
NetIPC 3000/XL
Programmer’s Reference Manual

HP 3000 MPE/iX Computer Systems

Edition 3
Manufacturing Part Number: 5958-8600
E1089

U.S.A. October 1989

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Acknowledgments
MS-DOS is a U.S. registered trademark of Microsoft Corp.

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1987, 1988 and 1989 by Hewlett-Packard Company
2

Contents
1. NetIPC Fundamentals
NetIPC Concepts . 18

Sockets . 18
Connections . 18

Naming, Socket Registry and Destinations . 19
Descriptors . 20

Using NetIPC for Interprocess Communication. 22
Establishing a Level 4 Connection. 22

1. Creating a Call Socket. 22
2. Naming a Call Socket . 23
3. Looking Up a Call Socket Name. 24
4. Requesting a Connection. 24
5. Receiving a Connection Request. 25
6. Checking the Status of a Connection . 26
Connection Establishment Summary. 27

Connection Establishment Using IPCNAME . 27
Connection Establishment Using IPCDEST. 28

Sending and Receiving Data Over a Connection. 29
X.25 Access. 29
TCP Access. 30

Shutting Down Sockets and Connections . 31
X.25 Access. 31
TCP Access. 32

Additional NetIPC Functions . 33
Direct Access to Level 3 (X.25). 34

Features . 34
Limitations . 34
Switched Virtual Circuits (SVCs). 34

SVC Requestor Example . 35
SVC Server Example . 36

Permanent Virtual Circuits (PVCs) . 37
Access to the Call User Data (CUD) Field . 38
Fast Select Facility . 39

Fast Select Options . 39
Using Fast Select . 39

Facility Field . 42
Access to X.25 Protocol Features . 43

NetIPC Between MPE-XL and MPE-V Systems . 44

2. Cross-System NetIPC
Software Required . 46
Calls Affecting the Local Process. 47
3

Contents
Calls Affecting the Remote Process .49
HP 3000 to HP 1000 NetIPC .49
HP 3000 to HP 9000 NetIPC .51
HP 3000 to PC NetIPC. .53

NetIPC Error Codes .54
Program Startup .55

HP 3000 Program Startup .55
HP 1000 Program Startup .55
HP 9000 Program Startup .55
PC NetIPC Program Startup. .56

3. NetIPC Intrinsics
Programming Considerations .58

Compatibility vs. Native Mode .58
Option Variable. .58
 Syntax .58
Capabilities. .59
User-specified Protocol Addressing .59

X.25 Catch-all Socket .59
Common Parameters .60

Flags Parameter .60
Opt Parameter .60
Data Parameter .62

Compatibility Mode .63
Native Mode .64
DLEN Parameter .64

Result Parameter .64
Condition Codes .64

Summary of NetIPC Intrinsics .65
NetIPC Reference Pages .66
ADDOPT .66

Syntax .66
Parameters .66
Description .67

INITOPT .68
Syntax .68
Parameters .68
Description .68

IPCCHECK .69
Syntax .69
Parameters .69
Description .69
4

Contents
 IPCCONNECT. 70
Syntax . 70
Parameters . 70
Description. 73
Protocol-Specific Considerations . 73
X.25 Considerations . 74
TCP Access . 74
Cross-System Considerations for TCP. 74

HP 3000 to HP 1000: . 75
HP 3000 to HP 9000: . 75
HP 3000 to PC NetIPC: . 75

IPCCONTROL . 76
Syntax . 76
Parameters . 76
Description. 81

Protocol-Specific Considerations. 82
X.25 Considerations . 83

IPCCREATE . 84
Syntax . 84
Parameters . 84
Description. 86
Protocol-Specific Considerations . 86

X.25 Considerations. 86
TCP. 87
Cross-System Considerations for TCP . 87

IPCDEST . 88
Syntax . 88
Parameters . 88
Description. 90
Protocol-Specific Considerations . 90

X.25 Considerations. 90
Cross-System Considerations For TCP . 90

IPCERRMSG. 91
Syntax . 91
Parameters . 91
Description. 91

IPCGET. 92
Syntax . 92
Parameters . 92
Description. 92

IPCGIVE . 93
Syntax . 93
5

Contents
Parameters .93
Description .93

IPCLOOKUP .95
Syntax .95

Parameters .95
Description .96

IPCNAME .97
Syntax .97
Parameters .97
Description .97

IPCNAMERASE .98
Syntax .98
Parameters .98
Description .98

IPCRECV .99
Syntax .99
Parameters .99
Description .102
Protocol-Specific Considerations .103
X.25 Considerations .104

TCP .104
Cross-System Considerations for TCP. .105

HP 3000 to HP 1000: .105
HP 3000 to HP 9000: .105
HP 3000 to PC NetIPC: .105

 IPCRECVCN. .107
Syntax .107
Parameters .107
Description .110
Protocol-Specific Considerations .112

X.25 Considerations .112
TCP .113
Cross-System Considerations For TCP .113

HP 3000 to HP 1000: .113
HP 3000 to HP 9000: .113
HP 3000 to PC NetIPC .114

IPCSEND .115
Syntax .115
Parameters .115
Description .116
Protocol-Specific Considerations .117

X.25 Considerations .117
6

Contents
TCP. 118
Cross-System Considerations For TCP . 118

HP 3000 to HP 1000: . 118
HP 3000 to HP 9000: . 118
HP 3000 to PC NetIPC: . 118

IPCSHUTDOWN . 119
Syntax . 119
Parameters . 119
Description. 120
Protocol-Specific Considerations . 120
X.25 Considerations . 120
TCP . 121

Cross-System Considerations For TCP . 122
HP 3000 to HP 1000: . 122
HP 3000 to HP 9000: . 122
HP 3000 to PC NetIPC: . 122

OPTOVERHEAD . 123
Syntax . 123
Parameters . 123
Description. 123

READOPT. 124
Syntax . 124
Parameters . 124
Description. 125

Asynchronous I/O . 126
Steps for Programming with Asynchronous I/O . 127

IO[DONT]WAIT . 128
Syntax . 128
Parameters . 128
Description. 128

4. NetIPC Examples
Example 1 . 132

Program 1A . 133
Program 1B . 135

Example 2 . 139
Program 2A (Vector1) . 139
Program 2B (Vector2) . 143

Example 3 . 148
Program 3A (X25CHECK) . 148
Program 3B (X25SERV) . 155

Example 4 . 159
7

Contents
Program 4A (SNMIPC1) .159
Program 4B (SNMIPC2) .165

A. IPC Interpreter (IPCINT)
Using IPCINT .172
Comparison of IPCINT to Programmatic NetIPC .173

Example: Programmatic Access to X.25 .173
Example: IPCINT for X.25 Direct Access .173

Syntax of IPCINT .174
Abbreviated Intrinsic Names. .174
Pseudovariables .175
Prompts for Parameters. .175
Call User Data Field .175

Sample IPCINT Session .176

B. Cause and Diagnostic Codes
Diagnostic Codes in X.25 Clear Packets. .182
Diagnostic Codes From a Remote Host .183

C. Error Messages
NetIPC Errors .188

SOCKERRS .188
Submitting an SR .204

D. Migration From PTOP to NetIPC and RPM
Creating Remote Processes .208

Creating Remote Processes: In the Master Program .208
Syntax .208
Creating Remote Processes: In the Slave Program .210
Syntax .210
Syntax .210

Exchanging Data .211
Exchanging Data: In the Master Program .212
Syntax .213
Syntax .213
Exchanging Data: In the Slave Program .213
Syntax .214
Syntax .214

Terminating Processes .215
Syntax .215

Example: Client-Server Application .216
PCLIENT: Sample PTOP Master Program .217
8

Contents
PSERVER: Sample PTOP Slave Program. 220
RCLIENT: Sample NetIPC/RPM Master Program . 223
RSERVER: Sample NetIPC/RPM Slave Program. 229

E. C Program Language Considerations
C Program Language Differences . 234

Parameters . 234
Example . 234

Glossary

 Index
9

Contents
10

Figures
Figure 1-1. Telephone Analogy . 18
Figure 1-2. IPCCREATE (Processes A and B) . 23
Figure 1-3. IPCNAME (Process B) . 23
Figure 1-4. IPCLOOKUP (Process A). 24
Figure 1-5. IPCCONNECT (Process A) . 25
Figure 1-6. IPCRECVCN (Process B) . 26
Figure 1-7. IPCRECV (Process A) . 27
Figure 1-8. Establishing a Connection (Summary) . 28
Figure 1-9. Using IPCDEST . 29
Figure 1-10. SVC Requestor Processing Example . 36
Figure 1-11. SVC Server Processing Example. 37
Figure 1-12. NS X.25 Call User Data Field (four bytes) . 38
Figure 1-13. Fast Select No Restriction . 40
Figure 1-14. Fast Select Restricted. 41
Figure 3-1. OPT Parameter Structure . 61
Figure 3-2. Option Entry Structure.. 62
Figure 3-3. Data Location Descriptor — Vectored Data . 63
11

Figures
12

Tables
Table 1-1. Descriptor Summary . 21
Table 2-1. NetIPC Calls Affecting the Local Process. 47
Table 2-2. NetIPC Calls Affecting the Remote Process . 49
Table 2-3. Cross-System Calls (HP 3000 — HP 1000). 49
Table 2-4. Cross-System Calls (HP 3000 — HP 9000 . 51
Table 2-5. Cross-System Calls (HP 3000 — PC) . 53
Table 3-1. NetIPC Intrinsics . 65
Table 3-2. IPCCONNECT Protocol Specific Parameters. 73
Table 3-3. readdata Meanings . 82
Table 3-4. IPCCONTROL Protocol Specific Parameters . 82
Table 3-5. IPCCREATE Protocol Specific Parameters . 86
Table 3-6. IPCDEST Protocol Specific Parameters . 90
Table 3-7. IPCRECV Protocol Specific Parameters . 103
Table 3-8. TCP Urgent and More Data Bit Combinations . 105
Table 3-9. IPCRECVCN Protocol Specific Parameters . 112
Table 3-10. IPCSEND Protocol Specific Parameters . 117
Table 3-11. IPCSEND Protocol Specific Parameters . 120
Table A-1. NetIPC Intrinsics IPCINT Abbreviations . 174
Table B-1. Diagnostic Codes Sent/Received in Clear Packets. 182
Table B-2. X.25 Diagnostic Codes From a Remote Host . 183
13

Tables
14

Preface
Network InterProcess Communication (NetIPC) is a set of
programmatic calls that can be used to exchange data between
peer-to-peer processes on the same or different nodes in an
Hewlett-Packard NS network. Any process can initiate communication,
and any process can send or receive messages by means of common
intrinsics. NetIPC 3000/XL is a version of NetIPC that can be used in
programs written for MPE XL based computer systems.

NetIPC provides programmatic access to the Transmission Control
Protocol (TCP), which is the Transport-Layer protocol used by
NS 3000/XL link products.

NetIPC 3000/XL is provided with the purchase of any NS 3000/XL link
product. With the purchase of the X.25 XL System Access link product,
NetIPC access to TCP (level 4) and X.25 (level 3) is provided.

Intended
Audience of this
Manual

In order for you to use NetIPC, you should be familiar with MPE XL,
the operating system on which NetIPC 3000/XL can be used. You
should also be familiar with the TCP protocol and a high-level language
such as Pascal.

If you are using direct access to level 3 (X.25), you should be familiar
with the X.25 protocol and the HP 3000 products that provide X.25
network communication.

Organization of
the Manual

Following is a summary of how this manual is organized:

• Chapter 1 , “NetIPC Fundamentals,” explains how to establish
connections, send and receive data over connections, and shutdown
connections between processes using NetIPC TCP access or X.25
level 3. This chapter also introduces some of the NetIPC calls.

• Chapter 2 , “Cross-System NetIPC,” describes what NetIPC calls
need to be considered for a cross-system application (using TCP
access) between an HP 3000 Series 900 and either an HP 1000,
HP 9000, or personal computer.

• Chapter 3 , “NetIPC Intrinsics,” provides a detailed description of
each NetIPC intrinsic, in alphabetical order. This chapter also
explains programming considerations, syntax, and the structure and
function of several parameters that are common to multiple NetIPC
intrinsics.

• Chapter 4 , “NetIPC Examples,” provides sample programs using
NetIPC intrinsics for peer-to-peer process communication for both
TCP access and X.25 level 3 access.
15

• Appendix A , “IPC Interpreter (IPCINT),” describes how to use the
IPCINT software utility which provides an interactive interface to
the NetIPC intrinsics used for programmatic access to X.25 level 3.

• Appendix B , “Cause and Diagnostic Codes,” lists the possible cause
and diagnostic codes generated by NS X.25 packets.

• Appendix C , “Error Messages,” includes a list of SOCKERRs and
the corresponding protocol module errors returned in the
IPCCHECK intrinsic, and provides a table of NetIPC errors
(SOCKERRs) returned in the result parameter of the NetIPC
intrinsics.

• Appendix D , “Migration From PTOP to NetIPC and RPM,” explains
how to translate programs written in the Program-to-Program
communication service to NetIPC and RPM.

• Appendix E , “C Program Language Considerations,” describes
program language differences that affect how NetIPC intrinsics are
used in programs written in C programming language.

Related
Publications

The following publications contain additional information that can
assist you in using NetIPC.

NS 3000/XL • Using NS 3000/XL Network Services Manual

• NS 3000/XL Error Messages Reference Manual

• NS 3000/XL Configuration, Planning and Design Guide

• NS 3000/XL NMMGR Screens Reference Manual

• NS Cross-System NFT Reference Manual

• NS Cross-System Network Manager Reference Manual

X.25 Networking • X.25 XL System Access Configuration Guide

• Using the OpenView DTC Manager

MPE XL • MPE XL Commands Reference Manual

• MPE XL Intrinsics Reference Manual

• HP PASCAL Reference Manual

• HP COBOL II/XL Reference Manual

• FORTRAN 77/XL Reference Manual Supplement
16

1 NetIPC Fundamentals
Network Interprocess Communication (NetIPC) is a facility that
enables processes on the same or different nodes to communicate with
each other using a series of programmatic calls.

NetIPC 3000/XL can be purchased as part of any NS 3000/XL link
product. It provides access to the Transmission Control Protocol (TCP),
the Transport Layer protocol used in NS 3000/XL link products. Over
an NS X.25 network, NetIPC provides access to X.25 protocol features
at level 3.

To communicate by means of NetIPC, processes must be executing
concurrently. One or more users (or programs) can run these processes
independently, or one process can initiate the execution of another by
using the Remote Process Management (RPM) Network Service. In
conjunction with NetIPC, RPM can be used to manage distributed
applications. Refer to the Using NS 3000/XL Network Services manual
for information about RPM.

Processes that use NetIPC calls gain access to the communication
services provided by the network protocols of NS 3000/XL. NetIPC does
not encompass a protocol of its own; rather, it acts as a generic interface
to the protocols underlying the NS 3000/XL network services.

This chapter is organized into the following major sections:

• NetIPC Concepts

• Using NetIPC for Interprocess Communication

• Direct Access to Level 3, X.25

• Considerations for using NetIPC between MPE-V and MPE XL
HP 3000 systems.
17

NetIPC Fundamentals
NetIPC Concepts
NetIPC Concepts
The following paragraphs describe the concept of sockets, and the
NetIPC terms used to describe a NetIPC connection.

Sockets

NetIPC uses a data structure called a socket to create a connection to a
NetIPC process on another system. Even though this process may
reside upon the same node, the process that receives the NetIPC call is
known as a remote system. The NetIPC calls are used to establish
connections and manipulate sockets so that data can be exchanged with
other processes. The Transmission Control Protocol (Transport Layer)
(TCP) regulates the transmission of data to and from these data
structures. When direct access to level 3 (X.25) is used, the X.25
protocol regulates the transmission of data between sockets. Although
data must pass through the control of lower-level protocols, these
details are transparent to NetIPC processes when they send and
receive data.

Connections

Before a connection can be established between two NetIPC processes,
each process must create a call socket. A call socket is a type of socket
that is roughly analogous to a telephone handset with multiple buttons
or extensions. NetIPC processes engage in a three-way handshake over
the connection formed by their respective call sockets in order to create
a virtual circuit (VC) socket at each process. A call socket can be
thought of as one of the steps needed to build a VC socket.The VC
sockets created by this dialogue are the endpoints of a new connection
called a virtual circuit or virtual circuit connection. A call socket
is analogous to a telephone with multiple extensions, and a VC socket is
analogous to one of the telephone extensions as shown in Figure 1-1.

Figure 1-1 Telephone Analogy

VC VC VC VCVC VC VC VC
VC

SOCKETS

VIRTUAL CIRCUIT

CALL SOCKET CALL SOCKET
18 Chapter 1

NetIPC Fundamentals
NetIPC Concepts
Virtual circuits are the basis for interprocess communication. Once a
virtual circuit is established, the two processes that created it may use
it to exchange data. Two processes pass data only through VC sockets,
not through call sockets. For example, a process may use one call socket
to establish multiple VC sockets; these VC sockets are then used to
communicate with different processes. A call socket may even be shut
down once a virtual circuit connection is established without affecting
communication between the processes. A virtual circuit has the
following properties:

• It provides reliable service, guaranteeing that data will not be
corrupted, lost, duplicated or received out of order.

• Sharing of connections is allowed for sends only. A process may allow
up to 8 connections to be shared. There is no limit as to how many
processes may send on a shared connection though only one at a
time. Sharing a connection can only be done in Privileged Mode.

Naming, Socket Registry and Destinations

When a NetIPC process initiates a connection with a peer process, it
must reference a call socket that was created by that peer process. In
order to gain access to the call socket of another process, a NetIPC
process must reference the socket name or the address of that call
socket through IPCDEST.

NetIPC processes associate ASCII-coded names with the call sockets
they create and insert this information into the socket registry of their
node. Each NS 3000/XL node has a socket registry that contains a
listing of all the named call sockets that reside at that node. In keeping
with the telephone analogy begun earlier, the socket registry could be
compared to a telephone directory: a call socket is associated with a
name and inserted in the local socket registry in much the same way as
a telephone number is associated with a person’s name and placed in a
local telephone directory.

NetIPC processes use the socket registry to access call sockets by
passing a socket name and the corresponding node name to the socket
registry software. The socket registry determines which socket is
associated with the name specified and translates the address of that
socket into a destination descriptor which it returns to the inquiring
process.

A destination descriptor is a data structure which carries address
information. Specifically, when a destination descriptor is returned to a
process, it tells the process:

• how to get to the node where the referenced socket resides

• how to get to the referenced socket at that node. Using the socket
registry to gain access to call socket of another process is similar to
using directory assistance to find a person’s phone number. The
Chapter 1 19

NetIPC Fundamentals
NetIPC Concepts
resulting destination descriptor, like a telephone number, is then
used to direct a caller to a particular destination.

Descriptors

NetIPC processes reference three types of descriptors: 1) call socket
descriptors, 2) destination descriptors, and 3) virtual circuit socket
descriptors. Descriptors are returned to processes when certain NetIPC
calls are invoked (see Table 1-1). The following is an explanation of the
descriptors, the NetIPC call, or calls, that are used to obtain them, and
the terminology used to refer to these descriptors in the syntax and
parameter statements:

• Call Socket Descriptor. A call socket descriptor describes a call
socket. A process obtains a call socket descriptor by invoking
IPCCREATE (to create a call socket) or IPCGET (to get a descriptor
given away by another process). When a call socket descriptor is
obtained with either method, the call socket is said to be owned by
the calling process. The term calldesc refers to a call socket
descriptor parameter.

• Destination Descriptor. A destination descriptor describes a
destination socket. The descriptor points to addressing information
that is used to direct requests to a specified call socket at a specified
node. A process obtains a destination descriptor by invoking the
command IPCLOOKUP (to look up the name of a call socket in a
specific socket registry) or IPCDEST (if the address of the destination
call socket is known). The term destdesc refers to a destination
descriptor parameter.

• VC Socket Descriptor. A VC socket descriptor describes a VC
socket. A VC socket is the endpoint of a virtual circuit connection
between two processes. A VC socket descriptor is returned by
IPCCONNECT and IPCRECVCN during the creation of a connection
between two call sockets. A process can also obtain a VC socket
descriptor given away by another process by invoking IPCGET. The
term vcdesc refers to a VC socket descriptor parameter.
20 Chapter 1

NetIPC Fundamentals
NetIPC Concepts
Table 1-1 Descriptor Summary

Type of
Descriptor

Parameter
Name

Description Returned as
Output From

Call socket
descriptor

calldesc Refers to a call socket. A call socket is
used to build a VC socket.

IPCCREATE
IPCGET

Destination
descriptor

destdesc Refers to a destination socket. A
destination socket points to
addressing information that is used
to direct requests to a certain call
socket at a certain node.

IPCLOOKUP
IPCDEST

VC socket
descriptor

vcdesc Refers to a VC socket. A VC socket is
the endpoint of a virtual circuit
connection between two processes.

IPCCONNECT
IPCRECVCN
IPCGET
Chapter 1 21

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
Using NetIPC for Interprocess
Communication
The following paragraphs describe the tasks for using NetIPC for
process-to-process communication in programs which are:

• Establish a connection.

• Send and receive data over the connection.

• Shut down the connection.

These discussions are based on access to level 4 (TCP) but most
principles apply to direct access to level 3 (X.25). Information specific to
X.25 is noted in the discussion.

After establishing a virtual circuit, you can use other NetIPC functions
which are described in this chapter under the heading, “Additional
NetIPC Functions”.

Establishing a Level 4 Connection

The following paragraphs are a call-by-call explanation of the dialogue
through which a virtual circuit connection is built. This example uses
the socket registry facility by establishing names for call sockets with
IPCNAME and retrieving the names with IPCLOOKUP. Figure 1-9 shows
the sequence of calls to use if the address of the socket is known (using
IPCDEST).

Only two processes are shown in this example. Either or both of the
processes shown can establish virtual circuit connections with other
processes. Secondary or auxiliary connections can also be set up
between the same two processes.

NOTE Both of the processes in the following dialogue are assumed to be
created and running at their respective nodes. NetIPC does not include
a call to schedule remote processes. Refer to the chapter, Remote
Process Management, in the Using NS 3000/XL Network Services
manual for more information about initializing remote processes with
RPM.

1. Creating a Call Socket

Interprocess communication is initiated when Process A and Process B
each create a call socket by invoking the NetIPC call IPCCREATE (see
Figure 1-2). As explained previously, a call socket is roughly analogous
to a telephone with multiple extensions (see Figure 1-1). IPCCREATE
returns a call socket descriptor to the calling process in its calldesc
parameter that describes the call socket, or “telephone extension,” that
22 Chapter 1

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
the process has created. This call socket descriptor is then used in
subsequent NetIPC calls.

Figure 1-2 IPCCREATE (Processes A and B)

2. Naming a Call Socket

Process B associates a name with its call socket by calling IPCNAME(see
Figure 1-3). When a call socket is named, this information is placed in
the socket registry at the local node. The name Process B assigns to its
call socket must also be known to Process A because Process A must
reference it later in its IPCLOOKUP call. (When a socket name is known
to both processes in this way, it is called a well-known name.)
Although call sockets do not have to be named, a process cannot gain
access to the socket of another process if the socket is not named (unless
the address of that socket is known, in which case IPCDEST is used).
The socket must be named and be recorded in the socket registry at the
node of Process B when Process A calls IPCLOOKUP.

Figure 1-3 IPCNAME (Process B)

Call
Socket

Descriptor

Call
Socket

Descriptor

PROCESS A PROCESS B

Call
Socket

Descriptor

Call
Socket

Descriptor

PROCESS A PROCESS B

SOCKET REGISTRY

“NAME”
Chapter 1 23

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
3. Looking Up a Call Socket Name

Process A must reference the call socket of Process B by its name in the
call to IPCLOOKUP to “look up” the name of the call socket in the socket
registry at the node where Process B resides. IPCLOOKUP returns a
destination descriptor in its destdesc parameter (see Figure 1-4). The
destination descriptor indicates the location of the destination call
socket which is owned by Process B. IPCLOOKUPis similar to a telephone
company’s directory assistance service: Process A calls the “operator”
(IPCLOOKUP), and gives him/her a “city” (location parameter) and a
“name” (socketname parameter). Using the “city,” that is, the node
name or environment ID, the operator looks for the name in the proper
“telephone directory” (socket registry). Once the name is found, the
operator returns a “telephone number” (destdesc parameter) to the
caller.

Figure 1-4 IPCLOOKUP (Process A)

4. Requesting a Connection

Process A specifies the destination descriptor returned by IPCLOOKUP
and the call socket descriptor returned by IPCCREATE in its call. With
these two parameters, IPCCONNECTrequests a virtual circuit connection
between Process A and Process B (see Figure 1-5). This could be
compared to dialing a phone number. IPCCONNECT then returns a VC
socket descriptor in its vcdesc parameter that describes the VC socket
endpoint of the connection at Process A.

Call
Socket

Descriptor

Call
Socket

Descriptor

PROCESS A PROCESS B

SOCKET REGISTRY

“NAME”

Destination
Descriptor
24 Chapter 1

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
Figure 1-5 IPCCONNECT (Process A)

5. Receiving a Connection Request

Using the call socket descriptor returned by its IPCCREATE call,
Process B calls IPCRECVCN to receive any connection requests. In this
example, Process B receives a connection request from Process A.
(Process A “dialed its telephone” to call Process B when it called
IPCCONNECT.) IPCRECVCN returns a VC socket descriptor in its vcdesc
parameter (see Figure 1-6). This VC socket is the endpoint of the
virtual circuit at Process B. The connection will not be established,
however, until Process A calls IPCRECV. In the telephone analogy,
IPCRECVCN is similar to picking up a ringing phone and saying “hello”.

Call
Socket

Descriptor

Call
Socket

Descriptor

PROCESS A PROCESS B

SOCKET REGISTRY

“NAME”

Destination
Descriptor

VC
Socket

Descriptor
Chapter 1 25

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
Figure 1-6 IPCRECVCN (Process B)

6. Checking the Status of a Connection

Process A calls IPCRECV using the VC socket descriptor returned by its
IPCCONNECT call. IPCRECV returns the status of the connection
(successful/unsuccessful) initiated by IPCCONNECT. If the status is
successful, the connection has been established and Process A and
Process B can “converse” over the new virtual circuit (see Figure 1-7).
Compared to the telephone system, IPCRECVis similar to saying “hello”
in response to the “hello” from the other end of the phone. IPCRECV can
also be used to receive data. This function is described in the IPCRECV
call discussion later in this section.

Call
Socket

Descriptor

Call
Socket

Descriptor

PROCESS A PROCESS B

SOCKET REGISTRY

“NAME”

Destination
Descriptor

VC
Socket

Descriptor

VC
Socket

Descriptor
26 Chapter 1

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
Figure 1-7 IPCRECV (Process A)

Connection Establishment Summary

The following discussions summarize the methods for establishing
connections using NetIPC intrinsics.

Connection Establishment Using IPCNAME <Figure 1-8
illustrates the sequence of NetIPC calls that is used to establish a
virtual circuit connection. This figure summarizes the information
presented in previous Figures.

Call
Socket

Descriptor

Call
Socket

Descriptor

PROCESS A PROCESS B

SOCKET REGISTRY

“NAME”

Destination
Descriptor

VC
Socket

Descriptor

VC
Socket

DescriptorVIRTUAL CIRCUIT CONNECTION
Chapter 1 27

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
Figure 1-8 Establishing a Connection (Summary)

Connection Establishment Using IPCDEST Figure 1-9 illustrates
the sequence of NetIPC calls that is used to establish a virtual circuit
connection when the protocol relative address of the remote node is
known.

PROCESS A PROCESS B

IPCCREATE

IPCLOOKUP
IPCCONNECT

IPCRECV

IPCCREATE

IPCNAME

IPCRECVCN

1) Create call socket
2) “Look up” name
3) Request connection
4) Check status of connection

1) Create call socket
2) Name call socket
3) Receive connection request
28 Chapter 1

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
Figure 1-9 Using IPCDEST

Sending and Receiving Data Over a Connection

Once a virtual circuit connection is established, the two processes can
exchange data using the NetIPC calls IPCSEND and IPCRECV. Either
process can send or receive data. IPCSEND is used to send data on an
established connection; it is analogous to “speaking” over a telephone
connection. IPCRECV is used to receive data on an established
connection; the use of IPCRECVis similar to “listening” at our telephone
handset. (Note that IPCRECV has a dual function: to complete a virtual
circuit connection as well as to receive data on a previously established
connection.)

X.25 Access

Direct access to level 3 (X.25) provides message mode transfer. Stream
mode is not supported for X.25. Each IPCRECV returns a complete
message (provided the data length specified is of sufficient size). The
X.25 protocol signals the end of message and NetIPC buffers the
message until an IPCRECV (or required IPCRECVs), retrieve it.

PROCESS A PROCESS B

IPCCREATE

IPCRECV

IPCCREATE

IPCRECVCN

1) Create call socket
2) Create destination descriptor
3) Request connection
4) Check status of connection

1) Create call socket

2) Receive connection request

IPCDEST
IPCCONNECT
Chapter 1 29

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
TCP Access

For TCP access, all data transfers between user processes are in stream
mode. In stream mode, data is transmitted as a stream of bytes with no
end-of-message markers. This means that the amount of data received
in an individual IPCRECVis not necessarily equivalent to the amount of
data sent in an IPCSENDcall. In fact, the data received may contain part
of a message or even several messages sent by multiple IPCSEND calls.

You specify the maximum number of bytes you are willing to receive
through a parameter of IPCRECV. When the call completes, that
parameter contains the number of bytes actually received. This will
never be more than the maximum amount you requested, but it may be
less. The data you receive will always be in the correct order (in the
order that the messages were sent), but there is no indication of where
one message ends and the next one starts. It is up to the receiving
process to check and interpret the data it actually receives. An
application which does not need the information in the form of
individual messages can simply process the data on the receiving side.

If an application is concerned about messages, the programmer must
devise a scheme that allows the receiving side to determine what the
messages are. If the messages are of a known length, the receiving
process can execute a loop which calls IPCRECV with a maximum
number of bytes equal to the length of the portion of the message not
yet received.

Since IPCRECV returns to you the actual number of bytes received, you
can continue to execute the loop until all the bytes of the message have
been received. The following Pascal program fragment demonstrates
this idea:

received_len := 0;
while (received_len < msg_length) and (errorcode = 0) do

begin
data_len := msg_length - received_len;
ipcrecv(connection, tempbfr, data_len,,,errorcode);
if errorcode = 0

then strmove(data_len,tempbfr,1,databfr,
received_len+1);

received_len := received_len + data_len;
end;

In the above example, the Pascal function strmove takes each piece of
the message received in tempbfr and concatenates it to the portion of
the message already in databfr . Upon exiting the loop, the entire
message has been stored in databfr .

If the length of the messages are not known, the sending side could
send the length of the message as the first part of each message. In that
case, the receiving side must execute two IPCRECV loops for each
message: first to receive the length and then to receive the data. An
example of this technique is shown at the end of this section.
30 Chapter 1

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
Shutting Down Sockets and Connections

The NetIPC call IPCSHUTDOWN releases a descriptor and any resources
associated with it. IPCSHUTDOWN can be called to release a call socket
descriptor, a destination descriptor, or a VC socket descriptor. Because
system resources are being used whenever descriptors exist, you should
probably release them when they are no longer needed.

The call socket is needed as long as a process is expecting to receive a
connection request on that socket. A process which receives a connection
request can release the call socket any time after the IPCRECVCN
connection request, as long as no other connection requests are
expected for that call socket.

Similarly, a process which requests a connection can release its call
socket any time after the call to IPCCONNECT, as long as it is not
expecting to receive any more connection requests for that socket.

For TCP only, a process does not need to create a call socket (via
IPCCREATE) at all; instead, it can use a temporary call socket by calling
IPCCONNECT without specifying a call socket descriptor. (A temporary
call socket is automatically destroyed when the IPCCONNECT call
completes.) A process which requests a connection can also release the
destination socket any time after the call to IPCCONNECT.

For example, in the section “Establishing a Connection”, Process A no
longer needs the destination descriptor after calling IPCCONNECT and
can use IPCSHUTDOWN to release the destination descriptor. In addition,
if Process A does not expect to request additional connections, it can
also call IPCSHUTDOWN a second time to release the call socket.

Process B, as described in “Establishing a Connection”, can call
IPCSHUTDOWN to release its call socket any time after the call to
IPCRECVCN (see “Receiving a Connection Request”). Process B should
release its call socket only if it does not want to establish additional
connections.

Before a process terminates, it should terminate its virtual circuit
connections by releasing its VC sockets with IPCSHUTDOWN. If a process
does not release its VC sockets before terminating, the system releases
them when the process terminates. Because IPCSHUTDOWN takes effect
very quickly, all of the data that is in transit on the connection is lost
when the connection is shut down. As a result, if there is a possibility
that data is in transit on the connection, the processes that share a
connection must cooperate to ensure that no data is lost.

X.25 Access

X.25 direct access to level 3 does not support the graceful release bit.
Using IPCSHUTDOWN on a VC socket descriptor causes a clear packet to
be sent.
Chapter 1 31

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
To ensure that no data packets are lost before the clear packet is sent,
the D bit option can be set in the last IPCSEND. This assures end-to-end
acknowledgment of this message before issuing the IPCSHUTDOWN to
clear the virtual circuit.

Another method to ensure no lost packets is to send an unimportant
message as the last message. The following example shows the calling
sequence you would use. Note that the “dummy” message may or may
not be received by the last IPCRECV. If the last message is not received,
a SOCKERR 67 “CONNECTION FAILURE DETECTED” is returned.

IPCSEND ---> IPCRECV
(important message) (important message

received)

<---- IPCSEND
(dummy message sent)

IPCRECV
(receive dummy IPCSHUTDOWN

message)

IPCSHUTDOWN

TCP Access

To ensure that no data is lost, the IPCSHUTDOWNgraceful release bit can
be set, and the following sequence of steps can be followed:

• Process A calls IPCSHUTDOWN and sets bit 17, the graceful release
flag. Process B receives a message (with an IPCRECV) informing it
that Process A has called for graceful release. (This message is sent
to B automatically when A sets the graceful release flag.) Process A
enters a simplex-in state; meaning, it can receive, but not send, data.
Process B will enter a simplex-out state, that is, it can send but
cannot receive data. As a result, data that is in transit to Process A
(which initiated the graceful release shutdown) will reach Process A
without being lost.

• Next, one of two steps must occur to completely shut down the
connection. Either (1) Process B initiates with or without its own
graceful release or (2) Process A calls IPCSHUTDOWNwithout the
graceful release option.

• This releases Process A’s VC socket descriptor and shuts down the
connection. In this case, Process B must also release its socket
descriptor by calling IPCSHUTDOWN.

If the graceful release option is not used (this may be necessary, for
example, if the remote node does not support graceful release) the
following steps should be followed when shutting down a connection.

• Process A sends a “last message” to Process B via an IPCSEND call.
This message contains data that is recognized by Process B as a
32 Chapter 1

NetIPC Fundamentals
Using NetIPC for Interprocess Communication
termination request, and may also contain data to be processed by
Process B. Process A then calls IPCRECV.

• Process B receives the message from Process A with a call to
IPCRECV and sends a “confirmation message” to Process A via
IPCSEND. This message contains data that indicates to Process A
that it is okay to terminate the connection, and may also contain
data to be processed by Process A. Process B then calls IPCRECV.

• Process A receives a “confirmation message” from Process B via the
call to IPCRECV and calls IPCSHUTDOWN to release its VC socket
descriptor and shut down the connection.

• The IPCRECV call of Process B completes with a result parameter
value of 64 (“REMOTE ABORTED THE CONNECTION”). It then
calls IPCSHUTDOWN to release its VC socket.

Additional NetIPC Functions

Once a virtual circuit is established between processes, descriptors can
be given away, names can be erased, and other functions can be
performed. The following NetIPC calls are provided in addition to those
described in the previous paragraphs to enable you to perform these
additional functions. A brief introduction to each call and its use
follows. A complete description of NetIPC calls is provided in Chapter
3 , “NetIPC Intrinsics.”

• IPCCONTROL. Performs special operations on sockets such as
enabling synchronous mode, and changing asynchronous timeout
values.

• IPCDEST. Returns a destination descriptor which can be used to
send messages to another process. This is an alternative to naming
the descriptor with IPCNAME and acquiring it with IPCLOOKUP.

• IPCGET. The companion call to IPCGIVE . Receives a call socket or
virtual connection given away by a process that has called IPCGIVE .
This call is similar to IPCLOOKUP because it enables your process to
acquire a descriptor that can be used in subsequent NetIPC calls.

• IPCGIVE. The companion call to IPCGET. Releases ownership of a
descriptor to NetIPC so that it can be acquired by another process
via a call to IPCGET.

• IPCNAMERASE. Does the reverse of IPCNAME: it removes a name
associated with a call socket from the socket registry. Only the owner
of a call socket descriptor can remove its name.
Chapter 1 33

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
Direct Access to Level 3 (X.25)

Features

The following features of direct access to level 3 (X.25) with NetIPC are
described in this section:

• Supports switched virtual circuits (SVCs) and permanent virtual
circuits (PVCs).

• Provides access to the call user data (CUD) field in call packets.

• Provides access to X.25 addresses in call packets.

• Creation of a catch-all socket which can be used to accept data
packets with no CUD or unrecognized CUD.

• Provides ability to send up to 128 bytes of call user data using the
fast select facility.

• Provides ability to append, generate and examine the facility field in
call packets.

• Provides access to X.25 protocol features.

• Allows direct specification of the target X.25 address or PVC
number.

Limitations

Limitations using direct access to level 3 (X.25) are:

• Intranet use only (level 4 provides internet and intranet
connections)

• One virtual connection socket accesses one X.25 virtual circuit for
data transfers over X.25. Multiplexing of connections over a virtual
circuit is not supported.

• IPCNAME, IPCNAMERASE and IPCLOOKUP are not supported.

Switched Virtual Circuits (SVCs)

Switched virtual circuits are defined as a logical association that only
exists as long as the connection does. Both processes create their own
local call sockets using IPCCREATE that can be associated with protocol
relative addresses. To establish a connection with a specific server
process, a request process must include a server protocol relative
address in the IPCDEST intrinsic. Alternatively, an opt parameter in
IPCCREATEcan be used to create a catch-all socket where any incoming
34 Chapter 1

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
request for a connection can be accepted (whether or not the server
protocol relative address exists). A catch-all socket receives incoming
call requests that do not match any other given protocol relative
address. One catch-all socket can be defined for each X.25 network.

As an example, two programs communicating over an SVC can be
designated as the requester and server. Both programs need to be
running in order for communication to occur. Figure 1-10 shows the
order of NetIPC calls used for a requestor program and the X.25
packets generated as a result of the calls. Figure 1-11 describes the
order of NetIPC calls used for a server program.

NOTE Note that Figure 1-10 and Figure 1-11 do not show synchronization of
data transfer between the two programs, and do not include error
checking, or the intrinsic calls required for adding options and special
user capabilities. See example 3 in Chapter 4 , “NetIPC Examples,” of
this manual for programmatic examples of a server and requestor using
access to the X.25 protocol.

SVC Requestor Example

Figure 1-10 shows the order of NetIPC calls used for a requestor
program and the X.25 packets generated as a result of the calls. The
calls outlined in Figure 1-10 perform the following functions:

1. Create a call socket with IPCCREATE. The call socket descriptor
(calldesc) is returned.

2. Create a destination descriptor socket (destdesc) with IPCDEST.
You must specify a remote protocol relative address (protoaddr) to
be associated with the destination descriptor.

3. Establish the virtual circuit socket with IPCCONNECT, supplying the
calldesc and destdesc created by the previous two calls.

4. Receive a response to the connection request with IPCRECV, setting
the data length parameter (dlen) equal to zero.

5. Send a message over the connection with IPCSEND.

6. Receive a message over the connection with IPCRECV.

7. Shutdown the connection with IPCSHUTDOWN. Cause and diagnostic
values and/or clear user data can be entered that will be included in
an X.25 clear packet sent as a result of this call.
Chapter 1 35

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
Figure 1-10 SVC Requestor Processing Example

SVC Server Example

Figure 1-11 shows the order of NetIPC calls used for a server program
and the X.25 packets generated as a result of the calls. The calls
outlined in Figure 1-11 perform the following functions:

1. Create a call socket with IPCCREATE. The call socket descriptor
(calldesc) is returned. The socket could be created as a catch-all
and/or bound to a particular protocol relative address.

2. Call IPCRECVCN and wait for an incoming call request packet.
IPCRECVCN will return a VC descriptor (vcdesc) when it is
established that the incoming protocol relative address defined in (1)
matches the incoming protocol relative address, or a catch-all socket
was created in (1).

3. As IPCRECVCN completes and returns a vcdesc , X.25 sends the
requestor process a call accepted packet.

4. Receive a message over the connection with IPCRECV.

5. Send a message over the connection with IPCSEND.

6. Since the server (IPCRECV) in this example waits to receive a
message, you may decide to set a timer to handle the inactivity.

7. (Optional step.) Shutdown the connection with IPCSHUTDOWN after
data has not been received for a period of time. (For example, after a
timeout has occurred.) Note that the X.25 protocol implicitly handles
the incoming clear request by sending a clear confirmation packet.

1) IPCCreate

2) IPCDest

3) IPCConnect 4) IPCRecv 5) IPCSend 6) IPCRecv 7) IPCShutdown

CALL
REQUEST

CALL
CONFIRM

CLEAR
REQUEST

CLEAR
CONF

DATA DATA

X.25 Protocol
36 Chapter 1

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
Figure 1-11 SVC Server Processing Example

Permanent Virtual Circuits (PVCs)

Permanent virtual circuits are defined as two DTEs with a logical
association permanently held by the network. Since the connection is
permanent, both processes must initiate the connection using the
IPCCREATE intrinsic. Both processes must specify the destination of a
connection request with the IPCDEST intrinsic which requires a node
name corresponding to a configured PVC number.

The possible ordering of intrinsic calls to communicate over a PVC
could be as follows:

1. Create a call socket with IPCCREATE. The call socket descriptor
(calldesc) is returned.

2. Create a destination descriptor socket (destdesc) with IPCDEST.

3. Establish the virtual circuit socket with IPCCONNECT, supplying the
calldesc and destdesc created by the previous two calls.

4. Send a reset packet (to the DCE) by setting the reset request in
IPCCONTROL.

5. Send an interrupt packet to the remote process by setting the
interrupt request in IPCCONTROL.

6. Send data over the connection with IPCSEND.

7. Receive data over the connection with IPCRECV.

8. Send a reset packet by setting the reset request in IPCCONTROL
when all data has been sent/received.

9. Shutdown the connection with IPCSHUTDOWN. Note that a PVC is a
permanent connection, and the shutdown process releases the
resources associated with the connection.

1) IPCCreate

2) IPCRecvcn 4) IPCRecv 5) IPCSend 6) IPCRecv 7) IPCShutdown

CALL
ACCEPTED

CLEAR
REQUEST

CLEAR
CONF

DATA DATA

X.25 Protocol

3)

INCOMING
CALL

REQUEST
Chapter 1 37

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
Note that these steps do not show how to synchronize data transfer
between the two programs, and do not include error checking, or the
intrinsic calls required for adding options and special user capabilities.

Access to the Call User Data (CUD) Field

The NetIPC intrinsics IPCCONNECT, IPCRECVCN, IPCCONTROL, IPCRECV
(on connection establishment), and IPCSHUTDOWN (with fast select)
provide access to the call user data (CUD) field in call packets as
follows:

• Specifying a protocol relative address in the CUD.

This field may be present in X.25 call request and incoming call
packets which you can access with IPCCONNECTand IPCRECVCN. The
call user data field can only be accessed over an SVC. The maximum
length of the call user data (CUD) field is normally 16 bytes. The
CUD can be up to 128 bytes if the fast select facility is available. For
NS X.25, the first four bytes of the CUD are reserved for protocol
relative addressing. Figure 1-12 shows the contents of the first four
bytes of the HP 3000 X.25 CUD. The first two bytes, as shown in
Figure 1-12, indicate that the source of the call request packet is an
HP 3000 node using direct access to level 3. Optionally, the last two
bytes contain the protocol relative address that the call request
expects to find (if any).

To access the entire CUD (16 bytes without fast select or 128 bytes
with fast select), the opt parameter protocol flags bit 17 can be
set in IPCCONNECT. This option is useful for communication with
non-HP nodes.

See the discussion of the Fast Select Facility for examples using
NetIPC intrinsics to send and/or receive call user data using fast
select.

Figure 1-12 NS X.25 Call User Data Field (four bytes)

Byte

FC (hex)

AA (hex)

protocol relative address

protocol relative address

0

1

2

3

38 Chapter 1

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
• Connecting to a catch-all socket.

Using IPCCREATE, you can identify a socket as a catch-all socket. All
incoming calls with a protocol relative address specified in the CUD
that does not match any given protocol relative address are routed to
the catch-all socket. Only one catch-all socket may be defined for
each X.25 network on each node.

For an incoming call with a protocol relative address specified,
NetIPC checks if the address matches one created. If it matches, the
call is accepted. If it does not match, NetIPC checks for the existence
of a catch-all socket. If no catch-all socket has been created, the call
is rejected and a clear packet is sent by X.25. If a catch-all socket has
been created, the call is accepted.

If no protocol address is specified in the incoming call, NetIPC
checks for the existence of a catch-all socket. If no catch-all socket
has been defined, the call is rejected. If there is a catch-all socket,
the call is accepted.

• Defer connection requests.

