
Table of Contents

Systems Programming Language Reference Manual
Systems Programming Language Reference Manual : COPYRIGHT NOTICE

SPL STRUCTURE

1-2. CONVENTIONS

1-3. SOURCE PROGRAM FORMAT

1-4. DELIMITERS

1-5. COMMENTS

1-6. PROGRAM STRUCTURE

1-7. PROGRAM

1-8. SUBPROGRAM

1-9. INTRODUCTION TO HP 3000 HARDWARE CONCEPTS

1-10. CODE SEGMENTS

1-11. DATA SEGMENTS

1-12. PROCEDURES

 1-13. SUBROUTINES

1-14. INTRINSICS

1-15. COMPOUND STATEMENTS

1-16. ENTRY POINTS

BASIC ELEMENTS

2-2. INTEGER FORMAT

2-3. DOUBLE INTEGER FORMAT

2-4. REAL FORMAT

2-5. LONG FORMAT*

2-6. BYTE FORMAT

2-7. LOGICAL FORMAT

2-8. CONSTANT TYPES

2-9. INTEGER CONSTANTS

2-10. DOUBLE INTEGER CONSTANTS

2-11. BASED CONSTANTS

2-12. COMPOSITE CONSTANTS

2-13. EQUATED INTEGERS

2-14. REAL CONSTANTS

2-15. LONG CONSTANTS

2-16. LOGICAL CONSTANTS

2-17. STRING CONSTANTS

2-18. IDENTIFIERS

2-19. ARRAYS

2-20. POINTERS

2-21. LABELS

2-22. SWITCHES

GLOBAL DATA DECLARATIONS

3-2. SIMPLE VARIABLE DECLARATIONS

3-3. ARRAY DECLARATION

3-4. POINTER DECLARATION

3-5. LABEL DECLARATION

3-6. SWITCH DECLARATION

3-7. ENTRY DECLARATION

3-8. DEFINE DECLARATION AND REFERENCE

3-9. EQUATE DECLARATION AND REFERENCE

3-10. DATASEG DECLARATION

EXPRESSIONS, ASSIGNMENT, AND SCAN STATEMENTS

4-2. VARIABLES

4-3. TOS

4-4. ADDRESSES (@) AND POINTERS

4-5. ABSOLUTE ADDRESSES

4-6. FUNCTION DESIGNATOR

4-7. BIT OPERATIONS

4-8. BIT EXTRACTION

4-9. Bit Concatenation (Merging)

4-10. BIT SHIFTS

4-11. ARITHMETIC EXPRESSIONS

4-12. SEQUENCE OF OPERATIONS

4-14. LOGICAL EXPRESSIONS

4-15. SEQUENCE OF OPERATIONS

4-16. TYPE MIXING

4-17. COMPARING BYTE STRINGS

4-18. CONDITION CLAUSES

4-19. IF EXPRESSIONS

4-20. ASSIGNMENT STATEMENT

4-21. MOVE STATEMENT

4-21A. MOVEX STATEMENT

4-22. SCAN STATEMENT

PROGRAM CONTROL STATEMENTS

5-2. GO TO STATEMENT

5-3. DO STATEMENT

5-4. WHILE STATEMENT

 5-5. FOR STATEMENT

5-6. IF STATEMENT

5-7. CASE STATEMENT

5-8. PROCEDURE CALL STATEMENT

5-9. STACKING PARAMETERS

5-10. MISSING PARAMETERS IN PROCEDURE CALLS

5-11. PASSING LABELS AS PARAMETERS

5-12. PASSING PROCEDURES AS PARAMETERS

5-13. SUBROUTINE CALL STATEMENT

5-14. RETURN STATEMENT

MACHINE LEVEL CONSTRUCTS

6-2. DELETE STATEMENT

6-3. PUSH STATEMENT

6-4. SET STATEMENT

 6-5. WITH STATEMENT

PROCEDURES, INTRINSICS, AND SUBROUTINES

7-2. PROCEDURE DECLARATION

7-3. DATA TYPE

7-4. PARAMETERS

7-5. OPTIONS

7-14. LOCAL DECLARATIONS

7-16. LOCAL SIMPLE VARIABLE DECLARATIONS

7-20. LOCAL ARRAY DECLARATIONS

7-24. LOCAL POINTER DECLARATIONS

7-28. LABEL DECLARATIONS

7-29. SWITCH DECLARATIONS

7-30. ENTRY DECLARATION

7-31. DEFINE DECLARATION AND REFERENCE

 7-32. EQUATE DECLARATION AND REFERENCE

7-33. PROCEDURE BODY

7-34. INTRINSIC DECLARATIONS

7-35. SUBROUTINE DECLARATION

INPUT OUTPUT

8-2. OPENING A NEW DISC FILE

8-3. READING A FILE IN SEQUENTIAL ORDER

8-4. WRITING RECORDS INTO A FILE IN SEQUENTIAL ORDER

8-5. UPDATING A FILE

8-6. NUMERIC DATA INPUT OUTPUT

8-7. FILE EQUATIONS

COMPILER COMMANDS

9-1. USE AND FORMAT OF COMPILER COMMANDS

9-2. $CONTROL COMMAND

9-3. $IF COMMAND (CONDITIONAL COMPILATION)

9-4. $SET COMMAND (SOFTWARE SWITCHES FOR CONDITIONAL COMPILATION)

9-5. $TITLE COMMAND (PAGE TITLE IN STANDARD LISTING)

9-6. $PAGE COMMAND (PAGE TITLE AND EJECTION)

9-7. $EDIT COMMAND (SOURCE TEXT MERGING AND EDITING)

9-9. CHECKING SEQUENCE FIELDS

9-10. EDITING

9-11. $SPLIT $NOSPLIT COMMANDS

9-12. $COPYRIGHT COMMAND

9-14. $INCLUDE COMMAND

MPE COMMANDS

10-2. SPECIFYING FILES FOR PROGRAMS

10-3. SPECIFYING FILES AS COMMAND PARAMETERS

10-9. SPECIFYING FILES BY DEFAULT

10-10. COMPILING, PREPARING, AND EXECUTING SPL SOURCE PROGRAMS

10-11. :SPL COMMAND

10-12. RUN SPL.PUB.SYS COMMAND

10-13. ENTERING PROGRAM SOURCE INTERACTIVELY

10-14. :SPLPREP COMMAND

10-15. :SPLGO COMMAND

10-16. :PREP COMMAND

10-17. :PREPRUN COMMAND

10-18. :RUN COMMAND

10-19. USING EXTERNAL PROCEDURE LIBRARIES

10-22. SEGMENTED LIBRARIES

ASCII CHARACTER SET

RESERVED WORDS

BUILDING AN INTRINSIC FILE

MPE INTRINSICS

COMPILER ERROR MESSAGES

CALLING SPL FROM OTHER LANGUAGES

Systems Programming Language Reference Manual

Printed in U.S.A.
HP Part No. 30000-90024
Printed Feb 1084

The information contained in this document is subject to change without
notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard
shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or
use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced or translated to another language without the
prior written consent of Hewlett-Packard Company.

Ó 1976-1984

PRINTING HISTORY

New editions are complete revisions of the manual. Update packages,
which are issued between editions, contain additional and replacement
pages to be merged into the manual by the customer. The dates on the
title page change only when a new edition or a new update is published.
No information is incorporated into a reprinting unless it appears as a
prior update; the edition does not change when an update is incorporated.

The software code printed alongside the data indicates the version level
of the software product at the time the manual or update was issued.
Many product updates and fixes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence between
product updates and manual updates.

First Edition | Jun 1976 |
Second Edition | Sep 1976 |
Update #1 Incorporated | Dec 1976 |
Update #2 | Feb 1977 |
Update #2 Incorporated | Dec 1977 |
Third Edition | Feb 1984 | 32100A.08.04

PREFACE

This publication is the reference manual for the HP 3000 Computer System
Systems Programming Language (SPL).

This publication contains the following sections:

Section I is an introduction to SPL source format and the HP 3000
Computer System.

identifiers, arrays, and pointers.

Section III describes the global declarations.

Section IV describes arithmetic and logical expressions,
assignment, MOVE, and SCAN statements.

Section V describes the various program control statements
 including GO TO, DO, WHILE, FOR, IF, CASE, procedure

call, subroutine call, and RETURN statements.

Section VI describes the machine level constructs including the
ASSEMBLE statement (to use any machine instruction), the
DELETE statement, the PUSH statement (for saving
registers), and the SET statement (for setting
registers).

Section VII describes the subprogram units (procedures, intrinsics,
and subroutines) and the local declarations.

Section VIII discusses some of the more common MPE intrinsics for
performing input/ output.

Section IX discusses the various compiler commands.

Section X discusses the MPE commands used to compile, prepare, and
execute an SPL source program together with some
introductory material on using the Segmenter.

Appendix A lists the ASCII character set.

Appendix B lists the reserved words in SPL.

Appendix C describes how to build your own intrinsic file.

Appendix D lists the MPE Operating System intrinsic procedures.

Appendix E lists the diagnostic messages which can be generated by
 the SPL compiler.

Appendix F explains how to call SPL from other languages.

Other publications which should be available for reference when using
this manual are:

Systems Programming Language Textbook (30000-90025)

MPE Commands Reference Manual (30000-90009)

MPE Intrinsics Reference Manual (30000-90010)

MPE Segmenter Reference Manual (30000-90011)

Machine Instruction Set Reference Manual (30000-90022)

System Reference Manual (30000-90020)

Compiler Library Reference Manual (30000-90028)

EDIT/3000 Reference Manual (03000-90012)
CONVENTIONS USED IN THIS MANUAL

NOTATION DESCRIPTION

contain no blanks and be delimited by a non-alphabetic
character (usually a blank).

KEYWORDS Literal keywords, which are entered optionally but
exactly as specified, appear in CAPITAL LETTERS.

parameter Required parameters, for which you must substitute a
value, appear in bold italics.

parameter Optional parameters, for which you may substitute a
value, appear in standard italics.

[] An element inside brackets is optional. Several
elements stacked inside a pair of brackets means the
user may select any one or none of these elements.

Example: [A]
[B] user may select A or B or

neither.

When brackets are nested, parameters in inner brackets
can only be specified if parameters in outer brackets or
comma place-holders are specified.

Example: [parm1[,parm2[,parm3]]]
 may be entered as

parm1,parm2,parm3 or
parm1,,parm3 or
,,parm3 ,etc.

{ } When several elements are stacked within braces the user
must select one of these elements.

Example: { A }
{ B } user must select A or B or C.
{ C }

... An ellipsis indicates that a previous bracketed element
may be repeated, or that elements have been omitted.

user input In examples of interactive dialog, user input is
underlined.

Example: NEW NAME? ALPHA1

superscriptc Control characters are indicated by a superscriptc.

Example: Yc. (Press Y and the CNTL key
simultaneously.)

[[RETURN]] [[RETURN]] indicates the carriage return key.

Chapter 1 SPL STRUCTURE

1-1. INTRODUCTION TO SPL

SPL (Systems Programming Language for the HP 3000 Computer System) is a
high-level, machine dependent programming language that is particularly
well suited for the development of compilers, operating systems,
subsystems, monitors, supervisors, etc.

SPL has many features normally found only in high-level languages such as
PL/I or ALGOL: free-form structure, arithmetic and logical expressions,
high-level statements (IF, FOR, GOTO, CASE, DO- UNTIL, WHILE-DO, MOVE,
SCAN, procedure call, assignment, and compound statements), recursive
procedures and subroutines, and variables and arrays of six data types
(byte, integer, logical, double integer, real, and long real). In
addition, IF, FOR, CASE, DO-UNTIL, and WHILE-DO statements can be
indefinitely nested within each other and themselves. These features
significantly reduce the time required to write programs and make them
much easier to read and update.

In addition, SPL provides machine-level constructs that insure the
programmer has complete control of the machine when he needs it. These
constructs include direct register references; branches based on actual
hardware conditions; bit extracts, deposits, and shifts; delete
statements; register push/set statements; and an ASSEMBLE statement to
generate any sequence of machine instructions.

1-2. CONVENTIONS

In the HP 3000, the bits of a word are numbered from left to right
starting with bit 0. Thus, the sign, or most significant, bit of a
single word is bit 0 and the least significant bit is bit 15.

--
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1
--

1-3. SOURCE PROGRAM FORMAT

An SPL source program can contain both program text and compiler commands
in 80 column records. Program text is entered in free format in columns
1-72. A statement is terminated with a semicolon (;) and may continue to
successive lines without an explicit continuation indicator. Statement
labels are identifiers followed by a colon (:) preceding the statement.
For example,

START: SCAN BUF WHILE TEST;

Any compilation is bracketed by BEGIN and END statements. A period is
required after the final END. For example,

BEGIN

INTEGER I;
I:= 2*373+ 275;

END.

Compiler commands are denoted by a $ in column 1 and may be interspersed
with program text lines. However, unlike program text lines, compiler
commands which are to be continued must contain an ampersand (&) as the
last non-blank character of the line. If using EDIT/3000 to enter text,
you must explicitly enter a space following the ampersand and before
pressing return. In addition, the continua- tion lines must contain a $
in column 1. For example,

$CONTROL LIST,SOURCE,WARN,MAP,&
$CODE,LlNES= 36

A compiler command line must never be separated from its continuation
line by a program text line. Refer to section IX for a discussion of all
the SPL compiler commands.

1-4. DELIMITERS

Blanks are always recognized as delimiters in SPL, except within
character strings (see paragraph 2-17 for the format of string
constants). Therefore, blanks cannot be embedded in the following items:
Reserved words (see Appendix B).
Identifiers
:= assignment
<< start of a comment
>> end of a comment

Special characters can also act as delimiters:
Punctuation : ; , . "
Relational Operators = < >
Parentheses ()
Operators + -* /^
Brackets []

1-5. COMMENTS

A comment is used to document a program but has no effect upon the
functioning of the program itself; that is, a comment does not generate
any code.

Comments may take either of the following forms in SPL:

Format 1: COMMENT[comment];

Format 2: <<[comment]>>

EXAMPLES:

<<comment>>
COMMENT CONTROL: MESSAGE;
<<This is a comment >>
!This is a comment
COMMENT

THIS

IS
A
COMMENT
;

where

comment is any sequence of ASCII characters except a semicolon
in Format 1 and >> in Format 2. The ASCII character set
is listed in Appendix A.

Format 1 is equivalent to a null statement and can be used anywhere a
statement or declaration is expected. Format 2 can be used anywhere in a
program except in an identifier.

The characters within a comment are ignored by the compiler; they are not
upshifted (changed to uppercase) if lowercase,

When the special character '!' is encountered outside a comment, define,
or string, the rest of the source line following the exclamation point
will be regarded as a comment.

1-6. PROGRAM STRUCTURE

SPL is a block structured language which takes advantage of the virtual
memory scheme of the HP 3000 to provide program segmentation its a user
option. Thus, by using procedures and segmentation, the programmer can
organize his program in such that the entire program does not have to
reside in memory at the same time. The system automatically gets
procedure segments from auxiliary memory and loads them into main memory
when necessary.

Additionally, SPL uses the stack architecture of the HP 3000 to handle
both global and local variables. Global variables may be referenced
anywhere in the program except in procedures where a local variable has
the same identifier. Local variables are allocated memory locations upon
entering a procedure and can only be referenced within the procedure in
which they are declared. The memory locations assigned to local
variables are released when the procedure is exited. When one procedure
calls another procedure, the local variables of the calling procedure are
not available to the called procedure unless they are passed as
parameters; however, their memory locations are saved so that upon
returning to the original procedure, the local variables contain the same
values as before the procedure call.

Similarly, both global and local subroutines are allowed in SPL. However,
unlike global variables, global subroutines can only be called within the
main program and not within a procedure. Local subroutines may be called
only within the procedure in which they are declared.

The SPL compiler accepts either complete programs or subprograms as
source input. A program consists of both declarations and a main body of
executable statements. The declaration portion may contain variable,
procedure, intrinsic, and/or global subroutine declarations.

A subprogram consists of only the declaration portion and does not
contain a main body. In a subprogram compilation, global declarations
(that is, declarations for variables which can be refer- enced throughout
the entire program) do not allocate any space and global subroutines are

ignored if present. A subprogram compilation generates code for
procedures and local subroutines only and must be linked to a separately
compiled main program before being executed. For example,

BEGIN
INTEGER A; <<global data declaration>> <--------------

|
|

PROCEDURE B(A); |
INTEGER A; <<procedure declaration>> |
A:= A+1 main

 progra
|

SUBROUTINE C(A); |
INTEGER A; <<global subroutine declaration>> |
A:= B(A): <--------------

C(A); <<main body>>

END.

1-7. PROGRAM

A program is an organized collection of declarations and statements
designed to solve a specific problem. A main program consists of global
data declarations and subroutines and a main body.

The form for a program is:

BEGIN
[global data declarations]
[procedures/intrinsics]
[global-subroutines]
[main-body]
END.

where

global data are statements defining the attributes of the global
declarations identifiers used in the program (see section III).

procedures/ are statements which define all the procedures and
intrinsics intrinsics used in the program (see section VII). A

procedure definition includes data declarations for
parameters and local variables followed by the
executable statements of the procedure.

global- are the subroutines used by the main program.
subroutines
main-body is a sequence of statements separated by semicolons

statement [;...;statement]

statement is an executable statement.

The program elements must be in the order shown above.

For example,

BEGIN
INTEGER A:= 0,B,C:=1; <<global data declaration>>
PROCEDURE N(X,Y,Z); <<procedure>>

 INTEGER X,Y,Z; <<local data declaration>>
X:= X* (Y+ Z);

FOR B:=1 UNTIL 20 DO <<main program>>
N(A,B,C);

END.

1-8. SUBPROGRAM

A subprogram is a portion of a program which can be compiled by itself
but must be linked to a main program for execution. A $CONTROL
SUBPROGRAM compiler command is used before the subprog- ram text to put
the compiler in subprogram mode. See section IX for the compiler
commands used to link a subprogram to a main program for execution.

The form of a subprogram is the same as a program except that a
subprogram does not have a main body.

The form for a subprogram is:

BEGIN
[global data declarations]
[procedures/intrinsics]
[global-subroutines]
END.

where

global data are statements defining the attributes of the global
declarations identifiers used in the program (see section III).

procedures/ are statements which define all the procedures and
intrinsics intrinsics used in the program (see section VII). A

procedure definition includes data declarations for the
parameters and local variables followed by the
executable statements of the procedure.

global- are the subroutines used by the main program. The
subroutines global-subroutines can be omitted since the compiler

ignores them in subprogram compilations.

For example,

$CONTROL SUBPROGRAM
BEGIN

INTEGER N,M,O; <<does not allocate space>>
EQUATE A:=101, B:=202;
PROCEDURE C;

BEGIN
:
END;

PROCEDURE D;
BEGIN
:
END;

END.

1-9. INTRODUCTION TO HP 3000 HARDWARE CONCEPTS

A process is the unique execution of a program. If the same program is
run by several users, it becomes several processes. If the same user
runs the program several times, each execution is a distinct process. A
process consists of a code domain (the machine instructions of the
program) and a data area called a "stack." The code and data in the HP
3000 are always separated logically. The code may always be shared, but
the data stack cannot. The MPE Operating System schedules and dispatches
a process for execution. See the MPE General Information Manual for a
further discussion of processes and the stack.

1-10. CODE SEGMENTS

All machine instructions within the HP 3000 are organized into variable
length segments accessed through a hardware-known table called the Code
Segment Table (CST). Since the hardware detects references to segments
which are not in main memory, the code domain of a process is not limited
to the size of main memory. Segments are brought from disc into main
memory as needed. A process can execute only one code segment at a time.
The process "escapes" from its current code segment by executing a
Procedure Call (PCAL) instruction. A PCAL can reference procedures in
different code segments from the current one and cause control to be
transferred to a different code segment. A PCAL instruction is generated
by either a function designator (see paragraph 4-6) or a procedure call
statement (see paragraph 5-8).

The current code segment of a process is defined by three hardware
address registers:

1. PB--Program Base register. Contains the absolute address of the
starting location of the segment in main memory.

2. PL--Program Limit register. Contains the absolute address of the
last location of the code segment.

3. P--Program counter. Contains the absolute address of the
instruction currently being executed.

The relationship of the three current code segment registers is shown in
Figure 1.1. The central processor checks all instructions to insure that
they stay within the bounds of the current code segment. All addresses
within a current code segment are relative to these registers. The
operating system can relocate the segment anywhere in main memory; only
the three registers have to be changed to define the segment's locations.
BOX

Figure 1.1. Code Segment Registers

Code segmentation is controlled by using the SEGMENT parameter on
$CONTROL commands (see section IX). The segment name stays in effect
until another segment name is specified. For procedures, the $CONTROL
SEGMENT command must precede the procedure declaration of the first
procedure in the segment. If a new segment is to be specified for the
main program, the $CONTROL SEGMENT command follows the procedure and
intrinsic declarations and precedes the global subroutines and main body.
Global subroutines must be in the same segment as the main body. See
Figure 1.2 for a sample SPL program which has two procedures in one
segment and a global subroutine with the main body in another.

BOX

00000 0 $CONTROL USLINIT,MAIN=MAINLINE
00000 0 BEGIN
00000 1 INTEGER LENGTH,TIME;
00000 1 ARRAY BUFFER(0:35);
00000 1 INTRINSIC PRINT,READ;
00000 1
00000 1 $CONTROL SEGMENT=PROC'A'SEG
00000 1 PROCEDURE PROC'A(LEN);
00000 1 VALUE LEN;
00000 1 INTEGER LEN;
00000 1 PRINT (BUFFER,=LEN,0);
00000 1
00000 1 PROCEDURE PROC'B(LEN);
00000 1 VALUE LEN;

00000 1 PRINT(BUFFER,=LEN%320);
00000 1
00000 1 $CONTROL SEGMENT=MAINLINESEG
00000 1
00000 1 SUBROUTINE READ'A'LINE;
00000 1 LENGTH:=READ(BUFFER,- 72);
00006 1
00006 1 << START OF MAINLINE >>
00006 1
00006 1 LOOP:
00006 1
00006 1 READ'A'LINE;
 00010 1 IF LENGTH <> 0 THEN
00013 1 BEGIN
00013 2 IF ((TIME:=TIME+1) MOD 2)=0 THEN PROC'A(LENGTH)
00022 2 ELSE PROC'B(LENGTH);
00026 2 GO TO LOOP:
00027 2 END;
00027 1 END.

MAINLINESEG 0
NAME STT CODE ENTRY SEG
MAINLINE 1 0 6
READ 2 ?
PROC'A 3 1
PROC'B 4 1
TERMINATE' 5 ?
SEGMENT LENGTH 40

PROC'A'SEG 1
NAME STT CODE ENTRY SEG
PROC'B 1 0 0
PRINT 3 ?
PROC'A 2 6 6
SEGMENT LENGTH 20

Figure 1.2. Sample Segmented Program

1-11. DATA SEGMENTS

Each process has a completely private storage area for its data. This
storage area is called a stack or a data segment. When the process is
executing, its stack must be in main memory. A stack is delimited by two
stack addressing registers:

1. DL--Data Limit register. Contains the absolute address of the
first word of main memory available in the stack.

2. Z--Stack limit register. Contains the absolute address of the
last word of main memory available in the stack.

Between DL and Z, there are separate and distinct areas set off by three
other stack addressing registers:

1. DB--Data Base register. Contains the absolute address of the
first location of the direct address global area of the stack.

2. Q--Stack marker register. Contains the absolute address of the
current stack marker being used within the stack.

3. S--Top-of-stack register. Contains the absolute address of the
top element of the stack. Manipu- lated by hardware to produce a
last-in, first-out stack. The top four words may be kept in
hardware registers.

The relationship of the five data addressing registers is shown in Figure
1.3. Each process is also described by a status register that contains
its segment number and status, and a program-accessed, one-word index
register used for array indexing and other computing functions.

There is only one set of these hardware registers; their content is
established for a process when it starts executing.
BOX

Figure 1.3. Data Stack Registers

Instructions are provided to access all regions indicated in this diagram
except S to Z. The four top-of-stack registers are not shown.

In the HP 3000, memory reference instructions specify an address relative
to one of the hardware registers. Each register has its own addressing
range as indicated below:

| | + | - |

| P register | 255 | 255 |

| DB register | 255 | ***** |

| Q register | 127 | 63 |

| S register | ***** | 63 |

Note that the DB register cannot be directly addressed with a negative
range and that the S register cannot be addressed with a positive range,

indexing. The S positive area is undefined since S points to the top of
the stack.

Any memory reference instruction specifies a displacement within the
range of one of these registers. This location is used as the operand;
if another address is required, it is implicitly assumed to be the top of

stack (S-0).

The basic addressing mode in the HP 3000 is word addressing (one word =
16 bits); however, there are also instructions to load and store bytes
(half words--8 bits) and doublewords (32 bits).

Many HP 3000 instructions use the top of the stack (the absolute address
in the S register) as an implicit operand. For example, the ADD
instruction always uses the values in S-0 and S-1 for its operands. The
S register is constantly changing in a last-in, first-out manner such
that data is "pushed" onto the stack "popped" off the stack.

1-12. PROCEDURES

A procedure is a self-contained section of code which is called to
perform a function. Some of the features of procedures are:

* Procedures can be passed parameters (either call-by-value or
call-by-reference).

* Procedures can declare local variables and reference global
variables.

* Procedures can return a value.

* Procedures can call themselves.

* Procedures can be called from either procedures or the main body.

* Procedures can have local subroutines (sections of code which can
only be called from within the procedure).

Procedure declarations precede the main body of the program and contain
the local declarations and the procedure body.

For example, a procedure to compute N factorial is

INTEGER PROCEDURE FACT(N); VALUE N; INTEGER N;
BEGIN

FACT:= IF N= 0 THEN 1
 ELSE N*FACT(N- 1);
END;

For a complete explanation of procedure declarations, see section VII.

1-13. SUBROUTINES

An SPL subroutine is a simpler and less powerful section of code than the
procedure. Subroutines can have parameters, can be typed functions and
can be called recursively. A subroutine is called with an

SCAL instruction instead of a PCAL instruction, SCAL does not provide a
4-word stack marker to save the environment; therefore,

* Values in the Q and index registers remain unchanged.

* A PB-relative return address is placed on the top of the stack.

* Subroutines cannot have local variables.

* Subroutines must be located in the same segment as the caller since
the SCAL and SXIT instructions do not bridge segment boundaries.

* Subroutines can be entered and exited faster than procedures since
there is much less work for the instructions to do.

* Subroutines can be declared within procedures and can reference
procedure-local variables.

Global subroutines can be called only within the main body. Global
subroutine declarations must appear after the procedure and intrinsic
declarations.

Local subroutines can be called only from the procedure in which they are
declared. They are declared in the body of the procedure, after any
local data declarations, but before the executable statements of the
procedure body. For a complete description of subroutine declarations,
see section VII.

1-14. INTRINSICS

An intrinsic is a procedure which has previously been defined, either as
part of the MPE Operating System or in a user's own intrinsic file. The
advantage of using intrinsics is that you do not have to include the
complete procedure in your program, but merely declare the name of the
intrinsic in an intrinsic declaration.

MPE intrinsics are available to:
* Access and alter files.
* Manage program libraries.
* Obtain date, time, and accounting information.
* Determine job status.
* Determine device status.
* Obtain device file information.
* Transmit messages.
* Insert comments in command stream.
* Perform ASCII/binary number conversion.
* Perform input/output on job/session standard devices.
* Obtain system timer information.
* Obtain the user's access mode and attributes.
* Search arrays and format parameters.
* Execute MPE commands programmatically.

Intrinsics must be declared with an intrinsic declaration (See section
VII). Appendix C shows how to build your own intrinsic file. Appendix D
contains a list of the MPE intrinsics. Refer to the MPEIntrinsics
Reference Manual for a complete description of the system intrinsics.

1-15. COMPOUND STATEMENTS

BEGIN and END are used as a delimiting pair and are matched much like
parentheses. Within the body of a main program or a procedure, a
BEGIN-END pair can be used to combine several statements into one
compound statement. Compound statements are useful in IF, FOR, CASE,

DO-UNTIL, and WHILE-DO statements.

The form of a compound statement is:

BEGIN
[statement;... ;statement]
END

where

statement is any SPL executable statement (including compound
statements).

For example,

 IF A<B THEN
BEGIN

A:=B;
B:=D;
E:=F

END;

Note that a semicolon is not required before the END statement. If it is
included, it is a null statement.

1-16. ENTRY POINTS

Both main programs and procedures can have multiple entry points. The
first executable statement of a main program or procedure is an implicit
entry point. Alternate entry points are labeled statements whose labels
are declared in an entry declaration (see paragraph 3-7 for the format of
an entry declaration). An entry point cannot be the object of a GO TO
statement.

A program may be started at an alternate entry point with a parameter on
the :RUN or :PREPRUN command. An alternate entry point for a procedure
is equivalent to another name for the procedure that can be called with
the same formal parameters. Local variables are set up and initialized
regardless of which entry point is used. For example, assume the
following program has been compiled and prepared (:SPLPREP) and the
program file is $OLDPASS.

BEGIN
ENTRY P1,P2,P3;
:

P1: A:=100;
:

P2: A:=200;
:

P3: A:=300;
:

END.

To start execution at P2, use the command

:RUN $OLDPASS,P2

Chapter 2 BASIC ELEMENTS

2-1. DATA STORAGE FORMATS

SPL processes six types of data: integer, double integer, real, long
(extended precision real), byte, and logical. Each data type has its own
representation in memory. The following paragraphs describe the data
types and discuss the manner in which they are stored in memory.

2-2. INTEGER FORMAT

Integers are whole numbers containing no fractional part. Integer values
are stored in one 16-bit computer word. The leftmost bit (bit 0)
represents the arithmetic sign of the number (1= negative, 0= positive).
The remaining 15 bits represent the binary value of the number. Integer
numbers are represented in two's complement form and range from -32768 to
+32767.

Decimal | Two's
Value | Complement
+ 32767 | %077777
: | :
+ 1 | %000001
0 | %000000

 -1 | %177777
 -2 | %177776
: | :

 -32768 | %100000

2-3. DOUBLE INTEGER FORMAT

When you wish to use integer values with magnitudes greater than the
integer format allows, you may use double integers. Double integers use
2 computer words for a total of 32 bits. The leftmost bit of the first
word (bit 0) is the sign bit (1=negative, 0=positive). The remaining 31
bits represent the binary value of the number. Double integer numbers
are represented in two's complement form and range from -2,147,483,648 to
+2,147,483,647.

2-4. REAL FORMAT

Real numbers are represented in memory by 32 bits (two consecutive 16-bit
words) with three fields. The fields are the sign, the exponent, and the
mantissa. The format is that known as excess 256--exponents are biased
by +256. Thus, a real number consists of:

Sign(S) Bit 0 of the first word (positive=0, negative=1). A
value X and its negative, - X, differ only in the sign
bit.

Exponent(E) Bits 1 through 9 of the first word. The exponent ranges
from 0 to 777 octal (511 decimal). This number
represents a binary exponent, biased by 400 octal (256
decimal). The true exponent is E- 256; it ranges from

 -256 to +255.

Fraction(F) A binary number of the form 1.xxx, where xxx is
represented by 22 bits, stored in bits 10 through 15 of
the first word and all of the second word. Note that

 the 1. is not actually stored, there is an assumed 1.
to the left of the binary point. Floating-point zero is
the only exception--it is represented by all 32 bits
being zero.

The range of the magnitude of non-zero real values is from 8.63617* 10-78
to 1.157921 * 10-77. Real numbers are accurate to 6.9 decimal places.

The internal representation for real numbers is:

The formula for computing the decimal value of a floating-point
representation is:

Decimal value = (-1)S * F * 2(E-256)

which is equivalent to:

Decimal value = (-1)S * (1.0 + (xxx * 2-22)) * 2(E-256)

For example, 7.0 is represented as

Sign (S) = 0 (positive)

Exponent (E) = 402 (octal) = 258 (decimal)

Fraction (F) = 1.11 (binary) = (1 x 20) + (1 x 2 -1) + (1 x 2-2)

= 1 + 1/2 + 1/4

= 1.75 (decimal)

So, the decimal value of the real value is:

(-1)0 x 1.75 x 2(258-256) = 1 x 1.75 x 22

= 7.0

2-5. LONG FORMAT*

Long numbers are represented in memory by 64 bits (four consecutive
16-bit words) with three fields. The fields are the sign, the exponent,
and the mantissa. The format is that known as excess 256--exponents are
biased by + 256. Thus, a long number consists of.

Sign(S) Bit 0 of the first word (positive= 0, negative= 1). A
value X and its negative, -X, differ only in the sign
bit.

Exponent(E) Bits 1 through 9 of the first word. The exponent ranges
 from 0 to 777 octal (511 decimal). This number

represents a binary exponent, biased by 400 octal (256
decimal). The true exponent is E- 256; it ranges from
 -256 to +255.

Fraction(F) A binary number of the form 1.xxx, where xxx is
represented by 54 bits, stored in bits 10 through 15 of
the first word and all of the second, third, and fourth
words. Note that the 1. is not actually stored, there
is an assumed 1. to the left of the binary point.
Floating-point zero is the only exception--it is
represented by all 64 bits being zero.

__

NOTE *Throughout this discussion the following changes apply to
Pre-Series II Systems: Long numbers are 48 bits (three words)
accurate to 11.7 decimal places. The decimal value of a floating
point repre- sentation of a long value is (-1)S * (1.0 + (xxx *
2-38)) * 2(E-256)

__

The range of the magnitude of non-zero long values is from
8.636168555094445 * 10-78 to 1.157920892373162 * 1077. Long numbers are
accurate to 16.5 decimal places. The formula for computing the decimal
value of a floating-point representation is:

Decimal value = (-1)S * F * 2(E-256)

which, for long values, is equivalent to:

Decimal value = (-1)S (1.0 + (xxx * 2-54)) * 2(E-256)

The internal representation for long numbers is:

2-6. BYTE FORMAT

Character strings are stored using byte format. Character values are
represented bv 8-bit ASCII codes, two characters packed in one 16-bit
computer word. The number of words used to represent a character value
depends on the actual number of characters in the string. Appendix A
shows the ASCII characters and their octal codes.

The internal representation of byte values is:

2-7. LOGICAL FORMAT

Logical values are stored in one 16-bit computer word. They are treated
as unsigned integer values ranging from 0 to 65,535. A value is
considered true if it is odd and false if it is even (i.e., only bit 15
is checked). When a value is set to TRUE, a word of all ones is used (%
177777). A value set to FALSE is all zeros.

The internal representation of a logical value is:

2-8. CONSTANT TYPES

Constants are literal values that stand for themselves. There are two
basic types of constants in SPL: numeric constants and string constants.

Numeric constants are broken down into five types:

1. Integer (16 bits--includes 1 sign bit)

2. Double integer (32 bits--includes 1 sign bit)

3. Real (32 bit floating point)

4. Long (64 bit floating point)

5. Logical (16 bits--no sign bit)

String constants are made up of ASCII characters which are packed two
8-bit characters to a word.

In SPL, constants are merely bit patterns that occupy a given number of
bits. A given 16-bit pattern can have many constant interpretations (two
characters, an integer, a logical value, etc.). Note that hardware
instructions provide arithmetic capability for all of the constant types
mentioned here.

2-9. INTEGER CONSTANTS

Integers are signed whole numbers containing no fractional part. Decimal
integer constants use the decimal digits 0 through 9. They can contain a
leading plus (+) or minus (-) sign. A number without a leading sign is
positive. The range of an integer constant is from -32768 to +32767.

The form of a decimal integer constant is,

[sign] integer

where

sign is + or -.

integer is a string of the digits 0 through 9.

For example,
0
12345
 -31766
+12384

2-10. DOUBLE INTEGER CONSTANTS

Double integers are signed whole numbers containing no fractional part.
Decimal double integer constants use the decimal digits 0 through 9
followed by a D. They can contain a leading plus (+) or minus (-) sign.
A number without a leading sign is positive. The range of a double
integer constant is from -2,147,483,648 to +2,147,483,647. The form of a
decimal double integer constant is:

[sign] integer D

where

sign is + or -

integer is a string of the digits 0 through 9.

For example,
 -123456D
+99999999D
312735D
0 D

2-11. BASED CONSTANTS

SPL allows you to use any base from 2 (binary) through 16 (hexadecimal)
in constants. A based constant can contain a leading sign and/or a
trailing type designator. A leading per cent sign (%) denotes a based
constant. The base is enclosed in parentheses following the per cent
sign. If a base is not specified, the constant is octal (base 8). The
letters A,B,C,D,E, and F represent the values 10,11,12,13,14, and 15
respectively in bases greater than 10. If a type designator is used with
a base greater than 10, a space must precede the type designator.

The form of a based constant is:

[sign] %[(base)] integer [type-designator]

where

sign is + or -.

base is any integer between 2 and 16. If the % is used
without a base being specified, base 8 (octal) is
assumed.

integer is a string of digits, where digit is between 0 and
base-1.

type-designator is D,E, or L for DOUBLE, REAL, or LONG respectively. If
a type-designator is not specified, the constant will be
a single-word constant which can be used as type
INTEGER, LOGICAL, or BYTE.

For REAL and LONG based constants, the bit pattern of the based integer
is used directly as a right justified real number--it is not converted to
floating point form. A leading minus sign will generate the two's
complement form of single-word and type DOUBLE based constants, but will
only reverse the sign bit for REAL and LONG based constants.

For example,

+%777
 -%(2)10101010
%(16)ABC D <<type DOUBLE>>
%(16)ABCD <<single-word>>

2-12. COMPOSITE CONSTANTS

Composite constants are a convenient way of representing specific bit
patterns for tables and special numbers such as the lowest possible real
number. A composite constant consists of a series of bit fields
separated by commas which is enclosed in brackets ([]). Each bit field
contains a field length and an unsigned integer value separated by a
slash. The integer value may be an unsigned composite integer; thus,
composite integers may be nested within a composite constant. Composite
constants may contain a leading sign and/or a trailing type designator.

The form of a composite constant is:

[sign] composite-integer [type-designator]

where

sign is + or -.

composite- is of the form:
integer

[length/value,...,length/value]

NOTE The brackets [] in this case are literal symbols
which are part of the syntax for composite
integers--they do not represent the symbols used
to denote optional items in this manual.

length is an unsigned non-zero decimal, based, composite, or
equated integer constant. The sum of the lengths for a
composite constant cannot exceed the number of bits used
to represent the constant type. If the sum of the
lengths is greater than 16, a type-designator is
required.

value is any unsigned decimal, based, composite, or equated
integer constant. Type-designators are not allowed.

type-designator is D,E, or L for DOUBLE, REAL, or LONG respectively. If
a type-designator is not specified, the constant will be
a single-word constant which can be used as type
INTEGER, LOGICAL, or BYTE.

Composite constants are formed by left-to-right concatenation of binary
bit fields. Within each bit field, unspecified leading bits are set to
zero and bits exceeding the field size are truncated on the left. The
resulting composite integer is right justified with leading bits set to
zero. If a minus sign is used with a single-word or a type DOUBLE
composite constant, the two's complement will be generated. If a minus
sign is used with a REAL or LONG composite constant, the sign bit will be
reversed and the other bits will be unchanged--no conversion to floating
point form occurs with ccmposite constants.

For example,

[32/1] D = %00000000001

 -[32/1]D = %37777777777
 -[32/1]E = %10000000001
[3/2,12/%5252] = %25252
[2/211,15/[3/%(2)101,12/0],10/123] D = %720000173

 -[3/2,12/%5252] = %152526

2-13. EQUATED INTEGERS

Equated integers are used to assign an integer value to an identifier for
compile-time only. An equated integer does not allocate any storage, but
merely provides a form of abbreviation for constants. When an equated
identifier is used, the appropriate constant is substituted in its place.
When Equate declarations are used instead of actual constants, programs
can be changed simply; instead of replac- ing every occurrence of a
constant, only the EQUATE declaration need be changed. An equated
integer reference may be preceded by a plus (+) or minus (-) sign. The
value assigned to an identifier in an EQUATE declaration must be a
single-word value; however a D may be used after the identifier to
convert the single-word value to a double-word value whose first word is
all zeros. If a D is used, a space must separate the identifier from the
D.

The form of an equated integer constant is

[sign] identifier [D]

where

sign is + or -.

identifier is a legal SPL identifier which has been declared in an
EQUATE declaration (see paragraph 3-9).

2-14. REAL CONSTANTS

Real constants are represented by an integer part, a decimal point, and a
decimal fraction. Either the integer part or the decimal fraction may be
omitted (but not both) to indicate a zero value for that part only. A
leading plus (+) or minus (-) sign may be used. A number without a sign
is positive. The constant can contain a scale factor to indicate a power
of ten by which the value is multiplied.

The forms of a real constant are

Format 1: [sign] based/composite-integer E

Format 2: [sign] decimal-number [E [sign] power]

Format 3: [sign] decimal-integer E [sign] power

where

sign is either + or -.

based/ is any unsigned based or composite integer constant.
composite-
decimal-number is of one of the following three forms:

n.n
n.
.n

(n being an unsigned decimal integer).

power is an unsigned decimal integer constant.

decimal-integer is an unsigned decimal integer constant.

Real numbers are accurate to 6.9 decimal digits of magnitude (0 can be
represented exactly). The absolute value of non-zero real numbers can
range from 8.63617 x 10-78 to 1.157921 x 1077. The E construct is used
to indicate the scaling factor, if any. For example, 2.5E-2 means 2.5 x
10-2.

Note that when a composite or based integer is used, there is no power
after the E, and that the E is required to indicate a real value. The
bit pattern created for the integer is used directly as a right-justified
real number; it is not converted to floating-point form. This construct
is useful for creating special floating-point constants such as the
smallest positive number. When the base is greater than 10, a space must
precede the E.

For example,

+1.234
 -.2024
 -1.105E-21
10E-20
%(4)321000E
%(2)1111011110111E
[3/5,5/273,20/%(16)102AB39]E

Some examples of invalid real constants are

+10.E <<missing power>>

2E- <<missing power>>

2-15. LONG CONSTANTS

Long constants are represented by an integer part, a decimal point, and a
decimal fraction. Either the integer part or the decimal fraction may be
omitted (but not both) to indicate a zero value for that part only. A
leading plus (+) or minus (-) sign may be used. A number without a sign
is positive. The constant can contain a scale factor to indicate a power
of ten by which the value is multiplied.

The forms of a long constant are

Format 1: [sign] based/composite-integer L

Format 2: [sign] decimal-number [L[sign] power]

Format 3: [sign] decimal-integer L[sign] power

where

sign is either + or -.

based/ is any unsigned based or composite integer constant.
composite-
decimal-number is of one of the following three forms:

n.n
n.
.n

(n being an unsigned decimal integer).

power is an unsigned decimal integer constant.

decimal-integer is an unsigned decimal integer constant.

Long numbers are accurate to 16.5*decimal digits of magnitude (0 can be
represented exactly). The absolute value of non-zero long numbers can
range from 8.636168555094445 x 10-78 to 1.157920892373162 x 1077. The L
construct is used to indicate the scaling factor, if any. For example,
2.5L-2 means 2.5 x 10-2.

Note that when a composite or based integer is used, there is no power
after the L, and that the L is required to indicate a long value. The
bit pattern created for the integer is used directly as a right-justified
long number; it is not converted to floating-point form. This construct
is useful for creating special floating-point constants such as the
smallest positive number. When the base is greater than 10, a space must
precede the L.

For example,

9321.678975L72
 -.111015L-27
%(8)3777777777L

*11.7 with pre-Series II Systems

2-16. LOGICAL CONSTANTS

Logical constants are 16-bit positive integers. Hardware operations on
logical values are defined for addition, subtraction, multiplication,
division, and comparison.

Logical values can be represented by any of the following:

1. TRUE

2. FALSE

3. integer

where

TRUE and FALSE are SPL Reserved words.

integer is any (single word) decimal, based, composite, or
equated integer.

A logical value is considered true if its value is odd, false if its
value is even (i.e., only bit 15 is checked). When the reserved words
TRUE and FALSE are used, they are equivalent to the integer values -1
(all ones) and 0 (all zeros) respectively, Since logical values are
always assumed to be positive, they range from 0 to +65,535. When
negative integers are used as logical values, they are interpreted as
large positive numbers (e.g., -1 equals % 177777).

