
FINAL TRIM SIZE : 7.0 in x 8.5 in

900 Series HP 3000 Computer Systems

MPE/iX Developer's Kit

Reference Manual

Volume 2

ABCDE

HP Part No. 36430-90002

Printed in U.S.A. 1994

Second Edition

E0494

FINAL TRIM SIZE : 7.0 in x 8.5 in

UNIX is a registered trademark of UNIX System Laboratories Inc. in
the U.S.A. and other countries.

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental, or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information that is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c
 1994 by Hewlett-Packard Company

Copyright c
 1994 by Mortice Kern Systems Inc.

FINAL TRIM SIZE : 7.0 in x 8.5 in

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

FINAL TRIM SIZE : 7.0 in x 8.5 in

Printing History

The following table lists the printings of this document, together with the
respective release dates for each edition. The software version indicates the
version of the software product at the time that this document was issued.
Many product releases do not require changes to the document; therefore,
do not expect a one-to-one correspondence between product releases and
document editions.

Edition Date Software

Version

First Edition October 1992 A.00.00

Second Edition April 1994 C.50.00

iv

FINAL TRIM SIZE : 7.0 in x 8.5 in

Preface

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest in
a series of operating systems for the HP 3000 line of computers.

In HP documentation and in talking with HP 3000 users, you will encounter
references to MPE XL, the direct predecessor of MPE/iX. MPE/iX
is a superset of MPE XL. All programs written for MPE XL will run
without change under MPE/iX. You can continue to use MPE XL system
documentation, although it may not refer to features added to the operating
system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating
system for HP 3000s not based on PA-RISC architecture. MPE V software
can be run on the PA-RISC (Series 900) HP 3000s in what is known as
compatibility mode.

The MPE/iX Developer's Kit Reference Manual Volume 2 (36430-90002)
describes the POSIX/iX library provided with the MPE/iX Developer's Kit
(36430A) on 900 Series HP 3000 computer systems. This manual is intended
for experienced C programmers.

This manual is organized as follows:

Chapter 1 Introduction provides a summary overview of the supplemental
libraries and facilities that are available through the MPE/iX
Developer's Kit (product number 36430A).

Chapter 2 SVID IPC Library Function Descriptions provides information
on a set of C/iX library functions that provides interprocess
communication services to applications requiring information
exchange and resource synchronization between multiple
processes.

Chapter 3 TERMINFO Database provides information on the database
that describes terminal and printer capabilities.

Chapter 4 CURSES presents the syntax and descriptions of the CURSES
routines and macros, arranged alphabetically.

v

FINAL TRIM SIZE : 7.0 in x 8.5 in

vi

FINAL TRIM SIZE : 7.0 in x 8.5 in

Conventions

nonitalics Within syntax descriptions, nonitalicized words represent literals.
Enter them exactly as shown. This includes angle brackets
appearing within syntactic descriptions. For example,

#include <unistd.h>

Nonitalicized words and punctuation characters appear in computer

font. In the following example, you must provide the keyword,
function name, parentheses, and trailing semicolon:

int ccode();

italics Within syntax descriptions, italicized words denote argument names,
program names, or strings that you must replace with an
appropriate value. In the following example, you must replace
number and denom with the respective integers you want to pass to
the div function:

div(number, denom);

[] Within syntax descriptions, italicized brackets surround optional
elements. For example, the item list in the scanf() function call is
optional:

scanf(format [,item [,item]...]);

. . . Within syntax descriptions, a horizontal ellipses indicates that a
previous element can be repeated. For example:

[,item]...

Within examples, vertical and horizontal ellipses may show where
portions of the example were omitted.

vii

FINAL TRIM SIZE : 7.0 in x 8.5 in

Contents

1. Introduction

What Is the SVID IPC Library? 1-1
What Is the TERMINFO Database? 1-2
What Is the CURSES Library? 1-2
How to Use This Manual 1-3
Developing Applications Using the MPE/iX Shell and Utilities . 1-3
Understanding MPE/iX 1-4

2. SVID IPC Library Function Descriptions

Overview of SVID IPC 2-1
Message queues . 2-2
Shared memory . 2-3
Semaphores . 2-3
Access control . 2-4

Using the SVID IPC Library 2-4
Managing SVID IPC Services 2-5
IPCS utility . 2-5
IPCRM utility . 2-5
SVIPC utility . 2-5

Conformance and Implementation Considerations 2-6
SVID IPC Library Function Descriptions 2-6
ftok . 2-7
msgctl . 2-9
msgget . 2-12
msgrcv . 2-15
msgsnd . 2-19
semctl . 2-23
semget . 2-28
semop . 2-32
shmat . 2-38

Contents-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmctl . 2-41
shmdt . 2-44
shmget . 2-46

SVID IPC Header Descriptions 2-50
sys/ipc.h . 2-51
sys/msg.h . 2-53
sys/sem.h . 2-55
sys/shm.h . 2-57

3. TERMINFO Database

Introduction . 3-1
TERMINFO Source File 3-2
Syntax of Device Descriptions 3-2
Padding . 3-4
Parameterized Strings 3-5
Stack Operators . 3-6

Creating Device Descriptions 3-8
Special Characters 3-9
Names of Capabilities 3-11
Boolean Capabilities 3-12
Numeric Capabilities 3-13
String Capabilities 3-15

Con�guration Capabilities 3-30
Detailed Descriptions 3-33
cmdch . 3-33
da . 3-33
gn . 3-33
if, iprog, is1, is2, is3 3-33
lm . 3-34
xenl . 3-34
os, hc . 3-34
ascs . 3-34

Cursor Movement and Scrolling Capabilities 3-36
Detailed Descriptions 3-38
ind, ri . 3-38
cu
 . 3-39
csr . 3-39
cup, cuu . 3-39

Contents-2

FINAL TRIM SIZE : 7.0 in x 8.5 in

home . 3-39
ri, ind . 3-39
mir . 3-39
smcup, rmcup 3-39
xt . 3-40

Edit Capabilities . 3-40
Detailed Descriptions 3-42
ich1 . 3-42
in . 3-42
ip . 3-42

Attribute Capabilities 3-43
Handling Color . 3-44
ncv Variable . 3-45

Turning O� Attributes 3-45
Setting Arbitrary Modes 3-46

Tabs and Margins . 3-48
Terminal Key Capabilities 3-50
Miscellaneous Capabilities 3-52
Capabilities Sorted by Variable Name 3-54
Boolean Capabilities 3-55
Numeric Capabilities 3-57
String Capabilities 3-59

TERMINFO Compiled File 3-74
Description . 3-74
Related Information 3-76
Implementation Considerations 3-77
Portability . 3-77

4. CURSES

Environment Variables 4-2
TERMINFO Environment Variable 4-2
COLUMNS Environment Variable 4-2
LINES Environment Variable 4-3

Implementation Details 4-3
Global Variables . 4-5
Implementation Considerations 4-6
Portability . 4-6

Descriptions of CURSES Routines 4-6

Contents-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

addch waddch mvaddch mvwaddch 4-7
addchstr waddchstr addchnstr waddchnstr mvaddchstr

mvwaddchstr mvaddchnstr mvwaddchnstr 4-12
addstr waddstr addnstr waddnstr mvaddstr mvwaddstr

mvaddnstr mvwaddnstr 4-15
attro� wattro� attron wattron attrset wattrset standend

wstandend standout wstandout 4-18
baudrate . 4-22
beep
ash . 4-23
bkgdset wbkgdset bkgd wbkgd 4-24
border box wborder 4-27
cbreak nocbreak . 4-31
clear wclear . 4-33
clearok . 4-35
clrtobot wclrtobot . 4-36
clrtoeol wclrtoeol . 4-38
color pair . 4-40
copywin . 4-41
curs set . 4-43
def prog mode def shell mode 4-44
del curterm . 4-46
delay output . 4-48
delch wdelch mvdelch mvwdelch 4-49
deleteln wdeleteln . 4-51
delscreen . 4-53
delwin . 4-54
derwin . 4-56
dupwin . 4-58
echo noecho . 4-59
echochar wechochar 4-61
endwin isendwin . 4-63
erase werase . 4-65
erasechar . 4-67

ushinp . 4-68
getch wgetch mvgetch mvwgetch ungetch 4-69
getstr wgetstr wgetnstr mvgetstr mvwgetstr 4-76
getyx getparyx getbegyx getmaxyx 4-78
halfdelay . 4-80

Contents-4

FINAL TRIM SIZE : 7.0 in x 8.5 in

has color can change color color content pair content . . . 4-81
has ic has il . 4-83
idlok . 4-84
immedok . 4-86
inch winch mvinch mvwinch 4-87
inchstr winchstr inchnstr winchnstr mvinchstr mvwinchstr

mvinchnstr mvwinchnstr 4-89
init color init pair 4-92
initscr . 4-95
insch winsch mvinsch mvwinsch 4-96
insdelln winsdelln . 4-98
insertln winsertln . 4-100
insstr winsstr insnstr winsnstr mvinsstr mvwinsstr mvinsnstr

mvwinsnstr . 4-102
instr winstr innstr winnstr mvinstr mvwinstr mvinnstr

mvwinnstr . 4-105
intr
ush . 4-108
keyname . 4-110
keypad . 4-111
killchar . 4-113
leaveok . 4-114
longname . 4-116
meta . 4-117
move wmove . 4-119
mvcur . 4-121
mvwin . 4-123
napms . 4-125
newpad . 4-126
newterm . 4-128
newwin . 4-130
nl nonl . 4-132
nodelay . 4-133
notimeout . 4-135
overlay overwrite . 4-137
pair content . 4-143
prefresh pnoutrefresh 4-144
printw wprintw mvprintw mvwprintw vwprintw 4-146
qi
ush noqi
ush . 4-148

Contents-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

raw noraw . 4-149
redrawwin wredrawln 4-151
refresh wrefresh doupdate wnoutrefresh 4-153
reset prog mode reset shell mode 4-155
resetty savetty . 4-156
scanw wscanw mvscanw mvwscanw vwscanw 4-157
scr dump scr restore 4-159
srcl wscrl scrol . 4-161
scrollok . 4-163
set curterm . 4-165
set term . 4-167
setscrreg . 4-168
setupterm setterm 4-170
start color . 4-172
subwin . 4-174
termattrs . 4-176
termname . 4-177
tgetent . 4-178
tget
ag . 4-180
tgetnum . 4-181
tgetstr . 4-182
tgoto . 4-184
tiget
ag tigetnum tigetstr 4-186
timeout wtimeout . 4-188
touchwin touchline untouchwin wtouchln is linetouched

is wintouched . 4-190
tparm . 4-193
tputs putp . 4-195
traceon traceo� . 4-197
typeahead . 4-198
unctrl . 4-200
use env . 4-201
vidputs vidattr . 4-202

Index

Contents-6

FINAL TRIM SIZE : 7.0 in x 8.5 in

Tables

3-1. Su�xes for Mode and User Preferences 3-3
3-2. Syntax of Padding Speci�cations 3-4
3-3. Explanation of Parameter Description 3-5
3-4. hp2392a Terminal Cursor Movement 3-7
3-5. ANSI Terminal Cursor Movement 3-8
3-6. Characters with Special Values 3-10
3-7. Boolean Capabilities 3-12
3-8. Numeric Capabilities 3-14
3-9. String Capabilities 3-16
3-10. Con�guration Capabilities 3-31
3-11. Glyph to Character Mapping 3-34
3-12. Cursor Movement Capabilities 3-37
3-13. Editing Capabilities 3-41
3-14. Attribute Capabilities 3-43
3-15. ncv Variable . 3-45
3-16. sgr Parameters . 3-47
3-17. Margins and Tabs . 3-48
3-18. Terminal Key Capabilities 3-51
3-19. Miscellaneous Capabilities 3-52
3-20. Boolean Capabilities 3-55
3-21. Numeric Capabilities 3-57
3-22. String Capabilities 3-60
4-1. De�nitions of Global Variables 4-5
4-2. Constant Values for Highlighting Attributes 4-9
4-3. Constant Values for Characters 4-10
4-4. Constant Values for Highlighting Attributes 4-20
4-5. Constant Values for Borders 4-29
4-6. Constant Values for Function Keys 4-71
4-7. Status Values . 4-171
4-8. Constant Values for Highlighting Attributes 4-203

Contents-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

1

Introduction

This chapter provides a summary overview of supplemental libraries and
facilities that are available through the MPE/iX Developer's Kit (product
36430A). The POSIX/iX library, also available through the MPE/iX
Developer's Kit, is fully described in the MPE/iX Developer's Kit Reference
Manual Volume 1 (36430-90001).

The following topics are discussed in this chapter:

What is the SVID IPC library?
What is the TERMINFO database?
What is Curses?
How to use this manual.
Developing applications using the MPE/iX Shell and Utilities.
Understanding MPE/iX.

What Is the SVID IPC Library?

The SVID IPC library contains a set of C/iX library functions that provides
interprocess communication services to applications requiring information
exchange and resource synchronization between multiple processes.

These C/iX library functions emulate the behavior of a set of interprocess
communication and synchronization functions de�ned by the AT&T System
V Interface De�nition (SVID2). For this reason, the set of IPC functions
provided in the MPE/iX Developer's Kit is referred to as \SVID IPC."

Refer to Chapter 2 for a complete description of the functions available in the
SVID IPC library.

Introduction 1-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

What Is the TERMINFO Database?

The TERMINFO database describes terminal and printer capabilities. A wide
range of capabilities can be de�ned that include, for example, the number
of lines and columns for the device, whether or not the terminal wraps at
the right margin, or what character sequence causes a carriage return. The
database is used by screen-oriented programs such as VI or CURSES programs.
By using TERMINFO to handle the capabilities of individual devices, a program
can work with a variety of devices without any changes to the code.

Refer to Chapter 3 for a complete description of the TERMINFO database.

What Is the CURSES Library?

The CURSES library contains a set of C/iX library functions that provides
screen management services consisting of routines and macros for creating and
modifying input and output to a terminal screen. CURSES contains routines for
creating windows, highlighting text, writing to the screen, reading from user
input, and moving the cursor.

CURSES is designed to optimize screen update activities. For example, when
updating the screen, CURSES minimizes the number of characters sent to the
terminal to move and update the screen.

CURSES is a terminal-independent package, providing a common user interface
to a variety of terminal types. Its portability is facilitated by the TERMINFO
database which contains a compiled de�nition of each terminal type. By
referring to the database information, CURSES gains access to low-level details
about individual terminals.

Refer to Chapter 4 for a complete description of the routines available in the
CURSES package.

1-2 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

How to Use This Manual

This manual is intended to be used with the following four manuals:

MPE/iX Developer's Kit Reference Manual Volume 1 (36430-90001)

HP C/iX Library Reference Manual (30026-90001)

MPE/iX Shell and Utilities Reference Manual, Volumes 1 and 2
(36431-60001)

The POSIX.1 Standard - A Programmer's Guide (36430-90003)

The four manuals listed above contain descriptions of C library functions
available through the POSIX/iX library provided with the MPE/iX
Developer's Kit. Refer to the MPE/iX Developer's Kit Reference Manual
Volume 1 (36430-90001) for more information about using these manuals.

The POSIX/iX library is an implementation on 900 Series HP 3000 computer
systems of many of the C library functions and features de�ned in

IEEE Standard 1003.1-1990 (ISO/IEC 9945-1:1990)
Appendix B of the IEEE P1003.2/D11.2

Note All references to POSIX.1 in this manual refer to the 1990
revision of the POSIX.1 standard, 1003.1-1990.

Developing Applications Using the MPE/iX Shell and
Utilities

Application development using libraries provided with the MPE/iX Developer's
Kit must be accomplished through the MPE/iX Shell and Utilities, a command
interpreter that provides a set of commands and utilities useful for application
development. The MPE/iX Shell is based on the Korn Shell, a command
interpretor available on many computer systems.

To invoke the MPE/iX Shell from the MPE/iX Command Interpretor (CI),
enter either of the following at the CI prompt:

Introduction 1-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

:RUN SH.HPBIN.SYS;INFO="-L"

:SH.HPBIN.SYS -L

Note The L must be entered in uppercase.

For more information about the MPE/iX Shell and Utilities, refer to the
following manuals:

MPE/iX Shell and Utilities Reference Manual, Volumes 1 and 2
(36431-60001)
MPE/iX Shell and Utilities User's Guide (36431-90002)

Compiling and linking an application that requires libraries available through
the MPE/iX Developer's Kit must be accomplished through the c89 command
available in the MPE/iX Shell. For detailed information about using the c89
command, refer to the MPE/iX Shell and Utilities Reference Manual, Volumes
1 and 2 (36431-60001).

Understanding MPE/iX

The MPE/iX Developer's Kit provides facilities that allow you to develop
portable applications while minimizing the need to understand underlying
MPE/iX operating system features. Some of the topics discussed in the manual
require that you have an understanding of underlying features of the MPE/iX
operating system.

Additional MPE/iX documentation is available that contains information
about MPE/iX features not discussed in detail in this manual. This manual
brie
y summarizes these features and provides pointers to the manuals where
you can acquire additional information.

The following manual provides an introduction to many of the MPE/iX
features that you will need to understand:

New Features of MPE/iX: Using the Hierarchical File System (32650-90351)

1-4 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

2
SVID IPC Library
Function Descriptions

This chapter describes a set of C/iX library functions that provides
interprocess communication services to applications requiring information
exchange and resource synchronization between multiple processes.

These C/iX library functions emulate the behavior of a set of interprocess
communication and synchronization functions de�ned by the AT&T System
V Interface De�nition (SVID2). For this reason, the set of IPC functions
provided in the MPE/iX Developer's Kit is referred to as \SVID IPC."

This chapter in organized in the following manner:

Overview of the SVID IPC facilities
Using the SVID IPC library
Managing SVID IPC services
Conformance and implementation considerations
Detailed descriptions of SVID IPC functions
Descriptions of SVID IPC headers

Overview of SVID IPC

Developing an application consisting of several processes usually requires some
form of information exchange and resource synchronization. Many applications
developed for use on UNIX R
-based computer systems use the IPC services
de�ned by the AT&T System V Interface De�nition (SVID2).

The MPE/iX SVID IPC library is provided (along with the POSIX.1/iX
library) to enable application developers to substantially reduce the costs
associated with successfully porting a UNIX-based application to a Series 900
HP 3000 computer system.

SVID IPC Library

Function Descriptions

2-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

The SVID IPC library provides three facilities and an access control feature:

Message queues
Shared memory
Semaphores
Access control

For each of the three SVID IPC facilities there are C/iX library functions
available for allocation, deallocation, and control of the facilities.

Use an xxxget() function to either create a resource of the desired type (for
example, a shared memory area) or obtain an identi�er for an existing resource.

Use an xxxctl() function to perform a variety of control operations on an IPC
resource. Common control operations include returning usage statistics about a
resource and modifying attributes of the resource.

Additional functions are provided in each facility to perform activities unique
to the facility. For example, the message queue facility provides functions to
write to and read from a speci�ed message queue.

Message queues

Message queues are one form of process-to-process communication. Data sent
from a process to a message queue is copied into a data bu�er which is then
linked into the list of data bu�ers for that queue.

Processes can read and write to message queues in any arbitrary order. For
example, a process can send a message to a queue even if no other process is
currently waiting to read a message from the same queue.

Following are the functions available to manage SVID IPC message queues:

msgctl() Perform control operations on a message queue
msgget() Locate or allocate a message queue
msgrcv() Receive a message from a message queue
msgsnd() Send a message to a message queue

2-2 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

Shared memory

The shared memory facility allows processes to communicate via a common
memory area mapped to the address space of each process sharing the memory.
When a process modi�es the contents of a shared memory area, the data is
immediately available to other processes.

The most common usage of this facility is to allocate application global data
needed by all processes sharing the memory area. An example of shared
memory access is when one process writes data to a shared memory area and a
second process reads the data from the same shared memory area. In this case,
there is no overhead involved in copying the data from process A to process B.
Process B has immediate access to the data through the shared memory area.

Following are the functions available to manage SVID IPC shared memory.

shmat() Attach a process to a shared memory area
shmctl() Perform control operations on a shared memory area
shmdt() Detach a process from a shared memory area
shmget() Locate or allocate a shared memory area

Semaphores

The semaphore facility allows processes to synchronize operations when sharing
a common resource. An example of semaphore facility use is when two or more
processes synchronize access to a commonly shared memory area. In this case,
a process performing a write operation to a shared memory area can suspend
itself until other processes have completed read operations on the same shared
memory area.

Following are the functions available to manage SVID IPC semaphores:

semctl() Perform control functions on the semaphore set.
semget() Locate or allocate a semaphore set.
semop() Operate on the semaphore set.

SVID IPC Library

Function Descriptions

2-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

Access control

Access control is provided through a key value, known to the application using
SVID IPC functions, that is associated with each resource being shared by
multiple processes. This key is used by di�erent processes who have agreed to
manage access to the resource using the shared key. All SVID IPC facilities
require the user to supply a key to be used by the msgget(), semget(), and
shmget() functions to obtain identi�ers.

The ftok() function provides a user with a key value that can be used by
processes sharing the same resource. The key value returned by ftok() is
based upon a �le name to which the application has access.

There are many other ways to form keys, but it is necessary for each system
to de�ne standards for forming them. If a standard is not adhered to, it is
possible for unrelated processes to unintentionally interfere with each other's
operation. Therefore, it is strongly suggested that the id parameter of ftok(),
if used for key generation, should in some sense refer to a project so that keys
do not con
ict across a given system.

Note The successful management of SVID IPC facilities is predicated
upon the assumption that all accessors of a shared resource
have agreed to access the resource through a shared key. If
a process does not use an agreed-upon scheme to access the
shared resource, proper management of that resource cannot be
guaranteed.

Using the SVID IPC Library

The SVID IPC library is implemented as a C/iX relocatable library located in
the �le /lib/libsvipc.a.

In order to add the SVID IPC library to your list of relocatable libraries at link
time, specify svipc with the -l option of the c89 command available through
the MPE/iX Shell. For example:

c89 -o foo foo.c -lsvipc

2-4 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

Managing SVID IPC Services

Interactive utilities are provided through the MPE/iX Command Interpretor
to manage the interprocess communication services provided by SVID IPC
functions. These utilities are implemented as MPE/iX command �les and
located in HPBIN.SYS. Each utility provides a built-in help facility that contains
detailed information on use.

IPCS utility

The IPCS utility enables a user with system manager (SM) capability to
display status information on SVID IPC services currently allocated on the
system. This utility can also be used to display current con�guration values.

The IPCS utility is invoked by entering:

IPCS.HPBIN.SYS

IPCRM utility

The IPCRM utility enables a user with system manager (SM) capability to
interactively remove speci�c SVID IPC resources from the system, performing
the same function as IPC_RMID on a XXX ctl() function call.

The IPCRM utility is invoked by entering:

IPCRM.HPBIN.SYS

SVIPC utility

The SVIPC utility enables a user with system manager (SM) capability to
interactively modify current SVID IPC con�guration limits.

The SVIPC utility is invoked by entering:

SVIPC.HPBIN.SYS

SVID IPC Library

Function Descriptions

2-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

Conformance and Implementation Considerations

The MPE/iX SVID IPC library was implemented to emulate the behavior of
the equivalent SVID-conformant IPC functionality available on the Series 800
HP 9000 computer system.

Please read the \Implementation Considerations" section of each function
description prior to using the function in order to understand any
implementation-de�ned behavior or behavior that does not conform to the
de�nition of the function in the AT&T System V Interface De�nition .

SVID IPC Library Function Descriptions

The following section describes SVID IPC library functions in detail. Function
descriptions are arranged alphabetically.

2-6 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ftok

ftok

Returns a key used in calls to msgget(), semget(), and shmget() function
calls.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

key_t ftok (char *pathname, char id);

Parameters

pathname Passes a pointer to a string containing the pathname of a �le
accessible to the calling process.

id Passes a character used to further qualify the returned key.

Return Values

6=-1 Key value returned.

-1 Error. The speci�ed pathname does not exist or is not accessible
to the calling process.

Description

The ftok() function can be used to return a key based on both pathname
and id . This key can be used in subsequent calls to the SVID IPC msgget(),
semget(), and shmget() functions.

A di�erent key is returned when called with the same pathname but a di�erent
character is passed in id .

SVID IPC Library

Function Descriptions

2-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

ftok

Implementation Considerations

None.

Errors

If an error occurs, errno is set to the following value.

EINVAL CAUSE The pathname parameter points to an invalid address, or
pathname speci�es a nonexistent �le, or the caller does not
have the correct access to the pathname.

ACTION Make sure that pathname points to a valid and existing
pathname to which the caller has access.

See Also

msgget(), semget(), shmget()

2-8 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgctl

msgctl

Provides message control operations.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgctl (int msqid, int cmd, struct msqid_ds *bu�er);

Parameters

msqid Passes a message queue identi�er returned by a call to msgget().

cmd Passes a command de�ning the control operation to perform. Valid
commands are de�ned in the \Description" section below.

bu�er Passes a pointer to a bu�er of type struct msqid_ds (de�ned in
the <sys/msg.h> header). Operations on the bu�er are de�ned by
cmd . Refer to the \Description" section below.

Return Values

0 Success.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The msgctl() function provides message control operations on the message
queue and data structure associated with msqid . Control operations are
de�ned by the cmd parameter. Following are valid commands to be passed in
cmd :

IPC_RMID Deallocate the message queue identi�er speci�ed by msqid and
purge the message queue and data structure associated with it.
The calling process must have either MPE/iX SM capability, or be
the owner or creator of msqid (have an e�ective user ID equal to

SVID IPC Library

Function Descriptions

2-9

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgctl

the value of either the msg_perm.uid (owner) or msg_perm.cuid
(creator) �elds in the data structure associated with msqid).

IPC_SET Copy data from the following �elds of the msqid_ds structure
pointed to by bu�er to the corresponding �elds in the data
structure associated with msqid :

msg_perm.uid (owner user ID)
msg_perm.gid (owner group ID)
Low order 9 bits of msg_perm.mode
msg_qbytes

The calling process must have either MPE/iX SM capability or an
e�ective user ID equal to the value of either the msg_perm.uid
or msg_perm.cuid �elds in the data structure associated with
msqid . The caller must have MPE/iX SM capability to increase
the value of the msg_qbytes �eld of the data structure associated
with msqid .

IPC_STAT Copy all data from the structure associated with msqid to the data
structure pointed to by bu�er .

Implementation Considerations

None.

2-10 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgctl

Errors

If an error occurs, errno is set to one of the following values.

EACCES CAUSE cmd speci�es IPC_STAT and the calling process does not have
read permission.

ACTION Ensure that the calling process has read permission for the
msqid.

EFAULT CAUSE The system detected a NULL or bad address in attempting to
use the bu�er argument.

ACTION Check to see if the pointer is correctly initialized.
EINVAL CAUSE msqid is not a valid message queue identi�er, or cmd is not a

valid command.
ACTION Check that the msqid parameter is valid and the associated

message queue has not been removed, or that cmd is valid.
EPERM CAUSE One of the following:

cmd speci�es IPC_RMID or IPC_SET and the calling process
does not have either MPE/iX SM capability or an e�ective
user ID equal to the value of either the msg_perm.uid or
msg_perm.cuid �elds in the data structure associated with
msqid.

cmd speci�es IPC_SET and the calling process tried to
increase the value of msg_qbytes without having MPE/iX
SM capability.

ACTION Ensure that the calling process has the appropriate e�ective
user ID or capability required to perform the requested
command.

ESYSERR CAUSE An operating system error occurred that does not map
directly to any of the above errors.

ACTION Examine the MPE/iX process error stack for the type of
system error.

See Also

msgget(), msgrcv(), msgsnd(), SVID2 (Section 12)

SVID IPC Library

Function Descriptions

2-11

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgget

Returns a message queue identi�er.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget (key_t key, int msg
g);

Parameters

key Either a user-de�ned key value to rendezvous with the message
queue, or IPC_PRIVATE. If IPC_PRIVATE is speci�ed, a new message
queue is created, but other processes cannot rendezvous by key .
Refer to the description of ftok() for details about obtaining
user-de�ned key values

msg
g Valid
ags for this function are:

IPC_CREAT If a message queue is not already associated with key ,
a new message queue identi�er is allocated and a
message queue and data structure are associated with
it. If a message queue identi�er is already associated
with key , and IPC_EXCL is not speci�ed, msgget()
returns the message queue identi�er associated with
key .

IPC_EXCL If speci�ed with IPC_CREAT, msgget() returns an error
if a message queue identi�er is already associated with
key .

MODE The lower nine bits of msg
g contain access
permission bits (similar to the nine-bit mask found in
�le entries). They de�ne access permissions for the
owner, the group, and other users on the system.

2-12 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgget

Return Values

>0 Success. A message queue identi�er is returned.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The msgget() function returns a message queue identi�er associated with the
value passed in key . A new message queue identi�er is allocated and a message
queue and data structure are associated with it if:

The value passed in key is equal to IPC_PRIVATE.

The value passed in key does not already have a message queue identi�er
associated with it, and msg
g speci�es IPC_CREAT.

The data structure associated with the new message queue identi�er is
initialized to the following values:

msg_perm.cuid E�ective user ID of the calling process (creator user ID)
msg_perm.uid E�ective user ID of the calling process (owner user ID)
msg_perm.cgid E�ective group ID of the calling process (creator group ID)
msg_perm.gid E�ective group ID of the calling process (owner group ID)
msg_perm.mode Low-order 9 bits are set equal to the low-order 9 bits of

msg
g
msg_qnum Zero
msg_lspid Zero
msg_lrpid Zero
msg_stime Zero
msg_rtime Zero
msg_ctime Current time
msg_qbytes System limit

Implementation Considerations

The maximum size of a message is 65536 bytes.

An MPE/iX system manager can use the MPE/iX SVIPC utility to
interactively con�gure:

The maximum message size

SVID IPC Library

Function Descriptions

2-13

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgget

The maximum number of bytes on a message queue
The total number of message queues allowed system wide

Refer to the section \Managing SVID IPC Services" for more information.

Errors

If an error occurs, errno is set to one of the following values.

EACCES CAUSE A message queue identi�er exists for key and the calling
process does not have permission (speci�ed by the low-order 9
bits of msg
g).

ACTION Ensure that the calling process has appropriate permissions to
access the existing message queue associated with key, or
specify a unique key value to create a new message queue.

EEXIST CAUSE A message queue identi�er exists for key and msg
g speci�es
both IPC_CREATE and IPC_EXCL.

ACTION To access the existing message queue associated with key,
remove the IPC_EXCL option. Otherwise, a unique key value
must be speci�ed.

ENOENT CAUSE A message queue identi�er does not exist for key and msg
g

does not specify IPC_CREATE.
ACTION Specify IPC_CREATE to indicate a message queue should be

created if one does not already exist for the speci�ed key

value.
ENOSPC CAUSE The number of message queue identi�ers would exceed the

system-de�ned limit.
ACTION A new message queue cannot be created unless a previously

allocated message queue is removed.
ESYSERR CAUSE An operating system error occurred that does not map

directly to any of the above errors.
ACTION Examine the MPE/iX process error stack for the type of

system error.

See Also

msgctl(), msgrcv(), msgsnd(), SVID2 (Section 12)

2-14 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgrcv

msgrcv

Reads a message from a message queue.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgrcv (int msqid, void *msgp, int msgsz,

long msgtyp, int msg
g);

Parameters

msqid Passes message queue identi�er returned by a call to msgget().

msgp Passes a pointer to a bu�er whose structure is similar to the
msgbuf example template located in <msg.h>, for example:

struct example_msgbuf {

long mtype; /* message type */

char mtext[your bu�er size]; /* message text */

};

where your bu�er size is an integer specifying the size of the
bu�er. The mtype �eld stores the received message's type as
speci�ed by the process that sent the message. The mtext �eld
stores the text of the message. The size of mtext is speci�ed by
the msgsz argument.

msgsz Passes the size, in bytes, of mtext. Valid values are from 0 to a
system-de�ned limit.

msgtyp Passes a value specifying the type of message requested. Following
are valid values and their meanings:

0 Read the �rst message on the queue.

SVID IPC Library

Function Descriptions

2-15

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgrcv

>0 Read the �rst message on the queue whose type equals
msgtyp.