Using IPCRECVCN with the deferred flag set allows you to examine
the call user data, facilities, and calling node address before
accepting or rejecting the connection.

The IPCCONTROL intrinsic provides you with the capability to accept
or reject a connection request that is in the deferred state.

Fast Select Facility

The fast select facility, a datagram service, is available over an X.25
network. Fast select is configured as a parameter in the X.25 User
Facility Set Parameters screen during NMMGR configuration of X.25
on the HP 3000. (See the X.25 XL System Access Configuration Guide
for more information.) When you use the fast select facility, up to 128
bytes of call user data may be sent in a X.25 call packet using NetIPC
intrinsics.

Fast Select Options

Fast select has two options:

• No restriction on response: allows the receiver of the connection
request the choice of either accepting or rejecting the connection.

• Restriction on response: the receiver must always reject the
connection.

Using Fast Select

The receiver of the connection can use IPCRECVCN to examine the call
user data, facilities or calling node’s address before deciding to accept or
reject the connection.
Chapter 1 39

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
If the connection is accepted, up to 128 bytes of call user data may be
placed in the call confirmation packet using IPCRECVCN. Once accepted,
the virtual circuit is open and can be used as a virtual circuit that does
not have fast select. The side that closes the connection can send
128 bytes of clear user data in the clear packet using the IPCSHUTDOWN
call. Figure 1-13 is an example of the sequence of calls used with fast
select, no restriction.

Figure 1-13 Fast Select No Restriction

IPCCONNECT
(fast select no
restriction)
(128 byes of
CUD)

IPCRECVCN
(defer conn.)
(Returns CUD,
facilities, address)

IPCRECV
(Returns CUD)

CALL Conf. IPCCONTROL
(accept)
(128 bytes of
CUD)

Connection is now established, either side can close:

IPCSHUTDOWN
(128 byes of
CUD)

IPCRECV
(Completes in
error)

IPCCONTROL
(reason)
(Returns CUD)

IPCSHUTDOWN

CALL

128 bytes CUD

128 bytes CUD

128 bytes CUD

CLEAR

LOCAL NETWORK REMOTE
40 Chapter 1

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
If the connection is rejected, up to 128 bytes of clear user data may be
put in the clear packet using IPCSHUTDOWN. Figure 1-14 is an example
using fast select with restriction.

Figure 1-14 Fast Select Restricted

IPCCONNECT
(fast select no
restriction)
(128 byes of
CUD)

IPCRECVCN
(defer conn.)
(Returns CUD,
facilities, address)

IPCCONTROL
(reject)
(128 bytes of
CUD)

IPCRECV

IPCCONTROL
(reason)
(Returns CUD)

IPCSHUTDOWN

CALL

128 bytes CUD

128 bytes CUD

CLEAR

LOCAL NETWORK REMOTE

(returns error)
Chapter 1 41

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
Facility Field

The X.25 facility field is built from the facility set configured with
NMMGR. With direct access to X.25 level 3, the facility field can be
appended with facilities specified in the opt parameter of the
IPCCONNECTintrinsic. The values for the facilities used must follow the
X.25 recommendation.

For example, a user wants to use a facility set with packet size and
window size negotiation and wants to append the CCITT-specified DTE
facilities to that facility set. In NMMGR, the user has verified the
facility set contains packet size and window size negotiation. The
facility field generated from the facility set would contain the following
(in octal):

Facility length : %6
Packet size neg code field : %102
Packet size in : %10
Packet size out : %10
Window size net code field : %103
Window size in : %7
Window size out : %7

To add the DTE facilities, the user must specify all the bytes required
by the X.25 recommendation in the IPCCONNECT request. In this
example, to add the DTE facilities (calling address extension, called
address extension and QOS end-to-end delay) the following values must
be entered in the option field buffer (shown in octal):

CCITT-specified DTE fac marker : %17
Calling add extension code : %313
Calling add extension length : %3
Calling add extension : %5
 : %5
Called add extension code : %312
Called add extension length : %3
Called add extension : %6
 : %6
QOS minimum throughput : %12
QOS throughput in/out : %314

NetIPC appends this to the facility-set generated field, and updates the
“facility length”. In this example, the facility length would be %21.

When a connection is received, the user can examine the entire facility
field (see IPCRECV).
42 Chapter 1

NetIPC Fundamentals
Direct Access to Level 3 (X.25)
Access to X.25 Protocol Features

The NetIPC intrinsics provide access to the following X.25 protocol
features:

• Send and receive interrupt and reset packets.

You can request the X.25 protocol to send an interrupt or reset
packet with IPCCONTROL. When used in this way, the IPCCONTROL
intrinsic will not return until the appropriate confirmation packet is
received by X.25.

• Set no activity timeout.

You can set a no activity timeout value with the IPCCONTROL
intrinsic. This option clears the connection after the specified time if
no data packets are exchanged on the virtual circuit.

• Qualifying X.25 data packets.

The Q bit in the general format identifier field in an X.25 data
packet can be set using the IPCSENDintrinsic. The status of the Q bit
in incoming data packets is returned in the IPCRECV intrinsic. The
Q bit status can be used to indicate whether the data is a user
message (Q bit=0) or a device control message (Q bit=1) from or to a
remote PAD.

• Set end-to-end acknowledgment.

The D bit in the general format identifier field in an X.25 data
packet can be set using the IPCSENDintrinsic. The status of the D bit
in incoming data packets is returned in the IPCRECV intrinsic.

Setting the D bit locally specifies end-to-end acknowledgment of data
packets. IPCSEND does not complete until it receives
acknowledgment that the entire message has been received. For
HP 3000 to HP 3000 communication, IPCRECV initiates the
acknowledgment when the remote HP 3000 process has received the
entire message.

• Set cause and diagnostic codes.

Using IPCSHUTDOWN, you can enter a reason code that will be
included in X.25 clear packets as cause and diagnostic values. This
option is only used with SVCs. Reasons for events or errors are
returned by IPCCONTROL. See Appendix B , “Cause and Diagnostic
Codes,” for a list of diagnostic codes used with X.25 protocol access.
Note that when the DTE sends the clear packet, the cause code is
always set to zero.
Chapter 1 43

NetIPC Fundamentals
NetIPC Between MPE-XL and MPE-V Systems
NetIPC Between MPE-XL and MPE-V Systems
NetIPC applications can be written to communicate between MPE-V
and MPE XL-based HP 3000s with the following considerations:

• In addition to the X.25 features supported on MPE-V, NetIPC on
MPE XL systems supports the following:

— Fast select facility

— Ability to append, generate and examine the facility field in call
packets

— Directly specifying the remote host X.25 address or PVC number.

• There are additional differences between the MPE-V and MPE XL
X.25 implementations that can affect NetIPC programming:

— On MPE XL, IPCCONTROLrequest 12, reason for error or event
only returns 10 (clear), 11 (reset), or 12 (interrupt). On MPE-V, in
addition to returning 10, 11, 12, IPCCONTROL returns 14
(network shutdown), 15 (restart sent by local network), 16 (level 2
failure), 17(restart sent by local protocol module), and 18 (restart
packet received).

— On MPE XL, IPCSHUTDOWN completes immediately, while on
MPE-V it does not complete until a clear confirmation arrives.

— On MPE XL, PAD calls are sent to the catch-all socket while on
MPE-V PAD calls are sent to socket #2563.

— On MPE XL a reset is not sent to initialize or clear a PVC, while
on MPE-V a reset is sent.

— MPE-V has a timeout for interrupt collisions, MPE XL does not.

— On MPE XL, the IPCCREATE parameter network name must be
padded with blanks while on MPE-V, the network name is padded
with nulls.
44 Chapter 1

2 Cross-System NetIPC
A cross-system application refers to NetIPC communication between
processes running on computers of different types. Cross-system
NetIPC is supported using access to the Transmission Control Protocol
(TCP) only. This chapter explains what NetIPC calls using TCP access
need to be considered for a cross-system application between an
HP 3000 and HP 1000 and between an HP 3000 and HP 9000
(Series 300 or 800). Cross-system NetIPC is also supported between
HP 3000s and personal computers (PCs) in an HP Office Share
Network.

NetIPC communication between MPE V based and MPE XL based
HP 3000s is not considered cross-system. Chapter 2 , “Cross-System
NetIPC,” in this manual contains a section on MPE XL and MPE-V
NetIPC communication. See the NetIPC 3000/V Programmer’s
Reference Manual for more information about NetIPC on MPE V based
HP 3000s.

In a cross-system communication, you can have NetIPC programs
running on both computer systems. NetIPC enables each program to
send data to, or receive data from, the program on the remote system.

This chapter does not explain details about the NetIPC calls available
on HP 1000 or HP 9000 computers, or personal computers. For this
information, refer to the following manuals

• NS/1000 User/Programmer Reference Manual.

• HP 9000 NetIPC Programmer’s Guide (for the Series 300 and 800).

• PC NetIPC/RPM Programmer’s Reference Guide.
45

Cross-System NetIPC
Software Required
Software Required
For cross-system NetIPC to function properly, the software revision
codes must be as follows:

• NS/1000 software revision code 5.0 or greater for the HP 1000.

• NS 3000/XL Release 1.2 or later for the HP 3000.

• LAN/9000 Series 800 Release 2.1 or later for the HP 9000 Series 800.

• NS-ARPA Services Release 6.2 or later for the HP 9000 Series 300.

• Revision B.00.01 for the personal computer.

To use cross-system NetIPC, you must first have a good understanding
of the NetIPC intrinsics. Review Chapter 3 , “NetIPC Intrinsics,” which
provides detailed information about the calls before and while you read
this chapter.
46 Chapter 2

Cross-System NetIPC
Calls Affecting the Local Process
Calls Affecting the Local Process
There are two categories of calls when considering cross-system NetIPC
communication — local and remote. Calls made for the local process do
not directly affect the remote process. The local NetIPC calls are used to
set up or prepare the local node for interprocess communication with
the remote node. That is, the resulting impact on the local calls is only
to the local node. There is no information that needs to be passed to the
remote node. This is true whether or not the remote node is another
HP 3000 computer system. Table 2-1 lists the NetIPC calls affecting the
local process.

Table 2-1 NetIPC Calls Affecting the Local Process

HP 3000 HP 1000 HP 9000 PC

ADDOPT Addopt addopt () AddOpt

Not implemented Adrof Not implemented Not implemented

Not implemented Not implemented Not implemented ConvertNetworkLong

Not implemented Not implemented Not implemented ConvertNetworkShort

INITOPT InitOpt initopt() InitOpt

IPCCHECK Not implemented Not implemented Not implemented

IPCCONTROL IPCControl ipccontrol() IPCControl

IPCCREATE IPCCreate ipccreate() IPCCreate

IPCERRMSG Not implemented Not implemented Not implemented

IPCGET IPCGet Not implemented Not implemented

IPCGIVE IPCGive Not implemented Not implemented

IPCNAME IPCName ipcname() Not implemented

IPCNAMERASE IPCNamerase ipcnamerase() Not implemented

Not implemented IPCSelect ipcselect() Not implemented

Not implemented Not implemented Not implemented IPCWait

OPTOVERHEAD Not implemented optoverhead() OptOverhead

READOPT ReadOpt readopt() ReadOpt
Chapter 2 47

Cross-System NetIPC
Calls Affecting the Local Process
The intrinsics listed in Table 2-1 affect only local processes and
therefore have no adverse affects if used in a program communicating
with an unlike system (e.g., an HP 3000 program communicating with
an HP 1000 program). However, keep in mind that the calls (even those
of the same name) differ between system types. The following are some
local call differences of which you should be aware:

• Maximum number of sockets. The maximum number of socket
descriptors owned by an HP 3000 process at any given time is 64; on
the HP 1000 the maximum is 32; on HP 9000 systems, the maximum
is 60 (including file descriptors). On the PC, the maximum number of
socket descriptors is 21. This number includes both call socket and
virtual circuit socket descriptors.

• IPCCONTROLparameters. The IPCCONTROL intrinsic supports
different sets of request codes on different system types. Refer to the
NetIPC documentation for a particular system (this manual only
documents the HP 3000) for a full description of the request codes
available on that system.

• Manipulation of descriptors. On the HP 3000, the IPCGIVE ,
IPCGET, IPCNAME, and IPCNAMERASE calls can be used to
manipulate call socket descriptors. On the HP 9000, you can
manipulate call socket and destination descriptors with the
ipcname() and ipcnamerase() intrinsics. On the HP 1000, you
can only manipulate call socket descriptors with the IPCName and
IPCNamerase intrinsics. In addition, on the HP 1000, you can
manipulate call socket, vc socket, and path report descriptors with
the IPCGive and IPCGet intrinsics.

• Asynchronous I/O. The HP 3000 utilizes the MPE XL intrinsics
IOWAIT and IODONTWAIT to perform asynchronous I/O. On the
HP 9000 and HP 1000, The NetIPC intrinsics ipcselect() and
IPCSelect are used to perform asynchronous I/O. On the PC use
the NetIPC intrinsic IPCWait .

• Call sockets. On the PC, call sockets are called source sockets and
call socket descriptors are called source socket descriptors. Both sets
of terms are used in the same way.

NOTE There are many additional differences between local NetIPC calls for
the HP 3000 and those used for other HP systems. Because these
differences only affect the local node, they should not affect the
cross-system communication capabilities of your program. Refer to the
corresponding system’s NetIPC documentation for more information.
48 Chapter 2

Cross-System NetIPC
Calls Affecting the Remote Process
Calls Affecting the Remote Process
Table 2-2 lists the NetIPC calls affecting communication with the
remote process.

HP 3000 to HP 1000 NetIPC

The NetIPC calls affecting cross-system communication with the
remote process have the following differences: checksumming, send and
receive sizes, range of permitted TCP protocol addresses for users, and
socket sharing. Table 2-3 summarizes the cross-system considerations.

Table 2-2 NetIPC Calls Affecting the Remote Process

HP 3000 HP 1000 HP 9000 PC

IPCCONNECT IPCConnect ipcconnect() IPCConnect

IPCDEST IPCDest ipcdest() IPCDest

IPCLOOKUP IPCLookUp ipclookup() Not implemented

IPCRECV IPCRecv ipcrecv() IPCRecv

IPCRECVCN IPCRecvCn ipcrecvcn() IPCRecvCn

IPCSEND IPCSend ipcsend() IPCSend

IPCSHUTDOWN IPCShutDown ipcshutdown() IPCShutDown

Table 2-3 Cross-System Calls (HP 3000 — HP 1000)

NetIPC Call Cross-System Considerations

IPCCONNECT Checksumming — TCP checksumming will be enabled for both sides of
the connection if it is enabled by either side for HP 3000 to HP 1000
cross-system communication. On both the HP 3000 and HP 1000
checksumming can be enabled by setting bit 21 in the flags parameter.

Send and receive sizes — The HP 3000 send and receive size range is 1 to
30,000 bytes. The HP 1000 send and receive size range is 1 to 8,000 bytes.
For example, if the HP 3000 node sends 16,000 bytes, the HP 1000 node can
call IPCRECV twice, receiving the first 8,000 bytes the first time and the
second 8,000 bytes the second time.

Note that the default send and receive sizes are different on different HP
systems. On the HP 3000, the default send and receive size is less than or
equal to 1,024 bytes. On the HP 1000 the default send and receive size is
100 bytes.

IPCCREATE
IPCDEST

TCP protocol address — The recommended range of TCP addresses for
cross-system user applications is from 30767 to 32767 decimal (%74057
to%77777).
Chapter 2 49

Cross-System NetIPC
Calls Affecting the Remote Process
IPCLOOKUP No differences that affect-cross-system operations.

IPCRECV Receive size (dlen parameter) — Range for the HP 3000 is 1 to 30,000
bytes. Range for the HP 1000 is 1 to 8,000 bytes. Although the ranges are
different, cross-system communication is not affected. If you specify a send
or receive size, be sure it is within the correct range for the respective
system.

Data wait flag — The HP 1000 IPCRecv call supports a “DATA_WAIT”
flag. This flag, when set, specifies that the call will not complete until the
amount of data specified by the dlen parameter has been received. This flag
is not available on the HP 3000, meaning that the call may complete before
all the data is received. However, the HP 3000 IPCRECVsupports other flags
such as the “more data” and “destroy data” flags. Refer to the description of
IPCRECV in Chapter 3 , “NetIPC Intrinsics,” for more information.

IPCRECVCN Checksumming — TCP checksumming will be enabled for both sides of
the connection if it is enabled by either side for HP 3000 to HP 1000
connections. On both the HP 3000 and HP 1000 checksumming can be
enabled by setting bit 21 in the flags parameter.

Send and receive sizes — The HP 3000 send and receive size range is 1 to
30,000 bytes. The HP 1000 send and receive size range is 1 to 8,000 bytes.
For example, if the HP 3000 node sends 16,000 bytes, the HP 1000 node can
call IPCRECV twice, receiving 8,000 bytes the first time and the second
8,000 bytes the second time.

Note that the default send and receive sizes are different on different HP
systems. On the HP 3000, the default send and receive size is less than or
equal to 1,024 bytes. On the HP 1000 the default send and receive size is
100 bytes.

IPCSEND Send size — The HP 3000 send size range is 1 to 30,000 bytes. The
HP 1000 send size is 1 to 8,000 bytes. Although the ranges are different,
cross-system communication is not affected. If you specify a send or receive
size, be sure it is within the correct range for the respective system. Note
that the urgent data bit is not supported on the HP 1000; however, if this bit
is set by the HP 3000 program, it will be ignored by the receiving process on
the HP 1000.

IPCSHUTDOWN Socket shut down — The HP 3000 provides a graceful release flag
(flag 17) that is not available on the HP 1000. Do not set the graceful
release flag on the HP 3000. Otherwise, the HP 1000 will not perform a
normal shutdown.

Table 2-3 Cross-System Calls (HP 3000 — HP 1000)

NetIPC Call Cross-System Considerations
50 Chapter 2

Cross-System NetIPC
Calls Affecting the Remote Process
HP 3000 to HP 9000 NetIPC

The NetIPC calls affecting cross-system communication with the
remote process have the following differences. Checksumming, send
and receive sizes, range of permitted TCP protocol addresses for users,
and socket sharing. Table 2-4 lists the NetIPC calls affecting the remote
process and summarizes the cross-system considerations.

Table 2-4 Cross-System Calls (HP 3000 — HP 9000

NetIPC Call Cross-System Consideration

IPCCONNECT Checksumming — When the ipcconnect() call is executed on the HP 9000
node, checksumming is always enabled. Therefore checksumming is always
enabled for the HP 3000-to-HP 9000 connection.

Send and receive sizes — The HP 3000 send and receive size range is 1 to
30,000 bytes. The HP 9000 send and receive size range is 1 to 32,767 bytes.
Although the ranges are different, cross-system communication is not
affected. If you specify a send or receive size, be sure it is within correct range
for the respective system.

Note that the default send and receive sizes are different on different HP
systems. On the HP 3000, the default send and receive size is less than or
equal to 1,024 bytes. On the HP 9000, the default send and receive size is
100 bytes.

IPCCREATE
IPCDEST

TCP protocol address — The recommended range of TCP addresses for
cross-system user applications is from 30767 to 32767 decimal (%74057 to
%77777). Addresses outside of this range require privileged mode access.

IPCLOOKUP No differences that affect cross-system operations.

IPCRECV Receive size (dlen parameter) — Range for the HP 3000 is 1 to 30,000
bytes. Range for the HP 9000 is 1 to 32,767 bytes. Although the ranges are
different, cross-system communication is not affected. If you specify a send or
receive size, be sure it is within the correct range for the respective system.

Data wait flag — The HP 9000 IPCRECVcall supports a “DATA_WAIT” flag.
This flag, when set, specifies that the call will not complete until the amount
of data specified by the dlen parameter has been received. This flag is not
available on the HP 3000, meaning that the call may complete before all the
data is received. However, the HP 3000 IPCRECVsupports other flags such as
the “more data” and “destroy data” flags. Refer to the description of IPCRECV
in Chapter 3 , “NetIPC Intrinsics,” for more information.
Chapter 2 51

Cross-System NetIPC
Calls Affecting the Remote Process
IPCRECVCN Checksumming — When the ipcrecvcn() call is executed on the HP 9000
node, checksumming is always enabled.

Send and receive sizes — The HP 3000 send and receive size range is 1 to
30,000 bytes. The HP 9000 send and receive size range is 1 to 32,767 bytes.
Although the ranges are different, cross-system communication is not
affected. If you specify a send or receive size, be sure it is within the correct
range for the respective system.

Note that the default send and receive sizes are different on different HP
systems. On the HP 3000, the default send and receive size is less than or
equal to 1,024 bytes. On the HP 9000, the default send and receive size is
100 bytes.

IPCSEND Send size — The HP 3000 send size range is 1 to 30,000 bytes. The HP 9000
send size is 32,767 bytes, although the ranges are different, cross-system
communication is not affected. If you specify a send or receive size, be sure it
is within the correct range for the respective system.

Note that the urgent data bit is not supported on the HP 9000; however, if
this bit is set by the HP 3000 program, it will be ignored by the receiving
process on the HP 9000. For differences in send and receive size see the
discussion for IPCRECVCN.

IPCSHUTDOWN Socket shut down — The HP 3000 provides a graceful release flag that is not
available on the HP 9000. If the graceful release flag (flag 17) is set on the
HP 3000, the HP 9000 will respond as though it were a normal shutdown.
The HP 3000 does not support shared sockets; the HP 9000 does. Shared
sockets are destroyed only when the descriptor being released is the sole
descriptor for the socket. Therefore, the HP 9000 process may take longer to
close the connection than expected.

Table 2-4 Cross-System Calls (HP 3000 — HP 9000

NetIPC Call Cross-System Consideration
52 Chapter 2

Cross-System NetIPC
Calls Affecting the Remote Process
HP 3000 to PC NetIPC

The NetIPC calls affecting cross-system communication with the
remote process have the following differences: checksumming, send and
receive sizes, range of permitted TCP protocol addresses for users, and
socket sharing. Table 2-5 lists the NetIPC calls affecting the remote
process and summarizes the cross-system considerations.

Table 2-5 Cross-System Calls (HP 3000 — PC)

NetIPC Call Cross-System Considerations

IPCCONNECT Checksumming — With PC NetIPC, the TCP checksum option cannot be
turned on. But if the HP 3000 requires it, the TCP checksum is in effect on
both sides of the connection.

Send and receive sizes — The HP 3000 send and receive size range is 1 to
30,000 bytes. The PC send and receive size range is 1 to 65,535 bytes.
Although the ranges are different, cross-system communication is not
affected. If you specify a send or receive size, be sure it is within the correct
range for the respective system. For example, if the PC node sends 60,000
bytes, the HP 3000 node can call IPCRECV twice, receiving the first 30,000
bytes the first time and the second 30,000 bytes the second time.

Note that the default send and receive sizes are different on different HP
systems. On the HP 3000, the default send and receive size is less than or
equal to 1,024 bytes.

IPCCREATE
IPCDEST

TCP protocol address — The recommended range of TCP addresses for
cross-system user applications is from 30767 to 32767 decimal (%74057 to
%77777).

IPCRECV Receive size (dlen parameter) — Range for the HP 3000 is 1 to 30,000 bytes.
The PC send and receive size is 1 to 65,535 bytes. Although the ranges are
different, cross-system communication is not affected. If you specify a send or
receive size, be sure it is within the correct range for the respective system.

On the PC, you can specify the maximum receive size of the data buffer
through the got array in the IPCCONNECT call. This determines what the
maximum value for dlen can be for any IPCRECV call. PC NetIPC has no
option array defined in IPCCONNECT. This does not affect cross-system
communication. The maximum receive size of the data in the buffer on the
HP 3000 will determine the receive size buffer on the PC.
Chapter 2 53

Cross-System NetIPC
NetIPC Error Codes
NetIPC Error Codes
NetIPC calls with the same names on different systems may return
different error codes. Refer to the corresponding NetIPC documentation
of your system for a complete list of the NetIPC error codes that are
applicable to your implementation.

IPCRECVCN Checksumming — With PC NetIPC, the TCP checksum option cannot be
turned on. But if the HP 3000 requires it, the TCP checksum is in effect on
both sides of the connection.

Send and receive sizes — The HP 3000 send and receive size range is 1 to
30,000 bytes. The PC send and receive size range is 1 to 65,535 bytes.
Although the ranges are different, cross-system communication is not
affected. If you specify a send or receive size, be sure it is within the correct
range for the respective system. For example, if the PC node sends 60,000
bytes, the HP 3000 node can call IPCRECV twice, receiving 30,000 bytes the
first time and the second 30,000 bytes the second time.

Note that the default send and receive sizes are different on different HP
systems. On the HP 3000, the default send and receive size is less than or
equal to 1,024 bytes.

IPCSEND Send size — The PC send and receive size range is 1 to 65,635 bytes.
Although the ranges are different, cross-system communication is not
affected. If you specify a send or receive size, be sure it is within the correct
range for the respective system.

On the PC, you can specify the maximum receive size of the data buffer
through the got array in the IPCCONNECT call. This determines what the
maximum value the dlen parameter can be for any IPCRECV call. PC NetIPC
has no option array defined for IPCCONNECT. This does not affect cross-system
communication. The maximum receive size of the data in the buffer on the
HP 3000 will determine the receive size buffer on the PC.

IPCSHUTDOWN Socket shut down — The HP 3000 provides a graceful release flag that is
not available on the PC. If the graceful release flag (flags 17) is set on the
HP 3000, the PC will respond as though it were a normal shutdown.

Table 2-5 Cross-System Calls (HP 3000 — PC)

NetIPC Call Cross-System Considerations
54 Chapter 2

Cross-System NetIPC
Program Startup
Program Startup
NetIPC itself does not include a call to schedule a peer process. In
programs communicating between multiple HP 3000 systems, you can
use the Remote Process Management (RPM) call, RPMCREATE, to
programmatically schedule program execution. However, RPM between
HP 3000 and HP 1000 systems, and between HP 3000 and HP 9000
systems, is not currently supported by Hewlett-Packard. Instead, you
must manually start up each NetIPC program on its respective system.

HP 3000 Program Startup

To manually start up an HP 3000 NetIPC program, log on to the
HP 3000 and run the NetIPC program (with the RUN command).

You can schedule the program to start at a particular time by writing a
job file to execute the program, and then including time and date
parameters in the :STREAM command that executes the job file.

HP 1000 Program Startup

To manually start up an HP 1000 NetIPC program, simply logon to the
HP 1000 system and run the NetIPC program with the RTE XQ (run
program without wait) command.

To have the NetIPC program execute at system start up, put the RTE
XQ command in the WELCOME file.

HP 9000 Program Startup

Remote HP 9000 processes can be manually started or can be scheduled
by daemons that are started at system start up. In HP-UX a daemon is
a process that runs continuously and usually performs system
administrative tasks. Although a daemon runs continuously, it
performs actions either at a specified time, or upon a specified event.

To manually start up a NetIPC program, simply logon to the HP 9000
system and run the NetIPC program. HP recommends that you write a
NetIPC daemon to schedule your NetIPC programs. You can start the
daemon at start up by invoking it from the /etc/netlinkrc file. Refer
to the NS/ARPA Services/9000 Series 800 Node Manager’s Guide for
more information about this file and system start up.
Chapter 2 55

Cross-System NetIPC
Program Startup
PC NetIPC Program Startup

To manually start up a PC NetIPC program, enter the NetIPC program
name at the MS-DOS prompt.

To execute from within MS-Windows, copy the NetIPC program files to
your Windows directory and double click the mouse on the executable
file.
56 Chapter 2

3 NetIPC Intrinsics
The information contained in this chapter is organized as follows:.

• Programming Considerations: describes programming
considerations for using NetIPC on an MPE XL computer system.

• Common Parameters: provides details about the structure of the
flags , opt , data , and result parameters which are common to
many of the NetIPC calls.

• NetIPC intrinsics: a table summarizing the functions of each
NetIPC intrinsic is included followed by reference pages in
alphabetical order for each of the NetIPC calls.
57

NetIPC Intrinsics
Programming Considerations
Programming Considerations

Compatibility vs. Native Mode

Compatibility mode allows you to run application programs compiled on
an MPE V computer system on an MPE XL computer system without
change. Native mode refers to application programs compiled and
executed on an MPE XL computer system.

NetIPC applications written for MPE V based HP 3000s can be
migrated to MPE XL HP 3000s (series 900s) and run in compatibility
mode as follows. On the MPE-V system, use the MPE STOREcommand to
save your program’s object code. On the MPE XL system, use the MPE
RESTORE command on your object code.

To take advantage of the optimizing compilers and improved
performance on the XL, you must recompile your application program
on the MPE XL system that will execute in native mode (NM). Some
applications contain code that must be altered before migrating to
native mode.

Application migration considerations are documented in the
Application Migration Guide.

Example 2 in Chapter 4 , “NetIPC Examples,” shows the differences in
declarations required for compiling a NetIPC program in compatibility
mode and in native mode.

Option Variable

Many of the NetIPC intrinsics are option variable meaning they can be
called with a variable number of parameters. Required parameters are
listed in the discussion of each intrinsic. If you omit an optional
parameter, the comma delimiter (,) is required to preserve parameter
position.

For example, a call using IPCCONNECT could be entered as follows:

IPCCONNECT(CALLDESC, DEST, , , VCDESC, RESULT)

In this example, note that following the parameter DEST, commas
delimit the omitted optional parameters flags and opt .

 Syntax

The syntax description provided for each NetIPC intrinsic is the syntax
required for Pascal programs. Differences in parameter declarations for
other languages (if any) are documented in Appendix E , “C Program
Language Considerations.”
58 Chapter 3

NetIPC Intrinsics
Programming Considerations
Capabilities

Some NetIPC intrinsics require special capabilities if you use the
functions described below.

User-specified Protocol Addressing

NetIPC intrinsics IPCCONNECT, IPCCREATE, and IPCDEST allow you to
specify protocol relative addresses. Addresses in the range 30767 to
32767 decimal (%74057 to %77777) can be used without special
capabilities. In privileged programs you can specify protocol relative
addresses between 1 and 30766 decimal (%1 and %74056).

NOTE The protocol relative address range 1 to 30766 decimal, (%1 to %74056)
is administered by HP. Contact your HP representative before using an
address within this reserved range.

X.25 Catch-all Socket

Using access to X.25 (level 3), network administrator (NA) capability is
required to create a catch-all socket for an X.25 network. NA capability
is required to run a program that creates a catch-all socket.
Chapter 3 59

NetIPC Intrinsics
Common Parameters
Common Parameters
The flags , opt , data , and result parameters are common to many
NetIPC intrinsics. Remote Process Management intrinsics also use
these parameters, with the exception of the data parameter. The
following discussion of these parameters may help to clarify the more
condensed information given under each intrinsic.

Flags Parameter

The flags parameter is a bit representation, 32 bits long, of various
options. Normally an option is invoked if the appropriate bit is on (that
is, set equal to 1). Borrowing Pascal-type syntax, we shall use flags [0]
to refer to the high order bit in the parameter, flags [31] to refer to the
low order bit, and a similar designation to refer to each of the bits in
between. Bits which are not defined for a given intrinsic must be off
(zero).

Opt Parameter

The opt parameter, which denotes various options, contains an integer
code for each option along with associated information. It is not
necessary to know the internal structure of this parameter in order to
use it. Several opt parameter manipulation intrinsics have been
provided to enable you to add option information without concerning
yourself with the parameter’s structure. However, a knowledge of the
structure of the opt parameter can help you to determine an
appropriate size for the array.

The opt parameter must be defined as a byte array or as a record
structured in the manner described below. If your program is written in
a language which supports dynamically allocated arrays, the
OPTOVERHEAD intrinsic may be used to determine the size of the array.

The opt parameter consists of these fields as shown in Figure 3-1.

• length, in bytes, of option entries and data (2-byte integer);

• number of entries (2-byte integer);

• option entries (8 bytes per option entry). Each 8-byte option entry,
in turn, consists of the following fields:

— option code (2-byte integer);

— offset (2-byte integer) byte offset relative to the base address of
the opt parameter indicating the location of the data for this
option entry;

— data length, in bytes(2-byte integer);
60 Chapter 3

NetIPC Intrinsics
Common Parameters
— Reserved (2 bytes).

• data associated with the option entries (variable length).

If the parameter is declared as a simple byte array, it must be large
enough to contain 4 bytes for the first two fixed-length fields, 8 bytes for
each option entry, plus the actual data. That is:

4 + 8 * numentries + datalength

NOTE Use of certain opt parameter options may result in the loss of
portability between different Hewlett-Packard systems.

Figure 3-1 OPT Parameter Structure

Figure 3-2 shows the structure of an option entry.

length

number of entries

option entries

data

Byte

0

1

2

3

4

n

n + 1

z

Chapter 3 61

NetIPC Intrinsics
Common Parameters
Figure 3-2 Option Entry Structure.

Data Parameter

The data parameter is defined as a byte array. It can be in one of two
formats: either holding the actual data or in a vectored format. In the
case of vectored data, the data parameter does not contain actual data
but rather the addresses from or to which the data will be gathered or
distributed.

The addresses of the data are represented by data location descriptors.
For all intrinsics supporting vectored data, a maximum of two data
location descriptors is permitted.

For vectored data, the parameter must be a record structured as
described below. The format of a compatibility mode data location
descriptor is different than a native mode data location descriptor as
shown in Figure 3-3.

Combining a compatibility mode vector with a native mode vector in the
same NetIPC call is not supported.

option code

offset

data length

<RESERVED>

Byte

0

1

2

3

4

5

6

7

62 Chapter 3

NetIPC Intrinsics
Common Parameters
Figure 3-3 Data Location Descriptor — Vectored Data

Compatibility Mode

In compatibility mode, the data location descriptor is eight bytes long
and consists of four 2-byte fields. If the vector points to the stack, that
is, type = 0, the value you input into the Data Segment Table (DST) is
zero (DST = 0).

A compatibility mode data location descriptor consists of the following
fields:

• descriptor type (represented by a 2-byte integer); The
compatibility mode descriptor type field can have one of the
following values:

0 — (Stack) the offset is a DB-relative byte address on the calling
process’s data stack (the DST is ignored);

1 — (DST Index) DST is the logical index number returned by the
MPE XL HPGETDSEG intrinsic;

2 — (DST Number) DST is an actual data segment number. All data
segment references, that is, calls in split-stack mode, require
privileged mode.

• DST (data segment table) number or index;

• byte offset indicating the start of the data to be transmitted. (This
would be the byte count from DB on the calling process’s stack or
segment relative from the extra data segment (XDS)).

Byte

0

1

2

3

4

5

6

7

descriptor type

DST

byte offset

byte length

Byte

0

1

2

3

4

5

6

7

8

9

10

11

(64 bits)

native
mode

address

byte length

descriptor type = 4

Compatibility Mode Native Mode
Chapter 3 63

NetIPC Intrinsics
Common Parameters
• byte length of the vectored data.

Native Mode

In native mode, the data location descriptor is 12-bytes long. It contains
two 2-byte fields and a 64-bit native mode address. The DST field is
unnecessary because DSTs do not exist in native mode. The three fields
in the native mode vectored data descriptor are:

• descriptor type (2-byte integer); in this field, only Type = 4 for NM
addressing is valid;

• byte length of the data;

• native mode address (64-bits long); this is a long pointer (in Pascal
terminology) to the data.

Example:

nm_address:= globalanyptr(addr(data));

DLEN Parameter

In both compatibility and native mode, the dlen parameter indicates
the full length of the data parameter. If the data are vectored, dlen
must give the total length of each data location descriptor, not the
length of the actual data buffer. For example, the length of a single or
double vectored descriptor would be 8 or 16 bytes in compatibility mode;
and 12 or 24 bytes for native mode.

Result Parameter

If a NetIPC (or Remote Process Management) intrinsic call is
successful, the result parameter returns a value of zero. Otherwise the
value returned represents a NetIPC error code (SOCKERR). NetIPC error
messages are listed in Appendix A , “IPC Interpreter (IPCINT),”of this
manual. You can also obtain the corresponding error message by calling
IPCERRMSG.

NOTE When nowait I/O is used, the result parameter is not updated upon
completion of an intrinsic. Therefore, the value of result only indicates
whether the call was successfully initiated. To determine if the call
completed successfully, you can use the IPCCHECKintrinsic immediately
afterward.

Condition Codes

On an HP 3000, NetIPC intrinsics cause MPE condition codes to be set.
CCE indicates successful completion, CCL indicates failure, and CCG is
either not used or represents a warning.
64 Chapter 3

NetIPC Intrinsics
Summary of NetIPC Intrinsics
Summary of NetIPC Intrinsics
Table 3-1 lists and summarizes the function of each of the NetIPC
intrinsics.

Table 3-1 NetIPC Intrinsics

Intrinsic Function

ADDOPT Adds an option entry to the opt parameter.

INITOPT Initializes the opt parameter so that entries may be added.

IPCCHECK Returns the number of the last recorded NetIPC error for a call or VC socket.

IPCCONNECT Requests a connection (a virtual circuit) to another process; returns a VC
socket descriptor for a VC socket belonging to the calling process.

IPCCONTROL Performs special operations such as enabling nowait I/O, and enabling
user-level tracing.

IPCCREATE Creates a call socket for the calling process.

IPCDEST Returns a destination descriptor which the calling process can use to
establish a connection to another process.

IPCERRMSG Returns the IPC error message corresponding to a given error code.

IPCGET Enables the calling process to obtain a VC socket or call socket that has been
given away by another process.

IPCGIVE Gives away a VC socket or call socket, thereby allowing another process to
obtain it.

IPCLOOKUP Returns a destination descriptor associated with a given socket name.

IPCNAME Specifies a name for a call socket, thereby enabling other processes to obtain
access to that socket.

IPCNAMERASE Deletes a call socket name from the call socket registry.

IPCRECV Receives the reply to a connection request, thereby establishing the
connection, or receives data on an already established connection.

IPCRECVCN Receives a connection request from another process; returns a VC socket
descriptor for a VC socket belonging to the calling process.

IPCSEND Sends data on a connection.

IPCSHUTDOWN Releases a socket descriptor and any resources associated with it.

OPTOVERHEAD Returns the number of bytes needed for the opt (option) parameter, a
parameter common to many IPC intrinsics

READOPT Allows the user to read an entry from the opt array.
Chapter 3 65

NetIPC Intrinsics
NetIPC Reference Pages
NetIPC Reference Pages
The following pages provide syntax and usage information for each of
the NetIPC intrinsics. The reference pages are organized alphabetically
by NetIPC intrinsic name.

ADDOPT
Adds an option entry to the opt parameter.

Syntax

ADDOPT (opt , entrynum , optioncode , datalength , data [, result])

Parameters

opt (input/output)

Record or byte array, by reference. The opt
parameter to which you want to add an entry. Refer to
“Common Parameters” for more information on the
structure of this parameter.

entrynum (input)

16-bit integer, by value. Indicates which entry is to
be initialized. The first entry is entry zero.

optioncode (input)

16-bit integer, by value. The option code of the entry,
identifies the option.

datalength (input)

16-bit integer, by value. The length (in bytes) of the
data associated with the option.

data (input)

Byte array, by reference. The data associated with
the option.

result (output)

16-bit integer, by reference. The error code
returned; zero if no error.
66 Chapter 3

NetIPC Intrinsics
ADDOPT
Description

The ADDOPT intrinsic specifies the values of an opt parameter’s option
entry fields and adds any associated data. The intrinsic also updates
the size of the opt parameter.

The parameter must be initialized by INITOPT before options are added
by ADDOPT. Consider this program fragment:

data_offset:=10;

{10 bytes from beginning of data array}

INITOPT (opt,1, result) ;

{one option entry}

ADDOPT (opt, 0, 8, 2, data_offset,result);

 {first entry is entry zero, option code 8; entry's data
area contains a 2-byte integer specifying an offset from
data parameter address}

IPCSEND (cd, data, dlen,flags,opt, result);

{sends data located at offset from data address specified
in opt }

INITOPT and ADDOPTallow you to initialize the opt parameter for use in
another intrinsic. These auxiliary intrinsics make the structure of the
opt parameter largely transparent.

Condition codes returned by ADDOPT are:

• CCE — Succeeded.

• CCL — Failed because of a user error.

• CCG — Not returned by this intrinsic.

This intrinsic can be called in split stack mode.
Chapter 3 67

NetIPC Intrinsics
INITOPT
INITOPT
Initializes the opt parameter so that entries may be added.

Syntax

INITOPT (opt , eventualentries ,[result])

Parameters

opt (output)

Record or byte array, by reference. The opt
parameter which is to be initialized. Refer to “Common
Parameters” for more information on the structure of
this parameter.

eventualentries (input)

16-bit integer, by value. The number of option entries
that are to be placed in the opt parameter.

result (output)

16-bit integer, by reference. The error code
returned; zero if no error.

Description

The INITOPT intrinsic initializes the length and number-of-entries
fields (that is, the first 4 bytes) of the opt parameter. This must be done
before options are added to the parameter by means of the ADDOPT
intrinsic.

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed because of a user error.

• CCG — Not returned by this intrinsic.

This intrinsic can be called in split stack mode.
68 Chapter 3

NetIPC Intrinsics
IPCCHECK
IPCCHECK
Returns the number of the last applicable error.

Syntax

IPCCHECK (descriptor [, ipcerr][, pmerr][, result]

Parameters

descriptor (input)

32-bit integer, by value. The call socket or VC socket
descriptor for which the error is to be reported. A zero
value indicates the last call socket or VC socket
descriptor referenced.

ipcerr (output)

32-bit integer, by reference. The error code of the
last recorded NetIPC error.

pmerr (output)

32-bit integer, by reference. The error code of the
last recorded protocol module (i.e., the Transmission
Control Protocol (TCP) or X.25 protocol).

result (output)

32-bit integer, by reference. The error code returned
for this intrinsic call (not the previously recorded
error). A zero value indicates no error.

Description

The IPCCHECK intrinsic returns the last recorded NetIPC and/or
protocol module error for a given call socket or VC socket (that is, the
VC socket descriptor at the calling process’s end). If the descriptor value
is zero, the most recent error applicable to the last call or VC socket
referenced is returned. The descriptor is the only required parameter
(option variable).

Condition codes returned by this intrinsic are:

• CCE — The intrinsic call was successful.
• CCL — Unsuccessful.
• CCG — Unsuccessful. The intrinsic could not return the error code

because the calling process does not have access to the NetIPC data
structure which retains error codes.

This intrinsic can be called in split stack mode.
Chapter 3 69

NetIPC Intrinsics
IPCCONNECT
 IPCCONNECT
Requests a connection to another process.

Syntax

IPCCONNECT ([calldesc], destdesc [, flags][, opt], vcdesc [, result]

Parameters

calldesc (input)

32-bit integer, by value. A call socket descriptor for a
call socket belonging to this process. Required for X.25
level 3 access. For TCP access, if -1, or if omitted, a call
socket is created temporarily to establish the
connection.

destdesc (input)

32-bit integer, by value. Destination descriptor.
Describes the location of the named call socket. (this is
the call socket to which the connection request will be
sent). A destination descriptor can be obtained by
calling IPCDEST. For TCP access you can also obtain a
destination descriptor by calling IPCLOOKUP.

flags (input)

32 bits, by reference. A bit representation of various
options. No flags are defined for access to the X.25
protocol. The following flag bits are defined:

• flags [0] (input). (TCP only.) Makes the connection a
“protected” one. A protected connection is one which
only privileged users may establish or use.

• flags [21] (input). (TCP only.) Enables
checksumming on the Transmission Control
Protocol (TCP) connection for error checking.
Checksumming may also be set by the corresponding
IPCRECVCN call. If either side specifies “checksum
enabled” then the connection will be checksummed.

TCP checksum may be enabled globally, over all
connections, when configuring the Network
Transport. Checksumming enabled by either
IPCRECVCN or the network transport (remote or
local) configuration overrides a 0 setting (checksum
disabled) for this flag. Checksum error checking is
70 Chapter 3

NetIPC Intrinsics
IPCCONNECT
handled at the link level and is not normally
required at the user level.

Checksumming is only used for connections between
nodes and is not used for connections within the
same node. Enabling checksumming may reduce
network performance. Recommended value: 0.

opt (input)

Record or byte array, by reference. A list of options,
with associated information. Possible options are:

• call user data (code=2, length=n, n bytes) (input).
For access to the X.25 protocol only. This option
contains data to be inserted as the call user data
(CUD) field in an X.25 packet. The maximum length
for the CUD is 16 bytes. With the fast select facility,
the maximum length for the CUD is 128 bytes. HP
has reserved the first four bytes of the CUD for
protocol addressing. The user can supply data up to
12 bytes (or 124 bytes with fast select). By setting
the no address flag (protocol flags option), the user
can access all 16 bytes (or 128 bytes with fast select)
of the CUD. See Chapter 1 , “NetIPC
Fundamentals.” Access to the Call User Data (CUD)
Field for more information.

• maximum send size (code=3, length=2; 2-byte
integer). (TCP only.) This option, which must be in
the range from 1 to 30,000, specifies the length of the
longest message the user expects to send on this
connection. The information is passed to the protocol
module for internal use only. This does not mean
that the user cannot send a message larger than the
value that is specified in this option code. If this
option is not used, the protocol module will be able to
send messages at least 1024 bytes long. If the value
specified is smaller than a previously specified
maximum send size, then the new value is ignored.

• maximum receive size (code=4, length=2; 2-byte
integer). (TCP only.) This option, which must be in
the range from 1 to 30,000, specifies the length of the
longest message the user expects to receive on this
connection. The information is passed to the protocol
module for calculating its transmission-window size.
This does not mean that the user cannot receive
messages larger than the length specified with this
option code. If this option is not used, the protocol
module can handle messages of at least 1024 bytes
long. If the value specified is smaller than a
Chapter 3 71

NetIPC Intrinsics
IPCCONNECT
previously specified maximum receive size, then the
new value is ignored.

