILE ORDERBK1;DEV=TAPE Mount the tape.

:STORE ORDERS;*ORDERBK1;ONLINE=START Store the database.

:LOG ORDERLOG,START Start the logging process; logid is ORDERLOG.

:RUN DBUTIL.PUB.SYS

ENABLE ORDERS FOR ACCESS Set the database ags

DISABLE ORDERS FOR RECOVERY in the root �le.

ENABLE ORDERS FOR MUSTRECOVER

EXIT

:EOJ

Figure G-4. Sample Job Stream for Starting Logging Cycle

The job stream above builds a new log �le. In this case, the log �le resides on disk and sets
the database ags. Note that because no logid password was speci�ed in the GETLOG
command, a blank line is left as a response to the password prompt. A backup copy of the
database is made (this sets the date and time the copy was made in the root �le), logging
is initiated with START, the database is enabled for access, and recovery is disabled. The
database is ready for access.

If you want to make another backup to keep recovery time short, you do not need to stop
logging. Also the database could be open for access. You can backup the database using
TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or ONLINE=END
option) and optionally store and purge the log �les (if AUTO option was used with GETLOG)
preceding the log �le which was in use at the time of the backup. If you do not purge the
preceding log �les, you can continue until log �le ORDER999. After that you will get an error
when attempting to write to LOG0001.

:JOB MGR.DATAMGT

:FILE ORDERBK2;DEV=TAPE Mount tape.

:STORE ORDERS;*ORDERBK2;ONLINE=START Store database while it is open for access.

:EOJ Assume that you will start a new log cycle after ORDER999.

Figure G-5. Sample Job Stream for Backup with Database Open for Access

The next example in Figure G-6 uses roll-forward recovery and TurboSTORE/iX 7x24
True-Online Backup (with ONLINE=START or ONLINE=END option). If all recommended
procedures have been followed, the database backup copy will have ags set for enabling
recovery and disabling access, so the step to set these ags would be unnecessary. If this

G-10 Recovery and Logging Quick ReferenceExtended Utility Program Unconditional Messages

process is being done interactively, the following command in DBUTIL will show if the ags
for recovery and access are correctly set:

>>SHOW database name FLAGS

:JOB MGR.DATAMGT

:FILE ORDERBAD;DEV=TAPE Current damaged database on the system needing recovery.

:STORE ORDERS;*ORDERBAD;ONLINE=START Store damaged database; optional step.

:RUN DBUTIL.PUB.SYS

PURGE ORDERS Purge the current database.

EXIT

:FILE ORDERBK2;DEV=TAPE Mount the backup tape.

:RESTORE *ORDERBK2;ORDERS Restore the backup copy of the database for recovery.

:RUN DBUTIL.PUB.SYS

DISABLE ORDERS FOR ACCESS Set the ags in the database.

ENABLE ORDERS FOR RECOVERY

ENABLE ORDERS FOR MUSTRECOVER

EXIT

:RUN DBRECOV.PUB.SYS Use roll-forward recovery on

RECOVER ORDERS database ORDERS.

FILE PART1,SYS/P1D1.MKTG,0,3 Use the FILE command to route log records

FILE PART2,SYS/P1D1.MKTG,0,3 to individual user log �les.

FILE PART3,SYS/P1D1.MKTG,0,3

RUN

EXIT

:LOG ORDERLOG,RESTART Restart current log �le and set the

:RUN DBUTIL.PUB.SYS database ags.

ENABLE ORDERS FOR ACCESS

DISABLE ORDERS FOR RECOVERY

ENABLE ORDERS FOR MUSTRECOVER

EXIT

:EOJ

Figure G-6. Sample Job Stream for Roll-Forward Recovery

Storing and purging the damaged database prior to restoring it is optional. After recovery
has completed, logging can either be restarted (with the current log �le) or the log �le can be
purged and a new log �le built.

The next example in Figure G-7 uses roll-back recovery. A backup of the database using
DBSTORE or TurboSTORE/iX 7x24 True-Online Backup (with ONLINE=START or
ONLINE=END option) can be done at this time; however, this is optional. The following
command in DBUTIL will show if the ags for recovery and access are correctly set:

>>SHOW database name FLAGS

Extended Utility Program Unconditional MessagesRecovery and Logging Quick Reference G-11

:JOB MGR.DATAMGT

:RUN DBUTIL.PUB.SYS

DISABLE ORDERS FOR ACCESS Set the ags in the database

ENABLE ORDERS FOR RECOVERY root �le.

EXIT

A backup of the database at this time is recommended.

:RUN DBRECOV.PUB.SYS

CONTROL NOSTORE Allows recovery to proceed whether or not the DBSTORE ag is set.

ROLLBACK ORDERS Use roll-back recovery on database ORDERS.

RUN

EXIT

:LOG ORDERLOG,RESTART Restart the current log �le and set

:RUN DBUTIL.PUB.SYS the database ags.

ENABLE ORDERS FOR ACCESS

DISABLE ORDERS FOR RECOVERY

EXIT

:EOJ

Figure G-7. Sample Job Stream for Roll-Back Recovery

After recovery has completed, logging can either be restarted (from the current log �le) or the
log �le can be purged and a new log �le built.

G-12 Recovery and Logging Quick ReferenceExtended Utility Program Unconditional Messages

H

TurboIMAGE/XL versus TurboIMAGE/V

Overview

TurboIMAGE/XL is available on the HP 3000 Series 900. This database management system
is very similar to TurboIMAGE/V. However, some di�erences exist due to the architecture of
the 900 series and the MPE/iX features of which TurboIMAGE/XL takes advantage. Speci�c
TurboIMAGE/XL di�erences are listed here:

Transaction Management (XM), an internal MPE/iX service, is used to do the following:

Ensure intrinsic level physical consistency of the database as a default unless the
AUTODEFER option is enabled. Incomplete intrinsics will be backed out and not
reapplied. This performs the same functionality as Intrinsic Level Recovery (ILR) on
MPE V.
Guarantee via Intrinsic Level Recovery (ILR) that not more than one DBDELETE or
DBPUT per process will be lost. ILR should be disabled on TurboIMAGE/XL.
Recover transactions via dynamic roll-back recovery while other database activity is
occurring.

Mapped �les are used instead of extra data segments for run-time control blocks. Another
control block, the Database User Local Index (DBUX), has been added.

The maximum number of DBOPENs per process is 127 (63 per database) depending on the
availability of system resources.

Some status area information returned by TurboIMAGE/XL library procedures is di�erent
for MPE/iX applications because of the change from 16-bit to 32-bit architecture.

Some information returned by DBINFO mode 402 is di�erent because of the change in how
ILR is implemented.

For roll-back recovery: If logging to disk, the user log �le and the database must reside in
the same volume set. If logging to tape, the database must be in the system volume set.

DBSTORE has a TRANSPORT option in the INFO=string for moving TurboIMAGE/XL
databases to MPE V.

Better integrated third-party indexing software that works in conjunction with
TurboIMAGE/XL provides the capability to do generic key searches, multiple keyword
retrievals, and sorted sequential searches on any database that is enabled for third-party
indexing.

A logical transaction bracketed by DBXBEGIN and DBXEND can be dynamically rolled
back. This dynamic transaction can be of 1 to 15 databases.

A data set can be a jumbo set exceeding 4 gigabytes.

B-tree indices on key items of master data sets allow generic and range searches on key
items of master sets as well as corresponding detail data set search items.

Extended Utility Program Unconditional Messages TurboIMAGE/XL versus TurboIMAGE/V H-1

Databases can be stored, even when they are open for read/write access, using
TurboSTORE/iX 7x24 True Online Backup (with ONLINE=START or ONLINE=END
option). Their related �les, such as TC �le and third-party index �les, are stored along with
the databases.

DBRECOV can perform a roll-forward recovery for a database stored using
TurboSTORE/iX 7x24 True Online Backup (with ONLINE=START or ONLINE=END
option).

Data sets, master as well as detail, can be dynamically expanded during DBPUT.

The rest of this appendix discusses the major di�erences in detail. They include the following:

Intrinsic Level Recovery
Control Blocks
Status Area
Moving from MPE/iX to MPE V

TurboIMAGE/XL di�erences are summarized in Table H-1.

Moving to TurboIMAGE/XL

To move a database from MPE V to MPE/iX, you need to perform the following tasks:

1. Disable both ILR and roll-back recovery (use the >>DISABLE command of DBUTIL).
2. On MPE V, store the database with DBSTORE (or use the MPE V STORE command).
3. On MPE/iX, restore the database with DBRESTOR (or use the MPE/iX RESTORE

command).

For more detailed migration information, refer to the Migration Process Guide.

H-2 TurboIMAGE/XL versus TurboIMAGE/V Extended Utility Program Unconditional Messages

Table H-1. TurboIMAGE/XL Differences

Area A�ected Changes/Additions

Data Set Size { The maximum data set size is 4 gigabytes unless it is a jumbo
data set.

DBEXPLAIN { Information for DBEXPLAIN is stored in the Database User
Local Control Block (DBU).

{ Calls to DBEXPLAIN must be made immediately after
receiving an error status.

DBOPEN { A maximum of 127 DBOPENs is allowed per process (63 per
database).

DBSTORE Command { A TRANSPORT option has been added for use when moving a
TurboIMAGE/XL database to MPE V.

{ The move from MPE/iX to MPE V may not be possible if data
sets are larger than the MPE V �le size limit.

