
Using NS 3000/iX Network Services

HP 3000 MPE/iX Computer Systems

Edition 4

Customer Order Number 36920-61000

36920-90008
E0594

Printed in: U.S.A. May 1994

Notice
The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or fitness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by
copyright. All rights reserved. Reproduction, adaptation, or translation
without prior written permission is prohibited, except as allowed under
the copyright laws.

Restricted Rights Legend

Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013.
Rights for non-DOD U.S. Government Departments and Agencies are
as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

© Copyright 1990–1992, 1994, 1998 by Hewlett-Packard Company

Contents

3

1. Introduction to NS 3000/iX
Network Architecture . 16
Network Services . 18
Network Names . 19

NS Node Name Syntax. 19
ARPA Domain Name Syntax . 20

2. Virtual Terminal
DSLINE Command . 23

Syntax . 23
Use. 23
Parameters . 23
Description . 27
Examples. 27

REMOTE HELLO Command . 31
Syntax . 31
Use. 31
Parameters . 31
Description . 32
Examples of REMOTE HELLO . 33

Releasing a Remote Environment. 35
Examples. 35

REMOTE Command . 37
Syntax . 37
Use. 37
Parameters . 37
Description . 37

Using DSLINE and REMOTE Within Programs. 39
Reverse Virtual Terminal . 41
Using the Remote Subsystem from a Batch Job 43
BREAK . 44

3. Remote File Access
RFA Compression . 46
FILE Command . 47

Syntax . 47
Use. 47
Parameters . 47
Description . 49
Precautions When Using $BACK . 49

RESET Command . 50
Syntax . 50
Use. 50
Parameter . 50
Description . 50

Interactive Access . 51
RFA Programmatic Access . 53
FPARSC Intrinsic . 55

4

Contents

Syntax . 55
Parameters . 55
Description . 56

Example RFA Program . 58
Remote Terminal Access: VT vs. RFA. 60
RFA/RDBA Automatic logon . 61

Overview . 61
How to Use the Automatic Logon Feature . 61
Remote Hello After RFA Automatic Logon . 61
RFA/RDBA Autologon Example. 61
System Compatibility . 62

4. Remote Database Access
RDBA Access Methods. 64

5. Network File Transfer
Three-Node Model . 68
File Copying Formats . 69

Transparent Format . 69
Interchange Format . 69
Data Interpretation . 70

DSCOPY . 71
Syntax . 71
Use. 71
Parameters . 71

Summary of DSCOPY Options . 82
Using DSCOPY . 84

Multiple Transfer . 86
Using Global Specifications . 87
Interrupting a File Transfer . 88
Event Recording . 88

Using Checkpoint and Restart with DSCOPY 90
New Restart Files Created During Checkpointed Transfer. 90
Using the DSCOPYI File for Checkpointing. 91
Using CHECKPT and RESTART in Shared Environments 91

Files Not Allowed with CHECKPT and RESTART 91
Troubleshooting After Using CHECKPT and RESTART 92

HP 3000 to HP 3000 Copying Examples . 92
Local to Local. 92
Remote to Local. 93
Local to Remote. 93
Remote to Remote . 93
Multiple Transfer . 93
Global Specifications. 93

CHECKPT and RESTART Examples . 94
Programmatic NFT . 95
DSCOPY Intrinsic . 96

Syntax . 96

Contents

5

Parameters . 96
Description . 98

DSCOPYMSG intrinsic . 99
Syntax . 99
Parameters . 99
Description . 99

Programming Language Considerations . 100
SPL . 100
COBOL . 100
FORTRAN. 100
BASIC . 100
Pascal . 101

Programmatic NFT Examples . 102
COBOL: Single Transfer . 102
COBOL: Multiple Transfer . 103
Pascal: Single Transfer. 104
Pascal: Multiple Transfer. 105

6. Intrinsics for Node and Environment Status
NSINFO Intrinsic . 108

Syntax . 108
Parameters . 108
Description . 113
Errors . 113

NSSTATUS Intrinsic . 116
Syntax . 116
Parameters . 116
Data Items . 117
Description . 126
NSSTATUS Intrinsic Examples . 127

7. Remote Process Management
Common RPM Parameters . 132

Flags Parameter . 132
Result Parameter . 132

RPMCONTROL . 133
Syntax . 133
Parameters . 133
Description . 134

RPMCREATE. 135
Syntax . 135
Parameters . 135
Description . 140
Preferred Method of Creating Interactive Programs 142
Using $STDIN and $STDLIST in a Precreated VT Session 143
Restrictions when Using RPMCREATE to Create Interactive
Programs . 143
Opt Parameter Format . 143

6

Contents

RPMGETSTRING . 145
Syntax . 145
Parameters . 145
Description . 145

RPMKILL. 147
Syntax . 147
Parameters . 147
Description . 147

ADDOPT. 148
Syntax . 148
Parameters . 148
Description . 148

INITOPT. 150
Syntax . 150
Parameters . 150
Description . 150

OPTOVERHEAD . 151
Syntax . 151
Parameters . 151
Description . 151

RPM Program Examples . 152
RPM Program 1 . 154
RPM Program 2 . 157

8. NetCI
How to Use NetCI . 160
Running NetCI. 161
Commands . 162

NetCI HELP Command . 162
NetCI Security . 163
Configuring Network Data . 164

Configuring Logon Information . 164
Node Names . 165
Sample LAN . 165
Reassigning Node Names . 165

NEWNODE . 167
Syntax . 167
Parameters . 167
Discussion . 167

ALTNODE . 169
Syntax . 169
Parameters . 169

PURGENODE . 171
Syntax . 171
Parameters . 171

 SHOWNODE. 172
Syntax . 172
Parameters . 172
Discussion . 172

Contents

7

Configuring for Command Broadcast . 172
Sample LAN . 173

NEWLIST. 174
Syntax . 174
Parameters . 174
Discussion . 174

ALTLIST. 175
Syntax . 175
Parameters . 175
Discussion . 175

PURGELIST. 176
Syntax . 176
Parameters . 176
Discussion . 176

SHOWLIST . 177
Syntax . 177
Parameters . 177

Saving Your NetCI Configuration . 178
Executing Remote Commands . 179

Node Prompt . 179
List Prompt . 180
NetCI Prompt . 180

Command Operation Modes . 181
NetCI Mode. 181
MPE Mode. 181

Interrupting Processing (Using [BREAK]). 182
Special Considerations When Using DSLINE 183
Failed Connections. 184
Redirecting NetCI Input and Output . 185
Scripting (Redirecting Input) . 186
PLAY. 187

Syntax . 187
Parameters . 187
Discussion . 187

Writing and Executing Script Files . 189
Creating a Script File . 189
Special Symbols . 189
Reserved Characters . 189
Special Slash Character . 190
Comment Command. 190
Special Considerations . 192
Flow Control Statements . 192

IF Statement . 193
Syntax . 193
Parameters . 193
Discussion . 194

INC Statement . 195
Syntax . 195
Parameters . 195

8

Contents

Discussion . 195
LET Statement. 196

Syntax . 196
Parameters . 196
Discussion . 196

WAIT Statement . 197
Syntax . 197
Parameters . 197
Discussion . 197

WHILE Statement . 198
Syntax . 198
Parameters . 198
Discussion . 198

Logging (Redirecting Output) . 199
Accessing Log File . 199

LOG . 201
Syntax . 201
Parameters . 201
Discussion . 201

LOGRESET . 202
Syntax . 202

Scripting and Logging . 203
Sample Applications . 208

Sample Script File 1 . 208
Sample Script File 2 . 209
Sample Script File 3 . 211
Sample Script File 4 . 213

Troubleshooting NetCI . 215

A. Migration From NS 3000/V to NS 3000/iX Network Services
Differences Between NS 3000/V and NS 3000/iX 218

Missing Features . 218
Changed Features. 218

Error Messages: NS 3000/V to NS 3000/iX . 219
Conversion Checklist: NS 3000/V to NS 3000/iX 220

B. Migration From DS/3000 to NS 3000/iX Network Services
Differences Between DS/3000 and NS 3000/iX 222

New Features . 222
Missing Features . 222
Changed Features. 223

Error Messages: DS/3000 to NS 3000/iX . 224
Conversion Checklist: DS/3000 to NS 3000/iX. 225

Index

Figures

9

Figure 1-1 . OSI Model. .16
Figure 1-2 . Opening Several Remote NS 3000/iX Sessions .19
Figure 2-1 . Virtual Terminal Service .22
Figure 5-1 . Three-Node Model .68
Figure 5-2 . Interchange Format .69
Figure 6-1 . NSINFO Trace Information Data Structure .110
Figure 6-2 . Service List Data Structure .118
Figure 6-3 . Service List Entry Data Structure .118
Figure 6-4 . Server List Data Structure .119
Figure 6-5 . User List Data Structure. .120
Figure 6-6 . User list Entry Data Structure .120
Figure 6-7 . Server Type List Data Structure .123
Figure 6-8 . Server Entry Data Structure .123
Figure 6-9 . Env List Data Structure .124
Figure 6-10 . Env List Entry Data Structure .125
Figure 6-11 . Initiator’s Information Format .126
Figure 8-1 . NetCI and OSI Model .159
Figure 8-2 . Sample Internetworkl .164
Figure 8-3 . Redirecting Input and Output .185
Figure 8-4 . Scripting Activated .186
Figure 8-5 . Logging Activated .200
Figure 8-6 . Scripting and Logging Activated (Example 1) .204
Figure 8-7 . Scripting and Logging Activated (Example 2) .205
Figure 8-8 . Scripting and Logging Activated (Example 3) .206
Figure 8-9 . Scripting and Logging Activated (Example 4) .207

Tables

Table 5-1. Conflicting DSCOPY Options. .74
Table 5-2. DSCOPY Options Summary .82
Table 6-1. NSINFO Errors. .114
Table 6-2. NSINFO Errors. .128
Table 8-1. Reserved Characters. .190
Table 8-2. Operation Modes. .203

13

Preface
This document is for persons wishing to program or interactively use
NS 3000/iX network services. The network services (NS) enable
HP 3000 systems and other NS-compatible systems to communicate
with each other and share resources.

Audience
This manual is intended for interactive users as well as programmers.
In order for you to use NS 3000/iX, you should be familiar with some of
the more common MPE/iX commands and intrinsics.

The descriptions of Network File Transfer (NFT) in this manual only
cover transfers between HP 3000’s using NS 3000/iX. For specifics on
using NFT between a PC and an HP 3000, refer to the User Guide for
HP PC Network Services.

Organization of This Manual
The Introduction in this manual presents an overview of NS 3000/iX,
discussing the architecture of the network and introducing the network
services. The remaining chapters provide detailed documentation for
individual network services. In general, they give an overview of the
particular service, explain all relevant commands and intrinsics, and
illustrate these commands and intrinsics with examples.

Appendix A, “Migration From NS 3000/V to NS 3000/iX Network
Services,” describes the differences between NS 3000/iX and NS 3000/V.
Appendix B, “Migration From DS/3000 to NS 3000/iX Network
Services,” describes the differences between NS 3000/iX and DS/3000.
The appendixes also describe migration between the services.

Related Publications
For information on related publications, refer to the MPE/iX
Documentation Guide.

As mentioned in Edition 3, MPE/iX is a superset of MPE XL. All
programs written for MPE XL will run without change under MPE/iX.
You can continue to use MPE XL system documentation, although it
may not refer to features added to the operating system to support
POSIX (for example, hierarchical directories). Finally, you may
encounter references to MPE V, which is the operating system for
HP 3000s not based on the PA-RISC architecture. MPE V software can
be run on the PA-RISC HP 3000s (Series 900) in what is known as
compatibility mode.

14

Note to HP 9000 users: beginning with HP-UX release 10.0, DSCOPY
and NetIPC are no longer supported on HP-UX.

15

1 Introduction to NS 3000/iX

NS 3000/iX is the name of Hewlett-Packard’s software services for
linking multi-vendor computer equipment including MPE/iX based
HP 3000 processors. The Network Services (NS) run in conjunction
with Hewlett-Packard link products that consist of both hardware and
software.

16 Chapter 1

Introduction to NS 3000/iX
Network Architecture

Network Architecture
A network architecture specifies the transmission tasks of distinct
hardware and software modules or layers. The architecture of
NS 3000/iX is based on the seven-layer OSI (Open Systems
Interconnection) model (Figure 1-1) developed by the International
Standards Organization (ISO). One of the purposes of having a layered
architecture is to make the complexities of data communications
transparent to the high-level user. Some familiarity with the tasks
performed at different levels may be helpful.

Figure 1-1 OSI Model

The highest layer regulates user services, while the lowest layer
regulates the actual transmission of bits from one node to another. Each
computer system in the network is called a node. At each layer one or
more protocols is responsible for carrying out the appropriate tasks. A
protocol is a set of rules that specify software message format. From a
logical point of view, the protocol entity at each level communicates
with the corresponding protocol entity at the same level on another
node. In reality, except for the physical transmission of data to another
node, each protocol entity communicates with other protocols at the
layer immediately above and below its own.

Chapter 1 17

Introduction to NS 3000/iX
Network Architecture

When a message is sent from one node to another in a network, it is
first passed down through the architectural levels at the source node.
That is, it is transferred from the control of one protocol entity to the
control of the next. At one of the middle layers, the message is broken
down into packets. At the lowest layer, the packets are sent across the
physical communications link. The destination node collects the
packets and passes them up to the higher protocol levels where they are
reassembled into the original, complete message.

In NS 3000/iX, the Application Layer, at the top of the hierarchy,
consists of user-level services such as Virtual Terminal (VT), Network
File Transfer (NFT), Remote File Access(RFA), and Remote Database
Access (RDBA). The next two layers, Presentation and Session, define
functions that contribute to these high-level services, but there is no
exact correspondence between NS 3000/iX features and these layers.

The Transport Layer protocols such as TCP, PXP, and UDP handle
end-to-end communications between a source and a destination node,
ensuring that a message from the source arrives at its destination in
the proper form. The fragmentation of messages into packets occurs at
this level.

The Network Layer protocols such as IP and X.25 perform an
addressing function, making sure that the packets are acquired by the
node to which they are addressed.

The Data Link Layer protocols such as IEEE 802.3, Ethernet, LAPB
and X.25 govern the actual transmission of the packets over the
communications link. At this level the packets are technically known as
frames. The lowest layer, the Physical, provides electrical and
mechanical specifications for the transmission of bits across the link.

Hewlett-Packard link products such as the ThinLAN 3000/iX Link
correspond to the lower four layers of the Open Systems Interconnect
(OSI) model (Figure 1-1), and the NS 3000/iX product corresponds to
layer seven of the OSI model.

For more information on lower-level network functions, see the and the
NS 3000/iX Error Messages Reference Manual.

18 Chapter 1

Introduction to NS 3000/iX
Network Services

Network Services
NS 3000/iX is the name of Hewlett-Packard’s interactive and
programmatic user-level, network services. All of these services are
listed below and are fully documented in this manual:

• Virtual Terminal (VT) creates an interactive session for you on
another system in the network, making your terminal appear as
though it were directly connected to the other system. This service
permits you to issue commands to the remote operating system, use
subsystems such as editors and compilers within the remote
environment, and run application programs that reside on the
remote system. A feature called Reverse Virtual Terminal enables a
local application program to communicate efficiently with remote
terminals.

• Remote File Access (RFA) enables you to perform I/O operations
to files and peripheral devices located on other nodes.

• Remote Data Base Access (RDBA) allows you to access and
update TurboIMAGE data bases located on other nodes.
TurboIMAGE is a Hewlett-Packard data base management system.

• Network File Transfer (NFT) allows you to transfer or copy files
from one node to another, or within a single node, interactively or
programmatically. For information on transfers between the PC and
the HP 3000, refer to the User Guide for HP PC Network Services.

• Remote Process Management (RPM) enables a given process to
create and terminate processes on other nodes. RPM is commonly
used in conjunction with Network Interprocess Communication
(NetIPC). NetIPC provides programmatic access to the
Transmission Control Protocol (TCP), which is the Transport Layer
protocol used by NS 3000/iX link products. For more information on
NetIPC, refer to the NetIPC 3000/iX Programmer’s Reference
Manual.

These network services allow you to perform essential functions across
a network or across gateways in an internetwork. In addition to a
“virtual terminal” you have what amounts to virtual storage and
virtual devices; you are not limited to the processing and storage
capacities of your own system.

The NS 3000/iX network services including NFT (DSCOPY) and RFA
do not support POSIX—the services cannot work with either
bytestream files or files residing in HFS (hierarchical file system)
directories. To transfer bytestream files across systems, use
Hewlett-Packard’s FTP/iX product.

Chapter 1 19

Introduction to NS 3000/iX
Network Names

Network Names
When each computer system is configured as part of an NS 3000/iX
network, it is assigned a unique node name. You use this node name to
log on to each computer system. Node names can be in either NS node
name syntax or ARPA domain name syntax as explained in the
following sections. For people using NS node name syntax, the NS
names work the same as in the versions prior to MPE/iX 4.0. Refer to
the HP 3000/iX Network Planning and Configuration Guide for
instructions on configuring node names (both NS and ARPA domain
types) and for configuring aliases.

You can log on to a specific session within a node by employing a
user-defined name known as an environment ID. A default environment ID
is the node name itself. In order to designate a remote file or device, you
must include its remote environment ID in an extended file designator, for
example, FILEX:ENV1 . You can maintain multiple remote sessions on a
single node by specifying a new environment ID for each new session.

Figure 1-2 shows that a user on node TOM has four remote
environments on node HARRY, one of which was given the default
name HARRY.

Figure 1-2 Opening Several Remote NS 3000/iX Sessions

NS Node Name Syntax
A node name or an environment ID may optionally be qualified with a
domain and organization. The domain and organization are arbitrary labels
that the network manager specifies when configuring each node into
the network. For example, in the name EMPIRE.SJ.CA , the node name is
EMPIRE, the domain is SJ, and the organization is CA.

20 Chapter 1

Introduction to NS 3000/iX
Network Names

You can find full details on node names, environment IDs, and remote file
designations in the chapters on “Virtual Terminal” and “Remote File
Access” in this manual. For convenient reference, the syntax for node
names and environment IDs is given here.

node[.domain[.organization]]

envname[.domain[.organization]]

If you do not qualify the node or envname in a user-level command or
intrinsic, the configured domain and organization of the local node are
assumed by default.

Each NS node, envname, domain, or organization specification can be up to
16 characters long, and can include alphanumeric characters, the
underscore (_), and the hyphen (-). The first character of each node,
envname, domain, or organization name must be alphabetic.

ARPA Domain Name Syntax
Following is the syntax for using ARPA domain names within DSLINE
and REMOTE commands:

label[.label][...]

The labels must follow the rules for ARPANET host name. They must
start with a letter, end with a letter or digit, and have as interior
characters only letters, digits, hyphens (-), or underscores (_). Although
underscores are not specified as part of ARPANET syntax, HP allows
them for compatibility with the NS-style node names.

The first part of each name (the first label) must not exceed
50 characters, and the total length of a domain name may not exceed
50 characters. If you wish to use an ARPA domain name that is greater
than 50 characters, you must use the domain name’s alias. Refer to the
HP 3000/iX Network Planning and Configuration Guide for
instructions on configuring aliases. HP recommends using fully
qualified names when using ARPA domain name syntax.

21

2 Virtual Terminal

In order to issue interactive commands to a remote operating system or
to a subsystem available on a remote computer, you must establish a
session on the remote node. The Virtual Terminal service (VT) makes
the fact that the session is remote almost entirely transparent. You
enter commands and receive system/subsystem responses at your local
terminal just as if your session were local. When you edit text in a
remote editor subsystem, the text appears in the proper format on your
local terminal screen. In reality, input and output to your local terminal
pass through a “virtual” (as opposed to actual, physical) terminal
configured on the remote system. Your remote commands are
transmitted over network connections, sent to the virtual terminal, and
subsequently executed on the remote system.

Using the Virtual Terminal service, you can take advantage of a remote
system's processing capabilities. For example, if a program needs to be
run on a remote node, you can use VT to access it, edit the program, and
then compile, load, and run it directly on the remote node.

The Reverse Virtual Terminal service enables an application process
within a node to communicate with a real terminal that is on its
network or internetwork. The application’s home node sets up a virtual
terminal for each real terminal that the application needs access to.
Information sent from a terminal to the application process (or vice
versa) passes through the appropriate virtual terminal. With Reverse
VT, the application process can accept input from all nodes, though
individual sessions are not established on each node.

Figure 2-1 is a schematic illustration of the Virtual Terminal (and
Reverse Virtual Terminal) service. By using the NS 3000/iX Virtual
Terminal service on a network, you can log on to any session-accepting
node in the network from your own local node. All systems are
transparently accessible to each other.

22 Chapter 2

Virtual Terminal

Figure 2-1 Virtual Terminal Service

In addition to your local session, you can also create multiple remote
sessions on your own local node or on remote nodes. Optionally, you can
configure your own remote prompts, so that you can identify each
remote environment by its prompt.

In order to create a remote session, you can use either REMOTE
:nodename followed by a logon, or, you can use DSLINE nodename followed
by a REMOTE HELLOuser.acct. After using either the DSLINE command
or the REMOTE HELLO command, you then use the REMOTE command in
order to be able to use commands in the remote environment. The
following pages will explain how to use these commands.

For recommended programming practices for VT-connected devices,
refer to the Asynchronous Serial Communications Programmer’s
Reference Manual.

Chapter 2 23

Virtual Terminal
DSLINE Command

DSLINE Command
Defines the attributes of a remote environment.

Syntax
[envID]

DSLINE [[envID=] nodename][;SERVICES][;DSLINE option]...
[#L envnum]

Use
Available In Session? Yes

In Job? Yes

In Break? Yes

Programmatically? Yes

Breakable? No

Capabilities? None

Parameters
envID An environment ID—that is, a character string

representing a specific session on a remote node. For
NS names, the environment ID itself may optionally be
qualified as follows: envname[.domain[.organization]]. Each
portion of the string may have a maximum of 16
alphanumeric characters (including underscores and
hyphens), of which the first must be alphabetic. The
default domain and organization names are those
specified for your local node when it is configured. For
ARPA domain names, the environment ID has the
syntax label[.label[...] . The labels must follow
the syntax for ARPANET host names. The envID for
ARPA domain names will not be fully qualified. Refer to
ARPA Domain Name Syntax in Chapter 1,
“Introduction to NS 3000/iX,” for more details.

For some dslineoptions, an envID can be a generic
environment ID representing a set of environments. A
generic environment ID can include the MPE wild card
characters @, #, and ?. @ stands for zero or more
alphanumeric characters, # for one numeric character,
and ? for one alphanumeric character. The attributes
specified for a generic environment ID will be used as
defaults for all matching environments, including
environments defined later from the same local session,

24 Chapter 2

Virtual Terminal
DSLINE Command

unless overridden in a later DSLINE command. These
defaults can be reset by the RESET option, which is
described below.

Default: the specified nodename (which then becomes an
environment ID) or, if nodename is omitted as well, the
environment specified by the last DSLINE or REMOTE
command.

nodename When you are using NS names, the nodename is the
name assigned to the remote node when it is configured
into the NS 3000/iX network. This name may optionally
be qualified in the format node[.domain[.organization]].
The default domain and organization are those of the
local node. Each portion of this string may have a
maximum of 16 alphanumeric characters (including
underscores and hyphens), of which the first must be
alphabetic. When you are using ARPA domain names,
the nodename has the syntax label[.label[...] .
The labels must follow the syntax for ARPANET host
names. The envID for ARPA domain names will not be
fully qualified. Refer to ARPA Domain Name Syntax in
Chapter 1, “Introduction to NS 3000/iX,” for more
details.

An environment ID may be equated with this node
name, or the node name (if used alone) may become its
own environment ID. In either case, the environment
ID then represents a specific remote session on this
node. Default: the environment specified by the last
DSLINE or REMOTE command.

envnum An environment number representing a specific session
on a remote node. This is the number of the
environment in the message printed out following a
prior DSLINE command.

SERVICES Lists the status of the services on the node (local or
remote) indicated by the environment ID.

DSLINEoption One of the options described in the following
paragraphs.

QUIET Specifies that no logon message be displayed when you
log on to the remote environment, no logoff message be
displayed when you log off, and no environment
messages be displayed when a DSLINE command is
executed.

Chapter 2 25

Virtual Terminal
DSLINE Command

COMP or NOCOMP
(default is
NOCOMP) Enables or disables data compression to the remote

environment. The compression only affects NFT and
RFA transmissions. If data compression is in effect,
sequences of repeated characters (such as blanks) are
translated into more compact form before transfer.
They are decompressed after arrival at their
destination. For a discussion of RFA compression, refer
to “RFA Compression” in Chapter 3, “Remote File
Access.” This option may also be used with the DSCOPY
command as explained in

CLOSE Deletes the environment ID(s) associated with the
remote environment(s). This option must be used
without any other option.

RESET Clears all information associated with a generic
environment ID. This option must be used without any
other option.

SHOW Requests that the attributes of a remote environment
(individual or generic) be displayed.

PROMPT=
promptstring Specifies a prompt for the remote environment. This

can be used to distinguish one remote environment
from another. The prompt string can be 1 to 8
characters long, optionally surrounded by quotation
marks. All characters are allowed, but if the string
contains a semicolon the string must be in quotes: for
example, “MY;NODE”. You can also use quotation marks
to include a blank at the end of a prompt string.
Default: the first seven letters of the (unqualified)
environment name (or the whole environment name if
shorter) terminated by #. If PROMPT= is specified
without a prompt string, the prompt becomes the
normal local prompt from the remote operating system
for instance, a colon (:).

If the remote system is an MPE/iX based system, then
you can also specify its prompt by using the SETVAR
HPPROMPT command as explained in the MPE/iX
Commands Reference Manual. If you specify that the
prompt be anything other than a colon, then that
specification will override any prompt created by the
DSLINE option described here. The SETVAR HPPROMPT
will be temporarily overridden if you leave the remote
session and then return to it—after a REMOTE
command, the prompt will remind you which system
you are on—after you type a carriage return, the

26 Chapter 2

Virtual Terminal
DSLINE Command

prompt will return to the one you set with SETVAR
HPPROMPT. For an example, refer to the discussion
under the REMOTE command.

LOGON=
logonsequence Specifies a logon sequence for the remote system, which

can be used by NFT and RPM in order to create a
temporary session on the remote node. (See the NFT
and RPM chapters of this manual for a discussion of
when this logon will take effect.) The logon sequence
must include all necessary passwords. It must be
delimited by quotation marks if it contains characters
which might cause it to be parsed incorrectly by the
remote system.

TRACE=
traceoptions Enables or disables tracing to the remote environment.

You can trace the messages sent by any network service
(VT, NFT, etc.) between your local session and the
remote environment.

The trace records the actual message traffic for each
intrinsic call or interactive request, including both
network service headers and user-supplied data. You
can also trace Transport Layer protocol activity
supporting this Network Service traffic.

Other levels of tracing are available through Network
InterProcess Communication and Node Management
Services. The specific traceoptions parameters are:

{[[ON][, service][,file][, recs][, maxdata],TRANS]}

{[[OFF][, service]]}

The service parameter can be: VT, RFA, NFT, RPM, or
ALL. Through these choices, you can activate or
deactivate tracing for one or all Network Services. The
other parameters have the following meanings:

• file: The name of a new or existing MPE/iX file in
which the trace is to be stored. If this parameter is
omitted, the trace information is sent to a default file
named TRxxxxxx , where TR is followed by the six
leading characters of the remote environment ID.

• recs: The number of records allotted to a new trace
file. Default: 1024.

• maxdata: The maximum amount of data to be traced
on an individual send or receive request, a value
from 0 to 8000 bytes. Default: 2000 bytes.

• TRANS: Requests tracing of Transport Layer protocol
activity, specifically headers and port messages.

Chapter 2 27

Virtual Terminal
DSLINE Command

For further information on tracing, see the NS 3000/iX
Operations and Maintenance Reference Manual.

NOTE The following dslineoptions are obsolete and are ignored in all cases (if
used, a warning message is printed): EXCLUSIVE, FROMADDR=,
FROMADR=, LINEBUF=, LOCID=, NOQUEUE, OPEN, PHNUM=, QUEUE,
REMID, SELECT=, TOADDR=, and TOADR=.

Description
The DSLINE command defines the attributes of a remote environment.
These attributes are used when you log on to the remote node via a
REMOTE HELLO command or when NFT or RPM creates a temporary
remote session with the logon sequence specified in the DSLINE LOGON
option. In order to establish a remote environment, you must either
equate an environment ID with the actual node name, or else use the
node name by itself, in which case the node name becomes the
environment ID. The environment ID then represents a specific session
on the remote node. You can use different environment IDs to represent
different sessions on the same node.

Subsequent DSLINE commands can use an individual or generic
environment ID or an environment number to identify the remote
environment(s). If you omit the nodename, envID, and envnum, the default
is the last environment referenced by a DSLINE or REMOTE command.
(If this command uses a generic environment ID, the new default
environment becomes the last individual environment listed in the
environment message then displayed. See the examples that follow.)

After a DSLINE command has been executed, a message is printed that
identifies all the affected environments. This message includes, for each
environment, the environment number assigned (in order of
environments defined), the fully qualified environment ID, and the fully
qualified node name (if different from the environment ID). If the
command specifies attributes for a generic environment ID, the generic
environment ID is listed separately in the returned message, identified
by the words GENERIC ENVIRONMENT. (Generic environments are
given a separate number in the sequence of environments, but this
number is not listed.) If the command uses a generic environment ID
but does not specify attributes, a separate generic environment is not
listed. The reason for this is that no new environment (with new default
attributes) is being defined.

Examples
Starting with MPE/iX release 4.0, NS services support ARPA domain
node names as well as NS node names. There are some changes in
selecting environments using generic EnvIDs. These changes will not
affect people who use only NS node names.

28 Chapter 2

Virtual Terminal
DSLINE Command

Examples

:DSLINE SYS4 **NS node name with default
ENVIRONMENT 2: SYS4.DETROIT.MYCO=SYS4.DETROIT.MYCO EnvID, domain & Org**

:DSLINE X1=SYS4 **2nd environment referencing
ENVIRONMENT 5: X1.DETROIT.MYCO=SYS4.DETROIT.MYCO same remote node **

:DSLINE ROBERT **DSLINE using ARPA domain
ENVIRONMENT 7: ROBERT=ROBERT.CUP.MYCO.COM node name. Note: EnvID

is not fully qualified **

:DSLINE X2=ROBERT **2nd environment referencing
ENVIRONMENT 9: X2=ROBERT.CUP.MYCO.COM same remote ARPA name**

:DSLINE BOB **using alias to ARPA name
ENVIRONMENT 11: BOB=BOB(ROBERT.CUP.MYCO.COM) “ROBERT”. First 50 chars of

ARPA domain name
will be displayed in “()” **

:DSLINE X3=BOB **2nd environment referencing
ENVIRONMENT 13: X3=BOB(ROBERT.CUP.MYCO.COM) same alias name **

:DSLINE SYS3.CHICAGO **using NS node with different
ENVIRONMENT 15: SYS3.CHICAGO.MYCO=SYS3.CHICAGO.MYCO domain (CHICAGO)**

:DSLINE X@;PROMPT=”TESTENV” **change the prompt for all
ENVIRONMENT 5: X1.DETROIT.MYCO=SYS4.DETROIT.MYCO EnvIDs starts with X
ENVIRONMENT 9: X2=ROBERT.CUP.MYCO.COM using genericID X@ **
ENVIRONMENT 13: X3=BOB(ROBERT.CUP.MYCO.COM)
GENERIC ENVIRONMENT X@

:DSLINE **lists default environment **
ENVIRONMENT 15: SYS3.CHICAGO.MYCO=SYS3.CHICAGO.MYCO

:DSLINE @ **lists all the ARPA domain environments (strict pattern match
for ARPA domain EnvIDs) and all the NS environments with

default domain (DETROIT) and organization (MYCO) **

Pattern Before Rel 4.0 After Rel 4.0

@ Selects all EnvIDs with
default domain &
organization.

Select all NS EnvIDs with
default domain and
organization and all ARPA
domain EnvIDs.

@.@ Selects all EnvIDs with
default organization.

Select all NS EnvIDs with
default organization and all
the ARPA domain EnvIDs
with at least one “.”.

@.@.@ Select all EnvIDs Select all NS EnvIDs and all
the ARPA domain EnvIDs
with at least two “.”.

@.@.@.@ None All the ARPA domain EnvIDs
with at least three “.”.