• address option (code=128, length=2; 2-byte
integer) (input). (TCP only.) This option specifies the
source port address of the connection request.
Addresses in the range (octal) %74057 to %77777
can be used without special capabilities.

• facilities set name (code=142, length=8, packed
array of 8 characters) (input). For access to the X.25
protocol only. This option field is used to associate a
facilities set with the virtual circuit to be created
over an SVC. This option does not apply to a PVC.
This is an optional parameter and defaults to the
facilities set name entered while configuring the
X.25 network with NMMGR on the HP 3000.

• protocol flags (code=144, length=4, 4-byte buffer)
(input). This option contains 32 bits of
protocol-specific flags. The following flags are
currently defined:

— no address (bit 17, input). (X.25 only.) This flag
provides the user with access to the entire X.25
call user data field (16 bytes or 128 bytes with
fast select). This option can be useful for
communication with non-HP nodes.

• facility field (code=145, length=n, n bytes) (input).
This option field defines the part of the facility field
built using the facility set. This data must follow the
X.25 recommendation and is appended to the
facilities from the facility set without any change.
See the discussion entitled “Facility Field” in
Chapter 1 , “NetIPC Fundamentals,” for more
information.

vcdesc (output)

32-bit integer, by reference. The returned VC socket
descriptor, a number identifying a VC socket belonging
to this process through which data can be sent or
received. This descriptor can be used in other intrinsics.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.
72 Chapter 3

NetIPC Intrinsics
IPCCONNECT
Description

The IPCCONNECTintrinsic is used to establish a VC socket (for a virtual
circuit) to another process. The calling process must first create a call
socket for itself and obtain the destination descriptor of a call socket
belonging to the other process.

A successful result means that the connection request has been
initiated. The process which requested the connection (via IPCCONNECT)
must then call IPCRECV with the VC socket descriptor value in order to
complete the connection. IPCCONNECT is a non-blocking call: the calling
process is not blocked pending completion of its request.

Only the destination descriptor and VC socket descriptor parameters
are required (that is, the intrinsic is option variable).

Condition codes returned by this intrinsic are as follows:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

Protocol-Specific Considerations

The following Table 3-2 outlines parameters that are specific to the
particular protocol you are accessing.

Table 3-2 IPCCONNECT Protocol Specific Parameters

Parameters TCP X.25

flags

0 Protected connection n/a

21 Enable checksum n/a

opt

2 n/a Call user data (CUD)

3 Maximum send size n/a

4 Maximum receive size n/a

128 TCP source port
address

n/a

142 n/a Facilities set name

144 None defined Bit 17: access to CUD

145 n/a Facility field
Chapter 3 73

NetIPC Intrinsics
IPCCONNECT
X.25 Considerations

IPCCONNECT used over a switched virtual circuit causes the X.25
protocol to send a call request packet to the node and process described
by the destination socket. Over a permanent virtual circuit (PVC), a
reset packet is sent.

The opt parameter CUD field is sent as the CUD field in the call
request packet. Based on the setting of the opt protocol flags “no
address” flag, the user has access to either 12 or 16 bytes in the CUD
field. With fast select, the user has access to either 124 or 128 bytes.

For communication between HP nodes, the first four bytes of the CUD
field are interpreted as an address for incoming call packets (the third
and fourth bytes contain the protocol relative address). The X.25
protocol uses this data to find the proper source socket to route the
incoming call. This corresponds to the relative address parameter
passed when the source socket was created.

Common errors returned by IPCCONNECT in result are:

SOCKERR 0 Request completed successfully.
SOCKERR 46 Unable to interpret received path

report.
SOCKERR 55 Exceeded protocol module's limit.
SOCKERR 116 Destination unreachable.
SOCKERR 143 Invalid facilities set.
SOCKERR 155 Invalid X.25 flags.
SOCKERR 157 No virtual circuit configured.
SOCKERR 160 Incompatible with protocol state.
SOCKERR 162 X.25 permanent virtual circuit does

not exist.
SOCKERR 163 Permanent virtual circuit already

established.
SOCKERR 170 Error with use of the fast select facility.
SOCKERR 171 Invalid facility field opt record entry.

A complete table of SOCKERRs is included in Appendix C ,
“Error Messages.”

TCP Access

If a call socket descriptor is not supplied, or if the specified value is -1, a
“ghost” socket is created for the purpose of setting up the connection.
This temporary socket is destroyed before the IPCCONNECT call is
complete.

Cross-System Considerations for TCP

The following are cross-system programming considerations for this
intrinsic:
74 Chapter 3

NetIPC Intrinsics
IPCCONNECT
HP 3000 to HP 1000:

Checksumming — TCP checksumming will be enabled for both sides
of the connection if it is enabled by either side for HP 3000 to HP 1000
cross-system communication. On both the HP 3000 and HP 1000
checksumming can be enabled by setting bit 21 in the flags parameter.

Send and receive sizes — The HP 3000 send and receive size range is
1 to 30,000 bytes. The HP 1000 send and receive size range is 1 to 8,000
bytes. Although the ranges are different, specify a send size within the
correct range. For example, if the HP 3000 node sends 16,000 bytes, the
HP 1000 node can call IPCRECVtwice, receiving the first 8,000 bytes the
first time and the second 8,000 bytes the second time.

Note that the default send and receive sizes are different on different
HP systems. On the HP 3000, the default send and receive size is less
than or equal to 1,024 bytes. On the HP 1000 the default send and
receive size is 100 bytes.

HP 3000 to HP 9000:

Checksumming — When the ipcconnect() call is executed on the
HP 9000 node, checksumming is always enabled. Therefore
checksumming is always enabled for the HP 3000-to-HP 9000
connection.

Send and receive sizes — The HP 3000 send and receive size range is
1 to 30,000 bytes. The HP 9000 send and receive size range is 1 to
32,767 bytes. Although the ranges are different, cross-system
communication is not affected. If you specify a send or receive size, be
sure it is within the correct range for the respective system.

Note that the default send and receive sizes are different on different
HP systems. On the HP 3000, the default send and receive is less than
or equal to 1,024 bytes. On the HP 9000, the default send and receive
size is 100 bytes.

HP 3000 to PC NetIPC:

Checksumming — With PC NetIPC, the TCP checksum option cannot
be turned on. But if the HP 3000 requires it, the TCP checksum is in
effect on both sides of the connection.

Send and receive sizes — The HP 3000 send and receive size range is
1 to 30,000 bytes. The PC send and receive size range is 1 to 65,535
bytes. Although the ranges are different, cross-system communication
is not affected. For example, if the PC node sends 60,000 bytes, the
HP 3000 node can call IPCRECV twice, receiving the first 30,000 bytes
the first time and the second 30,000 bytes the second time.

Note that the default send and receive sizes are different on different
HP systems. On the HP 3000, the default send and receive size is less
than or equal to 1,024 bytes.
Chapter 3 75

NetIPC Intrinsics
IPCCONTROL
IPCCONTROL
Performs special operations.

Syntax

IPCCONTROL (descriptor , request [, wrtdata][, wlen][, readdata][, rlen]
[, flags][, result)]

Parameters

descriptor (input)

32-bit integer, by value. Either a call socket
descriptor or a VC socket descriptor.

request (input)

32-bit integer, by value. The value supplied indicates
what control operation is to be performed.

• 1 = Enable nowait (asynchronous) I/O for the
specified call socket or VC socket descriptor.

• 2 = Disable nowait (asynchronous) I/O for the
specified call socket or VC socket descriptor; perform
waited (blocking) calls only.

• 3 = Change the default timeout (initially
60 seconds) for waited and nowait I/O (receive
operations only). The wrtdata (two bytes) and wlen
parameters are required with this request. The
timeout is specified in tenths of a second.

• 9 = Accept a connection request that is in the
deferred state. This request is valid only over
connection sockets in the connection pending state.
To reject a connection request, see request code 15.
The call must be accepted before attempting to send
or receive data over the connection. No readdata is
associated with this request.

For this request, the wrtdata parameter can
(optionally) contain information in the format of the
opt parameter used in the other intrinsics. The valid
codes are:

— code 2 — (X.25 only.) This option field contains
data to be sent as user data in the call accepted or
clear indication packet. The maximum length for
X.25 call user data (CUD) is 16 bytes. If the fast
76 Chapter 3

NetIPC Intrinsics
IPCCONTROL
select facility has been used, the maximum
length is 128 bytes.

— code 145 — (X.25 only.) This option field defines
the part of the facility field to be appended to the
facility field built using the received facilities.
The maximum length of this field is 109 bytes.
This buffer has to follow the X.25
recommendation and is appended to the facility
field built based on the information contained in
the call request.

• 10 = Send a reset packet (X.25 only.) This request
is valid only over connection sockets. The wrtdata
parameter (2 bytes) can contain the cause (byte 1)
and diagnostic (byte 2) fields to be included in the
reset packet sent by the X.25 protocol. The cause
field may be overwritten by the PDN. If configured
as a DTE, the cause will always be 0, irrespective of
the value entered. Suggested value for the cause
field is 0 (zero), DTE originated. No readdata is
associated with this request.

• 11 = Send an interrupt packet (X.25 only.) This
request is valid only over connection sockets. The
wrtdata parameter can contain from 1 to 32 bytes
of user data that will be inserted in the interrupt
packet sent by the X.25 protocol.

• 12 = Reason for error or event (X.25 only.) This
request returns the reason for the NetIPC error or
event on an X.25 connection in the readdata
parameter. The first byte of readdata contains the
type of packet that caused the error or the
unsolicited even (Clear, Reset, Interrupt). The
second byte contains the length of the clear user
data field or the length of the interrupt data field.
The third and fourth bytes contain the cause and
diagnostic fields.

Beginning with byte 5 there can be either clear user
data or interrupt data. There can be up to 128 bytes
of clear user data if the type of packet is clear and if
the fast select facility was used at the beginning of
the communication. There can be up to 32 bytes of
interrupt data if the type of packet is interrupt.

This request is valid only over an X.25 connection
socket after a communications line error has
occurred. Possible cause and diagnostic codes
generated by X.25 are listed in Appendix B , “Cause
and Diagnostic Codes.”
Chapter 3 77

NetIPC Intrinsics
IPCCONTROL
The type of packets returned are:

— 10 = Clear packet received
— 11 = Reset packet received
— 12 = Interrupt packet received

If no event is reported, readdata contains zeros. If
the error was caused by a clear packet, the
connection is lost, and the user must use
IPCSHUTDOWN to clear the connection. There is no
wrtdata associated with this request.

• 13 = Set no activity timeout (X.25 only.) This
request is only valid on connection sockets. The
wrtdata parameter contains the timeout value in
minutes (16-bit positive integer). If not specified, the
default value of zero will be passed to wrtdata
disabling the timer. After a timeout, IPCSHUTDOWN
must be used to remove the connection socket. There
is no readdata associated with this request.

• 14 = Return local node name. If this request is
used, the fully-qualified local node name is returned
in readdata .

• 15 = Reject a connection request that is in the
deferred state. The VC socket is automatically
deleted after this request.

For X.25, this request causes the protocol to send a
clear packet with the cause field set to zero (DTE
originated) and the diagnostic field set to 64. This
request is valid only over connection sockets in the
connection pending state.

For this request, the wrtdata parameter can
(optionally) contain information in the format of the
opt parameter used in the other intrinsics. The valid
codes are:

— code 2 — (X.25 only.) This option field contains
data to be sent as user data in the call accepted or
clear indication packet. The maximum length for
X.25 call user data (CUD) is 16 bytes. If the fast
select facility has been used, the maximum
length is 128 bytes.

— code 145 — (X.25 only.) This option field defines
the part of the facility field to be appended to the
facility field built using the received facilities.
The maximum length of this field is 109 bytes.
This buffer has to follow the X.25
recommendation and is appended to the facility
78 Chapter 3

NetIPC Intrinsics
IPCCONTROL
field built based on the information contained in
the call request.

• 256 = Enable nowait receives; disable nowait
sends.

• 257 = Enable nowait sends; disable nowait
receives.

• 258 = Abort outstanding nowait receives.

• 259 = Enable user-level NetIPC tracing. This
request causes NetIPC intrinsic calls (both initiation
and completion of I/O requests) to be traced.

— code 131 — Indicates that the data portion of the
wrtdata parameter contains the trace file name.
If omitted, the trace file is named SOCK####,
where #### are four randomly chosen digits, and
placed in the caller’s group and account.

— code 132 — Indicates that the data portion of the
wrtdata parameter contains a 2-byte value
representing the number of records allotted to the
trace file. If omitted, or if this value is zero, the
default is 1024 records.

— code 133 — Indicates that the data portion of the
wrtdata parameter contains a 2-byte value
representing the maximum number of bytes of
user data which you wish to trace. If omitted, or if
the value is -1, the default is 2000 bytes (a zero
value means zero bytes). The largest amount of
user data which may be traced is 8,192 bytes.

• 260 = Disable user-level NetIPC tracing.

• 261 = Enable immediate acknowledgment.
(TCP only.) Instructs the TCP protocol module to
acknowledge received frames immediately. Note that
use of option 261 can degrade performance of the
user’s processes.

• 262 = Change the timeout for waited and
no-wait sends. The default is timeout disabled.

• 514 = Available to processes running in
privileged mode only. Over an open connection, if
the previous call was an IPCCONNECT, the two byte
local TCP address is returned in the readdata
buffer. Over an open connection, if the previous call
was an IPCRECVCN, two bytes of the remote TCP
address and four bytes of the remote IP address are
returned in the readdata buffer. The rlen
parameter returns the length of readdata .
Chapter 3 79

NetIPC Intrinsics
IPCCONTROL
wrtdata (input)

Record or byte array, by reference. If the request is
to change the default timeout, (request code 3 or 262)
the value in the first two bytes of the wrtdata buffer
will become the new timeout, in tenths of a second. A
zero value indicates an indefinite timeout: a call to
IOWAIT returns only after the next I/O request
completes.

If the request is to enable tracing, (request code 259)
or for X.25 requests 9 or 15, this parameter may
(optionally) contain information in the same format as
the opt parameter in other intrinsics.

wlen (input)

32-bit integer, by value. Length in bytes of the
wrtdata parameter.

readdata (output)

Record or byte array, by reference. If the request
enables tracing, the trace file's name is returned in this
parameter. If the request asks for the socket’s address,
that address is returned here. If the request is for the
local node name, the fully qualified node name is
returned in readdata .

rlen (input/output)

32-bit integer, by reference. The maximum number
of bytes that you expect to receive in the readdata
parameter. If readdata returns the trace file name,
rlen returns the length of this name, in bytes. If
readdata returns the socket’s address, rlen will
return the byte length of the address.

flags (input)

32 bits, by reference. A bit representation of various
options. The following flag is defined:

• flags [31] (input) — (TCP only.) If NetIPC tracing is
enabled (request = 259), this flag indicates that
Transport Layer protocol activity (headers and
internal messages) should also be traced.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.
80 Chapter 3

NetIPC Intrinsics
IPCCONTROL
Description

The IPCCONTROLintrinsic is used to perform various special operations
on sockets. This intrinsic is option variable. All requests require the
descriptor and request parameters except request 14 which
requires request and readdata only. The timeout requests (code 3 or
262) also require the wrtdata parameter. For tracing, socket address
requests, and the local node name, information may be returned in the
readdata buffer.

Request code 3 is used to set a receive timeout value as specified in
wrtdata (two bytes). Zero (0) may be used to indicate no timeout. The
timeout value is measured in tenths of a second. The default value is
60 seconds with the timeout enabled.

Request code 3 and the no activity timeout for X.25 (code 13) are
independent timers. Setting one has no influence on the other. Both
timers can be operational at the same time.

Request code 262 is used to set a send timeout value as specified in
wrtdata (two bytes). Zero (0) may be used to indicate no timeout. If
timeouts are enabled, the timer will expire the number of timeout
seconds (as specified in wrtdata) after completion of the last send. The
default value is timeout NOT enabled. There is only one send timer per
connection. It will be running any time there is an outstanding send.
That is, if nowait I/O is used, it will run until IOWAIT completes for all
sends.

For a waited send, the timer will run until the intrinsic completes. If
multiple nowait sends are issued, the timer will be restarted for each
send initiated and for each IOWAIT completed with sends still
outstanding. If a send timer expires before a send completes, the
connection must be shutdown.

Request codes 9 and 15 allow the user to accept or reject a connection
that is in the deferred-connection state (see IPCRECVCN). If the
connection request is accepted, the connection can receive and send
data upon the completion of IPCCONTROL. If the connection is rejected,
all resources allocated for the connection are returned and the
requestor is notified of the rejection.

When requesting the descriptor’s address (request code 514), readdata
has the meanings shown in Table 3-3.
Chapter 3 81

NetIPC Intrinsics
IPCCONTROL
Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed

• CCG — Not returned by this intrinsic.

This intrinsic may not be called in split stack mode.

Protocol-Specific Considerations

The following Table 3-4 outlines parameters that are specific to the
particular protocol you are accessing.

Table 3-3 readdata Meanings

Descriptor Type Address Meaning

call socket port address of socket (for TCP,
length=2 bytes)

connection from IPCCONNECT local port address of connection
socket (for TCP, length=2 bytes)

connection from IPCRECVCN remote port address of connection
socket in bytes 0 and 1, remote
internet address of node in bytes 2
through 5. (6 bytes total length)

Table 3-4 IPCCONTROL Protocol Specific Parameters

Parameters TCP X.25

request

10 n/a Send reset

11 n/a Send interrupt

12 n/a Reason for error or event

13 n/a Set inactivity timeout

261 Enable immediate ack n/a

wrtdata

2 n/a Call user data

145 n/a Facility field

flags

31 Trace transport layer
protocol activity

n/a
82 Chapter 3

NetIPC Intrinsics
IPCCONTROL
X.25 Considerations Common errors returned by IPCCONTROL in
result are:

SOCKERR 0 Request completed successfully.
SOCKERR 59 Socket timeout.
SOCKERR 65 Connection aborted by local protocol

module.
SOCKERR 67 Connection failure detected.
SOCKERR 107 Transport is going down.
SOCKERR 160 Incompatible with protocol state.
SOCKERR 170 Error with use of fast select facility.
SOCKERR 171 Invalid facility field opt record

entry.

A complete table of SOCKERRs is included in Appendix C ,
“Error Messages.”
Chapter 3 83

NetIPC Intrinsics
IPCCREATE
IPCCREATE
Creates a call socket for the calling process.

Syntax

IPCCREATE (socketkind [, protocol][, flags][, opt], calldesc [, result])

Parameters

socketkind (input)

32-bit integer, by value. Indicates the type of socket
to be created. The only type that a user process may
create is: 3 = call socket. It is used for sending and
receiving connection requests.

protocol (input)

32-bit integer, by value. Indicates the protocol
module which the calling process wishes to access. If
the value is zero or if this parameter is not specified,
the TCP module is chosen by default. The protocols
currently available to user processes are:

• 0 = Default protocol. The current default is TCP. The
recommended value for programs using IPCNAME
and IPCLOOKUP is 0 rather than 4 for TCP.

• 2 = X.25 protocol

• 4 = TCP (Transmission Control Protocol)

flags (input)

32 bits, by reference. A bit representation of various
options. The following option is defined:

• flags [0] (input). TCP only. Makes the newly created
socket a “protected” socket. A protected socket is one
which only a privileged user may create or use.

opt (input)

Record or byte array, by reference. A list of options,
with associated information. Refer to “Common
Parameters” for more information on the structure of
this parameter. The following options are available:

• maximum connection requests queued (option
code=6, length=2, 2-byte integer) (input). Used to
specify the maximum number of unreceived
84 Chapter 3

NetIPC Intrinsics
IPCCREATE
connections that can be queued to a call socket. The
default value is 7.

• address option (option code=128, length=n; n-byte
array), (input). Allows users to specify the socket’s
protocol relative address rather than having NetIPC
allocate an address. The format of this address is
defined by the protocol, for TCP and X.25 protocol
access, the address is a 2-byte array. For X.25, you
must either specify a protocol relative address, or
identify the socket as catch-all. (See the opt protocol
flags “catch-all socket flag” (bit 2) description).

Address values in the range 30767 to 32767 decimal
(% 74057 to % 77777) can be used without special
capabilities. In privileged programs, values in the
range 1 to 30766 decimal (%1 to % 74056) can be
used. See the paragraph “User-specified Protocol
Addressing” at the beginning of this chapter for
more information.

• network name (code=140, length=8, packed array
of characters) (input). The X.25 network name is the
network interface (NI) name defined when the
network is configured with NMMGR. This option is
required for X.25 protocol access. This field is
left-justified.

• protocol flags (code 144, length=4, 4-byte buffer).

— catch-all socket flag (bit 2) (input). X.25
protocol access only. This flag identifies the socket
as a catch-all socket. Network administrator (NA)
capability is required to set this flag. User
capability is required to run a program that
creates a catch-all socket. The address option
(protocol relative address) does not apply to a
catch-all socket.

calldesc (output)

32-bit integer, by reference. Call socket descriptor.
The socket descriptor which identifies the created
socket.

result (output)

32-bit integer, by reference. The returned error
code; zero if no error.
Chapter 3 85

NetIPC Intrinsics
IPCCREATE
Description

The IPCCREATE intrinsic creates a call socket, returning a call socket
descriptor. A call socket descriptor is an identifying number which may
be used in other NetIPC intrinsic calls. A process may own a maximum
of 64 (call and VC) sockets. If a socket has been given away (via the
IPCGIVE intrinsic), it is included in this total until another process
takes it (via IPCGET).

Only the socketkind and calldesc parameters are required.

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

IPCCREATE runs in waited mode. It does not return until the request is
completed.

Protocol-Specific Considerations

The following Table 3-5 outlines parameters that are specific to the
particular protocol you are accessing.

X.25 Considerations

For direct access to X.25, the protocol parameter must be 2 (X.25). The
opt parameter network name must include the X.25 network NI name.

The opt parameter address option (code 128) is used to contain the
protocol relative address of the source socket.

X.25 compares the protocol relative address contained in an incoming
call (in the CUD field) to the protocol relative addresses assigned to all
X.25 call sockets at the source sockets’ destination. If the protocol
relative address of the source socket matches the incoming call’s
address (CUD) the call is routed to that socket.

Table 3-5 IPCCREATE Protocol Specific Parameters

Parameters TCP X.25

flags

0 Protected socket n/a

opt

140 n/a NI name required

144 none defined Bit 2: catch-all socket
flag
86 Chapter 3

NetIPC Intrinsics
IPCCREATE
If no match is found, the incoming call is routed to the catch-all socket if
one has been defined. If the CUD address does not match any of the call
sockets and no catch-all socket has been defined, the incoming call is
cleared. the cause field of the clear packet is set to 0 and the diagnostic
is 64.

The catch-all socket can be defined by setting the opt protocol flags
catch-all socket flag (bit 2). Only one catch-all socket can be defined per
directly-connected network.

The catch-all socket and address option (protocol relative address) only
apply to switched virtual circuits (SVCs).

Common errors returned by IPCCREATE in result are:

SOCKERR 0 Successful completion.
SOCKERR 4 Transport has not been initialized.
SOCKERR 9 Protocol is not active.
SOCKERR 55 Exceeded protocol module's limit.
SOCKERR 106 Address currently in use by another

socket.
SOCKERR 107 Transport is going down.
SOCKERR 153 Socket is already in use.

A complete table of SOCKERRs is included in Appendix C ,
“Error Messages.”

TCP

for TCP access, only the socketkind and calldesc parameters are
required.

Cross-System Considerations for TCP

The following are HP 3000 to HP 1000, HP 3000 to HP 9000, and
HP 3000 to PC programming considerations for this intrinsic:

TCP protocol address — Although the ranges of protocol addresses
for each computer system are different, the recommended range for
cross-system user applications is from 30767 to 32767 decimal (%74057
to %77777).
Chapter 3 87

NetIPC Intrinsics
IPCDEST
IPCDEST
Creates a destination descriptor.

Syntax

IPCDEST (socketkind [, location][, locationlen], protocol ,
protoaddr , protolen [, flags][, opt], destdesc [, result])

Parameters

socketkind (input)

32-bit integer, by value. Defines the type of socket.
The only type user processes can create is: 3 = call
socket.

location (input)

Character array, by reference. The name of the
node (either node or node.domain.organization)
on which the destination socket is to be created. If this
parameter is omitted, the local node is assumed.

locationlen (input)

32-bit integer, by value. The length in bytes of the
destination node name. Zero indicates that no location
was given (that is, the node is local). Maximum (for a
fully qualified name) is 50.

protocol (input)

32-bit integer, by value. Defines the Transport Layer
protocol to be used. The protocols currently available to
user processes are:

• 2 = X.25 protocol

• 4 = TCP

protoaddr (input)

Byte array, by reference. Protocol relative address
(remote address) with which the socket will be
associated. The format of this address, defined by the
protocol, is a 2-byte array (16 bits). Nonprivileged
programs must use addresses in the range 30767 to
32767 decimal (%74057 to %77777). For X.25 access to
level 3, this address is included in the CUD field of an
X.25 call packet. (See the discussion of IPCCONNECTfor
the parameters providing access to the CUD).
88 Chapter 3

NetIPC Intrinsics
IPCDEST
protolen (input)

32-bit integer, by value. The length in bytes of the
protocol address.

flags

32 bits, by reference. A bit representation of various
options. No flags are currently defined.

opt (input)

Record or byte array, by reference. A list of options,
with associated information.

• destination network address (code = 16, length=n,
n byte buffer) (input). (X.25 only.)This option allows
a user to bypass the use of the network directory and
associated IP address by specifying the destination
node network address.

The first two bytes of the option data field contain
the “protocol” value of the module. For X.25, the
protocol value is 2. The rest of the option data field is
relative to that protocol. For X.25, two subformats
are defined: one for the PVC numbers and one for
SVC addresses. The third and fourth bytes of the
data field contain a format identifier, where 1
indicates a PVC number and 0 indicates a SVC
address. The PVC number is a 4 byte field. For a
PVC, the total length of the option field is 8 bytes.

The SVC field is composed of up to 16 nibbles where
the first nibble is the nibble length of the remaining
address. An odd number of nibbles can be passed
since the length indicates the significance of the
remaining field. This implies that the option data
length for an SVC is between 5 and 12 bytes
inclusive.

destdesc (output)

32-bit integer, by reference. Destination descriptor.
Describes the location of the named call socket. May be
used in subsequent NetIPC calls to IPCCONNECT.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.
Chapter 3 89

NetIPC Intrinsics
IPCDEST
Description

The IPCDEST intrinsic creates a destination descriptor that contains
routing information for sending data to another process.

This intrinsic is option variable. The required parameters are:
socketkind , protocol , protoaddr , protolen , and destdesc .

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

This intrinsic cannot be called in split stack mode.

Protocol-Specific Considerations

The following Table 3-6 outlines parameters that are specific to the
particular protocol you are accessing.

X.25 Considerations

IPCDESTis used to create a destination descriptor for X.25 direct access.
The protoaddr parameter is only used with switched virtual circuits
(SVCs).

Using the destination network address (opt 16) to directly specify an
X.25 address of an SVC or a PVC number allows the user to bypass the
use of the network directory and the associated IP address.

Cross-System Considerations For TCP

The following are HP 3000 to HP 1000, HP 3000 to HP 9000, and
HP 3000 to PC programming considerations for this intrinsic.

TCP protocol address — Although the ranges of protocol addresses
for each computer system are different, the recommended range of TCP
addresses for user applications is from 30767 to 32767 decimal (%74057
to %77777).

Table 3-6 IPCDEST Protocol Specific Parameters

Parameters TCP X.25

opt

16 n/a destination network
address
90 Chapter 3

NetIPC Intrinsics
IPCDEST
IPCERRMSG

Returns the NetIPC error message corresponding to a given error code.

Syntax

IPCERRMSG (ipcerr , msg, len , result)

Parameters

ipcerr (input)

32-bit integer, by value. A valid NetIPC error code.

msg (output)

Character array, by reference. The NetIPC error
message corresponding to the given error code.

len (output)

32-bit integer, by reference. The length (in bytes) of
the error message. The maximum is 80 bytes.

result (output)

32-bit integer, by reference. The error code returned
for this intrinsic call; zero if no error.

Description

The IPCERRMSG intrinsic returns the NetIPC error message
corresponding to a given error code. It also gives the length of the
message. All parameters are required.

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed because of a user error.

• CCG — Failed because of an internal error (for example, unable to
open the message catalog, a GENMESSAGE failure, etc.).

This intrinsic cannot be called in split stack mode.
Chapter 3 91

NetIPC Intrinsics
IPCGET
IPCGET
Obtains a VC socket or call socket descriptor that has been given away
by another process.

Syntax

IPCGET (givename , nlen , flags , descriptor , result)

Parameters

givename (input)

Character array, by reference. The temporary name
assigned to the socket when it was given away. It is up
to 16 characters long.

nlen (input)

32-bit integer, by value. The length in bytes of the
specified name.

flags

32 bits, by reference. A bit representation of various
options. No flags are currently defined for this intrinsic.

descriptor (output)

32-bit integer, by reference. The VC socket or call
socket descriptor that was given away via the IPCGIVE
command.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.

Description

The IPCGET intrinsic allows a process to obtain ownership of a VC
socket or call socket descriptor that has been relinquished by another
process through the IPCGIVE intrinsic. A temporary name identifies the
socket for the process which wishes to acquire it. All the parameters are
required.

Condition codes returned by this intrinsic are:

• CCE — Succeeded.
• CCL — Failed.
• CCG — Not returned by this intrinsic.

This intrinsic cannot be called in split stack mode.
92 Chapter 3

NetIPC Intrinsics
IPCGIVE
IPCGIVE
Gives away a VC socket or call socket descriptor, making it available for
use by other processes.

Syntax

IPCGIVE (descriptor , givename , nlen , flags , result)

Parameters

descriptor (input)

32-bit integer, by value. The VC socket or call socket
descriptor to be given away.

givename (input/output)

Character array, by reference. A name which will
be temporarily assigned to the specified socket. The
process which obtains the socket must request it by this
name. If the nlen (name length) parameter is zero, an
8-character name is randomly assigned and returned in
the givename parameter. If the name is supplied by
the user, it must be no longer than 16 characters.

nlen (input)

32-bit integer, by value. Length in bytes of the
specified name. If the value is zero, the NetIPC facility
will assign the name.

flags

32 bits, by reference. A bit representation of various
options. No flags are currently defined for this intrinsic.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.

Description

A process can invoke IPCGIVE to give away a VC socket or call socket
descriptor that it owns. Another process at the same node must then
“get” the descriptor in order to use it. For example, Process A at node X
can give away a VC socket descriptor. Process B, also at node X, may get
the descriptor and send data over the connection that Process A has
previously established with process C at node Z. Because Process B
“got” the endpoint of a previously established connection, it does not
Chapter 3 93

NetIPC Intrinsics
IPCGIVE
need to create its own call socket and engage in the NetIPC connection
dialogue in order to communicate with Process C.

All the parameters are required.

When a socket is given away, it is assigned a new, temporary name.
This name is either specified by the user or assigned by the NetIPC
facility. It continues to exist only until the socket is obtained by another
process or destroyed. The other process uses this name in a call to
IPCGET, not IPCLOOKUP. However, the syntax of the name is the same as
it is for other intrinsics permitting socket name parameters. Therefore
it is possible to use a socket’s “well-known” name — a name bound to
the socket and known to other processes — in the IPCGIVE and IPCGET
intrinsics.

Once a process has given away a socket, it no longer has access to the
VC socket (or call socket) descriptor specified. If a process expires after
giving away a socket, and no other process has obtained it, the VC
socket or call socket will be destroyed.

Also, after a socket has been given away, it is the responsibility of the
new owning process to tell other processes that the socket has been
acquired. Other processes will then know who is receiving the data they
send.

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

This intrinsic cannot be called in split stack mode.
94 Chapter 3

NetIPC Intrinsics
IPCLOOKUP
IPCLOOKUP
Obtains a destination descriptor for a named call socket. Use with TCP
access only.

Syntax

IPCLOOKUP (socketname , nlen [, location][, loclen][, flags], destdesc
[, protocol][, socketkind][, result])

Parameters

socketname (input)

Character array, by reference. The name of the
socket.

nlen (input)

32-bit integer, by value. The length in bytes of the
specified socket name. Maximum is 16.

location (input)

Character array, by reference. An environment ID
or node name indicating where the socket registry
search is to take place. The domain and organization
names which fully qualify the node/environment
designation are optional. If no location is specified, the
local socket registry is searched. This parameter can be
a maximum of 50 characters long.

loclen (input)

32-bit integer, by value. The length in bytes of the
location parameter. A zero value indicates that the
socket registry search is to take place on the local node.

flags (input)

32 bits, by reference. A bit representation of various
options. The only flag defined is: flags [0]. It causes the
destination descriptor to be “protected.” A protected
destination descriptor is one which only privileged
users may create or use.

destdesc (output)

32-bit integer, by reference. The returned
destination descriptor, which the calling process may
use to access the named socket as a destination. This
descriptor is required by the IPCCONNECT intrinsic.
Chapter 3 95

NetIPC Intrinsics
IPCLOOKUP
protocol (output)

32-bit integer, by reference. A number identifying
the protocol module with which the socket is associated:
The only protocol available to user processes is: 4 =
TCP.

socketkind (output)

32-bit integer, by reference. A number which
identifies the socket’s type: 3 = call.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.

Description

The IPCLOOKUPintrinsic is used to gain access to a named socket. When
supplied with the socket’s name, it returns a destination descriptor that
the calling process can use in order to connect to and send messages to
that socket. It is important to synchronize the naming and lookup of
sockets so that the naming occurs before the lookup. If these two events
are occurring concurrently, you can repeat the IPCLOOKUPcall, checking
the result parameter after each call, until the call is successful. If the
result value is 37 (“NAME NOT FOUND”), the socket has not yet been
given the name. The following Pascal program fragment illustrates this
idea:

socketname := 'RAINBOW';
location := 'SOMEWHERE';
result := 0;
repeat

IPCLOOKUP (socketname, 7, location, 9, ,
 destdesc, , , result);

until result<>37;
if result<>0 then ERRORPROCEDURE;

The only required parameters in the IPCLOOKUP intrinsic are
socketname , nlen , and destdesc . This intrinsic is option variable.
Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

This intrinsic cannot be called in split stack mode.
96 Chapter 3

NetIPC Intrinsics
IPCNAME
IPCNAME
Associates a name with a call socket descriptor.

Syntax

IPCNAME (calldesc , socketname , nlen , result)

Parameters

calldesc (input)

32-bit integer, by value. The call socket descriptor to
be named.

socketname (input/output)

Character array, by reference. The name
(maximum of 16 characters) to be assigned to the
socket. If the nlen (name length) parameter is zero, an
8-character name is randomly assigned and returned in
the givename parameter. If the name is supplied by
the user, it must be no longer than 16 characters.

nlen (input)

32-bit integer, by value. The length in bytes of the
specified socket name. Maximum is 16.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.

Description

The IPCNAME intrinsic allows a user to bind a name to a call socket.
Using the IPCLOOKUPintrinsic, another process can obtain access to the
socket by means of its name. A single call socket on an HP 3000 can
have a maximum of 4 names. VC sockets cannot be named. If the
specified name length is zero, an 8-character name will be randomly
generated and returned in the socketname parameter. When the socket
is destroyed, the name will be removed from the socket registry.

All parameters are required. Condition codes returned by this intrinsic
are:

• CCE — Succeeded.
• CCL — Failed.
• CCG — Not returned by this intrinsic.

This intrinsic cannot be called in split stack mode.
Chapter 3 97

NetIPC Intrinsics
IPCNAMERASE
IPCNAMERASE
Deletes a name associated with a call socket descriptor.

Syntax

IPCNAMERASE (socketname , nlen , result)

Parameters

socketname (input)

Character array, by reference. The socket name,
bound to a socket, which is to be removed.

nlen (input)

32-bit integer, by value. The length in bytes of the
specified socket name. Maximum is 16.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.

Description

If a socket has been named with the IPCNAMEintrinsic, the owner of the
socket may remove the name by means of the IPCNAMERASE intrinsic.
The owner is the process which created the socket or, if the socket has
been given away, the process which has acquired it.

All the parameters are required. Condition codes returned by this
intrinsic are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

This intrinsic cannot be called in split stack mode.
98 Chapter 3

NetIPC Intrinsics
IPCRECV
IPCRECV
Receives a response to a connection request, thereby completing a
connection, or receives data on an existing connection.

Syntax

IPCRECV (vcdesc [, data][, dlen][, flags][, opt][result]

Parameters

vcdesc (input

32-bit integer, by value. The VC socket descriptor, a
number identifying the VC socket belonging to this
process through which the data will be received.

data (output)

Record or byte array, by reference. A buffer to hold
the received data or a list of data descriptors
(maximum of two) indicating where the data are to be
distributed. For programming in “C” language, see
Appendix E , “C Program Language Considerations.”

dlen (input/output)

32-bit integer, by reference. Gives the maximum
number of bytes you are willing to receive. For a
response to a connection request, this value must be 0
(or the parameter may be omitted). For actual data on
an established connection, the value must be between 1
and 30,000. The returned value indicates how many
bytes were actually received.

In one IPCRECV call, you can receive all the
accumulated data from one or more IPCSEND calls, but
you may also receive only part of the data “sent” in an
IPCSEND. In order to obtain the rest of the data, you can
issue another IPCRECV call.

flags (input/output)

32 bits, by reference. A bit representation of various
options. The following options are defined:

• flags [16] — no output (input). If nowait I/O is used
and this bit is set, the flags parameter will not be
updated upon completion of this IPCRECV. This
allows a calling procedure to have a local flags
parameter and still complete before the IPCRECV
Chapter 3 99

NetIPC Intrinsics
IPCRECV
completes. This flag has no effect if waited I/O is
used.

• flags [25] — discarded (output). (X.25 only.) This
flag indicates that the call user data, or the facility
field were present, but that some or all had to be
discarded. This can occur if no call user data receive
option was specified or if either field is too short to
hold all of the data.

• flags [26] — more data (output). This flag indicates
that there may be more data to be received after
completion of this IPCRECV.

For TCP, this bit will always be set when normal,
non-urgent data has been received because TCP
sends data in stream mode, with no end-of-data
indication. However, if urgent data has been
received, and no more is pending, this bit will be set
to 0.

For X.25, the “more data” flag indicates that the data
returned is not the complete message. This will only
occur if the user request was for a smaller message
than was sent. The amount of data specified in dlen
has been moved into data . The following part of the
message will be returned in the next call to IPCRECV,
unless the destroy data flag (29) was set.

• flags [29] — destroy data (input). If set, this flag
causes delivered data that exceeds the amount
allowed by the specified dlen or byte count (for
vectored data) to be discarded. Use this flag to
remove data that may have arrived at your node
(and queued in the NetIPC buffer) that you do not
want the process to receive.

Note that in TCP stream mode, there is no
mechanism to verify that data left over has been
discarded.

• flags [30] — preview (input). This flag allows the
calling process to preview the data - that is, to read
the data without removing them from the queue of
data to the receiving socket.

• flags [31] — vectored (input). This flag indicates
that the received data are to be distributed to the
addresses (vectors) given in the data parameter.
100 Chapter 3

NetIPC Intrinsics
IPCRECV
opt (input)

Record or byte array, by reference. A list of options,
with associated information. The following options are
defined:

• call user data receive (code 5, len=n; n bytes)
(output). This option provides a buffer for the return
of the call user data (CUD) field if you are using the
fast select facility. If call user data is present, but
this option is not supplied, then the discarded flag
(flags bit 25) will be set. If the buffer supplied is
not long enough to contain all the data, the data is
truncated and the discarded flag is set. To ensure
receiving all the CUD, this buffer should be at least
128 bytes long.

• data offset (code=8, length=2; 2-byte integer)
(input/output). This option is valid for non-vectored
compatibility mode data only. This option specifies
an offset in bytes from the data parameter’s address.
The received data are to be written into memory
beginning at this location.

• protocol flags (code=144, length=4; 4-byte buffer)
(output). This option contains 32 bits of
protocol-specific flags. The following flags are
currently defined:

— end-to-end acknowledgment (bit 18, output).
(X.25 only.) This flag indicates that the D bit is
set in the X.25 packet associated with this call.

— qualifier bit (bit 19, output). (X.25 only.) This
flag indicates that the Q bit is set in the X.25
packet associated with this call.

— urgent data (bit 27, output). (TCP only.) This
flag indicates that urgent data has been received
on an established connection.

• Facility field (code=145, length=n, n bytes)
(output). (X.25 only). This option provides a buffer
for the return of the facility field. If the buffer is not
long enough to contain all of the data, then the data
is truncated and the discarded flag (bit 25) is set.
This buffer should be at least 109 bytes long to
ensure receipt of the facility field (for more
information, see Chapter 1 , “NetIPC
Fundamentals.”)
Chapter 3 101

NetIPC Intrinsics
IPCRECV
NOTE If using nowait I/O and opt array options that generate output, the
array must remain intact until after IOWAIT completes. Otherwise, the
array area will be overwritten or (if the area has been deleted from the
stack) an error will occur.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.

NOTE When nowait I/O is used, the result parameter is not updated upon
completion of an intrinsic. Therefore, the value of result will indicate
only whether the call was successfully initiated. To determine if the call
completed successfully, you can use the IPCCHECKintrinsic after IOWAIT
completes.

Description

The IPCRECVintrinsic serves two purposes: (1) to receive a response to a
connection request, thereby completing a connection, and (2) to receive
user data on an established connection.

NOTE In the first case the VC socket descriptor is the only required
parameter; in the second, the VC socket descriptor, data, and data
length parameters are required. The brackets in the syntax diagram
represent the first case.

In receiving a response to a connection request, the IPCRECV intrinsic
returns nothing in the data buffer. A result value of zero indicates a
successful connection establishment. For X.25 only, the facility field and
call user data field are returned in the option field. The result
parameter will indicate an error if the destination rejected the request.
In that case you must still call IPCSHUTDOWN with the returned VC
socket descriptor value to shut down the connection.

Successful completion of an IPCRECV request on an established
connection (result code zero) means that some amount of data was
received: the amount requested or the amount transmitted, whichever
is smaller. It does not mean that you received all the data you asked for.

Completion of IPCRECV (in wait mode) with a non-zero result can
mean that a fatal error occurred. If nowait I/O is being used, IPCCHECK
must be called to detect a fatal error reported for the specified VC
descriptor after IOWAIT has been called and the receive completes.

Unless the intrinsic is called in nowait mode, the process is blocked
until some data arrive or a timeout occurs. In nowait mode, the
addresses of the data , flags and output opt options parameters are
retained by NetIPC until needed. The input value of flags is retained
102 Chapter 3

NetIPC Intrinsics
IPCRECV
and updated (with the “more data” flag off or on) when IOWAIT
completes. The data parameter will then contain the data received.
Only one nowait receive may be outstanding on a single connection.

The returned dlen parameter (or the IOWAIT tcount parameter in the
case of a nowait request) shows how many bytes of data were actually
received in the data parameter. This amount may be different from
what you requested. If you did not receive all the data you want, you
can obtain the additional data in a subsequent IPCRECV call. For more
information, see the discussion of “Sending and Receiving Data Over a
Connection” in Chapter 1 , “NetIPC Fundamentals,” and the
programmatic examples in Chapter 4 , “NetIPC Examples.”

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

This intrinsic can be called in split stack mode.

Protocol-Specific Considerations

The following Table 3-7 outlines parameters that are specific to the
particular protocol you are accessing.

Table 3-7 IPCRECV Protocol Specific Parameters

Parameters TCP X.25

flags

16 No output flag n/a

25 n/a Discarded

26 More data More data

opt

5 n/a CUD field

144 n/a Bit 18: state of D bit in
X.25 packets

Bit 19: state of Q bit in
X.25 packets

Bit 27: urgent data

145 n/a Facility field
Chapter 3 103

NetIPC Intrinsics
IPCRECV
X.25 Considerations

In receiving a response to a connection request, the option field returns
the facility field and the call user data (CUD) field. With fast select, up
to 128 bytes of call user data may be returned in the call user data
receive buffer (opt 5).

A single IPCRECV call returns data for one message only. If the “more
data” flag is set, the complete message has not been received. The
remaining part of the message can be received by subsequent calls to
IPCRECV, unless the destroy flag (29) is set.

If the destroy flag is set, the remaining part of the message is
destroyed. The end of message is indicated by the “more data” flag not
being set.

If an interrupt packet is received in the middle of a data packet stream,
IPCRECV returns no data. The result parameter indicates that an
interrupt event has occurred. The interrupt user data field can be
retrieved by calling IPCCONTROL, request 12 (reason for error or event).
The next call to IPCRECV returns the whole data message.

If a reset packet is received in the middle of a data packet stream, all
previously received packets are discarded. IPCRECV returns no data.
The result parameter indicates a reset has occurred. Use the
IPCCONTROL request 12 (reason for error or event) to retrieve the cause
and diagnostic fields for the reset.

Common errors returned by IPCRECV in result are:

SOCKERR 0 Request complete successfully.
SOCKERR 59 Socket timeout.
SOCKERR 65 Connection aborted by local protocol module.
SOCKERR 67 Connection failure detected.
SOCKERR 107 Transport is going down.
SOCKERR 117 Attempt to establish connection failed.
SOCKERR 146 Reset event occurred on X.25 connection.
SOCKERR 156 Interrupt event occurred on X.25

connection.
SOCKERR 158 Connection request rejected by remote.