2-17. STRING CONSTANTS

A string constant is a sequence of one or more ASCII characters bounded
by quote marks ("). Each character is converted to its 8-bit
representation and the characters are packed two per word.

The form of a string constant is

"character-string"

where

character- is a sequence of ASCII characters (see Appendix A).
string
A character string can contain from 1 to 127 ASCII characters. A quote
(") is represented within a character string by a pair of quotes ("") to
avoid ambiguity with the string terminator.

For example,

"THE CHARACTER "" IS A QUOTE MARK."
"A NORMAL STRING WOULD LOOK LIKE THIS"
"lowercase letters are not UPSHIFTED in strings"

2-18. IDENTIFIERS

Identifiers are symbols used to name data and code constructs in an SPL
program. They consist of uppercase letters and numbers, and are assigned
uses by declarations. There is no implicit typing for identifiers.

The form of an identifier is

letter [letter'digit-string]

where

letter is a letter of the alphabet (A-Z).

letter'digit- is a string of letters (A-Z), digits (0-9), and
string apostrophes (').

An identifier always starts with a letter and may contain from 1 to 15
characters (letters, digits, and apostrophes). Identifiers larger than
15 characters are truncated on the right (A123456789012345 =
A12345678901234). Lowercase letters are allowed, but are always
converted to uppercase form (Aabc = AABC). If the listing device has
upper and lowercase characters, a lowercase identifier is printed in
lowercase, but SPL does not differentiate it from an uppercase identifier
with the same characters. The attributes of an identifier are determined
by a declaration, not by the form of the identifier.

Reserved words are combinations of characters that cannot be used as
identifiers, since they have implied meanings in the language. (See
Appendix B for a list of SPL reserved words).

For example,

MATRIX
A""B
AN'IDENTIFIER
MAT123
X

2-19. ARRAYS

An array is a block of contiguous storage which is treated as an ordered
sequence of variables having the same data type. These variables are
accessed using a single identifier to denote the array and a subscript
number to denote the particular variable (element) within the array.
Array elements are sometimes called subscripted variables.

SPL allows one-dimensional arrays (only one subscript is permitted) in
all data types (integer, logical, real, byte, long, and double).
Subscripting automatically uses the index register to indicate the
element number. Bounds checking is not done at either compile-time or
run-time. Arrays can be initialized but do not have a default
initialization value. Arrays can be located in any region of the user's
domain which can be addressed relative to the DB, Q, S, or P registers.
Values in P-relative arrays are constants which cannot be changed at
run-time.

2-20. POINTERS

A pointer is a type of variable which contains the 16-bit address of
another data item in the program. The 16 bits of the pointer represent
the address of a variable. A pointer can be changed dynamically to point
to different data items during program execution. Pointers are declared
in a pointer declaration (see paragraph 3-4 for global pointer
declarations and paragraph 7-24 for local pointer declarations).

There are four contexts in which pointers can be used:

1. Anywhere that the object of the pointer could be used; this
generates an automatic indirect reference to the object of the

 pointer.

2. On the left side of an assignment statement to change the value of
the object of the pointer.

3. A pointer can be preceded by an @ to refer to the actual contents
of the pointer (the data label), not the object of the pointer.

4. A pointer can implicitly reference the LST and SST instructions.
(Privileged mode only.) The pointer reference must always be
subscripted and cannot be preceded by '@'. MAP indicates this
addressing scheme by ST + number as shown in the example below.
Refer to the Machine Instructions Set Manual for more detailed
information.

00000100 00000 0 $CONTROL INNERLIST,MAP,ADR
00001000 00000 0 BEGIN
00002000 00000 1 INTEGER POINTER SYSGLOB=0;
00002100 00000 1 INTEGER CONSOLE,.

DB+000
00003000 00000 1 CONSOLE:=SYSGLOB(%74);

00000 LDXI, 074 021474 01.05
00001 LDI , 000 021000 01.05
00002 LST , 000 030000 02.45
00003 STOR DB 000 051000 03.15

00004000 00004 l END.
00004 PCAL, 052 OOOOOO 14.90

IDENTIFIER CLASS TYPE ADDRESS

CONSOLE SIMP. VAR. INTEGER DB+000
SYSGLOB POINTER INTEGER ST+000
TERMINATE PROCEDURE

For example, assume the following data declarations

INTEGER A,B:=7,C:=300,DATA:=-1;
INTEGER POINTER PTR:=@DATA;

These declarations initialize the variables B, C, and DATA and set up PTR
as a pointer to DATA as shown below.

Now, consider the statement

A:= PTR;

This statement assigns the object of the pointer PTR (i.e., DATA) to A.

Using the pointer on the left side of an assignment statement can change
the value of the object of the pointer.

PTR:= B+C;

The object of the pointer PTR (i.e., DATA) is assigned the value of B+C.

Preceding the pointer variable with an @ references the address contained
in the pointer instead of the value of the object of the pointer. Using
this construct on the right side of an assignment statement assigns the
DB-relative address of the object of the pointer to a variable. For
example,

A:=@PTR;

A is assigned the address contained in PTR (that is, the address of
DATA).

To change the pointer to point to a different data item, use the @
construct on the left side of an assignment statement as shown below.

@ PTR:=@A;

This statement changes PTR to point to A instead of DATA.

2-21. LABELS

Labels are used to identify statements for transfer of control and for
documentation purposes. A label must always be followed by a colon (:)
to separate it from the statement that it identifies. For consistency
and documentation, labels may be declared with a label declaration;
however, it is not necessary to do so since labels declare themselves
automatically when they are used. A label can be used to identify only
one statement within the scope of the identifier; that is, the same label
can be used to identify two different statements as long as the
statements are not both in the main body or both in the same procedure.

2-22. SWITCHES

The purpose of a switch is to transfer control to one of several labeled
statements within a program. A switch is first declared with a switch
declaration (see paragraph 3-6 for the format of a switch declaration).
The switch declaration defines an identifier to represent an ordered set
of labels. Each label in the list (from left to right) is assigned a
number from 0 to n- 1 (where n is the number of labels) which indicates
the position of the label in the list. A switch of program control is
accomplished by using a GO TO statement with the switch identifier and an
index. The index is evaluated to an integer value and control is
transferred to the switch label specified by that number. Bounds
checking on the index to insure that the value has a corresponding
labeled statement is optional. See paragraph 5-2 for the form of the GO
TO statement.

For example,

BEGIN
INTEGER INDX;
REAL A,B;
SWITCH SW:= L1,L2,L3,L4;
:
INDX:= -1;

LOOP: INDX:= INDX+1;
GO TO SW(INDX);

L1: A:=B;
GO TO LOOP;

L2: B:=A;
GO TO LOOP;

L3: A:=A+B;
GO TO Loop;

L4: B:=A+B;
:

END.

Chapter 3 GLOBAL DATA DECLARATIONS

3-1. TYPES OF DECLARATIONS

A declaration defines the attributes of an identifier before it is used
in a program or procedure. All identifiers in SPL programs (with the
exception of labels) must be explicitly declared once only within a
single program or procedure. There are two possible levels of
declarations in SPL:
Global (in a main program)
Local (in procedures)

Globally declared identifiers can be accessed throughout a program (even
within procedures) and their declarations are grouped together at the
beginning of the program. Locally declared identifiers can be accessed
only within the procedure where declared and their declarations are
grouped together at the beginning of the procedure body. This section
covers global data declarations only; refer to section VII for local
declarations.

Global data declarations immediately follow the opening BEGIN as shown
below.

BEGIN
 -----> [global-data-declarations]<-----

[procedures/intrinsics]
[global-subroutines]
[main-body]

END.

Global data declarations are composed of the following types of
declarations (which are described individually later in this section):
* global simple variable declarations
* global array declarations
* global pointer declarations
* label declarations
* switch declarations
* entry declarations
* define declarations
* equate declarations

Global data identifiers (simple variables, arrays, and pointers) are
either allocated space in the stack or use space in the stack allocated
to another identifier. Normally, the next available DB-relative location
is allocated for the identifier. However, a register-relative or
identifier-relative location may be specified in the declaration to
override the default allocation. In this case, the referenced location
is used without being allocated. When using identifier or register
references, the compiler only checks that the resulting address is within
the direct address range of the register being used. You must insure
that this location does not exceed the bounds of your data stack when the
identifier is referenced at execution time. Additionally, when using a
reference identifier, you must declare it before using it as a reference
identifier. For example, the declarations:

INTEGER A,B,C;
LOGICAL D= A+ 2;

indicate that D is a LOGICAL simple variable using the same location as
the INTEGER variable C. The syntax for register and identifier references
is described in the appropriate paragraphs for the type of identifier

(simple variable, array, or pointer) in this section. Data identifiers
which are register or identifier referenced cannot be initialized.

3-2. SIMPLE VARIABLE DECLARATIONS

A simple variable declaration specifies the type, addressing mode,
storage allocation, and initializa- tion value for identifiers to be used
as single data items. The type assigned to a variable determines the
amount of space allocated to the variable and the set of HP 3000
instructions which can operate on the variable.

Two methods can be used to link global variables to variables in
separately compiled procedures. The first method is to use the GLOBAL
attribute in the global variable declaration and the EXTERNAL attribute
in the local variable declaration (see paragraph 7-19). The identifiers
in both declarations must be the same and the MPE Segmenter is
responsible for making the correct linkages. (See the MPE Segmenter
Subsystem Reference Manual for a discussion of the Segmenter.) The
second method is to include dummy global declarations at the beginning of
subprogram compilations. All global declarations must be included, even
for identifiers not referenced in the subprogram, and they must be in the
same order as in the main program. It is possible, although not
recommended, to use different identifiers for the same variable, but you
are responsible for keeping them straight. The second method is faster
and requires less space in the USL (User Subprogram Library) files, but
does not protect you against improper linkages.

The form of a global simple variable declaration is:

[GLOBAL] type variable-declaration[,...,variable-declaration];

EXAMPLES:

INTEGER I,J:=1245;
DOUBLE II:=- 1234579 D;
REAL A,B,C:=1.321 E- 21,Z= DB+3;
LOGICAL INDX=X,LI=I,JI=J;
GLOBAL BYTE DOLLAR:="$";

where

type specifies the data type of the variables in the
declaration. The type may be INTEGER, LOGICAL, BYTE,
DOUBLE, REAL, or LONG.

variable- can be any of the following forms:
declaration variable [:= initial-value]

variable = register [sign offset]
variable = reference-identifier [sign offset]

variable is a legal SPL identifier.

initial-value is an SPL constant to be used as the value of the
variable when program execution begins.

register specifies the register to be used in a register
reference. The register may be DB, Q, S, or X.

sign is + or -.

offset is an unsigned decimal, based, composite, or equated

integer constant.

reference- is any legal SPL identifier which has been declared as a

Form 1 of the variable declaration allocates the next available
DB-relative location(s) for the variable. The amount of space allocated
depends on the variable type. If an initial value is specified, the
variable is initialized when execution starts.lf the constant used for
the initial-value is too large, it is truncated on the left, except
string constants which are truncated on the right. If no initial-value
is specified, the variable is not initialized.

Form 2 of the variable declaration equivalences a variable either to the
index register (X) or to a location relative to the contents of one of
the base registers (DB, Q, or S). Since the index register is 16 bits,
only variables of type INTEGER, LOGICAL, and BYTE may be equivalenced to
this register.

Form 3 of the variable declaration equivalences a variable to a location
relative to another variable. The reference-identifier must be declared
first. For example, the declarations

LOGICAL A;
INTEGER B= A+ 5;

equivalence B to the location 5 words past the location of A. Simple
variables which are address referenced to arrays use either the location
of the zero element of the array (if direct), or the location of the
pointer to the zero element of the array (if indirect). Note that if the
reference-identifier is an array, only the zero element may be used in a
variable reference of a simple variable declaration. In any case, the
final address must be within the direct address range.

DB, PB, Q, S, and X cannot be used as the identifier on the right side of
an equals sign in a variable declaration, because they are interpreted as
register references instead of variable references. For example,
consider the declaration

INTEGER A,B,C,DB,D= DB+ 2;

The variable D is equivalenced to the location 2 cells past the cell to
which the DB register points--not 2 cells past the location assigned to
the variable DB,

The legal combinations of registers, signs, and offsets are shown below

--
| Register | Sign | Offset |
--
| DB | + | 0 to 255 |
--
| Q | + | 0 to 127 |
--
| Q | - | 0 to 63 |
--
| S | - | 0 to 63 |
--
| X | none | none |
--

3-3. ARRAY DECLARATION

An array declaration specifies one or more identifiers to represent
arrays of subscripted variables. An array is a block of contiguous
storage which is treated as an ordered sequence of "variables" having the
same data type. Each "variable" or element of the array is denoted by a
unique subscript (SPL provides one-dimensional arrays only). An array
declaration defines the following attributes of an array:

* The bounds specification (if any) which determines the size of the
array and the legitimate range of indexing.

* The data type of the array elements.

* The storage allocation method.

* The initial values, if desired.

* The access mode (direct or indirect).

There are two types of access modes used for arrays: indirect and
direct. An indirect array uses a pointer to the zero element of the
array. Addressing an indirect array element uses both indirect
addressing and indexing. If the array is a BYTE array, the pointer
contains a DB-relative byte address. For all other data types, the
pointer contains a DB-relative word address. A direct array uses a
location within the direct address range of one of the registers (DB, Q,
or S) as the zero element of the array and then uses indexing to address
a specific array element. Figure 3.1 illustrates the differences between
direct and indirect arrays.

The area in the stack between DB and the initial value of Q is divided
into two areas: Primary DB Storage and Secondary DB Storage. The
Primary DB area is used for global storage of simple variables, direct
arrays, and pointers to indirect global arrays. The Secondary DB area is
used for global storage of indirect arrays. The Primary DB area cannot
normally extend past DB+ 255. The only exception is when the last global
data declaration is for a DB-relative direct array whose zero element
falls between DB+0 and DB+255. Since the index register is used to
address array elements, the array may extend past DB+255. The Secondary
DB area immediately follows the Primary DB area regardless of the size of
the Primary DB area.

Figure 3.1. Accessing Array Elements

There are two methods which can be used to link global arrays to arrays
in separately compiled procedures. The first method is to use the GLOBAL
attribute in the global array declaration and the EXTERNAL attribute in
the local array declaration (see paragraph 7-23). The identifiers in
both declarations must be the same and the Segmenter is responsible for
making the correct linkages. The second method is to include dummy
global declarations at the beginning of subprogram compilations. All
global declarations must be included, even for identifiers not referenced
in the subprogram, and they must be in the same order as in the main
program. It is possible, although not recommended, to use different
identifiers for the same array, but you are responsible for keeping them
straight. The second method is faster and requires less space in the USL
(User Subprogram Library) files, but does not protect you against
improper linkages.

The form of a global array declaration is:

{global-array-dec}
{initialized-global-array-dec}

where

GLOBAL is used for arrays which are referenced in procedures
compiled separately.

type specifies the data type of the array. The type can be
INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not
specified, the array is type LOGICAL.

global-array- is one of the following forms:
dec

1. array-name(lower:upper) [=DB]

This form is used for an uninitialized array with
 defined bounds. If = DB is not specified, the

array is indirect and the next available DB
Primary location is allocated for the pointer to
the zero element of the array. Storage for the
array itself is allocated in the Secondary DB
area. If = DB is specified, the array is direct
and the next available n cells in the DB Primary

 area are allocated for the array (where n is the
number of locations required to store the array).
The zero element of the array must be within the
direct address range whether or not it is
actually an element of the array. For example,
consider the declaration:

INTEGER ARRAY A(- 20:- 10)= DB;

The next available DB primary location is
allocated to A(-20), but all indexing is done
relative to A(0) even though it is not an actual
element of the array. The address which A(0)
would have if it were in the array must be
between DB+0 and DB+255.

2. array-name(@)= DB [+ offset]

This form is used for an indirect array with
 undefined bounds. If no offset is specified, the

next available Primary DB location is used,
without being allocated, as the pointer to the
zero element of the array. If an offset is
specified, then that DB-relative cell is used,
without being allocated, as the pointer to the
zero element. In either case, space is not
 allocated for the array in the Secondary DB area
nor is initialization allowed.

3. array-name(*)= DB [+ offset]

This form is used for a direct array with
undefined bounds. If no offset is specified, the
next available Primary DB location is used,

without being allocated, as the zero element of
the array. If an offset is specified, then that
DB-relative location is used, without being

either case, space is not allocated for the array
nor is initialization allowed.

4. array-name(@)[= register sign offset]

This form is used for an indirect array with
undefined bounds whose pointer is Q or
S-relative. If a base-register reference is not
specified, the next available DB cell is
allocated for the pointer to the zero element of
the array. If a base-register reference is
specified, then that Q-relative or S-relative

 cell is used, without being allocated, as the
pointer to the zero element of the array. Space
is not allocated for the array nor is
initialization allowed.

 5. array-name(*)

This form can be used for an indirect array with
undefined bounds. The next available DB cell is
allocated for the pointer to the zero element of
the array. Space is not allocated for the array
nor is initialization allowed. This form is
equivalent to array-name(@) without a
base-register reference.

6. array-name(*)= register sign offset

This form is used for direct arrays with
undefined bounds which are Q-relative or
S-relative. The specified cell is used as the
zero element of the array; however, space for the
array is not actually allocated and the array
cannot be initialized.

7. array-name(*)= reference-identifier [sign offset]

This form is used for an indirect array with
undefined bounds whose pointer is Q- or
S-relative. If a base-register reference is not

 specified, the next available DB cell is
allocated for the pointer to the zero element of
the array. If a base-register reference is
specified, then that Q-relative or S-relative
cell is used, without being allocated, as the
pointer to the zero element of the array. Space
is not allocated for the array nor is
initialization allowed.

INTEGER B(*)- A+ 10;

would not be allowed because the direct address
range for the DB register is 0 to 255. If the
array is direct, the referenced location is used
as the zero element of the array. If the array
is indirect, the referenced location is used as
the pointer to the zero element except when
either the array or the reference-identifier (but
not both) is type BYTE, in which case the next
available DB-cell is allocated for the pointer to
the zero element. Space is not allocated for the

array nor can the array be initialized. DB, PB,
Q, S, and X cannot be used as the reference-
identifer because they are interpreted as

8. array-name(*)= reference-identifier (index)

This form is used for equivalencing one array to
another array. The reference-identifier may be
either an array or a pointer variable and must be
declared first. If the reference-identifier is a
direct array, the array is a direct array whose
zero element is the location of the referenced
array element. If the reference-identifier is an
indirect array or a pointer variable, the array
is indirect. In this case, the next available DB
cell is allocated for the pointer to the zero
element of the array if a non-zero index is
specified or if either the array or the
reference-identifier (but not both) is type BYTE;

 otherwise, both use the same location for the
pointer to the zero element. In any case, space
is not allocated for the equivalenced array nor
can the equiva- lenced array be initialized. DB,
PB, Q, S, and X cannot be used as the
reference-identifier because they are interpreted
as register references instead.

*Forms 4 through 8 are not allowed if the word GLOBAL is
included in the declaration.

array-name is a legal SPL identifier.

reference- is any legal SPL identifier except DB,PB,Q,S, or X which
identifier has been declared as a data item.

register specifies the base register in a register reference.
The register may be either Q or S.

sign is + or -.

offset is an unsigned decimal, based, composite, or equated
 integer constant within the direct address range as
shown below:

--
| Register | Sign | Offset |
--
| DB | + | 0 to 255 |
--
| Q | + | 0 to 127 |
--
| Q | - | 0 to 63 |

--
| S | - | 0 to 63 |
--

initialized- is of the form:
global-array

array-name(lower:upper) [=DB]:=

value-group[,...,value-group]

lower specifies the lower bound of the array. It can be any

integer constant or constant expression.

upper specifies the upper bound of the array, It can be any
decimal, based, composite, or equated single-word
integer constant or constant expression.

index indicates the element of the referenced array to be used
as the reference location. The index can be any
decimal, based, composite, or equated single-word
integer constant.

value-group is either of the following:
 initial-value

repetition-factor (initial-value [,...,initial-value]
)

initial-value is any SPL numeric or string constant.

repetition- specifies the number of times the initial value list
factor will be used to initialize the array elements. The

repetition-factor can be any unsigned non-zero decimal,
based, composite, or equated single-word integer
constant.

Global arrays with defined bounds can be initialized. Initialization
consists of a := followed by a list of numerical constants or strings. A
group of constants can be surrounded by parentheses and preceded by a
repetition factor (n) to specify that the constants in parentheses are to
be used n times ininitializing the array before going on to the next item
in the list. These repeat groups cannot be nested. Elements are
initialized starting with the lowest subscript and continuing up until
the constant list is exhausted. The initialization list cannot contain
more values than there are elements in the array. If the constant used
for the initial value is too large, it is truncated on the left except
string constants which are truncated on the right. If no initial value
is specified, the variable is not initialized. Only the last array in a
declaration list can be initialized.

Table 3-1 summarizes the syntax and meanings for the various forms of
global array declarations. Figure 3.2 shows a series of array
declarations with the locations assigned to the identifiers.

Table 3-1. Global Array Declaration Summary

--
| FORM | OFFSET | ADDRESSING | POINTER | ZERO ELEMENT
| | RANGE | MODE | LOCATION | LOCATION
--
| id(low:up) | | Indirect | next DB (A) | Sec. DB (A)
--
| id(low:up)=DB | | Direct | | Primary DB (A)
--
| id(@)=DB | | Indirect | next DB | C(next DB)
--
| id(@)=DB+offset | 0-255 | Indirect | DB+offset | C(DB+offset)
--
| id(*)=DB | | Direct | | Primary DB
--
| id(*)=DB+offset | 0-255 | Direct | | DB+offset
--
| id(@) | | Indirect | next DB (A) | C(next DB)
--

| id(@)=Q+offset | 0-127 | Indirect | Q+offset | C(Q+offset)
--
| id(@)=Q-offset | 0-63 | Indirect | Q-offset | C(Q-offset)

| id(@)=S-offset | 0-63 | Indirect | S-offset | C(S-offset)
--
| id(*) | | Indirect | next DB (A) | C(next DB)
--
| id(*)=id | | Note 1 | Note 2 | Note 3
--
| id(*)=id+offset | Note 4 | Direct | | id+offset
--
| id(*)=id-offset | Note 4 | Direct | | id-offset
--
| id (*)= | | Note 5 | Note 6 | id(index)
| id(index) | | | |
--
| id(*)= Q+offset | 0-127 | Direct | | Q+offset
--
| id(*)= Q-offset | 0-63 | Direct | | Q-offset
--
| id(*)=S-offset | 0-63 | Direct | | S-offset
--

Legend

(A)--Storage is allocated for the designated pointer or array.

C()--The contents of the location in parentheses is the address of the
zero element of the array.

id - identifier

low--lower bound

up--upper bound

__

NOTE

1. If the right side id is a direct array or a simple variable,
the addressing mode is direct. If the right side id is an
indirect array or a pointer variable, the addressing mode is
indirect.

2. If the addressing mode is indirect, both identifiers use the
same pointer location unless one id is type BYTE and the
other is not, in which case, the next available DB-cell is
allocated for the pointer.

3. The zero element is in the same location as the right side
id (or its zero element if the right side id is an array).

4. The offset must result in an effective address within the
direct address range of the base register which the right
side id uses.

5. If the right side id is a direct array, the left side id is
direct; if the right side id is a pointer variable or an
indirect array, the left side id will be indirect.

6. If the addressing mode is indirect, the next available
DB-cell is allocated for the pointer if:

and/or

b. one of the two identifiers is type BYTE and the other is
not.

Otherwise, both identifiers use the same pointer location, If the
addressing mode is direct, there is no pointer.

__

3-4. POINTER DECLARATION

A pointer declaration defines an identifier as a "pointer" --a single
word quantity used to contain the DB-relative address of another data
item--the object of the pointer. A pointer declaration defines the
following attributes of a pointer:

* The data type.

* The storage allocation method.

* The initial address to be stored in the pointer (optional).

When the pointer is accessed, the object is accessed indirectly through
the pointer address. The object is assumed to be, or is treated as if it
were, the type of the pointer.

There are two methods which can be used to link global pointers to
pointers in separately compiled procedures. The first method is to use
the GLOBAL attribute in the global pointer declaration and the EXTERNAL
attribute in the local pointer declaration (see paragraph 7-27). The
identifiers in both declarations must be the same and the Segmenter is
responsible for making the correct linkages. The second method is to
include dummy global declarations at the beginning of subprogram
compilations.
BOX

00001000 00000 0 $CONTROL ADR
00002000 00000 0 BEGIN
00004000 00000 1 ARRAY A(0:10),A0(0:10):=11(%17);

 DB+000
DB+001

00005000 00001 1 REAL ARRAY A1(0:10);
DB+002

00006000 00001 1 REAL ARRAY A2(0:10)=DB;
DB+003

 00007000 00001 1 REAL ARRAY A3(@)=DB;
DB+031

00008000 00001 1 REAL ARRAY A4(@)=DB+5;
DB+005

00009000 00001 1 REAL ARRAY A5(*)=DB;
 DB+031

00010000 00001 1 REAL ARRAY A6(*)=DB+6;
DB+006

00011000 00001 1 REAL ARRAY A7(@);
DB+031

00012000 00001 1 REAL ARRAY A8(@)=Q+3;
Q +003

00013000 00001 1 REAL ARRAY A9(@)=Q- 3;
Q - 003

00014000 00001 1 REAL ARRAY A10(@)=S- 2;
S - 002

00015000 00001 1 REAL ARRAY A11(*);
DB+032

00016000 00001 1 REAL ARRAY A12(*)=A1:
DB+002

00017000 00001 1 REAL ARRAY A13(*)=A1+4;
 DB+006

00018000 00001 1 REAL ARRAY A14(*)=A2- 1;
DB+002

00019000 00001 1 REAL ARRAY A15(*)=A1(5);
DB+033

00020000 00001 1 REAL ARRAY A16(*)=Q+3;

00021000 00001 1 REAL ARRAY A17(*)=Q- 3;
Q - 003

00022000 00001 1 REAL ARRAY A18(*)=S- 2;
S - 002

00023000 00001 1 BYTE ARRAY A19(*)=A0;
DB+034

00061000 00001 1 END
PRIMARY DB STORAGE=%035; SECONDARY DB STORAGE=%00054
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:02; ELAPSED TIME=0:00:08

Figure 3.2. Sample Global Array Declarations

All global declarations must be included, even for identifiers not
referenced in the subprogram, and they must be in the same order as in
the main program. It is possible, although not recommended, to use
different identifiers for the same pointer, but you are responsible for
keeping them straight. The second method is faster and requires less
space in the USL (User Subprogram Library) files, but does not protect
you against improper linkages.

The form of a global pointer declaration is:

[GLOBAL] [type] P01NTER pointer-dec[,...,pointer-dec];

EXAMPLES:

INTEGER A; LOGICAL B;
BYTE POINTER P:=@A;
INTEGER ARRAY N(0:10);
INTEGER POINTER PN:=@N(5);
POINTER P3=DB+ 2,P4,P5:=@A, P6=B;
INTEGER POINTER PCB=3;

where

GLOBAL is used for pointers referenced in procedures compiled
separately.

pointer-dec is one of the following:

1. pointer-name [:= @reference-identifier [(index)]]

This form allocates the next available DB cell
for the pointer variable. If the :=@reference-
identifier is used, the pointer is initialized to
the address of the reference-identifier or array-
element if an index is included. The

 reference-identifer must be declared first.

__

NOTE Global pointers can only be initialized to
point to identifiers which have been
declared to be DB-relative, either
explicitly or implicitly. They cannot be
initialized to point to identifiers which
have been register referenced to the Q, S,
or X registers, Thus, the following is not

allowed:

INTEGER A=Q+1; POINTER B:=@A;

 statement (see paragraph 4-20) to
dynamically set the pointer to such a
variable unless it was equivalenced to the
index register.

 __

2. pointer-name = reference-identifier [sign offset]

This form is used to equivalence a pointer
variable to a location relative to another
identifier. Space is not allocated for the
pointer nor can the pointer be initialized, The
resulting address for the pointer variable must

 be within the direct address range of the base
register which the reference-identifier uses.

3. pointer-name = register [sign offset]

This form is used to equivalence a pointer
 variable to a location relative to a

base-register. Space is not allocated for the
pointer nor can the pointer be intitialized. The
resulting address for the pointer variable must
be within the direct address range of the
specified base-register.

4. pointer-name = offset

This form is used only in privileged mode. It is
the offset in System DB. The pointer reference
must always be subscripted and cannot be preceded
by '@'.

type specifies the data type of the pointer variables in the
declaration. The type can be INTEGER, LOGICAL, BYTE,
DOUBLE, REAL, or LONG.

pointer-name is a legal SPL identifier.

reference- is any legal SPL identifier which has been declared as a
identifier data item except DB,PB,Q,S, or X.

register specifies the base register in a register reference.
The register can be DB, Q, or S.

sign is + or -.

offset is an unsigned decimal, based, composite, or equated
integer within the direct address range as shown below.

--
| Register | Sign | Offset |
--
| DB | + | 0 to 255 |
--
| Q | + | 0 to 127 |
--
| Q | - | 0 to 63 |
--
| S | - | 0 to 63 |

--
| ST (system table) | + | > = 0 |
--

index indicates the array element whose address the pointer
will be initialized to contain. The index can be any
decimal, based, composite, or equated single-word
integer constant.

Pointers are initialized with addresses of other variables or constants.
The method is to follow the pointer with :=@ and a data reference (simple
variable, pointer element, or array element) or := constant. The address
of the specified data item, adjusted to the address type of the pointer,
is stored in the cell allocated for the pointer. BYTE pointers contain
DB-relative byte addresses, whereas all other types of pointers contain
DB-relative word addresses.

See "Pointers" (paragraph 2-20) for methods of referring to and through
pointers. Pointers can be indexed like arrays and can contain word or
byte addresses.

Pointers can be declared with all data types; if no type is specified,
type LOGICAL is assumed. The type determines what data type the object
of the pointer is assumed to have. This allows objects declared with one
type to be accessed as another data type by accessing them through
pointers.

Pointers which are not address referenced are allocated the next
available DB-relative location and can be initialized. Pointers which
are referenced use the address of the referenced item or the specified
register relative location and cannot be initialized.

3-5. LABEL DECLARATION

A label declaration specifies that an identifier will be used in the
program as a label to identify a statement. Labels are referenced when
it is necessary to transfer control to a specific statement; they need
not be declared explicitly unless the programmer wishes

The form of a label declaration is:

LABEL label [,...,label];

EXAMPLES:

LABEL L1,L2,L3;
LABEL L;

where

label is a legal SPL identifier.

Labels are used to identify statements as follows:

LABEL L1;
:
L1:A:=B;

The syntax for labeled statements is given in paragraph 1-3. In SPL, a
label implicitly declares itself when it is used to identify a statement,
as the object of a GO TO statement, or in a switch declaration. It need
not be explicitly declared in a label declaration except as desired for
documentation purposes. See "GO TO Statement" (paragraph 5-2) and
"Switch Declaration" below for use of labels.

3-6. SWITCH DECLARATION

A switch declaration relates an identifier to an ordered set of labels.
The switch is accessed as a computed (or indexed) GO TO statement. The
purpose of a switch is to allow selective transfer of control to any of
the statements identified by the labels in the switch declaration.

The form of a switch declaration is:

SWITCH switch-name := label [,...,label] ;

EXAMPLES:

SWITCH SW:=L1,L2,L3,L4,L5,L6,L7,L8,L9;
 SWITCH ERROR'SELECT:=ERR1,ERR2,ERR3,ERR4,ERR5,ERR6;

where

switch-name is a legal SPL identifier.

label identifies the statement to which control is transfered
when the switch is invoked.

Only one switch-name can be declared in each switch declaration.
Associated with each label in the label list from left-to-right is an
ordinal integer from 0 to n-1, where n is the number of labels in the
list. This integer indicates the position of the label in the list.
Each position in the list must contain a label; null elements are not
allowed. When the switch-name is referenced (see "GO TO Statement" in
paragraph 5-2), the value of an integer subscript determines which label
is selected from the list. Bounds checking in this selection is
optional. Entry points are not allowed in switch declarations. Switch
labels may not occur in subroutines.

3-7. ENTRY DECLARATION

The purpose of a global entry declaration is to specify multiple entry
points to a main program beyond the implicit entry point which is the
first statement of the program. Each entry identifier must occur
somewhere in the body as a statement label, but cannot be the object of a
GO TO.

The form of an entry declaration is:

ENTRY label [,...,label];

EXAMPLES:

ENTRY P1,P2,P3;
ENTRY P1;

where

label identifies the statement to be used as an alternate
entry point.

By specifying the entry point to the operating system, the program can be
started at other than its natural beginning. See "Entry Points" in
paragraph 1-16.

For example, here is a sample entry declaration:

ENTRY P1,P2,P3;

3-8. DEFINE DECLARATION AND REFERENCE

A define declaration assigns a block of text to an identifier. Whenever
the identifier is used in the program thereafter, the assigned text
replaces the identifier. This provides a convenient abbreviation
mechanism to avoid repeating long constructs that are used many times
throughout a program.

The form of a define declaration is:

DEFINE identifier = text# [,...,identifier = text#];

EXAMPLES:

DEFINE AS=ASSEMBLE(#,LA=LONG ARRAY#;
DEFINE DA=DOUBLE ARRAY#;

where

identifier is a legal SPL identifier.

text specifies the block of text to be substituted when the
define is invoked. The text can be any sequence of
ASCII characters; however, # can be used only within a

 string.

A define identifier can be referenced anywhere except
within an identifier, string, or constant. The text
should make sense when inserted where the define is
referenced.

At declaration time, a define has no effect on the
compilation of the program. It has effect only in the
context where it is referenced. For this reason,
undeclared identifiers can appear in defines; they need
to have been declared only when the define is
referenced. Similarly, the define text is checked for
syntax errors in the context where it is referenced, not

 where it is declared.

Define declarations can be nested (define identifiers
can be used in other definitions), but they cannot be
recursive (a define identifier appearing within its own

 text), since this leads to infinite nesting when the
define is referenced.

The number sign (#) terminates a define text only if it
is not contained in a string. For example, the string
"ABCD#" # is valid text terminated by the second #.
Incomplete comments cannot appear in DEFINEs.

Only one block of text can be assigned to a particular
identifier.

 For example, here are some sample define declarations
and references:

DEFINE I=ARRAY B(0:1)#;

INTEGER I; <<INTEGER ARRAY B(0:1);>>

DEFINE SUM=A+B+C+D+E#;

3-9. EQUATE DECLARATION AND REFERENCE

An equate declaration assigns an integer value (determined by an
expression of integer constants and other equates) to an identifier. The
equate mechanism is only a documentation and maintenance convenience; it
does not allocate any run-time storage, but merely provides a form of
consistent identification for constants. When an equate identifier is
used, the appropriate constant is substituted in its place. When equates
are used instead of actual constants, programs can be updated easily;
instead of replacing every occurrence of a constant, only the equate
declaration is changed.

The form of an equate declaration is:

EQUATE identifier = equate-expression [,...,identifier =
equate-expression];

EXAMPLES:

EQUATE BELL=7,CR=%15;
EQUATE N=100,M=N+50;

where

identifier is a legal SPL identifier.

equate- can be either one of or a combination of two forms:
expression

 [sign] unsigned-integer [operator unsigned-equate-expr]

(equate-expression)

sign is + or -.

unsigned- is an unsigned decimal, based, composite, or equated
integer single-word integer constant.

operator is + ,-,* , or /.

unsigned- is an unsigned equate-expression.
equate-expr
The value to be assigned to an equate identifier is determined by an
equate expression. Equate expressions consist of operators (*,/,+ ,-),
unsigned integers (including previously defined equated integers), and
parentheses. Evaluation of the expression proceeds from left to right,
except that multiplication and division (*,/) are done before addition
and subtraction (+,-) and expressions in parentheses are done before the
operators that surround them. The value of an equate expression must fit
in a single-word or it will be truncated on the left. Since equate
identifiers can be used in equate expressions, a series of related equate
declarations can be set up such that changing only the first changes all
the rest.

Equate identifiers can be used anywhere in the program that an integer or
unsigned integer constant is allowed.

For example, here are some sample equate declarations and references:

EQUATE M=1,N=M+1,P=N+ 1;
EQUATE T=20*P/(20- P+ M);

<<M=1,N=2,P=3,T=3,J=408>>

3-10. DATASEG DECLARATION

The DATASEG declaration is intended for privileged users requiring an
extra data segment (defined as split-stack mode, section 8-1). It
ensures the reliability of the generated split-stack code by limiting the
declared variables to explicit DB-relative offsets. Only simple
variables, arrays, and pointers are permitted as DATASEG declarations; no
GLOBAL, EXTERNAL, or OWN declarations are allowed. A variable
declaration without an offset will be assigned the next available offset.

The variables defined within the DATASEG declaration are used in
conjunction with the MOVEX instruction and the WITH statement, as
detailed in section 4-21A and 6-5 respectively.

The form of a DATASEG declaration is:

DATASEG dataseg-name = dataseg#

BEGIN type dataseg-variable [=dataseg offset]

END;

EXAMPLES:

 DATASEGX=77
BEGIN INTEGER I; <<OFFSET=0>>
REAL R=X+5; <<OFFSET=5>>
LONG L=R+2; <<OFFSET=7>>
ARRAY A(0:5); <<OFFSET=1>>

 END;

where

dataseg-name is an SPL identifier,

dataseg# is an integer constant or integer constant expression,

type may be INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG,

dataseg- is a legal SPL identifier,
variable
dataseg-offset is the dataseg-variable followed by a sign (+,-) and an

integer constant.

Chapter 4 EXPRESSIONS, ASSIGNMENT,
AND SCAN STATEMENTS

4-1. EXPRESSION TYPES

An expression is a sequence of operations upon constants, variables, and
indexed items which results in a single value of a specified data type.
If the data type is logical, the expression is a logical expression and
logical operators are allowed within it. If the data type is numeric
(i.e., byte, integer, double, real, or long), the expression is an
arithmetic expression and arithmetic operators are used within it. An IF
expression allows a choice to be made between two expressions of the same
word size based on hardware or software conditions.

Within SPL expressions, only variables of the same data type can appear
on either side of an operator. That is, an integer can be multiplied by
an integer, but not by a real. The only exception to this rule is the
exponentiate operator (^) in arithmetic expressions; real and long data
items can be exponentiated to integer powers. In all other cases, the
combination of differing data types can only be accomplished through type
transfer functions. For example, the function FIXR converts an
expression of type real into one of type double and rounds the result to
the closest integer:

FIXR(real-expression)

A corresponding function, FIXT, converts real to double and truncates the
result:

FIXT(real-expression)

Type transfer functions are not available for all possible
transformations. The following table shows which transfers are provided
and which functions should be used in each case. In some cases, it may
be necessary to specify nested type transfer functions (e.g., to convert
from real to integer, either INTEGER(FIXR(real-expression)) or
INTEGER(FIXT(real-expression))).

--
| FROM | TO | TO | TO | TO | TO | TO
| | LONG | REAL | DOUBLE | INTEGER | LOGICAL | BYTE
--
| Long | -- | REAL | | | |
--
| Real | LONG | -- | FIXRFIXT | | |
--
| Double | LONG | REAL | -- | INTEGER | LOGICAL |
--
| Integer | | REAL | DOUBLE | -- | LOGICAL | BYTE
--
| Logical | | REAL | DOUBLE | INTEGER | -- | BYTE
--
| Byte | | REAL | DOUBLE | INTEGER | LOGICAL | --
--

4-2. VARIABLES

A variable is one of the items which can occur in expressions. Each
variable, whether it is a simple variable, an array element, a pointer
reference, or the top of the stack, is associated with one data item of a
specific type. The address of any data item can be used as an integer
variable since it is a 16-bit signed quantity.

The form of a variable in an expression is one of the following:

data-item [(index)]
TOS
@identifier [(index)]
ABSOLUTE(index)

The form of a variable on the left of an assignment operator (:=) is one
of the following:

data-item [(index)]
TOS
@pointer-name
ABSOLUTE(index)

where

data-item is a simple-variable, array-name, or pointer-name.

index specifies an offset. The index is either an expression
or an assignment statement of type integer, logical, or
byte. If an index is not specified with an array-name,
a pointer-name, or ABSOLUTE, then zero is assumed.

TOS is the Top Of Stack

identifier is a simple-variable, array-name, pointer-name, label,
or procedure-name whose DB- or PB-relative address is
used as an integer value.

ABSOLUTE is used to denote an absolute memory location. To use
this construct, you must have privileged mode (PM)
capability.

The three most common types of variables occurring in all data types are
the simple variable, the array reference, and the pointer reference.
Array and pointer references specify an element by means of a subscript
or index; the index must always be a one-word value (byte, integer, or
logical). The index value specifies an element index, not a word index.
It is loaded into the index register and used in an indexed memory
reference instruction. Note that this may change the value of the
condition code. If no index is specified, the reference is to the zero
element, which is more efficient than explicitly specifying 0 as the
index since the index register is not used.

4-3. TOS

TOS is a reserved symbol that always refers to the top of the stack; it
can be used anywhere a variable can be used. When TOS is used on the
left side of an assignment statement (TOS:=expression), the normal store
operation is omitted and the result is left on the top of the stack. If
TOS occurs in an expression, the contents of the top of the stack are
used as the next operand. TOS must be used carefully, since the compiler
does not keep track of the number of elements pushed onto the stack prior
to encountering TOS. The data type of TOS is determined by context; it
takes the type of the expression or other operand. Thus, in one context
TOS might refer to the top word, in another the top four words. Note
that TOS does not refer to the same memory location from one statement to
the next, since S is constantly changing. The default type for TOS is
integer. A general rule for determining the effect of TOS is to assume
that TOS is a variable and then delete all LOAD and STOR operations for
TOS. For example,

TOS:=7; <<LOAD 7>
 A:=TOS+6; <<A:=13>>

4-4. ADDRESSES (@) AND POINTERS

When @ precedes a simple variable, it specifies that the DB-relative
address of the simple variable is desired. All addresses are signed,
one-word integers and are treated as such in expressions. When @
precedes an array identifier, it refers to the DB- or PB-relative address
of the zero element of the array (whether direct or indirect). When @
precedes an array reference (identifier(index)), it refers to the DB- or
PB-relative address of the array element. When @ precedes a pointer
identifier, it refers to the address contained within a pointer cell;
when an index is specified, @ refers to the address of the data element
relative to the zero element pointed at by the pointer. For example,

BEGIN
INTEGER A;
INTEGER ARRAY B(0:10);
POINTER P:=@B(5);

A:=@A; <<A assigned address of A>>
A:=@P; <<A assigned address of B(5)>>

 A:=@B; <<A assigned address of B(0)>>
END.

If the @ construct is used on the left of an assignment operator, it must
be used with either a pointer-name or an array-name of an indirect array
and an index cannot be specified. This usage changes the address which
the pointer contains. For arrays, this means that there is a new zero
element. For example,

@A:= @A(1);

would make A(1) the new A(0). For pointer variables, the statement:

@P:=@B;

changes P to point to the location assigned to B. The various
combinations using the @ construct and pointers are summarized in Figure
4.1.
BOX

POINTER P1,P2;
LOGICAL VAR;

P1:=P2; <<The object of P2 is stored into the object of P1>>
P1:=@P2; <<The address in P2 is stored into the object of P1>>
@P1:=@P2; <<The address in P2 is stored into P1>>
@P1=P2; <<The object of P2 is stored into P1>>
P1:=VAR; <<The value of VAR is stored into the object of P1>>
P1:=@VAR; <<The address of VAR is stored into the object of P1>>
@P1:=@VAR; <<The address of VAR is stored into P1>>
@P1:=VAR; <<The value of VAR is stored into P1>>
VAR:=P1; <<The object of P1 is stored into VAR>>
VAR:=@P1; <<The address in P1 is stored into VAR>>

Figure 4.1. Pointers and Addresses

4-5. ABSOLUTE ADDRESSES

The ABSOLUTE construct can only be executed in privileged mode. It
provides access to the contents of an absolute memory location.
The address (index) is loaded into the index register. If
ABSOLUTE appears on the left side of an assignment statement
(ABSOLUTE(index):=expression), a PSTA (privileged store) instruction is
generated which stores the top of the stack (expression) in the absolute
memory location specified by the index register. If ABSOLUTE appears
within an expression, a PLDA (privileged LOAD) instruction is generated
which loads onto the stack the contents of the absolute location
specified by the index register. For example,

LOGICAL L1,L2,L3;
INTEGER A1,A2,A3=X;
:
L1:=ABSOLUTE(A1*A2);
ABSOLUTE(L2):=A1+5;
ABSOLUTE(A3):=A1+5; <<A3 is the index register>>
L1:=ABSOLUTE(ABSOLUTE(3));
L1:=ABSOLUTE(A3);

4-6. FUNCTION DESIGNATOR

Function designators are another of the possible components of an
expression. A function designator specifies a function (a typed
procedure or subroutine) to be executed and a list of actual parameters
(values or addresses) to be passed to the function. The function returns
a value of the appropriate data type to the place in the expression where
it was called.