Chapter 2 29

Virtual Terminal
DSLINE Command

ENVIRONMENT 2: SYS4.DETROIT.MYCO=SYS4.DETROIT.MYCO
ENVIRONMENT 5: X1.DETROIT.MYCO=SYS4.DETROIT.MYCO
ENVIRONMENT 7: ROBERT=ROBERT.CUP.MYCO.COM
ENVIRONMENT 9: X2=ROBERT.CUP.MYCO.COM
ENVIRONMENT 11: BOB=BOB(ROBERT.CUP.MYCO.COM)
ENVIRONMENT 13: X3=BOB(ROBERT.CUP.MYCO.COM
GENERIC ENVIRONMENT X@

:DSLINE @.@.@ **lists all NS environments and ARPA domain environments with
at least two “.” **

ENVIRONMENT 2: SYS4.DETROIT.MYCO=SYS4.DETROIT.MYCO
ENVIRONMENT 5: X1.DETROIT.MYCO=SYS4.DETROIT.MYCO
ENVIRONMENT 15: SYS3.CHICAGO.MYCO=SYS3.CHICAGO.MYCO
GENERIC ENVIRONMENT X@

:DSLINE X@;SHOW **displays all the EnvIDs that start with X **

ENVIRONMENT # : 5
ENVIRONMENT ID : X1.DETROIT.MYCO
NODE NAME : SYS4.DETROIT.MYCO
LOGON :
LOGGED ON : NO
PROMPT : TESTENV
ESTABLISHED BY : DSLINE
SERVICES :
OPTIONS :

ENVIRONMENT # : 9
ENVIRONMENT ID : X2
NODE NAME : ROBERT.CUP.MYCO.COM
LOGON :
LOGGED ON : NO
PROMPT : TESTENV
ESTABLISHED BY : DSLINE
SERVICES :
OPTIONS :

ENVIRONMENT # : 13
ENVIRONMENT ID : X3
NODE NAME : BOB
LOGON :
LOGGED ON : NO
PROMPT : TESTENV
ESTABLISHED BY : DSLINE
SERVICES :
OPTIONS :

ENVIRONMENT ID : X@
NODE NAME :
LOGON :
LOGGED ON : NO
PROMPT : TESTENV
ESTABLISHED BY : DSLINE
SERVICES :
OPTIONS :

:DSLINE @;CLOSE **closes all ARPA domain environments and all NS environments
with default domain and organization (DETROIT & MYCO)**

ENVIRONMENT 2: SYS4.DETROIT.MYCO=SYS4.DETROIT.MYCO
ENVIRONMENT 5: X1.DETROIT.MYCO=SYS4.DETROIT.MYCO
ENVIRONMENT 7: ROBERT=ROBERT.CUP.MYCO.COM
ENVIRONMENT 9: X2=ROBERT.CUP.MYCO.COM
ENVIRONMENT 11: BOB=BOB(ROBERT.CUP.MYCO.COM)
ENVIRONMENT 13: X3=BOB(ROBERT.CUP.MYCO.COM)

:DSLINE BOB.TEST.TEST=BOB **using user defined EnvID with alias ARPA domain **

ENVIRONMENT 2: BOB.TEST.TEST=BOB(ROBERT.CUP.MYCO.COM)

30 Chapter 2

Virtual Terminal
DSLINE Command

:DSLINE @.@.@ **lists all the NS environments and
ARPA domain EnvIDs with at least two “.”s **

ENVIRONMENT 2: BOB.TEST.TEST=BOB(ROBERT.CUP.MYCO.COM)
ENVIRONMENT 15: SYS3.CHICAGO.MYCO=SYS3.CHICAGO.MYCO
GENERIC ENVIRONMENT X@

:DSLINE @.@.@;CLOSE **closes all the NS envs and ARPA
domain EnvIDs with at least two “.”s. **

ENVIRONMENT 2: BOB.TEST.TEST=BOB(ROBERT.CUP.MYCO.COM)
ENVIRONMENT 15: SYS3.CHICAGO.MYCO=SYS3.CHICAGO.MYCO

DSLINE X@;RESET **resets defaults for generic
GENERIC ENVIRONMENT X@ environment ID **

Chapter 2 31

Virtual Terminal
REMOTE HELLO Command

REMOTE HELLO Command
Creates a session on a remote node.

Syntax
[: envID] [{ envID }]

DSLINE [:[envID=] nodename][logon [;DSLINE={[envID=} nodename}]
[envnum] [{#L envnum }]

Use
Available In Session? Yes

In Job? Yes

In Break? Yes

Programmatically? Yes

Breakable? No

Capabilities? None

Parameters
envID An environment ID—that is, a character string

representing a specific session on a remote node. For
NS names, the environment name itself may optionally
be qualified: envname[.domain[.organization]]. Each
portion of the string may have a maximum of 16
alphanumeric characters (including underscores and
hyphens), of which the first must be alphabetic. The
default domain and organization names are those
specified for your local node when it was configured as
part of its NS 3000/iX network. For ARPA domain
names, the environment ID has the syntax
label[.label[...] . The labels must follow the
syntax for ARPANET host names. Refer to ARPA
Domain Name Syntax in Chapter 1, “Introduction to
NS 3000/iX,” for more details.

If the envID is not equated with a node name, it must
refer to a previously defined environment. If it is
equated to a node name, it then represents a session on
that node. If the nodename is used by itself, it then
becomes its own environment ID, representing a
particular session on that node. If envID, nodename, and
envnum are all omitted in the beginning of the command
line (before HELLO), the environment information must
be given in the ;DSLINE= option at the end of the
command line or the default environment will be

32 Chapter 2

Virtual Terminal
REMOTE HELLO Command

assumed. The default environment for a REMOTE
command is the one most recently referenced in a
DSLINE or REMOTE command.

nodename When you are using NS names, the nodename is the
name assigned to the remote node when it is configured
into the NS 3000/iX network. This name may optionally
be qualified in the format node[.domain[.organization]].
The default domain and organization are those of the local
node. Each portion of this string may have a maximum
of 16 alphanumeric characters (including underscores
and hyphens), of which the first must be alphabetic.
When you are using ARPA domain names, the
nodename has the syntax label[.label[...] . The
labels must follow the syntax for ARPANET host
names. Refer to ARPA Domain Name Syntax in
Chapter 1, “Introduction to NS 3000/iX,” for more
details.

An environment ID may be equated with this node
name, or the node name (if used alone) may become its
own environment ID. In either case, the environment
ID then represents a specific remote session on this
node. Default: the environment specified by the last
DSLINE or REMOTE command.

envnum The number of the environment assigned when the
environment was defined. This is the environment
number listed in the message that appears after a
DSLINE command. Note that when envnum is specified
immediately after REMOTE, envnum is specified without
the #L prefix.

logon A valid logon sequence for the remote node, in the form
HELLOuser.account[,group]. For information on
additional MPE logon parameters and options, please
see the MPE/iX Commands Reference Manual.

DSLINE= Defines an environment if one is not specified
immediately after REMOTE. The parameters are used in
the same way as they are after REMOTE (or as they are
used in a DSLINE command).

Description
The REMOTE HELLO command creates a session on a remote node. If the
remote environment (session) has already been defined in a previous
DSLINE (or REMOTE) command, the environment ID or number may be
used by itself to designate the environment. Otherwise, an environment
ID may be equated to an actual node name or the node name may be
used by itself as its own environment ID. The environment information

Chapter 2 33

Virtual Terminal
REMOTE HELLO Command

may be given immediately after the REMOTE or after DSLINE=. If the
environment information is given in both places, the specification
following REMOTE takes precedence. If no environment information
appears in either place, the default environment assumed is the one
most recently referenced by a REMOTE or DSLINE command. If you issue
a REMOTE HELLO command for an environment that you are already
logged on to, the existing remote session will be terminated and a new
one will be created (according to the new user information). This is
similar to what happens when you issue a new HELLO command within
a local session. If you want a second concurrent session on the same
node, you can designate a new environment ID for this node, either in a
DSLINE command or in a REMOTE HELLO command.

NOTE Before you can create a remote session on another node in an
NS 3000/iX network, your system operator must have issued the
following two console commands: NETCONTROL to open the
communications links to the remote node, and NSCONTROL to enable
Virtual Terminal service. These commands must be issued before any
network service can function between the local and remote nodes. See
the NS 3000/iX Operations and Maintenance Reference Manual.

Examples of REMOTE HELLO
The following examples show you the different ways that you can use
the REMOTE HELLO command. The input is typed at the MPE/iX
prompt, and user input is bold for clarity.

1. Method 1 shows that the REMOTE HELLO command (without
environment information) may appear after a DSLINE command
that provides the environment information.

Method 1

:DSLINE SYS2
ENVIRONMENT 1: SYS2.DCL.DETROIT
:REMOTE HELLO NSUSER.NSACCT **default environment**
HP3000 / MPE/iX A.01.00 FRI, MAY 1, 1994, 4:13 PM

2. Method 2 shows that the environment information may be included
in the DSLINE= portion of the REMOTE HELLO command.

Method 2

:REMOTE HELLO NSUSER.NSACCT;DSLINE=E2=SYS2
HP3000 / MPE/iX A.01.00 FRI, MAY 1, 1994, 4:14 PM
ENVIRONMENT 2: E2.DCL.DETROIT=SYS2.DCL.DETROIT

3. Method 3 shows that the environment information may appear
immediately after REMOTE on the same command line.

Method 3

:REMOTE:CHEKHOV
CHEKHOV#HELLO ANTON.PLAYS
HP3000 / MPE/iX A.01.00 FRI, MAY 1, 1994, 4:26 PM

or

34 Chapter 2

Virtual Terminal
REMOTE HELLO Command

:REMOTE:CHEKHOV HELLO ANTON.PLAYS
HP3000 / MPE/iX A.01.00 FRI, MAY 1, 1994, 4:26 PM
ENVIRONMENT 3: CHEKHOV.DCL.DETROIT
: REMOTE **allows use of environment**

4. The REMOTE HELLO command may be issued in two parts, with the
HELLO portion following the remote prompt which is returned. The
environment specification may appear in a previous DSLINE
command, as in method 1, or immediately after the REMOTE, as in
method 3. The DSLINE= option is not legal in this case, since the
DSLINE= parameter must follow the HELLO in the REMOTE command
line.

5. Methods 4a and 4b show two different ways of accessing the same
node. The DSLINE SYS5 command sets the attributes of node SYS5
for both Method 4a and Method 4b. The PROMPT=>> part of the
command shows the effect of setting the prompt on the remote node.
Method 4a shows that the REMOTE and HELLO commands can be on
separate lines. Method 4b shows that the environment ID is set
equal to the node name in order to create a new session. A fifth
environment is created. Upon returning to the local system, a status
line displays the environment information.

Methods 4a and 4b

: DSLINE SYS5;PROMPT=>> **DSLINE for Methods 4a and 4b**
ENVIRONMENT 4: SYS5.DCL.DETROIT

Method 4a

: REMOTE **default environment**
>>HELLO NSUSER.NSACCT
HP3000 / MPE/iX A.01.00 FRI, MAY 1, 1994, 4:51 PM

or

Method 4b

: REMOTE:MARIE=SYS5 **creates a new session**
MARIE#HELLO NEWUSER.NEWACCT
HP3000 / MPE/iX G.OO.OO FRI, MAY 1, 1994, 4:54 PM
MARIE#:
ENVIRONMENT 5: MARIE.DCL.DETROIT=SYS5.DCL.DETROIT

Chapter 2 35

Virtual Terminal
Releasing a Remote Environment

Releasing a Remote Environment
The method that you use to release a remote environment depends
upon the way it was initially created:

1. If the environment was defined by a DSLINE command, it can be
released only by a corresponding DSLINE;CLOSE command.

2. If the environment was defined in a REMOTE HELLO command, it can
be released by either a REMOTE BYE command or a DSLINE;CLOSE
command.

3. If you terminate the local session (with a local BYE or ABORTJOB)
without explicitly releasing the remote environment, (a) all open
files and active processes on the remote node will be closed or
terminated, and (b) an implicit DSLINE @.@.@;CLOSE will be
executed. (You will not be asked whether you wish to abort the
remote session.)

If you issue a DSLINE;CLOSE command (without a REMOTE BYE) after a
session has been established on a remote MPE/iX system, and if the
option is not in effect, you will be asked:

ABORT REMOTE SESSION ONenvID?

A Y[ES] response will abort the remote session and terminate the
connection. A N[O] answer will cancel the DSLINE ;CLOSE command
and leave the remote session intact. DSLINE ;CLOSE may not be issued
while remote files are open or while dependent RPM processes exist on
the remote node. The appropriate FCLOSE, TERMINATE, or RPMKILL
intrinsic must be executed first or an error message will appear. For
information on Remote File Access, and Remote Process Management,
see the corresponding chapters of this manual.

NOTE A REMOTE BYE command may be viewed as a particular instance of a
command to a remote system. You can issue a remote command
through the Virtual Terminal service once a remote session has been
established via a REMOTE HELLO. (See the explanation of the REMOTE
command in this chapter.)

Examples
In the following examples, all commands that are shown are typed at
the MPE/iX prompt.

Method 1

DSLINE MODELT
REMOTE HELLO HENRY.FORD
REMOTE BYE
DSLINE;CLOSE

or (user input is bold for clarity)

36 Chapter 2

Virtual Terminal
Releasing a Remote Environment

DSLINE MODELT
REMOTE HELLO HENRY.FORD
DSLINE;CLOSE
ABORT THE REMOTE SESSION ON MODELT.DCL.DETROIT?YES
SESSION ABORTED BY SYSTEM MANAGEMENT

Method 2

REMOTE HELLO MARIE.SYS5;DSLINE=RADIUM
REMOTE BYE

or

REMOTE:RADIUM HELLO MARIE.SYS5
REMOTE BYE

Method 3

:DSLINE MODELA
:REMOTE HELLO HENRY.FORD
:BYE <F14P10M>**implicit :DSLINE;CLOSE executed**

or

:REMOTE HELLO HENRY.FORD;DSLINE=MODELA
:BYE

or

:REMOTE:MODELA HELLO HENRY.FORD
:BYE

Chapter 2 37

Virtual Terminal
REMOTE Command

REMOTE Command
Allows commands to be executed in a remote environment.

Syntax
REMOTE [:[envID][command]

[envnum]

Use
Available In Session? Yes

In Job? Yes

In Break? Yes

Programmatically? Yes

Breakable? No

Capabilities? None

Parameters
envID The environment ID representing an established

session on the remote node. This environment ID may
be an actual node name. If both envID and envnum are
omitted, the default environment is the one most
recently referenced in a DSLINE or REMOTE command.

envnum The number of the environment assigned when the
environment was defined. This environment number is
listed in the message returned after a DSLINE
command.

command A command that is to be executed in the remote
environment; for example an MPE/iX command to be
executed on a remote HP 3000.

Description
After you have established a remote environment (session) on a node,
the REMOTE command allows you to issue commands in that remote
environment. Because you can have several remote environments on a
node at the same time, you use the REMOTE command along with a
unique environment ID to specify one of several remote environments.
If you issue REMOTE commands without specifying an envID or envnum,
the default environment (the one most recently invoked) will be used.

NOTE If an RPM-created process is already executing in a remote
environment, you cannot issue a REMOTE command for that
environment.

38 Chapter 2

Virtual Terminal
REMOTE Command

If a command parameter is included in the REMOTE command line, the
remote operating system executes it and restores control to the local
operating system. The local prompt reappears on your terminal screen.
For example, at the MPE/iX prompt (which is shown for clarity), type
the following command (user input is bold):

: REMOTE LISTF **default environment**
.
.**list of file names from
.**remote environment appears**

: **local prompt reappears**

If no command parameter is specified, a remote prompt is issued and the
remote operating system retains control. You can then send commands
to the remote system by entering them at this prompt without a
preliminary REMOTE. The remote prompt reappears after the execution
of each command until you enter a colon (:) at the remote prompt. This
restores the local MPE/iX prompt, at which you can issue a subsequent
REMOTE command or a local command. Suppose that the remote prompt
is ENV1#. At the local MPE/iX prompt (which is shown for clarity), type
the following commands (user input is bold):

: REMOTE**default environment already set to ENV1#**
ENV1#LISTF **executed in the remote environment**

.**list of file names from node ENV1 appears**

.
ENV1#:**typing a colon (:) restores the local prompt**
: REMOTE BYE

You can configure your own remote prompt (1 to 8 characters) by using
the DSLINE ;PROMPT= option. If you wish to receive the remote
system’s local prompt (for instance, a colon [:]), specify DSLINE
;PROMPT= without a prompt string. Following is an example of a
user-specified prompt (the local and remote prompts are shown for
clarity, and user input is underlined):

: DSLINE SPOTS;PROMPT=VPRES>**default environment**
: REMOTE **now set to node SPOTS
MPE /iX-SPOTS: HELLO NSUSER.NSACCT

If you use the MPE/iX SETVAR HPPROMPT command to set a system
prompt to anything other than a colon, then that prompt will override
any prompt created by the DSLINE ;PROMPT= option. Details on use of
the SETVAR command are in the MPE/iX Commands Reference
Manual .

If you use SETVAR HPPROMPT, then leave the remote session and return
to it, the remote system’s prompt will be displayed until you press
[Return] . In the following example, user input is underlined, and the
local and remote MPE/iX prompts are shown for clarity:

: REMOTE REMENV HELLO USER.ACCT
: REMOTE
REMENV#SETVAR HPPROMPT “XYZ>>”
XYZ>>**new prompt replaces REMENV#**
XYZ>>:**colon (:) returns you to local session**
:REMOTE**to return to remote**
REMENV#[Return] **default prompt orients you**
XYZ>>>**returns to prompt set by SETVAR

HPPROMPT**

Chapter 2 39

Virtual Terminal
Using DSLINE and REMOTE Within Programs

Using DSLINE and REMOTE Within
Programs
Both the DSLINE and REMOTE commands can be executed within a
program using the COMMAND intrinsic. You can set up environment
attributes, log on remote sessions, and issue remote commands from
within a program. For the format of the COMMAND intrinsic, refer to the
MPE/iX Intrinsics Reference Manual.

NS 3000/iX maintains separate default environments for each process
within a job or session. A DSLINE or REMOTE command that explicitly
specifies an environment ID must be issued from the process to set up
its default environment. Subsequent DSLINE or REMOTE commands
issued from the process may then use (or change) the process default
environment. For example, suppose an application has two processes
that set up remote sessions on different nodes. These processes could
execute the following command sequences using the COMMAND intrinsic:

Process 1

DSLINE NODE1 {sets default environment for process 1}
REMOTE HELLO USER1.ACCT1 {uses default environment NODE1}

Process 2

DSLINE NODE2 {sets default environment for process 2}
REMOTE HELLO USER2.ACCT2 {uses default environment NODE2}

Because NS 3000/iX maintains separate default environments for each
of these processes, they can execute concurrently with no problems of
confusion between the default environments.

DSLINE commands for the same environment can be issued from
several different processes within a job or session. Attributes defined by
the DSLINE commands take effect for all processes within the job or
session. For example, if a DSLINE from one process specifies the COMP
option, the COMP attribute is set for all processes using the
environment.

NS 3000/iX keeps track of each process that issues a DSLINE command
for an environment. The environment will not be deleted until all the
processes have issued DSLINE;CLOSE commands. If any process
terminates without issuing the DSLINE;CLOSE, one will be implicitly
performed for the environment.

Only environments defined by DSLINE or REMOTE commands within a
process will be displayed by generic DSLINE commands. For example, if
you issue a DSLINE @;SHOW command from a process, only those
environments defined within the process will be displayed.

Several processes within a job or session can issue REMOTE commands
to the same remote session. However, this practice is not advised, since
the commands will be unpredictably interleaved depending on the order

40 Chapter 2

Virtual Terminal
Using DSLINE and REMOTE Within Programs

of execution of the processes. Also, if one process is already executing a
REMOTE command to a remote session, a REMOTE command to the same
remote session from another process will fail.

Concurrent execution of REMOTE commands by multiple processes
within the same job or session is not supported. This applies whether
the processes are communicating with the same or different remote
sessions. One process should complete execution of the REMOTE
command and return to local mode before a second process attempts
execution of a REMOTE command.

Chapter 2 41

Virtual Terminal
Reverse Virtual Terminal

Reverse Virtual Terminal
The Reverse Virtual Terminal (Reverse VT) service allows an
application program to receive information from and send information
to terminals located on other systems. All the systems involved must be
connected via NS 3000 connections (either NS 3000/V or NS 3000/iX).
The Reverse VT service must be initiated from the system on which the
application resides.

Two important points for Reverse VT are as follows:

• Reverse VT is supported for terminal type 10 only;

• The terminal must be available in order to be opened successfully by
the application. That is, no one can be logged on and no other
application can be accessing the terminal. Pressing [Return] , for
example, will make a terminal unavailable (the system is waiting for
a logon attempt) until the logon timer expires.

To gain access to a remote terminal via Reverse VT, you can specify the
VTERM option in the FILE command, which designates the terminal as a
remote device. Or the application program itself may include the VTERM
option in the device parameter of the FOPEN intrinsic which opens the
connection to the device. (For the syntax of the FILE command and the
FOPEN intrinsic, when used to access remote files and devices, see the
Remote File Access chapter of this manual.)

The format for the file equation is either:

FILE X=X: envID;DEV=# ldev;VTERM **8-character environment ID**

or

FILE X=X;DEV= envID#ldev;VTERM **8-character environment ID**

The format for the FOPEN device parameter is:

#ldev;VTERM [Return] **must be terminated by ASCII value
for carriage return**

In the FOPEN call, the location of the device may be specified either in
the formaldesignator parameter (X: envID) or in the device parameter
(envID#ldev;VTERM [Return]). If the FOPEN call indicates the location of
the file, you can specify the VTERM option in a file equation issued
directly on the remote terminal’s node:

ENV1#FILE X;DEV=# ldev;VTERM

The ldev parameter is either the device class name or the logical device
number of the remote terminal. If you specify a device class name
rather than the logical device number of a terminal, the first available
terminal in the device class table will be used.

42 Chapter 2

Virtual Terminal
Reverse Virtual Terminal

Because the VTERM option is specified, the application program
communicates with the remote terminal by way of the Virtual Terminal
rather than by way of Remote File Access. In both VT and RFA, the
remote terminals function as non-session I/O devices. With RFA, you
have to create a remote session on the node where the terminal resides.
With Reverse Virtual Terminal, however, the application program does
not establish a remote session on the node where the terminal resides.
The terminal users cannot call subsystems or issue commands to the
remote system. A privileged mode program can communicate with the
terminal in nowait mode by setting bit 4 in the FOPENaoption
parameter. The application program will not recognize a [BREAK] or
[CTRL]-Y issued from the remote terminal’s side of the connection.

Chapter 2 43

Virtual Terminal
Using the Remote Subsystem from a Batch Job

Using the Remote Subsystem from a Batch
Job
While in a batch job, you can establish a remote session by using the
DSLINE or REMOTE HELLO command. The job streamed may be similar
to the following (local and remote prompts are shown for clarity):

JOB USER.ACCOUNT
:DSLINE REMOTE2
:REMOTE HELLO RUSER.RACCOUNT
:REMOTE
#FILE OUT;DEV=LP
#BUILD WORK;DISC=50
#RUN USERPROG
#PURGE WORK
#:
:REMOTE BYE
:DSLINE;CLOSE
:EOJ

NOTE The remote # prompt is optional. It allows you to more easily identify
remote commands in a job stream.

Remember that once a remote session has been established, it interacts
with the job in the same way as it would interact with a terminal. If the
remote session detects an error, the error will be printed to $STDLIST .
If the error generates a user prompt, the next record in the job file is
read as the response (in the same manner as waiting for a character or
[Return] on a terminal). That record is then lost to the job.

44 Chapter 2

Virtual Terminal
BREAK

BREAK
Pressing [BREAK] while a remote command is being executed suspends
execution of the command and returns control to the environment from
which you issued the command. For example, if you enter a command
from a remote prompt, and then press [BREAK] , the system will return
your remote prompt. When an application program is suspended by
[BREAK] , the system will return the prompt that was last issued before
the program was run. For example (user input is bold, and the local and
remote prompts are shown for clarity):

: REMOTE EDITOR
.
.

[BREAK]
: SHOWME **returns to local prompt**

or

: REMOTE
ENV1#EDITOR

.

[BREAK]
:ENV1# SHOWME **returns to remote prompt**

NOTE The response of a remote system to a [BREAK] request may depend on
the time required to transmit the [BREAK] .

45

3 Remote File Access

The Remote File Access service (RFA) allows you to access remote files
and devices. By using RFA you can, among other things, create, open,
read, write, and close a file that resides on a remote HP 3000. Since the
remote “file” may be a peripheral device, you can, for example, read
from a tape mounted on a remote system or print local data on a remote
printer.The Remote File Access facility uses the same MPE/iX file
system intrinsics as are employed on a local system. The intrinsics are
sent to the remote environment and executed there. Your local program
can call these intrinsics explicitly or it can use the input/output
procedures specific to the language in which the program is written.
You can also access a remote file or device interactively. You will find
discussions of interactive and programmatic remote file access methods
later in this chapter.

Limitations Following are RFA limitations:

1. RFA does not permit nowait (asynchronous) I/O.

2. RFA only works with filenames in the traditional MPE namespace.
It does not work with filenames in the HFS (POSIX-compliant)
namespace. RFA does not recognize HFS directories or filenames
that contain slashes as directory diameters. For example, it will not
work properly with filenames such as “/FILEa,” or
“/usr/include/stdio.h.”

3. RFA only works with traditional MPE record-oriented files; that is
files with fixed (F), variable (V), or undefined (U) record types. It
does not work with files that have the POSIX-compliant, bytestream
(B) or directory (H) types.

46 Chapter 3

Remote File Access
RFA Compression

RFA Compression
Remote File Access (RFA) allows for data compression. RFA data
compression can provide faster data transfer, especially over a slow link
and when the file being remotely accessed has large records with
repeated characters.To invoke data compression for the RFA service,
specify the keyword, COMP, in the DSLINE command. The COMP keyword
compresses both NFT and RFA data associated to the remote
environment specified in the DSLINE command. For example, issuing
the command DSLINE NODE1;COMP allows for compression of all RFA
and NFT data to the remote node called NODE1.

To terminate data compression to the specified environment, specify the
keyword NOCOMP in the on of any new remote files opened as well as
prevents data compression of any future NFT data to the environment
specified in the DSLINE command. Files opened remotely while
compression is in effect for the environment remain in compressed
mode even after the DSLINE;NOCOMP command is issued.

The same algorithm is used for both RFA and NFT data compression.
The same algorithm is also used with DS Services compression: each
sequence of up to 64 consecutive repeated characters is compressed to
two bytes, and repeated blanks are compressed to one byte.

Without RFA compression enabled, the RFA service can transfer up to
29,900 bytes of data at one time. However, due to overhead associated
with managing a compressed data transfer, the RFA service with
compression enabled can transfer up to a maximum of 29,000 bytes of
data at one time between MPE/iX-based HP 3000s. For transfers
between an MPE/iX-based system and an MPE-V based system the
maximum amount of compressed data that can be transferred at one
time is 14,500 bytes.

RFA compression only compresses data transmitted with the FREAD,
FREADDIR, FREADBACKWARD, FWRITE, FWRITEDIR and FUDPATE
intrinsics. Therefore, RFA compression is not supported with the
Remote DataBase Access (RDBA) service.

RFA compression is currently only available on HP 3000 Series 900
systems with version B.00.05 or later of the NS 3000/iX Network
Services. If you request RFA compression of a file residing on a system
that does not support RFA compression (such as systems running
NS 3000/V software released prior to version A.00.12), RFA completes
the request without compressing the RFA data. No error or warning
messages are issued in this situation.

Chapter 3 47

Remote File Access
FILE Command

FILE Command
Specifies a formal designator that may be used to represent a remote
file or device in a subsequent command or intrinsic. (Also known as a
file equation.)

Syntax
[=*formaldesignator]
[=$NEWPASS]
[=$OLDPASS]

FILE formaldesignator [=$STDIN]
[=$STDINX]
[=$STDLIST]
[= filereferenc[: nodespec]{, filedomain]]

[;DEV=[[envname]#][device][, outpri][, numcopies]]
[;VTERM]
[;ENV= envfile[: nodespec]]
[; option] . . .

Use
Available In Session? Yes

In Job? Yes

In Break? Yes

Programmatically? Yes

Breakable? No

Capabilities? None

Parameters
formaldesignatorA name in the form file[. group[. account]][: nodespec]

that can be used to identify the file in a subsequent
command or intrinsic call. (For the meaning of nodespec,
see the next parameter explanation. MPE/iX currently
permits this extended formal designator, with a node
specification following a colon, in the FILE and RESET
commands, and in the FOPEN intrinsic.) If not equated
to another file designator, the formaldesignator contains
the actual name of a file. A *formaldesignator (with the
asterisk) is a “backreference” to a formal designator
defined in a previous FILE command.

nodespec Either an environment ID (specified in a previous
DSLINE or REMOTE command) or $BACK. This node
specification may appear in the file’s formal designator
or as an extension of an actual file reference. If an
environment ID appears in a file designation and in the
DEV= option, the attempt to open the file (for example,
via FOPEN) will result in an error.

48 Chapter 3

Remote File Access
FILE Command

$BACK indicates that the file resides one “hop” back
toward your local system. This is legal only if the FILE
command is issued in a remote session created by a
REMOTE HELLO. The $BACK specification is equivalent
to DEV=# (without an environment name). In either
case, the file is accessed through the existing session.

filereference The actual name of the file in the form:

file[/ lockword][. group[. account]].

filedomain The file domain: NEW or OLD or OLDTEMP.

envname An unqualified environment ID. The maximum length
is 8 alphanumeric characters. A previously defined
environment ID is permitted in the DEV= option, but
the domain and organization qualifiers are not
permitted and the name may not be longer than
8 characters.

device The logical device name or number of a device such as a
disc, tape, printer, or terminal. Default: DDISC. If the
DEV= option appears, it must be followed by at least one
parameter (which can be just #).

outpri The output priority requested for a spooled device file.
This a value between 1 (lowest priority) and 13 (highest
priority).

numcopies The number of copies requested for a spooled output
device file (maximum 127).

VTERM Specifies that the Reverse Virtual Terminal service
should be employed instead of Remote File Access. This
option applies only if the designated device is a remote
terminal. VTERM allows a local application program to
perform I/O to remote terminals located on systems
that support Reverse Virtual Terminal. (See “Reverse
Virtual Terminal” in the chapter on “Virtual Terminal”
and “Remote Terminal Access: VT vs. RFA” later in this
chapter.)

envfile A name representing a file containing laser printer
environment information, which controls printing
output formats. This name may be an actual file
reference or a formal file designator (preceded by an
asterisk).

option Any valid option in the MPE/iX FILE command. For
further information, see the MPE/iX Commands
Reference Manual.

Chapter 3 49

Remote File Access
FILE Command

Description
For Remote File Access purposes, the FILE command can be used to
specify a formal designator for a remote file or device. You can use this
formal designator to reference the remote file in a subsequent command
or intrinsic call. If an environment ID is used to indicate the location of
the file, it must be specified in a DSLINE or REMOTE command before
you can use RFA. $BACK or DEV=# indicates the node one “hop” closer to
your local system when the FILE command has been issued in a remote
session. (This may be the local system itself.)

Precautions When Using $BACK
When using the $BACK backreference with RFA, you need to check the
fully qualified node names of the machines on each side of the file
transfer. If the domain and organization names differ between the two
machines, problems may arise with use of $BACK.

To prevent a problem when using $BACK for a transfer between two
nodes whose domain and organization are different, configure the
remote machine (using NMMGR; NM capability required), so that its
network directory includes two entries:

1) localnode. localdomain. localorganization, and
2) localnode. remotedomain. remoteorganization.

See the example under “Interactive Access” later in this chapter.

50 Chapter 3

Remote File Access
RESET Command

RESET Command
Cancels file equations.

Syntax
RESET { formaldesignator }

{@ }]

Use
Available In Session? Yes

In Job? Yes

In Break? Yes

Programmatically? Yes

Breakable? No

Capabilities? None

Parameter
formaldesignatorA formal file name in the form:

file[. group[. account]][: nodespec], for which a FILE
command has previously been issued. The nodespec
portion is either an environment ID indicating the
location of the file or $BACK. $BACK means that the file
resides one “hop” back toward your local system (which
may be the local system itself).

@ Signifies all formal file designators specified in all FILE
commands previously issued in this session or job.

Description
The RESET command resets a formal file designator to its original
meaning, cancelling any FILE command that has been issued for this
formal designator earlier in this session or job.

Chapter 3 51

Remote File Access
Interactive Access

Interactive Access
In order to access a remote file or device interactively, you must first
issue a FILE command that specifies the remote location of the file.
However, you cannot indicate the location directly in the MPE/iX
command or subsystem command that accesses the file.

Example 1

Let’s say that you wish to print a text file named DOCUMENT on a line
printer connected to a remote HP 3000 computer. You are editing the
text file on your local system. After defining an environment on the
remote node, you can issue a local FILE command at the MPE/iX
prompt that designates the line printer as a remote device and specifies
the environment in which it exists. You must also log on to the remote
node:

DSLINE NIKOLAI
FILE REMPRINT;DEV = NIKOLAI#LP
REMOTE HELLO NSUSER.NSACCT

You can then send your finished TDP file to the remote line printer as
follows. The local MPE/iX and TDP prompts are shown, and user input
is underlined for clarity.

:RUN TDP.PUB.SYS
/ FINAL FROM DOCUMENT TO *REMPRINT

Example 2

DSLINE NIKOLAI
REMOTE HELLO USER.ACCT
FILE SOURCE=XYZ:NIKOLAI
PASCAL *SOURCE

You may want to compile a remote Pascal source file on your local
system. This is how you can do it from the MPE/iX prompt:

Example 3

Let’s assume that you have created a session on a remote node by
typing at the MPE/iX prompt:

DSLINE NIKOLAI
REMOTE HELLO USER.ACCT

In order to access a file on your local node, you may use the $BACK
specification. Here’s an example of that method. The local and remote
MPE/iX prompts are shown, and user input is underlined for clarity.

:REMOTE
NIKOLAI# FILE SOURCE=XYZ:$BACK
NIKOLAI# PASCAL *SOURCE

Example 4

A problem may occur when using $BACK for a transfer between two
nodes whose domains and organizations are different. To eliminate a
problem with the use of $BACK when a transfer is being made between

52 Chapter 3

Remote File Access
Interactive Access

two nodes whose domains and organizations are different: configure the
remote machine (using NMMGR; NM capability required), so that its
network directory includes two entries:

1) localnode.localdomain.localorganization, and
2) localnode.remotedomain.remoteorganization.

For example, if you were to issue a DSLINE from node A.LAB.CND to
node B.SJ.CA , you would have to add the following entries to the
network directory of node B.SJ.CA :

A.LAB.CND
A.SJ.CA

Chapter 3 53

Remote File Access
RFA Programmatic Access

RFA Programmatic Access
Once an environment has been established on the remote node, a local
application program can access remote files by calling standard MPE/iX
file system intrinsics (or by using the input/output procedures specific
to the language in which the program is written). If a FILE command
specifying a formal designator for a remote file or device has been
issued, an FOPEN call in the local program can use this formal
designator in its formaldesignator parameter. For example:

:FILE X=X:NODEB
.
.
>
FOPNE (X,...);

A language-specific I/O procedure can also reference the file by means
of this formaldesignator.

In Pascal, the file name used in the program can include the nodespec as
follows:

OPEN (X, ‘X:NODEB’);

In the Pascal example, the file equation is not needed. Most
language-specific file open statements do not permit a nodespec and
must use a preceding FILE command.