A complete table of SOCKERRs is include in Appendix C ,
“Error Messages.”

TCP

The urgent data bit indicates that urgent data has been received. Table
3-8 demonstrates the meaning of urgent data and more data. Use these
bits in combination to determine the status of data received.
104 Chapter 3

NetIPC Intrinsics
IPCRECV
Cross-System Considerations for TCP

The following are cross-system programming considerations for this
intrinsic:

HP 3000 to HP 1000: Receive size (dlen parameter) — Range for
the HP 3000 is 1 to 30,000 bytes. Range for the HP 1000 is 1 to 8,000
bytes. Although the ranges are different, cross-system communication
is not affected. If you specify a send or receive size, be sure it is within
the correct range for the respective system.

Data wait flag — The HP 1000 IPCRecv call supports a “DATA_WAIT”
flag. This flag, when set, specifies that the call will not complete until
the amount of data specified by the dlen parameter has been received.
This flag is not available on the HP 3000, meaning that the call may
complete before all the data is received. However, the HP 3000 IPCRECV
supports other flags such as the “more data” and “destroy data” flags.

HP 3000 to HP 9000: Receive size (dlen parameter) — Range for
the HP 3000 is 1 to 30,000 bytes. Range for the HP 9000 is 1 to 32,767
bytes. Although the ranges are different, cross-system communication
is not affected. If you specify a send or receive size, be sure it is within
the correct range for the respective system.

Data wait flag — The HP 9000 IPCRECVcall supports a “DATA_WAIT”
flag. This flag, when set, specifies that the call will not complete until
the amount of data specified by the dlen parameter has been received.
This flag is not available on the HP 3000, meaning that the call may
complete before all the data is received. However, the HP 3000 IPCRECV
supports other flags such as the “more data” and “destroy data” flags.

HP 3000 to PC NetIPC: Receive size (dlen parameter) — Range for
the HP 3000 is 1 to 30,000 bytes. The PC send and receive size range is
1 to 65,535 bytes. Although the ranges are different, cross-system
communication is not affected. If you specify a send or receive size, be
sure it is within the correct range for the respective system.

Table 3-8 TCP Urgent and More Data Bit Combinations

Urgent More Data Meaning

0 0 Should never happen. (The receipt of normal
data in stream mode causes more data to be
set.)

0 1 Normal receive, no urgent data.

1 0 Urgent data received, no more urgent data.

1 1 Urgent data received and more is pending.
Chapter 3 105

NetIPC Intrinsics
IPCRECV
On the PC, you can specify the maximum receive size of the data buffer
through the got array in the IPCCONNECT call. This determines what
the maximum value the dlen parameter can be for any IPCRECV call.
PC NetIPC has no option array defined in IPCCONNECT. This does not
affect cross-system communication. The maximum receive size of the
data in the buffer on the HP 3000 will determine the receive size buffer
on the PC.
106 Chapter 3

NetIPC Intrinsics
IPCRECVCN
 IPCRECVCN
Receives a connection request on a call socket.

Syntax

IPCRECVCN (calldesc , vcdesc [, flags][, opt][, result])

Parameters

calldesc (input)

32-bit integer, by value. Call socket descriptor. The
socket descriptor for a call socket belonging to this
process.

vcdesc (output)

32-bit integer, by reference. The returned VC socket
descriptor, a number identifying a VC socket belonging
to this process through which data can be sent or
received. This descriptor can be used in other intrinsics.

flags (input)

32 bits, by reference. A bit representation of various
options. The following flags are defined:

• flags [0] — protected (input). (TCP only.) Ensures
that the connection will be “protected” (privileged
users only).

• flags [18] — defer (input). Causes the reply to the
connection request to be deferred. The intrinsic will
complete when a connection request is received, but
the virtual circuit will not be established. The
IPCCONTROL intrinsic can be used later to accept or
reject the connection.

• flags [21] — checksum (input). (TCP only.) Enables
checksum on the Transmission Control Protocol
(TCP) connection for error checking. Checksum may
also be set by the corresponding IPCCONNECTcall. If
either side specifies “checksum enabled” then the
connection will be checksummed. TCP checksum
may be enabled globally, over all connections, when
configuring the Network Transport. See the
NS 3000/XL NMMGR Screens Reference Manual for
details on Network Transport configuration.
Chapter 3 107

NetIPC Intrinsics
IPCRECVCN
Checksum enabled by either IPCCONNECT or TCP
(remote or local) configuration overrides a 0 setting
(checksum disabled) for this flag. Checksum error
checking is handled at the link level and is not
normally required at the user level.

In fact, checksumming is only used for connections
between nodes and is not used for connections
within the same node. Enabling checksum may
reduce network performance. Recommended
value: 0.

• flags [25] — discarded (output). For X.25 protocol
access. Indicates that the call user data (CUD) or the
facility field was present, but that the data had to be
discarded or truncated. If the call user data option
(code=5) is not specified the call user data is
discarded. If the CUD or the facility field buffer is
not long enough to contain the data, this flag is set
and the data is truncated.

opt (input)

Record or byte array, by reference. A list of options,
with associated information. The following options are
defined:

• maximum send size (code=3, length=2; 2-byte
integer) (input). (TCP only). This option, which must
be in the range from 1 to 30,000, specifies the length
of the longest message that the user expects to send
on this connection. The information is passed to the
protocol module. If this option is not specified, then
the protocol module will be able to handle messages
at least 1,024 bytes long. If the specified value is
smaller than a previously specified maximum send
size, then the new value is ignored.

• maximum receive size (code=4, length=2; 2-byte
integer) (input). (TCP only.) This option, which must
be in the range from 1 to 30,000, specifies the length
of the longest message that the user expects to
receive on this connection. The information is passed
to the protocol module. If this option is not specified,
then the protocol module will be able to handle
messages at least 1,024 bytes long. If the specified
value is smaller than a previously specified
maximum receive size, then the new value is
ignored.

• call user data (code=5, length=n, n bytes) (output),
(X.25 only.) This option provides a buffer for the
108 Chapter 3

NetIPC Intrinsics
IPCRECVCN
return of the call user data (CUD) field from an X.25
packet. If call user data is present, but this option is
not supplied, the discarded flag [25] is set. If the
buffer is not long enough to contain the data, the
data is truncated and the discarded flag is set.

• calling node address (code=141, length=8; 8-byte
array) (output). An output parameter that is used to
contain the address of the requestor.

For TCP, the first two bytes of the array contain the
remote socket’s port address and the next four types
contain the remote node’s internet protocol address.
The remaining bytes are unused.

For X.25 protocol access, the X.25 address of the
calling node is returned in this field. The format of
the record is equivalent to 16 nibbles (or BCD digits)
in which the first nibble is the address length
(ranging from 1 to 15), and the following 15 nibbles
contains the calling address. The calling node
address is not available if the call originated from a
PAD.

You can use READOPT to obtain the output of this
parameter.

• protocol flags (code=144, length4; 4-byte buffer)
(output). This option contains 32 bits of
protocol-specific flags. The following flags are
currently defined:

— Fast select (bit 7, output). (X.25 only.) If this flag
is set, the fast select facility has been used in the
connection request.

— Fast select restricted (bit 8, output). (X.25
only.) This flag only has meaning if the previous
flag was set. If this flag is set, the fast select
facility has been used in the connection request
with restriction on response. This means that if
the deferred flag was set, then the connection can
be rejected (only) by using IPCCONTROL (and up
to 128 bytes of CUD can be returned). If this flag
is not set, but the fast select (bit 7) was set, the
connection can be accepted or rejected by using
IPCCONTROL, and up to 128 bytes of CUD can be
returned.

— request from PAD (bit 14, output). (X.25 only.)
This flag indicates that the connection request is
coming from a PAD as opposed to a connection
coming from a host.
Chapter 3 109

NetIPC Intrinsics
IPCRECVCN
— calling node address available (bit 16,
output). (X.25 only.) This flag indicates that the
calling node X.25 address was present.

• Facility field (code=145, length=n, n bytes)
(output). (X.25 only.) This option provides a buffer
for the return of the facility field. If the facility field
is present, but this buffer is not supplied, then the
discarded flag (bit 25) is set.

If the buffer is not long enough to contain all of the
data, then the data is truncated and the discarded
flag (bit 25) is set. This buffer should be at least
109 bytes long to ensure receipt of the facility field.
The received buffer contains the facilities exactly as
they were received from the network.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.

Description

The IPCRECVCN intrinsic allows a process to receive a connection
request and establish a connection (virtual circuit). The connection is
identified by the returned VC socket descriptor. The calling process can
then employ the IPCSEND and IPCRECV intrinsics to send and receive
data on the connection. A maximum of one unreceived connection
request may be queued to a call socket.

If the calling process sets the defer reply to connection request flag
(flags [18]), this intrinsic will complete when a connection request is
received, but the virtual circuit will not be established. The calling
process must use IPCCONTROL to either accept or reject the request.
This feature is useful if an application must defer replying to the
connection request and then, depending upon the identity of the
requestor, decide to reject or accept the request.

The calling process may also specify whether TCP checksumming is to
be enabled. Checksumming is usually disabled unless it is included by
the remote protocol module or if the TCP checksumming flag
(flags [21]) is set. When checksumming is enabled, performance is
usually degraded because of increased overhead.

If this intrinsic is called in nowait mode, the data structures for the
connection are created when the call to IOWAIT completes. They are not
created with the initial call to IPCRECVCN. Therefore the address of the
VC socket descriptor parameter is retained by NetIPC, and the
descriptor’s value is returned to that location when IOWAIT completes.
The VC socket descriptor parameter must be global to both the
110 Chapter 3

NetIPC Intrinsics
IPCRECVCN
IPCRECVCN and the IOWAIT intrinsic calls. NetIPC also retains the
flags parameter.

The only required parameters are the calldesc and vcdesc
parameters (option variable). Condition codes returned by this intrinsic
are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

Condition codes returned by the call to IOWAIT are:

• CCE — Succeeded.

• CCL — Failure in NetIPC (for example, resource problems, VC
socket descriptor bounds) or protocol module. In the event of a
NetIPC failure the connection request will still be pending, allowing
the user to correct the problem and issue another call to IPCRECVCN.

• CCG — Connection established but a noncritical error (for example,
flags parameter out of bounds) occurred.

The IPCRECVCN intrinsic cannot be called in split stack mode.
Chapter 3 111

NetIPC Intrinsics
IPCRECVCN
Protocol-Specific Considerations

The following Table 3-9 outlines parameters that are specific to the
particular protocol you are accessing.

X.25 Considerations

IPCRECVCN is used with switched virtual circuits (SVCs) only.

The call user data field returned in the opt parameter (code=5) is used
by X.25 as follows. The first four bytes of the call user data field is used
to determine the destination call (source) socket. The incoming call is
sent to the call socket whose relative protocol address matches the first
four bytes of the call user data. See the discussion for IPCCREATE for
more information on protocol relative addresses.

Call acceptance can be affected by the X.25 configuration of the security
field in the SVC path table which can limit access to a node by
specifying which remote X.25 addresses are allowed to communicate
with the node. See the X.25 XL System Access Configuration Guide for
more information about security features.

Table 3-9 IPCRECVCN Protocol Specific Parameters

Parameters TCP X.25

flags

0 Protected connection n/a

21 Enable checksum n/a

25 n/a Discarded

opt

3 Maximum send size n/a

4 Maximum receive size n/a

5 n/a Received CUD

141 Calling node’s IP
address

Calling node’s X.25
address

144 n/a Bit 7:fast select

Bit 8: fast select
restricted

Bit 14: PAD

Bit 16: calling node
address available flag

145 n/a Facility field
112 Chapter 3

NetIPC Intrinsics
IPCRECVCN
Common errors returned by IPCRECVCN in result are:

SOCKERR 0 Request completed successfully.
SOCKERR 59 Socket timeout.
SOCKERR 107 Transport is going down.

A complete table of SOCKERRs is included in Chapter C ,
“Error Messages.”

TCP

The calling process may also specify whether checksumming is to be
employed by the protocol modules (i.e., TCP) that support it. For TCP,
checksumming is usually disabled unless it is included by the remote
protocol module or if the TCP checksumming flag (flags [21]) is set.
When checksumming is enabled, performance is usually degraded
because of increased overhead.

Cross-System Considerations For TCP

The following are cross-system programming considerations for this
intrinsic:

HP 3000 to HP 1000: Checksumming — TCP checksumming will be
enabled for both sides of the connection if it is enabled by either side for
HP 3000 to HP 1000 connections. On both the HP 3000 and HP 1000
checksumming can be enabled by setting bit 21 in the flags parameter.

Send and receive size — The HP 3000 send and receive size range is
1 to 30,000 bytes. The HP 1000 send and receive size range is 1 to 8,000
bytes. Although the ranges are different, you must specify a send size
within the correct range for the respective receiving system; otherwise,
an error will occur. For example, if the HP 3000 node sends 16,000
bytes, the HP 1000 node can call IPCRECV twice receiving 8,000 bytes
the first time and the second 8,000 bytes the second time.

Note that the default send and receive sizes are different on different
HP systems. On the HP 3000, the default send and receive size is less
than or equal to 1,024 bytes. On the HP 1000 the default send and
receive size is 100 bytes.

HP 3000 to HP 9000: Checksumming — When the ipcrecvcn() call
is executed on the HP 9000 node, checksumming is always enabled.

Send and receive sizes — The HP 3000 send and receive size range is
1 to 30,000 bytes. The HP 9000 send and receive size range is 1 to
32,767 bytes. Although the ranges are different, cross-system
communication is not affected. If you specify a send or receive size, be
sure it is within the correct range for the respective system.

Note that the default send and receive sizes are different on different
HP systems. On the HP 3000, the default send and receive size is less
than or equal to 1,024 bytes. On the HP 9000, the default send and
Chapter 3 113

NetIPC Intrinsics
IPCRECVCN
receive size is 100 bytes.

HP 3000 to PC NetIPC Checksumming — With PC NetIPC, the
TCP checksum option cannot be turned on. But if the HP 3000 requires
it, the TCP checksum is in effect on both sides of the connection. On the
HP 3000, enabling/disabling checksumming with NetIPC intrinsics
allows you to override the checksumming decision made during
network transport configuration for this particular process.

Send and receive size — The HP 3000 send and receive size range is
1 to 30,000 bytes. The PC send and receive size range is 1 to 65,535
bytes. Although the ranges are different, cross-system communication
is not affected. If you specify a send or receive size, be sure it is within
the correct range for the respective system. For example, if the PC node
sends 60,000 bytes, the HP 3000 node can call IPCRECVtwice, receiving
30,000 bytes the first time and the second 30,000 bytes the second time.

Note that the default send and receive sizes are different on different
HP systems. On the HP 3000, the default send and receive size is less
than or equal to 1,024 bytes.
114 Chapter 3

NetIPC Intrinsics
IPCSEND
IPCSEND
Sends data on a connection.

Syntax

IPCSEND (vcdesc , data , dlen [, flags][, opt], result)

Parameters

vcdesc (input)

32-bit integer, by value. The VC socket descriptor, a
number identifying the VC socket belonging to this
process through which the data will be sent.

data (input)

Record or byte array, by reference. Contains the
data to be sent or a list of data descriptors (maximum of
two) indicating the locations from which the data will
be gathered. If data descriptors are used, flags [31]
must be set to indicate vectored sends. For
programming in “C” language, see Appendix E , “C
Program Language Considerations.”

dlen (input)

32-bit integer, by value. The byte length of the data
parameter: that is, the amount of actual data
(maximum of 30,000) or the combined length of the
data descriptors. The data descriptor length is 8 for
compatibility mode and 12 for native mode. The
combined length is 16 for compatibility mode and 24 for
native mode.

flags (input)

32 bits, by reference. A bit representation of various
options. The only flag defined is:

• flags [31] — vectored input. Indicates that the data
to be sent are to be gathered from the addresses
specified in the data parameter. (The parameter will
not contain actual data.)

opt (input)

Record or byte array, by reference. A list of options,
with associated information. Refer to “Common
Parameters” for more information on the structure of
this parameter. The following options are defined:
Chapter 3 115

NetIPC Intrinsics
IPCSEND
• data offset (code=8, length=2; 2-byte integer)
(input). Compatibility mode (CM) only. An offset in
bytes from the data parameter's address indicating
the actual beginning of the data. HP recommends
that you do not use data offset if data descriptors are
used to point to another location from which data
should be obtained.

• protocol flags (code=144, length=4; 4-byte buffer)
(input). This option contains 32 bits of
protocol-specific flags. The following flag is currently
defined:

— end-to-end acknowledgment (bit 18, input).
(X.25 only.) D bit will be set in the last X.25 data
packet corresponding to this message. When this
flag is set, IPCSEND waits to complete until
acknowledgment from the remote that the
complete message has been received. When the
connection is between two HP 3000’s running NS
X.25, the acknowledgment is made when the
remote IPC user has received the data.

— qualifier bit (bit 19, input). (X.25 only.) This flag
indicates to X.25 to set the Q bit in the packets
that contain this message.

— urgent data (bit 27, input). (TCP only). If set,
this bit will cause the data sent to be marked
urgent.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.

NOTE When nowait I/O is used, the result parameter is not updated upon
completion of IOWAIT. Therefore, the value of result will indicate only
whether the call was successfully initiated. To determine whether the
call completed successfully, you can use the IPCCHECK intrinsic after
IOWAIT completes.

Description

The IPCSEND intrinsic is used to send data on a connection. The only
required parameters are vcdesc , data , and dlen (option variable).

A set of addresses in the data parameter allows vectored data to be
gathered from multiple locations.

The value specified for the data offset option (compatibility mode only)
is relative to the data array. If data descriptors are used, specifying this
option will cause a portion of the descriptor to be passed over (the offset
116 Chapter 3

NetIPC Intrinsics
IPCSEND
is NOT applied to the pointer in the descriptor). This may lead to
unexpected results.

If this intrinsic is called in nowait mode, the address of the data is
passed to the TCP protocol module. The contents of the data buffer will
have been read when IOWAIT completes. As many as 7 nowait sends
may be outstanding on a connection.

Condition codes returned by IPCSEND and IOWAIT are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned.

This intrinsic can be called in split stack mode.

Protocol-Specific Considerations

The following Table 3-10 outlines parameters that are specific to the
particular protocol you are accessing.

X.25 Considerations

Setting the Q bit flag causes X.25 to set the Q bit (qualifier bit) in X.25
data packets.

Setting the D bit flag causes X.25 to specify end-to-end
acknowledgment of data packets. IPCSEND does not complete until it
receives acknowledgment that the message has been received.

Common errors returned by IPCSHUTDOWN in result are:

SOCKERR 0 Request completed successfully.
SOCKERR 50 Invalid data length.
SOCKERR 65 Connection aborted by local protocol

module.
SOCKERR 67 Connection failure detected.
SOCKERR 107 Transport is going down.
SOCKERR 159 Invalid X.25 D-bit setting.
SOCKERR 160 Incompatible with protocol state.

Table 3-10 IPCSEND Protocol Specific Parameters

Parameters TCP X.25

opt

144 Bit 27: urgent data Bit 18: state of D bit
in X.25 packets

Bit 19: state of Q bit
in X.25 packets
Chapter 3 117

NetIPC Intrinsics
IPCSEND
A complete table of SOCKERRs is included in Appendix C ,
“Error Messages.”

TCP

The urgent data bit of the protocol flags option (opt parameter) is used
to inform TCP that the data to be sent should be marked urgent. This
will not cause the data to be delivered out of band, and the receiver of
this data will not know of urgent data that is pending until a receive is
posted.

Cross-System Considerations For TCP

The following are cross-system programming considerations for this
intrinsic:

HP 3000 to HP 1000: Send size — The HP 3000 send size range is 1
to 30,000 bytes. The HP 1000 send size is 1 to 32,767 bytes. Although
the ranges are different, cross-system communication is not affected. If
you specify a send or receive size, be sure it is within the correct range
for the respective system.

Note that the urgent data bit is not supported on the HP 1000; however,
if this bit is set by the HP 3000 program, it will be ignored by the
receiving process on the HP 1000.

HP 3000 to HP 9000: Send size — The HP 3000 send size range is 1
to 30,000 bytes. The HP 9000 send size is 1 to 32,767 bytes. Although
the ranges are different, cross-system communication is not affected. If
you specify a send or receive size, be sure it is within the correct range
for the respective system.

Note that the urgent data bit is not supported on the HP 9000; however,
if this bit is set by the HP 3000 program, it will be ignored by the
receiving process on the HP 9000. For differences in send and receive
sizes see the discussion for IPCRECVCN.

HP 3000 to PC NetIPC: Send size — The PC send and receive size
range is 1 to 65,535 bytes. Although the ranges are different,
cross-system communication is not affected. If you specify a send or
receive size, be sure it is within the correct range for the respective
system.

On the PC, you can specify the maximum receive size of the data buffer
through the got array in the IPCCONNECTcall. This determines what
the maximum value for dlen can be for any IPCRECV call. PC NetIPC
has no option array defined for IPCCONNECT. This does not affect
cross-system communication. The maximum receive size of the data in
the buffer on the HP 3000 will determine the receive size buffer on the
PC.
118 Chapter 3

NetIPC Intrinsics
IPCSHUTDOWN
IPCSHUTDOWN
Releases a descriptor and any resources associated with it.

Syntax

IPCSHUTDOWN (descriptor [, flags][, opt][, result]

Parameters

descriptor (input)

32-bit integer, by value. The socket to be released.
May be a call socket, destination, or VC socket
descriptor.

flags

32 bits, by reference. A bit representation of various
options. The following flag is defined:

flag [17] — (TCP only.) graceful release of connection.

opt

Record or byte array, by reference. A list of options,
with associated information. The following option is
defined:

• clear user data (code=2, length=n, n bytes) (input).
(X.25 only.) If the fast select facility was used in the
connection request, and the connection was
accepted, you can include a clear user data field
which can contain up to 128 bytes of data. For more
information, see the discussion of the fast select
facility in Chapter 1 , “NetIPC Fundamentals,” of
this manual.

• reason code (code=143, length=2) (input). (X.25
only.) This option allows you to include cause and
diagnostic values in the X.25 clear packets when a
connection is closed down. The first byte contains
the cause and the second byte contains the
diagnostic code. A list of cause and diagnostic codes
used with NS X.25 protocol access is contained in
Appendix B , “Cause and Diagnostic Codes.” If DTE
originated, the cause code will always be zero.

result (output)

32-bit integer, by reference. The error code
returned; zero if no error.
Chapter 3 119

NetIPC Intrinsics
IPCSHUTDOWN
Description

The IPCSHUTDOWN intrinsic permits the creating process to close a call
socket or a VC socket descriptor or to release a connection. The
descriptor is the only required parameter (option variable).

IPCSHUTDOWN can be called to release a call socket descriptor, a
destination descriptor, or a VC socket descriptor. Since systems
resources are used up as long as call sockets and destination sockets
exist, you should release them whenever they are no longer needed.

The call socket is needed as long as a process expects to receive a
connection request on that socket. A process which receives a
connection request can release the call sockets any time after the
connection request is received via IPCRECVCN, as long as no other
connection requests are expected for that call socket. For more
information on IPCSHUTDOWN, refer to “Shutting Down Sockets and
Connections” at the beginning of this chapter. Condition codes returned
by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed.

• CCG — Not returned by this intrinsic.

This intrinsic cannot be called in split stack mode.

Protocol-Specific Considerations

The following Table 3-11 outlines parameters that are specific to the
particular protocol you are accessing.

X.25 Considerations

Shutting down an X.25 connection causes a clear packet to be sent by
X.25 over an SVC, unless the virtual circuit is already cleared. You can
specify the cause and diagnostic fields in the opt parameter (code=143)
that will be included in the clear packet over an SVC. Over a public

Table 3-11 IPCSEND Protocol Specific Parameters

Parameters TCP X.25

flags

17 Graceful release of
connection

n/a

opt

2 n/a Clear user data

143 n/a Reason code
120 Chapter 3

NetIPC Intrinsics
IPCSHUTDOWN
data network (PDN), the cause may not be transmitted to the remote
node.

When used with direct access to level 3, the intrinsic IPCSHUTDOWN can
only be called in waited mode. The intrinsic will not return until the
request is completed.

X.25 direct access to level 3 does not support the graceful release bit. As
a suggestion, to ensure that no data packets are lost before the clear
packet is sent, use the D bit option in the last IPCSEND. This would
assure end-to-end acknowledgment of this message before issuing the
IPCSHUTDOWN to clear the virtual circuit. Another method is to send an
unimportant message as the last message. (See example 2 in Chapter
4 , “NetIPC Examples,” for an example of this method.)

Common errors returned by IPCSHUTDOWN in result are.

SOCKERR 0 Request completed successfully.
SOCKERR 54 Invalid call socket descriptor.
SOCKERR 66 Invalid connection descriptor.
SOCKERR 67 Connection failure detected.
SOCKERR 142 Invalid call user data opt record entry.
SOCKERR 170 Error with use of the fast select facility.

A complete table of SOCKERRs is included in Appendix C ,
“Error Messages.”

TCP

If graceful release is specified and supported by the remote process, the
requestor of a graceful release will go to a simplex-in state (that is, able
only to receive, unable to send) and the remote process will go to a
simplex-out state. The VC remains in this state until the remote
process shuts down its socket, at which time all resources are released.
See “Shutting Down a Connection” in Chapter 1 , “NetIPC
Fundamentals,” for the steps to take in implementing a graceful release
shutdown.

If graceful release is selected, a SOCKERR 102 result will be returned
if any of the following conditions exists:

• A connection request has been received, but the connection has not
been accepted.

• The connection has already been gracefully released, and the process
is therefore in a simplex-in state.

• A connection request has been issued, but the connection has not yet
been established.

• The connection has been aborted.

• The protocol module (part of the NS transport) does not support
graceful release.
Chapter 3 121

NetIPC Intrinsics
IPCSHUTDOWN
• Data is being sent from the connection. This could occur, for
example, if IPCSEND was called in nowait mode and has not yet
completed.

Cross-System Considerations For TCP

The following are cross-system programming considerations for this
intrinsic:

HP 3000 to HP 1000: Socket shut down — The HP 3000 provides a
graceful release flag (flag 17) that is not available on the HP 1000. Do
not set the graceful release flag on the HP 3000. Otherwise, the
HP 1000 will not perform a normal shutdown. If the HP 3000 process
sets the graceful release flag, the HP 1000 IPCRecv call will return a
NetIPC error 68 (No more data). The HP 1000 process should handle
error 68 as if it were an error 64 (Connection aborted by peer). After
receiving an error 68, subsequent IPCRecv calls on the HP 1000 will
return an error 109 (Remote connection has already graceful released
the socket).

HP 3000 to HP 9000: Socket shut down — The HP 3000 provides a
graceful release flag that is not available on the HP 9000. If the graceful
release flag (flag 17) is set on the HP 3000, the HP 9000 will respond
as though it were a normal shutdown. The HP 3000 does not support
shared sockets; the HP 9000 does. Shared sockets are destroyed only
when the descriptor being released is the sole descriptor for that socket.
Therefore, the HP 9000 process may take longer to close the connection
than expected.

HP 3000 to PC NetIPC: Socket shut down — The HP 3000
provides a graceful release flag that is not available on the PC. If the
graceful release flag (flag 17) is set on the HP 3000, the PC will
respond as though it were a normal shutdown.
122 Chapter 3

NetIPC Intrinsics
OPTOVERHEAD
OPTOVERHEAD
Returns the number of bytes needed for the opt parameter in a
subsequent intrinsic call, not including the data portion of the
parameter.

Syntax

optlength := OPTOVERHEAD(eventualentries [, result])

Parameters

optlength (returned function value)

16-bit integer. The number of bytes required for the
opt parameter, not including the data portion of the
parameter.

eventualentries (input)

16-bit integer, by value. The number of option entries
that will be placed in the opt parameter.

result (output)

16-bit integer, by reference. The error code
returned; zero if no error.

Description

This function returns the number of bytes needed for the opt
parameter, excluding the data area. The first parameter is required.

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed because of a user error.

• CCL — Failed because of a user error.

This intrinsic can be called in split stack mode.
Chapter 3 123

NetIPC Intrinsics
READOPT
READOPT
Obtains the option code and argument data associated with an opt
parameter argument.

Syntax

 READOPT (opt , entrynum , optioncode , datalength , data , result)

Parameters

opt (input)

Record or byte array, by reference. The opt
parameter to be read. Refer to “NetIPC
Intrinsics/Common Parameters” for information on the
structure and use of this parameter.

entrynum (input)

16-bit integer, by value. The number of the option
entry to be obtained. The first entry is number zero.

optioncode (output)

16-bit integer, by reference. The option code
associated with the entry. These codes are described in
each NetIPC call opt parameter description.

datalength (input/output)

16-bit integer, by reference. The length of the data
buffer into which the entry should be read. If the data
buffer is not large enough to accommodate the entry
data, an error will be returned. On output, this
parameter contains the length of the data actually
read. (The length of the data associated with a
particular option code is provided in each NetIPC call
opt parameter description.)

data (output)

Byte array, by reference. An array which will
contain the data read from the option entry. If the array
is not large enough to hold the data read, only as much
as requested will be returned and SOCKERR 137, more
data available will be returned in the result
parameter.
124 Chapter 3

NetIPC Intrinsics
READOPT
result (output)

16-bit integer, by reference. The error code
returned; zero if no error.

Description

If the data field is not large enough, then as much data as the user
asked for will be returned and SOCKERR 173 will be returned
indicating more data is available. A second call to READOPT could get
all the data.
Chapter 3 125

NetIPC Intrinsics
Asynchronous I/O
Asynchronous I/O
In order to perform nowait (asynchronous) socket I/O on an HP 3000, a
process must use the MPE XL IOWAIT and IODONTWAIT intrinsics.
IOWAIT and IODONTWAIT behave in the same way except that, in the
first case, the calling process must wait until the I/O operation is
complete; in the second case, control is immediately returned to the
calling process. One of these intrinsics must be called at some point
after a nowait I/O request. The calling process is not blocked after the
initial nowait I/O request.

IPCSEND, IPCRECV, and IPCRECVCN are normally blocking calls. The
calling process must wait until the send/receive request is completed. A
process can use IPCCONTROL to enable nowait I/O for a specified call
socket or VC socket descriptor. (Nowait mode remains in effect until
another IPCCONTROL call restores waited mode.) If a process issues a
nowait send or receive request, the request will be initiated but its
completion cannot be verified until IOWAIT or IODONTWAITis called. (For
a nowait IPCRECVCNcall, the data structures for the connection are not
created until IOWAIT is called.) IPCCONNECTis always an unblocked call:
control returns immediately to the calling process, which must then call
IPCRECV to complete the connection.

Within the IOWAIT/IODONTWAIT intrinsic, the filenum parameter
should be given the appropriate call socket/VC socket descriptor value.
A value of zero indicates all sockets or files for which asynchronous I/O
requests have been issued. The function value returned by the intrinsic
is the descriptor (or file number) for which the I/O has completed (zero
if no completion).

The cstation (calling station) parameter returns a zero value for any
nowait receive request. For a nowait send request, bit one of the
parameter (the second highest bit) is set to on (all other bits off).
Therefore you can check bit one of the cstation parameter to
determine whether an input or an output operation completed.

The tcount parameter returns the amount of data received after a
nowait IPCRECV call. The target parameter is not currently used by
NetIPC.

The syntax for IOWAIT and IODONTWAIT is given here for convenience.
For further information on these intrinsics, please see the MPE XL
Intrinsics Reference Manual.
126 Chapter 3

NetIPC Intrinsics
Asynchronous I/O
Steps for Programming with Asynchronous I/O

The following summarizes the steps to follow to have your program
perform asynchronous I/O:

• Create the call or VC socket with IPCCREATE, IPCCONNECT, or
IPCRECVCN.

• Enable nowait I/O with IPCCONTROL.

• Make a IPCRECVCN, IPCRECV, or IPCSEND NetIPC call on the
socket. The call will be asynchronous.

• Check the result code returned by the call to see if an error
occurred when the call was initiated.

• Call IOWAIT to cause the calling process to wait until the NetIPC
call completes or IODONTWAIT to see if the request has completed.

• Once the asynchronous NetIPC call completes do the following:

— Check the condition code to see if an error occurred. If the
condition code=CCE, no error occurred. If the condition code <>
CCE, an error occurred.

— If an error occurred call IPCCHECK to determine the error code
(returned in the ipcerr parameter).

— If IOWAIT or IDONTWAIT was called with filenum =0 or no
filenum specified, check the fnum value returned to determine
the socket for which I/O completed. (You can compare the fnum
value with the calldesc value returned by IPCCREATE and the
vcdesc value returned by IPCCONNECT and IPCRECVCN.)

— If both a send and receive request were pending, check the
returned cstation value to determine if a send completed (bit 1
is on) or a receive completed (bit 1 is off).

NOTE A program does not need Privileged Mode capability in order to make
nowait NetIPC I/O requests.
Chapter 3 127

NetIPC Intrinsics
IO[DONT]WAIT
IO[DONT]WAIT
Initiates completion operations for a nowait I/O request.

Syntax

fnum := IO[DONT]WAIT ([filenum][, target][, tcount][, cstation])

Parameters

fnum (returned function value)

16-bit integer. The socket/VC socket descriptor for
which an I/O request has completed. Zero indicates no
completion. If there are any nowait file access requests
outstanding, and if the filenum parameter is zero, the
returned function value may be an actual file number.

filenum (input)

16-bit integer, by value. The call/VC socket
descriptor indicating the socket or connection (that is,
call or VC socket) for which the nowait I/O request was
issued. If omitted, or if the value is zero, any nowait
NetIPC or file request issued by the calling process may
be completed by this intrinsic call.

target

Array of 16-bit values, by reference. Not used by
NetIPC.

tcount (output)

16-bit integer, by reference. Returns the amount of
data received after a nowait IPCRECV call. The actual
data will be in the IPCRECV data parameter.

station (output)

16-bit integer (unsigned), by reference. Bit one is
returned on if the completed request was a send, off if it
was a receive. All other bits will be off.

Description

Either IOWAIT or IODONTWAIT is needed to complete a NetIPC nowait
send or receive request. IOWAIT waits until a request can be completed;
IODONTWAIT checks to see if a request can be completed and then
immediately returns control to the calling process.
128 Chapter 3

NetIPC Intrinsics
IO[DONT]WAIT
If a nowait IPCSEND, IPCRECVCN, or IPCRECVrequest is issued, the data
and flags parameters (if specified) must exist when IOWAIT or
IODONTWAIT is called. In other words, these parameters must be global
to both the IPC intrinsic that initiates the request and the
IO[DONT]WAIT that attempts to complete the I/O.

All parameters are optional (option variable). In general, the condition
codes returned by IOWAIT/IODONTWAIT for socket I/O have the following
meanings:

• CCE — Succeeded.

• CCL — Failed.

• CCG — The operation succeeded but a noncritical error occurred (for
example, the flags parameter was out of bounds).

IOWAIT and IODONTWAIT can be called in split stack mode.
Chapter 3 129

NetIPC Intrinsics
IO[DONT]WAIT
130 Chapter 3

4 NetIPC Examples
This chapter contains sample programs using NetIPC for both TCP
access and X.25 (level 3) access:

• Example 1 (programs 1A and 1B) present an example of how to set
up and use a connection (virtual circuit) for TCP access. The two
programs, running on different nodes, open communication via call
sockets. They then establish a connection (using VC sockets) and
send and receive data over this connection. Finally, they terminate
their connection.

• Example 2 (programs 2A and 2B) illustrate the differences in using
NetIPC for vectored I/O in compatibility mode and in native mode
for TCP access.

• Example 3 (programs 3A and 3B) provides an example using NetIPC
to communicate using direct access to level 3, X.25 in compatibility
mode.

• Example 4 (programs 4A and 4B) provides an example using NetIPC
to communicate using direct access to level 3, X.25 in native mode.
These programs use the features provided with MPE XL X.25 such
as adding to the facility field, and using fast select.

In these programs, it is assumed that processes are already operating
at the remote and local nodes. For an example program that illustrates
the use of Remote Process Management (RPM) intrinsics to start
processes, refer to the Using NS 3000/XL Network Services Manual.

NOTE You may need to disable timeouts on either the call descriptors or
virtual circuit descriptors when writing applications intended for use
on networks where you expect significant timing delays due to excessive
line noise or traffic.
131

NetIPC Examples
Example 1
Example 1
In the first two programs (1A and 1B), the lengths of the data messages
are not known. The sending side (Program 1A) includes the length of
each message as the first two bytes of each message it sends. The
receiving side (Program 1B) executes two IPCRECV loops for each
message: first to receive the length and then to receive the data.

The first program (Program 1A):

• looks up the call socket named RALPH located on node JANE and
gets back a destination descriptor;

• creates its own call socket;

• sends a connection request to RALPH;

• shuts down its call socket and its destination socket;

• completes the connection;

• executes a loop in which it:

— reads a line of data;

— stores the length (number of bytes) of the data in the first part of
the message;

— stores the data itself in the second part of the message;

— sends the message on the connection, including the message
length as the first two bytes of the message;

• sends a “last message” which will be recognized by the receiving
program as a termination request;

• receives a “termination confirmation message” and shuts down the
connection by releasing its VC socket.

The second program (Program 1B):

• creates a call socket and names it RALPH;

• waits to receive a connection request;

• shuts down its call socket;

• executes a loop in which it:

— calls a procedure that receives a message by executing two
IPCRECV loops (the first loop determines the incoming message
length and the second loop receives data until all the pieces of the
message have been received);

— prints the message which was received;

• receives a “last message” termination request;
132 Chapter 4

NetIPC Examples
Example 1
• sends a “termination confirmation message” in response to the
termination request;

• receives a result parameter value of 64 (“REMOTE ABORTED
CONNECTION”) in response to a receive request;

• releases its VC socket.

Program 1A

$standard_level 'HP3000', uslinit$
program connection_example1 (input,output);

const
 maxdata = 2000;
 maxmsg = maxdata + 2;
 maxname = 20;
 maxloc = 20;

type
 smallint = -32768..32767;
 datatype = record;
 len : smallint;
 msg : packed array[1..maxdata] of char;
 end;

timeval type =
 record case boolean of

 true : (int : smallint);
 false : (chars : packed array [1..30] of char);

 end;

nametype = packed array[1..maxname] of char;
 loctype = packed array[1..maxloc] of char;

var calldesc : integer; {2-word integer}
 vcdesc : integer;
 protocol : integer;
 socket_kind : integer;

dest : integer;
 result : integer;
 data : datatype;
 name : nametype;
 location : loctype;
 y_len : integer;
 y_data : char;
 num_msgs : integer;
 strdata : string[maxdata];
 i : integer;
 timeval : timeval type;

procedure terminate; intrinsic;
{NetIPC intrinsic declarations}
procedure ipccreate; intrinsic;
procedure ipclookup; intrinsic;
Chapter 4 133

NetIPC Examples
Example 1
procedure ipcconnect; intrinsic;
procedure ipcrecv; intrinsic;
procedure ipcsend; intrinsic;
procedure ipcshutdown intrinsic;
procedure ipcerrmsg; intrinsic;
procedure ipccontrol; intrinsic;

{error handling procedure}

procedure leave(result: integer);
var msg: string[80];

i, len, newresult: integer;
begin

ipcerrmsg(result, msg, len, newresult);
if newresult = 0 then

begin
setstrlen(msg, len);
writeln(msg); {print error message}

end
else
writeln('IpcErrMsg result is ', newresult:1);

terminate;
end;

{main of NetIPC Program 1}

begin
{ look up the call socket RALPH located on node JANE }
name:= 'RALPH';
location:= 'JANE';
ipclookup(name, 5, location, 4, , dest, protocol, socket_kind, result);

if result <> 0 then leave(result); {failed}

{ create a call socket; then initiate and complete connection to destination
socket}

ipccreate(socket_kind, protocol, , , calldesc, result);
if result <> 0 then leave(result); {failed}

ipcconnect(calldesc, dest, , , vcdesc, result); {initiate connection}
if result <> 0 then leave(result); {failed}

timeval.int:=0;
ipccontrol(vcdesc, 3, timeval.chars, 2, , , result);

if result <> 0 then leave(result);
ipcshutdown(calldesc);
ipcshutdown(dest);
ipcrecv(vcdesc, , , , , result); {complete connection}
if result <> 0 then leave(result); {failed}

{ prompt for messages and send them }
writeln('Enter "//" to terminate the program.');
setstrlen(strdata, 0);
while strdata <> '//' do

begin
prompt('Message? ');
134 Chapter 4

NetIPC Examples
Example 1
readln(strdata); {read message}
data.len := strlen(strdata); {store message length}
strmove(data.len, strdata, 1, data.msg, 1); {store message}
ipcsend(vcdesc, data, data.len+2, , ,result) {send message with length

as first 2 bytes}
 if result <> 0 then leave(result); {failed}

end;

{connection shutdown procedure}

data.len := 4;
data.msg := 'END?' { termination request}
ipcsend(vcdesc, data, 6, , , result);

writeln('END sent');
if result <> 0 then leave(result);

y_len := 1;
ipcrecv(vcdesc, y_data, y_len, , , result); {receive 'Y' confirmation}
if (y_data = 'Y') then writeln('Y received');
if (y_data = 'Y') and (result = 0) then

ipcshutdown(vcdesc)
else

begin
writeln('Warning: shutdown not confirmed or result 0');
leave(result);

 end;
end.

Program 1B

$standard_level 'HP3000', uslinit$
program connection_example2 (output);

const
 maxdata = 2000;
 maxname = 20;
type

smallint = -32768..32767;
datatype = packed array [1..maxdata] of char;

timeval type =
record case boolean of
true : (int : smallint);

false : (chars : packed array [1..30] of char);
 end;

nametype = packed array [1..maxname] of char;
var calldesc : integer; {2-word integer}

vcdesc : integer;
dlen : integer;
result : integer;
data : datatype;
name : nametype;
len : smallint;
datastr : string[maxdata];
timeval : timeval type;
Chapter 4 135

NetIPC Examples
Example 1
procedure terminate; intrinsic;

{NetIPC intrinsic declarations}

procedure ipccreate; intrinsic;
procedure ipcname; intrinsic;
procedure iprecvcn; intrinsic;
procedure ipcrecv; intrinsic;
procedure ipcsend; intrinsic;
procedure ipcshutdown; intrinsic;
procedure ipcerrmsg; intrinsic;
procedure ipccontrol; intrinsic;

{error handling procedure}

procedure leave(result : integer);
var msg: string[80];

i, len, newresult: integer;
begin

ipcerrmsg(result, msg, len, newresult);
if newresult = 0 then

begin setstrlen(msg, len);
writeln(msg); {print error message}

end
else
writeln('IpcErrMsg result is ', newresult:1);
terminate;

end;

{ The following procedure receives one message which was sent via an ipcsend
call. It assumes that the length (number of bytes) of the message was sent as
the first two bytes of data and that the length value does not include those
two bytes. }

procedure receive (connection : integer;
 var rbfr : datatype;
 var rlen : smallint;

 var errorcode : integer) ;
const head_len = 2;

type length_buffer_type = packed array[1..2] of char;
header_len_type = record

case integer of
0: (word: smallint);
1: (byte: length_buffer_type);
end;

var i, j :integer;
dlen :integer;
header_len :header_len_type;
tempbfr :datatype;

begin { procedure receive }
i:=0;
errorcode := 0;
while (i <> head_len) and (errorcode = 0) do { get length of message }
136 Chapter 4

NetIPC Examples
Example 1
 begin
dlen := head_len - i;
ipcrecv(connection, tempbfr, dlen, , , errorcode);
if errorcode = 0 <F100P12M>

then strmove(dlen, tempbfr, 1, header_len.byte, i+1);
i := i + dlen;

end;
if errorcode = 0 then

begin
rlen := header_len.word;

 i := 0;
 while (i <> rlen) and (errorcode = 0) do { get the message }
 begin
 dlen := header_len.word - i;
 ipcrecv (connection, tempbfr, dlen, , ,errorcode);
 if errorcode = 0
 then strmove(dlen, tempbfr, 1, rbfr, i+1);
 i := i + dlen;
 end;
 end
else
 rlen := 0;
end;

{ procedure receive }
{main of NetIPC Program 2}

begin

{create a call socket and name it}
ipccreate(3, 4, , , calldesc, result);
if result <> 0 then

leave(result); {failed}
name := 'RALPH';
ipcname(calldesc, name, 5, result);
if result <> 0 then

leave(result); {failed}
{wait for a connection request}
timeval.int:=0;
ipccontrol(calldesc, 3, timeval.chars, 2, , , result);

ipcrecvcn(calldesc, vcdesc, , , result);
if result <> 0 then

leave(result); {failed}
ipcshutdown(calldesc);

{wait for a message on the connection and print message received}

repeat
begin
receive (vcdesc, data, len, result);
if result <> 0 then leave(result);
setstrlen(datastr, len);
Chapter 4 137

NetIPC Examples
Example 1
strmove(len, data, 1, datastr, 1);
if datastr <> 'END?' then writeln (datastr); {print data received}
end

until datastr = 'END?';

{connection shutdown procedure}

if datastr = 'END?' then writeln('END received');
data := 'Y';
ipcsend(vcdesc, data, 1, , , result); {confirmation message}
writeln('Y sent');
if result <> 0 then leave(result);
receive(vcdesc, data, len, result);
if result = 64 then
 ipcshutdown(vcdesc)
else
 leave(result);
end.
138 Chapter 4

NetIPC Examples
Example 2
Example 2
This pair of programs show the differences in compiler options for
writing NetIPC programs to run in compatibility mode and native
mode. The programs are designated vector1 and vector2. You can
compile them in either compatibility mode or native mode as described
in the comments preceding the programs.