<0 Read a message from the queue whose type is the lowest
type of all messages in that queue that is less than or
equal to the absolute value of msgtyp.

msg
g Passes a value de�ning what action to take if either a message
speci�ed by msgtyp is not found on the message queue or the
message is too large to �t in the bu�er. Flags are:

IPC_NOWAIT The calling process is not suspended. Control
returns immediately with errno set to ENOMSG.

MSG_NOERROR If the message to receive is larger than msgsz , the
message is truncated to msgsz bytes. No error
indication is given.

If msg
g does not specify IPC_NOWAIT, the calling process
suspends execution until a message satisfying the msgtyp
speci�cations is placed on the queue. When this occurs, control
returns to msgrcv(). If MSG_NOERROR is not set, and the selected
message is larger than the bu�er pointed to by msgp, msgrcv()
returns an error and sets errno to E2BIG.

Return Values

>=0 Success. The number of bytes actually placed into the mtext �eld
of the data structure pointed to by msgp is returned.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The msgrcv() function reads a message from the message queue speci�ed by
msqid and places it in the bu�er pointed to by msgp.

If the MSG_NOERROR option is set in msg
g , the received message is truncated
to msgsz bytes if it is larger than msgsz . The truncated part of the message is
lost and no indication of the truncation is given.

2-16 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgrcv

If the calling process is suspended waiting for a message, the following
conditions will cause msgrcv() to return an error and set errno to indicate the
error condition.

The message queue speci�ed by msqid is removed from the system

The calling process receives a signal that is to be caught.

If msgrcv() is successful, the following �elds of the data structure associated
with msqid are updated to the indicated values:

msg_qnum Decremented by 1
msg_lrpid PID of the calling process
msg_rtime Current time

Implementation Considerations

If a process suspended during execution of msgrcv() receives a signal, control
returns to the user with errno set to EINTR. Disabled signals are ignored.

Errors

If an error occurs, errno is set to one of the following values.

SVID IPC Library

Function Descriptions

2-17

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgrcv

E2BIG CAUSE msgsz is less than the size of the message and msg
g does not
specify MSG_NOERROR.

ACTION Increase the msgsz parameter and associated bu�er space, or
specify the MSG_NOERROR option to allow truncation of the
received message.

EACCES CAUSE The calling process does not have permission.
ACTION Ensure that the calling process has read access for the

message queue.
EFAULT CAUSE The system detected a NULL or bad address in attempting to

use the msgp argument.
ACTION Check to see if the pointer is correctly initialized.

EIDRM CAUSE The message queue speci�ed by msqid was removed while the
process was suspended in msgrcv().

ACTION None.
EINTR CAUSE A process waited in msgrcv() was interrupted by a signal.

ACTION Application dependent.
EINVAL CAUSE msqid is not a valid message queue identi�er, or msgsz is less

than 0 or greater than the system-de�ned limit.
ACTION Check the msqid to make sure it is valid and the message

queue has not been removed from the system. Verify that a
positive msgsz was speci�ed that does not exceed the
currently con�gured limit.

ENOMSG CAUSE The speci�ed message queue does not contain a message of
the type speci�ed in mtype and msg
g speci�es IPC_NOWAIT.

ACTION None. Application dependent. The receive operation can be
retried.

ESYSERR CAUSE An operating system error occurred that does not map
directly to any of the above errors.

ACTION Examine the MPE/iX process error stack for the type of
system error.

See Also

msgctl(), msgget(), msgsnd(), SVID2 (Section 12)

2-18 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgsnd

msgsnd

Sends a message to a message queue.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgsnd (int msqid, void *msgp, int msgsz,

int msg
g);

Parameters

msqid Passes a message queue identi�er returned by a call to msgget().

msgp Passes a pointer to a bu�er whose structure is similar to the
msgbuf example template located in <msg.h>, for example:

struct example_msgbuf {

long mtype; /* message type */

char mtext[your bu�er size]; /* message text */

};

where your bu�er size is an integer specifying the size of the
bu�er. The mtype �eld stores a positive integer value that can
be used by a receiving process for message selection (refer to
msgrcv()). The mtext �eld stores the text of the message. The
size of mtext is speci�ed by the msgsz argument.

msgsz The size, in bytes, of mtext. Valid values are from 0 to a
system-de�ned limit.

msg
g Passes a value de�ning what action to take if the number of bytes
passed would cause the size of the speci�ed queue to exceed
the system-de�ned limit (msq_bytes), the total size of message

SVID IPC Library

Function Descriptions

2-19

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgsnd

data on this queue would exceed the system-de�ned limit, or the
system-wide message bu�er pool is temporarily depleted due to the
amount of data queued to all message queues.

Flags are:

IPC_NOWAIT The calling process is not suspended. Control
returns immediately with errno set to EAGAIN.

If msg
g does not specify IPC_NOWAIT and one of the previous
conditions would occur, the calling process suspends execution.
When the condition that caused the suspension no longer exists,
msgsnd() continues execution.

Return Values

0 Success.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The msgsnd() function sends a message stored in the bu�er pointed to by msgp
to the message queue associated with msqid .

If the message queue associated with msqid is removed from the system while
the calling process is suspended waiting to send a message, msgsnd() returns
an error and sets errno to EIDRM .

If msgsnd() is successful, the following �elds of the data structure associated
with msqid are updated to the indicated values:

msg_qnum Incremented by 1
msg_lrpid PID of the calling process
msg_rtime Current time

2-20 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgsnd

Implementation Considerations

If a process suspended during execution of msgsnd() receives a signal, control
returns to the user with errno set to EINTR. Disabled signals are ignored.

Errors

If an error occurs, errno is set to one of the following values.

EACCES CAUSE The calling process does not have permission.
ACTION Ensure that the calling process has write permission for the

message queue.
EAGAIN CAUSE msg
g speci�es IPC_NOWAIT and either the number of bytes

passed would cause the size of the speci�ed queue to exceed
the system-de�ned limit, the total size of message data on this
queue would exceed the system-de�ned limit, or the
system-wide message bu�er pool is temporarily depleted due
to the amount of data queued to all message queues.

ACTION None. Application dependent. The send operation can be
retried later.

EFAULT CAUSE The system detected a NULL or bad address in attempting to
use the msgp argument.

ACTION Check to see if the pointer is correctly initialized.
EIDRM CAUSE The message queue speci�ed by msqid was removed while

msgsnd() was waiting on a message.
ACTION None.

EINTR CAUSE msgsnd() was interrupted by a signal.
ACTION None. Application dependent.

SVID IPC Library

Function Descriptions

2-21

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgsnd

EINVAL CAUSE msqid is not a valid message queue identi�er, or msgsz is less
than 0 or greater than the system-de�ned limit, or mtype is
less than 0.

ACTION Check the parameters to make sure the msqid is valid and has
not been removed from the system, and that the msgsz and
mtype are within valid ranges.

ESYSERR CAUSE An operating system error occurred that does not map
directly to any of the above errors.

ACTION Examine the MPE/iX process error stack for the type of
system error.

See Also

msgctl(), msgget(), msgrcv(), SVID2 (Section 12)

2-22 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

semctl

semctl

Provides semaphore control operations.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semctl (int semid, int semnum, int cmd,

semun semarg);

Parameters

semid Passes a semaphore identi�er returned by a call to semget().

semnum Passes a value indicating a particular semaphore in the semaphore
set certain commands speci�ed in cmd will apply to, if applicable.

cmd Passes a command de�ning the control operation to perform. Valid
commands are de�ned in the \Description" section below.

semarg Passes an argument containing information about the semaphore
set. Operations using semarg are de�ned by cmd . Refer to the
\Description" section below. The argument passed must be of type
union semun, having the following structure:

union semun {

int val;

struct semid_ds *buf;

ushort *array;

}semarg;

SVID IPC Library

Function Descriptions

2-23

FINAL TRIM SIZE : 7.0 in x 8.5 in

semctl

Return Values

>=0 Success. The value returned depends on the command passed in
cmd . Refer to the list below of possible return values and their
meanings.

-1 An error occurred, and errno is set to indicate the error condition.

Upon successful completion, the semctl() function returns one of the following
values depending on the command passed in cmd :

Command Return Value

GETVAL The semaphore value of the semaphore speci�ed by semid and
semnum.

GETNCNT The number of processes waiting for the semaphore value of
the semaphore speci�ed by semid and semnum to become
greater than 0.

GETZCNT The number of processes waiting for the semaphore value of
the semaphore speci�ed by semid and semnum to become 0.

GETPID The PID of the process that last modi�ed the semaphore
speci�ed by semid and semnum.

All others 0

Description

The semctl() function provides semaphore control operations on the
semaphore set and data structure associated with the semaphore identi�er
passed in semid . Control operations are de�ned by cmd . Following are valid
commands to be passed in cmd and the resulting operations:

Command Operation

IPC_RMID Deallocate the semaphore identi�er speci�ed by semid and
purge the semaphore set and data structure associated with it.
The calling process must have either MPE/iX SM capability
or an e�ective user ID equal to the value of either the
sem_perm.uid or sem_perm.cuid �elds in the data structure
associated with semid .

2-24 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

semctl

IPC_SET Copy data from the following �elds of the semid_ds structure
(de�ned in the <sys/sem.h> header) pointed to by semarg.buf
to the corresponding �elds in the data structure associated
with semid :

sem_perm.uid (owner user ID)
sem_perm.gid (owner group ID)
Low order 9 bits of sem_perm.mode

The calling process must have either MPE/iX SM capability
or an e�ective user ID equal to the value of either the
sem_perm.uid or sem_perm.cuid �elds in the data structure
associated with semid .

IPC_STAT Copy all data from the data structure associated with semid
to the data structure pointed to by semarg.buf . The structure
semid_ds is de�ned in the <sys/sem.h> header. The calling
process must have read permission.

GETVAL Return the semaphore value of the semaphore speci�ed by
semid and semnum. The calling process must have read
permission.

SETVAL Set the semaphore value of the semaphore speci�ed by
semid and semnum to semarg.val (must be >=0). This
command clears in all processes the semaphore adjust value
corresponding to the speci�ed semaphore. The calling process
must have write permission.

GETPID Return the PID of the process that last modi�ed the
semaphore speci�ed by semid and semnum. The calling
process must have read permission.

GETNCNT Return the number of processes waiting for the semaphore
value of the semaphore speci�ed by semid and semnum to
become greater than zero. The calling process must have read
permission.

GETZCNT Return the number of processes waiting for the semaphore
value of the semaphore speci�ed by semid and semnum to
become 0. The calling process must have read permission.

SVID IPC Library

Function Descriptions

2-25

FINAL TRIM SIZE : 7.0 in x 8.5 in

semctl

GETALL Copy the semaphore values of all semaphores associated with
semid to the array pointed to by semarg.array. The calling
process must have read permission.

SETALL Set the semaphore values of all semaphores to the values
speci�ed in the array pointed to by arg.array (must be >=0).
This command clears in all processes the semaphore adjust
value corresponding to the speci�ed semaphore. The calling
process must have write permission.

Implementation Considerations

None.

Errors

If an error occurs, errno is set to one of the following values.

2-26 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

semctl

EACCES CAUSE The calling process does not have permission.
ACTION Ensure that the process has the required permissions to

perform the speci�ed cmd.
EFAULT CAUSE The system detected a NULL or bad address in attempting to

use either the semarg.buf or semarg.array arguments.
ACTION Check the semarg parameter and make sure it is properly

de�ned.
EINVAL CAUSE semid is not a valid semaphore identi�er, or cmd is not a

valid command, or semnum is less than zero or greater than
or equal to the value stored in the sem_nsems �eld in the data
structure associated with semid, or the values of SETVAL or
SETALL are out of range.

ACTION Check the parameters to make sure a valid semid was
speci�ed and the semaphore set was not removed from the
system, a valid cmd was speci�ed, semnum references a
semaphore that exists in this semaphore set, or SETVAL and
SETALL values are in range.

EPERM CAUSE cmd speci�es IPC_RMID or IPC_SET and the calling process
does not have either MPE/iX SM capability or an e�ective
user ID equal to the value of either the sem_perm.uid or
sem_perm.cuid �elds in the data structure associated with
semid.

ACTION Ensure that the calling process has the appropriate e�ective
user ID or the appropriate capabilities to perform the
speci�ed cmd.

ERANGE CAUSE cmd speci�es either SETVAL or SETALL and the resulting
semaphore value would be greater than the system-de�ned
limit.

ACTION Ensure that the semaphore value(s) speci�ed are within the
system-de�ned range.

ESYSERR CAUSE An operating system error occurred that does not map
directly to any of the above errors.

ACTION Examine the MPE/iX process error stack for the type of
system error.

See Also

semget(), semop(), SVID2 (Section 12)

SVID IPC Library

Function Descriptions

2-27

FINAL TRIM SIZE : 7.0 in x 8.5 in

semget

Returns a semaphore identi�er.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semget (key_t key, int nsems, int sem
g);

Parameters

key Either a user-de�ned key value to rendezvous with the semaphore
set, or IPC_PRIVATE. If IPC_PRIVATE is speci�ed, a new semaphore
set is created, but other processes cannot rendezvous by key .
Refer to the description of ftok() for details about obtaining
user-de�ned key values

nsems The number of semaphores in the set. The maximum number of
semaphores per set is 4096.

sem
g Valid
ags for this function are:

IPC_CREAT If a semaphore set is not already associated with
key , a new semaphore identi�er is allocated and a
semaphore set and data structure are associated with
it. If a semaphore identi�er is already associated with
key , and IPC_EXCL is not speci�ed, semget() returns
the semaphore identi�er currently associated with key .

IPC_EXCL If speci�ed with IPC_CREAT, semget() returns an error
if a semaphore identi�er is currently associated with
key .

MODE The lower nine bits of sem
g contain the access
permission bits (similar to the nine-bit mask found
in �le entries). They de�ne the access rights for the
owner, the group, and other users on the system.

2-28 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

semget

Return Values

>=0 Success. A semaphore identi�er is returned.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The semget() function returns a semaphore identi�er associated with the value
passed in key . A semaphore identi�er and the associated data structure and
semaphore set containing nsems semaphores are created for key if one of the
following conditions is true:

The value passed in key is equal to IPC_PRIVATE.

The value passed in key does not already have a semaphore identi�er
associated with it, and the sem
g speci�es IPC_CREAT.

The data structure associated with the new semaphore identi�er is initialized
to the following values:

sem_perm.cuid E�ective user ID of the calling process (creator user ID)
sem_perm.uid E�ective user ID of the calling process (owner user ID)
sem_perm.cgid E�ective group ID of the calling process (creator group ID)
sem_perm.gid E�ective group ID of the calling process (owner group ID)
sem_perm.mode Low-order 9 bits are set equal to the low-order 9 bits of

sem
g
sem_nsems The value of nsems
sem_otime 0
sem_ctime Current time

Implementation Considerations

The maximum number of semaphores per set is 4096.

An MPE/iX system manager can use the MPE/iX SVIPC utility to
interactively con�gure:

The maximum number of semaphores in a semaphore set
The maximum value for a semaphore
The maximum semaphore operation value
The maximum semaphore adjust value

SVID IPC Library

Function Descriptions

2-29

FINAL TRIM SIZE : 7.0 in x 8.5 in

semget

The maximum number of semaphore sets allowed system wide
The maximum number of semaphore operations allowed per semop() call

Refer to the section \Managing SVID IPC Services" for more information.

Errors

If an error occurs, errno is set to one of the following values.

EACCES CAUSE A semaphore identi�er exists for key and the calling process
does not have permission (speci�ed by the low-order 9 bits of
sem
g).

ACTION Ensure the calling process has access permissions required to
access the existing semaphore identi�er.

EEXIST CAUSE A semaphore identi�er exists for key and sem
g speci�es both
IPC_CREAT and IPC_EXCL.

ACTION To access the existing identi�er for key, retry the operation
without the IPC_EXCL option. To create a new semaphore set
with IPC_EXCL, a unique key must be speci�ed.

EINVAL CAUSE nsems is either less 1 or greater than the system-de�ned limit,
or a semaphore identi�er exists for key and the number of
semaphores in the set is less than nsems and nsems is not
equal to 0.

ACTION If accessing an existing semaphore set, make sure the nsems

value does not exceed the number of semaphores in the
existing set. If creating a new semaphore set, make sure
nsems does not exceed the system-de�ned limit.

ENOENT CAUSE A semaphore identi�er does not exist for key and sem
g does
not specify IPC_CREAT.

ACTION If attempting to access an existing semaphore set, make sure
the right key value was speci�ed. If a new semaphore set
should be created for that key if none exists, then make sure
IPC_CREAT is speci�ed.

ENOSPC CAUSE The number of semaphore identi�ers would exceed the
system-de�ned limit.

ACTION None. The operation can be retried if another semaphore
identi�er is removed from the system.

2-30 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

semget

ESYSERR CAUSE An operating system error occurred that does not map
directly to any of the above errors.

ACTION Examine the MPE/iX process error stack for the type of
system error.

See Also

semctl(), semop(), SVID2 (Section 12)

SVID IPC Library

Function Descriptions

2-31

FINAL TRIM SIZE : 7.0 in x 8.5 in

semop

Performs operations on a set of semaphores.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop (int semid, struct sembuf *sops, int nsops);

Parameters

semid Passes a semaphore identi�er returned by a semget() call.

sops Passes a pointer to an array of semaphore operation structures
where each element is of type struct sembuf (de�ned in the
<sys/sem.h> header). Semaphore operation structures de�ne
operations to perform on the semaphore set. For details on using
semaphore operation structures, refer to the \Description" section
below.

nsops Passes the number of valid semaphore operation structures in the
array pointed to by sops .

Return Values

0 Success.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The semop() function performs operations on the set of semaphores associated
with the semaphore identi�er speci�ed by semid .

The sops argument points to an array where each of nsops elements contains
a semaphore operation structure. Each semaphore operation speci�ed by
the sem_op �eld is performed on the semaphore speci�ed by sem_num. The

2-32 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

semop

operation is further de�ned by the sem_flg �eld. No semaphore operations are
performed until blocking conditions on all of the semaphores speci�ed in the
array are removed.

If the value of sem_op is less than 0 and the calling process has write
permission, one of the following operations occurs depending upon the current
semaphore value and the value of sem_flag:

Operations when sem_op <0

Semaphore

Value

sem_flag

Value

Operation

>= absolute value
of sem_op

0 or IPC_NOWAIT A new semaphore value is calculated as the result of
subtracting the absolute value of sem_op from the current
semaphore value. The call to semop() returns successfully
to the calling process.

>= absolute value
of sem_op

SEM_UNDO A new semaphore value is calculated as the result of
subtracting the absolute value of sem_op from the current
semaphore value. The absolute value of sem_op is added to
the calling process's semaphore adjust value of the speci�ed
semaphore. The call to semop() returns successfully to the
calling process.

< absolute value
of sem_op

IPC_NOWAIT semop() returns -1, sets errno to EAGAIN, and returns
control to the calling process.

< absolute value
of sem_op

IPC_NOWAIT not
speci�ed

The semncnt �eld is incremented, indicating the number of
processes waiting for the semaphore value of the speci�ed
semaphore to become greater than zero. Process execution
is suspended until one of the following conditions occurs:

The semaphore value becomes greater than or equal to
the absolute value of sem_op. When this occurs, the
semncnt �eld is decremented by 1 and execution
continues as described above when semaphore value >=
absolute value of sem_op.
The semaphore identi�er is removed from the system.
semop() returns with a value of -1 and errno is set to
EIRDM.
A signal is caught by the suspended process. When this
occurs, the semncnt �eld is decremented by 1 and the
calling process resumes execution in the manner de�ned
by the signal facility.

SVID IPC Library

Function Descriptions

2-33

FINAL TRIM SIZE : 7.0 in x 8.5 in

semop

If the value of sem_op is equal to 0 and the calling process has read permission,
one of the following operations occurs depending upon the current semaphore
value and the value of sem_flag:

Operations when sem_op=0

Semaphore

Value

sem_flag

Value

Operation

0 Any value semop() executes the next semaphore operation in the array
pointed to by semops, or returns successfully to the calling
process if there are no more valid semaphore operations.

<>0 IPC_NOWAIT semop() returns -1, sets errno to EAGAIN, and returns
control to the calling process.

<>0 0 or SEM_UNDO The semzcnt �eld is incremented, indicating the number of
processes waiting for the semaphore value of the speci�ed
semaphore to become zero. Process execution is suspended
until one of the following conditions occurs:

The semaphore value becomes zero. When this occurs,
the semzcnt �eld is decremented by 1 and execution
continues as described above when semaphore value = 0.
The speci�ed semaphore identi�er is removed from the
system. semop() returns with a value of -1 and errno is
set to EIRDM.
A signal is caught by the suspended process. When this
occurs, the semncnt �eld is decremented by 1 and the
calling process resumes execution in the manner de�ned
by the signal facility.

2-34 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

semop

If the value of sem_op is greater than 0 and the calling process has write
permission, one of the following operations occurs depending upon the current
semaphore value and the value of sem_flag.

Operations when sem_op>0

Semaphore

Value

sem_flag

Value

Operation

Any value SEM_UNDO not
speci�ed

A new semaphore value is calculated as the result of adding
the value of sem_op to the current semaphore value of the
speci�ed semaphore. The call to semop() returns
successfully to the calling process.

Any value SEM_UNDO A new semaphore value is calculated as the result of adding
the value of sem_op to the current semaphore value of the
speci�ed semaphore. The value of sem_op is subtracted from
the calling process's semaphore adjust value of the speci�ed
semaphore. The call to semop() returns successfully to the
calling process.

If semop() is successful, the value of sempid for each semaphore speci�ed in
the array pointed to by sops is set equal to the PID of the calling process.
The value of sem_otime in the data structure associated with the semaphore
identi�er is set to the current time.

Implementation Considerations

If a process suspended during execution of semop() receives a signal, control
returns to the user with errno set to EINTR. Disabled signals are ignored.

The maximum number of semaphore UNDO entries per process is 64. Semaphore
adjust values can be maintained for up to 64 distinct semaphores (elements of
semaphore sets).

SVID IPC Library

Function Descriptions

2-35

FINAL TRIM SIZE : 7.0 in x 8.5 in

semop

An MPE/iX system manager can use the MPE/iX SVIPC utility to
interactively con�gure:

the maximum semaphore value
the maximum semaphore adjust value
the maximum nsops value
The maximum sem_op value

Refer to the section \Managing SVID IPC Services" for more information.

Errors

If an error occurs, errno is set to one of the following values.

E2BIG CAUSE nsops speci�es a value greater than the system-de�ned limit.
ACTION Check the nsops value and make sure it is within the

system-de�ned range.
EACCES CAUSE The calling process does not have permission.

ACTION Ensure the process has write permission (to modify a
semaphore value) or read permission (to test a semaphore for
0).

EAGAIN CAUSE sem_flg speci�es IPC_NOWAIT and the calling process would
suspend on the speci�ed operation.

ACTION None. Application dependent.
EFAULT CAUSE The system detected a NULL or bad address in attempting to

use the sops argument.
ACTION Check to see that the sops argument has been properly

de�ned.
EFBIG CAUSE sem_num is either less than zero or greater than or equal to the

number of semaphores in the semaphore set associated with
semid.

ACTION Check the sem_num value to make sure it speci�es a valid
semaphore in the semaphore set identi�ed by semid.

2-36 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

semop

EIDRM CAUSE The semaphore set speci�ed by semid was removed while
semop() was suspended on a semaphore operation.

ACTION None.
EINTR CAUSE semget() was interrupted by a signal.

ACTION None. Application dependent.
EINVAL CAUSE semid is not a valid semaphore identi�er, or the calling

process requested a SEM_UNDO for a number of semaphores
that would exceed the system-de�ned limit.

ACTION Check that semid speci�es a valid semaphore identi�er and
that it has not been removed from the system.

ENOSPC CAUSE The number of maximum undo entries (64) for this process
would exceed the system-de�ned limit.

ACTION None. There were no undo table entries available to record
the SEM_UNDO information. Examine the application to see if
SEM_UNDO is required for that many semaphores.

ERANGE CAUSE The resulting semaphore value or semaphore adjust value
would exceed the system-de�ned limit.

ACTION None. Application dependent.
ESYSERR CAUSE An operating system error occurred that does not map

directly to any of the above errors.
ACTION Examine the MPE/iX process error stack for the type of

system error.

See Also

semctl(), semget(), SVID2 (Section 12)

SVID IPC Library

Function Descriptions

2-37

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmat

Attaches the calling process to a shared memory area.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

char *shmat (int shmid, char *shmaddr, int shm
g);

Parameters

shmid Passes a shared memory identi�er returned by a shmget() call.

shmaddr Passes either 0 or a valid memory address. Set shmaddr to zero to
attach a shared memory area to the address space of the calling
process. Otherwise, set shmaddr to the data start address of a
shared memory area that is already attached to another process.

shm
g Passes a value specifying that the calling process has read/write
access to the attached shared memory area. It is not possible to
attach for write-only access or read-only access.

Return Values

addr Success. shmat() returns the data area start address of the
attached shared memory area.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The shmat() function attaches the shared memory area associated with the
shared memory identi�er speci�ed by shmid to the data area of the calling
process.

If the shared memory area is already attached to another process, a non-zero
value of shmaddr is accepted, provided the speci�ed address is identical to the

2-38 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmat

current attach address of the area. The area is attached for both reading and
writing.

Implementation Considerations

The MPE/iX implementation of SVID IPC shared memory emulates the
equivalent functionality on a Series 800 HP9000 computer system. A process
cannot attach to the same shmid multiple times. The address must be the
same in all processes. Specifying a di�erent address results in an error.

When attaching to a shared memory area for the �rst time, shmaddr must be
set to zero.

The SHM_RND and SHMLBA
ags are not supported. Specifying SHM_RND results
in an error, and errno is set to EACCES.

The maximum number of shared memory areas a process can attach to is 256.

When fork() is called, the child process inherits all shared memory areas
to which the parent process is attached. When exec() is called, the shared
memory attached to the calling process is not attached to the new process.

SVID IPC Library

Function Descriptions

2-39

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmat

Errors

If an error occurs, errno is set to one of the following values.

EACCES CAUSE The calling process does not have permission, or SHM_RND was
speci�ed.

ACTION Ensure that the calling process has permission to access the
area as requested, or do not specify the SHM_RND and SHMLBA

ags.
EINVAL CAUSE shmid is not a valid shared memory identi�er, or shmaddr is

not zero and not equal to the current attach location for the
shared memory area, or the calling process is already attached
to the shared memory area.

ACTION Check that shmid is valid and has not been removed from the
system. If there is no current attach location for the shared
memory area, make sure shmaddr is zero. A process cannot
attach more than once (concurrently) to the same shared
memory area.

EMFILE CAUSE The number of shared memory areas attached to the calling
process would exceed the system-de�ned limit.

ACTION None. The operation can be retried if the process detaches
from another shared memory area to which it is currently
attached.

ENOMEM CAUSE The available data space is not large enough to accommodate
the shared memory area.

ACTION None. The operation can be retried later.
ESYSERR CAUSE An operating system error occurred that does not map

directly to any of the above errors.
ACTION Examine the MPE/iX process error stack for the type of

system error.

See Also

shmctl(), shmdt(), shmget(), SVID2 (Section 12)

2-40 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmctl

shmctl

Performs control operations on a shared memory area.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid_ds *bu�er);

Parameters

shmid Passes a shared memory identi�er returned by a call to shmget().

cmd Passes a command de�ning the control operation to perform. Valid
control codes are de�ned in the \Description" section below.

bu�er Passes a pointer to a bu�er of type struct shmid_ds (de�ned in
the <sys/shm.h> header). Operations on the bu�er are de�ned by
cmd . Refer to the \Description" section below.

Return Values

0 Success.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The shmctl() function performs control operations on shmid and its associated
shared memory area and data structure. Control operations are de�ned by the
cmd parameter. Following are valid commands to be passed in cmd :

IPC_RMID Deallocate the shared memory identi�er speci�ed by shmid and
purge the shared memory area and data structure associated with
it. If the shared memory area is attached to one or more processes
the shared memory area key is changed to IPC_PRIVATE and the

SVID IPC Library

Function Descriptions

2-41

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmctl

area is marked removed. The area is purged only when the last
attached process detaches from it.

The calling process must have either MPE/iX SM capability or be
the owner or creator of the shared memory area (have an e�ective
user ID equal to the value of either the shm_perm.uid (owner) or
shm_perm.cuid (creator) �elds in the data structure associated
with shmid).

IPC_SET Copy data from the following �elds of the shmid_ds structure
pointed to by bu�er to the corresponding �elds in the data
structure associated with shmid :

shm_perm.uid (owner user ID)
shm_perm.gid (owner group ID)
Low order 9 bits of shm_perm.mode

The calling process must have either MPE/iX SM capability or an
e�ective user ID equal to the value of either the shm_perm.uid or
shm_perm.cuid �elds in data structure associated with shmid .

IPC_STAT Copy all data from the structure associated with shmid to the data
structure pointed to by bu�er .

Implementation Considerations

The SHM_LOCK and SHM_UNLOCK options of cmd are not implemented. A call to
shmctl() with cmd set to either SHM_LOCK or SHM_UNLOCK results in an error.

Errors

If an error occurs, errno is set to one of the following values.

2-42 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmctl

EACCES CAUSE cmd is set to IPC_STAT and the calling process does not have
read permission.

ACTION Ensure that the calling process has read permission to the
shared memory area.

EFAULT CAUSE The system detected a NULL or bad address in attempting to
use the bu�er argument.

ACTION Check to see if the pointer is properly initialized.
EINVAL CAUSE shmid is not a valid shared memory identi�er, or cmd is not a

valid command, or cmd speci�es SHM_UNLOCK or SHM_LOCK.
ACTION Check that shmid is valid and that the identi�er has not been

removed from the system, and check that cmd speci�es a
valid, supported command.

ENOMEM CAUSE cmd speci�es SHM_LOCK or the available data space is not large
enough to accommodate the shared memory area.

ACTION None.
EPERM CAUSE cmd speci�es IPC_RMID or IPC_SET and the calling process

does not have either MPE/iX SM capability or an e�ective
user ID equal to the value of either the shm_perm.uid (owner)
or shm_perm.cuid (creator) �elds in the data structure
associated with shmid.

ACTION Ensure that the calling process has the appropriate e�ective
user ID or the appropriate capabilities to perform the
speci�ed cmd.

ESYSERR CAUSE An operating system error occurred that does not map
directly to any of the above errors.

ACTION Examine the MPE/iX process error stack for the type of
system error.

See Also

shmat(), shmdt(), shmget(), SVID2 (Section 12)

SVID IPC Library

Function Descriptions

2-43

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmdt

Detaches a process from a shared memory area.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmdt (char *shmaddr);

Parameters

shmaddr Passes the address of the shared memory area (returned from a
call to shmat()).

Return Values

0 Success.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The shmdt() function detaches a shared memory area from the calling
process's data area. The address of the shared memory area is speci�ed by
shmaddr (returned from a call to shmat()).

Implementation Considerations

None.

2-44 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmdt

Errors

If an error occurs, errno is set to one of the following values.

EINVAL CAUSE shmaddr is not the data area start address of a shared
memory area.

ACTION Check to see that shmaddr is equal to the value returned by a
previous shmat() call.

ESYSERR CAUSE An operating system error occurred that does not map
directly to any of the above errors.

ACTION Examine the MPE/iX process error stack for the type of
system error.

See Also

shmat(), shmctl(), shmget(), SVID2 (Section 12)

SVID IPC Library

Function Descriptions

2-45

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmget

Returns a shared memory identi�er.

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

int shmget (key_t key, int size, int shm
g);

Parameters

key Passes either a user-de�ned key value to rendezvous with the
shared memory area, or IPC_PRIVATE. If IPC_PRIVATE is speci�ed,
a new shared memory area is created, but other processes cannot
rendezvous by key . Refer to the description of ftok() for details
about obtaining user-de�ned key values

size Passes the size, in bytes, of the shared memory area. The
maximum shared memory area size is 256 megabytes.

shm
g Valid
ags for this function are:

IPC_CREAT If a shared memory area is not already
associated with key , a new shared memory
area identi�er is allocated and a shared
memory area and data structure are
associated with it. If a shared memory area is
already associated with key , shmctl() returns
the shared memory identi�er associated with
key .

IPC_EXCL If speci�ed with IPC_CREAT,shmget() returns
an error if a shared memory identi�er is
already associated with key .