Dynamic Roll-Back Recovery { Physical integrity of the database is provided by MPE/iX
Transaction Management (XM) logging, by default.

{ Dynamic roll-back works in conjunction with XM and ensures
the logical integrity of the database after a program abort or
system failure.

{ Transactions are rolled back online while other database
activity is occurring.

{ Dynamic transaction can span single or multiple databases.

Intrinsic Level Recovery { Physical consistency of the database is provided by MPE/iX
Transaction Management as a default.

{ The ILR log �le is replaced by the MPE/iX Transaction
Management log �le.

{ Incomplete intrinsics are backed out and will not be reapplied.

{ DBUPDATE is included in the recovery.

{ DBINFO mode 402 no longer contains ILR recovery
information.

{ To move between MPE V and MPE/iX, disable ILR and
roll-back recovery.

{ ILR is not required for roll-back recovery.

Extended Utility Program Unconditional Messages TurboIMAGE/XL versus TurboIMAGE/V H-3

Table H-1. TurboIMAGE/XL Differences (continued)

Area A�ected Changes/Additions

Remote Database Access { Only NS/3000 is supported on MPE/iX.

Roll-Back Recovery { ILR is not required.

{ If logging to disk, the user log �le and the database must be in
the same volume set. If logging to tape, the database must be
on the system volume set.

Run-Time Control Blocks { Mapped �les are used for control blocks.

{ A control block called the Database User Local Index (DBUX),
which is unique to a process, has been added. It contains
dynamic roll-back information, as well as the addresses and �le
numbers of all the DBUs and DBRs belonging to a speci�c
process.

{ The database ID number returned by DBOPEN now serves as
an index into the DBUX.

Status Area { Status elements 5, 7, 8, and 10 are modi�ed for Native Mode
(NM) applications.

{ For condition code �9, elements 2, 3, and 4 have a new format
for both Compatibility Mode (CM) and NM applications.

TURBO Trace and Pro�ler { TURBO Trace and Pro�ler are not available.

Third-Party Indexing { If your database is con�gured for indexing using a supported
third-party product, you have the capability to do generic key
searches, multiple keyword retrievals, and sorted sequential
searches on that database using the DBFIND and DBGET
intrinsics. Refer to your third-party vendor documentation for
details.

B-Tree Indices { If a B-tree index exists on the key item of the master, allows
you to do generic and range searches using this key item, or
search items of its corresponding detail data sets. DBFIND can
be used both for master and detail. New feature for
TurboIMAGE/XL; not in TurboIMAGE/V.

Master and Detail Data Set
Expansion

{ Data set can be expanded dynamically according to capacity
expansion parameters. New feature for TurboIMAGE/XL; not
in TurboIMAGE/V.

Jumbo Data Sets { Allows you to create data sets greater than 4 gigabytes. New
feature for TurboIMAGE/XL; not in TurboIMAGE/V.

Dynamic Multiple Database
Transaction (DMDBX)

{ This is an extension of the dynamic transaction for a single
database. The dynamic transaction can span 1-15 databases.
New feature for TurboIMAGE/XL; not in TurboIMAGE/V.

Deadlock Detection { Database can be activated for deadlock detection to avoid
system hangs. New feature for TurboIMAGE/XL; not in
TurboIMAGE/V.

H-4 TurboIMAGE/XL versus TurboIMAGE/V Extended Utility Program Unconditional Messages

Intrinsic Level Recovery

Intrinsic Level Recovery (ILR) is not required to protect the structural integrity of the
database, because in default recovery mode TurboIMAGE/XL takes advantage of an internal
MPE/iX �le system service, called Transaction Management (XM), to provide intrinsic level
backup and recovery. Unless AUTODEFER is enabled, all intrinsics that modify the database
(DBPUTs, DBDELETEs, and DBUPDATEs) are written to XM log �le pages by MPE/iX. In
default recovery mode, XM log �le pages are only written to disk when one of the following
occurs:

A system-speci�ed time has elapsed.

A request is made by a subsystem, such as TurboIMAGE/XL, to ush the XM log �le to
disk (for example, ILR is enabled, or DBEND mode 2 is speci�ed and logging is enabled).

The XM bu�er is full.

Thus, intrinsics that have completed may not yet be written to disk. If a system failure
occurs, only intrinsics that have been written to disk are recovered. When recovery is
necessary, it must be performed at system startup time before anyone modi�es the database.

ILR also uses the MPE/iX Transaction Management service. When ILR is enabled, XM log
�le pages are written to disk at the end of each completed DBDELETE and DBPUT. If a
system failure occurs, at most only one DBPUT or DBDELETE is not recovered. (Note that
a completed DBUPDATE does not force a XM log write to disk.) Because of these di�erences
in implementation, ILR on TurboIMAGE/V is not completely compatible with ILR on
TurboIMAGE/XL.

ILR does have performance implications. Therefore, you may wish to reevaluate your use of
ILR with TurboIMAGE/XL. ILR is no longer necessary to ensure the structural integrity
of the database. However, if your data is not easily recoverable (information taken over the
telephone, for example) you may wish to use ILR because at most only one intrinsic can be
lost.

Note Before moving TurboIMAGE/V databases to MPE/iX, it is recommended
that ILR be disabled. If it is not, TurboIMAGE/XL assumes you want ILR to
remain enabled.

Major Differences

ILR is performed by MPE/iX Transaction Management. As a result, the ILR �le
DatabaseName00 does not exist. All transactions are logged to the MPE/iX Transaction
Management log �le.

ILR is not required to protect the structural integrity of the database.

ILR is not required for roll-back recovery.

DBUPDATE is included with DBPUT and DBDELETE in Intrinsic Level Recovery.
However, completed DBUPDATEs are not guaranteed to be committed to the log �le for
recovery.

On TurboIMAGE/XL, only completed DBPUTs and DBDELETEs are recovered by ILR if
the database was enabled for ILR. If these intrinsics are interrupted by a system failure or
other abnormal termination, they are not recovered. On TurboIMAGE/V, if the database

Extended Utility Program Unconditional Messages TurboIMAGE/XL versus TurboIMAGE/V H-5

is enabled for ILR, the last DBPUT or DBDELETE, which was interrupted by a system
failure or other abnormal termination, will be completed.

When recovery is necessary, it must be performed at system startup time before anyone
modi�es the database. This can cause a slightly longer startup time. (If a program accessing
a TurboIMAGE/XL database aborts during the execution of an intrinsic, the incomplete
intrinsic will be undone.)

On TurboIMAGE/XL, DBINFO mode 402 does not return information about whether or
not ILR recovery has been done on the last DBPUT or DBDELETE. (Because database
recovery is now performed at system startup time, this information is not available.)

Table H-2 compares DBINFO mode 402 on TurboIMAGE/V with DBINFO mode 402 on
TurboIMAGE/XL.

Table H-2. DBINFO Mode 402 Changes

Element TurboIMAGE/V TurboIMAGE/XL

1 ILR log ag: 1 if enabled; 0 if not enabled. No change.

2 Calendar date ILR was enabled. No change.

3, 4 Clock time ILR was enabled. No change.

5 1 if ILR used; 0 if ILR not used. Always 0.

6 P if DBPUT; D if DBDELETE; otherwise blank. Always blank.

7{14 Data set name, when ILR used; otherwise blank. Always blank.

15{16 Reserved. No change.

H-6 TurboIMAGE/XL versus TurboIMAGE/V Extended Utility Program Unconditional Messages

Control Blocks

Run-time control blocks are created di�erently on MPE/iX. A new control block called
the Database User Local Index (DBUX), which is unique to each process, has been added.
Also, four new global tables to monitor system-wide database activity are added. See the
descriptions below for these four tables that were added:

TURBOLKT

TURBOGTX

QOPEN

QLOCK

Major Differences

Run-time control blocks are no longer created as privileged extra data segments. Instead, on
MPE/iX privileged mapped �les are used. If an error occurs when MPE/iX opens a mapped
�le, the following error is returned for status code �9:

CANNOT CREATE controlblockname: FILE SYSTEM ERROR nn

where controlblockname is one of the following:

DBS

DBG

DBU

DBR
DBUX

and nn is the number of the �le system error. Refer to \Local Database Access" in
Chapter 10.

Speci�cally, control blocks are created as follows:

The Database System Control Block (DBS) is stored in a permanent mapped �le called
TURBODBS.PUB.SYS. It is created as a permanent �le and is unique to a system.
DBOPEN creates it if it does not exist and resets it after a system abort.

The Database Globals Control Block (DBG) and the Database Bu�er Area Control Block
(DBB) are stored in a permanent mapped �le called DatabaseNameGB which resides in the
same group and account as the database. DatabaseNameGB is created when the �rst user
opens the database and purged when the last user exits.

Each Database User Local Control Block (DBU) is stored in an unnamed/new mapped �le.
A DBU is created each time a user does a DBOPEN for local database access.

Each Database Remote Control Block (DBR) is stored in an unnamed/new mapped �le. A
DBR is created each time a user does a DBOPEN for remote database access.