The form of a function-designator is:

name [([actual-parameter] [,...,[actual-parameter])]

__

NOTE An actual-parameter can be omitted only if OPTION VARIABLE is
specified in the procedure declaration.

__

EXAMPLES:

F(*,A,B(2))

G(C+3,I:=I+1,D< E)

where

name is the name of the function procedure or subroutine to
be executed.

An actual-parameter is one of the following:

identifier [(index)]

arithmetic-expression

logical-expression

assignment-statement
*

identifier is a simple-uariable, array-name, pointer-name,
 procedure-name, or label. The DB- or PB-relative

address is passed to the function. PB-relative arrays
cannot be passed as parameters. An identifier must be
used if the formal parameter is not used in a VALUE
statement within the procedure or subroutine.

index specifies an array or pointer element. The index is an
expression or an assignment statement of type INTEGER,
LOGICAL, or BYTE. If an index is not specified for an
array or pointer, then zero is assumed.

arithmetic- are evaluated and the result is passed as a

expression call-by-value parameter. The forms for these items are
logical- fully later in this section.
expression and

(seee"Procedure Declaration" and "Subroutine Declaration" in section
VII). The actual parameters must match the formal parameters one-to-one
as specified in the declaration; correspondence is checked left-to-right.
An actual parameter may be omitted only if OPTION VARIABLE has been
specified in the procedure declaration.

A stacked parameter is specified by an asterisk (*) to indicate that you
have already loaded the necessary address or value onto the stack.
Labels cannot be stacked. If any parameter is stacked, all parameters to
its left must also be stacked. In addition, functions require that a 1-,
2-, or 4-word zero (depending on the function type) be pushed onto the
stack before the function parameters to reserve space for the return
value. Normally, the compiler provides this zero automatically; however,
if stacked parameters are used, you must arrange for this zero. For
example,

INTEGER PROCEDURE COMPUTE(N);VALUE N;... ;
ASSEMBLE (ZERO);
TOS:=A;
B:=COMPUTE(*)+1000;

For more details on calling procedures and subroutines "Procedure Call
Statement" "Sub- routine Call Statement" in paragraphs 5-8 through 5-13.

Procedure calls use the PCAL instruction and subroutine calls use the
SCAL instruction.

4-7. BIT OPERATIONS

Bit operations can be used in any type of expression. Bit extraction is
the extraction of a contiguous bit field starting at a particular bit
position. Bit concatenation consists of extracting a bit field from a
specified position in one quantity and depositing it at a specified
position in another quantity. Bit shifts allow values to be shifted left
or right, arithmetically, circularly, or logically. All bit operations
are performed on copies of the specified quantities so that the original
variables remain unchanged.

A simple-variable of type BYTE is stored in bits 0-7. However, before
performing a bit operation, the value is loaded onto the stack into bits
8-15. Therefore, bit operations using BYTE simple-variables should use
bits 8 through 15 instead of 0 through 7.

Bit extraction and concatenation are defined for one-word quantities
only. Bit shifts are provided for one-, two-, three-, and four-word
quantities. See "Assignment Statement" later in this section for bit
deposit.

4-8. BIT EXTRACTION

The purpose of bit extraction is to isolate a contiguous bit field from
the 16 bits of a one-word value. The result is a right justified value
with leading bits set to zero. The maximum field that can be extracted
in a single operation is 15 bits. Bit extraction uses the EXF (extract
field) instruction. Extraction starts with the bit of the source
specified by left-source-bit and continues to the right for the number of
bits indicated by length, wrapping around to bit 0, if necessary.

The form of a bit extraction is:

source . (left-source-bit :length)

EXAMPLES:

A.(8:3)
A(I).(15:1)

where

source is a single-word integer, logical, or byte primary from
which the bits are extracted. Refer to para- graphs
4-11 and 4-14 for the definition of primary.

left-source-bit specifies the bit of the source word at which the
extraction begins. The left-source-bit is any unsigned
decimal, based, composite, or equated integer constant
from 0 to 15 inclusive.

length specifies the number of bits to be extracted. The
length is any unsigned decimal, based, composite, or
equated integer constant from 1 to 15 inclusive.

See Figure 4.2 for a sample bit extraction.

4-9. Bit Concatenation (Merging)

Concatenation permits the formation of a new value by extracting a bit
field from one word and depositing it at a specified position in another
word. The left-dest-bit indicates in which bit position of the
destination primary to deposit the field extracted from the source
primary. The left-source-bit indicates at which position in the source
primary to begin extracting the bit field. The length indicates how many
contiguous bits to extract and subsequently deposit. Bit concatenation
uses both the EXF (extract field) and DPF (deposit field) instructions
which are described in the Instruction Set Reference Manual.

Figure 4.2. Bit Extraction

The form of a bit concatenation is:

destination CAT source (left-dest-bit : left-source-bit : length)

EXAMPLES:

A CAT B(8:4:2)
A CAT % 23(6:11:5)
%(16)69A2 CAT %(16)ABCD (8:4:4)

where

source specifies the item from which bits are extracted. The
source is a single-word integer, logical, or byte
primary (defined under "Arithmetic Expressions" and
"Logical Expressions" later in this section).

destination specifies the value into which bits are deposited. The
 destination is a single-word integer, logical, or byte

primary (defined under "Arithmetic Expressions" and
"Logical Expressions" later in this section).

left-source-bit specifies the starting bit position of the bit
extraction. It is an unsigned decimal, based,
composite, or equated integer constant whose value is
between 0 and 15 inclusive.

left-dest-bit specifies the starting bit position of the bit deposit,
It is an unsigned decimal, based, composite, or equated
integer constant whose value is between 0 and 15
inclusive.

length specifies the number of bits to be copied. The length
is an unsigned decimal, based, composite, or equated
integer constant whose value is between 1 and 15
inclusive.

See Figure 4.3 for a sample bit concatenation.

Figure 4.3. Bit Concatenation

4-10. BIT SHIFTS

In the bit shifts, the shift-op is a mnemonic for a hardware shift
operation. Consult the hardware documentation for complete details. In
general, logical shifts fill with zero bits as they shift left or right;
arithmetic shifts preserve the sign bit on a left shift, and fill with
zeros, and propagate the sign bit on a right shift (in other words, fill
with the sign bit); and circular shifts do not have a fill bit (that is,
bits shifted off one end are shifted in at the other end). SPL does not
perform type or word size tests. If a multiple-word shift is specified,
you are responsible for ensuring that the proper number of words (2, 3,
or 4) is on the stack. Note that if the shift count is not a constant
less than 64, the index register is used.

The form of a bit shift is:

operand & shift-op (shift-count)

EXAMPLES:

(A:=A+1) & LSR(3)
VAR & DASL(6)
%1234D & DCSL(SHIFT)

where

operand is an arithmetic or logical primary of any SPL type (see
"Arithmetic Expressions" and "Logical Expressions" later
in this section).

shift-op specifies the shift operation to be performed, The
shift-op is one of the following: LSL, LSR, ASL, ASR,
CSL, CSR, DASL, DASR, DLSL, DLSR, DCSL, DCSR, TASL,
TASR, TNSL, QASR, or QASL.

shift-count specifies the number of bits to be shifted. The
shift-count is an integer expression (described in
"Arithmetic Expressions" later is this section).

The meanings of the shift-op mnemonics are shown below:

LSL Logical Shift Left

LSR Logical Shift Right

ASL Arithmetic Shift Left

ASR Arithmetic Shift Right

CSL Circular Shift Left

CSR Circular Shift Right

DASL Double Arithmetic Shift Left

DASR Double Arithmetic Shift Right

DLSL Double Logical Shift Left

DCSL Double Circular Shift Left

DCSR Double Circular Shift Right

TASL Triple Arithmetic Shift Left

TASR Triple Arithmetic Shift Right

TNSL Triple Normalizing Shift Left

QASR Quadruple Arithmetic Shift Right

QASL Quadruple Arithmetic Shift Left

See Figure 4.4 for some sample bit shift operations.

Figure 4.4. Bit Shift Operations

4-11. ARITHMETIC EXPRESSIONS

An arithmetic expression is a sequence of operations upon numeric data
which results in a single- value of a specific data type. Execution of
operators occurs left-to-right unless higher precedence operators or
parentheses are encountered. Type mixing of operands across operators is
not allowed, but type transfer functions are provided. Primaries, the
basic components of an arithmetic expression, can be constants,
variables, bit expressions, arithmetic expressions in parentheses or
backward slashes (absolute value), function designators, or assignment
statements in parentheses.

The form of an arithmetic-expression is:

[sign] primary [operator primary ...operator primary]

EXAMPLES:

A+ (B*C)/2.0
 - A^A2+F(B)

 \I+3\
(I:=I+1)+(J:=J+1)- 2
A(10:2)+ B CAT C (8:4:4)
I

where

sign is + or -.

operator is +,-,*,/,^, or MOD.

primary is one of the following:
variable
constant
bit operation
(arithmetic expression)
 \arithmetic expression\
function-designator
(assignment statement)

NOTE Allowable exponentiation combinations are:

integer ^ integer
real ^ real

 real ^ integer
long ^ long
long ^ integer

variable designates an item whose value is determined at
 execution time and can be dynamically changed. The form

of a variable is described earlier in this section.

constant designates a value which is established at compile-time
and cannot change during execution. The various

constant types and their forms are described in section
II.

described earlier in this section. The value used in
the expression is the result obtained after performing
the bit-operation.

function- specifies a call to a procedure which returns a value.
designator The form of a function-designator is described earlier

in this section.

assignment- specifies that an expression is to be evaluated and the
statement result assigned to a variable or variables before being

used in the evaluation of the outer expression. The
form of the assignment-statement is described later in
this section.

4-12. SEQUENCE OF OPERATIONS

Arithmetic operations are ranked in order of precedence to determine the
relative order in which operations are executed. Higher precedence
operations are performed first. When operations are of the same rank,
execution proceeds from left to right. The ranks, from highest to
lowest, are:

1. Bit operations Expressions in parentheses Expressions in backward
slashes (absolute value) Function designators Assignment
statements in parentheses (value assigned to variable and left on
the stack)

2. Exponentiation (^, circumflex character) (defined for integer,
real, and long data, plus real to integer power and long to
integer power)

3. Multiply (*) and divide (/) for integer, real, byte, double, and
long data. Modulo (MOD) or remainder for integer, byte, and
double data.

4. Addition (+) and subtraction (-) for integer, real, byte, double,
and long data.

The order in which operations are performed is determined by this rank.
For example,

A-B+C Operators of the same rank are
|_| | performed from left to right.
|__|
result

A+B*C Operators of different rank are performed
| |_| according to their position in the hierarchy
|__| of operators (highest rank first).

result

(A+B)*C Operators enclosed in parentheses take precedence
|_| | over operators outside of parentheses, even those
| | of higher rank.
|___|

result

A-B+C*D E Left-to-right order is maintained until an operator
|_| | |_| occurs that is of lower rank than the next operator
| | | or the next item is in parentheses.
| |__|
|___|
result

A (B-C)*D/E MOD F G
	_				_

| | |
|____| |
| |
|_________|

result

4-13. TYPE MIXING

Mixing of data types across operands is not allowed in SPL, except that
real and long values can be exponentiated to integer powers. Type
transfer functions are available to handle conflicts (see "Ex- pression
Types" earlier in this section).

The type of operands determines the type of both the operation result and
the operator used. Integer operations are used when the operands are of
type byte.

4-14. LOGICAL EXPRESSIONS

Logical expressions are evaluated in the same manner as arithmetic
expressions. However, logical expressions use more and different
operators; allow only data of type LOGICAL and provide special
constructs, such as byte comparisons. The result of a logical expression
is a logical value which can be interpreted as a 16-bit unsigned integer
or as true (odd) or false (even). The truth value of a logical
expression can be used to make decisions (see "IF Statement" in paragraph
5-6). Logical primaries can be logical constants, variables, bit
expressions, expressions in parentheses, functions, or assignment
statements in parentheses, or the complement of any logical primary. The
operators LAND (Logical AND) and LOR (Logical OR) should not be confused
with AND and OR as used in the IF Statement.

The form of a logical-expression can be either of the following:

1. logical-element [operator logical-element]

2. lower-value <= test-value < = upper-value

^ ^ ^
| | |
| | |

integer-expressions

EXAMPLES:

L
L + NOT L1 LAND L2
1<=N <= 100
L< L1
L XOR L1 MOD L2

where

logical-element is one of the following:

logical-expression

logical-primary [relational-operator logical-primary]

arithmetic-expression relational-operator
arithmetic-expression

logical-primary logical-operator logical-primary

byte-compare

operator is LOR (Logical OR), XOR (Logical Exclusive OR), or LAND
(Logical AND).

relational- is >,<,=,<>,>=, or <=.
operator
logical-primary is any of the following:

logical variable
logical or integer constant

 string constant
logical bit-operation
(logical-expression)

(logical assignment-statement)
NOT logical-primary

logical- is +,-,/,MOD,**,//, or MODD.
operator
byte-compare is a comparison of a byte array with another byte array,

a string constant or constants, or a test of the
character type of a byte variable. See paragraph 4-17.

lower-value is the lower bound of a range comparison. The
lower-value is an integer expression.

test-value is the value which is tested for being within the range
of the lower and upper values. The test-value is an

 integer expression.

upper-value is the upper bound of a range comparison. The
upper-value is an integer expression.

The relational-operators have the following meanings:

Operator | Meaning
 < | Less than
<= | Less than or equal to
= | Equal to
<> | Not equal to
> | Greater than
>= | Greater than or equal to

The purpose of a logical expression is to evaluate certain conditions and
relations to produce a value which can be interpreted either
arithmetically (as a 16-bit positive number) or logically (as either TRUE
or FALSE). A logical expression is not a statement of fact, but an
assertion that may be true or false at any given time.

Logical quantities in SPL are 16-bit positive integers (see paragraph
2-7). A logical value is true if its integer value is odd, false if its
value is even (that is, only bit 15 is checked). The reserved words TRUE
and FALSE are equivalent to the numeric values -1 and 0 (%177777 and
%000000) respectively.

In general, the result of a logical expression is left as a full word
operand on the top of the stack. This result is either a -1 or 0 when a
relational operator is encountered. However, when the result of a
relational operator is used in a condition clause to make a decision (see
IF Statement), the result is not left on the stack but the condition code
in the status register is set.

4-15. SEQUENCE OF OPERATIONS

Logical operations are ranked in order of precedence to determine the
order in which the operations are performed. Higher precedence
operations are performed first. When operations are of the same
precedence, execution proceeds from left-to-right. All operands and
results are type LOGICAL, unless otherwise noted. There are seven ranks
of operations as shown below:

1. Logical bit operation Logical-expression in parentheses Logical
function-designator Logical assignment statement in parentheses
NOT (unary one's complement)

2. * (Logical multiply, one-word result)

/ (Logical divide, one-word dividend)

MOD (Logical modulo or remainder, one-word dividend)

** (Logical multiply, result is type double)

// (Logical divide, dividend is type double)

MODD (Logical modulo or remainder, dividend is type
double)

NOTE The MOD and MODD operations divide the dividend by the
divisor, discarding the quotient and yielding the remainder
as the result. See example with the assignment statement,
paragraph 4-20.

3. + (Logical addition)

 - (Logical subtraction)

4. Algebraic and logical comparisons (=,<>,<,>,<=,>=) Byte
comparisons and tests

5. LAND (Logical and)

6. XOR (Logical exclusive or)

7. LOR (Logical inclusive or) Integer range test (such as, I <= J <=
K)

4-16. TYPE MIXING

You cannot mix data types across operands in SPL; however, type transfer
functions are available to handle conflicts. In logical expressions,
logical operands are used except when the both operands are arithmetic
and the result is logical (compares, byte tests, and range tests). See
paragraph 4-1 for the type transfer functions.

4-17. COMPARING BYTE STRINGS

Logical expressions provide a mechanism for comparing byte strings to
determine whether a particu- lar relation between them is true or false.
The test is made using the CMPB (compare bytes) instruction. The byte
strings are compared, byte by byte, using their numeric values until the
compared bytes are unequal or until a specified number of comparisons has
been made. If the specified relation (<,>,=,<=,>=, or <>) holds, the
result is TRUE (-1); otherwise, it is FALSE (0).

The form of a byte-compare is one of the following:

byte-reference relational-operator byte-reference ,(count)
[,stack-decrement]

byte-reference relational-operator *PB,(count) [,stack-decrement]

byte-reference relational-operator string-constant [,stack-decrement]

byte-reference relational-operator (value-group,...,value-group)
[,stack-decrement]

{= } ALPHA
byte-variable{<>}{NUMERIC}

{SPECIAL}
EXAMPLES:

A<B,(5),2
B(5)>=*PB,(5)
*<= "ABC"
A<> NUMERIC

where

byte-reference is one of the following:

1. array-name [(index)]

2. pointer-name [(index)]

3. *

array-name is an identifier declared in an array declaration.

pointer-name is an identifier declared in a pointer declaration.

index is either an expression or an assignment statement of
type integer, logical, or byte. If an index is not
specified, then zero is assumed.

count is the number of bytes to compare. The count is an
integer expression. A positive count specifies
left-to-right comparison and a negative count specifies
right-to-left.

stack-decrement indicates how many words to delete from the stack after

the compare. The stack-decrement is an unsigned integer
constant between 0 and 3 inclusive. If not specified, a
stack-decrement of 3 is used.

 constant

repetition-factor (constant [,...,constant])

repetition- specifies the number of times the constant list is
factor used before going to the next value-group. The

repetition-factor is an unsigned decimal, based,
composite, or equated single-word integer constant.

The string to the left of the relational operator can be specified by a
byte pointer or array reference (DB-relative only) or a stacked DB byte
address (*). The asterisk specifies that you have already loaded the
byte address onto the stack.

The string to the right of the relational operator can be specified by a
byte pointer or array reference (DB- or PB-relative), a stacked DB
address (*), a stacked PB address (*PB), a string constant, or a list of
constants in parentheses.

The absolute value of the count specifies how many bytes to compare. A
positive count specifies left-to-right comparison while a negative count
specifies right-to-left comparison.

The stack-decrement specifies how many values to delete from the stack at
the end of the compare operation. If a stack-decrement is not specified,
all three values are deleted. The contents of the stack during the
comparison are shown below:

S-2 | | first address

S-1 | | second address

S-0 | | count

Byte comparisons can be passed by-value as parameters to procedures and
subroutines; however, some extra requirements apply:

1. If a stack-decrement is allowed but not specified and the
byte-comparison is not the last actual parameter, the
byte-comparison must be enclosed in parentheses. For example,

P(A,(B< C,(3)),2);

2. Byte comparisons which use stacked values must be enclosed in
parentheses and all parameters to the left must be stacked prior
to stacking the values to the byte-comparison. For example,

P(*,(*=*,(5)));

4-18. CONDITION CLAUSES

Condition clauses are used in IF expressions, IF statements, DO
statements, and WHILE statements. Two types of operands are used in
condition clauses: logical-expressions and hardware branch words. Both
types of operands result in a value of true or false. These operands can
be combined using AND and OR. If two items are combined with OR, the
result is true if either item is true or if both items are true. If two
items are combined with AND, the result is true only if both items are
true. AND has higher precedence than OR, but you can use parentheses
around OR'ed expressions to override this precedence. Parentheses cannot
be used around items combined with AND.

The form of a condition-clause is:

[{AND} {AND}]
condition-term[{OR }condition-term...{OR }condition-term]

EXAMPLES:

(A<B OR A<C) AND (A1<B1 OR A1<C1)
 CARRY AND A<>B OR A<>C

L1 LAND L2<L1 LAND L3 OR I<=J
<
OVERFLOW

where

condition-term is either of the following:
condition-primary
(condition-primary [OR condition-primary]...OR
condition-primary)

condition- is either true or false. The condition-primary is one
primary of the following:

branch-word
logical-expression

branch-word is one of the following: CARRY, NOCARRY, OVERFLOW,
NOVERFLOW, IABZ, DABZ, IXBZ, DXBZ,=,<>,<,>,<=, or >=.

The hardware branch words test the Status Register, the Index Register,
or the Top of Stack as shown below:

BRANCH WORD | TRUE CONDITION
CARRY | Carry bit on (Status Register)
NOCARRY | Carry bit off (Status Register)
OVERFLOW | Overflow bit on (Status Register)
NOVERFLOW | Overflow bit off (Status Register)
IABZ | Increment TOS. True if TOS is then 0.
DABZ | Decrement TOS. True if TOS is then 0.
IXBZ | Increment Index Register (X). True if X is

| then 0.
DXBZ | Decrement Index Register (X). True if X is

| then 0.
< | Condition Code equals 1 (Status Register).
= | Condition Code equals 2 (Status Register).

<= | Condition Code equals 1 or 2 (Status
| Register).

> | Condition Code equals 0 (Status Register).

 | Register).
<= | Condition Code equals 0 or 2 (Status

| Register).

OR and AND generate branch instructions instead of arithmetic ANDs and
ORs. All parts of a condition are not always executed since OR and AND
branch out of the condition as soon as the truth value of the condition
is determined. For example, if a series of items is joined by ANDs and
the first item is false, the whole condition is false so the remaining
items are not checked.

__

NOTE The CARRY and OVERFLOW bits are cleared after being tested. The
Condition Code, Index Register, and TOS are unaffected by being
tested.

__

Extreme care must be taken when using the SPL condition clause to check
condition codes returned from intrinsics. The IF>, IF<......constructs
are only correct if no machine instruction that sets condition code is
executed between the setting and checking the condition code. The LDX,
XCH, STAX instructions, for example, are all used when SPL indexes into
arrays. All of these modify the condition code.

a(275) := fopen();
00021 LOAD P+000
00022 ZERO, NOP
00023 ADDS, 016
00024 LDI, 000
00025 PCAL, 000
00026 XCH, STAX
00027 STOR PB 001,1,X

if<> then quit(0);

The IF statement in the above example does not test the condition code
for the FOPEN procedure. It reflects the condition code set by the
XCH,STAX instruction.

4-19. IF EXPRESSIONS

Expressions are used to determine values to be used in statements. The
IF expression consists of a condition-clause and two alternative
expressions. The condition-clause is a combination of logical
expressions and hardware branch words which results in a true or false
value. The two expressions must be of the same word size (byte is
treated as one word). If the condition-clause is true, the value of the
IF expression is the value of the expression after the THEN; if the
condition-clause if false, the value of the IF expression is the value of
the expression after the ELSE. The definition of condition- clause is
given earlier in this section.

The form of an IF expression is:

IF condition-clause THEN true-value ELSE false-value

EXAMPLES:

IF A<B THEN 5 ELSE 6*B
IF < THEN 1 ELSE 0

 FACT:=IF N=0 OR N=1 THEN 1 ELSE N*FACT(N- 1);

where

condition- determines which value to use as the value of the
clause expression. The form of a condition-clause is described

earlier in this section.

true-value is the value of the expression if the condition-clause
is true.

false-value is the value of the expression if the condition-clause
is false.

4-20. ASSIGNMENT STATEMENT

The assignment statement stores the result of an expression evaluation
into a variable of the same size. Multiple assignments allow the same
result to be stored in several variables. Bit deposits allow a one-word
result to be stored into a variable starting at a specific bit position.

The form of an assignment statement is:

variable[.(left-deposit-bit:length)] := [variable:=..variable:=]
expression

EXAMPLES:

I:=K*L;
I(5:6):=J:=L;
I(0:8):=B1;
R1:=R1:=R1+(R2*REAL(I));
D:= R1;
A(I:=I+1):=I*2;

where

variable designates the item(s) to which the value of the
expression is assigned. The form of a variable is
described earlier in this section.

left-deposit- specifies the starting bit position of a bit deposit.
bit The left-deposit-bit is an unsigned decimal, based,

composite, or equated integer constant between 0 and 15
 inclusive.

length specifies the number of bits to be stored. The length
is an unsigned decimal, based, composite, or equated
integer constant between 1 and 15 inclusive.

expression is evaluated to determine the value to store into the
variable(s) on the left of the assignment operator. The
expression is an arithmetic or logical-expression whose
result is the same word size, although not necessarily
the same data type, as the variable(s).

The result of the expression evaluation is stored in the variable(s)
specified on the left side of the assignment operator (:=) or (_).
Blanks cannot be embedded between the colon and the equals sign of an
assignment operator. The result must be the same word size, but not
necessarily the same data type, as the assignment variable. Type BYTE is
treated as a one-word quantity.

When a deposit field is specified, the expression result must be a
one-word quantity. The rightmost n bits of the result, where n is the
deposit field length, are stored in the variable starting with the bit
position specified. Note that only the leftmost assignment can be a
deposit field.

An assignment statement can be used as a term in an expression. In this
case, the result of the expression in the assignment statement is first
stored into the variable(s) and then used as the value of the term in the

outer expression. For example, the statement:

J:= K+(I:=+1)- M;

I:= I+1;
J:= K+I- M;

Note that a semicolon is not used to terminate an assignment statement
used within an expression.

Assignment statements can also be used as array or pointer subscripts and
as call-by-value parame- ters to procedures and subroutines. Array
subscripts on the left side of an assignment statement can be evaluated
either before or after the expression on the right side of the assignment
statement depend- ing on the complexity of the subscript. Therefore, you
should avoid changing the value of a variable on the right side of an
assignment statement if the variable is used as a subscript on the left
of the assignment statement. For example,

A(I):=B(I:=I+1);

is not evaluated the same as:

A(I+0):=B(I:=I+1);

In the first case, I is incremented and then used as the subscript for
both B and A. In the second case, the original value of I is used as the
subscript of A. In general, if a subscript which is used on the left side
of an assignment statement is evaluated without using the top of the
stack, the evaluation of the subscript is done just prior to storing the
value in the array element. Subscripts in this category include:

 |
Simple variables | (I)
Increment by one | (I:=I+1)
Increment by one | (I:=I-1)
Addition of zero | (I:=I+0)
Subtraction of zero | (I:=I-0)

For example,

A(I:=I+1):=B(I:=I+2);

is evaluated as:

I:=I+1;
I:=I+2;
A(I):=B(I);

Note that if the left-side subscript is itself an assignment statement,
it is executed before the right side of the outer assignment statement is
evaluated even though the subscript used to determine the element being
stored into may not be evaluated until afterwards. However, if the left
side subscript uses the top of the stack, the evaluation of the right
side expression does not effect the value of the left side subscript.
For example,

A(I:=I+2):=B(I:=I+1);

is evaluated the same as:

I:=I+2;
I:=I+1;
A(I- 1):=B(I);

If in doubt, you can use the $CONTROL INNERLIST option to check the code
which the compiler generates (see paragraph 9-2).

involving type DOUBLE data and the logical operators**,//, and MODD:

LOGICAL L1:= 20000, L2:= 2, L3:= 3;
DOUBLE D1;
D1:= L1**L2<<D1:- 40000D>>; <<Product>>
L4:= D1//L3<<L4:= 13333>>; <<Quotient>>
L5.= D1 MODD L3<<L5:= 1>>; <<Remainder>>

Care should be taken to ensure that the result of the logical operators
// and MODD is a one-word quantity. Any other result causes an integer
overflow.

4-21. MOVE STATEMENT

The MOVE statement moves words or bytes from one location to another.
The locations can be either DB- or PB-relative. Move operations do not
change the contents of the source. There are three types of move
operations corresponding to the three types of hardware move
instructions:

* Move words (MOVE, MVBL, and MVLB)

* Move bytes (MVB)

* Move bytes while alphabetic and/or numeric with or without upshifting
(MVBW)

The MOVE statement can also perform as an arithmetic function by
returning the number of bytes or words moved. In this case, it can be
used anywhere an integer function is appropriate; however, no
stack-decrement is allowed in order to avoid possible corruption of the
stack with the use of expressions.

The two forms of a move statement are:

source,(count)
{ *[PB], (count) }

MOVE destination :={ string } [,stack-decrement]
{(value-group-list)}
{ }

and

{source}
MOVE destination := { * } WHILE condition [,stack-decrement]

EXAMPLES:

 MOVE OUT:=IN,(10),2;
MOVE OUT:=*PB,(- 10);
MOVE OUT:=(10(""),"STRING",5("")),1;
MOVE OUT:=IN WHILE AN;
MOVE OUT:=* WHILE N;
MOVE *:=* WHILE ANS;

As an arithmetic function:

I:=MOVE P:=P1,(<LENGTH>);
IF P(MOVEP:=P1 WHILE ANS)="xyz" THEN... ;
MOVEP:=P1,(SCAN P1(SCAN P1 UNTIL" ") UNTIL" ");

where

destination specifies the starting location to be stored into. The
destination is one of the following:
array-name[(index)]
pointer-name[(index)]
*

source specifies the starting location of the item to be
copied. The source is either of the following:

pointer-name[(index)]

NOTE Destination and source addresses are byte
addresses for byte moves and word addresses for
word moves.

array-name is an identifier declared in an array declaration.

pointer-name is an identifier declared in a pointer declaration.

index is either an expression or an assignment statement of
type integer, logical, or byte. If an index is not
specified, then zero is assumed.

count is the number of bytes or words to move. The count is
an integer expression. A positive count specifies
left-to-right move and a negative count specifies
right-to-left.

stack-decrement indicates how many words to delete from the stack after
the move. The stack-decrement is an unsigned integer
constant between 0 and 3 inclusive for a MOVE and
between 0 and 2 inclusive for a MOVE WHILE. If not
specified, a stack-decrement of 3 is used for a MOVE and
2 for a MOVE WHILE.

value-group- is either of the following:
list value-group

value-group, value-group-list

value-group is either of the following:
 constant

repetition-factor (constant [,...,constant])

repetition- specifies the number of times the constant list is
factor used before going to the next value-group. The

repetition-factor is an unsigned decimal, based,
composite, or equated single-word integer constant.

condition specifies the criteria for continuing the move to the
next character. The condition is one of the following:
A,N,AS, AN, or ANS.

The move statements in SPL are machine dependent because they are based
on specific hardware instructions.

The first reference after the MOVE is the destination; the item after the
assignment operator (:=) is the source. INTEGER, REAL, LONG, and DOUBLE
arrays use the move words instructions whereas BYTE arrays use the move
bytes instructions. When the source is a string or a list of constants,
the constants are generated in the code stream and moved from there. The
syntax for the list of constants is the same as for a list of constants
used to initialize an array in an array declaration.

Where * or *PB appears in place of an address, the DB- or PB-relative
address must have been previously loaded onto the stack by the user. The
source can be PB-relative except when the MOVE...WHILE statement is used.

The destination cannot be PB-relative. If both addresses are stacked, a
byte move is assumed.

bytes to move; a positive count indicates a left-to-right move and a
negative count indicates a right-to-left move. At the completion of the
move, the count equals zero and the addresses have been changed to point
to the character fol- lowing the last character moved.

After the move operation is complete, destination and source address
point to the next word (not moved or overlayed) and can be examined,
stored, or left in the stack for use by a subsequent MOVE or SCAN
statement. The stack-decrement operand is then used to delete 0,1,2, or
all 3 of the parameters from the stack. A blank stack-decrement field
generates an automatic stack-decrement of 3 &--delete all three values
from the stack. Count always equals 0 and can safely be deleted (sdec =
1). The stack-decrement mechanism is used for all move-scan statements.

The following code sample illustrates the use of the stack-decrement
operand to return the number of words or bytes moved.

BEGIN

INTEGER LEN;
BYTE ARRAY BUFF(0:20);
MOVE BUFF:="ABCDEFGHIJKLMNO",2;< <2=RETAIN DESTINATION ADDRESS
LEN:=TOS-LOGICAL(@BUFF);

END

The stacked values used by the move words and move bytes instructions are
shown below:

S-2 | | destination address

S-1 | | source address

S-0 | | count

The stacked values used for a move bytes while instruction are:

S-1 | | destination address

S-0 | | source address

In a MOVE ...WHILE statement, the condition specifies the condition for
continuing the move to the next character. The conditions are shown
below:

A Current character is alphabetic

N Current character is numeric

AS Current character is alphabetic; upshift if lower case

AN Current character is alphabetic or numeric

ANS Current character is alphabetic or numeric; upshift if
lower case

__

WARNING The normal checks and limitations that apply to the standard

 for a privileged mode program to destroy system integrity,
including the MPE operating system software itself.
Hewlett-Packard can- not be responsible for system integrity
when programs written by users operate in privileged mode.

__

4-21A. MOVEX STATEMENT

The MOVEX instruction is intended specifically for privileged users
requiring extra data segments (see section 8-1, split-stack mode). It
facilitates the writing of high-level code increasing its reliability.
This instruction performs word moves only, not byte moves. Three machine
instructions relating to data segments are generated, depending on the
move. They are as follows:

MFDS Move from extra data segment to stack

MTDS Move to extra data segment from stack

MDS Move between extra data segments

If the move is confined to a single data segment, a DB-relative MOVE is
generated. Please refer to section 3-10 for information about DATASEG
declarations.

The form of a MOVEX statement is:

MOVEX (destination [,offset]):= (source
[,offset]),(length)[,stack-decrement];

EXAMPLES:

MOVEX (D,9):=(D1,I+J),(K),6;
 MOVEX (99,I+J/2):=(K*M,L),(99);

where

destination and specify the starting location of the words to be moved
source (source), and the starting location where the words will

be stored (destination). Locations must be one of the
following:

Either DB-relative pointers (for MFDS and MTDS), DATASEG or
DATASEG-relative identifiers (for static XDS moves), or integer
expressions (for dynamically calculated XDS numbers). In the latter
case, DATASEG-relative identifiers are not permitted in the expression.

offset (Optional) The beginning offset into the XDS .It can be
either a constant or an integer expression that is valid
within any containing $SPLIT or WITH. An offset is not
permitted when the pointer is DB-relative (as opposed to
DATASEG-relative).

length is the number of words to be moved.

stack-decrement is an unsigned integer constant indicating how many
words to delete from the stack after the move. The
default value is 5 for MFDS and MTDS, and 4 for MDS. For
any extra data segment move, the maximum value is 7. If
a stack-decrement larger than 3 is specified for a

DB-relative move, a warning is generated and 3 is used.

4-22. SCAN STATEMENT

The SCAN statement is used to search for either of two specified
characters (the test and terminal characters) in a contiguous string of
bytes without actually moving any data. When the statement ends,
pointers and indicators are left to show what was found and where. The
scan statements in SPL are machine-dependent because they are based on
specific hardware instructions. There are two scan operations
corresponding to the two hardware scan instructions:

* Scan until a test character is found (SCU instruction).

* Scan while a test character is found (SCW instruction).

The SCAN statement can also be used as an arithmetic function to return
the number of bytes or words scanned. In this case, it can be used
anywhere an integer function is appropriate; however, no stack-decrement
is allowed in order to avoid possible corruption of the stack with the
use of expressions.

The form of the SCAN statement is:

SCAN byte-reference WHILE testword [,stack-decrement]

SCAN byte-reference UNTIL testword [,stack-decrement]

EXAMPLES:

SCAN BUF WHILE TEST;
SCAN BUF(2) WHILE %6440,1;
SCAN * UNTIL".;";
SCAN BUF UNTIL *,0;

As an arithmetic function:

I:=SCAN P UNTIL"";

where

byte-reference is one of the following:
array-name [(index)]

 pointer-name [(index)]
*

array-name is an identifier declared in an array declaration.

pointer-name is an identifier declared in a pointer declaration.

index is either an expression or an assignment statement of
type integer, logical, or byte. If an index is not
specified, then zero is assumed.

testword is one of the following:
A decimal, based, composite, or equated single-word

 integer constant.
A simple-variable of type INTEGER or LOGICAL.
"test-character"

"terminal-character test-character"
*

character "" .

test-character is any ASCII character. Note that " is represented by
"" .

stack-decrement indicates how many words to delete from the stack after
the SCAN. The stack-decrement is an unsigned integer
constant between 0 and 2 inclusive. If not specified, a
stack-decrement of 2 is used.

The byte-reference which specifies where to start scanning can be a byte
array reference, a byte pointer reference, or an asterisk (*) to indicate
that the DB-relative address is already on the stack. PB- relative
arrays cannot be scanned. If either an array or pointer reference is
specified, the address is loaded onto the stack.

The testword is an integer or logical simple variable, an integer
constant, or a one- or two-character string where the first character
(bits 0 through 7) specifies the terminal-character and the second
character (bits 8 through 15) specifies the test-character. If no
terminal-character is specified, bits 0 through 7 are zero-filled .In
both cases, each byte in the two-character string is tested against both
the test and terminal characters.

In a SCAN UNTIL, the scan continues until either the test-character or
the terminal-character is found. In a SCAN WHILE, the scan continues
until a byte is found that matches the terminal- character or does not
match the test-character. The carry bit in the status register is set to
0 after a scan to indicate that the test-character was found; it is set
to 1 to indicate the terminal-character was found. This bit can be
tested with the IF statement:

IF CARRY THEN ... ;
IF NOCARRY THEN ... ;

The carry bit is cleared after being tested. The stack-decrement
specifies how many words to delete from the stack after the scan
operation. The stack-decrement is very important in a scan operation
because when the scan terminates, the address of the terminating byte can
be left in the stack. The stack for a SCAN UNTIL or a SCAN WHILE appears
as shown below:

S-1 | | byte address

S-0 | | testword

A stack-decrement of 1 deletes the testword but leaves the byte address
which can be saved as follows:

SCAN'STOP:=TOS;

An empty stack-decrement field generates a stack-decrement of 2 and
leaves the stack as it was before the scan statement.

The following code sample illustrates the SCAN UNTIL operation. After
the last statement shown, the pointer is pointing to the first "0"
character.

BYTE POINTER PTR;
BYTE ARRAY CHAR (0:30) := "AAAAAAAAAAAAA0AAAAAAAAAAAAAAAA";

SCAN CHAR UNTIL "Z0" ,1;
@PTR:=TOS;

first non-'A' character.

BYTE POINTER PTR;
BYTE ARRAY CHAR (0:30) := "AAAAAAAAAAAAAA0AAAAAAAAAAAAAAAA";
SCAN CHAR WHILE "ZA" ,1;
@PTR:=TOS;

Chapter 5 PROGRAM CONTROL STATEMENTS

5-1. PROGRAM CONTROL

Program execution normally proceeds sequentially from statement to
statement. By using control statements, you can alter this sequence by
transferring control to another statement, by executing a group of
statements (a procedure or a subroutine) and then returning to the
original flow, or by repeating a pre-determined group of statements.
Statements in a program to which control is to be passed are labeled by
identifiers preceding the statement. A colon (:) is used to separate
the label from the statement. Procedures and subroutines are named by
identifiers in declarations (see section VII).

This section covers the following control statements:
* GO TO statement
* DO statement
* WHILE statement
* FOR statement
* IF statement
* CASE statement
* Procedure call statement
* Subroutine call statement
* RETURN statement

5-2. GO TO STATEMENT

The GO TO statement is used to transfer control to a labeled statement.
There are two forms of the GO TO statement: the unconditional form and
the indexed form. When an unconditional GO TO statement is executed,
control is transferred to the statement specified. An indexed GO TO
statement is used to invoke a switch to selectively transfer to one of
several statements.

The form of a GO TO statement is one of the following:

1. GO [TO] label

2. GO [TO] [*] switch-name (index)

EXAMPLES:

GO TO START;
GO OUT;
GOTO FINIS(A+B- 2);
GO *SW(I:=I+1);

where

label identifies the statement to which control is
transferred. The label is an identifier which is used
to label a statement other than an entry-point.

switch-name identifies the switch to be invoked. The switch-name is
an identifier which has been declared in a switch
declaration.

index indicates which label in the switch declaration is to be
used. The index is an expression or assignment
statement whose result is a single-word value.

The three forms GO, GOTO, and GO TO are equivalent. In an indexed GO TO
statement, bounds checking is performed on the index value unless an
asterisk (*) is used before the switch-name.

The object of a GO TO statement in the main-body must be a global label
or switch-name and the object of a GO TO statement in a procedure or
subroutine must be a local label or switch-name. You cannot use a GO TO
statement to transfer into a procedure and you can only use a GO TO
statement to transfer out of a procedure if the label has been passed to
the procedure as a parameter. Switches cannot be passed as parameters.

Switches are invoked using an indexed GO TO statement; the index is an
integer value that specifies the label desired. Labels in a switch
declaration are numbered consecutively starting with 0. Nor- mally, if
the index value is less than zero or greater than the number of labels
minus one, control is transferred to the statement following the GO TO
statement. However, if the asterisk option is specified, bounds checking
is not performed and invalid indexes cause unpredictable results. When a
switch is invoked, the index value is stored in the index register.

__

NOTE A switch cannot be invoked within a subroutine nor can any labels
assigned to a switch appear in a subroutine.

5-3. DO STATEMENT

The DO statement is ysed to repeatedly execute a statement until a
specified condtion-clause becomes true. When the condition-clause is
true, control is transferred to the next statement after the DO
statement.

The form of the DO statement is:

DO loop-statement UNTIL condition-clause

EXAMPLES:

DO A(I:=I+1):=I*2 UNTIL I>23;
DO BEGIN

I:=I+ 1;
IVAL(I):=I/(X*Y+3);
BVAL(I):=(X*Y+3)/I;

END
UNTIL I> 20;

where

loop-statement is the statement which is executed each pass through the
loop. The loop-statement may be either a simple or
compound statement including another DO statement.

condition- determines whether or not to execute the loop-statement
clause another time. See paragraph 4-18 for the form of a

condition-clause.

Note that a semicolon is not used to separate the loop-statement from the
reserved word UNTIL.

After the loop-statement is executed, the condition-clause is evaluated
and tested. If the condition- clause is false, the loop-statement is
executed again; if the condition-clause is true, control is trans- ferred
to the statement following the DO statement. The condition-clause is
evaluated and tested after each execution of the loop-statement (the
loop-statement is always executed at least once).

5-4. WHILE STATEMENT

The WHILE statement is used to repeatedly execute a statement as long as
a specified condition-clause is true. The WHILE statement differs from
the DO statement in that the condition-clause is tested before executing
the loop-statement instead of after and the condition-clause must be true
for the loop-statement to be executed instead of false. When the
condition-clause is false, control is transferred to the statement
following the WHILE statement.

The form of the WHILE statement is:

WHILE condition-clause DO loop-statement

EXAMPLES:

WHILE I<21 DO A(I:=I+1):=2- I;
 WHILE 0<=N<=100 LAND NOT Q="/" DO

BEGIN
Q:=C5(I);
I:=I+1;
N:=N*I;

END;

where

condition- determines whether or not to execute the loop-statement.
clause See paragraph 4-18 for the form of a condition-clause.

loop-statement is the statement which is executed each pass through the
loop while the condition-clause is true. The
loop-statement may be either a simple or compound
statement including another WHILE statement.

The condition-clause is always tested before executing the
loop-statement. Thus, if the condition-clause is false on the
first pass, the loop-statement will not be executed at all. The
condition-clause consists of logical-expressions and hardware branch
words as described in paragraph 4-18. However, the follow- ing branch
words have different meanings when used in a WHILE statement:

IABZ Increment TOS. Execute loop-statement if TOS is
non-zero.

DABZ Decrement TOS. Execute loop-statement if TOS is
non-zero.

IXBZ Increment the index register. Execute loop-statement if
 the index-register is non-zero.

DXBZ Decrement the index register. Execute loop-statement if
the index-register is non-zero.

5-5. FOR STATEMENT

The FOR statement is used to repeatedly execute a statement, changing an
integer test-variable by a specified amount each time, until the test
variable exceeds a specified limit. The FOR statement uses hardware loop
control instructions which require special stack markers so you should be
very careful when performing your own stack manipulation within a FOR
statement.