MODE The lower nine bits of shm
g contain the
access permission bits (similar to the nine bit

2-46 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmget

mask found in �le entries). They de�ne access
permissions for the owner, the group, and
other users on the system.

SHM_NO_PID Allocate a shared memory area without
PID protection. (Refer to \Implementation
Considerations" for more information about
using this
ag.)

SHM_PRIV_ACCESS Allocate a shared memory area accessible
only to a calling process that has MPE/iX
user privileged mode (PM). (Refer to
\Implementation Considerations" for more
information about using this
ag.)

Return Values

>=0 Success. A shared memory area identi�er is returned.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The shmget() function returns a shared memory identi�er associated with
the value passed in key . A new shared memory identi�er is allocated and an
associated data structure and shared memory area of size bytes are associated
with it if:

The value passed in key is equal to IPC_PRIVATE.

The value passed in key does not already have a shared memory identi�er
associated with it, and shm
g speci�es IPC_CREAT.

The data structure associated with the new shared memory identi�er is
initialized to the following values:

shm_perm.cuid E�ective user ID of the calling process (creator user ID)
shm_perm.uid E�ective user ID of the calling process (owner user ID)
shm_perm.cgid E�ective group ID of the calling process (creator group ID)
shm_perm.gid E�ective group ID of the calling process (owner group ID)
shm_perm.mode Low-order 9 bits are set equal to the low-order 9 bits of

shm
g

SVID IPC Library

Function Descriptions

2-47

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmget

shm_segsz Value passed in size
msg_qnum Zero
shm_lpid Zero
shm_nattch Zero
shm_atime Zero
shm_dtime Zero
shm_ctime Current time

Implementation Considerations

The maximum shared memory area size is 256 megabytes.

On MPE/iX, two
ags, SHM_NO_PID and SHM_PRIV_ACCESS are available to the
shmget() function that are not de�ned by SVID. (Refer to the description of
shm
g above.)

Note The SHM_NO_PID and SHM_PRIV_ACCESS
ags are available only
on 900 Series HP 3000 computer systems. These two
ags
are not recommended for portable applications. Specifying
these
ags on a di�erent computer system may produce
unpredictable results. In addition, setting SHM_NO_PID increases
the risk of data corruption, since the shared memory area will
not be protected by normal MPE/iX data memory protection
traps.

An MPE/iX system manager can use the MPE/iX SVIPC utility to
interactively con�gure:

The minimum and maximum size of the shared memory area
The total number of shared memory areas allowed system wide.

Refer to the section \Managing SVID IPC Services" for more information.

Errors

If an error occurs, errno is set to one of the following values:

2-48 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

shmget

EACCES CAUSE A shared memory identi�er exists for key but the calling
process does not have permission (as speci�ed by the
low-order 9 bits of shm
g).

ACTION Ensure that the calling process has appropriate permissions to
obtain access to the existing shared memory identi�er.

EEXIST CAUSE A shared memory identi�er exists for key and shm
g speci�es
both IPC_CREATE and IPC_EXCL.

ACTION To access the existing shared memory identi�er, remove the
IPC_EXCL option. Otherwise, a unique key value must be
speci�ed for a new shared memory identi�er to be created.

EINVAL CAUSE size is either less than the system-de�ned minimum or greater
than the system-de�ned maximum, or a shared memory
identi�er exists for key and the size of the shared memory
area associated with it is less than size and size is not equal
to zero.

ACTION Check to see that size is within the system-de�ned valid
range, and that if a shared memory identi�er already exists for
key, that size is within that shared memory area's valid range.

ENOENT CAUSE A shared memory identi�er does not exist for key and shm
g

does not specify IPC_CREATE.
ACTION To create a shared memory area for key when one does not

already exist, make sure IPC_CREAT is speci�ed.
ENOMEM CAUSE The available data space is not large enough to create a

shared memory identi�er and associated shared memory area.
ACTION None. The operation can be retried if another shared memory

identi�er is removed from the system.
ENOSPC CAUSE The number of shared memory identi�ers would exceed the

system-de�ned limit.
ACTION None. The operation can be retried if another shared memory

identi�er is removed from the system.
ESYSERR CAUSE An operating system error occurred that does not map

directly to any of the above errors.
ACTION Examine the MPE/iX process error stack for the type of

system error.

See Also

shmat(), shmctl(), shmdt(), SVID2 (Section 12)

SVID IPC Library

Function Descriptions

2-49

FINAL TRIM SIZE : 7.0 in x 8.5 in

SVID IPC Header Descriptions

Headers required by SVID IPC provide MACRO, type, and structure
de�nitions, as well as function prototypes. SVID IPC headers are located under
the to be provided directory. In addition, the <sys/types.h> header, described
in the MPE/iX Developer's Kit Reference Manual (36430-90001), de�nes
additional features required by SVID IPC.

The following headers are required by SVID IPC:

<sys/types.h>

<sys/ipc.h>

<sys/msg.h>

<sys/shm.h>

<sys/sem.h>

Headers required by each SVID IPC function are speci�ed in the \Syntax"
section of each function description. You must specify the headers in the
indicated order. The following sections provide detailed descriptions of the
SVID IPC headers.

2-50 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sys/ipc.h

sys/ipc.h

Macros

IPC_CREAT Create entry if key doesn't exist
IPC_EXCL Fail if key exists
IPC_NOWAIT Error if request must wait
IPC_PRIVATE (key_t)0 Private key value
IPC_RMID Remove identi�er
IPC_SET Set options
IPC_STAT Get options

Functions

If __STDC__ is de�ned:

extern int svipc_info(int, void *, void *);

extern int svipc_control(int, void *, void *);

If __STDC__ is not de�ned:

extern int svipc_info();

extern int svipc_control();

Types

typedef long key_t;

SVID IPC Library

Function Descriptions

2-51

FINAL TRIM SIZE : 7.0 in x 8.5 in

sys/ipc.h

Structures

Common IPC access structure:

struct ipc_perm {

uid_t uid; /* owner's user id */

gid_t gid; /* owner's group id */

uid_t cuid; /* creator's user id */

gid_t cgid; /* creator's group id */

long mode; /* access modes */

long seq; /* slot usage sequence number*/

key_t key; /* key */

};

2-52 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sys/msg.h

sys/msg.h

Macros

MSG_NOERROR No error if big message
MSG_WWAIT A writer is waiting on the queue
MSG_RWAIT A reader is waiting on the queue

Functions

If __STDC__ is de�ned:

extern int msgget(key_t, int);

extern int msgctl(int, int, struct msqid_ds *);

extern int msgrcv(int, void *, int, long, int);

extern int msgsnd(int, void *, int, int);

If __STDC__ is not de�ned:

extern int msgget();

extern int msgctl();

extern int msgrcv();

extern int msgsnd();

Structures

Message queue control structure:

struct msqid_ds {

struct ipc_perm msg_perm; /* msg_perm defined in sys/ipc.h */

void *msg_first; /* not used on MPE/iX */

void *msg_last; /* not used on MPE/iX */

int msg_cbytes; /* current # bytes on queue */

int msg_qnum; /* # of messages on queue */

int msg_qbytes; /* max # of bytes on queue */

pid_t msg_lspid; /* pid of last msgsnd */

pid_t msg_lrpid; /* pid of last msgrcv */

time_t msg_stime; /* last msgsnd time */

SVID IPC Library

Function Descriptions

2-53

FINAL TRIM SIZE : 7.0 in x 8.5 in

sys/msg.h

time_t msg_rtime; /* last msgrcv time */

time_t msg_ctime; /* last change time */

};

Message bu�er template structure:

struct msgbuf { /*This is a sample template only */

long mtype; /* message type */

char mtext[1]; /* message text */

};

2-54 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sys/sem.h

sys/sem.h

Macros

SEM_UNDO Set up adjust on exit entry
GETNCNT Get semncnt
GETPID Get sempid
GETVAL Get semval
GETALL Get all semvals
GETZCNT Get semzcnt
SETVAL Set semval
SETALL Set all semvals

Functions

If __STDC__ is de�ned:

extern int semctl(int, int, int, union semun);

extern int semget(key_t, int, int);

extern int semop (int, struct sembuf *, unsigned int);

If __STDC__ is not de�ned:

extern int semctl();

extern int semget();

extern int semop ();

Structures

Semaphore set id data structure:

struct semid_ds {

struct ipc_perm sem_perm; /* operation permission struct */

void *sem_base; /* not used on MPE/iX */

int sem_nsems; /* # of semaphores in set */

time_t sem_otime; /* last semop time */

time_t sem_ctime; /* last change time */

SVID IPC Library

Function Descriptions

2-55

FINAL TRIM SIZE : 7.0 in x 8.5 in

sys/sem.h

};

Semaphore semop array element template structure:

struct sembuf {

int sem_num; /* semaphore # */

int sem_op; /* semaphore operation */

long sem_flg; /* operation flags */

};

2-56 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sys/shm.h

sys/shm.h

Macros

SHM_NO_PID No pid protection - MPE/iX only
SHM_PRIV_ACCESS Privileged area - MPE/iX only
SHM_RDONLY Read access only
SHM_RND Round attach address (not implemented)
SHM_DEST Delete when attach = 0 (not implemented)
SHM_CLEAR Clear on �rst attach (not implemented)
SHM_LOCK Not implemented
SHM_UNLOCK Not implemented

Functions

If __STDC__ is de�ned:

extern char *shmat(int, char *m, int);

extern int shmctl(int, int, struct shmid_ds *);

extern int shmdt (char *);

extern int shmget(key_t, int, int);

If __STDC__ is not de�ned:

extern char *shmat();

extern int shmctl();

extern int shmdt ();

extern int shmget();

Structures

Shared memory ID control structure:

struct shmid_ds {

struct ipc_perm shm_perm; /* permission structure */

int shm_segsz; /* segment size */

void *shm_ptbl; /* not used on MPE/iX */

pid_t shm_lpid; /* pid of last shmop call */

SVID IPC Library

Function Descriptions

2-57

FINAL TRIM SIZE : 7.0 in x 8.5 in

sys/shm.h

pid_t shm_cpid; /* pid of last change */

int shm_nattch; /* attached users */

int shm_cnattch; /* in memory attached users ?? */
time_t shm_atime; /* last shmat time */

time_t shm_dtime; /* last shmdt time */

time_t shm_ctime; /* last change time */

void *shm_ptr; /* pointer to the shm area. */

};

2-58 SVID IPC Library

Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

3

TERMINFO Database

Introduction

The TERMINFO database describes terminal and printer capabilities. A wide
range of capabilities can be de�ned that include, for example, the number
of lines and columns for the device, whether or not the terminal wraps at
the right margin, or what character sequence causes a carriage return. The
database is used by screen-oriented programs such as VI or CURSES programs.
By using TERMINFO to handle the capabilities of individual devices, a program
can work with a variety of devices without any changes to the code.

The TERMINFO descriptions are located in the directory pointed to by the
environment variable TERMINFO. The default directory is /usr/lib/terminfo.

Note There are several hundred terminal descriptions in the
TERMINFO database. Hewlett-Packard only explicitly supports
the following two terminal descriptions:

hp2392a

ansi

The majority of terminals used by Hewlett-Packard customers
are compatible with one of these two descriptions. The other
descriptions are available for you to use, but they are not
supported.

TERMINFO Database 3-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

TERMINFO Source File

One or more devices are described in a TERMINFO source �le. This section
describes the contents of the source �le.

Syntax of Device Descriptions

Each device entry in the TERMINFO source �le has the following format:

alias1 | alias2 | ... | aliasn | fullname,

capability1, capability2,

.

.

.

capabilityn,

The �rst line in the device description is called the header; it must start in
column one of the �le. The header contains the commonly-used aliases for the
device being described and the full name, which by convention appears last on
the line. The environmental variable TERM can be set to any one of the terminal
aliases. Each name is separated by a vertical bar, (j). The aliases must be
unique in the database. They must follow normal MPE/iX HFS naming
conventions (avoid a hyphen in the alias name as it is used to append a su�x
as described below). All lines in the �le must end with a comma (,).

A sample header of the model 33 teletype follows:

33|tty33|tty|model 33 teletype

A special convention exists for naming terminals that have special hardware
modes or user preferences (for example, a VT-100 with 132 columns). Attach a
su�x to the alias name with a hyphen, as shown in the following example.

vt100-w|vt100 132 column,

More than one su�x can be used by concatenating them together. When using
multiple su�xes, repeat the alias with the su�xes in the opposite order so
the user does not have to remember which is the correct order. The following
example shows a terminal in wide mode with no automatic margins:

vt100-w-nam|vt100-nam-w|vt100 132 column,

The su�x conventions used are shown in Table 3-1.

3-2 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-1. Suffixes for Mode and User Preferences

Su�x Meaning

-am Auto margins (usually the default)

-na No arrow keys (leave in local mode)

-nam No auto margins

-w Wide mode (more than 80 columns)

-rv Reverse video

-n Number of lines on the screen

-np Number of pages of memory

After the header come the descriptions of the capabilities, separated by
commas (white space after the comma is ignored). Each line after the header is
indented one or more spaces or tabs. An example that shows the syntax of the
capabilities segment of the �le follows:

dumb|Dumb terminal,

am, xon,

cols#80, it#8,

bel=^G, cr=\r, cudl=\n, ind=\n$<15>,

There are three types of capabilities: Boolean, numeric, and string. The �rst
line in the example shows Boolean capabilities; the second line shows numeric
capabilities; and the third shows string capabilities.

The Boolean capabilities indicate the presence or absence of a capability. They
take no arguments. The terminal in the example has automatic margins (am)
and uses the XON/XOFF handshaking protocols (xon).

The numeric capabilities show size, spacing, or some other measurement. The
capability is followed immediately by a pound sign (#) character and a positive
integer. The terminal in the example has a screen with 80 columns (cols#80)
and tab stops initially set to every 8 characters (it#8).

The string capabilities describe a terminal operation. The capability is followed
immediately by an equals sign (=), and the string that performs the operation.

TERMINFO Database 3-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

The terminal in the previous example beeps the terminal when sent a ^G

sequence, performs a carriage return when sent a return character, moves the
cursor down a line when sent a newline character, and scrolls forward from the
bottom line of the screen when sent a newline character. (Control characters
are entered in the device description as a caret (^), followed by a letter, as
opposed to entered as the actual control character.)

Padding

Padding is used to delay further output to terminals that need extra time to
process the current command. Some terminals use the XON/XOFF protocol
instead of padding to tell the sending computer not to send the next command
until the terminal is ready to receive it. Padding can still be used with the
XON/OFF protocol so that programs can calculate the speed of functions.
Padding can be speci�ed for all string capabilities with the exception of input
capabilities (names preceded with key_).

Padding is speci�ed by a dollar sign ($) followed by a number enclosed within
angle brackets (for example, $<15>). A forward slash (/) after the number
speci�es that padding is mandatory; that is, it should be applied regardless of
the XON/XOFF setting. An asterisk (*) after the number speci�es proportional
padding; that is, it is applied to each line a�ected.

The syntax of padding speci�cations is summarized in Table 3-2.

Table 3-2. Syntax of Padding Specifications

Padding Syntax Meaning

$<|n Indicates a delay in n milliseconds

$<|n/ Indicates the delay is mandatory

$<|n* Indicates the padding to be applied for each line a�ected

$<|n/* Indicates the mandatory padding to be applied for each line a�ected

Note The tputs() routine performs the necessary padding for
output.

3-4 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Parameterized Strings

Strings that require run-time parameters are described using printf-like
escapes (%x). Calculations are done on a stack using Reverse Polish Notation.
Parameters are pushed onto the stack, manipulated in some way, and a result is
output. The left-most operators are pushed �rst; for example, to subtract 10
from the �rst parameter, you would use:

%p1%{10}%-.

A complex example that describes cursor movement for the Wyse-50 follows:

cup=\E=%p1%'\s'%+%c%p2%'\s'%+%c,

This parameterized string is described in Table 3-3.

Table 3-3. Explanation of Parameter Description

Expression Meaning

\E= Send cursor addressing command ^[=

%p1 Push the �rst parameter onto stack

%'\s' Push a space onto stack

%+ Pop the �rst two values on stack, add them, and push sum back on stack

%c Pop the value on top of stack as an ASCII character; send to terminal

%p2 Push the second parameter onto stack

%'\s' Push a space onto stack

%+ Pop the �rst two values on stack, add them, and push sum back on stack

%c Pop the value on top of stack as ASCII character; send to terminal

TERMINFO Database 3-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

Stack Operators

The stack operators are de�ned as follows:

%% Outputs the % character.

%char Pop and print character on top of
stack.

%[[:]flags]

[field_width[.precision]] [doxXs]

Pop the topmost value and output as
speci�ed by the printf-like format.
Flags are [- + #] and space.

Note When using the-
ag with %[doxXs], a colon (:), must be put
between the % and- to distinguish the
ag from the binary %-

operator, for example, %:-16.16s.

%pn Push nth parameter onto stack where n is a number from 1
to 9.

%`c' Push character constant c onto stack.

%{nn} Push decimal constant nn onto the stack.

%l Pop a pointer to a string and push the length of the string
onto the stack.

%+ %- %* %/ %m Pop the top two values; add (int2 + int1), subtract (int2 -
int1), multiply (int2 * int1), divide (int2 / int1), or modulo
(int2 mod int1), and push the result.

%& %| %^ Pop the top two values, perform bitwise AND (int2 &
int1), bitwise OR (int2 j int1), or bitwise XOR (int2 ^ int1)

%= %> < %A %O Pop the top two values, push TRUE or FALSE depending on
whether operators are equal, second is greater than �rst,
second is less than �rst, both are true, either are true,
respectively.

%! Pop the top value and push its logical NOT.

%~ Pop the top value and push its bitwise NOT.

3-6 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

%i For ANSI terminals, increment �rst parameter by one, if one
parameter present, or increment �rst two parameters by
one, if more than one parameter present.

%? expr %t

thenpart %e

elsepart %;

Execute thenpart if expr is TRUE; otherwise execute elsepart
(elsepart is optional). Else-if's are possible:

%? c1 %t b1 %e c2 %t b2 %e c3 %t b3, %e c4 %t b4

%e b5 %;

where ci are conditions and bi are bodies.

The following example describes more complex cursor movements using some of
the stack operators described previously. For example, the hp2392a terminal
needs to be sent the column before the row for cursor addressing. See Table 3-4
following the example for a complete explanation.

cup=\E&a%p2%dc%p1%dY,

Table 3-4. hp2392a Terminal Cursor Movement

Expression Meaning

\E&a Send ^[&a

%p2\ Push the second parameter onto the stack

%d Print top of stack as decimal number

c Send character c

%p1 Push the �rst parameter onto the stack

%d Print top of stack as decimal number

Y Send character Y

The following is an example of a cursor movement string for the ANSI terminal.
The explanation of each argument is shown in Table 3-5.

cup=\E[%i%p1%d;%p2%dH,

TERMINFO Database 3-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-5. ANSI Terminal Cursor Movement

Expression Meaning

\E[Send ^[[

%i Increment the �rst and second parameter by one

%p1 Push the �rst parameter onto the stack

%d Print top of stack as a decimal number

; Send character ;

%p2 Push the second parameter onto the stack

%d Print top of stack as decimal number

H Send character H

Creating Device Descriptions

The easiest way to create a new entry for a device is to �nd one that is similar,
modify it, and compile it using the tic utility. The tic utility installs the new
de�nition in the TERMINFO directory hierarchy. You can change the location of
the directory hierarchy by rede�ning the TERMINFO environment variable.

You can test your description in small segments using VI. Keep in mind that
a unusual device may not be adequately described by TERMINFO or adequately
tested by VI.

A terminal can be de�ned as having certain capabilties that are equivalent to
those of another terminal. These capabilities are then read from one terminal
description into the other. The use capability names the terminal from which
to read the capabilities. Any capabilities listed before the use string override
those put in place by use. A capability that should not be used in the terminal
desciption can be cancelled by typing an at sign (@) after the name of the
capability. The following example bases the de�nition of a VT-100 terminal
without automatic margins on a standard VT-100 terminal de�nition.

vt100-nam|VT100 without automatic margins,

3-8 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

am@, use=vt100,

A crude test for getting the right amount of padding for insert-line (if not
documented) is to comment out xon, edit a large �le at 9600 baud with VI,
delete 16 or so lines from the middle of the screen, and press the �u� key several
times quickly. If the display becomes corrupted, insert-line requires more
padding.

Special Characters

Table 3-6 summarizes all the special characters sequences discussed to this
point.

TERMINFO Database 3-9

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-6. Characters with Special Values

Character Meaning

, Separates capabilities

Precedes integer value in numeric capabilities

= Separates string capability name from string sequence

@ Cancels capability

At the beginning of line, comments out the line

. When directly preceding a capability, period comments it out

^x Control x sequence

\E Escape character

\e Escape character

\n Newline character

\r Return character

\t Tab character

\v Vertical tab character

\b Backspace character

\f Formfeed character

\s Space character

\l Linefeed character

\a Alert character

3-10 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-6. Characters with Special Values (continued)

Character Meaning

\xxx Octal characters (must be three characters)

\, Escapes a comma

\\ Escapes a backslash

\^ Escapes a caret

\: Escapes a colon

\0 Escapes a null character

%x String using format operator

$<n> Indicates a delay in n milliseconds

$<n/> Indicates the delay is mandatory

$<n*> Indicates the padding required per a�ected line

$<n/*> Indicates mandatory padding required per a�ected line

Names of Capabilities

Capability names are normally kept to two to �ve characters and normally
comply with ANSI X3.64-1979. Each capability has a corresponding variable
name used in the program to access it; for example, the variable de�ned for am
is auto_left_margin.

The Boolean, number, and string capabilities are listed in the tables on the
following pages. Within these tables, each TERMINFO capability name is listed,
along with the equivalent termcap name, the variable name, and a brief
description. The #i symbol that sometimes appears in the description section
of the table refers to the ith parameter.

Additional tables sorted by variable name may be found in Table 3-20,
Table 3-21, and Table 3-22 as a reference for programmers. Table 3-20 lists the
capabilities by the Boolean variable name; Table 3-21 lists the capabilities by
the numeric variable name, and Table 3-22 lists the capabilities by the string
variable name.

TERMINFO Database 3-11

FINAL TRIM SIZE : 7.0 in x 8.5 in

Boolean Capabilities

Table 3-7 lists the Boolean capabilities.

Table 3-7. Boolean Capabilities

TInfo TCap Variable Description

am am auto_right_margin Terminal has automatic margins

bw bw auto_left_margin cub1 wraps from column 0 to last column

ccc cc can_change Terminal can rede�ne existing color

chts HC hard_cursor Cursor is hard to see

cpix YF cpi_changes_res Changing character pitch changes resolution

crxm YB cr_cancels_micro_mode Using cr turns o� micro mode

da da memory_above Display may be retained above the screen

daisy YC has_print_wheel Printer needs operator to change character set

db db memory_below Display may be retained below the screen

eo eo erase_overstrike Terminal can erase overstrikes with a blank

eslok es status_line_esc_ok Escape can be used on the status line

gn gn generic_type Generic line type (e.g. dialup, switch)

hc hc hard_copy Hardcopy terminal

hls hl hue_lightness_saturation Terminal uses only HLS color notation (Tektronix)

hs hs has_status_line Terminal has extra status line

hz hz tilde_glitch Hazeltine: cannot print tilde (~)

in in insert_null_glitch Insert mode distinguishes nulls

km km has_meta_key Terminal has meta key (shift, sets parity bit)

3-12 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-7. Boolean Capabilities (continued)

TInfo TCap Variable Description

lpix YG lpi_changes_res Changing line pitch changes resolution

mc5i 5i prtr_silent Printer will not echo on screen

mir mi move_insert_mode Safe to move in insert mode

msgr ms move_standout_mode Safe to move in standout mode

npc NP no_pad_char Pad character does not exist

nrrmc NR non_rev_rmcup smcup does not reverse rmcup

nxon nx needs_xon_xoff Padding will not work, XON/XOFF required

os os over_strike Terminal overstrikes

sam YE semi_auto_right_margin Printing in last column causes cr

ul ul transparent_underline Underline character overstrikes

xenl xn eat_newline_glitch Newline ignored after 80 columns (Concept)

xhp xs ceol_standout_glitch Standout not erased by overwriting (hp)

xhpa YA col_addr_glitch Only positive motion for hpa/mhpa capabilities

xon xo xon_xoff Terminal uses XON/XOFF handshaking

xsb xb no_esc_ctlc Beehive (f 1=escape, f2=ctrl C)

xt xt dest_tabs_magic_smso Tabs destructive, magic smso character (Teleray 1061)

xvpa YD row_addr_glitch Only positive motion for vpa/mvpa capabilities

Numeric Capabilities

Table 3-8 lists the numeric capabilities.

TERMINFO Database 3-13

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-8. Numeric Capabilities

TInfo TCap Variable Description

bufsz Ya buffer_capacity Number of bytes bu�ered before printing

colors Co max_colors Maximum number of colors on the screen

cols co columns Number of columns in a line

it it init_tabs Number of spaces between initial tabs

lh lh label_height Number of rows in each label

lines li lines Number of lines on screen or page

lm lm lines_of_memory Lines of memory if > 0; 0 means un�xed

lw lw label_width Number of columns in each label

maddr Yd max_micro_address Maximum value in micro . . . address

mcs Yf micro_col_size Character step size when in micro mode

mjump Ye max_micro_jump Maximum value in parm . . . micro

mls Yg micro_line_size Line step size when in micro mode

ncv NC no_color_video Video attributes that cannot be used with colors

nlab Nl num_labels Number of labels on screen (start at 1)

npins yH number_of_pins Number of pins in print-head

orc Yi output_res_char Horz. res. in units per character

orhi Yk output_res_horz_inch Horz. res. in units per inch

orl Yj output_res_line Vert. res. in units per line

orvi Yl output_res_vert_inch Vert. res. in units per inch

pairs pa max_pairs Maximum number of color pairs on the screen

3-14 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-8. Numeric Capabilities (continued)

TInfo TCap Variable Description

pb pb padding_baud_rate Lowest baud rate where cr/nl padding needed

spinh Yc dot_horz_spacing Spacing of dots horizontally in dots per inch

spinv Yb dot_vert_spacing Spacing of pins vertically in pins per inch

vt vt virtual_termina Virtual terminal number (CB/UNIX)

widcs Yn wide_char_size Character step size when in double wide mode

wsl ws width_status_line Number of columns in status line

xmc sg magic_cookie_glitch Number of blank chars left by smso or rmso

String Capabilities

Table 3-9 lists the string capabilities.

TERMINFO Database 3-15

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities

TInfo TCap Variable Description

acsc ac acs_chars Graphics character set pairs aAbBcC-defn=vt100

bel bl bell Produce audible signal (bell or beep)

blink mb enter_blink_mode Turn on blinking

bold md enter_bold_mode Turn on bold (extra bright) mode

cbt bt back_tab Back tab

chr ZC change_res_horz Change horizontal resolution

civis vi cursor_invisible Make cursor invisible

clear cl clear_screen Clear screen

cmdch CC command_character Terminal settable command character in prototype

cnorm ve cursor_normal Make cursor appear normal (undo cvvis/civis)

cpi ZA change_char_pitch Change number of characters per inch

cr cr carriage_return Move cursor to left edge of screen

csnm Zy char_set_names List of character set names

csr cs change_scroll_region Change to lines #1 through #2 (vt100)

cub LE parm_left_cursor Move cursor left #1 spaces

cub1 le cursor_left Move cursor left one space

cud DO parm_down_cursor Move cursor down #1 lines

cud1 do cursor_down Move cursor down one line

cuf RI parm_right_cursor Move cursor right #1 spaces

cuf1 nd cursor_right Non-destructive space (cursor right)

3-16 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

cup cm cursor_address Cursor motion to row #1 col #2

cuu UP parm_up_cursor Move cursor up #1 lines

cuu1 up cursor_up Move cursor up

cvr ZD change_res_vert Change vertical resolution

cvvis vs cursor_visible Make cursor very visible

dch DC parm_dch Delete #1 characters

dch1 dc delete_character Delete character

defc ZE define_char De�ne a character in a character set

dim mh enter_dim_mode Turn on half-bright mode

dl DL parm_delete_line Delete #1 lines

dl1 dl delete_line Delete line

docr Zw these_cause_cr Printing any of these chars causes cr

dsl ds dis_status_line Disable status line

ech ec erase_chars Erase #1 characters

ed cd clr_eos Clear to end of display

el ce clr_eol Clear to end of line

el1 cb clr_bol Clear to beginning of line, inclusive

enacs eA ena_acs Enable alternate character set

ff ff form_feed Hardcopy terminal page eject

flash vb flash_screen Visible bell (may not move cursor)

fsl fs from_status_line Return from status line

hd hd down_half_line Half-line down (forward 1/2 linefeed)

home ho cursor_home Home cursor (if no cup)