If a FILE command has not been issued for the remote file, you must
specify the location of the file in the FOPEN call, either in the
formaldesignator parameter or in the device parameter (not both).
(Currently, only in Pascal can you use the extended formal designator,
with location, in a non-intrinsic I/O procedure.) These are the two
possibilities:

• formaldesignator: file[/ lockword][. group[. account]][: nodespec] ,
where nodespec is an environment ID or $BACK, as defined for a FILE
command;

• device: [envname]#[device] , where envname is an 8-character (or
shorter) string as defined for a FILE command.

For example:

FOPEN (X.NODEB,...)
or
FOPEN (X,...,NODEB#,...);

You can also use a file equation to override the location indicated in
your program (FILE command parameters override FOPEN
parameters). For example, the following sequence opens a file on
NODEC:

54 Chapter 3

Remote File Access
RFA Programmatic Access

:FILE X:NODEB=X:NODEC
.
.
.
FOPEN 9X:NODEB,...):

You can call the MPE/iX FFILEINFO intrinsic to retrieve information
about a remote file. In the FFILEINFO intrinsic, ITEM 61 returns the
environment ID of a remote file’s location — over an NS link. If the file
is located on your local system, ITEM 61 returns a blank. The condition
codes for the file system intrinsics retain their normal meanings.
Network connection errors return a CCL condition code. If such an
error occurs, you can call the MPE/iX FCHECK intrinsic to determine the
source of the error. File System error codes apply to the remote file. You
can also call the MPE/iX PRINTFILEINFO intrinsic to display the status
of the remote file.

NOTE To ensure that the formal designator representing a remote file is
syntactically correct, you should always call the FPARSE intrinsic
within your program. This intrinsic is documented later in this chapter.
For further information on MPE/iX file system intrinsics, including
FOPEN, FPARSE, IOWAIT, and IODONTWAIT, see the MPE/iX Intrinsics
Reference Manual.

Chapter 3 55

Remote File Access
FPARSC Intrinsic

FPARSC Intrinsic
Parses a file designator and determines whether it is syntactically
correct.

Syntax
FPARSE (string, result[, items][,vectors])

Parameters
string (input) Byte array, by reference. The file designator that is

to be parsed. The string can be terminated by any
non-alphanumeric character except a slash, period,
colon, underscore, or dash (/, ., :, _, -).

result (output) Array of two 16-bit integers, by reference. A value
indicating the result of the parse, returned in the first
16-bit word. (The second 16 bits are reserved.) If the
value is positive, the file string is syntactically correct
and the value indicates the type of file reference being
made:

• 0 = regular formal designator

• 1 = back reference (first character is *)

• 2 = system file (first character is $)

A negative value represents the error code returned.
The error messages are listed in the NS 3000/iX Error
Messages Reference Manual.

items (input) Array of 16-bit integers, by reference. An array of item
codes representing portions of the file string. The item
codes (except for 0) may be included in any order; the
same order is followed in the output vectors array. Item
code 0 indicates the end of the items array.

The item codes have the following definitions:

0 = indicateds end of this array
1 = file name
2 = lockwood
3 = group name
4 = account name
5 = environment ID

Note that an initial $ is considered part of the file name
portion, while * is not.

56 Chapter 3

Remote File Access
FPARSC Intrinsic

vectors (output) Array of 16-bit integers, by reference. Gives offset and
length information that indicates the parse of the file
string. Each element of the array is a 16-bit integer;
each pair of elements corresponds to a portion of the
string, in the same order as the items in the items array.
The first 16-bit integer of each pair is the byte offset of
the item (from the start of the string to the start of the
item), and the second 16-bit integer is the item’s length
in bytes. A zero value (in both 16-bit integers) means
that the item is not present in the file string.

For the last element of the vectors array, which
corresponds to item code 0 in the items array, the second
16-bit integer is the total length of the file string. The
first 16-bit integer of this element is zero unless the
result parameter indicates that the file is a system
file; in that case the value is the file’s default designator
type as defined for the FOPENfoptions parameter

0 = non-system filename
1 = $STDLIST
2 = $NEWPASS
3 = $OLDPASS
4 = $STDIN
5 = $STDINX
6 = $NULL

In case of a syntax error in the file designator string, the
first word of the first 16 bits of the vectors array returns
the byte offset of the invalid item in the string. The
second 16 bits will be zero.

Description
 The FPARSE intrinsic parses a file designator and indicates whether or
not the string is syntactically correct. You can employ this intrinsic to
check a formal designator representing a remote file before attempting
to open the file via FOPEN. The optional items and vectors arrays enable
you to acquire parsing information for the file designator, namely, the
length of each item and its position in the string. The possible items are
file name, lockword, group name, account name, and environment ID.
The environment ID is treated as a single item; it is not parsed into
environment name, domain, and organization.

Following are examples of the items (input) and vectors (output) arrays.
Remember that the order of entries in the vectors array corresponds to
the (arbitrary) order of items in the items array. Also, the last pair of
entries of the vectors array has a different meaning from that of the
other pairs: the second 16 bits gives the total length of the file string,
and the first 16 bits gives a system file code when applicable.

In the first example the file string is:
FILENAME/LOCKWORD.GROUP.ACCOUNT:CASH.ACCTNG.FINANCE.

Chapter 3 57

Remote File Access
FPARSC Intrinsic

Example 1

In the second example, the file string is *FILENAME:CASH.

Example 2

In the third example, the file string is $OLDPASS.

Example 3

items Array (item code) Vectors Array (offset, length)

1 0, 8

5 32, 19

3 18, 5

4 24, 7

2 9, 8

0 0.51

items Array (item code) Vectors Array (offset, length)

1 1, 8

2 0, 0

3 0, 0

4 0, 0

5 10, 4

0 0.15

items Array (item code) Vectors Array (offset, length)

1 0, 8

2 0, 0

3 0, 0

4 0, 0

5 0, 0

0 3, 8

58 Chapter 3

Remote File Access
Example RFA Program

Example RFA Program
What follows is a Pascal program that writes some test data to a remote
file, reads the data back from the remote file, and sends the received
data to a remote printer to be printed. An environment has been
established on the remote node. Prior FILE commands have been
issued for the formal file designators representing the remote disk file
and remote printer. These file equations specify the remote location of
the files.

$standard_level 'hp3000'$

$uslinit$

{**********************************}

{Note: issue file equations such as}

{ :file remfile=remfile:rodan}

{ and}

(:file remprint;dev=rodan#lp}

{before running this program}

{**********************************}

program rfaprog(remfile,remprint,output);

type

teststring = packed array [1..72] of char;

smallint = -32768..32767;

var

remfile : text;

remprint : text;

i : integer;

test1 : teststring;

test2 : teststring;

begin {program rfaprog}

{open remote disc file}

writeln('Opening remote disc file');

rewrite (remfile);

{write test data to remote file}

test1: = 'Remote File Access test';

for i: = 1 to 9 do

writeln (remfile,test1);

{open remote line printer as devicefile}

writeln('Opening remote LP file');

reset (remfile);

{read each record from remote file, then print each record on remote printer}

rewrite (remprint);

Chapter 3 59

Remote File Access
Example RFA Program

for i := 1 to 9

begin

readln (remfile,test2);

writeln (remprint,test2);

{pick up listing on remote line printer and check output}

end;

end {program rfaprog}. {remote files/devices closed automatically}

60 Chapter 3

Remote File Access
Remote Terminal Access: VT vs. RFA

Remote Terminal Access: VT vs. RFA
Both VT and RFA can be used to access remote terminals. In either
case, a FILE command or FOPEN call must indicate that the file in
question is actually a remote terminal. If you specify the VTERM option
in the FILE command or the device parameter of the FOPEN call, the
terminal will be accessed through Reverse VT rather than RFA. In both
cases the remote terminal functions as a non-session I/O device. If the
remote terminal is accessed through Reverse VT, you do not establish a
session on the system to which the terminal is attached.

Chapter 3 61

Remote File Access
RFA/RDBA Automatic logon

RFA/RDBA Automatic logon
A REMOTE HELLO is no longer necessary before using RFA. This is
useful if your system does not support the Virtual Terminal service.

Overview
RFA requires a remote session when accessing or creating remote files
to provide the file system security of the remote user. This session is
referred to as an “environment.” An environment is identified by either
a DSLINE environment ID that refers to a VT session, or by a logon string
that automatically creates a remote session. RFA will use an existing
session established by VT before a session is automatically logged on. If
a session already exists, and a logon string is specified, the logon string
will be ignored. The user is responsible for supplying RFA with an
environment to operate within.

How to Use the Automatic Logon Feature
RFA automatically creates its session by using the logon sequence
specified in the LOGON option of the DSLINE command. At the MPE/iX
prompt, type:

DSLINE nodename; LOGON=user. acct, group

If a remote session does not exist, and a DSLINE LOGON string has been
specified, then this logon string will be used to automatically log on a
remote session for an RFA FOPEN. Whenever RFA logs on a remote
session, it will also log it off after all files in that session have been
closed.

Remote Hello After RFA Automatic Logon
One may still establish a remote VT session using a common DSLINE
environment after RFA has automatically logged on its own remote
session under the same DSLINE environment. VT commands will not be
executed under a session created automatically by RFA. A session
created automatically by RFA will be recognized by VT. All RFA will be
performed under RFA’s session and all VT will be performed
independently under the VT session. Since these two sessions are
independent, they may be established under different user/account
names.

RFA/RDBA Autologon Example
Suppose you were to issue the command DSLINE NODE1;LOGON=
user1.acct1, and then open a remote file on NODE1. The FOPEN logs on a
remote session on NODE1 under user1.acct1.

62 Chapter 3

Remote File Access
RFA/RDBA Automatic logon

With the remote file still open, issue a REMOTE:NODE1 HELLO
user2.acct2 to log on a VT session. The remote session for VT will be
completely independent of the remote session for RFA even though both
sessions are operating under the same DSLINE environment. All VT
commands will be executed under user2.acct2. All RFA intrinsics
(including new FOPENs) will be under user1.acct1. This will continue
until the last remote file on the NODE1 environment is closed.

When the last file is closed, RFA’s remote session for user1.acct1 will
automatically be logged off. The VT session for user2.acct2 will remain
intact. At this point any following FOPENs on NODE1 will be performed
under the existing VT session user2.acct2, not user1.acct1. This is because
an existing session is used before a new session is automatically logged
on.

To open files under user1.acct1 again, the VT session on NODE1 would
have to be logged off so that subsequent FOPEN to NODE1 would use
RFA’s Automatic Logon feature.

System Compatibility
The RFA Automatic Logon feature will not work unless both systems
support it. If one attempts to automatically log on to a system that does
not support RFA Automatic Logon, the FOPEN call will return FSERR
227 .

63

4 Remote Database Access

Remote Database Access (RDBA) is a Network Service in which you use
TurboIMAGE/3000 intrinsics and utilities to access and update
TurboIMAGE data bases located on remote HP 3000s. TurboIMAGE is
a Hewlett-Packard database management system. TurboIMAGE
intrinsics are sent to the remote node and executed in the remote
environment. The database must reside on an HP 3000 (MPE V or
MPE/iX based) since other IMAGE products are not fully compatible
with TurboIMAGE/iX. The database must also be located entirely on a
single node and cannot be distributed over several nodes.

64 Chapter 4

Remote Database Access
RDBA Access Methods

RDBA Access Methods
There are three ways to open a remote TurboIMAGE database within a
program:

• Identify the database as a remote file in a prior FILE command; for
example, FILE dbname=dbname:envID;

• Use the COMMAND intrinsic to include the FILE command
information in your program

• Create a database-access file that supplies the command, a DSLINE
command, and a REMOTE HELLO command.

When the file specified in a FILE command is a remote database, the
syntax (for the first two methods) is the same as it is for a remote file;
you can specify the location of the database in the formal or actual
designator or in the DEV= option. When using the third method,
creating a database-access file, the FILE command may specify a
remote database location only in the DEV= option — not in the formal or
actual designator. (For details see the description of the FILE command
in the “Remote File Access” chapter of this manual.)

With all three access methods you must call the DBOPEN intrinsic
within the program to open the remote database. In the first two cases
you call DBOPEN with the database root file name supplied in the FILE
command. In the third case you use the database-access file name.

In the first case a user needs to know the location of the database. The
application program that accesses the database does not need to have
this information. The second case embeds the information in the
application and frees the user from the responsibility of knowing the
location. The third case insulates both the user and the application
program from the information.

The COMMAND intrinsic allows a program to execute MPE/iX commands.
The first parameter of the intrinsic is a string of characters giving a
specific command. You can issue a series of COMMAND calls within your
program to establish a remote session (DSLINE and REMOTE HELLO
commands) and identify the remote database (FILE command). You can
then call DBOPEN to open the database. When you have called DBCLOSE
to close the remote database, you must call COMMAND again to execute
REMOTE BYE and DSLINE;CLOSE commands. See the MPE/iX
Intrinsics Reference Manual for a detailed explanation of the COMMAND
intrinsic.

A database-access file contains a FILE command, a DSLINE command,
and one or more remote logon commands. When you call DBOPEN with
the name of this file, the remote session is established and the remote
database is opened. You can then call other TurboIMAGE intrinsics to
perform the desired operations upon the database.

Chapter 4 65

Remote Database Access
RDBA Access Methods

The database-access file has the following general format:

FILE dbname;DEV=envId#
DSLINE envid
locuser.locacct=HELLO remuser.remacct

More than one local/remote logon sequence equation may be included in
the file. When you call DBOPEN with the database-access file name, a
remote session is established for the remote user that has been
“equated” with your local logon name. (An @ sign in the remote user,
account, or group name position on the right side of an equation is
automatically replaced by the corresponding local name on the left. An
@ sign in a local name position on the left is replaced by the name you
actually used when you logged on.)

Under the database-access file method, the remote session is released
automatically when the database is closed (with or without an explicit
DBCLOSE call).

Before you can reference a database-access file in a program, you have
to ACTIVATE it by means of the DBUTIL utility program. At the MPE/iX
prompt, type the following command (user input is bold):

RUN DBUTIL.PUB.SYS
>>ACTIVATE dbaccessfilename

VERIFICATION FOLLOWS:
FILE COMMAND: LOOKS GOOD
DSLINE COMMAND: LOOKS GOOD
HELLO COMMAND: LOOKS GOOD

ACTIVATED
>>EXIT

DBUTIL checks to see that the file has a file code of zero, is an
unnumbered, ASCII file, has a record length not greater than 128
characters, and contains at least three records. In order to edit the
database-access file or prevent programs from referencing it, you must
issue a DEACTIVATE command within the DBUTIL program.

One of the benefits of the database-access file method is that it restricts
who may use the database and thereby enhances security. (The
contents of the database-access file itself can be hidden from the user
who simply runs the application program.) Under this method,
however, you can access only one database in any one remote session.
Under the other two methods, you can access more than one database
by means of multiple FILE commands.

You can use QUERY, Hewlett-Packard’s interactive database inquiry
facility, to retrieve information from a remote database. You could run
QUERY.PUB.SYS locally, specifying either the database name itself or
the appropriate database-access file name. If you use the actual
database name, you must have previously established a session on the
remote node and issued a FILE command for the remote database.

It is more efficient to run QUERY directly in the remote environment. At
the MPE/iX prompt, type the following commands (user input bold):

66 Chapter 4

Remote Database Access
RDBA Access Methods

DSLINE LEO
REMOTE HELLO NSUSER.NSACCT
REMOTE RUN QUERY.PUB.SYS
>DATA-BASE=databasename>

For more information on TurboIMAGE and QUERY, see the
TurboIMAGE Data Base Management System Reference Manual,
especially the sections entitled “Using a Remote Database;” and also
see the QUERY/3000 Reference Manual.

67

5 Network File Transfer

Network File Transfer (NFT) is the network service that copies disk
files. The files may be copied to the same computer or from one
computer in a network to another. You can use Network File Transfer to
transfer a file between any two systems in an NS 3000/iX network, even
if both of those systems are remote from your own. You can also use it
for purely local transfers on a single HP 3000.

This chapter explains how to use the interactive command DSCOPY to
interactively invoke NFT, and the use of intrinsics that enable NFT to
be invoked from within a program. The first part of this chapter
explains how to use NFT to interactively copy files. The second part,
“Programmatic NFT”, describes how to use intrinsics to invoke NFT
from within a program.

Limitations

Following are NFT limitations:

1. NFT only works with filenames in the traditional MPE namespace.
It does not work with filenames in the HFS (POSIX-compliant)
namespace. NFT does not recognize HFS directories or filenames
that contain slashes as directory delimiters. For example, it will not
work properly with filenames such as “./FILEa ,” or
“/usr/include/stdio.h ”.

2. NFT only works with traditional MPE record-oriented files; that is
files with fixed (F), variable (V), or undefined (U) record types. It
does not work with files that have the POSIX-compliant, bytestream
(B) or directory (H) types.

68 Chapter 5

Network File Transfer
Three-Node Model

Three-Node Model
NFT transfers files according to the model shown in Figure 5-1. There
are three logical participants in the file transfer activity: initiator,
producer, and consumer. This model is called the three-node model.
According to the three-node model, the initiator, located on the system
where the transfer originated, receives the request and initiates the
transfer. The producer, located on the same node as the source file,
accesses that file and “produces” the data that is to be transferred. The
consumer, residing on the same node as the target file, “consumes” the
data and writes it into the target file. All three participants are logically
distinct. All three participants can be on separate nodes; the transfer
request does not have to originate from either the source or the target
node. It is also possible for any two or all three participants to reside on
the same node.

Figure 5-1 Three-Node Model

This method, coupled with the ability to include a logon command
string as part of the DSCOPY command, provides considerable flexibility.
Because the initiation of the transfer request is independent of the
producing and consuming functions, you don’t have to explicitly log on
to a remote source or target node. If you supply an appropriate logon
sequence in the transfer request or in a prior DSLINE command, NFT
will create a session on a remote source or target node if one does not
exist already. If all the systems involved (as many as three) can
establish NS-level connections with each other, you can transfer a file
between any two of these nodes, and you can initiate the transfer from
any of them.

Chapter 5 69

Network File Transfer
File Copying Formats

File Copying Formats
NFT uses two file copying formats: Transparent Format and
Interchange Format.

Transparent Format
When files are copied from a source file node that is the same type of
computer as the target file node (for example, if they are both HP 3000s
or HP 9000s), the files are copied using a format called Transparent
Format. Transparent Format does not alter a file’s attributes, but
simply copies the file. It should be used when you want a low-overhead,
maximum-speed file copy process between systems of the same type.

Interchange Format
When two computers are of different types (for example, one is an
HP 9000 running a release prior to HP-UX 10.0 and one is an HP 3000),
files copied from one to the other must be converted to Interchange
Format (Figure 5-2). Interchange Format consists of a set of attributes
that describe a file in a standard way so that it can be understood by
any NS system. Interchange Format is invoked by default whenever
you use NFT to copy a file residing on one type of system to a system of
another type. You can also use a DSCOPY command option (INT) to
explicitly specify that a file be converted to Interchange Format. In
addition, several options automatically invoke Interchange Format.
These options are described in the DSCOPY syntax description later in
this chapter.

Figure 5-2 Interchange Format

70 Chapter 5

Network File Transfer
File Copying Formats

When a file is copied using Interchange Format, it is translated into
Interchange Format at the source system before it is copied to the
target system. At the target system, it is mapped from Interchange
Format into the target system’s file format. Interchange Format’s
standard file attributes enable the target computer to map the source
file into a target file with attributes that match the source file’s as
closely as possible.

You can use the options that invoke Interchange Format to give a target
file a different set of attributes from those that characterized the source
file from which it was copied, even if the files are being transferred
between computer systems of the same type. For example, by copying a
file composed of variable length records and using the FIX option, you
can create a file containing the same information, but formatted into
fixed-length records. Other options (described in detail later in this
chapter) can be used to create duplicate files that differ from their
source files in record size, length, type of data and other file
characteristics.

Data Interpretation
Although the purpose of Interchange Format is to create an accessible
target file on different kinds of systems, it does not ensure that the
target file will be usable. This is because Interchange Format changes a
file’s attributes only; it does not perform data interpretation.
Interchange Format can create an unusable target file if the target
system has a different representation for the data present in the source
file.

For example, if a file that contains floating point numbers is copied to a
different kind of computer, there is no guarantee that the target node
will be able to read the data as floating point. Consequently, the
usability of your target files must be determined by the applications
that use them.

Chapter 5 71

Network File Transfer
DSCOPY

DSCOPY
Transfers or copies a disc file from one node to another (or within a
single node).

Syntax
[sourcefile [sfileloc] [to [targetfile] [tfileloc][;opt]]]

DSCOPY [+[sfileloc] [to [tfileloc][;opt]. . .]
[+opt[;opt]...

Use
Available In Session? Yes

In Job? Yes

In Break? No

Programmatically? No

Breakable? No

Capabilities? None

Parameters
sourcefile The name of the file to be transferred, optionally

including qualifiers.

Specify HP 3000 source files as follows:

filename[/ lockword][. groupname.[accountname]]

The sourcefile may be a formal designator defined in a
prior file equation. If the sourcefile is a formal designator
defined in a prior file equation, then the sourcefile must
be preceded by an asterisk.

The sourcefile parameter may also specify a generic file
set, via MPE/iX “wildcard” characters “@”, “#”, or “?”.
See “Multiple Transfer” later in this chapter for more
information on generic file sets.

sfileloc A node specification for the source file, in the form:

[delim [location]] [[[logon]]]

where delim is either a colon (:) or a comma (,).

The location parameter is either a node name or a
previously defined environment ID. Logon must be a
valid logon sequence for the node in question, including
all necessary passwords. If specified, the logon is used
to create a temporary remote session on the node. Note
that brackets are required around the logon sequence.

72 Chapter 5

Network File Transfer
DSCOPY

Here are some syntactically correct examples of
HP 3000 source file location specifications:

:ENV1
,NODEA
,NODEA [NSUSER/PASSWD.NSACCT]
:NODEA
,ENV1[NSUSER.NSACCT]
:
:ENV1 []

If delim and location are omitted, then the default is the
global source file location specification or, if there is no
global specification currently in effect, the local node
name. (For an explanation of global specifications, see
“Using Global Specifications” later in this chapter.) If
delim appears without a location, the local node name is
used whether or not there is a global specification.

If you specify an individual or global logon, it will be
used to create a new session even if a session already
exists on the node in question (in the specified remote
environment). If the logon parameter and its
surrounding brackets are omitted, the default is the
global logon sequence. Or, if there is no global logon
currently in effect, and there is no current remote
session, the default is the logon sequence specified in a
prior DSLINE command for this remote environment (in
the LOGON= option). If you include the brackets, but
omit the logon, then a global logon specification is
ignored and the DSLINE logon specification (or existing
session if there is one) is used. The order of priority
(from high to low) is: logon specified here; global logon;
existing session; DSLINE logon.

In short, if you want to use an existing session or a
DSLINE logon, you should not include a logon in the
transfer specification. You should also clear any global
logon in effect or use empty brackets to cause the global
logon to be ignored. If you want a new (temporary)
session to be created for the transfer, regardless of
whether a session already exists, you should include a
valid logon in the transfer specification or in a global
specification.

to Either the word TO or a semicolon (;). If sfileloc ends
with a colon (: , not followed by a node name or
environment ID), you must use the semicolon (;) form.

targetfile The name of the file into which the source file will be
copied. For files being copied to an HP 3000 system,
specify the target file as follows:

filename[/ lockword][. groupname.[accountname]]

Chapter 5 73

Network File Transfer
DSCOPY

The targetfile may also be a formal file designator
defined in a prior file equation. If the targetfile is
referenced by a formal designator, the targetfile must be
preceded by an asterisk.

A file equation can also redirect the targetfile to the
temporary domain by specifying the disposition
directive “;TEMP” in the file equation. The default
disposition for the targetfile is the permanent domain.

NOTE If a file equation is used, it cannot reference the “;DEL ” option in the
disposition directive, or reference either the “;OLD”, “;OLDTEMP”, or
“;NEW” file domain options in the file equation. Use of these options will
result in an error.

A new HP 3000 target file is given a lockword if you
supply one in the targetfile parameter. For more
information on using lockwords, refer to the paragraph
on lockwords in the section called “Using DSCOPY”
later in this chapter.

If the source file uses special MPE/iX “wildcard”
characters to specify a generic file set, then the targetfile
parameter must be either omitted or included in the
following form:

@[. group[. account]]

Refer to “Multiple Transfer” later in this chapter for
details on using wildcard characters.

You can specify a KSAM file pair in the targetfile
parameter by enclosing the pair of names (separated by
a comma) in quotation marks.

Default: If the file name is omitted, the corresponding
sourcefile name and lockword is assumed. If group
and/or account names are omitted, corresponding
portions of the target node session are assumed. If the
specified target file name is the name of an already
existing file, DSCOPY asks you if you want to purge the
existing file. If you respond by typing N, DSCOPY
prompts you for an alternative target file name.

tfileloc A node specification for the target file, with the same
syntax and defaults as the sfileloc.

opt Any of the options described below can be used to
transfer files between HP 3000s on the same LAN.

74 Chapter 5

Network File Transfer
DSCOPY

NOTE The descriptions of the options listed below assume that the transfers
are between two HP 3000s (producer and consumer nodes) only. To
learn what defaults, options, and syntax to use to transfer files between
PCs and HP 3000s, refer to the User Guide for HP PC Network Services.

There is no limit to the number of options that you can specify for a
single DSCOPY request. Each option must be separated by a semicolon.
Some options conflict with each other. In Table 5-1, options grouped
together conflict. If you specify conflicting options in the same
invocation of the DSCOPY command, only the last option specified will
take precedence. For example, if you specify the ASC and BIN options in
the same file transfer request, only the option specified rightmost in the
command line will take effect.

Table 5-1 Conflicting DSCOPY Options

APP (append) Appends the source file to an existing
target file. An error condition will occur
if there is not enough file space
allocated to hold both the original and
appended files, source file type
attributes do not match target file
attributes, or the specified target file
does not exist. If not enough space
exists to hold both files, as much of the
source file as will fit will be appended to
the target file before an error message
is issued.

ASC (ASCII) Specifies that records contain ASCII
characters and that ASCII spaces (octal
020000 000040) will be used as
padding for fixed-length records.
transfers files using Interchange
Format. If the STRIP option is specified
when the ASC option is in effect,
DSCOPY will remove extra spaces from
the ends of records.

APP ASC

OVER BIN

REP

FIX SEQ

VAR DIR

Chapter 5 75

Network File Transfer
DSCOPY

If you do not specify this option, and if
the HP 3000 source file is ASCII, then
the HP 3000 target file will be ASCII.

BIN (binary) Specifies that records contain binary
information and that ASCII null
characters (all zeros) will be used as
padding when fixed-length records are
created.

BIN transfers files using Interchange
Format. BIN can be used with the
STRIP option to remove null padding
from the ends of records.

If you do not specify this option, and if
the HP 3000 source file is binary, then
the HP 3000 target file will be binary.

CHECKPT=
checkpt spec CHECKPT (along with RESTART) is used

to recover file transfers that have
prematurely aborted due to a transient
problem such as a link failure.

checkpt spec = [checkpoint interval]
[,[restart ID file]
[,[restart record]]]

The checkpoint interval is the time in
seconds between handshake sequences
from producer to consumer and back.
This is the maximum time that will be
lost if a transfer failure occurs and a
restart becomes necessary. The default
checkpoint interval is 300 seconds
(5 minutes).

The restart ID file is the file in your local
group and account where the restart ID
will be written by NFT. The file must
have fixed-length records. If you specify
a restart ID file that does not already
exist, NFT will create it. The restart ID
is an ASCII number that uniquely
identifies the file transfer. It must be
passed back to NFT with the RESTART
keyword to initiate a restart. If you do
not specify a restart ID file, then the
restart ID will only be written to
$STDLIST and will not be written to a
file.

76 Chapter 5

Network File Transfer
DSCOPY

The restart record is the record in the
restart ID file to which the restart ID will
be written. Note that this record will be
overwritten by NFT. The restart ID will
be the first 1 or 2 characters in the
record. The default is 0, the first record
in the file.

CLEAR Clears all global specifications
previously issued in the current
interactive DSCOPY session.

If you do not specify this option, global
specifications will remain in effect until
a conflicting option is specified globally
or CLEAR is specified. A previously
issued global specification can also be
overridden by a conflicting option for a
single file transfer.

COMP
(compress) Compresses contents of target file

during transmission. Compression
minimizes the space required to
represent sequences of repeated
characters. The data are decompressed
before they are written to the target
file. Note: COMP cannot be used for local
transfers, that is, to a target file on the
same node as the source file.

If you do not specify this option, NFT
will check to see if COMP has been
specified in a previous DSLINE
command for the target environment. If
not, copied files will not be compressed.

DIR (direct) Specifies that the target file will be
organized to allow direct access. Each
record in the source file will have its
logical record number sent along with
it so that target file records can be
accessed in the correct sequence. DIR
causes files to be copied using
Interchange Format.

NOTE Do not use DIR if the HP 3000 target file is to be variable (either
because VAR is in effect or because the source file records are variable
length and the FIX option is not in effect); this will cause an error to
occur.

Chapter 5 77

Network File Transfer
DSCOPY

If you do not specify this option, and if
the source file is a direct access file
(such as an RIO file), then the target
file will be a direct access file.

FCODE=
sourcefilecode Gives the file code for the source file. In

order to copy a privileged file (for
example, a TurboIMAGE data base),
you need to supply the appropriate
negative file code in this option. The
resulting target file will be given the
same file code. If a privileged file is
being copied, System Manager or
Privileged Mode capability is required
for the producer environment unless
the logon used for the producer
environment is the same as the logon
used when the file was created.

FIX (fixed) Specifies that the target file will be
composed of fixed-length records.
Record size can be specified using the
RSIZE option. If RSIZE is not specified,
target file records are the same length
as the maximum length record in the
source file. If the source file is binary or
the BIN option is in effect, variable
length records that are less than the
target record length will be padded
with ASCII nulls (zeros). If the source
file is ASCII or the ASC option is in
effect, variable length records that are
less than the target record length will
be padded with ASCII spaces (octal
020000 000040). FIX causes files to
be copied using Interchange Format.

If you do not specify this option, and if
the source file contains fixed-length
records, then the target files will
contain fixed-length records.

FSIZE= filesize Specifies the amount of space, in
records, to allocate for the target file. If
the target file is to have variable length
records, filesize is the number of
maximum size records to allocate.
(Record size or maximum record size

78 Chapter 5

Network File Transfer
DSCOPY

can be specified using the RSIZE
option.) FSIZE causes files to be copied
using Interchange Format.

If you do not specify this option, then
the target file length will be the same
as the source file length.

INT
(Interchange) Causes file or files to be copied using

Interchange Format. Files are
automatically copied using Interchange
Format if the producer and consumer
nodes are different kinds of computer
systems or if the APP, ASC, BIN , DIR,
FIX , FSIZE , RSIZE, SEQ, STRIP, or VAR
options are specified.

If you do not specify this option, files
will be copied using Transparent
Format.

MOVE Causes the source file to be purged
after a successful transfer. If you do not
specify this option, source files remain
intact at the source node.

OVER
(overwrite) Causes a copy of the source file to

overwrite an existing target file,
beginning with the first record. If the
source file is larger than the existing
target file, NFT will copy as much of
the source file as will fit in the existing
file space and will then return an error.
If the source file is smaller than the
target file, then the contents of the
existing file that extend beyond the end
of the copied source file will remain in
the target file. If the target file does not
exist, a new file will be created. The
attributes of the source and target files
must match, or DSCOPY will return an
error message.

If you do not specify this option,
existing target files will not be
overwritten.

QUIET Suppresses all display output about file
transfers except error messages.

Chapter 5 79

Network File Transfer
DSCOPY

If you do not specify this option,
DSCOPY will display information about
the success of the file transfer, such as
source and target file names and target
file lengths.

REP (replace) Causes an existing target file to be
purged and replaced by a copy of the
source file. If the target file does not
exist, a new file will be created.

If you do not specify this option,
existing target files will not be
replaced.

RESTART=
restart spec When used after a prior CHECKPT

option, RESTART initiates the restart of
a transfer. You must be logged on to the
same environment where you first
specified CHECKPT. You can only use
RESTART if both the source and target
nodes are HP 3000s that support
CHECKPT/RESTART. If this option is not
specified, a restart will not be
attempted.

Restart spec = restart ID or
restart ID file
[,[restart record]]

The restart ID is an ASCII number that
uniquely identifies a checkpointed
transfer. The restart ID is returned to
you when you first specify CHECKPT.

The restart ID file is a file in your local
group and account where the restart ID
was written by NFT when you specified
CHECKPT.

The restart record is the record in the
restart ID file where the restart ID was
written when you specified CHECKPT.
The default is 0, the first record in the
file.

RSIZE=
recordsize Specifies the length of target file

records (recordsize) in bytes. If the
target file is to consist of fixed-length
records, recordsize is the size of each
record. If the target file is to consist of
variable length records, recordsize

80 Chapter 5

Network File Transfer
DSCOPY

specifies the maximum size record
allowed in the file. If DSCOPY must
truncate records to adhere to the
specified recordsize, it will issue a
warning. RSIZE causes files to be
copied using Interchange Format.

If you do not specify this option, then
target-file records will be the same
length as source-file records.

SDEV=
source_device Names the disc device on the source

node from which the source file should
be obtained.

If you do not specify this option, the
disc device will be given the device
class name DISC in the source system’s
device I/O configuration file.

SEQ
(sequential) Causes the target file to be organized to

allow sequential access. Records in the
source file will be sent to the target
node contiguously. SEQ causes files to
be copied using Interchange Format.

If you do not specify this option, and if
the source file is a sequential access
file, then the target file will be a
sequential access file.

SHOW Displays global specifications currently
in effect (not including specifications
specified after SHOW on the same line).

STRIP Removes padding (extra bytes used to
create records of all the same length)
from the ends of records when creating
the target file.

You can use STRIP to create variable
length records from fixed-length
records. If the source file is a fixed
ASCII file, spaces are removed. If the
source file is a fixed binary file, nulls
are removed. STRIP is invalid when
used with a source file that has
variable records. If you do not specify
this option, then any padding that
exists in the source file is copied as is to
the target file.

Chapter 5 81

Network File Transfer
DSCOPY

TDEV=
target_device Names the disc device on the target

node to which the target file should be
written. You can specify alternate disc
devices for a KSAM file pair in the
TDEV= option by enclosing a pair of
device names, separated by a comma,
in quotation marks. If you do not
specify this option, then the disc device
will be given the device class name
DISC in the target system’s device I/O
configuration file.