Program 2A (Vector1)

{**}

{ This program pair, vector1 and vector2, gives an example of how to }
{ send and receive vectored data, both in Compatibility Mode and }
{ Native Mode. To compile in Native Mode, set the native_mode flag to }
{ true; compile with "pasxl svector1,,$null" and link with }
{ "link $oldpass,nvector1". Run nvector1 before running nvector2. }
{ To compile in Compatibility mode, set the native_mode flag to false; }
{ compile with "pascal svector1,,$null" and link with }
{ "prep $oldpass,pvector1". Run pvector1 before pvector2. You can }
{ run pvector1 with nvector2, or nvector1 with pvector2. }
{**}
$set 'native_mode = true '$
$stats off$
$code_offsets on$
$tables on$
$lines 120$
$if 'native_mode'$
 $standard_level 'hp_modcal'$
 $type_coercion 'conversion'$
$else$
 $uslinit$
$endif$

program vector1 (input,output);

TYPE
 byte = 0..255; { this is one byte long }
 shortint = -32768..32767; { this is two bytes long }

CONST
$if 'native_mode'$
 DESC_TYPE = 4; { descriptor type for 64b ptr }
 DESC_LEN = 12; { length of NM vector descriptor}
$else$
 DESC_TYPE = 0; { descriptor type for CM stack }
 DESC_LEN = 8; { length of CM vector descriptor}
$endif$

 F_VECTORED = 31; { vectored data }
Chapter 4 139

NetIPC Examples
Example 2
TYPE
 flags_type = set of 0..31;
 msg_type = packed array [1..80] of char;

 netipc_data_desc = packed record
 { This structure contains a maximum of two data descriptors. }
$if 'native_mode'$
 d_desc_type1 : shortint; { type of data desc - use 4 }
 d_desc_len1 : shortint; { length in bytes of area 1 }
 d_desc_dataptr1 : globalanyptr; { pointer to area 1 }

 d_desc_type2 : shortint; { type of d_d - use 4 }
 d_desc_len2 : shortint; { length in bytes of area 2 }
 d_desc_dataptr2 : globalanyptr; { pointer to area 2 }
$else$
 d_desc_type1 : shortint; { type of data desc - use 0 }
 d_desc_dst1 : shortint; { dst is 0 for stack }
 d_desc_dataptr1 : shortint; { pointer to area 1 }
 d_desc_len1 : shortint; { length in bytes of area 1 }

 d_desc_type2 : shortint; { type of d_d - use 0 }
 d_desc_dst2 : shortint; { dst is 0 for stack }
 d_desc_dataptr2 : shortint; { pointer to area 2 }
 d_desc_len2 : shortint; { length in bytes of area 2 }
$endif$
 end;

CONST
 SOCK_ADDR = 32000; { socket's address }

VAR
 sd_local: integer; { local socket descriptor }
 cd_local: integer; { local connection descriptor }
 dlen: integer; { data length }
 flags: flags_type; { flags parameter }
 result: integer; { back from IPC call }
 result16: shortint; { back from opt calls }
 i: integer; { loop counter for messages }
 messag1: msg_type; { for printed messages }
 messag2: msg_type; { for printed messages }
 expect : msg_type; { expected message }
 vd: netipc_data_desc; { vectored data desc }
 error: boolean; { set if an error occurred }
 adrs: packed array [0..1] of byte; { socket's address }
 opt: packed array [0..31] of byte;{ options array }

{ IPC intrinsics used }
procedure addopt; intrinsic;
procedure initopt; intrinsic;
procedure ipccheck; intrinsic;
procedure ipcconnect; intrinsic;
procedure ipccontrol; intrinsic;
procedure ipccreate; intrinsic;
procedure ipcdest; intrinsic;
140 Chapter 4

NetIPC Examples
Example 2
procedure ipcerrmsg; intrinsic;
procedure ipcget; intrinsic;
procedure ipcgive; intrinsic;
procedure ipcrecv; intrinsic;
procedure ipcrecvcn; intrinsic;
procedure ipcsend; intrinsic;
procedure ipcshutdown; intrinsic;

begin
$if 'native_mode'$
writeln
('example program vector1 to show vectored data operation in Native Mode');
$else$
writeln
('example program vector1 to show vectored data operation in Compatibility
Mode'
);
$endif$

{ specify the address of the local socket }
adrs[0] := SOCK_ADDR div 256; { first 8 bits of 32000 }
adrs[1] := SOCK_ADDR mod 256; { last 8 bits of 32000 }

{ initialize opt array for one entry }
initopt (opt, 1, result16);
if result16 <> 0 then
 writeln ('initopt failed');

{ add the option for specification of the socket's address }
addopt (opt, 0, 128, 2, adrs, result16);
if result16 <> 0 then
 writeln ('addopt failed');

{ Create the local socket by using the special option 128 which allows }
{ specification of the socket's address using the opt array. }
ipccreate (3, 4, , opt, sd_local, result);
if result <> 0 then
 writeln ('ipccreate of local socket failed ', result);
{ Local side receives the connection }
ipcrecvcn (sd_local, cd_local, , , result);
if result <> 0 then
 writeln ('ipcrecvcn failed');

{ set up vectors, ready for sending and receiving data }
$if 'native_mode'$
vd.d_desc_dataptr1 := globalanyptr (addr (messag1));
vd.d_desc_dataptr2 := globalanyptr (addr (messag2));
$else$
vd.d_desc_dst1 := 0; { this is ignored }
vd.d_desc_dataptr1 := baddress (messag1);
vd.d_desc_dst2 := 0; { this is ignored }
vd.d_desc_dataptr2 := baddress (messag2);

$endif$
Chapter 4 141

NetIPC Examples
Example 2
vd.d_desc_type1 := DESC_TYPE;
vd.d_desc_type2 := DESC_TYPE;
flags := [F_VECTORED];
{ Receive the message in a double vector }
messag1 := ' '; { 46 }
messag2 := ' '; { 46 }
vd.d_desc_len1 := 27; { max we are willing to receive }
vd.d_desc_len2 := 80; { max we are willing to receive }
dlen := DESC_LEN * 2; { 2 vectors }
ipcrecv (cd_local, vd, dlen, flags, , result);
if result <> 0 then
 writeln ('ipcrecv data failed');
if dlen <> 40 then
 writeln ('dlen was not = 40');

{ Check that the correct data was received in the first vector }
expect := '40 four oh forty XL 40 four ';
error := false;
for i := 1 to 27 do
 if messag1[i] <> expect[i] then
 error := true;
if error then
 begin
 writeln ('did not receive expected first vector data, got:');
 writeln (messag1);
 end;

{ Check that the correct data was received in the second vector }
expect := ' tens fortify';
error := false;
for i := 1 to (dlen - 27) do
 if messag2[i] <> expect[i] then
 error := true;
if error then
 begin
 writeln ('did not receive expected second vector data, got:');
 writeln (messag2);
 end;
{ Now send a single vectored message to the local side }

messag1 := '.'; { This means GREETINGS }
vd.d_desc_len1 := 1; { byte size of message }
dlen := DESC_LEN;
ipcsend (cd_local, vd, dlen, flags, , result);
if result <> 0 then
 writeln ('ipcsend failed');

{ do a regular receive of the double vectored send }
messag1 := ' '; { 46 }
dlen := 46; { max amount of data to receive }
ipcrecv (cd_local, messag1, dlen, , , result);
if result <> 0 then
 writeln ('ipcrecv data failed');
if dlen <> 21 then
142 Chapter 4

NetIPC Examples
Example 2
 writeln ('dlen was not = 21');

{ Check that the correct data was received }
expect := 'Abaracadabara magic!';
error := false;
for i := 1 to dlen do
 if messag1[i] <> expect[i] then
 error := true;
if error then
 begin
 writeln ('did not receive expected data, got:');
 writeln (messag1);
 end;

{ Clean up and shutdown }

{ shutdown the local connection descriptor }
ipcshutdown (cd_local, , , result);
if result <> 0 then
 writeln ('ipcshutdown cd_local failed');
{ shutdown the local socket descriptor }
ipcshutdown (sd_local, , , result);
if result <> 0 then
 writeln ('ipcshutdown sd_local failed');

end.

Program 2B (Vector2)

{**}
{ This program pair, vector1 and vector2, gives an example of how to }
{ send and receive vectored data, both in Compatibility Mode and }
{ Native Mode. To compile in Native Mode, set the native_mode flag to }
{ true; compile with "pasxl svector2,,$null" and link with }
{ "link $oldpass,nvector2". Run nvector1 before running nvector2. }
{ To compile in Compatibility mode, set the native_mode flag to false; }
{ compile with "pascal svector2,,$null" and link with }
{ "prep $oldpass,pvector2". Run pvector1 before pvector2. You can }
{ run pvector1 with nvector2 or nvector1 with pvector2. }
{**}
$set 'native_mode = true '$
$stats off$
$code_offsets on$
$tables on$
$lines 120$
$if 'native_mode'$
 $standard_level 'hp_modcal'$
 $type_coercion 'conversion'$
$else$
 $uslinit$
$endif$

program vector2 (input,output);
Chapter 4 143

NetIPC Examples
Example 2
TYPE

byte = 0..255; { this is one byte long }
 shortint = -32768..32767; { this is two bytes long }

CONST
$if 'native_mode'$
 DESC_TYPE = 4; { descriptor type for 64b ptr }
 DESC_LEN = 12; { length of NM vector descriptor}
$else$
 DESC_TYPE = 0; { descriptor type for CM stack }
 DESC_LEN = 8; { length of CM vector descriptor}
$endif$

 F_VECTORED = 31; { vectored data }

TYPE
 flags_type = set of 0..31;
 location_type = packed array [1..50] of char;
 msg_type = packed array [1..80] of char;

 netipc_data_desc = packed record
 { This structure contains a maximum of two data descriptors. }
$if 'native_mode'$
 d_desc_type1 : shortint; { type of data desc - use 4 }
 d_desc_len1 : shortint; { length in bytes of area 1 }
 d_desc_dataptr1 : globalanyptr; { pointer to area 1 }

 d_desc_type2 : shortint; { type of d_d - use 4 }
 d_desc_len2 : shortint; { length in bytes of area 2 }
 d_desc_dataptr2 : globalanyptr; { pointer to area 2 }

$else$

d_desc_type1 : shortint; { type of data desc - use 0 }
 d_desc_dst1 : shortint; { dst is 0 for stack }
 d_desc_dataptr1 : shortint; { pointer to area 1 }
 d_desc_len1 : shortint; { length in bytes of area 1 }

 d_desc_type2 : shortint; { type of d_d - use 0 }
 d_desc_dst2 : shortint; { dst is 0 for stack }
 d_desc_dataptr2 : shortint; { pointer to area 2 }
 d_desc_len2 : shortint; { length in bytes of area 2 }
$endif$
 end;

CONST
 SOCK_ADDR = 32000; { socket's address }

VAR
 sd_remote: integer; { remote socket descriptor }
 cd_remote: integer; { remote connection descriptor }
 dd: integer; { destination descriptor }
 dlen: integer; { data length }
144 Chapter 4

NetIPC Examples
Example 2
 flags: flags_type; { flags parameter }
 result: integer; { back from IPC call }
 result16: shortint; { back from opt calls }
 i: integer; { loop counter for messages }
 messag1: msg_type; { for printed messages }
 messag2: msg_type; { for printed messages }
 expect : msg_type; { expected message }
 vd: netipc_data_desc; { vectored data desc }
 error: boolean; { set if an error occurred }
 location: location_type; { other programs location node }

 adrs: packed array [0..1] of byte; { socket's address }

 opt: packed array [0..31] of byte; { options array }

{ IPC intrinsics used }
procedure addopt; intrinsic;
procedure initopt; intrinsic;
procedure ipccheck; intrinsic;
procedure ipcconnect; intrinsic;
procedure ipccontrol; intrinsic;
procedure ipccreate; intrinsic;
procedure ipcdest; intrinsic;
procedure ipcerrmsg; intrinsic;
procedure ipcget; intrinsic;
procedure ipcgive; intrinsic;
procedure ipcrecv; intrinsic;
procedure ipcrecvcn; intrinsic;
procedure ipcsend; intrinsic;
procedure ipcshutdown; intrinsic;

begin
$if 'native_mode'$
writeln
('example program vector2 to show vectored data operation in Native Mode');
$else$
writeln
('example program vector2 to show vectored data operation in
 Compatibility Mode');
$endif$

 { create the remote socket normally }
ipccreate (3, 4, , , sd_remote, result);
if result <> 0 then
 writeln ('ipccreate of remote socket failed');

{ Get the destination descriptor to the local socket from the remote }
{ socket. Notice that the remote must know the address of the local }
{ socket. This arrangement must be made beforehand. }

{ specify the address of the local socket }
adrs[0] := SOCK_ADDR div 256; { first 8 bits of 32000 }
adrs[1] := SOCK_ADDR mod 256; { last 8 bits of 32000 }
Chapter 4 145

NetIPC Examples
Example 2
location := 'bigblue';
ipcdest (3, location, 7, 4, adrs, 2, , , dd, result);

if result <> 0 then
 writeln ('ipcdest failed ' , result);

{ Connect to the local socket using the destination descriptor. }
ipcconnect (sd_remote, dd, , , cd_remote, result);

 if result <> 0 then
 writeln ('ipcconnect failed ', result);

{ remote side does a receive to complete the connection }
ipcrecv (cd_remote, , , , , result);
if result <> 0 then
 writeln ('ipcrecv to complete connection failed');

{ set up vectors ready for sending and receiving data }
$if 'native_mode'$
vd.d_desc_dataptr1 := globalanyptr (addr (messag1));
vd.d_desc_dataptr2 := globalanyptr (addr (messag2));
$else$
vd.d_desc_dst1 := 0; { this is ignored }
vd.d_desc_dataptr1 := baddress (messag1);
vd.d_desc_dst2 := 0; { this is ignored }
vd.d_desc_dataptr2 := baddress (messag2);
$endif$
vd.d_desc_type1 := DESC_TYPE;
vd.d_desc_type2 := DESC_TYPE;
flags := [F_VECTORED];

{ send a non-vectored message to the local side }

messag1 := '40 four oh forty XL 40 four tens fortify';
ipcsend (cd_remote, messag1, 40, , , result);
if result <> 0 then
 writeln ('ipcsend failed');

{ receive a message in a single vector }
messag1 := ' '; { 46 }
vd.d_desc_len1 := 46; { max we are willing to receive }
dlen := DESC_LEN;

ipcrecv (cd_remote, vd, dlen, flags, , result);
if result <> 0 then
 writeln ('ipcrecv data failed');
if dlen <> 1 then
 writeln ('dlen was not = 1');

{ Check that the correct data was received }
expect := '.';
error := false;
for i := 1 to dlen do
146 Chapter 4

NetIPC Examples
Example 2
 if messag1[i] <> expect[i] then
 error := true;
if error then
 begin
 writeln ('did not receive expected single vector data, got:');
 writeln (messag1);
 end;

{ send a double vectored message to the local side }
messag1 := 'Abaracadabara ';
messag2 := 'magic!';
vd.d_desc_len1 := 15; { byte size of message }
vd.d_desc_len2 := 6; { byte size of message }
dlen := DESC_LEN * 2; { there are 2 descriptors }
ipcsend (cd_remote, vd, dlen, flags, , result);
if result <> 0 then
 writeln ('ipcsend failed');

{ do a dummy receive so that the other side can receive the last }
{ message before disconnection }
dlen := 1;
ipcrecv (cd_remote, messag1, dlen);

{ sockets are released on process termination }
end.
Chapter 4 147

NetIPC Examples
Example 3
Example 3
Example 3 includes a pair of programs designated requester
(X25CHECK) and server (X25SERV) using direct access to X.25 at
level 3. These programs must be compiled in compatibility mode. The
X.25 features used in these programs are the set supported on MPE-V.
Example 4 uses the additional X.25 features supported on MPE XL.
The program functions are described in the comments included with
the program listings.

Program 3A (X25CHECK)

{***}
{ Declarations for X52CHECK and X25SERVR }
{***}
CONST
 c_prot_addr_x25chk = 31000; {X25CHECK protocol address}
 c_prot_addr_server = 31001; {X25SERV protocol address}
 {These decimal addresses are in the range 30767..32767 where PM }
 { is not required }
 c_patern='abcdefghijklmnopqrstuvwxyz0123456789';
 c_buffer_len = 36;
 c_nb_loop =10;
 c_calling_add_code = 141;
 c_prot_add_code = 128;
 c_net_name_code = 140;
 c_clear_rcvd = 67; {SOCKERR for a CLEAR packet received}

TYPE
 shint = -32768..32767;
 nibble = 0..15;
 byte = 0..255;
 rc_type = (done,
 error,
 no_vc_desc,
 no_dest_desc,
 no_call_desc);
 event_type = (i_addopt,
 i_create,
 i_dest,
 i_connect,
 i_recv_call_conf,
 i_send,
 i_recv,
 i_shut_source,
 i_shut_dest,
 i_shut_connection);
 event_msg_type = array [event_type] of string[80];
 opt_type = packed record { }
 length : shint; { }
 num_entries : shint; {Declarations}
148 Chapter 4

NetIPC Examples
Example 3
 data : packed array [1..256] of shint;{ }
 end; { for }
 buffer_type = string [c_buffer_len] ; { }
 { NetIPC }
 socket_type = (call,destination,vc); { }
 name_type = string [50]; { }
 name_len = shint;

CONST
 c_event_msg = event_msg_type
 ['construction of option record',
 'creation of the local call descriptor',
 'creation of the destination descriptor',
 'CALL packet sending',
 'CALL CONF packet reception',
 'DATA packet sending',
 'DATA packet reception',
 'shutdown of call descriptor',
 'shutdown of destination descriptor',
 'CLEAR packet sending'];

VAR
 rc : rc_type;
 result : integer;
 r : shint;
 p_call_desc : integer;
 p_vc_desc : integer;
 p_dest_desc : integer;
 p_retry : boolean;
 p_set_up_time : integer;
 p_transit_time : integer;
{***}
{******* Declaration for the NetIPC intrinsics ******}
{***}
PROCEDURE Addopt ;INTRINSIC;
PROCEDURE Initopt ;INTRINSIC;
PROCEDURE Readopt ;INTRINSIC;
PROCEDURE IPCControl ;INTRINSIC;
PROCEDURE IPCCreate ;INTRINSIC;
PROCEDURE IPCDest ;INTRINSIC;
PROCEDURE IPCConnect ;INTRINSIC;
PROCEDURE IPCRecvcn ;INTRINSIC;
PROCEDURE IPCRecv ;INTRINSIC;
PROCEDURE IPCSend ;INTRINSIC;
PROCEDURE IPCShutdown ;INTRINSIC;
PROCEDURE IPCErrmsg ;INTRINSIC;
PROCEDURE GETPRIVMODE ;INTRINSIC;
PROCEDURE GETUSERMODE ;INTRINSIC;
{****** Other intrinsics used in the programs ******}
PROCEDURE quit ;INTRINSIC;
FUNCTION timer:integer ;INTRINSIC;
{}
{}
Chapter 4 149

NetIPC Examples
Example 3
{***}
{ }
{ SOURCE : CHECK }
{ }
{ DESCRIPTION : }
{ Simplified version. }
{ This program checks that connections to remote nodes or even }
{ to local node can be actually achieved. It also allows to }
{ estimate the performances of the network. It communicates with }
{ program X25SERV that runs on remote nodes. }
{ X25CHECK sends 10 times a message to the remote server which }
{ echoes them back. }
{ It checks for both connection and communication errors. }
{ This version of X25CHECK is not compatible with the version of }
{ the product (doesn't work with the official server). }
{ Compile in compatibility mode. }
{***}

$GLOBAL$
PROGRAM x25chk (input,output);
$include 'decl'$
FUNCTION ask_y_n : boolean;
var
 c : string [1];
begin {ask_y_n}
 repeat
 writeln;
 prompt ('Do you want to run the test once again?(y/n) >> ');
 readln (c);
 until (c='y') or (c='Y') or (c='n') or (c='N') or (c='');
 if (c='y') or (c='Y') then ask_y_n := true else ask_y_n := false;
end; {ask_y_n}
PROCEDURE check (result : integer;
 event : event_type);

var
 msg : string [80];
 len : integer;
 r : integer;
begin {check}
 IPCErrmsg (result,msg,len,r);
 setstrlen (msg,len);
 if r <> 0 then
 begin
 writeln ('Can''t get the error message ...');
 QUIT (123);
 end
 else
 begin
 writeln ('An error occurred during ',c_event_msg [event]);
 writeln ('with the following identification : ');
 writeln (msg);
 p_retry := ask_y_n;
 end;
150 Chapter 4

NetIPC Examples
Example 3
end; {check}
{----------------------INIT_desc---}

{ Create call descriptor with dedicated protocol relative address }
{ Create destination desc to connect with the server }
{--}
PROCEDURE init_desc (var rc : rc_type);
var
 j, prot_addr : shint;
 opt : opt_type;
 net_name,
 node_name : string [8];
 net_name_len,
 node_name_len : shint;
begin
 {----------------------------------}
 { Creation of the call descriptor. }
 {----------------------------------}
 Initopt (opt,2,r);
 if r <> 0 then
 begin
 check (r,i_addopt);
 rc := no_call_desc;
 end
 else
 begin {initopt}
 prot_addr := c_prot_addr_x25chk;
 Addopt (opt,0,c_prot_add_code,2,prot_addr,r);
 if r <> 0 then
 begin
 check (r,i_addopt);
 rc := no_call_desc;
 end
 else
 begin
 prompt('Enter the name of the network you are working on >> ');
 readln (net_name);
 net_name_len := strlen(net_name);
 Addopt (opt,1,c_net_name_code,net_name_len,net_name,r);
 if r <> 0 then
 begin
 check (r,i_addopt);
 rc := no_call_desc;
 end
 else
 begin
 IPCCreate (3,2,,opt,p_call_desc,result);
 if result <> 0 then
 begin
 check (result,i_create);
 rc := no_call_desc;
 end
 else
Chapter 4 151

NetIPC Examples
Example 3
 begin
 {------------------------------------}
 {Creation of the destination desc }
 {------------------------------------}
 writeln;
 prompt ('Enter the name of the node you want to check >> ');
 readln (node_name);
 node_name_len := strlen(node_name);
 prot_addr := c_prot_addr_server;
 IPCDest(3,node_name,node_name_len,2,prot_addr,2,,,
 p_dest_desc,result);
 if result <> 0 then
 begin
 check (result,i_dest);
 rc := no_dest_desc;
 end;{else dest}
 end;{else create}
 end;{else addopt}
 end;{else addopt}
 end;{else initopt}
end;{init_desc}
{------------------------------CONNECT-------------------------------}
{ Send CALL to the server and wait for CALL CONF }
{ Evaluate the set up time }
{--}
PROCEDURE connect (var rc : rc_type);

var
 chrono : integer;
begin
 chrono := timer;

{------------------------------------}
{ Send CALL packet to remote server }
{------------------------------------}

 IPCConnect (p_call_desc,p_dest_desc,,,p_vc_desc,result);
 if result <> 0 then
 begin
 check (result,i_connect);
 rc := no_vc_desc;
 end
 else
 begin
 writeln ('CALL packet sent ...');

{------------------------------------}
{Get CALL CONF packet from the server}
{------------------------------------}

 IPCRecv (p_vc_desc,,,,,result);
 p_set_up_time := timer-chrono;
 if result <> 0 then
 begin
 check (result,i_recv_call_conf);
 rc := error;
 end
152 Chapter 4

NetIPC Examples
Example 3
 else
 begin
 writeln ('CALL CONF packet received ...');
 writeln;
 end;

{------------------------------------}
{ The connection is now opened. }
{------------------------------------}

 end; {else connect}
end; {connect}
PROCEDURE data_transfer (var rc : rc_type);

var
 buffer : buffer_type;
 buffer_len : integer;
 chrono : integer;
 i : shint;
{-------------------------DATA_TRANSFER-----------------------------}
{ PURPOSE : Manage the data transfer with the server }
{ Evaluate the transit time }
{---}
begin {data transfer}
 i := 1;
 chrono := timer;
 while (i <= c_nb_loop) and (rc = done) do
 begin
 buffer := c_patern;
 buffer_len := c_buffer_len;

{------------------------------------}
{ Send data packet on the line. }
{------------------------------------}

 IPCSend (p_vc_desc,buffer,buffer_len,,,result);
 writeln ('DATA packet sent ...');
 if result <> 0 then
 begin
 check (result,i_send);
 rc := error;
 end
 else
 begin

{------------------------------------}
{ Receive data packet echoed by the }
{ remote server. }
{------------------------------------}

 IPCRecv (p_vc_desc,buffer,buffer_len,,,result);
 writeln ('DATA packet received ...');
 writeln;
 if result <> 0 then
 begin
 check (result,i_recv);
 rc := error;
 end
 else
Chapter 4 153

NetIPC Examples
Example 3
 i := i+1;
 end;{else send}
 end;{while}
 p_transit_time := timer - chrono;
end;{data transfer}
{-------------------------SHUTDOWN-----------------------------------}
{ PURPOSE : Shutdown call, destination and vc descriptor }
{ according to the value of rc. }
{ Display the results of set up and transit time }
{ Ask to retry }
{--}
PROCEDURE shutdown;
begin
 if rc <= error then
 begin

{------------------------------------}
{ Shutdown the vc descriptor. }
{ Send CLEAR on the line. }
{------------------------------------}

 IPCShutdown (p_vc_desc,,,result);
 if result <> 0 then check (result,i_shut_connection);
 writeln ('CLEAR packet sent ...');
 end;
 if rc <= no_vc_desc then
 begin

{------------------------------------}
{ Shutdown the destination desc. }
{------------------------------------}

 IPCShutdown (p_dest_desc,,,result);
 if result <> 0 then check (result,i_shut_dest);
 end;
 if rc <= no_dest_desc then
 begin

{------------------------------------}
{ Shutdown the call descriptor. }
{------------------------------------}

 IPCSHUTDOWN (p_call_desc,,,result);
 if result <> 0 then check (result,i_shut_source)
 end;
 if rc = done then
 begin

{------------------------------------}
{ Display the results. }
{------------------------------------}

 writeln ('The following figures have been measured on the network :');
 writeln (' Set up time : ',p_set_up_time:10,' ms');
 writeln (' Transit time : ',(p_transit_time/(c_nb_loop*2)):10:0,
 ' ms');
 p_retry := ask_y_n ;
 end;
end;{shutdown}
154 Chapter 4

NetIPC Examples
Example 3
BEGIN
 p_retry := false;
 repeat
 rc := done;
 INIT_DESC (RC);
 if rc = done then
 begin
 CONNECT (rc);
 if rc = done then
 begin
 DATA_TRANSFER (rc);
 end;
 end;
 SHUTDOWN;
 until p_retry = false;
END.
{}

Program 3B (X25SERV)

{**}
{ }
{ SOURCE : X25SERV }
{ }
{ DESCRIPTION : }
{ }
{ The purpose of that program is to answer to a remote program }
{ X25CHECK which verifies that the connections have been actually }
{ established. }
{ The server receives messages and echoes them to the remote }
{ calling node. }
{ The server has a dedicated protocol relative address. }
{ This version of X25SERV is not compatible with the version of }
{ the product. }
{ Compile in compatibility mode. }
{**}

program x25serv (input,output);
$include 'decl'$ {include file of type and constants}
{----------------------------Check_init-----------------------------}
{ PURPOSE : Checks the results of IPC calls. Used during the initi- }
{ alization phase when errors are not discarded but dis- }
{ played to the operator. }
{ }
{---}

PROCEDURE check_init (result:integer);
VAR
 msg : string [80];
 msg_len : integer;
 r : integer;
BEGIN
 if result <> 0 then
 begin
Chapter 4 155

NetIPC Examples
Example 3
 IPCErrmsg (result,msg,msg_len,r);
 setstrlen(msg,msg_len);
 if r <> 0 then
 begin
 writeln('Can''t get the error message');
 QUIT (123);
 end{if}
 else
 begin
 writeln('X25SERV: error occurred during initialization of the');
 writeln(' server with the following identification:');
 writeln (msg);
 QUIT (125);
 end;{else}
 end;{if}
END;{check_init}
PROCEDURE create_descriptor;
var
 prot_addr : shint;
 opt : opt_type;
 net_name : name_type;
 net_name_len : shint;
 wrtdata : shint;
begin {create_descriptor}

{-------------------------------------}
{ Creation of the descriptor dedicated}
{ to the server. }
{-------------------------------------}

 Initopt (opt,2);
 prot_addr := c_prot_addr_server;
 Addopt (opt,0,c_prot_add_code,2,prot_addr,result);
 check_init (result);
 prompt ('Enter the name of the network you are working on >> ');
 readln (net_name);
 net_name := strltrim (net_name);
 net_name := strrtrim (net_name); {eliminates blanks}
 {useful when server is run from a stream}
 net_name_len:= strlen (net_name);
 Addopt (opt,1,c_net_name_code,net_name_len,net_name,result);
 check_init(result);
 IPCCreate (3,2,,opt,p_call_desc,result);
 check_init (result);
 writeln('Call descriptor : ',p_call_desc);
 {------------------------------------}
 { Disable the timer on the call }
 { descriptor. }
 {------------------------------------}
 wrtdata := 0 ;
 IPCControl (p_call_desc,3,wrtdata,2,,,,result);
 check_init (result);
end; {create_descriptor}
156 Chapter 4

NetIPC Examples
Example 3
PROCEDURE echo;
var
 opt : opt_type;
 calling_address : packed array [1..16] of nibble;
 i,
 option_code,
 addr_len,
 data_len : shint;
 buffer : buffer_type;
 buffer_len : integer;
begin {echo}
 {------------------------------------}
 { Initialize an option field to get }
 { the calling node address. }
 {------------------------------------}
 Initopt (opt,1);

 Addopt (opt,0,c_calling_add_code,8,calling_address,r);
 {------------------------------------}
 { Wait for a connection request. }
 { ie Incoming CALL. }
 {------------------------------------}
 IPCRecvcn (p_call_desc,p_vc_desc,,opt,result);
 if result = 0 then
 begin
 writeln('Call Received.........');
 {------------------------------------}
 { Get the calling address from the }
 { CALL pkt. }
 {------------------------------------}
 data_len := 8;
 option_code := c_calling_add_code;
 Readopt (opt,0,option_code,data_len,calling_address,r);
 writeln ('Calling node address = ');
 addr_len := calling_address [1]; {the first nibble contains the addr
len}
 for i:= 2 to addr_len+1 do write (calling_address [i]:1);

writeln ;
 {------------------------------------}
 { Loop on data transfer. }
 {------------------------------------}
 i:= 1;
 while (i <= c_nb_loop) and (result = 0) do
 begin
 buffer_len := c_buffer_len;
 {------------------------------------}
 { Receive pkt from X25CHECK. }
 {------------------------------------}
 IPCRecv (p_vc_desc,buffer,buffer_len,,,result);
 if result = 0 then
 begin
 writeln('Data packet received..........');
Chapter 4 157

NetIPC Examples
Example 3
 {------------------------------------}
 { Echo the same buffer. }
 {------------------------------------}
 IPCSend (p_vc_desc,buffer,buffer_len,,,result);
 if result = 0 then i:=i+1;
 end;{if}
 end; {while}
 end;
end;{echo }

PROCEDURE shutdown_connection;
var
 buffer : buffer_type;
 buffer_len : integer;
begin
 {------------------------------------}
 { End of connection. }
 { Wait for X25CHECK to CLEAR first }
 {------------------------------------}
 if result = 0 then
 begin
 buffer_len := 1;
 IPCRecv (p_vc_desc,buffer,buffer_len,,,result);
 {------------------------------------}
 { This IPCRECV should complete with }
 { an error indicating a CLEAR recvd. }
 {------------------------------------}
 if result = c_clear_rcvd then
 {------------------------------------}
 { We can shutdown the vc descriptor }
 {------------------------------------}
 IPCShutdown (p_vc_desc,,,result);
 end;
end;{shutdown_connection}
PROCEDURE shutdown_call_desc;
begin {shutdown_call_desc}
 IPCShutdown (p_call_desc,,,result);
end; {shutdown_call_desc}
begin {main server}
 CREATE_DESCRIPTOR;
 while true do {endless loop}
 begin
 ECHO;
 SHUTDOWN_CONNECTION;
 end;
 SHUTDOWN_CALL_DESC;
end. {main server}
158 Chapter 4

NetIPC Examples
Example 4
Example 4
Example 4 is a pair of programs designated SNMIPC1 and SNMIPC2
using direct access to X.25 level 3. These programs can be compiled in
native mode. The program comments describe which of the X.25
features are used in these sample programs.

Program 4A (SNMIPC1)

(**)
(* This program pair, SNMIPC1 and SNMIPC2, tests X25 features including:*)
(* *)
(* 1. Call User Data up to 128 bytes *)
(* 2. fast select *)
(* 3. special facilities *)
(* 4. catch all socket *)
(* 5. transfer of 2000 bytes packet *)
(* 6. no address flag *)
(* 7. deferred connection acceptance *)
(* 8. display calling node's x25 address *)
(* *)

(* Since this program uses the catch all socket, the NA capability is *)
(* required. *)
(* To compile in Native Mode, compile with "pasxl SNMIPC1,,$null" and *)
(* link with "link $oldpass, NMIPC1". Run NMIPC1 before running NMIPC2.*)
(* *)
(* CONFIGURATION ENVIRONMENT : *)
(* Network Name : DIRECT *)
(* Facility Name : FACFULL (contains Fast Select flag) *)
(* SVCPATH : POOL with IO security *)
(* X25 address : 30101 *)
(* No Network Directory entries needed. *)
(* *)
(**)

$stats off$ (* compiler option *)
$statement_number on$
$code_offsets on$
$tables on$
$lines 120$
$standard_level 'hp_modcal'$
$type_coercion 'conversion'$

program nmipc1 (input,output);

TYPE
 byte = 0..255; (* this is one byte long *)
 bit4 = 0..15; (* this is one nibble long *)
 shortint = -32768..32767; (* this is two bytes long *)
Chapter 4 159

NetIPC Examples
Example 4
CONST
 X25 = 2; (* X25 protocol *)
 CUD_MAX = 128; (* number bytes of CUD *)

VAR
 sd_local: integer; (* local socket descriptor *)
 cd_local: integer; (* local connection descriptor *)
 optioncode: shortint; (* optioncode return from readopt *)
 optlen: integer; (* opt length *)
 dlen: integer; (* data length *)
 flag: packed array[1..4] of byte; (* flags parameter *)
 x25_flags: packed array[1..4] of byte; (* x25 flags parameter *)
 result: integer; (* back from IPC call *)
 result16: shortint; (* back from opt calls *)
 i: integer; (* loop counter for messages *)
 msg : packed array[1..2000] of byte; (* message for send and receive *)
 data : packed array[1..12] of char; (* send data *)
 opt: packed array [0..500] of byte;(* options array *)
 cud: packed array [1..CUD_MAX] of byte; (* # bytes of CUD *)
 wdata : packed array[1..80] of char; (* for ipccontrol wdata *)
 readdata : packed array[1..500] of byte; (* for ipccontrol readdata *)
 rlen : integer; (* length for readdata *)
 sf : packed array[1..109] of byte; (* 109 bytes of facility_field *)
 net_name : packed array[1..8] of char;(* network name *)
 cnaddr : packed array[1..8] of byte ; (* calling node address *)

 (* IPC intrinsics used *)
procedure readopt; intrinsic;
procedure addopt; intrinsic;
procedure initopt; intrinsic;
procedure ipccheck; intrinsic;
procedure ipcconnect; intrinsic;
procedure ipccontrol; intrinsic;
procedure ipccreate; intrinsic;
procedure ipcdest; intrinsic;
procedure ipcerrmsg; intrinsic;
procedure ipcget; intrinsic;
procedure ipcgive; intrinsic;
procedure ipcrecv; intrinsic;
procedure ipcrecvcn; intrinsic;
procedure ipcsend; intrinsic;
procedure ipcshutdown; intrinsic;

(******************)
(* Program start *)
(******************)
begin
writeln ('*** Program nmipc1 : X25 features test program ***');

(***************************** IPCCREATE ********************************)
(* initialize opt array entry *)
initopt (opt, 2, result16);
if result16 <> 0 then
160 Chapter 4

NetIPC Examples
Example 4
 writeln ('initopt for ipccreate failed');

(* add the option for Catch_all Socket : bit 2 *)
flag[1] := 32; (* flag : 01000000000000000000000000000000 *)
flag[2] := 0;
flag[3] := 0;
flag[4] := 0;
addopt (opt, 0, 144, 4, flag, result16);
if result16 <> 0 then
 writeln ('addopt for ipccreate catch-all failed');

(* add network name *)
net_name := 'direct';
addopt (opt, 1, 140, 6, net_name, result16);
if result16 <> 0 then
 writeln ('addopt for ipccreate network name failed');

writeln;
writeln('***** IPCCREATE start ');
ipccreate (3, X25, , opt, sd_local, result);
if result <> 0 then
 writeln ('ipccreate of local socket failed ', result);

(*********************** IPCRECVCN ********************************)
initopt (opt, 4, result16);
if result16 <> 0 then
 writeln ('initopt for ipcrecvcn failed');

(* Set CUD receive for IPCRECVCN *)
for i := 1 to CUD_MAX do (* clean up CUD *)
 cud[i] := 0;
addopt(opt, 0, 5, CUD_MAX, cud, result16);
if result16 <> 0 then
 writeln('addopt IPCRECVCN CUD failed ',result16);

(* Set facility_field for IPCRECVCN *)
for i := 1 to 109 do (* clean up SF *)
 sf[i] := 0;
addopt(opt, 1, 145, 109, sf, result16);
if result16 <> 0 then
 writeln('addopt IPCRECVCN SF failed', result16);

(* add calling node address *)
addopt(opt, 2, 141, 8,cnaddr,result16);
if result16 <> 0 then
 writeln('addopt IPCRECVCN calling node address failed', result16);

(* add X25_flags for receive fast select : bit 7 = 1 *)
x25_flags[1] := 0; (* clean up X25_flags *)
x25_flags[2] := 0;
x25_flags[3] := 0;
x25_flags[4] := 0;
addopt(opt, 3, 144, 4,x25_flags,result16);
Chapter 4 161

NetIPC Examples
Example 4
if result16 <> 0 then
 writeln('addopt IPCRECVCN x25 flags failed', result16);

(* set deferred flags for receive connection : bit 18 *)
flag[1] := 0; (* flags : 00000000000000000100000000000000 *)
flag[2] := 0;
flag[3] := 32;
flag[4] := 0; (* deferred *)

writeln;
writeln('***** IPCRECVCN deferred');
ipcrecvcn (sd_local, cd_local, flag, opt, result);
if result <> 0 then
 writeln ('ipcrecvcn failed', result);

(* check receive CUD *)
optlen := CUD_MAX;
readopt(opt,0,optioncode,optlen,cud,result16);
if result16 <> 0 then
 writeln('readdata failed (cud) ',result16:1);
if optlen <> CUD_MAX then
 writeln('CUD length error : (length = ',optlen:1, ')');
i := 1;
while i <= optlen do
 begin
 if cud[i] <> i then
 writeln('CUD error : #',i:1,' ',cud[i]);
 i := i + 1;
 end;

(* check facilities *)
optlen := 109;

readopt(opt,1,optioncode,optlen, sf,result16);
if result16 <> 0 then
 writeln('readdata failed (special facility) ',result16:1);
writeln('facilities received in Incoming call packet (length =
',optlen:1,')');
for i := 1 to optlen do
 write (sf[i]:1,' ');
writeln;

(* check calling node address *)
optlen := 8;
readopt(opt,2,optioncode,optlen, cnaddr,result16);
if result16 <> 0 then
 writeln('readdata failed (calling node address) ',result16:1);
writeln('Calling Node Address (length = ',optlen:1,')');
for i := 1 to optlen do
 begin
 write ((cnaddr[i] div 16):1);
 write ((cnaddr[i] mod 16):1);
 end;
162 Chapter 4

NetIPC Examples
Example 4
writeln;

(* check X25_flag : 000000010000000000000000000000000 *)
optlen := 4;
readopt(opt,3,optioncode,optlen,x25_flags,result16);
if result16 <> 0 then
 writeln('readdata failed (X25_flags) ', result16:1);
if (x25_flags[1] <> 1) and (x25_flags[2] <> 0) and
 (x25_flags[3] <> 0) and (x25_flags[4] <> 0) then
 writeln('error fast select flag should be set');

(************************ IPCCONTROL ***********************************)

(* set pass parameter for IPCCONTROL *)
initopt(wdata, 2, result16);
if result16 <> 0 then
 writeln('initopt for ipccontrol failed');

(* send Call User Data back to calling node *)
for i := 1 to CUD_MAX do
 cud[i] := CUD_MAX - i;
addopt(wdata, 0, 2,CUD_MAX, cud, result16);
if result16 <> 0 then
 writeln('addopt for ipccontrol cud failed ',result16);

(* add special facility *)
sf[1] := hex('04');
sf[2] := hex('01');
addopt(wdata, 1, 145, 2, sf, result16);
if result16 <> 0 then
 writeln('addopt for ipccontrol sf failed ',result16);

(* IPCCONTROL to accept the connection *)
writeln;
writeln('***** IPCCONTROL accept ');
ipccontrol(cd_local, 9, wdata,500, , , , result);
if result <> 0 then
 writeln('ipccontrol failed ', result);

(****************** IPCRECV (2000 bytes) ******************************)
for i := 1 to 2000 do msg[i] := 0; (* initialize msg and dlen *)
dlen := 2000;
writeln;
writeln('***** IPCRECV (2000 bytes data) ');
ipcrecv (cd_local, msg, dlen, , , result);
if result <> 0 then
 writeln('IPCRECV 2000 failed ', result:1);
if dlen <> 2000 then
 writeln('error data length = ',dlen:1);

(* Check that the correct data was received in the first vector *)
i := 1;
while i <= dlen do
Chapter 4 163

NetIPC Examples
Example 4
 begin
 if msg[i] <> (i mod 100) then
 writeln ('receive error data : #',i:1,' ',msg[i]);
 i := i + 1;
 end;

(************************ IPCSEND *************************************)
(* Now send a single vectored message to the local side *)
data := 'ok last one.';
dlen := 12;
writeln;
writeln('***** IPCSEND last message');
ipcsend (cd_local, data, dlen, , , result);
if result <> 0 then
 writeln ('ipcsend failed', result);

(************************ IPCRECV (skip error #67) ********************)
(* wait for remote side to shutdown first *)
(* receive an error code #67 *)
dlen := 1;
writeln;
writeln('***** IPCRECV ');
ipcrecv (cd_local, data, dlen, , , result);
(* receive an error code #67 *)
if result <> 67 then
 writeln('IPCRECV failed ', result:1);

(************************ IPCSHUTDOWN *********************************)
(* shutdown the local connection descriptor *)
writeln;
writeln('***** IPCSHUTDOWN (cd)');
ipcshutdown (cd_local, , , result);
if result <> 0 then
 writeln ('ipcshutdown cd_local failed', result);

(************************ IPCSHUTDOWN *********************************)
(* shutdown the local socket descriptor *)
writeln;
writeln('***** IPCSHUTDOWN (sd)');

ipcshutdown (sd_local, , , result);
if result <> 0 then
 writeln ('ipcshutdown sd_local failed', result);

end.
164 Chapter 4

NetIPC Examples
Example 4
Program 4B (SNMIPC2)

(**}
(* This program pair, SNMIPC1 and SNMIPC2, tests X25 features including:*)
(* *)
(* 1. Call User Data up to 128 bytes *)
(* 2. fast select *)
(* 3. special facilities *)
(* 4. catch all socket *)
(* 5. transfer of 2000 bytes packet *)
(* 6. no address flag *)
(* 7. deferred connection acceptance *)
(* 8. display calling node's x25 address *)
(* *)
(* Since this program uses the catch all socket, the NA capability is *)
(* required. *)
(* To compile in Native Mode, compile with "pasxl SNMIPC2,,$null" and *)

(* link with "link $oldpass, NMIPC2". Run NMIPC1 before running NMIPC2.*)
(* *)
(* CONFIGURATION ENVIRONMENT : *)
(* Network Name : DIRECT *)
(* Facility Name : FACFULL (contains Fast Select flag) *)
(* SVCPATH : POOL with IO security *)
(* X25 address : doesn't matter *)
(* No Network Directory entries needed. *)
(* *)
(**)

$stats off$ (* compiler option *)
$statement_number on$
$code_offsets on$
$tables on$
$lines 120$
$standard_level 'hp_modcal'$
$type_coercion 'conversion'$

program nmipc2 (input,output);

TYPE
 byte = 0..255; (* this is one byte long *)
 bit4 = 0..15; (* this is one nibble long *)
 shortint = -32768..32767; (* this is two bytes long *)

CONST
 X25 = 2; (* X25 lever III protocol *)
 CUD_MAX = 128; (* number byte of CUD *)
 SOCK_ADDR = 32000; (* socket's address *)