The Database User Local Index Control Block (DBUX) is a new run-time control block
stored in an unnamed/new mapped �le. One DBUX is created per process. The database
ID number serves as an index into the DBUX and points to the virtual addresses of all
current DBU/DBRs belonging to that process. 127 entries are allowed, meaning that
each user (process) is allowed 127 DBOPENs (63 per database). Refer to the discussion
of DBOPEN in Chapter 5 for additional information. If the DBUX is full and the user
attempts to open another database, the following error is displayed for status code �198:

Extended Utility Program Unconditional Messages TurboIMAGE/XL versus TurboIMAGE/V H-7

TOTAL DBOPEN COUNT PER USER EXCEEDS LIMIT OF 127

The Database Lock Table (TURBOLKT) contains information pertaining to locks on the
database and is used to avoid deadlocks.

The Multi-Database Transactions (TURBOGTX) contains information pertaining to
dynamic transaction constituting multiple databases.

The QOPEN Table (QOPEN) contains information about user logging process for active
DBOPENS of modes 1-4.

The QLOCK Table (QLOCK) contains information about all writers to databases and a
pointer to QOPEN.

H-8 TurboIMAGE/XL versus TurboIMAGE/V Extended Utility Program Unconditional Messages

Status Area

All addresses on MPE/iX are 32 bits. This has necessitated a change in some of the
information returned in the status area by TurboIMAGE/XL library procedures.

Major Differences

Because TurboIMAGE/XL uses MPE/iX mapped �les, DBOPEN calls HPFOPEN to
open these mapped �les. If an error occurs during this process, the condition code �9,
formerly used to indicate an MPE/iX GETDSEG failure, is now used to indicate an MPE/iX
HPFOPEN failure. DBOPEN returns the HPFOPEN status in the status array as shown in
Table H-3:

Table H-3. Condition Code �9 Status Array

Element Content

1 �9

2 Control Block Code

DBG = 1

DBU = 2

DBR = 3

DBS = 4

DBUX = 5

3 HPFOPEN File System Error (16 bits)

4 File System Intrinsic Code

When DBOPEN is successful, elements 3 and 4 still contain the size, in halfwords, of the
DBG and DBU respectively. However, because the maximum value that can be reported is
32,768 halfwords (65,536 bytes), if the DBG or the DBU/DBR is larger than that, only 32,768
halfwords are reported in the status area. Note that although on MPE/iX words are 32-bit
words, TurboIMAGE/XL still returns all lengths in the status area as the number of 16-bit
halfwords.

For applications in Compatibility Mode (CM):

Switch stubs translate the information returned to the status area by TurboIMAGE/XL.
After translation, each element of the status area contains the information expected by
TurboIMAGE/XL applications with one exception. Element 10 contains the relative address
of the switch stub rather than that of the actual library procedure (intrinsic).

For applications in Native Mode (NM):

On TurboIMAGE/XL, elements 5 and 10 of the status area do not contain code o�sets
because they are now 32 bits. Halfwords 5 and 10 return 0.

Halfwords 7 and 8 contain the 32-bit address of the database parameter.

DBEXPLAIN cannot �nd complete information in the status area for its explanation.
To solve this problem, TurboIMAGE/XL places the missing information in the DBU,
which DBEXPLAIN now references. However, the application must call DBEXPLAIN
immediately after the status information is received. If any other library procedure is called
between the time the error status is returned and DBEXPLAIN is called, DBEXPLAIN
displays the last information stored in the DBU, which may or may not belong to the

Extended Utility Program Unconditional Messages TurboIMAGE/XL versus TurboIMAGE/V H-9

library procedure that encountered the error. This could a�ect applications that use two or
more di�erent status arrays.

Table H-4 compares elements 5 through 10 of the TurboIMAGE/V status area with elements
5 through 10 of the TurboIMAGE/XL status area. If an error occurs, this information is
returned for all library procedures. If the procedure executes successfully, this information
is returned for DBBEGIN, DBCLOSE, DBCONTROL, DBEND, DBINFO, DBLOCK,
DBMEMO, and DBOPEN.

Table H-4. Status Area Changes for MPE/iX Applications

Element TurboIMAGE/V and Compatibility Mode TurboIMAGE/XL

5 PB-relative address of the caller. 0 (moved to DBU)

6 Bits 7�15: Intrinsic number of called
library procedure.
Bits 0�3: Zero or access mode in which
database is opened.

No change.

7 16-bit address of the database. First 16 bits of the database address.

8 16-bit address of the data set name or
quali�er.

Second 16 bits of database address (data
set or quali�er address moved to DBU).

9 Value of the mode parameter. No change.

10 PB-relative address of the library
procedure or the Compatibility Mode
switch stub.

0 (moved to DBU)

H-10 TurboIMAGE/XL versus TurboIMAGE/V Extended Utility Program Unconditional Messages

Moving from MPE/iX to MPE V

If you need to move a TurboIMAGE database from MPE/iX to MPE V, you need to perform
the following tasks:

1. If the TurboIMAGE/XL database you stored has taken advantage of dynamic roll-back
recovery, check for the presence of a dbname00 �le. If the dbname00 �le exists, the
database needs to be recovered. Open the database and close it again. The recovery occurs
automatically with the call to DBOPEN.

2. Disable ILR, roll-back recovery, and, if applicable, third-party indexing. Set the critical
item update (CIUPDATE) option to DISALLOWED.

3. Drop B-tree indices, if any. Use DROPINDEX command of DBUTIL.

4. Check the bu�er speci�cations to ensure that they are compatible with MPE V.
TurboIMAGE/XL bu�er speci�cations are set at a large �xed number. Refer to the
following discussion of the BUFFSPECS parameter of the DBUTIL >>SET command for
setting the bu�er speci�cations for a database to be moved to MPE V.

5. If your database is attached to any SQL database environment, detach it from all
DBEnvironments. Use the DETACH command of DBUTIL.

6. Store the database with DBSTORE and be sure to specify the TRANSPORT option (see
\Major Di�erences" below).

7. If necessary, reenable both ILR and roll-back recovery on MPE V after the database is
restored.

Major Differences

A TRANSPORT option has been added to the DBSTORE command. When you are
transporting databases from MPE/iX to MPE V, you must use this TRANSPORT option.
To do this, supply an INFO parameter as follows:

RUN DBSTORE;INFO="TRANSPORT"

Disable ILR before transporting TurboIMAGE/XL databases to MPE V.

Note Your TurboIMAGE database may be too large to move to the MPE V system.
This is because the expanded �le size available on MPE/iX (4 gigabytes as
well as availability of jumbo data sets) means data sets can exceed the MPE
V �le size limit (0.5 gigabytes). If you store a database on MPE/iX using
DBSTORE with the TRANSPORT option, you will receive an MPE/iX error
when a data set larger than the MPE V limit is encountered.

Buffer Specifications

For databases that will be moved to MPE V, the DBUTIL >>SET command can be used
to specify the number of input/output bu�ers to be allocated by TurboIMAGE/V in the
Database Bu�er Area Control Block (DBB) depending on the number of users concurrently
accessing the database. The syntax of this command follows:

>>SET database name
�
/maint word

�� BUFFSPECS=num bu�ers (from-users/ to-users)�
,num bu�ers(from-users/to-users)

�
. . .

�

Extended Utility Program Unconditional Messages TurboIMAGE/XL versus TurboIMAGE/V H-11

For a complete syntax listing of the DBUTIL >>SET command, refer to Chapter 8.

Parameters

BUFFSPECS is for MPE V compatibility only, because the TurboIMAGE/XL bu�er
speci�cations are �xed at a large default value. For databases that will
be moved to MPE V, it sets the number of bu�ers to be allocated by
TurboIMAGE/V in the Database Bu�er Area Control Block (DBB). The
following parameters are used with the BUFFSPECS parameter:

num bu�ers is the number of bu�ers for the range of users speci�ed
between the parentheses that follow. The minimum number
of bu�ers allowed is 5 and the maximum is 255. The number
of bu�ers allocated and the actual amount of performance
increase obtained depends on whether ILR is enabled, how
many users are accessing the database, the amount of main
memory available, and many other factors.

from-users is the minimum number of concurrent users (access paths) for
which the preceding num bu�ers should be allocated. The
minimum from-users value allowed is 1 and the maximum is
120. The value must be less than the immediately following
to-users value.

to-users is the maximum number of concurrent users for which the
preceding num bu�ers should be allocated. The minimum
to-users value allowed is 1 and the maximum is 120. The
value must be greater than the immediately preceding
from-users value.

Discussion

The following BUFFSPECS discussion is for databases that will be moved to MPE V. The
bu�er speci�cations are �xed at 1280 on TurboIMAGE/XL.

The from-users and to-users counts can be the same. For example:

SET ORDERS/SELL BUFFSPECS=10(4/4)

is valid. The value of from-users must be less than or equal to the value of to-users. In
addition, the from-users/to-users ranges must be speci�ed in increasing order. The ranges
may not overlap but they need not be consecutive. If num bu�ers is not speci�ed for a
particular number of users, the default number of bu�ers is used. These are the default
settings assigned by TurboIMAGE on MPE V:

b(1/2) b+4(9/10) b+7(15/16)

b+1(3/4) b+5(11/12) b+8(17/18)

b+2(5/6) b+6(13/14) b+9(19/120)

b+3(7/8)

The value of b is equal to the largest number of search items in any detail data set in the
database plus 3, or it is equal to 8, whichever is larger.