The form of a FOR statement is:

FOR [*] test-variable:=starting-value [STEP step-value]

UNTIL ending-value DO loop-statement

EXAMPLES:

FOR I:=3 UNTIL LIM DO A(I):=I*2;
FOR *I:=1 STEP 2 UNTIL LIM DO

SUM:= SUM+ NARN(I) ;
FOR I:= MAX STEP-RANGE/4 UNTIL MAX-RANGE DO

BEGIN
FOFI:= A* I- 2+B*I+C;
SUM:=SUM+FOFI;

END;

where

test-variable is the variable which is altered by the step-value each
pass through the loop and is tested for exceeding the
ending-value. The test-variable is an integer

 simple-variable.

starting-value is the value assigned to the test-variable before the
first pass through the loop. The starting-value is an
INTEGER, LOGICAL, or BYTE expression.

step-value is the amount by which the test-variable is changed each
time the loop is executed. The step-value is an INTEGER
expression. If omitted, a step-value of 1 is used.

ending-value is the value against which the test-variable is tested
each pass through the loop to determine whether or not
to execute the loop-statement again. The ending-value
is an integer expression.

loop-statement is the statement which is executed each pass through the
loop. The loop-statement may be either a simple or
compound statement including another FOR statement.

The starting-value, step-value, and ending-value are calculated once upon
entry into the FOR state- ment, The starting-value is stored into the
test-variable and tested before the loop-statement is first executed.
After each execution of the loop-statement, the variable is changed by
the step-value and compared with the ending-value. If the step-value is
positive and the test-variable is less than or equal to the ending-value,
the loop-statement is executed again. If the test-variable is greater
than the ending-value, control is transferred to the statement after the

FOR statement. For negative step- values, the loop is executed again if
the test-variable is greater than or equal to the ending-value. After
the FOR statement is executed, the test-variable contains the value which

Thus, the statement:

FOR J:=1 UNTIL 10 DO ... ;

executes the loop-statement 10 times and J has a value of 11 when the
loop is completed.

You can use an asterisk (*) after FOR to specify that the loop-statement
is to be executed once without testing the test-variable against the
ending-value. This guarantees that the loop-statement is executed at
least once even if the starting-value is past the ending-value.

CAUTIONS in the Use of FOR Statements

If the test-variable is equivalenced to the index register, the TBX and
MTBX instructions are used for loop-control; otherwise, the TBA and MTBA
instructions are used. Since all of these instructions use values placed
in the stack, if you alter the stack during the execution of the
loop-statement, unpredict- able results may occur. Additionally, if you
exit a FOR statement, for example, with a GO TO or RETURN, from within
the loop-statement, the test-variable address, the step-value, and the
ending- value are left on the stack. If the index register is used as
the test-variable, any operation within the loop-statement which changes
the index register, such as array referencing, can destroy the loop
control.

Therefore, it would be prudent for the SPL/3000 programmer to observe the
following rules.

* Do not use the stack explicitly within the loop statement without
restoring any changes made because this makes it impossible for the
compiler to keep track of the control values in the stack. (Do not
refer to TOS, S-relative variables, or stacked parameters; these are
further described in Section VII.)

* Enter FOR statements only from the beginning. Never branch into the
loop statement.

* Exit FOR statements only at the end, except for PCALs.

* Do not modify the index register in any way (without also restoring
it) within the loop statement if a variable equivalenced to the index
register is being used as the loop control variable. (The compare
range construct is a little-known implicit use of the index register:
A <= B <= C. Use of this construct or subscripted variables within
the loop statement will cause unpredictable results if the loop
variable is also the index register.) Executing a CASE statement
embedded in a FOR loop will modify the index register.

Table 5-1. Comparison of DO, WHILE, and FOR Statements

|

BOX

DO STATEMENT
The condition-clause is evaluated and tested after

the loop-statement is executed.
 The loop-statement is repeated if the condition-

clause is false.
The loop-statement is always executed at least once.

The condition-clause is evaluated and tested after
the loop-statement is executed.

The loop-statement is repeated if the condition-
clause is true.

The loop-statement is not always executed at least once.

FOR STATEMENT
The test-variable is checked before the loop-
 statement is executed.

The loop-statement is executed if the test-
variable is less than or equal to the
ending-value (for positive step-values)
or greater than or equal to the ending-value

 (for negative step-values).
The loop-statement is always executed at least

once if an asterisk is specified after the
reserved word FOR.

5-6. IF STATEMENT

The IF statement is used either to execute one of two alternative
statements or to execute or skip a single statement based on whether a
condition-clause is true or false.

The form of an IF statement is:

IF condition-clause THEN true-branch [ELSE false-branch]

EXAMPLES:

 IF A<B THEN MAX:=B ELSE MAX:= A;
IF I>100 THEN GO TO L1;
IF A<B AND A<C THEN

BEGIN
MIN:=A;
GO TO L2;

END;

where

condition- determines whether or not to execute the true-branch.
clause The form of a condition-clause is described in paragraph

4-18.

true-branch is the statement which is executed if the
condition-clause is true. The true-branch may be either
a simple or a compound statement including another IF
statement.

false-branch is the statement which is executed if the
condition-clause is false. The false-branch may be
either a simple or compound statement including another
IF statement.

There are two forms of the IF statement: single-branch and
double-branch. The single-branch IF statement is used when the two
alternatives are to execute a statement or not to execute a statement.
If the condition-clause is true, the statement is executed and control
proceeds to the statement after the IF statement, unless the true-branch
has tranferred to another statement with a statement such as a GO TO or
RETURN. If the condition-clause is false, the true-branch statement is
not executed and control is transferred to the statement after the IF
statement. For example,

IF A<B THEN NX:=A+B;
IF NOT (FINAL LOR LAST) THEN

BEGIN
TEST'DONE:=FALSE;
GO TO AGAIN

END;

The double-branch IF statement is used to select one of two alternative
statements. If the condition- clause is true, the true-branch statement
is executed. If the condition-clause is false, control is transferred to
the false-branch statement. When the selected statement has been
executed, control is transferred to the statement after the IF statement

except when a transfer has been executed from the selected statement
with, for example, a GO TO or RETURN statement. Some sample
double-branch IF statements are shown below:

ELSE XA:=XA+ B;
IF TESTVAR THEN Y:=Y+1

ELSE IF EXTRATEST THEN Y:=Y- 1;
IF TEST THEN A:=A+B ELSE A:=A- B:

Note that you cannot use a semicolon between the true-branch and the
reserved word ELSE.

IF statements can be indefinitely nested. The innermost THEN is paired
with the closest following ELSE and pairing proceeds outward. For
example,

IF condition-clause
THEN
IF condition-clause
{ THEN
{ IF condition-clause
{ { THEN true-branch

 { { ELSE false-branch
{ ELSE false-branch;

In the above example, the outermost IF statement is a one-branch IF
statement.

As noted in paragraph 4-18, logical expressions and/or branch words can
be combined using AND and OR to form a condition-clause. These
connectors should not be confused with the logical connectors LAND and
LOR which are used within logical expressions. If two items are combined
with OR, the result is true if either item is true or if both items are
true. If two items are combined with AND, the result is true only if
both items are true. AND has higher precedence than OR, but you can use
parentheses around OR'ed expressions to override this precedence.
Parentheses cannot be used around items combined with AND.

5-7. CASE STATEMENT

The CASE statement is used to select one of a set of statements for
execution by using an index value into a compound statement. The
statements of the compound statement are assigned index values
consecutively starting with 0 and incrementing by 1. After the selected
statement has been executed, control is transferred to the statement
after the CASE statement unless a transfer is executed in the selected
statement such as a GO TO or RETURN statement.

The form of a CASE statement is:

CASE [*] index OF BEGIN statement [;...;statement] END

EXAMPLE:

CASE J OF
BEGIN
A:=100;
B:=200;
BEGIN
C:=300;

 IF A<B THEN D:=100
END;
QR:=500

END;

where

index determines which statement to execute. The index is an
INTEGER, LOGICAL, or BYTE expression.

statement is any simple or compound executable statement including
another CASE statement. Null statements are allowed.

Bounds checking on the index value is normally performed to insure that
the index is between 0 and n-1 inclusive (where n is the number of
statements in the body of the CASE statement). However, if you do not
want bounds checking to be performed, you can specify an * before the
index. If the asterisk option is specified, an invalid index will cause
unpredictable results.

To transfer control immediately to the next statement, use a null
statement in the case body. For example,

CASE J OF
BEGIN
A:=100;
;<<NULL statement; NO ACTION, BUT HOLDS PLACE>>
C:=200

END;
If J equals 0, statement A:=100 will be executed.
If J equals 1, control is transferred to the statement after the CASE
statement.
If J equals 2, the statement C:=200 is executed.
If J >=3, then the next statement following the CASE statement is
executed.

The CASE statement uses the index register to store the index value.

5-8. PROCEDURE CALL STATEMENT

The procedure call statement is used to transfer control to a previously
declared procedure and pass a list of actual parameters to it. When a
procedure is completed, control normally returns to the statement
following the call; however, the procedure can override this return (see
"Passing Labels as Parameters" , paragraph 5-11).

The form of a procedure call statement is:

procedure-name [([actual-parameter][,...,[actual-parameter]])]

__

NOTE An actual-parameter can be omitted only if OPTION VARIABLE is
specified in the procedure declaration.

__

EXAMPLES:

COMPUTE (R+23.0,L2,PROC5);
COMPUTE (*,,P4);
REVERSE;

where

procedure-name identifies the procedure to which control is
transferred. The procedure-name is an identifier which
has been declared either in a procedure-declaration as a
procedure-name or entry-point or in an intrinsic-
declaration.

actual- is one of the following:
parameter identifier[(index)]

arithmetic-expression
logical-expression
assignment-statement
*

identifier identifies a call-by-reference parameter. The following
items can be passed: simple-variables, array- names,
pointer-names, procedure-names, entry-points, and
labels.

index denotes an array or pointer element. The index is an
expression or an assignment statement of type INTEGER,
LOGICAL, or BYTE and can only be specified for
array-names and pointer-names. If an index is not

 specified, the zero element is used.

arithmetic-expression, logical-expression, and assignment-statement

are evaluated to pass a value as a call-by-value parameter. The forms
for these items are described in paragraphs 4-11 through 4-17 and 4-20.

The * is used to indicate that you have already put the parameter onto
the stack. See paragraph 7-4 for a discussion of the correspondence

between the actual-parameters in a procedure-call and the formal-
parameters in a procedure-declaration.

instead of a function-designator in an expression, the return value is
deleted from the stack upon returning to the calling routine unless the
procedure overrides the normal return.

Two types of parameter passing are allowed in SPL: by reference and by
value. A call-by-reference parameter places an address onto the stack.
A data item (simple-variable, array-element, or pointer- element) which
is passed by reference can have its value changed in the calling
environment by changing its value in the procedure. A call-by-value
parameter is passed by evaluating the parameter at the time of the
procedure call and placing this value onto the stack. If a parameter is
passed by value, changes to the parameter value in the procedure will not
alter the value of the parameter in the calling environment.

When a procedure call statement is executed, the actual parameters are
loaded onto the stack and a PCAL instruction is executed. The PCAL
instruction places a four-word stack marker onto the stack, changes the
Q-register to point to the top of this stack marker, and transfers
control to the entry-point of the procedure. The stack marker contains
the following information:

Q-2 | | Index Register

Q-2 | | Return Address

Q-1 | | Status Register

Q-0 | | delta Q

The return address is P+1-PB where P is the value of the P register when
the PCAL instruction is executed and PB is the base register for the code
segment. The delta Q is the number of words between the new value of Q
and the previous value of Q.

Because of the stack architecture, recursive procedures (that is,
procedures which call themselves) are allowed.

5-9. STACKING PARAMETERS

Stacked parameters may be either call-by-reference or call-by-value. For
call-by-reference parameters, you must put the address of the
actual-parameter onto the stack. For example,

TOS:=@A;

For call-by-value parameters, you must put the value of the
actual-parameter onto the stack. For example,

TOS:=I+2;

If any parameter is stacked, all parameters to its left must also be
stacked. For example,

P(*,*,B,C);

Labels cannot be stacked. Before stacking parameters for a call to a
function procedure, you must push a one-,two-,or four-word zero,
depending on the data type of the function, onto the stack for the return
value. This zero is generated automatically if no parameters are
stacked. For example, assume P is a REAL procedure which has two
call-by-reference parameters. The following steps are needed if you want
to stack the parameters:

TOS:= 0D;
TOS:= @A;
TOS:= @B;
P(*,*);

5-10. MISSING PARAMETERS IN PROCEDURE CALLS

If the procedure is declared with OPTION VARIABLE, parameters can be
omitted from the actual- parameter list by leaving a comma to hold their
place or by using a right parenthesis to terminate the list if you want
to omit the parameters at the end of the formal-parameter list. For
example, consider the procedure declaration:

PROCEDURE P(A,B,C,D,E,F);... ;OPTION VARIABLE;...

To pass only the first parameter, use a procedure call such as

P(R);

To pass the first and last parameters, use a procedure call such as

P(R1,,,,,R2);

If you want to omit all parameters, you can use either of the following:

P; or P();

The called procedure is responsible for checking the existence of actual
parameters. See paragraph 7-9 for a discussion of how to perform this
checking.

5-11. PASSING LABELS AS PARAMETERS

Labels may be passed to procedures as call-by-reference parameters to
allow control to transfer to a place other than the normal return address
upon completion. Unlike other call-by-reference parame- ters, however, a
label is passed as a three-word label descriptor. If a label is passed
to several levels of procedure calls (such as A calls B which calls C),
the label descriptor allows you to transfer to the label without
executing an EXIT instruction for each procedure through which the label
was passed; only the first procedure which received the label parameter
is exited. This technique can be very useful for error processing.

The label descriptor contains the following information:

EXIT Instruction
Label address

Q

| Exit Instruction | |

| Label Address | |

| Q | |

The first word of the label descriptor is an exit instruction to exit the
first procedure to which the label is passed. The second word is the
address of the label. The third word is the value of the Q register upon
entry to the first procedure to which the label is passed.

When a transfer to a label which was passed as a parameter is executed,
the following steps are performed:

1. The label descriptor is put on the top of the stack.

2. The Q register is reset to the value in TOS (which is the value it
had upon entry to the first procedure).

3. The label address is stored in Q-2 (the return address location
for the first procedure).

4. The exit instruction on the top of the stack is executed to
effectively exit the first procedure and transfer control to the
label.

The following situation is illustrated in Figure 5.1:

a. The main body calls procedure A and passes the label L as a
parameter.

b. Procedure A calls procedure B and passes an integer variable I
by-value and the label L as parameters.

c. While in procedure B, a transfer to L is executed &--

2. The Q register is reset to Q (A).

3. The address of L is stored into Q-2 overriding the normal
return address from A back to the main body.

4. The EXIT instruction in S-0 is executed to:
1. Reset Q to the main body value.
2. Delete the stack marker for A and the label descriptor

passed to A.
3. Tranfer control to L.

If the first procedure is a function procedure, the space for the return
value is left on the stack should you not perform a normal return, but
transfer to a place other than where the call was made.

5-12. PASSING PROCEDURES AS PARAMETERS

Procedures may be passed to other procedures as call-by-reference
parameters. The Load Label (LLBL) instruction is used to load the
external address of the procedure onto the stack. When calling a
procedure which was passed as a parameter, the parameters are assumed to
be call-by-reference. To pass call-by-value parameters to such a
procedure, you must stack them before calling the procedure and use the *
in the procedure call. A procedure which has been declared with OPTION
VARIABLE requires a special technique for being passed to another
procedure and then called. Such procedures

Figure 5.1. Passing a Label as a Parameter

Figure 5-1. Passing a Label as a Parameter (Continued)

require a bit mask in Q-4, and Q-5 if there are more than 16 formal
parameters. If you call such a procedure you must generate your own bit
mask. For example, consider the declarations:

 PROCEDURE P(A,B);... ;OPTION VARIABLE;...
PROCEDURE P1(F); PROCEDURE F;

If P is passed as an actual parameter to P1, such as:

P1(P);

Then, a call to P within P1 would look like

F(A,B,3);

where 3 is the bit mask indicating that both parameters are present.
Since the last parameter is a constant instead of an address reference, a
warning message is issued. An alternative method is to stack all
parameters and the bit mask:

TOS:=@A;
TOS:=@B;

 TOS:=3;
F(*,*);

For further discussion of OPTION VARIABLE procedures, see paragraph 7-10.

5-13. SUBROUTINE CALL STATEMENT

The subroutine call statement is used to invoke a previously declared
subroutine and pass a list of actual parameters to it. When a subroutine
is completed, control normally returns to the state- ment following the
call; however, the subroutine can override this return. A global
subroutine can branch to a label in the main body and a local subroutine
can branch to a label in the procedure body.

The form of a subroutine call statement is:

subroutine-name [(actual-parameter[,...,actual-parameter])]

EXAMPLES:

S(A+B,B,C);
S(*,*,C);
S1.

where

subroutine-name identifies the subroutine to which control is
transferred. The subroutine-name is an identifier which
has previously been declared in a subroutine
declaration.

actual- is one of the following:
parameter identifier[(index)]

arithmetic-expression
logical-expression
assignment-statement
*

identifier identifies a call-by-reference parameter. The following
items can be passed: simple-variables, array- names,
pointer-names, procedure-names, and entry-points.

index denotes an array or pointer element. The index is an
expression or assignment statement of type INTEGER,
LOGICAL, or BYTE and can only be specified for
array-names and pointer-names. If an index is not
specified, the zero element is used.

arithmetic- are evaluated to pass a value as a call-by-value
expression, parameter. The forms for these items are described in
logical- paragraphs 4-11 through 4-17 and 4-20.
expression, and
Thei*nisnused to indicate that you have already put the parameter onto
thetstack. See paragraph 7-4 for a discussion of the correspondence
between the actual parameters in a subroutine call and the formal
parameters in a subroutine declaration.

Note that a label cannot be passed as a parameter to a subroutine nor can
parameters be omitted (OPTION VARIABLE cannot be specified for a
subroutine). Alternate entry points are not allowed in subroutines.

If a function subroutine is called using a subroutine call statement
instead of a function-designator in an expression, the return value is

deleted from the stack upon returning to the calling routine unless the
subroutine overrides the normal return.

loaded onto the stack and an SCAL instruction is executed. (SCAL may be
replaced with an LRA and a BR.) The SCAL instruction puts the return
address onto the stack and transfers control to the subroutine
entry-point. The Q-register is not changed &--all parameters are
addressed using S-negative addressing. Recursive subroutines (that is,
subroutines which call themselves) are allowed.

The discussion in paragraphs 5-9 and 5-12 conncerning stacking parameters
and passing procedures as parameters applies to subroutines as well as
procedures except that labels and subroutines cannot be passed as
parameters to a subroutine.

5-14. RETURN STATEMENT

The RETURN statement is used to exit a procedure or subroutine at some
place other than the last END of the body. Additionally, the RETURN
statement can be used to leave some or all of the parameters on the stack
after returning to the point of call.

The form of the RETURN statement is:

RETURN [count]

EXAMPLES:

RETURN;
RETURN 2;

where

count indicates how many words to delete from the stack. The
count is an unsigned decimal, based, composite, or
equated integer constant.

A RETURN statement within a procedure generates an EXIT instruction,
whereas a RETURN statement within a subroutine generates an SXIT
instruction. Multiple RETURN statements within a single procedure or
subroutine are allowed. You can also use a RETURN statement in the
main-body of a program to terminate the program.

If a count is not specified, all parameters are deleted from the stack.lf
the count equals n, then only the top n words are deleted. If the count
equals 0, all parameters are left on the stack. Note that count is a
word count and not a parameter count. You can specify a count greater
than the number of words passed as parameters; however, you should be
very careful that you only delete values you want to delete.

The calling program must know how many parameters will be left on the
stack upon returning because it must take care of them (examine, save, or
delete them). INTEGER, LOGICAL, and BYTE values use one word; DOUBLE and
REAL values use two words; labels use three words; and LONG values use
four words. Call-by-reference parameters (except labels) use one word.

Chapter 6 MACHINE LEVEL CONSTRUCTS

6-1. ASSEMBLE STATEMENT

The ASSEMBLE statement is used to generate code by specifying the
mnemonics for the hardware instructions. Instructions within an ASSEMBLE
statement can be labeled, and control can be trans- ferred to these
labeled instructions from outside the ASSEMBLE statement. Additionally,
identifiers which are outside the ASSEMBLE statement can be referenced
within the statement, but any indirect references or indexing must be
explicitly specified. The form of an ASSEMBLE statement is:

ASSEMBLE ([label:] instruction [;...; [label:] instruction])

EXAMPLES:

ASSEMBLE (LOAD A;
L1: DUP,ZERO;
STOR C;
STOR D);

ASSEMBLE (LOAD P+0;ZERO;STD A);

where

label identifies the instruction. The label is an SPL
identifier.

instruction indicates a machine instruction to be executed or a
pseudo-op to generate a constant. The instruction

 conforms to one of the ten formats shown in Figure 6.1.

The following conventions are used in the instruction formats:

--
| I | Indirection |
--
| X | Index Register or Indexing |
--
| label id | A statement or instruction label within addressing range. |
--
| variable id | A data item identifier within addressing range. |
--
usi	An unsigned integer less than or equal to the integer
	specified. For example usi255 means an unsigned integer
	between 0 and 255 inclusive.
--

BOX

Format 1

label id
LOAD {variable id}
{LDX }{ DB+usi255 }
{LRA }{ P+usi255 }

1a{CMPM}{ P-usi255 } [,I] [,X]
{ADDM}{ Q+usi127 }

{SUBM}{ Q-usi63 }
{MPYM}{ S-usi63 }

{LDD }{variable id}
{STOR}{ DB+usi255 }

1b{STB }{ Q+usi127 } [,I] [,X]
{STD }{ Q-usi63 }
{INCM}{ S-usi63 }
{DECM}

label id
1c BR {P+usi255} [,I] [,X]

{P-usi255}

DB+usi255
{Q+usi127 }

BR { Q-usi63 } ,I [,X]
{ S-usi63 }

BL
{BE }
{BLE} label id

1d BCC group {BG } {P+usi31 } [,I]
{BNE} {P-usi31 }
{BGE}

TBA
{MTBA} label id

1e {TBX } {P+usi255}
{MTBX} {P-usi255}

Figure 6.1. Instruction Formats
BOX

where

variable id is a simple variable, pointer, or array identifier,
(indirection is not supplied automatically).

usi is an unsigned integer less than or equal to the number
following.

label id is a label which is used to label a statement within the
range of the instruction.

For example,

ASSEMBLE(STB S - 1,I,X;DECM VAR);

Format 2

stackop

or

stack op, stack op

In the first case the compiler fills in the second half of the
instruction word with a NOP.

The legal stackops are as follows:

| | | |
NOP | DNEG | XCH | FLT | NOT

DDEL | CMP | DECA | FADD | XOR
XROX | ADD | XAX | FSUB | AND
INCX | SUB | ADAX | FMPY | FIXR
DECX | MPY | ADXA | FDIV | FIXT
ZERO | DIV | DEL | FNEG | INCB
DZRO | NEG | ZROB | CAB | DECB
DCMP | TEST | LDXB | LCMP | XBX
DADD | STBX | STAX | LADD | ADBX
DSUB | DTST | LDXA | LSUB | ADXB
MPYL | DFLT | DUP | LMPY |
DIVL | BTST | DDUP | LDIV |

For example,

ASSEMBLE(DDUP, DELB; STAX);
 Figure 6-1. Instruction Formats (continued)

BOX

Format 3

IABZ
{IXBZ}
{DXBZ}
{BCY }
{BNCY} label

3a{CPRB} {PYusi31} [,I]
{DABZ} {*Yusi31}
{BOV }
{BNOV}
{BRO }
{BRE }

In these branch instructions, the address can be specified as a label or
a P relative address (PYor *Yare the same thing). If the label location
is not within 31 locations of P (PY31), the compiler tags this as an
error; indirection is not supplied automatically within an ASSEMBLE
statement.

 {ASL }
{ASR }
{LSL }
{LSR }
{CSL }
{CSR }
{SCAN}
{TASL}
{TASR}
{TNSL}

3b {DASL} usi63 [,X]
{DASR}
{DLSL}
{DLSR}
{DCSL}
{DCSR}
{TBC }
{TRBC}
{TSBC}
{TCBC}
{QASL}
{QASR}

usi63 is a shift count or number of bits less than or equal to 63. For
example,

Figure 6-1. Instruction Formats (Continued)
BOX

Format 4

{ LDI }
{LDXI }
{CMPI }
{ADDI }
{SUBI }
{MPYI }

4a{DIVI } usi255 * = a privileged instruction for some registers
{PSHR*}
{LDNI }
{LDXN }
{CMPN }
{SETR*}

{EXF}
4b {DPF} usi15 : usi15

For example,

ASSEMBLE (LDI 255; ADDI 5; EXF 7:9);

Format 5

RSW
{LLSH }
{PLDA*}
{PSTA*}
{LSEA*}
{SSEA*}
{LDEA*} *= a privileged instruction
{SDEA*}
{IXIT*}
{LOCK*}
{PCN *}
{UNLK*}

For example,

ASSEMBLE (RSW; PLDA;... LLSH;... PSTA);
Figure 6-1. Instruction Formats (Continued)

BOX

Format 6

{PAUS}
{SED }
{XEQ }
{SIO }
{RIO }
{WIO }
{TIO } usi15
{CIO }
{CMD }
{SIN }
{HALT}

{LST }
{SST }

{SMSK}
{RMSK}
{PSDB}
{DISP} miniop-5
{PSEB}
{SCLK}
{RCLK}

For example,

ASSEMBLE (XEQ 4);

All of these instructions except XEQ and RMSK are privileged.
Figure 6-1. Instruction Formats (Continued)

BOX

Format 7

PCAL
{SCAL}
{EXIT}
{SXIT}
{ADXI}
{SBXI}
{LLBL}
{LDPP} usi255
{LDPN}
{ADDS}
{SUBS}
{ORI }
{XORI}
{ANDI}
PCAL procedure identifier
SCAL (user must load label onto stack)
LLBL procedure identifier

For example,

ASSEMBLE(PCALREAD;... .SCAL 0;... ORI%377);
Figure 6-1. Instruction Formats (Continued)

BOX

Format 8

{MOVE} [,0]
8a {MVB } [PB] [,1]

{CMPB} [,2]
[,3]

 If item two is empty, a DB relative move is assumed.

If item three is empty, the stack decrement is 3.

{ A }
{ N } [,0]

8b MVBW {AN } [,1]
{AS } [,2]
{ANS}

If item three is empty, the stack decrement is 2.

 {MVBL*}

*8c { SCW } [,1] *Privileged instruction.
{ SCU } [,2]

[,3]

If item two is missing, the stack decrement is 3. For example,

ASSEMBLE (SCW,1);
ASSEMBLE (MVBW AN, 0);
ASSEMBLE (CMPB PB, 1);

[0]
{MABS*} [1]
{MTDS*} [2]

8d {MDS } [3]
{MFDS*} [4]

[5 for MABS and]
[MDS]

*If there is no stack-decrement, the default is equal to the number of
parameters.

Figure 6-1. Instruction Formats (Continued)
BOX

Format 9

CON constant list

This format is actually a psuedo-mnemonic for constant generation; it is
not a hardware instruction.

CON stores a series of constants in the code starting at the current
location. In addition to all numerical and string constants, P relative
address constants can be created by listing label identifiers (this is
used to create addresses for indirect references). The CON instruction
itself can be labeled so that other instructions can reference the
constants symbolically.

ASSEMBLE(
BR P+1,I;
CON LABELNAME);

ASSEMBLE (TAB: CON "ABCDEFGH";... ..
LDB TAB, X;...);

Format 10

10a DMUL
DDIV
EADD
ESUB
EMPY
EDIV
ENEG
ECMP
DMPY

{CVAD} [0]
10b {CVBD} [1]

If item 2 is 0, 2 words are deleted from the stack.

If item 2 is 1 or empty, 4 words are deleted from the stack.
Figure 6-1. Instruction Formats (Continued)

BOX 10c CVDB [1]

 If item 2 is 0, 2 words are deleted from the stack.

If item 2 is 1 or empty, 3 words are deleted from the stack.

{ADDD}
{SUBD}
{MPYD} [0]

10d {CMPD} [1]
{SLD } [2]
{NSLD}
{SRD }

If item 2 is 0, no words are deleted from the stack.

If item 2 is 1, 2 words are deleted from the stack.

If item 2 is 2 or empty, 4 words are deleted from the stack.

0
[1]

10e CVDA [ABS]
[[{0}]]
[NABS [,{1}]]

If 0 is specified, 1 word is deleted from the stack.

If 1 is specified, 3 words are deleted from the stack.

If neither 0 nor 1 is specified, 3 words are deleted from the stack.

If ABS is specified, the target sign will be negative if the source is
negative; otherwise, the target will be unsigned.

If NABS is specified, the target will be unsigned.

If neither ABS nor NABS is specified, the target sign will be the same
as the source.

Figure 6-1. Instruction Formats (Continued)

A list of the mnemonics with their meanings is shown in Table 6-1. For a
complete description of the instructions, refer to the Machine
Instruction Set Reference Manual.

Table 6-1. Machine Instruction Mnemonics
 ALPHABETIC LISTING OF INSTRUCTIONS

MNEMONIC	FUNCTION	FORMAT
ADAX	Add A to X	2
ADBX	Add Bto X	2
ADD	Add	2
ADDD	Decimal add	10d
ADDI	Add immediate	4a
ADDM	Add memory	1a
ADDS	Add to S	7
ADXA	Add X to A	2
ADXB	Add X to B	2

ADXI	Add immediate to X	4a
AND	And logical	2
ANDI	Logical AND immediate	7

ASR	Arithmetic shift right	3b
BCC	Branch on condition code	1d
BCC - BE	Branch on equals	3a
BCC - BG	Branch on greater than	
BCC - BGE	Branch on greater than or equal	
BCC - BL	Branch on less than	
BCC - BLE	Branch on less than or equal	
BCC - BNE	Branch on not equal	
BCY	Branch on carry	
BNCY	Branch on no carry	3a
BNOV	Branch on no overflow	3a
BOV	Branch on overflow	3a
BR	Branch	1c
BRE	Branch on TOS even	3a
BRO	Branch on TOS odd	3a
BTST	Test byte on TOS	2
CAB	Rotate ABC	2
CIO	Control I/O	6

CMD	Command	6
CMP	Compare	2
CMPB	Compare bytes	2
CMPD	Compare decimal	10d
CMPI	Compare immediate	4a
CMPM	Compare memory	1a
CMPN	Compare negative immediate	4a
CPRB	Compare range and branch	3a
CSL	Circular shift left	3b
CSR	Circular shift right	3b
CVAD	Convert ASCII to packed decimal	10b
CVBD	Convert binary to packed decimal	10b
CVDA	Convert packed decimal to ASCII	10e
CVDB	Convert packed decimal to binary	10c

Table 6-1. Machine Instruction Mnemonics (continued)

MNEMONIC	FUNCTION	FORMAT
DABZ	Decrement A, branch if zero	3a
DADD	Double add	2
DASL	Double arithmetic shift left	3b
DASR	Double arithmetic shift right	3b
DCMP	Double compare	2
DCSL	Double circular shift left	3b
DCSR	Double circular shift right	3b
DDEL	Double delete	2
DDIV	Double divide	10a
DDUP	Double duplicate	2
DECA	Decrement A	2
DECB	Decrement B	2
DECM	Decrement memory	1b
DECX	Decrement X	2
DEL	Delete A	2
DELB	Delete B	2
DFLT	Double float	2
DISP	Dispatch	6
DIV	Divide	2
DIVI	Divide immediate	4a
DIVL	Divide long	2
DLSL	Double logical shift left	3b

DLSR	Double logical shift right	3b
DMPY	Double logical multiply	10a
DMUL	Double multiply	10a

DPF	Deposit field	4b
DSUB	Double subtract	2
DTST	Test double word on TOS	2
DUMP	Load soft dump program	
DUP	Duplicate A	2
DXBZ	Decrement X, branch if zero	3a
DXCH	Double exchange	2
DZRO	Double push zero	2
EADD	Extended-precision floating point add	10a
ECMP	Extended-precision floating point	10a
	compare	
EDIV	Extended-precision floating point divide	10a
EMPY	Extended-precision floating point	10a
	multiply	
ENEG	Extended-precision floating point negate	10a
ESUB	Extended-precision floating point	10a
	subtract	
EXF	Extract field	4b

EXIT	Procedure and interrupt exit	7
FADD	Floating add	2
FCMP	Floating compare	2
FDIV	Floating divide	2
FIXR	Fix and round	2
FIXT	Fix and truncate	2

Table 6-1. Machine Instruction Mnemonics (continued)

MNEMONIC	FUNCTION	FORMAT
FLT	Float	2
FMPY	Floating multiply	2
FNEG	Floating negate	2
FSUB	Floating subtract	2
HALT	Halt	6
HIOP	Halt I/O program	
IABZ	Increment A branch if zero	3a
INCA	Increment A	2
INCB	Increment B	2
INCM	Increment memory	1b
INCX	Increment index register	2
INIT	Initialize I/O channel	
IXBZ	Increment X, branch if zero	3a
IXIT	Interrupt exit	5
LADD	Logical add	2
LCMP	Logical compare	2
LDB	Load byte	1b
LDD	Load double	1b
LDEA	Load double word from extended address	5
LDI	Load immediate	4a
LDIV	Logical divide	2
LDNI	Load negative immediate	4a
LDPN	Load double from program, negative	7
LDPP	Load double from program, positive	7
LDX	Load Index	1a
LDXA	Load X onto stack	2
LDXB	Load X into B	2
LDXI	Load X immediate	4a
LDXN	Load X negative immediate	4a
LLBL	Load Label	7

LLSH	Linked list search	5
LMPY	Logical multiply	2
LOAD	Load	1a

LRA	Load relative address	1a
LSEA	Load single word from extended address	5
LSL	Logical shift left	3b
LSR	Logical shift right	3b
LST	Load from system table	6
LSUB	Logical subtract	2
MABS	Move using absolute address	8
MCS	Memory controller read status	
MDS	Move using data segment	8
MFDS	Move from data segment	8
MOVE	Move words	8a
MPY	multiply	2

Table 6-1. Machine Instruction Mnemonics (continued)

MNEMONIC	FUNCTION	FORMAT
MPYD	Decimal Multiply	10d
MPYI	Multiply immediate	4a
MPYL	multiply long	2
MPYM	Multiply memory	1a
MTBA	Modify, test branch A	1e
MTBX	Modify, test, branch, X	1e
MTDS	Move to data segment	8
MVB	Move bytes	8a
MVBL	Move from DB+ to DL+	8c
MVBW	Move bytes while	8b
MVLB	Move from DL+ to DB+	8c
NEG	Negate	2
NOP	No operation	2
NOT	One's complement	2
NSLD	Normalizing shift left decimal	10d
OR	OR, logical	2
ORI	Logical OR immediate	7
PAUS	Pause	6
PCAL	Procedure call	7
PCN	Push CPU number	5
PLDA	Privileged load from absolute address	5
PSDB	Pseudo interrupt disable	6
PSEB	Pseudo interrupt enable	6
PSHR	Push registers	4a
PSTA	Privileged store into absolute address	5
QASL	Quadruple arithmetic shift left	3b
QASR	Quadruple arithmetic shift right	3b
RCCR	Read system clock	
RCLK	Read clock	6
RIO	Read I/O	6
RIOA	Read I/O adapter	
RIOC	Read I/O channel	
RMSK	Read mask	6
RSW	Read switch register	5
SBXI	Subtract immediate from X	7
SCAL	Subroutine call	7
SCAN	Scan bits	3b
SCLK	Store clock	6
SCLR	Set system clock limit	
SCU	Scan until	8c
SCW	Scan while	8c
SDEA	Store double word into extended address	5
SED	Set enable/disable external interrupts	6

| SEML | Semaphore load | |

MNEMONIC	FUNCTION	FORMAT
SETR	Set registers	4a
SIN	Set interrupt	6
SINC	Set systerm clock interrupt	
SIO	Start I/O	6
SIOP	Start I/O channel program	
SIRF	Set internal interrupt reference flag	6
SLD	Shift left decimal	10d
SMSK	Set mask	6
SRD	Shift right decimal	10d
SSEA	Store single word into extended address	5
SST	Store in system table	6
STAX	Store A into X	2
STB	Store byte	1b

STBX	Store B into X	2
STD	Store double	1b
STOR	Store	1a
STRT	Programmatic warm start	
SUB	Subtract	2
SUBD	Subtract decimal	10d
SUBI	Subtract immediate	4a
SUBM	Subtract memory	1a
SUBS	Subtract from S	7
SXIT	Subroutine exit	7
TASL	Triple arithmetic shift left	3b
TASR	Triple arithmetic shift right	3b
TBA	Test, branch A	1e
TBC	Test bit and set condition code	3b
TBX	Test branch X	1e
TCBC	Test and compliment bit and set CC	3b
TEST	Test TOS	2
TIO	Test I/O	6
TNSL	Triple normalizing shift left	3b
TOFF	Hardware timer off	
TON	Hardware timer on	
TRBC	Test and reset bit, set condition code	3b
TSBC	Test, set bit, set condition code	3b
TSBM	Test and set bit in memory	3b
UNLK	Unlock resource	5
WIO	Write I/O	6
WIOA	Write I/O adapter	
WIOC	Write I/O channel	
XAX	Exchange A and X	2
XBX	Exchange B and X	2
XCH	Exchange A and B	2
XCHD	Exchange DB	6
XEQ	Execute	6

Table 6-1. Machine Instruction Mnemonics (continued)

MNEMONIC	FUNCTION	FORMAT
XOR	Exclusive OR, logical	2
XORI	Logical exclusive OR, immediate	7
ZERO	Push zero	2
ZROB	Zero B	2
ZROX	Zero X	2

6-2. DELETE STATEMENT

The delete statement allows you to delete words from the stack without
using the ASSEMBLE statement.

The form of the delete statement is one of the following:
1. DEL
2. DELB
3. DDEL

The mnemonics have the same meanings as in the ASSEMBLE statement:

DEL Delete the top of stack (S-0) decrement the S-register
by 1.

DELB Delete the contents of S-1 by storing S-0 into it and
decrement the S-register by 1.

DDEL Delete the contents of S-0 and S-1 and decrement the
 S-register by 2.

See Figure 6.2 for the effect of the delete statement on the stack.

BEFORE DEL AFTER DEL
 --------- ---------

S-2 | 7 | S-1 | 7 |
 --------- ---------

S-1 | 6 | S-0 | 6 |
 --------- ---------

S-0 | 5 |

BEFORE DELB AFTER DELB
 --------- ---------

S-2 | 7 | S-1 | 7 |
 --------- ---------

S-1 | 6 | S-0 | 5 |
 --------- ---------

S-0 | 5 |

BEFORE DDEL AFTER DDEL
 --------- ---------

S-2 | 7 | S-0 | 7 |
 --------- ---------

S-1 | 6 |

S-0 | 5 |

Figure 6.2. Delete Statement

6-3. PUSH STATEMENT

The PUSH statement puts the contents of any or all of the registers onto
the stack using the PSHR instruction.

The form of the PUSH statement is:

PUSH (register [,...,register])

EXAMPLES:

PUSH (X,Q,STATUS);
PUSH (DL);

where

register is one of the following hardware registers:
S,Q,X,STATUS,Z,DL, DB, or SBANK.

If more than one register is specified, they are stacked in the order
shown below (regardless of the order in which they are listed in the PUSH
statement):

REGISTER | VALUE STACKED

S | S-DB (relative S before PSHR instruction)
Q | Q-DB (relative Q)
X | Index Register
STATUS | Status Register
Z | Z-DB (relative Z)
DL | DL-DB (relative DL)
DB | DB (absolute address--2 words)
SBANK | Stack Bank

Thus, if you use the statement:

PUSH(STATUS,X,DL);

The stack would look like:

S-2 | | Index Register

S-1 | | Status Register

S-0 | | Relative DL

Privileged mode is required to push either DB or SBANK.

6-4. SET STATEMENT

The SET statement is used to set the contents of any or all registers
using values taken from the stack. The SETR instruction is used to
perform this operation:

The form of the SET statement is:

SET (register [,...,register])

EXAMPLES:

 SET(S);
SET(Q,S);

where

register is one of the following hardware registers:
S,Q,X,STATUS,Z,DL,DB, or SBANK.

Privileged mode is required to set SBANK, DB, DL, Z, and parts of the
Status register. If you are not in privileged mode and you set the
STATUS register, only the Traps Enabled bit, the Carry and Overflow bits,
and the Condition Code are set. The rest of the STATUS register is not
altered.

Before using a SET statement, the appropriate values must be loaded onto
the stack. If more than one register is specified, they are taken from
the stack in the following order (regardless of the order in which they
are listed in the SET statement):

REGISTER | VALUE TAKEN FROM THE STACK
SBANK | Stack Bank
DB | DB (absolute address--2 words)

DL | DL-DB (relative DL)
Z | Z-DB (relative Z)
STATUS | Status Register
X | Index Register
Q | Q-DB (relative Q)
S | S-DB (relative S)

Relative addresses in the stack are added to the absolute value of DB
before setting the registers. The values are deleted from the stack by
the SETR instruction.

Note that the order in which the registers are set is the reverse of the
order in which they are pushed. This reversal is consistent with the
last-in, first-out stack architecture of the HP 3000.

6-5. WITH STATEMENT

The WITH statement is intended specifically for privileged users running
in split-stack mode (see the final paragraph of section 8-1). It
performs a syntactic check to ensure that only split-stack compatible
code is generated. Reliability is increased by limiting the code inside
a WITH statement to certain DB-relative offsets. The variables used
inside the WITH block must have been declared inside a corresponding
DATASEG declaration, or be Q- or S-relative, unless a move is also
included. The only form of move allowed inside the WITH statement is the
MOVEX between data segments (see Section 4-21A), where the variables used
may have been declared in any DATASEG declaration. Checking will be
performed as for OPTION SPLIT (see Section 7-13A).

The form of the WITH statement is:

WITH dataseg-name DO

BEGIN
:
END;

where

dataseg-name is an SPL identifier.

The actual switching of data segments is left up to the SPL/3000
programmer.

Chapter 7 PROCEDURES, INTRINSICS,
AND SUBROUTINES

7-1. SUBPROGRAM UNITS

There are three types of subprogram units in SPL: procedures, intrinsics,
and subroutines. Procedures and intrinsics are identical except for
their location and how they are declared in a program. Subroutines are
less powerful than procedures and intrinsics and use different hardware
instructions to call and exit. The declarations for procedures and
intrinsics follow the global data declarations and precede any global
subroutine declarations as shown below.

BEGIN
[global-data-declarations]

 ----->[procedures/intrinsics]<-----
[global-subroutines]
[main-body]

 END.

Local subroutine declarations are within the procedure body following the
other local declarations in the procedure declaration and preceding the
executable statements of the procedure body.

7-2. PROCEDURE DECLARATION

A procedure declaration defines an identifier as a procedure and
specifies what attributes the proce- dure will have:

* Data type of result for function procedures.

* Type and number of formal parameters.

* Options (external body, variable number of parameters,etc.).

* Local variables.

* Statements of the procedure body.

Procedures are called by means of the identifier and a list of actual
parameters. Procedure declarations are not allowed within other
procedures unless they are declared without a body (that is OPTION
EXTERNAL).