VAR
 sd_remote: integer; (* remote socket descriptor *)

cd_remote: integer; (* remote connection descriptor *)
Chapter 4 165

NetIPC Examples
Example 4
dd: integer; (* destination descriptor *)
 dlen: integer; (* data length *)
 optlen: integer; (* opt length *)
 optioncode: shortint; (* option code *)
 flag : packed array[1..4] of byte; (* flag *)
 x25_flags: packed array [1..4] of byte; (*x25_flags parameter *)
 result: integer; (* back from IPC call *)
 result16: shortint; (* back from opt calls *)
 i: integer; (* loop counter for messages *)
 msg : packed array[1..2000] of byte; (* message for send and receive *)
 expect : packed array[1..12] of char; (* expect data *)
 adrs: packed array[1..2] of byte; (* socket's address *)
 opt: packed array [0..500] of byte; (* options array *)
 xchico : packed array [1..50] of bit4; (* chico Dest_net_addre *)
 cud: packed array [1..CUD_MAX] of byte; (* CUD *)
 data: packed array[1..12] of char; (* receive data *)
 readdata : packed array[1..200] of byte; (* readdata for readopt *)
 sf : packed array[1..109] of byte; (* 109 bytes of facility_field *)
 net_name : packed array[1..8] of char; (* network name *)
 fac_name : packed array[1..8] of char; (* facility name *)

(* IPC intrinsics used *)

procedure readopt; intrinsic;
procedure addopt; intrinsic;
procedure initopt; intrinsic;
procedure ipccheck; intrinsic;
procedure ipcconnect; intrinsic;
procedure ipccontrol; intrinsic;
procedure ipccreate; intrinsic;
procedure ipcdest; intrinsic;
procedure ipcerrmsg; intrinsic;
procedure ipcget; intrinsic;
procedure ipcgive; intrinsic;
procedure ipcrecv; intrinsic;
procedure ipcrecvcn; intrinsic;
procedure ipcsend; intrinsic;
procedure ipcshutdown; intrinsic;

(*****************)
(* Program start *)
(*****************)
begin
writeln ('### Program nmipc2 : X25 features test program ### ');

********************* IPCCREATE *************************************)

(* initialize opt array entry *)
initopt (opt, 1, result16);
if result16 <> 0 then
 writeln('ipccreate initopt failed', result16);

(* add the option for Network Name *)
166 Chapter 4

NetIPC Examples
Example 4
net_name := 'direct';
(* add the option for NETWORK NAME *)
addopt (opt, 0, 140, 6, net_name, result16);
if result16 <> 0 then
 writeln('ipccreate addopt failed', result16);

writeln;
writeln('##### IPCCREATE ');
ipccreate (3, X25, , opt, sd_remote, result);
if result <> 0 then
 writeln ('ipccreate of remote socket failed', result);

(***************************** IPCDEST **********************************)
(* Get the destination descriptor to the local socket from the remote *)
(* socket. *)
(* We are calling the catch-all socket, so no address will be put in the*)
(* call, however we have the satisfy IPCDEST with something *)
adrs[1] := SOCK_ADDR div 256; (* first 8 bits of 32000 *)
adrs[2] := SOCK_ADDR mod 256; (* last 8 bits of 32000 *)
initopt (opt, 1, result16);
if result16 <> 0 then
 writeln ('initopt for ipcdest failed');

(* add DEST_NET_ADDR opt to ipcdest *)
xchico[1] := 0; (* 0002 : protocol is X25 *)
xchico[2] := 0;
xchico[3] := 0;
xchico[4] := 2;
xchico[5] := 0; (* 0000 : address for the SVC *)
xchico[6] := 0;
xchico[7] := 0;
xchico[8] := 0;
xchico[9] := 5; (* 5 : length of X25 address *)
xchico[10] := 3; (* 30101: chico X25 address *)
xchico[11] := 0;
xchico[12] := 1;
xchico[13] := 0;
xchico[14] := 1;
(* add remote node X25 address *)
addopt(opt, 0, 16, 7, xchico, result16);
if result16 <> 0 then
 writeln ('addopt for ipcdest failed',result16);
writeln;
writeln('##### IPCDEST ');
ipcdest (3, , , X25, adrs, 2, , opt, dd, result);
if result <> 0 then
 writeln ('ipcdest failed ' , result);

(********************** IPCCONNECT *********************************)
initopt (opt, 4, result16);
if result16 <> 0 then
 writeln ('initopt for ipcconnect failed',result16);
Chapter 4 167

NetIPC Examples
Example 4
(* this sets the "no_address" flag; and allows to access 128 bytes of CUD *)
(* with fast select *)
x25_flags[1] := 0; (* X25_flags : 00000000000000001000000000000000 *)
x25_flags[2] := 0;
x25_flags[3] := 64;
x25_flags[4] := 0;
addopt(opt, 0, 144, 4, x25_flags, result16);
if result16 <> 0 then
 writeln ('addopt for ipcconnect x25_flag failed',result16);

(* add call_user_data_send *)
for i := 1 to CUD_MAX do
 cud[i] := i;
addopt(opt, 1, 2, CUD_MAX, cud, result16);
if result16 <> 0 then
 writeln ('addopt for ipcconnect cud failed',result16);

(* add facility name *)
fac_name := 'FACFULL ';
addopt(opt, 2, 142, 8, fac_name, result16);
if result16 <> 0 then
 writeln('addopt for facility name failed ',result16);

(* add some special facilities *)
sf[1] := hex('04');
sf[2] := hex('01');
addopt(opt, 3, 145, 2, sf, result16);
if result16 <> 0 then
 writeln ('addopt for ipcconnect sf failed',result16);

(* Connect to the local socket using the destination descriptor. *)
writeln;
writeln ('##### IPCCONNECT');
ipcconnect (sd_remote, dd, , opt, cd_remote, result);
if result <> 0 then
 writeln ('ipcconnect failed ', result);

(****************************** IPCRECV *****************************)
initopt(opt, 2, result16);
if result16 <> 0 then
 writeln('initopt for ipcrecv failed');
for i := 1 to CUD_MAX do
 cud[i] := 0;

optlen := CUD_MAX;
addopt(opt, 0, 5, optlen, cud, result16);
if result16 <> 0 then
 writeln('addopt IPCRECV cud failed ', result16:1);
for i := 1 to 50 do
 sf[i] := 0;
168 Chapter 4

NetIPC Examples
Example 4
optlen := 50;
addopt(opt, 1, 145, optlen, sf,result16);
if result16 <> 0 then
 writeln('addopt IPCRECV sf failed ', result16:1);
writeln;
writeln('##### IPCRECV ');
ipcrecv (cd_remote, , , ,opt, result);
if result <> 0 then
 writeln ('ipcrecv to complete connection failed ',result);

(* check receive CUD *)
optlen := CUD_MAX;
readopt(opt, 0, optioncode, optlen,cud,result16);
if result16 <> 0 then
 writeln('CUD readopt failed ', result16:1);
if optlen <> CUD_MAX then
 writeln('CUD length error : (length = ',optlen:1, ')');
i := 1;
while i <= optlen do
 begin
 if cud[i] <> (CUD_MAX - i) then
 writeln('CUD error : #',i:1,' ',cud[i]);
 i := i + 1;
 end;

(* check special facility *)
optlen := 50;readopt(opt, 1, optioncode, optlen,sf,result16);
if result16 <> 0 then
 writeln('SF readopt failed ',result16:1);
writeln
('facilities received in call accepted packet (length = ',optlen:1,')');
for i := 1 to optlen do
 write(sf[i]:1,' ');
writeln;

(****************************** IPCSEND (2000 bytes) *****************)
for i := 1 to 2000 do
 msg[i] := i mod 100;
writeln;
writeln('##### IPCSEND (2000 bytes data)');
ipcsend (cd_remote, msg, 2000, , , result);
if result <> 0 then writeln('send 2000 bytes data failed ',result:1);

(****************************** IPCRECV ******************************)
dlen := 12;
writeln;
writeln('##### IPCRECV last message');
ipcrecv(cd_remote, data, dlen,,, result);
if result <> 0 then
 writeln('ipcrecv failed ',result);

(* check the correct data was received *)
Chapter 4 169

NetIPC Examples
Example 4
if dlen <> 12 then
 writeln('receive data length error (length = ',dlen:1,')')
else
 begin
 expect := 'ok last one.';
 for i := 1 to dlen do
 if data[i] <> expect[i] then
 writeln('receive data error #',i:1,' ',data[i]);
 end;

(************************* IPCSHUTDOWN (cd) **************************)
(* shutdown the connection descriptor *)
writeln;
writeln('##### IPCSHUTDOWN (cd) ');
ipcshutdown (cd_remote, , , result);
if result <> 0 then
 writeln ('ipcshutdown cd_local failed',result);

(************************* IPCSHUTDOWN (dd) **************************)
(* shutdown the connection descriptor *)
writeln;
writeln('##### IPCSHUTDOWN (dd) ');
ipcshutdown (dd, , , result);
if result <> 0 then
 writeln ('ipcshutdown dd failed',result);

(************************* IPCSHUTDOWN (sd) ******************************)
(* shutdown the socket descriptor *)
writeln;
writeln('##### IPCSHUTDOWN (sd) ');
ipcshutdown (sd_remote, , , result);
if result <> 0 then
 writeln ('ipcshutdown sd_local failed',result);
end.
170 Chapter 4

A IPC Interpreter (IPCINT)
The IPC interpreter (IPCINT) is a software utility provided with the
NS X.25/XL link product. IPCINT can be used as a learning tool for
programmers and as a troubleshooting tool by network administrators.

IPCINT executes NetIPC intrinsics one at a time in response to
commands typed at the keyboard. IPCINT can only be used for X.25
direct access to level 3.
171

IPC Interpreter (IPCINT)
Using IPCINT
Using IPCINT
To use IPCINT you must have an NS X.25 link up and running on a
local HP 3000 node and on a remote node. In order to exercise the
intrinsics between nodes, the remote node must be running either
IPCINT or an X.25 direct access to level 3 server program.

You must have NA or NM capability to run IPCINT. To use IPCINT you
enter RUN IPCINT.NET.SYS at the MPE XL prompt. At the IPCINT
prompt (>) you can enter a NetIPC intrinsic abbreviation or EX to exit.

You will be prompted for parameters required for the intrinsic you
specified. The intrinsic is executed by IPCINT and any output
parameters or errors returned are displayed. IPCINT creates a log file
called IPCLOG to contain the actions of each intrinsic executed.
172 Appendix A

IPC Interpreter (IPCINT)
Comparison of IPCINT to Programmatic NetIPC
Comparison of IPCINT to Programmatic
NetIPC
The following examples show the difference between programmatic
access and IPCINT used to execute the IPCCREATE intrinsic.

Example: Programmatic Access to X.25

For a program using direct access to X.25 level 3, a call to IPCCREATE
can be specified as follows:

IPCCREATE (3,2,,opt,calldesc,result)

The value 3 for parameter socketkind specifies a call socket. The value
2 (for parameter protocol) indicates the protocol access is X.25. At a
minimum, the opt array would contain the X.25 network name, and
optionally either define a catch-all socket (opt code 144, bit 2) or specify
a protocol relative address (opt code 128). The calldesc will contain
the call socket descriptor, and result will contain an error (if any).

Example: IPCINT for X.25 Direct Access

For example, to execute the IPCCREATEintrinsic using IPCINT, enter CR
from the IPCINT prompt (see example below). You are prompted for the
IPCCREATE X.25 parameters. In this example, no catch-all socket is
specified; therefore, a protocol relative address is specified. The network
name is a required parameter. The network name X25NET is used in
this example. After the required parameters are entered, press
[RETURN] and the IPCCREATE intrinsic is executed.

CR
Protocol: 2
Catch All Socket (Y/N)? N
Protocol Relative Address: 3100
Network name (8 chars): X25NET
-----> Executing: IPCCREATE
CALL = 6
Appendix A 173

IPC Interpreter (IPCINT)
Syntax of IPCINT
Syntax of IPCINT
The following paragraphs describe the syntax of IPCINT commands.
This includes:

• Abbreviations for the intrinsics.

• Pseudovariables for socket descriptors.

• Prompts for parameters.

• Call user data field.

Abbreviated Intrinsic Names

The IPCINT program uses abbreviations for NetIPC intrinsics. Table
A-1 shows the supported IPC intrinsics and the IPCINT abbreviations.

Table A-1 NetIPC Intrinsics IPCINT Abbreviations

Intrinsic IPCINT Abbreviation

IPCCREATE CR

IPCNAME NAME

IPCNAMERASE NAMERASE

IPCDEST DEST

IPCGIVE GIVE

IPCGET GET

IPCCONNECT CN

IPCRECVCN RCN

IPCRECV R

IPCSEND S

IPCCONTROL CTR

IPCSHUTDOWN SHUT

IOWAIT WAIT

IODONTWAIT NOWAIT

IPCCHECK CHECK

IPCERRMSG ERR
174 Appendix A

IPC Interpreter (IPCINT)
Syntax of IPCINT
Pseudovariables

Three pseudovariables are used by IPCINT to store the most recently
assigned socket descriptors as follows:

Pseudovariable socket descriptor
-------------- -----------------
 C call
 D destination
 V virtual circuit

The pseudovariable names can be overridden by the user.

Prompts for Parameters

When you enter the IPCINT abbreviation for the selected intrinsic,
IPCINT prompts you for the required parameter values which you then
enter from the keyboard. Default values are provided for most input
parameters. The parameter names correspond approximately to those
used in the reference portion of this manual. IPCINT prompts for X.25
opt array parameters without your having to use the INITOPT or
ADDOPT intrinsics. You are also prompted for X.25 flags parameter bit
settings. Prompts requiring a Y/N (yes/no) answer default to N (no).

Output parameters are displayed on the screen following execution of
the called intrinsic.

Call User Data Field

The call user data field can be entered as a concatenated ASCII string
enclosed in single quotes. Hexadecimal digits can be included in an
ASCII string by preceding the digits with an h. For example,
h45'hello'h10 can be entered which represents a string of hexadecimal
45, the word “hello” followed by hexadecimal 10.
Appendix A 175

IPC Interpreter (IPCINT)
Sample IPCINT Session
Sample IPCINT Session
The following example describes the steps to create a call socket, send
and receive data over a connection, and then close the socket using
IPCINT on a local node. This sample session assumes a remote node is
also using IPCINT. The remote node running IPCINT sends the local
node a message as described in step 7.

The steps below follow the SVC requestor processing example in Figure
1-10 in Chapter 1 , “NetIPC Fundamentals.” The remote node should
follow the steps in the SVC server processing example in Figure 1-11 in
Chapter 3 , “NetIPC Intrinsics.”

User input is bold in the examples provided. For information about
NetIPC intrinsic parameters refer to the intrinsic descriptions in
Chapter 3 , “NetIPC Intrinsics.” Intrinsic parameter names that differ
from the names used as prompts in IPCINT are included in
parentheses in the discussion of the examples.

Step 1 Run the IPCINT program from the MPE XL prompt. A log of the
session will be written to a file named IPCLOG.

(1) :RUN IPCINT.NET.SYS

(C) COPYRIGHT Hewlett-Packard Company 1989

>>>> IPC Interpreter B020000 FRI, SEP 15, 1989, 9:59 AM
>

To exit IPCINT at any time enter EX at the IPCINT prompt (>).

Step 2 Enter the IPCINT abbreviation for the desired intrinsic (See Table A-1).
In this example, CR for IPCCREATE is entered.

You are prompted for all required input parameters. You must enter 2
for X.25 direct access at the Protocol prompt. In this example, enter N
(no) at the Catch All socket prompt (opt code 144, bit 2). Enter the
network name configured for your network at the Network name (opt
code 140) prompt.

After entering all required parameters, the intrinsic is executed. The
call socket descriptor (calldesc) is returned in the pseudovariable
“C”.The output parameters are interpreted and displayed. In this
example, a call socket has been created.

(2) CR

Protocol: 2
Catch All socket (Y/N)? N
Network name (8 chars): X25net
-----> Executing : IPCCREATE
CALL = 12
176 Appendix A

IPC Interpreter (IPCINT)
Sample IPCINT Session
Step 3 Execute the IPCDEST intrinsic by entering DEST at the prompt. You are
prompted for the remote Node name (location) where the destination
socket will be created. In this example, RAINBOWis used. If you leave the
node name prompt blank, you will be prompted for the remote X.25
address expressed in hexadecimal.

Enter a protocol relative address (protoaddr) in the decimal range
30767 to 32767 for the remote address. In this example, 31000 is used.
The IPCDEST intrinsic is executed and a destination descriptor
(destdesc) will be returned in pseudovariable “D”.

(3) DEST

Node name (50 chars): RAINBOW
Protocol relative address (16 bit integer): 31000
-----> Executing : IPCDEST
DEST = - 1

Step 4 In order to execute this step, the remote node server program or IPCINT
must have already executed an IPCCREATE followed by an
IPCRECVCN. The remote waits for the local to send the connection
request. NetIPC provides a timeout so the IPCRECVCN will not wait
indefinitely.

Execute IPCCONNECT by entering CN at the prompt. You are prompted
for the call socket descriptor. To use the default, press [RETURN] which
is the value returned in pseudovariable “C” by the previous call to
IPCCREATE.

You are prompted for the destination socket descriptor. To use the
default, press [RETURN] which is the value returned in pseudovariable
“D” by the previous call to IPCDEST.

You are prompted for access to the call user data (CUD) field (opt 144,
protocol flags, bit 17). In this example, Y (yes) is entered. Selecting “yes”
allows you to enter up to 128 bytes of user data at the Call User Data
(128 chars) prompt (opt code 2).

Next, you are prompted for a facility set name (opt code 142). To use
the default configured for you network, press [RETURN] . At the Special
Facility Field (opt code 145) prompt, enter up to 109 characters
representing additional features to be added to the facility set. Press
[RETURN] for no additions to the facility field.

The IPCCONNECT intrinsic is executed and a virtual socket descriptor is
returned.
Appendix A 177

IPC Interpreter (IPCINT)
Sample IPCINT Session
In the example, the statement, “No address in CUD” refers to the fact
that you requested full access to the CUD.

(4) N

Source socket desc (32 bit integer/C/D/V): [RETURN]
Destination desc (32 bit integer /C/D/V): [RETURN]
No address in CUD (Y/N)? Y
Call User Data (128 chars): hFCAA0001
Facility name (8 chars): [RETURN]
Special Facility Field (109 chars): [RETURN]
-----> Executing : IPCCONNECT
VC = 7
No address in CUD

Step 5 Execute IPCRECVby entering Rat the prompt to receive the response to
the previous connection request.

The default value for the VC socket descriptor is the value returned in
the last IPCCONNECT (or in the case of an incoming call, by IPCRECVCN).
This value is the default for any subsequent IPCSEND or IPCRECV calls.

To use default values, press [RETURN] . Buffer length (dlen) defaults
to 4096 bytes. Preview data and Destroy data (flags 30 and 29)
default to no (N). Data offset (opt code 8) is defaulted to none.

(5) R

Connect socket desc (32 bit integer /C/D/V): [RETURN]
Buffer length (bytes): [RETURN]
Preview data (Y/N)? [RETURN]
Destroy data (Y/N)? [RETURN]
Data offset (bytes): [RETURN]
-----> Executing : IPCRECV
MAX_LEN = 4096
RECV_LEN = 0
BUFFER = ''

Note that there is no data returned in “Buffer” because the function of
this call to IPCRECV is to accept the connection request from the remote
node.

Step 6 Execute a call to IPCSEND by entering S at the prompt.

Enter a value for the buffer length. IPCINT will send a string of
characters equal to the number of bytes specified. If you enter 0 for
buffer length, you will be prompted to enter the contents of the data you
are sending. You can specify up to 80 characters of data. At the Buffer
prompt enter the data to send. In this example, 'Hello from local' is
entered.

Pressing [RETURN] at the VC socket desc prompt which default to the
VC socket descriptor returned by the previous call to IPCCONNECT (in
this example). To use default values, press [RETURN] . Q bit set and D
178 Appendix A

IPC Interpreter (IPCINT)
Sample IPCINT Session
bit set (opt code 144, bit 19 and bit 18) are defaulted to no (N). Data
offset (opt code 8) defaults to none.

(6) S

Buffer length (bytes): 0
Buffer: 'Hello from local'
Connect socket desc (32 bit integer /C/D/V): [RETURN]
Q bit set (Y/N): [RETURN]
D bit set (Y/N)? [RETURN]
Data offset (bytes): [RETURN]
-----> Executing : IPCSEND

In order for the remote node to receive the sent data, an IPCRECV must
be executed from the remote node with IPCINT (or a server program).

Step 7 Before executing step 7, the remote must execute IPCSEND data to the
local node (see step 6, IPCSEND).

Execute IPCRECV to receive data by entering R at the prompt. Step 7
assumes a remote node using IPCINT has sent you a message.

Press [RETURN] to use the default VC socket descriptor (vcdesc). To use
default values, press [RETURN] . Buffer length defaults to 4096 bytes.
Preview data and Destroy data (flags 30 and 29) default to no (N).
Data offset (opt code 8) is defaulted to none.

Values returned by IPCRECV include data sent from the remote
displayed at the prompt: Buffer = (data), length of the received data
(dlen), and the buffer length input displayed as MAX_LEN (dlen , from
input).

(7) R

Connect socket desc (32 bit integer /C/D/V: [RETURN]
Buffer length (bytes): [RETURN]
Preview data (Y/N)? [RETURN]
Destroy data (Y/N)? [RETURN]
Data offset (bytes): [RETURN]
-----> Executing : IPCRECV
MAX_LEN = 4096
RECV_LEN = 17
BUFFER = 'Hello from remote'

Step 8 Execute IPCSHUTDOWN to shutdown the socket by entering SHUT at the
prompt.

At the descriptor prompt, enter a descriptor (C, D or V) in order to
indicate which socket needs to be shutdown. In this example, the VC
socket descriptor, V is entered.

You are prompted for a reason code (opt code 143). In this example, 100
is entered which will cause a clear packet to be sent. The clear packet
will contain a cause code zero (0), and diagnostic code 100. (IPCCONTROL
is used to access cause and diagnostic codes.)
Appendix A 179

IPC Interpreter (IPCINT)
Sample IPCINT Session
(8) SHUT

Descriptor (32 bit integer /C/D/V): V
Reason code (16 bit integer): 100
Call User Data (128 chars) :
-----> Executing : IPCSHUTDOWN

Step 9 Exit from the IPCINT program by entering EX at the prompt.

(9) EX
180 Appendix A

B Cause and Diagnostic Codes
Cause and diagnostic can be read from X.25 packets using NetIPC
intrinsics. The following tables show possible cause and diagnostic
codes generated by the X.25 XL system access product. These codes are
a subset of the CCITT (1984 X.25 recommendation) specified values.
181

Cause and Diagnostic Codes
Diagnostic Codes in X.25 Clear Packets
Diagnostic Codes in X.25 Clear Packets
The following lists the diagnostic codes (in decimal) sent and received in
X.25 clear packets. You can include cause and diagnostic codes with the
IPCCONTROLor IPCSHUTDOWNintrinsics that will be included in the clear
packet sent by the X.25 protocol. This function is only available with
SVCs.

Table B-1 Diagnostic Codes Sent/Received in Clear Packets

Diagnostic Code Meaning/Cause

0 No additional information

48 Timer expired

65 (1) Invalid facility code used.

(2) the facility requested is not supported or allowed here:

• Reverse charge in CALL CONF packet.

• Fast select.

• Throughout class negotiation (not configured).

• Closed User Group facility in CALL CONF packet (not allowed).

• Bilateral closed user group (not supported).

• Packet size negotiation (not configured).

• Window size negotiation (not configured).

• RPOA facility (not supported).

70 Incoming call barred. The configuration does not allow a call from this
address.

71 No logical channel available.

160 DTE specific. The facility set used does not allow acceptance of a reverse
charge call

231 NSAP unreachable. The requested socket is unavailable.

233 Greater than 30,000 bytes of data were received.

241 A normal disconnect has occurred where the IPC user did not specify a
diagnostic code.
182 Appendix B

Cause and Diagnostic Codes
Diagnostic Codes From a Remote Host
Diagnostic Codes From a Remote Host
The following table lists diagnostic codes from a remote MPE XL
system that could be received on the local system.

Table B-2 X.25 Diagnostic Codes From a Remote Host

Diagnostic Code Meaning/Cause

48 Inactivity timer expired.

65 Facility not allowed.

70 Incoming call barred.

160 DTE specific for example: restricted access, unknown circuit, unknown
local facility, circuit in use, destination not allowed, or reverse charge call
not accepted.

161 DTE operational

162 DTE not operational. Level 3 out of order, or Level 2 out of order.

163 Network congestion.

166 D-bit procedure not supported
Appendix B 183

Cause and Diagnostic Codes
Diagnostic Codes From a Remote Host
184 Appendix B

C Error Messages
This appendix includes the mapping of X.25 SOCKERRs to protocol
module errors, and the complete table of possible NetIPC errors
(SOCKERRs).

In the IPCCHECK intrinsic, both socket errors (SOCKERRs) and the
corresponding protocol module errors (pmerrs) are returned. The
following SOCKERRs are mapped to pmerrs . Other SOCKERRs can be
returned to NetIPC with a corresponding pmerr of zero (0).

SOCKERR 46 MESSAGE: PMERR = 5 Intrinsics : IPCCONNECT

CAUSE: UNABLE TO INTERPRET RECEIVED PATH REPORT —
Unable to find an X.25 address to call from the remote node name
given.

ACTION: Check consistency between configuration file and network
directory. In order to map the node name to the X.25 address, both the
address key and the IP address are used.

SOCKERR 55 MESSAGE: PMERR = 1 Intrinsic : IPCCREATE

CAUSE: EXCEEDED PROTOCOL MODULE’S SOCKET LIMIT. — All
call socket entries in the X.25 internal tables are in use.

ACTION: Remember to release call sockets when no IPCCONNECT and
IPCRECVCN are expected.

MESSAGE: PMERR = 45 Intrinsic : IPCCONNECT

CAUSE: All connection entries in X.25 internal tables are in use.

ACTION: Remember to shut the VC’s that are no longer in use.

SOCKERR 65 MESSAGE: PMERR = 21 Intrinsic : IPCRECV, IPCSEND, IPCCONTROL

CAUSE:CONNECTION ABORTED BY LOCAL PROTOCOL MODULE.
— Greater than 30,000 bytes of data was received in a single message.

ACTION: Alter the remote application program to send smaller
messages.

MESSAGE: PMERR = 36 Intrinsic : IPCRECV, IPCSEND, IPCCONTROL

CAUSE: The inactivity timer has timed out.

ACTION: Shutdown the connection before re-opening it.

SOCKERR 67 MESSAGE: PMERR = 2 Intrinsic : IPCRECV, IPCSEND, IPCCONTROL

CAUSE: CONNECTION FAILURE DETECTED. — A clear packet has
been received. The remote system or network aborted the connection.

ACTION: Retrieve the cause/diagnostic field with IPCCONTROL (to
examine the cause), and issue IPCSHUTDOWN on the virtual circuit.
185

Error Messages
SOCKERR 106 MESSAGE: PMERR = 4 Intrinsic : IPCCREATE

CAUSE: ADDRESS CURRENTLY IN USE BY ANOTHER SOCKET. —
The requested protocol relative address is already used by another
process through another IPCCREATE call.

ACTION: Use another protocol relative address or wait for previous
process to release its call socket.

SOCKERR 107: MESSAGE: PMERR = 7 Intrinsic : IPCCREATE, IPCRECV, IPCSEND,
IPCCONTROL, IPCRECVCN

CAUSE: TRANSPORT IS GOING DOWN. — A NETCONTROL STOP
command has been issued. All connections have been aborted.

ACTION: Issue an IPCSHUTDOWN on all call sockets and virtual circuit
sockets.

SOCKERR 116 MESSAGE: PMERR = 13 Intrinsic : IPCCONNECT

CAUSE: DESTINATION UNREACHABLE. — Outgoing access not
allowed. The destination X.25 address is either not configured in the
SVC path table or the security flags do not allow outbound calls to this
address. It could also be a problem with the network directory.

ACTION: Check the configuration of SVC path table security and the
network directory.

SOCKERR 117 MESSAGE: PMERR = 17 Intrinsic : IPCRECV completing
IPCCONNECT

CAUSE: ATTEMPT TO ESTABLISH CONNECTION FAILED. — A
connection could not be opened between the XL node and the DTC.

ACTION: Issue IPCSHUTDOWNon the virtual circuit, check the DTC XNA
card is working, and re-issue IPCCONNECT.

SOCKERR 131 MESSAGE: PMERR = 52 Intrinsic : IPCCONNECT

CAUSE: PROTOCOL MODULE DOES NOT HAVE SUFFICIENT
RESOURCES — The protocol module has run out of buffers.

ACTION: Try again later. Reduce network load by closing some
connections or increase the number of buffers in the configuration.

SOCKERR 142 MESSAGE: PMERR = 51 Intrinsic : IPCSHUTDOWN, IPCCONNECT

CAUSE: INVALID CALL USER DATA OPT RECORD ENTRY — Too
much call user data has been sent. The amount is determined by the
“no address flag” and use of the fast select facility. The maximum call
user data that can be sent is 128 bytes (with fast select).

ACTION: Send a smaller CUD, use fast select, or use the “no address”
option.
186 Appendix C

Error Messages
SOCKERR 143 MESSAGE: PMERR = 14 Intrinsic : IPCCONNECT

CAUSE: INVALID FACILITIES SET OPT RECORD ENTRY — The
facility set passed as a parameter has not been found in the internal
facility set table.

ACTION: Use one of the facility sets defined in the configuration or add
a new one.

SOCKERR 146 MESSAGE: PMERR = 10 Intrinsic : IPCRECV

CAUSE: RESET EVENT OCCURRED ON X.25 CONNECTION. — An
unsolicited reset packet was received.

ACTION: Use IPCCONTROL (request 12) to examine the cause/diagnostic
field. The connection is still up and operational but some data may have
been lost.

SOCKERR 153 MESSAGE: PMERR = 3 Intrinsic : IPCCREATE

CAUSE:SOCKET IS ALREADY IN USE. — A single socket per network
interface can be created with the catch-all capability.

ACTION: Wait for catch-all socket to be released.

SOCKERR 156 MESSAGE: PMERR = 12 Intrinsic : IPCRECV

CAUSE: INTERRUPT EVENT OCCURRED ON X.25 CONNECTION.
— An interrupt packet was received.

ACTION: Use IPCCONTROL (request 12) to get interrupt data. The
connection is still up and operational.

SOCKERR 158 MESSAGE: PMERR = 18 Intrinsic : IPCRECV

CAUSE: CONNECTION REQUEST REJECTED BY REMOTE. — The
outgoing call was rejected either by the local DTC, the network, the
remote DTC or the remote host.

ACTION: Use IPCCONTROL (request 12) to retrieve the cause/diagnostic
field. Take action depending on cause/diagnostic using table given.

SOCKERR 160 MESSAGE: PMERR = 24 Intrinsic : IPCSEND, IPCCONTROL

CAUSE: INCOMPATIBLE WITH PROTOCOL STATE. — This
connection is currently in the reset state. Either a reset was sent and
the protocol is waiting for a reset confirmation, or a reset has been
received.

ACTION: If you issued the reset, then wait and reissue the call later.
Otherwise, issue IPCRECV> to complete an incoming reset.
Appendix C 187

Error Messages
NetIPC Errors
NetIPC Errors
This section includes NetIPC error messages (SOCKERRs) and the
form for submitting a service request (SR).

SOCKERRS

NetIPC are (32-bit) integers that are returned in the result parameter
of NetIPC intrinsics when the intrinsic execution fails. (A result of 0
indicates that the intrinsic succeeded.) In addition, both NetIPC errors
and Transport Protocol errors are returned in the IPCCHECK intrinsic:
NetIPC errors in the ipcerr parameter and Transport Protocol errors
in the pmerr parameter. Transport Protocol errors are documented in
the NS 3000/XL Error Message Reference Manual.

0 MESSAGE: SUCCESSFUL COMPLETION.

CAUSE: No error was detected.

ACTION: None.

1 MESSAGE: INSUFFICIENT STACK SPACE.

CAUSE:Area between S and Z registers is not sufficient for execution of
the intrinsic.

ACTION: :PREP your program file with a greater MAXDATA value.

3 MESSAGE: PARAMETER BOUNDS VIOLATION.

CAUSE: A specified parameter is out of bounds.

ACTION: Check all parameters to make certain they are between the
user's DL and S registers. If an array is specified, make certain all of it
is within bounds.

4 MESSAGE: TRANSPORT HAS NOT BEEN INITIALIZED.

CAUSE: A :NETCONTROL was not issued to bring up the network
transport.

ACTION: Notify your operator.

5 MESSAGE: INVALID SOCKET TYPE.

CAUSE: Specified socket type parameter is of an unknown value.

ACTION: Check and modify your socket type parameter.

6 MESSAGE: INVALID PROTOCOL.

CAUSE: Specified protocol parameter is of an unknown value.

ACTION: Check and modify protocol parameter.
188 Appendix C

Error Messages
NetIPC Errors
7 MESSAGE: ERROR DETECTED IN flags PARAMETER.

CAUSE: An unsupported bit in the flags parameter was set, or a
nonprivileged user set a privileged bit.

ACTION: Verify that the proper bits are specified in the flags parameter.
Bit numbering is from left to right (0..31).

8 MESSAGE: INVALID OPTION IN THE opt RECORD.

CAUSE: An unsupported option was specified in the opt record, or a
nonprivileged user attempted to specify a privileged option.

ACTION: Check the options added to the opt record and remove or
modify the option. Verify that the opt record was initialized correctly
using INITOPT .

9 MESSAGE: PROTOCOL IS NOT ACTIVE.

CAUSE: A NETCONTROL has not been issued to activate the requested
protocol module.

ACTION: Notify your operator.

10 MESSAGE: PROTOCOL DOES NOT SUPPORT THE SPECIFIED
SOCKET TYPE.

CAUSE: The type of socket you are trying to create is not supported by
the protocol to be used.

ACTION: Use a different socket type or protocol.

12 MESSAGE: ERROR DETECTED WITH MAXIMUM MESSAGES
QUEUED OPTION.

CAUSE: Invalid option length specified or value of option is not positive.

ACTION: Correct option specification.

13 MESSAGE: UNABLE TO ALLOCATE AN ADDRESS.

CAUSE: No addresses were available for dynamic allocation.

ACTION: If unsuccessful the second time, see “Submitting an SR” at the
end of this appendix.

14 MESSAGE: ADDRESS OPTION ERROR.

CAUSE: The address option in the opt record has an error in it (e.g.,
invalid length).

ACTION: Check the values being placed in the opt record.

15 MESSAGE: ATTEMPT TO EXCEED LIMIT OF SOCKETS PER
PROCESS.

CAUSE: User has already reached the limit of 64 sockets per process.

ACTION: Shut down any sockets which are not being used or have been
aborted.
Appendix C 189

Error Messages
NetIPC Errors
16 MESSAGE: OUT OF PATH DESCRIPTORS OR PATH DESCRIPTOR
EXTENSIONS.

CAUSE: Transport’s Path Cache or Path Descriptor table is full.

ACTION: Contact your operator to see if the table can be expanded.

18 MESSAGE: FORMAT OF THE opt RECORD IS INCORRECT.

CAUSE: NetIPC was unable to parse the specified opt record.

ACTION: Check your INITOPT and ADDOPT calls.

19 MESSAGE: ERROR DETECTED WITH MAXIMUM MESSAGE SIZE
OPTION.

CAUSE: Maximum message size option in the opt record had an error
associated with it (e.g., too many bytes specified, invalid message size
value).

ACTION: Check the values being placed in the opt record.

20 MESSAGE: ERROR WITH DATA OFFSET OPTION.

CAUSE: Data offset option in the opt record had an error associated
with it (e.g., too many bytes specified).

ACTION: Check the values being placed in the opt record.

21 MESSAGE: DUPLICATE opt RECORD OPTION SPECIFIED.

CAUSE: The same opt record option was specified twice.

ACTION: Remove the redundant call.

24 MESSAGE: ERROR DETECTED IN MAXIMUM CONNECTION
REQUESTS QUEUED OPTION.

CAUSE: Maximum connection requests queued option in the opt record
had an error associated with it (e.g., too many bytes specified, bad
value).

ACTION: Check the values being placed in the opt record.

25 MESSAGE: SOCKETS NOT INITIALIZED; NO GLOBAL DATA
SEGMENT.

CAUSE: Error occurred attempting to initialize NetIPC, or Network
Management is still initializing.

ACTION: See “Submitting an SR” at the end of this appendix.

26 MESSAGE: UNABLE TO ALLOCATE A DATA SEGMENT.

CAUSE: The attempt to create a data segment failed because the DST
table was full or there was not enough virtual memory.

ACTION: Contact your operator to see if these tables can be expanded.
190 Appendix C

Error Messages
NetIPC Errors
27 MESSAGE: REQUIRED PARAMETER NOT SPECIFIED.

CAUSE: A required parameter was not supplied in an option variable
intrinsic call.

ACTION: Check your calling sequence.

28 MESSAGE: INVALID NAME LENGTH.

CAUSE: Specified name length was too large or negative.

ACTION: Check your name length parameter. Shorten the name if
necessary.

29 MESSAGE: INVALID DESCRIPTOR.

CAUSE: Specified descriptor is not a valid socket, connection, or
destination descriptor.

ACTION: Check the value being specified.

30 MESSAGE: UNABLE TO NAME CONNECTION SOCKETS.

CAUSE: The socket descriptor given in the IPCNAME call was for a VC
socket; VC sockets may not be named.

ACTION: Check if the correct descriptor was specified.

31 MESSAGE: DUPLICATE NAME.

CAUSE: Specified name was previously given.

ACTION: Use a different name.

32 MESSAGE: NOT CALLABLE IN SPLIT STACK.

CAUSE: The particular NetIPC intrinsic cannot be called from split
stack.

ACTION: Recode to call the intrinsic from the stack. Vectored data may
be required.

33 MESSAGE: INVALID NAME.

CAUSE: Name is too long or has a negative length.

ACTION: Check the name’s length. Shorten the name if necessary.

34 MESSAGE: CRITICAL ERROR PREVIOUSLY REPORTED; MUST
SHUTDOWN SOCKET.

CAUSE: NetIPC previously detected and reported an irrecoverable
error; most likely it was initiated by the protocol module.

ACTION: The socket can no longer be used. Call IPCSHUTDOWN to clean
up.
Appendix C 191

Error Messages
NetIPC Errors
35 MESSAGE: ATTEMPT TO EXCEED LIMIT OF NAMES PER SOCKET.

CAUSE:A socket can have only four names; the caller attempted to give
it a fifth.

ACTION: Use no more than four names.

36 MESSAGE: TABLE OF NAMES IS FULL.

CAUSE: Socket registry or give table is full.

ACTION: Shut down unused sockets, call IPCNAMERASE on any sockets
that no longer need to be looked up, or get given sockets. See
“Submitting an SR” at the end of this appendix.

37 MESSAGE: NAME NOT FOUND.

CAUSE: Name was not previously specified in an IPCNAME or IPCGIVE
call; IPCNAMERASE or IPCGET was previously issued with the name; or
socket no longer exists.

ACTION: Check names specified, make sure names were properly
agreed on, determine if a timing problem exists.

38 MESSAGE: USER DOES NOT OWN THE SOCKET.

CAUSE: Attempted to erase a name of a socket you do not own.

ACTION: Have the owner of the socket call IPCNAMERASE.

39 MESSAGE: INVALID NODE NAME SYNTAX.

CAUSE: Syntax of the node name is invalid.

ACTION: Check the node name being supplied.

40 MESSAGE: UNKNOWN NODE.

CAUSE:Unable to resolve the specified node name as an NS node name.

ACTION: Check the node name to see if it is correct. The node name may
be valid but the specified node's transport may not be active.

41 MESSAGE: ATTEMPT TO EXCEED PROCESS LIMIT OF DESTINATION
DESCRIPTORS.

CAUSE: User has already reached the limit of 261 destination
descriptors per process.

ACTION: Call IPCSHUTDOWN on any unneeded destination descriptors.

43 MESSAGE: UNABLE TO CONTACT THE REMOTE REGISTRY SERVER.

CAUSE: Send to remote socket registry process failed. This is often
caused by the fact that the PXP protocol module is not active on the
local node.

ACTION: Contact your operator. If unable to resolve the problem, see
“Submitting an SR” at the end of this appendix.
192 Appendix C

Error Messages
NetIPC Errors
44 MESSAGE: NO RESPONSE FROM REMOTE REGISTRY SERVER.

CAUSE: No reply was received from the remote registry process. This is
often due to the remote node not having initialized its transport.

ACTION: Contact your operator. If unable to resolve the problem, see
“Submitting an SR” at the end of this appendix.

46 MESSAGE: UNABLE TO INTERPRET RECEIVED PATH REPORT.

CAUSE: Unable to interpret the information returned by the remote
socket registry process regarding the looked-up socket.

ACTION: See “Submitting an SR” at the end of this appendix.

47 MESSAGE: INVALID MESSAGE RECEIVED FROM REMOTE SERVER.

CAUSE:The message received from the remote registry process does not
appear to be a valid socket registry message.

ACTION: See “Submitting an SR” at the end of this appendix.

50 MESSAGE: INVALID DATA LENGTH.

CAUSE: Specified data length parameter is too long or negative.

ACTION: Check and modify the value.

51 MESSAGE: INVALID DESTINATION DESCRIPTOR.

CAUSE: Supplied destination descriptor value is not that of a valid
destination descriptor.

ACTION: Verify that you are passing an active destination descriptor.

52 MESSAGE: SOURCE AND DESTINATION SOCKET PROTOCOL
MISMATCH.

CAUSE: The source socket is not of the same protocol as the socket
described by the destination descriptor.

ACTION: Validate that you are using the correct destination descriptor.
Make certain both processes have agreed on the same protocol.
Determine the correct socket was looked up.

53 MESSAGE: SOURCE AND DESTINATION SOCKET TYPE MISMATCH.

CAUSE: The source socket cannot be used for communication with the
socket described by the destination descriptor.

ACTION: Validate that you are using the correct destination descriptor.
Make certain both processes have agreed on the same method of
communication. Determine the correct socket was looked up.

54 MESSAGE: INVALID CALL SOCKET DESCRIPTOR.

CAUSE: Specified descriptor is not for a call socket.

ACTION: Validate the value being passed.
Appendix C 193

Error Messages
NetIPC Errors
55 MESSAGE: EXCEEDED PROTOCOL MODULE'S SOCKET LIMIT.

CAUSE: Protocol module being used cannot create any more sockets.

ACTION: Contact your operator; the limit may be configurable.

57 MESSAGE: ATTEMPT TO EXCEED LIMIT OF NOWAIT SENDS
OUTSTANDING.

CAUSE:User tried to send data too many times in nowait mode without
calling IOWAIT.

ACTION: Call IOWAIT to complete a send. The limit is 7.

58 MESSAGE: ATTEMPT TO EXCEED LIMIT OF NOWAIT RECEIVES
OUTSTANDING.

CAUSE: User tried to issue too many consecutive nowait receives
without calling IOWAIT.

ACTION: Call IOWAIT to complete a receive. The limit is 1.

59 MESSAGE: SOCKET TIMEOUT.

CAUSE: The socket timer popped before data was received.

ACTION: If this is not desired, call IPCCONTROL to increase or disable
the timeout.

60 MESSAGE: UNABLE TO ALLOCATE AN AFT.

CAUSE: User has no space for allocating an Active File Table entry.

ACTION: Close unnecessary files or sockets.

62 MESSAGE: CONNECTION REQUEST PENDING; CALL IPCRECV TO
COMPLETE.

CAUSE: User called IPCCONNECT without a subsequent IPCRECV before
issuing the current request.

ACTION: Call IPCRECV.

63 MESSAGE: WAITING CONFIRMATION; CALL IPCCONTROL TO
ACCEPT/REJECT.

CAUSE: IPCRECV called with deferred connection option. IPCCONTROL
has not been called to accept/reject.

ACTION: Use the call IPCCONTROL with the accept/reject option.

64 MESSAGE: REMOTE ABORTED THE CONNECTION.

CAUSE:Remote protocol module aborted the connection. This will occur
when a peer has called IPCSHUTDOWN on the connection.

ACTION: Call IPCSHUTDOWN to clean up your end of the connection.
194 Appendix C

Error Messages
NetIPC Errors
65 MESSAGE: CONNECTION ABORTED BY LOCAL PROTOCOL
MODULE.

CAUSE: Local protocol module encountered some error which caused it
to abort the connection.

ACTION: Call IPCSHUTDOWN to clean up your end of the connection. See
“Submitting an SR” at the end of this appendix.

66 MESSAGE: INVALID CONNECTION DESCRIPTOR.

CAUSE: Supplied value is not that of a valid VC socket (connection)
descriptor.

ACTION: Check the value being given.

67 MESSAGE: CONNECTION FAILURE DETECTED.

CAUSE: An event occurred which caused the local protocol module to
determine that the connection is no longer up (e.g., retransmitted data
was never acknowledged).

ACTION: Call IPCSHUTDOWN to clean up your end of the connection.

68 MESSAGE: RECEIVED A GRACEFUL RELEASE OF THE
CONNECTION.

CAUSE: Informational message.

ACTION: Do not attempt to receive any more data.

69 MESSAGE: MUTUALLY EXCLUSIVE flags OPTIONS SPECIFIED.

CAUSE: Bits in the flags parameter were set which indicate requests
for mutually exclusive options.

ACTION: Check and clear the appropriate bits.

71 MESSAGE: I/O OUTSTANDING.

CAUSE: Attempted an operation with nowait I/O outstanding.

ACTION: Call IOWAIT to complete the I/O or to abort any receives.

74 MESSAGE: INVALID IPCCONTROL REQUEST CODE.

CAUSE: Request code is unknown or a nonprivileged user requested a
privileged option.