VAR (variable) Specifies that target file records will be
of variable length. You can specify the
maximum record size allowed in the
target file with the RSIZE option. VAR
causes files to be copied using
Interchange Format.

NOTE Do not use VAR in conjunction with the DIR option if the target node is
an HP 3000; this will cause an error to occur. If you do not specify this
option, and the source file records are of variable length, then the target
file records will be of variable length.

+opt Indicates that the following opt specifications are
global. All specifications except file names may be made
global. These remain in effect until a new, conflicting
global specification is issued or the CLEAR option is
used. Individual, non-global specifications override
global specs for one transfer only. Global specifications
are cleared when the DSCOPY subsystem terminates.

NOTE If you specify an invalid or unsupported keyword as a global option,
NFT ignores any options that follow.

82 Chapter 5

Network File Transfer
Summary of DSCOPY Options

Summary of DSCOPY Options
Table 5-2 summarizes the available DSCOPY options. Refer to the
syntax description earlier in this chapter for a full description of the
effects of each option listed.

Table 5-2 DSCOPY Options Summary

Option Name Description

APP * Appends source file to existing file specified as target file.

ASC * Causes target file to contain ASCII data.

BIN * Causes target file to contain binary data.

CHECKPT =checkpoint spec Used (along with RESTART to recover file transfers that
have aborted.

CLEAR Removes previously specified global specifications.

COMP Compresses contents of target file during transmission.

DIR * Causes target file to be a direct access file.

FCODE = sourcefilecode Specifies file code needed to open source file; gives same
file code to target file.

FIX * Causes target file to contain fixed length records.

FSIZE = filesize* Specifies size of target file in records.

INT * Causes files to be copied using Interchange Format.

MOVE Causes source file to be purged after file transfer.

OVER Causes copied file to overwrite file that is specified as
target file.

QUIET Suppresses all display output except error messages.

REP Causes source file to replace specified target file.
Previously existing file of same name as target file is
purged.

RESTART = restartspec Initiates the restart of a transfer that was previously
checkpointed.

RSIZE = recordsize * Specifies length (in bytes) of target file records.

SDEV = source_device Specifies disc device on which source file resides.

SEQ * Causes target to be organized to allow sequential access.

SHOW Displays global specifications in effect.

Chapter 5 83

Network File Transfer
Summary of DSCOPY Options

STRIP * Removes padding from records in target file.

TDEV = target_device Specifies disc device to which target file will be written.

VAR * Causes target file to be composed of variable length
records

Note: * indicates option invokes Interchange Format

Option Name Description

84 Chapter 5

Network File Transfer
Using DSCOPY

Using DSCOPY
The following notes describe the function of DSCOPY and explain its
operation in special situations:

Required Access. Read and lock access is required for any file you
want to copy with DSCOPY. If you do not have both read and lock access
to the file, DSCOPY will issue a file security violation error message.

Interactive Use. When you enter a DSCOPY command, NFT becomes
interactive and displays the prompt DSCOPY. Once the prompt appears,
you can issue additional file transfer requests by specifying only source
and target filenames and additional options; there is no need to exit the
DSCOPY subsystem before requesting additional file transfers.

File Specification Defaults. At NS 3000/iX nodes, the logon and file
name specifications are identical to those you usually use at your
HP 3000. If a group name is included in the source file specification and
the account name is omitted, NFT searches for the group in the logon
account. If only a file name is specified (that is, group and account
names are omitted) NFT uses the logon group and account.

Special Characters in Logons, File Names or Node Names. If a
file name, node name, or logon contains characters that have special
significance to either NFT or the source or target node operating
systems, you can enclose the name or logon string in quotation marks
(“ ”) so that the name or logon is accepted.

Continuation Lines. If a DSCOPY command is too long to fit on a
single line, you can continue to type; DSCOPY will automatically
continue the command on the following line. You can also type an
ampersand (&) followed by [Return] at the end of a line; this causes the
prompt continue to appear, after which you can type the rest of the
command.

On-Line HELP. To obtain an on-line description of the DSCOPY
command, type ? to the right of the prompt DSCOPY.

Terminating DSCOPY. To terminate the DSCOPY subsystem, type
either (1) // [Return] or (2) [CTRL]-Y when a file transfer is not in
progress. (Typing [CTRL]-Y when a file transfer is in progress interrupts
the file transfer, but does not terminate the subsystem unless the
transfer requests originate from a command file.) From a job stream
(batch job), the characters // must be used to terminate DSCOPY.

Interrupting a File Transfer. To interrupt a file transfer that is in
progress, type [CTRL]-Y . Refer to “Interrupting a File Transfer” later in
this chapter for details.

Chapter 5 85

Network File Transfer
Using DSCOPY

Lockwords. If the sourcefile has a lockword, and the target file is
implied, then the targetfile will get the same lockword as the sourcefile.
If a targetfile already exists, and you want to give it a new lockword,
you must specify the targetfile and its lockword.

Message Files. MPE/iX message files must be transferred in
Transparent Format. They will not be copied if Interchange Format is
used; thus they can be copied to HP 3000 systems only.

KSAM Files. KSAM file pairs (data files and corresponding key files)
can be transferred together as pairs using Transparent Format. Files
must be transferred one at a time if Interchange Format is used. (Note:
Because Interchange Format causes file characteristics to be lost,
KSAM files might be unusable if copied using Interchange Mode.)
Using Transparent Format, KSAM file pairs can be specified as source
or target files in two ways, as follows:

• Specify only the name of the data file. In this case, NFT will create
both data and target key files; the key file copy will be the same
name as the data file copy with the letter “K” appended to it.

• Specify both data and key files, using the following syntax:

“datafilename,keyfilename”

The names of the data and key files must be enclosed in quotes.

If either of the target file names specified in a KSAM file transfer
already exists, DSCOPY will report an error. To avoid this, you can use
the REP option so that the existing file is replaced by the contents of the
source file. However, specifying REP will cause to purge the existing
KSAM file on the target node before the new file replaces it. If a KSAM
file (either data or key file) were open when a system failure occurred,
attempts to copy the file with DSCOPY will normally be unsuccessful.
However, if the same file or files is copied in a generic transfer (using
wildcard characters), no error message will appear, but the target file
will be unusable. Refer to the KSAM/3000 Reference Manual for
recovery procedures that can be used to make the KSAM files (both
source and target) usable.

Requesting Transfers from Files. DSCOPY requests can be issued
from command files as well as being issued directly from the keyboard.
A command file is an unnumbered text file that contains one or more
file transfer requests. Each request in the file must consist of source
and target file specifications as well as any desired options. Do not
include the word “DSCOPY” in the file.

To issue a DSCOPY request from within a file, you must first issue a file
equation equating the formal designator DSCOPYI to the file containing
the request.

86 Chapter 5

Network File Transfer
Using DSCOPY

For example, to have NFT read file transfer requests from the file
FILE1 , at the MPE/iX prompt, enter:

FILE DSCOPYI=FILE1

followed by

DSCOPY

Transfer requests are normally read from the file DSCOPYI, which by
default is set to $STDIN(X) — the user’s terminal in an interactive
session.

NOTE If any global specification is specified in the DSCOPY command line,
DSCOPY will ignore the file equation for DSCOPYI and subsequently
enter the DSCOPY subsystem.

Variable Length Records. If a file containing variable length records
is copied to an HP 3000 using Interchange Format, the space allocated
for the file will be 4 bytes less than the length of the source file rounded
up to the nearest multiple of 256 bytes. On an HP 3000, direct access of
variable length record files is not allowed. As a result, DSCOPY will
return an error if you specify the DIR and VAR options in the same
command or if the source file has variable length records and the DIR
option is specified but the FIX option is not in effect.

RIO (Relative I/O) Files. DSCOPY will copy RIO files as direct files
automatically; you do not need to specify the DIR option to enable direct
access to the resulting target file. However, an RIO file will retain its
RIO characteristic only if copied to another HP 3000.

Entering MPE/iX Commands. You can enter MPE/iX commands
after the DSCOPY prompt by typing a colon (:) followed by the command
and [Return] .

Job Streams. If the DSCOPY command is used in a job stream (batch
job), other MPE/iX commands must not be inserted in the job stream
between the DSCOPY command and the // that terminates the DSCOPY
subsystem.

Multiple Transfer
Using special “wildcard” characters, you can tell NFT to transfer a
generic set of HP 3000 files to another HP 3000. For MPE files (on the
HP 3000) these wildcard characters are the same ones used within the
MPE/iX file system:

@ — stands for zero or more alphanumeric characters;

— stands for one numeric character;

? — stands for one alphanumeric character.

Chapter 5 87

Network File Transfer
Using DSCOPY

When used with DSCOPY, wildcard characters can be used to specify
HP 3000 file names only; they cannot be used to specify group or
account names. The characters # and ? can be used to specify source file
names only. The character @ can be used to specify both source and
target file names, but can be used only once, with no other characters
surrounding it, to indicate a set of target file names. If wildcards are
used to transfer more than one file, and the destination file group and
account is explicitly specified, the @ character must be used to specify
target file names.

For example, the source file designation E@.PUB.SYS can be used to
copy all files in the PUB group of the SYS account whose names begin
with E. The source files will be copied to corresponding target files
having the same file names as the source files, in the logon group and
account. To transfer the same files to a group or account other than the
logon group and account, use the @ character to specify the destination
file set, as follows: @.group.account. For example, if while logged on to
another account you decided to copy the files designated by
E@.PUB.SYS to the TST group of the IND account, you could specify the
destination file set as @.TST.IND . The resulting target files would have
the same names as their corresponding source files but would be located
in the TST group of the IND account. When a generic file set is copied,
the producer and consumer “negotiate” the transfer of each file.
Intermediate results are reported after each transfer. If an error occurs
during one of these transfers, an error message is reported.

In an individual file transfer, if you name a target file that already
exists, and you do not specify the replace or overwrite option, you will
be prompted for further action. (For information on the replace and
overwrite options, see the parameter explanations for the DSCOPY
command.) In the case of a generic file transfer, however, you will not be
prompted. Instead, the transfer attempt will produce an error, and the
DSCOPY subsystem will attempt to transfer the next file in the set.

Using Global Specifications
Global specifications, indicated by a + preceding the specification, take
effect for all subsequent transfers unless one of the following conditions
occurs:

1. A new global specification that conflicts with the old one is given. For
example, if REP is specified globally, it will override and cancel a
prior OVER global specification currently in effect.

2. An item given in an individual, non-global transfer specification
conflicts with a previous global specification. This item will override
the global specification for this one transfer only.

3. The CLEAR option is used. This will clear all global specifications
currently in effect (not including further specifications on the same
line after the CLEAR).

88 Chapter 5

Network File Transfer
Using DSCOPY

4. The DSCOPY subsystem is terminated.

All specifications except file names may be made global in this manner.
A new SDEV or TDEV specification, or “SDEV=” or “TDEV=” without a
device name, clears a previous global source or target device. The only
way to clear MOVE, COMP, or QUIET is to use CLEAR.

If all source and target parameters are omitted, or if the command
begins with + (global), you will receive a subsystem prompt consisting
of the string DSCOPY. (You can also issue global specifications within
the subsystem.)

Interrupting a File Transfer
[BREAK] is disabled during a DSCOPY operation. To interrupt a file
transfer in progress, type [CTRL]-Y instead.

The DSCOPY subsystem issues a prompt consisting of the word DSCOPY.
If you press [CTRL]-Y (or // [Return]) in response to this prompt, the
subsystem is terminated. If you enter [CTRL]-Y in response to a
continuation prompt (issued when an ampersand on the previous line
allows a command to be continued on the next line), the current
command is not executed and the DSCOPY prompt is reissued. If
[CTRL]-Y interrupts a file transfer, you are prompted for further
instructions. The following commands are allowed:

1. A[BORT] — stops transfer and saves as permanent files new files
created during the transfer. Files in the process of transferring that
have been partially copied are saved as new target files.

2. C[ANCEL] — stops transfer. Target files that have already been
completely copied during the transfer are saved on the target
system. Files whose transfer was incomplete are not saved on the
target system.

3. P[ROGRESS] — causes progress of transfer to be reported.

4. ? — gives a description of the commands listed above.

If an error or a CANCEL request interrupts a transfer, a newly created
file will be purged unless the transfer is complete. If a generic file set is
being transferred, those files that have been successfully copied are not
purged. In the case of a KSAM file (actually two files, a data file and a
key file), the new data file is purged unless its transfer is complete; the
new key file is not purged even if its transfer is not complete. If an
incomplete key file is created in this way, you should purge it or
overwrite it in a subsequent transfer.

Event Recording
DSCOPY produces a listing of user requests and file transfer results
(including error messages). This information is sent to a primary file
and a secondary file, either of which (or both) may be disabled. The

Chapter 5 89

Network File Transfer
Using DSCOPY

primary file is $STDLIST (the terminal in the case of sessions, the
system line printer in the case of streamed jobs). The secondary file is a
file or device with the formal designator DSCOPYL.

The QUIET option suppresses all information regarding the success of
file transfers except error messages. Primary output to $STDLIST is
disabled if the opt parameter of the DSCOPY intrinsic is set to 0,1, or 2;
otherwise, primary output is enabled. Secondary output is normally
disabled since the secondary file DSCOPYL defaults to $NULL. It will be
enabled if a file equation names DSCOPYL as the formal designator of an
actual file or device. For example, assume the file is named OUTFILE.
Type the following at the MPE/iX prompt:

FILE DSCOPYL=OUTFILE

If the file does not already exist, you can indicate TEMP or SAVE as the
disposition of the file. Otherwise the file will be purged.

FILE DSCOPYL=OUTFILE,new;TEMP

In the second case NFT will create the file for you, but you must SAVE it
to make it permanent.

The NFT facility also sets a number of Job Control Words (JCWs).
JCWs are 16-bit values, identified by a name, which are maintained by
MPE on a per-job or per-session basis. The JCW named DSCOPY
indicates how many files were successfully transferred in the DSCOPY
subsystem.

The JCW named NFTERR gives the NFT error code returned after an
unsuccessful transfer in an NS 3000/iX network. If a warning has been
issued, the “warn” bit of this JCW is set. Bit 2 of this JCW indicates
which NS 3000 NFT error message set the error code belongs to: if on, it
is the HP 3000-specific error message set; if off, it is the generic NFT
error message set.

If a transfer error occurs in a job stream, DSCOPY continues with the
next transfer request. However, the abort bit of the system JCW, named
JCW, is set. As a result, the job will fail after the DSCOPY subsystem is
exited unless a CONTINUE command has been specified.

90 Chapter 5

Network File Transfer
Using Checkpoint and Restart with DSCOPY

Using Checkpoint and Restart with
DSCOPY
If you specify CHECKPT in the DSCOPY command line, the file transfer
will occur normally, but an additional handshake sequence will occur
between the source and target HP 3000 systems at periodic intervals
(optionally specified by you). If a failure occurs, it is then possible to
restart the transfer from the point where the last handshake took place.
A restart ID is a number that uniquely identifies a transfer. The restart ID
is returned to you before a file transfer actually begins. For example, if
a transfer were 44% complete when a handshake occurred, and the link
were to fail at some time before the next handshake, the transfer could
be restarted at a later time with at least 44% of the transfer already
complete.

To restart an aborted transfer, specify the keyword RESTART in the
DSCOPY command line along with the same restart ID that was
returned to you when CHECKPT was specified. You must be logged on to
the same local environment where CHECKPT was specified. NFT will
then attempt to restart the transfer from the point where the last
handshake sequence took place. The restarted transfer will continue to
be checkpointed and may be restarted in the event of a subsequent
failure.

In order to use CHECKPT/RESTART, the producer and consumer
environments cannot be the same; that is, checkpointing will not be
done for local transfers.

When you restart a transfer by using the RESTART option, you can also
invoke the CHECKPT option in order to modify the checkpoint interval; all
other options will be ignored.

NOTE You can access and change source and target files between
checkpointing and restarting. If you change the source file, you might
not get the exact file you want on the target side. In this case, you
should probably restart the entire transfer again.

New Restart Files Created During Checkpointed
Transfer
In order to store restart information that will survive a system failure,
NFT creates files called restart files. One file is created in the group and
account of each role being played by NFT, that is, initiator, producer,
and consumer. If more than one role is being played by a single
environment, the restart file will be shared. The name of the restart file
will be NFTRxx, where xx is a number from 1 to 99. These files will be
purged upon successful completion of the file transfer. If an

Chapter 5 91

Network File Transfer
Using Checkpoint and Restart with DSCOPY

intermediate failure occurs, the files will not be purged. Therefore,
transfers that fail and are not restarted to a successful completion will
leave restart files unpurged; NFT will not purge unused restart files.

Similarly, for generic transfers a permanent file called GENSETx, where
x is a number from 0 to 9, is created to hold the list of files to be
transferred on the producer node. This file is purged when the generic
transfer is complete. Likewise, a file called NFTSCRxx, where xx is a
number from 0 to 99, is created on the consumer node when the REP
option is specified. This file is used as a scratch file to hold the target
file during the transfer. When the transfer is complete, the old target
file is purged and the scratch file is renamed to the target file name.
Again, if an intermediate failure occurs, these files will not be purged. If
the transfer is not restarted to a successful completion, these files will
remain unpurged; NFT will not purge unused generic or scratch files.

Using the DSCOPYI File for Checkpointing
Transfers initiated using the DSCOPYI command file can also use
CHECKPT/RESTART. If a failure occurs during any of the transfers in
the list, that transfer can be restarted in the normal way. When that
transfer is complete, the next transfer in the list will take place as if no
failure had ever occurred. When checkpointing from a DSCOPYI file
note the following conditions. First, a separate restart ID will be
returned for each transfer. Second, in order to restart a transfer from
DSCOPYI, the same file equation that was specified for checkpointing
must be in effect when the restart is attempted.

NOTE The RESTART keyword cannot be used from within a DSCOPYI file.

Using CHECKPT and RESTART in Shared
Environments
Checkpointing is allowed when the producer or consumer environments
were created using REMOTE HELLO. If a restart is necessary, however,
NFT will always attempt a programmatic logon to the producer or
consumer nodes. In other words, NFT will set up its own, temporary
environment, equivalent to your using the square brackets to specify
the remote logon. If a password is needed to access one or both of these
environments, it will not be available to NFT, and the restart will fail.
The only way to ensure that this problem will not occur is to use the
programmatic logon feature of NFT when CHECKPT is specified. The
password(s) will then be available to NFT, so that a subsequent restart
will be able to logon to the remote node(s).

Files Not Allowed with CHECKPT and RESTART
CHECKPT/RESTART is not allowed with message or circular files. It is
also not allowed with files of variable length records in interchange
mode.

92 Chapter 5

Network File Transfer
Using Checkpoint and Restart with DSCOPY

Troubleshooting After Using CHECKPT and RESTART
If a restart returns an error, some possible explanations might be:

1. One or more of the necessary files for restarting has been lost or
corrupted, that is, NFTRxx, GENSETx, or NFTSCRxx, or the source or
target files.

2. The transfer did not progress past the negotiation stage before it was
aborted.

3. The error was not one from which a restart can be done; examples
include a file lockword violation or an unknown node name. A restart
can only be done if the transfer has progressed past the negotiation
stage to the data transfer stage.

4. The circumstances that caused the failure have not cleared; that is,
the remote system is still down, or the link has not yet been
reestablished.

5. You are not using the same local logon as was used when
checkpointing was specified.

6. The file equation for DSCOPYI is not the same as it was when
checkpointing was specified, or the command file has been purged or
corrupted.

HP 3000 to HP 3000 Copying Examples
Following are examples of how to use the DSCOPY command for copying
files between HP 3000s.

Local to Local
DSCOPY can be used (from the MPE/iX prompt) to make a local copy of a
local file. If no global location specifications are in effect, the following
names will be interpreted as local files:

DSCOPY SFILE TO TFILE

The node name delimiter (colon or comma) used alone will override any
global specification and indicate that the file is local. In this example a
semicolon replaces TO, since TO would be misinterpreted as the source
environment ID following the colon.

DSCOPY SFILE:;TFILE

The following (still local) example copies a file named INFO in the PUB
group of the MKTG account into a (new) file of the same name in the
user’s logon group and account:

DSCOPY INFO.PUB.MKTG TO INFO

Chapter 5 93

Network File Transfer
Using Checkpoint and Restart with DSCOPY

Remote to Local
In the next example we assume that a remote session has been
established on REMNODE and that no global tfileloc specification is in
effect. This command, typed at the MPE/iX prompt, requests a local
copy of a remote file:

DSCOPY FILEA:REMNODE TO FILEB

Local to Remote
If a remote session has not already been established, and if there is no
global or DSLINE logon for the remote environment, you must include a
logon sequence in the transfer specification. The following is a
local-to-remote transfer (typed from the MPE/iX prompt):

DSCOPY FILEY TO FILEZ:REMNODE[REMUSER.REMACCT]

Remote to Remote
In the next examples we'll assume that remote sessions have already
been established. From your local system you can copy one remote file
to another on the same remote node. At the MPE/iX prompt, type:

DSCOPY FILE17:REMNODE TO FILE18:REMNODE

You can also copy a file from one remote system to another:

DSCOPY FILE1:REMNODEA TO FILE2:REMNODEB

Multiple Transfer
This example shows how to use the @ character to copy a set of files. All
files in the PUB group of the MKTG account whose last four characters
are BACK are copied to the AAA group of the ENG account. The target
files will have the same file names as the source files. At the MPE/iX
prompt, type:

DSCOPY @BACK.PUB.MKTG TO @.AAA.ENG

Global Specifications
Finally, you can establish global transfer specifications by putting a +
before the specification sequence. If you include the global specifications
in the DSCOPY command line, you will be placed in the subsystem, from
which you can issue further commands. For example, at the MPE/iX
prompt type the command as follows (user input is bold for clarity):

DSCOPY + :REMNODEB TO :REMNODEA; MOVE; COMP

DSCOPYTHISFILE TO THATFILE

After the first DSCOPY command establishes global specifications, the
command at the subsystem prompt moves THISFILE on REMNODEB to
THATFILE on REMNODEA, purging the original file. The data are
compressed during the transfer. Assume that remote sessions have
already been established.

94 Chapter 5

Network File Transfer
Using Checkpoint and Restart with DSCOPY

CHECKPT and RESTART Examples
Following are examples of how to use CHECKPT and RESTART:

1. The following example shows checkpointing being initiated for an
IMAGE dataset file. The checkpoint interval is the default
(5 minutes). The restart ID will not be written to a file, but will be
written to $STDLIST if QUIET has not been specified or if output has
not been disabled.

: DSCOPYSFILE;TFILE:REMNODE[REMUSER.REMACCT];

CHECKPT=;FCODE=-401

2. The following example shows checkpointing being initiated for the
remote producer case. You have specified a new checkpoint interval
(60 seconds), a restart ID file (IDFILE), and a record in that file where
the restart ID will be written (12)

DSCOPYSFILE:REMNODE[REMUSER.REMACCT];TFILE; CHECKPT=60,IDFILE,12

3. This example shows checkpointing being initiated in a generic
transfer. You have specified a new checkpoint interval (600 seconds)
and a restart ID file (IDFILE). The restart ID will be written to the first
record in the file, by default.

: DSCOPY@.PUB;@:REMNODE[REMUSER.REMACCT];CHECKPT= 600,IDFILE

4. This example shows a restart being specified as a global option. All
other global options are ignored. The restart ID is 4.

: DSCOPY+RESTART=4

5. This example shows a restart being specified as a non-global option.
The restart ID is 2. Checkpointing is also specified in order to change
the previous checkpoint interval to 100 seconds.:

: DSCOPY;;CHECKPT=100;RESTART=2

6. This example shows the restart option with the restart ID file
specified. The restart ID will be obtained from the first record of this
file.

: DSCOPY;;RESTART=IDFILE

Chapter 5 95

Network File Transfer
Programmatic NFT

Programmatic NFT
The following subsections describe intrinsics that can be used to
perform file transfers from within programs. Two intrinsics are
available: DSCOPY, which performs the same function as the interactive
DSCOPY command, and DSCOPYMSG, which writes a message indicating
the outcome of the transfer request.

96 Chapter 5

Network File Transfer
DSCOPY Intrinsic

DSCOPY Intrinsic
Transfers or copies a file from one node to another (or within a single
node).

Syntax
DSCOPY (opt,spec,result)

Parameters
opt (input) 16-bit integer, by reference. Enables/disables the

primary output (to $STDLIST) and determines whether
to continue after first transfer failure. The following
bits of the opt parameter are significant (all others are
reserved):

bit 15 Used to determine whether DSCOPY
should terminate after the first
transfer failure during a multiple
transfer.

0 = attempt all transfers, even after a
failure

1 = terminate DSCOPY after first failure

bit 14 Allows addition of a command file name
in spec array for multiple file transfer.

0 = disables use of command file

1 = enables use of command file

bit 13 Enables/disables primary output.

0 = primary output disabled

1 = primary output enabled

<+>Recommended values:

0 All transfers attempted. Primary
output disabled.

1 DSCOPY terminates after first failure.
Primary output disabled.

2 All transfers attempted. Use of
command file spec enabled. Primary
output disabled.

Chapter 5 97

Network File Transfer
DSCOPY Intrinsic

3 DSCOPY terminates after first failure.
Use of command file spec enabled.
Primary output disabled.

4 All transfers attempted. Use of
command file spec disabled. Primary
output enabled.

5 DSCOPY terminates after first failure.
Use of command file spec disabled.
Primary output enabled.

6 All transfers attempted. Use of
command file spec enabled. Primary
output enabled.

7 DSCOPY terminates after first failure.
Use of command file spec enabled.
Primary output enabled.

HP recommends that you use the aforementioned
values. Note that although other values can be used,
they must be between 0 and 14 (decimal), inclusive.

spec (input) Logical array, by reference. In the case of a single or
generic transfer request, this parameter should contain
the DSCOPY transfer specification in the same syntax as
the DSCOPY command parameters. The text should be
ASCII characters terminated by a one-byte binary zero
(that is, the ASCII null character). If this parameter
contains the terminating zero (null character) only, the
copy request(s) will be read from a file with the formal
designator DSCOPYI (whose default is $STDIN, the
session terminal). This is a way, in addition to using
“wildcard” characters, of specifying multiple transfer
requests. If DSCOPYI represents an actual file, it must
be unnumbered and its lines must not end with nulls
(zeros).

The spec data type differs slightly from language to
language. See “Programming Language
Considerations” below for data type definitions of
specific languages.

result (output) Two-element array of 16-bit integers, by
reference. Indicates the outcome of the intrinsic call.
The first word of the array indicates whether or not the
transfer was successful. A zero value signifies success;
a nonzero value indicates an NFT error. If the number
is positive, indicating an unsuccessful transfer over an
NS 3000/iX link, bit 2 (where bit 0 is the high-order bit)
indicates which NS 3000 error set the error belongs to:
the HP 3000-specific error set (on) or the generic NFT

98 Chapter 5

Network File Transfer
DSCOPY Intrinsic

error set (off). The lower-order bits give the actual NFT
error number in one or the other error set. Thus there
are three NFT error sets. The result parameter
containing these error numbers is interpreted correctly
by the DSCOPYMSG intrinsic. Refer to the NS 3000/iX
Error Messages Reference Manual for these error
messages.

The second word of the array represents the number of
files that were successfully copied.

Description
The DSCOPY intrinsic copies one file into another, performing exactly
the same operations that the DSCOPY command performs. The source
and target files do not have to be on the same node, and the program
that calls the intrinsic does not have to be located on the same node as
either of the files.

The opt parameter determines: (1) whether or not primary output is
enabled, (2) whether to return after all transfers in a series have been
attempted or after the first unsuccessful transfer, and 3) whether the
file transfer will take place from DSCOPYI or from a designated
command file.

If a single or generic transaction is involved, the spec parameter can
contain the full text of the transfer specification, including all
parameters and options, terminated by an ASCII null character. A null
character (numeric zero) alone indicates that the transfer requests are
to be read from the DSCOPYI file.

The returned result parameter indicates whether or not the transfer was
successful. (All the parameters are required; DSCOPY is not
option-variable.)

This intrinsic does not return condition codes. Split stack calls are not
allowed.

NOTE BREAK is disabled during a DSCOPY intrinsic operation. After DSCOPY
completes, BREAK is re-enabled. If BREAK is programmatically
disabled before the DSCOPY call, you must programmatically disable the
BREAK again after the DSCOPY completes.

Programmatic examples may be found at the end of this chapter.

Chapter 5 99

Network File Transfer
DSCOPYMSG intrinsic

DSCOPYMSG intrinsic
Writes a message that corresponds to the result code returned by a
DSCOPY intrinsic call.

Syntax
DSCOPYMSG (result,fnum,r)

Parameters
result (input) Two-element array of 16-bit integers, by

reference. The result is returned by the DSCOPY
intrinsic. If the value in the first word is zero, then the
file transfer was successful. Otherwise, the value
indicates the error that occurred. (See the explanation
of the result parameter in the DSCOPY intrinsic.)

fnum (input) 16-bit integer, by reference. A file number indicating
where the message associated with result should be
written. If the value is zero, the message is printed on
$STDLIST . If fnum contains a file number, the message
is written to this file.

r (output) 16-bit integer, by reference. The result returned by
this DSCOPYMSG call. If this value is zero, the call was
successful. Otherwise, the value indicates the error
that occurred.

Description
The DSCOPYMSG intrinsic writes a message that corresponds to the
result code returned by a DSCOPY intrinsic call. All the parameters are
required; DSCOPYMSG is not option-variable. This intrinsic does not
return condition codes. Split stack calls are not allowed.

100 Chapter 5

Network File Transfer
Programming Language Considerations

Programming Language Considerations
The DSCOPY and DSCOPYMSG intrinsics are SPL procedures that may be
called by programs written in other languages. Following are
appropriate data types and calling sequences for the different
languages available. (Other data types are sometimes possible.)

SPL
In SPL, opt, fnum, and r may be integers; spec must be a logical array;
and result may be a logical array. The calling sequences are:

DSCOPY (OPT, SPEC, RESULT);

DSCOPYMSG (RESULT, FNUM, R);<D>

COBOL
In COBOL, opt, fnum, and r may be numeric data items; spec may be an
alphanumeric data item; and result may be a numeric array. The calling
sequences are:

CALL INTRINSIC "DSCOPY" USING OPT, SPEC, RESULT.

CALL INTRINSIC "DSCOPYMSG" USING RESULT, FNUM, R.

FORTRAN
In FORTRAN, opt, fnum, and r may be 16-bit integers; spec may be a
character array; and result may be an array of 16-bit integers. The
calling sequences are:

CALL DSCOPY (OPT, SPEC, RESULT)

CALL DSCOPYMSG (RESULT, FNUM, R)

BASIC
In BASIC, the intrinsics have a different name. In addition, only certain
kinds of parameter names are permitted, as illustrated in the following
calling sequences:

CALL BDSCOPY (O, S$, R)

CALL BDSCOPYMSG (R, F, R0)

Here O, F, and R0 may be integers; S$ is a string; and R may be an array
of integers.

Chapter 5 101

Network File Transfer
Programming Language Considerations

Pascal
In Pascal, opt, fnum, and r may be 16-bit integers; spec may be a packed
array of characters or a string (a legal type in HP Standard Pascal); and
result may be an array of 16-bit integers. The calling sequences are:

DSCOPY (OPT, SPEC, RESULT);

DSCOPYMSG (RESULT, FNUM, R);

NOTE In Pascal, if the spec parameter is represented as a character array or
string, the numeric zero which terminates it should be represented by
the ASCII null character. If spec is a mixed-type structure, the zero can
be a numeric (one-byte) zero.

102 Chapter 5

Network File Transfer
Programmatic NFT Examples

Programmatic NFT Examples
The following programs, in COBOL and Pascal, illustrate single and
multiple file transfers via the DSCOPY intrinsic. They also call the
DSCOPYMSG intrinsic to print an error message if necessary.

The multiple-file-transfer examples use transfer specifications that are
read from a file with the formal designator DSCOPYI.

In the COBOL version of the multiple-file transfer, we assume that this
file is the default $STDIN, namely the user’s terminal. A second and
alternative way of doing the COBOL multiple-file transfer would be to
create an actual unnumbered file (“copyfile”) that contains DSCOPY
commands (for instance, SFILEA TO TFILEA). You would then have to
create a file equation that equates DSCOPYI with the copyfile you have
created.

COBOL: Single Transfer
In this application, the opt parameter is set to zero (0). All transfers will
be attempted. Primary output is disabled. The command file spec for
multiple transfers cannot be used. The spec parameter contains the full
text of the transfer specification, including all parameters and options,
and is terminated by an ASCII null character.

001000$CONTROL USLINIT

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. SINGLETRANSFER.

001300 REMARKS. THIS PROGRAM TRANSFERS A FILE TO A REMOTE NODE;

001400 IT CALLS THE DSCOPY AND DSCOPYMSG INTRINSICS.

001500 ENVIRONMENT DIVISION.

001600 CONFIGURATION SECTION.

001700 SOURCE-COMPUTER. HP3000

001800 OBJECT-COMPUTER. HP3000

001900 DATA DIVISION.

002000 WORKING-STORAGE SECTION.

002100 01 OPT PIC S9(4) COMP VALUE 0.

002200 01 SPEC.

002300 02 ASCIIPART PIC X(40) VALUE

002400 "NFTTEST TO NFTTARG:SOMENODE[NSUSER.NSACCT]".

002500 02 TERMINATOR PIC S9(4) COMP VALUE 0.

002600 01 RESULT.

002700 02 RESULTS PIC S9(4) COMP OCCURS 2 TIMES.

002800 01 FNUM PIC S9(4) COMP VALUE 0.

002900 01 R PIC S9(4) COMP VALUE 0.