If p is the maximum number of search items (the path count), the value of b can be
represented as follows:

b = max (p+3,8)

H-12 TurboIMAGE/XL versus TurboIMAGE/V Extended Utility Program Unconditional Messages

For example, the largest path count for a detail data set in the ORDERS database is 4. (This
is the path count for the CUST data set.) Therefore, the value of b for the ORDERS database
is shown here:

b = max (4+3,8) = 8

The default bu�er speci�cations in this case are:

8(1/2),9(3/4),10(5/6),11(7/8),12(9/10),13(11/12),14(13/14),15(15/16),16(17/18),17(19/120)

Example 1

:RUN DBUTIL.PUB.SYS Initiate DBUTIL execution.
...

>>SET ORDERS BUFFSPECS=5(1/120) Specify 5 bu�ers to be allocated for from 1 to

For database ORDERS 120 users (access paths).

BUFFER SPECIFICATIONS: DBUTIL con�rms the speci�cations by listing them.

5(1/120)

>>

Example 2

:RUN DBUTIL.PUB.SYS
...

>>SHOW ORDERS BUFFSPECS Check the current bu�er speci�cations.

BUFFER SPECIFICATIONS:

5(1/120)

>>SET ORDERS BUFFSPECS=30(1/30) Specify the new bu�er speci�cations.

Here the bu�ers are increased for

Number of buffers must not decrease for the �rst 30 users. However, the

increased users as below: previous bu�er setting remains the

same for the other users.

BUFFER SPECIFICATIONS:

30(1/30),5(31/120)

Buffer specifications remain unchanged

as below:

BUFFER SPECIFICATIONS:

5(1/120)

>>SET ORDERS BUFFSPECS=30(1/30),40(31/120) Specify larger number of bu�ers for

increased number of users.

BUFFER SPECIFICATIONS: DBUTIL con�rms the speci�cations by

30(1/30),40(31/120) listing them.

>>

Extended Utility Program Unconditional Messages TurboIMAGE/XL versus TurboIMAGE/V H-13

Index

A

abnormal termination of a procedure, 4-39
abort
and recovery, 7-5
conditions, A-19, A-74

ABORTS parameter, of DBRECOV, 8-14, 8-15
absent list, 2-18, 2-19
versus null list, 2-18

access
calculated, 4-15
chained, 4-15
class password, modifying, 8-64
concurrent modes, 4-4
creator-only, 2-16
directed, 4-13
disable, 8-48
enable, 8-51
exclusive, 2-24
granting, B-1
modes, 2-18, 4-3
modes and user class number, 4-10
none, 2-16
option, 8-48, 8-51
path, 4-12
read, 2-16
rules, 2-19
semi-exclusive, 2-24
serial, 4-14
update, 2-16
write, 2-16

access modes, 2-18
and critical item update, 4-7
and database operations, 4-5{6
and locking/unlocking, 4-26
and logging, 4-8
and user class number, 4-18, 4-23
concurrent, 4-4
selecting, 4-7

ACCESS option, of DBUTIL, 8-48, 8-51
account
manager, 2-15
member, 2-15
protection, 2-15

ACTIVATE command, of DBUTIL, 8-41{42
activate DBA �le, 8-41
actual �le designators, 3-17

ADDINDEX
command of DBUTIL, 8-43
syntax, 11-5

adding entries, 2-17
coordinating calls, 4-10
data, 2-19
prefetching data, 4-10
sequence for, 4-9
to detail data sets, 5-86
to master data sets, 5-86

address
primary, 10-3

administrator, database, 1-4
algorithms, primary address calculation, 10-13
ALL option, of DBUTIL, 8-68
ALTLOG command, of MPE/iX, 7-18
ampersand, continuation record, 3-20
argument
simple, 11-2
structured, 11-2, 11-14

array, 2-1
ASCII characters, 2-1
at-sign in DBA �le, 9-6
audit trail, 7-5
AUTODEFER option, of DBUTIL, 2-24, 5-11,

8-48, 8-51
disabling, 5-11, 8-48
enabling, 5-11, 8-51

automatic master, 2-6, 4-27
standalone, 2-6

B

backup
copies, 1-5, 7-23
�les, 8-6

BBASIC, 1-5, 2-1, 6-1
and complex numbers, 3-8
and decimal numbers, 3-8

bit map, 10-4
block
and bit maps, 10-4
de�nition of, 2-14, 10-4

blocking factor, 2-14
BLOCKMAX option, of $CONTROL, 3-23
broken chains, 8-35
message returned, 8-36

Index-1

B-Tree index
attachment, 5-60
DBINFO, 5-54, 5-60
mode setting, 5-54

B-Tree indices, 11-1{20
external commands a�ected, 11-5
getting started, 11-20
key points, 11-2
limits, 11-19
overview, 11-1
terminology, 11-1
utilities a�ected, 11-5

BTREEMODE1, 11-2
bu�er
length, 3-26
management, 10-15
speci�cations, H-11{13

BUFFSPECS option, of DBUTIL, 8-64, 8-68,
H-11

BUILD command, of MPE/iX, 7-17
byte, 3-5

C

C, 6-1
sample program, 6-20{25

calculated access, 4-15
reading data, 4-15

calling errors, A-19
call statements
BBASIC, 5-3
C, 5-3
COBOL II, 5-3
FORTRAN 77, 5-3
Pascal, 5-3
procedure, 5-3

capacity
actual, 5-59
de�nition of, 2-2
detail data set, 3-15
expansion, 3-12, 3-15, 3-26, 3-27, 5-57, 5-80{81,

5-87, 8-72, 8-73
initial, 3-15
master data set, 3-12, C-1
maximum, 2-2, 3-12, 3-15
primary, 5-59
show, 8-73

CCE, A-18
CCG, A-18
CCL, A-18
chain
data, 10-1
de�nition of, 2-7
head, 2-7, 10-1
sorted, C-1
synonym, 10-3

chained access, 4-15
and current path, 4-12
and locking, 4-16

CHANGELOG command, of MPE/iX, 7-31
changing data item values, 2-17
checking
status of a procedure, 4-38
the subsystem ag, 4-37

Chunk
control �le, 2-9
data �le, 2-9

chunks
number of, 5-58
size of, 5-58

CIUPDATE option, of DBUTIL, 2-17, 2-20,
2-23, 4-3, 4-5, 4-18, 4-19, 5-92, 8-64, 8-68

and application design, 4-19
and DBINFO mode 502, 5-68
disabling, 5-11
enabling, 5-11
settings, 4-19, 5-11, 5-68, 8-64
updating data, 4-18

class lists
read and write, 2-16

class number, user, 4-3
cleanup mode, MPE/iX, 7-42, 7-48
closing
a data set, 4-37
the database, 4-37

COBOL II, 1-5, 6-1
sample program, 6-26{46

COMMAND intrinsic, of MPE/iX, 9-2
commands, Schema Processor, 3-20
comments in schema, 3-2
communication area of DBG, 10-10
communications link, remote session, 9-2
complex numbers, 3-8
compound data items, 2-1
concurrent access modes, 4-4
conditional
locking, 4-26
locks, D-2

condition code, 4-38, A-18
CCE, 4-38
CCG, 4-38
CCL, 4-38

continuation records, 3-20
Schema Processor, 3-20

$CONTROL, 3-23
control blocks, database, 2-24, 10-12
Bu�er Area (DBB), 4-2, 10-10
Globals (DBG), 4-2, 10-10
MPE V versus MPE/iX, H-7
overview of, 4-2
Remote (DBR), 4-2, 10-12

Index-2

size of, 10-12
System (DBS), 4-2, 10-10
User Local (DBU), 4-2, 10-10
User Local Index (DBUX), 4-2, 10-10

CONTROL command
of DBRECOV, 8-14{17
of Schema Processor, 3-23

control, exclusive, 8-68
conventions
database description language, 3-2
model program, 6-5

copying data entries to formatted tape, 8-34
copying entire database
from backup volumes, 8-28
to disk, 8-28
to tape, 8-30

correspondence of backup copy and log �le, 7-39
CREATE command, of DBUTIL, 8-44{45
creating
a database, 7-1
the text �le, 3-18

creator, database, 1-4, 2-13, 3-19, 8-1
creator-only access, 2-17
critical items, 2-1, 3-16
detail search item, 2-1
detail sort item, 2-1
master key item, 2-1

critical item update, 2-17, 2-20, 2-23, 4-3, 4-5,
4-18, 4-19, 5-11, 5-68, 5-92, 8-64

critical mode, 2-24
current path, 4-12
and DBGET, 5-48
de�nition, 4-15
number and DBFIND, 5-43

current record
number and DBFIND, 5-43
rereading, 4-17

D

data
chain, 10-1
entries, 2-1
�les, 2-13
integrity, 2-24
names, 3-10
prefetching, 8-48, 8-51
reading, 4-12

database, 2-1
access mode and user class number, 4-10
access modes, 2-18, 4-3
access modes summary, 4-4
accessor, 4-12
adding entries, 4-9
administrator, 1-4
administrator, access to log �le, 8-26

attached to a DBEnvironment, 8-58
backup copy, 7-23
backup copy, ags, 7-21
backup using TurboSTORE/iX 7X24, 7-24
closing the, 4-37
concurrent access modes, 4-4
consistency, 7-6
control blocks, 2-24, 4-2
creating, 7-1
creator, 1-4, 2-13, 3-19, 8-1
creator, de�nition of, 1-5
creator's logon group, 2-13
de�nition language, 1-5
de�nition of, 1-1, 2-1
description language, conventions, 3-1{2
designer, 1-4
detaching from a DBEnvironment, 8-58
elements, 2-1
entering data, 4-9
exclusive control, 8-68
manager, 1-4
name, syntax, 3-2
opening the, 4-1
personnel, 1-4
protection, 2-15, 5-3
recovery options, 7-3{4
remote, 9-1, D-3
restructure, 1-5, 8-1
restructuring, 8-2
security, 2-15
statistics, 7-53
storing, 8-30
structure, 2-1
structure, obtaining information, 4-36
terminating access, 5-8
utilities, 8-1

database access
creator-only, 2-16
none, 2-16
read, 2-16
types of, 2-16
update, 2-16
write, 2-16

database-access (DBA) �le
activate, 8-41
activating, 9-8
content, 9-4
creating, 9-5
deactivate, 8-46
deactivating, 9-9
name, 9-6
reporting, 8-77
syntax rules, 9-8
syntax veri�cation, 9-8
using, 9-3