The form of a procedure-declaration is:

[type] PROCEDURE procedure-name
[(formal-parm[,... ,formal-parm]); [value-part] specification-part]
[option-part;]

 [procedure-body;]

where

type indicates that the procedure is a function procedure
which returns a value of the specified data type. The
type is INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG.

procedure-name is an SPL identifier used to identify the procedure.

formal-parm is an SPL identifier which is used as a local identifier
to reference an actual parameter.

value-part indicates which formal parameters are to be passed
by-value. All parameters which are not specified in the
value-part are passed by-reference. The value-part is
of the form: VALUE formal-parm [,...,formal-parm];

specification- indicates the characteristics of each formal parameter.
part The specification-part is of the form: specifica- tion

[;...;specification];

specification is one of the following:
type formal-parm[,...,formal-parm]
[type] ARRAY formal-parm [,...,formal-parm]
LABEL formal-parm [,...,formal-parm]
[type] POINTER formal-parm [,...,formal-parm]
[type] PROCEDURE formal-parm [,...,formal-parm]

option-part specifies which options are to be in effect. The
option-part is of the form: OPTION option [,...,option]

option is UNCALLABLE, PRIVILEGED, EXTERNAL, CHECK level,

VARIABLE, FORWARD, INTER- RUPT, or INTERNAL. Each option
is described fully below, starting with paragraph 7-5.

integer constant between 0 and 3 inclusive.

procedure body is one of the following:
1. statement

 2. BEGIN [local-data-declarations]
[external-procedure/intrinsic-declarations]
[local-subroutine-declarations] statement[;...;
statement] END

statement is any executable SPL statement (see Sections IV through
VI).

local-data- include any or all of the following (intermixed in any
declarations order):

define declaration(s)
equate declaration(s)
local simple variable declaration(s)
local array declaration(s)
local pointer declaration(s)
label declaration(s)
switch declaration(s)

 entry declaration(s)

external- are intrinsic declarations and procedure declarations
procedure for external procedures, intermixed in any order.
intrinsic-
local-ations are local subroutine declarations (described fully later
subroutine- in this section).
declarations
A procedure is a self-contained section of code which is called to
perform a function. Procedures are hardware-dependent in SPL--they are
called using the PCAL instruction and return using the EXIT instruction;
the PRIVILEGED and UNCALLABLE options are hardware-defined and checked;
and local variables can be allocated relative to the Q-register since it
is set to a fresh area of the stack by the PCAL instruction. Because of
the hardware capability provided for procedures, they can be called
recursively (that is, a procedure can call itself). For the syntax and
semantics of calling procedures, see "Function Designator" in paragraph
4-6 and "Procedure Call Statement" in paragraph 5-8. Multiple entry
points for procedures are covered under "Entry Declaration" in paragraph
7-30.

7-3. DATA TYPE

If a data type is specified for a procedure, that procedure is a function
and can be called within expressions. It returns a value of the type
specified by assigning the value to its name somewhere within the
procedure body in an assignment statement. For details on calling
functions, see "Function Designator" in paragraph 4-6.

If a data type is not specified, the procedure does not return a value
and cannot be called as a function.

7-4. PARAMETERS

The formal parameters (if any) of a procedure must be fully specified as
to type and whether each is call-by-value or call-by-reference. The
formal parameters can then be used within the procedure body as if they
were locally declared identifiers. When the procedure is called, an
actual parameter is supplied for each dummy (formal) parameter. Up to 31
formal parameters can be specified for each procedure.

Simple variables, arrays, labels, pointers, and procedures can be passed
as parameters. Simple variables and pointers can be passed by value or
by reference; procedures, labels, and arrays are passed by reference
only.

The VALUE list specifies which parameters are to be passed by value;
parameters not listed in the VALUE list are passed by reference. When a
parameter is called by value, the value of the actual parameter is
specified by an expression and is loaded onto the stack. Value
parameters are handled exactly as local variables from that point on; any
changes to them are limited to the scope of the procedure. For reference
parameters, the address of the parameter is loaded onto the stack instead
of a value; changes to reference parameters can change the value of the
actual parameter outside the procedure.

The VARIABLE option allows a variable number of parameters to be passed
(see "Options," paragraph 7-7).

Actual parameters (when the procedure is called) can be constants,
expressions, simple variables, array references, pointer references,
procedure identifiers, label identifiers, or stacked values (* in place
of a parameter indicates that the parameter value or address has been
loaded onto the stack by the user; see "Procedure Call Statement" in
paragraph 5-8 for details).

If the formal parameter is a simple variable, it is passed the address
(call-by-reference) or actual value (call-by-value) of a data item. If
the formal parameter is an array, it is passed the address of the zero
element. Thus, all arrays, even direct arrays, are effectively passed as
indirect arrays. If the formal parameter is a pointer, it is passed the
addresss (call-by-reference) or contents (call-by-value) of the pointer.
Parameters are stored in Q-3-n to Q-4 where n is the number of words
required for parameter storage (maximum 60). Call-by-reference
parameters, except labels, use one word. IN- TEGER, LOGICAL, and BYTE
values also use one word; DOUBLE and REAL values use two words; labels
use three words; and LONG values use four words.

Table 7-1 shows what actual parameters can be passed to what formal
parameters (a blank space indicates an error condition):

__

NOTE If the actual-parameter is a byte array and the formal-parameter is
an array with a different data type, the byte address is con-
verted to a word address by arithmetically right shifting the byte
address by one bit. Thus, the maximum byte address is DB+32767
(which equals DB+16383 words). Additionally, the array in the
procedure begins on a word boundary regardless of whether or not
the starting byte of the actual-parameter starts on a word
boundary.

__

Table 7-1. Parameters Passed to Formal Parameters

Actual	Simple	Simple	Arrays	Pointer	Pointer	Proced-
Parameter	Variables	Vari-		By	By Value	ures
	By	ables By		Refer-		
	Reference	Values		ence		

--
Constant	Warning	Must be	Warning	Warning	Warning	
	(uses 1	same	(uses 1	(uses 1	(uses 1	
	word as	word	word as	word as	word as	
	address)	size.	address)	address)	address)	
--
Expression		Must be				
		same				
		word				
		size.				
--
Simple	OK	Must be	OK, loads		OK, loads	
Variable		same	address		address	
Identifier		word	of simple		of simple	
		size.	variable		variable	
--
Arrary	OK	Must be	OK		OK	
Reference		same				
		word				
--
Pointer	OK	Must be	OK	OK	OK	
Reference		same				
		word				
--
| Pointer | | | | | | OK |
| Identifier | | | | | | |
--
| Label | | | | | | |
| Identifier | | | | | | |
--
| * | OK | OK | OK | OK | OK | OK |
| (stacked) | | | | | | |
--

7-5. OPTIONS

The option part of a procedure declaration consists of the reserved word
OPTION followed by a list of option words separated by commas and
terminated by a semi-colon. The meaning of the various options are
discussed in the following paragraphs.

7-6. OPTION UNCALLABLE.

This option causes the "uncallable" bit to be turned on in the Segment
Transfer Table entry for the procedure. The uncallable bit is examined
by the PCAL instruc- tions to restrict access to procedures that specify
this option. Uncallable procedures can only be called by code executing
in privileged mode. If this option is not specified, the procedure is
callable.

7-7. OPTION PRIVILEGED.

This option causes the procedure to be run in privileged mode, assuming
that the person running the program is allowed to execute in privileged
mode by the operating system. If this option is not specified, the
procedure runs in user mode.

7-8. OPTION EXTERNAL.

This option specifies that the procedure body (or code) exists external
to the program being compiled. The procedure body is not included in the
declaration and is linked to the main program later by the operating
system. If you need to refer to a procedure compiled separately, you
must include an OPTION EXTERNAL declaration for the procedure which
indicates to the compiler the type and number of parameters. Intrinsics
are the only procedures not requiring a procedure declaration (see
"Intrinsic Declaration" in paragraph 7-34). When procedures are compiled
separately (to be called later as option EXTERNAL), they can use the
EXTERNAL-GLOBAL mechanism to establish data linkages.

7-9. OPTION CHECK.

This option is provided for option external procedure declarations which
will subsequently be called as externals by other programs. The option
specifies how much checking is done by the operating system between the
option external declaration in the calling program and the actual
procedure declaration as compiled. At PREP time, errors from RL and USL
procedures are detected. At RUN time, errors from SL procedures are
detected.

If this option is not specified, no checking is performed. Otherwise,
the smaller of the two levels, the level specified in the calling program
and the level specified in the external procedure, is used to determine
the level of checking. Intrinsics determine their level of checking,
never the caller. The check values are:

0--no checking

1--check procedure type only.

2--check procedure type and number of parameters.

3--check procedure type, number of parameters and type of each

7-10. OPTION VARIABLE.

This option specifies that the procedure can be called with a variable
number of actual parameters. The compiler generates code (when the
procedure is called) to provide the procedure with a parameter bit mask
in location Q-4 (also Q-5 if more than 16 parameters). If an actual
parameter is missing (for example, NOW(A,,C)), the corresponding bit in
the mask is set to zero. The correspondence is from right to left with
the rightmost bit (bit 15) correspond- ing to the right parameter. In
the procedure call, the occurrence of a right parentheses before the
parameter list is filled, implies that the rest of the parameters are
missing. When the procedure is entered, it is the responsibility of the
procedure to examine the bit mask. Parameters always occur in the same
Q-address, but missing parameters have garbage in their locations.

7-11. OPTION FORWARD.

This option specifies that the complete procedure declaration will be
introduced later in the program. FORWARD is used to circumvent
contradictions incurred by recursion when a procedure calls itself
indirectly. Procedures must be declared before being refer- enced.

7-12. OPTION INTERRUPT.

This option specifies that the procedure is an external interrupt
procedure. The structure and uses of interrupt routines are covered in
the HP 3000 Multiprogramming Executive Operating System (MPE) manuals.

7-13. OPTION INTERNAL.

A procedure with this option cannot be called from another seg- ment.
This makes processing of the procedure more efficient for the loader
subsystem and allows more than one segment to have a procedure with the
same name. INTERNAL procedures cannot be moved to another segment or
called from a procedure in another segment. This option applies to code
segments that are put into the SL only. See the MPE Segmenter Reference
Manual, Section 3.

7-13A. OPTION SPLIT.

This option is intended specifically for privileged users running in
split-stack mode to improve the reliability of the generated split-stack
code (see section 8-1). When a procedure specifies this option,
generation of the following instructions or declarations will result in
an error.

* Local indirect (DB-relative) arrays

* OWN variables

* Q-relative LRA's (generated when assigning to a pointer the address
of an indexed element of a local array)

7-14. LOCAL DECLARATIONS

Procedures can declare local variables that are known only within the
procedure and are normally allocated space in the Q+ area when the
procedure is called. Thus, they occupy space only when the procedure is
called and are deleted when the procedure exits. As indicated in the
syntax, all declara- tion types are allowed within procedures with these
comments:

* Procedures declared within procedures must be OPTION EXTERNAL.

* Data declarations (simple variables, arrays, pointers) must be of the
"local" form (see the appro- priate paragraphs in this section).

There are 127 words available for storage of local variables for each
procedure. All simple variables, pointers, direct arrays, and pointers
to indirect arrays, must fit in 127 words. Indirect arrays can extend
past this range as long as the pointer to the zero element is within
range.

7-15. OWN VARIABLES

OWN variables are a special variety of local variable; they are allocated
space in the DB area rather than on the top of the stack. If
initialization is specified, they are initialized at the beginning of the
program, not every time the procedure is called. Since they are
allocated in the global area, they are not deleted when a procedure
exists, but are still in existence, with their last value, when the
procedure is called again. However, they are directly accessible only by
the procedure in which they are declared. OWN variables can be simple
variables, pointers, or arrays.

7-16. LOCAL SIMPLE VARIABLE DECLARATIONS

A simple variable declaration specifies the data type, addressing mode,
storage allocation, and initialization value for identifiers to be used
as single data items. The data type assigned to a variable determines
the amount of space allocated to the variable and the set of machine
instructions which can operate on the variable.

There are three types of local simple variable declarations: standard,
OWN, and EXTERNAL. Stand- ard simple variable declarations can allocate
Q-relative storage each time the procedure is called or can specify the
use of a location relative to a base register or another variable. OWN
variable declarations allocate DB-relative storage at the beginning of
the program. EXTERNAL variable declarations link global variables in a
separately compiled main program to variables in a procedure; the global
variables must be declared with the GLOBAL attribute.

There are two methods which can be used to link global variables to
variables in separately compiled procedures. The first method is to use
the GLOBAL attribute in the global variable declaration (see paragraph
3-2) and the EXTERNAL attribute in the local variable declaration. The
identifiers in both declarations must be the same and the Segmenter is
responsible for making the correct linkages. The second method is to
include dummy global declarations at the beginning of subprogram
compilations. All global declarations must be included, even for
identifiers not referenced in the subprogram, and they must be in the
same order as in the main program. It is possible, although not
recommended, to use different identifiers for the same variable, but you
are responsible for keeping them straight. The second method is faster
and requires less space in the USL (User Subprogram Library) files, but
does not protect you against improper linkages.

7-17. STANDARD LOCAL VARIABLES.

A standard vocal variable declaration specifies iden- tifier(s) which can
either be allocated storage each time the procedure is called or which
use locations relative to base registers or other identifiers. Local
variables cannot be referenced outside the procedure in which they are
declared.

The form of a standard local simple variable declaration is:

type variable-declaration[,...,variable-declaration];

EXAMPLES:

INTEGER I,J:=1245;
DOUBLE II:=- 1234579 D;
REAL A,B,C:=1.321E- 21,Z=DB+3;
LOGICAL INDX=X,LI=I,JI=J;
BYTE DOLLAR:="$";

where

type specifies the data type of the variables in the
declaration. The type may be INTEGER, LOGICAL, BYTE,
DOUBLE, REAL, or LONG.

variable- is one of the following forms:
declaration variable [:= initial-value]

variable = reference-identifier [sign offset]

variable is a legal SPL identifier.

reference- is any legal SPL identifier which has been declared as a
identifier data item except DB,PB,Q,S, or X.

initial-value is an SPL constant to be used as the value of the
variable when the procedure is called.

register specifies the register to be used in a register
reference. The register may be DB, Q, S, or X.

sign is + or -.

offset is an unsigned decimal, based, composite, or equated
integer constant.

Form 1 of the variable declaration allocates the next available
Q-relative location(s) for the variable. The amount of space allocated
depends on the variable type. If an initial value is specified, the
variable is initialized when the procedure is called. If the constant
used for the initial value is too large, it is truncated on the left
except string constants which are truncated on the right. If no initial
value is specified, the variable is not initialized.

Form 2 of the variable declaration equivalences a variable either to the
index register (X) or to a location relative to the contents of one of
the base registers (DB, Q, or S). Since the index register is 16 bits,
only variables of type INTEGER, LOGICAL, and BYTE may be equivalenced to
the Index register (X).

Form 3 of the variable declaration equivalences a variable to a location
relative to another variable. The reference-identifier must be declared
first. For example, the declarations

LOGICAL A;
INTEGER B= A+5;

equivalence B to the location 5 cells past the location of A. Simple
variables which are address referenced to arrays use either the location
of the zero element of the array (if direct) or the location of the
pointer to the zero element of the array (if indirect). Note that if the
reference-identifier is an array, only the zero element may be used in a
variable reference of a simple variable declaration. In any case, the
final address must be within the direct address range.

DB, PB, Q, S, and X cannot be used as the identifier on the right side of
an equals sign in a variable declaration, because they are interpreted as
register references instead of variable references. For example,
consider the declaration

INTEGER A,B,C,DB,D= DB+ 2;

The variable D is equivalenced to the location 2 cells past the cell to
which the DB register points--not 2 cells past the location assigned to
the variable DB. The legal combinations of registers, signs, and offsets
are shown below

--
| Register | Sign | Offset |

--
| DB | + | 0 to 255 |
--

--
| Q | - | 0 to 63 |
--
| S | - | 0 to 63 |
--
| X | none | none |
--

7-18. OWN SIMPLE VARIABLES.

OWN simple variables are allocated space in the DB- relative area instead
of the Q-relative area. Thus, an OWN variable retains its value from one
execution of the procedure to the next. However, the variable can only
be referenced within the procedure in which it is declared. If an OWN
variable is initialized, it is initialized only at the start of the
program instead of each time the procedure is called.

The form of an OWN simple variable declaration is:

OWN type variable[:=init-value] [,...,variable[:=init-value]];

EXAMPLES:

OWN INTEGER I:=1,J,K:=10;
OWN REAL R1;
OWN BYTE CHAR:="";

where

type specifies the data type of the variables in the
declaration. The type may be INTEGER, LOGICAL, BYTE,
DOUBLE, REAL, or LONG.

variable is a legal SPL identifier.

initial-value is an SPL constant to be used as the value of the
variable when the procedure is called.

7-19. EXTERNAL SIMPLE VARIABLES.

An EXTERNAL simple variable declaration is used to link global variables
for referencing in procedures compiled separately from the main program.
The identifiers must be the same used in the global declaration and the
GLOBAL attribute must have been specified.

The form of an EXTERNAL simple variable declaration is:

EXTERNAL type variable [,...,variable];

EXAMPLES:

 EXTERNAL INTEGER I,J,K;
EXTERNAL REAL R;

where

declaration. The type may be INTEGER, LOGICAL, BYTE,
DOUBLE, REAL, or LONG.

variable is a legal SPL identifier.

7-20. LOCAL ARRAY DECLARATIONS

An array declaration specifies one or more identifiers to represent
arrays of subscripted variables. An array is a block of contiguous
storage which is treated as an ordered sequence of "variables " having
the same data type. Each "variable" or element of the array is denoted
by a unique subscript; note that SPL provides one-dimensional arrays
only. An array declaration defines the following attributes of an array:

* The bounds specification (if any) which determines the size of the
array and the legitimate range of indexing.

* The data type of the array elements.

* The storage allocation method.

* The initial values, if desired. Note that arrays local to a
procedure cannot be initialized unless they are PB-relative.

* The access mode (direct or indirect).

There are two types of access modes used for arrays: indirect and
direct. An indirect array uses a pointer to the zero element of the
array. Addressing an indirect array element uses both indirect
addressing and indexing, If the array is a BYTE array, the pointer
contains a DB-relative byte address. For all other data types, the
pointer contains a DB-relative word address. A direct array uses a
location within the direct address range of one of the registers (DB, Q,
or S) as the zero element of the array and then uses indexing to address
a specific array element.

There are three types of local array declarations: standard, OWN, and
EXTERNAL. A standard local array declaration can allocate Q-relative
storage each time the procedure is called, PB-relative storage, or can
specify the use of a location relative to a base register or another data
item. OWN array declarations allocate DB-relative storage at the
beginning of the program. EXTERNAL array declara- tions link global
arrays in a separately compiled main program to arrays in a procedure.
The global arrays must be declared with the GLOBAL attribute.

There are two methods which can be used to link global arrays to arrays
in separately compiled procedures. The first method is to use the GLOBAL
attribute in the global array declaration (see paragraph 3-3) and the
EXTERNAL attribute in the local array declaration. The identifiers in
both declarations must be the same and the Segmenter is responsible for
making the correct linkages. The second method is to include dummy
global declarations at the beginning of subprogram compilations. All
global declarations must be included, even for identifiers which are not
referenced in the subprog- ram, and they must be in the same order as in
the main program. It is possible, although not recommended, to use
different identifiers for the same array, but you are responsible for
keeping them straight. The second method is faster and requires less
space in the USL (User Subprogram Library) files, but does not protect
you against improper linkages.

7-21. STANDARD LOCAL ARRAYS.

A standard local array declaration specifies identifier(s) which can be
allocated storage each time the procedure is called, stored in the code

segment, or which use locations relative to base registers or other data
items. Local arrays cannot be referenced outside the procedure in which
they are declared.

type local-array-dec,...,local-array-dec, local-array-dec
[] ARRAY [] {constant-array-dec};

{ }
where

type specifies the data type of the array. The type can be
INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not
specified, the array is type LOGICAL.

local-array-dec is one of the following forms:

1. array-name(lower:upper) [=Q]

 This form is used for an uninitialized array with
defined bounds. If = Q is not specified, the
array is indirect and the next available
Q-relative location is allocated for the pointer
to the zero element of the array. If= Q is
specified, the array is direct and the next
available n cells in the Q+ area are allocated
for the array, where n is the number of locations
required to store the array. The zero element of
the array must be within the direct address range
whether or not it is actually an element of the
array. For example, consider the declaration:

INTEGER ARRAY A(- 20:-

The next available Q-relative location is
 allocated to A(-20), but all indexing is done

relative to A(0) even though it is not an actual
element of the array. The address which A(0)
would have if it were in the array must be
between Q-63 and Q+ 127.

2. array-name(variable-lower:variable-upper)

This form is used for an indirect array with
variable bounds. The bounds are evaluated each
time the procedure is called and storage is
allocated accordingly at execution time. The
array cannot be initialized.

3. array-name(@)= Q

This form is used for an indirect array with
undefined bounds. The next available Q-relative
location is used, without being allocated, as the
pointer to the zero element of the array. Space
is not allocated for the array nor is
initialization allowed.

4. array-name(*)= Q

This form is used for a direct array with
undefined bounds. The next available Q-relative
location is used, without being allocated, as the

zero element of the array. Space is not
allocated for the array nor is initialization
allowed.

This form is used for an indirect array with
undefined bounds whose pointer is DB, Q, or
S-relative. If a base-register-reference is not
specfied, the next available Q-relative cell is
allocated for the pointer to the zero element of
the array. If a base-register reference is

 specified, then that DB-, Q-, or S-relative cell
is used, without being allocated, as the pointer
to the zero element of the array. Space is not
allocated for the array nor is initialization
allowed.

6. array-name(*)

This form can be used for an indirect array with
undefined bounds. The next available Q-relative

 cell is allocated for the pointer to the zero
element of the array. Space is not allocated for
the array nor is initialization allowed. This
form is equivalent to array-name(@) without a
base-register reference.

7. array-name(*) = register sign offset

This form is used for direct arrays with
undefined bounds which are DB-, Q-, or
S-relative. The specified cell is used as the
zero element of the array; however, space for the
array is not actually allocated and the array

 cannot be initialized.

8. array-name(*) = reference-identifier [sign
offset]

This form is used for equivalencing an array to a
location relative to another identifier. The
reference identifier may be a simple variable, a
pointer variable, or another array and must be
declared first. The array is a direct array

 except when the reference-identifier is an
indirect array or a pointer variable and no
offset is specified. If an offset is specified,
the resulting address must be within the direct
address range. For example, if A is at location
Q+ 125, then the declaration

INTEGER B(*)=A

would not be allowed because the direct address
range for the Q register is -63 to +127. If the
array is direct, the referenced location is used
as the zero element of the array. If the array
is indirect, the referenced location is used as
the pointer to the zero element except when
either the array or the reference-identifier, but
not both is type BYTE, in which case the next
available Q-relative cell is allocated for the
pointer to the zero element. Space is not
allocated for the array nor can the array be

 initialized. DB, PB, Q, S, and X cannot be used
as the reference-identifer because they are

interpreted as register references instead.

9. array-name(*) = reference-identifier (index)

another array. The reference-identifier may be
either an array or a pointer variable and must be
declared first. If the reference-identifier is a

 direct array, the array is a direct array whose
zero element is the location of the referenced
array element. If the reference-identifier is an
indirect array or a pointer variable, the array
is indirect. In this case, the next available
Q-relative cell is allocated for the pointer to
the zero element of the array when a non-zero

 index is specified or when either the array or
the reference-identifier (but not both) is type
BYTE; otherwise, both use the same location for
the pointer to the zero element. In any case,
space is not allocated for the equivalenced array
nor can the equivalenced array be initialized.
DB, PB, Q, S, and X cannot be used as the
 reference-identifier because they are interpreted
as register references instead.

array-name is a legal SPL identifier.

reference- is any legal SPL identifier which has been declared as a
identifier data item except DB,PB,Q,S, or X.

register specifies the base register in a register reference.
The register may be DB, Q, or S.

sign is + or -.

offset is an unsigned decimal, based, composite, or equated
 integer constant within the direct address range as

shown below:

--
| Register | Sign | Offset |
--
| DB | + | 0 to 255 |
--
| Q | + | 0 to 127 |
--
| Q | - | 0 to 63 |
--
| S | - | 0 to 63 |
--

constant-array- is of the form:
dec

array-name(lower:upper) = PB :=
value-group[,...,value-group]

lower specifies the lower bound of the array, It can be any
decimal, based, composite, or equated single-word
integer constant or constant expression.

upper specifies the upper bound of the array. It can be any
decimal, based, composite, or equated single-word
integer constant or constant expression.

variable-lower specifies the lower bound of a variable bounds array.
The variable-lower is an INTEGER, LOGICAL, or BYTE
simple variable.

The variable-upper is an INTEGER, LOGICAL, or BYTE
simple variable.

index indicates the element of the referenced array to be used
as the reference location. The index can be any
decimal, based, composite, or equated single-word

 integer constant.

value-group is either of the following:

1. initial-value

2. repetition-factor
(initial-value[,...,initial-value])

initial-value is any SPL numeric or string constant.

repetition- specifies the number of times the initial value list
factor will be used to initialize the array elements. The

repetition-factor can be any unsigned non-zero decimal,
 based, composite, or equated single-word integer

constant.

Local PB-arrays with defined bounds must be initialized. Initialization
consists of a := followed by a list of numerical constants or strings. A
group of constants can be surrounded by parentheses and preceded by a
repetition factor (n) to specify that the constants in parentheses are to
be used n times before going on to the next item in the list. These
repeat groups cannot be nested. Elements are initialized starting with
the lowest subscript and continuing up until the constant list is
exhausted. The initialization list must not contain more values than
there are elements in the array. If the constant used for the initial
value is too large, it is truncated on the left except string constants
which are truncated on the right. If no initial value is specified, the
array element is not initialized. Only the last array in a declaration
list can be initialized.

A PB-relative array allocates storage in the code segment for an array of
constants. The entire PB-relative array must be initialized and cannot
be changed during execution. PB-relative arrays can only be accessed
within the procedure in which they are declared and they cannot be passed
as parameters.

7-22. OWN ARRAYS.

OWN arrays are allocated space in the DB-relative area instead of the
Q-relative area. Thus, an OWN array retains its values from one
execution of the procedure to the next. However, the array can only be
referenced within the procedure in which it is declared. An OWN array
can be passed as a parameter, however. An OWN array must have defined
bounds and may be initialized.

The form of an OWN array declaration is:

* OWN [type] ARRAY [own-dec,...,own-dec,]own-dec-initial;

EXAMPLES:

OWN ARRAY L1(0:10),L2(0:10),L3(0:10):=10(17),20;

OWN REAL ARRAY R1(0:10):=5(2.0),6(3.5);

where

own-dec is of the form: array-name(lower:upper)

own-dec-initial is of the form:
 array-name(lower:upper)[:=value-group,...,value-group]]

array-name is a legal SPL identifier.

lower specifies the lower bound of the array. It is a
decimal, based, composite or equated single-word integer
constant.

upper specifies the upper bound of the array. It is a
decimal, based, composite, or equated single-word
integer constant.

value-group is either of the following:

 1. initial-value

2. repetition-factor (initial-value
[,...,initial-value])

initial-value is an SPL numeric or string constant.

repetition- specifies the number of times the initial value list
factor will be used to initialize the array elements. The

repetition-factor can be any unsigned non-zero decimal,
based, composite, or equated single-word integer
constant.

7-23. EXTERNAL ARRAYS.

An EXTERNAL array declaration is used to link global arrays to arrays in
procedures compiled separately from the main program. The array-names
must be the same as used in the global declarations and the GLOBAL
attribute must have been specified.

The form of an EXTERNAL array declaration is:

(*)
EXTERNAL [type] ARRAY array-name{(*)} [[,...,array-name] {(@)}];

{(@)}
EXAMPLES:

EXTERNAL ARRAY L1(*),L2(@);
EXTERNAL REAL ARRAY R1(@);

where

type specifies the data type of the array. The type may be
INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG. If not

 specified, the array is LOGICAL.

array-name is a legal SPL identifier.

Array bounds are not specified in an EXTERNAL array declaration. An

asterisk (*) is used to signify a direct array and an @ is used for an
indirect array.

7-24. LOCAL POINTER DECLARATIONS

A pointer declaration defines an identifier as a "pointer" --a single
word quantity used to contain the DB-relative address of another data
item--the object of the pointer. A pointer declaration defines the
following attributes of a pointer:

* The data type of the object of the pointer.

* The storage allocation method.

* The initial address to be stored in the pointer (optional).

When the pointer is accessed, the object is accessed indirectly through
the pointer address. The object is assumed to be (or treated as if it
were) the type of the pointer.

As with simple variables and arrays, there are three types of local
pointer declarations: standard, OWN, and EXTERNAL. The standard pointer
declaration can allocate the next available Q-relative cell or specify a
location relative to a base register or another data item to be used as
the pointer location. OWN pointer declarations allocate a DB-relative
cell for each pointer at the beginning of program execution. EXTERNAL
pointer declarations link global pointers in a separately compiled main
program to a pointer in a procedure (the global pointers must be declared
with the GLOBAL attribute).

There are two methods which can be used to link global pointers to
pointers in separately compiled procedures. The first method is to use
the GLOBAL attribute (see paragraph 3-4) in the global pointer
declaration and the EXTERNAL attribute in the local pointer declaration.
The identifiers in both declarations must be the same and the Segmenter
is responsible for making the correct linkages. The second method is to
include dummy global declarations at the beginning of subprogram
compilations. All global declarations must be included, even for
identifiers not referenced in the subprogram, and they must be in the
same order as in the main program. It is possible, although not
recommended, to use different identifiers for the same pointer, but you
are responsible for keeping them straight. The second method is faster
and requires less space in the USL (User Subprogram Library) files, but
does not protect you against improper linkages.

7-25. STANDARD LOCAL POINTERS.

A standard local pointer declaration specifies iden- tifier(s) which can
either be allocated storage each time the procedure is called or which
use locations relative to base registers or other identifiers. Local
pointers cannot be referenced outside the procedure in which they are
declared. See section 4-4 for examples and information about addresses
and pointers.

The form of a standard local pointer declaration is:

[type] POINTER pointer-dec[,...,pointer-dec];

EXAMPLES:

INTEGER A; LOGICAL B;

BYTE POINTER P:=(@)A;
INTEGER ARRAY N(0:10);
INTEGER POINTER PN:=@N(5);

where

pointer-dec is one of the following:

1. pointer-name [:=@reference-identifier [(index)]]

This form allocates the next available Q-relative
cell for the pointer variable. If the
:=@reference-identifier is used, the pointer is
initialized to the address of the reference-
identifier or array-element if an index is
included. The reference-identifer must be
declared first.

2. pointer-name = reference-identifier [sign offset]

This form is used to equivalence a pointer
variable to a location relative to another
identifier. Space is not allocated for the
pointer nor can the pointer be initialized. The

 resulting address for the pointer variable must
be within the direct address range of the base
register which the reference-identifier uses.

3. pointer-name = register [sign offset]

This form is used to equivalence a pointer
variable to a location relative to a
base-register. Space is not allocated for the
pointer nor can the pointer be intitialized. The
resulting address for the pointer variable must
be within the direct address range of the
specified base-register.

4. pointer-name = offset

This form is used only in privileged mode. It is
the offset in System DB. The pointer reference
must always be subscripted and cannot be preceded

 by '@'.

type specifies the data type of the pointer variables in the
declaration. The type can be INTEGER, LOGICAL, BYTE,
DOUBLE, REAL, or LONG.

pointer-name is a legal SPL identifier.

reference- is any legal SPL identifier which has been declared as a
identifier data item except DB,PB,Q,S, or X.

register specifies the base register in a register reference.
The register can be DB, Q, or S.

sign is + or -.

offset is an unsigned decimal, based, composite, or equated
integer within the direct address range as shown below.

--
| Register | Sign | Offset |

| DB | + | 0 to 255 |
--
| Q | + | 0 to 127 |
--
| Q | - | 0 to 63 |
--
| S | - | 0 to 63 |
--
| ST (system table) | + | > = 0 |
--

index indicates the array element whose address the pointer
will contain. The index can be any decimal, based,
composite, or equated single-word integer constant.

Pointers are initialized with addresses of other variables or constants.
The method is to follow the pointer with :=@ and a data reference (simple
variable, pointer element, or array element or := constant). The address
of the specited data item, adjusted to the address type of the pointer,
is stored in the cell allocated for the pointer. BYTE pointers contain
DB-relative byte addresses, whereas all other types of pointers contain
DB-relative word addresses.

See "Pointers" (paragraph 2-20) for methods of referring to and through
pointers. Pointers can be indexed like arrays and can contain word or
byte addresses.

Pointers can be declared with all data types; if no type is specified,
type LOGICAL is assumed. The type determines what data type the object
of the pointer is assumed to have. This allows objects declared with one
type to be accessed as another data type by accessing them through
pointers.

Pointers which are not address referenced are allocated the next
available Q-relative location and can be initialized. Pointers which are
referenced use the address of the referenced item or the specified
register relative location and cannot be initialized.

7-26. OWN POINTERS.

OWN pointers are allocated space in the DB-relative area instead of the
Q-relative area. Thus, an OWN pointer retains its value from one
execution of the procedure to the next. However, the pointer can be
referenced only within the procedure where it is declared. An OWN
pointer cannot be initialized.

The form of an OWN pointer declaration is:

OWN [type] POINTER pointer-name [,...,pointer-name];

EXAMPLES:

OWN POINTER PTR;
OWN REAL POINTER RPTR1,RPTR2;

where

type specifies the data type of the objects of the pointers
in the declarations. The type may be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG. If not specified, type

pointer-name is a legal SPL identifier.

7-27. EXTERNAL POINTERS.

An EXTERNAL pointer declaration is used to link global pointers for
referencing in procedures compiled separately from the main program. The
identifiers must be the same as used in the global declarations and the
GLOBAL attribute must have been specified.

The form of an EXTERNAL pointer declaration is:

EXTERNAL {type] POINTER pointer-name[,...,pointer-name];

EXAMPLES:

EXTERNAL REAL POINTER RPTR1,RPTR2;
EXTERNAL POINTER PTR1;

where

type specifies the data type of the objects of the pointers
in the declaration. The type may, be INTEGER, LOGICAL,
BYTE, DOUBLE, REAL, or LONG. If not specified, type
LOGICAL is assumed.

pointer-name is a legal SPL, identifier.

7-28. LABEL DECLARATIONS

A label declaration specifies that an identifier is used in the program
as a label to identify a statement. Labels are referenced when it is
necessary to transfer control to a specific statement; they need not be
declared explicitly unless the programmer wishes.

The form of a label declaration is:

LABEL label[,...,label];

EXAMPLES:

LABEL L1,L2,L3;
LABEL L;

where

label is a legal SPL identifier.

Labels are used to identify statements as follows:

LABEL L1;
:
L1:A:=B;

The syntax for labeled statements is given in paragraph 1-3. In SPL, a
label implicitly declares itself when it is used to identify a statement,
as the object of a GO TO statement, or in a switch declaration. It need
not be explicitly declared in a label declaration except as desired for
documentation purposes. See "GO TO Statement" (paragraph 5-2) and
"Switch Declaration" (below) for use of labels.

7-29. SWITCH DECLARATIONS

A switch declaration relates an identifier to an ordered set of labels.
The switch is accessed as a computed (indexed) GO TO statement. The
purpose of a switch is to allow selective transfer of control to any of
the statements identified by the labels in the switch declaration.

The form of a switch declaration is:

SWITCH switch-name :=label [,...,label];

EXAMPLES:

 SWITCH SW:=L1,L2,L3,L4,L5,L6,L7,L8,L9;
SWITCH ERROR'SELECT:= ERR1,ERR2,ERR3,ERR4,ERR5,ERR6;

where

switch-name is a legal SPL identifier.

label identifies the statement to which control is transfered
 when the switch is referenced.

Only one switch-name can be declared in each switch declaration.
Associated with each label in the label list, from left-to-right, is an
ordinal integer from 0 to n-1, (where n is the number of labels in the
list). This integer indicates the position of the label in the list.
Each position in the list must contain a label--null elements are not
allowed. When the switch is referenced by a GO TO statement (see
paragraph 5-2), the value of an integer subscript determines which label
is selected from the list. Bounds checking in this selection is
optional. Entry points are not allowed in switch declarations. Switch
labels may not occur in subroutines.

7-30. ENTRY DECLARATION

The purpose of a local entry declaration is to specify multiple entry
points to a procedure beyond the implicit entry point which is the first
statement of the procedure. Each entry identifier must occur somewhere
in the body as a statement label, but cannot be the object of a GO TO.

The form of an entry declaration is:

ENTRY label [,...,label];

EXAMPLES:

ENTRY P1,P2,P3;
ENTRY P1;

where

label identifies the statement to be used as an alternate
entry point.

By substituting an entry point label for the procedure-name in a function
designator or a procedure call statement, the procedure can be entered at
an alternate entry point. Refer to paragraph 4-6 for the form of a
function designator and paragraph 5-8 for the form of a procedure call
statement.

7-31. DEFINE DECLARATION AND REFERENCE

A define declaration assigns a block of text to an identifier.
Thereafter, when the identifier is used in the program, the assigned text
replaces the identifier. This provides a convenient abbreviation
mechanism to avoid repeating long constructs used many times in a
program.

The form of a define declaration is:

DEFINE identifier = text# [,...,identifier = text#];

EXAMPLES:

DEFINE AS=ASSEMBLE(#,LA=LONG ARRAY#;
DEFINE DA=DOUBLE ARRAY#;

where

identifier is a legal SPL identifier.

text specifies the block of text to be substituted when the
define is referenced. The text can be any sequence of
ASCII characters; however, # can only be used within a
string.

A define reference may occur anywhere except within an identifier,
string, or constant. The text should make sense when inserted where the
define is referenced.

At declaration time, a define has no effect on the compilation of the
program. It has effect only in the context where it is referenced. For
this reason, undeclared identifiers can appear in defines as long as they
have been declared when the define is referenced. Similarly, the define
text is checked for syntax errors in the context where it is referenced,
not where it is declared.

Define declarations can be nested, that is, define identifiers can be
used in other definitions, but they cannot be recursive, that is, a
define identifier must not appear within its own text, since this leads
to infinite nesting when the define is referenced.

The number sign (#) terminates a define text only if it is not contained
in a string. For example, the string "ABCD#" # is valid text terminated
by the second #. Incomplete comments cannot appear in DEFINEs.

Only one block of text can be assigned to a particular identifier.

For example, here are some sample define declarations and references.

DEFINE I=ARRAY B(0:1)#;
INTEGER I;<<INTEGER ARRAY B(0:1);>>
DEFINE SUM=A+B+C+D+E#;
J:=SUM;<<J:=A+B+C+D+E;>>

7-32. EQUATE DECLARATION AND REFERENCE

An equate declaration assigns an integer value determined by an
expression of integer constants and other equates, to an identifier. The
equate mechanism is only a documentation and maintenance convenience; it
does not allocate any run-time storage, but merely provides a form of
consistent identification for constants. When an equate identifier is
used, the appropriate constant is substituted in its place. When equates
are used instead of actual constants, programs can be updated easily;
instead of replacing every occurrence of a constant, only the equate
declaration is changed.

The form of an equate declaration is:

EQUATE identifier = equate-expression [,..., identifier =
equate-expression];

EXAMPLES:

EQUATE BELL=7,CR=%15;
EQUATE N=100,M=N+50;

where

identifier is a legal SPL identifier.

equate- can be either one of or a combination of two forms:
expression

[sign] unsigned-integer [operator unsigned-equate-expr]

 (equate-expression)

sign is + or -.

unsigned- is an unsigned decimal, based, composite, or equated
integer single-word integer constant.

operator is +,-,*, or /.

unsigned- is an unsigned equate-expression.
equate-expr
The value to be assigned to an equate identifier is determined by an
equate expression. Equate expressions consist of operators (*,/,+ ,-),
unsigned integers, including previously defined equated integers, and
parentheses. Evaluation of the expression proceeds from left to right,
except that multiplication and division (*,/) are done before addition
and subtraction (+,-) and expressions in parentheses are done before the
operators that surround them. The value of an equate expression must fit
in a single-word or it will be truncated on the left. Since equate
identifiers can be used in equate expressions, a series of related equate
declarations can be set up such that changing only the first changes all
the rest.

Equate identifiers can be used anywhere in the program that an integer or
unsigned integer constant is allowed.

For example, here are some sample equate declarations and references:

EQUATE M=1,N=M+1,P=N+1;
EQUATE T=20*P/(20- P+M);

 <<M=1, N=2, P=3, T-3, J=408>>

7-33. PROCEDURE BODY

The procedure body consists of the local declarations and the statements
of the procedure, preceded by a BEGIN and terminated by an END;. The
body can contain any executable SPL statements. If the body does not
contain any local declarations and only one statement, the BEGIN-END pair
can be omitted. The end of the body generates an EXIT instruction;
additional exits can be generated using the RETURN statement (see "RETURN
Statement" , paragraph 5-14).

EXAMPLES

PROCEDURE BLANKBUF<<Name>>
(BUFFER,COUNT);<<Formal Parameters>>
VALUE COUNT;<<Value part>>
LOGICAL ARRAY BUFFER;<<Specification>>
INTEGER COUNT;<<Specification>>
<<Empty Option Part>>

<<Procedure-Body>>
BEGIN
LOGICAL BLANKWORD := "";<<Data Group>>
BUFFER:= BLANKWORD;<<Statements>>
MOVE BUFFER(1):=BUFFER,(COUNT);

END;<<End Procedure Declaration>>

<<Sample Function and Call>>
BEGIN
INTEGER NUM:=108,NIX;
INTEGER PROCEDURE VAL(A,B,C);<<Function Declaration>>

VALUE A,B,C;
INTEGER A,B,C;

VAL:=(A+B)*;
<<Main Program>>
NIX:= NUM/VAL(4,5,6);<<Equivalent to NIX:=NUM((4+5)*6);>>

END.

<<OPTION FORWARD example>>
PROCEDURE PROC1; OPTION FORWARD;<<Dummy declaration>>
PROCEDURE PROC2; OPTION FORWARD;<<Dummy declaration>>

PROCEDURE PROC1;<<Real declaration>>
IF X=(Y:=Y+1) THEN PROC2;

PROCEDURE PROC2;<<Real declaration>>
IF X=(Z:=Z+1) THEN PROC1;

7-34. INTRINSIC DECLARATIONS

An intrinsic declaration specifies that one or more of the
system-provided procedures (intrinsics) will be used by the program.
Intrinsics are pre-compiled procedures supplied to SPL programmers for
performing input/output, file access, and utility functions as part of
the Multiprogramming Executive (MPE). SPL provides a simple interface to
intrinsics because SPL does not have built-in constructs for input/output
as provided by FORTRAN, BASIC, COBOL, and other high-level languages.
Input and output of data in SPL programs must be performed with the MPE
file system intrinsics. The user can also declare intrinsics from his
own intrinsic file.

The form of an intrinsic declaration is:

INTRINSIC [(file)] procedure-name [,...,procedure-name];

EXAMPLES:

 INTRINSIC FOPEN, FREAD, FWRITE, PRINT, READ;
INTRINSIC (MYFILE) ASCII, CONVERT, OUTPUT, DATA'MAP3;

where

file is any valid random-access file of the operating system.

procedure-name is the name of an intrinsic procedure.

Unless an intrinsic file is specified, the procedure names in an
intrinsic declaration must be included in an installation-defined
intrinsic file. The SPL compiler searches the file for the intrinsic
name and, if it is found, inserts the declaration for the intrinsic into
the program. The declaration is equivalent to an OPTION EXTERNAL
procedure declaration (see "Procedure Declaration" , paragraph 7-2) and
specifies the procedure's parameters, etc. Operating System intrinsics
are described in the MPE Intrinsics Reference Manual. These intrinsics
are called like normal external procedures.

The programmer can specify his own intrinsic file in parentheses. In
this case, the compiler searches for the procedure name and declaration
in the file specified, rather than in the system file. Appendix C
describes how to build intrinsic files.

7-35. SUBROUTINE DECLARATION

A subroutine declaration defines an identifier as a subroutine and
specifies what attributes the subroutine will have:

* Data type of result for function subroutines.

* Type and number of formal parameters.

* Statements of the subroutine body.

Subroutines are called by the identifier and a list of actual parameters.
Subroutines can be declared either globally or locally, but global
subroutines cannot be accessed locally. Local declarations are not
allowed within subroutines.

The form of a subroutine declaration is:
[type] SUBROUTINE subroutine-name
[(formal-parm [,...,formal-parm]);[value-part] specification-part];
statement;

where

type indicates that the procedure is a function procedure
that returns a value of the specified data type. The
type is INTEGER, LOGICAL, BYTE, DOUBLE, REAL, or LONG.

subroutine-name is an SPL identifier used to identify the subroutine.

formal-parm is an SPL identifier which is used as a local identifier
to reference an actual-parameter.

value-part indicates which formal parameters are to be passed
by-value. All parameters which are not specified in the
value-part are passed by-reference. The value-part is
of the form: VALUE formal-parm [,...,formal-parm];

specification- indicates the characteristics of each formal parameter.
part The specification-part is of the form: specifica- tion

[;...;specification]

specification is one of the following:
type formal-parm [,...,formal-parm]
[type] ARRAY formal-parm [,...,formal-parm]
[type] POINTER formal-parm [,...,formal-parm]
[type] PROCEDURE formal-parm [,...,formal-parm]

statement is an executable SPL single or compound statement (see
sections IV through VI).