Chapter 5 103

Network File Transfer
Programmatic NFT Examples

003000 PROCEDURE DIVISION.

003100 BEGIN.

003200 CALL "DSCOPY" USING OPT, SPEC, RESULT.

003300 IF RESULTS(1) > 0 CALL "DSCOPYMSG" USING RESULT, FNUM, R.}

003400 STOP RUN.

COBOL: Multiple Transfer
In this application, the opt parameter is set to one (1). DSCOPY
terminates after first failure. Primary output is disabled. The command
file spec for multiple transfers cannot be used. The spec parameter
contains a null character (numeric zero) indicating that transfer
requests are to be read from the DSCOPYI file. The “COPYFILE” must
already exist. You must issue the file equation “FILE
DSCOPYI=COPYFILE” prior to execution of the program.

001000$CONTROL USLINIT

001100 IDENTIFICATION DIVISION.

001200 PROGRAM-ID. MULTTRANSFER.

001300 REMARKS. THIS PROGRAM ACCEPTS INTERACTIVE TRANSFER REQUESTS;

001400 IT CALLS THE DSCOPY AND DSCOPYMSG INTRINSICS.

001500 ENVIRONMENT DIVISION.

001600 CONFIGURATION SECTION.

001700 SOURCE-COMPUTER. HP3000

001800 OBJECT-COMPUTER. HP3000

001900 DATA DIVISION.

002000 WORKING-STORAGE SECTION.

002100 01 OPT PIC S9(4) COMP VALUE 1.

002200 01 SPEC.

002300 02 TERMINATOR PIC S9(4) COMP VALUE 0.

002400 01 RESULT.

002500 02 RESULTS PIC S9(4) COMP OCCURS 2 TIMES.

002600 01 FNUM PIC S9(4) COMP VALUE 0.

002700 01 R PIC S9(4) COMP VALUE 0.

002800 PROCEDURE DIVISION.

002900 BEGIN.

003000 CALL "DSCOPY" USING OPT, SPEC, RESULT.

003100 IF RESULTS(1) > 0 CALL "DSCOPYMSG" USING RESULT, FNUM, R.

003200 STOP RUN.

104 Chapter 5

Network File Transfer
Programmatic NFT Examples

Pascal: Single Transfer
In this application, the opt parameter is set to four (4). All transfers will
be attempted. Primary output is enabled. The command file spec for
multiple transfers cannot be used. The spec parameter contains the full
text of the transfer specification, including all parameters and options,
and is terminated by an ASCII null character.

$standard_level 'hp3000', uslinit$

program pcopy (input,output);

type

small_int = -32768..32767;

const

null = chr(0); {ASCII null char}

@COMPUTERTXT = var

opt : small_int;

fnum : small_int;

r : small_int;

spec : string [80];

result : array [1..2] of small_int;

procedure DSCOPY; intrinsic;

procedure DSCOPYMSG; intrinsic;

begin {program pcopy}

opt := 4; All transfers attempted, output enabled, command file disabled}

fnum := 0;

{copy local file NFTTEST to file NFTTARG on node SOMENODE}

spec := 'NFTTEST TO NFTTARG:SOMENODE[NSUSER.NSACCT]' + null; {string terminated
by ASCII null char}

DSCOPY (opt, spec, result);

if result[1] > 0 then DSCOPYMSG (result, fnum, r)

end.

Chapter 5 105

Network File Transfer
Programmatic NFT Examples

Pascal: Multiple Transfer
In this application, the opt parameter is set to two (2). All transfers will
be attempted. Primary output is disabled. The command file spec for
multiple transfers is enabled. The spec parameter contains the
“COPYFILE” name terminated by an ASCII null character. The
“COPYFILE” must exist prior to execution of the program.

$standard_level 'hp3000', uslinit$

program pcopy2 (copyfile);

type

small_int = -32768..32767;

const

null = chr(0); {ASCII null char}

var

copyfile : text;

opt : small_int;

fnum : small_int;

r : small_int;

spec : string [11];

result : array [1..2] of small_int;

procedure DSCOPY; intrinsic;

@COMPUTERTXT = procedure DSCOPYMSG; intrinsic;

begin {program pcopy2}

opt := 2; {output disabled; attempt all transfers; command file enabled}

fnum := 0;

spec := '(copyfile)' + null;

rewrite (copyfile);

writeln (copyfile, '+ ; :SOMENODE [NSUSER.NSACCT]'); {global spec}

writeln (copyfile, 'SOURCE1 TO TARGET1');

writeln (copyfile, 'SOURCE2 TO TARGET2');

writeln (copyfile, 'SOURCE3 TO TARGET3');

close (copyfile);

DSCOPY (opt, spec, result);

if result[1] >> 0 then DSCOPYMSG (result, fnum, r)

end.

107

6 Intrinsics for Node and
Environment Status

Following are descriptions of the two intrinsics described in this
chapter — NSINFO and NSSTATUS:

NSINFO returns information about NS environments and your local
node.

NSSTATUS returns information about services, servers, and NS users on
local or remote nodes.

108 Chapter 6

Intrinsics for Node and Environment Status
NSINFO Intrinsic

NSINFO Intrinsic
This intrinsic is used to programmatically obtain information about NS
environments that have been created in your session. These are
environments created by either a DSLINE envID, or a REMOTE
HELLO...;DSLINE= envID command. This intrinsic also allows you to
obtain some information about your local node (such as the local node
name).

Syntax
BA I

NSINFO ([envID] , [envIDlength],

I I

[envnum], status

(IV) (BA)

[, itemnum1, item1]

[, itemnum2, item2]

[, itemnum3, item3]

[, itemnum4, item4]

[, itemnum5, item5])

where: BA = Byte array

I = Integer

IV = Integer value

Parameters
envID
(input/output) 52-byte character array. Specifies environment with

matching environment identifier. See the discussion for
an explanation of the use of envID, envIDlength, and
envnum.

envIDlength
(input/output) 16-bit integer, by reference. Length of environment

ID in bytes. See the discussion for an explanation of the
use of envID, envIDlength, and envnum.

Chapter 6 109

Intrinsics for Node and Environment Status
NSINFO Intrinsic

envnum
(input/output) 16-bit integer, by reference. Specifies environment

by environment number. See the discussion for an
explanation of the use of envID, envIDlength, and envnum.

status (output) 16-bit integer, by reference. If the intrinsic call was
successful, 0 is returned. Otherwise, an environment
error number is returned.

NOTE The following parameters appear in pairs to identify an item of data.
One to five item pairs may be specified in the call. For brevity, all five
item pairs will be described as itemnum i and item i, where i is 1, 2, ... 5.

inemnum i (input) 16-bit integer, by value. Item number identifying
the item i service to be performed.

item i (output) Data type varies. By reference. Value of the item
specified by the corresponding itemnum i; the data type
of the item value depends on the item itself.

Valid itemnums and the corresponding items are:

1. node length 16-bit integer. Length of the following node name
item, in bytes. This item must precede item 2.

2. node 52-byte character array. Name of the node where the
environment is located. This item must be preceded by
item 1.

3. logon length 16-bit integer. Length of the following logon length
item, in bytes. This item must precede item 4.

4. logon 54-byte character array. Logon string (for example,
user.acct,group) used to log on environment session. This
item must be preceded by item 3.

5. trace
information Array of 25 16-bit integers. Information about

tracing of one service’s NetIPC messages to the remote
environment. In an NSINFO call using this item, the
first word of the array must be set to the service for
which the trace information is to be retrieved. The
remainder of the fields will be filled in with the data by
NSINFO. The array has the format shown in Figure 6-1.

110 Chapter 6

Intrinsics for Node and Environment Status
NSINFO Intrinsic

Figure 6-1 NSINFO Trace Information Data Structure

Service number Number identifying what service this
trace information on record pertains to.

0 = All services

1 = VT

2 = NFT

3 = RFA

4 = RDBA

5 = RPM

TS If the service is being traced, this value
is 1; otherwise, this value is 0.

TT If the transport is being traced, its
value is 1; otherwise, its value is 0.

6. establishment
event 16-bit integer. Event (that is, command) that set up

the environment. Values are:

0 = Environment created by a DSLINE command

1 = Environment created by a REMOTE command.

7. compression 16-bit logical. If true (odd), data compression will be
used when data is transmitted on the service’s
connection. Currently, NFT and RFA allow data
compression. All other services will ignore the
compression setting.

Chapter 6 111

Intrinsics for Node and Environment Status
NSINFO Intrinsic

8. NFT service 16-bit logical. If true (odd), a process in this job or
session has requested NFT service on some
environment. This item is independent of the
environment specified by envID or envnum.

9. prompt length16-bit integer. Length of the following prompt string,
in bytes. This item must precede item 10.

10. prompt 8-byte character array. String to be used as the
REMOTE mode prompt. Item 9 must precede this item.

11. VT service 16-bit logical. If true (odd), then VT service has been
established on the environment. If false (even), there is
no VT service for the environment.

12. RFA service16-bit logical. If true (odd), then RFA service has been
established on the remote environment. If false (even),
there is no RFA service for the environment.

13. node envnums
length 16-bit integer. Contains the number of envnums

entered into the array supplied by item 14. If 0 is
returned, then no environments are defined on the node
specified in envID. This item must precede item 14.

14. node
envnums Array of 100 16-bit integers. Will be filled with the

envnumsof environments defined on the node whose
name is specified in envID. Must be preceded by item 13.

16. logged on 16-bit logical. If true (odd), a remote session has been
logged on for the environment. If false (even), there is
no remote session for the environment.

18. local node
length 16-bit integer. The length, in bytes, of the name of the

local node. This item is independent of the environment
specified by envID or envnum. It must precede item 19.
The NS transport must have been started for this to
succeed

19. local node
name 52-byte character array. The name of the local node.

This item must be preceded by item 18. The NS
transport must have been started for this to succeed.

21. service use
count 16-bit integer. Count of the number of services

currently sharing the environment.

25. RPM son 16-byte integer. If true (odd), the remote environment
contains an RPM son process. If false (even), the RPM
service is not active for the environment.

112 Chapter 6

Intrinsics for Node and Environment Status
NSINFO Intrinsic

26. list environments
length 16-bit integer. Contains the number of envnums

entered into the array supplied in item 27. If 0 is
returned then no environments matched generic
environment ID. This item must precede item 27.

27. list
environments Array of 100 16-bit integers. Will be filled with

envnums whose envID matches the generic environment
ID input as the envID parameter. Must be preceded by
item 26.

36. local node
ARPA domain
name length 16-bit integer. The length, in bytes, of the local node’s

ARPA domain name. This item is independent of the
environment specified by envID or envnum. It must
precede item 37. The NS transport must have been
started for this to succeed.

37. local node
ARPA domain
name 255-byte character array. The name of the local

node’s ARPA domain name. The NS transport must
have been started for this to succeed.

38. IP address 32-bit integer. The IP address (4 bytes) of the node in
the given environment. Currently, this option works
only for $BACK environments. The value zero will be
returned for all other environments.

Chapter 6 113

Intrinsics for Node and Environment Status
NSINFO Intrinsic

Description
The NSINFO intrinsic is used to obtain information associated with
environments defined in a job or session. There are two different ways
that this intrinsic may be called. In the first method, envID/envnum
define the specific environment or generic environment for which
information is desired. In the second method, envID specifies the node
name for which node-specific information is desired.

Selection of the environment may be done by environment ID string or
by environment number. The presence and value of the envID,
envIDlength, and envnum parameters determine which mode is used. Also,
these parameters are both input and output; the selected environment’s
ID or number can be retrieved through them. The rules for using the
envID, envIDlength, and envnum are:

• If envID and envIDlength are specified, and envIDlength is greater than
0, the environment will be determined by the environment ID in
envID. If envnum is specified and its value is 0, the environment
number will be determined by the environment specified in envID.

• If envID and envIDlength are omitted, or if envIDlength is 0, the
environment will be selected by the environment number in envnum.
If envID and envIDlength are specified, and envIDlength is 0, they will
be set to the environment ID string and its length.

• If envID and envIDlength are omitted or envIDlength is 0, and envnum is
0, the default environment for the calling process will be selected.
The default environment number will be returned in envnum, and its
environment ID string and length will be returned in envID and
envIDlength respectively, if specified. Note: The default environment
is defined per process not per job or session.

• Some services interpret envID as either a node name or a generic
environment ID (such as items 26, 27 and 13, 14). In calls that use
an item number such as this, envID and envIDlength are required
parameters.

• For services that are not dependent on any environment
specification (such as items 8 or 18, 19), envID, envIDlength, and
envnum are not required parameters.

Items that flag a certain condition, such as item 16 (logged on status) or
12 (RFA service established), will return either an odd (TRUE) or an
even (FALSE) value.

This intrinsic may not be called in split stack mode.

Errors
Table 6-1 lists the errors that are returned in status upon completion of
an NSINFO call. If an error is returned, all data returned from the call
should be disregarded.

114 Chapter 6

Intrinsics for Node and Environment Status
NSINFO Intrinsic

Table 6-1 NSINFO Errors

Error
Number Meaning

0 No error. Successful return from NSINFO.

1 Required parameter missing. Either the envID and
envIDlength or the envnum;status must be specified.

2 Invalid itemnum value.

3 item parameter without a corresponding itemnum
parameter.

4 itemnum parameter without a corresponding item
parameter.

5 Invalid envID syntax. The correct syntax is
envID.domain.organization.

10 Invalid service in trace information array. Must be between 0
and 6.

20 No environment entry exists for the selected
environment.

23 The call selected the default environment but none was
set by a prior :DSLINE or :REMOTE command.

24 The value in envnum does not correspond to an existing
environment.

31 Total length of a node name or envID is invalid. Must be 1 to
50 characters.

32 First part (node or envID) of a node name or envID does not
begin with an alphabetic character.

33 First part (node or envID) of a node name or envID is longer
than 16 characters

34 First part (node or envID) of a node name or envID contains a
non-alphanumeric character.

35 The domain part of a node name or envID is missing.

36 The domain part of a node name or envID does not begin with
an alphabetic character.

37 The domain part of a node name or envID is longer than
16 characters.

38 The domain part of a node name or envID contains a
non-alphanumeric character.

Chapter 6 115

Intrinsics for Node and Environment Status
NSINFO Intrinsic

39 The organization part in a node name or envID is missing.

40 The organization part in a node name or envID does not begin
with an alphabetic character.

41 The organization part in a node name or envID is longer than
16 characters.

42 The organization part in a node name or envID contains a
non-alphanumeric character

44 NS transport not started. To start NS transport execute
the NETCONTROL START command.

45 Unknown node

48 A specified item requires another item

96 DB is not pointing to the caller’s stack

97 An item parameter was passed by reference to NSINFO
which was outside of the caller’s legal stack space.

98 Insufficient stack space for execution of procedure.

Error
Number Meaning

116 Chapter 6

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

NSSTATUS Intrinsic
The NSSTATUS intrinsic returns information about services, servers,
and NS users on local or remote nodes. This information is equivalent
to the data displayed by NSCONTROL STATUS.

Syntax
BA IV BA IV I

NSSTATUS ([name] , [namelength], { nodename], { nodelenth], status

(IV) (BA)

[, itemnum1, item1]

[, itemnum2, item2]

[, itemnum3, item3]

[, itemnum4, item4]

[, itemnum5, item5]);

where: BA = Byte array

I = Integer

IV = Integer value

Parameters
name (Input) 26-byte character array, by reference. Service

name, server name, or user name, depending on which
items are specified. May be omitted for certain items.

namelength
(Input) 16-bit integer, by value. Length of name in bytes. May

be omitted for certain items.

nodename
(Input) 52-byte character array, by reference. Name of a

remote node from which information will be obtained. If
omitted, NSSTATUS information will be obtained from
the local node.

nodelength
(Input) 16-bit integer, by value. Length of nodename in bytes.

If omitted, NSSTATUS information will be obtained from
the local node.

status (Output) Required 16-bit integer, by reference. 0 is returned
if call is successful; otherwise an error number is
returned.

Chapter 6 117

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

itemnum i
(Input) 16-bit integer, by value. Item number identifying the

item of data to be retrieved.

item i (Output) Data type varies. By reference. Array in which data
identified by itemnum i will be returned. Required
parameter if itemnum i present.

Itemnum/item parameters must appear in pairs. Up to
five items of information can be retrieved by specifying
one or more itemnum/item pairs.

Data Items
1. service list 2000-byte character array (output). List of all

services installed on indicated node. Format for the list
is given in the data structure shown in Figure 6-2. NM
capability is not required.

Service List Fields

Number of
Services The number of Service List Entries

included.

Service List
Entry One for each configured server. Format

for the list entry is given in the data
structure shown in Figure 6-3.

Service List Entries

Service Name The name of the service; a port name
for a local service or a socket name for a
remote service.

Server Type
Name The name of the server created for

service requests to this service

ST If 0, the service has not been started. If
1, the service has been started.

RM If 0, the service is local. If 1, the service
is remote.

118 Chapter 6

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

Figure 6-2 Service List Data Structure

Figure 6-3 Service List Entry Data Structure

Chapter 6 119

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

2. server list 2000-byte character array (output). List of all
servers installed on the indicated node. Format for the
list is given in the data structures shown in Figure 6-4,
Figure 6-7, and Figure 6-8.

Server List Fields

Number of Server
Types The number of Server Type Lists

returned.

Server Type List See the description of the fields under
item 12.

Figure 6-4 Server List Data Structure

3. user list 2400-byte character array (output). List of all users
currently using NS on indicated node. Formats for the
data structures of the user list and user list entries are
shown in Figure 6-5 and Figure 6-6 respectively.

4. service started16-bit integer. Returns a value indicating one of the
following conditions:

-1 = Named service not installed.
0 = Named service not started.
1 = Named service started.

NM capability is not required.

120 Chapter 6

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

Figure 6-5 User List Data Structure

Figure 6-6 User List Entry Data Structure

5. service local 16-bit integer. Returns a value indicating one of the
following conditions:

-1 = Named service not installed.
0 = Named service not remote.
1 = Named service local.
2 = Named service is monitor.

NM capability is not required.

Chapter 6 121

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

6. service server8-byte character array. Name of server associated
with named service. If the named server is not
available, then eight ASCII spaces are returned. NM
capability is not required.

7. min servers 16-bit integer. Minimum number of servers for the
named server type on the indicated node. A returned
value of -1 implies that the named server does not
exist.

8. max servers 16-bit integer. Maximum number of servers of the
named server type on the indicated node. A returned
value of -1 implies that the named server is not
available

9. debug create16-bit integer. Returns a value indicating one of the
following conditions:

-1 = Named server not available.
0 = Named server not created with debug option.
1 = Named server is created with debug option.

10. active
servers 16-bit integer. Current number of active servers of the

named server type on the indicated node. A returned
value of -1 implies that the named server type is not
available.

11. reserved
servers 16-bit integer. Current number of reserved servers for

the named type on the indicated node. A returned value
of -1 implies that the named server type is not
available.

12. server type
list 2000-byte character array (output). List of servers

of the named server type on the indicated node. The
formats of the data structures are shown in Figure 6-7
and Figure 6-8.

Server Type List Fields

Server Name The name of the server program file,
without the group and account.

Minimum
Servers The minimum allowed number of

servers for this type.

Maximum
Servers The maximum allowed number of

servers for this type.

122 Chapter 6

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

Create With
Debug If 0, servers are not created with the

debug option. If 1, servers are created
with a debug breakpoint.

Number of
Servers The number of active and reserved

servers for this type.

Server Entry One for each active and reserved server
process. Format of the data structure of
each server type entry is shown in
Figure 6-8.

Server Entry Fields

Server PIN The process ID number for the server.

Job Number The number of the job or session into
which the server has adopted. If the
server is in the system environment,
the job number is 0.

Service The service using the server
(DSSERVER only). Values are:

0 — VTL (Normal VT Terminal
Monitor)

1 — VT (Normal VT Application
Monitor)

2 — RFA

4 — RPM

5 — VTR (Reverse VT Terminal
Monitor)

6 — VTRL (Reverse VT Application
Monitor)

AC If 0, the server is reserved. If 1, the
server is active

Chapter 6 123

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

Figure 6-7 Server Type List Data Structure

Figure 6-8 Server Entry Data Structure

13. user.acct 26-byte character array. The user and account for
the named session on the indicated node. If the named
user is not present, then 26 ASCII spaces are returned.

14. job number 16-bit integer. The job number for the named session
on the indicated node. If the specified session is not
present, then -1 is returned.

15. session ID 16-bit integer. The session ID assigned to the user on
the indicated node. If the named user is not present,
then -1 is returned.

124 Chapter 6

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

16. user type 16-bit integer. Returns a value indicating one of the
following conditions:

1 = Named user is not present.
0 = Named user is remote.
1 = Named user is local.

17. num
environments 16-bit integer. Number of active environments for the

user on the indicated node. If the named user is not
present, then -1 is returned.

18. environment
list 2400-byte character array (output). List of

environments for the user on the indicated node.
Formats for the data structures of the environment list
and environment list entries are shown in Figure 6-9
and Figure 6-10 respectively.

Figure 6-9 Env List Data Structure

Chapter 6 125

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

Figure 6-10 Env List Entry Data Structure

19. autologon
supported 16-bit integer. Returns a value indicating one of the

following conditions:

-1 = Named service not installed.
0 = Named service does not support autologon.
1 = Named service supports autologon.

29. autologon
enabled 16-bit integer. Returns a value indicating one of the

following conditions:

-1 = Named service not installed.
0 = Autologon is off for the named service.
1 = Autologoni is on for the named service.

21. NS session’s
initiator
information 86-byte character array. The initiator’s (job or

session) information of the requested VT session on an
indicated node. Format of the output array is shown in
Figure 6-11.

126 Chapter 6

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

Figure 6-11 Initiator’s Information Format

Description
For items 1 through 3, the name and namelength parameters are ignored.

For items 4 through 6, the name and namelength parameters specify the
service for which NSSTATUS information will be returned.

For items 7 through 12 the name and namelength parameters specify the
server type.

For items 13 through 18, the name and namelength parameters specify
the user for whom information will be returned. The format can be
user.acct (specifying the user and account), or #J/Snnn (where J is the
job number and S is the session number). Note: if there is more than
one session for a user.acct, only information on the first session found
will be returned.

The calling user must have Node Manager (NM) capability to retrieve
all except item numbers 1, 4, 5, and 6. This intrinsic may not be called
in split stack mode. The condition code remains unchanged.

Some of the data structure fields are described with the term “CM
word.” A CM word is a compatibility mode word. This is a 2-byte long,
2-byte aligned field. This corresponds to an SPL type LOGICAL or
INTEGER or any 16-bit interger in other languages such as both CM
and NM in PASCAL, FORTRAN, and COBOL.

Chapter 6 127

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

NSSTATUS Intrinsic Examples

1. Determine if the VT service is started on the local node:

Name := ‘VT’;
NameLength:=2;
ItemNum:=4;
NSSTATUS (Name, NameLength, , , Status, ItemNum,
VtStarted);

If the VT service is started, VtStarted will be set to 1; otherwise it
will be set to -1 or 0.

2. Determine if the VT service is started on the remote node NODE1:

Name := ‘VT’;
NameLength:=2;
Node Name:= ‘NODE1’
NodeLength:=5;
ItemNum:=4;
NSSTATUS (Name, NameLength, NodeName, NodeLength,
Status, ItemNum, VtStarted0;

If the VT service on NODE1 is started, VtStarted will be set to 1;
otherwise it will be set to -1 or 0.

3. Determine if the NFT service is started and to find out how many
active and reserved NFT servers currently exist on the local node:

Name := ‘NFT’;
NameLength:=3;
ItemNum4:=4;
ItemNum10:=10;
ItemNum11:=11;
NSSTATUS (Name, NameLength, , , ,Status,

ItemNum4,NftStarted,
ItemNum10, ActiveServers,
ItemNum11, ReservedServers);

This sets NftStarted to 1 if NFT is started, and returns the
number of active and reserved NFT servers to ActiveServers and
ReservedServers , respectively. This example uses the fact that
NFT is the name of both the service and the server.

4. To obtain all the status information for services, servers, and users
on the remote node NODE1:

NodeName := ‘NODE1’
NSSTATUS (, , NodeName, NameLength, Status,

ItemNum1,ServiceList,
ItemNum2, ServerList,
ItemNum3, UserList);

This returns to the arrays ServiceList, ServerList, and Userlist the
information formatted as defined in the data structures in this
chapter.

5. Suppose #S1 (Manager.sys) on node A creates a remote session #S5
(using VT) on node B. The initiator of #S5 information can be
obtained by running the following NSSTATUS intrinsic call on
node B.

Name := ‘#S5’ {or logon string of #S5}
NameLength :=3; ItemNum :=21;

128 Chapter 6

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

NSSTATUS (Name, NameLength, , , Status, ItemNum,
InitiatorInfo);

If the intrinsic returns without an error then the following
information will be in the InitiatorInfo record.

InitiatorInfo.JobType --- 1 { indicates Session}

InitiatorInfo.JobNum --- 1 { session num }

InitiatorInfo.Ldev --- 20 { logical device numb of #S1 }

InitiatorInfo.LocRem --- 1 { local session. not a VT session}

InitiatorInfo.Logon --- 'MANAGER.SYS'

InitiatorInfo.NodeLen --- 8

InitiatorInfo.NodeName--- 'A.IND.HP'

6. Consider the above example. The same information can be obtained
by running the following NSSTATUS intrinsic on Node C, which is on
the same network.

Name := ‘#S5’ {or logon string of #S5}
NameLength:=3;
ItemNum:=21;
NodeName :=‘B’,
NodeLength :=1;

NSSTATUS (Name, NameLength, NodeName,NodeLength,
Status, ItemNum, InitiatorInfo);

In this case, the intrinsic on Node C first goes to Node B and gets
#S5’s information. From this information, it gets the initiator’s SID
and node name and then goes to that node--in this case Node ‘A’. It
then gets the initiator’s session information based on the SID — in
this case #S1. Note: all the three systems involved in this scenario
must have this fix.

See Table 6-2 for NSINFO Errors.

Table 6-2 NSINFO Errors

Error
Number Meaning

0 Successful completion of NSSTATUS intrinsic.

1 Required parameter missing.

2 Invalid item number. Item number must be an integer in
the range 1 to 18.

3 Item number specified without corresponding item
array.

4 Item array specified without corresponding item.

5 Name length too large.

6 Name length too small.

Chapter 6 129

Intrinsics for Node and Environment Status
NSSTATUS Intrinsic

7 Expected a job or session number.

8 Non-numeric character in the job or session number.

9 Expected “#” as first character in Name parameter.

10 Bounds violation.

11 Unknown or invalid node name.

12 Node name specified without node name length.

13 Node name length specified without node name.

14 Communications error occurred with the remote
NSSTATUS server. Most likely the remote system does not
support the NSSTATUS intrinsic.

15 Node Manager (NM) capability required to retrieve the
requested item.

16 DB not stack. (NM) capability required to retrieve the
request.

17 Local NSSTATUS service has not been started. See
Node Manager.

18 Internal Resource Error. Could not create reply port. Try
again.

19 Remote node does not support option 21 (Remote node
does not have this enhancement).

20 Option 21 works for only VT sessions. Given session is
not a VT session.

21 Could not access initiator node using the node name in
$BACK environment.

Error
Number Meaning

131

7 Remote Process Management

Remote Process Management (RPM) is a network service wherein a
process using RPM intrinsics can create and terminate other processes.
A created process can exist either on the same node as the creator or on
another node. You can schedule a created process to be either
dependent or independent of its creator. If a created process is
independent, it can continue to execute even after its creator has
expired.

RPM also permits a process to send information to the process it is
creating in the same intrinsic call that creates the new process. The
new process can then acquire this information by means of another
RPM intrinsic call. This feature may help to facilitate subsequent
communication between the processes. For example, the first process
can send the name and location of one of its sockets to the process being
created. The second process can then use this information to establish a
connection to the first process.

NOTE RPM can be used in conjunction with Network Interprocess
Communication (NetIPC) to effectively manage distributed
applications. When used in conjunction with NetIPC, the RPM master
and slave processes must be executing concurrently. One or more users
(or programs) can run these processes independently, or one process can
initiate the execution of another by using RPM. You can employ the
NetIPC INITOPT , ADDOPT, and OPTOVERHEAD intrinsics to facilitate
your use of the opt parameter. Descriptions of those three intrinsics are
included in this manual. For further information on the flags, opt, and
result parameters, and for more information on NetIPC, refer to the
NetIPC 3000/XL Programmers Reference Manual.

132 Chapter 7

Remote Process Management
Common RPM Parameters

Common RPM Parameters
The following discussion of the flags and result parameters may help to
clarify the more condensed information given under each intrinsic.

Flags Parameter
The flags parameter is a bit representation, 32 bits long, of various
options. Normally an option is invoked if the appropriate bit is on (that
is, set equal to 1). Borrowing Pascal-type syntax, we shall use [0] to
refer to the high order bit in the two-word parameter, flags[31] to refer
to the low order bit, and a similar designation to refer to each of the bits
in between. Bits that are not defined for a given intrinsic must be off
(zero).

Result Parameter
If an RPM intrinsic call is successful, the result parameter will return a
zero. Otherwise, the value returned represents an RPM error code.
RPM error messages are listed in the NS 3000/iX Error Messages
Reference Manual. You can also obtain the appropriate error message
by calling IPCERRMSG.

NOTE When nowait I/O is used, the result parameter is not updated upon
completion of an intrinsic. Therefore, the value of result will indicate
only whether the call was successfully initiated. To determine whether
the call completed successfully, you can use the IPCCHECK intrinsic
immediately afterward.

In addition, when called on an HP 3000, these intrinsics cause MPE
condition codes to be set. Usually CCE indicates successful completion,
CCL indicates failure, and CCG is either not used or represents a
warning.

Chapter 7 133

Remote Process Management
RPMCONTROL

RPMCONTROL
Controls the execution of an existing process that was created by an
RPMCREATE.

Syntax
RPMCONTROL (pd [, location][, loclen], reqcode [, wrtdata][, wrtlen]

[,readdata][,readlen][, flags][, result])

Parameters
pd (input) 16-byte array, by value. Eight word program

descriptor identifying the remote process to access.

location (input) Character array, by reference. Character string
identifying the node on which the remote process
resides.

loclen (input) 32-bit integer, by value. Length in bytes of the
location parameter.

reqcode (input) 32-bit integer, by value. The number signifying the
request for the RPMCONTROL call. Currently defined
options for RPMCONTROL are:

• 20001 — Suspend execution of the remote process.
No data is required, and none is returned.

• 20002 — Resume execution of the remote process at
the point it was suspended. No data is required, and
none is returned.

wrtdata (input) Byte array, by reference. Any data to be sent to the
remote side for the request.

wrtlen (input) 32-bit integer, by value. Length, in bytes of wrtdata.

readdata
(output) Byte array, by reference. Data to be returned to the

caller.

readlen
(input/output) 32-bit integer, by reference. On input, it is the

maximum number of bytes expected in the readdata
parameter. On output, it is the actual number of bytes
received in the readdata parameter.

flags (input) 32 bits, by reference. A bit representation of various
options. No flags are currently defined.

result (output) 32-bit integer, by reference. The result of the
RPMCONTROL request; zero if no error.

134 Chapter 7

Remote Process Management
RPMCONTROL

Description
This intrinsic is used to control a remote process that was created with
an RPMCREATE request. The only RPM control requests defined are
suspend and resume.

Its calling sequence is similar to that of IPCCONTROL. The pd and
reqcode parameters are the only required parameters. To control a
remote process from a process which is not its creator, the location and
loclen must be specified. RPMCONTROL uses these parameters to
establish a new connection to the remote machine to perform the
request.

The wrtdata and wrtlen parameters must be specified if the reqcode
specified requires data to be transferred to the remote node.

Similarly, readdata and readlen should be included if the reqcode specified
returns data to the caller upon completion of the request. Presently,
there are no request codes that require these parameters.

The ability to specify the suspend and resume request codes (20001,
20002) in an RPMCONTROL request is limited to programs that have
Privileged Mode (PM) capability. Great care should be taken when
using these request codes. If a locally created process is suspended,
(that is, a process that was created with a location and logon matching
that of the caller, or the location and logon were omitted or blank), and
the creator terminates without issuing either an RPMKILL or an
RPMCONTROL with the resume request code, the creator process may
hang. Therefore, these functions should not be used to manipulate
locally created processes unless absolutely necessary.

If the process to be suspended is on a remote node, there is no danger of
hanging the process. However, a process that has been suspended in
this manner cannot be killed or resumed except by explicitly calling
either RPMKILL or RPMCONTROL with the resume request code.

If a process is in a state where the node cannot suspend it, RPMCONTROL
will return an error code in the result parameter indicating this. A
process may not be suspendable because: the process is suspended by a
system process, the process is waiting for critical resources, or the
process is dying.

Chapter 7 135

Remote Process Management
RPMCREATE

RPMCREATE
Creates and activates a process and, if necessary, creates a remote
session for that process to run in. Process Handling (PH) capability is
required.

Syntax
RPMCREATE (progname,namelen [, location][, loclen][, login][, loginlen]

[, password][, passwdlen][, flags][, opt][,pd][,result])

Parameters
progname (input) Character array, by reference. The name of the

program for which a process is to be created.

namelen (input) 32-bit integer, by value. The length in bytes of the
program name.

location (input) Character array, by reference. The node name or
environment ID indicating where the process should be
created.

loclen (input) 32-bit integer, by value. The length in bytes of the
location name.

login (input) Character array, by reference. A logon sequence for the
local or remote node on which the process is to be
created, in the form [session,] user.acct[, group] .

loginlen (input) 32-bit integer, by value. The length in bytes of the
logon sequence.

password (input) Character array, by reference. Password(s) to be
used with the logon sequence, in the form
[userpass][, acctpass][, grouppass] .

passwdlen (input) 32-bit integer, by value. The length in bytes of the
password parameter.

flags (input) 32 bits, by reference. A bit representation of various
options. The following flags are defined:

• flags [0] (input). Indicates that all environment
information given in a prior DSLINE command (for
the remote environment in question) should be
ignored when the new process is created. For
example, if this flag is on, a logon sequence provided
in the LOGON option of a DSLINE command will not
override the logon given in this RPMCREATE call.

136 Chapter 7

Remote Process Management
RPMCREATE

• flags[1] (input). Causes the calling process to wait in
this intrinsic call until the new process terminates.
(The RPMCREATE call will complete only after the
new process finishes executing.)

• flags[2] (input). Causes RPM to create a process
using RPM protocols from HP’s software release UB
Delta 1 or earlier. In software release UB Delta 1 or
earlier, RPM flags 3 and 30 are not supported.