TERMINFO Database 3-17

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

hpa ch column_address Set cursor column

ht ta tab Tab to next 8 space hardware tab stop

hts st set_tab Set a tab in all rows, current column

hu hu up_half_line Half-line up (reverse 1/2 linefeed)

ich IC parm_ich Insert #1 blank characters

ich1 ic insert_character Insert character

if if init_file Name of �le containing is

il AL parm_insert_line Add #1 new blank lines

il1 al insert_line Add new blank line

ind sf scroll_forward Scroll text up

indn SF parm_index Scroll forward #1 lines

initc Ic initialize_color Initialize the de�nition of color

initp Ip initialize_pair Initialize color pair

invis mk enter_secure_mode Turn on blank mode (characters invisible)

ip ip insert_padding Insert pad after character inserted

iprog iP init_prog Pathname of program for initialization

is1= i1 init_1string Terminal initialization string

is2= is init_2string Terminal initialization string

is3= i3 init_3string Terminal initialization string

kBEG &9 key_sbeg Sent by shift-beginning key

kCAN &0 key_scancel Sent by shift-cancel key

kCMD *1 key_scommand Sent by shift-command key

kCPY *2 key_scopy Sent by shift-copy key

3-18 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

kCRT *3 key_screate Sent by shift-create key

kDC *4 key_sdc Sent by shift-delete-char key

kDL *5 key_sdl Sent by shift-delete-line key

kEND *7 key_send Sent by shift-end key

kEOL *8 key_seol Sent by shift-eol key

kEXT *9 key_sexit Sent by shift-exit key

kFND *0 key_sfind Sent by shift-�nd key

kHLP #1 key_shelp Sent by shift-help key

kHOM #2 key_shome Sent by shift-home key

kIC #3 key_sic Sent by shift-insert-char key

kLFT #4 key_sleft Sent by shift-left key

kMOV %b key_smove Sent by shift-move key

kMSG %a key_smessage Sent by shift-message key

kNXT %c key_snext Sent by shift-next key

kOPT %d key_soptions Sent by shift-options key

kPRT %f key_sprint Sent by shift-print key

kPRV %e key_sprevious Sent by shift-prev key

kRDO g key_sredo Sent by shift-redo key

kRES %j key_srsume Sent by shift-resume key

kRIT %i key_sright Sent by shift-right key

kRPL %h key_sreplace Sent by shift-replace key

kSAV !1 key_ssave Sent by shift-save key

kSPD !2 key_ssuspend Sent by shift-suspend key

kUND !3 key_sundo Sent by shift-undo key

TERMINFO Database 3-19

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

ka1 K1 key_a1 Upper left of keypad

ka3 K3 key_a3 Upper right of keypad

kb2 K2 key_b2 Center of keypad

kbeg @1 key_beg Sent by beginning key

kbs kb key_backspace Sent by backspace key

kc1 K4 key_c1 Lower left of keypad

kc3 K5 key_c3 Lower right of keypad

kcan @2 key_cancel Sent by cancel key

kcbt kB key_btab Sent by BackTab key

kclo @3 key_close Sent by close key

kclr kC key_clear Sent by clear screen or erase key

kcmd @4 key_command Sent by command key

kcpy @5 key_copy Sent by copy key

kcreate @6 key_create Sent by create key

kctab kt key_ctab Sent by clear-tab key

kcub1 kl key_left Sent by terminal left arrow key

kcud1 kd key_down Sent by terminal down arrow key

kcuf1 kr key_right Sent by terminal right arrow key

kcuu1 ku key_up Sent by terminal up arrow key

kdch1 kD key_dc Sent by delete character key

kdl1 kL key_dl Sent by delete line key

ked kS key_eos Sent by clear-to-end-of-screen key

kel kE key_eol Sent by clear-to-end-of-line key

3-20 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

kend @7 key_end Sent by end key

kent @8 key_enter Sent by enter/send key

kext @9 key_exit Sent by exit key

kf0 k0 key_f0 Sent by function key f0

kf1 k1 key_f1 Sent by function key f1

kf2 k2 key_f2 Sent by function key f2

kf3 k3 key_f3 Sent by function key f3

kf4 k4 key_f4 Sent by function key f4

kf5 k5 key_f5 Sent by function key f5

kf6 k6 key_f6 Sent by function key f6

kf7 k7 key_f7 Sent by function key f7

kf8 k8 key_f8 Sent by function key f8

kf9 k9 key_f9 Sent by function key f9

kf10 k; key_f10 Sent by function key f10

kf11 F1 key_f11 Sent by function key 11

kf12 F2 key_f12 Sent by function key 12

kf13 F3 key_f13 Sent by function key 13

kf14 F4 key_f14 Sent by function key 14

kf15 F5 key_f15 Sent by function key 15

kf16 F6 key_f16 Sent by function key 16

kf17 F7 key_f17 Sent by function key 17

kf18 F8 key_f18 Sent by function key 18

kf19 F9 key_f19 Sent by function key 19

TERMINFO Database 3-21

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

kf20 FA key_f20 Sent by function key 20

kf21 FB key_f21 Sent by function key 21

kf22 FC key_f22 Sent by function key 22

kf23 FD key_f23 Sent by function key 23

kf24 FE key_f24 Sent by function key 24

kf25 FF key_f25 Sent by function key 25

kf26 FG key_f26 Sent by function key 26

kf27 FH key_f27 Sent by function key 27

kf28 FI key_f28 Sent by function key 28

kf29 FJ key_f29 Sent by function key 29

kf30 FK key_f30 Sent by function key 30

kf31 FL key_f31 Sent by function key 31

kf32 FM key_f32 Sent by function key 32

kf33 FN key_f33 Sent by function key 33

kf34 FO key_f34 Sent by function key 34

kf35 FP key_f35 Sent by function key 35

kf36 FQ key_f36 Sent by function key 36

kf37 FR key_f37 Sent by function key 37

kf38 FS key_f38 Sent by function key 38

kf39 FT key_f39 Sent by function key 39

kf40 FU key_f40 Sent by function key 40

kf41 FV key_f41 Sent by function key 41

kf42 FW key_f42 Sent by function key 42

3-22 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

kf43 FX key_f43 Sent by function key 43

kf44 FY key_f44 Sent by function key 44

kf45 FZ key_f45 Sent by function key 45

kf46 Fa key_f46 Sent by function key 46

kf47 Fb key_f47 Sent by function key 47

kf48 Fc key_f48 Sent by function key 48

kf49 Fd key_f49 Sent by function key 49

kf50 Fe key_f50 Sent by function key 50

kf51 Ff key_f51 Sent by function key 51

kf52 Fg key_f52 Sent by function key 52

kf53 Fh key_f53 Sent by function key 53

kf54 Fi key_f54 Sent by function key 54

kf55 Fj key_f55 Sent by function key 55

kf56 Fk key_f56 Sent by function key 56

kf57 Fl key_f57 Sent by function key 57

kf58 Fm key_f58 Sent by function key 58

kf59 Fn key_f59 Sent by function key 59

kf60 Fo key_f60 Sent by function key 60

kf61 Fp key_f61 Sent by function key 61

kf62 Fq key_f62 Sent by function key 62

kf63 Fr key_f63 Sent by function key 63

kfnd @0 key_find Sent by �nd key

khlp %1 key_help Sent by help key

TERMINFO Database 3-23

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

khome kh key_home Sent by home key

khts kT key_stab Sent by set-tab key

kich1 kI key_ic Sent by ins char/enter ins mode key

kil1 kA key_il Sent by insert line

kind kF key_sf Sent by scroll-forward/down key

kll kH key_ll Sent by home down key (lower left)

kmov %4 key_move Sent by move key

kmrk %2 key_mark Sent by mark key

kmsg %3 key_message Sent by message key

knp kN key_npage Sent by next-page key

knxt %5 key_next Sent by next-object key

kopn %6 key_open Sent by open key

kopt %7 key_options Sent by options key

kpp kP key_ppage Sent by previous-page key

kprt %9 key_print Sent by print or copy key

kprv %8 key_previous Sent by previous-object key

krdo %0 key_redo Sent by redo key

kref &1 key_reference Sent by reference key

kres &5 key_resume Sent by resume key

krfr &2 key_refresh Sent by refresh key

kri kR key_sr Sent by scroll-backward/up key

krmir kM key_eic Sent by rmir or smir in insert mode

krpl &3 key_replace Sent by replace key

3-24 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

krst &4 key_restart Sent by restart key

ksav &6 key_save Sent by save key

kslt *6 key_select Sent by select key

kspd &7 key_suspend Sent by suspend key

ktbc ka key_catab Sent by clear-all-tabs key

kund &8 key_undo Sent by undo key

lf0 l0 lab_f0 Labels on function key f0 if not f0

lf1 l1 lab_f1 Labels on function key f1 if not f1

lf2 l2 lab_f2 Labels on function key f2 if not f2

lf3 l3 lab_f3 Labels on function key f3 if not f3

lf4 l4 lab_f4 Labels on function key f4 if not f4

lf5 l5 lab_f5 Labels on function key f5 if not f5

lf6 l6 lab_f6 Labels on function key f6 if not f6

lf7 l7 lab_f7 Labels on function key f7 if not f7

lf8 l8 lab_f8 Labels on function key f8 if not f8

lf9 l9 lab_f9 Labels on function key f9 if not f9

lf10 la lab_f10 Labels on function key f10 if not f10

ll ll cursor_to_ll Last line, �rst column (if no cup)

lpi ZB change_line_pitch Change number of lines per inch

mc0 ps print_screen Print contents of the screen

mc4 pf prtr_off Turn o� the printer

mc5 po prtr_on Turn on the printer

mc5p pO prtr_non Turn on the printer for #1 bytes

TERMINFO Database 3-25

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

mcub Zg parm_left_micro Like parm left cursor

mcub1 Za micro_left Like cursor left for micro adjustment

mcud Zf parm_down_micro Like parm down cursor

mcud1 ZZ micro_down Like cursor down for micro adjustment

mcuf Zh parm_right_micro Like parm right cursor

mcuf1 Zb micro_right Like cursor right for micro adjustment

mcuu Zi parm_up_micro Like parm up cursor

mcuu1 Zd micro_up Like cursor up for micro adjustment

mgc MC clear_margins Clear all margins top, bottom,

mhpa ZY micro_column_address Like column address for micro adjustment

mrcup CM cursor_mem_address Memory relative cursor addressing

mvpa Zc micro_row_address Like row address for micro adjustment

nel nw newline Produces newline (behaves like cr followed by lf)

oc oc 0 orig_colors Set all color(pair)s to the original ones

op op orig_pair Set default color pair to the original one

pad pc pad_char Pad character (rather than null)

pfkey pk pkey_key Prog funct key #1 to type string #2

pfloc pl pkey_local Prog funct key #1 to execute string #2

pfx px pkey_xmit Prog funct key #1 to xmit string #2

pln pn plab_norm Prog label #1 to show string #2

porder Ze order_of_pins Matches software bits to print-head pins

prot mp enter_protected_mode Turn on protected mode

rbim Zs stop_bit_image Stop printing bit image graphics

rc rc restore_cursor Restore cursor to position of last sc

3-26 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

rcsd Zt stop_char_set_def Stop de�nition of character set

rep rp repeat_char Repeat char #1 #2 times

rev mr enter_reverse_mode Turn on reverse video mode

rf rf reset_file Name of �le containing reset string

rfi RF req_for_input Send next input character (for ptys)

ri ri scroll_reverse Scroll text down

rin SR parm_rindex Scroll backward #1 lines

ritm ZR exit_italics_mode Disable italics

rlm ZS exit_leftward_mode Enable rightward (normal) carriage motion

rmacs ae exit_alt_charset_mode End alternate character set

rmam RA exit_am_mode Turn o� automatic margins

rmcup te exit_ca_mode String to begin programs that use cup

rmdc ed exit_delete_mode End delete mode

rmicm ZT exit_micro_mode Disable micro motion capabilities

rmir ei exit_insert_mode End insert mode

rmkx ke keypad_local Out of keypad transmit mode

rmln LF label_off Turn o� soft labels

rmm mo meta_off Turn o� meta mode

rmp rP char_padding Like ip, but when in replace mode

rmso se exit_standout_mode End stand out mode

rmul ue exit_underline_mode End underscore mode

rmxon RX exit_xon_mode Turn o� XON/XOFF handshaking

rs1 r1 reset_1string Reset terminal completely to sane modes

TERMINFO Database 3-27

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

rs2 r2 reset_2string Reset terminal completely to sane modes

rs3 r3 reset_3string Reset terminal completely to sane modes

rshm ZU exit_shadow_mode Disable shadow printing

wsubm ZV exit_subscript_mode Disable subscript printing

rsupm ZW exit_supercript_mode Disable superscript printing

rum ZX exit_upward_mode Enable downward (normal) carriage motion

rwidm ZQ exit_doublewide_mode Disable double wide printing

sbim Zq start_bit_image Start printing bit image graphics

sc sc save_cursor Save cursor position

scp sp set_color_pair Set current color pair

scs Zj select_char_set Select character set

scsd Zr start_char_set_def Start de�nition of character set

sdrfq ZG enter_draft_quality Set draft quality print

setb Sb set_background Set current background color

setf Sf set_foreground Set current foreground color

sgr sa set_attributes De�ne the video attributes

sgr0 me exit_attribute_mode Turn o� all attributes

sitm ZH enter_italics_mode Enable italics

slm ZI enter_leftward_mode Enable leftward carriage motion

smacs as enter_alt_charset_mode Start alternate character set

smam SA enter_am_mode Turn on automatic margins

smcup ti enter_ca_mode String to end programs that use cup

smdc dm enter_delete_mode Delete mode (enter)

smgb Zk set_bottom_margin Set bottom margin at current line

3-28 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

smgbp Zl set_bottom_margin_parm Set bottom margin at line #1 or #2 from bottom

smgl ML set_left_margin Set left margin at current column

smglp Zm set_left_margin_parm Set left (right) margin at column #1 (#2)

smgr MR set_right_margin Set right margin at current column

smgrp Zn set_right_margin_parm Set right margin at column #1

smgt Zo set_top_margin Set top margin at current line

smgtp Zp set_top_margin_parm Set top (bottom) margin at line #1 (#2)

smicm ZJ enter_micro_mode Enable micro motion capabilities

smir im enter_insert_mode Insert mode (enter)

smln LO label_on Turn on soft labels

smm mm meta_on Turn on meta mode (8th bit)

smso so enter_standout_mode Begin stand out mode

smul us enter_underline_mode Start underscore mode

smxon SX enter_xon_mode Turn on XON/XOFF handshaking

snlq ZK enter_near_letter_quality Set near-letter quality

snrmq ZL enter_normal_quality Set normal quality print

sshm ZM enter_shadow_mode Enable shadow printing

ssubm ZN enter_subscript_mode Enable subscript printing

ssupm ZO enter_supercript_mode Enable superscript printing

subcs Zu subscript_characters List of \subscript-able" characters

sum ZP enter_upward_mode Enable upward carriage msupcs

supcs Zv superscript_characters List of \superscript-able" characters

TERMINFO Database 3-29

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-9. String Capabilities (continued)

TInfo TCap Variable Description

swidm ZF enter_doublewide_mode Enable double wide printing

tbc ct clear_all_tabs Clear all tab stops

tsl ts to_status_line Go to status line

uc uc underline_char Underscore one char and move past it

use tc N/A Read capabilities from entry

vpa cv row_address Like hpa, but sets row

wind wi set_window Current window is lines #1 - #2 cols #3 - #4

xoffc XF xoff_character XOFF character

xonc XN xon_character XON character

zerom Zx zero_motion No motion for the subsequent character

The following sections group these categories and look at each group in detail.

Configuration Capabilities

Table 3-10 lists the capabilities used to con�gure terminals. Following the table
are more detailed descriptions of some of these capabilities.

3-30 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-10. Configuration Capabilities

Capability Variable Description

acscU= acs_chars Graphics character set pairs aAbBcC-defn=vt100

am auto_right_margin Wraps to next line at right margin

bel= bell Produce audible signal (bell or beep)

bufsz# buffer_capacity Number of bytes bu�ered before printing

bw auto_left_margin cub1 wraps from column 0 to last column

ccc can_change Terminal can rede�ne existing color

chts hard_cursor Cursor is hard to see

cmdch= command_character Terminal settable command character in prototype

cols# columns Number of columns on each line

cr= carriage_return Move cursor to left edge of screen

da memory_above Display may be retained above the screen

db memory_below Display may be retained below the screen

eo erase_overstrike Terminal can erase overstrikes with a blank

eslok status_line_esc_ok Escape can be used on the status line

gn generic_type Generic line type (for example, dialup, switch)

hc hard_copy Hardcopy terminal

hs has_status_line Terminal has extra status line

hz tilde_glitch Hazeltine: cannot print tilde (~)

if= init_file Name of �le containing is

iprog= init_prog Path name of program for initialization

is1= init_1string Terminal initialization string

is2= init_2string Terminal initialization string

is3= init_3string Terminal initialization string

TERMINFO Database 3-31

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-10. Configuration Capabilities (continued)

Capability Variable Description

lines# lines Number of lines on the screen

lm# lines_of_memory Lines of memory if > 0; 0 means un�xed

nxon needs_xon_xoff Padding will not work, XON/XOFF required

pad= pad_char Pad character (rather than null)

pb# padding_baud_rate Lowest baud rate where cr/nl padding needed

os over_strike Overstrike leaves both characters on screen

rf= reset_file Name of �le containing reset string

rs1= reset_1string Reset terminal completely to sane modes

rs2= reset_2string Reset terminal completely to sane modes

rs3= reset_3string Reset terminal completely to sane modes

rmam= exit_am_mode Turn o� automatic margins

rmxon= exit_xon_mode Turn o� XON/XOFF handshaking

sam semi_auto_right_margin Printing in last column causes cr

smam= enter_am_mode Turn on automatic margins

smxon= enter_xon_mode Turn on XON/XOFF handshaking

ul transparent_underline Underline character overstrikes

vt# virtual_terminal Virtual terminal # (CB/UNIX)

xenl eat_newline_glitch Newline ignored after 80 columns (Concept)

xoffc= xoff_character XOFF character

xon xon_xoff Terminal uses XON/XOFF handshaking

xonc= xon_character XON character

xsb no_esc_ctlc Beehive (f1=escape, f2=ctrl C)

xt dest_tabs_magic_smso Tabs destructive, magic smso character

3-32 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Detailed Descriptions

More detailed descriptions are provided below for the following capabilities:

cmdch

da, db
gn

if, iprog, is1, is2, is3
lm

xenl

os, hc
ascs

cmdch. Some terminals, such as the Tektronix 4025, have a control character
that can be set. The cmdch string describes a \dummy" control character to
be used in all capabilities. Some UNIX systems support the convention of
using the value of the environment variable CC in place of the dummy control
character.

da. The da capability describes the case where deleting a line or scrolling a
full screen may bring non-blank lines from below the screen; the db capability
describes the case where scrolling back with ri may bring down non-blank lines
from above.

gn. Terminal descriptions that are not speci�c types of terminals (such as
switch, dialup, patch, and network) can be described at a basic level with
gn. This allows the terminal to function at a low level but still complain when
some operations are impossible. This capability is not used for virtual terminal
descriptions supported by the UNIX system virtual terminal protocol. (Use
vt.)

if, iprog, is1, is2, is3. The if, iprog, is1, is2, and is3 strings must be sent to
the device every time that the user logs in. They must be output in a certain
order: run the program speci�ed by iprog; output is1; output is2; set the
margins with mgc, smgl, and smgr; set the tabs with tbc and hts; print the �le
speci�ed by if; and output is3 (using the init option of the tput command).

Normally initialization is done with is2 and in special cases, is1 and is3;
however, sequences that reset from an unknown state can be given as rs1, rs2,
rf, and rs3. (Reset strings are normally output with the reset option of the
tput command.) Commands are normally placed in these strings when they
have annoying results or are not needed when logging in.

TERMINFO Database 3-33

FINAL TRIM SIZE : 7.0 in x 8.5 in

lm. The lm capability is used if the terminal has more lines of memory than
can be displayed on the screen simultaneously; a value of zero means that the
number of lines is not �xed but that number is still more than can �t on the
screen.

xenl. In addition to terminals that ignore a linefeed, xenl should be speci�ed
for terminals that do not immediately wrap when a character is read to the
right-most column of the screen but wait until another character has been
received (the VT100, for example).

os, hc. If the device is a printing terminal with no soft copy unit, both os and
hc should be speci�ed.

ascs. The de�nition of the ascs string is based on the DEC VT100 character
set with the addition of some characters from the AT&T 4410v1 terminal.
Table 3-11 illustrates the glyph to character mapping.

Table 3-11. Glyph to Character Mapping

Glyph Name Character

right arrow +

left arrow '

down arrow .

up arrow -

solid square block O

lantern symbol I

diamond `

3-34 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-11. Glyph to Character Mapping (continued)

Glyph Name Character

checker board (stipple) a

degree symbol f

plus/minus g

board of squares h

lower right corner j

upper right corner k

upper left corner l

lower left corner m

plus n

scan line 1 o

horizontal line q

scan line 9 s

TERMINFO Database 3-35

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-11. Glyph to Character Mapping (continued)

Glyph Name Character

left tee (|-) t

right tee (-|) u

bottom tee () v

top tee (T) w

vertical line x

bullet ~

The characters are described in pairs, with the de�ning character for the glyph
followed by the corresponding character on the device. For example, a device
with the left tee, right tee, bottom tee, and top tee de�ned by the f,g, h, and i

characters would be described as follows:

acsc=tfugvhwi

Cursor Movement and Scrolling Capabilities

Table 3-12 lists the capabilities used to de�ne cursor movements. Following the
table are more detailed descriptions of some of these capabilities.

3-36 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-12. Cursor Movement Capabilities

Capability Variable Description

csr= change_scroll_region Change to lines #1 through #2 (vt100)

cub= parm_left_cursor Move cursor left speci�ed number of spaces

cub1= cursor_left Move cursor left one space

cud= parm_down_cursor Move down speci�ed number of lines

cud1= cursor_down Move cursor down one line

cuf= parm_right_cursor Move cursor right speci�ed number of spaces

cuf1= cursor_right Non-destructive space (cursor right)

cup= cursor_address Move cursor to row #1 col #2

cuu= parm_up_cursor Move up speci�ed number of lines

cuu1= cursor_up Move cursor up one line

home= cursor_home Move cursor to upper left corner of screen (if no cup)

hpa= column_address Absolute horizontal position

ind= scroll_forward Scroll text up

indn= parm_index Scroll forward #1 lines

ll= cursor_to_ll Moves cursor to last line, �rst column (if no cup)

mir move_insert_mode Safe to move in insert mode

mrcup= cursor_mem_address Memory relative cursor addressing

msgr move_standout_mode Safe to move in standout mode

nel= newline Produces newline (behaves like cr followed by lf)

nrrmc= non_rev_rmcup smcup does not restore screen after rmcup

rc= restore_cursor Restores cursor to position of last sc

ri= scroll_reverse Scrolls text down

rin= parm_rindex Scrolls backward #1 lines

TERMINFO Database 3-37

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-12. Cursor Movement Capabilities (continued)

Capability Variable Description

rmcup= exit_ca_mode String that ends programs that use cup

sc= save_cursor Save cursor position

smcup= enter_ca_mode String that begins programs that use cup

vpa= row_address Absolute vertical position

xhpa col_addr_glitch Only positive motion for hpa/mhpa capabilties

xt dest_tabs_magic_smso Tabs destructive, magic smso character (Teleray 1061)

xvpa row_addr_glitch Only positive motion for vpa/mvpa capabilities

Detailed Descriptions

More detailed descriptions are provided below for the following capabilities:

ind, ri
cu

csr
cup, cuu
home
mir
smcup, rmcup
xt

ind, ri. Local cursor movements de�ned for TERMINFO are unde�ned at the top
and left edges of the screen. Unless bw is speci�ed, programs should not try
to backspace at the left edge of the screen. To scroll text down, the program
should move the cursor to the bottom left corner of the screen and send ind.
To scroll up, the program should move the cursor to the top of the screen and
send ri. Both of these capabilities are unde�ned when the cursor is anywhere
else on the screen.

Although moving backwards from the left edge of the screen is not possible
unless bw is speci�ed, moving forward at the right edge of the screen does
not necessarily depend on whether or not am is set. If the device has switch

3-38 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

selectable automatic margins, am should be speci�ed in the TERMINFO �le, and
initialization strings should turn on this option.

cufl. The local cursor movements should not change the text that they pass
over; for example, you would not use cufl=\s because the space would erase
the character that it passed over.

csr. The cursor position is unde�ned after using csr. Do not specify csr on
terminals that do not have destructive scroll regions unless all of the following
simulate destructive scrolling: ind, ri, indn, rin, dl, and dl1. To �nd out
whether or not the terminal has a destructive scroll region, create a scroll
region and place data on the bottom line, move the cursor to the top and do a
reverse index (ri), followed by a delete line (dl1) or index (ind). The terminal
has destructive scroll regions if the bottom line drops o� the bottom of the
scrolling region.

The csr string can create the e�ect of insert and delete line.

cup, cuu. If the device does not have cup, (Tektronix 4025, for example), cud,
cub, cuf, and cuu are useful for moving relative to present position. Sometimes
absolute-cursor addressing in one dimension (using vpa and hpa) is faster than
the two-parameter speci�cation of cup (as with the Hewlett-Packard 2645).

home. Since home refers to the top left corner of the screen (0,0) and not to
memory, the sequence \EH on Hewlett-Packard terminals could not be used
without losing other features of the terminal. A program should not get to
the lower left hand corner by going up with cuu1 itself from the home position
because the e�ects of home cannot be predicted.

ri, ind. The ri and ind strings can be used to insert lines at the top or bottom
of the screen on terminals that have no true insert/delete line (and may even
be faster).

mir. A terminal that allows movement within insert mode to delete characters
on the same line can specify mir to speed up the insertion process. Some
terminals, such as Datamedia's, should not specify mir because of the way that
their insert mode works.

smcup, rmcup. Some devices may need to be in a special mode to use cursor
movement. Some terminals turn o� cursor movement when not in use; other
terminals, such as the Concept terminal, have cursor addressing relative to
memory instead of the screen; so a single screen-sized window must be �xed

TERMINFO Database 3-39

FINAL TRIM SIZE : 7.0 in x 8.5 in

into the device for cursor addressing to work properly. Terminals, such as the
Tektronix 4025, that have programmable command characters need to set the
command character to the one used in TERMINFO. The smcup and rmcup strings
start and end programs that use cursor movement.

xt. The xt capability is used for Teleray terminals that have destructive tabs
(turn all characters tabbed over to blanks) and have an odd standout mode
that requires using insert and delete to change text from standout back to
normal instead of typing over the text.

Edit Capabilities

Table 3-13 lists the capabilities used for inserting and deleting text on
terminals. Following the table are more detailed descriptions of the following
capabilities:

ich1

in

ip

3-40 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-13. Editing Capabilities

Capability Variable Description

clear= clear_screen Clear screen

dch= parm_dch Delete #1 chars

dch1= delete_character Delete character

dl= parm_delete_line Delete #1 lines (only from �rst column on
line)

dl1= delete_line Delete current line (only from �rst
position on line)

ech= erase_ch Clear from current position to end of
screen

el= clr_eol Clear from current position to end of line,
leaving the cursor in the original position

el1= clr_bol Clear from current position to beginning
of line inclusive, leaving the cursor in the
original position

ich= parm_ich Insert #1 blank characters

ich1= insert_character Insert character

il= parm_insert_line Add #1 new blank lines (only from �rst
column line)

il1= insert_line Add new blank line above cursor (only
from �rst column on line)

in insert_null_glitch Insert mode distinguishes nulls

TERMINFO Database 3-41

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-13. Editing Capabilities (continued)

Capability Variable Description

ip= insert_padding Insert pad after character inserted

rmdc= exit_delete_mode End delete mode

rmir= exit_insert_mode End insert mode

rmp= char_padding Like ip, but when in replace mode

smdc= enter_delete_mode Delete mode (enter)

smir= enter_insert_mode Insert mode (enter)

Detailed Descriptions

More detailed descriptions are provided below for the following capabilities:

ich1
in
ip

ich1. Most characters with a true insert mode do not require ich1 to be
speci�ed; specify ich1 for any terminal that requires a sequence to be sent
before a character can be inserted. (Do not specify both smir and ich1 unless
the terminal must be placed in insert mode and must be sent a character before
insertion).

in. If the terminal distinguishes between blank characters and untyped
positions (for example, local cursor movements) in should be speci�ed. To �nd
out, clear the screen, type a few characters, press a cursor key, and type a
few more characters. Put the cursor before the �rst set of characters and put
the terminal in insert mode. If the �rst set of characters shifts to the second
and then moves onto the next line as you insert more characters, the terminal
should be described by in.

ip. In addition to post-insert padding, ip can be used for any sequence that has
to be sent after a character is inserted.

3-42 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Attribute Capabilities

Table 3-14 lists the capabilities used to control attributes on the terminal. For
example, attribute capabilities include those to manipulate bold, underline, and
color.

Table 3-14. Attribute Capabilities

Capability Variable Description

bce back_color_erase Screen erased with background color

blink= enter_blink_mode Turn on blinking

bold= enter_bold_mode Turn on bold (extra bright) mode

colors# max_colors Maximum number of colors on the screen

dim= enter_dim_mode Turn on half-bright mode

hls hue_lightness_saturation Terminal uses only HLS color notation (Tektronix)

initc= initialize_color Initialize the de�nition of color

initp= initialize_pair Initialize color pair

invis= enter_secure_mode Turn on blank mode (characters invisible)

ncv# no_color_video Video attributes that cannot be used with colors

oc= orig_colors Set all color (pair)s to the original one

op= orig_pair Set default color pair to the original one

pairs# max_pairs Maximum number of color pairs on the screen

prot= enter_protected_mode Turn on protected mode

rev= enter_reverse_mode Turn on reverse video mode

rmso= exit_standout_mode End stand out mode

rmul= exit_underline_mode End underscore mode

scp= set_color_pair Set current color pair

TERMINFO Database 3-43

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-14. Attribute Capabilities (continued)

Capability Variable Description

setb= set_background Set current background color

setf= set_foreground Set current foreground color

sgr= set_attributes De�ne the video attributes

sgr0= exit_attribute_mode Turn o� all attributes

smso= enter_standout_mode Begin stand out mode

smul= enter_underline_mode Start underscore mode

xhp ceol_standout_glitch Standout not erased by overwriting (hp)

xmc# magic_cookie_glitch # of blank chars left by smso or rmso

Handling Color

There are two ways terminals handle color. The Tektronix method provides
a �xed set of colors that can be used for background or foreground. The
Hewlett-Packard method provides color pairs that represent the foreground
and background colors together; there is no way to de�ne the foreground and
background independent of each other.

The initc string is de�ned for terminals that use the Tektronix method of
handling color. The initc string requires four arguments: one color number
(0 to color -1), and three RGB (red, green, blue) values or three HLS colors
(hue, lightness, saturation) in the same order speci�ed in the parentheses.

The initp string is de�ned for terminals that use the Hewlett-Packard method
of handling color. The initp string requires seven parameters: the number
of the color pair (0 to pairs -1), three RGB values for foreground, and three
RGB values for background (each group in the order of red, green, blue).

The hls Boolean variable is used to tell the CURSES init_color() routine to
convert RGB (red, green, blue) arguments to HLS (hue, lighness, saturation)
before sending them to the terminal (for those terminals that only use HLS
notation).

3-44 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Some color terminals replace video attributes with colors. Since these
attributes should not be combined with colors, they need to be identi�ed.
Information about these attributes are packed into the ncv variable.

ncv Variable. The nine least signi�cant bits of the ncv variable correspond to
the video attributes as shown in Table 3-15.

Table 3-15. ncv Variable

Attribute Bit Position Decimal Value

A_STANDOUT 0 1

A_UNDERLINE 1 2

A_REVERSE 2 4

A_BLINK 3 8

A_DIM 4 16

A_BOLD 5 32

A_INVIS 6 64

A_PROTECT 7 128

A_ALTCHARSET 8 256

The corresponding ncv bit of each attribute that should not be combined with
color should be set to one; otherwise, it should be set to zero. The decimal
values of the attributes that cannot be used with color are summed, and that
sum is packed into the ncv variable. For example, if the terminal uses color for
standout mode (decimal value 1) and for underlining (decimal value 2), ncv
would be a value of 3.

Turning Off Attributes

Always use sgr0 to turn o� video attributes since it is the only way to turn o�
some attributes like dim or blink.

TERMINFO Database 3-45

FINAL TRIM SIZE : 7.0 in x 8.5 in

Programs using standout mode should exit standout mode (rmso) before
sending a newline or moving the cursor unless the msgr capability is present.
(The msgr capability speci�es that it's safe to move in standout mode.)

Setting Arbitrary Modes

The sgr string describes the sequence to set arbitrary combinations of modes.
The sgr string takes nine parameters in the following order:

1. standout
2. underline
3. reverse
4. blink
5. dim
6. bold
7. blank
8. protect
9. alternate character set

Each parameter is either zero or non-zero, representing whether the attribute is
on or o�.

Table 3-16 lists the sgr parameters.

3-46 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-16. sgr Parameters

tparm Attribute

none

p1 standout

p2 underline

p3 reverse

p4 blink

p5 dim

p6 bold

p7 invis

p8 protect

p9 altcharset

TERMINFO Database 3-47

FINAL TRIM SIZE : 7.0 in x 8.5 in

Tabs and Margins

Table 3-17 lists the capabilities used to control margins and tabs on the
terminal.

Table 3-17. Margins and Tabs

Capability Variable Description

cbt= back_tab Back tab

ht= tab Tab to next eight space hardware tab stop

hts= set_tab Set a tab in all rows, current column

it# init_tabs Number of spaces between initial tabs

mgc= clear_margins Clear all margins top, bottom,

smgb= set_bottom_margin Set bottom margin at current line

smgbp= set_bottom_margin_parm Set bottom margin at line #1 or #2 from bottom

smgl= set_left_margin Set left margin at current column

smglp= set_left_margin_parm Set left (right) margin at column #1 (#2)

smgr= set_right_margin Set right margin at current column

smgrp= set_right_margin_parm Set right margin at column #1

smgt= set_top_margin Set top margin at current line

smgtp= set_top_margin_parm Set top (bottom) margin at line #1 (#2)

tbc= clear_all_tabs Clear all tab stops

If tabs are expanded by the computer rather than sent to the device, by
convention, ht and cbt are not used because the user may not have the tabs
correctly set.

If the sequence to set tabs cannot be described adequately with tbc and hts, it
can be described with is2 or if.

3-48 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

The it string is normally used by tputs init to determine whether to set the
mode for hardware expansion and whether to set the tabs.

TERMINFO Database 3-49

FINAL TRIM SIZE : 7.0 in x 8.5 in

Terminal Key Capabilities

Table 3-18 lists the capabilities used to describe keys on the terminal.

3-50 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-18. Terminal Key Capabilities

Capability Variable Description

k_keyname= See Table 3-9 See Table 3-9

km has_meta_key Terminal has meta key (shift, sets parity bit)

lab_function_name= See Table 3-9 See Table 3-9

lf0= lab_f0 Labels on function key f0 if not f0

lf1= lab_f1 Labels on function key f1 if not f1

lf2= lab_f2 Labels on function key f2 if not f2

lf3= lab_f3 Labels on function key f3 if not f3

lf4= lab_f4 Labels on function key f4 if not f4

lf5= lab_f5 Labels on function key f5 if not f5

lf6= lab_f6 Labels on function key f6 if not f6

lf7= lab_f7 Labels on function key f7 if not f7

lf8= lab_f8 Labels on function key f8 if not f8

lf9= lab_f9 Labels on function key f9 if not f9

lf10= lab_f10 Labels on function key f10 if not f10

pfkey= pkey_key Prog funct key #1 to type string #2

pfloc= pkey_local Prog funct key #1 to execute string #2

pfx= pkey_xmit Prog funct key #1 to xmit string #2

rfi= req_for_input Send next input character (for ptys)

rmkx= meta_off Turn o� meta mode

smkx= keypad_xmit Put terminal in keypad transmit mode

smm= meta_on Turn on meta mode (8th bit)

TERMINFO Database 3-51

FINAL TRIM SIZE : 7.0 in x 8.5 in

Note Refer back to Table 3-9 for a complete list of all the key
capabilities.