ACTION: Validate the value being passed.

75 MESSAGE: UNABLE TO CREATE A PORT FOR LOW LEVEL I/O.

CAUSE: Unable to create an entity used for communication between
NetIPC and the protocol module.

ACTION: See “Submitting an SR” at the end of this appendix.
Appendix C 195

Error Messages
NetIPC Errors
76 MESSAGE: INVALID TIMEOUT VALUE.

CAUSE: Value specified for the timeout is negative.

ACTION: Modify the value.

77 MESSAGE: INVALID WAIT/NOWAIT MODE.

CAUSE: Mode of socket cannot be used.

ACTION: Use IPCCONTROL to specify correct mode.

78 MESSAGE: TRACING NOT ENABLED

CAUSE: Attempted to turn off trace when tracing was not on.

ACTION: Remove the call.

79 MESSAGE: INVALID TRACE FILE NAME.

CAUSE: Requested trace file name is not valid.

ACTION: Validate and modify the trace file name.

80 MESSAGE: ERROR IN TRACE DATA LENGTH OPTION.

CAUSE: An error was detected in the option specifying the maximum
amount of data to be traced (e.g., negative value, too large, too many
bytes used to specify the value).

ACTION: Modify the values being used.

81 MESSAGE: ERROR IN NUMBER OF TRACE FILE RECORDS OPTION.

CAUSE: An error was detected in the option specifying the maximum
amount of records to be in the trace file (e.g., negative or too large a
value, too many bytes used to specify the value).

ACTION: Modify the values being used.

82 MESSAGE: TRACING ALREADY ENABLED.

CAUSE: Attempted to turn on tracing when tracing already enabled.

ACTION: Remove the call or turn off trace before the call.

83 MESSAGE: ATTEMPT TO TURN ON TRACE FAILED.

CAUSE:The Node Management Subsystem (NMS) was unable to enable
tracing.

ACTION: Call IPCCHECK; the protocol module error returned will be the
Node Management error number. Refer to the Node Management
Errors (NMERR) in the NS 3000/XL Error Messages Reference Manual
to determine the appropriate action for the specified NMERR.

84 MESSAGE: PROCESS HAS NO LOCAL SOCKET DATA STRUCTURES.

CAUSE: IPCCHECKwas called, but the user had no sockets or destination
descriptors, and therefore no data structure for retaining error codes.
196 Appendix C

Error Messages
NetIPC Errors
ACTION: None, but no NetIPC or protocol module errors are available.

85 MESSAGE: INVALID SOCKET ERROR NUMBER.

CAUSE: IPCERRMSG was called with an invalid NetIPC error code.

ACTION: Check the value being passed.

86 MESSAGE: UNABLE TO OPEN ERROR CATALOG
SOCKCAT.NET.SYS.

CAUSE: The error message catalog does not exist, it is opened
exclusively, or the caller does not have access rights to the file.

ACTION: Notify your operator.

87 MESSAGE: GENMESSAGE FAILURE; NOT A MESSAGE CATALOG.

CAUSE: MAKECAT was not successfully run on the message catalog.

ACTION: Notify your operator.

88 MESSAGE: INVALID REQUEST SOCKET DESCRIPTOR

CAUSE: Internal error

ACTION: See “Submitting an SR” at the end of this appendix.

89 MESSAGE: INVALID REPLY SOCKET DESCRIPTOR

CAUSE: Internal error

ACTION: See “Submitting an SR” at the end of this appendix.

91 MESSAGE: WOULD EXCEED LIMIT OF REPLIES EXPECTED

CAUSE: Internal error

ACTION: See “Submitting an SR” at the end of this appendix.

92 MESSAGE: MUST REPLY TO BEFORE RECEIVING ANOTHER
REQUEST.

CAUSE: Internal error

ACTION: See “Submitting an SR” at the end of this appendix.

93 MESSAGE: INVALID SEQUENCE NUMBER.

CAUSE: Internal error

ACTION: See “Submitting an SR” at the end of this appendix.

94 MESSAGE: NO OUTSTANDING REQUESTS.

CAUSE: Internal error

ACTION: See “Submitting an SR” at the end of this appendix.

95 MESSAGE: RECEIVED AN UNSOLICITED REPLY.

CAUSE: Internal error
Appendix C 197

Error Messages
NetIPC Errors
ACTION: See “Submitting an SR” at the end of this appendix.

96 MESSAGE: INTERNAL BUFFER MANAGER ERROR.

CAUSE:Attempted use of the buffer manager by NetIPC or the protocol
module resulted in an error.

ACTION: See “Submitting an SR” at the end of this appendix.

98 MESSAGE: INVALID DATA SEGMENT INDEX IN VECTORED DATA.

CAUSE: Data segment index value in the vectored data array is not
valid.

ACTION: Check the value being supplied.

99 MESSAGE: INVALID BYTE COUNT IN VECTORED DATA.

CAUSE: The count of data in the vectored data array is invalid.

ACTION: Check the values being given.

100 MESSAGE: TOO MANY VECTORED DATA DESCRIPTORS.

CAUSE: More than two data locations were specified in the vectored
data array.

ACTION: Limit the number to two per operation. Use multiple sends or
receives if necessary.

101 MESSAGE: INVALID VECTORED DATA TYPE.

CAUSE: Type of vectored data is unknown (must be a 0, 1, or 2) or the
data type is for a data segment (1 or 2) and the user is not privileged

ACTION: Check the value being used.

102 MESSAGE: UNABLE TO GRACEFULLY RELEASE THE CONNECTION

CAUSE:Protocol module does not support graceful release, process tried
to release connection that was not in the correct state, or output
pending.

ACTION: Check command sequence.

103 MESSAGE: USER DATA NOT SUPPORTED DURING CONNECTION
ESTABLISHMENT.

CAUSE: User data option is not supported for IPCRECV or IPCCONNECT.

ACTION: Do not use user data option.

104 MESSAGE: CAN'T NAME A REQUEST SOCKET

CAUSE: Internal error.

ACTION: See “Submitting an SR” at the end of this appendix.

105 MESSAGE: NO REPLY RECEIVED.

CAUSE: Internal error.
198 Appendix C

Error Messages
NetIPC Errors
ACTION: See “Submitting an SR” at the end of this appendix.

106 MESSAGE: ADDRESS CURRENTLY IN USE BY ANOTHER SOCKET.

CAUSE: Address being specified for use is already being used.

ACTION: If you are a privileged user trying to specify a well known
address, try again later. If you are nonprivileged, then see “Submitting
an SR”.

107 MESSAGE: TRANSPORT IS GOING DOWN.

CAUSE: The transport is being shut down.

ACTION: Call IPCSHUTDOWN on all sockets and destination descriptors.

108 MESSAGE: USER HAS RELEASED CONNECTION; UNABLE TO SEND
DATA.

CAUSE: Process tried to send after initiating a graceful release.

ACTION: Check command sequence.

109 MESSAGE: PEER HAD RELEASED THE CONNECTION; UNABLE TO
RECEIVE DATA.

CAUSE: Process tried to receive after remote initiated graceful release.

ACTION: Check command sequence.

110 MESSAGE: UNANTICIPATED ERROR.

CAUSE:NetIPC received a protocol module error which it was unable to
map.

ACTION: Call IPCCHECK to get the protocol module error. Call
IPCSHUTDOWN to clean up. See “Submitting an SR” at the end of this
appendix.

111 MESSAGE: INTERNAL SOFTWARE ERROR DETECTED.

CAUSE: An internal error was detected.

ACTION: See “Submitting an SR” at the end of this appendix.

112 MESSAGE: NOT PERMITTED WITH SOFTWARE INTERRUPTS
ENABLED.

CAUSE: A request was made which cannot be performed with software
interrupts enabled.

ACTION: Disable software interrupts or remove the request.

113 MESSAGE: INVALID SOFTWARE INTERRUPT PROCEDURE LABEL.

CAUSE: Procedure label passed when enabling software interrupts is
invalid.

ACTION: Check the PLABEL you are passing.
Appendix C 199

Error Messages
NetIPC Errors
114 MESSAGE: CREATION OF SOCKET REGISTRY PROCESS FAILED.

CAUSE: Socket registry program missing.

ACTION: Contact your HP representative for assistance.

116 MESSAGE: DESTINATION UNREACHABLE.

CAUSE:The transport was unable to route the packet to the destination.

ACTION: Notify your operator.

117 MESSAGE: ATTEMPT TO ESTABLISH CONNECTION FAILED.

CAUSE:Protocol module was unable to set up the requested connection.
This may be caused by the remote protocol module not being active.

ACTION: Notify your operator.

118 MESSAGE: INCOMPATIBLE VERSION.

CAUSE: NetIPC software was incompatible with the software being
executed by the remote registry process.

ACTION: Notify your operator.

119 MESSAGE: ERROR IN BURST SIZE OPTION.

CAUSE: An unsupported option was specified in the opt record, or a
nonprivileged user attempted to specify a privileged option.

ACTION: Check your opt record and remove or modify the option.

120 MESSAGE: ERROR IN WINDOW UPDATE THRESHOLD OPTION.

CAUSE: An unsupported option was specified in the opt record, or a
nonprivileged user attempted to specify a privileged option.

ACTION: Check your opt record and remove or modify the option.

124 MESSAGE: ENTRY NUMBER NOT VALID FOR SPECIFIED OPT
RECORD.

CAUSE: User error. Entry number of option is either negative or higher
than specified in INITOPT value.

ACTION: Correct and reissue command.

125 MESSAGE: INVALID OPTION DATA LENGTH.

CAUSE: User error. Data length for option is either negative or higher
than specified in INITOPT value.

ACTION: Correct and reissue command.

126 MESSAGE: INVALID NUMBER OF EVENTUAL OPT RECORD
ENTRIES.

CAUSE: Number of option entries is either too high or negative. Either
an internal restriction or a user mistake.
200 Appendix C

Error Messages
NetIPC Errors
ACTION: Remove the cause by making the number positive or smaller
in value.

127 MESSAGE: UNABLE TO READ ENTRY FROM OPT RECORD.

CAUSE: The option record indicates that the entry is not valid or the
buffer supplied by the user was too small to hold all of the data.

ACTION: Check entry number, make sure the option record has not been
written over and check output buffer length.

131 MESSAGE: PROTOCOL MODULE DOES NOT HAVE SUFFICIENT
RESOURCES.

CAUSE: Protocol module is temporarily out of buffers or internal data
descriptors.

ACTION: Retry later when the system load is lighter.

141 MESSAGE: X.25 NETWORK NAME INCORRECTLY SPECIFIED

CAUSE: Invalid X.25 network name specified or not configured.

ACTION: Correct the network name or notify the operator.

142 MESSAGE: INVALID CALL USER DATA OPT RECORD ENTRY.

CAUSE: The length of the call user data is invalid for the transport
protocol type.

ACTION: Check the length of the call user data option in the opt array.
The call user data opt record must be greater than 1 for IPCCONNECT
and 4 for IPCRECVCN. The maximum length is protocol specific.

143 MESSAGE: INVALID FACILITIES SET OPT RECORD ENTRY

CAUSE:The facility set passed as a parameter has not been found in the
internal facility set table.

ACTION: Use one of the facility sets defined in the configuration or add
a new one

144 MESSAGE: INVALID CALLING NODE OPT ENTRY.

CAUSE: The user may request the address of the calling node. Address
of 8 bytes will be returned.

ACTION: The length of the option entry must be exactly 8 bytes.

146 MESSAGE: RESET EVENT OCCURRED ON X.25 CONNECTION

CAUSE: An unsolicited reset packet was received.

ACTION: Use IPCCONTROL (request 12) to examine the cause/diagnostic
field. The connection is still up and operational but some data may have
been lost.
Appendix C 201

Error Messages
NetIPC Errors
151 MESSAGE: COULD NOT OBTAIN A SEMAPHORE.

CAUSE:The attempt to obtain a semaphore before sending a message to
the protocol module failed.

ACTION: See “Submitting an SR” at the end of this appendix.

153 MESSAGE: SOCKET IS ALREADY IN USE.

CAUSE: A single socket per network interface can be created with the
catch-all capability.

ACTION: Wait for catch-all socket to be released.

155 MESSAGE: INVALID X.25 FLAGS OPT RECORD ENTRY.

CAUSE: Invalid flag bits set in protocol specific flags option, or invalid
length specified for option.

ACTION: Check bits set and length specified. Bit numbering is from left
to right (0..31).

156 MESSAGE: INTERRUPT EVENT OCCURRED ON X.25 CONNECTION

CAUSE: An unsolicited interrupt packet was received.

ACTION: Use IPCCONTROL (request 12) to get interrupt data. The
connection is still up and operational.

158 MESSAGE: CONNECTION REQUEST REJECTED BY REMOTE.

CAUSE: The remote node received the connection request and rejected
it.

ACTION: The call may be retried later. Otherwise, the reason for the
reject must be known.

160 MESSAGE: INCOMPATIBLE WITH PROTOCOL STATE.

CAUSE: The user requested an operation which is not supported by the
protocol module.

ACTION: Verify the sequence of intrinsic calls.

163 MESSAGE: PERMANENT VIRTUAL CIRCUIT ALREADY
ESTABLISHED.

CAUSE: A connection request was issued on a PVC which is in use by
another process.

ACTION: Select a different PVC or retry later.

164 MESSAGE: ADDRESS VALUE IS OUT OF RANGE.

CAUSE: Address specified in opt parameter is out of range.

ACTION: Specify an address in the range 30767 to 32767
202 Appendix C

Error Messages
NetIPC Errors
165 MESSAGE: INVALID ADDRESS LENGTH.

CAUSE: An invalid address length was specified in the opt parameter.

ACTION: The address length is 2 bytes (for non-privileged users).

166 MESSAGE: CONNECTION NOT IN VIRTUAL CIRCUIT WAIT CONFIRM
STATE.

CAUSE: Attempt was made to accept or reject a connection that is open
or in the process of closing.

ACTION: Use flags parameter in IPCRECVCN to defer acceptance or
rejection of the connection request.

167 MESSAGE: TIMEOUT NOT ALLOWED ON SHARED CONNECTION.

CAUSE: Attempt to set a send time out on a shared connection.

ACTION: Use IPCCONTROL to disallow sharing of the connection or do
not attempt to set send time out on this connection

171 MESSAGE: INVALID FACILITY FIELD.

CAUSE: For IPCCONNECT, IPCRECVCN, or IPCRECV, the opt parameter
“facility field length” is wrong.

ACTION: Check the facility field length. The length may be 1 to 109
bytes inclusive.

172 MESSAGE: CONNECTION MUST BE REJECTED.

CAUSE: An IPCCONTROL request 9, accept the connection, cannot be
performed because fast select restricted has been configured.

ACTION: Use IPCCONTROL request 15 to reject the connection.

173 MESSAGE: MORE DATA IS AVAILABLE.

CAUSE: Warning message. READOPT request was for less data than
available.

ACTION: Specify a greater length in READOPT.
Appendix C 203

Error Messages
Submitting an SR
Submitting an SR
For further assistance from Hewlett-Packard, document the problem as
an SR (Service Request) and forward it to your Hewlett-Packard
Service Representative. Include the following information where
applicable:

• A characterization of the problem. Describe the events leading up to
and including the problem. Attempt to describe the source of the
problem. Describe the symptoms of the problem and what led up to
the problem.

Your characterization should include: MPE XL commands;
communication subsystem commands; job streams; result codes and
messages; and data that can reproduce the problem.

Illustrate as clearly as possible the context of any message(s).
Prepare copies of information displayed at the system console and
user terminal.

• Obtain the version, update and fix information for all software using
NMMAINT.PUB.SYS. This allows Hewlett-Packard to determine if the
problem is already known, and if the correct software is installed at
your site.

• Record all error messages and numbers that appear at the user
terminal and the system console.

• Run NMDUMP.PUB.SYS to format the NM log file that was active
when the problem occurred (NMLGnnnn.PUB.SYS). You may need to
issue the MPE XL command SWITCHNMLOG to free the NM log file.

Using NMDUMP, format the log file for NETXPORT (3), NETIPC
(5), Network Services (6) and Link Manager (8) information. Inspect
the formatted output and try to locate errors. Prepare the formatted
output and a copy of the log file for your Hewlett-Packard
representative to further analyze.

• Prepare a listing of the configuration file and the MPE XL I/O
configuration you are using for your Hewlett-Packard representative
to further analyze. Inspect the output and try to locate errors.

• Try to determine the general area within the software where you
think the problem exists. Refer to the appropriate reference manual
and follow the guidelines on gathering information for problems:

— The NS 3000/XL User/Programmer Reference Manual for
NS 3000/XL.

— The Online Diagnostics Subsystem Utilities for the IEEE 802.3
links.
204 Appendix C

Error Messages
Submitting an SR
— The HP 36923 Central Bus Programmable Serial Interface
Installation and Reference Guide for the Point-to-Point link.

• Issue the LINKCONTROL linkname; STATUS= for each link. Retain
the output for your Hewlett-Packard representative to further
analyze.

• Document your interim, or “workaround” solution. The cause of the
problem can sometimes be found by comparing the circumstances in
which it occurs with the circumstances in which it does not occur.

• Create copies of any NS 3000/XL or NetIPC user trace, Network
Transport trace and communication link trace files that were active
when the problem occurred for your Hewlett-Packard representative
to further analyze.

• If the problem involves NMMGR, give a copy of NMMGRF.PUB.SYSto
your Hewlett-Packard representative.

• In the event of a system failure, a full memory dump must be taken.
Always send the unformulated memory dump, a listing of the
configuration file, a copy of the file LOADMAP.PUB.SYS, and the I/O
configuration.
Appendix C 205

Error Messages
Submitting an SR
206 Appendix C

D Migration From PTOP to NetIPC
and RPM
The PTOP (Program-to-Program communication) service is available on
DS/3000 and NS 3000/V. It is a master-slave protocol wherein a master
process creates a slave process on a remote node, the master sends
data-exchange requests to the slave, and the slave accepts or rejects the
master requests.

The NetIPC (Network InterProcess Communication) and RPM (Remote
Process Management) services are available on NS 3000/V and
NS 3000/XL. These services provide a more flexible alternative to PTOP
for developing distributed applications. Since PTOP is not supported on
NS 3000/XL, any PTOP application to be migrated to an MPE XL
system must be rewritten to use NetIPC and RPM. These guidelines
provide steps for the conversion.

A distributed application using PTOP or NetIPC/RPM can be divided
into three phases:

• Creation of the remote (slave) process and the establishment of a
communications channel between the local (master) and the remote
(slave) processes.

• Data exchange over the communications channel.

• Process termination and the shut down of the communications
channel.

The rest of this appendix is divided according to creating processes,
exchanging data, and terminating processes. The sections are then
subdivided according to what you have to do on a master program and
on a slave program.
207

Migration From PTOP to NetIPC and RPM
Creating Remote Processes
Creating Remote Processes
With PTOP, the creation of the slave process and the set up of the
communications channel is done by the POPEN call in the master and
the first GET and ACCEPT (or REJECT) calls in the slave. The POPEN call
specifies the remote node’s location, the name of the program on the
remote node to be created, and various process-creation parameters.
The dsnum parameter returned by POPEN identifies the slave process
and its communications channel. On the slave side, the GETand ACCEPT
calls complete the set up.

With NetIPC and RPM, the actions of creating the slave process and
setting up the communications channel are split up. RPM handles the
process creation, while NetIPC handles the communications. The calls
necessary for these tasks are more complicated than the POPEN and
GET/ACCEPT calls. The master process creates a call socket and
registers it in the local socket registry. It passes the name of the socket
and the local node name to the slave by using the RPM string feature of
RPMCREATE. The master calls RPMCREATE to create the slave, including
any process-creation parameters. The slave retrieves the master socket
and node names from the RPM strings. It creates its own socket, looks
up the master's socket, and establishes a virtual-circuit connection
between the two sockets. The steps for each side are given below.

Creating Remote Processes: In the Master Program

To convert the PTOP intrinsic listed below, perform the following steps.

Syntax

dsnum := POPEN (location , progname [, itag][, entryname]
[, param][, flags][, stacksize][, dlsize][, maxdata][, bufsize])

• Get the local node name. You can use the NSINFOintrinsic, provided
that you execute a DSLINE or a REMOTE command prior to the call.
This should normally be the case for a PTOP application. You can
use local node name and length item numbers (19 and 18) in
NSINFO.

NOTE NSINFO is supported on NS 3000/V starting with UB-delta-1 MIT and
on NS 3000/XL with Release 1.1.)

• Create a TCP call socket for the master program and name the
socket, using the IPCCREATEand IPCNAMEintrinsics. You can use a
randomly generated name from IPCNAME.

• Build the opt array for the RPMCREATE call, using the INITOPT and
ADDOPT intrinsics. In the opt array, include RPM strings (opt code
208 Appendix D

Migration From PTOP to NetIPC and RPM
Creating Remote Processes
20000) for the socket name and the local node name. (These will be
used by the slave program to set up the virtual circuit connection.) If
any process-creation options are included in the POPEN call
(entryname , param , flags , stacksize , dlsize , or maxdata),
include them in the opt array with the corresponding RPM opt codes:

• Call RPMCREATEto create the slave process on the remote node. Use
the progname and location parameters as they appear in the
POPEN call, although you will have to supply the (byte) lengths of
progname and location. You should set the dependent bit of the
flag parameter, so the slave will terminate if the master does. Save
the program descriptor, returned by RPMCREATE, for a future
RPMKILL.

NOTE RPMCREATE requires the program to be linked with Process Handling
(PH) capability. PTOP does not require PH capability.

• Call IPCRECVCN to wait for the connection request from the slave.
Save the returned virtual-circuit descriptor for subsequent IPCSEND
and IPCRECV calls.

• Now that the virtual-circuit connection has been set up, call
IPCSHUTDOWN to delete the master’s call socket and IPCNAMERASE
to delete the socket name.

• If a tag is specified, call IPCSEND to send the tag on the virtual
circuit to the slave.

• If the slave could respond to the POPEN with either an ACCEPT or a
REJECT, call IPCRECV to receive a one-byte accept or reject
indication from the slave.

• If a tag is specified, call IPCRECV to receive the tag from the slave
(but see the comment on IPCRECV under “Exchanging Data”).

Parameter Opt Code

entry name 22001

param 22002

flags 22003

stacksize 22004

dlsize 22005

maxdata 22006
Appendix D 209

Migration From PTOP to NetIPC and RPM
Creating Remote Processes
Creating Remote Processes: In the Slave Program

To convert the PTOP intrinsic listed below, perform the following steps.

Syntax

ifun := GET [([itag][il][, ionumber]

• Call RPMGETSTRINGtwice to get the master’s socket name and node
name.

• Create a TCP call socket by using the IPCCREATE intrinsic.

• Call IPCLOOKUP to look up the master’s socket, using the master
socket name and node name passed in the RPM strings. This returns
a destination descriptor to be used in the IPCCONNECT call.

• Set up a virtual-circuit connection between the master and the slave
sockets, using IPCCONNECT. Call IPCRECVto wait for the connection
acknowledgment from the slave. Save the returned virtual-circuit
descriptor for subsequent IPCSEND and IPCRECV calls.

• After setting up the connection, delete the call socket and
destination descriptor using IPCSHUTDOWN.

• If a tag is specified, call IPCRECV to receive the master’s tag on the
virtual circuit (see the comment on IPCRECV under Data Exchange).

To convert the PTOP intrinsic listed below, perform the following steps.

Syntax

ACCEPT [([itag][, target][, tcount])]

• If the slave can call either ACCEPT or REJECT in response to the
POPEN, send a one byte accept or reject indication on the virtual
circuit to the master.

• If a tag is specified, call IPCSEND to send the slave’s tag on the
virtual circuit back to the master.
210 Appendix D

Migration From PTOP to NetIPC and RPM
Exchanging Data
Exchanging Data
The PTOP data-exchange calls are master-slave. The master initiates
an exchange by calling PWRITE (to send data to the slave), PREAD (to
receive data from the slave) or PCONTROL. The slave calls GETto receive
the request and ACCEPT to perform the actual data movement into or
out of its buffer. Each of these operations may also exchange a tag
between the master and the slave. The master call sends the master tag
to the slave and returns a tag from the slave. The slave’s GET call
receives the master tag. The slave’s ACCEPT or REJECT call returns the
slave’s tag to the master.

The GET intrinsic can return an indication of the master request
(0 = error, 1 = POPEN, 2 = PREAD, 3 = PWRITE, 4 = PCONTROL). In many
applications, the slave will always know the next request that it will
receive from the master, so the function returned by GETis superfluous.
But in some applications, the slave does not know in advance what the
next master request will be, and so it depends on the GET function to
decide on its response to the request. The GET call can also return the
requested length of data to be sent or received. These applications
typically have a loop with a GETthat receives the master requests and a
case statement with cases for each of the different functions.

Data exchange with NetIPC is peer-to-peer. A process on either side of a
virtual-circuit connection can send or receive data independently from
its partner. The master-slave data exchange of PTOP can be simulated
using NetIPC calls. For example, a PWRITE in the master can be
replaced by an IPCSEND, while the corresponding GETand ACCEPTin the
slave can be replaced by an IPCRECV. Tags can also be exchanged using
sends and receives.

In applications where the sequence of master requests is not known by
the slave, or where the length of data sent to or received from the slave
is not known, some information in addition to the exchanged data and
tags may need to be transmitted. This includes a) a master request
indication, b) master request lengths, and c) the slave accept or reject
indication.

Because of the way that NetIPC stream mode operates on the HP 3000,
an IPCRECV may not receive all of the data requested. For this reason,
we recommend that you write a procedure that calls IPCRECV in a loop
to receive chunks of data until the entire requested amount is received.
An example of this is in Chapter 4 , “NetIPC Examples,” in this manual.
Appendix D 211

Migration From PTOP to NetIPC and RPM
Exchanging Data
Exchanging Data: In the Master Program

To convert the PTOP intrinsic listed below, perform the following steps.

lgth := PREAD (dsnum,target,tcount[,itag]

• If the slave requires a master function, send the PREAD request
function (=2) on the virtual circuit to the slave.

• If the slave requires the requested data length, send tcount on the
virtual circuit.

• If a tag is specified, send the master tag on the virtual circuit.

• If the master needs to know the actual data length sent from the
slave, receive the actual data length from the virtual circuit.

• If the slave may call either ACCEPT or REJECT, receive a one byte
accept or reject indication on the virtual circuit from the slave.
Otherwise assume the slave accepted the request.

• If the slave accepted the request, receive the target data from the
slave, using either a predetermined length or the actual data length
received in Step 4.

• If a tag is specified, receive the slave tag from the virtual circuit.

To convert the PTOP intrinsic listed below, perform the following steps:
212 Appendix D

Migration From PTOP to NetIPC and RPM
Exchanging Data
Syntax

PWRITE(dsnum, target , tcount [, itag]

• If the slave requires a master function, send the PWRITE request
function (=3) on the virtual circuit to the slave.

• If the slave requires the requested data length, send tcount on the
virtual circuit.

• If a tag is specified, send the master tag on the virtual circuit.

• If the slave may call either ACCEPT or REJECT, receive a one byte
accept or reject indication on the virtual circuit from the slave,
Otherwise assume the slave accepted the request.

• If the slave accepted the requested, send the target data on the
virtual circuit to the slave, using the tcount length.

• If a tag is specified, receive the slave tag from the virtual circuit.

To convert the PTOP intrinsic listed below, perform the following steps.

Syntax

PCONTROL (dsnum[, itag]

• If the slave requires a master function, send the PCONTROL request
function (=4) on the virtual circuit to the slave.

• If a tag is specified, send the master tag on the virtual circuit, and
receive the slave tag from the virtual circuit.

Exchanging Data: In the Slave Program

To convert the PTOP intrinsic listed below, perform the following steps.
Appendix D 213

Migration From PTOP to NetIPC and RPM
Exchanging Data
Syntax

ifun := GET [([itag][, il][, ionumber]

• If the slave requires a master function, receive a one byte master
function number from the virtual circuit from the master.

• If the slave requires the request length, receive the length from the
virtual circuit.

• If a tag is specified, receive the master tag from the virtual circuit.

To convert the PTOP intrinsic listed below, perform the following steps.

Syntax

ACCEPT [([itag [, target][, tcount)]

• Depending on the master function, either known to the application,
or received from the master in Step (1):

PREAD: Send the target data, of length fncttcount, on the virtual circuit
to the master.

PWRITE: Receive the data into target, using either the known fncttcount
or the length received from the master in Step (2).

• If a tag is specified, send the slave tag on the virtual circuit.
214 Appendix D

Migration From PTOP to NetIPC and RPM
Terminating Processes
Terminating Processes
The final phase is the termination of the slave process, and the shutting
down of the communications channel between the master and the slave.
With PTOP, both of these functions are performed by the PCLOSE
intrinsic. With NetIPC and RPM, the process termination is done by
RPMKILL, while the channel is shut down by IPCSHUTDOWN. In both
PTOP and NetIPC/RPM, clean up on the slave is done automatically
upon its termination.

To convert the PTOP intrinsic listed below, perform the following steps.

Syntax

PCLOSE (dsnum)

• Call RPMKILL to terminate the slave by using the program
descriptor returned by RPMCREATE.

• Call IPCSHUTDOWN to shutdown the master’s end of the
virtual-circuit connection.
Appendix D 215

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
Example: Client-Server Application
The following sets of programs illustrate the principles for converting a
PTOP application to use NetIPC and RPM.

The sample application is a simple name server, where you run a client
program that creates a server on the node that contains a data file. The
client program sends names to the server. The server looks up the
names in the data file and returns associated information to the client.

The client and server are first presented as PTOP master and slave
programs. Then they are converted to use NetIPC and RPM.

The major points of the conversion are:

• The POPEN call made by the client is replaced by the NetIPC and
RPM calls as detailed in the earlier section “Creating Remote
Processes.” At the beginning of the server, the corresponding NetIPC
and RPM calls are inserted.

• The client’s PWRITE of the name to the server is replaced by an
IPCSEND. The server’s GETand ACCEPTare replaced by an IPCRECV
(actually, one or more IPCRECVs in the RECV procedure).

• The server can ACCEPT or REJECT the client’s PREAD for the name
information, depending on whether the name is found in the data
file. So, in the converted application, the server sends an accept or
reject indication to the client. The ACCEPT is replaced by an
IPCSEND of the name information.

• The accepted PREADin the client becomes an IPCRECVfor the name
information.

• The client’s PCLOSE is replaced by an RPMKILL and IPCSHUTDOWN.
216 Appendix D

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
PCLIENT: Sample PTOP Master Program

$standard_level 'HP3000', uslinit$ program pclient(input, output);
{---}
{ }
{ PCLIENT: Sample PTOP Master Program }
{ }
{---}
{ }
{ PURPOSE: }
{ The PCLIENT and PSERVER programs illustrate the use of the PTOP }
{ service to implement a simple name server application. The user }
{ runs PCLIENT on his local node, and PCLIENT creates PSERVER on }
{ the node which contains the data. The user inputs names to }
{ to PCLIENT, PCLIENT sends the names to PSERVER, PSERVER }
{ looks up the names in its name file, and sends the associated info}
{ for the names back to PCLIENT. }
{ }
{---}
{ }
{ INTERACTION: }
{ PTOP is a master-slave protocol. The master PCLIENT sends }
{ requests (PREAD and PWRITE) to the slave PSERVER. The slave }
{ GETs the request from the master and either ACCEPTs them or }
{ REJECTs them. The GET indicates the function requested by the }
{ master, and the ACCEPT transfers the actual data, from the master }
{ for a PWRITE and to the master for a PREAD. REJECT can be used }
{ to reject the master request (used here if the name cannot be }
{ found in the data file. }
{ PCLIENT PSERVER
{
{ get remote node name }
{ POPEN PSERVER on remote node ------> GET }
{ <------- ACCEPT (POPEN) }
{ get name }
{ PWRITE name ---------name----------> GET }
{ < --------------------- ACCEPT name }
{ PREAD info -----------------------> GET }
{ look up name, found info }
{ <---------info--------- ACCEPT info }
{ print info }
{ get name }
{ PWRITE name ---------name----------> GET }
{ < -----------------------ACCEPT }
{ PREAD info -----------------------> GET }
{ look up name, not found }
{ < -----------------------REJECT }
{ print error }
{ . . . }
{ PCLOSE -----------------------> GET }
{ (terminate) }
{---}
Appendix D 217

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
label 1; {for error exit }
 const maxnodelength = 51; {all lengths in bytes}
 maxproglength = 24;
 namelength = 20;
 infolength = 60;
 ccg = 0; {condition codes }
 ccl = 1;
 cce = 2;
 type shortint = -32768..32767;
 msgtype = packed array[1..30] of char;
 var location: packed array [1..maxnodelength] of char;
 progname: packed array [1..maxproglength] of char;
 name: packed array [1..namelength] of char;
 info: packed array [1..infolength] of char;
 dsnum: shortint;
 length: shortint;

function POPEN:
 shortint; intrinsic; {PTOP master intrinsics}
procedure PWRITE; intrinsic;
function PREAD: shortint; intrinsic;
procedure PCLOSE; intrinsic;
function PCHECK: shortint; intrinsic;

procedure ERROR(msg: msgtype; errnum: shortint);

 {--}
 { ERROR prints out an error message and associated PTOP error }
 { number, and then goes to the error exit to terminate the }
 { program. The PTOP slave will be terminated automatically. }
 {--}
 begin
 writeln('Client: ', msg, 'PTOP error = ', errnum:3);
 goto 1;
 end;

begin
 prompt('Client: Enter the remote node name: ');
 readln(location);
 {---}
 { Create PSERVER slave on remote node (location). This }
 { requires a previous REMOTE HELLO for the remote node. }
 {---}
 progname := 'PSERVER ';
 dsnum := POPEN(location, progname);
 if ccode <> cce then
 ERROR('POPEN on server failed', PCHECK(0));
{--}
{ Each pass of this loop gets a name, PWRITEs it to PSERVER, }
{ PREADs the info, and prints the info. If PSERVER cannot }
{ find the name, it will REJECT the PREAD. }
{--}
 repeat
 prompt('Client: Enter name (or EOT to exit):');
218 Appendix D

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 readln(name);
 if name <> 'EOT' then
 begin
 PWRITE(dsnum, name, -namelength);
 if ccode <> cce then
 ERROR('PWRITE to server failed.', PCHECK(dsnum));
 length := PREAD(dsnum, info, -infolength);
 if ccode = cce then {ACCEPT}
 writeln('Client data is: ', info)
 else if ccode = ccg then {REJECT}
 writeln('Client data could not be found.')
 else {ccode = ccl}
 ERROR('PREAD from server failed.', PCHECK(dsnum));
 end;
 until name = 'EOT';
 {---}
 { All names have been processed. Terminate the PSERVER. }
 {---}
 PCLOSE(dsnum);
 if ccode <> cce then
 ERROR('PCLOSE on server failed.', PCHECK(dsnum));
 1: {error exit}
end.
Appendix D 219

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
PSERVER: Sample PTOP Slave Program

 Standard_level 'HP3000', uslinit$
program pserver(input, output }
{---}
{ }
{ PURPOSE: }
{ The PCLIENT and PSERVER programs illustrate the use of the PTOP}
{ service for a simple name server application. See the PCLIENT }
{ program for details. }
{ }
{---}
 label 1; {for error exit }
 const namelength = 20; {all lengths in bytes}
 infolength = 60;
 cce = 2; {condition code }

type shortint = -32768..32767;
 msgtype = packed array[1..30] of char;
 nametype = packed array[1..namelength] of char;
 infotype = packed array[1..infolength] of char;
 var name: nametype;
 info: infotype;
 func: shortint;
 found: boolean;

function GET: shortint; intrinsic; {PTOP slave intrinsics}
 procedure ACCEPT; intrinsic;
 procedure REJECT; intrinsic;
 function PCHECK: shortint; intrinsic;

procedure ERROR(msg: msgtype; errnum: shortint);
 {--}
 { ERROR prints an error message and an associated PTOP error }
 { number. It terminates the program by going to the error exit. }
 {--}
 begin
 writeln('Server: ', msg, 'PTOP error = ', errnum:3);
 goto 1;
 end; {ERROR}
procedure FIND_NAME (var reqname: nametype;

var info: infotype;
ar found: boolean);

{--}
{ FIND_NAME sequentially searches the data file for the requested}
{ name. It returns an indication of whether the name was found, }
{ and if it was found, the information field for the name. (In }

{ a real name server, a more efficient look up method would be }

{ used.) }

{--}
 var filename: packed array[1..9] of char;
 datafile: text;
 name: nametype;
220 Appendix D

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 begin
 filename := 'DATAFILE ';
 reset(datafile, filename);
 found := false;
 while not found and not eof(datafile) do
 begin
 readln(datafile, name, info);
 if name = reqname then
 found := true
 end;
 end; {FIND_NAME}

begin
 {---}
 { Each pass of this loop GETs one master request and ACCEPTs }
 { or REJECTs the request, based on the type of request. The }
 { loop continues until the master issues its PCLOSE to }
 { terminate the slave. }
 {---}
 repeat
 func := GET;
 case func of
 0:{error}
 ERROR('Bad GET in server', PCHECK(0));
 1:{POPEN}
 begin
 ACCEPT;
 if ccode <> cce then
 ERROR('ACCEPT for POPEN failed', PCHECK(0));
 end;
 2:{PREAD}
 begin

 {--}
 { Look up name from previous PWRITE. If the name }
 { is found, ACCEPT the PREAD with the name info. }
 { If the name is not found, REJECT the PREAD. }
 {--}
 FIND_NAME(name, info, found);
 if found then
 begin
 ACCEPT(, info, -infolength);
 if ccode <> cce then
 ERROR('ACCEPT for PREAD failed', PCHECK(0));
 end

else
 begin
 REJECT;
 if ccode <> cce then
 ERROR('REJECT for PREAD failed', PCHECK(0));
 end;
 end;
 3:{PWRITE}
Appendix D 221

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 begin
 {--}
 { ACCEPT the name from the PWRITE. This name will }
 { be used in the case for the following PREAD. }
 {--}
 ACCEPT(, name);
 if ccode <> cce then
 ERROR('ACCEPT for PWRITE failed', PCHECK(0));
 end;
 end;
 until false;
1:{error exit}
 end.
222 Appendix D

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
RCLIENT: Sample NetIPC/RPM Master Program

$standard_level 'HP3000', uslinit$ program rclient(input, output);
{---}
{ }
{ RCLIENT: Sample NetIPC/RPM Master Program }
{ }
{---}
{ }
{ PURPOSE: }
{ The RCLIENT and RSERVER programs illustrate the use of the RPM }
{ and NetIPC services to implement a simple name server application. }
{ The user runs RCLIENT on his local node, and RCLIENT creates }
{ RSERVER on the node which contains the data. The user inputs }
{ names to RCLIENT, RCLIENT sends the names to RSERVER, }
{ RSERVER looks up the names in its name file and sends the associated}
{ info for the names back to RCLIENT. }
{ }
{ The RCLIENT and RSERVER programs are converted from the }
{ PCLIENT and PSERVER programs, which use PTOP to }
{ implement the name server. }
{ The PTOP-to-RPM/NetIPC conversion guidelines in the beginning }
{ of this appendix were used. }
{ }
{---}
{ }
{ INTERACTION: }
{ The original PTOP implementation of the name server used a master- }
{ slave relationship between the client and server. The client }
{ sends requests, and the server can accept or reject the requests. }
{ This relationship is preserved in the NetIPC/RPM implementation. }
{ RCLIENT must first create RSERVER and they must set up a virtual }
{ circuit connection between them. RCLIENT creates and names a }
{ call socket. It then calls RPMCREATE to create RSERVER, passing }
{ the client's socket name and node name as RPM strings in the opt }
{ array. When it is created, RSERVER retrieves the client's socket }
{ and node name, creates its own socket, looks up the client's }
{ socket, and establishes a connection between its socket and the }
{ client's socket. At this point, the client and server are ready }
{ to exchange data. }
{ For each input name, RCLIENT sends the name to RSERVER. RSERVER }
{ looks up the name in its data file. If the name is found, RSERVER }
{ sends a one byte "accept" indication back to RCLIENT, followed by }
{ the name information. If the name is not found, RSERVER sends a }
{ "reject" indication to RCLIENT. This simulates the original use }
{ of ACCEPT and REJECT in the PTOP implementation. }
(RCLIENT RSERVER }
{ NSINFO for client node name }
{ IPCCREATE socket 1 }
{ IPCNAME socket 1, clientsock }
{ ADDOPT rpmstring, clientsock }
{ ADDOPT rpmstring, clientnode }
{ get server node name }
Appendix D 223

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
{ RPMCREATE RSERVER on server }
{ node ----------------------> RPMGETSTRING clientsock }
{ IPCRECVCN socket 1 RPMGETSTRING clientnode }
{ . IPCCREATE socket 2 }
{ . IPCLOOKUP clientsock, }
{ . clientnode, }
{ . dest }
{ . <-----------------------IPCCONNECT socket 2, dest }
{ . ----------------------> IPCRECV }
{ IPCNAMERASE clientsock IPCSHUTDOWN socket 2 }
{ IPCSHUTDOWN socket 1 IPCRECV name }
{ get name . }
{ IPCSEND name---------name----------> . }
{ IPCRECV ind look up name, found info }
{ . <-----indaccept-------- IPCSEND indaccept }
{ IPCRECV info < -------info-----------IPCSEND info }
{ print info IPCRECV name }
{ get name . }
{ IPCSEND name---------name----------> . }
{ IPCRECV ind look up name, not found }
{ . < -----indreject-------- IPCSEND indreject }
{ print error IPCRECV name }
{ }
{ RPMKILL -----------------------> . }
{ IPCSHUTDOWN vc (terminate) }
{ (IPCSHUTDOWN vc) }
{ }
{---}

label 1;
 const maxnodelength = 51; {all lengths in bytes }
 maxproglength = 24;
 namelength = 20;
 infolength = 60;
 clocalnodelength= 18; {NSINFO item number }
 clocalnode = 19; {NSINFO item number }
 callsocket = 3; {IPCCREATE socket type }
 tcpprotocol = 4; {IPCCREATE protocol type}
 socketnamelength= 8; {created by IPCNAME }
 maxoptlength = maxnodelength + socketnamelength + 20;
 dependent = 31; {RPMCREATE flags bit }
 optrpmstring = 20000;{RPMCREATE opt number }
 indaccept = 0; {accept indication }
 indreject = 1; {reject indication }

type shortint = -32768..32767;
 byte = 0..255;
 msgtype = packed array [1..30] of char;
 buftype = array [1..80] of char;
 var clientnode: packed array [1..maxnodelength] of char;
 clientsockname: packed array [1..socketnamelength] of char;
 location: packed array [1..maxnodelength] of char;
 progname: packed array [1..maxproglength] of char;
 name: packed array [1..namelength] of char;
224 Appendix D

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 info: packed array [1..infolength] of char;
 opt: packed array [1..maxoptlength] of char;
 rpmflags: packed array [0..31] of boolean;
 progdesc: array [1..8] of shortint;
 buf: buftype;
 clientnodelength: shortint;
 loclength: shortint;
 prognamelength: shortint;
 socketdesc: integer;
 vcdesc: integer;
 status: shortint;
 result: integer;
 envnum: shortint;
 i: integer;

procedure NSINFO; intrinsic; {NS intrinsic }
procedure IPCCREATE; intrinsic; {NetIPC intrinsics}
procedure IPCNAME; intrinsic;
procedure IPCNAMERASE; intrinsic;
procedure IPCRECVCN; intrinsic;
procedure IPCSEND; intrinsic;
procedure IPCRECV; intrinsic;
procedure IPCSHUTDOWN; intrinsic;
procedure INITOPT; intrinsic;
procedure ADDOPT; intrinsic;
procedure RPMCREATE; intrinsic; {RPM intrinsics }
procedure RPMKILL; intrinsic;
procedure ERROR(msg: msgtype; result: integer);

 {--}
 { ERROR prints out an error message and an associated NetIPC or }
 { RPM result code, and then goes to the error exit to terminate }
 { the program. Because the server was created with the dependent}
 { flag, the server will automatically terminate. Any NetIPC }
 { objects (socket, socket name, or virtual circuit) will also be }
 { deleted at termination. }
 {--}
 begin
 writeln('Client: ', msg, 'Result = ', result:3);
 goto 1;
 end;

procedure RECV(vcdesc: integer;
 var buf: buftype;
 length: integer;
 var result: integer);
 var nextbufchar: integer;
 recvlength: integer;
Appendix D 225

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 {--}
 { RECV receives a specified number of bytes from the virtual }
 { circuit (vc) connection. This compensates for the stream mode }
 { operation of NetIPC on the HP 3000, where an IPCRECV can return}
 { less than the requested number of bytes. The loop in RECV }
 { calls IPCRECV to receive the next chunk of data, until the }
 { requested amount of data has been received. Note that buf }
 { must be unpacked to allow it to be indexed in the IPCRECV call.}
 {--}
 begin
 result := 0;
 nextbufchar := 1;
 while (length > 0) and (result = 0) do
 begin
 recvlength := length;
 IPCRECV(vcdesc, buf[nextbufchar], recvlength, , , result);
 nextbufchar := nextbufchar + recvlength;
 length := length - recvlength;
 end;
 end; {RECV}

begin
 {-----------------------}
 { Get client node name. }
 {-----------------------}
NSINFO(, , envnum, status,
 clocalnodelength, clientnodelength,
 clocalnode, clientnode);
 if status <> 0 then
 ERROR('Couldn't get client node name.', status);
 {---}
 { Create and name client's socket. The socket length of 0 in }
 { IPCNAME will cause it to return a random 8-byte socket name.}
 {---}
 IPCCREATE(callsocket, tcpprotocol, , , socketdesc, result);
 if result <> 0 then
 ERROR('Couldn't create local socket.', result);
 IPCNAME(socketdesc, clientsockname, 0, result);
 if result <> 0 then
 ERROR('Couldn't name client socket.', result);