• flags[3] (input). Causes RPMCREATE to fail if the
remote node has a version of RPM installed that is
from HP’s software release UB Delta 1 or earlier. By
default, if the remote node does not have the newer
RPM installed, RPMCREATE will act as if flags[2] is
set and conform to the older format.

• flags (input). Causes the remote node to create the
process into a session that may accommodate
multiple RPM created processes. By default
RPMCREATE will only create one remote process per
remote session.

• flags[31] (input). Makes the created process
dependent on the creator. When the creator process
dies, the created process will be killed. (If this bit is
off, the created process will continue executing on its
own.) Default: off; created process is independent of
its creator.

opt Record or byte array, by reference. A list of options,
with associated information. The following options are
defined:

• RPM string (option code 20000, n-byte array).
Permits information to be sent to the created process
in the data portion of the opt parameter, such as a
socket name. More than one RPM string can be
included. The strings may be retrieved by the new
process (using RPMGETSTRING) in the same order
that they occur in the opt parameter.

• Entry point (code 22001, n-byte array). The data
portion of this parameter contains a string,
terminated by a blank, specifying the entry point
(label) in the program where execution is to begin
when the process is activated. A blank by itself
indicates the primary entry point. This parameter
corresponds to item number 1 of the MPE/iX
CREATEPROCESS intrinsic. The contents of this

Chapter 7 137

Remote Process Management
RPMCREATE

option parameter should conform to the value of the
item parameter in the CREATEPROCESS intrinsic.
Default: primary entry point.

• Program parameter (code 22002, 2-byte integer).
The data portion of this parameter contains an
integer value used to transfer control information to
the new process. The word will be accessible on the
stack of the new process at location Q-4. This
parameter corresponds to item number 2 of the
MPE/iX CREATEPROCESS intrinsic. The contents of
this option parameter should conform to the value of
the item parameter in the CREATEPROCESS
intrinsic.

• Create flags (code 22003, 2-byte bit map). The data
portion of this parameter contains a word whose bits
specify loading options, as follows. (Bit 15 is the
least significant bit, bit 0 the most significant bit.)
This parameter corresponds to item number 3 of the
MPE/iX CREATEPROCESS intrinsic. The contents of
this option parameter should conform to the value of
the item parameter in the CREATEPROCESS intrinsic.

• bit 15 — Ignored; should be off.

• bit 14 — LOADMAP bit. If on, a listing of the newly
allocated program is produced on the job/session
listing device. This map shows the Code Segment
Table (CST) entries used by the new process.
Default: off

• bit 13 — DEBUG bit. If on, DEBUG is called at the
first executable instruction of the new program.
You must have read/write access to the program
file of the new process. If the new process requires
privileged mode, you must be a privileged user.
Default: off.

• bit 12 — NOPRIV bit. If on, the slave program is
loaded in non-privileged mode. If this bit is off,
the program is loaded in the mode specified when
the program file was prepared. Default: off.

• bits 10 and 11 — LIBSEARCH bits. A coded bit
pattern that denotes the order in which libraries
are to be searched for the program. The default is
00:

00 = System Library only.

01 = Account Public Library, then System
Library.

138 Chapter 7

Remote Process Management
RPMCREATE

10 = Group Library, then Account Public
Library, then System Library.

• bit 9 — NOCB bit. If on, file system control blocks
are established in an extra segment. If off, control
blocks may be established in the Process Control
Block Extension (PCBX) area. Default: off. This
bit should be set on if the new process uses a
large stack.

• bits 7 and 8 — reserved for MPE; should be off
(00).

• bits 5 and 6 — STACKDUMP bits. A coded bit
pattern that controls the enabling/disabling of
stack dumping in the event of a program abort.
The default is 00:

00 = enable stack dumping for new process
only if enabled at master level;

01 = enable stack dump unconditionally;

10 = same as 00;

11 = disable stack dump unconditionally.

• bit 4 — reserved for MPE; should be off.

• bits 0 to 3 — These four bits are used only if the
STACKDUMP bits are 01; otherwise they are
ignored. Bits 1–3 represent portions of the slave
program’s stack. If bit 3 is on, the portion of the
stack from DL to QI (Q-initial) is dumped; if off,
this portion is not dumped. If bit 2 is on, the
portion of the stack from QI to S is dumped. If
bit 1 is on, the portion of the stack from Q-63 to S
is dumped. If bit 0 is on, the stack dump is
interpreted in ASCII characters in addition to
octal values; if off, no ASCII interpretation is
performed. The default for each of these bits is
off.

The default conditions noted above take effect if the Create flags option
(flags) or the entire opt parameter is omitted.

• Initial stack size (code 22004, 2-byte integer). The data portion of
this parameter contains an integer (Z–Q) denoting the size, in words,
of the local stack area bounded by the initial Q and Z values. This
parameter corresponds to item number 4 of the MPE/iX
CREATEPROCESS intrinsic.

Chapter 7 139

Remote Process Management
RPMCREATE

The contents of this option parameter should conform to the value of
the item parameter in the CREATEPROCESS intrinsic. Default: The
value specified in the program file

• Initial dlsize (code 22005, 2-byte integer). The data portion of this
parameter contains an integer (DB–DL) denoting the size, in words,
of the user-managed stack area bounded by the DL and DB values.
This parameter corresponds to item number 5 of the MPE/iX
CREATEPROCESS intrinsic. The contents of this option parameter
should conform to the value of the item parameter in the
CREATEPROCESS intrinsic. Default: The value specified in the
program file.

• Max stack size (code 22006, 2-byte integer). The data portion of this
parameter contains an integer (Z–DL) denoting the maximum word
size allowed for the process’s stack area (bounded by the DL and Z
values). This parameter corresponds to item number 6 of the MPE/iX
CREATEPROCESS intrinsic. The contents of this option parameter
should conform to the value of the item parameter in the
CREATEPROCESS intrinsic. Default: The value specified in the
program file or (if none is specified there) the current stack size.

• Priority (code 22007, 2-byte array). The data portion of this
parameter contains a string of two ASCII characters (AS, BS, CS,
DS, or ES) indicating the priority class in which the new process is
scheduled. Default: The same priority as the calling process. This
parameter corresponds to item number 7 of the MPE/iX
CREATEPROCESS intrinsic. The contents of this option parameter
should conform to the value of the item parameter in the
CREATEPROCESS intrinsic.

• $STDIN file name (code 22008, n-byte array). The data portion of this
parameter contains the name of a file to which all input requests to
$STDIN will be directed. This parameter corresponds to item
number 8 of the MPE/iX CREATEPROCESS intrinsic. The contents of
this option parameter should conform to the value of the item
parameter in the CREATEPROCESS intrinsic. Default: With an
interactive logon (HELLO, REMOTE HELLO), input requests will be
directed to $STDIN. With the logon option (either the LOGON=
parameter in a DSLINE command or the login parameter of
RPMCREATE), input requests will be directed to the empty file $NULL.

• $STDLIST file name (code 22009, n-byte array). The data portion of
this parameter contains the name of a file to which all output
requests to $STDLIST will be directed. This parameter corresponds
to item number 9 of the MPE/iX CREATEPROCESS intrinsic. The
contents of this option parameter should conform to the value of the
item parameter in the CREATEPROCESS intrinsic. Default: With an
interactive logon (HELLO, REMOTE HELLO), output requests will be
directed to $STDLIST . With the logon option (either the LOGON=

140 Chapter 7

Remote Process Management
RPMCREATE

parameter in a DSLINE command or the login parameter of
RPMCREATE), output requests will be directed to the empty file
$NULL.

• Info string (code 22011, n-byte array). The data portion of this
parameter contains an information string that is passed to the new
process. This string will be accessible on the new process’s stack at a
byte address that is stored at location Q-5. If this option is included,
you must also include the Info string length option (22012). This
parameter corresponds to item number 11 of the MPE/iX
CREATEPROCESS intrinsic. The contents of this option parameter
should conform to the value of the item parameter in the
CREATEPROCESS intrinsic.

• Info string length (code 22012, 2-byte integer). The data portion of
this parameter contains an integer specifying the byte length of the
info string given by the previous option. The Info string length
option must be included if the Info string option is included. This
parameter corresponds to item number 12 of the MPE/iX
CREATEPROCESS intrinsic. The contents of this option parameter
should conform to the value of the item parameter in the
CREATEPROCESS intrinsic.

• Logon timeout; real (code 22100, 4-byte real value). The data portion
of this parameter contains a real value representing the number of
seconds you are willing to wait for a remote logon, performed by
RPMCREATE, to complete. If the remote session is not established
during this time, you will receive an error. Default: 120.0 seconds.

• Logon timeout; integer (code 22102, 4-byte integer). This is the same
as option 22100 except that the data portion of this parameter
contains an integer representing the number of milliseconds that
you are willing to wait for the remote logon, performed by
RPMCREATE to complete. If both options are present in the opt array,
then the entry with the lowest array index will be the one selected.

pd (output) 16-byte array, by reference. A program descriptor
used to identify the created process. This value,
randomly generated, is presumed to be unique across
all nodes. A valid program descriptor is always a
non-zero value.

result (output) 32-bit integer, by reference. The error code
returned; zero if no error.

Description
The RPMCREATE intrinsic enables the calling process to create and
activate another process — that is, to initiate execution of another
program. The new process may be on a remote system. (RPM does not
extend the process management capabilities of a particular operating
system, such as MPE, across a network.)

Chapter 7 141

Remote Process Management
RPMCREATE

Normally, RPMCREATE allows only one remote process per remote
session. Bit 30 of the RPM flags parameter allows multiple RPM remote
processes in a remote session. This session-sharing option of RPM is
only available in HP’s software release UB delta 2 or later. The only
required parameters are progname, namelen, location, and loclen. (The
intrinsic is option variable.) In order for multiple processes to reside in
a common remote session, three criteria must be satisfied:

• All the processes must have been created with bit 30 of the flags
parameter set. Remote processes created without this bit set will not
share sessions with processes that do have it set.

• All the processes must have been created from processes residing
within the same session on the local node. Processes that are
running in different local sessions will RPMCREATE remote processes
into different remote sessions.

• All the processes must have the same logon string including session
name, if any. All the necessary passwords must match.

The remote session may be any session that RPMCREATE would
normally use, including VT-created sessions, that is, sessions created
using the REMOTE HELLO command.

The new process will run in an existing remote session (created by
REMOTE HELLO) if you specify the appropriate environment ID in the
location parameter. A new session will be created on the remote node if
one does not already exist. RPM uses the logon sequence specified in
the login parameter (and the password in password) unless (1) a logon is
specified in a prior DSLINE command for the remote environment (in
the LOGON option), and (2) bit 0 of the flags parameter (the high-order
bit, which causes the DSLINE information to be ignored) is off. In other
words, the order of priority (from high to low) is: existing session;
DSLINE logon; RPMCREATE logon. But the “ignore DSLINE information”
flag forces the use of the RPMCREATE logon instead of a DSLINE logon.

If the new process is to be created on a remote node and the login
parameter is omitted, then a remote session must already exist or logon
information must be given in a prior DSLINE command. For example,
let's say that a previous DSLINE command has defined “S” as an
environment ID for node FINANCE, with logon USER.ACCT. Then an
RPMCREATE call giving “S” as the location and omitting the login
parameter will create a session on FINANCE for USER.ACCT.

Once an RPMCREATE call has been made for a remote environment, you
cannot issue remote commands for that environment until the remote
process has terminated (for example, has been killed via RPMKILL). If
an independent RPM process has been left in the remote environment
after the process that created it has terminated, and you issue a
DSLINE ;CLOSE command for the remote environment, you will first be
asked whether you want to kill the remote RPM process. If you kill the

142 Chapter 7

Remote Process Management
RPMCREATE

remote process and then do not abort the remote session, you can
subsequently issue commands in the remote session. See “Releasing a
Remote Environment” in the “Virtual Terminal” chapter of this manual.

RPMCREATE can also create a new process on the local node. The new
process will be created in your local session if (1) the location and login
parameters are omitted or blank or (2) location is the local node name
and login is the logon for your local session (including session name, if
any). A new process will also be created on your local node, but in a
different session, if (1) you specify your local node name, and a logon
different from your own and (2) software loopback has been configured
and activated for your local node.

Bit 31 (the low-order bit) of the flags parameter determines whether the
newly created process will be dependent on its creator or independent
(the default). A local dependent process that was created under the
same logon as its creator will terminate automatically when the creator
terminates. (In order to conserve system resources, you should make
local processes independent; that is, set the bit off.)

A remote dependent process will terminate if:

• RPMKILL has been called for the dependent process.

• The creator process terminates before calling RPMKILL.

• The transport fails.

• The system on which the creator is running fails.

If the remote process is independent, it will continue to execute unless
explicitly terminated by RPMKILL. Dependent mode ensures that the
new process will not become an “orphan” in the event of a program,
system, or network link failure. However, independent mode is less
costly in terms of resources: the connection set up for the RPMCREATE is
not maintained after the remote process is created. You should
normally use independent mode for processes that are expected to
terminate themselves.

Preferred Method of Creating Interactive
Programs
RPM works best to create non-interactive server programs on a remote
system. If you use RPM to create interactive programs, some
restrictions exist (described in a following section). Therefore, as an
alternative to using the RPMCREATE intrinsic to create interactive
programs, HP recommends that you call the REMOTE RUN command
from the COMMAND intrinsic. Using this method will suspend the master
process in the COMMAND intrinsic while the slave program runs. Only
use RPMCREATE if you require parallel execution of a master and slave
process.

Chapter 7 143

Remote Process Management
RPMCREATE

Using $STDIN and $STDLIST in a Precreated VT
Session
Beginning with MPE/iX release 2.2, remote RPM slave processes can
post interactive I/O to $STDIN and $STDLIST through a precreated VT
session. This allows interactive I/O from remote programs to appear on
a local terminal.

Before creating an RPM slave, use the REMOTE HELLO command to
create a remote session. After the session is established, you can use
the RPMCREATE command to create an RPM son in the remote session.
The location parameter should contain the same environment name that
was specified in the REMOTE HELLO command. Do not specify the login
or loginlen parameters, nor are the $STDIN/$STDLIST options
22008/22009 required.

Restrictions when Using RPMCREATE to Create
Interactive Programs
Because RPM was not designed to create interactive programs, there
are caveats you should be aware of before using RPM for your
application.

Do not press the system BREAK or the subsystem break [CTRL] Y while
a remote application is running.

Do not create an RPM slave in a VT session that is in break. This will
cause both the local and remote application to hang. Neither the local or
remote session can log off.

Opt Parameter Format
The opt parameter, which denotes various options, contains an integer
code for each option along with associated information. It is not
necessary to know the internal structure of this parameter to use it.
The “opt parameter manipulation intrinsics,” INITOPT , ADDOPT, and
OPTOVERHEAD, enable you to add option information without
concerning yourself with the parameter’s structure. However, a
knowledge of the opt parameter’s structure can help you determine an
appropriate size for the array. (The parameter must be defined as a byte
array or as a record structured in the manner described below. If your
program is written in a language that supports dynamically allowed
arrays, the OPTOVERHEAD intrinsic may be used to determine the size of
the array.)

The opt parameter consists of these fields:

• length, in bytes, of option entries and data (2-byte integer);

• number of entries (2-byte integer);

• option entries (8 bytes per entry);

144 Chapter 7

Remote Process Management
RPMCREATE

• data associated with the option entries (variable length).

Each 8-byte option entry, in turn, consists of the following fields:

• option code (2-byte integer);

• offset (relative to the base address of the opt parameter) indicating
the location of the data for this option entry (2-byte integer);

• length, in bytes, of the data (2-byte integer);

• unused (2 bytes).

If the parameter is declared as a simple byte array, it must be large
enough to contain 4 bytes for the first two fixed-length fields, 8 bytes for
each option entry, plus the actual data. That is:

4 + 8 * numentries + datalength

Chapter 7 145

Remote Process Management
RPMGETSTRING

RPMGETSTRING
Allows a created process to retrieve information strings passed to it by
its creator in the RPMCREATE call.

Syntax
RPMGETSTRING (rpmstring,rpmstringlen,result)

Parameters
rpmstring
(output) Character array, by reference. The string passed in

the opt parameter of the RPMCREATE call that created
this process.

rpmstringlen
(input/output) 32-bit integer, by reference. The maximum byte

length allowed for the rpmstring. The returned value
indicates the actual length of the returned rpmstring,
zero if no string was passed by the creator process.

result (output) 32-bit integer, by reference. The error code
returned; zero if no error.

Description
The RPMGETSTRING intrinsic allows a process created by an
RPMCREATE to obtain the information string passed to it by the creator
process in the RPMCREATE call. All the parameters are required.The
string obtained in this manner may contain any useful information. For
example, it could contain the name of a (call) socket belonging to the
creator along with the name of the node on which the creator is
executing. The created process can look up this socket name in order to
acquire a destination descriptor for it. After creating a socket of its own,
it can establish a connection to the creator process.

If the opt parameter of RPMCREATE contained more than one RPM
string, you can issue several RPMGETSTRING calls to retrieve the
strings.

For example:

Creator process:

ADDOPT (Opt, 0, 20000, Length1, RpmString1);

ADDOPT (Opt, 1, 20000, Length2, RpmString2);

ADDOPT (Opt, 2, 20000, Length3, RpmString3);

RPMCREATE (... Opt ...);

146 Chapter 7

Remote Process Management
RPMGETSTRING

Created process:

RPMGETSTRING (RpmString1, Length1, Result);

RPMGETSTRING (RpmString2, Length2, Result);

RPMGETSTRING (RpmString3, Length3, Result);

For another illustration of the use of this intrinsic, see the program
examples at the end of this chapter.

Chapter 7 147

Remote Process Management
RPMKILL

RPMKILL
Terminates a process created by the RPMCREATE intrinsic. Process
Handling (PH) capability is required.

Syntax
RPMKILL (pd[, location][, loclen][, result])

Parameters
pd (input) 16-byte array, by value. The program descriptor

returned by the RPMCREATE intrinsic.

location (input) Character array, by reference. The node name or
environment ID indicating where the process to be
killed is located.

loclen (input) 32-bit integer, by value. The length in bytes of the
location name.

result (output) 32-bit integer, by reference. The error code
returned; zero if no error.

Description
The RPMKILL intrinsic terminates a process that was created by
RPMCREATE. It also deletes the remote environment if that environment
was established by RPMCREATE. Any process on any node may call
RPMKILL to kill a remote RPM process, as long as it has the correct
program descriptor. To kill a process on your local node that utilizes
another session, you must have configured the network for software
loopback. To kill a local process in your session, you must be the creator
of that process.

The only required parameter is pd (option variable).

The location and loclen parameters are also required in order to kill a
remote process either if the remote process is independent or if the
calling process is not the creator. RPM needs these to open a new
connection to the remote node before killing the remote process.

Use the RPMKILL intrinsic only to terminate perpetually running
remote processes. Otherwise, use the “Shutting Down Sockets and
Connections” procedure described in the NetIPC 3000/XL
Programmer's Reference Manual.

148 Chapter 7

Remote Process Management
ADDOPT

ADDOPT
Adds an option entry to the opt parameter.

Syntax
ADDOPT (opt, entrynum, optioncode, datalength, data[, result])

Parameters
opt
(input/output) Record or byte array, by reference. The opt

parameter to which you want to add an entry. Refer to
“Common Parameters” for more information on the
structure of this parameter.

entrynum (input) 16-bit integer, by value. Indicates which entry is to
be initialized. The first entry is entry zero.

optioncode
(input) 16-bit integer, by value. The entry’s option code,

identifying the option.

datalength
(input) 16-bit integer, by value. The length (in bytes) of the

data associated with the option.

data (input) Byte array, by reference. The data associated with
the option.

result (output) 16-bit integer, by reference. The error code
returned; zero if no error.

Description
The ADDOPT intrinsic specifies the values of an opt parameter's option
entry fields and adds any associated data. The intrinsic also updates
the size of the opt parameter.

The parameter must be initialized by INITOPT before options are added
by ADDOPT. Consider this program fragment:

data_offset:=10;
{10 bytes from beginning of data array]

INITOPT(opt, 1);
{one option entry}

Chapter 7 149

Remote Process Management
ADDOPT

ADDOPT (opt, 0,
8, 2,
data_offset); {first entry is entry zero, option code 8; entry’s data

area contains a 2 byte integer specifying an offset from
data parameter address}

IPCSEND (cd,
data, dlen, ,
opt, result); {sends data located at offset from data address

specified in opt}

INITOPT and ADDOPT allow you to initialize the opt parameter for use
in another intrinsic. These auxiliary intrinsics make the structure of
the opt parameter largely transparent.

Condition codes returned by ADDOPT are:

• CCE — Succeeded.

• CCL — Failed because of a user error.

• CCG — Not returned by this intrinsic.

This intrinsic may be called in split stack mode.

150 Chapter 7

Remote Process Management
INITOPT

INITOPT
Initializes the opt parameter so that entries may be added.

Syntax
INITOPT (opt, eventualentries[, result])

Parameters
opt (output) Record or byte array, by reference. The opt

parameter which is to be initialized. Refer to “Common
Parameters” for more information on the structure of
this parameter.

eventualentries
(input) 16-bit integer, by value. The number of option entries

that are to be placed in the opt parameter.

result (output) 16-bit integer, by reference. The error code
returned; zero if no error.

Description
The INITOPT intrinsic initializes the length and number-of-entries
fields (that is, the first 4 bytes) of the opt parameter. This must be done
before options are added to the parameter by means of the ADDOPT
intrinsic.

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed because of a user error.

• CCG — Not returned by this intrinsic.

This intrinsic may be called in split stack mode.

Chapter 7 151

Remote Process Management
OPTOVERHEAD

OPTOVERHEAD
Returns the number of bytes needed for the opt parameter in a
subsequent intrinsic call, not including the data portion of the
parameter.

Syntax
optlength := OPTOVERHEAD (eventualentries[, result])

Parameters
optlength (returned
function value) 16-bit integer. The number of bytes required for the

opt parameter, not including the data portion of the
parameter.

eventualentries
(input) 16-bit integer, by value. The number of option entries

that will be placed in the opt parameter.

result (output) 16-bit integer, by reference. The error code
returned; zero if no error.

Description
This function returns the number of bytes needed for the opt parameter,
excluding the data area. The first parameter is required.

Condition codes returned by this intrinsic are:

• CCE — Succeeded.

• CCL — Failed because of a user error.

• CCG — Not returned by this intrinsic.

This intrinsic may be called from split stack mode.

152 Chapter 7

Remote Process Management
RPM Program Examples

RPM Program Examples
The following two Pascal programs illustrate the use of the RPM
intrinsics. The first program creates a new process (the second
program) on a remote node. It also creates a remote session for the
second program to run in. At the same time, it passes strings
containing a socket name and a node name to the remote process. This
information enables the second program to establish a connection to the
first.

In greater detail, the first program:

• creates a call socket and names it;

• reads the name of the node on which it is running;

• initializes the opt parameter with strings containing the socket’s
name and the name of the node on which it is running;

• creates a new process with the program name CREATURE on a
remote node, passing the strings to the new process;

• waits for a connection request from the remote process (and
establishes the connection);

• shuts down its call socket;

• executes a loop in which it:

• calls a procedure that receives a message by executing two
IPCRECV loops. The first loop determines the incoming message
length. The second loop receives data until all the pieces of the
message have been received.

• prints the message that was received;

• receives a “last message” termination request;

• sends a “termination confirmation message” in response to the
termination request;

• receives a result parameter value of 64 (“REMOTE ABORTED
CONNECTION”) in response to a receive request;

• releases its VC socket.

The execution of the second program is initiated by the first program.
The second program:

• obtains the socket name and node name passed by the creator;

• uses these names to acquire a destination descriptor for the socket;

• creates a call socket for itself, sends a connection request to the
creator’s socket, and establishes a connection to the creator process;

Chapter 7 153

Remote Process Management
RPM Program Examples

• opens a data file;

• executes a loop in which it:

• reads a line of data from the data file;

• stores the length (number of bytes) of the data in the first part of
the message;

• stores the data itself in the second part of the message;

• sends the message on the connection, including the message
length as the first two bytes of the message;

• after all the data is transmitted from the data file, sends a “last
message” that will be recognized by the receiving program as a
termination request;

• receives a “termination confirmation message” and shuts down the
connection by releasing its VC socket.

NOTE Process Handling (PH) capability is required to use the following
programs.

Before running the first program, you must associate the remote node
with the environment ID “REMNODE” via the DSLINE command. For
example, issue the command DSLINE REMNODE=ASTRO if the remote
node where the second program resides is named “ASTRO.”

154 Chapter 7

Remote Process Management
RPM Program 1

RPM Program 1
$standard_level 'HP3000', uslinit$
program creator (input,output);
const

maxdata = 2000;
maxname = 20;

type
smallint = -32768..32767;
datatype = packed array [1..maxdata] of char;
nametype = packed array [1..maxname] of char;
byte = 0..255;

var
calldesc : integer;
result : integer;
progname : packed array [1..15] of char;
location : packed array [1..16] of char;
login : packed array [1..25] of char;
flags : packed array [0..31] of boolean; {32 contiguous bits}
pd : packed array [0..15] of byte;
destdescriptor : integer;
vcdesc : integer;
dlen : integer;
i : integer;
data : datatype;
len : smallint;
datastr : string[maxdata];
socketname : nametype;
nodename : nametype;
opt : packed array [1..50] of byte; {INITOPT and ADDOPT

will structure the array for us}

procedure terminate; intrinsic;

{RPM and IPC intrinsic declarations}

procedure ipccreate; intrinsic;

procedure ipcname; intrinsic;

procedure initopt; intrinsic;

procedure addopt; intrinsic;

procedure rpmcreate; intrinsic;

procedure ipcrecvcn; intrinsic;

procedure ipcerrmsg; intrinsic;

procedure ipcrecv; intrinsic;

procedure ipcshutdown; intrinsic;

procedure ipcsend; intrinsic;

procedure leave(result: integer);
var msg: string[80];

i, len, newresult: integer;

begin
ipcerrmsg (result, msg, len, newresult);
if newresult = 0 then

begin
setstrlen(msg, len);
writeln(msg); {print error message}
end

Chapter 7 155

Remote Process Management
RPM Program 1

else
writeln('IpcErrMsg result is ', newresult:1);

terminate;
end;
procedure check (result : integer);
{error procedure}
begin
if result << >> 0 then

leave (result); {failed}
end;

{error handling procedure}
{The following procedure receives one message that was sent via an ipcsend call.
It assumes that the length (number of bytes) of the message was sent as the
first 2 bytes of data and that the length value does not include those 2 bytes.}

procedure receive (connection : integer;
var rbfr : datatype;
var rlen : smallint;
var errorcode : integer) ;

const
head_len = 2;

type

 length_buffer_type = packed array[1..2] of char;

header_len_type = record case integer of
0: (word: smallint);

1: (byte: length_buffer_type);
end;

var i, j : integer;
dlen : integer;
header_len : header_len_type;
tempbfr : datatype;

@COMPUTERTXT = begin { procedure receive }

i:=0;
errorcode := 0;
while (i < head_len) and (errorcode = 0) do { get length of message }

begin
dlen := head_len - i;
ipcrecv (connection, tempbfr, dlen, ,, errorcode);
if errorcode = 0

then strmove(dlen, tempbfr, 1, header_len.byte, i+1);
i := i + dlen;
end;

if errorcode = 0 then
begin
rlen := header_len.word;
i := 0;
while (i < rlen) and (errorcode = 0) do { get the message }

begin
dlen := header_len.word - i;
ipcrecv

(connection, tempbfr, dlen, , , errorcode);
if errorcode = 0

then strmove(dlen, tempbfr, 1, rbfr, i+1);
i := i + dlen;
end;

end

156 Chapter 7

Remote Process Management
RPM Program 1

else
rlen := 0;

end; { procedure receive }
begin {creator}
{create call socket, then name it}
ipccreate (3, 4, , , calldesc, result); {call socket, TCP protocol}
check (result); {error procedure}

socketname := 'MYSOCKET';
ipcname (calldesc, socketname, 8, result);
check (result);
{place rpmstring with socket information in opt parameter}
prompt('What is the name of your local node? ');
readln(datastr);
len := strlen(datastr);
strmove(len,datastr,1,nodename,1);
fginitopt(opt, 2); {2 option entries}
addopt(opt,0,20000,8,socketname); {option entry 0, rpmstring option code}
addopt(opt,1,20000,len,nodename); {option entry 1, rpmstring option code}
{create remote process and remote session;
the program file CREATURE must exist in the logon group for VPRES.ACCNTG on the
remote node}
progname := 'CREATURE';
location := 'REMNODE';
login := 'VPRES.ACCNTG,PUB';
for i := 0 to 30 do flags [i] := false; {false=0, true=1

for each bit in array}
flags [31] := true; {set dependent flag}
rpmcreate (progname,8,location,7,login,14, , ,flags,opt,pd,result);
if result < > 0 then

begin
writeln('RPM ERROR # is ',result);
terminate;

end;

{wait for connection request from remote process}
ipcrecvcn (calldesc, vcdesc, , , result);

check (result);
ipcshutdown (calldesc);
{receive messages on connection and print them;
repeat until 'END' message received}
repeat

begin
receive (vcdesc, data, len, result);
check (result);
setstrlen(datastr, len);
strmove(len, data, 1, datastr, 1);

if datastr < > 'END' then writeln (datastr); {print data received}
end

until datastr= 'END';
writeln('END received');

data := 'Y'; {shutdown procedure}
ipcsend (vcdesc, data, 1, , , result);
check (result);
receive (vcdesc, data, len, result);
if result = 64 then ipcshutdown(vcdesc)

else check (result);
end. {creator}

Chapter 7 157

Remote Process Management
RPM Program 2

RPM Program 2
$ standard_level 'HP3000', uslinit$
program creature(datafile); {"datafile" must be an already

existing file}
const

maxdata = 2000;
maxmsg = maxdata + 2;
maxname = 20;
maxloc = 20;

type
byte = 0..255;
shortint = -32768..32767;
datatype =

record

len : shortint;
msg : packed array[1..maxdata] of char;
end;

nametype = packed array[1..maxname] of char;
loctype = packed array[1..maxloc] of char;

var
datafile : text;
rpmstringlen : integer;
socketname : packed array [1..16] of char;
nodename : packed array [1..16] of char;
destdesc : integer;
calldesc : integer;
vcdesc : integer;
result : integer;
data : datatype;
strdata : string[maxdata];
socknmlen : integer;
nodenmlen : integer;
y_data : char;
y_len : integer;

procedure terminate; intrinsic;

{RPM and IPC intrinsic declarations}
procedure rpmgetstring; intrinsic;
procedure ipcerrmsg; intrinsic;
procedure ipclookup; intrinsic;
procedure ipccreate; intrinsic;
procedure ipcconnect; intrinsic;

procedure ipcrecv; intrinsic;
procedure ipcsend; intrinsic;
procedure ipcshutdown; intrinsic;

{error handling procedure}
procedure check (result : integer);
{error procedure}
begin
if result < > 0 then

terminate; {failed}
end;

158 Chapter 7

Remote Process Management
RPM Program 2

begin {creature}
{get the creator process's socket name and node name, one at a time, from

the rpmstrings}
rpmstringlen:= maxname;
rpmgetstring (socketname, rpmstringlen, result);
socknmlen := rpmstringlen;
strmove (socknmlen, socketname, 1, strdata, 1);
rpmstringlen := maxloc;
rpmgetstring (nodename, rpmstringlen, result);
nodenmlen := rpmstringlen;
setstrlen(strdata,0);
strmove(nodenmlen, nodename, 1, strdata, 1);
{look up socket name to get destination descriptor}
ipclookup (socketname,socknmlen,nodename,nodenmlen,,destdesc, , ,result);

check (result); {error procedure}
{create a call socket for this process}
ipccreate (3, 4, , , calldesc, result); {call socket, TCP protocol}
check (result);
{send a connection request to the creator process and receive the creator's
reply to complete the connection}

ipcconnect (calldesc, destdesc, , , vcdesc, result);
check (result);
ipcrecv (vcdesc, , , , ,result);
check (result);
ipcshutdown (alldesc);
ipcshutdown (destdesc);
{send messages on connection}
{ prompt for messages and send them }

reset(datafile); {open input file}

while not EOF(datafile) do
begin
setstrlen(strdata, 0);
readln(datafile, strdata); {read message}
data.len := strlen(strdata); {store message length}
strmove(data.len, strdata, 1, data.msg, 1); {store message}
ipcsend(vcdesc, data, data.len+2, , , result); {send message,

including length
as first 2 bytes}

check(result); {failed}
end;
{connection shutdown procedure}

data.len := 3;
data.msg := 'END'; {termination request}
ipcsend(vcdesc, data, 5, , , result);
check(result);
y_len := 1;
ipcrecv (vcdesc, y_data, y_len, , , result);
if (y_data = 'Y') and (result = 0)

then ipcshutdown(vcdesc)
else
check(result);

end. {creature}

159

8 NetCI

NetCI is a network command interpreter that enables you to more
efficiently manage and operate the systems in a network. It allows you
to execute MPE commands (or UDCs) and to run programs on any node
from one location. It lets you automatically establish remote sessions on
several nodes and then broadcast commands to selected MPE V and
MPE/iX nodes.

NetCI also allows you to redirect input and output, sequentially execute
commands on multiple nodes, and gather data from multiple nodes.

NetCI is an enhanced capability of the NS 3000/iX network services. On
MPE/iX based machines, NetCI requires the MPE/iX operating system
version A.30.00 or later.

NetCI is a special application program which utilizes Virtual Terminal
(VT) service. Figure 8-1 shows how the VT service corresponds to the
application layer and how NetCI is logically located on top of VT. NetCI
uses VT to establish a connection with each of the remote nodes. This
VT connection allows you to execute MPE commands, UDCs, or user
programs on the remote nodes.

You only need to install NetCI on one MPE/iX or MPE V node (called
the management node). NetCI does not need to be installed on remote
nodes of a network. Remote nodes can be either MPE V or MPE/iX
nodes.

NetCI can establish remote sessions and can broadcast commands to
other networks in an internetwork (network with gateways).