Subroutines have the same parameter conventions as procedures except that
options such as VARIA- BLE, EXTERNAL, and CHECK are not provided and
subroutines cannot be passed labels. Sub- routines can have a data type
and can be functions just as procedures can. The subroutine body
consists of an executable SPL statement, including a compound statement,
but cannot contain declara- tions. Global subroutines can reference
global variables and local subroutines can reference both local and
global variables. Subroutines can be called recursively. Subroutines

are called using the SCAL or LRA and BR instructions and return using the
SXIT instruction. For details on calling subroutines, see "Function
Designator" (paragraph 4-6) and "Subroutine Call Statement" (paragraph

__

NOTE You must not explicitly modify the stack within a subroutine
without immediately correcting for any changes. All subsequent
parameter addressing may be incorrect and S may not point to the
return address when SXIT is executed.

__

EXAMPLES:

INTEGER SUBROUTINE S(A,B,C);
VALUE A,B,C;
INTEGER A,B,C;
S:=(A- 2)+(B*C);

SUBROUTINE ZERO (ARRY,HISUB);
VALUE HISUB;
INTEGER HISUB;
INTEGER ARRAY ARRY;

 BEGIN
I:=0; <<global variable>>
WHILE I <= HISUB DO

BEGIN
ARRY(I):=0;
I:=I+1;

END;
END;

Table 7-2. Procedures vs. Subroutines

| PROCEDURES | SUBROUTINES |

| Parameters | Parameters |

| Functions | Functions |

| Preserves calling environment and | Executes within the calling |
| estabishes its own environment | environment |

| Local variables | No local variables |

| High overhead | Very low overhead--extremely fast |

| Allows for efficient segmentation | Must rewrite to segment subroutines |

| Can be called from any procedure or | If declared in the outer block, |
| from outer block | callable only from outer block |

| | If declared in a procedure, |
| | callable only from that procedure |

Chapter 8 INPUT/OUTPUT

8-1. INTRODUCTION TO INPUT/OUTPUT

To perform input/output in SPL, you must call MPE intrinsics directly
since SPL does not have any input/output statements. This section
presents examples of some of the more common input/output intrinsics.
For a complete description of all the system intrinsics, refer to the MPE
Intrinsics Reference Manual. For a complete discussion of MPE file
commands, refer to the MPE Commands Reference Manual.

Below is a list of some of the more common input/output intrinsics and
their names.

Table 8-1. Common Input/Output Intrinsics

--
| | |
--
FOPEN	Opens a file
READ	Reads an ASCII string from the job/session input
	device ($STDIN)
READX	Reads an ASCII string from the job/session input
	device ($STDINX)
FREAD	Reads a logical record from a sequential file on
	any device to the user's data stack
FREADDIR	Reads a logical record from a direct access file to
	the user's data stack
PRINT	Prints character string on job/session list device
FWRITE	Writes a logical record from the user's stack to a
	sequential file on any device
FWRITEDIR	Writes a logical record from the user's stack to a
	direct access disc file
FUPDATE	Updates a logical record residing in a disc file
FCLOSE	Closes a file
FCHECK	Requests details about file input/output errors
FCONTROL	Performs control operations on a tile or terminal
	device
FSPACE	Spaces forward or backward on a file
--

All input/output is performed on a word basis using two bytes per word.
Although you can pass a byte array to a system intrinsic, the address is
converted to a word address and a warning message issued. To avoid this,
you can use array equivalencing:

BYTE ARRAY BUF(0:71);
ARRAY WBUF(*)= BUF;

For all non-input/output operations, you would use BUF, (for example, to
prepare the buffer for writing), whereas for all calls to the
input/output intrinsics, you would pass WBUF.

SPLIT-STACK OPERATIONS: During normal operation, the DB register points
to the user process stack. Some operations with extra data segments
require that DB be set to the base of the extra data segment while DL and
all other data registers remain associated with the stack. When a
process is operating in this mode, it is said to have a split stack.
Several of the MPE intrinsics deal with DB in this manner; however, you
need not be concerned with the mechanics of the operation because, while

the stack is "split" , only system code is executing. It is possible,
however, if you are a privileged mode user, to force your process to
operate in split-stack mode explicitly. If you do this, you must

when DB does not point to the stack. Such intrinsics, if called by a
privileged process in split-stack mode, can result in system failures.
If you are not a privileged mode user, you need not concern yourself with
this restriction and you may assume that intrinsics will not operate in
split-stack mode unless otherwise stated.

__

WARNING The normal checks and limitations that apply to the standard
users in MPE are bypassed in privileged mode. It is
possible for a privileged mode program to destroy system
integrity, including the MPE operating system software itself
Hewlett-Packard can- not be responsible for system integrity
when programs written by users operate in privileged mode.

__

8-2. OPENING A NEW DISC FILE

(Please refer to the MPE Intrinsics Reference Manual for details on the
FOPEN procedure.)

Figure 8.1 contains an SPL program which opens two files: a card reader
file and a new disc file.

The second FOPEN call in Figure 8.1

OUT:=FOPEN(OUTPUT,%4,%101,128);

opens the new disc file. The parameters specified are

formal- DATAONE, which is contained in the byte array OUTPUT
designator
foptions %4, for which the bit pattern is as follows:

 --
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
 --
| 0 | 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 | 1
 --
| | | | | |

The above bit pattern specifies the following file
options:

Domain: New file, no search of system or job
temporary file directory is necessary.
Bits (14:2) = 00. ASCII/Binary:
ASCII. Bit (13:1) = 1.

aoptions %101, for which the bit pattern is as follows:

 --
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
 --
| 0 | 0 0 0 | 0 0 0 | 0 0 1 | 0 0 0 | 0
 --
| | | | 1 | 0 |

The above bit pattern specifies the following access
options:

Access Type: Write access only. Bits (12:4)=0001
Exclusive: Exclusive access. Bits
(8:2)= 01.

All other parameters are omitted from the FOPEN intrinsic call.
BOX

Figure 8.1. Opening a New Disc File

Once the file is opened, the file number (used by other file system

intrinsics when referencing this file) is returned to the variable OUT.

The condition code is checked with the

statement. If the condition code is CCL, signifying that the FOPEN
request was denied, the next four statements, starting with the BEGIN
statement are executed.

PRINT'FILE'INFO(OUT);

calls the PRINT'FILE'INFO intrinsic, which prints a FILE INFORMATION
DISPLAY on the stand- ard list device, enabling you to determine the
error number returned by FOPEN. The parameter (OUT) specifies the file
number returned through the FOPEN intrinsic. If the file was not opened
successfully, OUT=0, where 0 specifies that the FILE INFORMATION DISPLAY
will reflect the status of the file referenced in the last call to FOPEN.
See the MPE Intrinsics Reference Manual for a discussion of the FILE
INFORMATION DISPLAY.

The QUIT intrinsic call

QUIT(2);

aborts the process. The parameter (2) is an arbitrary user-supplied
number. When a QUIT intrinsic is executed, this number is printed as
part of the resulting abort message, allowing you to determine, in the
case of multiple QUIT intrinsic calls in a program, which specific QUIT
call was executed.

__

NOTE The QUIT intrinsic causes MPE to close all files with no change.
 Thus, new files are deleted, old files are saved and assigned to
the same domain to which they belonged previously.

__

8-3. READING A FILE IN SEQUENTIAL ORDER

(Please refer to the MPE Intrinsics Reference Manual for details on the
FREAD procedure.)

To read records, or portions of records, from a file in sequential order,
you use the FREAD intrinsic.

When the FREAD intrinsic executes, a logical record pointer advances to
the next record. Then, the next time the FREAD intrinsic is called, the
next record is read. Even if a portion of a record is read, a subsequent
FREAD ignores the unread portion of the last record (because the logical
record pointer has advanced) and begins reading the next record.

__

NOTE The logical record pointer is a number kept by MPE to indicate the
next sequential record to be accessed in a file.

__
BOX

Figure 8.2. FREAD Intrinsic Example

The program shown in Figure 8.2 reads a card file. The FREAD statement

LGTH:= FREAD(IN,BUFFER,40);

reads a record from the card reader file designated by the variable IN
(the file number was assigned to IN when the FOPEN intrinsic opened the
file) and transfers this record to the array BUFFER in the stack. The
statement reads up to 40 words from the record, then returns a positive
value to LGTH which indicates the actual length of the information
transferred.

If an error occurs during execution of the FREAD intrinsic, a condition
code of CCL is returned. The statement

IF < THEN

checks the condition code and, if the condition code is CCL, the next
four statements are executed. The PRINT'FILE'INFO intrinsic call causes
a FILE INFORMATION DISPLAY to be printed on the output device so that you
can determine the error number returned by FREAD, and the QUIT intrinsic
aborts the process.

When the end-of-file is encountered on the card file, a condition code of
CCG is returned. The statement

IF > THEN GO END'OF'FILE;

checks for this condition code and, when it occurs, transfers program
control to the label END'OF'FILE. If the end-of-file condition is not
encountered, the FWRITE statement is executed and the

GO COPY'LOOP;

statement transfers program control back to the beginning of the copy
loop. The FREAD intrinsic is called again and the next record is read.

8-4. WRITING RECORDS INTO A FILE IN SEQUENTIAL ORDER

(Please refer to the MPE Intrinsics Reference Manual for details on the
FWRITE procedure.)

To write records, or portions of records, from your buffer to a file in
sequential order, you use the FWRITE intrinsic.

When the FWRITE intrinsic executes, the logical record pointer advances
to the next record. Then, the next time the FWRITE intrinsic is called,
information is written into the next record position. When information
is written to a file composed of fixed-length records (and buffering is
not specified in the FOPEN call), the file system will pad all short
records with binary zeros for a binary file, or ASCII blanks for an ASCII
file to bring the records up to the fixed length required. If nobuff was
specified in FOPEN, automatic buffering is not provided by MPE.

The FWRITE statement in Figure 8.3

FWRITE(OUT,BUFFER,LGTH,0);

writes a record from the array BUFFER into the disc file designated by
the variable OUT. The file number was assigned to OUT when the FOPEN
intrinsic opened the file. The length of the record is specified by
LGTH. LGTH was assigned its value when the FREAD intrinsic read the
record and transferred it to BUFFER, so in this case the same number of
words being read from the card reader are being written to the disc.

The control parameter is specified as 0, which specifies that no carriage
control code is included in the record. Carriage control, of course, is
not necessary for a disc file but the parameter is included because all
of FWRITE's parameters are required.

A condition code of CCE signifies that the FWRITE request was granted.
The statement

IF <> THEN

checks for a "not equal" condition code and, if CCG or CCL is returned,
the next four statements are executed. The PRINT'FILE'INFO intrinsic
causes a FILE INFORMATION DISPLAY to be printed on the output device,
enabling you to determine the error number returned by FWRITE. The QUIT
intrinsic aborts the process.

If CCE is returned, the next four statements are not executed, the GO
COPY'LOOP statement is executed, and the FREAD and FWRITE intrinsic calls
are repeated until FREAD detects the end of the card file.
BOX

Figure 8.3. FWRITE Intrinsic Example

8-5. UPDATING A FILE

(Please refer to the MPE Intrinsics Reference Manual for details on the
FUPDATE procedure.)

To update a logical record of a disc file, you use the FUPDATE intrinsic.

The FUPDATE intrinsic affects the logical record (or block for NOBUF
files) last accessed by any intrinsic call for the file named, and writes
information from a buffer in the stack into this record. Note that the
record number is not supplied in the FUPDATE intrinsic call; FUPDATE
automatically updates the last record referenced in any intrinsic call.

The file containing the record to be updated must have been opened with
the update aoption specified in the FOPEN call and must not contain
variable-length records.

Figure 8.4 contains a program that opens an old disc file and updates
records in the file. The update information (employee number) is entered
from a terminal (the program was run interactively) into a buffer in the
stack, then the contents of the buffer are used to update the record.

The statement

LGTH:= FREAD(DFILE1,BUFFER,128);

reads an employee record from the file specified by DFILEl into the array
BUFFER in the stack.

The statement

FWRITE(LIST,BUFFER,--2O,a/c320);

then displays this record on the terminal ($STDLIST has been opened with
the FOPEN intrinsic and the resulting file number was assigned to LIST).

The statement

DUMMY:= FREAD(IN,BUFFER(30),5):

reads an employee number, entered on the terminal ($STDIN has been opened
with the FOPEN intrinsic and the resulting file number was assigned to
IN), into word 30 of the array BUFFER.

The statement

FUPDATE(DFILE1,BUFFER,128);

then calls the FUPDATE intrinsic to update the last record accessed in
the file specified by DFILE1. The contents of BUFFER (including the
employee number entered from the terminal) are written into this record.
Up to 128 words are written.

If the FUPDATE request was granted, a CCE condition code results. The
statement

IF <> THEN FILERROR(DFILE1,9);

checks for a "not equal" condition code and, if such is the case, calls
the error-check procedure FILERROR. The procedure FILERROR prints a FILE
INFORMATION DISPLAY on the terminal, enabling you to determine the error

number returned by FUPDATE, then aborts the programs's calling process.
BOX

8-6. NUMERIC DATA INPUT/OUTPUT

There are several intrinsics available for converting integer data for
transfer between an ASCII file and the data stack. These intrinsics are
as follows:

* ASCII - Converts 16-bit binary number to ASCII representation.

* DASCII - Converts 32-bit binary number to ASCII representation.

* BINARY - Converts an ASCII numeric string to a 16-bit binary numeric.

* DBINARY - Converts an ASCII numeric string to a 32-bit binary number.

(Please refer to the MPE Intrinsics Reference Manual for a complete
description of these intrinsics.)

For handling floating point numbers, refer to the EXTIN' and INEXT'
procedures in the Compiler Library Reference Manual.

8-7. FILE EQUATIONS

The standard attributes of files used by an SPL program can be modified
through the use of the MPE :FILE command.

__

NOTE Read the discussion of files in the MPE Commands Reference Manual
before attempting to change file attributes with the :FILE command.

__

The specifications in a :FILE command do not take effect until the
compiled program is running and the referenced file is opened. The :FILE
command specifications hold throughout the entire program unless
superseded by another :FILE command or revoked by a :RESET command. At
job or session termination, however, all :FILE commands are cancelled.

Chapter 9 COMPILER COMMANDS

9.0 COMPILER FORMAT

A compiler listing presents three groups of numbers preceding the program
statements. The first group shows the Editor line numbers of the listing
file in decimal format. The second column of five numbers indicates the
machine instruction code reference which is RBM-relative. The third set
gives the BEGIN-END count, or level.

The BEGIN-END count is useful information for program debugging in
locating BEGIN-END pair mismatches. This is the third group of numbers
listed in a compile. It indicates the nesting level of the statements
that follow the BEGIN or END. The count starts at zero and is incremented
by one after each BEGIN statement; it is decremented by one after each
END statement. Since the last END statement ends the compile process,
the BEGIN-END count is never decremented to zero.

__

NOTE Pressing CONTROL-Y during a compilation causes the current line
number to be displayed along with the number of errors and
warnings.

__

EDITOR line number
| code offsets
| | BEGIN-END count
| | |
v v v
1 00000 0
2 00000 1 <---BEGIN Arrows indicate where
1 00000 1 $INCLUDE XXX BEGIN-END count is
2 00000 1 INTEGER I; incremented or decremented
3 00000 2 <---BEGIN
4 00000 3 <---BEGIN
5 00000 4 <---BEGIN
6 00000 5 <---BEGIN
7 00000 6 <---BEGIN
8 00004 6 I=999;
9 00004 5 <---END;
10 00004 4 <---END;
11 00004 3 <---END;
12 00004 2 <---END;
3 00004 1 <---END; I:=99;

 4 00006 1 END.
<----global data area size

PRIMARY DB STORAGE=%001; SECONDARY DB STORAGE=%OOOOO
NO. ERRORS=0000; NO. WARNINGS=0000
PROCESSOR TIME=0:00:01; ELAPSED TIME=0:00:06

9-1. USE AND FORMAT OF COMPILER COMMANDS

In general, compiler options such as source input merging, listing,
format specification, or warning message suppression are determined by
default settings assigned by the compiler. However, the user can
override these settings and select different options by issuing compiler
commands. These commands take effect only after access to the compiler
is established. They are directed only to the compiler and are not
effective during program execution.

Compiler commands differ in both function and format from compiler
language source statements, and thus are not considered true SPL
statements even though they are part of the source program file. The SPL
compiler commands do conform, however, to the general formats for other
HP 3000 language translators such as FORTRAN, COBOL, and RPG. For each
function used by more than one language translator, the same command name
is used and, in most cases, the same command parameters also apply.

The general form of a compiler command is:

$[$]command-name [parameter,...,parameter]

EXAMPLES:

$CONTROL CODE,ADR,MAP
$$PAGE
$TITLE "UPDATE PROGRAM"

where

command-name specifies the compiler command. The command-name is one
of the following: CONTROL, IF, SET, TITLE, PAGE, EDIT,
TRACE or COPYRIGHT.

parameter specifes an option of the compiler command. The form of
a parameter is dependent on the command-name and is
discussed with the appropriate command. In general a
parameter is one of the following:
character-string
symbolic-name
keyword [=sub-parameter]

The first dollar sign ($) is required and must be in column 1. The
second dollar sign is optional. If specified, the command is not
transmitted to the newfile if a newfile is created during compilation.
The command-name must follow the first $ (or second $ if present) without
any intervening spaces. The list of parameters is separated from the
command-name by one or more spaces. Within the list, parameters are
separated from each other by commas. Spaces are allowed before and after
the parameters. The parameter list may continue through column 72 of the
source record.

The sequence field (columns 73-80) of a record containing a compiler
command is not part of the command; however, it may be used for sequence
checking during editing and merging operations as described later under
the EDIT command.

__

NOTE Only upper-case letters, numbers, and special characters are used
in compiler commands. When lower-case letters are entered aspart

equivalent except within character strings as defined below.

__

A character-string consists of a sequence of ASCII characters enclosed in
quotation marks ("). Blank characters may be included in the string and
null strings are allowed. Quotation marks within a string are entered as
two adjacent quotation marks, ("") to distinguish them from the
quotation marks that begin and end the string.

A keyword is a reserved word with respect to a given command; they are
described under the appropriate commands. A sub-parameter is a
character-string, a symbolic name, or a decimal number.

Comments may be included within any command. A comment is generally used
to document the purpose of coding or to make notations about program
logic. A comment is not interpreted as part of the command, and has no
effect upon compilation. It is syntactically treated as a space and can
appear in either of the following locations:

* Following the command-name, separated from it by at least one space.

* Preceding or following any parameter in the parameter list.

A comment cannot be embedded within a parameter; for instance, it cannot
appear within a keyword, preceding or following an equals sign, or within
a quoted string. Furthermore, a comment cannot be continued from one
record to the next.

A comment can contain any ASCII character. The comment must begin with
two adjacent less-than signs (<<) and terminate with two adjacent
greater-than signs (>>). Since adjacent greater-than signs terminate a
comment, they cannot appear within the comment itself. The comment may
continue through column 72.

The following examples illustrate various ways in which comments can be
included in compiler commands.

1. Following the command-name:

$PAGE <<PAGE EJECT,NO TITLE CHANGE.>>

2. Following the last parameter in a parameter list:

$SET X1=ON,X2=ON,X3=ON<<SWITCHES 1-3 ON.>>

3. Embedded within the parameter list:

$SET X1=ON,X2-ON,<<LAST SW OFF>>X3=OFF

When the length of a command exceeds one physical record (source card or
entry line), the user can enter an ampersand (&) as the last non-blank
character of this record and continue the command on the next record.
This is called a continuation record. The text portion of the
continuation record, in turn, must begin with a dollar sign ($) in column
1. Even when a command begins with double dollar signs, its continuation
records still begin with only a single dollar sign. When EDIT/3000 is
used to enter a source program containing compiler command continuation
records, a space must be entered after the ampersand so the ampersand is
not interpreted as an EDIT/3000 continuation line.

__

continuation record by an SPL source record.

__

In continuing a command onto another record, you cannot divide a primary
command element (a command-name, keyword, subparameter--including
strings, or comment)--no primary element is allowed to span more than one
line.

When the compiler encounters a command containing one or more
continuation records, each continu- ation record is concatenated to the
preceding record beginning with the character following the $; each $ and
continuation ampersand is replaced by a space.

The following command is continued onto a second record:

$CONTROL LIST,SOURCE,WARN,MAP,&
$CODE, LINES= 36

It is interpreted as:

$CONTROL LIST,SOURCE,WARN,MAP,CODE,LINES=36

Even though a comment cannot be divided over more than one line,
extensive commentary text requiring several lines can be entered by
enclosing it within separate comments that each occupy one line.

The following command includes commentary text spread over three lines:

$CONTROL NOWARN <<WARNING MESSAGES ON TRIVIAL ERRORS>>&
$ <<WILL NOT BE LISTED, BUT MESSAGES ON>>&
$ <<FATAL ERRORS WILL APPEAR.>>

A command does not take effect until all of its parameters have been
interpreted. Thus, a command that suppresses source listing output does
not affect the listing of any continuation records within the command
itself. Parameters are interpreted from left-to-right. In some cases,
parameters may be redundant or supersede previous parameters within the
same command. In other cases, certain parameters are allowed only once
within a command.

In the following command, the redundant parameters LIST and NOLIST each
appear twice:

$CONTROL LIST,NOLIST,NOLIST,LIST

Because the final redundant parameter in any $CONTROL command always
takes effect, the above command is equivalent to:

$CONTROL LIST

A summary of the compiler commands for SPL appears in Table 9-1.

Table 9-1. Compiler Command Summary

--
| COMMAND | PURPOSE |
--
$CONTROL	Restricts access to listfile; suppresses source text,
	object code, and symbol table listing suppresses warning
	messages; sets maximum number of lines listed per page;
	sets maximum number of severe errors allowed; starts a

	new segment; initializes the USL tile; lists mnemonics
	for code generated; assigns a name to the outer block;
	allows subprogram compilation; makes outer block

	mode and displacement of variables declared.
$IF	Interrogates software switches for conditional
	compilation.
$SET	Sets software switches for conditional compi ation.
$TITLE	Establishes or changes page title on listing.
$PAGE	Establishes or changes page title, and ejects page.
$EDIT	Specifies editing options during merging such as,
	omitting sections of old source program and re-numbering
	sequence fields.
$COPYRIGHT	Specifies copyright information to be copied to the list,
	USL, and program files
$SPLIT	Enables split-stack checking
$NOSPLIT	Disables split-stack checking
$INCLUDE	Permits inclusion of text from another file into the SPL
	source tile
--

9-2. $CONTROL COMMAND

When you call the compiler without specifying a $CONTROL command, the
following default options are in effect:

The compiler is given unrestricted access to listfile.

All source records passed to the compiler by its editor are listed
unless the listfile and primary input file (normally the textfile) are
assigned to the same terminal.

Warning messages are listed.

Listing of the symbol table is suppressed.

Listing of the object code generated is suppressed.

The number of lines appearing on each printed page (output to listfile)
is a maximum of 60.

The maximum number of severe errors allowed before compilation is
terminated is 100.

SPL is called in the program mode, as opposed to subprogram mode.

The segment name is SEG'.

The outer block name is OB'.

The mnemonic listing is suppressed.

The USL (User Subprogram Library) file is not initialized unless it is
a new file.

Callable, non-privileged outer block.

The above default options can be overridden by entering the $CONTROL
compiler command. This command allows you to restrict access to the
listfile, suppress source record listings, produce object code and symbol
table listings, change the maximum number of lines per printed page, and
otherwise alter the normal compiler control options.

The form of the $CONTROL command is:

$[$]CONTROL parameter [,... ,parameter]

EXAMPLES:

$CONTROL CODE,MAP,INNERLIST
$CONTROL NOLIST

where

parameter specifies an option of the $CONTROL command.

A parameter is one of the following: LIST, NOLIST, SOURCE, NOSOURCE,
WARN, NOWARN, MAP, NOMAP, AUTOPAGE, CODE, NOCODE, LINES = nnnn, ERRORS =
nnn, USLINIT, DEFINE, SEGMENT = segname, ADR, INNERLIST, MAIN =

program-name, UNCALLABLE, PRIVILEGED, or SUBPROGRAM [(procedure-name[*]
[,procedure- name[*]]...)].

described below. Unless otherwise noted, each parameter can appear in a
$CONTROL command placed anywhere in the source input. Each parameter
remains in effect until explicitly cancelled by an opposing parameter
(for example, NOLIST cancelling LIST), or until the compilation
terminates. In any $CONTROL command, at least one parameter must be
specified. Within the parameter list, the parameters can appear in any
order. In the descriptions below, default parameters are shown in boxes

LIST Allows the compiler unrestricted access to the listfile,
permitting the SOURCE, MAP, CODE, and LINES parameters
to take effect when issued. The LIST parameter remains
in effect until a $CONTROL command specifying NOLIST is
encountered.

NOLIST Allows only source records that contain errors,
appropriate error messages, and subsystem initiation and
completion messages to be written to the listfile.
NOLIST remains in effect until a $CONTROL command

 specifying LIST appears.

SOURCE Requests listing of all source records, as edited by the
compiler's editor, while LIST is in effect. When the
compiler is called with listfile and the primary input
file assigned to the same terminal, NOSOURCE is
initially the default. In all other cases SOURCE is the
default.

NOSOURCE Suppress the listing of source text, cancelling the
 effect of any previous SOURCE parameter. NOSOURCE

remains in effect until SOURCE is subsequently
encountered.

WARN Permits the reporting of doubtful minor error conditions
in the source input. These reports are transmitted to
the listfile in the form of a warning message. The WARN
parameter remains in effect until a $CONTROL command
specifying the NOWARN parameter is encountered.

NOTE NOLIST does not suppress warning messages--they
are suppressed solely by NOWARN,

NOWARN Suppresses warning messages. The NOWARN parameter
remains in effect until a $CONTROL command specifying
WARN appears.

MAP Requests printing of user-defined symbols and their
addresses following the source text listing if LIST is
in effect. Reference parameters are flagged with an
'R'. The MAP parameter remains in effect until a NOMAP
parameter is encountered. Figure 9.1 shows a sample
symbol map.

NOMAP Suppresses printing of symbol map of user-defined
symbols thereby cancelling any previous MAP parameter.
The NOMAP option remains in effect until a MAP parameter
is encountered.

BOX

00001000 00000 0 | $CONTROL MAP |
|--------------|

00002000 00000 0 | BEGIN
00003000 00000 1 | INTEGER I,J:=10;
00004000 00000 1 | REAL R1,R2;
00005000 00000 1 | ARRAY A(0:10);
00006000 00000 1 | R1:=R2:=20E9;
00007000 00004 1 | FOR I:=0 UNTIL J DO
00008000 00011 1 | A(I):=2*I;
00009000 00022 1 | END.

|
 -----------------------------|----------------------
| |
| |
| IDENTIFIER CLASS TYPE ADDRESS |
| |

 | A ARRAY LOGICAL DB+006 |
| I SIMP. VAR. INTEGER DB+000 |
| J SIMP. VAR. INTEGER DE+001 |
| R1 SIMP. VAR. REAL DB+002 |
| R2 SIMP. VAR. REAL DB+004 |
TERMINATE' PROCEDURE

PRIMARY DB STORAGE=%007; SECONDARY DB STORAGE=%00013
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:00; ELAPSED TIME=0:01:16

END OF PROGRAM
:

Figure 9.1. Symbol Map

AUTOPAGE Causes a page eject whenever a procedure declaration is
 the first token found on a line. If the declaration is

preceded by "COMMENT" or "< <" no page eject will be
issued; however,if the embedded "declaration" occurs on
the second or later line of a comment, one will be
issued. Similarly, any documentation placed before the
procedure declaration will appear on the preceding page.

CODE Requests listing of object code generated following the
 listing of the source text if LIST is in effect. The

CODE parameter remains in effect until the NOCODE
parameter is encountered. Figure 9.2 shows a sample
CODE listing.

NOCODE Suppresses listing of object code, thereby cancelling
the effect of any previous CODE parameter. The NOCODE
parameter remains in effect until a CODE parameter is
encountered.

LINES =nnnn Limits the number of lines printed on listfile to nnnn
lines per page. Whenever the next line sent to listfile
would overflow the line count (nnnn), the page is
ejected and the standard page heading and two blank
lines are printed at the top of the page, followed by
the line to be transmitted. A page heading and its
following two blank lines are counted against the total
line count, nnnn. The

BOX

|---------------|
00002000 00000 0 BEGIN
00003000 00000 1 INTEGER I,J:=10;
00004000 00000 1 REAL R1,R2;
00005000 00000 1 ARRAY A(0:10);

 --
00006000 00000 1 R1:=R2:=20E9;
00007000 00004 1 | FOR I:=0 UNTIL J DO
00008000 00011 1 | A(I):=2*I;
00009000 00022 1 | END.

v

00000 | 034013 004600 161004 161002 | 000600 051000 171000 021001
|----------------------------------|

00010 041001 050004 140010 044212 100575 021002 111000 131000
00020 057006 052404 000000

PRIMARY DB STORAGE=%007; SECONDARY DB STORAGE=%00013
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:00; ELAPSED TIME=0:00:55

END OF PROGRAM
:

Figure 9.2. $CONTROL CODE Output

subparameter nnnn is an integer ranging from 10 to 9999.
The LINES= nnnn parameter remains in effect until
another LINES= nnnn parameter appears, If this parameter
is omitted, the default value assigned is:
60 lines per page for devices other than terminals.

 32767 lines per page for terminals.

ERRORS= nnn Sets the maximum number of severe errors allowed during
compilation to nnn; if this limit is exceeded,
compilation terminates and the uslfile is unchanged. If
the limit specified has already been exceeded when the
ERRORS=nnn parameter is encountered, compilation
terminates. If the ERRORS=nnn parameter is omitted, nnn
is set to 100 by default.

USLINIT Initializes the uslfile to empty status prior to
generation of object code. If you do not specify a
uslfile or if you specify a uslfile whose contents are
obviously incorrect, the compiler automatically
initializes the uslfile to empty status whether or not
USLINIT is specified.

DEFINE Causes the bodies of DEFINEs to be written out to a disc
file, thereby increasing the amount of symbol table
space available to the compiler. The $CONTROL option
must be invoked before any DEFINEs are declared.

BOX

00001000 00000 0 | $CONTROL ADR |

|--------------|
00002000 00000 0 BEGIN
00003000 00000 1 INTEGER I,J:=10;

 | DB+000 |<-----I

|----------|

|----------|
00004000 00000 1 REAL R1,R2;

DB+002
 DB+004

00005000 00000 1 ARRAY A(0:10);
DB+006

00006000 00000 1 R1:=R2:=2OE9;
00007000 00004 1 FOR I:=O UNTIL J DO
00008000 00011 1 A(I):=2*I;
00009000 00022 1 END.
PRIMARY DB STORAGE=%007; SECONDARY DB STORAGE=%00013
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME=0:00:00; ELAPSED TIME=0:01:05

END OF PROGRAM
:

Figure 9.3. $CONTROL ADR Output

SEGMENT= Starts a new segment with the specified segname. The
segname segname can consist of up to 15 alphanumeric characters

starting with an alphabetic character. Apostrophes are
allowed within the segname except as the first
character. The segname stays in effect until explicitly
overridden by another $CONTROL SEGMENT or compilation
terminates. For a main-body which is to be in a segment
by itself, the $CONTROL SEGMENT should be placed after
the procedure and intrinsic declarations and before the
global subroutines and main-body. See Figure 1.2 for a
sample program using this parameter.

ADR After each declaration, a record is sent to the listfile
if LIST is in effect showing the addressing mode and
displacement of the declared variables. This option is
turned off by NOLIST. Figure 9.3 shows a sample
compilation with ADR specified.

INNERLIST After each statement line, the mnemonics for unoptimized
code generated by the compiler are sent to the listfile
if LIST is in effect. In addition to the mnemonic, the
octal value and approximate execution time in
microseconds of each instruction are shown. This option
is turned off by NOLIST. Figure 9.4 shows a sample
INNERLIST output.

NOTE Some address and constant initialization is
resolved in later passes of the compiler and
segmenter, so the machine code displayed does not
always reflect the exact machine code executed.
(The times shown on the listing are sample times
only and are not accurate for any specific HP3000
model.)

MAIN= Assigns the specified program-name to the main program.
program-name The format for program names is the same as for segment

names. Starting with page 2, the program-name is listed
in columns 13-27 of the heading.

BOX

|--------------------|
00002000 0000 0 BEGIN
00003000 0000 1 INTEGER I,J:=10;
00004000 0000 1 REAL R1,R2;
00005000 0000 1 ARRAY A(0:10);
00006000 0000 1 R1:=R2:=20E9;

00000 LDPP,000 034000 03.68
00001 DDUP, NOP 004600 02.80
00002 STD DB 004 Mnemonics 161004 04.03
00003 STD DB 002 | 161002 04.03

 ------- | |Time
00007000| 00004 | 1 FOR I:=0 UNTIL J DO | |----

|-------| | |
^ --------- ------------ | -------- ---v---
| -->| 00004 | | ZERO, NOP|<---- --> |000600| |01.40|
| | |-------| |----------| | |------| |-----|

Instruction 00005 STOR DB 000 Instruc- 051000 02.63
Address 00006 LRA DB 000 tion 171000 01.92

00007 LDI ,001 (Octal) 021001 01.05
00010 LOAD DB 001 041001 02.28

00008000 00011 1 A(I):=2*I;
00011 TRA P+ 002 050002 08.00
00012 BR P+ 000 140000 03.50
00015 LDI ,002 021002 01.05
00016 MYPM DB 000 111000 08.23

 00017 LDX DB 000 131000 02.28
00020 STOR DB 006,I,X 057006 02.63
00021 MTBA P- 000 052400 08.00

0009000 00022 1 END.
 00022 PCAL,052 000000 25.00

PRIMARY DB STORAGE=%007; SECONDARY DB STORAGE=%00013
NO. ERRORS=000; NO. WARNINGS=000
PROCESSOR TIME 0:00:00; ELAPSED TIME=0:02:47
 Figure 9.4. $CONTROL INNERLIST Output

UNCALLABLE Makes the outer block entry point uncallable except by
code running in privileged mode. If used, this
parameter must be specified at the beginning of the

 source file.

PRIVILEGED Makes the code segment containing the outer block
privileged. If used, this parameter must be specified
before the first BEGIN.

NOTE Hewlett-Packard cannot be responsible for system
integrity when programs written by users operate
in privileged mode.

SUBPROGRAM Places the compiler in subprogram mode. If used, this
[(procedure- parameter must be specified at the beginning of the
name[*] [,..., program. If no parameters are specified, all of the
procedure- procedures in the merged source program are compiled,
name[*]])] but the outer block or main program if present is not

compiled.

If procedure parameters appear, only those procedures specified are

compiled. All others are skipped. In addition, procedure-names which
are followed by an asterisk (*) are compiled with LIST, CODE, and MAP
options on. Those without an * are compiled but not listed. The

LIST, ADR, etc.

The default mode for compilation is program mode.

Even in subprogram mode, global declarations and OPTION FORWARD and
OPTION EXTERNAL procedure declarations must be included in the source
file, if they are to be referenced by the procedures being compiled. The
compiler includes these items in its symbol table, but does not allocate
any space. All INTERNAL procedures and secondary entry points should be
declared OPTION FORWARD.

Compiler commands are recognized at any point in the source file. For
segmented programs, the segmentation scheme should be preserved in the
subprogram mode. The compiler gives procedures the last segment name
declared and links each procedure to all other procedures in the same USL
file which have the same segment name, even those resulting from a
previous compilation. The compiler also automatically CEASEs any
existing procedures in the file with the same procedure-name as the one
currently being compiled, except for INTERNAL procedures. See the MPE
Segmenter Subsystem Reference Manual for a discussion of CEASE.

EXAMPLES:
$CONTROL SUBPROGRAM
$CONTROL SUBPROGRAM(PROC1,PROC2*)

The default parameters of $CONTROL are:
LIST
WARN
NOMAP
ERRORS=100
NOCODE
SEGMENT=SEG'
MAIN= OB'
program mode
ADR off
INNERLIST off
LINES=60 (except for terminals)
USL file not initialized
CALLABLE, non-privileged outer block.

The following $CONTROL command requests unrestricted access to the
listfile, listing of all source text, symbol table information, and
object code, suppression of warning messages but not of error messages.
By default, the maximum number of lines per printed page is limited to
60, the maximum number of errors allowed is 100, the uslfile is not
initialized to empty status, and SPL is in program mode.

 $CONTROL LIST,SOURCE,MAP,CODE,NOWARN

The following $CONTROL command illustrates the default values for the
command parameters. It produces the same effect as if no $CONTROL
command were entered:

$CONTROL LIST,SOURCE,WARN,NOMAP,NOCODE,LINES=60,ERRORS=100

9-3. $IF COMMAND (CONDITIONAL COMPILATION)

Generally, when you submit a program to the compiler, you want the entire
program compiled. However, occasionally, you may only want to have a
portion of the program compiled. You can request such conditional
compilation by delimiting the source code to be compiled (or omitted)
with a series of $IF compiler commands. These $IF commands, interrogate
any of ten switches, X0 through X9, inclusive. You can set these
switches by using the $SET command described in paragraph 9-4. When the
condition specified in the $IF command is true, all source records are
compiled until the next $IF command is encountered which is false. When
the condition specified is false, all source records are omitted until a
$IF command which is true is executed. However, $EDIT, $PAGE, and $TITLE
commands are never ignored.

The form of a $IF command is:

$[$]IF [Xn= {OFF
ON}]

EXAMPLES:

$IF X0=ON
$IF
$$IF X9=OFF

where

n specifies which switch is to be tested. It is any digit
between 0 and 9 inclusive.

Spaces are not allowed between the X and the digit n.

A $IF command can appear anywhere in the source text. The appearance of
a $IF command always terminates the influence of any preceding $IF
command. When a $IF command is entered without a parameter, it has the
same effect as an $IF command whose condition is true. That is, the text
following the command is compiled and any previous $IF command is
cancelled.

The source text is listed regardless of whether or not it is compiled if
the $CONTROL command LIST and SOURCE options are in effect.

The textfile-masterfile merging operation and transmission of
merged/edited text to the newfile are not affected by $IF commands.
Merging and editing are described in the discussion of the $EDIT com-
mand.

An example illustrating the use of the $IF command is presented together
with the $SET command discussion below.

9-4. $SET COMMAND (SOFTWARE SWITCHES FOR CONDITIONAL COMPILATION)

When the compiler is first called, all ten switches (XO-X9) are turned
off. You can turn them on and off again with the $SET command.

The form of the $SET command is

$[$]SET [Xn={OFF
ON} [,Xn= {OFF

ON}] ...]

EXAMPLES:

$SET X0=OFF,X1=ON
$SET
$SET X3=ON

where

n indicates which switch is to be set. It can be any
digit between 0 and 9 inclusive.

A $SET command can appear anywhere in the source text. If a $SET command
is encountered which does not have a parameter list, all ten switches are
turned off.

In the following source text, switches X4 and X5 are set on and
interrogated with the results indicated by the comments:

:
$SETX4=ON,X5=ON <<SET SWITCHES X4 AND X5 ON>>
:
$IF X5=ON <<REQUESTS COMPILATION OF SOURCE BLOCK 1>>

.
(SOURCE BLOCK 1)

.

.
$IF X5=OFF <<REQUESTS THAT SOURCE BLOCK 2 BE IGNORED>>&
$ <<BY CANCELLING PREVIOUS $IF COMMAND>>

.

.
(SOURCE BLOCK 2)

:
$IF <<CANCELS PREVIOUS $IF COMMAND SO THAT>>&
$ <<SOURCE BLOCK 3 IS COMPILED>>

.

.
(SOURCE BLOCK 3)

9-5. $TITLE COMMAND (PAGE TITLE IN STANDARD LISTING)

On each page of output listed during compilation, a standard heading
appears. Positions 29 through 132 of this heading are reserved for a
title, usually describing the page content, optionally specified with the
$TITLE command.

The form of the $TITLE command is:

$[$]TITLE [string [,string]...]

EXAMPLES:

$TITLE "FILE CREATE PROGRAM"
$TITLE
$$TITLE "UPDATE MASTER DATA FILE",&
$ "AND PRINT REPORTS"

Each string parameter is a character string bounded by quotation marks
that is combined with any other strings specified to form the title. In
forming the title, the strings are stripped of their delimiting quotation
marks and they are then concatenated left-to-right. The entire parameter
list can specify up to 104 characters, including spaces within the
strings but excluding delimiters and spaces between the strings. If the
title contains fewer than 104 characters, the unused portion is filled to
the right with spaces. If no string parameters are present in the $TITLE
command, or if no $TITLE command or $PAGE command with a title
specification is entered, the title portion of the heading is blank.
When a new $TITLE command is encountered, it supersedes any previously
specified title from that point on.

When a $TITLE command is interpreted and the NOLIST parameter of the
$CONTROL command is in effect, title specification or replacement occurs
even when the $TITLE command appears within the range of an $IF command
whose relation is evaluated as false.

9-6. $PAGE COMMAND (PAGE TITLE AND EJECTION)

You can specify a program title (as with the $TITLE command) together
with page ejection by entering the $PAGE command. This allows varied
listing formats. For example, individual sections of the program can be
listed starting on a new page, and each section can have its own
descriptive title.

The form of the $PAGE command is:

$[$]PAGE [string[,string]...]

EXAMPLES:

$PAGE "FILE OPEN SECTION"
$PAGE
$$PAGE "READ RECORD SECTION"

 $PAGE "VERIFY INPUT DATA",&
$ "AND UPDATE DATA BASE"

Each string parameter has the same format, meaning, result, and
constraints as in the $TITLE command. If no parameter is specified in
the $PAGE command, the previous title, if any, remains in effect.

If the LIST parameter of the $CONTROL command is in effect when a $PAGE
command is encountered, the following steps take place:

1. A page eject is generated.

2. The standard page heading including the new title, if one is
specified, is printed followed by two blank lines.

If a new title is not specified, the standard heading with the old title
is printed followed by two blank lines.

If the LIST parameter is not in effect, the new title replaces any
previous title, but no printing or page ejecting occurs. The new title
appears when LIST is put into effect.

The $PAGE command itself is never listed.

9-7. $EDIT COMMAND (SOURCE TEXT MERGING AND EDITING)

You can request the following merging and editing operations:

* Merge corrections or additional source text on textfile with an
existing source program and commands on masterfile to produce a new
source program and commands. This new input is compiled and
optionally copied to newfile, which can be saved for recycling
through an MPE:FILE command.

* Check source-record sequence numbers for ascending order.

* Omit sections of the old source program during merging.

* Re-number the sequence fields of the records in the new, merged
source program.

The editing done by the compiler is limited to linear source text
modification. Extensive or more sophisticated editing is possible with
the HP 3000 text editor, EDIT/3000.

9-8. MERGING

You can specify merging simply by using actual file names for the
textfile, masterfile, and (optionally) newfile parameters of the MPE:SPL
command when the compiler is called. A sample merging operation is shown
below; however, for a complete description of the :SPL command see
paragraph 10-11.

To specify merging of a textfile TFILE with a masterfile MFILE, you could
enter the following :SPL command:

:SPLTFILE,,,MFILE,NFILE

The merged source text is copied to the newfile NFILE, with the object
code and listing output written to the default files $NEWPASS and
$STDLIST respectively.

Prior to merging, the records in both textfile and masterfile must be
arranged in ascending order according to the value of the sequence field
on any record, or the sequence fields must be blank. The order of
sequencing is based on the ASCII Collating Sequence as shown in Appendix
A. There are no restrictions regarding blank sequence fields; the
sequence fields of some or all of the records in either the textfile or
masterfile, or both files, can be blank, and such records can appear
anywhere in either file.

The merging operation is also based on ascending order of sequence fields
according to the ASCII Collating Sequence. During merging, the sequence
fields of the records in both files are checked for ascending order. If
their order is improper, the offending records are skipped during merging
and appropriate diagnostic messages are sent to the listfile. During
each comparison step in merging, one record is read from each file and
these records are compared with one of three results:

1. If the values of the sequence fields of the masterfile and the
textfile are equal, then the textfile record is compiled and,
optionally, passed to the newfile; the masterfile record is

ignored; and one more record is read from each file for the next
comparison.

less than that of the textfile record, the masterfile record is
compiled and, optionally, passed to the newfile; the textfile
record is retained for comparison with the next masterfile record;
and the next masterfile record is read.