Key capabilities describe keypads that transmit sequences of characters when
keys are pressed. Keypads that work only in local mode cannot be described.
The keypad is assumed to always transmit; if the transmit of keys can be
turned on or o�, this should be speci�ed with smkx and rmkx, respectively.

If the �rst 11 function keys have labels other than the default f0 through f10,
they can be described using lf0 through lf10. If the keypad has a 3 by 3

array of keys that includes the four arrow keys, the other keys can be described
as ka1, ka3, kb2, kc1, and kc3 as shown in the diagram below.

ka1 � ka3

� kb2 �

kc1 	 kc3

Miscellaneous Capabilities

Table 3-19 lists the capabilities that do not �t into any of the previous
categories.

Table 3-19. Miscellaneous Capabilities

Capability Variable Description

civis= cursor_invisible Make cursor invisible

cnorm= cursor_normal Make cursor appear normal (undo cvvis/civis)

cvvis= cursor_visible Make cursor very visible

defc= define_char De�ne a character in a character set

dsl= dis_status_line Disable status line

enacs= ena_acs Enable alternate character set

3-52 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-19. Miscellaneous Capabilities (continued)

Capability Variable Description

flash= flash_screen Visible bell (may not move cursor)

ff= form_feed Hardcopy terminal page eject

fsl= from_status_line Return from status line

lh# label_height # rows in each label

lw# label_width # columns in each label

nlab# num_labels # of labels on screen (start at 1)

pln= plab_norm Prog label #1 to show string #2

rbim= stop_bit_image Stop printing bit image graphics

rcsd= stop_char_set_def Stop de�nition of character set

rep= repeat_char Repeat character #1 #2 times

rmacs= exit_alt_charset_mode End alternate character set

rmln= label_off Turn o� soft labels

sbim= start_bit_image Start printing bit image graphics

scs= select_char_set Select character set

scsd= start_char_set_def Start de�nition of character set

smacs= enter_alt_charset_mode Start alternate character set

smln= label_on Turn on soft labels

tsl= to_status_line Go to status line

use= N/A Read capabilities from entry

wind= set_window Current window is lines #1 - #2 cols #3 - #4

wsl# width_status_line # columns in status line (if di�erent from cols)

TERMINFO Database 3-53

FINAL TRIM SIZE : 7.0 in x 8.5 in

The fsl string must leave the cursor in the same position as it was before
tsl. If necessary, this can be done by including sc and rc in thefsl and tsl

strings.

The wind string de�nes a window that all commands a�ect as part of memory.
It takes four arguments: starting lines in memory, ending lines in memory,
starting columns in memory, and ending columns in memory.

Capabilities Sorted by Variable Name

The following tables list all of the capabilities by variable name (instead of
TERMINFO capability name as was done previously) for ease of reference.

Table 3-20 lists the Boolean capabilities, Table 3-21 lists the numeric
capabilities, and Table 3-22 lists the string capabilities.

3-54 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Boolean Capabilities

Table 3-20 lists the Boolean capabilities.

Table 3-20. Boolean Capabilities

Variable TInfo TCap Description

auto_left_margin bw bw cub1 wraps from column 0 to last column

auto_right_margin am am Terminal has automatic margins

back_color_erase bce be Screen erased with background color

can_change ccc cc Terminal can rede�ne existing color

ceol_standout_glitch xhp xs Standout not erased by overwriting (hp)

col_addr_glitch xhpa YA Only positive motion for hpa/mhpa capabilities

cpi_changes_res cpix YF Changing character pitch changes resolution

cr_cancels_micro_mode crxm YB Using cr turns o� micro mode

dest_tabs_magic_smso xt xt Tabs destructive, magic smso character
(Teleray 1061)

eat_newline_glitch xenl xn Newline ignored after 80 columns (Concept)

erase_overstrike eo eo Terminal can erase overstrikes with a blank

generic_type gn gn Generic line type (for example, dialup, switch)

hard_copy hc hc Hardcopy terminal

hard_cursor chts HC Cursor is hard to see

has_meta_key km km Terminal has meta key (shift, sets parity bit)

has_print_wheel daisy YC Printer needs operator to change character set

has_status_line hs hs Terminal has extra status line

hue_lightness_saturation hls hl Terminal uses only HLS color notation (Tektronix)

TERMINFO Database 3-55

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-20. Boolean Capabilities (continued)

Variable TInfo TCap Description

insert_null_glitch in in Insert mode distinguishes nulls

lpi_changes_res lpix YG Changing line pitch changes resolution

memory_above da da Display may be retained

amemory_below db db Display may be retained below the screen

move_insert_mode mir mi Safe to move in insert mode

move_standout_mode msgr ms Safe to move in standout mode

needs_xon_xoff nxon nx Padding will not work, XON/XOFF required

no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)

no_pad_char npc NP Pad character does not exist

non_rev_rmcup nrrmc NR smcup does not reverse rmcup

over_strike os os Terminal overstrikes

prtr_silent mc5i 5i Printer will not echo on screen

row_addr_glitch xvpa YD Only positive motion for vpa/mvpa capabilities

semi_auto_right_margin sam YE Printing in last column causes cr

status_line_esc_ok eslok es Escape can be used on the status line

tilde_glitch hz hz Hazeltine: cannot print tilde (~)

transparent_underline ul ul Underline character overstrikes

xon_xoff xon xo Terminal uses XON/XOFF handshaking

3-56 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Numeric Capabilities

Table 3-21 lists the numeric capabilities.

Table 3-21. Numeric Capabilities

Variable TInfo TCap Description

buffer_capacity bufsz Ya Number of bytes bu�ered before printing

columns cols co Number of columns in a line

dot_horz_spacing spinh Yc Spacing of dots horizontally in dots per inch

dot_vert_spacing spinv Yb Spacing of pins vertically in pins per inch

init_tabs it it Number of spaces between initial tabs

label_height lh lh Number of rows in each label

label_width lw lw Number of columns in each label

lines lines li Number of lines on screen or page

TERMINFO Database 3-57

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-21. Numeric Capabilities (continued)

Variable TInfo TCap Description

lines_of_memory lm lm Lines of memory if > 0; 0 means un�xed

magic_cookie_glitch xmc sg Number of blank chars left by smso or rmso

max_colors colors Co Maximum number of colors on the screen

max_micro_address maddr Yd Maximum value in micro . . . address

max_micro_jump mjump Ye Maximum value in parm . . . micro

max_pairs pairs pa Maximum number of color pairs on the screen

micro_col_size mcs Yf Character step size when in micro mode

micro_line_size mls Yg Line step size when in micro mode

no_color_video ncv NC Video attributes that cannot be used with colors

num_labels nlab Nl Number of labels on screen (start at 1)

number_of_pins npins yH Number of pins in print-head

output_res_char orc Yi Horz. res. in units per character

output_res_horz_inch orhi Yk Horz. res. in units per inch

output_res_line orl Yj Vert. res. in units per line

output_res_vert_inch orvi Yl Vert. res. in units per inch

padding_baud_rate pb pb Lowest baud rate where cr/nl padding needed

virtual_terminal vt vt Virtual terminal number (CB/UNIX)

wide_char_size widcs Yn Character step size when in double wide mode

width_status_line wsl ws Number of columns in status line

3-58 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

String Capabilities

Table 3-22 lists the string capabilities.

TERMINFO Database 3-59

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities

Variable TInfo TCap Description

N/A use tc Read capabilities from entry

acs_chars acsc ac Graphics character set pairs aAbBcC - defn=vt100

back_tab cbt bt Back tab

bell bel bl Produce audible signal (bell or beep)

carriage_return cr cr Move cursor to left edge of screen

change_char_pitch cpi ZA Change number of characters per inch

change_line_pitch lpi ZB Change number of lines per inch

change_res_horz chr ZC Change horizontal resolution

change_res_vert cvr ZD Change vertical resolution

change_scroll_region csr cs Change to lines #1 through #2 (vt100)

char_padding rmp rP Like ip, but when in replace mode

char_set_names csnm Zy List of character set names

clear_all_tabs tbc ct Clear all tab stops

clear_margins mgc MC Clear all margins top and bottom

clear_screen clear cl Clear screen

clr_bol el1 cb Clear to beginning of line, inclusive

clr_eol el ce Clear to end of line

clr_eos ed cd Clear to end of display

column_address hpa ch Set cursor column

command_character cmdch CC Terminal settable command character in prototype

cursor_address cup cm Cursor motion to row #1 col #2

3-60 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

cursor_down cud1 do Move cursor down one line

cursor_home home ho Home cursor (if no cup)

cursor_invisible civis vi Make cursor invisible

cursor_left cub1 le Move cursor left one space

cursor_mem_address mrcup CM Memory relative cursor addressing

cursor_normal cnorm ve Make cursor appear normal (undo cvvis/civis)

cursor_right cuf1 nd Non-destructive space (cursor right)

cursor_to_ll ll ll Last line, �rst column (if no cup)

cursor_up cuu1 up Move cursor up

cursor_visible cvvis vs Make cursor very visible

define_char defc ZE De�ne a character in a character set

delete_character dch1 dc Delete character

delete_line dl1 dl Delete line

dis_status_line dsl ds Disable status line

down_half_line hd hd Half-line down (forward 1/2 linefeed)

ena_acs enacs eA Enable alternate character set

enter_alt_charset_mode smacs as Start alternate character set

enter_am_mode smam SA Turn on automatic margins

enter_blink_mode blink mb Turn on blinking

enter_bold_mode bold md Turn on bold (extra bright) mode

enter_ca_mode smcup ti String to end programs that use cup

enter_delete_mode smdc dm Delete mode (enter)

enter_dim_mode dim mh Turn on half-bright mode

TERMINFO Database 3-61

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

enter_doublewide_mode swidm ZF Enable double wide printing

enter_draft_quality sdrfq ZG Set draft quality print

enter_insert_mode smir im Insert mode (enter)

enter_italics_mode sitm ZH Enable italics

enter_leftward_mode slm ZI Enable leftward carriage motion

enter_micro_mode smicm ZJ Enable micro motion capabilities

enter_near_letter_quality snlq ZK Set near-letter quality

enter_normal_quality snrmq ZL Set normal quality print

enter_protected_mode prot mp Turn on protected mode

enter_reverse_mode rev mr Turn on reverse video mode

enter_secure_mode invis mk Turn on blank mode (characters invisible)

enter_shadow_mode sshm ZM Enable shadow printing

enter_standout_mode smso so Begin stand out mode

enter_subscript_mode ssubm ZN Enable subscript printing

enter_supercript_mode ssupm ZO Enable superscript printing

enter_underline_mode smul us Start underscore mode

enter_upward_mode sum ZP Enable upward carriage motion

enter_xon_mode smxon SX Turn on XON/XOFF handshaking

erase_chars ech ec Erase #1 characters

exit_alt_charset_mode rmacs ae End alternate character set

exit_am_mode rmam RA Turn o� automatic margins

exit_attribute_mode sgr0 me Turn o� all attributes

exit_ca_mode rmcup te String to begin programs that use cup

3-62 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

exit_delete_mode rmdc ed End delete mode

exit_doublewide_mode rwidm ZQ Disable double wide printing

exit_insert_mode rmir ei End insert mode

exit_italics_mode ritm ZR Disable italics

exit_leftward_mode rlm ZS Enable rightward (normal) carriage motion

exit_micro_mode rmicm ZT Disable micro motion capabilities

exit_shadow_mode rshm ZU Disable shadow printing

exit_standout_mode rmso se End stand out mode

exit_subscript_mode wsubm ZV Disable subscript printing

exit_supercript_mode rsupm ZW Disable superscript printing

exit_underline_mode rmul ue End underscore mode

exit_xon_mode rmxon RX Turn o� XON/XOFF handshaking

flash_screen flash vb Visible bell (may not move cursor)

form_feed ff ff Hardcopy terminal page eject

from_status_line fsl fs Return from status line

init_1string is1= i1 Terminal initialization string

init_2string is2= is Terminal initialization string

init_3string is3= i3 Terminal initialization string

init_file if if Name of �le containing is

init_prog iprog iP Pathname of program for initialization

initialize_color initc Ic Initialize the de�nition of color

initialize_pair initp Ip Initialize color pair

insert_character ich1 ic Insert character

TERMINFO Database 3-63

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

insert_line il1 al Add new blank line

insert_padding ip ip Insert pad after character inserted

key_a1 ka1 K1 Upper left of keypad

key_a3 ka3 K3 Upper right of keypad

key_b2 kb2 K2 Center of keypad

key_backspace kbs kb Sent by backspace key

key_beg kbeg @1 Sent by beginning key

key_btab kcbt kB Sent by BackTab key

key_c1 kc1 K4 Lower left of keypad

key_c3 kc3 K5 Lower right of keypad

key_cancel kcan @2 Sent by cancel key

key_catab ktbc ka Sent by clear-all-tabs key

key_clear kclr kC Sent by clear screen or erase key

key_close kclo @3 Sent by close key

key_command kcmd @4 Sent by command key

key_copy kcpy @5 Sent by copy key

key_create kcreate @6 Sent by create key

key_ctab kctab kt Sent by clear-tab key

key_dc kdch1 kD Sent by delete character key

key_dl kdl1 kL Sent by delete line key

key_down kcud1 kd Sent by terminal down arrow key

key_eic krmir kM Sent by rmir or smir in insert mode

key_end kend @7 Sent by end key

3-64 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

key_enter kent @8 Sent by enter/send key

key_eol kel kE Sent by clear-to-end-of-line key

key_eos ked kS Sent by clear-to-end-of-screen key

key_exit kext @9 Sent by exit key

key_f0 kf0 k0 Sent by function key f0

key_f1 kf1 k1 Sent by function key f1

key_f2 kf2 k2 Sent by function key f2

key_f3 kf3 k3 Sent by function key f3

key_f4 kf4 k4 Sent by function key f4

key_f5 kf5 k5 Sent by function key f5

key_f6 kf6 k6 Sent by function key f6

key_f7 kf7 k7 Sent by function key f7

key_f8 kf8 k8 Sent by function key f8

key_f9 kf9 k9 Sent by function key f9

key_f10 kf10 k; Sent by function key f10

key_f11 kf11 F1 Sent by function key 11

key_f12 kf12 F2 Sent by function key 12

key_f13 kf13 F3 Sent by function key 13

key_f14 kf14 F4 Sent by function key 14

key_f15 kf15 F5 Sent by function key 15

key_f16 kf16 F6 Sent by function key 16

key_f17 kf17 F7 Sent by function key 17

key_f18 kf18 F8 Sent by function key 18

TERMINFO Database 3-65

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

key_f19 kf19 F9 Sent by function key 19

key_f20 kf20 FA Sent by function key 20

key_f21 kf21 FB Sent by function key 21

key_f22 kf22 FC Sent by function key 22

key_f23 kf23 FD Sent by function key 23

key_f24 kf24 FE Sent by function key 24

key_f25 kf25 FF Sent by function key 25

key_f26 kf26 FG Sent by function key 26

key_f27 kf27 FH Sent by function key 27

key_f28 kf28 FI Sent by function key 28

key_f29 kf29 FJ Sent by function key 29

key_f30 kf30 FK Sent by function key 30

key_f31 kf31 FL Sent by function key 31

key_f32 kf32 FM Sent by function key 32

key_f33 kf33 FN Sent by function key 33

key_f34 kf34 FO Sent by function key 34

key_f35 kf35 FP Sent by function key 35

key_f36 kf36 FQ Sent by function key 36

key_f37 kf37 FR Sent by function key 37

key_f38 kf38 FS Sent by function key 38

key_f39 kf39 FT Sent by function key 39

key_f40 kf40 FU Sent by function key 40

key_f41 kf41 FV Sent by function key 41

3-66 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

key_f42 kf42 FW Sent by function key 42

key_f43 kf43 FX Sent by function key 43

key_f44 kf44 FY Sent by function key 44

key_f45 kf45 FZ Sent by function key 45

key_f46 kf46 Fa Sent by function key 46

key_f47 kf47 Fb Sent by function key 47

key_f48 kf48 Fc Sent by function key 48

key_f49 kf49 Fd Sent by function key 49

key_f50 kf50 Fe Sent by function key 50

key_f51 kf51 Ff Sent by function key 51

key_f52 kf52 Fg Sent by function key 52

key_f53 kf53 Fh Sent by function key 53

key_f54 kf54 Fi Sent by function key 54

key_f55 kf55 Fj Sent by function key 55

key_f56 kf56 Fk Sent by function key 56

key_f57 kf57 Fl Sent by function key 57

key_f58 kf58 Fm Sent by function key 58

key_f59 kf59 Fn Sent by function key 59

key_f60 kf60 Fo Sent by function key 60

key_f61 kf61 Fp Sent by function key 61

key_f62 kf62 Fq Sent by function key 62

key_f63 kf63 Fr Sent by function key 63

key_find kfnd @0 Sent by �nd key

TERMINFO Database 3-67

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

key_help khlp %1 Sent by help key

key_home khome kh Sent by home key

key_ic kich1 kI Sent by ins char/enter ins mode key

key_il kil1 kA Sent by insert line

key_left kcub1 kl Sent by terminal left-arrow key

key_ll kll kH Sent by home-down key (lower left)

key_mark kmrk %2 Sent by mark key

key_message kmsg %3 Sent by message key

key_move kmov %4 Sent by move key

key_next knxt %5 Sent by next-object key

key_npage knp kN Sent by next-page key

key_open kopn %6 Sent by open key

key_options kopt %7 Sent by options key

key_ppage kpp kP Sent by previous-page key

key_previous kprv %8 Sent by previous-object key

key_print kprt %9 Sent by print or copy key

key_redo krdo %0 Sent by redo key

key_reference kref &1 Sent by reference key

key_refresh krfr &2 Sent by refresh key

key_replace krpl &3 Sent by replace key

key_restart krst &4 Sent by restart key

key_resume kres &5 Sent by resume key

key_right kcuf1 kr Sent by terminal right arrow key

3-68 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

key_save ksav &6 Sent by save key

key_sbeg kBEG &9 Sent by shift-beginning key

key_scancel kCAN &0 Sent by shift-cancel key

key_scommand kCMD *1 Sent by shift-command key

key_scopy kCPY *2 Sent by shift-copy key

key_screate kCRT *3 Sent by shift-create key

key_sdc kDC *4 Sent by shift-delete-char key

key_sdl kDL *5 Sent by shift-delete-line key

key_select kslt *6 Sent by select key

key_send kEND *7 Sent by shift-end key

key_seol kEOL *8 Sent by shift-eol key

key_sexit kEXT *9 Sent by shift-exit key

key_sf kind kF Sent by scroll-forward/down key

key_sfind kFND *0 Sent by shift-�nd key

key_shelp kHLP #1 Sent by shift-help key

key_shome kHOM #2 Sent by shift-home key

key_sic kIC #3 Sent by shift-insert-char key

key_sleft kLFT #4 Sent by shift-left key

key_smessage kMSG %a Sent by shift-message key

key_smove kMOV %b Sent by shift-move key

key_snext kNXT %c Sent by shift-next key

key_soptions kOPT %d Sent by shift-options key

key_sprevious kPRV %e Sent by shift-prev key

TERMINFO Database 3-69

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

key_sprint kPRT %f Sent by shift-print key

key_sr kri kR Sent by scroll-backward/up key

key_sredo kRDO %g Sent by shift-redo key

key_sreplace kRPL %h Sent by shift-replace key

key_sright kRIT %i Sent by shift-right key

key_srsume kRES %j Sent by shift-resume key

key_ssave kSAV !1 Sent by shift-save key

key_ssuspend kSPD !2 Sent by shift-suspend key

key_stab khts kT Sent by set-tab key

key_sundo kUND !3 Sent by shift-undo key

key_suspend kspd &7 Sent by suspend key

key_undo kund &8 Sent by undo key

key_up kcuu1 ku Sent by terminal up-arrow key

keypad_local rmkx ke Out of keypad transmit mode

keypad_xmit smkx ks Put terminal in keypad transmit mode

lab_f0 lf0 l0 Labels on function key f0 if not f0

lab_f1 lf1 l1 Labels on function key f1 if not f1

lab_f10 lf10 la Labels on function key f10 if not f10

lab_f2 lf2 l2 Labels on function key f2 if not f2

lab_f3 lf3 l3 Labels on function key f3 if not f3

lab_f4 lf4 l4 Labels on function key f4 if not f4

lab_f5 lf5 l5 Labels on function key f5 if not f5

lab_f6 lf6 l6 Labels on function key f6 if not f6

3-70 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

lab_f7 lf7 l7 Labels on function key f7 if not f7

lab_f8 lf8 l8 Labels on function key f8 if not f8

lab_f9 lf9 l9 Labels on function key f9 if not f9

label_off rmln LF Turn o� soft labels

label_on smln LO Turn on soft labels

meta_off rmm mo Turn o� meta mode

meta_on smm mm Turn on meta mode (8th bit)

micro_column_address mhpa ZY Like column_address for micro adjustment

micro_down mcud1 ZZ Like cursor_down for micro adjustment

micro_left mcub1 Za Like cursor_left for micro adjustment

micro_right mcuf1 Zb Like cursor_right for micro adjustment

micro_row_address mvpa Zc Like row_address for micro adjustment

micro_up mcuu1 Zd Like cursor_up for micro adjustment

newline nel nw Produces newline (behaves like cr followed by lf)

order_of_pins porder Ze Matches software bits to print-head pins

orig_colors oc oc Set all color(pair)s to the original ones

orig_pair op op Set default color pair to the original one

pad_char pad pc Pad character (rather than null)

parm_dch dch DC Delete #1 characters

parm_delete_line dl DL Delete #1 lines

parm_down_cursor cud DO Move cursor down #1 lines

parm_down_micro mcud Zf Like parm_down_cursor

parm_ich ich IC Insert #1 blank characters

TERMINFO Database 3-71

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

parm_index indn SF Scroll forward #1 lines

parm_insert_line il AL Add #1 new blank lines

parm_left_cursor cub LE Move cursor left #1 spaces

parm_left_micro mcub Zg Like parm_left_cursor

parm_right_cursor cuf RI Move cursor right #1 spaces

parm_right_micro mcuf Zh Like parm_right_cursor

parm_rindex rin SR Scroll backward #1 lines

parm_up_cursor cuu UP Move cursor up #1 lines

parm_up_micro mcuu Zi Like parm_up_cursor

pkey_key pfkey pk Prog funct key #1 to type string #2

pkey_local pfloc pl Prog funct key #1 to execute string #2

pkey_xmit pfx px Prog funct key #1 to xmit string #2

plab_norm pln pn Prog label #1 to show string #2

print_screen mc0 ps Print contents of the screen

prtr_non mc5p pO Turn on the printer for #1 bytes

prtr_off mc4 pf Turn o� the printer

prtr_on mc5 po Turn on the printer

repeat_char rep rp Repeat char #1 #2 times

req_for_input rfi RF Send next input character (for ptys)

reset_1string rs1 r1 Reset terminal completely to sane modes

reset_2string rs2 r2 Reset terminal completely to sane modes

reset_3string rs3 r3 Reset terminal completely to sane modes

reset_file rf rf Name of �le containing reset string

3-72 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

restore_cursor rc rc Restore cursor to position of last sc

row_address vpa cv Like hpa but sets row

save_cursor sc sc Save cursor position

scroll_forward ind sf Scroll text up

scroll_reverse ri ri Scroll text down

select_char_set scs Zj Select character set

set_attributes sgr sa De�ne the video attributes

set_background setb Sb Set current background color

set_bottom_margin smgb Zk Set bottom margin at current line

set_bottom_margin_parm smgbp Zl Set bottom margin at line #1 or #2 from bottom

set_color_pair scp sp Set current color pair

set_foreground setf Sf Set current foreground color

set_left_margin smgl ML Set left margin at current column

set_left_margin_parm smglp Zm Set left (right) margin at column #1 (#2)

set_right_margin smgr MR Set right margin at current column

set_right_margin_parm smgrp Zn Set right margin at column #1

set_tab hts st Set a tab in all rows, current column

set_top_margin smgt Zo Set top margin at current line

set_top_margin_parm smgtp Zp Set top (bottom) margin at line #1 (#2)

set_window wind wi Current window is lines #1 - #2 cols #3 - #4

start_bit_image sbim Zq Start printing bit image graphics

start_char_set_def scsd Zr Start de�nition of character set

stop_bit_image rbim Zs Stop printing bit image graphics

TERMINFO Database 3-73

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-22. String Capabilities (continued)

Variable TInfo TCap Description

stop_char_set_def rcsd Zt Stop de�nition of character set

subscript_characters subcs Zu List of \subscriptable" characters

superscript_characters supcs Zv List of \superscript-able" characters

tab ht ta Tab to next 8-space hardware tab stop

these_cause_cr docr Zw Printing any of these chars causes cr

to_status_line tsl ts Go to status line

underline_char uc uc Underscore one char and move past it

up_half_line hu hu Half-line up (reverse 1/2 linefeed)

xoff_character xoffc XF XOFF character

xon_character xonc XN XON character

zero_motion zerom Zx No motion for the subsequent character

TERMINFO Compiled File

The TERM �le is the compiled terminfo source �le.

Description

The TERM �le is compiled from terminfo source �les using the tic utility.
Compiled �les are organized in a directory hierarchy under the �rst letter of
each terminal name. For example, the vt100 �le would have the following
pathname.

/usr/lib/terminfo/v/vt100

The compiled �les are read by the CURSES routine setupterm().

The following illustration shows the content and order of the compiled �le:

3-74 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

<magic number><name section size><Boolean section size><number section size>

<string section size><string table size><name section><Boolean section>[0]

<number section><string section><string table>

The �rst six items in the �le make up the header.

The header consists of six short integers, stored using VAX/PDP style byte
swapping (least-signi�cant byte �rst). The integers are as follows:

1. magic number (octal 0432)

2. the size, in bytes, of the names section

3. the number of bytes in the Boolean section

4. the number of short integers in the numbers section

5. the number of o�sets (short integers) in the strings section

6. the size, in bytes, of the string table

Following the header is the terminal name section that consists of the �rst line
of the terminfo de�nition terminated with an ASCII NUL character.

The terminal name section is followed by the Boolean section, number section,
string section, and string table.

The Boolean section consists of a byte for each
ag, showing whether the
ag
is absent, present, or cancelled (a value of 0, 1, or 2 respectively). If necessary,
a null byte is inserted between the Boolean and number sections so that the
number section begins on an even byte boundary. All short integers are aligned
on a short word boundary.

Each capability in the number section is made up of two bytes and stored as a
short integer. A value of -1 or -2 indicates a missing or cancelled capability.

Similarly, each capability in the string section is made up of two bytes and
stored as a short integer. The value is an o�set from the string table. A value
of -1 or -2 indicates a missing or cancelled capability. Parameter and padding
information is stored in its uninterpreted form. Control or other characters
using special notation (^x, nc) are stored in their interpreted form.

The �nal section of the �le is the string table that contains the values of each
string in the string section, followed by a null character.

TERMINFO Database 3-75

FINAL TRIM SIZE : 7.0 in x 8.5 in

Note The setupterm() routine may expect a di�erent set of
capabilities than appears in the �le. Unexpected or missing
entries may result when the database has been updated since
the CURSES library was last compiled, or when the program is
recompiled more recently than the database.

The �rst of the following two examples shows a terminfo �le for a dumb
terminal; the second example shows an octal dump of the TERM �le.

000000 032 001 005 \0 % \0.036 \0 c 001 \r \0 d u m b

000020 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

000040 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 e \0 \0

000060 \0 \0 \0 \0 \0 \0 P \0 377 377 377 377 377 377 377 377

000100 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*

000160 377 377 377 377 005 \0 \a \0 377 377 377 377 377 377 377 377

000200 377 377 377 377 377 377 377 377 \t \0 377 377 377 377 377 377

000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*

000560 377 377 377 377 \v \0 377 377 377 377 377 377 377 377 377 377

000600 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*

001460 377 377 377 377 377 377 377 377 d u m b \0 \a \0 \r

001500 \0 \n \0 \n \0

001505

Related Information

tic utility, untic utility

MPE/iX Reference Supplement (32650-90353)

3-76 TERMINFO Database

FINAL TRIM SIZE : 7.0 in x 8.5 in

Implementation Considerations

Identical to UNIX System V

Portability

UNIX System V

TERMINFO Database 3-77

FINAL TRIM SIZE : 7.0 in x 8.5 in

4

CURSES

The CURSES screen management package consists of routines and macros for
creating and modifying input and output to a terminal screen. CURSES contains
routines for creating windows, highlighting text, writing to the screen, reading
from user input, and moving the cursor.

The CURSES package is designed to optimize screen update activities. For
example, when updating the screen, CURSES minimizes the number of
characters sent to the terminal to move and update the screen.

CURSES is a terminal-independent package, providing a common user interface
to a variety of terminal types. Its portability is facilitated by the TERMINFO
database, which contains a compiled de�nition of each terminal type. By
referring to the database information, CURSES gains access to low-level details
about individual terminals.

CURSES tailors its activities to the terminal type speci�ed by the TERM
environment variable. The TERM environment variable may be set in the
MPE/iX shell by entering:

export TERM=terminal name

Hewlett-Packard systems default to the hp2392a terminal name.

CURSES 4-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

Environment Variables

The following three environment variables are useful, and can be set in the
MPE/iX shell:

TERMINFO

COLUMNS

LINES

Refer to the MPE/iX Shell and Utilities User's Guide (36431-90002) for more
information on the MPE/iX shell.

TERMINFO Environment Variable

If you have an alternate Terminfo database containing terminal types that are
not available in the system default database /usr/lib/terminfo, you can
specify the TERMINFO environment variable to point to this alternate database.
For example:

export TERMINFO=/usr/lib/specialinfo

This path speci�es the location of the alternate compiled TERMINFO database,
whose structure consists of directory names 0 to 9 and a to z, each containing
compiled terminal de�nition �les for names beginning with the directory letter
or number.

The alternate database speci�ed by TERMINFO is examined before the system
default database. If the terminal type speci�ed by TERM cannot be found in
either database, the default terminal type hp2392a is assumed.

COLUMNS Environment Variable

The COLUMNS environment variable is used to set the window width.

For example, to specify a window width smaller than your screen width
in situations where your communications line is slow, set the COLUMNS
environment variable to the number of vertical columns that you want between
the left and right margins.

export COLUMNS=number

4-2 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

The number of columns may be set to a number smaller than the screen
size; however, if set larger than the screen or window width, the results are
unde�ned. Currently, the largest screen width possible is 132 columns.

The value set using the COLUMNS environment variable takes precedence over
the value normally used for the terminal.

LINES Environment Variable

The LINES environment variable is used to set the window height.

For example, to specify a window height smaller than your current screen
height in situations where your communications line is slow, override the LINES
environment variable by setting it to a smaller number of horizontal lines.

export LINES=number

The number of lines may be set to a number smaller than the screen height;
however, if set larger than the screen or window height, the results are
unde�ned. Currently, the largest screen height possible is 128 lines.

The value set using the LINES environment variable takes precedence over the
value normally used for the terminal.

Implementation Details

The following routines are not fully implemented:

color_pair()

init_color()

init_pair()

napms()

pair_content()

start_color()

CURSES 4-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

The routines shown in the following table are stubs for the older TERMCAP
interface and should be replaced by their newer TERMINFO counterparts.

TERMCAP TERMINFO

tgoto() mvcur()

tgetent() deleted()

tgetflag() tigetflag()

tgetnum() tigetnum()

tgetstr() tigetstr()

The following routines have known problems:

halfdelay() improper implementation

intrflush() missing General Terminal Interface support

nl() cannot be disabled with nonl()

nonl() cannot be disabled with nl()

nodelay() non-blocking input situations

nocbreak() unde�ned

scanw() unde�ned

typeahead() non-blocking input situations

wtime-

out(w,0)

non-blocking input situations

4-4 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

Global Variables

The global variables de�ned for CURSES are shown in Table 4-1.