Figure 8-1 NetCI and OSI Model

160 Chapter 8

NetCI
How to Use NetCI

How to Use NetCI
There are many applications in which you can use NetCI to help access
multiple HP 3000s on the network. Some of the more typical
applications include:

• gathering similar data from all systems such as status information
about jobs/sessions/scheduled jobs;

• performing system check procedures;

• monitoring applications on remote nodes and verifying that all the
necessary processes are operational;

• executing global commands such as running application status
programs on systems supporting that application.

Refer to “Sample Applications” at the end of this section for descriptions
of specific applications that you can develop using NetCI.

NetCI is not a tool for troubleshooting the network. It simply allows you
to reduce troubleshooting time and effort by enabling you to quickly
isolate some network problems from one terminal.

Chapter 8 161

NetCI
Running NetCI

Running NetCI
To run NetCI from the MPE prompt, enter the following:

: RUN NETCI.PUB.SYS

Now press [Return] .

After MPE accepts the RUN command, NetCI displays a message
similar to the following message:

NetCI/iX A.00.00 (c)Copyright Hewlett-Packard Co. 1994

NetCI then displays the NetCI prompt. This prompt tells you that you
are in NetCI. You can now execute MPE commands and UDCs, and run
programs on any node. Before you do so, you must configure the nodes
and logon information. This allows you to access systems through
NetCI without having to manually establish session logons for each
node.

To exit NetCI, enter the following:

NetCI> EXIT (or E)

which returns you to the MPE prompt.

162 Chapter 8

NetCI
Commands

Commands
You may enter any NetCI command at the NetCI> prompt. However,
before you execute any MPE command, you must specify the name of
the node and then the MPE command.

To execute a NetCI command, enter

NetCI> SHOWLIST

To execute an MPE command, enter

NetCI>K SHOWJOB

which displays the status information for all jobs/ sessions/scheduled
jobs on node or list K.

NetCI HELP Command
At the NetCI> prompt, entering HELP provides a quick reference to all
the NetCI commands and a brief description of each command’s syntax.

Chapter 8 163

NetCI
NetCI Security

NetCI Security
The same file security is provided for the NetCI configuration file as
other MPE files. The HP 3000 account structure provides security at
the account, group, and file levels. You can alter file level security so
that only certain types of access are allowed to the configuration file.
NetCI provides further security in the configuration file by encrypting
all passwords that are part of the logon information to a node.
Passwords are never displayed.

To prevent unauthorized persons from running NetCI or accessing the
configuration file, do not leave NetCI in operational mode on your
screen.

164 Chapter 8

NetCI
Configuring Network Data

Configuring Network Data
Figure 8-2 shows an internetwork that includes three networks (NET1,
NET2, and NET3) connected together. We will use NET3 as the sample
LAN network for our discussion. NET3 shows six nodes connected
together by a LAN. NetCI is installed on node K, which is the
management node.

Figure 8-2 Sample Internetwork

Configuring Logon Information
NetCI establishes multiple remote sessions on one or more nodes when
executing a particular command or running a program. Before remote
logon sessions can be established, system and logon information for
each node must be stored in the NetCI internal data structure.

To configure each node, use the following commands:

• NEWNODE to configure each node and its logon sessions.

• ALTNODE to change the node’s logon information.

• PURGENODE to delete a node from configuration

You can then use the SHOWNODE command to list all the nodes and logon
sessions that you configured, and to check whether you correctly
changed a node’s logon information or deleted a node. Refer to the
commands on the following pages for more specific details.

Chapter 8 165

NetCI
Configuring Network Data

Node Names
Each node in the network is identified by its NS 3000 node name. Any
node may be added to the NetCI configuration and identified in NetCI
by a unique NetCI node name. The NetCI node name may be the
NS 3000 node name or another NetCI name you want to assign to the
node. Each NetCI node name is associated with a logon session on a
node. You can have several logon sessions established on one node but
each session must have an individual NetCI node name.

Sample LAN
Using our sample LAN, we will configure all the nodes in NET3 from one
location, node K.

In order to configure node K, use the NEWNODE command:

NetCI> NEWNODE K OPERATOR.SYS/NET3K

NetCI will now have in its configuration a node called K. The logon
session for K will be OPERATOR.SYS/NET3K.

For our example, we will configure the remaining nodes on the LAN in
NET3 using their NS 3000 node names:

NetCI> NEWNODE Y OPERATOR.SYS/NET3Y

NetCI> NEWNODE I OPERATOR.SYS/NET3I

NetCI> NEWNODE J OPERATOR.SYS/NET3J

NetCI> NEWNODE L OPERATOR.SYS/NET3L

NetCI> NEWNODE H OPERATOR.SYS/NET3H

Reassigning Node Names
You can reassign each node a unique NetCI name instead of using the
NS 3000 node name. For example, you can assign a session on node Y
the NetCI name, BURGUNDY. NetCI will then recognize the logon
session (OPERATOR.SYS) on node Y as BURGUNDY. To assign a unique
NetCI name to a node and logon session, you use the NEWNODE
command with the ;dsline= NS nodename option. For example, you
enter

NetCI> NEWNODE BURGUNDY OPERATOR.SYS/NET3Y;DSLINE=Y

After configuring your network, you may then assign the nodes with
their associated sessions to different lists and assign an identifier to
each list. If four nodes are assigned to a list, a session will be initiated
on each of the four nodes when the command is executed on each node.
Refer to “Configuring for Command Broadcast” for more information.

When you reassign an NS node a NetCI name, you need to only specify
the NetCI name instead of the fully-qualified NS node name to perform
an operation on the node. For example, to assign a NetCI name, you
enter

NetCI> NEWNODE PORT OPERATOR.SYS/NET1A,;DSLINE=A.NET1.BND

166 Chapter 8

NetCI
Configuring Network Data

to configure node A with its logon session in NET1 as PORT. If the
NS 3000 node name is not a unique node name in the internetwork, the
node name following ;dsline= NS nodename option must be a
fully-qualified node name, nodename.domain.organization. Whenever you
want to establish a session on node A in NET1, you simply need to
specify PORT instead of the fully-qualified NS 3000 node name.

Chapter 8 167

NetCI
NEWNODE

NEWNODE
Adds a node and its logon information to the user’s NetCI configuration.

Syntax
NEWNODEnode logon[; dsline= NS nodename]

Parameters
node NetCI name or identifier for the node to be added. The

NetCI name may be a maximum of 15 characters.

logon Node’s logon identification which is a valid logon
sequence in the form:

username[/userpass].acctname[/acctpass][,groupname]
[/grouppass].

For information on additional MPE logon parameters
and options, refer to the MPE/iX Commands Reference
Manual.

NS nodename If the NetCI name (specified in the node field) is the
same as the NS 3000 node name, leave this field blank.
If the NetCI name is not the same as the NS 3000 node
name, specify the NS node name configured in the
NS 3000 network.

Discussion
Make sure that the NS node name specified in ;dsline= NS nodename is
a valid NS node name and is entered correctly (not misspelled). If you
enter an erroneous node name into the NetCI configuration, NetCI will
only discover the invalid node name when it attempts to log on to a
target node.

There are special considerations that apply to scripting (refer to
“Redirecting NetCI Input and Output” discussed later in this chapter
for further details) that you must consider during configuration:

• If a password is required to initiate a logon session, make sure to
include the password.

• If remote application programs will poll terminals for termtype
during logon (which occurs when the application is run as part of a
logon UDC), make sure that you specify the termtype option with
the logon information. If it is not specified, connection to that remote
node on which the application is running will hang.

Examples Example 1

168 Chapter 8

NetCI
NEWNODE

This example adds nodes with logon sessions to the NetCI
configuration.

NetCI> NEWNODE K OPERATOR.SYS/NET3K

NetCI> NEWNODE Y OPERATOR.SYS/NET3Y

NetCI> NEWNODE I OPERATOR.SYS/NET3I

NetCI> NEWNODE J OPERATOR.SYS/NET3J

NetCI> NEWNODE L OPERATOR.SYS/NET3L

NetCI> NEWNODE H OPERATOR.SYS/NET3H

Since the ;dsline= NS nodename option is not specified after the logon
information, the NetCI name for each node will be the actual NS 3000
node name. In the example, the default environment for each of the
above nodes will be:

;DSLINE=K

;DSLINE=Y

;DSLINE=I

;DSLINE=J

;DSLINE=L

;DSLINE=H

Example 2

This example assigns a NetCI name (or identifier) to a logon session on
node Y.

NetCI> NEWNODE CHABLIS OPERATOR.SYS/NET3K;DSLINE=Y

Y is the NS node name. The node name specified for the ;dsline= NS
nodename option must be the actual NS 3000 node name specified in the
NS 3000 configuration. In NetCI, CHABLIS now refers to a specific
session on remote node Y under the user name OPERATOR.

An NS node may be assigned more than one NetCI name and logon
session. For example,

NetCI> NEWNODE PINOIT MGR.SYS/NET3K;DSLINE=Y

assigns node Y another NetCI name and user on that node. In NetCI,
PINOIT refers to a session established on remote node Y under the user
name MGR. This example shows that two NetCI names, CHABLIS and
PINOIT , are assigned to node Y. These two names refer to node Y with
different user sessions being established.

Chapter 8 169

NetCI
ALTNODE

ALTNODE
Changes the NetCI node name and logon information in the user’s
NetCI configuration for an NS 3000 node.

Syntax
ALTNODEnode logon [; dsline= NS nodename]

Parameters
node NetCI name of the node whose logon information is to

be changed.

logon New logon identification which is a valid logon
sequence in the form:

username[/ userpass]. acctname[/ acctpass][. groupname/
grouppass];dsline= NS nodename

For information on additional MPE logon parameters
and options, refer to the MPE/iX Commands Reference
Manual.

NS nodename If the NetCI name (specified in the node field) is the
same as the NS 3000 node name, leave this field blank.
If the NetCI name is not the same as the NS 3000 node
name, specify the NS node name in the NS 3000
network.

Examples Example 1

This example changes the user of the logon session for node I . The
remote environment for NetCI node I remains as previously configured,
which is node I (the default environment), so it is not necessary to enter
the same remote environment information again.

NetCI>A LTNODE I NETADMIN.SYS/BRIE

Example 2

This example changes the user of the logon session for the NetCI node
PINOIT whose remote environment remains as previously configured
which is node Y (the default environment). However, it is necessary to
enter the NS nodename again since it is not the same as the NetCI node
name.

NetCI> ALTNODE PINOIT NETADMIN.SYS/NET3K;DSLINE=Y

Example 3

This example changes the remote environment for the NetCI node
CHABLIS to NS node L.

170 Chapter 8

NetCI
ALTNODE

NetCI> ALTNODE CHABLIS OPERATOR.SYS/NET3K;DSLINE=L

You still need to enter the user logon information even though you are
only changing the remote environment. The NetCI node CHABLIS now
refers to a session on NS 3000 node L instead of node Y (which was the
previous configuration).

Chapter 8 171

NetCI
PURGENODE

PURGENODE
Deletes a node and its logon information from the user’s NetCI
configuration and from any list of which the node is a member.

Syntax
PURGENODEnode

Parameters
node NetCI name of the node to be deleted from

configuration and from all lists of which that node is a
member.

Example This example deletes node J from the data base.

NetCI> PURGENODE J

172 Chapter 8

NetCI
SHOWNODE

 SHOWNODE
Shows the node’s logon information and the lists of which the node is a
member.

Syntax
SHOWNODEnode

Parameters
node NetCI name of the node whose information is to be

displayed. If you want to display the information for all
nodes in the NetCI configuration, specify

SHOWNODE @

Discussion
Passwords are not displayed for security reasons.

Example This example shows the logon information and the lists of which node Y
is a member. The information displayed shows that node Y is a member
of LIST1 and no commands or programs are being executed on this
node (no session is established).

NetCI>SHOWNODE Y

Y Connection is closed

Login Data: OPERATOR.SYS

Dsline = Y

Node is on lists:

 LIST1

Configuring for Command Broadcast
You may group nodes in the network in various combinations. By
grouping nodes and assigning each group to a list, you can “broadcast”
to all nodes on the list by issuing a command referencing that list name.

To configure nodes for command broadcast, use the following
commands:

• NEWLIST to first create a list.

• ALTLIST to add nodes to or delete nodes from a list

• PURGELIST to delete a list and all its nodes.

Chapter 8 173

NetCI
SHOWNODE

You can then use the SHOWLIST command to 1) display all the nodes
belonging to a list, 2) check whether you correctly added a particular
node to or deleted a node from a list, 3) verify whether a list is deleted,
or 4) display all lists. Refer to the commands on the following pages for
more specific details.

When you broadcast or execute a command on a list, you execute the
command sequentially on each node on the list. If a node is down,
execution will continue to the next node on the list.

Sample LAN
Using our sample LAN (Figure 8-2), we will create for NET3 three lists
identified as LIST1 , LIST2 , and ALLNODES with different nodes
assigned to each list. First, we must use the NEWLIST command to
create and assign a name to each list.

NetCI> NEWLIST LIST1

NetCI> NEWLIST LIST2

NetCI> NEWLIST ALLNODES

Next we will use the ALTLIST command to assign nodes to each list.

NetCI> ALTLIST ADD LIST1 K,I,H

NetCI> ALTLIST ADD LIST2 K,L,H

NetCI> ALTLIST ADD ALLNODES K,Y,I,L,H

The first list, named LIST1 , will have three members, nodes K, I , and H.
The second list, named LIST2 , will also have three members, nodes K,
L, and H. The third list, named ALLNODES, will have five members,
nodes K, Y, I , L, and H. We will now use the SHOWLIST command to
verify that we correctly added or assigned the nodes to each list.

NetCI>SHOWLIST @

LIST1

Nodes on list:

 H I K

LIST2

Nodes on list:

 H L K

ALLNODES

Nodes on list:

 H L I Y K

174 Chapter 8

NetCI
NEWLIST

NEWLIST
Creates a new list in NetCI configuration.

Syntax
NEWLIST list

Parameters
list Name of the new list to be created in the NetCI

configuration. The list identifier may be a maximum of
fifteen characters.

Discussion
The new list must be created before you can add nodes to the list.

Example NetCI> NEWLIST NET3

Chapter 8 175

NetCI
ALTLIST

ALTLIST
Adds nodes to or deletes nodes from a list.

Syntax
ALTLIST {ADD} list nodes

{DEL}

Parameters
ADD Adds a node to a list.

DEL Deletes a node from a list. If you delete the last node
from the list, the list will still exist in the configuration
with no node members.

list Name of the list to which a new node is to be added, or
from which an existing member node is to be deleted.

nodes Name of the nodes to be added to or deleted from the
list. More than one node can be specified here separated
by spaces or commas.

Discussion
You must create a list before you can add a node to the list. If you add or
delete a node to or from a non-existing list, you will get an error
message that the list name is an unknown list name.

Examples This example shows how to add nodes H, L, K, I and Y to a list named
NET3 with the parameter ADD. This list now has five members:

NetCI> ALTLIST ADD NET3 H,L,K,I,Y

This example shows how to delete node Y from NET3. However, nodes H,
L, K and I still exist in the NetCI configuration.

NetCI> ALTLIST DEL NET3 Y

To check whether node Y is deleted from NET3, use the SHOWLIST
command (which is discussed later in this section). This command
shows only nodes I , K, L, and H as members of NET3.

NetCI>SHOWLIST NET3

NET3

Nodes on list:

I K L H

176 Chapter 8

NetCI
PURGELIST

PURGELIST
Deletes an existing list from the NetCI configuration.

Syntax
PURGELIST list

Parameters
list Name of the list to be deleted.

Discussion
This command deletes the name of the list and the configuration
specifying which nodes are members of the list.

NetCI> PURGELIST LIST2

Chapter 8 177

NetCI
SHOWLIST

SHOWLIST
Displays the names of the nodes included in a list.

Syntax
SHOWLIST list

Parameters
list Name of the list whose member nodes are to be

displayed. If you want to display all lists and the nodes
on each list, specify

NetCI> SHOWLIST @

Examples Example 1

This example displays the nodes belonging to a specific list.

NetCI> SHOWLIST LIST1

LIST1

Nodes on list:

 H I K

This example displays all the lists and the nodes belonging to each list.

Example 2

NetCI>SHOWLIST @

LIST1

Nodes on list:

 H I K

ALLNODES

Nodes on list:

 H L I Y K

NET3

Nodes on list:

 I K L H

178 Chapter 8

NetCI
Saving Your NetCI Configuration

Saving Your NetCI Configuration
Your NetCI configuration is automatically saved in the file called
NCICNFG. This file will reside on the default or home group (where you
were logged on when you configured NetCI). If you log on to a group in
which NetCI’s configuration is not located, you will receive a warning
message but still be able to run NetCI.

It is recommended that you keep a backup copy of the NetCI
configuration file under another file name. If there is a system failure
while the configuration file is being saved, some of the data may be lost
or corrupted. This would cause NetCI to operate improperly. If this
happens,

1. Delete the corrupted configuration file.

2. Rename the backup copy as NCICNFG.

NetCI only recognizes the configuration filename NCICNFG. Ensure that
the backup copy of the configuration file is renamed as NCICNFG.

Chapter 8 179

NetCI
Executing Remote Commands

Executing Remote Commands
NetCI automatically establishes a session on a node when a remote
command is executed. Simply specify after the NetCI> prompt the
NetCI node or list name followed by the NetCI or MPE command.
NetCI will establish a session on the NS 3000 node associated with the
NetCI node name, or on the nodes belonging to the list. This eliminates
your having to log on remotely to each node when executing commands
and running programs. For example, when you enter

NetCI> PINOIT SHOWJOB

NetCI will automatically log you on to NS 3000 node Y as
operator.sys and execute the SHOWJOB command. If you recall from
our sample LAN, PINOIT is associated with logon session
operator.sys on NS node Y. This command will display the status
information for all jobs/sessions/scheduled jobs on NS node Y.

Node Prompt
After a command is executed on the remote node, the NetCI> prompt
automatically changes to the node’s name. For example, when you enter

NetCI> PINOIT SHOWJOB

the status information for all jobs/sessions/scheduled jobs on PINOIT is
displayed. The prompt then changes to

PINOIT>

which indicates the node against which you last executed commands or
programs.

You can also change the default prompt to any node prompt by entering
the NetCI node name after the current prompt. For example, when you
enter

PINOIT> CHABLIS

the prompt changes to

CHABLIS>

which is now the default prompt.

By specifying a default prompt, you can execute several commands on a
node without specifying the node name each time you specify a
command. For example, when you enter

CHABLIS>SHOWJOB

CHABLIS>SHOWJOB JOB=@JOB

CHABLIS>SHOWJOB JOB=@S

it eliminates your having to specify the node each time.

180 Chapter 8

NetCI
Executing Remote Commands

List Prompt
You can also specify a list name against which a script file, command, or
program can be executed. After the prompt, enter the list name and
command. For example, when you enter

CHABLIS>LIST1 SHOWJOB

the SHOWJOB command sequentially executes on all nodes that are
members of LIST1 (which includes nodes H, I , and K). It also eliminates
your having to log on and execute the SHOWJOB command on each node.

You can also change the default prompt to any list prompt by entering
the list name after the current prompt. For example, when you enter

LIST1> ALLNODES

the prompt changes to

ALLNODES>

which is now the default prompt.

By specifying a default list prompt, you can execute several commands
against the list without specifying the list name each time you specify a
command. For example, when you enter

ALLNODES>SHOWJOB

ALLNODES>SHOWJOB JOB=@JOB

ALLNODES>SHOWJOB JOB=@S

it eliminates your having to specify the list name each time.

NetCI Prompt
You can return to the NetCI prompt by typing a colon (:) or NetCI after
a node or list prompt. For example, when you enter

ALLNODES>:

or

ALLNODES>NETCI

you will be returned to the NetCI> prompt.

Chapter 8 181

NetCI
Command Operation Modes

Command Operation Modes
The prompt indicates the command operation mode in which you are
presently operating. The command operation mode that is in effect at
any one time may be the

• NetCI mode which is indicated by the NetCI> prompt

• MPE mode which is indicated by a node or list name prompt.

NetCI Mode
You are in the NetCI mode when the NetCI> prompt is displayed. Only
NetCI commands may be entered in this mode. For example, when you
enter

NetCI> SHOWNODE @

you are executing a NetCI command in NetCI. If you enter an MPE
command after the NetCI> prompt, you will receive an error message.

MPE Mode
To execute MPE commands, you should be in the MPE mode by
entering the node or list name preceding the MPE command. For
example, when you enter

NetCI> PINOIT SHOWJOB

you will be in the MPE mode in order to execute the MPE SHOWJOB
command. The PINOIT prompt will now be the default prompt.
Whenever the prompt is a node or list name, you know you are in the
MPE mode. NetCI assumes all commands entered in the MPE mode are
MPE commands. If you want to enter a NetCI command in the MPE
mode, a slash (/) must precede the NetCI command.

For example, you enter

PINOIT>/ SHOWLIST @

to execute the NetCI SHOWLIST command when you are in the MPE
mode. Refer to “Writing and Executing Script Files” discussed later in
this section for details on how the special slash character would be
especially useful in script files.

If you want to return to the NetCI mode, you must enter a colon or
NetCI after the node or list prompt. For example, when you enter

PINOIT> :

or

PINOIT>NetCI

you will receive the NetCI> prompt indicating you are in NetCI mode.

182 Chapter 8

NetCI
Interrupting Processing (Using [BREAK])

Interrupting Processing (Using [BREAK])
On MPE/iX machines, type [BREAK] twice to return to the MPE prompt.
On MPE V machines, type [BREAK] once to return to the MPE prompt.
Pressing [BREAK] sends a signal to NetCI to interrupt the process. This
signal also passes through a “virtual” terminal to the remote process so
that both the local and remote processes are suspended. To resume the
local process, type RESUME which displays the current NetCI> prompt.
After receiving the NetCI> prompt, type RESUME again to resume the
process that was suspended on the remote node. The prompt for the
suspended process will be displayed. In summary, if you execute a
command on a remote node, type RESUME twice to return to where you
were when you pressed [BREAK] .

Chapter 8 183

NetCI
Special Considerations When Using DSLINE

Special Considerations When Using
DSLINE
NetCI establishes DSLINE connections in quiet mode. Thus, no
messages or prompts will be forwarded to your terminal while a
connection is being established. If the remote node prompts for
information (for example, password or termtype), the terminal or user
would not know that a response is expected. No response would be sent,
and the remote node connection will hang. Therefore, if a logon UDC
runs a program requiring information such as termtype, make sure the
termtype is specified with your logon information. If a password is
required but not provided, you will receive a logon error message
indicating an incorrect password. You should specify a correct password
in the logon information.

184 Chapter 8

NetCI
Failed Connections

Failed Connections
A session will be established on a node when you execute a command.
However, a session will fail to be established when the link or node is
down (not operating properly) or the configuration data is incorrect.
NetCI maintains a record of all attempted logon sessions that failed. If
you attempt to execute a command again on the failed node before
15 minutes have elapsed, NetCI will not attempt the execution. You
must wait 15 minutes after the last failure before NetCI will attempt to
execute the command again.

If the failure to establish connection to a node occurs because the
configuration data is incorrect (for example, because of incorrect logon
information), you can use the ALTNODE command to change the node’s
logon information. Once this change is made, you do not need to wait
the required 15 minutes to attempt another command execution. You
can execute the command and NetCI will immediately attempt to
establish a session on the node and execute the command.

Chapter 8 185

NetCI
Redirecting NetCI Input and Output

Redirecting NetCI Input and Output
NetCI allows you to easily redirect input and output instead of using
$STDIN and $STDLIST . You redirect input through script files and
output through log files. Figure 8-3 shows NetCI installed on node K
with input and output passing through a virtual terminal configured on
the remote nodes. Commands are transmitted over network
connections through VT and are executed on the remote nodes. This
figure shows that the script file contains the input, while the log file
contains the output.

Scripting and logging may be used separately or simultaneously. When
you use the scripting and logging operational modes, NetCI redirects
the input and output.

The input is redirected from the keyboard to the script file and the
output is redirected from the terminal screen to the log file. The
different modes of operation are:

• Scripting only (input from script file and output to screen)

• Logging only (input from keyboard and output to log file and screen)

• Scripting and logging (input from script file and output to log file and
not to screen)

• No scripting and logging. (interactive session where input is from
keyboard and output is to screen)

Figure 8-3 Redirecting Input and Output

186 Chapter 8

NetCI
Scripting (Redirecting Input)

Scripting (Redirecting Input)
Scripting gives you the capability to store a sequence of commands and
data in a file to be used as input into NetCI. You execute the script file
with the PLAY command to sequentially perform operations instead of
issuing a series of commands. Refer to the following pages for more
information on the PLAY command.

You may execute PLAY in either the NetCI or MPE mode. For this
command only, both modes recognize the PLAY command and will
execute it.

Example Figure 8-4 shows scripting being activated. Before you execute the
script file, input is received from the keyboard, and output is sent to the
screen (interactive operational mode). When you execute the script file
with PLAY, input is received from the script file, and output continues
to be sent to the screen, since it has not been redirected. The straight
line under Output Mode indicates when and how long the output is
redirected to the screen. Note that the scripting operational mode is in
effect whenever you execute a script file.

Figure 8-4 Scripting Activated

Chapter 8 187

NetCI
PLAY

PLAY
Executes a block or sequence of commands in a script file.

Syntax
[list/node] PLAY [times] file parms

Parameters
list/node Name of a list of nodes, or the NetCI name of a specific

node on which a script file is to be executed. All MPE
and NetCI (when preceded by a slash) commands in the
script file will be executed on this list or node. If you do
not specify a list or node name, only NetCI commands
will be executed. Any MPE commands in the script file
will not be executed and error messages will display.

times Number of times script file is to be executed. If you do
not specify a value, the default is one. The maximum
value is 32,767.

file Name of an existing script file with one of the following
fully qualified file names:

• file

• file.group.account

• file reference (allows you to back-reference a :FILE
command or to reference a previously defined file)

parms Values or strings passed to the script file. If the script
file does not contain any input value or string, leave
blank. The maximum number of parms that you can
specify is 9. The parameter will be used when the script
file contains an exclamation mark followed by the
parameter position (for example, !1 , !2). The first
parameter following the file name is considered to be
position 1.

Discussion
The script file must reside on the node on which NetCI is installed
before you can execute it. While the script file is executing, input from
the keyboard is temporarily deactivated since input is from the file.
After script file execution, you can resume with input from the
keyboard.

This command cannot be used within a script file.

188 Chapter 8

NetCI
PLAY

Examples Example 1

This example shows the PLAY command executing a script file named
SCRIPT1 on default node K. The parameter, FINANCE, will be used
whenever !1 is encountered in the file since this is the first parameter
specified after the file name. Refer to the following page for more
information.

K>PLAY 2 SCRIPT1 FINANCE

The script file will be executed two times, and data will be gathered
each time.

Example 2

This example executes the script file twice on all nodes that are
members of a list named LIST1 .

NetCI> LIST1 PLAY 2 SCRIPT1 FINANCE

Chapter 8 189

NetCI
Writing and Executing Script Files

Writing and Executing Script Files
A script file includes all commands, flow control statements, and data
that allow you to remotely access and perform operations on nodes. To
execute the script file, it must reside on the management node on which
NetCI is installed.

Creating a Script File
You can create a script file with any text editor while you are at the
MPE colon prompt or from within NetCI. If you are in NetCI, you need
to run the editor program from the management node. For example, you
enter

NetCI> K RUN TDP.PUB.SYS

to run the editor on node K which is the management node.

Make sure the editor program resides on the management node, and
the user associated with the session is allowed access to the editor. The
script file you created will then reside on the management node in the
session's user account/group that was specified in NetCI configuration.
In this example, the new script file will reside on management node K
in the operator.sys account.

Special Symbols
When you create a script file, remember the following:

• Use the symbol % (percentage sign) preceding an MPE or NetCI
command. Subsystem command and program input records should
not be preceded by %.

• Use the symbol ! (exclamation mark) and a parms position number
within the script file to indicate the value or string (which is
specified with the PLAY command) to be used.

In the PLAY command, the first parameter specified after the file name
is considered as position 1. If you specify !1 within your script file,
NetCI will substitute the first parms value or string for !1 . The file
name is considered as position 0.

Reserved Characters
There are also reserved characters that you can use in the script file.
Whenever the reserved character is encountered, NetCI substitutes it
with specific data as shown in Table 8-1. NetCI does not refer to the
PLAY command for a parms value or string. For example, when the script
file contains !a , NetCI substitutes the current account name for !a .

190 Chapter 8

NetCI
Writing and Executing Script Files

Table 8-1 Reserved Characters

Special Slash Character
When a script file is executed on a node or list, the MPE mode is in
effect. For example, when you enter

NetCI> Y PLAY SCRIPT1

you are in MPE mode. MPE assumes only MPE commands are executed
in MPE mode. If the script file contains NetCI commands, you must
precede these commands with a special slash (/) character in order for
the commands to be interpreted as NetCI commands. Refer to SCRIPT1
in the following example on the use of the slash character.

Comment Command
A NetCI COMMENT command is available to allow you to include
comments in a script file (containing NetCI commands) that will
execute in NetCI mode. Refer to Example 1 for using the NetCI
COMMENT command. Since there is an MPE COMMENT command, you can
also use this command in a script file (containing MPE commands) that
will execute on a node or list. When a script file executes on a node/list,
you will be in MPE mode. Refer to Example 2 for using the MPE
COMMENT command in a script file executing in MPE mode.

Example 1

This example executes a script file called SCRIPT1 containing NetCI
commands. To execute the script file, you enter

NetCI> PLAY SCRIPT1

Since you are executing SCRIPT1 in the NetCI mode, you are using the
NetCI COMMENT in the script file. The SCRIPT1 script file contains the
following commands:

Reserved Characters Substituted String

!u Current user name

!g Current group name

!a Current account name

!h Home node

!n Current or default node on which execution is
occurring

!! Indicates an exclamation mark and not a
substitution for a parmsvalue or string

Chapter 8 191

NetCI
Writing and Executing Script Files

%comment show NetCI nodes'
%comment and lists' configu-
%comment ration

adds comment that this file will list the NetCI
configuration for the NET3 network.

%log logfile1
redirects output to log file called LOGFILE1. A slash
does not need to precede the NetCI command since you
will be in a NetCI mode. Refer to the LOG command
discussed later in this section.

%shownode @ displays the NetCI configuration for all nodes.

%showlist @ displays all the lists and the nodes on each list.

%logreset resets output back to the screen. Refer to the LOGRESET
command discussed later in this section.

Example 2

This example executes a script file called SCRIPT2 on node Y, causing
you to be in MPE mode. Since there is also an MPE COMMENT command,
you do not need to use the NetCI COMMENT command. To execute the
script file, you enter

NetCI> Y PLAY SCRIPT2 FINANCE

The SCRIPT2 script file contains the following commands:

%comment run listdir5
%comment program

adds comment that this file runs the listdir5
program.

%/log logfile2
redirects output to a log file called LOGFILE2. A slash
must precede the NetCI LOG command since you will be
in MPE mode. Refer to the LOG command discussed
later in this section.

%run
listdir5.pub.sys

executes program.

listacct !1 lists attributes for the first parms value (which is
FINANCE) specified in PLAY command. This is a
subsystem command within the program called
listdir5 .

listgroup @.!1
lists attributes for all groups in FINANCE. This is a
subsystem command within listdir5 .

listuser @.!1 lists attributes for all users in FINANCE. This is a
subsystem command within listdir5 .

192 Chapter 8

NetCI
Writing and Executing Script Files

exit exits program. This is a subsystem command to exit the
listdir5 program.

%/logreset resets output back to the screen. Refer to the LOGRESET
command discussed later in this section.

SCRIPT2 runs a program that lists attributes according to groups and
users for an account called FINANCE. We know this information is for
the FINANCE account because !1 references the first parms value
specified in PLAY. The output will be stored in the log file called
LOGFILE2.

Example

This example shows how the slash must precede the NetCI LOG,
LOGRESET, LET, WHILE, INC, and ENDWHILEcommands since the MPE
mode will be established when you execute the script file on a node or
list. For example, when you enter

NetCI>I PLAY SCRIPT3

you will be in MPE mode. A slash must precede each NetCI command
as shown in SCRIPT3. The SCRIPT3 script file contains the following:

%/LOG LOGFILE2
%/LET V=1
%/WHILE V 2
%SHOWJOB
%/INC V
%/ENDWHILE
%/LOGRESET

Special Considerations
There are several considerations that apply to scripting which must be
considered since input is redirected from the script file instead of the
terminal. These considerations are:

• Include a password with the logon information during configuration.
If you do not include a password, NetCI will automatically assign a
password to prevent the system from prompting you for a password.

• Include the termtype option with the logon information during
configuration to prevent a remote application from polling the
terminal for termtype during connection establishment. This will
occur if the application was part of a logon UDC (such as setting
function keys). If you do not include the termtype option, and the
remote application requires it, the remote node connection will hang.

Flow Control Statements
Flow control statements may be used in script files to control execution
of NetCI commands. Refer to the following pages for more details of the
flow control statements.

Chapter 8 193

NetCI
IF Statement

IF Statement
The IF statement controls the execution of a block of commands or a
single command depending on whether the expression (or condition) is
true.

The IF statement consists of the reserved word IF , an expression
(condition), commands, the reserved word ELSE and other commands
which are optional, and the reserved word ENDIF.

When NetCI executes an IF statement, the following occurs:

1. NetCI evaluates the expression which is the condition.

2. If the condition is true and ELSE is specified, it executes the
subsequent commands that follow the condition and skips the
commands after ELSE to statements or commands after ENDIF. If
the condition is true and ELSE is not specified, it executes the
subsequent commands that follow the condition.

3. If the condition is false and ELSE is specified, it executes the
commands after ELSE. If the condition is false and ELSE is not
specified, flow control skips to statements or commands after ENDIF.

Syntax
IF expression
commands
[ELSE commands]
ENDIF

Parameters
expression Specifies the condition that determines whether the

commands following it will execute. The expression
must be in the following format:

identifier operator identifier

The identifier is a variable name, numerical value,
or known variable (set flag) in NetCI. The operator is
an equal sign (=), not equal sign (< >), greater than
sign (>), or less than (<) sign.

commands Specifies the commands to be executed provided the
expression (condition) is true.

commands Specifies the commands following ELSE to be executed
provided the expression (condition) is not true. The
ELSE statement and commands are optional.

