Tabl e of Contents
Systens Progranm ng Language Reference Manual

Systens Progranmm ng Language Reference Manual : COPYRI GHT NOTI CE
SPL STRUCTURE
1-2. CONVENTI ONS
1-3. SCOURCE PROGRAM FORMAT
1-4. DELI M TERS
1-5. COWMENTS
1- 6. PROGRAM STRUCTURE
1-7. PROGRAM
1-8. SUBPROGRAM
1-9. I NTRODUCTI ON TO HP 3000 HARDWARE CONCEPTS
1-10. CODE SEGQVENTS
1-11. DATA SEGMVENTS
1-12. PROCEDURES
1-13. SUBRCUTI NES
1-14. | NTRI NSI CS
1-15. COMPOUND STATEMENTS
1-16. ENTRY PO NTS
BASI C ELEMENTS
2-2. | NTEGER FORVAT
2-3. DOUBLE | NTEGER FORMAT
2-4. REAL FORMAT
2-5. LONG FORNAT*
2-6. BYTE FORMAT
2-7. LOGE CAL FORVAT
2-8. CONSTANT TYPES
2-9. I NTEGER CONSTANTS
2-10. DQOUBLE | NTEGER CONSTANTS
2-11. BASED CONSTANTS

2-12. COWPOSI TE CONSTANTS

2-13. EQUATED | NTEGERS

2-14. REAL CONSTANTS

2-15. LONG CONSTANTS

2-16. LOGQ CAL CONSTANTS

2-17. STRI NG CONSTANTS

2-18. | DENTI FI ERS

2-19. ARRAYS

2-20. PA NTERS

2-21. LABELS

2-22. SWTCHES

GLOBAL DATA DECLARATI ONS

3-2. SI MPLE VARI ABLE DECLARATI ONS
3-3. ARRAY DECLARATI ON

3-4. PO NTER DECLARATI ON

3-5. LABEL DECLARATI ON

3-6. SW TCH DECLARATI ON

3-7. ENTRY DECLARATI ON

3-8. DEFI NE DECLARATI ON AND REFERENCE
3-9. EQUATE DECLARATI ON AND REFERENCE
3-10. DATASEG DECLARATI ON
EXPRESSI ONS, ASSI GNVENT, AND SCAN STATEMENTS
4-2. VARI ABLES

4-3. TCS

4- 4. ADDRESSES (@ AND PO NTERS
4-5. ABSOLUTE ADDRESSES

4-6. FUNCTI ON DESI GNATOR

4-7. BI'T OPERATI ONS

4-8. BI'T EXTRACTI ON

4-9. Bit Concatenation (Merging)
4-10. BIT SH FTS

4-11. ARI THVETI C EXPRESSI ONS

4-12. SEQUENCE OF COPERATI ONS

4-14. LOGQ CAL EXPRESSI ONS

4-15. SEQUENCE OF CPERATI ONS

4-16. TYPE M XI NG

4-17. COVPARI NG BYTE STRI NGS

4-18. CONDI TI ON CLAUSES

4-19. | F EXPRESSI ONS

4-20. ASSI GNMVENT STATEMENT

4-21. MOVE STATEMENT

4-21A. MOVEX STATEMENT

4-22. SCAN STATEMENT

PROGRAM CONTROL STATEMENTS

5-2. GO TO STATEMENT

5-3. DO STATEMENT

5-4. VH LE STATEMENT

5-5. FOR STATEMENT

5-6. | F STATEMENT

5-7. CASE STATEMENT

5-8. PROCEDURE CALL STATEMENT

5-9. STACKI NG PARAMETERS

5-10. M SSI NG PARAMETERS I N PROCEDURE CALLS
5-11. PASSI NG LABELS AS PARAMETERS
5-12. PASSI NG PROCEDURES AS PARAMETERS
5-13. SUBROUTI NE CALL STATEMENT

5-14. RETURN STATEMENT

MACH NE LEVEL CONSTRUCTS

6-2. DELETE STATEMENT

6-3. PUSH STATEMENT

6-4. SET STATEMENT

6-5. WTH STATEMENT

PROCEDURES, | NTRINSI CS, AND SUBROUTI NES

7-2. PROCEDURE DECLARATI ON

7-3. DATA TYPE

7-4. PARAVETERS

7-5. OPTI ONS

7-14. LOCAL DECLARATI ONS

7-16. LOCAL SI MPLE VARI ABLE DECLARATI ONS

7-20. LOCAL ARRAY DECLARATI ONS

7-24. LOCAL PO NTER DECLARATI ONS

7-28. LABEL DECLARATI ONS

7-29. SW TCH DECLARATI ONS

7-30. ENTRY DECLARATI ON

7-31. DEFI NE DECLARATI ON AND REFERENCE

7-32. EQUATE DECLARATI ON AND REFERENCE

7-33. PRCCEDURE BODY

7-34. | NTRI NSI C DECLARATI ONS

7-35. SUBROUTI NE DECLARATI ON

I NPUT OUTPUT

8-2. OPENING A NEW DI SC FI LE

8-3. READING A FI LE I N SEQUENTI AL CRDER

8-4. WRI TI NG RECORDS | NTO A FI LE I N SEQUENTI AL ORDER
8-5. UPDATING A FILE

8-6. NUMERI C DATA | NPUT OUTPUT

8-7. FILE EQUATI ONS

COWVPI LER COVIVANDS

9-1. USE AND FORVAT OF COVPI LER COMVANDS

9-2. $CONTROL COMVAND

9-3. $IF COMWAND (CONDI TI ONAL COWVPI LATI ON)

9-4. $SET COMVAND (SOFTWARE SW TCHES FOR CONDI Tl ONAL COWPI LATI ON)
9-5. $TITLE COMMAND (PAGE TI TLE I N STANDARD LI STI NG
9-6. $PAGE COMVAND (PAGE Tl TLE AND EJECTI ON)

9-7. $EDIT COMVAND (SOURCE TEXT MERG NG AND EDI TI NG
9-9. CHECKI NG SEQUENCE FI ELDS

9-10. EDI TI NG

9-11. $SPLIT $NCSPLI T COMVANDS

9-12. $COPYRI GHT COMVAND

9-14. $I NCLUDE COMVAND

MPE COMVANDS

10-2. SPECI FYI NG FI LES FOR PROGRAMS

10-3. SPECI FYI NG FI LES AS COWAND PARAMETERS
10-9. SPECI FYI NG FI LES BY DEFAULT

10-10. COVPI LI NG PREPARI NG AND EXECUTI NG SPL SOURCE PROGRAMS
10-11. :SPL COMVAND

10-12. RUN SPL. PUB. SYS COWWAND

10-13. ENTERI NG PROGRAM SOURCE | NTERACTI VELY
10-14. : SPLPREP COMVAND

10-15. :SPLGO COMVAND

10-16. : PREP COVAND

10-17. : PREPRUN COMVAND

10-18. : RUN COMVAND

10-19. USI NG EXTERNAL PRCCEDURE LI BRARI ES
10-22. SEGVENTED LI BRARI ES

ASCI | CHARACTER SET

RESERVED WORDS

BUI LDI NG AN | NTRI NSI C FI LE

MPE | NTRI NSI CS

COWPI LER ERROR MESSAGES

CALLI NG SPL FROM OTHER LANGUAGES

Systens Progranm ng Language Reference Manua

Printed in U S. A
HP Part No. 30000-90024
Printed Feb 1084

The information contained in this docunent is subject to change w thout
noti ce.

HEW.ETT- PACKARD MAKES NO WARRANTY OF ANY KIND WTH REGARD TO TH S
MATERI AL, | NCLUDI NG BUT NOT LIMTED TO, THE | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY AND FI TNESS FOR A PARTI CULAR PURPCSE. Hew ett - Packard
shall not be liable for errors contained herein or for incidental or
consequenti al damages in connection with the furnishing, performance or
use of this materi al

Hewl ett - Packard assunes no responsibility for the use or reliability of
its software on equi pnment that is not furnished by Hew ett-Packard.

Thi s docunent contains proprietary information which is protected by
copyright. Al rights are reserved. No part of this docunent may be
phot ocopi ed, reproduced or translated to another |anguage w t hout the
prior witten consent of Hew ett-Packard Conpany.

O 1976- 1984
PRI NTI NG HI STORY

New edi tions are conplete revisions of the manual. Update packages,

whi ch are issued between editions, contain additional and repl acenent
pages to be nerged into the nmanual by the custonmer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

The software code printed al ongside the data indicates the version |evel
of the software product at the tinme the manual or update was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done wi thout acconpanyi ng product
changes. Therefore, do not expect a one-to-one correspondence between
product updates and manual updates.

First Edition | Jun 1976

Second Edition | Sep 1976

Update #1 Incorporated | Dec 1976 |

Update #2 | Feb 1977 |

Update #2 Incorporated | Dec 1977 |

Third Edition | Feb 1984 | 32100A. 08. 04

PREFACE

This publication is the reference manual for the HP 3000 Conputer System
Systens Progranm ng Language (SPL).

This publication contains the foll owi ng sections:

Section | is an introduction to SPL source fornmat and the HP 3000
Conput er System

identifiers, arrays, and pointers.
Section 111 descri bes the gl obal declarations.

Section IV describes arithnetic and | ogi cal expressions,
assi gnment, MOVE, and SCAN st at enment s.

Section V descri bes the various programcontrol statenents
including GO TO, DO, WHI LE, FOR, |IF, CASE, procedure
call, subroutine call, and RETURN st at enents.

Section Vi descri bes the machi ne | evel constructs including the

ASSEMBLE statenment (to use any nmachine instruction), the
DELETE statenent, the PUSH statenment (for saving

regi sters), and the SET statement (for setting
registers).

Section VI descri bes the subprogramunits (procedures, intrinsics,
and subroutines) and the | ocal declarations.

Section VI di scusses some of the nore common MPE intrinsics for
performng i nput/ output.

Section I X di scusses the various conpil er conmands.
Section X di scusses the MPE conmands used to conpile, prepare, and

execute an SPL source programtogether with sone
i ntroductory material on using the Segnenter.

Appendi x A lists the ASCII character set.

Appendi x B lists the reserved words in SPL

Appendi x C descri bes how to build your own intrinsic file.
Appendi x D lists the MPE Operating Systemintrinsic procedures.
Appendi x E lists the diagnostic nmessages which can be generated by

the SPL conpiler.

Appendi x F explains howto call SPL from other |anguages.
O her publications which should be avail able for reference when using
this manual are:

Systens Programm ng Language Text book (30000-90025)

MPE Commands Ref erence Manual (30000-90009)

MPE Intrinsics Reference Manual (30000-90010)

MPE Segnenter Reference Manual (30000-90011)

Machi ne Instruction Set Reference Manual (30000-90022)

Syst em Ref erence Manual (30000-90020)

Conpi l er Library Reference Manual (30000-90028)

EDI T/ 3000 Ref erence Manual (03000-90012)
CONVENTI ONS USED I N THI S MANUAL

NOTATI ON DESCRI PTI ON

KEYWORDS

par anet er

par anet er

[]

{}

user i nput

superscriptc

[[RETURN]]

contain no blanks and be delimted by a non-al phabetic
character (usually a bl ank).

Literal keywords, which are entered optionally but
exactly as specified, appear in CAPI TAL LETTERS

Requi red paraneters, for which you nust substitute a
val ue, appear in bold italics.

Optional paraneters, for which you may substitute a
val ue, appear in standard italics.

An el ement inside brackets is optional. Severa
el ements stacked inside a pair of brackets neans the
user may sel ect any one or none of these el enents.

Exanpl e: [A]
[B] user may select A or B or
nei t her.

VWhen brackets are nested, paraneters in inner brackets
can only be specified if paraneters in outer brackets or
comma pl ace- hol ders are specified.

Exanpl e: [par ml], parn2[, parnB]]]
may be entered as
par mi, par n2, par n8 or
par i, , par n8 or
, , parnB ,etc.

When several elenents are stacked within braces the user
nmust sel ect one of these el enents.

Exanpl e: { A}
{ B}
{ C}

An ellipsis indicates that a previous bracketed el ement
may be repeated, or that el enents have been omtted.

user nmust select A or B or C

Ow

In exanples of interactive dialog, user input is
under | i ned.

Exanmpl e: NEW NAME? ALPHAL
Control characters are indicated by a superscriptc.

Example: Yc. (Press Y and the CNTL key
si mul t aneousl y.)

[[RETURN]] indicates the carriage return key.

Chapter 1 SPL STRUCTURE

1-1. INTRODUCTION TO SPL

SPL (Systems Programm ng Language for the HP 3000 Computer Systen) is a
hi gh-1 evel , machi ne dependent progranm ng | anguage that is particularly
wel |l suited for the devel opment of conpilers, operating systens,
subsystens, nmonitors, supervisors, etc.

SPL has many features normally found only in high-1level |anguages such as
PL/1 or ALGOL: free-formstructure, arithnetic and | ogical expressions,
hi gh-1evel statenents (IF, FOR, GOTO CASE, DO UNTIL, WH LE-DO, MOVE,

SCAN, procedure call, assignnment, and conpound statenments), recursive
procedures and subroutines, and variables and arrays of six data types
(byte, integer, logical, double integer, real, and long real). In

addition, IF, FOR CASE, DO UNTIL, and WHI LE-DO statenents can be
indefinitely nested within each other and thensel ves. These features
significantly reduce the tine required to wite progranms and nake them
much easier to read and update.

In addition, SPL provides nachi ne-level constructs that insure the
programer has conplete control of the machine when he needs it. These
constructs include direct register references; branches based on actua
hardware conditions; bit extracts, deposits, and shifts; delete
statenents; register push/set statenents; and an ASSEMBLE statenent to
generate any sequence of nachine instructions.

1-2. CONVENTIONS

In the HP 3000, the bits of a word are nunbered fromleft to right
starting with bit 0. Thus, the sign, or nost significant, bit of a
single word is bit 0 and the least significant bit is bit 15.

1-3. SOURCE PROGRAM FORMAT

An SPL source program can contain both programtext and conpil er commands
in 80 columm records. Programtext is entered in free format in col ums
1-72. A statenent is terminated with a semicolon (;) and may continue to
successive lines without an explicit continuation indicator. Statenent

| abel s are identifiers followed by a colon (:) preceding the statenent.
For exanpl e,

START: SCAN BUF WHI LE TEST,

Any conpilation is bracketed by BEG N and END statenments. A period is
required after the final END. For exanple,

BEG N

| NTECER 1 ;
| .= 2*¥373+ 275;
END.

Conpi | er conmands are denoted by a $ in colum 1 and nay be interspersed
with programtext lines. However, unlike programtext |ines, conpiler
commands which are to be continued nust contain an anmpersand (& as the

| ast non-bl ank character of the line. |If using ED T/3000 to enter text,
you must explicitly enter a space followi ng the anpersand and before
pressing return. |In addition, the continua- tion lines nust contain a $

in colum 1. For exanple,

$CONTROL LI ST, SOURCE, WARN, VAP, &
$CODE, LI NES= 36

A conpil er conmmand |ine nust never be separated fromits continuation

line by a programtext line. Refer to section IX for a discussion of al
the SPL conpil er conmands.

1-4. DELIMITERS

Bl anks are al ways recogni zed as delimters in SPL, except within
character strings (see paragraph 2-17 for the format of string
constants). Therefore, blanks cannot be enbedded in the followi ng itens:

Reserved words (see Appendi x B)

Identifiers

: = assi gnment

<< start of a comment

>> end of a conment

Speci al characters can also act as delimters:
Punctuation : ; "

Rel ati onal Operators = < >
Par ent heses ()
Qperators + -* [7

Brackets []

1-5. COMMENTS

A comment is used to docunent a program but has no effect upon the

functioning of the programitself; that is, a comment does not generate
any code.

Comments may take either of the followng fornms in SPL

Format 1: COMMENT[conmment];
Format 2: <<[comment]>>

EXAMPLES:

<<comment >>
COMMVENT CONTROL: MESSAGE
<<This is a comment >>
!This is a conmment
COMVENT

TH S

IS

A
COMVENT
wher e
conment i s any sequence of ASCI| characters except a sem col on

in Format 1 and >> in Format 2. The ASCI| character set
is listed in Appendi x A

Format 1 is equivalent to a null statenent and can be used anywhere a
statement or declaration is expected. Format 2 can be used anywhere in a
program except in an identifier

The characters within a coment are ignored by the conpiler; they are not
upshi fted (changed to uppercase) if |owercase,

VWhen the special character '!" is encountered outside a comment, define,
or string, the rest of the source line follow ng the excl amati on point
will be regarded as a comment.

1-6. PROGRAM STRUCTURE

SPL is a block structured | anguage whi ch takes advantage of the virtua
menory scheme of the HP 3000 to provide program segnentation its a user
option. Thus, by using procedures and segnentation, the programer can
organi ze his programin such that the entire program does not have to
reside in nenory at the sane tine. The systemautomatically gets
procedure segnents fromauxiliary nenory and | oads theminto main nmenory
when necessary.

Additionally, SPL uses the stack architecture of the HP 3000 to handl e
both gl obal and | ocal variables. @ obal variables may be referenced
anywhere in the program except in procedures where a | ocal variable has
the sane identifier. Local variables are allocated nenory | ocations upon
entering a procedure and can only be referenced within the procedure in
whi ch they are declared. The nmenory |ocations assigned to |oca

variabl es are rel eased when the procedure is exited. When one procedure
calls another procedure, the local variables of the calling procedure are
not available to the called procedure unless they are passed as

par aneters; however, their nmenory | ocations are saved so that upon
returning to the original procedure, the |ocal variables contain the same
val ues as before the procedure call

Simlarly, both global and |ocal subroutines are allowed in SPL. However,
unl i ke gl obal variables, global subroutines can only be called within the
mai n program and not within a procedure. Local subroutines may be call ed
only within the procedure in which they are decl ared.

The SPL conpil er accepts either conplete prograns or subprograns as
source input. A programconsists of both declarations and a mai n body of
execut abl e statenents. The declaration portion may contain vari abl e,
procedure, intrinsic, and/or global subroutine declarations.

A subprogram consists of only the declaration portion and does not
contain a main body. In a subprogram conpilation, global declarations
(that is, declarations for variables which can be refer- enced throughout
the entire progranm) do not allocate any space and gl obal subroutines are

ignored if present. A subprogram conpilation generates code for
procedures and | ocal subroutines only and nust be linked to a separately
conpi l ed mai n program before being executed. For exanple,

BEG N
| NTEGER A, <<gl obal data decl arati on>> R L

PROCEDURE B(A) ;

| NTEGER A, <<procedure decl aration>>
A= A+l mai n
progra

SUBROUTI NE C(A) ; |
| NTEGER A, <<gl obal subroutine decl aration>>
A= B(A): Commmmme e

C(A; <<mai n body>>

END.

1-7. PROGRAM

A programis an organized collection of declarations and statenents
designed to solve a specific problem A main program consists of globa
dat a decl arati ons and subroutines and a mai n body.

The formfor a programis

BEG N

[gl obal data decl arations]
[procedures/intrinsics]

[gl obal - subrouti nes]

[mai n- body]
END.
wher e
gl obal data are statenents defining the attributes of the gl oba
decl arati ons identifiers used in the program (see section I11).
pr ocedur es/ are statenents which define all the procedures and
intrinsics intrinsics used in the program (see section VII). A
procedure definition includes data declarations for
paranmeters and | ocal variables followed by the
execut abl e statenments of the procedure.
gl obal - are the subroutines used by the main program
subrouti nes
mai n- body is a sequence of statenents separated by sem col ons
statenment [;...;statenent]
st at enent i s an executabl e statenent

The program el ements nmust be in the order shown above

For exanpl e,

BEG N

I NTEGER A: = 0, B, C. =1; <<gl obal data decl arati on>>
PROCEDURE N(X, Y, Z2); <<pr ocedur e>>
I NTEGER X, Y, Z; <<| ocal data decl arati on>>
X=X (Y+ 2);
FOR B:=1 UNTIL 20 DO <<mai n prograne>
N(A B, O ;
END.

1-8. SUBPROGRAM

A subprogramis a portion of a program which can be conpiled by itself
but nust be linked to a main programfor execution. A $CONTROL
SUBPROGRAM compi | er command is used before the subprog- ramtext to put
the conpiler in subprogramnode. See section |IX for the conpiler
commands used to link a subprogramto a main programfor execution

The formof a subprogramis the same as a program except that a
subprogram does not have a main body.

The formfor a subprogramis

BEG N

[gl obal data decl arati ons]
[procedures/intrinsics]

[gl obal - subrouti nes]

END.
wher e
gl obal data are statenents defining the attributes of the gl oba
decl arati ons identifiers used in the program (see section I11).
pr ocedur es/ are statenents which define all the procedures and
intrinsics intrinsics used in the program (see section VII). A
procedure definition includes data declarations for the
paranmeters and | ocal variables followed by the
execut abl e statenments of the procedure.
gl obal - are the subroutines used by the main program The
subrouti nes gl obal -subrouti nes can be omtted since the conpiler

i gnores themin subprogram conpil ations.
For exanpl e,

$CONTROL SUBPROGRAM
BEG N
I NTEGER N, M O <<does not allocate space>>
EQUATE A: =101, B:=202;
PROCEDURE C;
BEG N
END;
PROCEDURE D
BEG N

END,
END.

1-9. INTRODUCTION TO HP 3000 HARDWARE CONCEPTS

A process is the unique execution of a program |If the sane programis
run by several users, it becomes several processes. |f the sane user
runs the program several tinmes, each execution is a distinct process. A
process consists of a code domain (the nmachine instructions of the
program) and a data area called a "stack.” The code and data in the HP
3000 are always separated logically. The code nmay al ways be shared, but
the data stack cannot. The MPE Operating System schedul es and di spatches
a process for execution. See the MPE General Information Manual for a
further discussion of processes and the stack

1-10. CODE SEGMENTS

Al'l machine instructions within the HP 3000 are organi zed into variable

| engt h segnents accessed through a hardware-known table called the Code
Segnment Table (CST). Since the hardware detects references to segnents
which are not in main nmenory, the code domain of a process is not linmted
to the size of main menory. Segnents are brought fromdisc into main
menory as needed. A process can execute only one code segnment at a tine.
The process "escapes” fromits current code segnent by executing a
Procedure Call (PCAL) instruction. A PCAL can reference procedures in

di fferent code segnments fromthe current one and cause control to be
transferred to a different code segnent. A PCAL instruction is generated
by either a function designator (see paragraph 4-6) or a procedure cal
statenment (see paragraph 5-8).

The current code segment of a process is defined by three hardware
address registers:

1. PB--Program Base register. Contains the absolute address of the
starting location of the segnment in main nmenory.

2. PL--ProgramlLimt register. Contains the absolute address of the
| ast | ocation of the code segment.

3. P--Programcounter. Contains the absolute address of the
instruction currently being executed.

The rel ationship of the three current code segnment registers is shown in
Figure 1.1. The central processor checks all instructions to insure that
they stay within the bounds of the current code segnent. All addresses
within a current code segnent are relative to these registers. The
operating systemcan rel ocate the segnent anywhere in main nenory; only
the three registers have to be changed to define the segnent's | ocations.
BOX

Figure 1.1. Code Segnent Registers

Code segnentation is controlled by using the SEGVENT paraneter on
$CONTROL commands (see section | X). The segnent name stays in effect
until another segnment nane is specified. For procedures, the $CONTROL
SEGMVENT command nust precede the procedure declaration of the first
procedure in the segnent. |If a new segnent is to be specified for the
mai n program the $CONTROL SEGVENT conmmand foll ows the procedure and
intrinsic declarations and precedes the gl obal subroutines and mai n body.
A obal subroutines nust be in the same segnent as the main body. See
Figure 1.2 for a sanple SPL program which has two procedures in one
segnent and a gl obal subroutine with the main body in another

BOX

00000 0 $CONTROL USLI NI T, MAI N=MAI NLI NE

00000 0 BEG N

00000 1 | NTEGER LENGTH, TI ME;

00000 1 ARRAY BUFFER(0: 35);

00000 1 | NTRI NSI C PRI NT, READ,

00000 1

00000 1 $CONTROL SEGMVENT=PROC A' SEG

00000 1 PROCEDURE PROC A(LEN);

00000 1 VALUE LEN

00000 1 | NTEGER LEN;

00000 1 PRI NT (BUFFER, =LEN, 0);

00000 1

00000 1 PROCEDURE PROC B(LEN);

00000 1 VALUE LEN

00000 1 PRI NT(BUFFER, =LENY@20) ;

00000 1

00000 1 $CONTROL SEGMVENT=MAI NLI NESEG

00000 1

00000 1 SUBROUTI NE READ A LI NE;

00000 1 LENGTH =READ(BUFFER, - 72);

00006 1

00006 1 << START OF MAI NLI NE >>

00006 1

00006 1 LOOP:

00006 1

00006 1 READ A LINE

00010 1 | F LENGTH <> 0 THEN

00013 1 BEG N

00013 2 I E ((TIME: =TI ME+1) MOD 2) =0 THEN PROC A(LENGTH)

00022 2 ELSE PROC B(LENGTH);

00026 2 GO TO LOOP:

00027 2 END;

00027 1 END.

MAI NLI NESEG 0
NAVE STT CODE ENTRY SEG
MAI NLI NE 1 0 6
READ 2 ?
PROC A 3 1
PROC B 4 1
TERM NATE' 5 ?
SEGVENT LENGTH 40
PROC' A' SEG 1

NAVE STT CODE ENTRY SEG
PROC B 1 0 0
PRI NT 3 ?
PROC A 2 6 6
SEGVENT LENGTH 20

Figure 1.2. Sanple Segnented Program

1-11. DATA SEGMENTS

Each process has a completely private storage area for its data. This
storage area is called a stack or a data segnment. Wen the process is
executing, its stack nmust be in main nmenory. A stack is delimted by two
stack addressing registers:

1. DL--Data Limt register. Contains the absolute address of the
first word of main nenory available in the stack

2. Z--Stack limt register. Contains the absolute address of the
last word of mmin nenory available in the stack

Between DL and Z, there are separate and distinct areas set off by three
ot her stack addressing registers:

1. DB--Data Base register. Contains the absolute address of the
first location of the direct address global area of the stack

2. Q-Stack marker register. Contains the absolute address of the
current stack marker being used within the stack

3. S--Top-of-stack register. Contains the absolute address of the
top element of the stack. Manipu- |ated by hardware to produce a
last-in, first-out stack. The top four words may be kept in
hardware regi sters.

The rel ationship of the five data addressing registers is shown in Figure
1.3. Each process is also described by a status register that contains
its segnent nunber and status, and a program accessed, one-word index
regi ster used for array indexing and ot her computing functions.

There is only one set of these hardware registers; their content is
established for a process when it starts executing.
BOX

Figure 1.3. Data Stack Registers

Instructions are provided to access all regions indicated in this diagram
except S to Z The four top-of-stack regi sters are not shown.

In the HP 3000, nenory reference instructions specify an address relative

to one of the hardware registers. Each register has its own addressing
range as indi cated bel ow

| |+ I - |
| P register | 255 | 255

| DB register | 255 | xFxxx

| Qregister | 127 | 63

| S register | xFxEx 63

Note that the DB regi ster cannot be directly addressed with a negative
range and that the S register cannot be addressed with a positive range,

i ndexing. The S positive area is undefined since S points to the top of
t he stack.

Any nmenory reference instruction specifies a displacenment within the
range of one of these registers. This location is used as the operand;
if another address is required, it is inplicitly assunmed to be the top of

stack (S-0).

The basi c addressing node in the HP 3000 is word addressing (one word =
16 bits); however, there are also instructions to | oad and store bytes
(hal f words--8 bits) and doubl ewords (32 bits).

Many HP 3000 instructions use the top of the stack (the absol ute address
inthe Sregister) as an inplicit operand. For exanple, the ADD
instruction always uses the values in S-0 and S-1 for its operands. The

Sregister is constantly changing in a last-in, first-out manner such
that data is "pushed" onto the stack "popped" off the stack

1-12. PROCEDURES

A procedure is a self-contai ned section of code which is called to
performa function. Sone of the features of procedures are:

* Procedures can be passed paraneters (either call-by-val ue or
call -by-reference).

* Procedures can declare local variables and reference gl oba
vari abl es.

* Procedures can return a val ue.
* Procedures can call thensel ves.
* Procedures can be called fromeither procedures or the main body.

* Procedures can have | ocal subroutines (sections of code which can
only be called fromw thin the procedure).

Procedure decl arations precede the main body of the program and contain
the | ocal declarations and the procedure body.

For exanple, a procedure to conpute N factorial is
I NTEGER PROCEDURE FACT(N); VALUE N, INTEGER N,
BEG N
FACT: = |F N= 0 THEN 1
ELSE N*FACT(N 1);
END;

For a conpl ete explanation of procedure declarations, see section VII.

1-13. SUBROUTINES

An SPL subroutine is a sinpler and | ess powerful section of code than the
procedure. Subroutines can have paraneters, can be typed functions and
can be called recursively. A subroutine is called with an

SCAL instruction instead of a PCAL instruction, SCAL does not provide a
4-word stack marker to save the environnment; therefore,

* Values in the Q and index registers remai n unchanged.

* A PB-relative return address is placed on the top of the stack
* Subroutines cannot have | ocal variables.

* Subroutines nmust be located in the sane segnent as the caller since
the SCAL and SXIT instructions do not bridge segnent boundaries.

* Subroutines can be entered and exited faster than procedures since
there is nmuch I ess work for the instructions to do.

* Subroutines can be declared within procedures and can reference
procedure-|ocal variables.

A obal subroutines can be called only within the main body. dd oba
subroutine declarations nust appear after the procedure and intrinsic
decl arati ons.

Local subroutines can be called only fromthe procedure in which they are
decl ared. They are declared in the body of the procedure, after any

| ocal data declarations, but before the executable statenments of the
procedure body. For a conplete description of subroutine declarations,
see section VII.

1-14. INTRINSICS

An intrinsic is a procedure which has previously been defined, either as
part of the MPE Qperating Systemor in a user's own intrinsic file. The
advantage of using intrinsics is that you do not have to include the
conpl ete procedure in your program but nerely declare the nane of the
intrinsic in an intrinsic declaration.

MPE intrinsics are available to:

Access and alter files.

Manage program i brari es.

ot ain date, tinme, and accounting information
Determ ne job status.

Det er mi ne devi ce status.

Ootain device file information

Transmit nessages.

Insert conments in conmmand stream
Perform ASClI | / bi nary nunber conversion
Perform i nput/out put on job/session standard devices.
ot ain systemtinmer information

Ootain the user's access node and attri butes.
Search arrays and format paraneters.

Execut e MPE commands programatical ly.

E I T N R T N N N

ntrinsics nust be declared with an intrinsic declaration (See section
VI1). Appendix C shows how to build your own intrinsic file. Appendix D
contains a list of the MPE intrinsics. Refer to the MPEIntrinsics

Ref erence Manual for a conplete description of the systemintrinsics.

1-15. COMPOUND STATEMENTS

BEG N and END are used as a delimting pair and are matched nmuch |ike
parent heses. Wthin the body of a main programor a procedure, a
BEG N- END pair can be used to conbi ne several statenents into one
conmpound statenent. Conmpound statenents are useful in IF, FOR CASE,

DO UNTI L, and VWH LE- DO st at enent s.

The form of a conpound statenent is:

BEG N
[statement;... ;statenent]
END
wher e
st at enmrent is any SPL executabl e statenment (including conmpound

statenents).
For exanpl e,
| F A<B THEN

BEGA N
A

m @
o
nmow

END;

Note that a semicolon is not required before the END statement. If it is
included, it is a null statenent.

1-16. ENTRY POINTS

Bot h mai n progranms and procedures can have multiple entry points. The
first executable statenent of a nmain programor procedure is an inplicit
entry point. Alternate entry points are | abel ed statenents whose | abel s
are declared in an entry declaration (see paragraph 3-7 for the format of
an entry declaration). An entry point cannot be the object of a GO TO
st at enent .

A program may be started at an alternate entry point with a paraneter on
the : RUN or :PREPRUN command. An alternate entry point for a procedure
is equivalent to another nanme for the procedure that can be called with
the sane formal parameters. Local variables are set up and initialized
regardl ess of which entry point is used. For exanple, assune the

foll owi ng program has been conpil ed and prepared (:SPLPREP) and the
programfile is $OLDPASS

BEG N
ENTRY PL, P2, P3;

PL: A =100;

P2: A =200;

P3: A =300;

END.

To start execution at P2, use the command

: RUN $CLDPASS, P2

Chapter 2 BASIC ELEMENTS

2-1. DATA STORAGE FORMATS

SPL processes six types of data: integer, double integer, real, |ong
(extended precision real), byte, and logical. Each data type has its own
representation in nenory. The foll owi ng paragraphs describe the data
types and di scuss the manner in which they are stored in nenory.

2-2. I NTEGER FORNAT

I ntegers are whol e nunbers containing no fractional part. |nteger val ues
are stored in one 16-bit conputer word. The leftnost bit (bit 0)
represents the arithnetic sign of the nunber (1= negative, 0= positive).
The remaining 15 bits represent the binary value of the nunber. |nteger
nunbers are represented in tw's conpl enent formand range from-32768 to
+32767.

Deci mal | Two's
Val ue | Conpl enent
+ 32767 | WTTTTT7
: | :
+ 1 | %©00001
0 | %©00000
-1 | W77777
-2 | W77776
: | :
-32768 | 2400000

2-3. DOUBLE | NTEGER FORVAT

VWhen you wi sh to use integer values with magnitudes greater than the
integer format allows, you may use double integers. Double integers use
2 conputer words for a total of 32 bits. The leftnost bit of the first
word (bit O0) is the sign bit (1=negative, O=positive). The remaining 31
bits represent the binary value of the nunber. Double integer nunbers
are represented in two's conplenment formand range from -2, 147,483,648 to
+2, 147, 483, 647.

2-4. REAL FORVAT

Real nunbers are represented in nmenory by 32 bits (two consecutive 16-bit
words) with three fields. The fields are the sign, the exponent, and the
manti ssa. The format is that known as excess 256--exponents are biased
by +256. Thus, a real nunber consists of:

Si gn(S) Bit O of the first word (positive=0, negative=1l). A
value X and its negative, - X differ only in the sign
bit.

Exponent (E) Bits 1 through 9 of the first word. The exponent ranges

fromO to 777 octal (511 decimal). This nunber
represents a binary exponent, biased by 400 octal (256
decimal). The true exponent is E- 256; it ranges from
-256 to +255

Fraction(F) A binary nunber of the form 1.xxx, where XXX is
represented by 22 bits, stored in bits 10 through 15 of
the first word and all of the second word. Note that
the 1. is not actually stored, there is an assuned 1.
to the left of the binary point. Floating-point zero is
the only exception--it is represented by all 32 bits
bei ng zero.

The range of the magnitude of non-zero real values is from8.63617* 10-78
to 1.157921 * 10-77. Real nunbers are accurate to 6.9 deci mal pl aces.

The internal representation for real nunbers is:

The formula for conputing the deci mal value of a floating-point
representation is:

Decimal value = (-1)S * F * 2(E- 256)

which is equivalent to

Decimal value = (-1)S * (1.0 + (xxx * 2-22)) * 2(E-256)

For exanple, 7.0 is represented as

Sign (S) = 0 (positive)

Exponent (E) = 402 (octal) = 258 (decimal)

Fraction (F) 1.11 (binary) = (1 x 20) + (1 x 2 -1) + (1 x 2-2)

1+1/2 + 1/4

1.75 (decinmal)

So, the deci mal value of the real value is:

(-1)0 x 1.75 x 2(258-256) = 1 x 1.75 x 22

7.

0

2-5. LONG FORVAT*

Long nunbers are represented in nmenory by 64 bits (four consecutive
16-bit words) with three fields. The fields are the sign, the exponent,
and the mantissa. The format is that known as excess 256--exponents are
bi ased by + 256. Thus, a |ong nunber consists of.

Si gn(S) Bit O of the first word (positive= 0, negative= 1). A
value X and its negative, -X, differ only in the sign
bit.

Exponent (E) Bits 1 through 9 of the first word. The exponent ranges

fromO to 777 octal (511 decimal). This nunber
represents a binary exponent, biased by 400 octal (256
decimal). The true exponent is E- 256; it ranges from
-256 to +255

Fraction(F) A binary nunber of the form 1.xxx, where XXX is
represented by 54 bits, stored in bits 10 through 15 of
the first word and all of the second, third, and fourth
words. Note that the 1. is not actually stored, there
is an assuned 1. to the left of the binary point.

Fl oati ng-point zero is the only exception--it is
represented by all 64 bits being zero.

NOTE *Throughout this discussion the follow ng changes apply to
Pre-Series Il Systems: Long nunbers are 48 bits (three words)
accurate to 11.7 decimal places. The decinmal value of a floating
point repre- sentation of a long value is (-1)S * (1.0 + (xxx *
2-38)) * 2(E-256)

The range of the magnitude of non-zero long values is from
8. 636168555094445 * 10-78 to 1.157920892373162 * 1077. Long nunbers are
accurate to 16.5 decimal places. The fornula for conputing the deci mal
val ue of a floating-point representation is:

Deci mal value = (-1)S * F * 2(E-256)

whi ch, for long values, is equivalent to:

Decimal value = (-1)S (1.0 + (xxx * 2-54)) * 2(E-256)

The internal representation for |ong nunbers is:

2-6. BYTE FORVAT

Character strings are stored using byte format. Character values are
represented bv 8-bit ASCI| codes, two characters packed in one 16-bit
conmputer word. The nunber of words used to represent a character val ue
depends on the actual nunmber of characters in the string. Appendix A
shows the ASCI| characters and their octal codes.

The internal representation of byte values is:

2-7. LOG CAL FORNVAT

Logi cal values are stored in one 16-bit conputer word. They are treated
as unsigned integer values ranging fromO to 65,535. A value is
considered true if it is odd and false if it is even (i.e., only bit 15
is checked). Wien a value is set to TRUE, a word of all ones is used (%
177777). A value set to FALSE is all zeros.

The internal representation of a |ogical value is:

2-8. CONSTANT TYPES

Constants are literal values that stand for thenselves. There are two
basi c types of constants in SPL: numeric constants and string constants.

Nuneric constants are broken down into five types:
1. Integer (16 bits--includes 1 sign bit)
2. Double integer (32 bits--includes 1 sign bit)
3. Real (32 bit floating point)
4. Long (64 bit floating point)
5. Logical (16 bits--no sign bit)

String constants are nmade up of ASCI| characters which are packed two
8-bit characters to a word.

In SPL, constants are nmerely bit patterns that occupy a given nunber of
bits. A given 16-bit pattern can have many constant interpretations (two
characters, an integer, a logical value, etc.). Note that hardware
instructions provide arithnetic capability for all of the constant types
nmentioned here.

2-9. | NTEGER CONSTANTS

Integers are signed whol e nunbers containing no fractional part. Decimal
i nteger constants use the decimal digits O through 9. They can contain a
| eading plus (+) or mnus (-) sign. A nunber without a leading sign is
positive. The range of an integer constant is from-32768 to +32767.

The form of a decimal integer constant is,

[sign] integer

wher e

sign is + or -.
i nt eger is astring of the digits O through 9

For exanpl e,
0
12345
-31766
+12384

2-10. DQOUBLE I NTEGER CONSTANTS

Doubl e i ntegers are signed whol e nunbers containing no fractional part.
Deci mal doubl e integer constants use the decimal digits O through 9
followed by a D. They can contain a leading plus (+) or mnus (-) sign

A nunber without a leading sign is positive. The range of a double

i nteger constant is from-2,147,483,648 to +2,147,483,647. The formof a
deci mal doubl e i nteger constant is:

[sign] integer D

wher e

sign is + or -
i nt eger is astring of the digits O through 9

For exanpl e,
-123456D
+99999999D
312735D
0D

2-11. BASED CONSTANTS

SPL allows you to use any base from 2 (binary) through 16 (hexadeci nmal)
in constants. A based constant can contain a | eading sign and/or a
trailing type designator. A |eading per cent sign (% denotes a based
constant. The base is enclosed in parentheses follow ng the per cent

sign. |If a base is not specified, the constant is octal (base 8). The
letters A/B,C D E, and F represent the values 10, 11, 12, 13,14, and 15
respectively in bases greater than 10. |If a type designator is used with

a base greater than 10, a space nmust precede the type desi gnator

The formof a based constant is:

[sign] % (base)] integer [type-designator]

wher e

sign is + or -.

base is any integer between 2 and 16. If the %is used
wi t hout a base being specified, base 8 (octal) is
assuned.

i nt eger is astring of digits, where digit is between 0 and
base- 1.

type-designator is D/E, or L for DOUBLE, REAL, or LONG respectively. |If
a type-designator is not specified, the constant will be
a single-wrd constant which can be used as type
| NTEGER, LOGQ CAL, or BYTE.

For REAL and LONG based constants, the bit pattern of the based integer
is used directly as a right justified real nunmber--it is not converted to
floating point form A leading mnus sign will generate the two's

conpl ement form of single-word and type DOUBLE based constants, but will
only reverse the sign bit for REAL and LONG based constants.

For exanpl e,

+y77

-9 2) 10101010

% 16) ABC D <<t ype DOUBLE>>
% 16) ABCD <<si ngl e- wor d>>

2-12. COWPCSI TE CONSTANTS

Conposite constants are a conveni ent way of representing specific bit
patterns for tables and special nunbers such as the | owest possible rea
nunber. A conposite constant consists of a series of bit fields
separated by commas which is enclosed in brackets ([]). Each bit field
contains a field |l ength and an unsigned integer value separated by a
slash. The integer value may be an unsigned conposite integer; thus,
conposite integers may be nested within a conposite constant. Conposite
constants may contain a |leading sign and/or a trailing type designator

The form of a conposite constant is:

[sign] conposite-integer [type-designator]

wher e
sign is + or -.
conposite- is of the form
i nt eger
[l engt h/val ue, ..., | ength/val ue]
NOTE The brackets [] in this case are literal synbols
whi ch are part of the syntax for composite
i ntegers--they do not represent the synbols used
to denote optional itens in this manual
| ength i s an unsigned non-zero deci mal, based, conposite, or
equated i nteger constant. The sumof the lengths for a
conposite constant cannot exceed the nunmber of bits used
to represent the constant type. |If the sumof the
lengths is greater than 16, a type-designator is
required.
val ue i s any unsigned deci nal, based, conposite, or equated

i nteger constant. Type-designators are not all owed.

type-designator is DE, or L for DOUBLE, REAL, or LONG respectively. |If
a type-designator is not specified, the constant will be
a single-wrd constant which can be used as type
| NTEGER, LOGQ CAL, or BYTE.

Conposite constants are fornmed by left-to-right concatenation of binary
bit fields. Wthin each bit field, unspecified |leading bits are set to
zero and bits exceeding the field size are truncated on the left. The
resulting conposite integer is right justified with leading bits set to
zero. If a mnus signis used with a single-word or a type DOUBLE
conposite constant, the two's conplenment will be generated. |If a mnus
sign is used with a REAL or LONG conposite constant, the sign bit will be
reversed and the other bits will be unchanged--no conversion to floating
point formoccurs with ccnposite constants.

For exanpl e,

[32/1] D = %0000000001

-[32/1]D = YB7777TTTT77
-[32/1]E = 940000000001
[3/2, 12/ %5252] = 95252

[2/ 211, 15/ [3/ % 2) 101, 12/ 0], 10/ 123] D = 9420000173
-3/ 2, 12/ %5252] = 9452526

2-13. EQUATED | NTEGERS

Equated integers are used to assign an integer value to an identifier for
conpile-time only. An equated integer does not allocate any storage, but
nmerely provides a form of abbreviation for constants. Wen an equated
identifier is used, the appropriate constant is substituted in its place.
VWhen Equate decl arations are used instead of actual constants, prograns
can be changed sinply; instead of replac- ing every occurrence of a
constant, only the EQUATE decl arati on need be changed. An equated

i nteger reference may be preceded by a plus (+) or minus (-) sign. The
val ue assigned to an identifier in an EQUATE decl aration nmust be a

singl e-word val ue; however a D may be used after the identifier to
convert the single-word value to a doubl e-word val ue whose first word is
all zeros. |If a Dis used, a space nust separate the identifier fromthe
D.

The form of an equated integer constant is

[sign] identifier [D]

wher e
sign is + or -.
identifier is alegal SPL identifier which has been declared in an

EQUATE decl aration (see paragraph 3-9).

2-14. REAL CONSTANTS

Real constants are represented by an integer part, a decinmal point, and a
decimal fraction. Either the integer part or the decimal fraction may be
omtted (but not both) to indicate a zero value for that part only. A

| eading plus (+) or mnus (-) sign may be used. A nunber w thout a sign

is positive. The constant can contain a scale factor to indicate a power
of ten by which the value is multiplied.

The forns of a real constant are

Format 1: [sign] based/conposite-integer E
Format 2: [sign] decimal-nunber [E [sign] power]

Format 3: [sign] decimal-integer E [sign] power

wher e
sign is either + or -.
based/ i s any unsigned based or conposite integer constant.
conposite-
deci mal - nunber is of one of the follow ng three forns:

n.n

n

.n

(n being an unsi gned deci mal integer).

power i s an unsigned decinmal integer constant.

decimal -integer is an unsigned deci mal integer constant.

Real nunbers are accurate to 6.9 decimal digits of magnitude (0 can be
represented exactly). The absolute value of non-zero real nunbers can
range from 8.63617 x 10-78 to 1.157921 x 1077. The E construct is used
to indicate the scaling factor, if any. For exanple, 2.5E-2 neans 2.5 x
10- 2.

Not e that when a conposite or based integer is used, there is no power
after the E, and that the Eis required to indicate a real value. The
bit pattern created for the integer is used directly as a right-justified
real nunber; it is not converted to floating-point form This construct
is useful for creating special floating-point constants such as the
smal | est positive nunber. Wen the base is greater than 10, a space nust
precede the E

For exanpl e,

+1. 234
-. 2024

- 1. 105E- 21

10E- 20

9% 4) 321000E

% 2)1111011110111E

[3/5, 5/ 273, 20/ % 16) 102AB39] E

Sonme exanples of invalid real constants are

+10. E <<m ssi ng power >>

2E-

<<m ssi ng power >>

2-15. LONG CONSTANTS

Long constants are represented by an integer part, a decinmal point, and a
decimal fraction. Either the integer part or the decimal fraction may be
omtted (but not both) to indicate a zero value for that part only. A

| eading plus (+) or mnus (-) sign may be used. A nunber w thout a sign

is positive. The constant can contain a scale factor to indicate a power
of ten by which the value is multiplied.

The fornms of a |long constant are

Format 1: [sign] based/conposite-integer L
Format 2: [sign] decimal-nunber [L[sign] power]

Format 3: [sign] decimal-integer L[sign] power

wher e
sign is either + or -.
based/ i s any unsigned based or conposite integer constant.
conposite-
deci mal - nunber is of one of the follow ng three forns:

n.n

n

.n

(n being an unsi gned deci mal integer).

power i s an unsigned decinmal integer constant.

decimal -integer is an unsigned deci mal integer constant.

Long nunbers are accurate to 16.5*decimal digits of nmagnitude (0 can be
represented exactly). The absolute value of non-zero | ong nunbers can
range from 8.636168555094445 x 10-78 to 1.157920892373162 x 1077. The L
construct is used to indicate the scaling factor, if any. For exanple,
2.5L-2 neans 2.5 x 10-2.

Not e that when a conposite or based integer is used, there is no power
after the L, and that the L is required to indicate a | ong value. The
bit pattern created for the integer is used directly as a right-justified
| ong nunber; it is not converted to floating-point form This construct
is useful for creating special floating-point constants such as the
smal | est positive nunber. Wen the base is greater than 10, a space nust
precede the L.