Index-3

Database Bu�er Area Control Block (DBB),
4-2, 10-10

allocating bu�ers, 8-64
Database Globals Control Block (DBG), 4-2,

10-10
Database System Control Block (DBS), 4-2,

10-10
Database User Local Control Block (DBU), 4-2,

10-10
Database User Local Index Control Block

(DBUX), 4-2, 10-10
data entry, 2-1
and access mode, 4-12
and user class number, 4-10
deleting, 4-22
length, 2-1
locking, 4-24, 4-29
numbers, 4-12
sequence for adding, 4-9

data item, 2-1
compound, 2-1
de�nition of, 2-1
identi�ers, 3-9
length, 3-5
maximum, 3-4
numbers, 3-9
obtaining information about, 4-36
packed, 3-8
read access, 2-19
security, 2-19
types, 3-6
update access, 2-19
validating, checking, 5-74
values, viewing, 2-17

data set, 2-2
automatic master, 2-6
capacity, 2-1, 2-2
chunks, 5-58
chunk size, 5-58
closing the, 4-37
creating, 8-44
de�nition of, 2-1
detail, 2-4, 2-7, 3-13, 5-86
expansion, 10-5, 10-13
identi�ed, 2-4
identi�ers, 3-16
initializing, 8-44
jumbo, 2-9
location, 2-7
locking, 4-24
manual master, 2-6
master, 2-4, 5-86
maximum capacity, 3-10, 3-12, 3-13, 3-15
naming conventions, 2-2, 8-44
purging, 8-58

reinitializing, 8-53
relationships, 2-4
rewinding, 5-8
security, 2-19
size, H-2
size, jumbo, 2-9
space allocation, 10-15
storage, 2-7
summary table, 3-25
summary table information, 3-26
types, 2-4
write list, 2-18

data set, detail
adding entries to, 5-86
deleting, 5-17
updating search and sort item values, 2-20,

2-23
data set, master
adding entries to, 5-86
deleting, 5-17

data types, 2-1
designators, 3-6{7
IEEE, 3-7

DBB
allocating bu�ers, 8-64
use of, 10-10

DBBEGIN
calling sequence, 5-5
description, 4-34, 5-5
errors, 5-7

DBChange Plus, 3-12, 3-15, 3-27, 5-81, 8-72,
8-73

DBCLOSE
calling sequence, 5-8
description, 5-8
errors, 5-10

DBCONTROL
and AUTODEFER option, 5-11
and CIUPDATE option, 5-11
calling sequence, 5-11
description, 5-11
errors, 5-15
with B-Tree index, 11-8

DBDELETE
calling sequence, 5-16
description, 5-16
errors, 5-18
with B-Tree index, 11-18

DBEND
calling sequence, 5-19
description, 4-34, 5-19
errors, 5-22
mode 1 option, 5-19
mode 2 option, 5-19
special, and logging, 5-21

Index-4

DBERROR
calling sequence, 5-23
description, 4-39, 5-23
messages, 5-24{35

DBEXPLAIN
calling sequence, 5-36
description, 4-39, 5-36
messages, 5-37{38

DBFIND
calling sequence, 5-39
current path number, 5-43
current record number, 5-43
description, 4-12, 4-15, 5-39
errors, 5-44
for B-Tree index, 11-1
with B-Tree index, 11-11

DBGET
calling sequence, 5-46
current path, 5-48
description, 4-12, 4-15, 5-46
errors, 5-49
primary path, 2-8
with B-Tree index, 11-17

DBG, use of, 10-10
DBINFO
and CIUPDATE option, 4-37
and dynamic transactions, 4-37
and logging facility, 4-37
and Native Language Support, 4-37
calling sequence, 5-50
description, 4-36, 5-50
errors, 5-51
mode 402, MPE V versus MPE/iX, H-6
special uses of, 4-37
with B-Tree index, 11-17

DBLOAD utility, 2-8, 8-7{10
DBLOCK
calling sequence, 5-69
description, 4-24, 5-69
errors, 5-75
multiple calls, D-1

DBMEMO
calling sequence, 5-76
description, 5-76
errors, 5-77

DBOPEN
calling sequence, 5-78
description, 4-1, 5-78
errors, 5-83
logging, 5-80
modes, 4-3

DBPUT
calling sequence, 5-84
description, 4-9, 5-84
errors, 5-89

logging, 5-86
with B-Tree index, 11-18

DBQUIESCE, 10-12
DBR, 10-12
DBRECOV utility, 8-11{27
ABORT option, 8-11
PURGE option, 8-11
record table, 8-17
RESTART option, 8-11
STOP-RESTART feature, 7-58

DBRECOV utility commands
CONTROL, 7-49, 8-14{17
EXIT, 8-18
FILE, 7-49, 8-19{20
PRINT, 7-49, 8-21
RECOVER, 7-49, 8-22{23
ROLLBACK, 7-49, 8-24{25
RUN, 7-47, 7-49, 8-26{27

DBRESTOR utility, 8-28{29
DBSCHEMA, 3-17
Schema Processor, 6-2
uppercase characters, 6-2
with B-Tree index, 11-5

DBSTORE ag, 7-23, 7-37, 8-31
override, 8-15

DBSTORE utility, 8-30{33
not for jumbo data set, 2-9
TRANSPORT option, H-11

DBS, use of, 10-10
DBTABLE option, of DBRECOV, 8-21
DBUNLOAD utility, 2-8, 2-9, 8-34{39
and broken chains, 8-35

DBUNLOCK
calling sequence, 5-90
description, 4-24, 5-90
errors, 5-90

DBUPDATE
and CIUPDATE option, 5-92
calling sequence, 5-92
description, 4-18, 5-92
errors, 5-93{94
locking, 5-93
logging and locking, 5-93
with B-Tree index, 11-18

DBUTIL
with B-Tree index, 11-5

DBUTIL utility, 1-5, 8-40{77
ACCESS option, 8-48, 8-51
AUTODEFER option, 8-48, 8-51
CIUPDATE option, 5-92
DUMPING option, 8-48, 8-51
ILR option, 8-48, 8-51
INDEXING option, 8-48, 8-51
LOGGING option, 8-48, 8-51
MUSTRECOVER option, 8-48, 8-51

Index-5

PREFETCH option, 8-48, 8-51
RECOVERY option, 8-48, 8-51
ROLLBACK option, 8-48, 8-51

DBUTIL utility commands
ACTIVATE, 8-41{42
ADDINDEX, 8-43
CREATE, 8-44{45
DEACTIVATE, 8-46
DETACH, 8-47
DISABLE, 8-48{49
DROPINDEX, 8-50
ENABLE, 8-51{52
ERASE, 8-53
EXIT, 8-54
HELP, 8-55
MOVE, 8-56{57
PURGE, 8-58{59
REBUILDINDEX, 8-60
REDO, 8-61
RELEASE, 8-62
SECURE, 8-63
SET, 8-64{67
SHOW, 8-68{76
VERIFY, 8-77

DBU, use of, 10-10
DBUX, use of, 10-10
DBXBEGIN
calling sequence, 5-95
description, 5-95
errors, 5-97

DBXEND
calling sequence, 5-98
description, 5-98
errors, 5-99
mode 1 option, 5-98
mode 2 option, 5-98
special, and logging, 5-99

DBXUNDO
calling sequence, 5-100
description, 5-100
errors, 5-102
mode 1 option, 5-100
mode 2 option, 5-100
special, and logging, 5-101

DDXM, 10-13
DEACTIVATE command, of DBUTIL, 8-46
deadlocks, 4-32
prevention, D-1

debugging, A-18
and DBERROR, 5-23
and DBEXPLAIN, 5-36
with I and J �les, A-19

decimal numbers, 3-8
default
for DBRECOV CONTROL, 7-49

options of $CONTROL command, 3-23
read access, 2-18
recovery mode, 7-3

deferred output, 5-11
de�ning database security, 2-15
delete chain, 10-15
deleting
data, 4-22
data entries, 2-19
entries, 2-17

deleting entries
coordinating calls, 4-22
prefetching data, 4-22

Dependency Semaphore, 10-9
description language conventions, 3-1{2
design considerations, C-1
designer, database, 1-4
DETACH command, of DBUTIL, 8-47
detail data set, 2-7, 3-13
adding entries to, 5-86
deleting, 5-17
media records, 10-2
search items, 3-16
search items, and master key item, 3-16
space allocation, 10-15

device
class, assigning the, 3-12
list, 8-73

DEVICE option, of DBUTIL, 8-68
directed access, 4-13
and locking, 4-14
reading data, 4-13

disable
access, 8-48
AUTODEFER, 8-48
dumping, 8-48
ags, 8-48
ILR, 8-48
indexing, 8-48
logging, 8-48
MUSTRECOVER, 8-48
PREFETCH, 8-48
recovery, 8-48
ROLLBACK, 8-48