Table 4-1. Definitions of Global Variables

Constant Description

COLORS Number of colors supported by terminal

COLOR_PAIRS Number of color pairs supported by terminal

COLS Number of columns supported by terminal

LINES Number of lines supported by terminal

boolcodes[] termcap capability names

boolfnames[] Full C names

boolnames[] terminfo capability names

cur_term Current terminal

curscr Current screen image

numcodes[] termcap capability codes

numfnames[] Full C names

numfnames[] terminfo capability codes

stdscr Standard screen supplied by initscr()

strcodes[] termcap capability names

strfnames[] Full C names

strnames[] terminfo capability names

ttytype Terminal type

CURSES 4-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

Implementation Considerations

The curscr, sdscr, COLS, and LINES constants are identical to XPG/3.
The COLORS, COLOR_PAIRS, boolcodes[], boolfnames[], boolnames[],
numcodes[], numfnames[], numnames[], strcodes[], strfnames[], and
strnames[] constants are UNIX System V implementations.

Portability

The COLORS, COLOR_PAIRS, boolcodes[], boolfnames[], boolnames[],
numcodes[], numfnames[], numnames[], strcodes[], strfnames[], and
strnames[] constants conform to UNIX System V. The curscr, sdscr, COLS,
and LINES constants conform to HP-UX, UNIX System V, and XPG/3. The
cur_term and ttytype constants conform to HP-UX and UNIX System V.

Descriptions of CURSES Routines

The following section describes the CURSES routines. The descriptions are
presented in sets of related routines. They are arranged alphabetically by
the primary routine name; for example, addch is the primary name for the
following set of routines:

addch
waddch
mvaddch
mvwaddch

4-6 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

addch

addch
waddch
mvaddch
mvwaddch

The addch set of routines is used to add a character (with attributes) to a
window.

Syntax

int addch(chtype ch);

int waddch(WINDOW *win, chtype ch);

int mvaddch(int y, int x, chtype ch);

int mvwaddch(WINDOW *win, int y, int x, chtype ch);

Parameters

ch The character/attribute pair to be written to the window.

win A pointer to the window in which the character is to be
written.

x The x (column) coordinate of the character's position in the
window.

y The y (row) coordinate of the character's position in the
window.

Return Values

OK Successful completion.

ERR An error occurred. An attempt was made to write outside
the window boundary or after writing a character, the cursor
advanced past the scroll region (and scrollok() is not set).

CURSES 4-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

addch

Description

A window is made up of foreground and background attributes. All characters
except space are part of the foreground. The character and its attributes
make up a character/attribute pair de�ned as a chtype. The character is any
16-bit value; the attribute consists of highlighting attributes that a�ect the
appearance of the character on the screen (for example, bold, underline).

Each time that a character, other than a space, is written to a window with
waddch(), wprintw(), or waddstr(), a bitwise OR operation is performed
between the chtype (foreground character with its attributes), the current
foreground attributes of the window, and the current background attributes of
the window. The current foreground attributes are set with the wattrset(),
wattron(), and wattroff() routines; the current background attributes are
set with the wbgdset() routine.

When spaces are written to the screen, the background character and
attributes replace the space. For example, if the background attribute and
character is

A_UNDERLINE|`*'

text written to the window appears underlined, and the spaces appear as
underlined asterisks.

After the OR operation, each character written retains the new foreground and
background attributes that it has obtained. This allows the character to be
copied as is to a window with the waddchstr() or insch() routines.

The addch() routine writes a character to the stdscr window at the current
cursor position and advances the cursor. The waddch() routine performs an
identical action, but writes the character to the window speci�ed by win.
The mvaddch() and mvwaddch() routines write the character to the position
indicated by the x (column) and y (row) parameters. The mvaddch() routine
writes the character to the stdscr window, while mvwaddch() writes the
character to the window speci�ed by win.

If the character is a newline, carriage return, backspace, or tab, the cursor is
moved appropriately. The cursor is moved to the next tab stop for each tab
character (tab stops are eight characters apart). If the character is a control
character other than those previously mentioned, the character is written using
^x notation, where x is a printable character. If the character is written to

4-8 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

addch

the last character position on a line, a newline is generated automatically. If
the character is written to the last character position of a scrolling region
and scrollok() is enabled, the scrolling region is scrolled up one line (see
wsetscrreg()).

Individual characters can be highlighted by performing a bitwise OR operation
between the character and one or more of the constants shown in Table 4-2.

Table 4-2. Constant Values for Highlighting Attributes

Constant Description

A_ALTCHARSET Alternate character set

A_ATTRIBUTES Attribute mask

A_BLINK Blinking

A_BOLD Bold

A_CHARTEXT Character mask

A_COLOR Color mask

A_DIM Dim

A_INVIS Invisible

A_NORMAL Disable attributes

A_PROTECT No display

A_REVERSE Reverse video

A_STANDOUT Highlights speci�c to terminal

A_UNDERLINE Underline

COLOR_PAIR(n) Color pair number n

PAIR_NUMBER(a) Pair number for COLOR_PAIR(n)

The characters shown in Table 4-3 are de�ned as constants in CURSES.

CURSES 4-9

FINAL TRIM SIZE : 7.0 in x 8.5 in

addch

Table 4-3. Constant Values for Characters

Constant Character Description

ACS_VLINE j Vertical line

ACS_HLINE - Horizontal line

ACS_ULCORNER + Upper-left corner

ACS_URCORNER + Upper-right corner

ACS_BLCORNER + Bottom-left corner

ACS_BRCORNER + Bottom-right corner

ACS_RTEE + Right tee (-j)

ACS_LTEE + Left tee (j-)

ACS_BTEE + Bottom tee ()

ACS_TTEE + Top tee (T)

ACS_CHECK ! Check mark

ACS_PLUS + Plus

ACS_DIAMOND + Diamond

ACS_CKBOARD : Checker board

ACS_DEGREE ' Degree sign

ACS_PLMINUS # Plus/Minus

ACS_BULLET o Bullet

ACS_LARROW < Left arrow

ACS_RARROW > Right arrow

ACS_DARROW v Down arrow

ACS_UARROW ^ Up arrow

ACS_BOARD # Board of squares

ACS_LANTERN # Lantern symbol

ACS_BLOCK # Solid square block

4-10 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

addch

Note The addch(), mvaddch(), and mvwaddch() routines are macros.

Implementation Considerations

Identical to XPG/3.

See Also

winsch(), nl(), nonl(), scrollok(), wattron(), wattroff(), wattrset(),
wbkgdset(), wprintw(), wscrl(), wsetscrreg()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-11

FINAL TRIM SIZE : 7.0 in x 8.5 in

addchstr

addchstr
waddchstr
addchnstr
waddchnstr
mvaddchstr
mvwaddchstr
mvaddchnstr
mvwaddchnstr

The addchstr set of routines is used to copy a character string (with
attributes) to a window.

Syntax

#include <curses.h>

int addchstr(chtype *chstr);

int waddchstr(WINDOW *win, chtype *chstr);

int addchnstr(chtype *chstr, int n);

int waddchnstr(WINDOW *win, chtype *chstr, int n);

int mvaddchstr(int y, int x, chtype *chstr);

int mvwaddchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvaddchnstr(int y, int x, chtype *chstr, int n);

int mvwaddchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

Parameters

chstr A pointer to the chtype string to be copied to the window.

n The maximum number of characters to be copied from chstr .
If n is less than 0, the entire string is written, or as much of it
as �ts on the line.

win A pointer to the window to which the string is to be copied.

4-12 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

addchstr

x The x (column) coordinate of the starting position of chstr in
the window.

y The y (row) coordinate of the starting position of chstr in the
window.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The addchstr() routine copies the chtype character string to the stdscr
window at the current cursor position. The waddchstr() routine performs the
identical action, but writes to the window speci�ed by win. The mvaddchstr()
and mvwaddchstr() routines copy the character string to the starting position
indicated by the x (column) and y (row) parameters (the former to the stdscr
window; the latter to window win).

The addchnstr(), waddchnstr(), mvaddchnstr(), and mvwaddchnstr()

routines write n characters to the window, or as many as will �t on the line. If
n is less than 0, the entire string is written, or as much of it as �ts on the line.
The former two routines place the string at the current cursor position; the
latter two commands use the position speci�ed by the x and y parameters.

These routines di�er from the waddnstr() set of routines in several important
respects. First, the position of the cursor is not advanced after the string is
written to the window. Second, these routines are faster because they copy the
string into the window without performing checks such as line wrapping on a
newline; instead, the string is truncated if it does not �t on the line. Third, the
current foreground and background window attributes are not combined with
the character; only the attributes that are already part of the chtype character
are used.

Note All routines except waddchnstr() are macros.

CURSES 4-13

FINAL TRIM SIZE : 7.0 in x 8.5 in

addchstr

Implementation Considerations

UNIX System V implementation

See Also

waddch(), waddnstr(), wattrset()

Portability

UNIX System V

4-14 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

addstr

addstr
waddstr
addnstr
waddnstr
mvaddstr
mvwaddstr
mvaddnstr
mvwaddnstr

The addstr set of routines is used to add a character string (with attributes)
to a window.

Syntax

#include <curses.h>

int addstr(char *str);

int waddstr(WINDOW *win, char *str);

int addnstr(char *str, int n);
int waddnstr(WINDOW *win, char *str, int n);

int mvaddstr(int y, int x, char *str);

int mvwaddstr(WINDOW *win, int y, int x, char *str);

int mvaddnstr(int y, int x, char *str, int n);

int mvwaddnstr(WINDOW *win, int y, int x, char *str, int n);

Parameters

str A pointer to the character string that is to be written to the
window.

win A pointer to the window in which the string is to be written.

x The x (column) coordinate of the starting position of str in the
window.

CURSES 4-15

FINAL TRIM SIZE : 7.0 in x 8.5 in

addstr

y The y (row) coordinate of the starting position of str in the
window.

Return Values

OK Successful completion.

ERR An error occurred. An attempt was made to write outside the
window boundary.

Description

The addstr() routine writes a null-terminated character string to the stdscr
window at the current cursor position and advances the cursor. The waddstr()
routine performs an identical action, but writes the character to the window
speci�ed by win. The mvaddstr() and mvwaddstr() routines write the
character string to the position indicated by the x (column) and y (row)
parameters (the former to the stdscr window; the latter to window win).

The functionality of these routines is equivalent to calling the corresponding
waddch() set of routines once for each character in the string. Refer to
waddch() for a complete description of the interaction between the foreground
and background attributes of the window and the character written. Note that
these routines di�er from the waddchnstr() set of routines in that the latter
copy the string as is (without combining each character with the foreground
and background attributes of the window).

The addnstr(), waddnstr(), mvaddnstr(), and mvwaddnstr() routines write
at most n characters to the window. If n is less than 0, the entire string is
written. The former two routines place the characters at the current cursor
position; the latter two commands use the position speci�ed by the x and y
parameters.

Note All routines except waddnstr() are macros.

4-16 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

addstr

Implementation Considerations

The addstr(), waddstr(), mvaddstr(), and mvwaddstr() are identical to
XPG/3. The addnstr(), waddnstr(), mvaddnstr(), and mvwaddnstr()

routines are UNIX System V implementations.

See Also

waddch(), waddchnstr()

Portability

The addstr(), waddstr(), mvaddstr(), and mvwaddstr() routines conform
to HP-UX, UNIX System V, and XPG/3. The addnstr(), waddnstr(),
mvaddnstr(), and mvwaddnstr() routines conform to UNIX System V.

CURSES 4-17

FINAL TRIM SIZE : 7.0 in x 8.5 in

attroff

attroff
wattroff
attron
wattron
attrset
wattrset
standend
wstandend
standout
wstandout

The attroff set of routines is used to change the foreground window
attributes.

Syntax

#include <curses.h>

int attroff(chtype attrs);

int wattroff(WINDOW *win, chtype attrs);

int attron(chtype attrs);

int wattron(WINDOW *win, chtype attrs);

int attrset(chtype attrs);

int wattrset(WINDOW *win, chtype attrs);

int standend();

int wstandend(WINDOW *win);

int standout();

int wstandout(WINDOW *win);

4-18 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

attroff

Parameters

attrs The foreground window attributes to be added or removed.

win A pointer to the window in which attribute changes are to be
made.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The attroff() and attron() routines remove and add, respectively, the
speci�ed foreground window attributes of stdscr. These routines only a�ect
the attributes speci�ed; attributes that existed before the call retain their
values. The wattroff() and wattron() routines remove or add the speci�ed
attributes for window win.

The attrset() and wattrset() routines change the speci�ed foreground
window attributes of stdscr and win to new values; the old values are not
retained.

The attributes shown in Table 4-4 are de�ned in curses.h and can be
combined with the bitwise OR operator.

CURSES 4-19

FINAL TRIM SIZE : 7.0 in x 8.5 in

attroff

Table 4-4. Constant Values for Highlighting Attributes

Constant Description

A_ALTCHARSET Alternate character set

A_ATTRIBUTES Attribute mask

A_BLINK Blinking

A_BOLD Bold

A_CHARTEXT Character mask

A_COLOR Color mask

A_DIM Dim

A_INVIS Invisible

A_NORMAL Disable attributes

A_PROTECT No display

A_REVERSE Reverse video

A_STANDOUT Highlights speci�c to terminal

A_UNDERLINE Underline

COLOR_PAIR(n) Color-pair number n

PAIR_NUMBER(a) Pair number for COLOR_PAIR(n)

The standend() routine is equivalent to attrset(A_NORMAL). Similarly, the
wstandend() routine is equivalent to wattrset(win, A_NORMAL).

The standout() and wstandout() routines are equivalent to
attron(A_STANDOUT) and wattron(win, A_STANDOUT), respectively.

CURSES applies the current foreground attributes when writing characters to a
window with the waddch(), waddstr(), or wprintw() routines.

The following example prints some text using the current foreground attributes,
adds underlining, changes the attributes, prints more text, then changes the
attributes back.

4-20 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

attroff

printw("This word is");

attrset(A_UNDERLINE);

printw("underlined.");
attrset(A_NORMAL);

printw("This is back to normal text.\n");

refresh();

Note All of these routines are macros.

Implementation Considerations

Identical to XPG/3 except for color support

See Also

init_color(), init_pair(), start_color(), wbkgd(), wbkgdset()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-21

FINAL TRIM SIZE : 7.0 in x 8.5 in

baudrate

baudrate

The baudrate routine returns the terminal baud rate.

Syntax

#include <curses.h>

int baudrate();

Return Values

The terminal's baud rate is returned in bits per second.

Description

The baudrate() routine returns the terminal's data communication line and
output speed in bits per second (for example, 9600).

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V, XPG/3

4-22 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

beep

beep
flash

The beep and flash routines activate the audio-visual alarm.

Syntax

#include <curses.h>

int beep();

int flash();

Return Values

OK Successful completion.

ERR An error occurred. The terminal does not support either
capability.

Description

The beep() and flash() routines produce an audio and visual alarm on the
terminal, respectively. If the terminal has the capability, beep() sounds a bell
or beep, and flash()
ashes the screen. One alarm is substituted for another
if the terminal does not support the capability called. For example, a call to
beep() for a terminal without that capability results in a
ash and vice versa.

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-23

FINAL TRIM SIZE : 7.0 in x 8.5 in

bkgdset

bkgdset
wbkgdset
bkgd
wbkgd

The bkgdset set of routines is used to set the background character (and
attributes) of a window.

Syntax

#include <curses.h>

void bkgdset(chtype ch);

void wbkgdset(WINDOW *win, chtype ch);

int bkgd(chtype ch);

int wbkgd(WINDOW *win, chtype ch);

Parameters

ch A pointer to the background character to be set.

win A pointer to the window in which the background character is
to be set.

Return Values

OK Successful completion.

ERR An error occurred.

Description

A window is made up of foreground and background attributes. All characters
except space are part of the foreground. The character and its attributes
make up a character/attribute pair de�ned as a chtype. The character is any
16-bit value; the attribute consists of highlighting attributes that a�ect the
appearance of the character on the screen (for example, bold, underline).

4-24 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

bkgdset

Each time a character, other than a space, is written to a window with
waddch(), wprintw(), or waddstr(), a bitwise OR operation is performed
between the chtype (foreground character with its attributes), the current
foreground attributes of the window, and the current background attributes
of the window. The current foreground attributes are set with wattrset(),
wattron(), and wattroff(); the current background attributes are set with
wbgdset(). When spaces are written to the screen, the background character
and attributes replace the space. For example, if the background attribute and
character is

A_UNDERLINE|`*'

text written to the window appears underlined and the spaces appear as
underlined asterisks.

After the OR operation, each character written retains the new foreground and
background attributes that it has obtained. This allows the character to be
copied \as is" to a window with the waddchstr() or insch() routines.

The bkgdset() routine sets the current background character and attributes
for the stdscr window; wbgdset() sets the current background character and
attributes for window win. You must specify the complete character/attribute
pair; for example:

bkgdset(A_BOLD|` ');

sets the background attribute as bold and the background character as a space.
The default background character/attribute pair is

bkgdset(A_NORMAL|` ');

Note The current background character and attributes are written
to the window by the wclear(), werase(), cltroeol(), and
cltrobot() routines as well as any other routines that insert
blanks. If a background character is not supplied (that is, only
an attribute is given), results are unde�ned.

The bkgd() and wbkgd() routines update the entire window (stdscr and win,
respectively) with the supplied background and perform a wbkgdset().

CURSES 4-25

FINAL TRIM SIZE : 7.0 in x 8.5 in

bkgdset

Note The bkgd(), wbkgd(), and bkgdset() routines are macros.

Implementation Considerations

UNIX System V implementation

See Also

addch(), attroff(), attron(), waddchstr(), wattrset(), winsch()

Portability

UNIX System V

4-26 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

border

border
box
wborder

The border set of routines is used to add a border to a window.

Syntax

#include <curses.h>

int border(chtype ls, chtype rs, chtype ts, chtype bs,

chtype tl, chtype tr, chtype bl, chtype br);

int wborder(WINDOW *win, chtype ls, chtype rs,

chtype ts, chtype bs, chtype tl, chtype tr,

chtype bl, chtype br);

int box(WINDOW *win, chtype verch, chtype horch);

Parameters

bl The character and attributes used for the bottom-left corner of
the border.

br The character and attributes used for the bottom-right corner
of the border.

bs The character and attributes used for the bottom of the
border.

horch The character and attributes used for the top and bottom rows
of the box.

ls The character and attributes used for the left side of the
border.

rs The character and attributes used for the right side of the
border.

tl The character and attributes used for the top- left corner of
the border.

CURSES 4-27

FINAL TRIM SIZE : 7.0 in x 8.5 in

border

tr The character and attributes used for the top- right corner of
the border.

ts The character and attributes used for the top of the border.

verch The character and attributes used for the left and right
columns of the box.

win The pointer to the window in which the border or box is to be
drawn.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The border(), wborder(), and box() routines draw a border around the
speci�ed window. A parameter with the value of zero is replaced by the default
value as de�ned in curses.h. The constant values for a border are shown in
Table 4-5.

4-28 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

border

Table 4-5. Constant Values for Borders

Parameter Constant Used Value

verch ACS_VLINE j

horch ACS_HLINE -

ls ACS_VLINE j

rs ACS_VLINE j

ts ACS_HLINE -

bs ACS_HLINE -

bl ACS_BLCORNER +

br ACS_BRCORNER +

tl ACS_ULCORNER +

tr ACS_URCORNER +

The call

box (win, verch, horch)

is a short form for

wborder(win, verch, verch, horch, horch, 0, 0, 0, 0)

When the window is boxed, the bottom and top rows and right and left
columns are unavailable for text.

Note The border() and box() routines are macros.

CURSES 4-29

FINAL TRIM SIZE : 7.0 in x 8.5 in

border

Implementation Considerations

The box() routine is identical to XPG/3. The border() and wborder()

routines are UNIX System V implementations.

See Also

waddch(), wattrset()

Portability

The box() routine conforms to HP-UX, UNIX System V, and XPG/3. The
border() and wborder() routines conform to UNIX System V.

4-30 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

cbreak

cbreak
nocbreak

The cbreak and nocbreak routines enable and disable the character-mode
operation.

Syntax

#include <curses.h>

int cbreak();

int nocbreak();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The cbreak() and nocbreak() routines enable and disable character-mode
operation, respectively. When enabled, characters typed by the user are
immediately processed by the program. When disabled, the terminal driver is
placed into line canonical input mode, which bu�ers typed characters (until
a newline or carriage return are typed) and handles erase() and kill()

character processing. These routines do not a�ect
ow control or interrupt
characters.

The terminal may or may not be in character mode operation initially. Most
interactive programs require cbreak() to be enabled.

Implementation Considerations

Identical to XPG/3

CURSES 4-31

FINAL TRIM SIZE : 7.0 in x 8.5 in

cbreak

See Also

wgetch(), halfdelay(), nodelay(), raw(), wtimeout()

Portability

HP-UX, UNIX System V, XPG/3

4-32 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

clear

clear
wclear

The clear and wclear routines are used to clear the window.

Syntax

#include <curses.h>

int clear();

int wclear(WINDOW *win);

Parameters

win A pointer to the window that is to be cleared.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The clear() routine clears stdscr, destroying its previous contents. The
wclear() routine performs the same action, but clears the window speci�ed by
win instead of stdscr. These routines are similar to erase() and werase()

except they also call clearok(). The clearok() routine clears and redraws
the entire screen on the next call to wrefresh() for the window.

The current background character (and attributes) is used to clear the screen.

Note The clear() routine is a macro.

CURSES 4-33

FINAL TRIM SIZE : 7.0 in x 8.5 in

clear

Implementation Considerations

Identical to XPG/3

See Also

clearok(), wbkgdset(), wclrtobot(), wclrtoeol(), werase()

Portability

HP-UX, UNIX System V, XPG/3

4-34 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

clearok

clearok

The clearok routine is used to clear and redraw the window with the next
refresh.

Syntax

#include <curses.h>

int clearok(WINDOW *win, bool bf);

Parameters

win A pointer to the window that is to be cleared and refreshed.

bf A Boolean expression.

Return Values

OK Successful completion.

ERR An error occurred.

Description

If bf is TRUE, clearok() clears and redraws the entire screen on the next call
to wrefresh(). If win is curscr, the next call to wrefresh() for any window
clears and redraws the screen.

Implementation Considerations

Identical to XPG/3

See Also

wbkgdset(), wclear(), werase(), wrefresh()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-35

FINAL TRIM SIZE : 7.0 in x 8.5 in

clrtobot

clrtobot
wclrtobot

The clrtobot and wclrtobot routines are used to clear to the end of the
window.

Syntax

#include <curses.h>

int clrtobot();

int wclrtobot(WINDOW *win);

Parameters

win A pointer to the window that is to be cleared.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The clrtobot() routine clears all characters in the stdscr window from
the cursor to the end of the window. The wclrtobot() routine performs the
same action in the window speci�ed by win instead of in stdscr. The current
background character (and attributes) is used to clear the screen.

Note The clrtobot() routine is a macro.

4-36 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

clrtobot

Implementation Considerations

Identical to XPG/3

See Also

clearok(), wbkgdset(), wclear(), wcrltoeol(), werase()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-37

FINAL TRIM SIZE : 7.0 in x 8.5 in

clrtoeol

clrtoeol
wclrtoeol

The clrtoeol and wclrtoeol routines are used to clear to end of line.

Syntax

#include <curses.h>

int clrtoeol();

int wclrtoeol(WINDOW *win);

Parameters

win A pointer to the window in which to clear to the end of the
line.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The clrtoeol() routine clears the current line from the cursor to the right
margin in the stdscr window. The wclrtoeol() routine performs the same
action, but in the window speci�ed by win instead of stdscr. The current
background character (and attributes) is used to clear the screen.

Note The clrtoeol() routine is a macro.

4-38 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

clrtoeol

Implementation Considerations

Identical to XPG/3

See Also

clearok(), wbkgdset(), wclear(), wclrtobot(), werase()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-39

FINAL TRIM SIZE : 7.0 in x 8.5 in

color pair

Note The color_pair routine is not implemented at this time.

4-40 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

copywin

copywin

The copywin routine is used to overlay or overwrite any portion of window.

Syntax

#include <curses.h>

int copywin(WINDOW *srcwin, WINDOW *dstwin, int sminrow, int smincol,

int dminrow, int dmincol, int dmaxrow, int dmaxcol, int overlay);

Parameters

srcwin A pointer to the source window to be copied.

dstwin A pointer to the destination window to be overlayed or
overwritten.

smincol The column coordinate of the upper-left corner of the
rectangular area on the source window to be copied.

sminrow The row coordinate of the upper-left corner of the rectangular
area on the source window to be copied.

dmincol The column coordinate of the upper-left corner of the
rectangular area on destination window to be overlayed or
overwritten.

dminrow The row coordinate of the upper-left corner of the rectangular
area on the destination window to be overlayed or overwritten.

dmaxcol The column coordinate of the lower-right corner of the
rectangular area on the destination window to be overlayed or
overwritten.

dmaxrow The row coordinate of the lower-right corner of the rectangular
area on the destination window to be overlayed or overwritten.

overlay A true or false value that determines whether the destination
window is overlayed or overwritten.

CURSES 4-41

FINAL TRIM SIZE : 7.0 in x 8.5 in

copywin

Return Values

OK Successful completion.

ERR An error occurred.

Description

The copywin() routine overlays or overwrites windows similiar to the
overlay() and overwrite() functions; however, copywin() allows a �ner
degree of control on what portion of the window to overlay or overwrite.

The parameters smincol and sminrow specify the upper-left corner of the
rectangular area of the source window to be copied. The dminrow and
dmincol parameters specify the upper-left corner of the rectangular area of the
destination window to which the speci�ed portion of the source is to be copied.
The dmaxrow and dmaxcol parameters specify the bottom-right corner of the
rectangular area of the destination window to which the speci�ed portion of the
source is to be copied.

If overlay is TRUE, only nonblank characters are copied to the destination
window; if FALSE, all characters are copied.

Implementation Considerations

UNIX System V implementation

See Also

overlay(), overwrite()

Portability

UNIX System V

4-42 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

cur set

curs set

The curs_set routine is used to set the visibility of the cursor.

Syntax

#include <curses.h>

int curs_set(int visibility);

Parameters

visibility A value of 0 (invisible), 1 (normal), or 2 (very visible).

Return Values

On success, previous cursor visibility is returned; ERR is returned if the
requested visibility is not supported.

Description

The curs_set() routine sets the visibility of the cursor to invisible (0), normal
(1), or very visible (2).

Implementation Considerations

UNIX System V implementation

Portability

UNIX System V

CURSES 4-43

FINAL TRIM SIZE : 7.0 in x 8.5 in

def prog mode

def prog mode
def shell mode

The def_prog_mode and def_shell_mode routines are used to save terminal
modes.

Syntax

#include <curses.h>

int def_prog_mode();

int def_shell_mode();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The def_prog_mode() and def_shell_mode() routines save the current
terminal modes as \program" (within CURSES) or \shell" (outside CURSES).
These are used by the reset_prog_mode() and reset_shell_mode() routines.
The modes are saved automatically by the initscr(), newterm(), and
setupterm() routines.

These routines can also be used outside CURSES with terminfo routines.

Implementation Considerations

Identical to XPG/3

See Also

initscr(), newterm(), setupterm(), reset_prog_mode(),
reset_shell_mode()

4-44 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

def prog mode

Portability

UNIX System V, XPG/3

CURSES 4-45

FINAL TRIM SIZE : 7.0 in x 8.5 in

del curterm

The del_curterm routine is used to free space pointed to by TERMINAL

(interface to TERMINFO).

Syntax

#include <curses.h>

int del_curterm(TERMINAL *oterm);

Parameters

oterm The terminal type for which to free space.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The del_curterm() routine is a low-level routine only used outside of CURSES
when the program has to deal directly with the TERMINFO database to handle
certain terminal capabilities. The use of appropriate CURSES routines is
recommended in all other situations.

The del_curterm() routine frees the space pointed to by oterm. If oterm and
the cur term variable are the same, the TERMINFO Boolean, numeric, or string
variables refer to invalid memory locations until you call setupterm() and
specify a new terminal type.

Implementation Considerations

UNIX System V implementation

4-46 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

del curterm

See Also

set_curterm()

Portability

UNIX System V

CURSES 4-47

FINAL TRIM SIZE : 7.0 in x 8.5 in

delay output

The delay_output routine is used to delay output.

Syntax

#include <curses.h>

int delay_output(int ms);

Parameters

ms The number of milliseconds to delay the output.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The delay_output() routine delays output for ms milliseconds by inserting
pad characters in the output stream.

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V, XPG/3

4-48 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

delch

delch
wdelch
mvdelch
mvwdelch

The delch set of routines is used to remove a character.

Syntax

#include <curses.h>

int delch();

int wdelch(WINDOW *win);

int mvdelch(int y, int x);

int mvwdelch(WINDOW *win, int y, int x);

Parameters

x The x (column) coordinate of the position of the character to
be removed.

y The y (row) coordinate of the position of the character to be
removed.

win A pointer to the window containing the character to be
removed.

Return Values

OK Successful completion.

ERR An error occurred.

CURSES 4-49

FINAL TRIM SIZE : 7.0 in x 8.5 in

delch

Description

The delch() and wdelch() routines delete the character at the current cursor
position from stdscr and win, respectively. All remaining characters on the
same line to the right of the deleted character are moved left one character.
The last character on the line becomes a space; characters on other lines are
not a�ected.

The mvdelch() and mvwdelch() routines delete the character at the position
speci�ed by the x and y parameters; the former deletes the character from
stdscr; the latter from win.

Note The delch(), mvdelch(), and mvwdelch() routines are macros.

Implementation Considerations

Identical to XPG/3

See Also

wbgdset()

Portability

HP-UX, UNIX System V, XPG/3

4-50 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

deleteln

deleteln
wdeleteln

The deleteln and wdeleteln routines are used to remove a line.

Syntax

#include <curses.h>

int deleteln();

int wdeleteln (WINDOW *win);

Parameters

win A pointer to the window from which the line is removed.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The deleteln() and wdeleteln() routines delete the line containing the
cursor from stdscr and win, respectively. All lines below the one deleted are
moved up one line. The last line of the window becomes blank. The position of
the cursor is unchanged.

Note These routines are macros.

CURSES 4-51

FINAL TRIM SIZE : 7.0 in x 8.5 in

deleteln

Implementation Considerations

Identical to XPG/3

See Also

winsdeln(), winsertln(), wbkgdset()

Portability

HP-UX, UNIX System V, XPG/3

4-52 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

delscreen

delscreen

The delscreen routine is used to free space associated with the SCREEN data
structure.

Syntax

#include <curses.h>

int delscreen(SCREEN *sp);

Parameters

sp A pointer to the screen structure for which to free space.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The delscreen() routine frees space associated with the SCREEN data
structure. This routine should be called after endwin() if a SCREEN data
structure is no longer needed.

Implementation Considerations

UNIX System V implementation

See Also

endwin(), initscr(), newterm()

Portability

UNIX System V

CURSES 4-53

FINAL TRIM SIZE : 7.0 in x 8.5 in

delwin

The delwin routine is used to delete a window.

Syntax

#include <curses.h>

int delwin(WINDOW *win);

Parameters

win A pointer to the window that is to be deleted.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The delwin() routine deletes the speci�ed window, freeing up the memory
associated with it.

Note If you delete a parent window without deleting its subwindows
and then try to manipulate the subwindows, you may encounter
odd results.

Implementation Considerations

Identical to XPG/3

4-54 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

delwin

See Also

newwin(), subwin(), derwin()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-55

FINAL TRIM SIZE : 7.0 in x 8.5 in

derwin

The derwin routine is used to create a subwindow relative to parent window.

Syntax

#include <curses.h>

WINDOW *derwin(WINDOW *orig, int nlines, int ncols, int begin_y,

int begin_x);

Parameters

orio A pointer to the parent window for the newly created
subwindow.

nlines The number of lines in the subwindow.

ncols The number of columns in the subwindow.

begin y The y (row) coordinate of the upper-left corner of the
subwindow, relative to the parent window.

begin x The x (column) coordinate of the upper-left corner of the
subwindow, relative to the parent window.

Return Values

On success, a pointer to the new window structure is returned; otherwise, a
null pointer is returned.

Description

The derwin() routine creates a subwindow within window orig, with the
speci�ed number of lines and columns, and upper left corner positioned at
begin x , begin y relative to window orig. A pointer to the new window
structure is returned.