For exanpl e,
9321. 678975L72
-.111015L- 27
% 8)3777777777L

*11.7 with pre-Series Il Systens

2-16. LOG CAL CONSTANTS

Logi cal constants are 16-bit positive integers. Hardware operations on
| ogi cal values are defined for addition, subtraction, nultiplication

di vi si on, and conparison

Logi cal values can be represented by any of the follow ng:

1. TRUE

2. FALSE

3. integer
wher e

TRUE and FALSE are SPL Reserved words.

i nt eger is any (single word) deciml, based, conposite, or
equat ed i nt eger.

A logical value is considered true if its value is odd, false if its
value is even (i.e., only bit 15 is checked). Wen the reserved words
TRUE and FALSE are used, they are equivalent to the integer values -1
(all ones) and O (all zeros) respectively, Since |ogical values are

al ways assumed to be positive, they range fromO to +65,535. Wen
negative integers are used as |ogical values, they are interpreted as
| arge positive nunbers (e.g., -1 equals % 177777).

2-17. STRI NG CONSTANTS

A string constant is a sequence of one or nore ASCI| characters bounded
by quote marks ("). Each character is converted to its 8-bit
representation and the characters are packed two per word.

The formof a string constant is

"character-string"

wher e

character - is a sequence of ASCI| characters (see Appendix A).
string

A character string can contain from1 to 127 ASCIl characters. A quote
(") is represented within a character string by a pair of quotes ("") to
avoid anbiguity with the string term nator.

For exanpl e,
"THE CHARACTER "" | S A QUOTE MARK. "

"“A NORMAL STRI NG WOULD LOX LIKE TH S
"l owercase letters are not UPSH FTED in strings"

2-18. | DENTI FI ERS

Identifiers are synbols used to nane data and code constructs in an SPL
program They consi st of uppercase letters and nunbers, and are assi gned
uses by declarations. There is no inplicit typing for identifiers.

The formof an identifier is

letter [letter'digit-string]

wher e

letter is aletter of the al phabet (A-2).

letter'digit- is astring of letters (A-2), digits (0-9), and
string apostrophes (').

An identifier always starts with a letter and may contain from1l to 15
characters (letters, digits, and apostrophes). Identifiers larger than
15 characters are truncated on the right (A123456789012345 =
A12345678901234). Lowercase letters are allowed, but are always
converted to uppercase form (Aabc = AABC). If the listing device has
upper and | owercase characters, a |lowercase identifier is printed in

| ower case, but SPL does not differentiate it froman uppercase identifier
with the same characters. The attributes of an identifier are determ ned
by a declaration, not by the formof the identifier

Reserved words are conbinati ons of characters that cannot be used as
identifiers, since they have inplied nmeanings in the |anguage. (See
Appendi x B for a list of SPL reserved words).

For exanpl e,

MATRI X

A'"B

AN | DENTI FI ER
MAT123

X

2-19. ARRAYS

An array is a block of contiguous storage which is treated as an ordered
sequence of variables having the sane data type. These variables are
accessed using a single identifier to denote the array and a subscri pt
nunber to denote the particular variable (element) within the array.
Array elements are sonetinmes called subscripted variabl es.

SPL al |l ows one-di nensional arrays (only one subscript is permtted) in
all data types (integer, logical, real, byte, long, and double).
Subscripting automatically uses the index register to indicate the

el ement nunmber. Bounds checking is not done at either conpile-time or
run-time. Arrays can be initialized but do not have a default
initialization value. Arrays can be located in any region of the user's
domai n whi ch can be addressed relative to the DB, Q S, or P registers.
Values in P-relative arrays are constants whi ch cannot be changed at
run-time.

2-20. PO NTERS

A pointer is a type of variable which contains the 16-bit address of
another data itemin the program The 16 bits of the pointer represent
the address of a variable. A pointer can be changed dynamically to point
to different data itenms during program execution. Pointers are decl ared
in a pointer declaration (see paragraph 3-4 for global pointer

decl arations and paragraph 7-24 for |ocal pointer declarations).

There are four contexts in which pointers can be used:

1. Anywhere that the object of the pointer could be used; this
generates an automatic indirect reference to the object of the
poi nter.

2. On the left side of an assignnent statenent to change the val ue of
t he object of the pointer

3. A pointer can be preceded by an @to refer to the actual contents
of the pointer (the data |abel), not the object of the pointer

4. A pointer can inplicitly reference the LST and SST instructions.
(Privileged node only.) The pointer reference nmust always be
subscri pted and cannot be preceded by '@. MAP indicates this
addr essi ng schenme by ST + nunber as shown in the exanple bel ow
Refer to the Machine Instructions Set Manual for nore detailed
i nformati on.

00000100 00000 O $CONTROL | NNERLI ST, MAP, ADR
00001000 00000 O BEG N
00002000 00000 1 I NTEGER PO NTER SYSG.0B=0
00002100 00000 1 | NTEGER CONSCLE, .
DB+000
00003000 00000 1 CONSOLE: =SYSG.0B(%74) ;
00000 LDXI, 074 021474 01.05
00001 LD , 000 021000 01.05
00002 LST , 000 030000 02. 45
00003 STOR DB 000 051000 03.15
00004000 00004 | END
00004 PCAL, 052 (000000 14. 90
| DENTI FI ER CLASS TYPE ADDRESS
CONSOLE SIMP. VAR I NTEGER DB+000
SYSGLOB PO NTER I NTEGER ST+000
TERM NATE PROCEDURE

For exanple, assunme the follow ng data decl arati ons

| NTEGER A, B: =7, C. =300, DATA: =- 1,
| NTEGER PO NTER PTR: =@DATA,

These declarations initialize the variables B, C, and DATA and set up PTR
as a pointer to DATA as shown bel ow.

Now, consider the statenent

A = PTR

This statenment assigns the object of the pointer PTR (i.e., DATA) to A

Using the pointer on the left side of an assignnent statenent can change
the value of the object of the pointer.

PTR = B+C;

The object of the pointer PTR (i.e., DATA) is assigned the value of B+C.

Preceding the pointer variable with an @references the address contai ned
in the pointer instead of the value of the object of the pointer. Using
this construct on the right side of an assignnent statenent assigns the
DB-rel ati ve address of the object of the pointer to a variable. For
exanpl e,

A =@PTR;

A is assigned the address contained in PTR (that is, the address of
DATA) .

To change the pointer to point to a different data item use the @
construct on the left side of an assignment statenment as shown bel ow

@ PTR =@%;

This statenment changes PTR to point to A instead of DATA

2-21. LABELS

Label s are used to identify statenents for transfer of control and for
docunent ati on purposes. A |abel nust always be followed by a colon (:)
to separate it fromthe statenent that it identifies. For consistency
and docunentation, |abels may be declared with a | abel declaration;
however, it is not necessary to do so since |abels declare thensel ves
automatically when they are used. A label can be used to identify only
one statenent within the scope of the identifier; that is, the same |abel
can be used to identify two different statenents as |long as the
statenments are not both in the main body or both in the sane procedure.

2-22. SWTCHES

The purpose of a switch is to transfer control to one of several |abeled
statements within a program A switch is first declared with a switch
decl aration (see paragraph 3-6 for the format of a switch declaration).
The switch declaration defines an identifier to represent an ordered set
of labels. Each label in the list (fromleft to right) is assigned a
nunber fromO to n- 1 (where n is the nunber of |abels) which indicates
the position of the label inthe list. A switch of programcontrol is
acconpl i shed by using a GO TO statenent with the switch identifier and an
i ndex. The index is evaluated to an integer value and control is
transferred to the switch | abel specified by that nunber. Bounds
checking on the index to insure that the value has a correspondi ng

| abel ed statenent is optional. See paragraph 5-2 for the formof the GO
TO st at enent .

For exanpl e,

BEG N
| NTEGER | NDX;
REAL A B;
SWTCH SW= L1, L2, L3, L4;
INDX: = -1;
LOOP: | NDX: = | NDX+1;
GO TO SW I NDX) ;
L1: A =B;
GO TO LOCP;
L2: B: =A;
GO TO LOCP;
L3: A =A+B;
GO TO Loop;

L4: B: =A+B;

END.

Chapter 3 G.OBAL DATA DECLARATI ONS

3-1. TYPES OF DECLARATI ONS

A declaration defines the attributes of an identifier before it is used
in a programor procedure. Al identifiers in SPL prograns (with the
exception of |abels) nmust be explicitly declared once only within a
single programor procedure. There are two possible |evels of
declarations in SPL:

@ obal (in a main program

Local (in procedures)

G obally declared identifiers can be accessed throughout a program (even
wi thin procedures) and their declarations are grouped together at the
begi nning of the program Locally declared identifiers can be accessed
only within the procedure where declared and their declarations are
grouped together at the beginning of the procedure body. This section
covers gl obal data declarations only; refer to section VIl for |oca

decl arati ons.

@ obal data declarations i mediately follow the opening BEG N as shown
bel ow.

BEG N
----- > [gl obal - dat a- decl arati ons] <-----
[procedures/intrinsics]
[gl obal - subrouti nes]
[mai n- body]
END.

A obal data declarations are conmposed of the follow ng types of
declaratlons (which are described individually later in this section):
gl obal sinple variable decl arations

gl obal array decl arations

gl obal pointer decl arations

| abel decl arations

switch declarations

entry decl arati ons

define decl arati ons

equat e decl arati ons

* % o X X kX

Q obal data identifiers (sinple variables, arrays, and pointers) are
either allocated space in the stack or use space in the stack all ocated
to another identifier. Normally, the next available DB-relative |ocation
is allocated for the identifier. However, a register-relative or
identifier-relative |ocation may be specified in the declaration to
override the default allocation. In this case, the referenced |ocation
is used without being allocated. Wen using identifier or register
references, the conpiler only checks that the resulting address is within
the direct address range of the register being used. You nust insure
that this |location does not exceed the bounds of your data stack when the
identifier is referenced at execution tinme. Additionally, when using a
reference identifier, you nust declare it before using it as a reference
identifier. For exanple, the declarations:

| NTEGER A, B, G
LOE CAL D= A+ 2;

indicate that Dis a LOG CAL sinple variable using the sane | ocation as
the I NTEGER variable C. The syntax for register and identifier references
is described in the appropriate paragraphs for the type of identifier

(simple variable, array, or pointer) in this section. Data identifiers
which are register or identifier referenced cannot be initialized.

3-2. SIMPLE VAR ABLE DECLARATI ONS

A sinple variable declaration specifies the type, addressing node,
storage allocation, and initializa- tion value for identifiers to be used
as single data itenms. The type assigned to a variable determ nes the
anmount of space allocated to the variable and the set of HP 3000

i nstructions which can operate on the variabl e.

Two net hods can be used to |ink global variables to variables in
separately conpiled procedures. The first nethod is to use the GLOBAL
attribute in the gl obal variable declaration and the EXTERNAL attri bute
in the local variable declaration (see paragraph 7-19). The identifiers
in both declarations nust be the sanme and the MPE Segmenter is
responsi ble for making the correct |inkages. (See the MPE Segnenter
Subsyst em Ref erence Manual for a discussion of the Segnenter.) The
second nmethod is to include dunmy gl obal declarations at the begi nning of
subprogram conpi l ations. Al global declarations nust be included, even
for identifiers not referenced in the subprogram and they nmust be in the
same order as in the main program It is possible, although not
recommended, to use different identifiers for the sane variable, but you
are responsi ble for keeping themstraight. The second nethod is faster
and requires |l ess space in the USL (User Subprogram Library) files, but
does not protect you agai nst inproper |inkages.

The form of a global sinple variable declaration is:

[GLOBAL] type variabl e-declaration[,...,variabl e-declaration];
EXAMPLES:

| NTEGER |, J: =1245;

DOUBLE I1:=- 1234579 D,

REAL A, B, C. =1.321 E- 21, Z= DB+3;
LOGE CAL | NDX=X, LI =1, JI =3,

GLOBAL BYTE DOLLAR ="$";

wher e
type specifies the data type of the variables in the
declaration. The type may be | NTEGER LOG CAL, BYTE
DOUBLE, REAL, or LONG
vari abl e- can be any of the follow ng fornmns:
decl aration variable [:=initial-val ue]
variable = register [sign offset]
variable = reference-identifier [sign offset]
vari abl e is alegal SPL identifier
initial-value is an SPL constant to be used as the value of the
vari abl e when program execution begi ns.
register specifies the register to be used in a register
reference. The register may be DB, Q S, or X
sign is + or -.

of f set i s an unsigned decinmal, based, conposite, or equated

i nt eger constant.

ref erence- is any legal SPL identifier which has been declared as a

Form 1 of the variable declaration allocates the next avail able
DB-relative location(s) for the variable. The anmount of space all ocated
depends on the variable type. |If an initial value is specified, the
variable is initialized when execution starts.|f the constant used for
the initial-value is too large, it is truncated on the |eft, except
string constants which are truncated on the right. [If no initial-value
is specified, the variable is not initialized.

Form 2 of the variable declaration equival ences a variable either to the
i ndex register (X) or to a location relative to the contents of one of
the base registers (DB, Q or S). Since the index register is 16 bits,
only variables of type INTEGER, LOGQ CAL, and BYTE may be equival enced to
this register.

Form 3 of the variable declaration equival ences a variable to a |location
relative to another variable. The reference-identifier nust be decl ared
first. For exanple, the declarations

LO3E CAL A
| NTEGER B= A+ 5;

equi val ence B to the location 5 words past the location of A Sinple

vari abl es which are address referenced to arrays use either the location
of the zero elenent of the array (if direct), or the location of the
pointer to the zero elenent of the array (if indirect). Note that if the
reference-identifier is an array, only the zero elenment may be used in a
variabl e reference of a sinple variable declaration. |In any case, the
final address nust be within the direct address range.

DB, PB, Q S, and X cannot be used as the identifier on the right side of
an equals sign in a variable declaration, because they are interpreted as
regi ster references instead of variable references. For exanple,
consi der the declaration

| NTEGER A, B, C, DB, D= DB+ 2;
The variable D is equivalenced to the location 2 cells past the cell to
which the DB register points--not 2 cells past the | ocation assigned to
the variable DB

The | egal conbinations of registers, signs, and offsets are shown bel ow

| Regi st er | Si gn | O f set |
oo L 0to2ss |
o e L 0to127 |
o e - 0to63 |
o s - 0to63 |

3-3. ARRAY DECLARATI ON

An array declaration specifies one or nore identifiers to represent
arrays of subscripted variables. An array is a block of contiguous
storage which is treated as an ordered sequence of "variabl es" having the
same data type. Each "variable" or elenment of the array is denoted by a
uni que subscript (SPL provides one-dinmensional arrays only). An array
decl aration defines the followng attributes of an array:

* The bounds specification (if any) which determ nes the size of the
array and the legitimte range of indexing.

* The data type of the array el enments.
* The storage allocation nethod.

* The initial values, if desired.

* The access node (direct or indirect).

There are two types of access nodes used for arrays: indirect and
direct. An indirect array uses a pointer to the zero el enent of the
array. Addressing an indirect array el enment uses both indirect
addressing and indexing. |If the array is a BYTE array, the pointer
contains a DB-relative byte address. For all other data types, the

poi nter contains a DB-relative word address. A direct array uses a
location within the direct address range of one of the registers (DB, Q
or S) as the zero elenent of the array and then uses indexing to address
a specific array elenent. Figure 3.1 illustrates the differences between
direct and indirect arrays.

The area in the stack between DB and the initial value of Qis divided
into two areas: Primary DB Storage and Secondary DB Storage. The
Primary DB area is used for gl obal storage of sinple variables, direct
arrays, and pointers to indirect global arrays. The Secondary DB area is
used for global storage of indirect arrays. The Primary DB area cannot
normal |y extend past DB+ 255. The only exception is when the | ast gl oba
data declaration is for a DB-relative direct array whose zero el enent
falls between DB+0 and DB+255. Since the index register is used to
address array elenents, the array may extend past DB+255. The Secondary
DB area i mediately follows the Primary DB area regardl ess of the size of
the Primary DB area.

Figure 3.1. Accessing Array El enments

There are two net hods which can be used to |ink global arrays to arrays
in separately conpil ed procedures. The first method is to use the GLOBAL
attribute in the global array declaration and the EXTERNAL attribute in
the | ocal array declaration (see paragraph 7-23). The identifiers in
bot h decl arations nust be the same and the Segnenter is responsible for
maki ng the correct |inkages. The second nethod is to include dumy

gl obal declarations at the beginning of subprogram conpilations. Al

gl obal decl arations nust be included, even for identifiers not referenced
in the subprogram and they nust be in the same order as in the main
program It is possible, although not recommended, to use different
identifiers for the same array, but you are responsi ble for keeping them
straight. The second nethod is faster and requires |ess space in the USL
(User Subprogram Library) files, but does not protect you agai nst

i mproper |inkages.

The formof a global array declaration is:

wher e

GLOBAL

type

gl obal - array-
dec

{9l obal - array-dec}
{initialized-global -array-dec}

is used for arrays which are referenced in procedures
conpi |l ed separately.

specifies the data type of the array. The type can be
| NTEGER, LOGd CAL, BYTE, DOUBLE, REAL, or LONG |If not
specified, the array is type LOd CAL.

is one of the follow ng forns:

1. array-nanme(l ower:upper) [=DB]

This formis used for an uninitialized array with
defined bounds. If = DB is not specified, the
array is indirect and the next avail able DB
Primary location is allocated for the pointer to
the zero element of the array. Storage for the
array itself is allocated in the Secondary DB
area. |If = DBis specified, the array is direct
and the next available n cells in the DB Primary
area are allocated for the array (where n is the
nunber of locations required to store the array).
The zero element of the array nust be within the
di rect address range whether or not it is
actually an elenment of the array. For exanple,
consi der the declaration:

| NTEGER ARRAY A(- 20:- 10)= DB;

The next available DB primary location is
allocated to A(-20), but all indexing is done
relative to A(O) even though it is not an actua
el ement of the array. The address which A(0)
woul d have if it were in the array must be

bet ween DB+0 and DB+255.

2. array-name(@= DB [+ of fset]

This formis used for an indirect array with
undefined bounds. |If no offset is specified, the
next available Primary DB location is used,

wi t hout being allocated, as the pointer to the
zero element of the array. |If an offset is
specified, then that DB-relative cell is used,

wi t hout being allocated, as the pointer to the
zero element. In either case, space is not
allocated for the array in the Secondary DB area
nor is initialization allowed.

3. array-nane(*)= DB [+ offset]
This formis used for a direct array with

undefined bounds. |If no offset is specified, the
next available Primary DB location is used,

wi t hout being allocated, as the zero el enent of
the array. |If an offset is specified, then that
DB-rel ative location is used, wthout being

ei ther case, space is not allocated for the array
nor is initialization allowed.

array-name(@J[= register sign offset]

This formis used for an indirect array with
undefi ned bounds whose pointer is Q or

S-relative. |If a base-register reference is not
specified, the next available DB cell is

all ocated for the pointer to the zero el enent of
the array. |If a base-register reference is
specified, then that Qrelative or S-relative
cell is used, without being allocated, as the

pointer to the zero el enent of the array. Space
is not allocated for the array nor is
initialization all owed.

array- name(*)

This formcan be used for an indirect array with
undefined bounds. The next available DB cell is
all ocated for the pointer to the zero el enment of
the array. Space is not allocated for the array
nor is initialization allowed. This formis
equi valent to array-nane(@ w thout a

base-regi ster reference.

array-name(*)= regi ster sign offset

This formis used for direct arrays with

undefi ned bounds which are Qrelative or
S-relative. The specified cell is used as the
zero el enment of the array; however, space for the
array is not actually allocated and the array
cannot be initialized.

array-nanme(*)= reference-identifier [sign offset]

This formis used for an indirect array with
undefi ned bounds whose pointer is Q or

S-relative. |If a base-register reference is not
specified, the next available DB cell is

all ocated for the pointer to the zero el enent of
the array. |If a base-register reference is
specified, then that Qrelative or S-relative
cell is used, without being allocated, as the

pointer to the zero el enent of the array. Space
is not allocated for the array nor is
initialization all owed.

| NTEGER B(*)- A+ 10;

woul d not be all owed because the direct address
range for the DB register is 0 to 255. |If the
array is direct, the referenced |location is used
as the zero elenment of the array. |If the array
is indirect, the referenced location is used as
the pointer to the zero el enent except when
either the array or the reference-identifier (but
not both) is type BYTE, in which case the next
avail able DB-cell is allocated for the pointer to
the zero element. Space is not allocated for the

array nor can the array be initialized. DB, PB,
Q S, and X cannot be used as the reference-
identifer because they are interpreted as

8. array-nane(*)= reference-identifier (index)

This formis used for equival encing one array to
anot her array. The reference-identifier may be
either an array or a pointer variable and nmust be
declared first. |If the reference-identifier is a
direct array, the array is a direct array whose
zero element is the |location of the referenced
array elenent. |If the reference-identifier is an
indirect array or a pointer variable, the array
isindirect. |In this case, the next available DB
cell is allocated for the pointer to the zero

el ement of the array if a non-zero index is
specified or if either the array or the
reference-identifier (but not both) is type BYTE
ot herwi se, both use the sane |ocation for the
pointer to the zero elenent. |In any case, space
is not allocated for the equival enced array nor
can the equiva- lenced array be initialized. DB
PB, Q S, and X cannot be used as the
reference-identifier because they are interpreted
as regi ster references instead.

*Forms 4 through 8 are not allowed if the word GLOBAL is
i ncluded in the declaration

array- nane is alegal SPL identifier

ref erence- is any legal SPL identifier except DB,PB, QS, or X which
identifier has been declared as a data item

register specifies the base register in a register reference

The register may be either Qor S.
sign is + or -.
of f set i s an unsigned decinal, based, conposite, or equated

i nteger constant within the direct address range as
shown bel ow

Regi st er	Si gn	O f set
DB	+	0 to 255
Q	+	0 to 127
Q	-	0 to 63
S	-	0 to 63
initialized- is of the form

gl obal -array

array- nanme(l ower: upper) [=DB]:=

val ue- group[, ..., val ue- group]

| ower specifies the | ower bound of the array. It can be any

i nteger constant or constant expression.

upper speci fies the upper bound of the array, It can be any
deci mal , based, conposite, or equated single-word
i nteger constant or constant expression

i ndex i ndicates the elenment of the referenced array to be used
as the reference location. The index can be any
deci mal , based, conposite, or equated single-word
i nt eger constant.

val ue- group is either of the foll ow ng:
initial-val ue
repetition-factor (initial-value [,...,initial-value]
)

initial-val ue is any SPL nuneric or string constant.

repetition- specifies the nunber of times the initial value |ist

f act or will be used to initialize the array el enents. The

repetition-factor can be any unsi gned non-zero deci mal
based, conposite, or equated single-word integer

const ant .
@ obal arrays with defined bounds can be initialized. Initialization
consists of a := followed by a list of nunerical constants or strings. A

group of constants can be surrounded by parentheses and preceded by a
repetition factor (n) to specify that the constants in parentheses are to
be used n tines ininitializing the array before going on to the next item
inthe list. These repeat groups cannot be nested. El enents are
initialized starting with the | owest subscript and continuing up unti

the constant list is exhausted. The initialization |ist cannot contain

nore val ues than there are elenents in the array. |If the constant used
for the initial value is too large, it is truncated on the left except
string constants which are truncated on the right. |If no initial value

is specified, the variable is not initialized. Only the last array in a
declaration list can be initialized.

Tabl e 3-1 summari zes the syntax and neanings for the various forns of
gl obal array declarations. Figure 3.2 shows a series of array
declarations with the | ocations assigned to the identifiers.

Table 3-1. G obal Array Declaration Summary

| FORM | OFFSET | ADDRESSI NG | PO NTER | ZERO ELEMENT

| | RANGE | MODE | LOCATION | LOCATI ON

| id(lowup) | | indirect | next DB (A) | Sec. DB (A)
| id(lowup)=DB | | Diret | | Primary DB (A)
| id(@=DB | | iIndirect | next DB | O next DB)
| id(@=DB+offset | 0-255 | Indirect | DBtoffset | O(DBtoffset)
| id*)=06 | | Diret | | Pimryos
| id(*)=DB+offset | 0-255 | Direct | | oDBroffset

| 1d(@ | | I ndi rect | next DB (A) | C(next DB)

| id(@ =Qtof fset | 0-127 | I ndi r ect | Qtoffset | C(Qtoffset)

| 1d(@=Q of fset | 0-63 | I ndi r ect | Q offset | C(Qoffset)

| id(@=S-offset | 0-63 | I ndi r ect | S-offset | C(S-offset)

| 1d(*) | | I ndi rect | next DB (A) | C(next DB)

| id()sid | | Ntel | nNte2 | Note3d
| id(*)=id+offset | Noted | Dret | | ideoffset
| id(*)=id-offset | Noted4 | Dret | | idoffset
lid(= | | Ntes | note6 | idindex)
| id(index) | | | |

| id(*)= Qroffset | 0-127 | Dret | | Quoffset
| id(*)= Qoffset | o063 | Dret | | Qoffset
| id(*)=Soffset | 063 | Diret | | Soffset
Legend

(A)--Storage is allocated for the designated pointer or array.

C()--The contents of the location in parentheses is the address of the
zero el ement of the array.

id - identifier
| ow - | ower bound

up- - upper bound

NOTE

1. If the right side idis a direct array or a sinple variable,
the addressing node is direct. |If the right side id is an
indirect array or a pointer variable, the addressing node is
i ndirect.

2. If the addressing node is indirect, both identifiers use the
same pointer location unless one id is type BYTE and the
other is not, in which case, the next available DB-cell is
al l ocated for the pointer.

3. The zero elenent is in the sane | ocation as the right side
id (or its zero element if the right side id is an array).

4. The offset nust result in an effective address within the
direct address range of the base register which the right
side id uses.

5. If the right side idis a direct array, the left side id is
direct; if the right side id is a pointer variable or an
indirect array, the left side id will be indirect.

6. |If the addressing node is indirect, the next avail able
DB-cell is allocated for the pointer if:

and/ or

b. one of the two identifiers is type BYTE and the other is
not .

O herwi se, both identifiers use the sane pointer location, If the
addressing node is direct, there is no pointer

3-4.

PO NTER DECLARATI ON

A pointer declaration defines an identifier as a "pointer” --a single
word quantity used to contain the DB-rel ative address of another data
item-the object of the pointer
followi ng attributes of a pointer

* The data type

A pointer declaration defines the

* The storage allocation nethod.

* The initial

VWhen the pointer

address to be stored in the pointer (optional).

is a

t he pointer address.
the type of the pointer

wer e,

ccessed, the object is accessed indirectly through

The obj ect

is assuned to be, or is treated as if

There are two net hods which can be used to Iink global pointers to
pointers in separately conpiled procedures. The first nmethod is to use
the GLOBAL attribute in the gl obal pointer declaration and the EXTERNAL

attribute in the |ocal

poi nter decl aration (see paragraph 7-27). The

identifiers in both declarations nust be the same and the Segnenter is
maki ng the correct |inkages. The second nethod is to

responsi bl e for

i ncl ude dunmy gl obal

conpi
BOX

| ati ons.

00001000

00002000

00004000

00005000

00006000

00007000

00008000

00009000

00010000

00011000

00012000

00013000

00014000

00015000

00016000

00017000

00018000

00000

00000

00000

00001

00001

00001

00001

00001

00001

00001

00001

00001

00001

00001

00001

00001

00001

decl arations at the begi nning of subprogram

0 $CONTROL ADR

1 ARRAY A(0:10), AO(0: 10): =11(9%7);

DB+000
DB+001

ARRAY A1(0:10);
DB+002

ARRAY A2(0:10)=DB
DB+003

ARRAY A3(@ =DB
DB+031

ARRAY AA(@ =DB+5;
DB+005

ARRAY A5(*)=DB
DB+031

ARRAY A6(*) =DB+6;
DB+006

ARRAY A7(@ ;
DB+031

ARRAY A8(@ =Q+3;
Q +003

ARRAY A9(@ =Q 3;
Q- 003

ARRAY A10(@ =S- 2;
S - 002

ARRAY A11(*);
DB+032

ARRAY A12(*)=Al:
DB+002

ARRAY A13(*)=Al+4;
DB+006

0 BEG N
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL
1 REAL

ARRAY Al4(*)=A2- 1;
DB+002

it

00019000 00001 1 REAL ARRAY A15(*)=Al(5);
DB+033
00020000 00001 1 REAL ARRAY A16(*)=Q+3;

00021000 00001 1 REAL ARRAY Al7(*)=Q 3;

Q- 003
00022000 00001 1 REAL ARRAY A18(*)=S- 2
S - 002
00023000 00001 1 BYTE ARRAY AL9(*) =A0;
DB+034
00061000 00001 1 END
PRI MARY DB STORAGE=9035; SECONDARY DB STORAGE=900054
NO. ERRORS=000; NO. WARNI NGS=000
PROCESSOR Tl ME=0: 00: 02; ELAPSED TI ME=0: 00: 08

Figure 3.2. Sanple d obal Array Decl arations

Al'l gl obal declarations nust be included, even for identifiers not
referenced in the subprogram and they nust be in the sanme order as in
the main program It is possible, although not recommended, to use
different identifiers for the same pointer, but you are responsible for
keepi ng them straight. The second nmethod is faster and requires |ess
space in the USL (User Subprogram Library) files, but does not protect
you agai nst inproper |inkages.

The form of a gl obal pointer declaration is:

[GLOBAL] [type] POLNTER pointer-dec[, ..., pointer-dec];
EXAMPLES:

| NTEGER A; LOG CAL B;

BYTE PO NTER P: =@\

| NTEGER ARRAY N(0: 10) ;

| NTEGER POl NTER PN =@\(5) ;

PO NTER P3=DB+ 2, P4, P5: =@\, P6=B;
| NTEGER POl NTER PCB=3;

wher e

GLOBAL is used for pointers referenced in procedures conpiled
separately.

poi nt er - dec is one of the follow ng:

1. pointer-nane [:= @eference-identifier [(index)]]

This formallocates the next avail able DB cel

for the pointer variable. |If the :=@eference-
identifier is used, the pointer is initialized to
the address of the reference-identifier or array-
element if an index is included. The
reference-identifer nmust be declared first.

NOTE d obal pointers can only be initialized to
point to identifiers which have been
declared to be DB-rel ative, either
explicitly or inplicitly. They cannot be
initialized to point to identifiers which
have been register referenced to the Q S,
or X registers, Thus, the following is not

al | oned:

| NTEGER A=Qt+1; PO NTER B: =@\

statenment (see paragraph 4-20) to

dynam cally set the pointer to such a
variable unless it was equival enced to the
i ndex register.

2. pointer-nane = reference-identifier [sign offset]

This formis used to equi val ence a pointer
variable to a location relative to another
identifier. Space is not allocated for the

poi nter nor can the pointer be initialized, The
resulting address for the pointer variable nust
be within the direct address range of the base
regi ster which the reference-identifier uses.

3. pointer-nanme = register [sign offset]

This formis used to equi val ence a pointer
variable to a location relative to a
base-register. Space is not allocated for the
poi nter nor can the pointer be intitialized. The
resulting address for the pointer variable nust
be within the direct address range of the

speci fied base-register

4. pointer-nane = offset

This formis used only in privileged node. It is
the offset in System DB. The pointer reference
nmust al ways be subscripted and cannot be preceded

by ' @.

type specifies the data type of the pointer variables in the
declaration. The type can be INTEGER LOG CAL, BYTE
DOUBLE, REAL, or LONG

poi nt er - nane is alegal SPL identifier.

ref erence- is any legal SPL identifier which has been declared as a
identifier data itemexcept DB, PB, QS, or X

register specifies the base register in a register reference

The regi ster can be DB, Q or S
sign is + or -.

of f set i s an unsigned decinmal, based, conposite, or equated
integer within the direct address range as shown bel ow.

| Regi st er | Si gn | O f set |
o . 0to2ss |
L e L 0to127 |
o e 1 - 0toes |

i ndex i ndicates the array el enent whose address the pointer
will be initialized to contain. The index can be any
deci mal , based, conposite, or equated single-word
i nt eger constant.

Pointers are initialized with addresses of other variables or constants.
The nmethod is to follow the pointer with :=@and a data reference (sinple
variable, pointer elenent, or array elenent) or := constant. The address
of the specified data item adjusted to the address type of the pointer
is stored in the cell allocated for the pointer. BYTE pointers contain
DB-rel ative byte addresses, whereas all other types of pointers contain
DB-rel ati ve word addresses.

See "Poi nters" (paragraph 2-20) for nmethods of referring to and through
poi nters. Pointers can be indexed like arrays and can contain word or
byt e addresses.

Poi nters can be declared with all data types; if no type is specified,
type LOG CAL is assunmed. The type determ nes what data type the object
of the pointer is assuned to have. This allows objects declared with one
type to be accessed as another data type by accessing themthrough

poi nters.

Poi nters which are not address referenced are allocated the next

avail abl e DB-rel ative | ocation and can be initialized. Pointers which
are referenced use the address of the referenced itemor the specified
register relative location and cannot be initialized.

3-5. LABEL DECLARATI ON

A | abel declaration specifies that an identifier will be used in the
programas a label to identify a statement. Labels are referenced when
it is necessary to transfer control to a specific statenent; they need
not be declared explicitly unless the progranmer w shes

The formof a | abel declaration is:

LABEL | abel [,...,label];
EXAMPLES:
LABEL L1, L2, L3;
LABEL L;
wher e
| abel is alegal SPL identifier

Label s are used to identify statenents as foll ows:

LABEL L1,

Ll:A:=&
The syntax for |abeled statenents is given in paragraph 1-3. 1In SPL, a
| abel inplicitly declares itself when it is used to identify a statenent,
as the object of a GO TO statenent, or in a switch declaration. It need

not be explicitly declared in a | abel declaration except as desired for
docunent ati on purposes. See "GO TO Statenent” (paragraph 5-2) and
"Switch Declaration" below for use of |abels.

3-6. SW TCH DECLARATI ON

A switch declaration relates an identifier to an ordered set of |abels.
The switch is accessed as a conputed (or indexed) GO TO statenent. The
purpose of a switch is to allow selective transfer of control to any of
the statenents identified by the |l abels in the switch declaration.

The formof a switch declaration is:

SWTCH switch-nanme := label [,...,label] ;
EXAMPLES:

SWTCH SW=L1, L2, L3, L4, L5,L6,L7,L8, L9,
SW TCH ERROR SELECT: =ERR1, ERR2, ERR3, ERR4, ERR5, ERRG;

wher e
swi t ch- name is alegal SPL identifier.
| abel identifies the statenent to which control is transfered

when the switch is invoked.

Only one switch-name can be declared in each switch declaration.

Associ ated with each label in the label list fromleft-to-right is an
ordinal integer fromO to n-1, where n is the nunber of labels in the
list. This integer indicates the position of the label in the list.
Each position in the list nust contain a |label; null elenments are not

al l owed. Wien the switch-nanme is referenced (see "GO TO Statenent” in
par agraph 5-2), the value of an integer subscript determ nes which | abel
is selected fromthe Iist. Bounds checking in this selection is
optional. Entry points are not allowed in switch declarations. Switch
| abel s may not occur in subroutines.

3-7. ENTRY DECLARATI ON

The purpose of a global entry declaration is to specify nmultiple entry
points to a main program beyond the inplicit entry point which is the
first statenent of the program Each entry identifier nust occur
somewhere in the body as a statenent |abel, but cannot be the object of a
G0 TO

The formof an entry declaration is:

ENTRY | abel [,...,label];
EXAMPLES:
ENTRY P1, P2, P3;
ENTRY P1,
wher e
| abel identifies the statenent to be used as an alternate

entry point.
By specifying the entry point to the operating system the program can be
started at other than its natural beginning. See "Entry Points" in
par agraph 1-16.
For exanple, here is a sanple entry declaration

ENTRY P1, P2, PS;

3-8. DEFI NE DECLARATI ON AND REFERENCE

A define declaration assigns a block of text to an identifier. Wenever
the identifier is used in the programthereafter, the assigned text

repl aces the identifier. This provides a conveni ent abbreviation
mechani smto avoid repeating |ong constructs that are used nany tinmes

t hr oughout a program

The formof a define declaration is:

DEFINE identifier = text# [,...,identifier = text#];
EXAMPLES:

DEFI NE AS=ASSEMBLE(#, LA=LONG ARRAY#
DEFI NE DA=DOUBLE ARRAY#;

wher e
identifier is alegal SPL identifier
t ext specifies the block of text to be substituted when the

define is invoked. The text can be any sequence of
ASCI | characters; however, # can be used only within a
string.

A define identifier can be referenced anywhere except
within an identifier, string, or constant. The text
shoul d make sense when inserted where the define is
ref erenced.

At declaration tine, a define has no effect on the
conpilation of the program It has effect only in the
context where it is referenced. For this reason

undecl ared identifiers can appear in defines; they need
to have been declared only when the define is
referenced. Simlarly, the define text is checked for
syntax errors in the context where it is referenced, not
where it is declared.

Defi ne decl arations can be nested (define identifiers
can be used in other definitions), but they cannot be
recursive (a define identifier appearing within its own
text), since this leads to infinite nesting when the
define is referenced.

The nunber sign (#) termnates a define text only if it
is not contained in a string. For exanple, the string
"ABCDH" # is valid text terminated by the second #.

I nconpl ete conments cannot appear in DEFI NEs.

Only one bl ock of text can be assigned to a particul ar
identifier.

For exanple, here are some sanpl e define decl arations
and references:

DEFI NE | =ARRAY B(0: 1) #;

| NTEGER | <<I NTEGER ARRAY B(0:1);>>

DEFI NE SUMFA+B+C+D+E#;

3-9. EQUATE DECLARATI ON AND REFERENCE

An equate decl aration assigns an integer value (determ ned by an
expression of integer constants and other equates) to an identifier. The
equat e nechanismis only a docunmentation and mai nt enance conveni ence; it
does not allocate any run-tinme storage, but merely provides a form of
consi stent identification for constants. Wen an equate identifier is
used, the appropriate constant is substituted in its place. Wen equates
are used instead of actual constants, prograns can be updated easily;

i nstead of replacing every occurrence of a constant, only the equate

decl aration is changed.

The form of an equate declaration is:

EQUATE identifier = equate-expression [,...,identifier =
equat e- expressi on] ;
EXAMPLES:
EQUATE BELL=7, CR=9%15;
EQUATE N=100, M=N#50;
wher e
identifier is alegal SPL identifier
equat e- can be either one of or a conbination of two forns:

expr essi on
[sign] unsigned-integer [operator unsigned-equate-expr]

(equat e- expression)

sign is + or -.

unsi gned- i s an unsigned decinmal, based, conposite, or equated
i nt eger singl e-word i nteger constant.

oper at or is+,-,*, or /.

unsi gned- i s an unsigned equat e-expression

equat e- expr

The value to be assigned to an equate identifier is determ ned by an
equat e expression. Equate expressions consist of operators (*,/,+ ,-),
unsi gned integers (including previously defined equated integers), and
par ent heses. Evaluation of the expression proceeds fromleft to right,
except that nultiplication and division (*,/) are done before addition
and subtraction (+,-) and expressions in parentheses are done before the
operators that surround them The value of an equate expression nmust fit
in asingle-word or it will be truncated on the left. Since equate
identifiers can be used in equate expressions, a series of related equate
decl arations can be set up such that changing only the first changes al
the rest.

Equate identifiers can be used anywhere in the programthat an integer or
unsi gned integer constant is all owed.

For exanple, here are some sanple equate decl arati ons and references:

EQUATE M1, N=MH1, P=N+ 1;
EQUATE T=20*P/ (20- P+ M;

<<Mel, N2, P=3, T=3, J=408>>

3-10. DATASEG DECLARATI ON

The DATASEG decl aration is intended for privileged users requiring an
extra data segnent (defined as split-stack node, section 8-1). It
ensures the reliability of the generated split-stack code by limting the
declared variables to explicit DB-relative offsets. Only sinple

vari abl es, arrays, and pointers are permtted as DATASEG decl arati ons; no
GLOBAL, EXTERNAL, or OMN declarations are allowed. A variable
declaration without an offset will be assigned the next avail able offset.

The vari abl es defined within the DATASEG decl aration are used in
conjunction with the MOVEX instruction and the WTH statenment, as
detailed in section 4-21A and 6-5 respectively.

The form of a DATASEG decl aration is:

DATASEG dat aseg- nane = dat aseg#

BEG N type dat aseg-vari abl e [=dataseg offset]
END;
EXAMPLES:
DATASEGX=77
BEG N | NTEGER | ; <<OFFSET=0>>
REAL R=X+5; <<OFFSET=5>>
LONG L=R+2; <<OFFSET=7>>
ARRAY A(O0:5); <<OFFSET=1>>
END;
wher e
dat aseg- nanme is an SPL identifier,
dat aseg# is an integer constant or integer constant expression,
type may be | NTEGER, LOG CAL, BYTE, DOUBLE, REAL, or LONG
dat aseg- is alegal SPL identifier,
vari abl e
dat aseg- of f set is the dataseg-variable followed by a sign (+ -) and an

i nt eger constant.

Chapter 4 EXPRESSI ONS, ASSI GNMENT,
AND SCAN STATEMENTS

4-1. EXPRESS|I ON TYPES

An expression is a sequence of operations upon constants, variables, and
i ndexed itenms which results in a single value of a specified data type.

If the data type is logical, the expression is a |ogical expression and

| ogi cal operators are allowed withinit. |If the data type is nuneric
(i.e., byte, integer, double, real, or long), the expression is an
arithmetic expression and arithmetic operators are used withinit. An IF
expression allows a choice to be nade between two expressions of the sane
word size based on hardware or software conditions.

Wthin SPL expressions, only variables of the sanme data type can appear
on either side of an operator. That is, an integer can be nultiplied by
an integer, but not by a real. The only exception to this rule is the
exponentiate operator () in arithmetic expressions; real and | ong data
items can be exponentiated to integer powers. 1In all other cases, the
conbi nation of differing data types can only be acconplished through type
transfer functions. For exanple, the function FIXR converts an
expression of type real into one of type double and rounds the result to
the cl osest integer:

FI XR(r eal - expr essi on)

A correspondi ng function, FIXT, converts real to double and truncates the
result:

FI XT(real - expressi on)

Type transfer functions are not available for all possible
transformati ons. The foll owi ng table shows which transfers are provided
and whi ch functions should be used in each case. |In sonme cases, it may
be necessary to specify nested type transfer functions (e.g., to convert
fromreal to integer, either | NTEGER(FI XR(real -expression)) or

| NTEGER(FI XT(real -expression))).

| FROM | TO | TO | TO | TO | TO | TO

| | LONG | REAL | DQOUBLE | [INTEGER | LOG CAL | BYTE
| Long | -- | REAL | | | |

| Real | LN | .- | RXREXT [|
| Dowble | LN | ReA. | .- | INWEGR | LOGCAL |
| integer [| REAL | DOBLE | -- | LOGCAL | BYTE
| Logical | | REAL | DOBLE | INTEGR | -- | BYIE

4-2. VAR ABLES

A variable is one of the itenms which can occur in expressions. Each
variable, whether it is a sinple variable, an array elenent, a pointer
reference, or the top of the stack, is associated with one data itemof a
specific type. The address of any data item can be used as an integer
variable since it is a 16-bit signed quantity.

The formof a variable in an expression is one of the follow ng:

data-item [(index)]
TCOS

@dentifier [(index)]
ABSOLUTE(i ndex)

The formof a variable on the left of an assignnment operator (:=) is one
of the foll ow ng:

data-item [(index)]
TCOS

@oi nt er - nanme
ABSOLUTE(i ndex)

wher e

data-item is a sinple-variable, array-nanme, or pointer-nane.

i ndex specifies an offset. The index is either an expression
or an assignnent statenent of type integer, |ogical, or
byte. If an index is not specified with an array-nane,
a pointer-nane, or ABSOLUTE, then zero is assuned.

TOS is the Top O Stack

identifier is a sinple-variable, array-nanme, pointer-nane, |abel
or procedure-nane whose DB- or PB-relative address is
used as an integer val ue.

ABSOLUTE is used to denote an absolute nenory |ocation. To use
this construct, you must have privil eged node (PM
capability.

The three nost common types of variables occurring in all data types are
the sinple variable, the array reference, and the pointer reference.
Array and pointer references specify an el ement by nmeans of a subscri pt
or index; the index nust always be a one-word val ue (byte, integer, or
logical). The index value specifies an el enent index, not a word index.
It is loaded into the index register and used in an i ndexed nenory
reference instruction. Note that this may change the val ue of the
condition code. |If no index is specified, the reference is to the zero
el ement, which is nore efficient than explicitly specifying 0 as the

i ndex since the index register is not used.

4-3. TGOS

TOS is a reserved synbol that always refers to the top of the stack; it
can be used anywhere a variable can be used. Wen TOS is used on the
left side of an assignnment statement (TOS: =expression), the normal store
operation is omitted and the result is left on the top of the stack. If
TOS occurs in an expression, the contents of the top of the stack are
used as the next operand. TGOS nust be used carefully, since the conpiler
does not keep track of the nunber of elenments pushed onto the stack prior
to encountering TOS. The data type of TOS is determ ned by context; it
takes the type of the expression or other operand. Thus, in one context
TOS might refer to the top word, in another the top four words. Note
that TOS does not refer to the same nmenory | ocation fromone statenent to
the next, since Sis constantly changing. The default type for TOS is
integer. A general rule for determning the effect of TOS is to assune
that TOS is a variable and then delete all LOAD and STOR operations for
TOS. For exanpl e,

TCS: =7; <<LOAD 7>
A =TOS+6; <<A: =13>>

4-4. ADDRESSES (@ AND PO NTERS

VWhen @precedes a sinple variable, it specifies that the DB-rel ative
address of the sinple variable is desired. Al addresses are signed,
one-word integers and are treated as such in expressions. Wen @
precedes an array identifier, it refers to the DB- or PB-rel ative address
of the zero elenment of the array (whether direct or indirect). Wen @
precedes an array reference (identifier(index)), it refers to the DB or
PB-rel ati ve address of the array elenent. When @ precedes a pointer
identifier, it refers to the address contained within a pointer cell;
when an index is specified, @refers to the address of the data el ement
relative to the zero element pointed at by the pointer. For exanple,

BEG N
| NTEGER A;
| NTEGER ARRAY B(0: 10);
PO NTER P: =@3(5) ;
A =@\, <<A assigned address of A>>
A =@; <<A assigned address of B(5)>>
A =@; <<A assigned address of B(0)>>
END.

If the @construct is used on the |left of an assignment operator, it mnust
be used with either a pointer-name or an array-nane of an indirect array
and an index cannot be specified. This usage changes the address which
the pointer contains. For arrays, this neans that there is a new zero

el ement. For exanpl e,

@ = @\(1);

woul d make A(1l) the new A(0). For pointer variables, the statenent:
@: =@,

changes P to point to the | ocation assigned to B. The vari ous

conbi nations using the @construct and pointers are sunmarized in Figure
4.1.

BOX
PO NTER P1, P2;
LOGE CAL VAR
P1: =P2; <<The object of P2 is stored into the object of P1>>
Pl: =@2; <<The address in P2 is stored into the object of P1>>
@l =@2; <<The address in P2 is stored into P1>>
@,1=P2; <<The object of P2 is stored into P1>>
P1: =VAR; <<The value of VAR is stored into the object of P1>>
Pl: =@VAR; <<The address of VAR is stored into the object of Pl1>>
@1l =@VAR; <<The address of VAR is stored into P1>>
@ 1: =VAR <<The value of VAR is stored into P1>>
VAR: =P1; <<The object of Pl is stored into VAR>>
VAR =@°1; <<The address in Pl is stored i nto VAR>>

Figure 4.1. Pointers and Addresses

4-5. ABSOLUTE ADDRESSES

The ABSOLUTE construct can only be executed in privileged node. It

provi des access to the contents of an absolute nenory | ocation.