3. If the value of the sequence field of the textfile record is less
than that of the masterfile record, the textfile record is
compiled and, optionally, passed to the newfile; the masterfile
record is retained for comparison with the next textfile record;
and the next textfile record is read.

During merging, a record with a blank sequence field is assumed to have
the same sequence field as that of the last record with a non-blank
sequence field read from the same file, or as a null sequence field, if
no record with a non-blank sequence field has yet been encountered in the
file. Thus, a group of one or more records with blank sequence fields
residing on the masterfile are never replaced by records from the
textfile; they can only be deleted through use of the $EDIT command as
explained below.

Records from the masterfile that are replaced during merging and thus
neither compiled nor sent to the newfile are not listed during
compilation.

When an end-of-file condition is encountered on either the textfile or
the masterfile, merging terminates, except for the continuing influence
of an unterminated VOID parameter in an $EDIT command, as discussed
later. At this point, the subsequent records on the remaining file are
checked for proper sequence, compiled, and, optionally, passed to the
newfile. However, masterfile records within the range of a VOID
parameter are neither compiled nor sent to the newfile.

The sequence field values of records transmitted to the newfile are not
normally changed by the merging operation. However, you can request the
assignment of new sequence characters by using the $EDIT command.

9-9. CHECKING SEQUENCE FIELDS

The presence of a masterfile during compilation implicitly requests the
checking of source records for proper sequence. Thus, when you specify
both a textfile and a masterfile as input files for the compiler, or when
you specify a masterfile alone, sequence-checking is done on both files.
But when you specify a textfile as the only input file, sequence checking
is not performed. Therefore, when you want to have your input
sequence-checked without merging two input files, you can read the input
from either the textfile or the masterfile and use $NULL for the other
file. For example,

:SPL SOURCE,,$NULL

9-10. EDITING

Editing operations during merging consist of omitting sections of the old
source program residing on the masterfile and/or renumbering the sequence
fields of the new, merged source program residing on the newfile. Both
of these operations are requested through the $EDIT command,

The form of the $EDIT command is:

$[$]EDIT[parameter[,parameter]...]

EXAMPLES:

$EDIT SEQNUM=50,INC=10
$EDIT VOID=100
$EDIT NOSEQ

where

parameter specifies an option of the $EDlT command. The parameter
is one of the following: VOID= sequence-value,
SEQNUM=sequence-number, NOSEQ, or INC=incnumber.

The parameters are discussed individually below, The parameters can be
specified in any order.

VOID= Requests the compiler to bypass during merging all
sequence-value records on the masterfile whose sequence fields contain

a value less than or equal to the sequence-value, plus
any subsequent records with blank sequence fields. This
parameter remains in effect until a masterfile record
with a sequence field value higher than the
sequence-value is encountered. The VOID parameter is

 initially disabled when the compiler is invoked. The
sequence-value is either a legal sequence number of from
one to eight digits or a character string. If the
sequence-value is less than eight characters, SPL
left-fills with ASCII zeros and sequence character
strings with spaces.

NOTE $EDIT VOID in $INCLUDE files must reference lines
in the INCLUDEd file only.

SEQNUM= Requests re-numbering of the merged source records on
sequence- the newfile, beginning with the value specified by
number the sequence-number. This value replaces the

sequence-number of the next record sent to the newfile.
The sequence-number of each succeeding record is

 incremented according to the value specified by the INC
parameter or its default as described below. If the
SEQNUM=sequence-number parameter is present but a
newfile does not exist, the re-numbering request is
ignored. If this parameter is present and the newfile

exists, the re-numbering request remains in effect until
an $EDIT command with the NOSEQ parameter is
encountered. When the merged output is listed, records

sequence fields. The re-sequencing request is
initially disabled when the compiler is called. The
sequence-number is a legal sequence- number of from one

 to eight digits. If less than eight digits, the SPL
compiler left-fills with ASCII zeros.

NOSEQ Suspend re-numbering of merged records on the newfile;
the current sequence numbers are retained. If neither
SEQNUM nor NOSEQ are specified, NOSEQ takes effect by
default until superseded by SEQNUM.

INC= incnumber Sets the increment by which records sent to the newfile
are renumbered if SEQNUM is in effect. The increment is
specified by incnumber, which is a value ranging from 1
through 99999999. Notice, however, that very large
increments are of limited value since they may cause the
eight-digit sequence-number to overflow. Re-numbering
only occurs if SEQNUM is specified or the last parameter
not overridden by a NOSEQ parameter, and a newfile
exists. If SEQNUM is specified but INC is not, the
sequence-number is incremented by the default value of
1000 for each succeeding record. This default value
applies until an INC parameter specifying a new value is

 encountered.

$EDIT commands are normally input from the textfile. You can input them
from the masterfile, but this procedure is not recommended since any
$EDIT command containing a VOID parameter on the masterfile could void
its own continuation records. $EDIT commands themselves are never sent
to the newfile; thus, the $$EDIT... form of the command, while
permitted, is redundant.

While sequence fields are allowed, and usually necessary, on records
containing $EDIT commands, continuation records for such commands should
have blank sequence fields.

During merging, a group of one or more masterfile records with blank
sequence fields are never replaced by lines from the textfile; they can
only be deleted by an $EDIT command with a VOID= sequence-value parameter
at least as great as the last non-blank sequence field preceding the
group. In this case, the entire group of masterfile records with blank
sequence number fields is deleted.

Since voided records are never passed to the uslfile or newfile, their
sequence is never checked, and they never generate an out-of-sequence
diagnostic message.

A VOID parameter does not affect records in the textfile.

Any masterfile record replaced by a textfile record is treated as if
voided, except that following records with blank sequence fields are not
also voided. If a replaced record would have been out-of-sequence, the
textfile record that replaces it produces an out-of-sequence diagnostic
message.

In general, whenever a record sent to the newfile has a non-blank
sequence field lower in value than that of the last record with a
non-blank sequence field, a diagnostic message is printed.

For example, suppose you want to merge text input from the standard input
device (default for textfile is $STDIN) with an old program on the file
OLDPROG, creating new source input on the file NEWPROG and you want to

re-number the merged source records on NEWPROG beginning with the value
50, incrementing the sequence number of each subsequent record by 10.
After logging on, you would enter:

:
$EDIT SEQNUM=50,INC=10
:

(New text or corrections to be merged with old program.)
:

9-11. $SPLIT/$NOSPLIT COMMANDS

The $SPLIT and $NOSPLIT commands are intended for privileged users in
split-stack mode to delimit an area of code to be checked for split-stack
errors (see section 8-1). These commands perform the same function as
OPTION SPLIT. However, OPTION SPLIT is effective for an entire procedure,
while $NOSPLIT can be used to reset $SPLIT. (Please see OPTION SPLIT,
7-13A.)

9-12. $COPYRIGHT COMMAND

You can specify copyright information which is transmitted to the USL and
program files by using the $COPYRIGHT command.

The form of the COPYRIGHT command is:

$[$]COPYRIGHT string[[,string]...]

EXAMPLE:

$COPRIGHT"(C) Copyright Hewlett-Packard Company 1976.",&
$ "All rights reserved. No part of this program may be",&

 $ "photocopied, reproduced, or transmitted without",&,
$ "prior written consent of Hewlett-Packard Company."

Each string parameter is a character string bounded by quotation marks
that is combined with any other strings specified to form the copyright
information copied to the USL and program files. The $COPYRIGHT command
must precede the outer block BEGIN. The maximum number of characters is
510.

9-13. CROSS REFERENCE LISTING

To obtain a cross reference listing of the identifiers used in an SPL
program, run the CROSSREF program*. Use file equations for the formal
designators LIST and TEXT for the list file and text file respectively.
Figure 9.5 shows a sample CROSSREF output, The listing shows, for each
identifier, the sequence number of each record in the source program in
which the identifier occurs.

*The CROSSREF program is available through the HP 3000 Contributed
Library package offered by HP Computer Systems Division. Contact your
local HP Sales Office for more information.
BOX

:FILE LIST=$STDLIST
:FILE TEXT=SPLEX
:RUN CROSSREF.PUB.SYS

S.P.L. CROSS REFERENCE TABLE--- AUG 9, 1974 VERSION

SPLEX.PUB.GNOMON
MON, JAN 26, 1976, 3:26 PM

NUMBER OF CARD IMAGES=9. NUMBER OF SYMBOLS=5. NUMBER OF REFERENCES=7.

A (ARRAY)
00005000 00008000

I (INTEGER)
00003000 00007000 00008000 00008000

J (INTEGER)
00003000 00007000

R1 (REAL)
00004000 00006000

R2 (REAL)
00004000 00006000

Figure 9.5. Cross Reference Listing

9-14. $INCLUDE COMMAND

The $INCLUDE command permits inclusion of text from another file into the
SPL source file.

The form of the $INCLUDE command is:

$INCLUDE filename;

EXAMPLE:

$INCLUDE Myfile;

where

filename is the fully qualified name of the file to be included.
The Included file may contain other $INCLUDEs to a
maximum of 10. INCLUDE files are treated as unnumbered
files; $EDIT VOID in Included files must reference lines
in the INCLUDEd file only.

Chapter 10 MPE COMMANDS

10-1. MPE COMMANDS

Communication with the MPE Operating System is initiated through
commands. Commands are requests issued to MPE to perform various
functions external to an SPL source program, For example, commands are
used to initiate and terminate batch jobs and interactive sessions,
compile and execute source programs, call various MPE subsystems, and
obtain job/session status information. Commands can be entered through
any standard input file such as a card reader file or a terminal file.
Commands which you will use most often with SPL programs are summarized
in Table 10-1. A complete description of all MPE commands is in the MPE
Commands Reference Manual..

Table 10-1. MPE Commands

--
| COMMAND | FUNCTION |
--
:JOB	Initiates a batch job
:HELLO	Initiates an interact ve session
:FILE	Specifies characteristics of a file
:BUILD	Creates a new file
:PURGE	Deletes a file from the system
:CONTINUE	Disregards batch job error condition
:SPL	Compiles an SPL source program
:SPLPREP	Compiles and prepares an SPL source program
:SPLGO	Compiles, prepares, and executes an SPL source
	program
:PREP	Prepares a compiled program
:PREPRUN	Prepares and executes a compiled program
:RUN	Executes a prepared program
:EOD	Siginifes the end of data
:EOJ	Terminates a job
:BYE	Terminates a session
--

In general, the form of of an MPE command is:

:command[parameter-list)

In interactive mode, the colon is prompted by MPE; however, in batch
mode, you must provide the colon in column 1 of the command record.

The parameter-list can contain zero, one, or more parameters that specify
files, values, and options for the command. The end of each parameter in
a list is signifed by a delimiter. A delimiter is a character that
separates one item from another. Delimiters consist of commas,
semicolons, equal signs, or other punctuation marks.

A space must separate the command from the parameter-list; however, the
command must im- mediately follow the colon without any intervening
spaces.

The meanings of parameters in some commands are determined by their
positions in the parameter- list. For example, in an :SPL command:

:SPL textfile,uslfile,listfile,masterfile,newfile

the parameters are positional and their positions in the list designate

parameter-list is signified by adjacent delimiters, as shown below:

:SPL textfile,,listfile

When parameters are omitted from the end of a list, no adjacent
delimiters are required as shown in the example by the omission of
masterfile and newfile.

10-2. SPECIFYING FILES FOR PROGRAMS

Both the SPL compiler and the MPE Operating System read input from and
write output to files handled through the MPE file facility. For
example, the compiler reads source code from a textfile writes object
code to an object file (uslfile), produces listings to a listfile, and
performs editing and merging operations using an old masterfile for input
and a newfile for output. Each file has a formal file designator. You
are responsible for equating actual file designators to these formal file
designators in one of three ways.

1. By naming the files as positional parameters in the MPE commands
to compile, prepare, and execute.

2. By omitting optional parameters from the MPE compilation,
preparation, or execution command, thus allowing default file
designators to be in effect.

3. By using MPE:FILE commands to equate the formal file designators
to the actual file designators. If you use this method, you must
call the compiler with the MPE:RUN command using a PARM= parameter
signifying which files are present, as described later. This
method can only be used for compilation and not for preparation or
execution.

You can also use MPE:FILE commands to equate the formal file designators
for your execution-time files to actual file designators. See the MPE
Commands Reference Manual for a complete description of the :FILE
command.

10-3. SPECIFYING FILES AS COMMAND PARAMETERS

You can name the following types of files as parameters in a compilation,
preparation, or execution command:

* System Defined Files

* User Pre-defined Files

* New Files

* Old Files

10-4. SYSTEM-DEFINED FILES.

System-defined file designators indicate those files that MPE uniquely
identifies as standard input/output files for a job/session. These files
are shown in Table 10-2.

10-5. USER PRE-DEFINED FILES.

A user pre-defined file is any file that was previously defined or
redefined in a :FILE command. In other words, it is a back-reference to
that :FILE command. In compilation, preparation, or execution commands,
the actual file designator of this type of file is the formal file
designator preceded by an asterisk to indicate that it was previously
defined. For example,

:FILE S=MYTEXT
:FILE LP;DEV=LP
:SPL*S,,*LP

Table 10-2. System-Defined Files

--
| ACTUAL FILE | DEVICE/FILE REFERENCED |
| DESIGNATOR | |

--
$STDIN	A filename indicating the standard job or session input
	file (from which the job or session is initiated). For
	a job, this is typically a card reader for a session
	this typcally indicates a terminal. Input data records
	in the $STDIN file should not contain a colon in
	position one, since this indicates the end of the
	source input. Use the :EOD command to indicate the
	physical end of a source program. (The same command is
	used to indicate the end of a data file.)
$STDINX	Equivalent to $STDIN, except that MPE/3000 command
	records (those with a colon in position one)
	encountered in a data file are read without indicating
	the end of data (However, the commands :JOB, :DATA,
	:EOJ, and :EOD are exceptions that aways indicate the
	end of data and are never read as data)
$STDLIST	A filename indicating the standard job or session
	listing file corresponding to the particular job or
	session input device being used. (For each potential
	job/ session input device, a user with MPE/3000 System

	Supervisor capability designates a corresponding
	job/session listing device during system con-
	figuration.) The job or session listing device is

	for a session.
$NULL	The name of a non-existent "ghost" file that is always
	treated as an empty file. When referenced as an input
	file by a program, that program receives only an end of
	data indication upon first access. When referenced as
	an output file, the associated write request is
	accepted by MPE/3000 but no physical output is actually
	performed. Thus, $NULL can be used to discard unneeded
	output from an executing program.
--

10-6. NEW FILES.

New files are files that have not yet been created, and are being created
for the first time by the current batch job or interactive session. New
files can have actual file designators as shown in Table 10-3.

 Table 10-3. New Files

| FILE | PURPOSE | FORMAL FILE | DEFAULT FILE |
| | | DESIGNATOR | DESIGNATOR |

Textfile	Contains source program,	SPLTEXT	$STDIN
	correction text to be merged,		
	and/or compiler subsystem commands		
Listfile	Destination of listing output.	SPLLIST	$STDLIST
Uslfile	Destination of object program code	SPLUSL	$NEWPASS
Masterfile	Old source program to be merged	SPLMAST	$NULL
	and edited with new text input		
	from textfile.		
Newfile	New source program resulting from	SPLNEW	$NULL
	(optional) merging of textfile and		
	masterfile.		
Progfile	Destination of executable object	None	$NEWPASS
	program.		

10-7. OLD FILES.

Old files are existing files in the system. They may be named by the
designators shown in Table 10-4.

Table 10-4. Old Files

--
| ACTUAL FILE | FILE REFERENCED |
| DESIGNATOR | |
--
| $OLDPASS | The name of the temporary file last closed as $NEWPASS. |
--
filereference	Any other old file to which you have access. It may be
	a job/session temporary file created in the current or
	a previous program in the current job/ session, or a
	permanent file saved by any program in any job/session.
	The format is the same as filereference, noted in Table
	10-5.
--

10-8. INPUT/OUTPUT SETS.

used as input parameters (input set) and those used as output parameters
(output set). These sets are defined as follows:

INPUT SET

$STDIN The job/session input file.

$STDINX The job/session input file with commands allowed.

$OLDPASS The last file passed.

$NULL A constantly-empty file that will produce an end-of-file
condition whenever it is read.

*formal- A back-reference to a previously defined file.
designator
filereference A file name, and perhaps account and group names and a

lockword.

OUTPUT SET

$STDLIST The job/session listing file.

$OLDPASS The last file passed.

$NEWPASS A new temporary file to be passed.

$NULL A constantly-empty file.

*formal- A back-reference to a previously defined file.
designator
filereference A file name, and perhaps account and group names and a

lockword.

10-9. SPECIFYING FILES BY DEFAULT

When you omit an optional file parameter from a compilation, preparation,
or execution command, MPE assigns one of the members of the input or
output sets by default. The file designator assigned depends on the
specific command, parameter, and operating mode as noted later in this
section. The default file designators are shown in Table 10-5.

Table 10-5. SPL Compiler File Designator

--
| ACTUAL FILE | FILE REFERENCED |
| DESIGNATOR | |
--
$NEWPASS	A temporary disc file that can be passed automatically
	to any succeeding MPE/3000 command within the same job
	or session which references it by the filename
	$OLDPASS. (Passing is explained in the compilation,
	preparation, and execution command examples) Only one
	such file can exist in the job or session at any ore
	time. (When $NEWPASS is closed, its name is changed to
	$OLDPASS automatically, and any previous file named
	$OLDPASS is deleted.)
filereference	Any other new file to which you have access, Unless you
	specify otherwise, this is a temporary file, residing
	on disc, that is destroyed upon termination of the
	program If no :FILE command specifies otherwise, any
	such SPL files are closed as job/session temporary
	files, saved until the end of the job/ session, and
	ther are purged. If closed as permanent files (by
	specifying SAVE in a :FILE command), they are saved
	until you purge them Typically, this format consists of
	a file name containing up to eight alphanumeric char-
	acters, beginning with a letter. In addition, other
	elements (such as a group name, account name, or
	lockword) can be specified The complete rules govern ng
	the filereference format are contained in the MPE
	Commands Reference Manual.
--

10-10. COMPILING, PREPARING, AND EXECUTING SPL SOURCE
PROGRAMS

The commands used for compilation, preparation, and execution of SPL
source programs are:

:SPL or :RUN Compiles a source program.
SPL.PUB.SYS
:SPLPREP Compiles and prepares a source program.

:SPLGO Compiles, prepares, and executes a source program.

:PREP Prepares source programs which have been compiled into a
USL file.

:RUN Executes programs that have been compiled and prepared
(and therefore exist on program files).

:PREPRUN Prepares and executes programs compiled into USL files.

10-11. :SPL COMMAND

The :SPL command compiles an SPL source program.

The form of an :SPL command is:

:SPL[textfile][,[uslfile][,[listfile][,[masterfile][,[newfile]]]]][;INFO=quoted

EXAMPLES:

:SPL MYSOURCE,,LIST
:SPL
:SPL MYSOURCE,USL,*LP,MASTER,NEWMAST

where

textfile is the name of an input file from which the source
program is to be read. If omitted, the program will be
read from the standard input file $STDIN. Do not use the
designator SPLTEXT for this parameter.

uslfile is the name of the USL (User Subprogram Library) file on
which the object program is to be written. If this
parameter is included in an :SPL command, it must
indicate a file previously created in one of two ways:

1. By saving a USL file with a :SAVE command from a
previous compilation.

2. By creating a new file with a :BUILD command and
designating it as a USL file with a file code of
1024 or USL. For example,

:BUILD MYUSL;CODE=1024 or :BUILD MYUS

If the uslfile is omitted, the default file $OLDPASS is used. Do not use
the designator SPLUSL for this parameter.

listfile is the name of the file to which the program listing is
to be sent. If omitted, the default file $STDLIST is
assigned. Typically $STDLIST is the terminal in a
session or the line printer in batch. Do not use the
designator, SPLLIST for this parameter.

masterfile is the name of a file to be optionally merged with
textfile and written onto a file named newfile. If
masterfile is omitted, no merging takes place. Do not
use the designator SPLMAST for this parameter.

newfile is the name of a file on which the re-sequenced records
from the textfile and the masterfile are optionally
merged. When newfile is omitted, no newfile is created.
Do not use the designator SPLNEW for this parameter.

All parameters of an :SPL command are optional. However, direct
interactive input is not recom- mended since it is impossible to correct

an error after pressing the carriage return key. To create source files,
use the HP 3000 Text Editor (See the EDIT/3000 Reference Manual).

quoted string is a list of compiler commands enclosed in single or
double quotes in the format described in section 9-1.

INFO = parameter

The INFO keyword on the SPL, SPLPREP, and SPLGO commands allows compiler
commands to be added to a program without changing the source. These
commands logically precede any other source. On the listing, these
commands have a sequence field of lNFO= to indicate their source as
illustrated in the example below. These compiler commands read from the
quoted string are not sent to newfile.

:SPL EXAMPLE;INFO="$CONTROL MAP$CONTROL INNERLIST"

PAGE 0001 HP32100A.08.02 E4W] (C) HEWLETT-PACKARD COMPANY 1982

IN FO= 00000 0 $CONTROL MAP
IN FO= 00000 0 $CONTROL INNERLIST
1 00000 0 BEGIN
2 00000 1 INTEGER I;
3 00000 1

 4 00000 1 I :=99;
00000 LDI ,143 021143 01.05
00001 STOR DB 000 051000 03.15

5 00002 1 END.
 00002 PCAL,052 000000 14.90

IDENTIFIER CLASS TYPE ADDRESS

I SIMP. VAR. INTEGER DB+000
TERMINATE' PROCEDURE

PRIMARY DB STORAGE=%001; SECONDARY DB STORAGE=%00000
NO. ERRORS=0000; NO. WARNINGS=0000
PROCESSOR TIME=0:00:01; ELAPSED TIME=0:00:05

END OF PROGRAM

10-12. RUN SPL.PUB.SYS COMMAND

An alternative way to call the SPL compiler is by using the :RUN command.
Before using the :RUN command, you must use file equations for the files
normally specified on the :SPL command. The formal file designators are:

SPLTEXT (textfile)

SPLLIST (listfile)

SPLUSL (uslfile)

SPLMAST (masterfile)

SPLNEW (newfile)

Table 10-6. PARM Values

--
| PARAMETERNUM | FILES PRESENT |
--
0	None
1	textfile
2	listfile
3	listfile, textfile
4	uslfile

5	uslfile, textfile
6	uslfile, listfile
7	uslfile, listfile, textfile
8	masterfile
9	masterfile, textfile
10	masterfile, listfile
11	masterfile, listfile, textfile
12	masterfile, uslfile
13	masterfile, uslfile, textfile
14	masterfile, uslfile, listfile
15	masterfile, uslfile, listfile, textfile
16	newfile
17	newfile, textfile
18	newfile, listfile
19	newfile, listfile, textfile
20	newfile, uslfile
21	newfile, uslfile, textfile
22	newfile, uslfile, listfile
23	newfile, uslfile, listfile, textfile
24	newfile, masterfile
25	newfile, masterfile, textfile
26	newfile, masterfile, listfile
27	newfile, masterfile, listfile, textfile
28	newfile, masterfile, uslfile
29	newfile, masterfile, uslfile, textfile
30	newfile, masterfile, uslfile, listfile
31	newfile, masterfile, uslfile, listfile,
	textfile
--

Thus, to compile from the file MYSOURCE and send the listing to the line

printer, you would use

:FILE SPLTEXT= MYSOURCE

before using the :RUN command.

Additionally, you must specify a PARM=parameternum parameter on the :RUN
command to indicate which files are present unless the default values are
used. The value is between 0 and 31 as shown in Table 10-6. Basically,
the low order five bits in parameternum represent the five files which
can be specified as shown below:

| 11 | 12 | 13 | 14 | 15 |
 --
| newfile | masterfile | uslfile | listfile | textfile |
 --

For example, to invoke the compiler with the textfile and listfile
present, you would use the command:

:RUN SPL.PUB.SYS;PARM=3;INFO="$CONTROL NOLIST"

10-13. ENTERING PROGRAM SOURCE INTERACTIVELY

If you do not specify a textfile when compiling in session mode, you must
enter the program source from the terminal. You are prompted for each
source line with a greater-than sign (>). Each program unit (procedure,
subroutine, or main body) is compiled as it is completed. To exit from
the compiler, enter :EOD in response to the prompt character >.

10-14. :SPLPREP COMMAND

The :SPLPREP command compiles and prepares an SPL source program.

The form of the :SPLPREP command is:

:SPLPREP[textfile][,[progfile][,[listfile][,[masterfile][,newfile]]]][;INFO=quo

EXAMPLES:

:SPLPREP MYSOURCE,MYPROG,*LP
:SPLPREP MYSOURCE,,,MAST

where

textfile, listfile, masterfile, newfile, quoted string

have the same meanings as described under the :SPL command.

progfile is the name of the file on which the prepared program is
written. If this parameter is included, it must
reference a file created in one of two ways:

1. By using the :BUILD command with a filecode of
1029 or PROG. For example,

:BUILD PROGF;CODE=1029

or

:BUILD PROGF;CODE=PROG

2. By specifying a non-existent file in the
parameter, in which case a temporary file of the
correct size and type will be created. To save

 the file for future jobs/sessions, you must use
the :SAVE command after preparation.

If the progfile parameter is omitted, the default file $NEWPASS is
assigned. This file is renamed $OLDPASS upon completion.

All :SPLPREP parameters are optional.

10-15. :SPLGO COMMAND

The :SPLGO command compiles, prepares, and executes an SPL source
program.

The form of the :SPLGO command is:

:SPLGO[textfile][,[listfile][,[masterfile][,newfile]]][;INFO=quoted string]

EXAMPLES:

:SPLGO MYSOURCE,*LP
:SPLGO MYSOURCE,,MAST

where

textfile, listfile, masterfile, newfile, quoted string

all have the same meaning as described under the :SPL command.

All :SPLGO parameters are optional.

10-16. :PREP COMMAND

The :PREP command prepares source programs that have been compiled into a
USL file.

The form of the :PREP command is:

:PREP uslfile, progfile [;ZERODB] [;PMAP] [;MAXDATA=segsize] [;STACK=stacksize]
[;DL=dlsize] [;CAP=caplist] [;RL=filename]

EXAMPLES:

:PREP MYUSL,MYPROG;PMAP;MAXDATA=4096
:PREP $OLDPASS,PROGF

where

uslfile is the name of the USL file onto which the program file
has been compiled.

progfile is the name of the program file onto which the prepared
program is to be written. This file must be created in
one of two ways:

1. By creating a new file with the :BUILD command using a filecode of
1029 or PROG, as follows:

:BUILD PROGF;CODE=1029

or

BUILD PROGF;CODE=PROG

2. By specifying a non-existent file in this parameter, in which case
a temporary file of the correct size and type will be created. To
save this file for future jobs/sessions, you must use the :SAVE
command.

Both the uslfile and the progfile parameters are required in a :PREP
command.

ZERODB is a request to set the initially defined DL-DB and DB-Q
 (initial) areas of the stack to zero.

PMAP is a request to list certain information about the
prepared program.

segsize specifies a maximum size for the stack area in words.
The segmenter normally establishes this value, but you
can use this value to override the Segmenter's estimate.

stacksize When a process is created by the system, the user is
allocated MAXDATA words of virtual memory, but only

 stacksize words in main memory. The main memory space
is expanded as required. This parameter allows you to
override the Segmenter estimate.

dlsize the DL-DB area size to be initially assigned to the
stack. If not specified, MPE will estimate the value

caplist the capability-class attributes associated with your
program. The default values are BA (batch access) and
IA (interactive access).

filename the name of a relocatable procedure library to be
searched to satisfy external references during program
preparation. If not specified, no library is searched.

10-17. :PREPRUN COMMAND

The :PREPRUN command prepares and executes programs that have been
compiled into USL files.

The form of the :PREPRUN command is:

:PREPRUN uslfile [,entry-point] [;NOPRIV] [;PMAP] [;DEBUG]
[;LMAP] [;ZERODB] [;MAXDATA=segsize]
[;PARM=parameternum] [;STACK=stacksize] [;DL=dlsize]
[;RL=filename] [;LIB=library] [;CAP=caplist]
[;NOCB]

EXAMPLES:

:PREPRUN $OLDPASS;PMAP;DEBUG;LIB= P
:PREPRUN MYUSL

where

uslfile is the name of the USL file on which the program has
been compiled.

entry-point specifies the entry-point where execution is to begin.
If not specified, execution begins at the primary
entry-point.

NOPRIV is a request to place a privileged program in
non-privileged mode. If not specified, a privileged
program executes in privileged mode.

PMAP is a request to list certain information about the
prepared program.

DEBUG is a request to set a breakpoint on the first executable
instruction of the program for entering debug commands.
Refer to the MPE DEBUG/STACK DUMP Reference Manual.

LMAP is a request to list certain information about the
loaded program.

ZERODB is a request to set the initially defined DL-DB and DB-Q
(initial) areas to zero.

segsize specifies the maximum stack area (Z-DL) size permitted,
in words, This value is normally set by the Segmenter,
but you can use this parameter to override the Segmenter
estimate.

parameternum is a value that can be passed to your program as a
general parameter for control or other purposes. If not
specified, a zero is passed.

stacksize When a process is created by the system, the user is
allocated MAXDATA words of virtual memory but only
stacksize words in main memory. The main memory is
expanded as required. This parameter allows you to
override the Segmenter estimate. If not specified, the
stacksize is determined by the Segmenter for each

individual program.

dlsize is the size of the DL-DB area to be initially assigned

MPE.

filename is the name of a relocatable procedure library to be
searched to satisfy external references during program
preparation. If not specified, no library is searched.

library specifies the order in which segmented procedure
libraries are to be searched to satisfy external
references during segmentation. The library can be
either G (Group first), P (Public group first), or S
(System first). If not specified, the System library is
searched first.

caplist specifies the capability-class attributes associated
with your program. If not specified, BA (Batch Access)
and IA (Interactive Access) are used.

NOCB Requests that the file system not use stack segment
(PCBX) for its control blocks, even if sufficient space
is available. This permits you to expand your stack
(via the DLSIZE or ZSIZE intrinsics) to the maximum
possible limit at a later time, but causes the File
Management System to operate more slowly for this
program.

NOTE You should only use this parameter if the program
absolutely requires the largest stack possible.

10-18. :RUN COMMAND

The :RUN command executes a program that has been compiled and prepared
into a program file.

The form of the :RUN command is:

:RUN progfile [,entry-point] [;NOPRIV] [;LMAP] [;DEBUG]
[;MAXDATA=segsize] [;PARM=parameternum] [;STACK=stacksize]
[;DL=dlsize] [;LIB=Library] [;NOCB]

EXAMPLES:

:RUN PROGF,PI;DEBUG;LIB=P
:RUN $OLDPASS;MAXDATA=4096

where

progfile is the name of the file which contains the compiled and
prepared program to be executed.

The other parameters have the same meaning as shown with the :PREPRUN
command.

10-19. USING EXTERNAL PROCEDURE LIBRARIES

Compiled SPL programs are stored in files called User Subprogram
Libraries (USL's) that reside on disc, In any particular USL, each
compiled program unit exists as a Relocatable Binary Module (RBM). To
prepare a program, and any program unit it references, for execution, the
MPE Segmenter selects the appropriate RBM's from the USL and binds them
into linked segments written on a program file. For more information on
the Segmenter, USL's and RBM's, refer to the MPE Segmenter Subsystem
Reference Manual.

When you prepare and run programs in SPL, it is possible to reference
external procedures in procedure libraries. You can build, modify, and
maintain two types of procedure libraries within your log-on group and
account: Relocatable Libraries (RL's) and Segmented Libraries (SL's).

10-20. RELOCATABLE LIBRARIES

A Relocatable Library (RL) is a specially formatted file that is searched
at program preparation time to satisfy references to external procedures
called by your program. Within such libraries, these procedures are
placed in a single segment and linked to your program. Within such
libraries, these procedures exist in RBM form (as they would on a USL).
When a program is prepared, these procedures are placed in a single
segment and linked to your program in the resulting program file.

For example, to specify that an RL named RLPROC be searched during
preparation of a program from the USL file USLI to the program file
PROG1, you would enter the following :PREP command:

:PREP USL1,PROG1;RL=RLPROG

10-21. CREATING AND MAINTAINING RELOCATABLE LIBRARIES.

To create and maintain relocatable libraries, you must access the
Segmenter by entering the MPE :SEGMENTER command.

The form of the :SEGMENTER command is:

:SEGMENTER [listfile]

where

listfile is an ASCII file from the output set (the formal
designator is SEGLIST) to which is written any listable
output generated by the Segmenter commands. The

 designator SEGLIST should not be used as the actual file
designator. If the listfile is omitted, the standard
job/session list device ($STDLIST) is assigned by
default.

 If you are in an interactive session, the Segmenter
prompts you with a dash (-). Once the Segmenter is
accessed, the following commands are used to create and
maintain an RL:

 -BUILDRL Creates a permanent, formatted RL file.

procedure is to be obtained.

 -RL Identifies an existing RL.

 -ADDRL Adds a procedure to the currently
 identified RL.

 -PURGERL Deletes a procedure from an RL.

 -LISTRL Lists information concerning the
currently identified RL.

The form of a -BUILDRL command is:

 -BUILDRL filereference,records,extents

where

filereference is the file name of the new RL, optionally including
group and account identifiers.

records is the total maximum capacity of the file, specified in
terms of 128-word, binary logical records.

extents is the total number of disc extents that can be
dynamically allocated to the file as logical records are
written to it. The size of each extent is determined by
the records parameter value divided by the extents
parameter value. The extents value must be between 1
and 16 inclusive.

The form of a -USL command is:

 -USL filereference

where

filereference is the name and optional group and account names, of the
USL file to be manipulated.

The form of the -RL command is:

 -RL filereference

where

filereference is the name, plus optional group and account names, of
the RL to be modified.

The form of the -ADDRL command is:

 -ADDRL name [(index)]

where

name is the name of the procedure to be added to the RL. This
name is called the primary entry-point of the RBM

index is an integer further identifying the RBM. The index may
be used when the currently-managed USL contains more
than one active RBM of the same name. If index is
omitted, a value of zero is assigned.

The form of the -PURGERL command is:

 -PURGERL[rlspec,]name

where

rlspec is either UNIT or ENTRY.UNIT is used to delete the
procedure identified by name. ENTRY is used to delete
the entry-point identified by name. If rlspec is
omitted, ENTRY is used.

name if rlspec is UNIT, name is the name of the procedure to
be deleted. If rlspec is ENTRY, name is the name of the
entry-point to be deleted.

The form of a -LISTRL command is:

 -LISTRL

Refer to the MPE Segmenter Subsystem Reference Manual for further
discussions of these Segmenter commands.

10-22. SEGMENTED LIBRARIES

Segmented libraries (SL's) are specially formatted files that are
searched at program run time to satisfy references to external
procedures. These libraries, like program files, contain procedures in
segmented (prepared) form. An individual procedure may exist in a
segment containing many other procedures. When a procedure is
referenced, the segment containing it is loaded with your program. Since
the segmentation is not altered when different programs reference
procedures in an SL, these procedures may be shared concurrently by other
programs.

To specify that an SL file in your group account be searched, add the
keyword parameter LIB= library in the :RUN command as follows:

:RUN PROG1;LIB=G

10-23. CREATING AND MAINTAINING SEGMENTED LIBRARIES.

To create and maintain segmented libraries, you must first access the
Segmenter by entering the MPE :SEGMENTER command.

The form of the :SEGMENTER command is:

 :SEGMENTER[listfile]

where

listfile is an ASCII file from the output set (the formal
designator is SEGLIST) to which is written any listable
output generated by the Segmenter commands. The

 designator SEGLIST should not be used as the actual file
designator. If the listfile is omitted, the standard
job/session list device ($STDLIST) is assigned by
default.

If in an interactive session, you are prompted with a dash (-) for
Segmenter commands. Once the Segmenter is accessed, the following
commands are used to create and maintain an SL:

-BUILDSL Creates a permanent, formatted SL file.

-SL Identifies an existing SL file.

-ADDSL Adds a procedure to the SL file currently being managed.

-PURGESL Purges an entry-point from a segment in an SL, or the
entire segment from the SL.

-LISTSL Lists the procedures in the currently managed SL file.

In addition, the -USL and -LISTUSL Segmenter commands can be used as
discussed under "Relocatable Libraries" (paragraph 10-20).

The form of a -BUILDSL command is:

 -BUILDSL filereference,records,extents

filereference is a file whose local name is SL, plus optional group
and account names.

NOTE You can create an SL file with a local name other
than SL, but such a file cannot be searched by the
:RUN command.

records is the total maximum file capacity, specified in terms
of 128-word binary logical records.

extents is the total number of disc extents that can be
dynamically allocated to the file as logical records are
written to it. The size of each extent is determined by
the records parameter value divided by the extents
parameter value. The extents value must be an integer
between 1 and 16 inclusive,

The form of an -SL command is:

 -SL filereference

where

filereference is the name of the SL to be modified, optionally
including group and account names.

The form of an -ADDSL command is:

 -ADDSL name [;PMAP]

where

name is the name of the segment to be added to the SL.

PMAP indicates that a listing describing the prepared segment
will be produced on the listfile device specified in the
:SEGMENTER command. If PMAP is omitted, the prepared
segment is not listed.

The form of a -PURGESL command is:

 -PURGESL [unitspec,] name

where

unitspec is either ENTRY or SEGMENT. ENTRY is used to delete the
entry-point identified by name. SEGMENT is used to
delete the segment identified by name. If neither ENTRY
nor SEGMENT is specified, ENTRY is used.

name is the name of the entry-point or segment to be deleted.

 -LISTSL

For further descriptions of these Segmenter commands, see the MPE
Segmenter Subsystem Reference Manual.

Appendix A ASCII CHARACTER SET

Table A-1. BYTE POSITION

| CHAR | Left | Right | Dec. |

NUL	000000	000000	0
SOH	000400	000001	1
STX	001000	000002	2
ETX	001400	000003	3
EOT	002000	000004	4
ENQ	002400	000005	5
ACK	003000	000006	6
BEL	003400	000007	7
BS	004000	000010	8
HT	004400	000011	9
LF	005000	000012	10
VT	005400	000013	11
FF	006000	000014	12
CR	006400	000015	13
SO	007000	000016	14
SI	007400	000017	15
DLE	010000	000020	16

DC1	010400	000021	17
DC2	011000	000022	18
DC3	011400	000023	19
DC4	012000	000024	20
NAK	012400	000025	21
SYN	013000	000026	22
ETB	013400	000027	23
CAN	014000	000030	24
EM	014400	000031	25
SUB	015000	000032	26
ESC	015400	000033	27
FS	016000	000034	28
GS	016400	000035	29
RS	017000	000036	30
US	017400	000037	31
SPACE	020000	000040	32
!	020400	000041	33
"	021000	000042	34
#	021400	000043	35
$	022000	000044	36
%	022400	000045	37
&	023000	000046	38
'	023400	000047	39

BYTE POSITION(cont.)

| CHAR | Left | Right | Dec. |

BYTE POSITION

| CHAR | Left | Right | Dec. |

)	024400	000051	41
*	025000	000052	42
+	025400	000053	43
,	026000	000054	44
-	026400	000055	45
.	027000	000056	46
/	027400	000057	47
0	030000	000060	48
1	030400	000061	49
2	031000	000062	50
3	031400	000063	51
4	032000	000064	52
5	032400	000065	53
6	033000	000066	54
7	033400	000067	55
8	034000	000070	56
9	034400	000071	57
:	035000	000072	58
;	035400	000073	59
<	036000	000074	60
=	036400	000075	61
>	037000	000076	62
?	037400	000077	63
@	040000	000100	64
A	040400	000101	65
B	041000	000102	66
C	041400	000103	67
D	042000	000104	68
E	042400	000105	69
F	043000	000106	70
G	043400	000107	71
H	044000	000110	72
I	044400	000111	73
J	045000	000112	74
K	045400	000113	75
L	046000	000114	76
M	046400	000115	77
N	047000	000116	78
O	047400	000117	79

BYTE POSITION

| CHAR | Left | Right | Dec. |

P	050000	000120	80
Q	050400	000121	81
R	051000	000122	82
S	051400	000123	83
T	052000	000124	84
U	052400	000125	85
V	053000	000126	86
W	053400	000127	87
X	054000	000130	88
Y	054400	000131	89

Z	055000	000132	90
[055400	000133	91
\	056000	000134	92
]	056400	000135	93

^	057000	000136	94
_	057400	000137	95
`	060000	000140	96

b	061000	000142	98
c	061400	000143	99
d	062000	000144	100
e	062400	000145	101
f	063000	000146	102
g	063400	000147	103
h	064000	000150	104
i	064400	000151	105
j	065000	000152	106
k	065400	000153	107
l	066000	000154	108
m	066400	000155	109
n	067000	000156	110
o	067400	000157	111
p	070000	000160	112
q	070400	000161	113
r	071000	000162	114
s	071400	000163	115
t	072000	000164	116
u	072400	000165	117
v	073000	000166	118
w	073400	000167	119

BYTE POSITION

| CHAR | Left | Right | Dec. |

x	074000	000170	120	
y	074400	000171	121	
z	075000	000172	122	
{	075400	000173	123	
		076000	000174	124
}	076400	000175	125	
~	077000	000176	126	
DEL	077400	000177	127	

Appendix B RESERVED WORDS

The following symbols have special meaning in SPL/3000 and thus, cannot
be used as identifiers:

| | |
ABSOLUTE | ELSE | LAND | REAL
ALPHA | END | LOGICAL | RETURN
AND | ENTRY | LONG | SCAN
ARRAY | EQUATE | LOR | SET
ASSEMBLE | EXTERNAL | MOD | SPECIAL
BEGIN | FALSE | MODD | SPLIT
BYTE | FIXR | MOVE | STEP
CARRY | FIXT | MOVEX | SUBROUTINE
CASE | FOR | NOCARRY | SWITCH

CAT | FORWARD | NOT | THEN
CHECK | GLOBAL | NOVERFLOW | TO
COMMENT | GO | NUMERIC | TOS
DABZ | GOTO | OF | TRUE
DATASEG | IABZ | OPTION | UNCALLABLE
DDEL | IF | OR | UNTIL
DEFINE | INTEGER | OVERFLOW | VALUE
DEL | INTERNAL | OWN | VARIABLE
DELB | INTERRUPT | POINTER | VIRTUAL
DO | INTRINSIC | PRIVILEGED | WHILE
DOUBLE | IXBZ | PROCEDURE | WITH
DXBZ | LABEL | PUSH | XOR

Appendix C BUILDING AN INTRINSIC FILE

The program BUILDINT is used to build or change intrinsic disc files.
The program uses formal designators INTDECL and OUT for input and list
output files respectively. The default files are $STDIN and $STDLIST.
The intrinsic data file is opened as SPLINTR.

The command to execute the program is

:RUN BUILDINT.PUB.SYS

The input data consists of SPL procedure head declarations (OPTION
EXTERNAL is required) and optional commands.

Without commands, the procedure head declarations are added to the
intrinsic file.

Commands have the following purposes:

$PURGE Removes all entries from the intrinsic file.

$REMOVE Removes all entries which follow this command, until a
$BUILD. Input has the same format as for adding entries.

$BUILD Adds all subsequent input entries to the intrinsic file.
$BUILD is required only if $REMOVE is used.

Any input data which is not a procedure head terminates input. At this
point, the program prints a formatted list of all intrinsics and
terminates.

For example,

:PURGE MYFILE
:BUILD MYFILE
:FILE SPLINTR=MYFILE
:RUN BUILDINT.PUB.SYS
INTEGER PROCEDURE M(A,B,C); VALUE A; INTEGER A,B;LOGICAL C;
OPTION EXTERNAL; PROCEDURE COMP(N,M'); VALUE N,M'; DOUBLE N;REAL M';
OPTION EXTERNAL;
 PROCEDURE BYT(L,M,N,O); LABEL L; PROCEDURE M; BYTE ARRAY N;
LOGICAL POINTER O; OPTION EXTERNAL;
:EOD

See the next page for the formatted output for this file.