The original window and subwindow share character storage of the overlapping
area. (Each window maintains its own pointers, cursor location, and other

4-56 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

derwin

items.) This means that characters and attributes are identical in overlapping
areas regardless of which window characters are written to.

When using subwindows, it is often necessary to call touchwin() before
wrefresh() to maintain proper screen contents.

Note The subwin() routine creates a subwindow in exactly the
same way, but allows you to specify coordinates relative to the
physical screen.

Implementation Considerations

UNIX System V implementation

See Also

newwin(), subwin(), touchwin(), delwin()

Portability

UNIX System V

CURSES 4-57

FINAL TRIM SIZE : 7.0 in x 8.5 in

dupwin

The dupwin routine is used to create a duplicate of a window.

Syntax

#include <curses.h>

WINDOW *dupwin(WINDOW, *win);

Parameters

win A pointer to the window that is to be duplicated.

Return Values

On success, a pointer to new window structure is returned; otherwise, a null
pointer is returned.

Description

The dupwin() routine creates a duplicate of the window win. A pointer to the
new window structure is returned.

Implementation Considerations

UNIX System V implementation

See Also

derwin(), newwin(), subwin()

Portability

UNIX System V

4-58 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

echo

echo
noecho

The echo and noecho routines are used to enable and disable terminal echo.

Syntax

#include <curses.h>

int echo();

int noecho();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The echo() and noecho() routines enable and disable the terminal echo,
respectively. When enabled, characters received by getch() are echoed back
to the terminal. When disabled, characters are transferred to the program
without echoing them to the terminal display. The program may instead echo
the characters to an area of the screen controlled by the program or may not
echo the characters at all. Terminal echo is enabled, by default.

Subsequent calls to echo() or noecho() do not
ush type-ahead.

Note The tty driver echo is disabled by initscr() and newterm().
All echoing is controlled by CURSES.

Implementation Considerations

Identical to XPG/3

CURSES 4-59

FINAL TRIM SIZE : 7.0 in x 8.5 in

echo

See Also

wgetch(), wgetstr(), wscanw()

Portability

HP-UX, UNIX System V, XPG/3

4-60 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

echochar

echochar
wechochar

The echochar and wechochar routines are used to add a character and refresh
the window.

Syntax

#include <curses.h>

int echochar(chtype ch);

int wechochar(WINDOW *win, chtype ch);

Parameters

win A pointer to the window in which the character is to be added.

ch A pointer to the character to be written to the window.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The echochar() and wechochar() routines produce the same e�ect as a call to
addch() followed by a call to refresh(), or a call to waddch() followed by a
call to wrefresh(), respectively.

Implementation Considerations

UNIX System V implementation

CURSES 4-61

FINAL TRIM SIZE : 7.0 in x 8.5 in

echochar

See Also

waddch(), wrefresh()

Portability

UNIX System V

4-62 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

endwin

endwin
isendwin

The endwin and isendwin routines are used to restore the initial terminal
environment.

Syntax

#include <curses.h>

int endwin();

int isendwin();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The endwin() routine restores tty modes, resets the terminal, and moves the
cursor to the lower-left corner of the screen. This routine should be called
before exiting or escaping CURSES temporarily. To resume CURSES after a
temporary escape, call the wrefresh() or doupdate() routines.

If the program interacts with multiple terminals, call endwin() for each
terminal.

The isendwin() routine returns TRUE if endwin() has been called without
subsequent calls to wrefresh() and returns FALSE otherwise.

Implementation Considerations

The endwin() routine is identical to XPG/3. The isendwin() routine is a
UNIX System V implementation.

CURSES 4-63

FINAL TRIM SIZE : 7.0 in x 8.5 in

endwin

See Also

doupdate(), wrefresh()

Portability

The endwin() routine conforms to HP-UX, UNIX System V, and XPG/3. The
isendwin() routine conforms to UNIX System V.

4-64 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

erase

erase
werase

The erase and werase routines are used to erase a window.

Syntax

#include <curses.h>

int erase();

int werase(WINDOW *win);

Parameters

win A pointer to the window that you want to erase.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The erase() routine erases the contents of the stdscr window, destroying its
previous contents. The werase() routine performs the same action, but erases
the content of win instead of stdscr. The current background character (and
attributes) is used to erase the screen.

Note The erase() routine is a macro.

CURSES 4-65

FINAL TRIM SIZE : 7.0 in x 8.5 in

erase

Implementation Considerations

Identical to XPG/3

See Also

clearok(), wbkgdset(), wclear(), wclrtobot(), wclrtoeol()

Portability

HP-UX, UNIX System V, XPG/3

4-66 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

erasechar

erasechar

The erasechar routine is used to return the current ERASE character.

Syntax

#include <curses.h>

char erasechar();

Return Values

The terminal's current ERASE character is returned.

Description

The erasechar() routine returns the user's choice of ERASE character from
the tty driver. This character is used to delete the previous character during
keyboard input. The returned value can be used when including deletion
capability in interactive programs.

Implementation Considerations

Identical to XPG/3

See Also

wgetnstr()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-67

FINAL TRIM SIZE : 7.0 in x 8.5 in

flushinp

The flushinp routine is used to discard type-ahead characters.

Syntax

#include <curses.h>

int flushinp();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The flushinp() routine discards all type-ahead characters (characters typed
by the user, but not yet processed by CURSES).

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V, XPG/3

4-68 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

getch

getch
wgetch
mvgetch
mvwgetch
ungetch

The getch, wgetch, mvgetch, mvwgetch, and ungetch routines are used to get
a character from the keyboard.

Syntax

#include <curses.h>

int getch();

int wgetch (WINDOW *win);

int mvgetch(int y, int x);

int mvwgetch(WINDOW *win, int y, int x);

int ungetch(int ch);

Parameters

ch The character to be put back in the input queue for the next
call to getch().

x The x (column) coordinate for the position of the character to
be read.

y The y (row) coordinate for the position of the character to be
read.

win A pointer to the window associated with the terminal from
which the character is to be read.

CURSES 4-69

FINAL TRIM SIZE : 7.0 in x 8.5 in

getch

Return Values

OK Successful completion.

ERR An error occurred. The nodelay() or wtimeout(0) routine is
set, and no input is ready.

Description

The getch() and wgetch() routines get a character from the terminal
associated with the window stdscror window win, respectively. The
mvgetch() and mvwgetch() routines move the cursor to the position speci�ed
in stdscr or win, respectively, then get a character.

If the window is not a pad and has been changed since the last call to
wrefresh(), getch() calls wrefresh() to update the window before the next
character is read.

The setting of certain routines a�ects how getch() works. For example, if
cbreak() is set, characters typed by the user are immediately processed. If
halfdelay() is set, getch() waits until a character is typed or returns ERR
if no character is typed within the speci�ed timeout period. This timeout
can also be speci�ed for individual windows with the delay parameter of
wtimeout(). A negative value waits for input; a value of 0 returns ERR if no
input is ready; a positive value blocks until input arrives or the time speci�ed
expires (in which case ERR returns). If nodelay() is set, ERR is returned if no
input is waiting; if not set, getch() waits until input arrives. Each character
will be echoed to the window unless noecho() has been set.

If keypad handling is enabled (keypad() is TRUE), the token for the function
key is returned. If a character is received that could be the beginning of a
function key (for example, ESC), an interbyte timer is set. If the remainder of
the sequence is not received before the time expires, the character is passed
through; otherwise, the value of the function key is returned. If notimeout() is
set, the interbyte timer is not set.

Note The ESCAPE key is typically a pre�x key used with function
keys. Since pre�x keys used with function keys should not
be used as a single character, ensure that you do not use the
ESCAPE key as a single character.

4-70 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

getch

Table 4-6 shows a list of tokens for the function keys that are returned by
getch() if keypad handling is enabled. (Some terminals may not support all
tokens.)

Table 4-6. Constant Values for Function Keys

Constant Description

KEY_BREAK Break key

KEY_DOWN The down arrow key

KEY_UP The up arrow key

KEY_LEFT The left arrow key

KEY_RIGHT The right arrow key

KEY_HOME Home key

KEY_BACKSPACE Backspace

KEY_F0 Function keys. Space for 64

KEY_F(n) (KEY F0+(n)) keys is reserved

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode

KEY_EIC Exit insert char mode

KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen

KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backwards

CURSES 4-71

FINAL TRIM SIZE : 7.0 in x 8.5 in

getch

Table 4-6. Constant Values for Function Keys (continued)

Constant Description

KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send

KEY_SRESET Soft (partial) reset

KEY_RESET Reset or hard reset

KEY_PRINT Print or copy

KEY_LL Home down or bottom (lower left)

KEY_A1 Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad

KEY_BTAB Back tab

KEY_BEG Beginning key

KEY_CANCEL Cancel key

KEY_CLOSE Close key

KEY_COMMAND Cmd (command) key

KEY_COPY Copy key

KEY_CREATE Create key

4-72 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

getch

Table 4-6. Constant Values for Function Keys (continued)

Constant Description

KEY_END End key

KEY_EXIT Exit key

KEY_FIND Find key

KEY_HELP Help key

KEY_MARK Mark key

KEY_MESSAGE Message key

KEY_MOVE Move key

KEY_NEXT Next object key

KEY_OPEN Open key

KEY_OPTIONS Options key

KEY_PREVIOUS Previous object key

KEY_REDO Redo key

KEY_REFERENCE Ref(erence) key

KEY_REFRESH Refresh key

KEY_REPLACE Replace key

KEY_RESTART Restart key

KEY_RESUME Resume key

KEY_SAVE Save key

KEY_SBEG Shifted beginning key

KEY_SCANCEL Shifted cancel key

KEY_SCOMMAND Shifted command key

KEY_SCOPY Shifted copy key

CURSES 4-73

FINAL TRIM SIZE : 7.0 in x 8.5 in

getch

Table 4-6. Constant Values for Function Keys (continued)

Constant Description

KEY_SCREATE Shifted create key

KEY_SDC Shifted delete char key

KEY_SDL Shifted delete line key

KEY_SELECT Select key

KEY_SEND Shifted end key

KEY_SEOL Shifted clear line key

KEY_SEXIT Shifted exit key

KEY_SFIND Shifted �nd key

KEY_SHELP Shifted help key

KEY_SHOME Shifted home key

KEY_SIC Shifted input key

KEY_SLEFT Shifted left key

KEY_SMESSAGES Shifted messages key

KEY_SMOVE Shifted move key

KEY_SNEXT Shifted next key

KEY_SOPTIONS Shifted options key

KEY_SPREVIOUS Shifted previous key

KEY_SPRINT Shifted print key

KEY_SREDO Shifted redo key

KEY_SREPLACE Shifted replace key

4-74 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

getch

Table 4-6. Constant Values for Function Keys (continued)

Constant Description

KEY_SRIGHT Shifted right key

KEY_SRSUME Shifted resume key

KEY_SSAVE Shifted save key

KEY_SSUSPEND Shifted suspend key

KEY_SUNDO Shifted undo key

KEY_SUSPEND Suspend key

KEY_UNDO Undo key

The ungetch() routine delays processing of ch until the next call to getch().

Note The getch(), mvgetch(), and mvwgetch() routines are macros.

Implementation Considerations

The getch(), mvgetch(), mvwgetch(), and wgetch() routines are identical to
XPG/3. The ungetch() routine is a UNIX System V implementation.

See Also

cbreak(), echo(), keypad(), halfdelay(), nodelay(), notimeout(), raw(),
wtimeout()

Portability

The getch(), mvgetch(), mvwgetch(), and wgetch() routines conform to
HP-UX, UNIX System V, and XPG/3. The ungetch() routine conforms to
UNIX System V.

CURSES 4-75

FINAL TRIM SIZE : 7.0 in x 8.5 in

getstr

getstr
wgetstr
wgetnstr
mvgetstr
mvwgetstr

The getstr set of routines is used to get a character string from keyboard.

Syntax

#include <curses.h>

int getstr(char *str);

int wgetstr(WINDOW *win, char *str);

int wgetnstr(WINDOW *win, char *str, int n);

int mvgetstr(int y, int x, char *str);

int mvwgetch(WINDOW *win, int y, int x, char *str);

Parameters

n The maximum number of characters to read from input.

str A pointer to the area where the character string is to be
placed.

x The x (column) coordinate of starting position of character
string to be read.

y The y (row) coordinate of starting position of character string
to be read.

win A pointer to the window associated with the terminal from
which the character is to be read.

4-76 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

getstr

Return Values

OK Successful completion.

ERR An error occurred.

Description

The getstr() and wgetstr() routines get a character string from the
terminal associated with the window stdscr or window win, respectively. The
mvgetch() and mvwgetch() routines move the cursor to the position speci�ed
in stdscr or win, respectively, then get a character.

These routines call getch() for each character until a newline or carriage
return is received, at which time, the string is placed in str . The erase and kill
characters set by the user are interpreted.

The wgetnstr() routine reads at most n characters. This routine is used to
prevent over
owing the input bu�er.

Note The getstr(), mvgetstr(), mvwgetstr() and wgetstr()

routines are macros.

Implementation Considerations

The getstr(), mvgetstr(), mvwgetstr(), and wgetstr() routines
are identical to XPG/3. The wgetnstr() routine is a UNIX System V
implementation.

See Also

wgetch()

Portability

The getstr(), mvgetstr(), mvwgetstr(), and wgetstr() routines conform to
HP-UX, UNIX System V, and XPG/3. The wgetnstr() routine conforms to
UNIX System V.

CURSES 4-77

FINAL TRIM SIZE : 7.0 in x 8.5 in

getyx

getyx
getparyx
getbegyx
getmaxyx

The getyx set of routines is used to get positional information for a window.

Syntax

#include <curses.h>

void getyx(WINDOW *win, int y, int x);

void getparyx(WINDOW *win, int y, int x);
void getbegyx(WINDOW *win, int y, int x);

void getmaxyx(WINDOW *win, int y, int x);

Parameters

win A pointer to the window from which to get positional
information.

x The integer in which to place x coordinate position of cursor.

y The integer in which to place y coordinate position of cursor.

Return Values

None

Description

The getyx() routine returns the x and y coordinates of the cursor in win. The
getparyx() routine returns the beginning coordinates of win relative to its
parent window. If win is not a subwindow, getparyx() sets x and y to -1. The
getbegyx() routine returns the beginning coordinates of win relative to the
screen. The getmaxyx() routine returns the size of window win.

4-78 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

getyx

Note These routines are all macros. An ampersand (&) before the y
and x variables is not necessary.

Implementation Considerations

The getyx() routine is identical to XPG/3. The getparyx(), getbegyx(),
and getmaxyx() routines are UNIX System V implementations.

Portability

The getyx() routine conforms to HP-UX, UNIX System V, and XPG/3. The
getparyx(), getbegyx(), and getmaxyx() routines conform to UNIX System
V.

CURSES 4-79

FINAL TRIM SIZE : 7.0 in x 8.5 in

halfdelay

The halfdelay routine is used to enable and disable the half-delay mode.

Syntax

#include <curses.h>

int halfdelay(int tenths);

Parameters

tenths The number of tenths of seconds for which to block input (1 to
255).

Return Values

OK Successful completion.

ERR An error occurred.

Description

The halfdelay() routine is similar to cbreak() in that when set, characters
typed by the user are immediately processed by the program. The di�erence is
that ERR is returned if no input is received after tenths tenths seconds.

The nocbreak() routine should be used to leave the half-delay mode.

Implementation Considerations

UNIX System V implementation

See Also

cbreak(), wgetch()

Portability

UNIX System V

4-80 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

has color

has color
can change color
color content
pair content

The has_color set of routines is used to get information about colors on
terminal.

Syntax

#include <curses.h>

bool has_colors();

bool can_change_color();

int pair_content(short pair, short *fg, short *bg);

int color_content(short color, short *r, short *g, short *b);

Parameters

color The number of the color for which to provide information (0 to
COLORS).

pair The number of the color pair for which to provide information
(1 to COLOR_PAIRS - 1).

r A pointer to the RGB value for the amount of red in color.

g A pointer to the RGB value for the amount of green in color.

b A pointer to the RGB value for the amount of blue in color.

bg A pointer to the number of the background color (0 to COLORS)
in pair.

fg A pointer to the number of the foreground color (0 to COLORS)
in pair.

CURSES 4-81

FINAL TRIM SIZE : 7.0 in x 8.5 in

has color

Return Values

OK Successful completion.

ERR An error occurred.

Description

The has_colors() routine returns TRUE if the terminal supports color.
The can_change_color() routine returns TRUE if the terminal can support
color and the colors can be changed. These routines are useful when writing
terminal-independent programs; these routines could be used to determine
whether to replace color with another attribute on a particular terminal.

The color_content() routine provides information on the amount of red,
blue, and green in a particular color. The intensity of each color is stored in
the addresses pointed to by r , b, and g , respectively. The values returned range
from 0 (no component of that color) to 1000 (maximum amount of component).

The pair_content() routine provides information on what colors are in the
speci�ed color pair. The number of the foreground and background colors are
stored in the addresses pointed to by fg and bg , respectively. The values stored
in fg and bg range from 0 to COLORS. The color pair number, pair , ranges from
1 to COLOR_PAIRS -1.

Implementation Considerations

UNIX System V implementation

See Also

init_color(), init_pair(), start_color()

Portability

UNIX System V

4-82 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

has ic

has ic
has il

The has_ic and has_il routines are used to determine insert and delete a
character or line capability.

Syntax

#include <curses.h>

bool has_ic();

bool has_il();

Return Values

TRUE Terminal has insert and delete capability.

FALSE Terminal does not have insert and delete capability.

Description

The has_ic() routine returns TRUE if the terminal has insert and delete
character capability, and FALSE otherwise. Similarly, has_il() returns TRUE if
the terminal has insert and delete line capability, and FALSE otherwise.

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-83

FINAL TRIM SIZE : 7.0 in x 8.5 in

idlok

The idlok routine is used to enable the insert and delete line capability.

Syntax

#include <curses.h>

int idlok (WINDOW *win, bool bf);

Parameters

bf A Boolean expression.

win A pointer to the window in which to enable the insert and
delete line capability.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The idlok() routine enables (bf is TRUE) or disables (bf is FALSE) the use
of the insert and delete line capability of the terminal. By default, the use
of insert and delete line is disabled because its use is undesirable for most
applications. (Sscreen editor applications are one exception.) When disabled,
CURSES redraws the changed portions of all lines.

Implementation Considerations

Identical to XPG/3

4-84 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

idlok

See Also

doupdate(), scroll(), wscrl()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-85

FINAL TRIM SIZE : 7.0 in x 8.5 in

immedok

The immedok routine is used to call wrefresh() on changes to window.

Syntax

#include <curses.h>

int immedok(WINDOW *win, bool bf);

Parameters

win A pointer to the window that is to be refreshed.

bf A Boolean expression.

Return Values

OK Successful completion.

ERR An error occurred.

Description

If bf is TRUE, immedok() calls wrefresh() if any change to the window image
is made (for example, through routines such as addch(), wclrtobot(), and
wscrl()). Repeated calls to wrefresh() may a�ect performance negatively.
The immedok() routine is disabled by default.

Implementation Considerations

UNIX System V implementation

See Also

waddch(), wclrtobot(), wrefresh(), wscrl()

Portability

UNIX System V

4-86 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

inch

inch
winch
mvinch
mvwinch

The inch set of routines is used to return a character (with attributes).

Syntax

#include <curses.h>

chtype inch;

chtype winch(WINDOW *win);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW *win, int y, int x);

Parameters

ch The character to be returned.

win A pointer to the window that contains the character to be
returned.

x The x (column) coordinate of the position of the character to
be returned.

y The y (row) coordinate of the position of the character to be
returned.

Return Values

The chtype () character from the screen location.

CURSES 4-87

FINAL TRIM SIZE : 7.0 in x 8.5 in

inch

Description

The inch() and winch() routines return the chtype character located at the
current cursor position of the stdscr window and window win, respectively.
The mvinch() and mvwinch() routines return the chtype character located at
the position indicated by the x (column) and y (row) parameters (the former in
the stdscr window; the latter in window win).

The complete character and attribute pair is returned. The character or
attributes can be extracted by performing a bitwise AND on the returned value,
using the constants A_CHARTEXT, A_ATTRIBUTES, and A_COLOR de�ned in
curses.h.

Note All of these routines are macros.

Implementation Considerations

Identical to XPG/3

See Also

waddch(), wattrset()

Portability

UNIX System V, XPG/3

4-88 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

inchstr

inchstr
winchstr
inchnstr
winchnstr
mvinchstr
mvwinchstr
mvinchnstr
mvwinchnstr

The inchstr set of routines is used to return a character string (with
attributes).

Syntax

#include <curses.h>

int inchstr(chtype *chstr);

int winchstr(WINDOW *win, chtype *chstr);

int inchnstr(chtype *chstr, int n);

int winchnstr(WINDOW *win, chtype *chstr, int n);

int mvinchstr(int y, int x, chtype *chstr);

int mvwinchstr(WINDOW *win, int y, int x, chtype *chstr);

int mvinchnstr(int y, int x, chtype *chstr, int n);

int mvwinchnstr(WINDOW *win, int y, int x, chtype *chstr, int n);

Parameters

n The number of characters not to exceed when returning chstr .

chstr The character string to be returned.

win A pointer to the window in which the string is to be returned.

CURSES 4-89

FINAL TRIM SIZE : 7.0 in x 8.5 in

inchstr

x The x (column) coordinate of the starting position of the string
to be returned.

y The y (row) coordinate of the starting position of the string to
be returned.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The inchstr() and winchstr() routines return the character string (with
attributes) starting at the current cursor position of the stdscr window and
window win, respectively, and ending at the right margin. The mvinchstr()
and mvwinchstr() routines return the character string located at the position
indicated by the x (column) and y (row) parameters (the former in the stdscr
window; the latter in window win).

The inchnstr(), winchnstr(), mvinchnstr(), and mvwinchnstr() routines
return at most n characters from the window stdscr and win, respectively.
The former two routines return the string, starting at the current cursor
position; the latter two commands return the string, starting at the position
speci�ed by the x and y parameters.

The complete character/attribute pair is returned. The character or attributes
can be extracted by performing a bitwise AND on the returned value, using the
constants A_CHARTEXT, A_ATTRIBUTES, and A_COLOR de�ned in curses.h. The
character string can also be returned without attributes by using winstr().

Note All routines except winchnstr() are macros.

4-90 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

inchstr

Implementation Considerations

UNIX System V implementation

See Also

winch(), winstr()

Portability

UNIX System V

CURSES 4-91

FINAL TRIM SIZE : 7.0 in x 8.5 in

init color

init color
init pair

The init_color and init_pair routines are used to initialize a color pair.

Note The init_color and init_pair routines are not implemented
at this time.

Syntax

#include <curses.h>

int init_color(short color, short r, short g, short b);

int init_pair(short pair, short fg, short bg);

Parameters

color The number of the color to be changed (0 to COLORS).

pair The number of the color pair to be changed (1 to COLOR_PAIRS

-1).

r The RGB value for the amount of red in color (0 to 1000).

g The RGB value for the amount of green in color (0 to 1000).

b The RGB value for the amount of blue in color (0 to 1000).

bg The number of the background color (0 to COLORS).

fg The number of the foreground color (0 to COLORS).

Return Values

OK Successful completion.

ERR An error occurred.

4-92 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

init color

Description

The init_pair() routine initializes a color pair so that the macro
COLOR_PAIR(n) can be used as an attribute. Its �rst argument is the number
of the color pair to be changed; the second argument is the number of the
foreground color; the third argument is the number of the background color.
The maximum number of color pairs and colors that the terminal can support
are de�ned in the global variables COLOR_PAIRS and COLORS, respectively.

Each time that a color pair is initialized, the screen is refreshed and all
occurrences of that color pair are updated to re
ect the new de�nition.

The init_color() routine rede�nes the color using the number of the color
and the RGB values for red, blue, and green as arguments.

The following default colors are de�ned in curses.h. (CURSES assumes that
COLOR_BLACK) is the default background color for all terminals.)

COLOR_BLACK

COLOR_RED

COLOR_GREEN

COLOR_YELLOW

COLOR_BLUE

COLOR_MAGENTA

COLOR_CYAN

COLOR_WHITE

Each time that a color is rede�ned with init_color(), the screen is refreshed,
and all occurrences of that color are updated to re
ect the new de�nition.

Implementation Considerations

UNIX System V implementation

CURSES 4-93

FINAL TRIM SIZE : 7.0 in x 8.5 in

init color

See Also

can_change_color(), color_content(), has_color(), pair_content(),
start_color()

Portability

UNIX System V

4-94 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

initscr

initscr

The initscr routine is used to initialize single terminal environment.

Syntax

#include <curses.h>

WINDOW *initscr();

Return Values

On success, a pointer to stdscr is returned; otherwise, a null pointer is
returned (for example, if the console could not be opened for write; the
terminal could not be initialized; or memory could not be allocated for
stdscr).

Description

The initscr() routine initializes CURSES data structures, determines the
terminal type, and makes sure that the �rst call to refresh() clears the
screen. If the program interacts with only one terminal, this should be the �rst
routine called.

If the program interacts with more than one terminal, newterm() should be
called for each terminal instead of a single call to initscr().

Implementation Considerations

Identical to XPG/3

See Also

endwin(), is_endwin(), newterm(), set_term(), use_env()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-95

FINAL TRIM SIZE : 7.0 in x 8.5 in

insch

insch
winsch
mvinsch
mvwinsch

The insch set of routines is used to insert a character.

Syntax

#include <curses.h>

int insch(chtype ch);

int winsch(WINDOW *win, chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW *win, int y, int x, chtype ch);

Parameters

ch The character to be inserted.

win A pointer to the window in which the character is to be
inserted.

x The x (column) coordinate of the position of the character.

y The y (row) coordinate of the position of the character.

Return Values

OK Successful completion.

ERR An error occurred.

4-96 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

insch

Description

The insch() routine inserts the chtype character at the current cursor
position of the stdscr window. The winsch() routine performs the identical
action but in window win. The mvinsch() and mvwinsch() routines insert the
character at the position indicated by the x (column) and y (row) parameters
(the former in the stdscr window; the latter in window win). The cursor
position does not change.

All characters to the right of the inserted character are moved right one
character. The last character on the line is deleted.

Note All routines except winsch() are macros.

Implementation Considerations

Identical to XPG/3

See Also

delch(), insstr()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-97

FINAL TRIM SIZE : 7.0 in x 8.5 in

insdelln

insdelln
winsdelln

The insdelln and winsdelln routines are used to insert or delete lines to or
from the window.

Syntax

#include <curses.h>

int insdelln(int n);

int winsdelln(WINDOW *win, int n);

Parameters

win A pointer to the window in which to insert or delete a line.

n The number of lines to insert or delete (positive n inserts;
negative n deletes).

Return Values

OK Successful completion.

ERR An error occurred.

Description

The insdelln() and winsdelln() routines insert or delete blank lines in
stdscr or win, respectively.

When n is positive, n lines are added above the current line, and the bottom
n lines are cleared; when n is negative, n lines are deleted starting with the
current line, and the remaining lines are moved up. The bottom n lines are
cleared. The position of the cursor does not change.

4-98 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

insdelln

Implementation Considerations

UNIX System V implementation

See Also

wdeleteln(), winsertln()

Portability

UNIX System V

CURSES 4-99

FINAL TRIM SIZE : 7.0 in x 8.5 in

insertln

insertln
winsertln

The insertln and winsertln routines are used to insert a line in a window.

Syntax

#include <curses.h>

int insertln();

int winsertln(WINDOW *win);

Parameters

win A pointer to the window in which to insert the line.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The insertln() and winsertln() routines insert a blank line above the
current line in stdscr or win, respectively. The new line becomes the current
line. All lines below the current line in the window are moved down one line.
The bottom line in the window is discarded.

Note These routines are macros.

4-100 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

insertln

Implementation Considerations

Identical to XPG/3

See Also

wbkgdset(), wdeleteln(), winsdelln()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-101

FINAL TRIM SIZE : 7.0 in x 8.5 in

insstr

insstr
winsstr
insnstr
winsnstr
mvinsstr
mvwinsstr
mvinsnstr
mvwinsnstr

The insstr set of routines is used to insert a character string.

Syntax

#include <curses.h>

int insstr(char *str);

int winsstr(WINDOW *win, char *str);

int insnstr(char *str, int n);

int winsnstr(WINDOW *win, char *str, int n);

int mvinsstr(int y, int x, char *str);

int mvwinsstr(WINDOW *win, int y, int x, char *str);

int mvinsnstr(int y, int x, char *str, int n);

int mvwinsnstr(WINDOW *win, int y, int x, char *str, int n);

Parameters

str A pointer to the string to be inserted.

n The number of characters not to exceed when inserting str . If
n is less than 0, the entire string is inserted.

win A pointer to the window in which the string is to be inserted.

x The x (column) coordinate of the starting position of the
string.

4-102 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

insstr

y The y (row) coordinate of the starting position of the string.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The insstr() routine inserts str at the current cursor position of the stdscr
window. The winsstr() routine performs the identical action, but in window
win. The mvinsstr() and mvwinsstr() routines insert the character string at
the starting position indicated by the x (column) and y (row) parameters (the
former to the stdscr window; the latter to window win).

The insnstr(), winsnstr(), mvinsnstr(), and mvwinsnstr() routines insert
n characters to the window or as many as will �t on the line. If n is less than
0, the entire string is inserted, or as much of it as �ts on the line. The former
two routines place the string at the current cursor position; the latter two
commands use the position speci�ed by the x and y parameters.

All characters to the right of inserted characters are moved to the right.
Characters that do not �t on the current line are discarded. The logical cursor
is left at the point of insertion.

If a character in str is a newline, carriage return, backspace, or tab, the cursor
is moved appropriately. The cursor is moved to the next tab stop for each
tab character (tabs are eight characters apart). If the character is a control
character other than those previously mentioned, the character is inserted
using ^x notation, where x is a printable character. The clrtoeol() routine is
automatically done before a newline.

Note All routines except winsnstr() are macros.

CURSES 4-103

FINAL TRIM SIZE : 7.0 in x 8.5 in

insstr

Implementation Considerations

UNIX System V implementation

See Also

waddstr(), winsch()

Portability

UNIX System V

4-104 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

instr

instr
winstr
innstr
winnstr
mvinstr
mvwinstr
mvinnstr
mvwinnstr

The instr set of routines is used to return a character string (without
attributes).

Syntax

#include <curses.h>

int instr(char *str);

int winstr(WINDOW *win, char *str);

int innstr(char *str, int n);

int winnstr(WINDOW *win, char *str, int n);

int mvinstr(int y, int x, char *str);

int mvwinstr(WINDOW *win, int y, int x, char *str);

int mvinnstr(int y, int x, char *str, int n);

int mvwinnstr(WINDOW *win, int y, int x, char *str, int n);

Parameters

n The number of characters not to exceed when returning str .

str A character string to be returned.

win A pointer to the window in which the string is to be returned.

x The x (column) coordinate of the starting position of the string
to be returned.

CURSES 4-105

FINAL TRIM SIZE : 7.0 in x 8.5 in

instr

y The y (row) coordinate of the starting position of the string to
be returned.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The instr() and winstr() routines return the character string (without
attributes) starting at the current cursor position of the stdscr window and
window win, respectively, and ending at the right margin. The mvinstr()
and mvwinstr() routines return the character string located at the position
indicated by the x (column) and y (row) parameters (the former in the stdscr
window; the latter in window win).

The innstr(), winnstr(), mvinnstr(), and mvwinnstr() routines return at
most n characters from the window stdscr and win, respectively. The former
two routines return the string starting at the current cursor position; the latter
two commands return the string, starting at the position speci�ed by the x and
y parameters.

Only the character portion of the character/attribute pair is returned. To
return the complete character/attribute pair, use winchstr().

Note All routines except winnstr() are macros.

Implementation Considerations

UNIX System V implementation

4-106 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

instr

See Also

winch(), winchstr()

Portability

UNIX System V

CURSES 4-107

FINAL TRIM SIZE : 7.0 in x 8.5 in

intrflush

The intrflush routine is used to
ush output in tty on interrupt.

Syntax

#include <curses.h>

int intrflush(WINDOW *win, bool bf);

Parameters

bf A Boolean expression.

win An ignored parameter.

Return Values

OK Successful completion.