The address (index) is loaded into the index register. |If

ABSOLUTE appears on the left side of an assignnment statenent

(ABSOLUTE(i ndex) : =expression), a PSTA (privileged store) instruction is
generated which stores the top of the stack (expression) in the absolute
menory | ocation specified by the index register. |f ABSOLUTE appears
within an expression, a PLDA (privileged LOAD) instruction is generated
whi ch | oads onto the stack the contents of the absolute |ocation
specified by the index register. For exanple,

LO3E CAL L1, L2, LS3;
I NTEGER Al, A2, A3=X;

L1: =ABSOLUTE(Al* A2) ;

ABSOLUTE(L2) : =A1+5;

ABSOLUTE(A3) : =A1+5; <<A3 is the index register>>
L1: =ABSOLUTE(ABSOLUTE(3));

L1: =ABSOLUTE(A3) ;

4-6. FUNCTI ON DESI GNATOR

Function designators are another of the possible conponents of an
expression. A function designator specifies a function (a typed
procedure or subroutine) to be executed and a |list of actual paraneters
(val ues or addresses) to be passed to the function. The function returns
a value of the appropriate data type to the place in the expression where
it was call ed.

The form of a function-designator is:

nane [([actual -paraneter] [,...,[actual -paraneter])]

NOTE An actual -paraneter can be onmtted only if OPTION VARI ABLE is
specified in the procedure declaration.

EXAMPLES:
F(*. A B(2))
G(C+3,1:=1+1,D< E)
wher e
nane is the name of the function procedure or subroutine to

be execut ed.

An actual -parameter is one of the foll ow ng:

identifier [(index)]
arithmetic-expression
| ogi cal - expressi on

assi gnnent - st at enmrent
*

identifier is a sinple-uariable, array-nanme, pointer-nane,
procedure-nane, or |label. The DB- or PB-relative
address is passed to the function. PB-relative arrays
cannot be passed as paraneters. An identifier must be
used if the fornmal paraneter is not used in a VALUE
statement within the procedure or subroutine.

i ndex specifies an array or pointer element. The index is an
expression or an assignnment statenent of type | NTEGER
LOGE CAL, or BYTE. If an index is not specified for an
array or pointer, then zero is assuned.

arithmetic- are evaluated and the result is passed as a

expr essi on cal |l -by-val ue paranmeter. The forns for these itens are
| ogi cal - fully later in this section.
expressi on and

(seee"Procedure Declaration" and "Subroutine Declaration" in section
VI1). The actual paraneters nmust match the formal paraneters one-to-one
as specified in the declaration; correspondence is checked left-to-right.
An actual parameter may be omitted only if OPTI ON VAR ABLE has been
specified in the procedure declaration.

A stacked parameter is specified by an asterisk (*) to indicate that you
have al ready | oaded the necessary address or value onto the stack

Label s cannot be stacked. |If any paranmeter is stacked, all paraneters to
its left must also be stacked. |In addition, functions require that a 1-,
2-, or 4-word zero (depending on the function type) be pushed onto the
stack before the function paraneters to reserve space for the return
value. Normally, the conpiler provides this zero automatically; however,
if stacked paraneters are used, you nust arrange for this zero. For
exanpl e,

| NTEGER PROCEDURE COVPUTE(N); VALUE N; ... ;
ASSEMBLE (ZERO);
TOS: =A;
B: =COMPUTE(*) +1000;

For nmore details on calling procedures and subroutines "Procedure Cal
Statement” "Sub- routine Call Statenent™ in paragraphs 5-8 through 5-13.

Procedure calls use the PCAL instruction and subroutine calls use the
SCAL instruction.

4-7. BI'T OPERATI ONS

Bit operations can be used in any type of expression. Bit extraction is
the extraction of a contiguous bit field starting at a particular bit
position. Bit concatenation consists of extracting a bit field froma
specified position in one quantity and depositing it at a specified
position in another quantity. Bit shifts allow values to be shifted |eft
or right, arithmetically, circularly, or logically. Al bit operations
are performed on copies of the specified quantities so that the origina
vari abl es remai n unchanged.

A sinple-variable of type BYTE is stored in bits 0-7. However, before
performng a bit operation, the value is | oaded onto the stack into bits
8-15. Therefore, bit operations using BYTE sinpl e-variabl es should use
bits 8 through 15 instead of 0 through 7.

Bit extraction and concatenation are defined for one-word quantities
only. Bit shifts are provided for one-, two-, three-, and four-word
guantities. See "Assignment Statement"” later in this section for bit
deposi t.

4-8. BI'T EXTRACTI ON

The purpose of bit extraction is to isolate a contiguous bit field from
the 16 bits of a one-word value. The result is a right justified val ue
with leading bits set to zero. The maximumfield that can be extracted
in a single operation is 15 bits. Bit extraction uses the EXF (extract
field) instruction. Extraction starts with the bit of the source
specified by left-source-bit and continues to the right for the nunber of
bits indicated by | ength, wapping around to bit 0, if necessary.

The formof a bit extraction is:

source . (left-source-bit :1ength)
EXAMPLES:
A (8:3)
A(1).(15:1)
wher e
source is a single-word integer, logical, or byte primary from

which the bits are extracted. Refer to para- graphs
4-11 and 4-14 for the definition of primary.

left-source-bit specifies the bit of the source word at which the
extraction begins. The left-source-bit is any unsigned
deci mal , based, conposite, or equated integer constant
fromO to 15 inclusive.

| ength specifies the nunber of bits to be extracted. The
I ength is any unsigned decinmal, based, conposite, or
equated integer constant from1l to 15 inclusive.

See Figure 4.2 for a sanple bit extraction.

4-9. Bit Concatenation (Merging)

Concatenation permts the formation of a new value by extracting a bit
field fromone word and depositing it at a specified position in another
word. The left-dest-bit indicates in which bit position of the
destination primary to deposit the field extracted fromthe source
primary. The left-source-bit indicates at which position in the source
primary to begin extracting the bit field. The length indicates how many
contiguous bits to extract and subsequently deposit. Bit concatenation
uses both the EXF (extract field) and DPF (deposit field) instructions
whi ch are described in the Instruction Set Reference Minual

Figure 4.2. Bit Extraction

The formof a bit concatenation is:

destination CAT source (left-dest-bit : left-source-bit : |ength)
EXAMPLES:

A CAT B(8: 4: 2)
A CAT % 23(6: 11: 5)
% 16) 69A2 CAT 9% 16) ABCD (8: 4: 4)

wher e

source specifies the itemfromwhich bits are extracted. The
source is a single-word integer, logical, or byte
primary (defined under "Arithnmetic Expressions" and
"Logi cal Expressions" later in this section).

destination specifies the value into which bits are deposited. The

destination is a single-word integer, logical, or byte
primary (defined under "Arithnmetic Expressions" and
"Logi cal Expressions" later in this section).

left-source-bit specifies the starting bit position of the bit
extraction. It is an unsigned decimal, based,
conposite, or equated integer constant whose value is
between 0 and 15 i ncl usi ve.

| eft-dest-bit specifies the starting bit position of the bit deposit,
It is an unsigned deci mal, based, conposite, or equated
i nteger constant whose value is between 0 and 15
i ncl usi ve.

| ength specifies the nunber of bits to be copied. The length
i s an unsigned decinmal, based, conposite, or equated
i nteger constant whose value is between 1 and 15
i ncl usi ve.

See Figure 4.3 for a sanple bit concatenation

Figure 4.3. Bit Concatenation

4-10. BIT SH FTS

In the bit shifts, the shift-op is a menonic for a hardware shift
operation. Consult the hardware docunentation for conplete details. In
general, logical shifts fill with zero bits as they shift left or right;
arithmetic shifts preserve the sign bit on a left shift, and fill with
zeros, and propagate the sign bit on a right shift (in other words, fill
with the sign bit); and circular shifts do not have a fill bit (that is,
bits shifted off one end are shifted in at the other end). SPL does not
performtype or word size tests. |If a multiple-word shift is specified,
you are responsi ble for ensuring that the proper nunber of words (2, 3,
or 4) is on the stack. Note that if the shift count is not a constant

| ess than 64, the index register is used.

The formof a bit shift is:

operand & shift-op (shift-count)

EXAMPLES:
(A =A+1) & LSR(3)
VAR & DASL(6)
%4234D & DCSL(SH FT)
wher e
oper and is an arithmetic or logical primary of any SPL type (see
"Arithmetic Expressions"” and "Logical Expressions” |ater
in this section).
shift-op specifies the shift operation to be perforned, The
shift-op is one of the following: LSL, LSR ASL, ASR
CSL, CSR, DASL, DASR, DLSL, DLSR DCSL, DCSR, TASL
TASR, TNSL, QASR, or QASL
shi ft-count specifies the nunber of bits to be shifted. The

shift-count is an integer expression (described in
"Arithmetic Expressions"” later is this section).

The neani ngs of the shift-op menonics are shown bel ow

LSL Logi cal Shift Left

LSR Logi cal Shift R ght

ASL Arithmetic Shift Left

ASR Arithnetic Shift Right

CSL Crcular Shift Left

CSR Crcular Shift R ght

DASL Double Arithnetic Shift Left

DASR Double Arithnetic Shift R ght

DLSL Doubl e Logical Shift Left

DCSL
DCSR
TASL
TASR
TNSL
QASR
QASL

Double G rcular Shift Left
Doubl e G rcular Shift R ght
Triple Arithmetic Shift Left
Triple Arithmetic Shift Right
Triple Normalizing Shift Left
Quadruple Arithmetic Shift Right

Quadruple Arithnetic Shift Left

See Figure 4.4 for sonme sanple bit shift operations.

Figure 4.4. Bit Shift Operations

4-11. ARI THVETI C EXPRESSI ONS

An arithnetic expression is a sequence of operations upon nuneric data
which results in a single- value of a specific data type. Execution of
operators occurs left-to-right unless higher precedence operators or

par ent heses are encountered. Type m xing of operands across operators is
not allowed, but type transfer functions are provided. Primaries, the
basi ¢ conmponents of an arithnetic expression, can be constants,

variables, bit expressions, arithnmetic expressions in parentheses or
backward sl ashes (absol ute value), function designators, or assignment
statenments in parentheses.

The formof an arithmetic-expression is:

[sign] primary [operator primary ...operator primary]
EXAMPLES:
A+ (B*Q/2.0
- AMA2+F(B)
\ 1 +3\

(I:=1+1)+(J: =J+1)- 2
A(10:2)+ B CAT C (8:4:4)
I

wher e

sign is + or -.
oper at or is +,-,%*/,~ or MD.

pri mary is one of the follow ng:
vari abl e
const ant
bit operation
(arithmetic expression)
\arithmetic expression\
function-desi gnat or
(assi gnnent statenent)

NOTE Al | owabl e exponenti ati on conbi nations are:

i nteger " integer
real ™ rea

real ” integer
long * |ong

[ong " integer

vari abl e designates an itemwhose value is determ ned at
execution tine and can be dynam cally changed. The form
of a variable is described earlier in this section

const ant designates a value which is established at conpile-tine
and cannot change during execution. The various

constant types and their fornms are described in section
.

functi on-
desi gnat or

assi gnment -
st at enent

described earlier in this section. The value used in
the expression is the result obtained after performng
the bit-operation.

specifies a call to a procedure which returns a val ue.
The formof a function-designator is described earlier
in this section.

specifies that an expression is to be evaluated and the
result assigned to a variable or variables before being
used in the evaluation of the outer expression. The
formof the assignnent-statenment is described later in
this section.

4-12. SEQUENCE OF OPERATI ONS

Arithnetic operations are ranked in order of precedence to determine the
relative order in which operations are executed. Hi gher precedence
operations are perfornmed first. Wen operations are of the same rank
execution proceeds fromleft to right. The ranks, from highest to

| owest, are:

1. Bit operations Expressions in parentheses Expressions in backward
sl ashes (absol ute val ue) Function designators Assignment
statenments in parentheses (value assigned to variable and left on
t he stack)

2. Exponentiation (”, circunflex character) (defined for integer
real, and long data, plus real to integer power and long to
i nt eger power)

3. Miltiply (*) and divide (/) for integer, real, byte, double, and
long data. Mdulo (MOD) or remai nder for integer, byte, and
doubl e data

4. Addition (+) and subtraction (-) for integer, real, byte, double,
and | ong dat a.

The order in which operations are perforned is determ ned by this rank
For exanpl e,

A-B+C Qperators of the sane rank are
| | | performed fromleft to right.

result
A+B*C Qperators of different rank are perforned
| || according to their position in the hierarchy
| | of operators (highest rank first).
result
(AtB)*C Operators encl osed in parentheses take precedence
| | | over operators outside of parentheses, even those
| | of higher rank.
—
result
A-B+C*D E Left-to-right order is maintained until an operator
[1 1] occurs that is of |ower rank than the next operator
| | | or the next itemis in parentheses.
I —
—
result

EMDF G
| _|

A (B-O*D

I I
|
|
|
|

result

4-13. TYPE M Xl NG

M xi ng of data types across operands is not allowed in SPL, except that
real and |ong val ues can be exponentiated to integer powers. Type
transfer functions are available to handle conflicts (see "Ex- pression
Types" earlier in this section).

The type of operands determ nes the type of both the operation result and
the operator used. Integer operations are used when the operands are of
type byte.

4-14. LOG CAL EXPRESSI ONS

Logi cal expressions are evaluated in the same manner as arithnetic
expressions. However, |ogical expressions use nore and different
operators; allow only data of type LOd CAL and provi de speci al

constructs, such as byte conparisons. The result of a |ogical expression
is a logical value which can be interpreted as a 16-bit unsigned integer
or as true (odd) or false (even). The truth value of a | ogica

expression can be used to make decisions (see "IF Statement” in paragraph
5-6). Logical primaries can be |ogical constants, variables, bit

expr essi ons, expressions in parentheses, functions, or assignnent
statenments in parentheses, or the conplenent of any logical primary. The
operators LAND (Logical AND) and LOR (Logical OR) should not be confused
with AND and OR as used in the |F Statenent.

The form of a | ogical -expression can be either of the follow ng:

1. logical-elenent [operator |ogical-elenent]
2. lower-value <= test-value < = upper-val ue
N N N

i nt eger - expr essi ons

EXAMPLES:
L
L + NOT L1 LAND L2
1<=N <= 100
L< L1
L XOR L1 MOD L2
wher e

| ogical -element is one of the foll ow ng:

| ogi cal - expressi on
| ogical -primary [rel ational -operator |ogical-primary]

arithmetic-expression rel ati onal - oper at or
arithmetic-expression

| ogi cal -primary | ogical -operator |ogical-prinmary

byt e- conpar e

oper at or is LOR (Logical OR), XOR (Logical Exclusive OR), or LAND
(Logi cal AND).

rel ational - is > < =,<> > or <=

oper at or

logical-primary is any of the foll ow ng:
| ogi cal variable
| ogi cal or integer constant

string constant
| ogi cal bit-operation
(1 ogi cal - expressi on)

| ogi cal -
oper at or
byt e- conpar e

| ower - val ue

t est - val ue

upper - val ue

(1 ogi cal assignnent-statenent)
NOT | ogi cal -pri mary
is +,-,/,MD** [/, or MODD.
is a conparison of a byte array with another byte array,
a string constant or constants, or a test of the
character type of a byte variable. See paragraph 4-17.
The

is the | ower bound of a range conparison
| ower-value is an integer expression

is the value which is tested for
of the [ower and upper val ues.
i nt eger expression.

being within the range
The test-value is an

is the upper bound of a range comparison. The

upper-value is an integer expression

The rel ational -operators have the foll owi ng nmeani ngs:

Oper at or
<
<=

<>
>
>=

The purpose of a | ogical

| Meani ng

| Less than

| Less than or equal to
| Equal to

| Not equal to

| Greater than

|

Greater than or equal to

expression is to evaluate certain conditions and

rel ations to produce a val ue which can be interpreted either

arithmetically (as a 16-bit
A | ogi cal
may be true or false at any given tine.

or FALSE).
assertion that

Logi cal
2-7).

quantities in SPL are 16-bit
A logical value is true if

value is even (that is,

positive nunmber) or logically (as either TRUE
expression is not a statenent of fact, but an

positive integers (see paragraph
its integer value is odd, false if its

only bit 15 is checked). The reserved words TRUE

and FALSE are equivalent to the nuneric values -1 and 0 (9477777 and

9%900000) respectively.
In general, the result of a logical expressionis left as a full word
operand on the top of the stack. This result is either a -1 or 0 when a

rel ati onal
rel ati onal
| F Statenent),

oper at or
oper at or
the result
in the status register

is encountered. However, when the result of a

is used in a condition clause to make a deci sion (see
is not left on the stack but the condition code
is set.

4-15. SEQUENCE OF OPERATI ONS

Logi cal operations are ranked in order of precedence to determ ne the
order in which the operations are perforned. Hi gher precedence
operations are perfornmed first. \Wen operations are of the sanme
precedence, execution proceeds fromleft-to-right. Al operands and
results are type LOG CAL, unless otherwi se noted. There are seven ranks
of operations as shown bel ow

1. Logical bit operation Logical-expression in parentheses Logica
function-desi gnator Logical assignment statenment in parentheses
NOT (unary one's conpl enent)

2. * (Logical multiply, one-word result)
/ (Logi cal divide, one-word dividend)
MOD (Logi cal nodul o or remainder, one-word dividend)
*x (Logical multiply, result is type double)
/1 (Logi cal divide, dividend is type double)
MODD (Logi cal nodul o or remainder, dividend is type
doubl e)

NOTE The MOD and MODD operations divide the dividend by the
di visor, discarding the quotient and yielding the remainder
as the result. See exanple with the assignnent statenent,
par agr aph 4-20.

3. + (Logi cal addition)
- (Logi cal subtraction)

4. Al gebraic and | ogical conparisons (= <> <, > <= >=) Byte
conpari sons and tests

5. LAND (Logi cal and)
6. XOR (Logical exclusive or)

7. LOR (Logical inclusive or) Integer range test (such as, | <=J <=
K)

4-16. TYPE M Xl NG

You cannot m x data types across operands in SPL; however, type transfer
functions are available to handle conflicts. |In |ogical expressions,

| ogi cal operands are used except when the both operands are arithnetic
and the result is logical (conpares, byte tests, and range tests). See
par agraph 4-1 for the type transfer functions.

4-17. COVPARI NG BYTE STRI NGS

Logi cal expressions provide a mechanismfor conparing byte strings to
determ ne whether a particu- lar relation between themis true or false.
The test is made using the CMPB (conpare bytes) instruction. The byte
strings are conpared, byte by byte, using their nuneric values until the
conpared bytes are unequal or until a specified nunber of conparisons has
been made. If the specified relation (<,>, = <= >= or <>) holds, the
result is TRUE (-1); otherwise, it is FALSE (0).

The form of a byte-conpare is one of the follow ng:
byte-reference rel ati onal -operator byte-reference , (count)
[, stack-decrenent]
byte-reference rel ati onal -operator *PB, (count) [, stack-decrenent]
byte-reference rel ati onal -operator string-constant [,stack-decrenent]

byte-reference rel ati onal -operator (val ue-group, ..., val ue-group)
[, stack-decrenent]

{=1} ALPHA
byt e- vari abl e{ <>} { NUVERI C}
{ SPECI AL}
EXAMPLES:
A<B, (5),2
B(5) >=*PB, (5)
*<= " ABC'
A<> NUMERI C
wher e
byt e-ref erence is one of the follow ng:
1. array-nane [(index)]
2. pointer-nane [(index)]
3. %
array- nanme is an identifier declared in an array decl aration
poi nt er - nane is an identifier declared in a pointer declaration
i ndex is either an expression or an assignnent statenent of
type integer, logical, or byte. If an index is not
specified, then zero is assuned.
count is the nunmber of bytes to conpare. The count is an

i nteger expression. A positive count specifies
left-to-right conpari son and a negative count specifies
right-to-left.

st ack-decrenent indicates how many words to delete fromthe stack after

the conpare. The stack-decrenent is an unsigned integer
constant between 0 and 3 inclusive. |If not specified, a
stack-decrement of 3 is used.

const ant

repetition-factor (constant [,...,constant])
repetition- specifies the nunber of times the constant list is
factor used before going to the next val ue-group. The

repetition-factor is an unsigned deci mal, based,
conposite, or equated single-word integer constant.

The string to the left of the relational operator can be specified by a
byte pointer or array reference (DB-relative only) or a stacked DB byte
address (*). The asterisk specifies that you have already | oaded the
byt e address onto the stack.

The string to the right of the relational operator can be specified by a
byte pointer or array reference (DB- or PB-relative), a stacked DB
address (*), a stacked PB address (*PB), a string constant, or a list of
constants in parentheses.

The absol ute val ue of the count specifies how many bytes to compare. A
positive count specifies left-to-right conparison while a negative count
specifies right-to-left conparison.

The stack-decrenment specifies how many values to delete fromthe stack at
the end of the conpare operation. |If a stack-decrenent is not specified,
all three values are deleted. The contents of the stack during the
conpari son are shown bel ow

S 2 | | first address
S1 | | second address
S0 | | count

Byt e conpari sons can be passed by-val ue as paraneters to procedures and
subrouti nes; however, sone extra requirenents apply:

1. If a stack-decrenent is allowed but not specified and the
byt e-conpari son is not the |last actual paraneter, the
byt e- conpari son nmust be encl osed in parentheses. For exanpl e,

P(A (B< C (3)),2);
2. Byte conparisons which use stacked val ues nust be enclosed in

parent heses and all parameters to the left nust be stacked prior
to stacking the values to the byte-conparison. For exanple,

P(*, (*=%,(5)));

4-18. CONDI TI ON CLAUSES

Condition clauses are used in |IF expressions, |IF statenments, DO
statenments, and WH LE statenents. Two types of operands are used in
condition clauses: |ogical-expressions and hardware branch words. Both
types of operands result in a value of true or false. These operands can
be conbined using AND and OR. If two itens are conbined with OR the
result is true if either itemis true or if both itens are true. If two
items are conbined with AND, the result is true only if both itens are
true. AND has hi gher precedence than OR, but you can use parentheses
around OR ed expressions to override this precedence. Parentheses cannot
be used around itens conbi ned with AND.

The formof a condition-clause is:

o [{ AND} o { AND} o]
condition-ternf{OR }condition-term..{OR }condition-term
EXAMPLES:

(A<B OR A<C) AND (Al<Bl1 OR Al<C1l)
CARRY AND A<>B OR A<>C
L1 LAND L2<L1 LAND L3 OR I <=J
<
OVERFLOW
wher e

condition-term is either of the follow ng:
condition-primry
(condition-primary [OR condition-primary]...OR
condi ti on-primary)

condi tion- is either true or false. The condition-primary is one
pri mary of the follow ng

branch-wor d

| ogi cal - expressi on

br anch- wor d is one of the follow ng: CARRY, NOCARRY, OVERFLOW
NOVERFLOW | ABZ, DABZ, |XBZ, DXBZ, =, <>, <, > <=, or >=

The hardware branch words test the Status Register, the Index Register,
or the Top of Stack as shown bel ow

BRANCH WORD | TRUE CONDI Tl ON

CARRY | Carry bit on (Status Register)

NCCARRY | Carry bit off (Status Register)

OVERFLOW | Overflow bit on (Status Register)

NOVERFLOW | Overflow bit off (Status Register)

| ABZ | I'ncrement TOS. True if TGOS is then O.

DABZ | Decrement TOS. True if TGOS is then O.

| XBZ | I'ncrement |Index Register (X). True if Xis
| then O.

DXBZ | Decrenment |Index Register (X). True if Xis
| then O.

< | Condition Code equals 1 (Status Register).
|

Condition Code equals 2 (Status Register).

Condition Code equals 1 or 2 (Status
Regi ster).
Condition Code equals O (Status Register).

| Register).
<= | Condition Code equals O or 2 (Status
| Register).

OR and AND generate branch instructions instead of arithnetic ANDs and
ORs. Al parts of a condition are not always executed since OR and AND
branch out of the condition as soon as the truth value of the condition
is determ ned. For exanple, if a series of itens is joined by ANDs and
the first itemis false, the whole condition is false so the renaining
itens are not checked.

NOTE The CARRY and OVERFLOWDbits are cleared after being tested. The
Condi ti on Code, |Index Register, and TOS are unaffected by being
tested.

Extrene care nust be taken when using the SPL condition clause to check
condi tion codes returned fromintrinsics. The IF> IF<...... constructs
are only correct if no machine instruction that sets condition code is

execut ed between the setting and checking the condition code. The LDX
XCH, STAX instructions, for exanple, are all used when SPL i ndexes into
arrays. Al of these nodify the condition code.

a(275) := fopen();

00021 LOAD P+000

00022 ZERO, NOP

00023 ADDS, 016

00024 LD, 000

00025 PCAL, 000

00026 XCH, STAX

00027 STOR PB 001, 1, X
if<> then quit(0);

The IF statement in the above exanple does not test the condition code
for the FOPEN procedure. It reflects the condition code set by the
XCH, STAX i nstructi on.

4-19. | F EXPRESSI ONS

Expressions are used to determ ne values to be used in statenents. The

| F expression consists of a condition-clause and two alternative
expressions. The condition-clause is a conbination of |ogica
expressi ons and hardware branch words which results in a true or false
val ue. The two expressions nmust be of the sane word size (byte is
treated as one word). |If the condition-clause is true, the value of the
| F expression is the value of the expression after the THEN, if the
condition-clause if false, the value of the IF expression is the val ue of
the expression after the ELSE. The definition of condition- clause is
given earlier in this section

The formof an IF expression is:

| F condition-clause THEN true-val ue ELSE fal se-val ue

EXAMPLES:
|F A<B THEN 5 ELSE 6*B
IF < THEN 1 ELSE O
FACT: =I F N=0 OR N=1 THEN 1 ELSE N*FACT(N 1);
wher e
condi ti on- determ nes which value to use as the value of the
cl ause expression. The formof a condition-clause is described
earlier in this section
true-val ue is the value of the expression if the condition-clause
is true.
fal se-val ue is the value of the expression if the condition-clause

is fal se.

4-20. ASS| GNVENT STATEMENT

The assignnment statement stores the result of an expression eval uation
into a variable of the sane size. Miltiple assignments allow the same
result to be stored in several variables. Bit deposits allow a one-word
result to be stored into a variable starting at a specific bit position

The form of an assignment statenent is:

variable[.(left-deposit-bit:length)] := [variable:=. .variable:=]
expr essi on

EXAMPLES:
| @ =K*L;
I (5:6):=J:=L;
I (0:8):=B1;
R1: =R1: =R1+(R2* REAL(1)) ;
D= Ri,
A(l:=I+1):=1*2;
wher e
vari abl e designates the item(s) to which the value of the
expression is assigned. The formof a variable is
described earlier in this section.
| eft-deposit- specifies the starting bit position of a bit deposit.
bi t The left-deposit-bit is an unsigned deci mal, based,
conposite, or equated integer constant between 0 and 15
i ncl usi ve.
| ength specifies the nunber of bits to be stored. The length
i s an unsigned decinal, based, conposite, or equated
i nteger constant between 1 and 15 incl usive.
expr essi on is evaluated to deternmne the value to store into the

variable(s) on the left of the assignnent operator. The
expression is an arithnetic or |ogical-expression whose
result is the same word size, although not necessarily
the sane data type, as the variabl e(s).

The result of the expression evaluation is stored in the variabl e(s)
specified on the left side of the assignnent operator (:=) or (_).

Bl anks cannot be enbedded between the colon and the equals sign of an
assi gnment operator. The result nust be the same word size, but not
necessarily the sane data type, as the assignment variable. Type BYTE is
treated as a one-word quantity.

VWhen a deposit field is specified, the expression result nmust be a
one-word quantity. The rightnost n bits of the result, where n is the
deposit field length, are stored in the variable starting with the bit
position specified. Note that only the |eftnpst assignnent can be a
deposit field.

An assi gnment statenment can be used as a termin an expression. In this
case, the result of the expression in the assignment statenment is first
stored into the variable(s) and then used as the value of the termin the

outer expression. For exanple, the statenent:

Ji= K+(l:=41)- M

l:
J:

| +1;
K+l - M

Note that a semicolon is not used to term nate an assignnent statenent
used within an expression

Assi gnment statenents can al so be used as array or pointer subscripts and
as call-by-value parane- ters to procedures and subroutines. Array
subscripts on the left side of an assignnent statenent can be eval uated
either before or after the expression on the right side of the assignnent
statenment depend- ing on the conplexity of the subscript. Therefore, you
shoul d avoi d changing the value of a variable on the right side of an
assignment statenent if the variable is used as a subscript on the |eft
of the assignment statement. For exanple,

A(Cl):=B(I:=1+1);
is not evaluated the sane as:
A(1+0): =B(I: =1 +1);

In the first case, | is increnented and then used as the subscript for
both B and A. In the second case, the original value of | is used as the
subscript of A In general, if a subscript which is used on the left side
of an assignnent statenent is evaluated without using the top of the
stack, the evaluation of the subscript is done just prior to storing the
value in the array element. Subscripts in this category include:

|
Si npl e vari abl es | (1)
I ncrenent by one | (1:=1+1)
I ncrenent by one | (1:=1-1)
Additi on of zero | (1:=1+0)
Subtraction of zero | (1:=1-0)

For exanpl e,
A(l:=I+1):=B(I: =l +2);
is evaluated as:

| =l +1;
|: =l +2;
A(l) 1 =B(1);

Note that if the left-side subscript is itself an assignnment statenent,

it is executed before the right side of the outer assignment statement is
eval uated even though the subscript used to determ ne the el enent being
stored into may not be evaluated until afterwards. However, if the left
si de subscript uses the top of the stack, the evaluation of the right

si de expression does not effect the value of the left side subscript.

For exanpl e,

A(l:=1+2):=B(I: =l +1);
is evaluated the sane as:
| =l +2;

=1 +1;
A(l- 1):=B(1);

If in doubt, you can use the $CONTRCL | NNERLI ST option to check the code
whi ch the conpiler generates (see paragraph 9-2).

i nvol ving type DOUBLE data and the |ogical operators**,//, and MODD:

LO3 CAL L1:= 20000, L2:= 2, L3:= 3

DOUBLE D1i;

D1:= L1**L2<<D1: - 40000D>>; <<Pr oduct >>
L4: = D1//L3<<L4: = 13333>>; <<Quot i ent >>
L5.= D1 MODD L3<<L5: = 1>>; <<Renwni nder >>

Care should be taken to ensure that the result of the | ogical operators
// and MODD is a one-word quantity. Any other result causes an integer
overfl ow.

4-21. MOVE STATEMENT

The MOVE st at enent noves words or bytes fromone |ocation to another.
The | ocations can be either DB- or PB-relative. Move operations do not
change the contents of the source. There are three types of nove
operations corresponding to the three types of hardware nove

i nstructions:

* Mwve words (MOVE, MVBL, and M/LB)
* Mve bytes (MB)

* Mve bytes while al phabetic and/or nuneric with or w thout upshifting
(MBW

The MOVE statenent can also performas an arithnmetic function by
returning the nunber of bytes or words noved. 1In this case, it can be
used anywhere an integer function is appropriate; however, no
stack-decrenent is allowed in order to avoid possible corruption of the
stack with the use of expressions.

The two forns of a nove statenent are:

source, (count)
{ *[PB], (count) }
MOVE destination :={ string } [,stack-decremnent]
{(val ue-group-list)}

and

{source}
MOVE destination := { * } WHI LE condition [, stack-decrenent]

EXAMPLES:

MOVE OUT: =I N, (10), 2;
MOVE OUT: =*PB, (- 10);

MOVE OUT: =(10(""),"STRING', 5("")), 1;
MOVE OUT: =I N WHI LE AN;
MOVE OUT: =* WHI LE N;
MOVE *:=* WH LE ANS;

As an arithnetic function:

| : =MOVE P: =P1, (<LENGTH>) ;
| F P(MOVEP: =P1 WHI LE ANS)="xyz" THEN... ;
MOVEP: =P1, (SCAN P1(SCAN P1 UNTIL" ") UNTIL" ");

wher e

destination specifies the starting location to be stored into. The
destination is one of the foll ow ng:
array- name[(i ndex)]
poi nt er - nane[(i ndex)]
*

source specifies the starting |location of the itemto be
copied. The source is either of the follow ng:

poi nt er - nane[(i ndex)]

NOTE Destination and source addresses are byte
addresses for byte noves and word addresses for
wor d noves.

array- nanme is an identifier declared in an array decl aration

poi nt er - nane is an identifier declared in a pointer declaration

i ndex is either an expression or an assignnent statenent of
type integer, logical, or byte. If an index is not

specified, then zero is assuned.

count is the nunmber of bytes or words to nove. The count is
an integer expression. A positive count specifies
left-to-right nove and a negative count specifies
right-to-left.

st ack-decrenent indicates how many words to delete fromthe stack after
the nmove. The stack-decrenment is an unsigned integer
constant between 0 and 3 inclusive for a MOVE and
between 0 and 2 inclusive for a MOVE WH LE. If not
specified, a stack-decrenent of 3 is used for a MOVE and
2 for a MOVE WH LE

val ue- gr oup- is either of the foll ow ng:
list val ue- group
val ue- group, val ue-group-1li st

val ue- group is either of the foll ow ng:

const ant

repetition-factor (constant [,...,constant])
repetition- specifies the nunber of times the constant list is
factor used before going to the next val ue-group. The

repetition-factor is an unsigned deci mal, based,
conposite, or equated single-word integer constant.

condition specifies the criteria for continuing the nove to the
next character. The condition is one of the follow ng:
A N AS, AN, or ANS.

The nove statenents in SPL are machi ne dependent because they are based
on specific hardware instructions.

The first reference after the MOVE is the destination; the itemafter the
assignment operator (:=) is the source. |INITEGER, REAL, LONG and DOUBLE
arrays use the nove words instructions whereas BYTE arrays use the nove
bytes instructions. Wen the source is a string or a list of constants,
the constants are generated in the code stream and noved fromthere. The
syntax for the list of constants is the same as for a list of constants
used to initialize an array in an array declaration

VWere * or *PB appears in place of an address, the DB- or PB-relative
address nmust have been previously | oaded onto the stack by the user. The
source can be PB-rel ative except when the MOVE...VWH LE statenent is used.

The destination cannot be PB-relative. |f both addresses are stacked, a
byte nove is assuned.

bytes to nove; a positive count indicates a left-to-right nove and a
negative count indicates a right-to-left nove. At the conpletion of the
nmove, the count equals zero and the addresses have been changed to poi nt
to the character fol- lowing the | ast character noved.

After the nove operation is conplete, destination and source address
point to the next word (not noved or overl ayed) and can be exam ned,
stored, or left in the stack for use by a subsequent MOVE or SCAN
statenment. The stack-decrenent operand is then used to delete 0,1,2, or
all 3 of the paraneters fromthe stack. A blank stack-decrenment field
generates an automatic stack-decrement of 3 & -delete all three val ues
fromthe stack. Count always equals 0 and can safely be deleted (sdec =
1). The stack-decrenent nechanismis used for all nove-scan statenents.

The following code sanple illustrates the use of the stack-decrenent
operand to return the nunber of words or bytes noved.

BEG N
| NTEGER LEN
BYTE ARRAY BUFF(0: 20);
MOVE BUFF: =" ABCDEFGHI JKLMNO', 2; < <2=RETAI N DESTI NATI ON ADDRESS
LEN: =TCS- LOd CAL(@UFF) ;
END

The stacked val ues used by the nove words and nove bytes instructions are
shown bel ow

S 2 | | destination address
S1 | | source address
S0 | | count

S1 | | destination address
S0 | | source address
In a MOVE ... W LE statenent, the condition specifies the condition for

continuing the nove to the next character. The conditions are shown
bel ow

A Current character is al phabetic

N Current character is nuneric

AS Current character is al phabetic; upshift if |ower case
AN Current character is al phabetic or nuneric

ANS Current character is al phabetic or nuneric; upshift if

| ower case

WARNI NG The normal checks and limtations that apply to the standard

for a privileged node programto destroy systemintegrity,

i ncluding the MPE operating systemsoftware itself.

Hewl ett- Packard can- not be responsible for systemintegrity
when progranms witten by users operate in privileged node.

4-21A. MOVEX STATEMENT

The MOVEX instruction is intended specifically for privileged users
requiring extra data segments (see section 8-1, split-stack node). It
facilitates the witing of high-level code increasing its reliability.
This instruction perfornms word noves only, not byte noves. Three nachine
instructions relating to data segnents are generated, depending on the
nmove. They are as follows:

M-DS Move from extra data segment to stack
MIDS Move to extra data segnent from stack
MDS Move between extra data segnents

If the nove is confined to a single data segnent, a DB-relative MOVE is
generated. Please refer to section 3-10 for information about DATASEG
decl arati ons.
The formof a MOVEX statenent is:

MOVEX (destination [,offset]):= (source

[,offset]), (length)[, stack-decrement];

EXAMPLES:

MOVEX (D, 9):=(D1, | +J), (K), 6;
MOVEX (99, 1+J/2):=(K*M L), (99);

wher e

destination and specify the starting |ocation of the words to be noved

source (source), and the starting | ocation where the words will
be stored (destination). Locations nust be one of the
fol |l owi ng:

Either DB-relative pointers (for MFDS and MIDS), DATASEG or

DATASEG rel ative identifiers (for static XDS noves), or integer
expressions (for dynamcally cal culated XDS nunbers). |In the latter
case, DATASEG relative identifiers are not pernmitted in the expression.

of f set (Optional) The beginning offset into the XDS .It can be
either a constant or an integer expression that is valid
within any containing $SPLIT or WTH. An offset is not
permtted when the pointer is DB-relative (as opposed to
DATASEG rel ati ve).

l ength is the nunmber of words to be nopved.

stack-decrenent is an unsigned integer constant indicating how nany
words to delete fromthe stack after the nove. The
default value is 5 for MFDS and MIDS, and 4 for MDS. For
any extra data segment nove, the maxi mumvalue is 7. |If
a stack-decrenment larger than 3 is specified for a

DB-rel ative nove, a warning is generated and 3 is used.

4-22. SCAN STATEMENT

The SCAN statenent is used to search for either of two specified
characters (the test and term nal characters) in a contiguous string of
bytes w thout actually noving any data. When the statenent ends,
pointers and indicators are left to show what was found and where. The
scan statenents in SPL are nmachi ne-dependent because they are based on
specific hardware instructions. There are two scan operations
corresponding to the two hardware scan instructions:

* Scan until a test character is found (SCU instruction).

* Scan while a test character is found (SCWinstruction).

The SCAN statenent can al so be used as an arithnmetic function to return
t he nunber of bytes or words scanned. |In this case, it can be used
anywhere an integer function is appropriate; however, no stack-decrenent
is allowed in order to avoid possible corruption of the stack with the

use of expressions.

The formof the SCAN statenent is:

SCAN byt e-reference WHILE testword [, stack-decrenent]
SCAN byt e-reference UNTIL testword [, stack-decrenent]
EXAMPLES:
SCAN BUF WHI LE TEST
SCAN BUF(2) WH LE 96440, 1,
SCAN * UNTIL".;";
SCAN BUF UNTIL *,0;

As an arithnetic function

| : =SCAN P UNTIL"";
wher e
byt e-ref erence is one of the follow ng:
array-name [(index)]
poi nter-nane [(index)]
*
array- nanme is an identifier declared in an array decl aration
poi nt er - nane is an identifier declared in a pointer declaration
i ndex is either an expression or an assignnent statenent of
type integer, logical, or byte. If an index is not
specified, then zero is assuned.
testword is one of the follow ng:

A deci mal, based, conposite, or equated single-word
i nt eger constant.

A sinple-variable of type INTEGER or LOd CAL
"test-character”

"term nal -character test-character"”
*

char act er

t est-character is any ASCI| character. Note that "

is represented by

st ack-decrenent indicates how many words to delete fromthe stack after
the SCAN. The stack-decrenment is an unsigned integer
constant between 0 and 2 inclusive. |If not specified, a
stack-decrement of 2 is used.

The byte-reference which specifies where to start scanning can be a byte
array reference, a byte pointer reference, or an asterisk (*) to indicate
that the DB-relative address is already on the stack. PB- relative
arrays cannot be scanned. |If either an array or pointer reference is
specified, the address is |oaded onto the stack

The testword is an integer or logical sinple variable, an integer
constant, or a one- or two-character string where the first character
(bits O through 7) specifies the term nal-character and the second
character (bits 8 through 15) specifies the test-character. |If no

term nal -character is specified, bits O through 7 are zero-filled .In
both cases, each byte in the two-character string is tested agai nst both
the test and term nal characters.

In a SCAN UNTIL, the scan continues until either the test-character or
the termnal -character is found. In a SCAN WH LE, the scan conti nues
until a byte is found that matches the term nal - character or does not
match the test-character. The carry bit in the status register is set to
O after a scan to indicate that the test-character was found; it is set
to 1 toindicate the termnal -character was found. This bit can be
tested with the |F statenment:

| F CARRY THEN ...

| F NOCARRY THEN ... ;

The carry bit is cleared after being tested. The stack-decrenent

speci fies how many words to delete fromthe stack after the scan
operation. The stack-decrenent is very inportant in a scan operation
because when the scan term nates, the address of the term nating byte can
be left in the stack. The stack for a SCAN UNTIL or a SCAN WH LE appears
as shown bel ow.

S1 | | byte address

S0 | | testword

A stack-decrenent of 1 deletes the testword but | eaves the byte address
whi ch can be saved as foll ows:

SCAN STOP: =TCS;

An enpty stack-decrenment field generates a stack-decrenment of 2 and
| eaves the stack as it was before the scan statenent.

The following code sanple illustrates the SCAN UNTIL operation. After
the | ast statenent shown, the pointer is pointing to the first "0"
character.

BYTE PO NTER PTR;
BYTE ARRAY CHAR (0: 30) := "AAAAAAAAAAAAADAAAAAAAAAAAAAAAA";

SCAN CHAR UNTIL "ZzO" , 1;
@TR =TCS;

first non-'A character.

BYTE PO NTER PTR;

BYTE ARRAY CHAR (0: 30) : = "AAAAAAAAAAAAAADAAAAAAAAAAAAAAAA" ;
SCAN CHAR WHI LE " ZA" |, 1;

@TR =TCS;

Chapter 5 PROGRAM CONTROL STATEMENTS

5-1. PROGRAM CONTRCL

Program execution normally proceeds sequentially fromstatenment to
statement. By using control statenments, you can alter this sequence by
transferring control to another statenent, by executing a group of
statenments (a procedure or a subroutine) and then returning to the
original flow, or by repeating a pre-determ ned group of statenents.
Statements in a programto which control is to be passed are | abel ed by
identifiers preceding the statenent. A colon (:) is used to separate
the | abel fromthe statenent. Procedures and subroutines are named by
identifiers in declarations (see section VII).

This section covers the follow ng control statenents:
* @0 TO st at enent

DO st at enment

VHI LE st at enent

FOR st at enment

| F statenent

CASE st at ement

Procedure call statenent

Subroutine call statenent

RETURN st at enent

L S T

5-2. GO TO STATEMENT

The GO TO statenent is used to transfer control to a | abel ed statenent.
There are two forns of the GO TO statenent: the unconditional form and
the indexed form When an unconditional GO TO statenment is executed,
control is transferred to the statenent specified. An indexed GO TO
statement is used to invoke a switch to selectively transfer to one of
several statenents.

The formof a GO TO statenent is one of the follow ng:

1. GO [Tq | abel

2. GO[TG [*] switch-nane (index)

EXAMPLES:
GO TO START;
GO QUT;
GOTO FI NI S(A+B- 2);
QO *SW I : =l +1);

wher e

| abel identifies the statenent to which control is
transferred. The label is an identifier which is used
to |l abel a statenent other than an entry-point.

sw t ch- nane identifies the switch to be invoked. The switch-nane is
an identifier which has been declared in a switch
decl arati on.

i ndex i ndi cates which label in the switch declaration is to be
used. The index is an expression or assignment
statenment whose result is a single-word val ue.

The three forms GO GOTO, and GO TO are equivalent. 1In an indexed GO TO

statenment, bounds checking is performed on the index val ue unless an
asterisk (*) is used before the sw tch-nane.

The object of a GO TO statenent in the mai n-body nmust be a gl obal | abel
or switch-nane and the object of a GO TO statenent in a procedure or
subroutine nmust be a local |abel or switch-nane. You cannot use a GO TO
statement to transfer into a procedure and you can only use a GO TO
statenment to transfer out of a procedure if the | abel has been passed to
the procedure as a paraneter. Swi tches cannot be passed as paraneters.

Swi tches are invoked using an indexed GO TO statenent; the index is an

i nteger value that specifies the |abel desired. Labels in a switch

decl aration are nunbered consecutively starting with 0. Nor- mally, if
the index value is less than zero or greater than the nunber of I|abels

m nus one, control is transferred to the statenent follow ng the GO TO
statenment. However, if the asterisk option is specified, bounds checking
is not perfornmed and invalid indexes cause unpredictable results. Wen a
switch is invoked, the index value is stored in the index register.

NOTE A switch cannot be invoked within a subroutine nor can any | abels
assigned to a switch appear in a subroutine.

5-3. DO STATEMENT

The DO statenment is ysed to repeatedly execute a statenment until a
speci fied condtion-cl ause becones true. Wen the condition-clause is
true, control is transferred to the next statenent after the DO

st at enent .

The formof the DO statement is:

DO | oop-statenent UNTIL condition-clause

EXAMPLES:
DO A(l:=1+1):=1*2 UNTIL |>23;
DO BEG N
=1+ 1,
I VAL(1): =1/ (X*Y+3);
BVAL(1):=(X*Y+3)/1;
END
UNTIL 1> 20;
wher e
| oop- st at enent is the statenent which is executed each pass through the
| oop. The | oop-statenent may be either a sinple or
conmpound st at enent including anot her DO st at enment .
condi tion- det erm nes whether or not to execute the | oop-statenent
cl ause another time. See paragraph 4-18 for the formof a

condi tion-cl ause.

Note that a semicolon is not used to separate the | oop-statenent fromthe
reserved word UNTI L.

After the | oop-statenment is executed, the condition-clause is eval uated
and tested. |If the condition- clause is false, the | oop-statenent is
executed again; if the condition-clause is true, control is trans- ferred
to the statement follow ng the DO statenment. The condition-clause is
eval uated and tested after each execution of the |oop-statenent (the

| oop-statenent is always executed at |east once).

5-4. VWH LE STATEMENT

The WHI LE statenment is used to repeatedly execute a statement as |ong as
a specified condition-clause is true. The WH LE statenent differs from
the DO statenment in that the condition-clause is tested before executing
the | oop-statenent instead of after and the condition-clause nust be true
for the | oop-statenment to be executed instead of false. When the

condi tion-clause is false, control is transferred to the statenent
followi ng the WHI LE st at enent.

The formof the WH LE statenent is:

VWHI LE condition-cl ause DO | oop- st at enmrent

EXAMPLES:
VWHI LE 1 <21 DO A(Il:=Il+1):=2- |
WHI LE 0<=N<=100 LAND NOT Q="/" DO
BEG N
Q =G(1);
;=1 +1;
N =N*1I ;
END;
wher e
condi tion- det erm nes whether or not to execute the | oop-statenent.
cl ause See paragraph 4-18 for the formof a condition-clause
| oop- st at enent is the statenent which is executed each pass through the

| oop while the condition-clause is true. The
| oop-statenent nmay be either a sinple or conpound
statenment including another WH LE statenent.