DISABLE command, of DBUTIL, 8-48{49
displaying information
about DBUTIL commands, 8-55
about locks, 8-74
about the database, 8-68

Distributed Systems (DS/3000), 9-1
DMDBX, 7-3, 7-8, 10-11
DROPINDEX
syntax, 11-6

DROPINDEX command, of DBUTIL, 8-50
dset array, of DBFIND, 5-39

Index-6

DSLINE command
in database-access �le, 9-5

DS user identi�cation, 9-4
dummy parameters, 5-4
dumping
disable, 8-48
enable, 8-51

DUMPING option, of DBUTIL, 8-48, 8-51
show, 8-68

dynamic
capacity. See capacity, expansion
database transactions, 7-8
data set expansion, 10-5, 10-13
locking, 4-24
multiple database transaction, 7-3
transactions and locking, 7-11

dynamic roll-back recovery, 4-33, 7-13
quick reference, G-1

E

enable
access, 8-51
AUTODEFER, 8-51
dumping, 8-51
ags, 8-51
ILR, 8-51
indexing, 8-51
logging, 8-51
MUSTRECOVER, 8-51
PREFETCH, 8-51
recovery, 8-51
ROLLBACK, 8-51
user class access, 2-19

ENABLE command, of DBUTIL, 8-51{52
entering data in the database, 4-9
entries
migrating secondaries, 10-14
primary, 10-3
secondary, 10-3

EOF parameter, of DBRECOV, 8-14, 8-17
ERASE command, of DBUTIL, 8-53
erasing the database, and logging, 8-53
error messages, 8-6, A-1{122
errors
calling, A-23
DBBEGIN, 5-7
DBCLOSE, 5-10
DBCONTROL, 5-15
DBDELETE, 5-18
DBEND, 5-22
DBFIND, 5-44
DBGET, 5-49
DBINFO, 5-51
DBLOCK, 5-75
DBMEMO, 5-77

DBOPEN, 5-83
DBPUT, 5-89
DBUNLOCK, 5-90
DBUPDATE, 5-93{94
DBXBEGIN, 5-97
DBXEND, 5-99
DBXUNDO, 5-102
interpreting, 4-39
library procedures, A-18
Schema Processor, 3-27, A-1

ERRORS option (DBSCHEMA), 3-23
ERRORS parameter, of DBRECOV, 8-14, 8-15
excluding user classes, 2-17
exclusive access, 2-24
EXIT command
of DBRECOV, 8-18
of DBUTIL, 8-54

expansion
data set, 10-13
dynamic data set, 10-5

expansion recovery, 5-80{81, 5-87
explicit B-Tree index, 11-1
extended sort �eld, 2-9
extended utility program
unconditional error messages, A-118{122

extents, �le, 2-13

F

failure
media, 7-14
system, 7-36, 7-44
to recover transactions, 7-36

�le
data, 2-13
designators, actual, 3-17
designators, formal, 3-17
errors, Schema Processor, A-1
name, 2-13

FILE
command of MPE/iX, 3-17
DBRECOV, 8-19{20
MPE command, in database-access �le, 9-5

FILETABLE option, of DBRECOV, 8-21
ags
checking the subsystem, 4-37
database backup copy, 7-21
DBSTORE, 7-23, 7-31, 8-31
disable, 8-48
displaying, 7-37
enable, 8-51
logging, 7-31
logging preparation, 7-21
setting subsystem, 8-64

FLAGS option, of DBUTIL, 8-68
oating-point numbers, 2-1

Index-7

and data types, 3-5, 3-7
owchart, security, 2-19
formal �le designators, 3-17
FORTRAN 77, 1-5, 2-1, 6-1
and complex numbers, 3-8
sample routines, 6-47{52

full data access, 2-16

G

GETLOG command, of MPE/iX, 7-18
getting started
with B-Tree indices, 11-20

granting a user class access, 2-19
group
protection, 2-15
user, 2-15

H

halfword, 3-5
HELP command, of DBUTIL, 8-55
high-water mark, 5-13, 5-14
host language access, 6-1
HP Sort, 2-9
HWMPUT, 5-13, 5-14

I

I and J �les, A-19
identi�ers, data item, 3-9
identifying users, 2-15
IEEE data types, 3-7
I �le, debugging, A-19
ILR option, of DBUTIL, 8-48, 8-51, 10-17
disable, 8-48
enable, 8-51
quick reference, G-1

IMAGE/SQL, 8-58
implicit B-Tree index, 11-1
increment, 3-15
INDEXED option for master data set, 3-10
INDEXING option, of DBUTIL, 8-48, 8-51
indexing, third-party
disable, 8-48
enable, 8-51

indices
list, 8-74

information, database structure, 4-36
initializing data sets, 8-44
integers, 2-1
integrity, 2-24
interactive locking, 4-28
internal
structures and techniques, 10-1
techniques, 10-13

interpreting errors, 4-39

Intrinsic Level Recovery, 7-4, 7-15
MPE V versus MPE/iX, H-5
quick reference, G-2

intrinsic numbers, 5-3
intrinsics
and database names, 5-1
and data item names, 5-1
and data set names, 5-1
DBBEGIN, 4-34, 5-3, 5-5{7
DBCLOSE, 4-2, 5-3, 5-8{10
DBCONTROL, 5-3, 5-11{15
DBDELETE, 5-3, 5-16{18
DBEND, 4-34, 5-3, 5-19{22
DBERROR, 4-39, 5-3, 5-24{35
DBEXPLAIN, 4-39, 5-3, 5-36{38
DBFIND, 4-12, 4-15, 5-3, 5-39{45
DBGET, 4-12, 4-15, 5-3, 5-46{49
DBINFO, 4-36, 4-37, 5-3, 5-50{68
DBLOCK, 4-24, 5-3, 5-69{75
DBMEMO, 5-3, 5-76{77
DBOPEN, 4-1, 4-2, 5-3, 5-78{83
DBPUT, 4-9, 5-3, 5-84{89
DBSTORE, 7-23
DBUNLOCK, 4-24, 5-3, 5-90
DBUPDATE, 4-18, 5-3, 5-92{94
DBXBEGIN, 5-3, 5-95{97
DBXEND, 5-3, 5-98{99
DBXUNDO, 5-3, 5-100{102
summary of, 5-3

invalid password, 2-16
item part, schema, 3-4

J

J �le, debugging, A-19
jumbo
data set, 2-9
data set chunks, 5-58
data set chunk size, 5-58

K

key item, 2-4
adding entries, 4-11
de�ned as critical item, 2-1
updating values, 4-18, 4-19

L

language
conventions, 3-2
native, 1-3
native, de�ned, 3-2

LANGUAGE option, of DBUTIL, 8-64, 8-68
languages, programming
call statements, 5-3
examples of, 6-1

Index-8

library procedures, 1-5
abort condition messages, A-74{76
calling error messages, A-23{61
error messages, A-18
exceptional condition messages, A-62{73
�le system and memory management error

messages, A-20{22
summary of, 5-3

LINES option, of $CONTROL, 3-23
list
absent, 2-18
null, 2-18

list �le, 3-21
Schema Processor, 3-17

LISTLOG command, of MPE/iX, 7-18
LIST option, 3-25
and $PAGE command, 3-21
of $CONTROL, 3-23

lock area, 10-16
lock descriptors, 4-24
array, format of, 5-72
sort sequence, D-2

locking, 4-14
accessor entries, 10-16
and dynamic transactions, 7-11
and transactions, 7-10
choosing a level, 4-28
choosing an item, 4-29
conditional, 4-26
descriptor entries, 10-16
facility, examples of, 4-29
levels, 4-27
requirements, 7-9
same level, 4-28
set entries, 10-16
strong, 4-24
unconditional, 4-26

locking/unlocking
access modes, 4-26
and chained access, 4-16
and DBUPDATE, 5-93
and direct access, 4-14
and logging, 7-5
and serial access, 4-15
and transaction length, 4-28
conditional, 4-26, D-2
deadlocks, 4-31
deciding on a strategy, 4-27
during user dialog, 4-28
dynamic, 4-24
examples of, 4-29
interactive dialog, 4-28
internals, 10-16
internal tables, 4-25
issuing multiple locks, 4-31

levels, 4-27
overview, 4-24
performance, C-2
release, 4-32
remote databases, D-3
shared access, 4-31
unconditional, 4-26

LOCKS option, of DBUTIL, 8-68
locks, showing, 8-74
LOG command, of MPE/iX, 7-30
log �le
building, 7-17
size, determining, 7-66
time stamps, 7-35

logging
acquiring capability, 7-16
and access modes, 4-8
and locking, 7-10
and process suspension, 4-35
and recovery utilities, 7-1
CHANGELOG capability, 7-31{33
checking MPE/iX con�guration, 7-16
considerations, 7-5
cycle, 7-33
cycle, sample job stream, G-7
DBCLOSE, 5-9
DBDELETE, 5-17
DBOPEN, 5-80
DBPUT, 5-86
DBSTORE ag, 8-31
DBUPDATE and locking, 5-93
device, quick reference, G-5
disable, 8-48
displaying status, 7-28
enable, 8-51
erasing the database, 8-53
ags, 7-21, 7-31
ags and database backup copy, 7-21
format records, 7-35
initiating process, 7-30
intrinsics, 4-33
maintaining, 7-30
overview, 7-5
preparation, 7-16
process, controlling, 7-66
quick reference, G-5
re-enabling, 7-31
special DBEND, 5-21
special DBXEND, 5-99
special DBXUNDO, 5-101
statistics, 7-53
time stamp, 7-35, 8-15
to disk, 7-17
to disk, quick reference, G-5
to tape, 7-17