194 Chapter 8

NetCI
IF Statement

Discussion
You may nest both IF and WHILE statements in script files. A maximum
of 20 IF statements and 20 WHILE statements (for a total of 40
statements) may be nested together within the same script file.

Chapter 8 195

NetCI
INC Statement

INC Statement
The INC statement increases the value of a variable by one.

Syntax
INC variable

Parameters
variable Specifies the variable to which the value is assigned.

This variable must begin with an alpha character.

Discussion
If the value of the variable is 32,767, an error message will display.

Example %/LOG LOGFILE2
%/LET V=1
%/WHILE V <2
%SHOWJOB
%/INC V
%/ENDWHILE
%/LOGRESET

196 Chapter 8

NetCI
LET Statement

LET Statement
The LET statement assigns a value to a variable, or a variable to a
variable.

The LET statement consists of the equal sign which is an assignment
operator. It does not indicate equality but is a signal that the value or
variable on the right of the equal sign be assigned to the variable on the
left.

Syntax
LET variable = value

Parameters
variable Specifies the variable to which the value is assigned.

The variable must begin with an alpha character and
cannot be numeric, greater than 15 characters, or a
node or list name.

value Specifies a constant between -32,768 and 32,767 or a
variable identifier.

Discussion
This statement can be entered interactively or specified in a script file.

Chapter 8 197

NetCI
WAIT Statement

WAIT Statement
The WAIT statement returns control to the next command after waiting
the specified number of seconds.

Syntax
WAIT seconds

Parameters
seconds Specifies the number of seconds before the next

command is executed. The number must be a positive
integer not greater than 32,767.

Discussion
If you want to wait longer than the maximum number of seconds
allowed, specify the WAIT statement as many times as needed.

198 Chapter 8

NetCI
WHILE Statement

WHILE Statement
The WHILE statement executes commands repeatedly as long as a given
expression is true.

The WHILE statement consists of the reserved word WHILE, an
expression (condition), commands, and the reserved word ENDWHILE.

When NetCI executes a WHILE statement, the following occurs:

1. NetCI evaluates the expression which is the condition.

2. If the condition is true, it executes the subsequent commands in the
script file until ENDWHILE is encountered, and then re-evaluates the
condition. When the condition becomes false, execution resumes at
the next statement or command after ENDWHILE.

3. If the condition is false, the subsequent commands following this
condition will not execute, and flow control skips to statements or
commands after ENDWHILE.

Syntax
WHILE expression
commands
ENDWHILE

Parameters
expression Specifies the condition that determines whether the

commands following it will execute. The expression
must be in the following format:

identifier operator identifier

The identifier is a variable name, numerical value,
or known variable (set flag) in NetCI. The operator is
an equal sign (=), not equal sign (< >), greater than
sign (>), or less than (<) sign.

commands Specifies the commands to be executed provided the
expression (condition) is true.

Discussion
The INC statement may be used with the WHILE statement to increase
the value of the expression specified with WHILE. Refer to the INC
statement which was previously discussed in this section.

Chapter 8 199

NetCI
Logging (Redirecting Output)

Logging (Redirecting Output)
Logging allows you to store in a log file all output from a process or
operation that takes place on configured nodes. You can redirect output
to a log file with the LOG command and direct output solely to the
screen with the LOGRESET command. These two commands may be
used either inside or outside a script file. Refer to the pages that follow
for more information on these two commands. When you are in logging
only mode, output will be directed to the log file and to the screen. This
capability enables you to respond with input from the keyboard since
the scripting mode is not activated.

Accessing Log File
The log file containing the output will reside on the management node
(where NetCI is installed) in the user.account configured for this node.
For example, when you enter

NetCI> Y PLAY SCRIPT1 FINANCE

NetCI executes a script file called SCRIPT1 on node Y. If you recall our
sample internetwork, node K is the management node. If you also
recall, the script file called SCRIPT1 (refer to “Writing and Executing
Script Files”) redirects output to the log file called LOGFILE1. When you
execute SCRIPT1 on node Y with PLAY, the output will be stored in
LOGFILE1 on node K in the operator.sys account.

Example Figure 8-5 shows logging being activated with input from the keyboard
and output to both the screen and to FILE1. The straight line under
Output Mode in the example indicates when and how long the output is
redirected to the screen and/or to the FILE1. Notice how LOGRESET
returns output back to the screen.

200 Chapter 8

NetCI
Logging (Redirecting Output)

Figure 8-5 Logging Activated

Chapter 8 201

NetCI
LOG

LOG
Redirects the output of a process or operation to a log file.

Syntax
LOG file

Parameters
file Name of the file where output is to be stored. This file

name is one of the following fully qualified file names:

• file

• file.group.account

• file reference (allows you to back reference a :FILE
command, to reference a previously defined file, or to
reference a device such as a printer)

Discussion
If the specified log file does not exist, the file will be created except for a
back-referenced file which must exist or be defined already.

If the specified log file exists, the new data will append to the end of the
existing file.

If the specified log file is full, a warning message will display. The
default size of the log file is 1024 records. If you will need a log file with
a bigger record size, use the BUILD command to create a bigger file.

If you are in the MPE mode, a special slash (/) character must precede
the LOG command since NetCI assumes only MPE commands are
executed in this mode.

Example This example redirects all output to the file called FILE1 .

NetCI>LOG FILE1
.
.

202 Chapter 8

NetCI
LOGRESET

LOGRESET
Resets NetCI so that output appears only to the screen.

Syntax
LOGRESET

 Example This example shows how LOG redirects output to a log file called FILE1 .
LOGRESET then resets the output back to the screen. If output is not
reset back to the screen, output will continue to be directed to FILE1 .

NetCI>LOG FILE1

.

.

.

NetCI>LOGRESET

Chapter 8 203

NetCI
Scripting and Logging

Scripting and Logging
NetCI redirects both input and output when scripting and logging are
used simultaneously. When output is redirected, remember the
following:

1. During execution of the script file, the output mode specified in the
script file is always in effect. If the script file does not specify an
output mode, the mode prior to script file execution remains in effect.

2. After execution of the script file, the output mode prior to execution
takes effect again.

Input and output determine the operational mode in effect. It is only in
the logging operation mode that output is to both the screen and log file.
Refer to Table 8-2 to determine the input and output applicable to each
mode of operation.

Table 8-2 Operation Modes

Examples The following examples begin and end with the interactive operation
mode. Each example shows the operation and output mode in effect at a
particular time. The output can be redirected to either the screen or a
log file, or to both the screen and log file. The straight line under
Output Mode in each example indicates when and how long the output
is redirected to the screen, log file, or both. Notice from the examples
that the scripting operation mode is always in effect whenever a script
file is executing. However, logging mode may not always be in effect.

Example 1

Figure 8-6 shows both scripting and logging being activated. Before
execution of the script file, output is to the screen. When you execute
the script file with PLAY, the script file redirects output to FILE1. After
execution, output returns to the screen since this is the output mode
prior to execution. You do not need to specify the LOGRESET
command.

Operation Mode Input Output

Keyboard Script File Screen Log File

Scripting X X

Logging X X X

Scripting & Logging X X

Interactive
(No Logging and Scripting)

X X

204 Chapter 8

NetCI
Scripting and Logging

Figure 8-6 Scripting and Logging Activated (Example 1)

Example 2

Figure 8-7 first shows logging being activated by input from the
keyboard. Output is to the screen and to a log file called FILE1. Since
you may need to interactively respond to the output, it will also be
displayed to the screen. Next, you execute a script file called SCRIPT1
with PLAY. While the script file is executing, input is from the script
file and output continues to FILE1 since the script file has not
redirected the output. The output continues to FILE1 since the user is
not required to interactively respond during execution. The
LOGRESET command then resets the output to the screen. If
LOGRESET is not specified, output will continue to the screen and to
FILE1 since the output modes prior to script file execution take effect.

Chapter 8 205

NetCI
Scripting and Logging

Figure 8-7 Scripting and Logging Activated (Example 2)

Example 3

Figure 8-8 first shows logging being activated by input from the
keyboard. Output is to the screen and to a log file called FILE1. Since
you may need to interactively respond to the output, it will also be
displayed to the screen. Next, you execute a script file called SCRIPT1
with PLAY. While the script file is executing, input is from the script
file and output is to FILE1. After script file execution, output returns to
the screen and to FILE1 which are the output modes prior to execution.
At this point, only logging is in effect. Output continues to the screen
and to FILE1 until LOGRESET where output is only to the screen.

206 Chapter 8

NetCI
Scripting and Logging

Figure 8-8 Scripting and Logging Activated (Example 3)

Example 4

Figure 8-9 first shows logging being activated by input from the
keyboard. Output is to the screen and to a log file called FILE1. Since
you may need to interactively respond to the output, it will also be
displayed to the screen. Next, you execute a script file called SCRIPT1
with PLAY. While the script file is executing, input is from the script
file and output continues to FILE1 until the output is redirected to
FILE2 with % LOG FILE2. After script file execution, output returns to
the screen and to FILE1 which are the output modes prior to execution.
At this point, only logging is in effect. Output continues to the screen
and to FILE1 until LOGRESET where output is only to the screen.

Chapter 8 207

NetCI
Scripting and Logging

Figure 8-9 Scripting and Logging Activated (Example 4)

208 Chapter 8

NetCI
Sample Applications

Sample Applications
The following are sample NetCI applications that you can develop to
use in a production environment. You can write a script file containing
applicable commands, flow control statements, and data that will
automatically perform different operations on multiple remote nodes.

Sample Script File 1
This application summarizes the network configuration for each node
in NET3 of our sample internetwork. The following script will display all
the entries in the network directory file for the NETXPORT (Network
Transport) subsystem. We will write a script file called GETCONF that
contains NMMGR commands to be executed on each node in NET3.
Logging will also be used to send all output to an MPE log file called
ALLCONF. This log file will be interactively entered with the LOG
command before you execute the script file.

The GETCONF script file contains the following commands:

%file nmmgrcmd=$stdinx
reads input from the script file.

%run nmmgr.pub.sys
runs the NMMGR configuration program.

opendir nsdir.net.sys
opens the network directory file.

listdir displays information on all entries for all nodes.

openconf nsconf.net.sys
opens the current NS configuration information file.

versionconf “A.02.03”
verifies the configuration version.

pathconf=netxpor
t.ni.lan1
protocol.ip specifies the path for the configuration file to be read.

readconf displays the network configuration for the NETXPORT
subsystem.

exit exits NMMGR.

We are now ready to execute the script file, GETCONF, on all nodes in
NET3 of our sample internetwork. If you recall our sample configuration
file, node J was deleted from the NetCI configuration. However, we will
assume we have added node J back into the configuration. Now we will
crate a list called NET3 with the NEWLIST command.

NetCI> NEWLIST NET3

Chapter 8 209

NetCI
Sample Applications

We will then assign all the nodes in NET3 to this list with the ALTLIST
command.

NetCI> ALTLIST ADD NET3 H,L,K,J,I,Y

We can verify this by entering the SHOWLIST command at the NetCI
prompt:

NetCI> SHOWLIST NET3

NET3

Nodes on list:

Y I J K L H

Before executing the script file, we should create a disc file with a
bigger record size so there will be no data overflow. We will use the
BUILD command to create a disc file called ALLCONF with 10,000
records, each 80 characters long, and ASCII format. Next, we will run
NetCI and redirect all output to be saved in this file with the LOG
command.

: BUILD ALLCONF;REC=- 80,100,F,ASCII;DISC=10000

: RUN NETCI.PUB.SYS

To execute the GETCONF script file, enter

NetCI>LOG ALLCONF

NetCI>NET3 PLAY GETCONF

ALLNODES>/LOGRESET

ALLNODES>/EXIT

The script file will be executed sequentially on all the nodes in NET3.
After the script file is executed, we can then print the logfile, ALLCONF,
to view the network directory and configuration file information for all
the nodes in NET3.

Since it is likely that the script file will take awhile to execute, you may
want to create a job stream to execute it.

Sample Script File 2
This application shows how to install a new version of software and to
convert existing files for use with this new software. We will write a
script file, INSTALL , that copies the file, PROG, and the conversion
program, CONVERT, to a new group, NEWVERS, at each node in NET3. We
will then execute the CONVERT program to convert the file
(PROG.NEWVERS). After the conversion, we will purge the old file in the
APPLIC group (PROG.APPLIC) and rename the new converted file to the
same file name and group as the old file. You can use NetCI to perform
this task using one script file, INSTALL , and the PLAY global command.

210 Chapter 8

NetCI
Sample Applications

The INSTALL script file contains the following commands:

%dsline
local=!1 file equation for the node defined as local. The

referenced node will be specified with the PLAY
command.

%newgroup
newvers creates a new group called newvers on the node.

%dscopy runs the DSCOPY subsystem.

prog.newvers:local
 [operator.sys]
to @.NEWVERS;REP

specifies that the target file will have the same file
name as the source file. REP option replaces the existing
file in the destination node with the new file if a file
with the same name exists.

convert.newvers:local
[operator.sys] to
@.NEWVERS;REP

specifies that the target file will have the same file
name as the source file. REP option replaces the existing
file in the destination node with the new file if a file
with the same name exists.

// exits DSCOPY.

%run
convert.newvers

executes the CONVERT program to convert the PROG file.

%purge convert.newvers
purges CONVERT program file on target node.

%purge prog.applic
purges old existing file in the APPLIC group on target
node.

%rename
prog.newvers,pro
g. applic renames converted file on target node to the same file

and group name as the old file.

%purgegroup
newvers purges the newvers group on the target node.

yes response to the question verifying that the newvers
group is to be purged.

Chapter 8 211

NetCI
Sample Applications

%run
prog.applic;info
= “showversion”

checks that the converted file has been converted for
use with the new version of software.

%tellop...**applic:
version a.01.01
installed & ready**

displays a message that the current software version
has been successfully installed and is ready for use.

We are now ready to execute the script file, INSTALL , on all nodes in
NET3 of our sample internetwork. If you recall from Sample Script
File 1, all nodes in NET3 are members of the list called NET3.

To execute the INSTALL script file, enter

NetCI> NET3 PLAY INSTALL H

If you specify the output to a log file, you can later scan the file for
errors. Additional MPE statements can be added to provide for more
robust error checking such as the handling of unexpected errors. For
example, if someone is running the application, the :PURGE command
will fail. We can use MPE commands such as :IF or :ELSE to also
modify the execution of the script file.

Sample Script File 3
This application shows how you can create a script file containing a job
stream for the nodes in NET3 of our sample internetwork. The following
script will contain the :STREAM job command for the different nodes.
When you execute the script file called SYSCONF, this will stream a job
file called CONFJOB which will then execute the SYSINFO program
(which lists the configuration information for the node).

All the commands in the CONFJOB job file may also be included in a
script file. However, we will assume you already have an existing job
file that contains these commands. You only need to create a script file
to stream the job file. By streaming an existing job file within a script
file, you do not need to type again all the commands from the job file
into the script file, and you can always run the job file in MPE.

The SYSCONF script file contains the following stream command:

%stream
confjob.util.sys

streams a job on a node.

Although the script file contains only one command line, it is sometimes
easier to enter PLAY SYSCONF than entering the entire command line.

212 Chapter 8

NetCI
Sample Applications

The CONFJOB job file contains the following commands and data:

!job net3,operator.sys/net3k;hipri;pri=cs;outclass=epoc,1 3

!comment this will print the system configuration report

!file conflist=sysinfo;dev=pp;env=elite.hpenv.sys

!run sysinfo.prv.telesup

out pp

title “NET3”

all

exit

!eoj The job file, CONFJOB, will run a program on the node
or list that you specify with the PLAY command. This
program called SYSINFO will generate a report listing
the node's configuration. The configuration includes the
devices on the system, other system information such
as MPE tables, program stack size usages, directory
usage, system logging, user logging, spooling, virtual
memory, GIC hardware configuration summary, data
communication device summary, and so forth.

To execute this script file against all the nodes in NET3, we will execute
the SYSCONF script file on the previously configured list named NET3.
To execute this script file, enter

NetCI> NET3 PLAY SYSCONF

This will stream the job for each node in NET3. When the job is
completed for nodes Y, I , J , K, L, and H, the configuration listing will be
sent to the printer.

Example The following example shows how you can also create a script file which
can be executed on each node/list instead of a script file containing a job
stream. We will write a script file called NODCONF that will execute the
SYSINFO program on the node that you specify with the PLAY
command. Logging will be used to send all output to a log file called
REPORT.

The NODCONF script file contains the following commands:

%/log report redirects output to logfile called REPORT.

%run sysinfo.prv.telesup
executes program.

title “NET3” information required by program.

all information required by program.

exit exits program.

Chapter 8 213

NetCI
Sample Applications

%/logreset resets output back to the screen.

We are now ready to execute the script file, NODCONF, on any node. For
example, to execute the script file on node L, enter

NetCI> L PLAY NODCONF

which will generate the system configuration listing for node L.

To execute the script file on all nodes in NET3, enter

NetCI> NET3 PLAY NODCONF

which will generate the system configuration listing for NET3. The
listings for node L and NET3 will be in the REPORT log file residing on
node K which is the management node.

Sample Script File 4
This application shows how you can create a script file called SYSOP
containing operations or jobs to be run at a particular time. The
following script file shows how you can effectively use flow control
commands to control the execution of these operations or jobs to be run
at particular times.

The SYSOP script file contains the following commands:

%/while hour < 24

% /comment The following operations are done between 8am and 5pm.

% /if hour > 7

% /if hour < 18

% showjob job=@j

% /else

% /comment This operation is done only at 8pm.

% /if hour = 20

% showjob job=@s

% /endif

% /comment At 10pm the following operation must be done.

% /if hour = 22

% listf @ipc@.maildb.hpoffice,2

% /endif

% /endif

% /endif

% /inc hour

% /comment Replace v in the following statement with the remaining

% /comment number of seconds until the next approximate hour.

% /wait v

214 Chapter 8

NetCI
Sample Applications

%/endwhile

We are now ready to execute the script file, SYSOP, on any node. Before
we execute the script file, we must interactively assign a value (the
current time) to the variable called “hour”. To set the current time,
enter

NetCI> LET HOUR=X (X is current hour, for example, 6 for 6 A.M.)

After specifying the current time, we are now ready to execute the
SYSOP script file. To execute this script file, enter

NETCI>NET3 PLAY SYSOP

to run particular operations at specified times on all the nodes that are
members of the NET3 list.

If you are executing the script file on a list, you should change the wait
duration to a value that will allow the file enough time to execute on all
nodes during each hour. For example, if it takes approximately
1200 seconds to execute the script file on all nodes that are members of
the NET3 list, you could assign 2400 seconds as the wait value. This
would be enough time for execution to have occurred on all the nodes.
The script file will take about 1200 seconds to execute and then wait
2400 seconds to execute again. This will be approximately the next
hour.

Chapter 8 215

NetCI
Troubleshooting NetCI

Troubleshooting NetCI
The first step in troubleshooting NetCI is to look at the error message
returned by NetCI. In order to understand the error message, refer to
the “NetCI Error Messages” section in the NS 3000/iX Error Message
Reference Manual for the possible causes of the error and recommended
recovery actions). If NetCI returns a specific error message, find it in
the manual, try to understand the cause of the error, and take the
action recommended. If the error is not clear to you or the
recommended action does not correct the problem, call your HP
representative.

216 Chapter 8

NetCI
Troubleshooting NetCI

217

A Migration From NS 3000/V to
NS 3000/iX Network Services

This Appendix discusses the migration from NS 3000/V to NS 3000/iX
network services. If your system currently uses DS/3000, please consult
Appendix B, “Migration From DS/3000 to NS 3000/iX Network
Services.”

For network management (configuration) migration, refer to the
NS 3000/iX Configuration Planning and Design Guide. For more
information on migration in general, and for migration from MPE V to
MPE/iX in particular, refer to the HP Migration Overview manual in
the Migration Series of manuals.

Assistance from Hewlett-Packard is available if you want help
installing your NS 3000/iX software, configuring your nodes and
system, and verifying the operation of your software.

218 Appendix A

Migration From NS 3000/V to NS 3000/iX Network Services
Differences Between NS 3000/V and NS 3000/iX

Differences Between NS 3000/V and
NS 3000/iX
NS 3000/iX is a compatible subset of NS 3000/V, the powerful
networking software available on the MPE V/E based members of the
HP 3000 family.

Special Note on
Terminal Echo

When communicating between an MPE/iX based node an MPE V based
node, if echo ever gets turned off, proceed as follows:

1. Issue a colon (:) to return to your local node.

2. Restore the echo on your local system according to the method for
that node (the method is different depending on whether your
physical terminal is connected to an MPE V based node or an
MPE/iX based node). Remember: the node that your physical
terminal is connected to always determines how you restore your
terminal’s echo.

3. Note that this procedure restores echo on the local system. To ensure
that echo is also restored on the remote system, you may wish to run
a program that issues an FCONTROL 12 on the remote system.

Missing Features
The following list specifies the features that were available in
NS 3000/V but are not available in NS 3000/iX:

• Program-to-Program communication (PTOP) is not available. For
information on translating your PTOP applications so that they can
run on an MPE/iX based machine, please refer to the “Conversion
Checklist” section.

• No-wait I/O Remote File Access is not available.

Changed Features
The features that changed from NS 3000/V to NS 3000/iX are as
follows:

• When using Network File Transfer (NFT) or Remote File Access
(RFA) in NS 3000/iX, only files with MPE V characteristics are
supported. For instance, the mapped access file system feature of
MPE/iX is not supported by NFT and RFA in NS 3000/iX.

• Remote Data Base Access in NS 3000/iX is supported only for
TurboIMAGE databases. Remember that an IMAGE database on a
DS/3000 node can be accessed by using an intermediate NS 3000/V
node. The SHOWCOM command has been replaced by the
LINKCONTROL STATUS command.

Appendix A 219

Migration From NS 3000/V to NS 3000/iX Network Services
Error Messages: NS 3000/V to NS 3000/iX

Error Messages: NS 3000/V to NS 3000/iX
To learn about NS 3000/iX error messages and recovery procedures,
refer to the NS 3000/iX Error Messages Reference Manual.

220 Appendix A

Migration From NS 3000/V to NS 3000/iX Network Services
Conversion Checklist: NS 3000/V to NS 3000/iX

Conversion Checklist: NS 3000/V to
NS 3000/iX
The following checklist is to help you with migrating NS 3000/V
software to NS 3000/iX on MPE/iX:

1. Identify applications using Program-to-Program Communications
(PTOP). PTOP is not supported, so any PTOP applications must be
modified so that they can run on an MPE/iX based machine. If you
wish to convert your PTOP applications so that they can run on
RPM and NetIPC, refer to the translation procedures in Appendix B
of the NetIPC 3000/iX Programmer’s Reference Manual

2. To move applications on HP3000s that use the NS 3000/V
capabilities of Virtual Terminal, Remote File Access, Remote Data
Base Access, Network File Transfer, and Remote Process
Management to an MPE/iX based system, use either: a) the DSCOPY
command, or b) the MPE/iX STORE command to store the
applications on a tape, and then use the MPE/iX RESTORE command
to restore them on the new system. They will run with NS 3000/iX
with no recompilation necessary in most cases.

221

B Migration From DS/3000 to
NS 3000/iX Network Services

This Appendix discusses the migration from DS/3000 to NS 3000/iX. If
your system currently uses NS 3000/V, and you are migrating to
NS 3000/iX, refer to Appendix A, “Migration From NS 3000/V to
NS 3000/iX Network Services.”

For network management (configuration) migration, refer to the
NS 3000/iX Configuration Planning and Design Guide. For more
information on migration in general, and for migration from MPE V to
MPE/iX in particular, refer to the HP Migration Overview Manual in
the Migration Series of manuals.

Assistance from Hewlett-Packard is available if you want help
installing your NS 3000/iX software, configuring your nodes and
system, and verifying the operation of your software.

222 Appendix B

Migration From DS/3000 to NS 3000/iX Network Services
Differences Between DS/3000 and NS 3000/iX

Differences Between DS/3000 and
NS 3000/iX
DS is an acronym for Distributed Systems.

NS is an acronym for Network Services. An NS 3000/iX link product is
required in addition to the NS 3000/iX Network Services.

A DS installation can consist of 1) hardwired point-to-point links, 2)
point-to-point modem links on either dial-up or leased telephone lines,
3) X.25 network links, and 4) satellite network links. The maximum
data rate over a DS link is 56 kilobits per second.

An NS installation, on the other hand, may be an internetwork
consisting of a LAN with a 10 megabit-per-second signalling rate
connected to other LANs by way of a wide-area, point-to-point network
link. NS 3000/iX cannot directly access a DS link. However, an
NS 3000/V node can be used as an intermediary to connect from an
NS 3000/iX node to a DS link.

New Features
NS 3000/iX provides the user and programmer with many features that
are not available in DS/3000. These new features are summarized here:

• Direct access to any node on the network or internetwork.

• Direct access to remote files, devices, or databases.

• Configurable remote prompts.

• Redirection of node names coded into programs or job streams.

• Programmatic access of remote terminals by using Reverse VT.

• Network File Transfers (NFT) from any node on the network or
internetwork to any other node on the network or internetwork.

• Temporary remote logons for NFT transfers.

• DSCOPY options to move, replace, or overwrite files and to copy
privileged files.

• New and existing (DS) syntax is supported.

Missing Features
This list specifies the features that were available in DS/3000 but are
not available in NS 3000/iX:

• The following DSLINE parameters are ignored: LINEBUF=
EXCLUSIVE, PHNUM=, LOCID=, REMID=, SELECT=, FROMADDR,
FROMADR=, TOADDR=, TOADR=, QUEUE, NOQUEUE.

Appendix B 223

Migration From DS/3000 to NS 3000/iX Network Services
Differences Between DS/3000 and NS 3000/iX

• 3000 to 1000 or DEXEC calls are not supported.

• Program-to-Program communication (PTOP) is not available. To
convert your PTOP applications to NetIPC and RPM, please refer to
the NetIPC 3000/iX Programmer’s Reference Manual.

Changed Features
The features that changed from DS 3000 to NS 3000/iX are as follows:

• DSLINE ldev# (for DS device) is replaced by DSLINE envID or DSLINE
envnum.

• Some DSERR error codes changed.

• Remote Process Management is available on NS 3000/iX.

224 Appendix B

Migration From DS/3000 to NS 3000/iX Network Services
Error Messages: DS/3000 to NS 3000/iX

Error Messages: DS/3000 to NS 3000/iX
To learn about NS 3000/iX error messages and recovery procedures,
refer to the NS 3000/iX Error Messages Reference Manual.

Appendix B 225

Migration From DS/3000 to NS 3000/iX Network Services
Conversion Checklist: DS/3000 to NS 3000/iX

Conversion Checklist: DS/3000 to
NS 3000/iX
Identify applications using Program-to-Program Communications
(PTOP). PTOP is not supported, so any PTOP applications must be
converted so that they can run on an MPE/iX based machine. If you
wish to convert your PTOP applications so that they can run on NetIPC
and RPM, refer to the conversion procedures in the NetIPC 3000/iX
Programmer’s Reference Manual.

Index

Index 227

Symbols
$BACK

precautions when using, 52

A
ADDOPT, 148
architecture

network, 16
ARPA domain name syntax, 20
Automatic logon for RFA and

RDBA, 61

B
BACK

how to use, 47
precautions when using, 49

breaking a file transfer, 88

C
cancelling file equations, 50
closing a remote session

remote environment, 35
COMMAND intrinsic

Remote Database Access, 64
create a session, 21

D
database access file, 64
DBCLOSE intrinsic

Remote Database Access, 64
DBOPEN intrinsic

Remote Database Access, 64
DBUTIL utility

Remote Database Access, 65
dependent processes

Remote Process Management,
142

DSCOPY command, 71
examples of command, 92
summary of options, 82

DSCOPY intrinsic, 96
DSCOPYMSG intrinsic, 99
DSLINE examples, 27
DSLINE SERVICES extension,

24

E
environment IDs, 23, 31
environment messages

turning off, 24
establish a session, 21
examples

DSCOPY command (Network
File Transfer), 92

DSCOPY intrinsic (Network
File Transfer), 102

DSLINE, 27
interactive Remot File Access,

51
programmatic Remote File

Access, 53
Remote File Access, 58
Remote Hello, 33
Remote Process management,

152

F
FILE command, 47
FOPEN command, 53
formal designator

use with FILE command, 47
use with RESET command, 50

FPARSE
examples, 56
syntax, 55

I
independent processes

Remote Process Management,
142

INITOPT, 150
interactive Remot File Access

examples, 51
International Standards

Organization (ISO), 16
intrinsics for Network File

Transfer, 95

J
job streams

using DSCOPY in, 86

K
KSAM files

using DSCOPY to transfer, 85

L
LAN link, 18
layers

network, 16
logon

automatic, for RFA and RDBA,
61

for NFT and RPM, 26

N
NETCONTROL

note on using, 33
Network File Transfer, 67

copying files, 67
event recording, 89
examples of command, 92
file transfer, 67
global specifications, 87
interrupting, 88
multiple transfers, 86
options sumary, 82
programming examples, 102
programming language

considerations, 100
supported systems, 74
three-node model, 68

Network File Transfer (NFT), 18
network names, 19
network services

summarized, 18
node

definition of, 16
node names, 20, 24, 32
NS node name syntax, 20
NSCONTROL

note on using, 33
NSSTATUS intrinsic, 116

capabilitities required, 126

O
Open Systems Interconnection

(OSI), 16
optional remote prompt

option, use in job streams, 43
OPTOVERHEAD, 151
overriding DSLINE prompt, 38

P
packets, 17
programmatic Network File

Transfer, 95
programmatic Remote File Access

examples, 53
programming language

considerations for NFT, 100
prompt

remote setting, 25
protocol, 16

Q
QUERY database inquiry facility,

65

R
releasing a remote environment,

35
examples, 35

REMOTE command, 37

228 Index

Index

Remote Data Base Access
(RDBA), 18

Remote Database Access, 63
remote environment

allowing use of by issuing
REMOTE command, 37

closing, 35
defining attributes, 26

Remote File Access
example, 58
interactive access, 51
programmatic access, 53
purpose, 45

Remote File Access (RFA), 18
REMOTE HELLO command, 31
Remote Hello Command

network commands required
before using, 33

Remote Process Management
common parameters, 132
created processes, 140
defined, 131
dependent and independent

processes, 142
session sharing option, 141
software loopback, 142

Remote Process management
examples, 152

Remote Process Management
(RPM), 18

remote prompt
option, use in job streams, 43

remote session
remote environment, 37

reset command, 50
Reverse Virtual Terminal, 41

schematic illustration, 21, 22
what it proves, 21

RFA and RDBA automatic logon,
61

RFA automatic logon
system compatibility, 62

RPMCONTROL, 133
RPMCREATE, 135
RPMGETSTRING, 145
RPMKILL, 147
rpmstrings parameter in Remote

Process Management, 145

S
session establishing, 21
sessions

multiple, 22
syntax

ARPA domain name, 20
NS node name, 19

T
tracing

Network Services, 26
TurboIMAGE/iX, 63

U
using DSCOPY from within files,

85

V
Virtual Terminal, 21

from a batch job, 43
Reverse, 41

Virtual Terminal (VT), 18
vt-connected devices, 22
VTERM option, 41

W
wildcard characters

use with DSCOPY, 87

	Contents
	Introduction to NS 3000/iX
	Network Architecture
	Network Services
	Network Names
	NS Node Name Syntax
	ARPA Domain Name Syntax

	Virtual Terminal
	DSLINE Command
	BREAK
	Using the Remote Subsystem from a Batch Job
	Reverse Virtual Terminal
	Using DSLINE and REMOTE Within Programs
	REMOTE Command
	Releasing a Remote Environment
	REMOTE HELLO Command

	Remote File Access
	RFA Compression
	FILE Command
	RESET Command
	Interactive Access
	RFA Programmatic Access
	FPARSC Intrinsic
	Example RFA Program
	Remote Terminal Access: VT vs. RFA
	RFA/RDBA Automatic logon

	Remote Database Access
	RDBA Access Methods

	Network File Transfer
	Three-Node Model
	File Copying Formats
	DSCOPY
	Summary of DSCOPY Options
	Using DSCOPY
	Using Checkpoint and Restart with DSCOPY
	Programmatic NFT
	DSCOPY Intrinsic
	DSCOPYMSG intrinsic
	Programming Language Considerations
	Programmatic NFT Examples

	Intrinsics for Node and Environment Status
	NSINFO Intrinsic
	NSSTATUS Intrinsic

	Remote Process Management
	Common RPM Parameters
	RPMCONTROL
	RPMCREATE
	RPMGETSTRING
	RPMKILL
	ADDOPT
	INITOPT
	OPTOVERHEAD
	RPM Program Examples
	RPM Program 1
	RPM Program 2

	NetCI
	How to Use NetCI
	Running NetCI
	Commands
	NetCI Security
	Configuring Network Data
	NEWNODE
	ALTNODE
	PURGENODE
	SHOWNODE
	NEWLIST
	ALTLIST
	PURGELIST
	SHOWLIST
	Saving Your NetCI Configuration
	Executing Remote Commands
	Command Operation Modes
	Interrupting Processing (Using [BREAK])
	Special Considerations When Using DSLINE
	Failed Connections
	Redirecting NetCI Input and Output
	Scripting (Redirecting Input)
	PLAY
	Writing and Executing Script Files
	IF Statement
	INC Statement
	LET Statement
	WAIT Statement
	WHILE Statement
	Logging (Redirecting Output)
	LOG
	LOGRESET
	Scripting and Logging
	Sample Applications
	Troubleshooting NetCI

	Migration From NS 3000/V to NS 3000/iX Network Services
	Differences Between NS 3000/V and NS 3000/iX
	Error Messages: NS 3000/V to NS 3000/iX
	Conversion Checklist: NS 3000/V to NS 3000/iX

	Migration From DS/3000 to NS 3000/iX Network Services
	Differences Between DS/3000 and NS 3000/iX
	Error Messages: DS/3000 to NS 3000/iX
	Conversion Checklist: DS/3000 to NS 3000/iX

	Index