The condition-clause is always tested before executing the

| oop-statenent. Thus, if the condition-clause is false on the

first pass, the | oop-statenment will not be executed at all. The
condi ti on-cl ause consists of |ogical-expressi ons and hardware branch
words as described in paragraph 4-18. However, the follow ing branch
wor ds have different neani ngs when used in a WHI LE statenent:

| ABZ Increnent TOS. Execute | oop-statement if TOS is
non- zer o.
DABZ Decrenent TOS. Execute | oop-statenent if TOS is
non- zer o.
| XBZ Increnent the index register. Execute |oop-statenent if

t he i ndex-register is non-zero.

DXBZ Decrenent the index register. Execute |oop-statenent if
t he i ndex-register is non-zero.

5-5. FOR STATEMENT

The FOR statenment is used to repeatedly execute a statenent, changing an
i nteger test-variable by a specified amount each tinme, until the test
vari abl e exceeds a specified [imt. The FOR statenent uses hardware | oop
control instructions which require special stack markers so you should be
very careful when perform ng your own stack manipulation within a FOR

st at enent .

The formof a FOR statenent is:

FOR [*] test-variable:=starting-val ue [STEP st ep-val ue]

UNTI L endi ng-val ue DO | oop- st at enent

EXAMPLES:
FOR 1:=3 UNTIL LIMDO A(l):=1*2;
FOR *1:=1 STEP 2 UNTIL LI M DO
SUM = SUM+ NARN(I) ;
FOR |: = MAX STEP- RANGE/ 4 UNTI L MAX- RANGE DO
BEG N
FOFl : = A* |- 2+B*I +C
SUM =SUM+FCFI ;
END;
wher e
test-variable is the variable which is altered by the step-val ue each
pass through the loop and is tested for exceeding the
endi ng-val ue. The test-variable is an integer
si nmpl e-vari abl e.
starting-val ue is the value assigned to the test-variable before the
first pass through the |Ioop. The starting-value is an
| NTEGER, LOG CAL, or BYTE expression.
st ep-val ue is the amobunt by which the test-variable is changed each
time the loop is executed. The step-value is an | NTEGER
expression. |If omtted, a step-value of 1 is used.
endi ng- val ue is the val ue agai nst which the test-variable is tested
each pass through the | oop to determ ne whether or not
to execute the | oop-statenment again. The ending-val ue
is an integer expression.
| oop- st at enent is the statenent which is executed each pass through the

| oop. The | oop-statenent may be either a sinple or
conmpound st at enent including anot her FOR st at enent.

The starting-val ue, step-value, and endi ng-val ue are cal cul ated once upon
entry into the FOR state- nment, The starting-value is stored into the
test-variable and tested before the | oop-statement is first executed.
After each execution of the |oop-statenment, the variable is changed by

t he step-val ue and conpared with the ending-value. |If the step-value is
positive and the test-variable is |l ess than or equal to the endi ng-val ue,
the | oop-statenent is executed again. |If the test-variable is greater

than the endi ng-val ue, control is transferred to the statenent after the

FOR statenment. For negative step- values, the loop is executed again if
the test-variable is greater than or equal to the ending-value. After
the FOR statenent is executed, the test-variable contains the value which

Thus, the statenent:
FOR J:=1 UNTIL 10 DO ... ;

executes the | oop-statenment 10 tinmes and J has a value of 11 when the
| oop is conpl eted.

You can use an asterisk (*) after FOR to specify that the | oop-statenent
is to be executed once without testing the test-variable against the
endi ng-val ue. This guarantees that the | oop-statenent is executed at

| east once even if the starting-value is past the endi ng-val ue.

CAUTIONS in the Use of FOR Statenents

If the test-variable is equivalenced to the index register, the TBX and
MIBX i nstructions are used for |oop-control; otherw se, the TBA and MIBA
instructions are used. Since all of these instructions use values pl aced
in the stack, if you alter the stack during the execution of the

| oop-statenent, unpredict- able results may occur. Additionally, if you
exit a FOR statenent, for exanple, with a GO TO or RETURN, fromw thin
the | oop-statenent, the test-variable address, the step-value, and the
ending- value are left on the stack. |If the index register is used as
the test-variable, any operation within the | oop-statenment which changes
the index register, such as array referencing, can destroy the |oop
control .

Therefore, it would be prudent for the SPL/3000 programer to observe the
foll owi ng rul es.

* Do not use the stack explicitly within the | oop statenment w thout
restoring any changes made because this makes it inpossible for the
conpiler to keep track of the control values in the stack. (Do not
refer to TOS, S-relative variables, or stacked paraneters; these are
further described in Section VII.)

* Enter FOR statenments only fromthe beginning. Never branch into the
| oop statenent.

* Exit FOR statenments only at the end, except for PCALs.

* Do not nodify the index register in any way (w thout also restoring
it) within the loop statenment if a variable equival enced to the index
register is being used as the loop control variable. (The conpare
range construct is a little-known inplicit use of the index register:
A <= B <= C Use of this construct or subscripted variables within
the | oop statenent will cause unpredictable results if the | oop
variable is also the index register.) Executing a CASE stat enment
enbedded in a FOR loop will nmodify the index register.

Table 5-1. Conparison of DO, WH LE, and FOR St atenents

|
BOX

DO STATEMENT
The condition-clause is evaluated and tested after
the | oop-statenent is executed.
The | oop-statenent is repeated if the condition-

clause is false.
The | oop-statenent is always executed at |east once.

The condition-clause is evaluated and tested after
the | oop-statenent is executed.
The | oop-statenent is repeated if the condition-
clause is true.
The | oop-statenent is not always executed at |east once.

FOR STATEMENT

The test-variable is checked before the | oop-
statenent is executed.

The | oop-statenent is executed if the test-
variable is less than or equal to the
endi ng-val ue (for positive step-val ues)
or greater than or equal to the ending-val ue
(for negative step-values).

The | oop-statenent is always executed at | east
once if an asterisk is specified after the
reserved word FOR

5-6. | F STATEMENT

The |F statenent is used either to execute one of two alternative
statenments or to execute or skip a single statement based on whether a
condition-clause is true or fal se.

The formof an IF statenent is:

| F condition-clause THEN true-branch [ELSE fal se-branch]

EXAMPLES:
| F A<B THEN MAX: =B ELSE MAX: = A
IF 1>100 THEN GO TO L1;
| F A<B AND A<C THEN
BEG N
M N: =A;
&0 TO L2;
END;
wher e
condi tion- det erm nes whether or not to execute the true-branch
cl ause The formof a condition-clause is described in paragraph
4-18.
true-branch is the statenent which is executed if the
condition-clause is true. The true-branch nay be either
a sinple or a conpound statenent including another IF
st at enent.
fal se-branch is the statenent which is executed if the

condition-clause is false. The fal se-branch may be
either a sinple or conpound statenent including another
| F statenent.

There are two fornms of the IF statenent: single-branch and
doubl e- branch. The single-branch IF statenment is used when the two
alternatives are to execute a statenent or not to execute a statenent.

If the condition-clause is true, the statenment is executed and control
proceeds to the statenent after the IF statenent, unless the true-branch
has tranferred to another statenent with a statenent such as a GO TO or
RETURN. If the condition-clause is false, the true-branch statenent is
not executed and control is transferred to the statenent after the IF
statenment. For exanpl e,

| F A<B THEN NX: =A+B;
IF NOT (FINAL LOR LAST) THEN

BEG N
TEST' DONE: =FALSE
GO TO AGAI N
END;
The doubl e-branch | F statenent is used to sel ect one of two alternative
st at enent s. If the condition- clause is true, the true-branch statenent
i s execut ed. If the condition-clause is false, control is transferred to

the fal se-branch statenent. Wen the sel ected statenment has been
executed, control is transferred to the statenment after the | F statenent

except when a transfer has been executed fromthe sel ected statenent
with, for exanple, a GO TO or RETURN statenent. Sone sanple
doubl e-branch I F statenents are shown bel ow

ELSE XA: =XA+ B
| F TESTVAR THEN Y: =Y+1
ELSE | F EXTRATEST THEN Y: =Y- 1,
| F TEST THEN A: =A+B ELSE A:=A- B

Not e that you cannot use a sem col on between the true-branch and the
reserved word ELSE.

| F statenents can be indefinitely nested. The innernost THEN i s paired
with the closest follow ng ELSE and pairing proceeds outward. For
exanpl e,

| F condition-clause
THEN
| F condition-clause
{ THEN
{ | F condition-clause
{ { THEN true-branch
{ { ELSE fal se-branch
{ ELSE fal se-branch;

In the above exanple, the outernost IF statenment is a one-branch IF
st at enent .

As noted in paragraph 4-18, |ogical expressions and/or branch words can
be conbi ned using AND and OR to forma condition-clause. These
connectors should not be confused with the |ogical connectors LAND and

LOR which are used within | ogical expressions. |If two itens are conbi ned
with OR the result is true if either itemis true or if both itens are
true. If two itens are conmbined with AND, the result is true only if

both itenms are true. AND has higher precedence than OR but you can use
par ent heses around OR ed expressions to override this precedence.
Par ent heses cannot be used around itens conbi ned with AND.

5-7. CASE STATEMENT

The CASE statenent is used to select one of a set of statenents for
execution by using an index value into a conpound statenment. The
statenments of the compound statenent are assigned i ndex val ues
consecutively starting with O and incrementing by 1. After the sel ected
statenent has been executed, control is transferred to the statenent
after the CASE statenent unless a transfer is executed in the sel ected
statenent such as a GO TO or RETURN st at ement .

The formof a CASE statement is:

CASE [*] index OF BEG N statenent [;...;statenment] END
EXAMPLE

CASE J COF
BEG N
A: =100;
B: =200;
BEG N
C. =300;
| F A<B THEN D: =100
END;
QR =500
END;

wher e

i ndex determ nes which statenent to execute. The index is an
| NTEGER, LOG CAL, or BYTE expression.

st at enmrent is any sinple or conmpound executabl e statenment including
anot her CASE statement. Null statenents are all owed.

Bounds checking on the index value is nornmally performed to insure that
the index is between 0 and n-1 inclusive (where n is the nunber of
statenments in the body of the CASE statenent). However, if you do not
want bounds checking to be performed, you can specify an * before the
index. |If the asterisk option is specified, an invalid index will cause
unpredi ctabl e results.

To transfer control immediately to the next statenment, use a nul
statenment in the case body. For exanple,

CASE J OF
BEG N
A =100;
; <<NULL statenent; NO ACTION, BUT HOLDS PLACE>>
C. =200
END;
If J equals O, statenment A =100 will be executed.
If J equals 1, control is transferred to the statenent after the CASE
st at enent.
If J equals 2, the statenent C =200 is executed.
If J >=3, then the next statenent follow ng the CASE statenent is

execut ed.

The CASE statenent uses the index register to store the index val ue.

5-8. PRCCEDURE CALL STATEMENT

The procedure call statenent is used to transfer control to a previously
decl ared procedure and pass a list of actual paraneters to it. Wen a
procedure is conpleted, control normally returns to the statenent
followi ng the call; however, the procedure can override this return (see
"Passi ng Labels as Parameters" , paragraph 5-11).

The formof a procedure call statenent is:

procedure-nane [([actual -parameter][,...,[actual -paraneter]])]

NOTE An actual -paraneter can be onmtted only if OPTION VARI ABLE is
specified in the procedure declaration.

EXAMPLES:
COWUTE (R+23.0, L2, PROCS) ;
COWUTE (*,, P4);
REVERSE
wher e
pr ocedur e- nane identifies the procedure to which control is
transferred. The procedure-nane is an identifier which
has been declared either in a procedure-declaration as a
procedure-nane or entry-point or in an intrinsic-
decl arati on.
act ual - is one of the follow ng:
par anet er identifier[(index)]
arithmetic-expression
| ogi cal - expressi on
assi gnnent - st at enent
*
identifier identifies a call-by-reference paraneter. The foll ow ng
items can be passed: sinple-variables, array- nanes,
poi nt er - nanes, procedure-nanes, entry-points, and
| abel s.
i ndex denotes an array or pointer element. The index is an

expression or an assignnment statenent of type | NTEGER
LOAd CAL, or BYTE and can only be specified for
array-nanmes and pointer-nanmes. |If an index is not
specified, the zero elenent is used.

arithmetic-expression, |ogical-expression, and assi gnnent- st at enment

are evaluated to pass a value as a call-by-value paraneter. The forns
for these itens are described in paragraphs 4-11 through 4-17 and 4-20.

The * is used to indicate that you have already put the paraneter onto
the stack. See paragraph 7-4 for a discussion of the correspondence

bet ween the actual -paraneters in a procedure-call and the formal -
paranmeters in a procedure-declaration.

i nstead of a function-designator in an expression, the return value is
deleted fromthe stack upon returning to the calling routine unless the
procedure overrides the normal return

Two types of paranmeter passing are allowed in SPL: by reference and by
value. A call-by-reference paraneter places an address onto the stack

A data item (sinple-variable, array-elenent, or pointer- elenent) which

i s passed by reference can have its value changed in the calling

envi ronnent by changing its value in the procedure. A call-by-value
paranmeter is passed by evaluating the paraneter at the tine of the
procedure call and placing this value onto the stack. |If a paraneter is
passed by val ue, changes to the paraneter value in the procedure wll not
alter the value of the paraneter in the calling environnment.

VWhen a procedure call statement is executed, the actual paraneters are
| oaded onto the stack and a PCAL instruction is executed. The PCAL
instruction places a four-word stack marker onto the stack, changes the
Qregister to point to the top of this stack marker, and transfers
control to the entry-point of the procedure. The stack nmarker contains
the follow ng information

Q2 | | I'ndex Register

o2 | | Return Address

o1 | | Status Register
o0 | | delta Q

The return address is P+1-PB where P is the value of the P register when
the PCAL instruction is executed and PB is the base register for the code
segnent. The delta Qis the nunber of words between the new val ue of Q
and the previous value of Q

Because of the stack architecture, recursive procedures (that is,
procedures which call thenselves) are all owed.

5-9. STACKI NG PARAMETERS

St acked paraneters may be either call-by-reference or call-by-value. For
call -by-reference paraneters, you nmust put the address of the
actual -paranmeter onto the stack. For exanpl e,

TCS: =@

For call-by-val ue paraneters, you nust put the value of the
actual -paranmeter onto the stack. For exanpl e,

TGS: =I +2

If any paraneter is stacked, all paraneters to its left nust also be
stacked. For exanple,

P(*, *,B O;

Label s cannot be stacked. Before stacking paranmeters for a call to a
function procedure, you nust push a one-,two-,or four-word zero,
dependi ng on the data type of the function, onto the stack for the return
value. This zero is generated automatically if no paraneters are
stacked. For exanple, assune P is a REAL procedure which has two
call-by-reference paraneters. The follow ng steps are needed if you want
to stack the paraneters:

TGS = 0D

TCS: = @

TCOS: = @
*

P(*,*);

5-10. M SSI NG PARAMETERS | N PROCEDURE CALLS
If the procedure is declared with OPTION VARI ABLE, paraneters can be
omtted fromthe actual - paraneter list by |leaving a comma to hold their
pl ace or by using a right parenthesis to termnate the list if you want
to omt the paraneters at the end of the formal -paraneter list. For
exanpl e, consider the procedure declaration
PROCEDURE P(A, B,C, D, E F);... ; OPTION VAR ABLE; . ..
To pass only the first paraneter, use a procedure call such as
P(R);
To pass the first and | ast paraneters, use a procedure call such as
P(Rlllllle);
If you want to onmit all paranmeters, you can use either of the foll ow ng
P, or P();
The call ed procedure is responsible for checking the existence of actua

paranmeters. See paragraph 7-9 for a discussion of howto performthis
checki ng.

5-11. PASSI NG LABELS AS PARAMETERS

Label s may be passed to procedures as call-by-reference paraneters to
allow control to transfer to a place other than the normal return address
upon conpletion. Unlike other call-by-reference parame- ters, however, a
| abel is passed as a three-word | abel descriptor. |If a label is passed
to several levels of procedure calls (such as A calls B which calls Q
the | abel descriptor allows you to transfer to the [abel w thout
executing an EXIT instruction for each procedure through which the | abel
was passed; only the first procedure which received the |abel paraneter
is exited. This technique can be very useful for error processing.

The | abel descriptor contains the follow ng i nformation

| Label address |

| Label Address |]

The first word of the [abel descriptor is an exit instruction to exit the
first procedure to which the |abel is passed. The second word is the
address of the label. The third word is the value of the Q register upon
entry to the first procedure to which the |abel is passed.

VWhen a transfer to a | abel which was passed as a paranmeter is executed,
the followi ng steps are perforned:
1. The | abel descriptor is put on the top of the stack

2. The Qregister is reset to the value in TOS (which is the value it
had upon entry to the first procedure).

3. The label address is stored in Q2 (the return address |ocation
for the first procedure).

4. The exit instruction on the top of the stack is executed to
effectively exit the first procedure and transfer control to the
| abel .
The following situation is illustrated in Figure 5.1:
a. The main body calls procedure A and passes the label L as a

par anet er.

b. Procedure A calls procedure B and passes an integer variable |
by-val ue and the | abel L as paraneters.

c. Wiile in procedure B, a transfer to L is executed & -

2. The Qregister is reset to Q (A).

3. The address of L is stored into Q2 overriding the normal
return address fromA back to the main body.

4. The EXIT instruction in S 0 is executed to:
1. Reset Qto the main body val ue.
2. Delete the stack marker for A and the |abel descriptor
passed to A
3. Tranfer control to L.

If the first procedure is a function procedure, the space for the return
value is left on the stack should you not performa normal return, but
transfer to a place other than where the call was nade.

5-12. PASSI NG PROCEDURES AS PARAMETERS

Procedures may be passed to other procedures as call-by-reference
paranmeters. The Load Label (LLBL) instruction is used to |oad the
external address of the procedure onto the stack. Wen calling a
procedure whi ch was passed as a paraneter, the paranmeters are assuned to
be call-by-reference. To pass call-by-value paraneters to such a
procedure, you nust stack them before calling the procedure and use the *
in the procedure call. A procedure which has been declared with OPTI ON
VARI ABLE requires a special technique for being passed to another
procedure and then called. Such procedures

Figure 5.1. Passing a Label as a Paraneter

Figure 5-1. Passing a Label as a Paraneter (Continued)
require a bit mask in Q4, and Q5 if there are nore than 16 formal
paranmeters. |If you call such a procedure you nust generate your own bit
mask. For exanple, consider the declarations:

PROCEDURE P(A, B);... ; OPTI ON VARI ABLE; .. .
PROCEDURE P1(F); PROCEDURE F;

If Pis passed as an actual paranmeter to Pl, such as:
P1(P);
Then, a call to P within P1 would ook Iike
F(A B, 3);
where 3 is the bit mask indicating that both paranmeters are present.
Since the | ast paraneter is a constant instead of an address reference, a

war ni ng nessage is issued. An alternative nmethod is to stack al
paraneters and the bit nask:

TCS: =@,
TCS: =@
TCS: =3
R %)

For further discussion of OPTION VARI ABLE procedures, see paragraph 7-10

5-13. SUBROUTI NE CALL STATEMENT

The subroutine call statement is used to invoke a previously decl ared
subroutine and pass a list of actual paranmeters to it. Wen a subroutine
is conpleted, control normally returns to the state- nment follow ng the
call; however, the subroutine can override this return. A globa
subroutine can branch to a label in the main body and a | ocal subroutine
can branch to a label in the procedure body.

The formof a subroutine call statement is:

subrouti ne-nanme [(actual -paraneter[,...,actual -paranmeter])]
EXAMPLES:
S(A+B, B, O);
S(*I*IC);
S1.
wher e

subroutine-name identifies the subroutine to which control is
transferred. The subroutine-nane is an identifier which
has previously been declared in a subroutine
decl arati on.

act ual - is one of the follow ng:
par anet er identifier[(index)]
arithmetic-expression
| ogi cal - expressi on
assi gnnent - st at enent
*

identifier identifies a call-by-reference paraneter. The foll ow ng
items can be passed: sinple-variables, array- nanes,
poi nt er - nanes, procedure-nanmes, and entry-points.

i ndex denotes an array or pointer element. The index is an
expression or assignnent statenent of type | NTEGER
LOAd CAL, or BYTE and can only be specified for
array-nanmes and pointer-names. |If an index is not
specified, the zero elenent is used.

arithmetic- are evaluated to pass a value as a call-by-val ue
expr essi on, paranmeter. The fornms for these itens are described in
| ogi cal - par agr aphs 4-11 t hrough 4-17 and 4-20.

expressi on, and

Thei *ni snused to indicate that you have already put the paraneter onto
t het stack. See paragraph 7-4 for a discussion of the correspondence
bet ween the actual paraneters in a subroutine call and the fornal
paranmeters in a subroutine declaration

Note that a | abel cannot be passed as a paraneter to a subroutine nor can
paranmeters be omtted (OPTION VARI ABLE cannot be specified for a
subroutine). Alternate entry points are not allowed in subroutines.

If a function subroutine is called using a subroutine call statenent
i nstead of a function-designator in an expression, the return value is

deleted fromthe stack upon returning to the calling routine unless the
subroutine overrides the normal return.

| oaded onto the stack and an SCAL instruction is executed. (SCAL may be
replaced with an LRA and a BR) The SCAL instruction puts the return
address onto the stack and transfers control to the subroutine
entry-point. The Qregister is not changed & -all paraneters are
addressed using S-negative addressing. Recursive subroutines (that is,
subroutines which call thensel ves) are all owed.

The di scussion in paragraphs 5-9 and 5-12 conncerni ng stacki ng paraneters
and passing procedures as paraneters applies to subroutines as well as
procedures except that |abels and subroutines cannot be passed as
paranmeters to a subroutine.

5-14. RETURN STATEMENT

The RETURN statenent is used to exit a procedure or subroutine at sone

pl ace other than the [ast END of the body. Additionally, the RETURN
statenment can be used to | eave sonme or all of the parameters on the stack
after returning to the point of call.

The formof the RETURN statenent is:

RETURN [count]

EXAMPLES:
RETURN;
RETURN 2;
wher e
count i ndi cates how many words to delete fromthe stack. The

count is an unsigned deci mal, based, conposite, or
equat ed i nteger constant.

A RETURN statenment within a procedure generates an EXIT instruction
whereas a RETURN statement within a subroutine generates an SXIT
instruction. Miltiple RETURN statenents within a single procedure or
subroutine are allowed. You can also use a RETURN statenent in the
mai n- body of a programto term nate the program

If a count is not specified, all paraneters are deleted fromthe stack.If
the count equals n, then only the top n words are deleted. |If the count
equals 0, all parameters are left on the stack. Note that count is a
word count and not a paraneter count. You can specify a count greater
than the nunber of words passed as paraneters; however, you should be
very careful that you only del ete values you want to del ete

The cal i ng program nmust know how many paraneters will be left on the
stack upon returning because it nust take care of them (exam ne, save, or
delete them). |INTEGER, LOGd CAL, and BYTE val ues use one word; DOUBLE and
REAL val ues use two words; |abels use three words; and LONG val ues use
four words. Call-by-reference paraneters (except |abels) use one word.

Chapter 6 MACH NE LEVEL CONSTRUCTS

6-1. ASSEMBLE STATEMENT

The ASSEMBLE statenment is used to generate code by specifying the
menoni cs for the hardware instructions. Instructions w thin an ASSEMBLE
statenment can be | abel ed, and control can be trans- ferred to these

| abel ed instructions fromoutside the ASSEMBLE statenment. Additionally,
identifiers which are outside the ASSEMBLE statenent can be referenced
within the statenent, but any indirect references or indexing nmust be
explicitly specified. The formof an ASSEMBLE statenent is:

ASSEMBLE ([l abel:] instruction [;...; [label:] instruction])

EXAMPLES:

ASSEMBLE (LQAD A;
L1: DUP, ZERO

STOR G
STOR D);
ASSEMBLE (LOAD P+0; ZERO STD A);
wher e
| abel identifies the instruction. The label is an SPL
identifier.
instruction i ndi cates a machine instruction to be executed or a

pseudo-op to generate a constant. The instruction
conforms to one of the ten formats shown in Figure 6.1.

The foll owi ng conventions are used in the instruction formats:

X	I'ndex Register or	ndexing
label id	Astatement or instruction	abel within addressing range.
variable id	Adataitemidentifier wthin addressing range.	
usi	An unsigned integer less than or equal to the integer	

| | specified. For exanple usi255 nmeans an unsi gned integer |
| | between O and 255 i ncl usive. |

BOX

Format 1

| abel id
LCOAD {vari abl e id}
{LDX }{ DB+usi 255 }
{LRA }{ P+usi 255 }
laf{CVWPM { P-usi 255 }
{ADDM { Qtusi 127 }

{SUBBM{ Qusi63 }
{MPYM{ S usi63 }

{LDD }{variable id}
{STOR}{ DB+usi 255 }
1b{STB }{ Qtusi127 } [,I] [,X]
{STD }{ Qusi63 }
{INCM{ S-usi63 }
{ DECM

| abel id
1c BR {P+usi 255} [,I] [,X
{ P- usi 255}

DB+usi 255

{Qtusi 127 }
BR{ Qusi63} ,1 [,X
{ S usi63 }

BL
{BE }
{BLE} label id
1d BCC group {BG } {P+usi31 } [,I1]
{BNE} {P-usi3l}
{ BGE}

TBA
{MIBA} |abel id
le {TBX } {P+usi 255}
{MIBX} {P-usi 255}

Figure 6.1. Instruction Formats

BOX

wher e

variable id is a sinple variable, pointer, or array identifier
(indirection is not supplied automatically).

usi is an unsigned integer |less than or equal to the nunber
fol | owi ng.

| abel id is a label which is used to |abel a statenment within the

range of the instruction.
For exanpl e,
ASSEMBLE(STB S - 1,1, X; DECM VAR) ;

Format 2

st ackop

or

stack op, stack op

In the first case the conpiler fills in the second half of the
instruction word with a NOP.

The | egal stackops are as foll ows:

DNEG | XCH | FLT

DDEL | CWP | DECA | FADD | XOR
XROX | ADD | XAX | FSUB | AND
I NCX | SuB | ADAX | FMPY | FIXR
DECX | MPY | ADXA | FDIV | FIXT
ZERO | DV | DEL | FNEG | 1 NCB
DZRO | NEG | ZROB | CAB | DECB
DCVP | TEST | LDXB | LCWP | XBX
DADD | STBX | STAX | LADD | ADBX
DSuB | DTST | LDXA | LSUB | ADXB
MPYL | DFLT | DUP | LMPY |
DI VL | BTST | DDUP | LDV |
For exanpl e,
ASSEMBLE(DDUP, DELB; STAX);
Figure 6-1. Instruction Formats (conti nued)
BOX
Format 3
| ABZ

{1 XBZ}

{ DXBZ}

{BCY }

{ BNCY} | abel

3a{ CPRB} {PYusi 31} [,I]
{DABZ} {*Yusi 31}
{BOV }
{ BNOV}
{ BRO }
{ BRE }

In these branch instructions, the address can be specified as a | abel or
a Prelative address (PYor *Yare the same thing). |If the label |ocation
is not within 31 locations of P (PY31l), the conpiler tags this as an
error; indirection is not supplied automatically w thin an ASSEMBLE

st at enent .

-
RRo0db
o ogr
e e e o

{
{
{
{
{
{
{

:

{ TASL}
{ TASR}
{ TNSL}
3b {DASL} usi63 [,X]
{ DASR}
{DLSL}
{ DLSR}
{ DCsL}
{ DCSR}
{TBC }
{ TRBC}
{ TSBC}
{ TCBC}
{ QASL}
{ QASR}

usi63 is a shift count or nunber of bits |less than or equal to 63. For
exanpl e,

Figure 6-1. Instruction Formats (Conti nued)
BOX

Format 4

{ LD }
{LDXI }
{awl }
{ADDI }
{suBl }
{MPYI }
4a{DIVI }
{ PSHR*}
{LDNI }
{LDXN }
{CWPN }
{ SETR*}

usi 255 * = a privileged instruction for sone registers

{ EXF}
4b {DPF} wusi 15 : usi 15

For exanpl e,
ASSEMBLE (LDl 255; ADDI 5; EXF 7:9);

Format 5

RSW
{LLSH }
{ PLDA*}
{ PSTA*}
{ LSEA*}
{ SSEA*}
{LDEA*} *= a privileged instruction
{ SDEA*}
{IXIT*}
{ LOCK*}
{ PCN *}
{ UNLK*}

For exanpl e,

ASSEMBLE (RSW PLDA;... LLSH,... PSTA);
Figure 6-1. Instruction Formats (Conti nued)
BOX

Format 6

{ PAUS}
{SED }
{ XEQ }
{SI0}
(RO}
{Wwo}
{TIO} usil5
{ao0}
{C\VD }
{SIN}
{ HALT}

{ SMBK}
{ RVBK}
{ PSDB}
{DI SP} m niop-5
{ PSEB}
{ SCLK}
{ RCLK}

For exanpl e,
ASSEMBLE (XEQ 4);

Al of these instructions except XEQ and RVSBK are privil eged.
Figure 6-1. Instruction Formats (Conti nued)
BOX

Format 7

PCAL

{ SCAL}

{EXI T}

{SXI T}

{ ADXI }

{SBXI }

{LLBL}

{LDPP} usi 255

{ LDPN}

{ ADDS}

{ SUBS}

{OR}

{ XORI '}

{ ANDI }
PCAL procedure identifier
SCAL (user must |oad | abel onto stack)
LLBL procedure identifier

For exanpl e,

ASSEMBLE(PCALREAD;SCAL 0;... ORI9YB77);
Figure 6-1. Instruction Formats (Conti nued)
BOX
Format 8
{ MOVE} [, 0]
8a {MvB} [PB] [, 1]
{ QvPB} [.2]

[, 3]

If itemtwo is enpty, a DB relative nove is assumned.

If itemthree is enpty, the stack decrenent is 3.

{ A}
{ N} [,0]
8b MVBW {AN } [, 1]
{AS } [,2]
{ ANS}
If itemthree is enpty, the stack decrenent is 2.

{MWBL*}

*8c { SCW} [,1] *Privileged instruction
I

If itemtwo is missing, the stack decrenent is 3. For exanple,

ASSEMBLE (SCW 1) ;
ASSEMBLE (MVBW AN, 0)
ASSEMBLE (CVPB PB, 1):

5 for MABS and]
MDS]
*If there is no stack-decrenent, the default is equal to the nunber of
par anet ers.
Figure 6-1. Instruction Formats (Conti nued)

[0]
{MABS*} | 1]
{MIDS*} | 2]
8d {MDS } | 3]
{ MFDS*} { 4]

[

BOX
Format 9
CON constant |i st

This format is actually a psuedo-mmenoni c for constant generation; it is
not a hardware instruction

CON stores a series of constants in the code starting at the current
location. 1In addition to all numerical and string constants, P relative
address constants can be created by listing | abel identifiers (this is
used to create addresses for indirect references). The CON instruction
itself can be | abeled so that other instructions can reference the
constants synbolically.

ASSEMBLE(
BR P+1, 1 ;
CON LABELNANE)

ASSEMBLE (TAB: CON " ABCDEFGH'; ..
LDB TAB, X;...);

Format 10

10a DMUL
DDl V

ESUB
EMPY
EDI V
ENEG
ECWP
DVPY

{CVAD} [O]
10b {CVBD} [1]

If item2 is 0, 2 words are deleted fromthe stack

If item2 is 1 or enpty, 4 words are deleted fromthe stack.
Figure 6-1. Instruction Formats (Conti nued)

BOX 10c CVDB [1]

If item2 is 0, 2 words are deleted fromthe stack.
If item2 is 1 or enpty, 3 words are deleted fromthe stack.
{ ADDD}
{ SUBD}
{MPYD} [0]
10d {QwD} [1]
{SLD } [2]
{ NSLD}
{ SRD }
If item2 is 0, no words are deleted fromthe stack.
If item2 is 1, 2 words are deleted fromthe stack.

If item2 is 2 or enpty, 4 words are deleted fromthe stack.

If Ois specified, 1 word is deleted fromthe stack.
If 1 is specified, 3 words are deleted fromthe stack.
If neither O nor 1 is specified, 3 words are deleted fromthe stack.

If ABS is specified, the target sign will be negative if the source is
negative; otherw se, the target will be unsigned.

If NABS is specified, the target will be unsigned.

If neither ABS nor NABS is specified, the target sign will be the sane
as the source.
Figure 6-1. Instruction Formats (Conti nued)

A list of the mmenonics with their nmeanings is shown in Table 6-1. For a
conpl ete description of the instructions, refer to the Machine
I nstruction Set Reference Manual .

Tabl e 6-1. WNMachi ne Instruction Menonics
ALPHABETI C LI STI NG OF | NSTRUCTI ONS

MNEMONI C	FUNCTI ON	FORVAT
ADAX	Add A to X	2
ADBX	Add Bto X	2
ADD	Add	2
ADDD	Decinal add	10d
ADDI	Add i medi ate	4a
ADDM	Add menory	1la
ADDS	Add to S	7
ADXA	Add Xto A	2
ADXB	Add Xto B	2

ADXI
AND
ANDI

Add i nmedi ate to X
And | ogi cal
Logi cal AND i nmedi at e

ASR	Arithmetic shift right	3b	
BCC	Branch on condition code	1d	
BCC - BE	Branch on equal s	3a	
BCC - BG	Branch on greater than		
BCC - BGE	Branch on greater than or equal		
BCC - BL	Branch on	ess than	
BCC - BLE	Branch on less than or equal		
BCC - BNE	Branch on not equal		
BCY	Branch on carry		
BNCY	Branch on no carry	3a	
BNOV	Branch on no overfl ow	3a	
BOV	Branch on overfl ow	3a	
BR	Branch	1c	
BRE	Branch on TGS even	3a	
BRO	Branch on TGS odd	3a	
BTST	Test byte on TGOS	2	
CAB	Rotate ABC	2	
Ao	Control 1/0O	6	

CcvD Conmand 6

CcvwP Conpar e 2

CvPB Conpar e bytes 2

CVPD Conpar e deci nal 10d

C\WPI Conpare inmedi ate 4a

CvPM Conpar e menory la

CVPN Conpar e negative inmedi ate 4a

CPRB	Conpare range and branch	3a

CSL Crcular shift left 3b

CSR Crcular shift right 3b

CVAD Convert ASCI|I to packed deci nal 10b

CvBD Convert binary to packed deci mal 10b

CVDA Convert packed decimal to ASClI 10e

CvDB Convert packed decimal to binary 10c

Table 6-1. Machine Instruction Menonics (continued)

MNEMONI C	FUNCTI ON	FORVAT	
DABZ	Decrenment A, branch if zero	3a	
DADD	Doubl e add	2	
DASL	Double arithmetic shift left	3b	
DASR	Double arithmetic shift right	3b	
DCwWP	Doubl e conpare	2	
DCSL	Double circular shift left	3b	
DCSR	Double circular shift right	3b	
DDEL	Doubl e del ete	2	
DDV	Doubl e divide	10a	
DDUP	Doubl e duplicate	2	
DECA	Decrenent A	2	
DECB	Decrenent B	2	
DECM	Decrenent menory	1b	
DECX	Decrenment X	2	
DEL	Delete A	2	
DELB	Delete B	2	
DFLT	Doubl e fl oat	2	
DI SP	Dispatch	6	
DV	Divide	2	
DIV	Divide i mediate	4a	
DIVL	Divide	ong	2
DLSL	Double logical shift left	3b	

DLSR | Double I|ogical shift right | 3b
DVPY | Double logical multiply | 10a
DMUL | Double multiply | 10a

DPF	Deposit field	4b
DSUB	Doubl e subtract	2
DTST	Test double word on TGOS	2
DUMP	Load soft dunp program	
DuP	Duplicate A	2
DXBZ	Decrenment X, branch if zero	3a
DXCH	Doubl e exchange	2
DZRO	Doubl e push zero	2
EADD	Extended-precision floating point add	10a
ECWP	Extended-precision floating point	10a
	conpare	
EDV	Extended-precision floating point divide	10a
EMPY	Extended-precision floating point	10a
	nultiply	
ENEG	Extended-precision floating point negate	10a
ESUB	Extended-precision floating point	10a
	subtract	
EXF	Extract field	4b
EXIT	Procedure and interrupt exit	7
FADD	Floating add	2
FCWP	Floating conpare	2
FDV	Floating divide	2
FIXR	Fix and round	2
FIXT	Fix and truncate	2
Table 6-1. Machine Instruction Menonics (continued)		
MNEMONI C	FUNCTI ON	FORVAT
FLT	Fl oat	2
FMPY	Floating multiply	2
FNEG	Floating negate	2
FSUB	Floating subtract	2
HALT	Halt	6
HOP	Halt 1/0O program	
1ABZ	I'ncrement A branch if zero	3a
1 NCA	I'ncrement A	2
I NCB	I'ncrement B	2
1 NCM	I'ncrement menory	1b
T NCX	I'ncrement index register	2
INIT	Initialize I/O channel	
1XBZ	I'ncrement X, branch if zero	3a
IXIT	Interrupt exit	5
LADD	Logi cal add	2
LCWP	Logi cal conpare	2
LDB	Load byte	1b
LDD	Load doubl e	1b
LDEA	Load doubl e word from extended address	5
LD	Load inmediate	4a
LDV	Logical divide	2
LDNI	Load negative inmedi ate	4a
LDPN	Load double from program negative	7
LDPP	Load double from program positive	7
LDX	Load I ndex	1la
LDXA	Load X onto stack	2
LDXB	Load X into B	2
LDXI	Load X i medi ate	4a
LDXN	Load X negative inmmedi ate	4a
LLBL	Load Label	7

LLSH
LMPY
LQGAD

Li nked |i st search
Logical multiply
Load

LRA Load rel ative address la
LSEA Load single word from extended address 5
LSL Logi cal shift left 3b
LSR Logi cal shift right 3b
LST Load from systemtabl e 6
LSUB Logi cal subtract 2

MABS	Move using absol ute address	8

MCS Menory controller read status

MDS Move using data segnent 8

M-DS Move from data segnent 8

MOVE Move wor ds 8a

MPY mul tiply 2

Table 6-1. Machine Instruction Menonics (continued)

MNEMONI C	FUNCTI ON	FORVAT	
MPYD	Decimal Multiply	10d	
MPYI	Multiply i mediate	4a	
MPYL	multiply long	2	
MPYM	Multiply menory	1la	
MIBA	Modify, test branch A	1le	
MIBX	Modify, test, branch, X	1le	
MIDS	Move to data segnent	8	
MVB	Move bytes	8a	
MVBL	Move fromDB+ to DL+	8c	
MVBW	Move bytes while	8b	
MVLB	Move from DL+ to DB+	8c	
NEG	Negate	2	
NOP	No operation	2	
NOTr	One's conpl enent	2	
NSLD	Normalizing shift left decinal	10d	
OR	OR Iogical	2	
ORI	Logical OR inmmediate	7	
PAUS	Pause	6	
PCAL	Procedure call	7	
PCN	Push CPU nunber	5	
PLDA	Privileged	oad from absol ute address	5
PSDB	Pseudo interrupt disable	6	
PSEB	Pseudo interrupt enable	6	
PSHR	Push registers	4a	
PSTA	Privileged store into absol ute address	5	
QASL	Quadruple arithmetic shift	eft	3b
QASR	Quadruple arithmetic shift right	3b	
RCCR	Read system cl ock		
RCLK	Read cl ock	6	
RIO	Read I/0O	6	
RIQA	Read I/ O adapter		
RIOC	Read 1/0O channel		
RVBK	Read mask	6	
RSW	Read switch register	5	
SBXI	Subtract imediate from X	7	
SCAL	Subroutine call	7	
SCAN	Scan bits	3b	
SCLK	Store clock	6	
SCLR	Set systemclock limt		
SCU	Scan until	8c	
SCw	Scan while	8c	
SDEA	Store double word into extended address	5	
SED	Set enabl e/disable external interrupts	6	

| SEML | Semaphore | oad

MNEMONI C	FUNCTI ON	FORVAT
SETR	Set registers	4a
SIN	Set interrupt	6
SINC	Set systermclock interrupt	
SIO	Start I/0O	6
SIOP	Start I/O channel program	
SIRF	Set internal interrupt reference flag	6
SLD	Shift left decinal	10d
SMBK	Set mask	6
SRD	Shift right decinal	10d
SSEA	Store single word into extended address	5
SST	Store in systemtable	6
STAX	Store Ainto X	2
STB	Store byte	1b
STBX	Store Binto X	2
STD	Store double	1b
STOR	Store	1la
STRT	Progranmatic warm start	
SuB	Subtract	2
SuBD	Subtract decimal	10d
SuBI	Subtract imediate	4a
SuBM	Subtract menory	1la
SUBS	Subtract fromsS	7
SXIT	Subroutine exit	7
TASL	Triple arithmetic shift left	3b
TASR	Triple arithmetic shift right	3b
TBA	Test, branch A	1e
TBC	Test bit and set condition code	3b
TBX	Test branch X	1le
TCBC	Test and conplinment bit and set CC	3b
TEST	Test TCS	2
TIO	Test I/0O	6
TNSL	Triple normalizing shift left	3b
TOFF	Hardware tiner off	
TON	Hardware tiner on	
TRBC	Test and reset bit, set condition code	3b
TSBC	Test, set bit, set condition code	3b
TSBM	Test and set bit in menory	3b
UNLK	Unl ock resource	5
WO	Wite I/O	6
WQA	Wite 1/0O adapter	
woC	Wite I/0O channel	
XAX	Exchange A and X	2
XBX	Exchange B and X	2
XCH	Exchange A and B	2
XCHD	Exchange DB	6
XEQ	Execute	6
Table 6-1. Machine Instruction Menonics (continued)		
MNEMONI C	FUNCTI ON	FORVAT
XOR	Exclusive OR I ogical	2
XORI	Logi cal exclusive OR imediate	7
ZERO	Push zero	2
ZROB	Zero B	2
ZROX	Zero X	2

6-2. DELETE STATEMENT

The delete statenent allows you to delete words fromthe stack without
usi ng the ASSEMBLE st at enment .

The formof the delete statement is one of the foll ow ng:
1. DEL
2. DELB
3. DDEL

The mmenoni cs have the sanme meanings as in the ASSEMBLE st at enent:

DEL Del ete the top of stack (S-0) decrenment the S-register
by 1.
DELB Del ete the contents of S-1 by storing S-0 into it and

decrement the S-register by 1.

DDEL Del ete the contents of S-0 and S-1 and decrenent the
S-register by 2.

See Figure 6.2 for the effect of the delete statenent on the stack

BEFORE DEL AFTER DEL
S-2 |-""7""| S1 |-""7""|
S1 |"";’5""| S0 |"";’5""|
S0 |----é---- ---------

BEFORE DELB AFTER DELB
S-2 |-""7""| S1 |-""7""|
S1 |"";’5""| S0 |"";5""|
S0 |----é---- ---------

BEFORE DDEL AFTER DDEL
S-2 |-""7""| S0 |-""7""|
S1 |----é---- ---------
S0 |----é----

Figure 6.2. Delete Statenent

6-3. PUSH STATEMENT

The PUSH statenent puts the contents of any or all of the registers onto
the stack using the PSHR instruction.

The formof the PUSH statenent is:

PUSH (register [,...,register])
EXAMPLES:

PUSH (X, Q STATUS);
PUSH (DL);

wher e

register is one of the follow ng hardware registers:
S, Q X, STATUS, Z, DL, DB, or SBANK

If nore than one register is specified, they are stacked in the order
shown bel ow (regardl ess of the order in which they are listed in the PUSH
statenent):

REQ STER | VALUE STACKED

S-DB (relative S before PSHR instruction)

Q QDB (relative Q
X I ndex Regi ster
STATUS St at us Regi ster

|
|
|
Z | Z-DB (relative 2)
I
|

DL DL-DB (relative DL)
DB DB (absol ute address--2 words)
SBANK St ack Bank
Thus, if you use the statenent:
PUSH(STATUS, X, DL) ;
The stack woul d | ook |ike:
S 2 | | I'ndex Register
S1 | | Status Register
S0 | | Relative DL

Privileged node is required to push either DB or SBANK.

6-4. SET STATEMENT

The SET statenment is used to set the contents of any or all registers
usi ng val ues taken fromthe stack. The SETR instruction is used to
performthis operation:

The formof the SET statenment is:

SET (register [,...,register])
EXAMPLES:
SET(S);
SET(Q 9);
wher e
register is one of the follow ng hardware registers:

S, Q X, STATUS, Z, DL, DB, or SBANK.

Privileged node is required to set SBANK, DB, DL, Z, and parts of the
Status register. |If you are not in privileged node and you set the
STATUS register, only the Traps Enabled bit, the Carry and Overflow bits,
and the Condition Code are set. The rest of the STATUS register is not
al tered.

Before using a SET statement, the appropriate values nust be | oaded onto
the stack. |If nore than one register is specified, they are taken from
the stack in the follow ng order (regardless of the order in which they
are listed in the SET statenent):

REG STER | VALUE TAKEN FROM THE STACK
SBANK | Stack Bank

DB | DB (absol ute address--2 words)
DL DL-DB (relative DL)

4 Z-DB (relative 2)

STATUS St at us Regi ster

|

| :
X | I'ndex Register

| QDB (relative Q

| S-DB (relative S)
Rel ati ve addresses in the stack are added to the absolute val ue of DB
before setting the registers. The values are deleted fromthe stack by
the SETR instruction.

Note that the order in which the registers are set is the reverse of the
order in which they are pushed. This reversal is consistent with the
last-in, first-out stack architecture of the HP 3000.

6-5. WTH STATEMENT

The WTH statenent is intended specifically for privileged users running
in split-stack node (see the final paragraph of section 8-1). It
perfornms a syntactic check to ensure that only split-stack conpatibl e
code is generated. Reliability is increased by limting the code inside
a WTH statenment to certain DB-relative offsets. The variables used

i nside the WTH bl ock nmust have been decl ared inside a correspondi ng
DATASEG decl aration, or be Q@ or S-relative, unless a nove is al so

i ncluded. The only form of nove allowed inside the WTH statenent is the
MOVEX between data segnents (see Section 4-21A), where the variabl es used
may have been decl ared in any DATASEG decl arati on. Checking will be
performed as for OPTION SPLIT (see Section 7-13A).

The formof the WTH statenent is:
W TH dat aseg- nane DO
BEG N
END;

wher e

dat aseg- nane is an SPL identifier.

The actual switching of data segnents is left up to the SPL/3000
pr ogr amer .

Chapter 7 PROCEDURES, | NTRI NSICS,
AND SUBROUTI NES

7-1. SUBPROGRAM UNI TS

There are three types of subprogramunits in SPL: procedures, intrinsics,
and subroutines. Procedures and intrinsics are identical except for
their location and how they are declared in a program Subroutines are

| ess powerful than procedures and intrinsics and use different hardware
instructions to call and exit. The declarations for procedures and
intrinsics follow the gl obal data declarations and precede any gl oba
subroutine declarati ons as shown bel ow

BEG N
[gl obal - dat a- decl ar at i ons]
----- >[procedures/intrinsics]<-----
[gl obal - subrouti nes]
[mai n- body]
END.

Local subroutine declarations are within the procedure body follow ng the
other local declarations in the procedure declaration and preceding the
execut abl e statenents of the procedure body.