Index-9

to tape, quick reference, G-5
Transaction Management, 4-33
transaction numbers, 4-35
user, 4-33
what it does, 4-33

LOGGING option, of DBUTIL, 8-48, 8-51
logical transaction
and locking, 7-9
de�nition of, 4-34, 7-6

log identi�er
creating, 7-18
setting in root �le, 7-21, 8-64

LOGID option, of DBUTIL, 8-64, 8-68
LOGINFO option, of DBUTIL, 8-68
logon group, database creator, 2-13
log records, 7-35
�le reference, 8-19
fmode, 8-19{20
formats, MPE/iX, F-1
formats, TurboIMAGE/XL, E-1
rmode, 8-19{20
user reference, 8-19

M

magnetic tape, 2-9
maintenance word, 1-4, 2-24
changing or removing, 8-64

MAINT option, of DBUTIL, 8-64, 8-68
making a database backup copy, 7-23
manager, database, 1-4
manual master, 2-6
mapped �les, privileged, 2-24
master data set, 2-4, 2-6, 2-7
adding entries to, 5-86
automatic, 2-6
deleting, 5-17
index, 2-7
INDEXED option, 3-10
manual, 2-6
media records, 10-2
space allocation for, 10-14

master key item, 3-16
and detail search items, 3-16

maximum
data items, 3-4
data set capacity, 3-10, 3-12, 3-15
records in data set, 2-13

MDBX parameter, of DBRECOV, 8-14, 8-15
media records, 10-2
memory management error messages, A-20
messages
DBERROR, 5-24{35
DBEXPLAIN, 5-37{38

methods, remote database-access, 9-2{11
migrating secondaries

entries, 10-14
mirror database, 7-56
MODE4 parameter, of DBRECOV, 8-17
model program, 6-2, 6-7{19
conventions, 6-5
ORDERS database, 6-2

modes, access, 2-18
and critical item update, 4-7
and database operations, 4-5{6
and locking/unlocking, 4-26
and logging, 4-8
and user class number, 4-18, 4-23
concurrent, 4-4
selecting, 4-7

MODEX parameter, of DBRECOV, 8-14, 8-17
modify intrinsics, 10-8
MOVE command, of DBUTIL, 8-56{57
moving
�les across devices, 8-56
from MPE/iX to MPE V, H-11
to TurboIMAGE/XL, H-2

MPE/iX
account and logon group, 2-13
cleanup mode, 7-42, 7-48
COMMAND intrinsic and DS, 9-2
disk �les, 2-13
log record formats, F-1
security, 2-15
subsystem, HP Sort, 2-9
WRITELOG records, E-1

MPE/iX commands
ALTLOG, 7-18
BUILD, 7-17
CHANGELOG, 7-31
FILE, 3-17
GETLOG, 7-18
LISTLOG, 7-18
LOG, 7-30
RELLOG, 7-18
RESTORE, 2-15
SHOWLOGSTATUS, 7-18
STORE, 2-15
SYSGEN, 2-15

MR capability, D-1
multiple
access, B-1
database transactions, 7-8, 7-37
RIN capability, D-1
semaphores, 10-8

MUSTRECOVER option, of DBUTIL, 8-48,
8-51

disable, 8-48
enable, 8-51

Index-10

N

names
data, 3-10, 3-13
database, syntax, 3-2
data set, 2-2, 3-10, 3-13, 8-44

Native Language Support (NLS), 1-3
Network Services (NS/3000), 9-1
nibble, 3-5
NOABORTS parameter, of DBRECOV, 8-15
no access, 2-17
data item, 2-17
data set, 2-17

NOLIST option, of $CONTROL, 3-23
NOMDBX parameter, of DBRECOV, 8-15
NOROOT option, of $CONTROL, 3-23
NOSTAMP parameter, of DBRECOV, 8-15
NOSTATS parameter, of DBRECOV, 8-14, 8-17
NOSTORE parameter, of DBRECOV, 8-15
NOTABLE option, of $CONTROL, 3-23
NOUNEND parameter, of DBRECOV, 8-14,

8-15
null
list, 2-17, 2-19
password, 2-16
read/write class lists, 2-17
versus absent list, 2-18

numbers, data item, 3-8

O

opening
database more than once, 5-80
the database, 4-1

ORDERS database, 2-11
model program, 6-2
schema, 3-28, 6-2

output
deferred, 8-10
Schema Processor, 3-25

overview, TurboIMAGE/XL, H-1

P

packed types, uses of, 3-8
$PAGE, 3-21
PAGE command, of Schema Processor, 3-21
parameters
and halfword boundaries, 5-1
procedure, 5-3
unused, 5-4

Pascal, 6-1
sample routines, 6-53{58

password, 1-4, 2-15{16, 4-3
access class, modifying, 8-64
database creator, 2-16
invalid, 2-16

null, 2-16
part, schema, 3-3
semicolon, 2-16
syntax, 3-2

PASSWORD option, of DBUTIL, 8-64, 8-68
paths, 2-7
access, 4-12
current, 4-12
obtaining information about, 4-36
primary, 2-7

performance analysis, TurboIMAGE/XL, C-1
pointers, 1-1
data set, 5-48, 10-1
de�nition of, 10-1

POSIX �le extensions, 2-9
post-recovery options, 7-55
PREFETCH option, of DBUTIL, 8-48, 8-51
disable, 8-48
enable, 8-51

primary
address, 10-3
address calculation, 10-13
capacity, 5-59
entries, 10-3

primary path, 2-7, 2-8, C-1
DBGET procedure, 2-8

prime numbers, C-1, C-2
PRINT command, of DBRECOV, 8-21
private volume, 7-56
privileged �le protection, 2-15
procedure
abnormal termination, 4-39
calls, status information, 4-38
call statements, 5-3
error messages, A-18
parameters, 5-3
status, checking, 4-38
summary of, 5-3

process
statistics, recovery program, 7-53
suspension, logging and, 4-35

program aborts and recovery, 7-5
dynamic roll-back, 7-5

programming languages
call statements, 5-3
compatibility mode, 6-1
examples of, 6-1
native mode, 6-1

program, model, 6-7{19
programs, executable
C, 6-20
COBOL II, 6-26
RPG, 6-59

protection
account, 2-15

Index-11

database, 5-3
group, 2-15
library procedure, 2-24
privileged �le, 2-15
utilities, 2-24

PURGE command, of DBUTIL, 8-58{59
purging the database, 8-58

Q

QLOCK, 10-10, 10-12
QOPEN, 10-10, 10-12
QUERY/3000
data types, 3-8
de�nition of, 1-2
remote database access, 9-12

quick reference, logging and recovery, G-1
logging device, G-5{6
recovery options, G-1{4
sample job streams, G-7{12

R

read access, 2-17
default, 2-18

read and write class lists, 2-15, 2-16, 2-17
excluding user classes, 2-17
schema, 2-18

reading data
calculated access, 4-15
chained access, 4-15
directed access, 4-13
methods, 4-12
serial access, 4-14

real numbers, 2-1
and data types, 3-5, 3-7

REBUILDINDEX
command, of DBUTIL, 8-60
for B-Tree, 8-62
syntax, 11-6

records, 2-2
in data set, maximum, 2-13
media, 10-2
rereading, 4-17
size, 2-13

record table, of DBRECOV, 8-17
RECOVER command, of DBRECOV, 8-22{23
recovering, 1-5
the database, 7-33

recovery
and dynamic transactions, 7-8
considerations, 7-5
CONTROL command, of DBRECOV, 7-49
DBRECOV STOP-RESTART, 7-58
default mode, 7-3
determining success of, 7-49
disable, 8-48

disabling roll-back, 7-46
dynamic roll-back, 4-33
enable, 8-51
enabling roll-back, 7-45
enabling roll-forward, 7-37
FILE command, of DBRECOV, 7-50
�les, 7-50, 8-20
MPE/iX cleanup mode, 7-42, 7-48
multiple database transactions, 7-8
overview, 7-3
performing DBRECOV STOP-RESTART,

7-59
performing roll-back recovery, 7-46
performing roll-forward recovery, 7-39
post-recovery options, 7-55
PRINT command, of DBRECOV, 7-51
quick reference, G-1
record numbers, 8-17
RECOVER command, of DBRECOV, 7-51
roll-back time stamp, 7-45
roll-forward, 4-33
RUN command, of DBRECOV, 7-47, 7-52
statistics, 8-17, 8-26
statistics �les, 7-53
stream �le, 7-42
tables, 7-53
transferring log �les, 7-56

RECOVERY option, of DBUTIL, 8-48, 8-51
recovery options, 7-3{4
default mode, 7-3
dynamic roll-back, 7-4, 7-13
ILR, 7-4, 7-15
roll-back, 7-4, 7-44
roll-forward, 7-4, 7-36

REDO command, of DBUTIL, 8-61
redoing the command, 8-61
reinitialize data sets, 8-53
RELEASE command, of DBUTIL, 8-62
releasing
locks, 4-32
the database, 8-62