 {---}
 { Build the opt array for the RPMCREATE call, including RPM }
 { strings for the client's socket name and node name. }
 {---}

INITOPT(opt, 2);
 ADDOPT (opt, 0, optrpmstring, socketnamelength, clientsockname);
 ADDOPT (opt, 1, optrpmstring, clientnodelength, clientnode);
 {---}
 { Get the server's node name from the user. }
 {---}
 prompt('Client: Enter the remote node name: ');
 readln(location);
226 Appendix D

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 loclength := 0;
 while location[loclength+1] <> ' ' do
 loclength := loclength + 1;
 progname := 'RSERVER';
 prognamelength := 7;
 {---}
 { Set the dependent flag for the RPMCREATE. This causes the }
 { the server to terminate if the client terminates, or if the }
 { connection between them fails. }
 {---}
 for i := 0 to 31 do
 rpmflags[i] := false;
 rpmflags[dependent] := true;

{---------------------------------------}
 { Create the server on the remote node. }
 {---------------------------------------}
RPMCREATE(progname, prognamelength,

location, loclength,
, , , ,

rpmflags, opt, progdesc, result);
 if result <> 0 then
 ERROR('Couldn't create server', result);
 {---}
 { Once active, the server will create its own socket, look up }
 { the client's socket, and set up a vc connection between its }
 { socket and the client's socket. Wait here for the connect }
 { request from the server. }
 {---}
IPCRECVCN(socketdesc, vcdesc, , , result);
 if result <> 0 then
 ERROR('Connect receive failed', result);
 {---}
 { Now that the vc connection has been set up, the client's }
 { socket name and socket can be deleted. }
 {---}
 IPCNAMERASE(clientsockname, socketnamelength, result);
 if result <> 0 then
 ERROR('Couldn't delete socket name.', result);
 IPCSHUTDOWN(socketdesc, , , result);
 if result <> 0 then
 ERROR('Couldn't shutdown socket.', result);
 {---}

 { Each pass of this loop gets a name, sends it to the server, }
 { and receives an accept/reject indication from the server. }
 { If the server accepts the name, the client will receive the }
 { name information sent by the server. }
 {---}
 repeat
 prompt('Client: Enter name (or EOT to exit):');
 readln(name);
 if name <> 'EOT' then
 begin
Appendix D 227

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 IPCSEND(vcdesc, name, namelength, , , result);
 if result 0 then
 ERROR('Send to server failed.', result);
 RECV(vcdesc, buf, 1, result);
 if result <> 0 then
 ERROR('Receive from server failed.', result);
 if ord(buf[1]) = indaccept then
 begin
 RECV(vcdesc, buf, infolength, result);
 if result <> 0 then
 ERROR('Receive from server failed.', result);
 for i := 1 to infolength do
 info[i] := buf[i];
 writeln('Client data is: ', info);
 end
 else{indicator = indreject}
 writeln('Client data could not be found.');
 end;
 until name = 'EOT';
 {---}
 { All names have been processed. Terminate RSERVER and delete}
 { this end of the vc connection. (RSERVER will automatically }
 { delete its end of the connection.) }
 {---}
 RPMKILL(progdesc, , , result);
 if result <> 0 then
 ERROR('Couldn't kill server.', result);
 IPCSHUTDOWN(vcdesc, , , result);
 if result <> 0 then
 ERROR('Couldn't shut down local vc.', result);
 1:{error exit}
 end.
228 Appendix D

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
RSERVER: Sample NetIPC/RPM Slave Program

$standard_level 'HP3000', uslinit$ program rserver(input, output);
{---}
{ }
{ RSERVER: Sample NetIPC/RPM Slave Program }
{ }
{---}
{ }

{ PURPOSE: }
{ The RCLIENT and RSERVER programs illustrate the use of the NetIPC }
{ and RPM services to implement a simple name server application. }
{ See the RCLIENT program for details. }
{---}
 label 1; {error exit }
 const namelength = 20; {all lengths in bytes }
 infolength = 60;
 maxnodelength = 51;
 socketnamelength= 8; {returned by IPCNAME }
 callsocket = 3; {IPCCREATE socket type }
 tcpprotocol = 4; {IPCCREATE protocol type}
 indaccept = 0; {accept indication }
 indreject = 1; {reject indication }
 type shortint = -32768..32767;
 msgtype = packed array[1..30] of char;
 nametype = packed array[1..namelength] of char;
 infotype = packed array[1..infolength] of char;
 buftype = array [1..80] of char;
 var clientsockname: packed array[1..socketnamelength] of char;
 clientnode: packed array[1..maxnodelength] of char;
 name: nametype;
 info: infotype;
 buf: buftype;
 clientsocklength: integer;
 clientnodelength: integer;
 socketdesc: integer;
 destdesc: integer;
 vcdesc: integer;
 result: integer;
 i: integer;
 found: boolean;

procedure RPMGETSTRING; intrinsic; {RPM intrinsic }
procedure IPCCREATE; intrinsic; {NetIPC intrinsics}
procedure IPCLOOKUP; intrinsic;
procedure IPCCONNECT; intrinsic;
procedure IPCRECV; intrinsic;
procedure IPCSEND; intrinsic;
procedure IPCSHUTDOWN; intrinsic;
procedure ERROR(msg: msgtype; result: integer);
Appendix D 229

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 {--}
 { ERROR prints an error message and an associated NetIPC or RPM }
 { result code. It terminates the program by going to the error }
 { exit. Any NetIPC objects (sockets or virtual circuits) will }
 { be deleted upon termination. }
 {--}

begin
 writeln('Server: ', msg, 'Result = ', result:3);
 goto 1;
 end; {ERROR}

procedure RECV(vcdesc: integer;
 var buf: buftype;
 length: integer;
 var result: integer);

 {--}
 { RECV receives a specified number of bytes from the virtual }
 { circuit (vc) connection. This compensates for the stream mode }
 { operation of NetIPC on the HP 3000, where an IPCRECV can return}
 { less than the requested number of bytes. The loop in RECV }
 { calls IPCRECV to receive the next chunk of data, until the }
 { requested amount of data has been received. Note that buf }
 { must be unpacked to allow it to be indexed in the IPCRECV call.}
 {--}
 var nextbufchar: integer;
 recvlength: integer;
 begin
 result := 0;
 nextbufchar := 1;
 while (length <> 0) and (result = 0) do
 begin
 recvlength := length;
 IPCRECV(vcdesc, buf[nextbufchar], recvlength, , , result);
 nextbufchar := nextbufchar + recvlength;
 length := length - recvlength;
 end;
 end; {RECV}

procedure FIND_NAME(var reqname: nametype;
 var info: infotype;
 var found: boolean);
 {--}
 { FIND_NAME sequentially searches the data file for the requested}
 { name. It returns an indication of whether the name was found, }
 { and if it was found, the information field for the name. (In }
 { a real name server, a more efficient look up method would be }
 { used.) }
 {--}

 var filename: packed array[1..9] of char;
 datafile: text;
 name: nametype;
230 Appendix D

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 begin
 filename := 'DATAFILE ';
 reset(datafile, filename);
 found := false;

while not found and not eof(datafile) do
 begin
 readln(datafile, name, info);
 if name = reqname then
 found := true end;
 end; {FIND_NAME}

begin
 {---}
 { Retrieve the client's socket name and node name, passed as }
 { RPM strings. }
 {---}
 clientsocklength := socketnamelength;
 RPMGETSTRING(clientsockname, clientsocklength, result);
 if result <> 0 then
 ERROR('Couldn't get socket name.', result);
 clientnodelength := maxnodelength;
 RPMGETSTRING(clientnode, clientnodelength, result);
 if result <> 0 then
 ERROR('Couldn't get local nodename.', result);
 {---}
 { Create the server's socket, look up the client's socket, }
 { and set up a vc connection between the server and the client}
 { sockets. }
 {---}
 IPCCREATE(callsocket, tcpprotocol, , , socketdesc, result);
 if result <> 0 then
 ERROR('Couldn't create socket.', result);
 IPCLOOKUP(clientsockname, clientsocklength, clientnode,
clientnodelength, destdesc, , , result);
 if result <> 0 then
 ERROR('Socket look up failed.', result);
 IPCCONNECT(socketdesc, destdesc, , , vcdesc, result);
 if result <> 0 then
 ERROR('Socket connection failed', result);
 {---}
 { Wait for the connection acknowledgement from the client. }
 {---}
 IPCRECV(vcdesc, , , , , result);
 if result <> 0 then
 ERROR('Socket connect receive failed.', result);
 {---}
 { Once the connection is established, the socket and destina- }
 { tion descriptors are no longer needed. So delete them. }
 {---}
 IPCSHUTDOWN(socketdesc, , , result);
 if result <> 0 then
 ERROR('Couldn't shut down socket.', result);
 IPCSHUTDOWN(destdesc, , , result);
Appendix D 231

Migration From PTOP to NetIPC and RPM
Example: Client-Server Application
 if result <> 0 then

ERROR('Couldn't shut down dest.', result);

 {---}
 { Each pass of this loop receives one name from the client, }
 { and looks up the name. If the name is found, an accept }
 { indication is sent back to the client, followed by the name }
 { information. If the name is not found, a reject indication }
 { is returned to the client. The server will remain in this }
 { loop until it is terminated by the client. On termination, }
 { the vc connection will automatically be shut down. }
 {---}
 repeat
 RECV(vcdesc, buf, namelength, result);
 if result <> 0 then
 ERROR('Receive from client failed.', result);
 for i := 1 to namelength do
 name[i] := buf[i];
 FIND_NAME(name, info, found);
 if found then
 begin
 buf[1] := chr(indaccept);
 IPCSEND(vcdesc, buf, 1, , , result);
 if result <> 0 then
 ERROR('Send to client failed.', result);
 IPCSEND(vcdesc, info, infolength, , , result);
 if result <> 0 then
 ERROR('Send to client failed.', result);
 end
 else{not found}
 begin
 buf[1] := chr(indreject);
 IPCSEND(vcdesc, buf, 1, , , result);
 if result <> 0 then
 ERROR('Send to client failed', result);
 end;
 until false;
 1:{error exit}
 end.
232 Appendix D

E C Program Language
Considerations
This appendix contains programming language differences that affect
how NetIPC intrinsics are used in programs written in C programming
language.
233

C Program Language Considerations
C Program Language Differences
C Program Language Differences

Parameters

The data (char^) data in IPCSEND and IPCRECV in C programs to
designate a long pointer.

Example

For example, in a Pascal program, the IPCSENDintrinsic can be written
as:

ipcsend(vcdesc, data, 1, , , result)

In a C program the same intrinsic call would be written as:

ipcsend(vcdesc, (char^)data, 1, , , result)
234 Appendix E

Glossary
A

address A numerical identifier
defined and used by a particular
protocol and associated software
to distinguish one node from
another.

address key address resolution

address resolution In NS
networks, the mapping of node
names to IP addresses and the
mapping of IP addresses to
subnet addresses.

ASCII American National
Standard Code for Information
Interchange. A character set
using 7-bit code used for
information interchange among
data processing and data
communications systems. The
American implementation of
International Alphabet No. 5.

asynchronous Term used to
describe a device's mode of
operation whereby a sequence of
operations are executed
irrespective of time coincidence
with any event. Devices that are
directly accessible by people (for
example, terminal keyboards)
operate in this manner.

B

binary mode Data transfer
scheme in which no special
character processing is
performed. All characters are
considered to be data and are
passed through with no control
actions being taken.

bit Binary digit. A unit of
information that designates one
of two possible states, which are
represented by either 1 or 0.

bps Bits per second. The number
of bits passing a point per second.

buffer A logical grouping of a
system's memory resources used
by NS 3000/XL.

byte A sequence of eight
consecutive bits operated on as a
unit.

C

call In X.25, a call is an attempt
to set up communication between
two DTEs using a virtual circuit.
Also known as a virtual call.

call collision A conflict that
occurs at a DTE/DCE interface
when there is a simultaneous
attempt by the DTE and DCE to
set up a call using the same
logical channel identifier.

called address When a node
sends out a call request packet,
the packet contains the address of
the destination node. The address
of the destination node is the
called address.

calling address When a node
receives an incoming call packet,
the packet contains the address of
the sending node. The address of
the sending node is the calling
address.
235

CCITT Consultative Committee
for International Telephony and
Telegraphy. An international
organization of communication
carriers, especially government
telephone monopolies, responsible
for developing telecommunication
standards by making
recommendations. The emphasis
is on “recommendations”; no
carrier is required to adhere to a
CCITT recommendation,
although most do so in their own
interests.

closed user group An X.25 user
facility that allows
communication to and from a
pre-specified group of users and
no one else.

compatibility mode Processing
mode on HP 3000 Series 900
computers that allows
applications written for MPE
V/E-based systems to be ported
and run without changes or
recompilation.

computer network A group of
computer systems connected in
such a way that they can
exchange information and share
resources.

CUG See closed user group.

D

Datacommunications and
Terminal Controller

Transmitted data that is sent
faster than the equipment on the
receiving end is capable of

receiving it. The resulting
overflow data is lost. See also
flow control.

D bit Delivery confirmation bit.
Used in the X.25 protocol, the
setting of the D bit in DATA
packets indicates whether
delivery acknowledgment of the
packet is required from the local
DCE or from the remote DTE. It
therefore allows the choice
between local and end-to-end
acknowledgment.

DCE Data circuit-terminating
equipment. The interfacing
equipment required in order to
interface to data terminal
equipment (DTE) and its
transmission circuit. Synonyms:
data communications equipment,
dataset.

DTC Datacommunications and
Terminal Controller. The DTC is
a hardware device, configured as
a node on a LAN, that enables
asynchronous devices to access
HP 3000 Series 900 computers.
Terminals can either be directly
connected to the DTC, or they can
be remotely connected through a
Packet Assembler Disassembler
(PAD). The DTC can be
configured with DTC/X.25
Network Access cards and
DTC/X.25 Network Access
software. A DTC/X.25 XL
Network Link consists of two
software modules: the X.25 XL
System Access software (running
on the host) and the DTC/X.25
Network Access software
(running on the DTC).
236

DTC/X.25 Network Access The
software that resides on the
Datacommunications and
Terminal Controller (DTC). To
configure access to an X.25
network, you must configure two
software components, the X.25 XL
System Access (residing on the
HP 3000 host and configured
through use of NMMGR software)
and the DTC/X.25 Network
Access (configured on the
OpenView Windows Workstation
through use of the OpenView
DTC Manager software).

DTC/X25 Network Access
card This is the hardware card
and channel adapter that
provides X.25 Network Access. It
resides in the
Datacommunications and
Terminal Controller (DTC).

DTC/X.25 XL Network Link

Software and hardware that
provides MPE XL access to
private and public X.25 networks.
The X.25 XL System Access
software resides on an HP 3000
host and is configured through
use of NMMGR. The DTC/X.25
Network Access software resides
on the Datacommunications and
Terminal Controller and is
configured at the OpenView
Windows Workstation.

DTE Data terminal equipment.
Equipment that converts user
information into
data-transmission signals or
reconverts received data signals
into user information. Data

terminal equipment operates in
conjunction with data
circuit-terminating equipment.

DTS Distributed Terminal
Subsystem. This consists of all
the Datacommunications and
Terminal Controllers (DTCs) on a
LAN, their LANIC cards
(attached to the host), the LAN
cable, and the host and DTC
software that controls all related
DTS hardware.

E

environment A session that is
established on a remote node.

Ethernet A Local Area Network
system that uses baseband
transmission at 10 Mbps over
coaxial cable. Ethernet is a
trademark of Xerox Corporation.

extended packet sequence
numbering One of the optional
Network Subscribed Facilities
that provides packet sequence
numbering using modulo 128. If
not subscribed, modulo 8 is used.

F

facility An optional service
offered by a packet switching
network's administration and
requested by the user either at
the time of subscription for
network access or at the time a
call is made. Also known as user
facility.
237

facility set A facility set defines
the various X.25 connection
parameters and X.25 facilities
that can be negotiated for each
virtual circuit on a per-call basis.

fast select An optional
packet-switching network facility
by which user data may be
transmitted as part of the control
packets that establish and clear a
virtual connection.

FCS Frame Check Sequence. A
sequence of bits generated by
X.25 at Level 2 that forms part of
the frame and guarantees the
integrity of its frame's content.
The FCS is also used by the
IEEE802.3 protocol to check the
validity of frames.

file equation Assignment
statement used to associate a file
with a specific device or type of
device during execution of a
program.

file number Unique number
associated with a file when the
file is opened. The file number is
returned in the FOPEN or
HPFOPEN call used to open the
file. It can be used to access that
file until the file is closed.

file specification The name and
location of a file. The full
specification for a file includes the
file name, group, and account.

file system The part of the
operating system that handles
access to input/output devices
(including those connected

through the DTC), data blocking,
buffering, data transfers, and
deblocking.

flow control A means of
regulating the rate at which data
transfer takes place between
devices to protect against data
overruns.

flow control negotiation One
of the network subscribed
facilities, selected at subscription
time; this facility allows the Flow
Control parameter to be
negotiated at call set-up time, as
opposed to having a predefined
value.

formal file designator Name
that can be used
programmatically or in a file
equation to refer to a file.

FOS Fundamental Operating
System. The programs, utilities,
and subsystems supplied on the
Master Installation Tape that
form the basic core of the MPE XL
operating system.

G

Guided Configuration A
method of configuring a node
wherein a subset of the complete
NMMGR interface is presented
and defaults of configurable
values are used automatically.
238

H

host-based network
management Method of
managing asynchronous
communications for HP 3000
Series 900 computers. All of the
control software is configured on a
single MPE XL host and is
downloaded to the DTCs that are
managed by that host. With
host-based management, there is
a permanent relationship
between each DTC and the host,
and terminal users can access
only the single MPE XL system
that owns the DTC their terminal
is connected to.

host computer The primary or
controlling computer on a
network. The computer on which
the network control software
resides. For HP purposes, it may
also be used to distinguish the
MPE XL system (host) from the
DTC.

I

idle device timeout Timeout
defined by the Configure:CPU
command. ; When the timer
lapses, a device connected to the
DTC user interface that is still
inactive will be disconnected.

IEEE 802.3 A standard for a
broadcast local area network
published by the Institute for
Electrical and Electronics
Engineers (IEEE). This standard
is used for both the ThinLAN and
ThickLAN implementations of
the LAN.

INP Intelligent Network
Processor. The card residing in
the back of an MPE V-based node
that provides a point-to-point or
X.25 interface.

internet communication

Communication that occurs
between networks.

Internet Protocol A protocol
used to provide routing between
different local networks in an
internetwork, as well as among
nodes in the same local network.
The Internet Protocol corresponds
to Layer 3, the Network Layer, of
the OSI model. See also IP
address.

internetwork Two or more
networks joined by gateways.

intranet communication

Communication that occurs
between nodes in a single
network.

intrinsic System routine
accessible by user programs
which provides an interface to
operating system resources and
functions. Intrinsics perform
common tasks such as file access
and device control.

IP See Internet Protocol.

IP address Internet Protocol
address. An address used by the
Internet Protocol to perform
internet routing. A complete IP
address comprises a network
portion and a node portion. The
239

network portion of the IP address
identifies a network, and the node
portion identifies a node within
the network.

ISO International Organization
of Standards. An international
federation of national standards
organizations involved in
developing international
standards, including
communication standards.

L

LANIC See Local Area
Network Interface Controller.

LANIC Self-Test A ROM-based
program on a LANIC card that
tests and reports the status of the
LANIC hardware.

LAP-B Link Access Protocol -
Balanced. The data link protocol
specified by the 1980 version of
X.25 at Level 2 that determines
the frame exchange procedures.
LAP-B must also be used over
direct-connect NS Point-to-Point
3000/XL Links.

ldev See logical device
number.

link name The name that
represents a hardware interface
card. The link name can contain
as many as eight characters. All
characters except the first can be
alphanumeric; the first character
must be alphabetic.

Local Area Network Interface
Controller (LANIC) A
hardware card that fits into the
backplane of the HP 3000 Series
900 computer and provides a
physical layer interface for IEEE
802.3 local area networks.

local connection See direct
connection.

local node The computer that
you are configuring or that you
are logged on to.

logging The process of recording
the usage of network resources.
Events can be logged to both the
OpenView workstation and to the
MPE XL host.

logging class A number defining
the severity of any given event
logged. An operator uses the
logging classes to specify which
events are to be logged. Class 1
(catastrophic event) is always
logged.

logical device number (ldev)

A value by which MPE XL
recognizes a specific device.

loopback The routing of
messages from a node back to
itself.

LUG Local User Group. A list
defined for a particular DTC and
card that specifies which remote
nodes this DTC can send data to
and also which remote nodes this
DTC can receive data from. (See
also Closed User Group).
240

M

M bit More data bit. Setting this
bit in a DATA packet indicates
that at least one more DATA
packet is required to complete a
message of contiguous data.

modulo Value used as the
counting cycle for determining
the send sequence number (N(S))
of frames sent across an X.25
network.

MPE XL MultiProgramming
Executive XL. The operating
system of the HP 3000 Series 900
computers. The NS3000/XL
network services operate in
conjunction with the MPE XL
operating system.

multiplexer MUX. A device that
allows multiple communication
links to use a single channel.

N

native mode The run-time
environment of MPE XL. In
Native Mode, source code has
been compiled into the native
instruction set of the HP 3000
Series 900 computer.

NetIPC Network Interprocess
Communication. Software that
enables programs to access
network transport protocols.

network A group of computers
connected so that they can
exchange information and share
resources.

network address This can be
either 1) the network portion of
an IP address as opposed to the
node portion, or 2) when referring
to X.25 networks, it is a node's
X.25 address.

network boundary The logical
division between networks in an
internetwork.

network directory A file
containing information required
for one node to communicate with
other nodes in 1) an internetwork,
2) an X.25 network, or 3) a
network that contains non-HP
nodes. The active network
directory on a node must be
named NSDIR.NET.SYS.

network interface (NI). The
collective software that enables
data communication between a
system and a network. A node
possesses one or more network
interfaces for each of the
networks to which it belongs.
Network interface types are
LAN802.3, router (point-to-point),
X.25, loopback, and gateway half.
The maximum number of
supported NIs is 12, one of which
is reserved for loopback.

network management The
collective tasks required to
design, install, configure,
maintain, and if necessary,
change a network.

Network Services NS. Software
application products that can be
used to access data, initiate
processes, and exchange
241

information among nodes in the
network. The HP 3000/XL
Network Services include RPM,
VT, RFA, RDBA, and NFT.

network subscribed facilities

A set of parameters that the user
chooses when he subscribes to the
X.25 network; they include Flow
Control Negotiation, Use of D-bit,
Throughput Class Negotiation
and Extended Packet Sequence
Numbering.

NFT Network File Transfer. The
network service that transfers
disc files between nodes on a
network.

NI See network interface.

NMCONFIG.PUB.SYS A file
that contains all the network
configuration data for the HP
3000 Series 900 computer on
which it resides. It includes
information about the DTCs that
can access the system as well as
information about any Network
Service (NS) products running on
the system. This is the only file
name allowed.

NMDUMP A utility used to
format log and trace files.

NMMAINT A utility that lists
the software module version
numbers for all HP AdvanceNet
products, including NS 3000/XL.
It detects missing or invalid
software modules.

NMMGR ode Management
Services Configuration Manager.
A software subsystem that
enables you to configure DTC
connectivity and network access
parameters for an HP 3000 Series
900 computer.

NMMGRVER A conversion
program called
NMMGRVER.PUB.SYS. It
converts configuration files
created with NMMGR from an
earlier version to the latest
format.

NMSAMP1.PUB.SYS Sample
configuration file supplied with
FOS that can be used as a
template for DTS configuration.

node A computer that is part of a
network. The DTC is also
considered to be a node and has
its own address.

node address The node portion
of an IP address, which consists of
a node portion and a network
portion.

Node Management Services
Configuration Manager See
NMMGR.

node name A character string
that uniquely identifies each
system in a network or
internetwork. Each node name in
a network or internetwork must
be unique; however, a single node
can be identified by more than
one node name.
242

NS 3000/XL A Hewlett-Packard
data communication product that
provides networking capabilities
for MPE XL based HP 3000
minicomputers. NS 3000/XL
consists of a link and network
services.

NS 3000/XL Link Software and
hardware that provides the
connection between nodes on a
network. Some of the NS 3000/XL
links available are the ThinLAN
3000/XL Link and its ThickLAN
option, the DTC/X.25 XL Network
Link, the NS Point-to-Point
3000/XL Link, and the StarLAN
10 3000/XL link.

NS 3000/XL Network Services

Software applications that can be
used to access data, initiate
processes, and exchange
information among nodes in a
network. The services are RPM,
VT, RFA, RDBA, and NFT.

NSDIR.NET.SYS Name of the
active network directory file. See
also network directory.

O

octet An eight-bit byte operated
upon as an entity.

OSI model Open Systems
Interconnection model. A model of
network architecture devised by
the International Standards
Organization (ISO). The OSI
model defines seven layers of a
network architecture, with each
layer performing specified
functions.

P

packet A block of data whose
maximum length is fixed. The
unit of information exchanged by
X.25 at Level 3. There are DATA
packets and various control
packets. A packet type is
identified by the encoding of its
header.

Packet Exchange Protocol

PXP. A transport layer protocol
used in NS3000/XL links to
initially establish communication
between nodes when NetIPC
socket registry is used.

packet-switched network
name The name of a data
communication network adhering
to the CCITT X.25
recommendation. This can be a
PDN or a private network, such
as the HP PPN.

PAD (packet
assembler/disassembler) A
device that converts
asynchronous character streams
into packets that can be
transmitted over a packet
switching network (PSN).

PAD name A name of up to eight
characters that is associated with
a configured PAD device. The
PAD name is known to both the
DTC (defined by the DTC
Manager) and the MPE XL
systems (defined by NMMGR)
that the device can access.
243

PAD profile Terminal or printer
profile that specifies the
configuration characteristics for
PAD-connected devices.

PDN Public data network. A data
communication network whose
services are available to any user
willing to pay for them. Most
PDNs use packet switching
techniques.

port An outlet through which a
device can be connected to a
computer, consisting of a physical
connection point and controlling
hardware, controlling software,
and configurable port
characteristics. Ports can be
thought of as data paths through
which a device communicates
with the computer.

Precision Architecture The
hardware design structure for the
HP 3000 Series 900 computer
family.

privileged mode A capability
assigned to accounts, groups, or
users allowing unrestricted
memory access, access to
privileged CPU instructions, and
the ability to call privileged
procedures.

probe protocol An HP protocol
used by NS 3000/XL IEEE 802.3
networks to obtain information
about other nodes on the network.

probe proxy server A node on
an IEEE 802.3 network that
possesses a network directory. A
probe proxy server can provide a

node with information about
other nodes on the same or other
networks of an internetwork.

profile A method of grouping
device connection specifications
and characteristics so that the set
of characteristics can be easily
associated with groups of like
devices. See also printer profile,
terminal profile.

programmatic device A device
operating under control of a
program running on a computer.
Programmatic devices can be
used for input, output, or both,
depending on the device and how
it is opened by the controlling
program.

protocol A set of rules that
enables two or more data
processing entities to exchange
information. In networks,
protocols are the rules and
conventions that govern each
layer of network architecture.
They define what functions are to
be performed and how messages
are to be exchanged.

PSN Packet-Switching Network.
Any data communication network
using packet-switching
techniques wherein data is
disassembled into packets at a
source interface and reassembled
into a data stream at a
destination interface. A public
PSN offers the service to any
paying customer.
244

PVC Permanent Virtual Circuit.
A permanent logical association
between two physically separate
DTEs that does not require call
set-up or clearing procedures.

PXP See Packet Exchange
Protocol.

Q

Q bit Qualified bit. When set in
DATA packets the Q bit signifies
that the packet’s user data is a
control signal for the remote
device, not a message for its user.

QuickVal A software program
that tests whether Network
Services are operating correctly
between nodes.

R

RDBA Remote Data Base Access.
A network service that allows
users to access data bases on
remote nodes.

remote node A node on an
internetwork other than the node
you are currently using or
referring to.

retransmission count (N2) The
maximum number of times a
frame will be retransmitted
following the expiration of the
Retransmission Timer, T1.

retransmission timer (T1)

Length of time the transmitter
will wait for an acknowledgment
from the destination address
before attempting to retransmit

the frame. When choosing this
value, factors like the line speed
and maximum frame size should
be taken into account.

RFA Remote File Access. A
network service that allows users
to access file and devices on
remote nodes.

routing Routing refers to the
process used to determine the
path that packets, or fragments of
a message, take through a
network to reach a destination
node.

RPM Remote Process
Management. A network service
that allows a process to
programmatically initiate and
terminate other processes
throughout a network from any
node on the network.

S

security string An
alphanumeric character string
that functions as a password for
dial links. The security string is
used by the Dial IP protocol.

SVC Switched Virtual Circuit.
Path through an X.25 network
that is established at call set-up
time.

synchronous A mode of
operation or transmission
whereby a continuous data
stream is generated without
intervals between characters. The
data stream is synchronized by
clock signals at the receiver and
245

transmitter. As a result, fast
transmission speeds (above 9600
bps) are attainable.

system configuration The way
you tell MPE XL what peripheral
I/O devices are attached to the
DTC and what parameters are
required for system operation.

T

TCP See Transmission Control
Protocol

ThinLAN 3000/XL A LAN that
conforms to the IEEE 802.3 Type
10 BASE 2 standard LAN.

throughput class A value
assigned to a given virtual circuit
that defines how many network
resources should be assigned to a
given call. It is determined by the
access line speed, packet and
window sizes, and the local
network's internal mechanisms.

throughput class negotiation

One of the Network Subscribed
Facilities defined at subscription
time. This allows the user to
negotiate the Throughput Class
at call set-up time.

timer (T3) Length of time that a
link can remain in an idle state.
After the expiration of the timer,
the link is considered to be in a
non-active, non-operational state
and is automatically reset. The
value should be chosen carefully.
In particular, it must be
sufficiently greater than the

Retransmission Timer (T1) so
that there is no doubt about the
link's state.

topology The physical
arrangement of nodes in a
network. Some common
topologies are bus, star, and ring.

Transmission Control
Protocol TCP. A network
protocol that establishes and
maintains connections between
nodes. TCP regulates the flow of
data, breaks messages into
smaller fragments if necessary
(and reassembles the fragments
at the destination), detects errors,
and retransmits messages if
errors have been detected.

transparent mode Data
transfer scheme in which only a
limited number of special
characters retain their meaning
and are acted on by the system.
All other characters are
considered to be data and are
passed through with no control
actions being taken.

transport, network Software
that corresponds to layers 4 and 3
of the OSI network architecture
model. The function of this
software is to send data out over
the appropriate communications
link, to receive incoming data,
and to route incoming or outgoing
data to the appropriate
destination node.
246

U

unacknowledged frame
number (K) The number of
frames that can be transmitted
without receiving an
acknowledgment from the
destination address. When this
number (K) frame is reached, the
same K frames are retransmitted.

unedited mode See
transparent mode.

V

V.24 The CCITT recommendation
that defines the function of the
interchange circuits between a
DTE and a DCE.

validation The process of
ascertaining whether the network
transport configuration file has
been correctly configured. This is
accomplished by using the
NMMGR Validate Configuration
File screen.

VAN Value-Added Network. A
data communication network that
uses and pays for facilities
belonging to another carrier. The
value-added package is then sold
to a user.

VC See virtual circuit.

virtual circuit A logical
association between two
physically separate DTEs.

Virtual Terminal A network
service that allows a user to
establish interactive sessions on a
node.

VPLUS Software used to
generate screens such as those
displayed by NMMGR.

V-Series (V.##) CCITT A set of
CCITT recommendations related
to data communication over a
voice-grade telephone network.

VT See Virtual Terminal.

W

Workstation Configurator A
utility available on MPE XL
systems that allows users to
create customized terminal and
printer types by entering data
through a series of VPLUS
screens.

X

X.3 Defines the user facilities
that should be internationally
available from the packet
assembler/disassembler (PAD)
facility when this is offered by a
public data network.

X.21 Defines the physical
interface between a DTE and a
DCE of a public data network
where the access to the network
is made over synchronous digital
lines.

X.25 Defines the interface
between a DTE and a DCE for
packet mode operation on a
Public Data Network (PDN).
247

X.25 address The X.25 address
provided by the network
administration if you are
connected to a Public Data
Network (PDN).

X.25 address key An X.25
address key is a label that maps a
node's IP address to its X.25
address and its associated X.25
parameters. You have a combined
maximum of 1024 X.25 address
keys in the SVC and PVC path
tables.

X.25 LUG address X.25 address
of a node belonging to a LUG.

X.25 XL System Access he
software that works in
conjunction with the DTC/X.25
Network Access software to
provide MPE XL access to X.25.
The software resides on an HP
3000 host and is configured
through use of NMMGR. To
configure access to an X.25
network, you must configure two
software components, the X.25 XL
System Access and the DTC/X.25
Network Access (residing on the
Datacommunications and
Terminal Controller and
configured at the OpenView
Windows Workstation). Together,
these two components provide a
network connection on HP 3000
systems to private and public
X.25 packet-switched networks
PSNs).

X.29 Defines the interface for
data exchange between a
packet-mode DTE and a remote
Packet Assembly/Disassembly
(PAD) facility over a packet
switching network.

X.Series (X.##) CCITT
recommendations A set of
recommendations for data
communication networks
governing their services,
facilities, and the operation of
terminal equipment and
interfaces.
248

Index
A
ADDOPT, 66
asynchronous I/O, 126

cross system, 48
programming with, 127

B
blocking calls

enable in IPCCONTROL, 76

C
call data

in IPCRECVCN, 109
call socket, 18

creating, 23
descriptors, 20
looking up a name, 24
naming, 23

call user data, 38
in IPCCONNECT, 71
in IPCCONTROL, 77, 78
in IPCSHUTDOWN, 119
no address flag, IPCCONNECT, 72
protocol relative address, 38

call user data flag
in IPCRECV, 101

calldesc, 23
calling node address

flag in IPCRECVCN, 110
in IPCRECVCN, 109

catch-all socket, 39
in IPCCREATE, 85

cause and diagnostic codes
in IPCSHUTDOWN, 119

clear user data
in IPCSHUTDOWN, 119

common parameters
data parameter, 62
flags, 60
opt, 60
result, 64

compatibility mode, 58, 63
condition codes, 64
connection

checking status, 26
receiving a request, 25
receiving data, 29
requesting, 24
sending data, 29
shutting down, 31, 32

connection request

accept in IPCCONTROL, 76
cress-system

NetIPC errors, 54
to HP 1000, 49
to PC, 53

cross-system
asynchronous I/O, 48
IPCCONTROL request codes, 48
local process, 47
manipulation of descriptors, 48
number of sockets, 48
remote process, 49
software revision codes, 46
to HP 9000, 51

CUD
call user data, 38

D
D bit, 43
daemon, 55
data location descriptor, 62

compatibility mode, 63
native mode, 64
structure, 62

data offset
in IPCRECV, 101
in IPCSEND, 116

data parameters, 62
data transfer

messages, 30
stream mode, 30

databfr, 30
defer connection

in IPCRECVCN, 107
descriptor

call, 20
destination, 20
VC socket, 20

destdesc parameter, 24
destination descriptor, 20
destrination descriptor, 19
destroy data flag

in IPCRECV, 100
direct access to X.25

features, 34
limitations, 34

discarded data
in IPCRECV, 100
in IPCRECVCN, 108

dlen parameter, 64
Index 249

Index
E
end-to-end achnowledgement

in IPCSEND, 116
end-to-end acknowledgement, 101
establishing a connection

using IPCDEST, 28
using IPCNAME, 27

example
compatibility mode, 139
native mode, 139
TCP, 132, 139
using NetIPC, 131
vectored I/O CM and NM, 139
X.25, 148, 159

exchanging data
TCP, 30
X.25, 29

F
facilities set name

in IPCCONNECT, 72
facility field, 42

in IPCCONNECT, 72
in IPCCONTROL, 77, 79
in IPCRECV, 101
in IPCRECVCN, 110

fast select
in IPCRECVCN, 109

fast select facility, 39
no restriction, 39

fast select restricted
in IPCRECVCN, 109

flags parameter, 60

G
graceful release, 32

H
HP 1000 Program Startup

cross-system, 55
HP 3000 Program Startup

cross-system, 55
HP 9000 Program Startup

cross-system, 55
HP-UX, 55

I
INITOPT, 68
interrupt packet

send, in IPCCONTROL, 77

IODONTWAIT, 126, 128
IOWAIT, 126, 128
IPC Interpreter, 171
IPCCONNECT, 24
IPCCONTROL, 76
IPCCREATE, 24
IPCDEST, 88
IPCERRMSG, 91
IPCGET, 33, 92
IPCGIVE, 33, 93
IPCINT, 171
IPCLOOKUP, 23, 95
IPCNAME, 33
IPCNAMERASE, 33
IPCRECV, 25, 99
IPCRECVCN, 25
IPCSEND, 29
IPCSHUTDOWN, 31, 119, 120

K
known length (messages), 30

L
local node name

returned in IPCCONTROL, 78
location, 24

M
maximum number of socket descriptors, 48
maximum receive size, TCP

in IPCRECVCN, 108
maximum send size, TCP

in IPCRECVCN, 108
message mode transfer, 29
messages

known length, 30
length not known, 30

more data flag
in IPCRECV, 100

MPE-XL to MPE-V NetIPC, 44
X.25, 44

N
native mode, 58, 64
NetIPC

definition, 17
network address

X.25 in IPCDEST, 89
network name, X.25

in IPCCREATE, 85
no output flag
250 Index

Index
inIPCRECV, 100
nowait I/O

enable in IPCCONTROL, 76
nowait receives

enable in IPCCONTROL, 79
nowait sends

disable in IPCCONTROL, 79
enable in IPCCONTROL, 79

O
opt parameter, 60

option entry structure, 60
structure, 60

option entry structure, 60
option variable, 58
OPTOVERHEAD, 60, 123

P
packets

types returned in IPCCONTROL, 78
PAD flag

in IPCRECVCN, 109
PC NetIPC Program Startup

cross-system, 56
permanent virtual circuit, 37
preview data flag

in IPCRECV, 100
Privileged Mode, 19
Program Startup, 55

PC, 56
program startup

HP 1000, 55
HP 3000, 55
HP 9000, 55

protected connections
in IPCRECVCN, 107

protocol relative address
in IPCCREATE, 85

PVC
permanent virtual circuit, 37

Q
Q bit, 43
qualifier bit

in IPCRECV, 101
in IPCSEND, 116

R
reason code

in IPCSHUTDOWN, 119
reason for error or event

in IPCCONTROL, 77
Remote Process Management

RPM, 17
remote system, 18
reset packet

send, in IPCCONTROL, 77
result parameter, 33
RPM

Remote Process Management, 17

S
Shutting Down Sockets and Connections, 31

TCP, 32
X.25, 31

socket, 18
maximum number, 48
shutting down, 31
TCP, 18
X.25, 18

socket registry, 19
socketname, 24
socketname parameter, 24
stream mode, 30
strmove, 30
summary of NetIPC intrinsics, 65
SVC

switched virtual circuit, 35
switched virtual circuit (SVC), 35
synchronous mode, 33
syntax

NetIPC intrinsics, 58

T
TCP

graceful release, 32
Transmission Control Protocol, 18

TCP checksum
in IPCCONNECT, 70
in IPCRECVCN, 107

tempbfr, 30
timeout

change for sends, 79
change in IPCCONTROL, 76

timeout, no activity
set in IPCCONTROL, 78

timeouts
disabling, 131

tracing
disable in IPCCONTROL, 79
enable in IPCCONTROL, 79
enable transport layer, 80
Index 251

Index
Transmission Control Protocol
TCP, 18

Transport Layer, 18

U
urgent data

in IPCRECV, 101
in IPCSEND, 116

V
VC socket, 18

descriptors, 20
vcdesc, 20
vectored data, 62

in IPCSEND, 115
vectored data flag

in IPCRECV, 100
virtual circuit, 18

establishing a connection, 22

W
well-known name, 23

X
X.25

address in IPCDEST, 89
call data (CUD), 38
cause and diagnostic codes, 43
D bit, 43
defer connection request, 39
facility field, 42
fast select facility, 39
interrupt and reset packets, 43
no activity timeout, 43
Q bit, 43
252 Index

	NetIPC 3000/XL Programmer's Reference Manual
	Notice
	Contents
	Figures
	Tables
	Preface

	1� NetIPC Fundamentals
	NetIPC Concepts
	Sockets
	Connections

	Using NetIPC for Interprocess Communication
	Establishing a Level 4 Connection
	Sending and Receiving Data Over a Connection
	Shutting Down Sockets and Connections
	Additional NetIPC Functions

	Direct Access to Level 3 (X.25)
	Features
	Limitations
	Switched Virtual Circuits (SVCs)
	Permanent Virtual Circuits (PVCs)
	Access to the Call User Data (CUD) Field
	Fast Select Facility
	Facility Field
	Access to X.25 Protocol Features

	NetIPC�Between MPE-XL and MPE-V Systems

	2� Cross-System NetIPC
	Software Required
	Calls Affecting the Local Process
	Calls Affecting the Remote Process
	HP 3000 to HP 1000 NetIPC
	HP 3000 to HP 9000 NetIPC
	HP 3000 to PC NetIPC

	NetIPC Error Codes
	Program Startup
	HP 3000 Program Startup
	HP 1000 Program Startup
	HP 9000 Program Startup
	PC NetIPC Program Startup

	3� NetIPC Intrinsics
	Programming Considerations
	Compatibility vs. Native Mode
	Option Variable
	Syntax
	Capabilities
	User-specified Protocol Addressing

	Common Parameters
	Flags Parameter
	Opt Parameter
	Data Parameter
	Result Parameter

	Summary of NetIPC Intrinsics
	NetIPC Reference Pages
	ADDOPT
	Syntax
	Parameters
	Description

	INITOPT
	Syntax
	Parameters
	Description

	IPCCHECK
	Syntax
	Parameters
	Description

	IPCCONNECT
	Syntax
	Parameters
	Description
	Protocol-Specific Considerations
	X.25 Considerations
	TCP Access
	Cross-System Considerations for TCP

	IPCCONTROL
	Syntax
	Parameters
	Description

	IPCCREATE
	Syntax
	Parameters
	Description
	Protocol-Specific Considerations

	IPCDEST
	Syntax
	Parameters
	Description
	Protocol-Specific Considerations
	IPCERRMSG
	Syntax
	Parameters
	Description

	IPCGET
	Syntax
	Parameters
	Description

	IPCGIVE
	Syntax
	Parameters
	Description

	IPCLOOKUP
	Syntax

	IPCNAME
	Syntax
	Parameters
	Description

	IPCNAMERASE
	Syntax
	Parameters
	Description

	IPCRECV
	Syntax
	Parameters
	Description
	Protocol-Specific Considerations
	X.25 Considerations

	IPCRECVCN
	Syntax
	Parameters
	Description
	Protocol-Specific Considerations

	IPCSEND
	Syntax
	Parameters
	Description
	Protocol-Specific Considerations

	IPCSHUTDOWN
	Syntax
	Parameters
	Description
	Protocol-Specific Considerations
	X.25 Considerations
	TCP

	OPTOVERHEAD
	Syntax
	Parameters
	Description

	READOPT
	Syntax
	Parameters
	Description

	Asynchronous I/O
	Steps for Programming with Asynchronous I/O

	IO[DONT]WAIT
	Syntax
	Parameters
	Description

	4� NetIPC Examples
	Example 1
	Program 1A
	Program 1B

	Example 2
	Program 2A (Vector1)
	Program 2B (Vector2)

	Example 3
	Program 3A (X25CHECK)
	Program 3B (X25SERV)

	Example 4
	Program 4A (SNMIPC1)
	Program 4B (SNMIPC2)

	A� IPC Interpreter (IPCINT)
	Using IPCINT
	Comparison of IPCINT to Programmatic NetIPC
	Example: Programmatic Access to X.25
	Example: IPCINT for X.25 Direct Access

	Syntax of IPCINT
	Abbreviated Intrinsic Names
	Pseudovariables
	Prompts for Parameters
	Call User Data Field

	Sample IPCINT Session

	B� Cause and Diagnostic Codes
	Diagnostic Codes in X.25 Clear Packets
	Diagnostic Codes From a Remote Host

	C� Error�Messages
	NetIPC Errors
	SOCKERRS

	Submitting an SR

	D� Migration From PTOP to NetIPC and RPM
	Creating Remote Processes
	Creating Remote Processes: In the Master Program
	Syntax
	Creating Remote Processes: In the Slave Program
	Syntax
	Syntax

	Exchanging Data
	Exchanging Data: In the Master Program
	Syntax PWRITE
	Syntax PCONTROL
	Exchanging Data: In the Slave Program
	Syntax GET
	Syntax ACCEPT

	Terminating Processes
	Syntax

	Example: Client-Server Application
	PCLIENT: Sample PTOP Master Program
	PSERVER: Sample PTOP Slave Program
	RCLIENT: Sample NetIPC/RPM Master Program
	RSERVER: Sample NetIPC/RPM Slave Program

	E� C Program Language Considerations
	C Program Language Differences
	Parameters
	Example

	Glossary
	Index