7-2. PROCEDURE DECLARATI ON
A procedure declaration defines an identifier as a procedure and
specifies what attributes the proce- dure will have:
* Data type of result for function procedures.
* Type and nunber of formal paraneters.
* (Options (external body, variable nunber of paraneters,etc.).
* Local variables.
* Statenents of the procedure body.
Procedures are called by nmeans of the identifier and a Iist of actual
paranmeters. Procedure declarations are not allowed w thin other
procedures unless they are declared without a body (that is OPTION
EXTERNAL) .
The form of a procedure-declaration is:
[type] PROCEDURE procedure-nane
[(formal -parnf,... ,formal-parm); [value-part] specification-part]

[option-part;]
[procedur e- body;]

wher e
type i ndi cates that the procedure is a function procedure
which returns a value of the specified data type. The
type is | NTEGER, LOd CAL, BYTE, DOUBLE, REAL, or LONG
pr ocedur e- nane is an SPL identifier used to identify the procedure.
formal - parm is an SPL identifier which is used as a local identifier
to reference an actual paraneter.
val ue- part i ndi cates which formal paraneters are to be passed
by-value. Al paraneters which are not specified in the
val ue-part are passed by-reference. The value-part is
of the form VALUE formal-parm[,...,formal-parnm;
speci fication- i ndi cates the characteristics of each formal paraneter.
part The specification-part is of the form specifica- tion
[;...;specification];
specification is one of the follow ng:
type formal -parni, ..., formal - parnj
[type] ARRAY formal-parm[,...,formal-parnj
LABEL formal -parm|[,...,formal-parnj
[type] PO NTER formal -parm |, ..., formal-parn
[type] PROCEDURE formal-parm|[,...,formal-parnj
option-part specifies which options are to be in effect. The
option-part is of the form COPTION option [,...,option]

option i S UNCALLABLE, PRI VILECGED, EXTERNAL, CHECK | evel

VARl ABLE, FORWARD, | NTER- RUPT, or | NTERNAL. Each option
is described fully below, starting with paragraph 7-5.

i nteger constant between 0 and 3 incl usive.

procedur e body is one of the follow ng:
1. statenent
2. BEAQ N [l ocal -dat a- decl ar at i ons]
[external -procedure/intrinsic-declarations]
[l ocal -subroutine-declarations] statement[;...;
statement] END

st at enmrent i s any executable SPL statenent (see Sections IV through
V).

| ocal - dat a- i nclude any or all of the following (interm xed in any

decl arati ons order):

define decl aration(s)

equat e decl arati on(s)

| ocal sinple variable declaration(s)
| ocal array decl aration(s)

| ocal pointer declaration(s)

| abel decl aration(s)

swi tch declaration(s)

entry decl aration(s)

ext ernal - are intrinsic declarations and procedure decl arations
procedur e for external procedures, internm xed in any order
intrinsic-

| ocal -ations are |l ocal subroutine declarations (described fully later
subrouti ne- in this section).

decl arati ons

A procedure is a self-contai ned section of code which is called to
performa function. Procedures are hardware-dependent in SPL--they are
called using the PCAL instruction and return using the EXIT instruction
the PRI VILEGED and UNCALLABLE options are hardware-defi ned and checked;
and | ocal variables can be allocated relative to the Qregister since it
is set to a fresh area of the stack by the PCAL instruction. Because of
the hardware capability provided for procedures, they can be called
recursively (that is, a procedure can call itself). For the syntax and
semantics of calling procedures, see "Function Designator"” in paragraph
4-6 and "Procedure Call Statenment™ in paragraph 5-8. Miltiple entry
points for procedures are covered under "Entry Declaration" in paragraph
7-30.

7-3. DATA TYPE

If a data type is specified for a procedure, that procedure is a function
and can be called within expressions. It returns a value of the type
specified by assigning the value to its nane sonmewhere within the
procedure body in an assignnment statement. For details on calling
functions, see "Function Designator"” in paragraph 4-6.

If a data type is not specified, the procedure does not return a val ue
and cannot be called as a function.

7-4. PARAMETERS

The formal paranmeters (if any) of a procedure nmust be fully specified as
to type and whether each is call-by-value or call-by-reference. The
formal paraneters can then be used within the procedure body as if they
were locally declared identifiers. Wen the procedure is called, an
actual paraneter is supplied for each dumy (formal) paraneter. Up to 31
formal paraneters can be specified for each procedure.

Sinpl e vari abl es, arrays, |abels, pointers, and procedures can be passed
as paraneters. Sinple variables and pointers can be passed by val ue or
by reference; procedures, |abels, and arrays are passed by reference
only.

The VALUE |ist specifies which paraneters are to be passed by val ue;
paranmeters not listed in the VALUE |list are passed by reference. Wen a
paranmeter is called by value, the value of the actual parameter is
specified by an expression and is | oaded onto the stack. Value
paranmeters are handl ed exactly as | ocal variables fromthat point on; any
changes to themare limted to the scope of the procedure. For reference
paraneters, the address of the paranmeter is |oaded onto the stack instead
of a value; changes to reference paraneters can change the val ue of the
actual paraneter outside the procedure.

The VARI ABLE option allows a variable nunber of paranmeters to be passed
(see "Options," paragraph 7-7).

Actual paraneters (when the procedure is called) can be constants,
expressions, sinple variables, array references, pointer references,
procedure identifiers, |abel identifiers, or stacked values (* in place
of a paraneter indicates that the paraneter val ue or address has been

| oaded onto the stack by the user; see "Procedure Call Statement” in
par agraph 5-8 for details).

If the formal paraneter is a sinple variable, it is passed the address
(call-by-reference) or actual value (call-by-value) of a data item If
the formal paranmeter is an array, it is passed the address of the zero
element. Thus, all arrays, even direct arrays, are effectively passed as
indirect arrays. |If the formal paraneter is a pointer, it is passed the
addresss (call-by-reference) or contents (call-by-value) of the pointer
Paraneters are stored in @3-nto Q4 where n is the nunber of words
required for paraneter storage (maxi num 60). Call-by-reference
paraneters, except |abels, use one word. |IN TEGER LOd CAL, and BYTE
val ues al so use one word; DOUBLE and REAL val ues use two words; |abels
use three words; and LONG val ues use four words.

Table 7-1 shows what actual paraneters can be passed to what formal
paranmeters (a bl ank space indicates an error condition):

NOTE |If the actual -parameter is a byte array and the fornal -paraneter is
an array with a different data type, the byte address is con-
verted to a word address by arithmetically right shifting the byte
address by one bit. Thus, the maxi num byte address is DB+32767
(whi ch equal s DB+16383 words). Additionally, the array in the
procedure begins on a word boundary regardl ess of whether or not
the starting byte of the actual -paraneter starts on a word
boundary.

Table 7-1. Paraneters Passed to Formal Paraneters

Actual	Sinmple	Sinmple	Arrays	Pointer	Pointer	Proced-	
Parameter	Variables	Vari-		By	By Value	ures	
	By	ables By		Refer-			
	Reference	Values		ence			
Const ant	Warning	Must be	Warning	Warning	Warning		
	(uses 1	sane	(uses 1	(uses 1	(uses 1		
	word as	word	word as	word as	word as		
	address)	size	address)	address)	address)		
Expression		Must be					
		sane					
		word					
		size.					
Sinple	K	Must be	OK,	oads		OK, loads	
Variable		sane	address		address		
Identifier		word	of sinple		of sinple		
		size	variable		variable		
Arrary	K	Must be	XK		&K		
Reference		sane					
		word					
Pointer	K	Must be	XK	&K	&K		
Reference		sane					
		word					
Pointer						K	
ldentifier							
Label							
Identifier							
>	K	K	K	K	K	K	

7-5. OPTIONS

The option part of a procedure declaration consists of the reserved word
OPTION foll owed by a list of option words separated by commas and

term nated by a sem -colon. The neaning of the various options are

di scussed in the follow ng paragraphs.

7-6. OPTI ON UNCALLABLE

This option causes the "uncallable" bit to be turned on in the Segnent
Transfer Table entry for the procedure. The uncallable bit is exam ned
by the PCAL instruc- tions to restrict access to procedures that specify
this option. Uncallable procedures can only be called by code executing
in privileged node. If this option is not specified, the procedure is
cal I abl e.

7-7. OPTION PRI VI LEGED.

This option causes the procedure to be run in privil eged node, assum ng
that the person running the programis allowed to execute in privileged
node by the operating system |If this option is not specified, the
procedure runs in user node

7-8. OPTI ON EXTERNAL

This option specifies that the procedure body (or code) exists externa

to the program being conpiled. The procedure body is not included in the
declaration and is linked to the main programlater by the operating
system If you need to refer to a procedure conpil ed separately, you
must include an OPTI ON EXTERNAL decl aration for the procedure which
indicates to the conpiler the type and nunber of paraneters. |Intrinsics
are the only procedures not requiring a procedure declaration (see
"Intrinsic Declaration” in paragraph 7-34). When procedures are conpil ed
separately (to be called later as option EXTERNAL), they can use the
EXTERNAL- GLOBAL mechani smto establish data |inkages

7-9. OPTI ON CHECK

This option is provided for option external procedure declarations which
wi || subsequently be called as externals by other progranms. The option
speci fi es how nuch checking is done by the operating system between the
option external declaration in the calling programand the actua
procedure declaration as conpiled. At PREP tinme, errors fromRL and USL
procedures are detected. At RUN tinme, errors fromSL procedures are

det ect ed.

If this option is not specified, no checking is performed. O herwi se,
the smaller of the two levels, the level specified in the calling program
and the level specified in the external procedure, is used to deterni ne
the I evel of checking. Intrinsics deternmne their |evel of checking,
never the caller. The check val ues are:

0--no checki ng

1--check procedure type only.

2--check procedure type and nunber of paraneters.

3--check procedure type, nunber of paraneters and type of each

7-10. OPTI ON VARI ABLE.

This option specifies that the procedure can be called with a variable
nunber of actual parameters. The conpiler generates code (when the
procedure is called) to provide the procedure with a paraneter bit mask
inlocation Q4 (also @5 if nmore than 16 paraneters). |If an actua
paranmeter is missing (for example, NONA,,C)), the corresponding bit in
the mask is set to zero. The correspondence is fromright to left with
the rightnost bit (bit 15) correspond- ing to the right paraneter. In
the procedure call, the occurrence of a right parentheses before the
paranmeter list is filled, inplies that the rest of the paraneters are
m ssing. Wen the procedure is entered, it is the responsibility of the
procedure to exam ne the bit mask. Paraneters always occur in the sane
Q address, but nmissing paraneters have garbage in their |ocations.

7-11. OPTI ON FORWARD.

This option specifies that the conplete procedure declaration will be
introduced later in the program FORWARD is used to circunmvent
contradictions incurred by recursion when a procedure calls itself
indirectly. Procedures nmust be decl ared before being refer- enced.

7-12. OPTI ON | NTERRUPT.

This option specifies that the procedure is an external interrupt
procedure. The structure and uses of interrupt routines are covered in
the HP 3000 Mul ti progranmm ng Executive Operating System (MPE) manual s.

7-13. OPTI ON | NTERNAL.

A procedure with this option cannot be called from another seg- ment.
Thi s makes processing of the procedure nore efficient for the | oader
subsystem and all ows nore than one segnment to have a procedure with the
same name. | NTERNAL procedures cannot be noved to anot her segment or
called froma procedure in another segnent. This option applies to code
segnents that are put into the SL only. See the MPE Segnenter Reference
Manual , Section 3.

7-13A. OPTION SPLIT.

This option is intended specifically for privileged users running in
split-stack node to inprove the reliability of the generated split-stack
code (see section 8-1). Wen a procedure specifies this option
generation of the following instructions or declarations will result in
an error.

* Local indirect (DB-relative) arrays
* OWN vari abl es

* Qrelative LRA's (generated when assigning to a pointer the address
of an indexed el enent of a |ocal array)

7-14. LOCAL DECLARATI ONS

Procedures can declare | ocal variables that are known only within the
procedure and are normally all ocated space in the Q+ area when the
procedure is called. Thus, they occupy space only when the procedure is
call ed and are del eted when the procedure exits. As indicated in the
syntax, all declara- tion types are allowed within procedures with these
conmment s:

* Procedures declared within procedures nmust be OPTI ON EXTERNAL

* Data declarations (sinple variables, arrays, pointers) nust be of the
"local" form (see the appro- priate paragraphs in this section).

There are 127 words avail able for storage of |ocal variables for each
procedure. Al sinple variables, pointers, direct arrays, and pointers
to indirect arrays, must fit in 127 words. Indirect arrays can extend
past this range as long as the pointer to the zero elenent is within
range.

7-15. OM VARI ABLES

OM variables are a special variety of |local variable; they are allocated
space in the DB area rather than on the top of the stack. |If
initialization is specified, they are initialized at the beginning of the
program not every time the procedure is called. Since they are
allocated in the gl obal area, they are not deleted when a procedure
exists, but are still in existence, with their |ast value, when the
procedure is called again. However, they are directly accessible only by
the procedure in which they are declared. OM variables can be sinple
vari abl es, pointers, or arrays.

7-16. LOCAL SI MPLE VARI ABLE DECLARATI ONS

A sinple variable declaration specifies the data type, addressing node,
storage allocation, and initialization value for identifiers to be used
as single data itenms. The data type assigned to a variabl e determn nes
t he amount of space allocated to the variable and the set of nachine

i nstructions which can operate on the variabl e.

There are three types of |ocal sinple variable declarations: standard,
OMN, and EXTERNAL. Stand- ard sinple variable declarations can allocate
Qrelative storage each time the procedure is called or can specify the
use of a location relative to a base register or another variable. OMNN
variabl e declarations allocate DB-rel ative storage at the begi nning of
the program EXTERNAL variabl e declarations |link global variables in a
separately conpiled main programto variables in a procedure; the gl oba
vari abl es nmust be declared with the GLOBAL attribute

There are two net hods which can be used to Iink global variables to
variables in separately conpiled procedures. The first nmethod is to use
the GLOBAL attribute in the gl obal variable declaration (see paragraph
3-2) and the EXTERNAL attribute in the |ocal variable declaration. The
identifiers in both declarations nust be the same and the Segnenter is
responsi ble for making the correct |inkages. The second nethod is to

i ncl ude dunmy gl obal decl arations at the begi nning of subprogram
conpilations. All global declarations nmust be included, even for
identifiers not referenced in the subprogram and they must be in the
same order as in the main program It is possible, although not
recommended, to use different identifiers for the sane variable, but you
are responsi ble for keeping themstraight. The second nethod is faster
and requires |l ess space in the USL (User Subprogram Library) files, but
does not protect you agai nst inproper |inkages.

7-17. STANDARD LOCAL VARI ABLES.

A standard vocal variable declaration specifies iden- tifier(s) which can
either be allocated storage each tine the procedure is called or which
use locations relative to base registers or other identifiers. Loca

vari abl es cannot be referenced outside the procedure in which they are
decl ar ed.

The formof a standard |local sinple variable declaration is:

type vari abl e-decl aration[,...,variabl e-declaration];
EXAMPLES:

| NTEGER |, J: =1245;

DOUBLE I1:=- 1234579 D,

REAL A, B, C =1. 321E- 21, Z=DB+3;
LOG CAL | NDX=X, LI =1, JI =3,

BYTE DOLLAR ="$";

wher e

type specifies the data type of the variables in the
declaration. The type may be | NTEGER LOG CAL, BYTE
DOUBLE, REAL, or LONG

vari abl e- is one of the follow ng forns:
decl aration variable [:=initial-val ue]

variable = reference-identifier [sign offset]

vari abl e is alegal SPL identifier

ref erence- is any legal SPL identifier which has been declared as a
identifier data item except DB, PB,QS, or X

initial-value is an SPL constant to be used as the value of the

vari abl e when the procedure is called.

register specifies the register to be used in a register
reference. The register may be DB, Q S, or X

sign is + or -.

of f set i s an unsigned decinmal, based, conposite, or equated
i nt eger constant.

Form 1 of the variable declaration allocates the next avail able
Qrelative location(s) for the variable. The anmount of space all ocated
depends on the variable type. If an initial value is specified, the
variable is initialized when the procedure is called. |If the constant
used for the initial value is too large, it is truncated on the |eft
except string constants which are truncated on the right. If no initial
value is specified, the variable is not initialized.

Form 2 of the variable declaration equival ences a variable either to the
i ndex register (X) or to a location relative to the contents of one of
the base registers (DB, Q or S). Since the index register is 16 bits,
only variables of type INTEGER, LOGQ CAL, and BYTE may be equival enced to
the I ndex register (X).

Form 3 of the variable declaration equival ences a variable to a |location
relative to another variable. The reference-identifier nust be decl ared
first. For exanple, the declarations

LOE CAL A
| NTEGER B= A+5;

equi val ence B to the location 5 cells past the |l ocation of A Sinple

vari abl es which are address referenced to arrays use either the location
of the zero elenent of the array (if direct) or the location of the
pointer to the zero elenent of the array (if indirect). Note that if the
reference-identifier is an array, only the zero elenment may be used in a
variabl e reference of a sinple variable declaration. |In any case, the
final address nust be within the direct address range.

DB, PB, Q S, and X cannot be used as the identifier on the right side of
an equals sign in a variable declaration, because they are interpreted as
regi ster references instead of variable references. For exanple,

consi der the declaration

| NTEGER A, B, C, DB, D= DB+ 2,

The variable D is equivalenced to the location 2 cells past the cell to
which the DB register points--not 2 cells past the | ocation assigned to
the variable DB. The | egal conbinations of registers, signs, and offsets
are shown bel ow

Regi st er Si gn O f set

7-18. OM SI MPLE VARI ABLES.

OM sinple variables are allocated space in the DB- relative area instead
of the Qrelative area. Thus, an OM variable retains its value from one
execution of the procedure to the next. However, the variable can only
be referenced within the procedure in which it is declared. If an OM
variable is initialized, it is initialized only at the start of the
program i nstead of each tinme the procedure is called.

The formof an OMN sinple variable declaration is:

OMN type variable[:=init-value] [,...,variable[:=init-value]];
EXAMPLES:
OM | NTEGER |: =1, J, K: =10;

OM REAL R1,
OMN BYTE CHAR ="";

wher e

type specifies the data type of the variables in the
declaration. The type may be I NTEGER, LOG CAL, BYTE,
DOUBLE, REAL, or LONG

vari abl e is alegal SPL identifier.

initial-value is an SPL constant to be used as the value of the

vari abl e when the procedure is called.

7-19. EXTERNAL S| MPLE VARI ABLES.

An EXTERNAL sinple variable declaration is used to |ink global variables
for referencing in procedures conpiled separately fromthe main program
The identifiers nust be the sanme used in the gl obal declaration and the
GLOBAL attribute nust have been specified.

The form of an EXTERNAL sinple variable declaration is:

EXTERNAL type variable [,...,variable];
EXAMPLES:

EXTERNAL | NTEGER |, J, K;
EXTERNAL REAL R;

wher e

declaration. The type may be I NTEGER, LOG CAL, BYTE,
DOUBLE, REAL, or LONG

vari abl e is alegal SPL identifier.

7-20. LOCAL ARRAY DECLARATI ONS

An array declaration specifies one or nore identifiers to represent
arrays of subscripted variables. An array is a block of contiguous
storage which is treated as an ordered sequence of "variables " having
the sane data type. Each "variable" or elenment of the array is denoted
by a uni que subscript; note that SPL provi des one-di nensional arrays
only. An array declaration defines the followi ng attributes of an array:

* The bounds specification (if any) which determ nes the size of the
array and the legitimte range of indexing.

* The data type of the array el enments.
* The storage allocation nethod.

* The initial values, if desired. Note that arrays local to a
procedure cannot be initialized unless they are PB-relative.

* The access node (direct or indirect).

There are two types of access nodes used for arrays: indirect and
direct. An indirect array uses a pointer to the zero el enent of the
array. Addressing an indirect array el ement uses both indirect
addressing and indexing, If the array is a BYTE array, the pointer
contains a DB-relative byte address. For all other data types, the

poi nter contains a DB-relative word address. A direct array uses a
location within the direct address range of one of the registers (DB, Q
or S) as the zero elenent of the array and then uses indexing to address
a specific array el enent.

There are three types of |ocal array declarations: standard, OAN, and
EXTERNAL. A standard | ocal array declaration can allocate Qrelative
storage each time the procedure is called, PB-relative storage, or can
specify the use of a location relative to a base register or another data
item OM array declarations allocate DB-relative storage at the

begi nning of the program EXTERNAL array declara- tions |link gl oba
arrays in a separately conpiled main programto arrays in a procedure.
The gl obal arrays nmust be declared with the GLOBAL attri bute

There are two net hods which can be used to |ink global arrays to arrays
in separately conpil ed procedures. The first method is to use the GLOBAL
attribute in the global array declaration (see paragraph 3-3) and the
EXTERNAL attribute in the local array declaration. The identifiers in
bot h decl arations nust be the same and the Segnenter is responsible for
maki ng the correct |inkages. The second nethod is to include dumy

gl obal declarations at the begi nning of subprogram conpilations. Al

gl obal decl arations nust be included, even for identifiers which are not
referenced in the subprog- ram and they nust be in the sanme order as in
the main program It is possible, although not recommended, to use
different identifiers for the same array, but you are responsible for
keepi ng them straight. The second nmethod is faster and requires |ess
space in the USL (User Subprogram Library) files, but does not protect
you agai nst inproper |inkages.

7-21. STANDARD LOCAL ARRAYS.

A standard | ocal array declaration specifies identifier(s) which can be
al | ocated storage each tine the procedure is called, stored in the code

segnent, or which use locations relative to base registers or other data
items. Local arrays cannot be referenced outside the procedure in which
t hey are decl ared.

type | ocal -array-dec, ..., | ocal -array-dec, | ocal -array-dec

[] ARRAY [] {constant-array-dec};
{ }

wher e

type specifies the data type of the array. The type can be

| NTEGER, LOGd CAL, BYTE, DOUBLE, REAL, or LONG If not
specified, the array is type LOd CAL.

| ocal -array-dec is one of the follow ng forns:

1. array-nanme(l ower:upper) [=Q

This formis used for an uninitialized array with
defined bounds. If = Qis not specified, the
array is indirect and the next avail able
Qrelative location is allocated for the pointer
to the zero element of the array. I1f=Qis
specified, the array is direct and the next
available n cells in the Qt area are allocated
for the array, where n is the nunber of |ocations
required to store the array. The zero el enment of
the array nmust be within the direct address range
whet her or not it is actually an el enent of the
array. For exanple, consider the declaration:

| NTEGER ARRAY A(- 20: -

The next available Qrelative location is
allocated to A(-20), but all indexing is done
relative to A(O) even though it is not an actual
el ement of the array. The address which A(0)
woul d have if it were in the array must be
between Q 63 and Q+ 127.

2. array-nane(vari abl e-1 ower: vari abl e- upper)

This formis used for an indirect array with
vari abl e bounds. The bounds are eval uated each
time the procedure is called and storage is

al | ocated accordingly at execution tinme. The
array cannot be initialized.

3. array-name(@= Q

This formis used for an indirect array with
undefi ned bounds. The next available Qrelative
| ocation is used, w thout being allocated, as the
pointer to the zero el enent of the array. Space
is not allocated for the array nor is
initialization all owed.

4. array-name(*)= Q
This formis used for a direct array with

undefi ned bounds. The next available Qrelative
| ocation is used, w thout being allocated, as the

zero elenent of the array. Space is not
allocated for the array nor is initialization
al | oned.

This formis used for an indirect array with
undefi ned bounds whose pointer is DB, Q or

S-relative. |If a base-register-reference is not
specfied, the next available Qrelative cell is
all ocated for the pointer to the zero el enent of
the array. |If a base-register reference is

specified, then that DB-, Q, or S-relative cell
is used, without being allocated, as the pointer
to the zero elenment of the array. Space is not

allocated for the array nor is initialization

al | oned.

array- name(*)

This formcan be used for an indirect array with
undefi ned bounds. The next available Qrelative
cell is allocated for the pointer to the zero

el ement of the array. Space is not allocated for
the array nor is initialization allowed. This
formis equivalent to array-name(@ without a
base-regi ster reference.

array-name(*) = register sign offset

This formis used for direct arrays with

undefi ned bounds which are DB-, Q, or

S-relative. The specified cell is used as the
zero el enment of the array; however, space for the
array is not actually allocated and the array
cannot be initialized.

array-nanme(*) = reference-identifier [sign
of fset]

This formis used for equivalencing an array to a
location relative to another identifier. The
reference identifier may be a sinple variable, a
poi nter variable, or another array and nust be
declared first. The array is a direct array
except when the reference-identifier is an
indirect array or a pointer variable and no
offset is specified. |If an offset is specified,
the resulting address nmust be within the direct
address range. For exanmple, if Ais at |ocation
Q+ 125, then the declaration

| NTEGER B(*) =A

woul d not be all owed because the direct address
range for the Qregister is -63 to +127. |If the
array is direct, the referenced |location is used
as the zero elenment of the array. |If the array
is indirect, the referenced location is used as
the pointer to the zero el enent except when
either the array or the reference-identifier, but
not both is type BYTE, in which case the next
available Qrelative cell is allocated for the
pointer to the zero elenent. Space is not

all ocated for the array nor can the array be
initialized. DB, PB, Q S, and X cannot be used
as the reference-identifer because they are

interpreted as register references instead.

9. array-nane(*) = reference-identifier (index)

anot her array. The reference-identifier may be
either an array or a pointer variable and nmust be
declared first. |If the reference-identifier is a
direct array, the array is a direct array whose
zero element is the location of the referenced

array elenent. |If the reference-identifier is an
indirect array or a pointer variable, the array
isindirect. |In this case, the next avail able
Qrelative cell is allocated for the pointer to

the zero element of the array when a non-zero

i ndex is specified or when either the array or
the reference-identifier (but not both) is type
BYTE; otherw se, both use the sane |ocation for
the pointer to the zero elenent. |In any case,
space is not allocated for the equival enced array
nor can the equival enced array be initialized.

DB, PB, Q S, and X cannot be used as the
reference-identifier because they are interpreted
as regi ster references instead.

array- nane is alegal SPL identifier

ref erence- is any legal SPL identifier which has been declared as a
identifier data itemexcept DB, PB, QS, or X

register specifies the base register in a register reference

The register may be DB, Q or S
sign is + or -.
of f set i s an unsigned decinal, based, conposite, or equated

i nteger constant within the direct address range as
shown bel ow

| Regi st er | Si gn | Ofset |
| DB | + | 0 to 255 |
| Q | + | 0 to 127
| Q | - | 0to 63
| S | - | 0to 63
constant-array- is of the form
dec
array- name(l ower: upper) = PB : =
val ue- group[, ..., val ue- group]
| ower specifies the | ower bound of the array, It can be any
deci mal , based, composite, or equated single-word
i nteger constant or constant expression
upper speci fies the upper bound of the array. It can be any

deci mal , based, composite, or equated single-word
i nteger constant or constant expression

vari abl e- | ower specifies the | ower bound of a variable bounds array.
The variable-lower is an INTEGER, LOGd CAL, or BYTE
sinmpl e vari abl e.

The vari abl e-upper is an I NTEGER, LOd CAL, or BYTE
sinmpl e vari abl e.

i ndex i ndicates the elenment of the referenced array to be used
as the reference location. The index can be any
deci mal , based, conposite, or equated single-word
i nt eger constant.

val ue- group is either of the follow ng:

1. initial-value

2. repetition-factor

(initial-value[,...,initial-value])
initial-value is any SPL nuneric or string constant.
repetition- specifies the nunber of times the initial value |ist
factor will be used to initialize the array el enents. The

repetition-factor can be any unsi gned non-zero deci mal
based, conposite, or equated single-word integer

const ant .
Local PB-arrays with defined bounds nust be initialized. Initialization
consists of a := followed by a list of nunerical constants or strings. A

group of constants can be surrounded by parentheses and preceded by a
repetition factor (n) to specify that the constants in parentheses are to
be used n tines before going on to the next itemin the list. These
repeat groups cannot be nested. Elenents are initialized starting with
the | owest subscript and continuing up until the constant list is
exhausted. The initialization [ist nmust not contain nore val ues than

there are elenments in the array. |If the constant used for the initial
value is too large, it is truncated on the |left except string constants
which are truncated on the right. |If no initial value is specified, the

array elenent is not initialized. Only the last array in a declaration
list can be initialized.

A PB-relative array all ocates storage in the code segnment for an array of
constants. The entire PB-relative array nust be initialized and cannot
be changed during execution. PB-relative arrays can only be accessed
within the procedure in which they are declared and they cannot be passed
as paraneters.

7-22. OMN ARRAYS

OMN arrays are allocated space in the DB-relative area instead of the
Qrelative area. Thus, an OMN array retains its values fromone
execution of the procedure to the next. However, the array can only be
referenced within the procedure in which it is declared. An OM array
can be passed as a paraneter, however. An OM array nust have defined
bounds and may be initialized.

The formof an OMN array declaration is:

* OM [type] ARRAY [own-dec,...,own-dec,]own-dec-initial
EXAMPLES:

OM ARRAY L1(0:10), L2(0: 10), L3(0: 10): =10(17), 20;

OM REAL ARRAY R1(0:10):=5(2.0),6(3.5);

wher e

own- dec is of the form array-nanme(l ower: upper)

own-dec-initial is of the form
array- name(|l ower: upper)[:=val ue-group, ..., val ue-group]]
array- nane is alegal SPL identifier
| ower specifies the | ower bound of the array. It is a
deci mal , based, conposite or equated single-word integer
const ant .
upper specifies the upper bound of the array. It is a

deci mal , based, conposite, or equated single-word
i nt eger constant.

val ue- group is either of the foll ow ng:

1. initial-value

2. repetition-factor (initial-value

[,...,initial-value])
initial-value is an SPL nuneric or string constant.
repetition- specifies the nunber of times the initial value |ist
factor will be used to initialize the array el enents. The

repetition-factor can be any unsi gned non-zero deci mal
based, conposite, or equated single-word integer
const ant .

7-23. EXTERNAL ARRAYS.

An EXTERNAL array declaration is used to link global arrays to arrays in
procedures conpil ed separately fromthe main program The array-nanes
must be the sanme as used in the global declarations and the GL.OBAL

attribute must have been specified.

The form of an EXTERNAL array declaration is:

(*)
EXTERNAL [type] ARRAY array-name{(*)} [[,...,array-nanme] {(@}];
{(@}
EXAMPLES:
EXTERNAL ARRAY L1(*),L2(@;
EXTERNAL REAL ARRAY R1(@;
wher e
type specifies the data type of the array. The type may be
| NTEGER, LOGd CAL, BYTE, DOUBLE, REAL, or LONG If not
specified, the array is LOd CAL.
array- nanme is alegal SPL identifier

Array bounds are not specified in an EXTERNAL array decl aration. An

asterisk (*) is used to signify a direct array and an @i s used for an
i ndirect array.

7-24. LOCAL PO NTER DECLARATI ONS

A pointer declaration defines an identifier as a "pointer” --a single
word quantity used to contain the DB-rel ative address of another data
item-the object of the pointer. A pointer declaration defines the
followi ng attributes of a pointer

* The data type of the object of the pointer
* The storage allocation nethod.
* The initial address to be stored in the pointer (optional).

VWhen the pointer is accessed, the object is accessed indirectly through
the pointer address. The object is assuned to be (or treated as if it
were) the type of the pointer.

As with sinple variables and arrays, there are three types of |oca

poi nter declarations: standard, OAN, and EXTERNAL. The standard pointer
declaration can allocate the next available Qrelative cell or specify a
location relative to a base register or another data itemto be used as
the pointer location. OM pointer declarations allocate a DB-rel ative
cell for each pointer at the beginning of program execution. EXTERNAL
poi nter declarations link global pointers in a separately conpiled main
programto a pointer in a procedure (the gl obal pointers nust be decl ared
with the GLOBAL attribute).

There are two net hods which can be used to Iink global pointers to
pointers in separately conpiled procedures. The first nmethod is to use
the GLOBAL attribute (see paragraph 3-4) in the gl obal pointer
declaration and the EXTERNAL attribute in the |ocal pointer declaration
The identifiers in both declarations nust be the same and the Segnenter
is responsible for making the correct |inkages. The second nethod is to
i ncl ude dunmy gl obal decl arations at the begi nning of subprogram
conpilations. All global declarations nmust be included, even for
identifiers not referenced in the subprogram and they must be in the
same order as in the main program It is possible, although not
recommended, to use different identifiers for the sane pointer, but you
are responsi ble for keeping themstraight. The second nethod is faster
and requires |l ess space in the USL (User Subprogram Library) files, but
does not protect you agai nst inproper |inkages.

7-25. STANDARD LOCAL PO NTERS.

A standard | ocal pointer declaration specifies iden- tifier(s) which can
either be allocated storage each tine the procedure is called or which
use locations relative to base registers or other identifiers. Loca

poi nters cannot be referenced outside the procedure in which they are
decl ared. See section 4-4 for exanples and i nformati on about addresses
and pointers.

The formof a standard |ocal pointer declaration is:

[type] PO NTER poi nter-dec[, ..., pointer-dec];
EXAMPLES:

I NTEGER A, LOG CAL B

BYTE PO NTER P: =(@A;
| NTEGER ARRAY N(0: 10) ;
| NTEGER POl NTER PN =@\(5) ;

wher e

poi nt er - dec

type

poi nt er - nane

ref erence-
identifier

register

sign

of f set

is one of the follow ng:

1. pointer-nane [:=@eference-identifier [(index)]]

This formallocates the next available Qrelative
cell for the pointer variable. |If the
c=@eference-identifier is used, the pointer is
initialized to the address of the reference-
identifier or array-elenent if an index is

i ncluded. The reference-identifer nust be
declared first.

2. pointer-nane = reference-identifier [sign offset]

This formis used to equi val ence a pointer
variable to a location relative to another
identifier. Space is not allocated for the

poi nter nor can the pointer be initialized. The
resulting address for the pointer variable nust
be within the direct address range of the base
regi ster which the reference-identifier uses.

3. pointer-name = register [sign offset]

This formis used to equival ence a pointer
variable to a location relative to a

base-regi ster. Space is not allocated for the
poi nter nor can the pointer be intitialized. The
resulting address for the pointer variable nust
be within the direct address range of the

speci fied base-register

4. pointer-nane = offset
This formis used only in privileged node. It is
the offset in System DB. The pointer reference

nmust al ways be subscripted and cannot be preceded
by ' @.
specifies the data type of the pointer variables in the
declaration. The type can be INTEGER LOG CAL, BYTE
DOUBLE, REAL, or LONG
is alegal SPL identifier

is any legal SPL identifier which has been declared as a
data itemexcept DB, PB,QS, or X

specifies the base register in a register reference.
The regi ster can be DB, Q or S

is + or -.

i s an unsigned decinmal, based, conposite, or equated
integer within the direct address range as shown bel ow.

Regi st er Si gn | Ofset

| DB | + | 0to 255 |

| Q | + | 0 to 127

| Q | - | 0to 63 |
| S | - | 0to 63

| ST (systemtable) | + | >=0 |
i ndex i ndicates the array el enent whose address the pointer

will contain. The index can be any deci mal, based,
conposite, or equated single-word integer constant.

Pointers are initialized with addresses of other variables or constants.
The nmethod is to follow the pointer with :=@and a data reference (sinple
variable, pointer elenent, or array elenent or := constant). The address
of the specited data item adjusted to the address type of the pointer

is stored in the cell allocated for the pointer. BYTE pointers contain
DB-rel ative byte addresses, whereas all other types of pointers contain
DB-rel ati ve word addresses.

See "Poi nters" (paragraph 2-20) for nmethods of referring to and through
pointers. Pointers can be indexed like arrays and can contain word or
byt e addresses.

Poi nters can be declared with all data types; if no type is specified,
type LOG CAL is assunmed. The type determ nes what data type the object
of the pointer is assuned to have. This allows objects declared with one
type to be accessed as another data type by accessing themthrough

poi nters.

Poi nters which are not address referenced are allocated the next
available Qrelative location and can be initialized. Pointers which are
ref erenced use the address of the referenced itemor the specified
register relative location and cannot be initialized.

7-26. OMN PO NTERS.

OM pointers are allocated space in the DB-relative area instead of the
Qrelative area. Thus, an OMN pointer retains its value from one
execution of the procedure to the next. However, the pointer can be
referenced only within the procedure where it is declared. An OMN

poi nter cannot be initialized.

The form of an OMN pointer declaration is:

OM [type] PO NTER pointer-nane [,..., pointer-nane];
EXAMPLES:

OM PO NTER PTR;
OM REAL PO NTER RPTR1, RPTRZ;

wher e

type specifies the data type of the objects of the pointers
in the declarations. The type may be | NTEGER, LOQ CAL,
BYTE, DOUBLE, REAL, or LONG If not specified, type

poi nt er - nane is alegal SPL identifier.

7-27. EXTERNAL PO NTERS.

An EXTERNAL pointer declaration is used to |link global pointers for
referencing in procedures conpiled separately fromthe main program The
identifiers nust be the sane as used in the gl obal declarations and the
GLOBAL attribute nust have been specified.

The form of an EXTERNAL pointer declaration is:

EXTERNAL {type] PO NTER poi nter-nane[, ..., pointer-nane];
EXAMPLES:

EXTERNAL REAL PO NTER RPTR1, RPTRZ;
EXTERNAL PO NTER PTR1;

wher e

type specifies the data type of the objects of the pointers
in the declaration. The type may, be INTEGER, LOQ CAL,
BYTE, DOUBLE, REAL, or LONG If not specified, type
LOG CAL i s assuned.

poi nt er - nane is alegal SPL, identifier.

7-28. LABEL DECLARATI ONS

A | abel declaration specifies that an identifier is used in the program
as a label to identify a statenent. Labels are referenced when it is
necessary to transfer control to a specific statenent; they need not be
declared explicitly unless the programer w shes.

The formof a | abel declaration is:

LABEL | abel[,...,label];
EXAMPLES:
LABEL L1, L2, L3;
LABEL L;
wher e
| abel is alegal SPL identifier

Label s are used to identify statenents as foll ows:

LABEL L1,

Ll:A:=&
The syntax for |abeled statenents is given in paragraph 1-3. 1In SPL, a
| abel inplicitly declares itself when it is used to identify a statenent,
as the object of a GO TO statenent, or in a switch declaration. It need

not be explicitly declared in a | abel declaration except as desired for
docunent ati on purposes. See "GO TO Statenent” (paragraph 5-2) and
"Switch Declaration” (below) for use of |abels.

7-29. SW TCH DECLARATI ONS

A switch declaration relates an identifier to an ordered set of |abels.
The switch is accessed as a conputed (indexed) GO TO statenent. The
purpose of a switch is to allow selective transfer of control to any of
the statenents identified by the labels in the switch declaration

The formof a switch declaration is:

SWTCH switch-nanme :=label [,...,|abel];
EXAMPLES:

SWTCH SW=L1, L2, L3, L4, L5,L6,L7,L8, L9,
SW TCH ERROR SELECT: = ERR1, ERR2, ERR3, ERR4, ERR5, ERR6

wher e
swi t ch- name is alegal SPL identifier
| abel identifies the statenent to which control is transfered

when the switch is referenced.

Only one switch-name can be declared in each switch declaration

Associ ated with each label in the label list, fromleft-to-right, is an
ordinal integer fromO to n-1, (where n is the nunber of |abels in the
list). This integer indicates the position of the label in the list.
Each position in the list nust contain a |abel--null elenments are not
all owed. Wien the switch is referenced by a GO TO st atenent (see

par agraph 5-2), the value of an integer subscript determ nes which | abe
is selected fromthe Iist. Bounds checking in this selection is
optional. Entry points are not allowed in switch declarations. Switch
| abel s may not occur in subroutines.

7-30. ENTRY DECLARATI ON

The purpose of a local entry declaration is to specify nultiple entry
points to a procedure beyond the inplicit entry point which is the first
statement of the procedure. Each entry identifier must occur somewhere
in the body as a statenent |abel, but cannot be the object of a GO TO

The formof an entry declaration is:

ENTRY | abel [,...,label];
EXAMPLES:
ENTRY P1, P2, P3;
ENTRY P1,
wher e
| abel identifies the statenent to be used as an alternate

entry point.

By substituting an entry point |abel for the procedure-nane in a function
designator or a procedure call statement, the procedure can be entered at
an alternate entry point. Refer to paragraph 4-6 for the formof a
function designator and paragraph 5-8 for the formof a procedure cal

st at enent .

7-31. DEFI NE DECLARATI ON AND REFERENCE

A define declaration assigns a block of text to an identifier.
Thereafter, when the identifier is used in the program the assigned text
repl aces the identifier. This provides a conveni ent abbreviation

mechani smto avoid repeating | ong constructs used many tines in a

pr ogr am

The formof a define declaration is:

DEFINE identifier = text# [,...,identifier = text#];
EXAMPLES:

DEFI NE AS=ASSEMBLE(#, LA=LONG ARRAY#
DEFI NE DA=DOUBLE ARRAY#;

wher e
identifier is alegal SPL identifier
t ext specifies the block of text to be substituted when the

define is referenced. The text can be any sequence of
ASCI | characters; however, # can only be used within a
string.

A define reference may occur anywhere except within an identifier,
string, or constant. The text should make sense when inserted where the
define is referenced.

At declaration time, a define has no effect on the conpilation of the
program It has effect only in the context where it is referenced. For
this reason, undeclared identifiers can appear in defines as |long as they
have been decl ared when the define is referenced. Simlarly, the define
text is checked for syntax errors in the context where it is referenced,
not where it is declared.

Define decl arations can be nested, that is, define identifiers can be
used in other definitions, but they cannot be recursive, that is, a
define identifier must not appear within its own text, since this |eads
to infinite nesting when the define is referenced.

The nunber sign (#) termnates a define text only if it is not contained
in a string. For exanple, the string "ABCD#" # is valid text term nated
by the second #. Inconplete conments cannot appear in DEFI NEs.

Only one bl ock of text can be assigned to a particular identifier

For exanple, here are some sanpl e define declarations and references.
DEFI NE | =ARRAY B(0: 1) #;
| NTEGER | ; <<I NTEGER ARRAY B(0:1);>>

DEFI NE SUMFA+B+C+D+E#;
J: =SUM <<J: =A+B+C+D+E; >>

7-32. EQUATE DECLARATI ON AND REFERENCE

An equate decl aration assigns an integer val ue determ ned by an
expression of integer constants and other equates, to an identifier. The
equat e nechanismis only a docunmentation and mai nt enance conveni ence; it
does not allocate any run-tinme storage, but merely provides a form of
consi stent identification for constants. Wen an equate identifier is
used, the appropriate constant is substituted in its place. Wen equates
are used instead of actual constants, prograns can be updated easily;

i nstead of replacing every occurrence of a constant, only the equate

decl aration is changed.

The form of an equate declaration is:

EQUATE identifier = equate-expression [,..., identifier =
equat e- expressi on] ;
EXAMPLES:
EQUATE BELL=7, CR=9%15;
EQUATE N=100, M=N#50;
wher e
identifier is alegal SPL identifier
equat e- can be either one of or a conbination of two forns:

expr essi on
[sign] unsigned-integer [operator unsigned-equate-expr]

(equat e- expr essi on)

sign is + or -.

unsi gned- i s an unsigned decinmal, based, conposite, or equated
i nt eger singl e-word i nteger constant.

oper at or is +,-,% or /.

unsi gned- i s an unsigned equat e-expression

equat e- expr

The value to be assigned to an equate identifier is determ ned by an
equat e expression. Equate expressions consist of operators (*,/,+ ,-),
unsi gned integers, including previously defined equated integers, and

par ent heses. Evaluation of the expression proceeds fromleft to right,
except that nultiplication and division (*,/) are done before addition
and subtraction (+,-) and expressions in parentheses are done before the
operators that surround them The value of an equate expression nmust fit
in asingle-word or it will be truncated on the left. Since equate
identifiers can be used in equate expressions, a series of related equate
decl arations can be set up such that changing only the first changes al
the rest.

Equate identifiers can be used anywhere in the programthat an integer or
unsi gned integer constant is all owed.

For exanple, here are some sanple equate decl arati ons and references:

EQUATE M1, N=MH1, P=N+1,;
EQUATE T=20*P/ (20- P+M;

<<Mel, N=2, P=3, T-3, J=408>>

7-33. PROCEDURE BODY

The procedure body consists of the |ocal declarations and the statenents
of the procedure, preceded by a BEA N and term nated by an END,. The
body can contain any executable SPL statenents. |If the body does not
contain any |ocal declarations and only one statenent, the BEGA N END pair
can be omtted. The end of the body generates an EXIT instruction;
additional exits can be generated using the RETURN statenent (see "RETURN
Statement” , paragraph 5-14).

EXAMPLES

PROCEDURE BLANKBUF<<Name>>
(BUFFER, COUNT) ; <<For nal Par anet er s>>
VALUE COUNT; <<Val ue part>>
LOA CAL ARRAY BUFFER; <<Speci fi cati on>>
| NTEGER COUNT; <<Speci fi cati on>>
<<Enpty Option Part>>
<<Pr ocedur e- Body>>
BEG N
LOG CAL BLANKWORD : = ""; <<Data G oup>>
BUFFER: = BLANKWORD; <<St at enment s>>
MOVE BUFFER(1) : =BUFFER, (COUNT) ;
END; <<End Procedure Decl arati on>>

<<Sanpl e Function and Cal | >>
BEG N
| NTEGER NUM =108, NI X;
| NTEGER PROCEDURE VAL(A, B, C); <<Function Decl arati on>>
VALUE A B, C
| NTEGER A, B, C,
VAL: =(A+B) *;
<<Mai n Progranme>
NI X: = NUM VAL(4, 5, 6); <<Equi val ent to N X: =NUM (4+5) *6) ; >>
END.

<<OPTI ON FORWARD exanpl e>>
PROCEDURE PROC1; OPTI ON FORWARD; <<Duntmry decl ar ati on>>
PROCEDURE PROC2; OPTI ON FORWARD; <<Dunmry decl ar ati on>>

PROCEDURE PRCC1; <<Real decl aration>>
I F X=(Y:=Y+1) THEN PROC2;

PROCEDURE PROC2; <<Real decl aration>>
| F X=(Z: =z+1) THEN PROC1;

7-34. | NTRI NSI C DECLARATI ONS

An intrinsic declaration specifies that one or nore of the

system provi ded procedures (intrinsics) will be used by the program
Intrinsics are pre-conpiled procedures supplied to SPL programmers for
perform ng i nput/output, file access, and utility functions as part of
the Multiprogramm ng Executive (MPE). SPL provides a sinple interface to
intrinsics because SPL does not have built-in constructs for input/output
as provided by FORTRAN, BASIC, COBCOL, and other high-1level |anguages.

I nput and out put of data in SPL programnms nust be perforned with the MPE
file systemintrinsics. The user can also declare intrinsics fromhis
own intrinsic file.

The formof an intrinsic declaration is:

INTRINSIC [(file)] procedure-nane [,...,procedure-nane];
EXAMPLES:

I NTRINSI C FOPEN, FREAD, FWRI TE, PRI NT, READ
I NTRINSI C (MYFI LE) ASCI I, CONVERT, OUTPUT, DATA NMAP3

wher e
file is any valid random access file of the operating system
pr ocedur e- nane is the name of an intrinsic procedure.

Unless an intrinsic file is specified, the procedure nanes in an
intrinsic declaration nust be included in an installation-defined
intrinsic file. The SPL conpiler searches the file for the intrinsic
nane and, if it is found, inserts the declaration for the intrinsic into
the program The declaration is equivalent to an OPTI ON EXTERNAL

procedure declaration (see "Procedure Declaration” , paragraph 7-2) and
specifies the procedure's paraneters, etc. Qperating Systemintrinsics
are described in the MPE Intrinsics Reference Manual. These intrinsics

are called like normal external procedures.

The programmer can specify his own intrinsic file in parentheses. In
this case, the conpiler searches for the procedure nane and decl arati on
inthe file specified, rather than in the systemfile. Appendix C
describes how to build intrinsic files.

7-35. SUBRQUTI NE DECLARATI ON
A subroutine declaration defines an identifier as a subroutine and
specifies what attributes the subroutine will have:

* Data type of result for function subroutines.

* Type and nunber of formal paraneters.

* Statenents of the subroutine body.

Subroutines are called by the identifier and a |list of actual paraneters.
Subroutines can be declared either globally or locally, but globa
subrouti nes cannot be accessed locally. Local declarations are not

al l owed wi t hin subroutines.