RELLOG command, of MPE/iX, 7-18
remote
database locking, D-3
session, communications link, 9-2

remote database access, 10-12
IMAGE/3000 and TurboIMAGE/XL, 9-1
local application, 9-1
logon identi�cation, 9-6{7
methods, 9-1
referencing, 9-9
TurboIMAGE/V and TurboIMAGE/XL, 9-1
using QUERY/3000, 9-12

Remote Database Control Block (DBR), 4-2,
10-12

Index-12

rereading data, 4-17
resetting data sets, 5-8
Resource Identi�cation Number (RIN), D-1
RESTART option, of DBRECOV, 8-11
RESTORE command, of MPE/iX, 2-15
restoring from database backup copy, 7-37
return status, 4-38
rewinding data sets, 5-8
RIN, D-1
ROLLBACK command, of DBRECOV, 8-24{25
ROLLBACK option, of DBUTIL, 8-48, 8-51
disable, 8-48
enable, 8-51

roll-back recovery, 7-4, 8-24
disabling, 7-46
dynamic, 7-4, 7-13
performing, 7-46
quick reference, G-3

roll-forward recovery, 7-4, 8-22
quick reference, G-2

root �le, 2-13, 3-19
purging, 8-58
with B-Tree index, 11-5

ROOT option, of $CONTROL, 3-23
RPG, 1-5, 6-1
sample program, 6-59{63

RUN command, of DBRECOV, 8-26{27
run-time control blocks, 10-10

S

sample database, ORDERS, 2-11
sample job stream
recovery, G-7
recovery and logging, G-7
roll-back recovery, G-8, G-11
roll-forward recovery, G-8, G-10
starting logging cycle, G-7, G-10

sample programs
C, 6-20{25
COBOL II, 6-26{46
RPG, 6-59{63

sample routines
FORTRAN 77, 6-47{52
Pascal, 6-53{58

scalability, 10-8
schema
changes, 8-1{3
comments, 3-2
de�nition of, 1-5, 2-1, 3-1
for ORDERS database, 3-28, 6-2
item part, 3-4
password part, 3-3
set part (details), 3-13
set part (masters), 3-10
structure, 3-2

syntax errors, A-6
Schema Processor, 2-13, 2-14, 3-17
command error messages, A-4{5
commands, 3-20
continuation records, 3-20
creating the text �le, 3-18
DBSCHEMA, 6-2
de�nition of, 3-17
errors, 3-27
example, 3-28
�le error messages, A-2{3
list �le, A-1
messages, A-1
operating instructions, 3-17
output, 3-25
root �le, A-1
summary information, 3-25
syntax error messages, A-6{17
text �le, A-1

Schema Processor commands
$CONTROL, 3-20, 3-23
$PAGE, 3-20, 3-21
syntax, 3-20
$TITLE, 3-20, 3-22

search items, 2-4, 2-7
adding entries, 4-11
B-Tree indices, 11-1
creating, 3-16
de�ned as critical items, 2-1
design considerations, C-1
number per detail, 2-7
trailing-@, 11-2
updating values, 4-18, 4-19, 8-66

secondary
address, 10-3
entries, 10-3
entries, deleting data, 5-17

SECURE command, of DBUTIL, 8-63
securing the database, 8-63
security, 2-15
database, de�ning, 2-15
data item, 2-19
data set, 2-19
�le system releasing, 8-62
�le system securing, 8-63
owchart, 2-19
passwords, 2-15
provisions, MPE/iX, 2-15
user classes, 2-15

selecting the block size, 3-24
semaphores, 10-8
semi-exclusive access, 2-24
sequence
for adding entries, 4-9
of DBUNLOAD entries, 8-39

Index-13

serial access
and locking, 4-15
reading data, 4-14

SET command, of DBUTIL, 8-64{67
set part
details, 3-13
masters, 3-10
schema, 3-10, 3-13

sharing database, B-1
show
capacity, 8-73
locks, 8-74

SHOW command, of DBUTIL, 8-68{76
SHOWLOGSTATUS command, of MPE/iX,

7-18
simple argument, 11-2
sorted
chains, C-1
entries, maintenance of, 2-9

sort items, 2-8, 3-16
de�ned as critical items, 2-1
design considerations, C-1
updating values, 4-18, 4-19, 8-66

sort sequence for lock descriptors, D-2
space allocation for
detail data sets, 10-15
master data sets, 10-14

special capability
multiple RIN, D-1

STAMP parameter, of DBRECOV, 8-14, 8-15
start recovery operation, 7-42, 7-48
STATS parameter, of DBRECOV, 8-17
status area
information, A-18
information and multiple access, B-1
information, procedure calls, 4-38
MPE V versus MPE/iX, H-9
register, 4-38

status array, 5-4
STOPTIME parameter, of DBRECOV, 8-14,

8-15
storage
location, 2-2, 3-5
unit, 3-5

STORE command, of MPE/iX, 2-15
STORE parameter, of DBRECOV, 8-14, 8-15
storing entire database, 8-30
strong locking, 4-29, 4-35, 7-11
structured argument, 11-2, 11-14
sub-items, 2-1
count, 3-4
length, 3-4

subsystem ag
checking, 4-37
setting, 8-64

SUBSYSTEMS option, of DBUTIL, 8-64, 8-68
summary
data set table, Schema Processor, 3-25
description, 3-26
information, 3-25
of database access modes, 4-4
of data types, 3-6{7
of library procedures, 5-3
of logging and recovery utilities, 7-1
table description, 3-25, 3-26

super-chain, 11-2
super-�nd, 11-1
synonym chain, 10-3
synonyms, 10-3
syntax
errors, Schema Processor messages, A-6
Schema Processor commands, 3-20

SYSGEN command, of MPE/iX, 2-15
system
failures, 2-24
manager, 2-15

T

TABLE option, of $CONTROL, 3-23
tables, recovery, 7-53
terminal read
and locking, C-2
and logical transactions, C-2

text �le, 3-18
Schema Processor, 3-17

third-party indexing, 8-53
disable, 8-48
enable, 8-51
purging, 8-58
releasing, 8-62
securing, 8-63

time stamp, 8-14
database, 8-15
log records, 8-15

$TITLE, 3-22
TITLE command, of Schema Processor, 3-22
TPI
disable, 8-48
enable, 8-51
purging, 8-58
releasing, 8-62
securing, 8-63

trailing-@ search, 11-2
transaction
block, 7-8, 7-9
dynamic, de�ned, 7-6
logging, 4-8
logical, de�ned, 7-6
multiple database, de�ned, 7-6
numbers, logging, 4-35

Index-14

static, de�ned, 7-6
Transaction Management, of MPE/iX, 4-33,

10-17
transactions
de�nition, 5-4
dynamic, 7-8
multiple database, 7-8
static, 7-8

TRANSACT/V, 1-5
TRANSPORT option, of DBSTORE, H-11
True-Online Backup, 7-24, 8-33
TURBOGTX, 10-10, 10-11
TurboIMAGE/V versus TurboIMAGE/XL, H-1
TurboIMAGE/XL
e�ect on programs, 1-5
overview, 1-1, H-1

TURBOLKT, 10-10, 10-11
TurboSTORE/iX 7x24, 8-33
TurboSTORE/iX 7x24 True-Online Backup,

7-24
bene�ts, 7-26

type designators, 3-5
and programming languages, 3-6
table of, 3-5

types, data, 2-1
summary, 3-5, 3-6{7
uses of, 3-5

U

unconditional locking, 4-26
UNEND parameter, of DBRECOV, 8-15
unrecoverable
disk, 2-24
tape, 2-24

unused parameters, 5-4
update access, 2-17
and critical item update, 2-17
disallowed, 2-18

updating
data item values, 5-92
search item values, 5-92
sort item values, 5-92

updating data, 4-18
access modes, user class number, 4-18
CIUPDATE option, 4-18
key items, 4-18, 4-19, 5-92
search and sort items, 4-18, 4-19, 5-92

updating values
of search items, 8-64

of sort items, 8-64
upshifting, by DBSCHEMA, 6-2
user access, 8-48, 8-51
user classes, 2-15, 2-24
empty, 2-17
locking, 2-24

user class number, 4-10
deleting data, 4-23
opening the database, 4-3
setting, 3-3
updating data, 4-18

user �le label, 2-13
user logging, 4-33
and logical transactions, 4-34
how it works, 4-33
intrinsics, 4-33
intrinsics, calling sequence, 4-34

users, identifying, 2-15
USERS option, of DBUTIL, 8-68
user type
AC, 2-15
GU, 2-15

utilities, 1-5
conditional error messages, A-77{106
DBLOAD, 2-8, 8-6, 8-7{10
DBRECOV, 8-6, 8-11{27
DBRESTOR, 8-6, 8-28{29
DBSTORE, 8-6, 8-30{33
DBUNLOAD, 2-8, 2-9, 8-6, 8-34{39
DBUTIL, 8-6, 8-40{77
executing, 2-24
operation, 8-6
protection, 2-19
unconditional error messages, A-77, A-107{117

V

validity checking, data item, 5-74
VERIFY command, of DBUTIL, 8-77
viewing data item values, 2-17
volume, 8-7, 8-34{37
private, 7-56

W

wildcard character, 11-2
word, 3-5
write access, 2-16
disallowed, 2-18

write class list, 2-17

WRITELOG records, MPE/iX, E-1

Index-15