Figure C.1. BUILDINT Output

Table C-1. BUILDINT Error Messages

--
| MESSAGE | MEANING | ACTION |
--
DECLARED TWICE	The identifier in	Correct to unique
	question is not unique.	identifier.
EXPECTS A SEMICOLON	Only a comma or a	
	semicolon is legal at	
	this point.	

EXPECTS IDENTIFIER	An identifier is the	
	only legal symbol at	
	this point.	

	been specified but no	
	legal check level	
	follows.	
FORWARD OPTION IS	The FORWARD option has	
ILLEGAL	been specified in a	
	context where it is	
	illegal.	
ILLEGAL SYMBOL	A left bracket,	
	asterisk, or slash has	
	been encountered, none	
	of which are	
	acceptable.	
INTERRUPT PROCEDURE MUST	An interrupt procedure	
NOT HAVE PARAMETER	has been declared with	
	a param- eter; a	
	parameter is illegal in	
	this context.	
MISSING SPECIFICATION	A formal parameter has	
	not been given a type	
	specification.	
NUMERIC SYMBOL NOT	A fraction has been	
ALLOWED	encoun- tered which is	
	not acceptable.	
READ ERROR	An error occurred while	
	reading from the input	
	file.	
SPECIFICATION DOES NOT	There is no formal	
CORRESPOND	parameter with the name	
	used in this	
	specification.	
SUBROUTINES NOT ALLOWED	Subroutines are illegal	Rewrite the intrinsic
	in the intrinsic file.	without subroutines.
TOO MANY PARAMETERS	There are more than 31	Reduce the number of
	formal parameters.	formal parameters.
TOO MANY OR ILLEGAL	A specification for an	
ATTRIBUTES	identifier was made	
	with more than one type	
	or more than one class.	
VALUE SPECIFICATION DOES	A value specification	Either include the
NOT CORRESPOND	exists for a	formal parameter or
	non-existent formal	remove the value
	parameter.	specification.
--

Appendix D MPE INTRINSICS

Table D-1. Summary of MPE Intrinsics

--
| INTRINSIC | PURPOSE | CAPABILITY |
| NAME | | REQUIRED |

--
ACCEPT	Accepts (and completes) a request	Standard
	received by the preceding GET	
	intrinsic call. (Used only with	
	DS/3000.)	
--
| ACTIVATE | Activates a process. | Process Handling |
--
| ADJUSTUSLF | Adjusts directory space in a USL file. | Standard |
--
| ALTDSEG | Alters the size of an extra data | Data Segment |
| | segment. | Management |
--
ARITRAP	Enables or disables internal interrupt	Standard
	signals from all hardware arithmetic	
	traps.	
--
| ASCII | Converts a number from binary to ASCII | Standard |
| | code. | |
--
| BINARY | Converts a number from ASCII to binary | Standard |
| | code | |
--
| CALENDAR | Returns the calendar date. | Standard |
--
| CAUSEBREAK | Requests a session break. | Standard |
--
| CLEANUSL | Deletes inactive entries from USL | Standard |
| | file. | |
--
| CLOCK | Returns the actual time. | Standard |
--
| CLOSELOG | Closes access to the logging facility. | LG Capability |
--
| COMMAND | Executes an MPE command | Standard |
| | programmatically. | |
--
| CREATE | Creates a process. | Process Handling |
--
| CREATE PROCESS | Provides ability to assign $STDIN and | Process Handling |
| | $STDLIST to any file. | |
--
CTRANSLATE	Converts a string of characters from	Standard
	EBCDIC to ASCII or from ASCII to	
	EBCDIC.	
--
| DASCII | Converts a value from double-word | Standard |
| | binary to ASCII code. | |
--
| DATELINE | Returns date and time information. | Standard |
--
| DBINARY | Converts a number from ASCII code to a | Standard |
| | double-word binary value. | |
--

| DEBUG | Calls the DEBUG facility. | Standard |
--

--
| INTRINSIC | PURPOSE | CAPABILITY |
| NAME | | REQUIRED |
--
| DLSIZE | Changes size of DL to DB area. | Standard |

--
| DMOVIN | Copies block from data segment to | Data Segment |
| | stack. | Management |
--
| DMOVOUT | Copies block from stack to data | Data Segment |
| | segment. | Management |
--
| EXPANDUSLF | Changes length of a USL file. | Standard |
--
| FATHER | Requests Process Identification Number | Process Handling |
| | (PIN of father process. | |
--
| FCARD | Drives the HP 7260A Optical Mark | Standard |
| | Reader. | |
--
| FCHECK | Requests details about file | Standard |
| | input/output errors. | |
--
| FCLOSE | Closes a file. | Standard |
--
| FCONTROL | Performs control operations on a file | Standard |
| | or terminal device. | |
--
| FDELETE | Deactivates a R10 record. | Standard |
--
| FDEVICE CONTROL | Adds control directives to a spooled | Standard |
| | device file. | |
--
| FERRMSG | Returns message corresponding to | Standard |
| | FCHECK error number. | |
--
| FFILEINFO | Provides access to file information. | Standard |
--
| FGETINFO | Requests access and status information | Standard |
| | about a file. | |
--
| FINDJCW | Searches Job Control Word (JCW) table | Standard |
| | for specifiedJCW. | |
--
| FLOCK | Dynamically locks a file. | Standard |
--
| FMTCALEN DAR | Formats calendar date. | Standard |
--
| FMTCLOCK | Formats time of day. | Standard |
--
| FMTDATE | Formats calendar date and time of day. | Standard |
--
| FOPEN | Opens a file. | Standard |
--
| FPOINT | Resets the logical record pointer for | Standard |
| | a sequential discfile. | |
--
FREAD	Reads a logical record from a	Standard
	sequential file (on anydevice) to the	
	user's data stack.	

--

--
| INTRINSIC | PURPOSE | CAPABILITY |
| NAME | | REQUIRED |

--
FREAD BACKWARD	Reads a logical record beginning at a	Standard
	point prior tothe current record	
	printer.	
--
| FREADDIR | Reads a logical record from a direct | Standard |
| | access file to the user's data stack. | |
--
| FREADLABEL | Reads a user file label. | Standard |
--
| FREADSEEK | Prepares, in advance, for reading from | Standard |
| | a direct-access file. | |
--
| FREEDSEG | Releases an extra data segment. | Data Segment |
| | | Management |
--
FREELOCRIN	Frees all local Resource	Standard
	Identification Numbers (RIN's)from	
	allocation to a job.	
--
| FRELATE | Determines if file pair is interactive | Standard |
| | or duplicative. | |
--
| FRENAME | Renames a disc file. | Standard |
--
| FSETMODE | Activates or de-activates file-access | Standard |
| | modes. | |
--
| FSPACE | Spaces forward or backward on a file. | Standard |
--
| FUNLOCK | Dynamically unlocks a file. | Standard |
--
| FUPDATE | Updates a logical record residing in a | Standard |
| | disc file. | |
--
FWRITE	Writes a logical record from the	Standard
	user's stack to a sequential file (on	
	any device).	
--
FWRITEDIR	Writes a logical record from the	Standard
	user's stack to a direct-access disc	
	file.	
--
| FWRITELABEL | Writes a user file label. | Standard |
--
| GENMESSAGE | Accesses MPE message system. | Standard |
--
GET	Receives the next request from a	Standard
	remote master program.(Used only with	
	DS/3000.)	
--
| GETDSEG | Creates an extra data segment. | Data Segment |
| | | Management |
--
| GETJCW | Fetches contents of system job control | Standard |
| | word (JCW). | |
--

| GETLOCRIN | Acquires local RIN's. | Standard |
--
| GETORIGIN | Determines source of process | Process Handling |

--
| GETPRIORITY | Changes the priority of a process. | Process Handling |
--
| GETPRIVMODE | Dynamically enters privileged mode. | Privileged Mode |

--
| GETPROCID | Requests PIN of a son process. | Process Handling |
--

Table D-1. Summary of MPE Intrinsics (continued)

--
| INTRINSIC | PURPOSE | CAPABILITY |
| NAME | | REQUIRED |
--
| GETPROCINFO | Requests status information about a | Process Handling |
| | father or son process. | |
--
| GETUSERMODE | Dynamically returns to non-privileged | Privileged Mode |
| | mode. | |
--
| INITUSLF | Initializes a USL file to the empty | Standard |
| | state. | |
--
| IODONTWAIT | Initiates completion operations for an | Privileged Mode |
| | I/O request. | |
--
| IOWAIT | Initiates completion operations for an | Privileged Mode |
| | I/O request. | |
--
| KILL | Deletes a process. | Process Handling |
--
| LOADPROC | Dynamically loads a library procedure. | Standard |
--
| LOCKGLORIN | Locks a global RIN. | Standard |
--
| LOCKLOCRIN | Locks a local RIN. | Standard |
--
| LOCRINOWNER | Identifies process locking a local | Standard |
| | RIN. | |
--
| MAIL | Tests mailbox status. | Process Handling |
--
MYCOMMAND	Parses (delineates and defines	Standard
	parameters) for user-supplied command	
	image.	
--
| OPENLOG | Provides access to a logging facility. | LG Capability |
--
| PAUSE | Suspends calling process for a | Standard |
| | specified number of seconds. | |
--
PCHECK	Returns an integer code specifying the	Standard
	completion status of the most recently	
	executed DS/3000. (Used only with	
	DS/3000.)	
--
PCLOSE	Terminates program-to-program	Standard
	communication with a remote slave	
	program. (Used only with DS/3000.)	
--

| PCONTROL | Exchanges tag fields with a slave | Standard |
| | program. (Used only with DS/3000.) | |
--

| | communication with a remote slave | |
| | program. (Used only with DS/3000.) | |

--
PREAD	Requests a block of data from a remote	Standard
	slave program. (Used only with	
	DS/3000.)	
--
| PRINT | Prints character string on job/session | Standard |
| | list device. | |
--
| PRINTFILEINFO | Prints file information display. | Standard |
--

Table D-1. Summary of MPE Intrinsics (continued)

--
| INTRINSIC NAME | PURPOSE | CAPABILITY |
| | | REQUIRED |
--
| PRINTOP | Prints a character string on the | Standard |
| | Operator's Console. | |
--
PRINTOPREPLY	Prints a character string on the	Standard
	Operator's Console and solicits a	
	reply.	
--
| PROCTIME | Returns a process' accumulated central | Standard |
| | processor time. | |
--
PTAPE	Accepts input from paper tapes which	Standard
	do not contain X-OFF control	
	characters.	
--
| PUTJCW | Puts value of a given JCW in JCW | Standard |
| | table. | |
--
| PWRITE | Sends a block of data to a remote | Standard |
| | slave program. | |
--
| QUIT | Aborts a process. | Standard |
--
| QUITPROG | Aborts the user process structure | Standard |
--
| READ | Reads an ASCII string from the | Standard |
| | job/session input device ($STDIN). | |
--
| READX | Reads an ASCII string from the | Standard |
| | job/session input device ($STDINX). | |
--
| RECEIVEMAIL | Receives mail from another process. | Process Handling |
--
REJECT	Rejects the request received by the	Standard
	preceding GET intrinsic call. (Used	
	only with DS/3000.)	
--
| RESETCONTROL | Resets terminal to accept CONTROL Y | Standard |
| | signal. | |
--
| RESETDUMP | Disables the abort stack analysis | Standard |
| | facility. | |

--
| SEARCH | Searches an array for a specified | Standard |
| | entry or name. | |

| SENDMAIL | Sends mail to another process. | Process Handling |

--
| SETDUMP | Enables the abort stack analysis | Standard |
| | facility. | |
--
| SETJCW | Sets the value of the system job | Standard |
| | control word (JCW). | |
--
| STACKDUMP | Dumps selected parts of stack to file. | Standard |
--
| SUSPEND | Suspends a process. | Process Handling |
--
| SWITCHDB | Switches DB register pointer. | Privileged Mode |
--
| TERMINATE | Terminates a process. | Standard |
--
| TIMER | Returns job or session timer bit | Standard |
| | count. | |
--
| UNLOADPROC | Dynamically unloads a library | |
| | procedure. | |
--
| UNLOADGLORIN | Unlocks a global RIN. | Standard |
--

 Table D-1. Summary of MPE Intrinsics (continued)

--
| INTRINSIC | PURPOSE | CAPABILITY |
| NAME | | REQUIRED |
--
| UNLOCKLOCRIN | Unlocks a local RIN. | Standard |
--
| WHO | Returns user attributes. | Standard |
--
| WRITELOG | Writes a record to a logging file. | LG Capability |
--
| XARITRAP | Arms or disarms the software | Standard |
| | arithmetic trap. | |
--
| XCONTRAP | Arms or disarms the CONTROL-Y trap. | Standard |
--
| XLIBTRAP | Arms or disarms the library trap. | Standard |
--
| XSYSTRAP | Arms or disarms the system trap. | Standard |
--
| ZSIZE | Changes size of Z to DB area. | Standard |
--

Appendix E COMPILER ERROR MESSAGES

Table E-1. SPL Compiler Error Messages

| MESSAGE | MEANING | ACTION |

ARITHMETIC RIGHT SHIFT	Compiler has issued an	None, unless word
EMITTED	ASR to convert a byte	address is supposed
	address to a word	to be greater than
	address.	DB+ 16383 in which
		case the ASR causes
		an error.

BEGIN END DO NOT MATCH	When END. encountered,	Check your code and
	there were more BEGINs	correct.
	than ENDs.	

CASE STATEMENT	The number of cases in a	Check your code;
OVERFLOW	CASE statement exceeds	decrease the number
	256.	of cases.

CONVERSION ERROR	An illegal type	Check manual for
	conversion was attempted.	legal type
		conversions; note
		that types cannot be
		mixed in arithmetic
		operations.

DECLARATION NOT	A subroutine may not have	Check the subroutine
ALLOWED IN SUBROUTINE	declarations.	code and move decla-
		rations to main
		program or procedure.

DECLARATION OUT OF	Declarations must be	Check the order;
ORDER	ordered as: data,	correct.
	procedures, sub-	
	routines.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

DECLARED TWICE	An identifier has been	Check declarations;
	declared twice at the	correct.
	same level.	

DEFINE TOO LARGE	A DEFINE declaration has	Check declaration,
	too many characters in	reduce to 511 charac-
	its de- scription.	ters excluding
		extrane- ous blanks.

DISPLACEMENT OUT OF	The displacement is too	Displacement varies
RANGE	large or has the wrong	with addressing mode:
	sign for the addressing	DB + 255 Q + 127; Q
	mode.	-63 S -63 P + 255; P
		-255

DISPLACEMENT TOO LARGE	The displacement is too	Displacement varies
	large for the addressing	with addressing mode:
	mode.	DB + 255 Q + 127; Q

| | | -255 |

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

EXCEEDED MAXIMUM	INCLUDEs are nested to a	Check your code;
INCLUDE DEPTH	level greater than 10.	decrease the nesting
		level of INCLUDEs.

| EXPECTS ALPHA | The next symbol must be | Check code; change to |
| | an alphabetic character. | alphabetic character. |

| EXPECTS ARRAY IDENTIFIER | Only an array identifier | Check code; use array |
| | is legal in this context. | identifier. |

| EXPECTS ASTERISK | An asterisk is expected | Check code; use |
| | in this context. | asterisk. |

EXPECTS BOUNDS	An array declaration of	Check code; enter
	this type requires	bounds.
	bounds.	

EXPECTS CONSTANT	A constant is expected in	Check code; correct.
	this context; for	
	example, as a par- tial	
	word designator.	

EXPECTS DOLLAR	A $ command with	Correct by entering $
	continuation symbol is	at beginning of
	not followed by image	continua- tion line
	with $ in column 1.	or deleting
		continuation symbol.

| EXPECTS EQUAL | An equals sign is | Check code and enter |
| | expected in this context. | = where expected. |

| EXPECTS FILE | Filename expected, but | Check your code and |
| | not found. | correct. |

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

| EXPECTS IDENTIFIER | Identifier name not found | Check your code and |
| REFERENCE | | correct. |

| EXPECTS INTEGER VARIABLE | Only as integer variable | Check code, correct. |
| | is legal in this context. | |

| EXPECTS LABEL | A label must appear in | Check code, correct. |
| | this context. | |

| EXPECTS OR | OR was expected but not | Check your code and |
| | found. | correct. |

| EXPECTS OPTION | A $ command has an | Check command, cor- |
| | illegal command or is | rect. |

| | parameter. | |

| EXPECTS POINTER | Only a pointer is legal | Check code, correct. |
| | in this context. | |

EXPECTS REFERENCE	A value parameter is	Check parameters and
PARAMETER	passed to a procedure	specifications;
	that expects a parameter	correct.
	passed by refer- ence.	

EXPECTS RELATIONAL	A relational operator is	Check code, correct
	ex- pected at this point.	by including
		relational operator
		(=,<>,<,<=, >,>=)

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

EXPECTS RELATIONAL OR	Either a comma or a	Check code, correct
COMMA	relational operator is	by including comma or
	expected in this context.	relational operator
		(=, <>,<,<=,>,>=) as
		appropriate.

EXPECTS SYMBOL	No symbol where a symbol,	Check code, include
	such as an identifier, is	symbol.
	expected.	

EXPECTS UNDEFINED	An array declaration of	Check declaration,
BOUNDS	this type requires an	include *
	asterisk (*).	

| EXPECTS VARIABLE | Only a variable is | Check code, correct. |
| | allowed in this context. | |

| FILENAME TOO LONG | Filename is greater than | Check your code and |
| | 8 characters. | shorten name. |

ILLEGAL ADDRESS MODE	The specified address	Address mode relative
	mode is not legal in this	to DB, Q, S, or PB
	context.	must be changed.

ILLEGAL ADDRESS STORE	An attempt has been made	Change to @PTR:=n or
	to store into a	PTR(1):=n
	non-existent pointer; for	
	example: @PTR(1):=0.	

| ILLEGAL ASSEMBLE | An error occurred in an | Check the statement; |
| STATEMENT | ASSEMBLE statement. | correct |

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

ILLEGAL ATTRIBUTE	Attribute inconsistent	Check the
	with identifier; e.g.,	specification:
	LONG LABEL.	correct.

ILLEGAL BOUNDS	The bounds for this array	Check that bounds are
SPECIFICATIONS	declaration are invalid.	*,@ or integer
		constant.

ILLEGAL CLASS	Symbol class (POINTER,	Check the symbol;
	ARRAY, etc.) incorrect	correct the symbol
	in context.	class.

ILLEGAL CONSTANT	This symbol is not a	Check the constant,
	valid constant.	enter a valid
		constant.

ILLEGAL DYNAMIC BOUNDS	The dynamic bounds must	Correct as indicated.
	be either an integer	
	formal param- eter or a	
	global integer.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

ILLEGAL EXTERNAL	An error occurred in an	Check the declaration
VARIABLE	exter- nal variable	and also the
	declaration or in its	procedure where it is
	use.	used; correct

ILLEGAL FORMAL	The attributes specified	Check the parameter;
PARAMETER	tor this formal parameter	correct.
	are not valid.	

ILLEGAL GLOBAL EXTERNAL	An error has occurred in	Check declarations;
VARIABLE	a global or an external	correct.
	variable declaration.	

ILLEGAL IDENTIFIER	The reference identifier	Check the
REFERENCE	for this declaration is	declaration;
	incorrect.	reference identitier
		must be declared
		first.

ILLEGAL INITIALIZATION	The initialization list	Make sure that list
	for this array is	con- tains only
	invalid.	numeric values or
		strings.

| ILLEGAL IF STATEMENT | This IF statement | Check the statement, |
| | contains an error. | correct. |

ILLEGAL IN SPLIT-	An error was detected	Check WITH and OPTION
STACK MODE	inside a WITH statement	SPLIT in manual.
	or with OPTION SPLIT or	
	$SPLIT.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

| ILLEGAL ITEM IN | The item is either not | Check declarations, |

| | wrong class. | otherwise correct. |

ILLEGAL LEFT PARENTHESIS	A left parenthesis has	Remove the paren-
	been used in a context	thesis.
	where it is illegal.	

ILLEGAL MODE IN THIS	An address mode (relative	Change to a mode that
CONTEXT	to DB, Q, S, or PB)	is legal in this
	cannot be used in this	context.
	context.	

ILLEGAL OPERATOR	An operator is used that	Valid operators are:
	is not recognized by the	*,/,
	compiler.	**,//,+,-,MOD,MODD,
		=,<,<>,<=>,>=, LAND,
		LOR, XOR.

ILLEGAL OWN	The initialization list	Check; correct the
INITIALIZATION	for an OWN array is	list to include only
	invalid.	numbers and strings.

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

ILLEGAL OWN VARIABLE	An error occurred in an	Check the OWN
	OWN variable declaration	variable declaration
	or in its use.	and also where it is
		used; correct.

| ILLEGAL PARAMETER | This parameter contains | Check the parameter: |
| | an illegal item. | correct. |

ILLEGAL S-RELATIVE	The displacement to S is	Correct the address
ADDRESS	either positive or less	to fall within range
	than -63.	S-0 through S-63.

| EXPECTS WHILE OR UNTIL | The reserved word WHILE | Check code, include |
| | or UNTIL is missing. | WHILE or UNTIL. |

EXPECTS @	The compiler expects an @	Check code, include
	as the next symbol in	@.
	this context.	

ERROR IN CATENATE	A catenate expression	Check expression and
EXPRESSION	must be of the form	correct.
	(L:M:N) where L, M, and N	
	are integer constants.	

ERROR IN PARTIAL WORD	A partial word designator	Check code; correct
DESIGNATOR	must be of the form (M:N)	form of partial word
	where M and N are integer	designator.
	constants.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

| DESIGNATOR | follows the &. | valid shift |
| | | identifier. |

ERROR IN USL FILE	USL file contains a bad	Check source for
	entry. Compilation	errors; correct and
	terminates.	try again.

ERROR OVERFLOW	Maximum number of errors	Default maximum = 100
	has been generated.	errors; change with
		$CONTROL command.

FORWARD PROCEDURE	Forward and actual	Check declarations
DECLARATION	procedure declarations do	and correct.
INCOMPATIBLE	not match.	

ILLEGAL SEGMENTATION	A $CONTROL SEGMENT card	Change the card to
	is within a procedure.	appear outside the
		procedure.

ILLEGAL STATEMENT	A statement cannot begin	Check the class, and
BEGINNER	with this class; possibly	if undeclared
	is an un- declared	variable, declare it.
	variable.	

ILLEGAL STATEMENT	A statement must be	Correct the
TERMINATOR	termi- nated by END or a	terminator.
	semicolon.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

ILLEGAL STRING	A string is expected in	Enclose the string in
	this context but there	quotes.
	are no quote marks.	

ILLEGAL SYMBOL	Not an ASCII character	Check and enter a
	valid for SPL.	valid ASCII character
		accept- able to SPL.

ILLEGAL TO STACK	Parameter must not be	Correct so that
PARAMETER	loaded directly to stack	param- eter is not
	in this context or stack	stacked.
	will be out of order.	

ILLEGAL TRACE CARD	A $TRACE card is either	Check the $TRACE card
	in the wrong position or	and move or cor- rect
	contains an error.	as appropriate.

ILLEGAL TRACE	The identifier being	Change class to
IDENTIFIER	traced is of a class that	SIMPLE VARIABLE,
	cannot be traced.	ARRAY, POINTER,
		LABEL, or PROCEDURE.

ILLEGAL TYPE	A type mismatch has	Check the types and
	occurred in an arithmetic	change to matching
	operation.	types.

| ILLEGAL TYPE TRANSFER | The type of the operand | Check the statement |

	may not be converted to	and correct to avoid
	the type of the object in	type mismatch.
	SPL.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

ILLEGAL USE OF PB BYTE	Byte cannot be loaded	Correct code so
ARRAY	from a PB byte array	attempt is not made
	since the load byte	to load byte from PB
	instruction is not PB-	byte array.
	relative.	

ILLEGAL VARIABLE	Form of variable is not	Check variable and
	valid.	insure that it starts
		with letter.

ILLEGAL X ON OR OFF	Parameter on $IF command	Check $IF parameter
	is invalid; may be X0	and correct.
	through X9 =ON or OFF	
	only.	

ILLEGAL X REGISTER	Either the type or the	Change type and/or
REFERENCE	class of the variable	class to that of a
	referencing the X	one- word variable.
	register is illegal.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

INDEX NOT ALLOWED	An attempt was made to	Change declaration to
	index a simple variable.	array or remove
		index.

INITIALIZATION OUT OF	An array has been	Either change the
RANGE	initialized with a list	array size or
	that is larger than the	decrease the list.
	array size.	

INTEGER OVERFLOW	A constant expression	Check constants used
	resulted in an integer	in expressions for a
	overflow.	resulting value
		greater than 32767 or
		less than -32767.

INVALID BRANCH EMITTED	Compiler has emitted a	Check label range;
	bad branch in ASSEMBLE	change to indirect
	state- ment; probably	branch.
	label out of range.	

INVALID BYTE	The initialization list	Check byte array and
INITIALIZATION	of a byte array is	its initialization
	incorrect.	list; correct.

INVALID COMMENT	Comment has been used in	Check code; either
	an illegal context.	move or remove
		comment.

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

| INVALID EXPONENT | An exponent expression | Check the expression; |
| PARAMETER | con- tains an error. | correct. |

INVALID NUMBER	Either the field is not	Check field and range
	numeric or the number is	of number; correct.
	out of range in this	
	context.	

INVALID OPERATOR	The mnemonic in ASSEMBLE	Check code for
MNEMONIC	statement not	invalid instruction
	identifiable.	mnemonic; correct.

INVALID SDEC	Stack decrement (SDEC)	Check range for this
	field in statement such	SDEC constant and
	as MOVE or SCAN is out of	correct.
	range.	

| INVALID SUBSCRIPT | An index must be an | Check expression used |
| | integer expression. | as index: correct. |

LABEL IN ASSEMBLE	A label referenced in an	Check statement;
STATEMENT MUST OCCUR	ASSEMBLE statement cannot	either include label
	be found.	or remove reference.

LOCAL DECLARATION	Too many local	Check and remove
OVERFLOW	declarations; up to 127	extra declarations.
	words allowed.	

LOCAL INITIALIZATION MUST	A local array can be	Check array
BE PB	initialized only in PB	declaration; change
	mode.	mode to PB, or make
		array global.

 Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

LOGICAL COMPARE	Issued when a logical	Warning that compare
EMITTED	com- pare always gives	such as L>=0 is
	the same result.	always true, L<0
		always false if L is
		logical variable.

MAY NOT GO TO ENTRY	A GO TO statement may not	Check GO TO; change
	transfer to an entry	label.
	label.	

MAY NOT TRACE EXTERNAL	Trace can only be made on	Check TRACE; change
LABEL	label in program unit	label to one in
	being compiled.	current program unit.

MAXIMUM REPEAT FACTOR	The largest repeat factor	Check initialization
8191	al- lowed in an	list; lower repeat
	initialization list is	factor.
	8191.	

MISSING ASSIGNMENT	An assignment operator	Check code; include
OPERATOR	must appear in this	assignment operator.
	context.	

| MISSING BEGIN | The compiler expects a | Check code; include |
| | BEGIN as the next symbol. | BEGIN. |

MISSING CCF	This ASSEMBLE instruction	Check code; include
	requires a CCF	CCF specification.
	specification.	

| MISSING COLON | A colon (:) must appear | Check code; include |
| | in this context. | colon. |

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

| MISSING COMMA | A comma (,) is expected | Check code; include |
| | in this context. | comma. |

| MISSING DO | A DO must appear in this | Check code; include |
| | context. | Do. |

| MISSING ELSE | An ELSE must appear in | Check code; include |
| | this context. | ELSE. |

| MISSING EXPONENT | A valid exponent must | Check code; enter |
| | follow a caret (^). | valid exponent. |

MISSING FORMAL	A specification is made	Check code;include
PARAMETER	for a non-existent formal	formal parameter or
	parameter.	delete specification.

| MISSING LEFT PARENTHESIS | A left parenthesis is | Check code; include |
| | expected in this context. | left parenthesis. |

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

| MISSING OF | A CASE statement does not | Check CASE statement; |
| | contain the word OF. | include OF. |

MISSING RIGHT BRACKET	A right bracket is only	Check code and
	accept- able symbol at	include right
	this point.	bracket.

| MISSING RIGHT | A right parenthesis is | Check code; include |
| PARENTHESIS | expected at this point. | right parenthesis. |

MISSING SEMICOLON	A semicolon (;) or other	Check code; include
	sep- arator is required	semicolon.
	in this context.	

MISSING SLASH	A slash is the only	Check code; include
	acceptable symbol at this	slash.
	point.	

MISSING SPECIFICATION	There is no specification	Check code: include
	for a formal parameter.	specification for
		formal parameter.

MISSING SUBPROGRAM	A procedure specified in	Check code; correct
	a $CONTROL SUBPROGRAM	name in command or
	command cannot be found.	include procedure.

| MISSING THEN | A THEN must appear in | Check code; include |
| | this context. | word THEN. |

| MISSING UNTIL | An UNTIL must appear in | Check code; include |
| | this context. | word UNTIL. |

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

MULTIPLE FORWARD	There is more than one	Check declarations;
DECLARATION	forward declaration for	remove redundant for-
	this procedure.	ward declaration.

MULTIPLE SPECIFICATIONS	A formal parameter is	Check code; remove
	specified more than once.	extra formal
		parameter.

MUST BE DB	Only DB-relative	Check address;
	addressing is llowed in	correct to
	this context.	DB-relative.

MUST BE DB OR Q	Only DB-relative or	Check address;
	Q-relative addressing	correct to
	allowed in this context.	DB-relative or Q-
		relative.

MUST BE DOUBLE OR	Only a double-word or	Check variable;
LOGICAL	logical variable is	change to double or
	allowed in this context.	logical.

MUST BE INTEGER TYPE	The only valid type for	Check code; use
	this construct is	integer.
	integer.	

MUST BE INTEGER, LOGICAL	A one-word quantity is	Check code; correct
OR BYTE	ex- pected in this	to use one-word
	context.	quantity.

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

MUST BE LOCAL	Action allowed only for	Check code; correct
	local is being performed	variable.
	on global variable.	

MUST BE TYPE BYTE	Symbol must be type byte	Check symbol:
	in this context.	correct if illegal or
		change to type byte.

| MUST BE TYPE LOGICAL | Only a logical variable | Check expression; |

| | can appear in a Boolean | change to logical |
| | expression. | variable. |

| | procedure must be typed. | typed procedure. |

MUST BE VALUE FORMAL	A reference parameter is	Check parameter;
PARAMETER	not legal in this	change to formal
	context.	parameter.

NESTED PROCEDURE NOT	A procedure declaration	Check code; remove
ALLOWED	is within another	procedure declaration
	procedure.	for other procedure.

NESTED REPEAT	Repeat factor inside a	Check code.
FACTOR	repeat factor is not	
	allowed.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

NOT END OF COMMENT	Two greater-than symbols	If intended as
	are separated by one or	comment, remove
	more blanks.	blanks so symbols are
		adjacent (>>).

NOT INTRINSIC FILE	A file specified as an	Check file name;
	intrinsic file in	change to name of
	INTRINSIC statement is	intrinsic file.
	not an intrinsic file.	

NOT ON INTRINSIC FILE	Procedure referenced in	Check procedure name
	an INTRINSIC declaration	and intrinsic tile;
	is not on the intrinsic	change name or
	file.	include intrinsic in
		file.

OUT OF RANGE BRANCH	An ASSEMBLE statement	Check statement;
	con- tains branch that is	change range of
	beyond range of direct	branch or use
	branch.	indirect addressing.

PARAMETER NOT ALLOWED	Interrupt procedure that	Check procedure;
	should have no parameters	remove parameter.
	has a parameter.	

PARAMETER NUMBER	A procedure call has an	Check procedure;
INCOMPATIBLE	in- correct number of	change number of
	parameters.	parameters
		accordingly.

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

PARAMETER OUT OF RANGE	This parameter exceeds	Displacements may be:
	the maximum allowable	DB+255, Q+127, Q-63,
	displacement for this	S-63, P+255P-255.

| | address mode. | |

| PARAMETER OVERFLOW | There are more than 31 | Reduce number of |

| | procedure. | fewer. |

PARTIAL WORD ILLEGAL	A partial word designator	Break into several
HERE	is not allowed in	store statements to
	multiple store.	allow bit deposit.

PRIMARY DB OVERFLOW	A variable cannot be	Correct to address
	assigned with a	within accepted
	DB-relative address	bounds possibly by
	greater than 255or total	removing
	is greater than 907	declarations.
	words.	

PRIMARY Q OVERFLOW	Variable cannot be	Correct assignment to
	assigned with 0-relative	address within
	address greater than 127.	accept- able bounds.

PROCEDURE TOO LARGE	The number of	Decrease number of
	instructions in this	in- structions in
	procedure exceeds the	procedure or increase
	limit.	segment size.

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

RECURSIVE DEFINE	Invoking this DEFINE	Check text of DEFINE
	statement would result in	statement for
	infinite loop.	identifier being
		defined.

RESERVED SYMBOL	Cannot define a constant	Check definition;
REDEFINED	or reserved word.	omit reserved word or
		symbol.

SDEC TOO LARGE	Stack decrement in an	Check statement:
	ASSEM- BLE statement is	reduce stack
	larger than largest	decrement to
	allowed value.	acceptable value for
		context.

SECONDARY DB OVERFLOW	There are too many	Check code, and
	declarations in the outer	reduce the number of
	block.	declarations.

| SEMICOLON NOT ALLOWED | A semicolon (;) cannot be | Remove semicolon. |
| | used in this context. | |

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

SEQUENCE ERROR	Input files contain	Check input files;
	images that are out of	correct order.
	order.	

| SIZE INCOMPATIBILITY | Parameter passed to a | Check parameter size |
| | pro- cedure has wrong | in procedure, and |

SORT TABLE OVERFLOW	Table used to son map	Symbol table map
	output is full (over 1162	cannot be produced.
	procedures/ symbols, 1912	
	globals)	

| STRING TOO LARGE | This string exceeds 128 | Reduce string to |
| | characters. | acceptable limit. |

SYMBOL TABLE ERROR	Some entries in the	Symbol table map
	symbol table are no	cannot be produced.
	longer valid.	

SYMBOL TABLE OVERFLOW	The compiler limit for	Reduce number of
	the number of symbols has	symbols in program
	been exceeded.	and recompile.

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

STACK OVERFLOW MAY BE	If stack overflow occurs	Separate into two
IRRECOVERABLE	and Q and S set in same	instructions; e.g.,
	instruction, process may	SET (Q), SET (S), not
	terminate	SET (Q,S).

SUBPROGRAM TABLE	Overflow in table where	Reduce number or size
OVERFLOW	sub- program names to be	of names to total of
	compiled are stored.	252 characters plus 1
		extra for each name.

SUBPROGRAM & USLINIT	This compilation	Compile an outer
	specifies both subprogram	block before
	and USLINIT, resulting in	preparing the program
	no outer block.	file.

| TOO MANY USL | Too many procedure calls | Reduce the number of |
| HEADERS | inside code block. | procedure calls. |

TRACE HEADER TOO LARGE	Too many symbols being	Reduce number of
	traced resulting in table	symbols to be traced.
	overflow.	

Table E-1. SPL Compiler Error Messages (cont.)

| MESSAGE | MEANING | ACTION |

TYPE INCOMPATIBILITY	In arithmetic statement.	Change one or both
	two operands of different	operands so that they
	type are combined.	are the same type
		(REAL, LONG, etc.)

TYPE PROCEDURE STORE	A procedure name can	Check procedure name:
OUT OF RANGE	appear on the left-hand	correct name or
	side of a replacement	remove statement.

	operator (:=) only within	
	the scope of the	
	procedure with the same	

UNDECLARED IDENTIFIER	An identifier used in a	Declare identifier or
	statement has not been	change identitier
	declared in a	name to a declared
	declaration.	identifier

| USL FILE OVERFLOW | The USL file is full. | Build larger USL |
| | | file, recompile |

| @ NOT ALLOWED | An @ is not legal in this | Remove @. |
| | context. | |

Appendix F CALLING SPL FROM
OTHER LANGUAGES

There are a number of things to consider when writing SPL procedures that
are to be called from other languages. Not all languages pass parameters
in the same way and some have restrictions as to their ability to call
function procedures, OPTION VARIABLE, and so forth. This note summarizes
these restriction for BASIC, COBOL, COBOL II, and FORTRAN.

There are two ways to pass a parameter to a procedure: by REFERENCE and
by VALUE. Passing a parameter by reference means that the 16-bit ADDRESS
of the variable is passed on the stack; the called procedure refers to
this parameter via indirect memory reference instructions (LOAD Q-n, I
and STOR Q-n, I). Passing a parameter by value means that the actual
contents of the variable (1, 2, or 4 words) are passed on the stack; the
called procedure refers to this parameter via direct memory reference
instructions (LOAD Q-n and STOR Q-n). As a result, if the called
procedure modifies a call-by-reference parameter, the caller's variable
is modified; for call-by-value parameters, only the "temporary" copy in
Q-minus storage is changed (the caller's version retains its old value).

OPTION VARIABLE is a facility that provides the ability to call a
procedure with a varying number of parameters. The called procedure will
expect a "bit mask" in Q-4 (and Q-5 if there are more than 16 parameters)
with bits set indicating which parameters are present. Parameters are
always passed in the same Q-minus addresses; the Q-minus locations for
parameters which are omitted have undefined values. It is up to the
called procedure to examine the bit mask and to access only those
parameters which are passed on any particular call.

A function procedure is one which returns a value in place of its name;
it therefore can be called from an expression and the value that it
returns will be used in the expression. This value is stored in the
stack just before (lower address) the parameters to the procedure. It is
the responsibility of the caller to dispose of or use the return value
properly. An example of such a procedure is the BINARY intrinsic.

Because the various languages have differing capabilities for dealing
with the various aspects of procedure calls, the SPL coder needs to be
aware of what each language does. Below are summarized the things that
need to be considered for each language.

COBOL

* All parameters are passed as WORD addresses (call-by-reference).
There is one exception: you can pass the MPE file number for a file

 opened with the OPEN verb by passing the FD-name to a procedure; this
is passed as a 16-bit integer by value.

* COBOL has no way of coping with the return value of a function
procedure; an extra value will be left on the stack which will
disrupt program execution. Do not call function procedures from
COBOL.

* There is no way for COBOL to generate the bit msk required by OPTION
VARIABLE procedures, so these cannot be called either. Since it is
impossible to pass a parameter from COBOL by value, you can't
generate the bit mask yourself.

* The following illustrates how the COBOL data types map to SPL data
types:

1-4 digits INTEGER

5-9 digits DOUBLE

COMPUTA- SPL has no PACKED DECIMAL capability; you must access
TIONAL-3 this as a byte array and generate the machine

instructions yourself. Note that COBOL passes a WORD
address for this; you will need to use an equivalenced

 byte array.

DISPLAY Passed as LOGICAL (array). You will usually want to
passed parameter and access the data this way.

Note that COBOL has no equivalent of REAL or LONG.

FORTRAN

* FORTRAN passes all parameters by reference unless the parameter is
enclosed in backslashes, in which case it is passed by value. You
may use a constant or expression in a call; if it is not enclosed in
backslashes, a temporary cell is created and the address of the cell
is passed.

* FORTRAN may call function procedures normally (external function).

* If you are calling an OPTION VARIABLE procedure, you must calculate
the bit mask required and pass it as a constant by value as the LAST
(or last two) parameter(s). See below for form of the bit mask.

* The following illustrates how FORTRAN data types map to SPL data
types:

|
INTEGER/INTEGER*2 | INTEGER
INTEGER*4 | DOUBLE
REAL | REAL
DOUBLE PRECISION | LONG
CHARACTER*n | BYTE ARRAY

* When calling an intrinsic, you should name the intrinsic in a SYSTEM
INTRINSIC statement. Then FORTRAN will take care of the OPTION
VARIABLE mask, passing of parameters by reference or value, and so
on.

BASIC

* BASIC passes all parameters by reference. There is no way to
override this; if you pass a constant or expression, a temporary cell
is created and the address of the cell is passed.

* BASIC, like COBOL, can't handle the return value from a function
procedure. Likewise, it has no ability to generate an OPTION
VARIABLE bit mask. Because all parameters are call-by-reference, you
cannot generate a proper bit mask.

* BASIC passes a parameter type descriptor just in front of (lower
memory address) the first parameter. The called procedure may use
this or ignore it--see the BASIC Interpreter reference manual for

addresses of the parameters.

* The following illustrates how BASIC data types map to SPL data types:

|
REAL/undeclared | REAL
LONG | LONG
INTEGER | INTEGER
String (x$) | BYTE ARRAY

Please keep in mind that the default constant in BASIC is type-REAL. To
pass an integer, you must either store the value into an integer variable
and pass the variable or use the following construct:

DEFINTEGERFNI(N)=N
...

CALL proc(FNI(4))

This will pass the 4 as an integer instead of a real number.

Arrays and strings have physical and logical length information stored in
the -2 and -1 elements of the array. (See the Basic Interpreter
Reference Manual.) The point to note here is that if you change the
length of a string or array, you must update the logical length so that
BASIC knows what you did. Two-dimensional arrays and string arrays have
length information at the beginning of each major dimension or string
element.

(See below for a discussion on converting byte addresses to word
addresses.)

COBOL II

* Much like FORTRAN, COBOL II passes all parameters by reference unless
the parameter is enclosed in backslashes, in which case it is passed
by value.

* All parameters are passed as WORD addresses unless an @ is used in
front ofthe parameter name, in which case a BYTE address is passed.

* If you are calling a function procedure, an extension to the CALL
statement (the GIVING clause, as in CALL proc USING parm GIVING
value) allows you to pick up the return value; you MUST use this
construct if you are calling a function procedure (even if you have
no use for the return value) so that the stack is decremented
properly.

* As with FORTRAN, you can generate the bit mask for OPTION VARIABLE
procedures by passing it by value as the last parameter(s).

* COBOL II allows you to call intrinsics via the CALL INTRINSIC
statement, relieving you of worrying about value v.reference, byte
addressing, the OPTION VARIABLE mask, and so forth.

* The data types are precisely the same as for COBOL, above.

OPTION VARIABLE mask

The OPTION VARIABLE MASK IS ONE WORD AT Q-4 (or two words at Q-5 and Q-4
if there are more than 16 parameters) that describes which parameters are

present. The RIGHTMOST bit (bit 15 in HP3000 nomenclature) corresponds
to the rightmost (last) parameter; bit 14 refers to the next-to-last, and
so forth on back to the first parameter. A 1 bit means the parameter is

accessed.

For example, suppose we have the following procedure head:
PROCEDURE upshift(string,length,result);
VALUE length;
BYTE ARRAY string;
INTEGER length,result;
OPTION VARIABLE;

and we wish to call this from FORTRAN. What would be the proper CALL
statement? Since there are three parameters, the last three bits of the
mask would be used. If all parameters were included, the call would look
like this:

CALL UPSHIFT(CHARSTRING, LEN ,IRESULT, %7L)

If, for example, the last parameter (RESULT) were omitted, the call would
be:

CALL UPSHIFT(CHARSTRING, LEN, 0, %6L)

The zero as the third parameter is required as a place holder.

Byte to word address conversion

It is sometimes desirable (or necessary) to convert a passed byte address
to a word address (so that the array can be passed to the file system
intrinsics, for example). You will find that if you attempt to
equivalence a word array back to a passed byte array you will get a
warning "ARITHMETIC RIGHT SHIFT EMITTED." What this is saying is that the
SPL compiler is emitting an ASR 1 instruction to convert the byte address
to a word address, and you are being warned because this is not always
the correct thing to do. The reason for this is that it is possible to
have byte addresses that point to the DB-minus area (in fact, BASIC does
this all the time) but it is impossible to tell if an address is in the
DB-minus area or is simply a very large DB-plus byte address without
looking at the registers. Here is a foolproof procedure that will
generate the proper word address given any byte address provided that the
byte address is not odd.

INTEGER PROCEDURE wordadr(byteadr);
ARRAY;
BYTE byteadr;
BEGIN
INTEGER S0=S;<<Address of S>>
tos:=tos:=@byteadr & LSR(1);<<Logical divide by 2>>
IF tos>@(,SO then tos.(0:1):=1;<<lf in DB-minus, fix sign>>
wordadr:=tos

END; <<wordadr>>

Sample call:

PROCEDURE sample(string);
BYTE ARRAY string;
BEGIN

POINTER stringp;<<Word pointer>>
@stringp; = wordadr(string);

...