The formof a subroutine declaration is:
[type] SUBRQOUTI NE subrouti ne-nane

[(formal -parm[,...,formal -parm);[val ue-part] specification-part];
st at enent ;

wher e

type i ndi cates that the procedure is a function procedure

that returns a value of the specified data type. The
type is | NTEGER, LOd CAL, BYTE, DOUBLE, REAL, or LONG

subroutine-name is an SPL identifier used to identify the subroutine.

formal - parm is an SPL identifier which is used as a local identifier
to reference an actual - paraneter.

val ue- part i ndi cates which formal paraneters are to be passed
by-value. Al paraneters which are not specified in the
val ue-part are passed by-reference. The value-part is

of the form VALUE formal-parm[,...,formal-parnm;
speci fication- i ndi cates the characteristics of each formal paraneter.
part The specification-part is of the form specifica- tion
[;...;specification]
specification is one of the follow ng:
type formal-parm|[,...,formal -parnj
[type] ARRAY formal-parm[,...,formal-parnj
[type] PO NTER formal -parm [, ..., formal-parn
[type] PROCEDURE formal-parm|[,...,formal-parnj
st at ermrent is an executable SPL single or conpound statenent (see

sections |1V through VI).

Subrouti nes have the same paraneter conventions as procedures except that
options such as VARI A- BLE, EXTERNAL, and CHECK are not provi ded and
subrouti nes cannot be passed | abels. Sub- routines can have a data type
and can be functions just as procedures can. The subroutine body

consi sts of an executable SPL statenent, including a conmpound statenent,
but cannot contain declara- tions. d obal subroutines can reference

gl obal variables and | ocal subroutines can reference both |ocal and

gl obal variables. Subroutines can be called recursively. Subroutines

are called using the SCAL or LRA and BR instructions and return using the
SXIT instruction. For details on calling subroutines, see "Function
Desi gnator" (paragraph 4-6) and "Subroutine Call Statenent" (paragraph

NOTE You nust not explicitly nodify the stack within a subroutine
wi t hout imediately correcting for any changes. Al subsequent
par amet er addressing may be incorrect and S may not point to the
return address when SXIT i s executed.

EXAMPLES:

| NTEGER SUBROUTI NE S(A, B, C) ;
VALUE A, B, G,
| NTEGER A, B, C;
S =(A- 2)+(B*O);

SUBROUTI NE ZERO (ARRY, HI SUB) ;
VALUE H SUB;
| NTEGER HI SUB
| NTEGER ARRAY ARRY;

BEG N
| : =0; <<gl obal variabl e>>
VWH LE | <= H SUB DO
BEG N
ARRY(1) : =0;
;=1 +1;
END;
END;

Table 7-2. Procedures vs. Subroutines

PROCEDURES	SUBRQUTI NES
Parameters	Parameters
Functions	Functions
Preserves calling environment and	Executes within the calling
estabishes its own environment	environment
Local variables	Nolocal variables
Hghoverhead	Very low overhead--extrenely fast
Allows for efficient segmentation	Mist rewrite to segment subroutines
Can be called fromany procedure or	If declared in the outer block,
fromouter block	callable only from outer block

| | If declared in a procedure, |
| | callable only fromthat procedure

Chapter 8 | NPUT/ QUTPUT

8-1. I NTRODUCTI ON TO I NPUT/ QUTPUT

To performinput/output in SPL, you nust call MPE intrinsics directly
since SPL does not have any input/output statements. This section
presents exanpl es of sone of the nore comon i nput/output intrinsics.

For a conplete description of all the systemintrinsics, refer to the MPE
Intrinsics Reference Manual. For a conplete discussion of MPE file
commands, refer to the MPE Commands Reference Manual

Below is a list of some of the nore comon input/output intrinsics and
their nanes.

Table 8-1. Conmon Input/Qutput Intrinsics

FOPEN Opens a file

READ Reads an ASCI| string fromthe job/session input
devi ce ($STDIN)

READX Reads an ASCI| string fromthe job/session input
devi ce ($STDI NX)

FREAD Reads a |l ogical record froma sequential file on
any device to the user's data stack

FREADDI R Reads a logical record froma direct access file to
the user's data stack

PRI NT Prints character string on job/session |ist device

FWRITE	Wites a logical record fromthe user's stack to a

| | sequential file on any device

FWRI TEDI R Wites a logical record fromthe user's stack to a
direct access disc file

FUPDATE Updates a logical record residing in a disc file

FCLOSE Closes a file

FCHECK Requests details about file input/output errors

FCONTRCL Performs control operations on a tile or term na
devi ce

FSPACE Spaces forward or backward on a file

Al input/output is perforned on a word basis using two bytes per word.
Al t hough you can pass a byte array to a systemintrinsic, the address is
converted to a word address and a warning nessage i ssued. To avoid this,
you can use array equival enci ng:

BYTE ARRAY BUF(O0: 71);
ARRAY VBUF(*)= BUF;

For all non-input/output operations, you would use BUF, (for exanple, to
prepare the buffer for witing), whereas for all calls to the
i nput/output intrinsics, you would pass WBUF

SPLI T- STACK OPERATI ONS: During normal operation, the DB register points
to the user process stack. Sonme operations with extra data segnents
require that DB be set to the base of the extra data segnment while DL and
all other data registers remain associated with the stack. Wen a
process is operating in this node, it is said to have a split stack
Several of the MPE intrinsics deal with DB in this nanner; however, you
need not be concerned with the nechanics of the operation because, while

the stack is "split" , only systemcode is executing. It is possible,
however, if you are a privileged node user, to force your process to
operate in split-stack node explicitly. |If you do this, you nust

when DB does not point to the stack. Such intrinsics, if called by a
privileged process in split-stack node, can result in systemfailures.

If you are not a privil eged node user, you need not concern yourself wth
this restriction and you may assune that intrinsics will not operate in
split-stack nmode unl ess ot herw se stated

WARNI NG The normal checks and limtations that apply to the standard
users in MPE are bypassed in privileged node. It is
possi ble for a privileged node programto destroy system
integrity, including the MPE operating systemsoftware itself
Hewl ett- Packard can- not be responsible for systemintegrity
when progranms witten by users operate in privileged node.

8-2. OPENING A NEW DI SC FI LE

(Please refer to the MPE Intrinsics Reference Manual for details on the
FOPEN procedure.)

Figure 8.1 contains an SPL program whi ch opens two files: a card reader
file and a new disc file.

The second FOPEN call in Figure 8.1
QUT: =FOPEN(QUTPUT, %4, %401, 128);

opens the new disc file. The paranmeters specified are

formal - DATAONE, which is contained in the byte array OUTPUT
desi gnat or
foptions %, for which the bit pattern is as follows:

The above bit pattern specifies the followng file
options:

Domai n: New file, no search of systemor job
tenmporary file directory i s necessary.
Bits (14:2) = 00. ASCII/Binary:
ASCIl. Bit (13:1) = 1.

aoptions %401, for which the bit pattern is as follows:

I | | 1 | 0 |
The above bit pattern specifies the follow ng access
options:
Access Type: Wite access only. Bits (12:4)=0001
Excl usi ve: Exclusive access. Bits
(8:2)= 01.

Al'l other parameters are omtted fromthe FOPEN intrinsic call.
BOX

Figure 8.1. (Opening a New Disc File

Once the file is opened, the file nunber (used by other file system

intrinsics when referencing this file) is returned to the variable QUT.

The condition code is checked with the

statenment. If the condition code is CCL, signifying that the FOPEN
request was denied, the next four statenments, starting with the BEG N
statenent are executed.

PRI NT' FI LE' | NFQ(QUT) ;

calls the PRRNT' FILE INFO intrinsic, which prints a FILE | NFORVATI ON

DI SPLAY on the stand- ard |ist device, enabling you to determ ne the
error nunber returned by FOPEN. The paraneter (QUT) specifies the file
nunber returned through the FOPEN intrinsic. |If the file was not opened
successfully, QUT=0, where O specifies that the FILE | NFORVATI ON DI SPLAY
will reflect the status of the file referenced in the last call to FOPEN
See the MPE Intrinsics Reference Manual for a discussion of the FILE

| NFORMVATI ON DI SPLAY.

The QUIT intrinsic cal

QIT(2);

aborts the process. The paraneter (2) is an arbitrary user-supplied
nunber. When a QUIT intrinsic is executed, this nunber is printed as
part of the resulting abort nessage, allowi ng you to determne, in the
case of multiple QUT intrinsic calls in a program which specific QUT
cal | was execut ed.

NOTE The QUIT intrinsic causes MPE to close all files with no change.
Thus, new files are deleted, old files are saved and assigned to
t he sane donmain to which they bel onged previously.

8-3. READI NG A FILE I N SEQUENTI AL ORDER

(Please refer to the MPE Intrinsics Reference Manual for details on the
FREAD procedure.)

To read records, or portions of records, froma file in sequential order
you use the FREAD intrinsic.

VWhen the FREAD intrinsic executes, a logical record pointer advances to
the next record. Then, the next tinme the FREAD intrinsic is called, the
next record is read. Even if a portion of a record is read, a subsequent
FREAD i gnores the unread portion of the last record (because the |ogica
record poi nter has advanced) and begi ns readi ng the next record.

NOTE The |ogical record pointer is a nunmber kept by MPE to indicate the
next sequential record to be accessed in a file.

BOX
Figure 8.2. FREAD Intrinsic Exanple

The program shown in Figure 8.2 reads a card file. The FREAD stat enment
LGTH = FREAD(I N, BUFFER, 40) ;

reads a record fromthe card reader file designated by the variable IN
(the file nunber was assigned to IN when the FOPEN intrinsic opened the
file) and transfers this record to the array BUFFER in the stack. The
statenment reads up to 40 words fromthe record, then returns a positive
val ue to LGIH which indicates the actual length of the information
transferred.

If an error occurs during execution of the FREAD intrinsic, a condition
code of CCL is returned. The statenent

| F < THEN

checks the condition code and, if the condition code is CCL, the next
four statenments are executed. The PRINT' FILE INFO intrinsic call causes
a FILE | NFORVATI ON DI SPLAY to be printed on the output device so that you
can determ ne the error nunber returned by FREAD, and the QU T intrinsic
aborts the process.

Wien the end-of-file is encountered on the card file, a condition code of
CCGis returned. The statenent

IF > THEN GO END OF' FI LE;
checks for this condition code and, when it occurs, transfers program
control to the label END OF FILE. If the end-of-file condition is not
encountered, the FWRITE statenment is executed and the

GO COPY' LOOP;

statenment transfers programcontrol back to the begi nning of the copy
loop. The FREAD intrinsic is called again and the next record is read.

8-4. VWRITING RECORDS I NTO A FI LE | N SEQUENTI AL ORDER

(Please refer to the MPE Intrinsics Reference Manual for details on the
FWRI TE procedure.)

To wite records, or portions of records, fromyour buffer to a file in
sequential order, you use the FWRITE intrinsic.

VWhen the FWRITE intrinsic executes, the | ogical record pointer advances
to the next record. Then, the next time the PARITE intrinsic is called,
information is witten into the next record position. Wen information
is witten to a file conposed of fixed-length records (and buffering is
not specified in the FOPEN call), the file systemw || pad all short
records with binary zeros for a binary file, or ASCII blanks for an ASCl
file to bring the records up to the fixed length required. |[If nobuff was
specified in FOPEN, automatic buffering is not provided by MPE

The FWRI TE statenent in Figure 8.3
FWRI TE(QUT, BUFFER, LGTH, 0) ;

wites a record fromthe array BUFFER into the disc file designated by
the variable QUT. The file nunber was assigned to OUT when the FOPEN
intrinsic opened the file. The length of the record is specified by
LGTH. LGTH was assigned its value when the FREAD intrinsic read the
record and transferred it to BUFFER, so in this case the sane nunber of
words being read fromthe card reader are being witten to the disc.

The control paraneter is specified as 0, which specifies that no carriage
control code is included in the record. Carriage control, of course, is
not necessary for a disc file but the paraneter is included because al

of FWRITE s paraneters are required.

A condition code of CCE signifies that the FWRI TE request was granted.
The st at enent

| F <> THEN

checks for a "not equal" condition code and, if CCG or CCL is returned,
the next four statements are executed. The PRINT' FILE INFO intrinsic
causes a FILE I NFORVATI ON DI SPLAY to be printed on the output device,
enabling you to determne the error nunber returned by FWRITE. The QUI T
intrinsic aborts the process.

If CCE is returned, the next four statenents are not executed, the GO
COPY' LOOP statenent is executed, and the FREAD and FWRITE intrinsic calls
are repeated until FREAD detects the end of the card file.

BOX

Figure 8.3. FWRITE Intrinsic Exanple

8-5. UPDATI NG A FILE

(Please refer to the MPE Intrinsics Reference Manual for details on the
FUPDATE pr ocedure.)

To update a |l ogical record of a disc file, you use the FUPDATE intrinsic.

The FUPDATE intrinsic affects the |logical record (or block for NOBUF
files) last accessed by any intrinsic call for the file naned, and wites
information froma buffer in the stack into this record. Note that the
record nunmber is not supplied in the FUPDATE intrinsic call; FUPDATE
automatically updates the |last record referenced in any intrinsic call.

The file containing the record to be updated nust have been opened wth
t he update aoption specified in the FOPEN call and nust not contain
vari abl e-1 ength records.
Figure 8.4 contains a programthat opens an old disc file and updates
records in the file. The update information (enployee nunber) is entered
froma termnal (the programwas run interactively) into a buffer in the
stack, then the contents of the buffer are used to update the record.
The st at enent

LGTH = FREAD(DFI LE1, BUFFER, 128);

reads an enpl oyee record fromthe file specified by DFILEl into the array
BUFFER i n the stack.

The st at enent
FWRI TE(LI ST, BUFFER, - - 20, a/ ¢320) ;

then displays this record on the terninal ($STDLI ST has been opened with
the FOPEN intrinsic and the resulting file nunber was assigned to LIST).

The st at enent

DUMW: = FREAD(| N, BUFFER(30), 5) :
reads an enpl oyee nunber, entered on the term nal ($STDI N has been opened
with the FOPEN intrinsic and the resulting file nunber was assigned to
IN, into word 30 of the array BUFFER
The st at enent

FUPDATE(DFI LE1, BUFFER, 128) ;
then calls the FUPDATE intrinsic to update the |last record accessed in
the file specified by DFILEL. The contents of BUFFER (including the
enpl oyee nunber entered fromthe termnal) are witten into this record.

Up to 128 words are witten.

I f the FUPDATE request was granted, a CCE condition code results. The
st at enent

| F <> THEN FI LERROR(DFI LE1, 9);
checks for a "not equal"™ condition code and, if such is the case, calls

the error-check procedure FILERROR The procedure FILERROR prints a FILE
| NFORVATI ON DI SPLAY on the termnal, enabling you to determ ne the error

nunber returned by FUPDATE, then aborts the progranms's calling process.
BOX

8-6. NUMERI C DATA | NPUT/ QUTPUT

There are several intrinsics available for converting integer data for
transfer between an ASCII file and the data stack. These intrinsics are
as follows:

* ASCIl - Converts 16-bit binary nunber to ASCI| representation

* DASCII - Converts 32-bit binary nunber to ASCI| representation

* BINARY - Converts an ASCI| nuneric string to a 16-bit binary nuneric.

* DBI NARY - Converts an ASCI|I numeric string to a 32-bit binary nunber.

(Please refer to the MPE Intrinsics Reference Manual for a conplete
description of these intrinsics.)

For handling floating point nunbers, refer to the EXTIN and | NEXT
procedures in the Conpiler Library Reference Manual

8-7. FILE EQUATI ONS

The standard attributes of files used by an SPL program can be nodified
t hrough the use of the MPE : FlILE conmand.

NOTE Read the discussion of files in the MPE Commands Ref erence Manua
before attenpting to change file attributes with the :FILE comuand.

The specifications in a :FILE conmand do not take effect until the
conpiled programis running and the referenced file is opened. The :FILE
command specifications hold throughout the entire program unless

super seded by another :FILE conmand or revoked by a : RESET conmand. At
job or session term nation, however, all :FlILE conmmands are cancel | ed.

Chapter 9 COWILER COVIVANDS

9.0 COWPI LER FORVAT

A conpiler listing presents three groups of nunbers preceding the program
statenments. The first group shows the Editor |ine nunbers of the listing
file in decimal format. The second columm of five nunbers indicates the
machi ne instruction code reference which is RBMrelative. The third set
gi ves the BEG N-END count, or |evel.

The BEG N-END count is useful information for program debugging in

| ocating BEG N-END pair mismatches. This is the third group of nunbers
listed in a conpile. It indicates the nesting | evel of the statenents
that follow the BEG N or END. The count starts at zero and is increnmented
by one after each BEG N statenment; it is decrenented by one after each
END statenment. Since the |ast END statenment ends the conpile process,
the BEG N-END count is never decrenented to zero.

NOTE Pressing CONTROL-Y during a conpilation causes the current |ine
nunber to be di splayed along with the nunber of errors and
war ni ngs.

EDI TOR | i ne nunber
code offsets
| BEGA N- END count

|
|
| |
\% \% \Y%
1 00000 O
2 00000 1 <---BEG N Arrows indicate where
1 00000 1 $1 NCLUDE XXX BEG N-END count is
2 00000 1 | NTEGER 1| ; i ncrement ed or decrenented
3 00000 2 <---BEGA N
4 00000 3 <---BEGA N
5 00000 4 <---BEGA N
6 00000 5 <---BEGA N
7 00000 6 <---BEGA N
8 00004 6 | =999;
9 00004 5 <---END;

10 00004 4 <---END

11 00004 3 <---END

12 00004 2 <---END
3 00004 1 <---END; | :=99;
4 00006 1 END.

<----global data area size
PRI MARY DB STORAGE=%®01; SECONDARY DB STORAGE=%00000
NO. ERRORS=0000; NO. WARNI NGS=0000

PROCESSOR Tl ME=0: 00: 01, ELAPSED TI ME=0: 00: 06

9-1. USE AND FORVAT OF COVPI LER COVIVANDS

In general, conpiler options such as source input nerging, listing,
format specification, or warning message suppression are determ ned by
default settings assigned by the conpiler. However, the user can
override these settings and select different options by issuing conpiler
commands. These commands take effect only after access to the conpiler
is established. They are directed only to the conpiler and are not

ef fective during program execution

Conpi |l er commands differ in both function and format from conpil er

| anguage source statenments, and thus are not considered true SPL
statenments even though they are part of the source programfile. The SPL
conpi |l er comands do conform however, to the general formats for other
HP 3000 | anguage translators such as FORTRAN, COBOL, and RPG For each
function used by nore than one | anguage transl ator, the sane command nane
is used and, in nost cases, the same conmand paraneters al so apply.

The general formof a conpiler command is:

$[$] cormand- nane [paraneter, ..., paraneter]
EXAMPLES:
$CONTROL CODE, ADR, VAP

$SPAGE
$TI TLE " UPDATE PROGRAM'

wher e

conmand- nane specifies the conpiler command. The command-nane is one
of the followi ng: CONTROL, I|F, SET, TITLE, PAGE, EDIT,
TRACE or COPYRI GHT.

par anet er specifes an option of the conpiler conmand. The form of
a paraneter is dependent on the command-nanme and is
di scussed with the appropriate conmand. 1In general a

paranmeter is one of the follow ng:
character-string
synbol i c- nane
keyword [=sub- par aneter]

The first dollar sign ($) is required and nmust be in colum 1. The
second dollar sign is optional. |If specified, the conmand i s not
transmitted to the newfile if a newfile is created during conpilation

The command- name nmust followthe first $ (or second $ if present) w thout
any intervening spaces. The list of paranmeters is separated fromthe
conmand- name by one or nore spaces. Wthin the list, paraneters are
separated fromeach other by commas. Spaces are all owed before and after
the paraneters. The parameter list may continue through colum 72 of the
source record

The sequence field (colums 73-80) of a record containing a conpiler
command is not part of the command; however, it may be used for sequence
checki ng during editing and nergi ng operations as described | ater under
the EDIT comand

NOTE Only upper-case letters, nunbers, and special characters are used
in conpiler commands. Wen |ower-case letters are entered aspart

equi val ent except within character strings as defined bel ow.

A character-string consists of a sequence of ASCI| characters enclosed in
qgquotation marks ("). Blank characters may be included in the string and
null strings are allowed. Quotation marks within a string are entered as
two adj acent quotation marks, ("") to distinguish themfromthe

guot ati on marks that begin and end the string.

A keyword is a reserved word with respect to a given conmand; they are
descri bed under the appropriate commands. A sub-paraneter is a
character-string, a synbolic name, or a decimal nunber.

Comments may be included within any conmand. A comment is generally used
to document the purpose of coding or to nmake notations about program
logic. A coment is not interpreted as part of the command, and has no
ef fect upon conpilation. It is syntactically treated as a space and can
appear in either of the follow ng | ocations:

* Fol |l owi ng the conmand- nane, separated fromit by at |east one space.
* Preceding or followi ng any paraneter in the parameter list.

A comment cannot be enbedded within a paraneter; for instance, it cannot
appear within a keyword, preceding or follow ng an equals sign, or within
a quoted string. Furthernore, a conment cannot be continued from one
record to the next.

A comment can contain any ASCI| character. The comment nust begin with
two adj acent |less-than signs (<<) and term nate with two adjacent
greater-than signs (>>). Since adjacent greater-than signs termnate a
comment, they cannot appear within the comment itself. The comment may
conti nue through colum 72.

The following exanples illustrate various ways in which conments can be
i ncluded in conpiler conmands.

1. Follow ng the command- nane:

$PAGE <<PAGE EJECT, NO Tl TLE CHANGE. >>
2. Following the | ast paranmeter in a paranmeter list:

$SET X1=0ON, X2=0N, X3=ON<<SW TCHES 1-3 ON. >>
3. Enbedded within the paraneter list:

$SET X1=Q0N, X2- ON, <<LAST SW OFF>>X3=0FF

VWen the I ength of a command exceeds one physical record (source card or
entry line), the user can enter an anpersand (& as the |ast non-bl ank
character of this record and conti nue the command on the next record.
This is called a continuation record. The text portion of the
continuation record, in turn, nust begin with a dollar sign ($) in colum
1. Even when a conmand begins with double dollar signs, its continuation
records still begin with only a single dollar sign. Wen ED T/3000 is
used to enter a source program containing conpiler command continuation
records, a space nmust be entered after the anpersand so the anpersand is
not interpreted as an EDI T/ 3000 continuation |ine.

continuation record by an SPL source record.

In continuing a command onto anot her record, you cannot divide a prinmary
command el ement (a command- nane, keyword, subparaneter--including
strings, or conment)--no primary elenment is allowed to span nore than one
line.

VWhen the conpil er encounters a comand contai ni ng one or nore
continuation records, each continu- ation record is concatenated to the
precedi ng record beginning with the character following the $; each $ and
continuation anpersand is replaced by a space.

The following command is continued onto a second record:

$CONTROL LI ST, SOURCE, WARN, VAP, &
$CODE, LI NES= 36

It is interpreted as:
$CONTROL LI ST, SOURCE, WARN, VAP, CODE, LI NES=36
Even t hough a coment cannot be di vi ded over nore than one line,

extensi ve conmentary text requiring several |ines can be entered by
enclosing it within separate comments that each occupy one |ine.

The foll owi ng command i ncludes comrentary text spread over three lines:

$CONTROL NOMARN <<WARNI NG MESSAGES ON TRI VI AL ERRORS>>&
$ <<WLL NOT BE LI STED, BUT MESSAGES ON>>&
$ <<FATAL ERRCRS W LL APPEAR >>

A command does not take effect until all of its paraneters have been
interpreted. Thus, a command that suppresses source |isting output does
not affect the listing of any continuation records within the comand

itself. Paraneters are interpreted fromleft-to-right. In sone cases,
paranmeters may be redundant or supersede previous paraneters within the
same command. | n other cases, certain paraneters are allowed only once

w thin a command.

In the follow ng command, the redundant paraneters LI ST and NOLI ST each
appear twi ce:

$CONTROL LI ST, NOLI ST, NOLI ST, LI ST

Because the final redundant paraneter in any $CONTROL conmand al ways
takes effect, the above command is equivalent to:

$CONTROL LI ST
A summary of the conpiler commands for SPL appears in Table 9-1.

Table 9-1. Conpiler Command Summary

| Restricts access to listfile; suppresses source text, |
| object code, and synbol table listing suppresses warning

| messages; sets maxi num nunber of lines |isted per page;

| sets maxi mum nunber of severe errors allowed; starts a |

| new segment; initializes the USL tile; |ists mmenonics
| for code generated; assigns a nane to the outer bl ock;
| allows subprogram conpil ation; makes outer bl ock

node and di spl acenent of vari abl es decl ar ed.

source tile

| | |
| $IF | I'nterrogates software sw tches for conditional

	conpilation.	
$SET	Sets software switches for conditional conpi ation.	
$TITLE	Establishes or changes page title on	isting.
$PAGE	Establishes or changes page title, and ejects page.	
$EDI'T	Specifies editing options during mergi ng such as,	

| | omtting sections of old source program and re-nunbering

| | sequence fields. |
| $COPYRI GHT | Specifies copyright information to be copied to the |ist,

| | USL, and programfiles |
| $SPLIT | Enables split-stack checking |
| $NOSPLIT | Disables split-stack checking

| $I NCLUDE | Permits inclusion of text fromanother file into the SPL

| | |

9-2. $CONTROL COMVAND
When you call the conpiler wthout specifying a $CONTROL command, the
followi ng default options are in effect:
The conpiler is given unrestricted access to listfile.
Al'l source records passed to the conmpiler by its editor are |isted
unless the listfile and primary input file (normally the textfile) are
assigned to the same termnal
War ni ng nessages are |isted.
Listing of the synmbol table is suppressed.

Li sting of the object code generated is suppressed.

The nunber of |ines appearing on each printed page (output to listfile)
is a maxi mum of 60.

The maxi mum nunber of severe errors allowed before conpilation is
term nated i s 100.

SPL is called in the program node, as opposed to subprogram node.
The segment nane is SEG .

The outer block name is OB'.

The mmenonic listing i s suppressed.

The USL (User Subprogram Library) file is not initialized unless it is
a new file.

Cal l abl e, non-privil eged outer bl ock.

The above default options can be overridden by entering the $CONTROL
conpil er command. This command allows you to restrict access to the
listfile, suppress source record |istings, produce object code and synbol
table listings, change the maxi mum nunber of |ines per printed page, and
otherwi se alter the normal conpiler control options.
The form of the $CONTROL command i s:

$[$] CONTROL paraneter [,... ,paraneter]

EXAMPLES:

$CONTROL CODE, MAP, | NNERLI ST
$CONTROL NOLI ST

wher e

par anet er specifies an option of the $CONTROL conmand.

A paranmeter is one of the follow ng: LIST, NOLIST, SOURCE, NOSOURCE
WARN, NOMARN, MAP, NOVAP, AUTOPAGE, CODE, NOCODE, LINES = nnnn, ERRORS =
nnn, USLINIT, DEFINE, SEGVENT = segname, ADR, |NNERLIST, MAIN =

program nane, UNCALLABLE, PRI VILEGED, or SUBPROGRAM [(procedure-nname[*]
[, procedure- nane[*]]...)].

descri bed bel ow.

Unl ess ot herwi se noted, each paraneter can appear in a

$CONTROL command pl aced anywhere in the source input. Each paraneter

remains in effect
(for example,
t erm nat es.
speci fi ed.

order.

LI ST

NCLI ST

SOQURCE

NOSOURCE

until explicitly cancelled by an opposi ng paraneter

NCLI ST cancel ling LIST), or until the conpilation

In any $CONTROL conmand, at |east one paraneter nust be
Wthin the paranmeter |ist, the paranmeters can appear in any
In the descriptions bel ow, default paraneters are shown in boxes

Allows the conpiler unrestricted access to the listfile,
permtting the SOURCE, MAP, CODE, and LI NES paraneters
to take effect when issued. The LIST paraneter renains
in effect until a $CONTROL command specifying NOLIST is
encount er ed.

Al ows only source records that contain errors,
appropriate error messages, and subsysteminitiation and
conpl etion messages to be witten to the listfile.

NOLI ST remains in effect until a $CONTROL command

speci fying LI ST appears.

Requests listing of all source records, as edited by the
conpiler's editor, while LIST is in effect. When the
conpiler is called with listfile and the primary i nput
file assigned to the sanme term nal, NOSOURCE is
initially the default. 1In all other cases SOURCE is the
defaul t.

Suppress the listing of source text, cancelling the
ef fect of any previous SOURCE paraneter. NOSOURCE
remains in effect until SOURCE is subsequently
encount er ed.

Permts the reporting of doubtful mnor error conditions
in the source input. These reports are transmtted to
the listfile in the formof a warning nessage. The WARN
paraneter remains in effect until a $CONTRCL command
speci fying the NOMRN paraneter is encountered.

NOTE NOLI ST does not suppress warni ng nessages--they
are suppressed sol ely by NOMRN,

Suppr esses war ni ng nmessages. The NOAMRN par anet er
remains in effect until a $CONTROL conmand speci fying
WARN appears.

Requests printing of user-defined synbols and their
addresses following the source text listing if LIST is
in effect. Reference paraneters are flagged with an
"R . The MAP paraneter renmains in effect until a NOVAP
paranmeter is encountered. Figure 9.1 shows a sanple
synmbol map.

Suppresses printing of synbol map of user-defined
synbol s thereby cancelling any previous MAP paraneter.
The NOVAP option remains in effect until a MAP paraneter
i s encount er ed.

BOX

00001000 00000 0 | $CONTROL MAP
[-emmnnnee |
00002000 00000 0 | BEG N
00003000 00000 1 | I NTEGER I, J: =10;
00004000 00000 1 | REAL R1, RZ;
00005000 00000 1 | ARRAY A(0:10);
00006000 00000 1 | Rl: =R2: =20E9
00007000 00004 1 | FOR I:=0 UNTIL J DO
00008000 00011 1 | A(l):=2*1;
00009000 00022 1 | END
|

............................. |----------------------

| |

| | DENTI FI ER CLASS TYPE ADDRESS

| |

| A ARRAY LOG CAL DB+006 |

| I SIMP. VAR | NTEGER DB+000

| J SIMP. VAR I NTEGER DE+001

| R1 SIMP. VAR REAL DB+002

| R2 SIMP. VAR REAL DB+004

| TERM NATE' PROCEDURE

et AL e LR C R REEE P T TP P LR P LR EPTPLP |
PRI MARY DB STORAGE=%07; SECONDARY DB STORAGE=%90013
NO. ERRORS=000; NO. WARNI NGS=000
PROCESSOR TI ME=0: 00: 00; ELAPSED TI ME=0: 01: 16

END OF PROGRAM

Figure 9.1. Synbol Mp

AUTOPAGE

LI NES =nnnn

Causes a page eject whenever a procedure declaration is
the first token found on a line. |If the declaration is
preceded by "COWMENT" or "< <" no page eject will be

i ssued; however,if the enbedded "decl arati on"” occurs on
the second or later line of a conment, one will be
issued. Simlarly, any docunentation placed before the
procedure declaration will appear on the precedi ng page.

Requests listing of object code generated follow ng the
listing of the source text if LIST is in effect. The
CODE paraneter remains in effect until the NOCODE
paranmeter is encountered. Figure 9.2 shows a sanple
CODE |isting.

Suppresses listing of object code, thereby cancelling
the effect of any previous CODE paraneter. The NOCODE
paranmeter remains in effect until a CODE paraneter is
encount er ed.

Limts the nunber of lines printed on listfile to nnnn
i nes per page. Whenever the next line sent to listfile
woul d overflow the Iine count (nnnn), the page is

ej ected and the standard page headi ng and two bl ank
lines are printed at the top of the page, followed by
the line to be transmtted. A page heading and its
following two blank |ines are counted against the tota
[ine count, nnnn. The

BOX

00002000 00000 0 BEG N

00003000 00000 1 I NTEGER I, J: =10;
00004000 00000 1 REAL R1, RZ;
00005000 00000 1 ARRAY A(0:10);

00007000 00004 1
00008000 00011 1
00009000 00022 1

A(l):=2*1;

00000 | 034013 004600 161004 161002 | 000600 051000 171000 021001

00010 041001 050004 140010 044212 100575 021002 111000 131000
00020 057006 052404 000000

PRI MARY DB STORAGE=%07; SECONDARY DB STORAGE=%90013
NO. ERRORS=000; NO. WARNI NGS=000
PROCESSOR Tl ME=0: 00: 00; ELAPSED TI ME=0: 00: 55

END OF PROGRAM

Figure 9.2. $CONTROL CODE Qut put

subparameter nnnn is an integer ranging from 10 to 9999.
The LI NES= nnnn parameter remains in effect unti
anot her LI NES= nnnn paraneter appears, If this paraneter
is omtted, the default val ue assigned is:
60 lines per page for devices other than term nals.
32767 lines per page for term nals.

ERRORS= nnn Sets the maxi mum nunber of severe errors allowed during
conpilation to nnn; if this limt is exceeded,
conpilation term nates and the uslfile is unchanged. |If
the imt specified has al ready been exceeded when the
ERRORS=nnn paraneter is encountered, conpilation
termnates. |If the ERRORS=nnn paraneter is onmtted, nnn
is set to 100 by default.

USLINI T Initializes the uslfile to enpty status prior to
generation of object code. If you do not specify a
uslfile or if you specify a uslfile whose contents are
obvi ously incorrect, the conpiler automatically
initializes the usifile to enpty status whether or not
USLINIT is specified.

DEFI NE Causes the bodies of DEFINES to be witten out to a disc
file, thereby increasing the amount of synbol table
space available to the conpiler. The $CONTRCL option
nmust be invoked before any DEFI NEs are decl ared.

BOX

00001000 00000 O | $CONTROL ADR

00002000 00000 O BEG N
00003000 00000 1 I NTEGER I, J: =10

Figure 9.3.

SEGVENT=
segname

| NNERLI ST

MAI N=
progr am nane

00004000 00000 1 REAL R1, RZ;
DB+002
DB+004
00005000 00000 1 ARRAY A(0:10);
DB+006
00006000 00000 1 Rl: =R2: =2CE9;
00007000 00004 1 FOR | :=O UNTIL J DO
00008000 00011 1 A(l):=2*1;
00009000 00022 1 END
PRI MARY DB STORAGE=%07; SECONDARY DB STORAGE=%90013
NO. ERRORS=000; NO. WARNI NGS=000
PROCESSOR Tl ME=0: 00: 00; ELAPSED TI ME=0: 01: 05

END OF PROGRAM

$CONTROL ADR Qut put

Starts a new segnent with the specified segname. The
segnanme can consi st of up to 15 al phanuneric characters
starting with an al phabetic character. Apostrophes are
all owed within the segname except as the first

character. The segnane stays in effect until explicitly
overridden by another $CONTROL SEGVENT or conpil ation
term nates. For a main-body which is to be in a segnent
by itself, the $CONTROL SEGMENT shoul d be placed after

t he

procedure and intrinsic declarations and before the

gl obal subroutines and main-body. See Figure 1.2 for a
sanpl e program using this paraneter

After each declaration, a record is sent to the listfile
if LIST is in effect show ng the addressi ng node and

di spl acenent of the declared variables. This option is
turned of f by NOLIST. Figure 9.3 shows a sanple
conpilation with ADR specified.

After each statenent |ine, the menonics for unoptimzed
code generated by the conpiler are sent to the listfile
if LISTis in effect. In addition to the menonic, the
octal value and approxi mate execution time in

m cr oseconds of each instruction are shown. This option
is turned off by NOLIST. Figure 9.4 shows a sanple

| NNERLI ST out put .

NOTE Sone address and constant initialization is

resolved in |ater passes of the conpiler and
segnenter, so the machi ne code displayed does not
al ways reflect the exact machi ne code executed.
(The tines shown on the listing are sanple tines
only and are not accurate for any specific HP3000
nodel .)

Assigns the specified programnane to the main program
The format for programnames is the same as for segment
nanes. Starting with page 2, the programnane is |listed
in colums 13-27 of the heading.

BOX

00002000 0000 BEG N
00003000 0000 I NTEGER I, J: =10;
00004000 0000 REAL R1, RZ;

00005000 0000
00006000 0000

ARRAY A(0:10);
R1: =R2: =20E9;

PR RPRPRO

00000 LDPP, 000 034000 03.68
00001 DDUP, NOP 004600 02.80
00002 STD DB 004 Mhenopnics 161004 04.03
00003 STD DB 002 | 161002 04.03
------- | Ti me

|

00007000| 00004 | 1 FOR I:=0 UNTIL J DO |

| ----e- | | |
|

| -->| 00004 | | ZERO, NOP| <---- --> | 000600| | O1.40|
| e I AR | | |- |
I nstruction 00005 STOR DB 000 I nstruc- 051000 02. 63
Addr ess 00006 LRA DB 000 tion 171000 01.92
00007 LDl , 001 (Cctal) 021001 01. 05
00010 LOAD DB 001 041001 02. 28
00008000 00011 1 A(l):=2*1;
00011 TRA P+ 002 050002 08. 00
00012 BR P+ 000 140000 03. 50
00015 LDl , 002 021002 01. 05
00016 MYPM DB 000 111000 08. 23
00017 LDX DB 000 131000 02. 28
00020 STOR DB 006, 1, X 057006 02. 63
00021 MIBA P- 000 052400 08. 00
0009000 00022 1 END.
00022 PCAL, 052 000000 25.00
PRI MARY DB STORAGE=%®07; SECONDARY DB STORAGE=%90013
NO. ERRORS=000; NO. WARNI NGS=000
PROCESSOR TI ME 0: 00: 00; ELAPSED TI ME=0: 02: 47

Figure 9.4. $CONTROL | NNERLI ST CQut put

UNCALLABLE Makes the outer block entry point uncall abl e except by
code running in privileged node. |If used, this
par ameter nust be specified at the beginning of the
source file.

PRI VI LEGED Makes the code segnent containing the outer bl ock
privileged. |If used, this paraneter nmust be specified
before the first BEG N

NOTE Hewl ett-Packard cannot be responsible for system
integrity when progranms witten by users operate
in privil eged node.

SUBPROGRAM Pl aces the conpiler in subprogramnode. |[If used, this

[(procedure- par ameter nust be specified at the begi nning of the

name[*] [,..., program |If no paraneters are specified, all of the

pr ocedur e- procedures in the nerged source program are conpil ed,

nane[*]1])1] but the outer block or main programif present is not
conpi | ed.

I f procedure paraneters appear, only those procedures specified are

conpiled. Al others are skipped. In addition, procedure-nanes which
are followed by an asterisk (*) are conpiled with LI ST, CODE, and MAP
options on. Those without an * are conpiled but not listed. The

LI ST, ADR etc.
The default node for conpilation is program node.

Even in subprogram node, gl obal declarations and OPTI ON FORWARD and

OPTI ON EXTERNAL procedure decl arations nmust be included in the source
file, if they are to be referenced by the procedures being conpiled. The
conpiler includes these itens in its synbol table, but does not allocate
any space. All | NTERNAL procedures and secondary entry points should be
decl ared OPTI ON FORWARD.

Conpi | er comands are recogni zed at any point in the source file. For
segnent ed prograns, the segnentation schenme should be preserved in the
subprogram node. The conpiler gives procedures the |ast segnent nanme
declared and |inks each procedure to all other procedures in the sane USL
file which have the sane segnment nane, even those resulting froma

previ ous conpilation. The conpiler also automatically CEASEs any

exi sting procedures in the file with the sane procedure-nane as the one
currently being compiled, except for | NTERNAL procedures. See the MPE
Segnment er Subsystem Ref erence Manual for a di scussion of CEASE

EXAMPLES:
$CONTROL SUBPROGRAM
$CONTROL SUBPROGRAM PROC1, PROC2*)

The default paraneters of $CONTRCL are:
LI ST
WARN
NOVAP
ERRORS=100
NOCODE
SEGVENT=SEG
MAI N= OB
pr ogr am node
ADR of f
| NNERLI ST of f
LI NES=60 (except for term nals)
USL file not initialized
CALLABLE, non-privileged outer bl ock

The foll owi ng $CONTROL command requests unrestricted access to the
listfile, listing of all source text, synbol table information, and

obj ect code, suppression of warning nessages but not of error nessages.
By default, the maxi num nunber of lines per printed page is limted to
60, the maxi mum nunber of errors allowed is 100, the uslfile is not
initialized to enpty status, and SPL is in program node.

$CONTROL LI ST, SOURCE, MAP, CODE, NONARN
The foll owi ng $CONTROL command illustrates the default values for the

comand paraneters. |t produces the sane effect as if no $CONTROL
conmand were entered:

$CONTROL LI ST, SOURCE, WARN, NOVAP, NOCCODE, LI NES=60, ERRORS=100

9-3. $IF COVMVAND (CONDI TI ONAL COWVPI LATI ON)

Ceneral |y, when you submt a programto the conpiler, you want the entire
program conpi l ed. However, occasionally, you may only want to have a
portion of the program conpiled. You can request such conditiona
conpilation by delimting the source code to be conpiled (or onitted)
with a series of $IF conpiler comands. These $IF conmands, interrogate
any of ten switches, X0 through X9, inclusive. You can set these

swi tches by using the $SET conmand descri bed in paragraph 9-4. Wen the
condition specified in the $IF command is true, all source records are
conpiled until the next $IF command is encountered which is false. Wen
the condition specified is false, all source records are onmtted until a
$I F command which is true is executed. However, $EDI T, $PAGE, and $TI TLE
conmands are never ignored.

The formof a $IF command is:

$[$]IF [Xn= {OFF

O\]
EXAMPLES:
$I F X0=ON
$IF
$$1 F X9=OFF
wher e
n specifies which switch is to be tested. It is any digit

between 0 and 9 i ncl usive.
Spaces are not all owed between the X and the digit n.

A $I F command can appear anywhere in the source text. The appearance of
a $IF command al ways term nates the influence of any preceding $IF
command. Wen a $IF conmand is entered without a paraneter, it has the
sane effect as an $I F command whose condition is true. That is, the text
following the command is conpiled and any previous $IF command is
cancel | ed.

The source text is listed regardl ess of whether or not it is conpiled if
t he $CONTRCOL command LI ST and SOURCE options are in effect.

The textfile-masterfile nerging operation and transm ssion of
nerged/edited text to the newfile are not affected by $IF conmands.
Merging and editing are described in the discussion of the $EDIT com
mand.

An exanple illustrating the use of the $IF command is presented together
with the $SET command di scussi on bel ow.

9-4. $SET COMVAND (SOFTWARE SW TCHES FOR CONDI TI ONAL COWPI LATI ON)

VWhen the conpiler is first called, all ten switches (XO X9) are turned
off. You can turn themon and off again with the $SET command.

The formof the $SET command is

$[$] SET [Xn={ OFF
ON} [, Xn= {OFF

oN] oLl]

EXAMPLES:

$SET XO0=OFF, X1=0ON

$SET

$SET X3=ON
wher e
n i ndi cates which switch is to be set. It can be any

digit between 0 and 9 incl usive.

A $SET conmand can appear anywhere in the source text. |If a $SET comand

i s encountered which does not have a paraneter list, all ten switches are
turned off.

In the follow ng source text, switches X4 and X5 are set on and
interrogated with the results indicated by the conmrents:

$SETX4=OV, X5=0ON <<SET SW TCHES X4 AND X5 ON>>

$I F X5=ON <<REQUESTS COWPI LATI ON OF SOURCE BLOCK 1>>
(SOURCE BLOCK 1)

$I F X5=0FF <<REQUESTS THAT SOURCE BLOCK 2 BE | GNORED>>&
$ <<BY CANCELLI NG PREVI QUS $I F COMNVAND>>

(SOURCE BLOCK 2)

$I F <<CANCELS PREVI QUS $| F COWAND SO THAT>>&
$ <<SOURCE BLOCK 3 | S COVPI LED>>

(SOURCE BLOCK 3)

9-5. $TI TLE COWAND (PAGE TI TLE I N STANDARD LI STI NG

On each page of output listed during conpilation, a standard headi ng
appears. Positions 29 through 132 of this heading are reserved for a
title, usually describing the page content, optionally specified with the
$TI TLE comand

The formof the $TITLE command i s:

S[S] TITLE [string [,string]...]

EXAMPLES:
$TI TLE "FI LE CREATE PROGRAM'
$TI TLE
$$TI TLE "UPDATE MASTER DATA FILE", &
$ "AND PRI NT REPORTS"

Each string parameter is a character string bounded by quotation marks
that is conbined with any other strings specified to formthe title. In
formng the title, the strings are stripped of their delimting quotation
mar ks and they are then concatenated left-to-right. The entire paraneter
list can specify up to 104 characters, including spaces within the

strings but excluding delimters and spaces between the strings. |If the
title contains fewer than 104 characters, the unused portion is filled to
the right with spaces. |If no string paraneters are present in the $TITLE

command, or if no $TITLE command or $PAGE command with a title
specification is entered, the title portion of the heading is blank
Wien a new $TI TLE command is encountered, it supersedes any previously
specified title fromthat point on.

Wien a $TI TLE comand is interpreted and the NOLI ST paraneter of the
$CONTROL command is in effect, title specification or replacenent occurs
even when the $TI TLE conmand appears within the range of an $IF command
whose relation is evaluated as fal se.

9-6. $PAGE COVNAND (PAGE TI TLE AND EJECTI ON)

You can specify a programtitle (as with the $TI TLE conmand) toget her

w th page ejection by entering the $PACE command. This allows varied
listing formats. For exanple, individual sections of the programcan be
listed starting on a new page, and each section can have its own
descriptive title.

The form of the $PAGE command is:
$[$] PAGE [string[,string]...]
EXAMPLES:
$PAGE "FI LE OPEN SECTI ON'
$PAGE
$SPAGE " READ RECORD SECTI ON'

$PACGE "VERI FY | NPUT DATA', &
$ "AND UPDATE DATA BASE"

Each string parameter has the same format, meaning, result, and
constraints as in the $TITLE conmand. |f no parameter is specified in
t he $PAGE conmand, the previous title, if any, remains in effect.

If the LIST parameter of the $CONTROL command is in effect when a $PAGE
command is encountered, the follow ng steps take place:
1. A page eject is generated.

2. The standard page heading including the newtitle, if one is
specified, is printed foll owed by two blank |ines.

If anewtitle is not specified, the standard heading with the old title
is printed followed by two bl ank |ines.

If the LIST paraneter is not in effect, the newtitle replaces any
previous title, but no printing or page ejecting occurs. The newtitle
appears when LIST is put into effect.

The $PAGE conmmand itself is never |isted.

9-7. $EDIT COWAND (SOURCE TEXT MERGA NG AND EDI TI NG

You can request the follow ng nerging and editing operations:

* Merge corrections or additional source text on textfile with an
exi sting source program and conmands on masterfile to produce a new
source program and commands. This new input is conpiled and
optionally copied to newfile, which can be saved for recycling
t hrough an MPE: FI LE conmand

* Check source-record sequence nunbers for ascendi ng order
* Omt sections of the old source program during nerging.

* Re-nunber the sequence fields of the records in the new, nmerged
source program

The editing done by the conpiler is limted to |linear source text
nmodi fication. Extensive or nore sophisticated editing is possible with
the HP 3000 text editor, EDI T/3000.

9-8. MERA NG

You can specify nerging sinply by using actual file names for the
textfile, masterfile, and (optionally) newfile parameters of the MPE: SPL
conmmand when the conpiler is called. A sanple merging operation is shown
bel ow; however, for a conplete description of the :SPL conmand see

par agraph 10- 11.

To specify nerging of a textfile TFILE with a masterfile M-ILE, you could
enter the follow ng : SPL comand:

: SPLTFI LE, , , MFI LE, NFI LE

The nmerged source text is copied to the newfile NFILE, with the object
code and listing output witten to the default files $NEWPASS and
$STDLI ST respectively.

Prior to merging, the records in both textfile and masterfile nust be
arranged in ascendi ng order according to the value of the sequence field
on any record, or the sequence fields nust be blank. The order of
sequencing i s based on the ASCII Collating Sequence as shown in Appendi x
A. There are no restrictions regardi ng bl ank sequence fields; the
sequence fields of sone or all of the records in either the textfile or
masterfile, or both files, can be blank, and such records can appear
anywhere in either file.

The mergi ng operation is al so based on ascendi ng order of sequence fields
according to the ASCI1 Collating Sequence. During nerging, the sequence
fields of the records in both files are checked for ascending order. If
their order is inproper, the offending records are skipped during nerging
and appropriate diagnostic nessages are sent to the listfile. During
each conparison step in nmerging, one record is read fromeach file and
these records are conpared with one of three results:

1. If the values of the sequence fields of the masterfile and the
textfile are equal, then the textfile record is conpiled and,
optionally, passed to the newfile; the masterfile record is

i gnored; and one nore record is read fromeach file for the next
conpari son.

less than that of the textfile record, the masterfile record is
conpiled and, optionally, passed to the newfile; the textfile
record is retained for conparison with the next masterfile record,
and the next masterfile record is read.

3. If the value of the sequence field of the textfile record is |ess
than that of the nmasterfile record, the textfile record is
conpil ed and, optionally, passed to the newfile; the masterfile
record is retained for conparison with the next textfile record,
and the next textfile record is read.

During nerging, a record with a blank sequence field is assuned to have
the sane sequence field as that of the last record with a non-bl ank
sequence field read fromthe sane file, or as a null sequence field, if
no record with a non-blank sequence field has yet been encountered in the
file. Thus, a group of one or nore records with blank sequence fields
residing on the masterfile are never replaced by records fromthe
textfile; they can only be deleted through use of the $EDI T conmand as
expl ai ned bel ow.

Records fromthe masterfile that are replaced during nmerging and thus
neither conpiled nor sent to the newfile are not |isted during
conpi |l ati on.

VWhen an end-of-file condition is encountered on either the textfile or
the masterfile, nerging term nates, except for the continuing influence
of an unterm nated VO D paranmeter in an $EDI T conmand, as di scussed
later. At this point, the subsequent records on the remaining file are
checked for proper sequence, conpiled, and, optionally, passed to the
newfile. However, masterfile records within the range of a VO D
paranmeter are neither conpiled nor sent to the newfile.

The sequence field values of records transmitted to the newfile are not
normal |y changed by the mergi ng operation. However, you can request the
assi gnnent of new sequence characters by using the $ED T conmmand.

9-9. CHECKI NG SEQUENCE FI ELDS

The presence of a masterfile during conpilation inplicitly requests the
checki ng of source records for proper sequence. Thus, when you specify
both a textfile and a masterfile as input files for the conpiler, or when
you specify a masterfile al one, sequence-checking is done on both files.
But when you specify a textfile as the only input file, sequence checking
is not perfornmed. Therefore, when you want to have your input

sequence- checked w thout nmerging two input files, you can read the input
fromeither the textfile or the masterfile and use $NULL for the other
file. For exanple,

: SPL SCURCE, , $NULL

9-10. EDI TING

Editi ng operations during nerging consist of omtting sections of the old
source programresiding on the masterfile and/or renunbering the sequence
fields of the new, nerged source programresiding on the newfile. Both
of these operations are requested through the $EDI T conmand,

The formof the $EDI T command is:

EXAMPLES:

wher e

par anet er

The paraneters

$[$] EDI T[par aneter [, paraneter]...]

$EDI T SEQNUM=S50, | NC=10
$EDI T VA D=100
$EDI T NOSEQ

specifies an option of the $ED T command. The paraneter
is one of the follow ng: VO D= sequence-val ue,
SEQNUM=sequence- nunber, NOSEQ or | NC=i ncnunber.

are di scussed individually bel ow, The paranmeters can be

specified in any order

VA D=
sequence- val ue

SEQNUME=
sequence-
nunber

Requests the conpiler to bypass during nerging al
records on the nasterfil e whose sequence fields contain
a value less than or equal to the sequence-val ue, plus
any subsequent records with blank sequence fields. This
paranmeter remains in effect until a masterfile record
with a sequence field val ue higher than the
sequence-val ue is encountered. The VO D paraneter is
initially disabled when the conpiler is invoked. The
sequence-value is either a | egal sequence nunmber of from
one to eight digits or a character string. |If the
sequence-val ue is less than eight characters, SPL
left-fills with ASCII zeros and sequence character
strings with spaces.

NOTE $EDIT VO D in $INCLUDE files nust reference |ines
in the INCLUDEd file only.

Requests re-nunbering of the merged source records on
the newfile, beginning with the val ue specified by

t he sequence-nunber. This val ue replaces the

sequence- nunber of the next record sent to the newfile.
The sequence-nunber of each succeeding record is

i ncrenented according to the value specified by the I NC
paranmeter or its default as described below [If the
SEQNUM=sequence- nunber paraneter is present but a
newfil e does not exist, the re-nunbering request is
ignored. If this paranmeter is present and the newfile

exi sts, the re-nunbering request remains in effect until
an $EDI T command with the NOSEQ paraneter is
encountered. When the nerged output is listed, records

sequence fields. The re-sequencing request is
initially disabled when the conpiler is called. The
sequence- nunber is a | egal sequence- nunber of from one
to eight digits. |If less than eight digits, the SPL
conpiler left-fills with ASCIl zeros.

NOSEQ Suspend re-nunbering of nmerged records on the newfile
the current sequence nunbers are retained. |If neither
SEQNUM nor NOSEQ are specified, NOSEQ takes effect by
default until superseded by SEQNUM

I NC= i ncnhunber Sets the increnment by which records sent to the newfile
are renunbered if SEQNUMis in effect. The increnent is
speci fied by incnunber, which is a value ranging from1
t hrough 99999999. Notice, however, that very |arge
increnents are of Iimted value since they may cause the
ei ght-digit sequence-nunber to overflow Re-nunbering
only occurs if SEQNUMis specified or the |ast paraneter
not overridden by a NOSEQ paraneter, and a newfile
exists. If SEONUMis specified but INCis not, the
sequence- nunber is increnented by the default value of
1000 for each succeeding record. This default val ue
applies until an INC paraneter specifying a new value is
encount er ed.

$EDI T commands are normally input fromthe textfile. You can input them
fromthe masterfile, but this procedure is not reconmended since any
$EDI T command containing a VO D paraneter on the masterfile could void
its own continuation records. $ED T commands thensel ves are never sent
to the newfile; thus, the $$EDIT... form of the comand, while
permtted, is redundant.

VWi | e sequence fields are allowed, and usually necessary, on records
contai ning $EDI T comrands, continuation records for such comrands shoul d
have bl ank sequence fi el ds.

During nerging, a group of one or nore masterfile records with blank
sequence fields are never replaced by lines fromthe textfile; they can
only be deleted by an $EDI T conmand wi th a VO D= sequence-val ue paraneter
at least as great as the |ast non-blank sequence field preceding the
group. In this case, the entire group of masterfile records with bl ank
sequence nunber fields is deleted.

Si nce voi ded records are never passed to the uslfile or newfile, their
sequence is never checked, and they never generate an out-of-sequence
di agnosti c nessage.

A VO D paraneter does not affect records in the textfile.

Any masterfile record replaced by a textfile record is treated as if

voi ded, except that follow ng records with bl ank sequence fields are not
al so voided. |If a replaced record woul d have been out-of - sequence, the
textfile record that replaces it produces an out-of-sequence di agnostic
nessage.

In general, whenever a record sent to the newfile has a non- bl ank
sequence field lower in value than that of the last record with a
non- bl ank sequence field, a diagnostic nessage is printed.

For exanpl e, suppose you want to nerge text input fromthe standard input
device (default for textfile is $STDIN) with an old programon the file
OLDPROG, creating new source input on the file NEWROG and you want to

re-nunber the nmerged source records on NEWPROG begi nning with the val ue
50, increnenting the sequence nunber of each subsequent record by 10.
After | ogging on, you would enter:

$EDI T SEQNUMESO, | NC=10

(New text or corrections to be nerged with old program)

9-11. $SPLI T/ $NCSPLI T COMVANDS

The $SPLI T and $NOSPLI T comands are intended for privileged users in
split-stack node to delimt an area of code to be checked for split-stack
errors (see section 8-1). These commands performthe sane function as
OPTI ON SPLIT. However, OPTION SPLIT is effective for an entire procedure,
while $NOSPLIT can be used to reset $SPLIT. (Pl ease see OPTION SPLIT,
7-13A.)

9-12. $COPYRI GHT COMVAND

You can specify copyright information which is transmtted to the USL and
program files by using the $COPYRI GHT conmand.

The formof the COPYRI GHT conmand i s:

$[$] COPYRI GHT string[[,string]...]

EXAMPLE:
$COPRI GHT" (C) Copyright Hew ett-Packard Conpany 1976.", &
$ "Al'l rights reserved. No part of this programnmay be", &
$ "phot ocopi ed, reproduced, or transmitted w thout", &,
$ "prior witten consent of Hew ett-Packard Conpany."

Each string parameter is a character string bounded by quotation marks
that is conbined with any other strings specified to formthe copyri ght
information copied to the USL and programfiles. The $COPYRI GHT conmmand
must precede the outer block BEG N The maxi num nunber of characters is
510.

9-13. CROSS REFERENCE LI STI NG

To obtain a cross reference listing of the identifiers used in an SPL
program run the CROSSREF progrant. Use file equations for the formal
designators LIST and TEXT for the list file and text file respectively.
Figure 9.5 shows a sanpl e CROSSREF out put, The listing shows, for each
identifier, the sequence nunber of each record in the source programin
which the identifier occurs.

*The CROSSREF programis avail abl e through the HP 3000 Contri buted

Li brary package offered by HP Conmputer Systens Division. Contact your
local HP Sales Ofice for nore information.

BOX

. FILE LI ST=$STDLI ST
: FI LE TEXT=SPLEX
: RUN CROSSREF. PUB. SYS
S.P. L. CROSS REFERENCE TABLE--- AUG 9, 1974 VERSI ON

SPLEX. PUB. GNOVON
MON, JAN 26, 1976, 3:26 PM

NUMBER OF CARD | MAGES=9. NUMBER OF SYMBOLS=5. NUMBER OF REFERENCES=7.

A (ARRAY)
00005000 00008000

| (1 NTEGER)
00003000 00007000 00008000 00008000

J (I NTEGER)
00003000 00007000

R1 (REAL)
00004000 00006000

R2 (REAL)
00004000 00006000
Figure 9.5. Cross Reference Listing

9-14. $I NCLUDE COMVAND

The $I NCLUDE command permits inclusion of text fromanother file into the
SPL source file.

The form of the $I NCLUDE command i s:

$1 NCLUDE fi | enane;

EXAMPLE

$I NCLUDE Myfil e;

wher e

fil enane is the fully qualified nane of the file to be included
The Included file nmay contain other $INCLUDEs to a
maxi mum of 10. |INCLUDE files are treated as unnunbered

files; $SEDIT VO D in Included files nust reference |ines
in the INCLUDEd file only.

Chapter 10 MPE COMVANDS

10-1. MPE COVIVANDS

Conmuni cation with the MPE Operating Systemis initiated through
commands. Commands are requests issued to MPE to performvarious
functions external to an SPL source program For exanple, commuands are
used to initiate and term nate batch jobs and interactive sessions,
conpil e and execute source prograns, call various MPE subsystens, and
obtain job/session status information. Commands can be entered through
any standard input file such as a card reader file or a termnal file.
Commands which you will use nost often with SPL prograns are summari zed
in Table 10-1. A conplete description of all MPE conmands is in the MPE
Commands Ref erence Manual .

Tabl e 10-1. MPE Conmands
| COVMAND | FUNCTI ON
| :JOB | Initiates a batch job |
| :HELLO | Initiates an interact ve session |
| :FILE | Specifies characteristics of a file
| :BU LD | Creates a new file |
| : PURGE | Deletes a file fromthe system
| : CONTI NUE | Disregards batch job error condition
| :SPL | Compiles an SPL source program
: SPLPREP	Compiles and prepares an SPL source program
:SPLGO	Conpiles, prepares, and executes an SPL source
	program
: PREP	Prepares a conpil ed program
: PREPRUN	Prepares and executes a conpil ed program
:RUN	Executes a prepared program
:ECD	Siginifes the end of data
EQJ	Terminates a job
:BYE	Term nates a session

In general, the formof of an MPE command is:

: conmand[par aneter-1ist)

In interactive node, the colon is pronpted by MPE, however, in batch
node, you nust provide the colon in colum 1 of the conmand record

The paraneter-list can contain zero, one, or nore paraneters that specify
files, values, and options for the command. The end of each paraneter in
alist is signifed by a delimter. A delimter is a character that
separates one itemfromanother. Delimters consist of conmas,
sem col ons, equal signs, or other punctuation marks.

A space nust separate the command fromthe paraneter-list; however, the
command nmust im nediately follow the colon w thout any intervening
spaces.

The neani ngs of parameters in sone commands are determ ned by their
positions in the parameter- list. For exanmple, in an :SPL comand:

:SPL textfile,uslfile,listfile, masterfile, newfile

the paraneters are positional and their positions in the list designate

paranmeter-list is signified by adjacent delimters, as shown bel ow

:SPL textfile,,listfile

VWhen paraneters are onitted fromthe end of a list, no adjacent
delimters are required as shown in the exanple by the om ssion of
masterfile and newfile.

10-2. SPECI FYI NG FI LES FOR PROGRAMS

Both the SPL conpiler and the MPE Operating Systemread input from and
wite output to files handled through the MPE file facility. For

exanpl e, the conpiler reads source code froma textfile wites object
code to an object file (uslfile), produces listings to a listfile, and
perfornms editing and nmergi ng operations using an old masterfile for input
and a newfile for output. Each file has a formal file designator. You
are responsi ble for equating actual file designators to these formal file
designators in one of three ways.

1. By naming the files as positional paraneters in the MPE commands
to conpile, prepare, and execute.

2. By omtting optional paraneters fromthe MPE conpil ation
preparation, or execution conmand, thus allow ng default file
designators to be in effect.

3. By using MPE FILE commands to equate the formal file designators
to the actual file designators. |If you use this method, you nust
call the conmpiler with the MPE: RUN command usi ng a PARM= par anet er
signifying which files are present, as described later. This
met hod can only be used for conpilation and not for preparation or
executi on.

You can al so use MPE: FI LE commands to equate the formal file designators
for your execution-tine files to actual file designators. See the MPE
Commands Ref erence Manual for a conplete description of the :FILE
conmand.

10-3. SPECI FYI NG FI LES AS COMVAND PARAMETERS

You can nane the follow ng types of files as paraneters in a conpilation
preparation, or execution conmand:

* System Defined Files

* User Pre-defined Files

* New Files

* dd Files

10-4. SYSTEM DEFI NED FI LES.

Systemdefined file designators indicate those files that MPE uniquely
identifies as standard input/output files for a job/session. These files
are shown in Table 10-2.

10-5. USER PRE- DEFI NED FI LES.

A user pre-defined file is any file that was previously defined or
redefined in a :FILE conmand. In other words, it is a back-reference to
that : FILE command. [In conpilation, preparation, or execution comuands,
the actual file designator of this type of file is the formal file
designator preceded by an asterisk to indicate that it was previously
defined. For exanpl e,

: FILE S=MYTEXT
: FILE LP; DEV=LP
: SPL*S, , *LP
Table 10-2. System Defined Files

| ACTUAL FILE | DEVI CE FI LE REFERENCED |
| DESI GNATOR | |
$STDI N A filenane indicating the standard job or session input

| | |
| | file (fromwhich the job or session is initiated). For

| | a job, this is typically a card reader for a session

| | this typcally indicates a terminal. Input data records

	inthe $STDIN file should not contain a colon in
	position one, since this indicates the end of the
	source input. Use the :EOD command to indicate the
	physical end of a source program (The sane command is

| | used to indicate the end of a data file.)

| $STDI NX | Equivalent to $STDIN, except that MPE/ 3000 commrand

| | records (those with a colon in position one)

| | encountered in a data file are read w thout indicating

| | the end of data (However, the conmands :JOB, :DATA, |
| | :EQJ, and :EQD are exceptions that aways indicate the

| | end of data and are never read as data) |
| | Afilenane indicating the standard job or session |
| | listing file corresponding to the particular job or

| | session input device being used. (For each potential

| | job/ session input device, a user with MPE/ 3000 System |

$STDLI ST

| Supervisor capability designates a correspondi ng
| job/session listing device during system con-
| figuration.) The job or session listing device is

| for a session. |
$NULL | The nane of a non-existent "ghost" file that is always
| treated as an enpty file. Wen referenced as an input
| file by a program that programreceives only an end of
| data indication upon first access. Wen referenced as
| an output file, the associated wite request is |
| accepted by MPE/ 3000 but no physical output is actually |
| performed. Thus, $NULL can be used to discard unneeded
| output from an executing program

10-6. NEW FI LES.

New files are files that have not yet been created, and are being created
for the first tine by the current batch job or interactive session. New
files can have actual file designators as shown in Table 10-3.

Table 10-3. New Files

FILE	PURPCSE	FORMAL FILE	DEFAULT FILE
		DESI GNATOR	DESI GNATOR
Textfile	Contains source program	SPLTEXT	$STDI N
	correction text to be nerged,		

| | and/or conpil er subsystem comands | |

| Listfile | Destination of |isting output. | SPLLI ST | $STDLI ST

| Uslfile | Destination of object program code | SPLUSL | $NEWPASS

| Masterfile | Ad source programto be merged | SPLMAST | $NULL

| | and edited with new text input | |

| | fromtextfile. | |

| Newfile | New source programresulting from | SPLNEW | $NULL

| | (optional) nerging of textfile and | |

| | masterfile. | | |
| Progfile | Destination of executable object | None | $NEWPASS

| | | | |

progr am

10-7. QLD FILES

Adfiles are existing files in the system They may be naned by the
designators shown in Table 10-4.

Table 10-4. dd Files

| ACTUAL FILE | FI LE REFERENCED |
| DESI GNATOR | |
| $OLDPASS | The nane of the tenporary file last closed as $NEWPASS.

filereference | Any other old file to which you have access. It may be
| a job/session tenporary file created in the current or
| a previous programin the current job/ session, or a |
| permanent file saved by any programin any job/session.
| The format is the same as filereference, noted in Table
| 10-5.

10-8. I NPUT/ QUTPUT SETS.

used as i nput
(out put set).

I NPUT SET
$STDI N
$STDI NX
$OLDPASS
$NULL
*formal -
desi gnat or
filereference
QUTPUT SET
$STDLI ST
$OLDPASS
SNEWPASS
$NULL
*formal -

desi gnat or
filereference

paranmeters (input set) and those used as output paraneters
These sets are defined as foll ows:

The job/session input file.

The job/session input file with commands al | owed.

The last file passed.

A constantly-enpty file that will produce an end-of-file
condition whenever it is read.

A back-reference to a previously defined file.

A file name,
| ockwor d.

and perhaps account and group names and a

The job/session listing file.

The last file passed.

A new tenporary file to be passed.

A constantly-empty file.

A back-reference to a previously defined file.

A file name,
| ockwor d.

and perhaps account and group nanmes and a

10-9. SPECI FYI NG FI LES BY DEFAULT

VWhen you omit an optional file parameter froma conpilation, preparation
or execution comrand, MPE assigns one of the nenbers of the input or

out put sets by default. The file designator assigned depends on the
speci fic command, paraneter, and operating node as noted later in this
section. The default file designators are shown in Table 10-5.

Table 10-5. SPL Conpiler File Designator

| ACTUAL FILE | FI LE REFERENCED |
| DESI GNATOR | |
$SNEWPASS A tenporary disc file that can be passed automatically

| |
| to any succeedi ng MPE/ 3000 command wi thin the sane job
| or session which references it by the fil enane |
| $OLDPASS. (Passing is explained in the conpilation, |
| preparation, and execution command exanples) Only one
| such file can exist in the job or session at any ore
| time. (When SNEWPASS is closed, its nane is changed to
| $OLDPASS automatically, and any previous file named |
| $OLDPASS is deleted.) |

filereference | Any other new file to which you have access, Unless you

| specify otherwise, this is a tenporary file, residing

| on disc, that is destroyed upon term nation of the |

| programIf no :FILE conmand specifies otherw se, any |

| such SPL files are closed as job/session tenporary |

| files, saved until the end of the job/ session, and

| ther are purged. |If closed as permanent files (by

| specifying SAVE in a :FlILE command), they are saved |

| until you purge them Typically, this format consists of

| a file nane containing up to eight al phanuneric char- |

| acters, beginning with a letter. |In addition, other |

| elenents (such as a group name, account name, or

| 1ockword) can be specified The conplete rul es govern ng

| the filereference format are contained in the MPE

| Commands Ref erence Manual .

10-10. COVPILI NG PREPARI NG AND EXECUTI NG SPL SOURCE
PROGRAMS

The conmands used for conpilation, preparation, and execution of SPL
source prograns are

:SPL or :RUN Conpi |l es a source program

SPL. PUB. SYS

: SPLPREP Conpi |l es and prepares a source program

: SPLGO Conpi |l es, prepares, and executes a source program

: PREP Prepares source prograns which have been conpiled into a
USL file.

: RUN Execut es prograns that have been conpil ed and prepared

(and therefore exist on programfiles).

: PREPRUN Prepares and executes prograns conpiled into USL files.

10-11. :SPL COMVAND
The : SPL conmmand conpiles an SPL source program
The formof an :SPL conmand is:
SPL[textfile][,[uslfile][,[listfile][,[masterfile][,[newfile]]]]][;! NFO=quoted
EXAMPLES:
: SPL MYSOURCE, , LI ST

: SPL
» SPL MYSOURCE, USL, *LP, MASTER, NEWVAST

wher e

textfile is the name of an input file fromwhich the source
programis to be read. |If omtted, the programw |l be
read fromthe standard input file $STDIN. Do not use the
designator SPLTEXT for this paraneter.

uslfile is the name of the USL (User Subprogram Library) file on

whi ch the object programis to be witten. |If this
paranmeter is included in an : SPL command, it mnust
indicate a file previously created in one of two ways:

1. By saving a USL file with a : SAVE command from a
previ ous conpil ation.

2. By creating a newfile with a : BU LD conmand and
designating it as a USL file with a file code of
1024 or USL. For exanpl e,

: BUI LD MYUSL; CODE=1024 or : BU LD MYUS

If the usifile is omtted, the default file $O.DPASS is used. Do not use
t he designator SPLUSL for this paraneter.

listfile is the name of the file to which the programlisting is
to be sent. |If omtted, the default file $STDLIST is
assigned. Typically $STDLIST is the terminal in a
session or the line printer in batch. Do not use the
designator, SPLLIST for this paraneter.

masterfile is the name of a file to be optionally nerged with
textfile and witten onto a file nanmed newfile. |If
masterfile is omtted, no nerging takes place. Do not
use the designator SPLMAST for this paraneter.

newfile is the name of a file on which the re-sequenced records
fromthe textfile and the masterfile are optionally
merged. When newfile is onmitted, no newfile is created.
Do not use the designator SPLNEWfor this paraneter.

Al paraneters of an :SPL command are optional. However, direct
interactive input is not recom nended since it is inpossible to correct

an error after pressing the carriage return key. To create source files,
use the HP 3000 Text Editor (See the EDI T/ 3000 Reference Manual).

quoted string is alist of conpiler comrmands enclosed in single or
doubl e quotes in the format described in section 9-1

I NFO = paraneter

The 1 NFO keyword on the SPL, SPLPREP, and SPLGO conmands al |l ows conpil er
conmands to be added to a program w t hout changing the source. These
commands | ogically precede any other source. On the listing, these
commands have a sequence field of INFO= to indicate their source as
illustrated in the exanple below. These conpiler conmands read fromthe
gquoted string are not sent to newfile.

: SPL EXAMPLE; | NFO="$CONTRCL MAP$CONTROL | NNERLI ST"

PAGE 0001 HP32100A. 08. 02 E4W (C HEW.ETT- PACKARD COVPANY 1982
IN FO= 00000 O $CONTROL MAP
IN FO= 00000 O $CONTROL | NNERLI ST
1 00000 O BEG N
2 00000 1 | NTEGER |
3 00000 1
4 00000 1 | :=99;
00000 LDl , 143 021143 01.05
00001 STOR DB 000 051000 03.15
5 00002 1 END
00002 PCAL, 052 000000 14. 90
| DENTI FI ER CLASS TYPE ADDRESS
I SIMP. VAR I NTEGER DB+000
TERM NATE' PROCEDURE
PRI MARY DB STORAGE=%01; SECONDARY DB STORAGE=%©0000
NO. ERRORS=0000; NO. WARNI NGS=0000
PROCESSOR Tl ME=0: 00: 01, ELAPSED TI ME=0: 00: 05

END OF PROGRAM

10-12. RUN SPL. PUB. SYS COMVAND

An alternative way to call the SPL conpiler is by using the : RUN comand.
Bef ore using the : RUN command, you nust use file equations for the files
normal Iy specified on the :SPL command. The formal file designators are:

SPLTEXT (textfile)
SPLLI ST (listfile)
SPLUSL (uslfile)
SPLNVAST (rmasterfile)
SPLNEW (newfile)

Tabl e 10-6. PARM Val ues

PARAMETERNUM	FILES PRESENT
0	None
1	textfile
2	listfile
3	listfile, textfile
4	uslfile
5	uslfile, textfile
6	uslfile, listfile
7	usifile, listfile, textfile
8	masterfile
9	masterfile, textfile
10	masterfile, listfile
11	masterfile, listfile, textfile
12	masterfile, uslfile
13	masterfile, uslfile, textfile
14	masterfile, uslfile, listfile
15	masterfile, uslfile, listfile, textfile
16	newfile
17	newfile, textfile
18	newfile, listfile
19	newfile, listfile, textfile
20	newfile, uslfile
21	newfile, uslfile, textfile
22	newfile, uslfile, listfile
23	newfile, uslfile, listfile, textfile
24	newfile, masterfile
25	newfile, masterfile, textfile
26	newfile, masterfile, listfile
27	newfile, masterfile, listfile, textfile
28	newfile, masterfile, uslfile
29	newfile, masterfile, uslfile, textfile
30	newfile, masterfile, uslfile, listfile
31	newfile, masterfile, uslfile, listfile,
	textfile

Thus, to conpile fromthe file MYSOURCE and send the listing to the line

printer, you would use

: FI LE SPLTEXT= MYSOURCE

bef ore using the : RUN comrand.

Addi tional ly, you nust specify a PARMEparaneter num paraneter on the : RUN
command to indicate which files are present unless the default values are
used. The value is between 0 and 31 as shown in Table 10-6. Basically,
the Iow order five bits in parameternumrepresent the five files which
can be specified as shown bel ow

For exanple, to invoke the compiler with the textfile and listfile
present, you woul d use the comrand:

: RUN SPL. PUB. SYS; PARM=3; | NFO="$CONTROL NCLI ST"

10-13. ENTERI NG PROGRAM SOURCE | NTERACTI VELY

If you do not specify a textfile when conpiling in session node, you mnust
enter the programsource fromthe termnal. You are pronpted for each
source line with a greater-than sign (>). Each programunit (procedure,
subroutine, or main body) is conpiled as it is conpleted. To exit from
the conpiler, enter :EOD in response to the pronpt character >.

10-14. : SPLPREP COMVAND

The : SPLPREP command conpil es and prepares an SPL source program

The form of the : SPLPREP conmand i s:
:SPLPREP[textfile][,[progfile]l[,[listfile][,[masterfile]l[,newfile]]]][;!NFO=quo

EXAMPLES:

: SPLPREP MYSCQURCE, MYPROG, * LP
: SPLPREP MYSCQURCE, , , MAST

wher e
textfile, listfile, masterfile, newfile, quoted string

have t he same neani ngs as descri bed under the : SPL command.

progfile is the name of the file on which the prepared programis
witten. |If this paranmeter is included, it nust
reference a file created in one of two ways:

1. By using the :BU LD conmand with a fil ecode of
1029 or PROG For exanple,
: BU LD PROGF; CODE=1029
or
: BU LD PROGF; CODE=PROG
2. By specifying a non-existent file in the
paranmeter, in which case a tenmporary file of the
correct size and type will be created. To save
the file for future jobs/sessions, you nmust use

the : SAVE command after preparation.

If the progfile paraneter is omtted, the default file SNEWPASS is
assigned. This file is renamed $O.DPASS upon conpl eti on.

Al'l :SPLPREP paraneters are optional.

10-15. : SPLGO COMIVAND

The : SPLGO command conpil es, prepares, and executes an SPL source
pr ogr am

The form of the : SPLGO conmand i s:
:SPLE textfile][,[listfile][,[masterfile][,newfile]]][;!|NFO=quoted string]
EXAMPLES:
: SPLEO MYSOURCE, *LP
: SPLGO MYSOURCE, , MAST
wher e
textfile, listfile, masterfile, newfile, quoted string
all have the sanme meani ng as descri bed under the :SPL conmand.

Al :SPLGO paraneters are optional.

10-16. : PREP COMVAND

The : PREP command prepares source prograns that have been conpiled into a
USL file.

The formof the : PREP command i s:

:PREP uslfile, progfile [;ZERODB] [; PMAP] [; MAXDATA=segsi ze] [; STACK=st acksi ze]
[; DL=dl si ze] [; CAP=caplist] [;RL=filenane]

EXAMPLES:

: PREP MYUSL, MYPROG, PVAP; MAXDATA=4096
: PREP $COLDPASS, PROGF

wher e

uslfile is the name of the USL file onto which the programfile
has been conpil ed.

progfile is the name of the programfile onto which the prepared

programis to be witten. This file nmust be created in
one of two ways:

1. By creating a newfile with the :BU LD command using a fil ecode of
1029 or PROG as foll ows:

: BUI LD PROGF, CODE=1029
or
BUI LD PROGF, CODE=PROG

2. By specifying a non-existent file in this paranmeter, in which case
a tenporary file of the correct size and type will be created. To
save this file for future jobs/sessions, you nust use the :SAVE
conmand.

Both the uslfile and the progfile paraneters are required in a : PREP
conmand.

ZERODB is arequest to set the initially defined DL-DB and DB-Q
(initial) areas of the stack to zero.

PMVAP is arequest to list certain informati on about the
prepared program

segsi ze specifies a maxi mum size for the stack area in words.
The segmenter normally establishes this value, but you
can use this value to override the Segnenter's estinate.

st acksi ze VWhen a process is created by the system the user is
al | ocat ed MAXDATA words of virtual nenory, but only
stacksize words in main nenory. The main nenory space
i s expanded as required. This paraneter allows you to
override the Segnenter estimate.

dl si ze the DL-DB area size to be initially assigned to the
stack. If not specified, MPE will estimate the val ue

capl i st

filenane

the capability-class attributes associated with your
program The default values are BA (batch access) and
A (interactive access).

the nane of a relocatable procedure library to be
searched to satisfy external references during program
preparation. |If not specified, no library is searched.

10-17. : PREPRUN COMVAND

The : PREPRUN command prepares and executes prograns that have been
conpiled into USL files.

The formof the

: PREPRUN command i s:

:PREPRUN uslfile [,entry-point] [; NOPRIV] [; PMAP] [; DEBUG

wher e

uslfile

ent ry- poi nt

NCPRI V

PMVAP

DEBUG

LMAP

ZERODB

segsi ze

par anet er num

st acksi ze

[; LMAP] [; ZERCDB] [; MAXDATA=segsi ze]

[; PARMEpar amet er nun] [; STACK=st acksi ze] [;DL=dl si ze]
[;RL=filename] [;LIB=library] [; CAP=caplist]

[; NOCB]

EXAMPLES:

: PREPRUN $CLDPASS; PVAP; DEBUG LI B= P
: PREPRUN MYUSL

is the name of the USL file on which the program has
been conpil ed.

specifies the entry-point where execution is to begin.
If not specified, execution begins at the prinmary
entry-point.

is a request to place a privileged programin
non-privileged node. |If not specified, a privil eged
program executes in privileged node.

is arequest to list certain informati on about the
prepared program

is a request to set a breakpoint on the first executable
instruction of the programfor entering debug commuands.
Refer to the MPE DEBUG STACK DUMP Ref erence Manual .

is arequest to list certain informati on about the
| oaded program

is arequest to set the initially defined DL-DB and DB-Q
(initial) areas to zero.

speci fies the maxi mum stack area (Z-DL) size permtted,
in words, This value is normally set by the Segmenter
but you can use this paraneter to override the Segmenter
esti mat e.

is a value that can be passed to your programas a
general paraneter for control or other purposes. |If not
specified, a zero is passed.

VWhen a process is created by the system the user is

al | ocat ed MAXDATA words of virtual nenory but only
stacksize words in nmain nenory. The main nmenory is
expanded as required. This paraneter allows you to
override the Segnenter estimate. |If not specified, the
stacksize is determ ned by the Segnenter for each

i ndi vi dual program

dl si ze is the size of the DL-DB area to be initially assigned

filenane

library

capl i st

MPE.

is the name of a relocatable procedure library to be
searched to satisfy external references during program
preparation. |If not specified, no library is searched.

specifies the order in which segnented procedure
libraries are to be searched to satisfy externa
references during segnentation. The library can be
either G (Goup first), P (Public group first), or S
(Systemfirst). |If not specified, the Systemlibrary is
searched first.

specifies the capability-class attributes associ ated
with your program |If not specified, BA (Batch Access)
and I A (Interactive Access) are used.

Requests that the file system not use stack segment
(PCBX) for its control blocks, even if sufficient space
is available. This permts you to expand your stack
(via the DLSIZE or ZSIZE intrinsics) to the maxi mum
possible limt at a later tine, but causes the File
Managenent Systemto operate nore slowy for this

pr ogr am

NOTE You should only use this paraneter if the program
absolutely requires the | argest stack possible.

10-18. : RUN COWNAND

The : RUN conmand executes a programthat has been conpil ed and prepared
into a programfile.

The form of the : RUN conmmand i s:
:RUN progfile [,entry-point] [;NOPRIV] [;LMAP] [; DEBUG
[; MAXDATA=segsi ze] [; PARM=paranet ernun] [; STACK=st acksi ze]
[; DL=dl si ze] [;LIB=Library] [; NOCB]
EXAMPLES:

: RUN PROGF, PI ; DEBUG, LI B=P
- RUN $COLDPASS; MAXDATA=4096

wher e

progfile is the name of the file which contains the conpiled and
prepared programto be executed.

The ot her paraneters have the sane neaning as shown with the : PREPRUN
conmand.

10-19. USI NG EXTERNAL PROCEDURE LI BRARI ES

Conpiled SPL prograns are stored in files called User Subprogram
Libraries (USL's) that reside on disc, In any particular USL, each
conpiled programunit exists as a Rel ocatable Binary Mdule (RBM. To
prepare a program and any programunit it references, for execution, the
MPE Segnenter selects the appropriate RBMs fromthe USL and bi nds them
into Iinked segnents witten on a programfile. For nore information on
the Segmenter, USL's and RBMs, refer to the MPE Segnmenter Subsystem

Ref erence Manual .

VWhen you prepare and run prograns in SPL, it is possible to reference
external procedures in procedure libraries. You can build, nodify, and
mai ntain two types of procedure libraries within your |og-on group and
account: Relocatable Libraries (RL's) and Segnented Libraries (SL'Ss).

10-20. RELCCATABLE LI BRARI ES

A Rel ocatable Library (RL) is a specially formatted file that is searched
at program preparation tine to satisfy references to external procedures
called by your program Wthin such libraries, these procedures are

pl aced in a single segnment and |inked to your program Wthin such
libraries, these procedures exist in RBMform (as they would on a USL).
VWhen a programis prepared, these procedures are placed in a single
segnent and linked to your programin the resulting programfile.

For exanple, to specify that an RL named RLPRCC be searched during
preparation of a programfromthe USL file USLI to the programfile
PROGL, you would enter the follow ng : PREP comrand:

: PREP USL1, PROGL; RL=RLPROG

10-21. CREATI NG AND MAI NTAI NI NG RELOCATABLE LI BRARI ES.

To create and maintain relocatable libraries, you nust access the
Segnenter by entering the MPE : SEGVENTER conmand.

The formof the : SEGVENTER command i s:
: SEGVENTER [listfile]

wher e

listfile is an ASCII file fromthe output set (the formal
designator is SEGIST) to which is witten any listable
out put generated by the Segmenter conmands. The
desi gnator SEG.I ST shoul d not be used as the actual file

designator. |If the listfile is omtted, the standard
job/session list device ($STDLIST) is assigned by
defaul t.

If you are in an interactive session, the Segnenter
prompts you with a dash (-). Once the Segnmenter is
accessed, the followi ng commands are used to create and
mai ntain an RL:

- BU LDRL Creates a permanent, formatted RL file.

procedure is to be obtained.

-RL Identifies an existing RL.

- ADDRL Adds a procedure to the currently
identified RL.

- PURGERL Del etes a procedure froman RL

-LI STRL Lists informati on concerning the

currently identified RL.
The formof a -BU LDRL command i s:

-BU LDRL fil ereference, records, extents

wher e

filereference is the file name of the new RL, optionally including
group and account identifiers.

records is the total maxi mum capacity of the file, specified in
terns of 128-word, binary |ogical records.

extents is the total nunber of disc extents that can be

dynami cally allocated to the file as logical records are
witten to it. The size of each extent is determ ned by
the records paraneter val ue divided by the extents
paranmeter value. The extents val ue nust be between 1
and 16 i ncl usive.
The formof a -USL conmand is:
-USL filereference

wher e

filereference is the name and optional group and account names, of the
USL file to be mani pul at ed.

The formof the -RL conmand i s:
-RL filereference

wher e

filereference is the name, plus optional group and account nanes, of
the RL to be nodified.

The formof the -ADDRL command i s:
- ADDRL nane [(i ndex)]

wher e

nane is the name of the procedure to be added to the RL. This
nane is called the primary entry-point of the RBM

i ndex

is an integer further identifying the RBM The index may
be used when the currently-managed USL contains nore
than one active RBM of the sane nane. |If index is
omtted, a value of zero is assigned.

The formof the -PURGERL conmand i s:

wher e

rlspec

nanme

- PURGERL[r | spec,] nane

is either UNIT or ENTRY.UNIT is used to delete the
procedure identified by name. ENTRY is used to delete
the entry-point identified by nane. |If rlspec is
omtted, ENTRY is used.

if rlspec is UNNT, name is the nane of the procedure to
be deleted. If rlspec is ENTRY, nane is the name of the
entry-point to be del eted.

The formof a -LISTRL command i s:

-LI STRL

Refer to the MPE Segnenter Subsystem Reference Manual for further
di scussi ons of these Segnmenter conmands.

10-22. SEGVENTED LI BRARI ES

Segnmented libraries (SL's) are specially formatted files that are
searched at programrun time to satisfy references to externa

procedures. These libraries, like programfiles, contain procedures in
segnented (prepared) form An individual procedure may exist in a
segnent contai ning many ot her procedures. Wen a procedure is
referenced, the segment containing it is |oaded with your program Since
the segmentation is not altered when different prograns reference
procedures in an SL, these procedures may be shared concurrently by ot her
progr amns.

To specify that an SL file in your group account be searched, add the
keyword paraneter LIB= library in the :RUN command as fol |l ows:

: RUN PROGL; LI B=G

10-23. CREATI NG AND MAI NTAI NI NG SEGVENTED LI BRARI ES.

To create and maintain segnented libraries, you nust first access the
Segnenter by entering the MPE : SEGVENTER conmand.

The formof the : SEGVENTER command i s:
: SEGVENTER[| i stfil e]

wher e

listfile is an ASCII file fromthe output set (the formal
designator is SEGIST) to which is witten any listable
out put generated by the Segmenter conmands. The
desi gnator SEG.I ST shoul d not be used as the actual file

designator. |If the listfile is omtted, the standard
job/session list device ($STDLIST) is assigned by
defaul t.

If in an interactive session, you are pronpted with a dash (-) for
Segnmenter conmands. Once the Segnenter is accessed, the foll ow ng
conmmands are used to create and maintain an SL:

- BUI LDSL Creates a permanent, formatted SL file.

-SL Identifies an existing SL file

- ADDSL Adds a procedure to the SL file currently bei ng managed.
- PURGESL Purges an entry-point froma segnment in an SL, or the

entire segment fromthe SL
- LI STSL Lists the procedures in the currently managed SL file.

In addition, the -USL and -LISTUSL Segnenter conmands can be used as
di scussed under "Rel ocatabl e Libraries" (paragraph 10-20).

The formof a -BU LDSL comrmand i s:

-BUI LDSL fil ereference, records, extents

filereference is afile whose local name is SL, plus optional group
and account nanes.

NOTE You can create an SL file with a | ocal nane ot her
than SL, but such a file cannot be searched by the
: RUN conmand.

records is the total maximum file capacity, specified in terns
of 128-word binary | ogical records.

extents is the total nunber of disc extents that can be
dynami cally allocated to the file as logical records are
witten to it. The size of each extent is determ ned by
the records paraneter val ue divided by the extents
paranmeter value. The extents val ue nust be an integer
between 1 and 16 i ncl usi ve,

The formof an -SL conmand is:
-SL filereference

wher e

filereference is the name of the SL to be nodified, optionally
i ncl udi ng group and account nanes.

The formof an -ADDSL comrand i s:

- ADDSL nane [; PVAP]

wher e
nane is the name of the segnment to be added to the SL
PMVAP indicates that a listing describing the prepared segnent

wi |l be produced on the listfile device specified in the
: SEGVENTER conmand. |If PMAP is omtted, the prepared
segnent is not |isted.

The formof a -PURGESL command i s:
- PURGESL [unitspec,] nanme

wher e

uni t spec is either ENTRY or SEGVENT. ENTRY is used to delete the
entry-point identified by name. SEGVENT is used to
delete the segnent identified by name. |f neither ENTRY
nor SEGQVENT is specified, ENTRY is used.

nane is the name of the entry-point or segnment to be del eted.

- LI STSL

For further descriptions of these Segnmenter commands, see the MPE
Segnent er Subsyst em Ref erence Manual .

Appendi x A ASCI I CHARACTER SET

Table A-1. BYTE PGCSI TI ON

CHAR	Left	Right	Dec
NUL	000000	000000	O
SOH	000400	000001	1
STX	001000	000002	2
ETX	001400	000003	3
I ECT I 002000 I 000004 I 4

ENQ 002400 000005 5
ACK	003000	000006	6
BEL	003400	000007	7
BS	004000	000010	8
HT	004400	000011	9
LF	005000	000012	10
VT	005400	000013	11
FF	006000	000014	12
CR	006400	000015	13
SO	007000	000016	14
Sl	007400	000017	15
DLE	010000	000020	16
DC1	010400	000021	17
DC2	011000	000022	18
DC3	011400	000023	19
DC4	012000	000024	20
NAK	012400	000025	21
SYN	013000	000026	22
ETB	013400	000027	23
CAN	014000	000030	24
EM	014400	000031	25
SuB	015000	000032	26
ESC	015400	000033	27
FS	016000	000034	28
GS	016400	000035	29
RS	017000	000036	30
US	017400	000037	31
SPACE	020000	000040	32
!	020400	000041	33
"	021000	000042	34
#	021400	000043	35
$	022000	000044	36
%	022400	000045	37
&	023000	000046	38
	023400	000047	39

BYTE PCSI TI ON

)	024400	000051	41
*	025000	000052	42
+	025400	000053	43
	026000	000054	44
-	026400	000055	45

.	027000	000056	46
/	027400	000057	47
O	030000	000060	48
1	030400	000061	49
2	031000	000062	50
3	031400	000063	51
4	032000	000064	52
5	032400	000065	53
6	033000	000066	54
7	033400	000067	55
8	034000	000070	56
9	034400	000071	57
	035000	000072	58
	035400	000073	59
<	036000	000074	60
=	036400	000075	61
>	037000	000076	62
?	037400	000077	63
@	040000	000100	64
A	040400	000101	65
B	041000	000102	66
C	041400	000103	67

| D | 042000 | 000104 | 68

| E | 042400 | 000105 | 69 |
| F | 043000 | 000106 | 70 |
| G | 043400 | 000107 | 71

| H | 044000 | 000110 | 72

| 1 | 044400 | 000111 | 73 |
| J | 045000 | 000112 | 74 |
| K | 045400 | 000113 | 75

| L | 046000 | 000114 | 76 |
| M | 046400 | 000115 | 77

| N | 047000 | 000116 | 78

| O | 047400 | 000117 | 79 |

BYTE POSI Tl ON

| CHAR | Left | Right | Dec |
| P | 050000 | 000120 | 80

| Q | 050400 | 000121 | 81 |
| R | 051000 | 000122 | 82

| S | 051400 | 000123 | 83 |
| T | 052000 | 000124 | 84 |
| U | 052400 | 000125 | 85

| V | 053000 | 000126 | 86 |
| W | 053400 | 000127 | 87 |
| X | 054000 | 000130 | 88

| Y | 054400 | 000131 | 89

Z	055000	000132	90
[055400	000133	91
\	056000	000134	92
1]	056400	000135	93

057000
057400
060000

000136
000137
000140

94
95
96

| b
I | 061000
L | 061400 | 000145
¥ | 002000 | 000143 | o
| f | 062400 | O00Tas o
| g | 063000 | 000146 201 l
| h | 063400 oo | 102 l
| i | 064000 | ooTe0 | 109 l
| | 064400 | 900151 | 204
| k | 065000 | o0Tos | 105 l
| | | 065400 | 000153 | 206 l
| m | 066000 | 00Tey 107
| n | 066400 e 0 l
| o | 067000 L ooTee | 109 l
| p | 067400 | 000153 e l
| a | 070000 | 500100 11
| 1 | 070400 | 000161 | l
| s | 071000 | S00102 i l
| t | 071400 | So0ies | 114 l
| u | 072000 | 00010s s
| v | 072400 L ooies T
| w | 073000 | 500168 17
__________ | 073400 Wrsfers s l
_________________ | 000167 | 1o
________________ | 119 I
BYTE POSI TI ON
| OAR | Left
__________ | Left | Rght
T e | Right | Dec.
i | 074000 | 000170 - o
Y | 074400 ooz
| { | 075000 000142 iz N
| | 075400 | S001vs 12 l
| } | | 076000 o iz l
| ~ | 076400 | S0oLve i l
| DEL | 077000 oo | 125 l
| 077400 001y i l
| 000177 B
| 127 I

Appendi x B RESERVED WORDS

The foll owi ng synbol s have speci al

be used as identifiers:

ABSOLUTE
ALPHA
AND
ARRAY
ASSEMBLE
BEG N
BYTE
CARRY
CASE

CAT
CHECK
COMVENT
DABZ
DATASEG
DDEL
DEFI NE
DEL
DELB
DO
DOUBLE
DXBZ

ELSE
END
ENTRY
EQUATE
EXTERNAL
FALSE

FI XR

FI XT
FOR

FORWARD
GLOBAL
€0)

&aro

| ABZ

I F

I NTEGER

| NTERNAL
| NTERRUPT
I NTRI NSI C
| XBZ
LABEL

LAND
LO3 CAL

NCCARRY

NOT
NOVERFLOW
NUMERI C
OoF

CPTI ON

R
OVERFLOW
OMN

PO NTER
PRI VI LEGED
PROCEDURE
PUSH

meani ng i n SPL/ 3000 and thus, cannot

REAL
RETURN
SCAN

SET
SPECI AL
SPLIT

STEP
SUBROUTI NE
SW TCH

THEN

TO

TGS

TRUE
UNCALLABLE
UNTI L
VALUE
VARI ABLE
VI RTUAL
VWHI LE

W TH
XOR

Appendi x C BU LDI NG AN I NTRINSI C FI LE

The program BUI LDINT is used to build or change intrinsic disc files.
The program uses formal designators |INTDECL and QUT for input and |i st
output files respectively. The default files are $STDIN and $STDLI ST.
The intrinsic data file is opened as SPLI NTR

The conmand to execute the programis

: RUN BUI LDI NT. PUB. SYS

The i nput data consists of SPL procedure head decl arations (OPTION
EXTERNAL is required) and optional comrands.

Wt hout commands, the procedure head decl arations are added to the
intrinsic file.

Commands have the foll owi ng purposes:

$PURGE Renpves all entries fromthe intrinsic file.

$REMOVE Renoves all entries which follow this command, until a
$BUI LD. | nput has the sanme format as for adding entries.

$BUI LD Adds all subsequent input entries to the intrinsic file.
$BU LD is required only if $REMOVE i s used.

Any input data which is not a procedure head term nates input. At this
point, the programprints a formatted list of all intrinsics and
term nat es.

For exanpl e,

: PURGE MYFI LE

: BU LD MYFI LE

: FI LE SPLI NTR=MYFI LE

: RUN BUI LDI NT. PUB. SYS

| NTEGER PROCEDURE M A, B, C); VALUE A; | NTEGER A, B; LOd CAL C

OPTI ON EXTERNAL; PROCEDURE COVP(N,M); VALUE N,M; DOUBLE N, REAL M ;
OPTI ON EXTERNAL;

PROCCEDURE BYT(L, M N, O; LABEL L; PROCEDURE M BYTE ARRAY N

LOd CAL PO NTER O OPTI ON EXTERNAL;

: ECD

See the next page for the formatted output for this file.

Figure C.1. BU LDINT Qutput

Table C-1. BU LDI NT Error Messages

| DECLARED TW CE | The identifier in | Correct to unique
| | question is not unique. | identifier.

| EXPECTS A SEM COLON | Only a conma or a |

| | semcolon is |legal at |

| | this point. |

| EXPECTS | DENTI FI ER | An identifier is the
| | only legal synbol at
| | this point.

been specified but no
| egal check | evel
fol |l ows.

The FORWARD option has
been specified in a
context where it is
illegal.

A left bracket,

asteri sk, or slash has
been encount ered, none
of which are
accept abl e.

An interrupt procedure
has been declared with
a param eter; a
paranmeter is illegal in
this context.

A formal paraneter has
not been given a type
speci fication.

NUVERI C SYMBOL NOT A fraction has been

FORWARD OPTION IS	

ALLOWED	encoun- tered which is

| LLEGAL

| LLEGAL SYMBCL

I NTERRUPT PROCEDURE MJST
NOT HAVE PARAMETER

M SSI NG SPECI FI CATI ON

not accept abl e.

An error occurred while
readi ng fromthe input
file.

There is no formal
paranmeter with the name
used in this

speci fication.
Subroutines are illega
inthe intrinsic file.
There are nore than 31
formal paraneters.

A specification for an
identifier was nade
with nore than one type
or nore than one cl ass.
A val ue specification
exists for a

READ ERROR

SPECI FI CATI ON DOES NOT
CORRESPOND

SUBRQUTI NES NOT ALLOWED Rewite the intrinsic
w t hout subroutines.
Reduce t he nunber of

formal paraneters.

TOO MANY PARAMETERS
TOO MANY OR | LLEGAL
ATTRI BUTES

VALUE SPECI FI CATI ON DCES
NOT CORRESPOND

Ei ther include the
formal paraneter or
non- exi stent formal renove the val ue
par anet er . specification

Appendi x D MPE | NTRI NSI CS

Table D-1. Sunmary of MPE Intrinsics

INTRINSIC	PURPCSE	CAPABILITY
NAMVE		REQUI RED
ACCEPT	Accepts (and conpl etes) a request	Standard
	received by the preceding GET	
	intrinsic call. (Used only with	
	DS/ 3000.)	
ACTI VATE	Activates a process.	Process Handling
ADJUSTUSLF	Adjusts directory space in a USL file.	Standard
ALTDSEG	Alters the size of an extra data	Data Segment
	segnent.	Managenent
ARl TRAP	Enables or disables internal interrupt	Standard
	signals fromall hardware arithnetic	
	traps.	
ASCII	Converts a nunmber frombinary to ASCII	Standard
	code.	
Bl NARY	Converts a number fromASCIl to binary	Standard
	code	
CALENDAR	Returns the cal endar date.	Standard
CAUSEBREAK	Requests a session break.	Standard
CLEANUSL	Deletes inactive entries from USL	Standard
	file.	
CLOCK	Returns the actual tine.	Standard
CLOSELOG	Closes access to the logging facility.	LG Capability
COMVAND	Executes an MPE comand	Standard
	progranmatically.	
CREATE	Creates a process.	Process Handling

| CREATE PROCESS | Provides ability to assign $STDIN and | Process Handling |
| | $STDLIST to any file. | |

CTRANSLATE	Converts a string of characters from	Standard	
	EBCDIC to ASCII or fromASCI	to	
	EBCDI C.		
DASCI		Converts a val ue from doubl e-word	Standard

| | binary to ASCII code. | |

| DBI NARY | Converts a number from ASCIl code to a | Standard |
| | doubl e-word binary val ue. | |

| DEBUG | Calls the DEBUG facility. | Standard

NAMVE		REQUI RED
DLSIZE	Changes size of DL to DB area.	Standard
DMOVIN	Copies block fromdata segnment to	Data Segment
	stack.	Managenent
DMOVOUT	Copies block fromstack to data	Data Segment
	segnent.	Managenent
EXPANDUSLF	Changes length of a USL file.	Standard
FATHER	Requests Process ldentification Nunber	Process Handling
	(PIN of father process.	
FCARD	Drives the HP 7260A Optical Mark	Standard
	Reader.	
FCHECK	Requests details about file	Standard
	input/output errors.	
FCLOSE	Closes a file.	Standard
FCONTROL	Perforns control operations on a file	Standard

| | or term nal device. | |

FDELETE	Deactivates a R10 record.	Standard
FDEVI CE CONTROL	Adds control directives to a spool ed	Standard
	device file.	
FERRVSG	Returns nessage corresponding to	Standard
	FCHECK error nunber.	
FFILElI NFO	Provides access to file information.	Standard
FGETI NFO	Requests access and status information	Standard

| | about a file. | |

FI NDICW	Searches Job Control Word (JCW table	Standard
	for specifiedJCW	
LK	Dynamically locks a file.	Standard
FMICALEN DAR	Formats calendar date.	Standard
FMICLOK	Formats time of day.	Standard
FMIDATE	Formats calendar date and time of day.	Standard
FPEN	opens afile.	Standard
FPONT	Resets the logical record pointer for	Standard

	a sequential discfile.	
FREAD	Reads a logical record froma	Standard
	sequential file (on anydevice) to the	
	user's data stack.	

| NAME | | REQUI RED |

| FREAD BACKWARD | Reads a logical record beginning at a | Standard |
| | point prior tothe current record | |

	printer.		
FREADDI R	Reads a logical record froma direct	Standard	
	access file to the user's data stack.		
FREADLABEL	Reads a user file	abel.	Standard
FREADSEEK	Prepares, in advance, for reading from	Standard	
	a direct-access file.		
FREEDSEG	Rel eases an extra data segnent.	Data Segment	
		Managenent	
FREELCCRI N	Frees all local Resource	Standard	

| | Identification Nunmbers (RIN s)from | |
| | allocation to a job. | |

FRELATE	Determines if file pair is interactive	Standard
	or duplicative.	
FRENAME	Renanmes a disc file.	Standard
FSETMODE	Activates or de-activates file-access	Standard
	nodes.	
FSPACE	Spaces forward or backward on a file.	Standard
FUNLOCK	Dynamically unlocks a file.	Standard
FUPDATE	Updates a logical record residing in a	Standard
	disc file.	
FWRITE	Wites a logical record fromthe	Standard

| | user's stack to a sequential file (on | |
| | any device). | |

FWRI TED R	Wites a logical record fromthe	Standard	
	user's stack to a direct-access disc		
	file.		
FWRI TELABEL	Wites a user file	abel.	Standard
GENVESSAGE	Accesses MPE nessage system	Standard	
GET	Receives the next request froma	Standard	
	renote master program (Used only with		
	DS/ 3000.)		
CGETDSEG	Creates an extra data segment.	Data Segment	
		Managenent	
GETICW	Fetches contents of systemjob control	Standard	

I | word (JCW. I I

| GETLOCRIN | Acquires local RIN s. | Standard |

| GETORIA@N | Determ nes source of process | Process Handling |

INTRINSIC	PURPCSE	CAPABILITY		
NAMVE		REQUI RED		
GETPROCI NFO	Requests status information about a	Process Handling		
	father or son process.			
GETUSERMODE	Dynamically returns to non-privileged	Privileged Mde		
	node.			
NI TUSLF	Initializes a USL file to the enpty	Standard		
	state.			
	ODONTWAI T	I'nitiates conpletion operations for an	Privileged Mde	
	/0O request.			
TOMIT	I'nitiates conpletion operations for an	Privileged Mde		
	/0O request.			
KILL	Deletes a process.	Process Handling		
LOADPRCC	Dynamically	loads a library procedure.	Standard	
LOCKG.ORI N	Locks a global RIN	Standard		
LOCKLCCRI N	Locks a local RIN	Standard		
LOCRI NOANER	Identifies process	ocking a	ocal	Standard
	RIN			
MAIL	Tests nmumil box status.	Process Handling		
MYCOMVAND	Parses (delineates and defines	Standard		
	parameters) for user-supplied conmand			
	image.			
OPENLOG	Provides access to a logging facility.	LG Capability		
PAUSE	Suspends calling process for a	Standard		
	specified nunmber of seconds.			
PCHECK	Returns an integer code specifying the	Standard		
	conpletion status of the nost recently			
	executed DS/ 3000. (Used only with			
	DS/ 3000.)			
PCLOSE	Term nates programto-program	Standard		

| | comunication with a renote sl ave | |
| | program (Used only with DS/ 3000.) | |

| PCONTROL | Exchanges tag fields with a slave | Standard |
| | program (Used only with DS/ 3000.) | |

| | communication with a renote sl ave | |
| | program (Used only with DS/ 3000.) | |

PREAD	Requests a block of data froma renote	Standard
	slave program (Used only with	
	DS/ 3000.)	
PRINT	Prints character string on job/session	Standard
	list device.	
PRINTFILEINFO	Prints file information display.	Standard

INTRINSIC NAME	PURPOSE	CAPABILITY
		REQUI RED
PRI NTOP	Prints a character string on the	Standard
	Operator's Consol e.	
PRI NTOPREPLY	Prints a character string on the	Standard
	Operator's Console and solicits a	
	reply.	
PROCTI ME	Returns a process' accumul ated central	Standard

	processor tinme.	
PTAPE	Accepts input from paper tapes which	Standard
	do not contain X-OFF control	
	characters.	

PUTIJCW	Puts value of a given JCWin JCW	Standard
	table.	
PWRITE	Sends a block of data to a renote	Standard

| | slave program | |

QUT	Aborts a process.	Standard
QU TPROG	Aborts the user process structure	Standard
READ	Reads an ASCII string fromthe	Standard
	job/session input device ($STDIN).	
READX	Reads an ASCII string fromthe	Standard
	job/session input device ($STDI NX).	
RECEI VEMAI L	Receives mail from another process.	Process Handling
REJECT	Rejects the request received by the	Standard
	preceding CGET intrinsic call. (Used	
	only with DS/ 3000.)	
RESETCONTRCL	Resets terminal to accept CONTRCL Y	Standard
	signal.	
RESETDUWMP	Disables the abort stack anal ysis	Standard

| | facility. | |

| SEARCH | Searches an array for a specified | Standard |
| | entry or nane. | |

| SENDMAI L | Sends mail to another process. | Process Handling |

SETDUMP	Enabl es the abort stack anal ysis	Standard
	facility.	
SETIJCW	Sets the value of the systemjob	Standard
	control word (JCW.	
STACKDUWP	Dunps selected parts of stack to file.	Standard
SUSPEND	Suspends a process.	Process Handling
SwW TCHDB	Switches DB register pointer.	Privileged Mde
TERM NATE	Term nates a process.	Standard
TIMER	Returns job or session tiner bit	Standard
	count.	
UNLQADPROC	Dynamically unloads a library	
	procedure.	
UNLOADG.ORI N	Unl ocks a global RN	Standard

INTRINSI C	PURPOSE	CAPABI LI TY
NAME		REQUI RED
UMOCKLOCRIN	Unlocks a local RN.	Standard
WO	Returns user attributes.	Standard
VRTELOG	Wites a record to a logging file.	LG Capability
XARTRAP	Arns or disarms the software	Standard
	arithmetic trap.	
XCONTRAP	Arms or disarms the CONTROL-Y trap.	Standard
XLIBTRAP	Arns or disarns the library trap.	Standard
XSYSTRAP	Arms or disarms the systemtrap.	Standard

Appendi x E COWPI LER ERROR MESSAGES

Table E-1. SPL Conpiler Error Messages

ARI THVETI C RI GHT SHI FT Conpi |l er has issued an None, unl ess word

EM TTED	ASR to convert a byte	address is supposed
	address to a word	to be greater than
	address.	DB+ 16383 in which
		case the ASR causes
		an error.
BEG N END DO NOT MATCH	When END. encountered,	Check your code and
	there were nore BEGQ Ns	correct.
	than ENDs.	
CASE STATEMENT	The nunber of cases in a	Check your code;
OVERFLOW	CASE statenent exceeds	decrease the nunber
	256.	of cases.

CONVERSI ON ERROR An illegal type | Check manual for |
conversion was attenpted. | legal type |
| conversions; note |
| that types cannot be |
| mxed in arithnetic |
| operations. |
DECLARATI ON NOT A subroutine may not have | Check the subroutine |
ALLONED | N SUBROUTI NE decl arat i ons. | code and nove decla- |
| rations to main |
| program or procedure. |

DECLARATI ON QUT COF Decl arati ons nust be Check the order;

ORDER	ordered as: data,	correct.
	procedures, sub-	
	routines.	
Table E-1. SPL Conpiler Error Messages (cont.)		
MESSAGE	MEAN NG	ACTI ON
DECLARED TW CE	An identifier has been	Check decl arati ons;
	declared twi ce at the	correct.

	same	evel.	
A DEFI NE decl aration has	Check declaration,		
too many characters in	reduce to 511 charac-		
its de- scription.	ters excluding		
	extrane- ous blanks.		
DI SPLACEMENT QUT OF	The di splacenent is too	Displacenent varies	
large or has the wong	with addressing node:		
sign for the addressing	DB + 255 Q + 127; Q		
node.	-63 S-63 P + 255; P		
	-255		

DI SPLACEMENT TOO LARGE	The displacenent is too	Displacenent varies
	large for the addressing	wth addressing node:
	node.	DB + 255 Q + 127; Q

Table E-1. SPL Conpiler Error Messages (cont.)

| MESSAGE | MEAN NG | ACTI ON
| EXCEEDED MAXI MUM | INCLUDEs are nested to a | Check your code;
| | NCLUDE DEPTH | level greater than 10. | decrease the nesting

| | | level of | NCLUDEs. |

| EXPECTS ALPHA | The next synbol must be | Check code; change to
| | an al phabetic character. | al phabetic character.

| EXPECTS ARRAY IDENTIFIER | Only an array identifier | Check code; use array |

| | is legal in this context. | identifier. |
| EXPECTS ASTERI SK | An asterisk is expected | Check code; use

| | in this context. | asterisk.

| EXPECTS BOUNDS | An array decl aration of | Check code; enter

| | this type requires | bounds.

| | bounds. |

| A constant is expected in

| this context; for |
| exanple, as a par- tial |
| word designator. |
| A$ command with | Correct by entering $

| continuation synbol is | at beginning of

| not foll owed by inmage | continua- tion line

| with $ in colum 1. | or deleting |
| | continuation synbol.

| EXPECTS EQUAL | An equals sign is | Check code and enter

| | expected in this context. | = where expected. |
| EXPECTS FILE | Filenane expected, but | Check your code and

| | not found. | correct.

Table E-1. SPL Conpiler Error Messages (cont.)

| MESSAGE | MEAN NG | ACTI ON
| EXPECTS | DENTI FI ER | Identifier name not found | Check your code and
| REFERENCE | | correct. |

| EXPECTS I NTEGER VARIABLE | Only as integer variable | Check code, correct. |
| | is legal in this context. | |

| EXPECTS LABEL | A label nust appear in | Check code, correct.
| | this context. |

| EXPECTS OR | OR was expected but not | Check your code and |
| | found. | correct. |

| EXPECTS OPTI ON | A $ comand has an | Check command, cor- |
| | illegal command or is | rect. |

| | parameter. |
| EXPECTS PO NTER | Only a pointer is |egal | Check code, correct.
| | in this context. | |

EXPECTS REFERENCE | A value parameter is | Check paraneters and

PARAMETER | passed to a procedure | specifications; |
| that expects a paraneter | correct. |

| passed by refer- ence. | |

A relational operator is | Check code, correct |
ex- pected at this point. | by including

| relational operator
| (=, <>,<,<=, >, >3) |

Table E-1. SPL Conpiler Error Messages (cont.)

EXPECTS RELATI ONAL OR Either a comma or a Check code, correct

| | | |
| COMVA | relational operator is | by including comma or |
| | expected in this context. | relational operator

| | | (= <> <,<5,>,>%) as |
| | | appropriate. |
| EXPECTS SYMBOL | No symbol where a synmbol, | Check code, include

| | such as an identifier, is | synbol. |
| | expected. |

EXPECTS UNDEFI NED	An array decl aration of	Check decl aration,
BOUNDS	this type requires an	include *
	asterisk (*).	

| EXPECTS VARI ABLE | Only a variable is | Check code, correct.

| | allowed in this context. | |
| FILENAVE TOO LONG | Filenane is greater than | Check your code and

| | 8 characters. | shorten nane. |
| ILLEGAL ADDRESS MODE | The specified address | Address node relative

| | mode is not legal inthis | to DB, Q S, or PB

| | context. | must be changed.

An attenpt has been nade Change to @TR =n or

| | | |
| | to store into a | PTR(1):=n

| | non-existent pointer; for |

| | exanple: @TR(1):=0. |

| |LLEGAL ASSEMBLE | An error occurred in an | Check the statemnent;

| STATEMENT | ASSEMBLE st at enent . | correct

Table E-1. SPL Conpiler Error Messages (cont.)

| TLLEGAL ATTRI BUTE | Attribute inconsistent | Check the
| | with identifier; e.g., | specification:
| | LONG LABEL. | correct.

| TLLEGAL BOUNDS | The bounds for this array | Check that bounds are

| SPECI FI CATI ONS | declaration are invalid. | *,@or integer

| | | constant. |
| ILLEGAL CLASS | Symbol class (PO NTER, | Check the synbol;

| | ARRAY, etc.) incorrect | correct the synbol

| | in context. | class.

| I LLEGAL CONSTANT | This synmbol is not a | Check the constant,

| | valid constant. | enter a valid |
| | | constant. |

| The dynam ¢ bounds nust |
| be either an integer |
| formal param eter or a

| |

gl obal integer.
Table E-1. SPL Conpiler Error Messages (cont.)
| MESSAGE | MEAN NG | ACTI ON
| TLLEGAL EXTERNAL | An error occurred in an | Check the declaration
| VARI ABLE | exter- nal variable | and al so the
| | declaration or inits | procedure where it is
| | use. | used; correct

| ILLEGAL FORVAL | The attributes specified | Check the paraneter;
| PARAMETER | tor this formal parameter | correct.
| | are not valid. | |

| TLLEGAL GLOBAL EXTERNAL | An error has occurred in | Check declarations; |

| VARI ABLE | a global or an external | correct.

| | variable declaration. | |
| LLEGAL | DENTI FI ER The reference identifier Check the

REFERENCE for this declaration is

| |
| | declaration;
| incorrect. |
| |
| |

|
|
reference identitier
nmust be decl ared |
first. |

The initialization |ist
for this array is
i nval i d.

Make sure that |ist
con- tains only
nuneri c val ues or

strings.

This | F statenment
contains an error.

Check the statenent,
correct.

| LLEGAL I N SPLI T-
STACK MODE

An error was detected
inside a WTH st at enent
or with OPTION SPLIT or
$SPLIT.

Check WTH and OPTI ON

SPLIT i n manual

Tabl e E-1.

SPL Compi | er

Error

Messages (cont.)

| TLLEGAL ITEMIN | The itemis either not | Check decl arati ons, |

| | wong class. | otherw se correct. |

TLLEGAL LEFT PARENTHESIS	A left parenthesis has	Renove the paren-
	been used in a context	thesis.
	where it is illegal.	

| LLEGAL MODE IN THI S An address node (relative Change to a node that

CONTEXT	to DB, Q S, or PB)	is legal in this
	cannot be used in this	context.
	context.	

| LLEGAL OPERATOR An operator is used that Valid operators are:

	is not recognized by the	*,/,					
	conpiler.	**,//,+, -, MOD, MODD,					
		=	<	<>	<=>	>=	LAND!
		LOR XOR					
ILLEGAL OMWN	The initialization	ist	Check; correct the				
I'NITIALIZATI ON	for an OMNN array is	list to include only					
	invalid.	nunmbers and strings.					
Table E-1. SPL Conpiler Error Messages (cont.)							
MESSAGE	MEAN NG	ACTI ON					

An error occurred in an	Check the OMAN
OWN variable declaration	variable declaration
or inits use.	and al so where it is
	used; correct.

	LLEGAL PARAMETER	This paraneter contains	Check the paraneter:
	an illegal item	correct.	
ILLEGAL S-RELATIVE	The displacenment to Sis	Correct the address	
ADDRESS	either positive or	ess	to fall within range
	than -63.	S-0 through S-63.	
EXPECTS WHI LE OR UNTI L	The reserved word WHILE	Check code, include	
	or UNTIL is m ssing.	VWHI LE or UNTIL.	
EXPECTS @	The conpiler expects an @	Check code, include	
	as the next synbol in	@	

| | this context. | |
ERROR | N CATENATE | A catenate expression | Check expression and
EXPRESSI ON | must be of the form | correct.
| (L:MN where L, M and N |
| are integer constants. |
ERROR | N PARTI AL WORD | A partial word designator | Check code; correct |
DESI GNATOR | must be of the form(MN) | formof partial word |
| where Mand N are integer | designator. |
| constants. | |

Table E-1. SPL Conpiler Error Messages (cont.)

| DESI GNATOR | follows the & | valid shift |

		identifier.
ERROR IN USL FILE	USL file contains a bad	Check source for
	entry. Conpilation	errors; correct and
	term nates.	try again.
ERROR OVERFLOW	Maxi mum nunber of errors	Default maxi num = 100
	has been generat ed.	errors; change with

| | | $CONTROL conmand. |

FORWARD PROCEDURE	Forward and act ual	Check decl arations	
DECLARATI ON	procedure declarations do	and correct.	
I NCOWPATI BLE	not match.		
	LLEGAL SEGVENTATI ON	A $CONTROL SEGMENT card	Change the card to
	is within a procedure.	appear outside the	
		procedure.	

| LLEGAL STATENMENT A statenment cannot begin Check the class, and

BEG NNER	with this class; possibly	if undecl ared	
	is an un- declared	variable, declare it.	
	variable.		
	LLEGAL STATEMENT	A statement mnust be	Correct the
TERM NATOR	term- nated by END or a	termnator.	
	sem col on.		

Table E-1. SPL Conpiler Error Messages (cont.)

MESSAGE	MEAN NG	ACTI ON
ITLLEGAL STRI NG	Astring is expected in	Enclose the string in
	this context but there	quotes.

| | are no quote marks. | |

| ILLEGAL SYMBOL | Not an ASCII character | Check and enter a |
| | valid for SPL. | valid ASCII character |
accept- able to SPL.
p

Par anet er must not be Correct so that

PARAMETER	loaded directly to stack	param eter is not
	inthis context or stack	stacked.
	will be out of order.	
1 LLEGAL TRACE CARD	A $TRACE card is either	Check the $TRACE card
	in the wong position or	and nove or cor- rect
	contains an error.	as appropriate.
ILLEGAL TRACE	The identifier being	Change class to
I DENTI FI ER	traced is of a class that	SIMPLE VARI ABLE,
	cannot be traced.	ARRAY, PO NTER,
		LABEL, or PROCEDURE.
TLLEGAL TYPE	A type msmatch has	Check the types and
	occurred in an arithmetic	change to matching
	operation.	types.

| ITLLEGAL TYPE TRANSFER | The type of the operand | Check the statenent |

may not be converted to	and correct to avoid
the type of the object in	type m smatch.
SPL.	

Table E-1. SPL Conpiler Error Messages (cont.)

| LLEGAL USE OF PB BYTE Byt e cannot be | oaded Correct code so

| | | |
| ARRAY | froma PB byte array | attenpt is not nade

| | since the |load byte | to load byte fromPB

| | instruction is not PB- | byte array.

| | relative. | |
| ILLEGAL VARI ABLE | Form of variable is not | Check variable and

| | valid. | insure that it starts

| | | with letter. |
| Parameter on $IF command | Check $IF paraneter
| is invalid; may be X0 | and correct.

| through X9 =ON or OFF

| only. |

| LLEGAL X REQ STER Either the type or the Change type and/or

| | | |
| REFERENCE | class of the variable | class to that of a
| | referencing the X | one- word variable.
register is illegal
g g

Table E-1. SPL Conpiler Error Messages (cont.)

| MESSAGE | MEAN NG | ACTI ON
| I NDEX NOT ALLOWED | An attenpt was made to | Change declaration to
i ndex a si e vari abl e. array or renove
ind i mpl i abl _ y
| | | index. |

| An array has been | Either change the |
| initialized with a list | array size or |
| that is larger than the | decrease the list.

| array size. | |
| NTEGER OVERFLOW | A constant expression | Check constants used

| resulted in an integer | in expressions for a

| overflow. | resulting val ue |
| | greater than 32767 or

	less than -32767.	
Compiler has enmitted a	Check	abel range;
bad branch in ASSEMBLE	change to indirect	
state- ment; probably	branch.	
label out of range.		

| I'NVALI D BYTE | The initialization |ist | Check byte array and

| I'NITIALI ZATI ON | of a byte array is | its initialization

| | incorrect. | list; correct. |
| I NVALI D COMVENT | Comment has been used in | Check code; either

| | an illegal context. | nmove or renove |

| | | comment.

Table E-1. SPL Conpiler Error Messages (cont.)

| I NVALI D EXPONENT | An exponent expression | Check the expression; |
| PARAMETER | con- tains an error. | correct. |

| Either the field is not | Check field and range
| numeric or the nunber is | of nunber; correct.

| out of range in this |
| |

cont ext .
I NVALI D OPERATOR	The mmenonic in ASSEMBLE	Check code for	
MNEMONI C	statenment not	invalid instruction	
	identifiable.	menonic; correct.	
I NVALI D SDEC	Stack decrenent (SDEC)	Check range for this	
	field in statenent such	SDEC constant and	
	as MOVE or SCAN is out of	correct.	
	range.		
I NVALI D SUBSCRI PT	An index nust be an	Check expression used	
	integer expression.	as index: correct.	
LABEL I N ASSEMBLE	A label referenced in an	Check statenent;	
STATEMENT MUST OCCUR	ASSEMBLE st at enent cannot	either include	abel
	be found.	or renove reference.	
LOCAL DECLARATI ON	Too many I ocal	Check and renove	
OVERFLOW	declarations; up to 127	extra decl arations.	

| | words all owed. | |

LOCAL | NI TI ALI ZATION MJUST | A local array can be Check array

| | | |

| BE PB | initialized only in PB | decl aration; change |

| | node. | mode to PB, or make |

| | | array gl obal . |
Table E-1. SPL Conpiler Error Messages (cont.)

| MESSAGE | MEAN NG | ACTI ON |

LOGE CAL COVPARE | ssued when a | ogi cal Warni ng that conpare

EM TTED	com pare always gives	such as L>=0 is
	the sane result.	always true, L<O
		always false if Lis
		logical variable.
MAY NOT GO TO ENTRY	A G TO statenment may not	Check GO TGO change
	transfer to an entry	Iabel.
	Iabel.	
MAY NOT TRACE EXTERNAL	Trace can only be made on	Check TRACE, change
LABEL	label in program unit	label to one in
	being conpil ed.	current programunit.

MAXI MUM REPEAT FACTOR | The Il argest repeat factor | Check initialization |
8191 | al- lowed in an | list; |ower repeat |
| initialization list is | factor. |
| 8191. | |

M SSI NG ASSI GNIVENT	An assignnent operator	Check code; include
OPERATOR	must appear in this	assignnent operator.
	context.	

| M SSING BEG N | The conpiler expects a | Check code; include |

	BEG N as the next symbol.	BEG N
M SSING CCF	This ASSEMBLE instruction	Check code; include
	requires a CCF	CCF specification.
	specification.	
M SSING COLON	Acolon (:) nmust appear	Check code; include
	in this context.	col on.

Table E-1. SPL Conpiler Error Messages (cont.)

MESSAGE	MEAN NG	ACTI ON	
M SSI NG COWA	Acomma (,) is expected	Check code; include	
	in this context.	commma.	
M SSING DO	A DO nmust appear in this	Check code; include	
	context.	Do.	
M SSING ELSE	An ELSE nust appear in	Check code; include	
	this context.	ELSE.	
M SSI NG EXPONENT	A valid exponent mnust	Check code; enter	
	follow a caret (7).	valid exponent.	
M SSI NG FORVAL	A specification is nade	Check code;incl ude	
PARAMETER	for a non-existent formal	formal paraneter or	
	parameter.	delete specification.	
M SSING LEFT PARENTHESIS	A left parenthesis is	Check code; include	
	expected in this context.		eft parenthesis.

Table E-1. SPL Conpiler Error Messages (cont.)

MESSAGE	MEAN NG	ACTI ON
M SSING OF	A CASE statement does not	Check CASE statenent;
	contain the word OF.	include OF.
M SSING Rl GHT BRACKET	A right bracket is only	Check code and
	accept- able synbol at	include right
	this point.	bracket.
M SSING Rl GHT	A right parenthesis is	Check code; include
PARENTHESI S	expected at this point.	right parenthesis.
M SSING SEM COLON	A semcolon (;) or other	Check code; include
	sep- arator is required	sem col on.

	in this context.	
M SSING SLASH	Aslash is the only	Check code; include
	acceptable synmbol at this	slash.
	point.	

M SSI NG SPECI FI CATI ON	There is no specification	Check code: include
	for a formal paraneter.	specification for
		formal paraneter.

| M SSI NG SUBPROGRAM | A procedure specified in | Check code; correct |

	a $CONTROL SUBPROGRAM	name in command or
	command cannot be found.	include procedure.
M SSING THEN	A THEN must appear in	Check code; include
	this context.	word THEN.
M SSI NG UNTI L	An UNTIL nust appear in	Check code; include
	this context.	word UNTIL.

Table E-1. SPL Conpiler Error Messages (cont.)

MESSAGE	MEAN NG	ACTI ON
MULTI PLE FORWARD	There is nore than one	Check decl arati ons;
DECLARATI ON	forward declaration for	renmove redundant for-
	this procedure.	ward decl aration.
MULTIPLE SPECI FI CATIONS	A formal parameter is	Check code; renove
	specified nore than once.	extra fornal
		parameter.
MUST BE DB	Only DB-relative	Check address;
	addressing is Ilowed in	correct to
	this context.	DB-relative.

Only DB-relative or	Check address;
Qrelative addressing	correct to
allowed in this context.	DB-relative or Q

relative.
MUST BE DOUBLE OR	Only a doubl e-word or	Check vari abl e;	
LOA CAL	logical variable is	change to doubl e or	
	allowed in this context.		ogical.
MUST BE	NTEGER TYPE	The only valid type for	Check code; use
	this construct is	integer.	
	integer.		
MUST BE INTEGER, LOG CAL	A one-word quantity is	Check code; correct	
OR BYTE	ex- pected in this	to use one-word	
	context.	quantity.	

Table E-1. SPL Conpiler Error Messages (cont.)

MESSAGE	MEAN NG	ACTI ON
MJUST BE LOCAL	Action allowed only for	Check code; correct
	local is being performed	variable.

	on gl obal variable.	
MUST BE TYPE BYTE	Symbol must be type byte	Check synbol:
	in this context.	correct if illegal or
		change to type byte.

| MUST BE TYPE LOG CAL | Only a logical variable | Check expression; |

| | can appear in a Bool ean | change to | ogical |
| | expression. | variable. |

| | procedure nust be typed. | typed procedure. |

| MUST BE VALUE FORMAL | A reference paraneter is | Check paraneter; |
| PARAMETER | not legal in this | change to fornmal

| | context. | parameter. |
| NESTED PROCEDURE NOT | A procedure declaration | Check code; renove

| ALLOWED | is within another | procedure declaration

| | procedure. | for other procedure.

| NESTED REPEAT | Repeat factor inside a | Check code.

| FACTOR | repeat factor is not | |
| | allowed. | |

Table E-1. SPL Conpiler Error Messages (cont.)

| Two greater-than synbols | If intended as |
| are separated by one or | comment, renove |
| more bl anks. | blanks so synbols are
	adjacent (>>).
Afile specified as an	Check file nane;
intrinsic file in	change to name of
INTRINSIC statenment is	intrinsic file.
not an intrinsic file.	
NOT ON I NTRINSI C FI LE	Procedure referenced in
an INTRINSIC declaration	and intrinsic tile;
is not on the intrinsic	change nane or
file.	include intrinsic in
	file.
An ASSEMBLE st at enent	Check statenent;
con- tains branch that is	change range of
beyond range of direct	branch or use
branch.	indirect addressing.
PARAMETER NOT ALLOWED	I'nterrupt procedure that
	should have no paraneters
	has a paraneter.
PARAMETER NUVMBER	A procedure call has an
NCOVPATI BLE	in- correct nunber of
paraneters.	paraneters
	accordingly.

Table E-1. SPL Conpiler Error Messages (cont.)

| MESSAGE | MEAN NG | ACTI ON
| PARAMETER QUT OF RANGE | This paraneter exceeds | Displacenents may be:
| | the maxi mum al | owabl e | DB+255, Qt127, Q 63,

| | displacenent for this | S-63, P+255P-255. |

| | address node. | |

| PARAMETER OVERFLOW | There are nore than 31 | Reduce nunber of |

| | procedure. | fewer. |

| PARTI AL WORD | LLEGAL | A partial word designator | Break into several |
| HERE | is not allowed in | store statenents to
| | multiple store. | allow bit deposit.

PRI MARY DB OVERFLOW | A variable cannot be | Correct to address
| assigned with a | within accepted |
| DB-relative address | bounds possibly by
greater than 255or total	renoving

is greater than 907 decl arati ons.

wor ds.
| PRI MARY Q OVERFLOW | Variable cannot be | Correct assignnent to
| | assigned with O-relative | address within |
| | address greater than 127. | accept- able bounds.

| The nunber of | Decrease nunber of |
| instructions in this | in- structions in |
| procedure exceeds the | procedure or increase

| limt. | segnent size.

Table E-1. SPL Conpiler Error Messages (cont.)

| I'nvoking this DEFINE | Check text of DEFINE

statement would result in	statement for	
infinite	oop.	identifier being

defi ned.
| RESERVED SYMBCL | Cannot define a constant | Check definition; |
| REDEFI NED | or reserved word. | omt reserved word or
| | | symbol . |

SDEC TOO LARGE | Stack decrenent in an | Check statenent:

| ASSEM BLE statenent is | reduce stack |
| larger than | argest | decrenent to |
| allowed val ue. | acceptabl e val ue for

| | |

cont ext .

| SECONDARY DB OVERFLOW | There are too nmany | Check code, and
| | declarations in the outer | reduce the nunber of
| | bl ock. | declarations. |
| SEM COLON NOT ALLOWED | A semicolon (;) cannot be | Renpbve sem col on.
| | used in this context. |

Table E-1. SPL Conpiler Error Messages (cont.)
| MESSAGE | MEAN NG | ACTI ON
| SEQUENCE ERROR | I'nput files contain | Check input files; |
| | inmages that are out of | correct order. |

| | order. | |

| SIZE | NCOWPATI BI LI TY | Parameter passed to a | Check paraneter size |
| | pro- cedure has wong | in procedure, and |

| Table used to son map | Symbol table map

| output is full (over 1162 | cannot be produced.
| procedures/ synbols, 1912 |
| |

gl obal s)
STRING TOO LARGE	This string exceeds 128	Reduce string to
	characters.	acceptable limt.
SYMBOL TABLE ERROR	Some entries in the	Symbol table map
	synbol table are no	cannot be produced.

| | longer valid. | |

SYMBOL TABLE OVERFLOW	The conpiler limt for	Reduce nunber of
	the nunber of synbols has	symbols in program
	been exceeded.	and reconpile.

Table E-1. SPL Conpiler Error Messages (cont.)

STACK OVERFLOW NMAY BE | I'f stack overflow occurs | Separate into two |
| RRECOVERABLE | and Q and S set in sane | instructions; e.g., |

| instruction, process may | SET (Q, SET (S), not |
| term nate | SET (QS). |
SUBPROGRAM TABLE | Overflow in table where | Reduce nunber or size |
OVERFLOW | sub- program names to be | of names to total of |
conpiled are stored.	252 characters plus 1
	extra for each nane.
This conpilation	Conpile an outer
specifies both subprogram	bl ock before
and USLINIT, resulting in	preparing the program

no outer bl ock. file.
TOO MANY USL	Too many procedure calls	Reduce the nunmber of
HEADERS	inside code bl ock.	procedure calls.
TRACE HEADER TOO LARGE	Too many synbol s being	Reduce nunber of
	traced resulting in table	synbols to be traced.
	overflow.	
Table E-1. SPL Conpiler Error Messages (cont.)		
MESSAGE	MEAN NG	ACTI ON

In arithnmetic statenment. Change one or both

| g

two operands of different	operands so that they
type are conbi ned.	are the sanme type
	(REAL, LONG etc.)

TYPE PROCEDURE STORE A procedure name can Check procedure name:
p p

| OUT OF RANGE | appear on the left-hand | correct name or |
| | side of a repl acenent | renove statenent. |

| operator (:=) only within |
| the scope of the |
| procedure with the sane |

| An identifier used in a | Declare identifier or |
statenent has not been change identitier

| g

declared in a	name to a decl ared		
declaration.	identifier		
USL FI LE OVERFLOW	The USL file is full.	Build	arger USL
		file, reconpile	
@NOT ALLOWED	An @is not legal in this	Renove @	
	context.		

Appendi x F CALLI NG SPL FROM
OTHER LANGUAGES

There are a nunber of things to consider when witing SPL procedures that
are to be called fromother |anguages. Not all |anguages pass paraneters
in the same way and sone have restrictions as to their ability to cal
function procedures, OPTION VARl ABLE, and so forth. This note summarizes
these restriction for BASIC, COBCL, COBOL |1, and FORTRAN.

There are two ways to pass a parameter to a procedure: by REFERENCE and
by VALUE. Passing a parameter by reference neans that the 16-bit ADDRESS
of the variable is passed on the stack; the called procedure refers to
this paraneter via indirect menory reference instructions (LOAD Q n,

and STOR @ n, |). Passing a paraneter by value neans that the actual
contents of the variable (1, 2, or 4 words) are passed on the stack; the
call ed procedure refers to this parameter via direct nenory reference
instructions (LOAD Qn and STOR Qn). As aresult, if the called
procedure nodifies a call-by-reference paraneter, the caller's variable
is nmodified; for call-by-value paraneters, only the "tenporary"” copy in
Q mnus storage is changed (the caller's version retains its old val ue).

OPTI ON VARI ABLE is a facility that provides the ability to call a
procedure with a varying nunber of paraneters. The called procedure wll
expect a "bit mask” in Q4 (and Q5 if there are nore than 16 paraneters)
with bits set indicating which parameters are present. Paraneters are

al ways passed in the same Q m nus addresses; the Q mnus |ocations for
paranmeters which are omtted have undefined values. It is up to the

call ed procedure to exam ne the bit mask and to access only those

par ameters which are passed on any particular call

A function procedure is one which returns a value in place of its nane;

it therefore can be called froman expression and the value that it
returns will be used in the expression. This value is stored in the
stack just before (lower address) the paraneters to the procedure. It is
the responsibility of the caller to dispose of or use the return val ue
properly. An exanple of such a procedure is the BINARY intrinsic.

Because the various | anguages have differing capabilities for dealing
with the various aspects of procedure calls, the SPL coder needs to be
aware of what each | anguage does. Below are summari zed the things that
need to be considered for each | anguage.

COBCL

* Al paraneters are passed as WORD addresses (call-by-reference).
There is one exception: you can pass the MPE file nunber for a file
opened with the OPEN verb by passing the FD-nane to a procedure; this
is passed as a 16-bit integer by val ue.

* COBOL has no way of coping with the return value of a function
procedure; an extra value will be left on the stack which wll
di srupt program execution. Do not call function procedures from
COBCL.

* There is no way for COBOL to generate the bit nmsk required by OPTI ON
VARI ABLE procedures, so these cannot be called either. Since it is
i npossible to pass a paraneter from COBOL by val ue, you can't
generate the bit nmask yourself.

* The following illustrates how the COBOL data types map to SPL data
types:

1-4 digits I NTEGER

5-9 digits DOUBLE
COVPUTA- SPL has no PACKED DECI MAL capability; you nust access
TI ONAL- 3 this as a byte array and generate the machi ne

instructions yourself. Note that COBOL passes a WORD
address for this; you will need to use an equi val enced

byte array.

DI SPLAY Passed as LOAd CAL (array). You will usually want to
passed paraneter and access the data this way.

Not e that COBOL has no equival ent of REAL or LONG

FORTRAN

FORTRAN passes all paraneters by reference unless the parameter is
encl osed i n backsl ashes, in which case it is passed by value. You

may use a constant or expression in a call; if it is not enclosed in
backsl ashes, a tenporary cell is created and the address of the cel
i s passed.

FORTRAN may call function procedures normally (external function)

If you are calling an OPTI ON VARI ABLE procedure, you must cal cul ate
the bit mask required and pass it as a constant by value as the LAST
(or last twd) paraneter(s). See below for formof the bit mask.

The following illustrates how FORTRAN data types map to SPL data
types:

|
| NTEGER/ | NTEGER* 2 | 1 NTEGER
| NTEGER* 4 | DOUBLE
REAL | REAL
DOUBLE PRECI SI ON | LONG
CHARACTER* n | BYTE ARRAY

BAS

VWhen calling an intrinsic, you should name the intrinsic in a SYSTEM
INTRINSIC statenment. Then FORTRAN wil| take care of the OPTION

VARI ABLE mask, passing of paraneters by reference or value, and so
on.

C

BASI C passes all parameters by reference. There is no way to
override this; if you pass a constant or expression, a tenporary cel
is created and the address of the cell is passed.

BASIC, |ike COBOL, can't handle the return value froma function
procedure. Likewise, it has no ability to generate an OPTI ON

VARI ABLE bit mask. Because all paraneters are call-by-reference, you
cannot generate a proper bit mask.

* BASI C passes a paraneter type descriptor just in front of (I ower
menory address) the first paranmeter. The called procedure may use
this or ignore it--see the BASIC Interpreter reference manual for

addresses of the paraneters.

* The following illustrates how BASIC data types map to SPL data types:

|
REAL/ undecl ar ed | REAL
LONG | LONG
| NTEGER | | NTEGER
String (x9) | BYTE ARRAY

Pl ease keep in mnd that the default constant in BASIC is type-REAL. To
pass an integer, you nmust either store the value into an integer variable
and pass the variable or use the follow ng construct:

DEFI NTEGERFN (N) =N
CALL proc(FNI (4))
This will pass the 4 as an integer instead of a real nunber.

Arrays and strings have physical and logical Iength information stored in
the -2 and -1 elenments of the array. (See the Basic Interpreter

Ref erence Manual .) The point to note here is that if you change the
length of a string or array, you nust update the logical length so that
BASI C knows what you did. Two-dinensional arrays and string arrays have
length information at the begi nning of each major di nension or string

el enent .

(See bel ow for a discussion on converting byte addresses to word
addr esses.)

coBaL I

* Mich |like FORTRAN, COBOL Il passes all paraneters by reference unless
the paraneter is enclosed in backslashes, in which case it is passed
by val ue.

* Al paraneters are passed as WORD addresses unless an @is used in
front ofthe paraneter nane, in which case a BYTE address i s passed.

* |If you are calling a function procedure, an extension to the CALL
statement (the G VING clause, as in CALL proc USING parm G VI NG
value) allows you to pick up the return value; you MIJST use this
construct if you are calling a function procedure (even if you have
no use for the return value) so that the stack is decrenented

properly.

* As with FORTRAN, you can generate the bit mask for OPTI ON VAR ABLE
procedures by passing it by value as the |ast paraneter(s).

* COBOL Il allows you to call intrinsics via the CALL I NTRINSIC
statenment, relieving you of worrying about value v.reference, byte
addr essi ng, the OPTION VARI ABLE mask, and so forth

* The data types are precisely the sane as for COBOL, above.

OPTI ON VARI ABLE mask

The OPTI ON VARI ABLE MASK | S ONE WORD AT Q4 (or two words at Q5 and Q4
if there are nore than 16 paraneters) that describes which paraneters are

present. The RIGHTMOST bit (bit 15 in HP3000 nonencl ature) corresponds
to the rightnost (last) parameter; bit 14 refers to the next-to-last, and
so forth on back to the first parameter. A 1 bit means the paraneter is

accessed.

For exanpl e, suppose we have the foll ow ng procedure head:
PROCEDURE upshift(string,length,result);
VALUE | engt h;
BYTE ARRAY stri ng;
| NTEGER | engt h, resul t;
OPTI ON VARI ABLE

and we wish to call this from FORTRAN. What woul d be the proper CALL
statement? Since there are three paranmeters, the last three bits of the
mask woul d be used. |If all paraneters were included, the call would | ook
i ke this:

CALL UPSHI FT(CHARSTRI NG, LEN , | RESULT, 9%L)

If, for exanple, the |ast paranmeter (RESULT) were omtted, the call would
be:

CALL UPSH FT(CHARSTRI NG LEN, 0, 9%L)
The zero as the third paraneter is required as a place hol der
Byte to word address conversion

It is sonetinmes desirable (or necessary) to convert a passed byte address
to a word address (so that the array can be passed to the file system
intrinsics, for exanple). You will find that if you attenpt to
equi val ence a word array back to a passed byte array you will get a
warning "ARI THVETIC RIGHT SH FT EM TTED. " What this is saying is that the
SPL conpiler is emtting an ASR 1 instruction to convert the byte address
to a word address, and you are bei ng warned because this is not always
the correct thing to do. The reason for this is that it is possible to
have byte addresses that point to the DB-m nus area (in fact, BASIC does
this all the tinme) but it is inpossible to tell if an address is in the
DB-m nus area or is sinply a very large DB-plus byte address w t hout

| ooking at the registers. Here is a fool proof procedure that will
generate the proper word address given any byte address provided that the
byte address is not odd.

| NTEGER PROCEDURE wor dadr (byt eadr) ;
ARRAY;
BYTE byt eadr;
BEG N
| NTEGER SO0=S; <<Addr ess of S>>
tos: =tos: =@yt eadr & LSR(1); <<Logi cal divide by 2>>
IF tos>@, SO then tos. (0:1):=1;<<If in DB-mnus, fix sign>>
wor dadr : =t os
END; <<wor dadr >>

Sanpl e cal Il :

PROCEDURE sanpl e(string);

BYTE ARRAY string;

BEG N
PO NTER stringp; <<Wrd poi nter>>
@tringp; = wordadr(string);