ERR An error occurred.

Description

If this option is enabled (bf is TRUE), intrflush()
ushes all output in the
terminal driver when an interrupt, quit, or suspend character is sent to the
terminal. This increases interrupt reponse time but causes CURSES to lose
track of what currently exists on the screen. Whether this option is enabled or
disabled by default depends on the tty driver.

Note The intrflush() routine is a macro.

4-108 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

intrflush

Implementation Considerations

Identical to XPG/3

See Also

flushinp(), qiflush(), noqiflush()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-109

FINAL TRIM SIZE : 7.0 in x 8.5 in

keyname

The keyname routine is used to return the character string for a key.

Syntax

#include <curses.h>

char *keyname(int c);

Parameters

c The key for which to get the name.

Return Values

None

Description

The keyname() routine returns a string pointer to the key name. Make a
duplicate of the returned string if you plan to modify it.

Implementation Considerations

UNIX System V implementation

Portability

UNIX System V

4-110 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

keypad

keypad

The keypad routine is used to enable keypad handling.

Syntax

#include <curses.h>

int keypad(WINDOW *win, bool bf);

Parameters

win A pointer to the window in which to enable keypad handling.

bf A Boolean expression.

Return Values

OK Successful completion.

ERR An error occurred.

Description

If bf is TRUE, keypad() handles special keys from the keyboard on the terminal
associated with win as single values instead of character sequences. For
example, if the user presses the right arrow key, wgetch() returns a single
value, KEY_RIGHT, that represents the function key; otherwise, CURSES handles
the special keys as normal text.

See wgetch() for a list of tokens for function keys that are returned by
getch().

Implementation Considerations

Identical to XPG/3

CURSES 4-111

FINAL TRIM SIZE : 7.0 in x 8.5 in

keypad

See Also

wgetch()

Portability

HP-UX, UNIX System V, XPG/3

4-112 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

killchar

killchar

The killchar routine is used to return the current KILL character.

Syntax

#include <curses.h>

char killchar();

Return Values

The terminal's current KILL character is returned.

Description

The killchar() routine returns the user's choice of KILL character from the
tty driver. This character is used to start a new line of input when the current
input is considered erroneous. The returned value can be used when including
deletion capability in interactive programs.

Implementation Considerations

Identical to XPG/3

See Also

erasechar(), wgetnstr()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-113

FINAL TRIM SIZE : 7.0 in x 8.5 in

leaveok

The leaveok routine is used to ignore cursor relocation.

Syntax

#include <curses.h>

int leaveok(WINDOW *win, bool bf);

Parameters

win A pointer to the window in which to ignore the position of the
cursor.

bf A Boolean expression.

Return Values

OK Successful completion.

ERR An error occurred.

Description

If bf is TRUE, leaveok() leaves the cursor in a position that CURSES �nds
convenient at the time that the window is refreshed. Normally, when a window
is refreshed, leaveok() is disabled and the cursor is mapped from the logical
window to the same location in the physical window.

Enabling leavok() is useful when the cursor is not used or is not important in
the application. Reducing cursor movements simpli�es program interaction.

Once leaveok() is set to TRUE, it remains enabled until another call sets it to
FALSE or until the program terminates.

4-114 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

leaveok

Implementation Considerations

Identical to XPG/3

See Also

wrefresh()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-115

FINAL TRIM SIZE : 7.0 in x 8.5 in

longname

The longname routine is used to return the full terminal type name.

Syntax

#include <curses.h>

char *longname();

Return Values

On success, pointer to verbose description of terminal is returned; otherwise, a
null pointer is returned.

Description

The longname() routine returns a pointer to a static area containing a verbose
description (128 characters or less) of the terminal. The area is de�ned after
calls to initscr(), newterm(), or setupterm(). The value should be saved if
longname() is going to be used with multiple terminals since it is overwritten
with a new value after each call to setupterm().

Implementation Considerations

Identical to XPG/3

See Also

initscr(), newterm(), setupterm()

Portability

HP-UX, UNIX System V, XPG/3

4-116 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

meta

meta

The meta routine is used to control the number of bits returned on input.

Syntax

#include <curses.h>

int meta(WINDOW *win, bool bf);

Parameters

bf A Boolean expression.

win An ignored parameter.

Return Values

OK Successful completion.

ERR An error occurred. The terminal or system cannot handle 8-bit
character codes.

Description

Whether a terminal returns 7 or 8 signi�cant bits initially depends on the
control mode of the terminal driver. The meta() routine forces the number of
bits to be returned by getch() to be 7 (if bf is FALSE) or 8 (if bf is TRUE).

Note If the program handling the data can pass only 7-bit characters
or strips the 8th bit, 8 bits cannot be handled.

If the terminfo capabilities smm (meta_on) and rmm (meta_off) are de�ned for
the terminal, smm is sent to the terminal when meta(win, TRUE) is called, and
rmm is sent when meta(win, FALSE) is called.

This routine is useful when extending the nontext command set in applications
where the META key is used.

CURSES 4-117

FINAL TRIM SIZE : 7.0 in x 8.5 in

meta

Note The meta() routine is provided for compatability with older
CURSES packages. The MPE/iX CURSES package handles 16-bit
characters, therefore making this function unnecessary.

Implementation Considerations

HP-UX and UNIX System V implementations

Portability

HP-UX, UNIX System V

4-118 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

move

move
wmove

The move and wmove routines are used to move the cursor in the window.

Syntax

#include <curses.h>

int move(int y, int x);

int wmove(WINDOW *win, int y, int x);

Parameters

win A pointer to the window in which the cursor is to be written.

x The x (column) coordinate of the position of the cursor in the
window.

y The y (row) coordinate of the position of the cursor in the
window.

Return Values

OK Successful completion.

ERR An error occurred. The cursor is outside the window boundary.

Description

The move() routine moves the logical cursor (for stdscr) to the position
speci�ed by y (row) and x (column), where the upper-left corner of the window
is row 0, column 0. The wmove() routine performs the same action, but moves
the cursor in the window speci�ed by win. The physical cursor does not move
until after a call to wrefresh() or doupdate().

Note The move() routine is a macro.

CURSES 4-119

FINAL TRIM SIZE : 7.0 in x 8.5 in

move

Implementation Considerations

Identical to XPG/3

See Also

doupdate(), wrefresh()

Portability

HP-UX, UNIX System V, XPG/3

4-120 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

mvcur

mvcur

The mvcur routine is used to move the cursor (interface to terminfo).

Syntax

#include <curses.h>

int mvcur (int oldrow, int oldcol, int newrow, int newcol);

Parameters

oldrow The row from which cursor is to be moved.

oldcol The column from which cursor is to be moved.

newrow The row to which cursor is to be moved.

newcol The column to which cursor is to be moved.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The mvcur() routine is a low-level routine used only outside of CURSES when
the program has to deal directly with the database to handle certain terminal
capabilities. The use of appropriate CURSES routines is recommended in all
other situations.

The mvcur() routine moves the cursor from the location speci�ed by oldrow
and oldcol to the location speci�ed by newrow and newcol . The program must
keep track of the current cursor position. All output will be sent to stdout

through _putchar()

CURSES 4-121

FINAL TRIM SIZE : 7.0 in x 8.5 in

mvcur

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V

4-122 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

mvwin

mvwin

The mvwin routine is used to move a window.

Syntax

#include <curses.h>

int mvwin(WINDOW *win, int y, int x);

Parameters

win A pointer to the window to move.

y The y (row) coordinate of the upper-left corner of the window.

x is the x (column) coordinate of the upper-left corner of the
window.

Return Values

OK Successful completion.

ERR An error occurred. The move places part of or all of window
outside the screen boundary (or, in the case of a subwindow,
outside its parent window's boundaries.)

Description

The mvwin() routine moves the speci�ed window (or subwindow), placing its
upper left corner at the positions speci�ed by x and y . The entire window
must �t within the physical boundaries of the screen, or an error results. A
subwindow must �t within the boundaries of its parent window.

CURSES 4-123

FINAL TRIM SIZE : 7.0 in x 8.5 in

mvwin

Implementation Considerations

Identical to XPG/3

See Also

newwin(), subwin()

Portability

HP-UX, UNIX System V, XPG/3

4-124 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

napms

napms

Note The napms() routine is not implemented at this time.

CURSES 4-125

FINAL TRIM SIZE : 7.0 in x 8.5 in

newpad

The newpad routine is used to create a new pad.

Syntax

#include <curses.h>

WINDOW *newpad(int nlines, int ncols);

Parameters

nlines The number of lines in the window.

ncols The number of columns in the window.

Return Values

On success, a pointer to the new window structure is returned; otherwise, a
null pointer is returned.

Description

The newpad() routine creates a new pad with the speci�ed number of lines and
columns. A pointer to the new pad structure is returned. A pad di�ers from a
window in that it is not restricted to the size of the physical screen. It is useful
when only part of a large window will be displayed at any one time.

Automatic refreshes by scrolling or echoing of input do not take place when
pads are used. Pads have their own refresh commands, prefresh() and
pnoutrefresh(). These contain additional parameters for specifying what part
of the pad to display and where to display it on the screen.

Implementation Considerations

Identical to XPG/3

4-126 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

newpad

See Also

pnoutrefresh(), prefresh()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-127

FINAL TRIM SIZE : 7.0 in x 8.5 in

newterm

The newterm routine is used to open a new terminal.

Syntax

#include <stdio.h>

#include <curses.h>

SCREEN *newterm(char *type, FILE *outfp, FILE *infp);

Parameters

type A string de�ning the terminal type to be used in place of TERM.

outfp A pointer to a �le to be used for output to the terminal.

infp The pointer to a �le to be used for input to the terminal.

Return Values

On success, a pointer to new SCREEN structure is returned; otherwise, a null
pointer is returned.

Description

The newterm() routine opens a new terminal with each call. It should be used
instead of initscr() when the program interacts with more than one terminal.
It returns a variable of type SCREEN, which should be used for later reference to
that terminal. Before program termination, endwin() should be called for each
terminal.

Implementation Considerations

Identical to XPG/3

4-128 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

newterm

See Also

delscreen(), endwin(), initscr()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-129

FINAL TRIM SIZE : 7.0 in x 8.5 in

newwin

The newwin routine is used to create a window.

Syntax

#include <curses.h>

WINDOW *newwin(int nlines, int ncols, int begin_y, int begin_x);

Parameters

nlines The number of lines in the new window.

ncols The number of columns in the new window.

begin y The y (row) coordinate of the position of the upper left corner
of window.

begin x The x (column) coordinate of the position of the upper left
corner of the window.

Return Values

On success, pointer to new window structure is returned; otherwise, a null
pointer is returned.

Description

The newwin() routine creates a new window with the speci�ed number of lines
and columns and upper left corner positioned at begin x , begin y . A pointer to
the new window structure is returned. A full-screen window can be created by
calling newwin(0,0,0,0).

If the number of lines speci�ed is zero, newwin() uses the default LINES minus
begin y ; if the number of columns speci�ed is zero, newwin() uses the default
COLS minus begin x .

4-130 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

newwin

Note The newwin() routine is a macro.

Implementation Considerations

Identical to XPG/3

See Also

delwin(), derwin(), dupwin(), mvwin(), subwin(), touchwin()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-131

FINAL TRIM SIZE : 7.0 in x 8.5 in

nl

nl
nonl

The nl and nonl routines are used to enable and disable newline control.

Syntax

#include <curses.h>

int nl();

int nonl();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The nl() routine enables the handling of newlines. The nl() routine converts
newline into carriage return and line feed on output and converts carriage
return into newline on input. The nonl() routine disables the handling of
newlines.

The handling of newlines is initially enabled. Disabling the handling of
newlines results in faster cursor motion since CURSES can use the line-feed
capability more e�ciently.

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V, XPG/3

4-132 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

nodelay

nodelay

The nodelay routine is used to set blocking or non-blocking read.

Syntax

#include <curses.h>

int nodelay(WINDOW *win, bool bf);

Parameters

bf A Boolean expression.

win A pointer to the window in which to enable non-blocking.

Return Values

OK Successful completion.

ERR An error occurred.

Description

If enabled (bf is TRUE), nodelay() causes getch() to return ERR if no input is
ready. When disabled, getch() blocks until a key is pressed.

Note The nodelay() routine is a macro.

Implementation Considerations

Identical to XPG/3

CURSES 4-133

FINAL TRIM SIZE : 7.0 in x 8.5 in

nodelay

See Also

wgetch(), wtimeout()

Portability

HP-UX, UNIX System V, XPG/3

4-134 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

notimeout

notimeout

The notimeout routine is used to disable the timer used by getch().

Syntax

#include <curses.h>

int notimeout(WINDOW *win, bool bf);

Parameters

bf A Boolean expression.

Return Values

OK Successful completion.

ERR An error occurred.

Description

If bool is TRUE, notimeout() disables a timer used by getch() when
interpreting escape character sequences.

When bool is FALSE and keypad handling is enabled, a timer is set by
wgetch() to handle characters received that could be the beginning of a
function key (for example, ESC). If the remainder of the sequence is not
received before the time expires, the character is returned; otherwise, the value
of the function key is returned. If notimeout() is set to TRUE, the timer is not
set and all characters are returned as single values.

Note The notimeout() routine is a macro.

CURSES 4-135

FINAL TRIM SIZE : 7.0 in x 8.5 in

notimeout

Implementation Considerations

UNIX System V implementation

See Also

keypad(), wgetch()

Portability

UNIX System V

4-136 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

overlay

overlay
overwrite

The overlay and overwrite routines are used to overlap or overwrite
windows.

Syntax

#include <curses.h>

int overlay(WINDOW *srcwin, WINDOW *dstwin);

int overwrite(WINDOW *srcwin, WINDOW *dstwin);

Parameters

srcwin A pointer to the source window to be copied.

dstwin A pointer to the destination window to be overlayed or
overwritten.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The overwrite() and overlay() routines copy srcwin to destwin. The source
window (srcwin) and destination window (dstwin) do not have to be the same
size.

The overwrite() routine copies all characters to dstwin; thus, destroying all
previous contents of the window. The overlay() routine copies only nonblank
characters, leaving blank characters intact. Thus, if the background character
of the original window was set to something other than a blank, this original
background could be preserved.

The example shown on the following pages illustrates how to use overwrite()
to implement a pop-up dialog box.

CURSES 4-137

FINAL TRIM SIZE : 7.0 in x 8.5 in

overlay

d a

c b

#include <curses.h>

/*

* Pop-up a window on top of curscr. If row and/or col

* are -1 then that dimension will be centered within

* curscr. Return 0 for success or -1 if malloc() failed.

* Pass back the working window and the saved window for the

* pop-up. The saved window should not be modified.

*/

int

popup(work, save, nrows, ncols, row, col)

WINDOW **work, **save;

int nrows, ncols, row, col;

{

int mr, mc;

getmaxyx(curscr, mr, mc);

/* Windows are limited to the size of curscr. */

if (mr < nrows)

nrows = mr;

if (mc < ncols)

ncols = mc;

/* Center dimensions. */
if (row == -1)

row = (mr-nrows)/2;

if (col == -1)

col = (mc-ncols)/2;

/* The window must fit entirely in curscr. */

if (mr < row+nrows)

row = 0;

if (mc < col+ncols)

col = 0;

*work = newwin(nrows, ncols, row, col);

if (*work == NULL)

return (-1);

if ((*save = dupwin(*work)) == NULL) {

delwin(*work);

return (-1);

4-138 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

overlay

d a

c b

}

overwrite(curscr, *save);

return (0);

}

/*

* Restore the region covered by a popup window.

* Delete the working window and the saved window.

* This function is the complement to popup(). Return

* 0 for success or -1 for an error.

*/

int

popdown(work, save)

WINDOW *work, *save;

{

(void) overwrite(save, curscr);

(void) delwin(save);

(void) delwin(work);

return (0);

}

/*

* Compute the size of a dialog box that would fit around

* the string.

*/

void

dialsize(str, nrows, ncols)

char *str;

int *nrows, *ncols;

CURSES 4-139

FINAL TRIM SIZE : 7.0 in x 8.5 in

overlay

d a

c b

{

int rows, cols, col;

for (rows = 1, cols = col = 0; *str != ' '; ++str) {

if (*str == '0) {

if (cols < col)

cols = col;

col = 0;

++rows;

} else {

++col;

}

}

if (cols < col)

cols = col;

*nrows = rows;

*ncols = cols;

}

/*

* Write a string into a dialog box.

*/

void
dialfill(w, s)

WINDOW *w;

char *s;

{

int row;

(void) wmove(w, 1, 1);

for (row = 1; *s != ' '; ++s) {

(void) waddch(w, *((unsigned char*) s));

if (*s == '0)

wmove(w, ++row, 1);

}

box(w, 0, 0);

4-140 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

overlay

d a

c b

}

void

dialog(str)

char *str;

{

WINDOW *work, *save;

int nrows, ncols, row, col;

/* Figure out size of window. */

dialsize(str, &nrows, &ncols);

/* Create a centered working window with extra */

/* room for a border. */

(void) popup(&work, &save, nrows+2, ncols+2, -1, -1);

/* Write text into the working window. */

dialfill(work, str);

/* Pause. Remember that wgetch() will do a wrefresh() */

/* for us. */

(void) wgetch(work);

/* Restore curscr and free windows. */

(void) popdown(work, save);

/* Redraw curscr to remove window from physical screen. */

(void) doupdate();

}

CURSES 4-141

FINAL TRIM SIZE : 7.0 in x 8.5 in

overlay

Implementation Considerations

Identical to XPG/3

See Also

copywin()

Portability

HP-UX, UNIX System V, XPG/3

4-142 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

pair content

pair content

Note The pair_content routine is not implemented at this time.

CURSES 4-143

FINAL TRIM SIZE : 7.0 in x 8.5 in

prefresh

prefresh
pnoutrefresh

The prefresh and pnoutrefresh routines routines are used to copy the pad
data structure to a physical window.

Syntax

#include <curses.h>

int prefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,

int smincol, int smaxrow, int smaxcol);

int pnoutrefresh(WINDOW *pad, int pminrow, int pmincol, int sminrow,

int smincol, int smaxrow, int smaxcol);

Parameters

pad A pointer to the pad to refresh.

pmincol The column coordinate of the upper-left corner of the pad
rectangle to be copied.

pminrow The row coordinate of the upper-left corner of the pad
rectangle to be copied

smincol The column coordinate of the upper-left corner of the rectangle
on the physical screen where pad is to be positioned.

sminrow The row coordinate of the upper-left corner of the rectangle on
the physical screen where pad is to be positioned.

smaxcol The column coordinate of the lower-right corner of the
rectangle on the physical screen where the pad is to be
positioned.

smaxrow The row coordinate of the lower-right corner of the rectangle
on the physical screen where the pad is to be positioned.

4-144 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

prefresh

Return Values

OK Successful completion.

ERROR An error occurred.

Description

The prefresh() routine copies the speci�ed portion of the logical pad to
the terminal screen. The parameters pmincol and pminrow specify the
upper-left corner of the rectangular area of the pad to be displayed. The
lower-right coordinate of the rectangular area of the pad that is to be displayed
is calculated from the screen parameters (sminrow , smincol, smaxrow , and
smaxcol).

This routine calls the pnoutrefresh() routine to copy the speci�ed portion
of pad to the terminal screen and the doupdate() routine to do the actual
update. The logical cursor is copied to the same location in the physical
window unless leavok() is enabled (in which case, the cursor is placed in a
position that the program �nds convenient).

When outputting several pads at once, it is often more e�cient to call the
pnoutrefresh() and doupdate() routines directly. A call to pnoutrefresh()

for each pad �rst, followed by only one call to doupdate() to update the
screen, results in one burst of output, fewer characters sent, and less CPU time
used.

Implementation Considerations

Identical to XPG/3

See Also

doupdate(), leaveok(), newpad(),

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-145

FINAL TRIM SIZE : 7.0 in x 8.5 in

printw

printw
wprintw
mvprintw
mvwprintw
vwprintw

The printw set of routines is used to perform a formatted write to a window.

Syntax

#include <curses.h>

int printw(char *fmt [,arg...]);

int wprintw(WINDOW *win, char *fmt[,arg...]);

int mvprintw(int y, int x, char *fmt [,arg...]);

int mvwprintw(WINDOW *win, int y, int x, char *fmt [,arg...])

#include <stdargs.h>

vwprintw(WINDOW *win, char *fmt, va_list arglist);

Parameters

fmt [,arg...] A printf() format string where arg is zero or more arguments
used to satisfy the printf() string.

fmt , arglist A vprintf() format string where arglist is a pointer to a list
of arguments.

win A pointer to the window in which the string is to be written.

x The x (column) coordinate position of the string's placement in
the window.

y The y (row) coordinate position of the string's placement in
the window.

4-146 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

printw

Return Values

OK Successful completion.

ERR An error occurred.

Description

These routines are functionally equivalent to printf(). Characters are written
to the window using waddch().

With printw() and wprintw(), the characters are written to stdscr and
win, respectively. The mvprintw() and mvwprintw() routines position the
cursor as speci�ed in stdscr or win, respectively, and then call printw(). The
vwprintw() routine writes to the window.

Implementation Considerations

The printw(), wprintw(), mvprintw(), and mvwprintw() routines
are identical to XPG/3. The vwprintw() routine is a UNIX System V
implementation.

See Also

waddch()

Portability

The printw(), wprintw(), mvprintw(), and mvwprintw() routines conform to
HP-UX, UNIX System V and XPG/3. The vwprintw() routine conforms to
UNIX System V.

CURSES 4-147

FINAL TRIM SIZE : 7.0 in x 8.5 in

qiflush

qiflush
noqiflush

The qiflush and noqiflush set of routines is used to control the
ush of
input and output on interrupt.

Syntax

#include <curses.h>

void qiflush();

void noqiflush();

Return Values

None

Description

The qiflush() routine
ushes input and output queues when an interrupt,
quit, or suspend character is sent to the terminal. The noqiflush() routine
does not
ush input and output queues when these characters are sent.

Implementation Considerations

UNIX System V implementation

See Also

flushinp(), intrflush()

Portability

UNIX System V

4-148 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

raw

raw
noraw

The raw and noraw routines are used to enable and disable the raw-mode
operation.

Syntax

#include <curses.h>

int raw();

int noraw();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The raw() and noraw() routines enable and disable raw-mode operation,
respectively. These routines are similar to cbreak() and nocbreak() in that
raw() immediately processes characters typed by the user, and noraw()

restores the previous state. The di�erence is that raw() passes through quit,
interrupt, suspend, and
ow control characters (QUIT, INTR, SUSP, STOP, START)
as normal text without generating a signal. The behavior of the BREAK key
varies depending on the terminal.

Implementation Considerations

Identical to XPG/3

CURSES 4-149

FINAL TRIM SIZE : 7.0 in x 8.5 in

raw

See Also

cbreak(), wgetch(), halfdelay(), nodelay(), wtimeout()

Portability

HP-UX, UNIX System V, XPG/3

4-150 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

redrawwin

redrawwin
wredrawln

The redrawwin and wredrawln routines are used to redraw the screen or
portion of the screen.

Syntax

#include <curses.h>

int redrawwin(WINDOW *win);

int wredrawln(WINDOW *win, int beg_line, int num_lines);

Parameters

win A pointer to the window in which to redraw.

beg line The �rst line to redraw.

num lines The number of lines to redraw.

Return Values

OK Successful completion.

ERROR An error occurred.

Description

The redrawwin() and wredrawln() routines force portions of a window to be
redrawn to the terminal. These routines are useful when the data that exists
on the screen is believed to be corrupt and for applications such as screen
editors that redraw portions of the screen.

Note The redrawwin() routine is a macro.

CURSES 4-151

FINAL TRIM SIZE : 7.0 in x 8.5 in

redrawwin

Implementation Considerations

UNIX System V implementation

Portability

UNIX System V

4-152 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

refresh

refresh
wrefresh
doupdate
wnoutrefresh

The refresh set of routines is used to copy a window data structure to a
physical window.

Syntax

#include <curses.h>

int refresh();

int wrefresh(WINDOW *win);

int doupdate();

int wnoutrefresh(WINDOW *win);

Parameters

win A pointer to the window in which to refresh.

Return Values

OK Successful completion.

ERROR An error occurred.

Description

The refresh() and wrefresh() routines copy stdscr and win, respectively, to
the terminal screen. These routines call the wnoutrefresh() routine to copy
the speci�ed window to curscr and the doupdate() routine to do the actual
update. The physical cursor is mapped to the same position as the logical
cursor of the last window to update curscr , unless leaveok() is enabled (in
which case, the cursor is placed in a position that CURSES �nds convenient).

CURSES 4-153

FINAL TRIM SIZE : 7.0 in x 8.5 in

refresh

When outputting several windows at once, it is often more e�cient to
call the wnoutrefresh() and doupdate() routines directly. A call to
wnoutrefresh()for each window �rst, followed by only one call to doupdate()
to update the screen, results in one burst of output, fewer characters sent, and
less CPU time used.

If the win parameter to wrefresh() is global variable curscr , the screen is
immediately cleared and repainted from scratch.

Implementation Considerations

Identical to XPG/3

See Also

leaveok(), pnoutrefresh(), prefresh(), redrawln(), redrawwin()

Portability

HP-UX, UNIX System V, XPG/3

4-154 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

reset prog mode

reset prog mode
reset shell mode

The reset_prog_mode and reset_shell_mode routines are used to reset the
terminal modes.

Syntax

#include <curses.h>

int reset_prog_mode();

int reset_shell_mode();

Return Values

OK Successful completion.

Description

The reset_prog_mode() and reset_shell_mode() routines reset the current
terminal modes to \program" (within CURSES) or \shell" (outside CURSES). The
reset is done automatically by endwin() and by doupdate() after a call to
endwin().

Implementation Considerations

Identical to XPG/3

Portability

UNIX System V, XPG/3

CURSES 4-155

FINAL TRIM SIZE : 7.0 in x 8.5 in

resetty

resetty
savetty

The resetty and savetty routines are used to restore and save terminal
modes.

Syntax

#include <curses.h>

int resetty();

int savetty();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The savetty() and resetty() routines are low-level routines typically used
within library routines. The savetty() and resetty() routines save and
restore the terminal state, respectively. The savetty() routine saves the
current state in a bu�er; the resetty() routine restores the state to that
stored in the bu�er at the time of the last savetty() call.

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V, XPG/3

4-156 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

scanw

scanw
wscanw
mvscanw
mvwscanw
vwscanw

The scanw set of routines is used to perform a formatted read from a window.

Syntax

#include <curses.h>

int scanw(char *fmt [,arg...]);

int wscanw(WINDOW *win, char *fmt [,arg...]);

int mvscanw(int y, int x, char *fmt[,arg...]);

int mvwscanw(WINDOW *win, int y, int x, char *fmt[,arg...])

#include <stdargs.h>

vwscanw(WINDOW *win, char *fmt, va_list arglist);

Parameters

fmt [,arg...] A vwscanw() format string, where arg is zero or more
arguments used to satisfy the scanf() string.

fmt, arglist A vscan() format string, where arglist is a pointer to zero or
more arguments used to satisfy the scanf() string.

win A pointer to the window in which the character is to be read.

x The x (column) coordinate of the position of the character to
be read.

y The y (row) coordinate of the position of the character to be
read.

CURSES 4-157

FINAL TRIM SIZE : 7.0 in x 8.5 in

scanw

Return Values

OK Successful completion.

ERR An error occurred.

Description

These routines are functionally equivalent to scanf(). Characters are read
from the window using wgetstr(). When a newline is received, the line is
processed by scanw(), which places the result in the appropriate args .

With scanw() and wscanw(), the characters are read from stdscr and win,
respectively. The mvscanw() and mvwscanw() routines position the cursor in
the window and then call scanw(). The vwscanw() routine reads from the
window using the stdargs variable list.

Implementation Considerations

The scanw(), wscanw(), mvscanw(), and mvwscanw() routines are identical to
XPG/3. The vwscanw() routine is a UNIX System V implementation.

See Also

wgetstr()

Portability

The scanw(), wscanw(), mvscanw(), and mvwscanw() routines conform to
HP-UX, UNIX System V and XPG/3. The vwscanw() routine conforms to
UNIX System V.

4-158 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

scr dump

scr dump
scr restore

The scr_dump and scr_restore routines are used to write the screen contents
to and from a �le.

Syntax

#include <curses.h>

int scr_dump(char *filename);

int scr_restore(char *filename);

Parameters

�lename A pointer to the �le in which screen contents are written.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The scr_dump() routine writes the contents of the virtual screen, curscr ,
to �lename . The scr_restore() routine writes the contents of �lename
(which must have been written with scr_dump()) to curscr . The next call to
doupdate() restores the screen to the way it looks in �lename .

Implementation Considerations

UNIX System V implementation

CURSES 4-159

FINAL TRIM SIZE : 7.0 in x 8.5 in

scr dump

See Also

wrefresh()

Portability

UNIX System V

4-160 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

srcl

srcl
wscrl
scrol

The srcl set of routines is used to scroll a window.

Syntax

#include <curses.h>

int scrl (int n);

int wscrl (WINDOW *win, int n);

int scroll (WINDOW *win);

Parameters

win A pointer to the window in which to scroll.

n The number and direction of lines to scroll.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The scroll() routine scrolls the window win up one line. The current cursor
position is not changed.

The scrl() and wscrl() routines scroll the window stdscr or win up or down
n lines, where n is a positive or negative integer, respectively.

The scrollok() routine must be enabled for these routines to work.

Note The scroll() and scrl() routines are macros.

CURSES 4-161

FINAL TRIM SIZE : 7.0 in x 8.5 in

srcl

Implementation Considerations

The scroll() routine is identical to XPG/3. The wscrl() and scrl()

routines are UNIX System V implementations.

See Also

scrollok(), waddch()

Portability

The scroll() routine conforms to HP-UX, UNIX System V, and XPG/3. The
wscrl() and scrl() routines conform to UNIX System V.

4-162 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

scrollok

scrollok

The scrollok routine is used to enable scrolling of the screen.

Syntax

#include <curses.h>

int scrollok (WINDOW *win, bool bf);

Parameters

bf A Boolean expression.

win A pointer to the window in which to enable scrolling.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The scrollok() routine controls what happens when the cursor advances
outside the bottom boundary of a window or scrolling region. When enabled,
if the cursor advances outside the bottom boundary of a window or scrolling
region, a call to wscrl() scrolls up one line and updates the screen. If
scrollok() is disabled, a call to the wscrl() routine leaves the cursor on the
bottom of the line.

The terminal screen produces a scrolling e�ect if idlok() is also enabled.

Implementation Considerations

Identical to XPG/3

CURSES 4-163

FINAL TRIM SIZE : 7.0 in x 8.5 in

scrollok

See Also

idlok(), scroll(), waddch(), wscrl()

Portability

HP-UX, UNIX System V, XPG/3

4-164 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

set curterm

set curterm

The set_curterm routine is used to set the cur term variable (interface to
terminfo).

Syntax

#include <curses.h>

int set_curterm (TERMINAL *nterm);

Parameters

nterm The terminal type for which the variable is set.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The set_curterm() routine is a low-level routine used only outside of CURSES
when the program has to deal directly with the terminfo database to handle
certain terminal capabilities. The use of appropriate CURSES routines is
recommended in all other situations.

The set_curterm() routine sets the cur term variable to nterm. The values
from nterm as well as other state information for the terminal are used
by terminfo functions such as mvcur(), tigetflag(), tigetstr(), and
tigetnum().

Implementation Considerations

UNIX System V implementation

CURSES 4-165

FINAL TRIM SIZE : 7.0 in x 8.5 in

set curterm

See Also

del_curterm()

Portability

HP-UX, UNIX System V

4-166 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

set term

set term

The set_term routine is used to switch between terminals.

Syntax

#include <curses.h>

SCREEN *set_term (SCREEN *new);

Parameters

new The new terminal to which to switch.

Return Values

On success, a pointer to the previous terminal is returned; otherwise, a null
pointer is returned.

Description

The set_term() routine switches to the terminal speci�ed by new and returns
a screen reference to the previous terminal. Calls to subsequent CURSES
routines a�ect the new terminal.

Implementation Considerations

Identical to XPG/3

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-167

FINAL TRIM SIZE : 7.0 in x 8.5 in

setscrreg

The setscrreg routine is used to set the scrolling region in a window.

Syntax

#include <curses.h>

int setscrreg (int top, int bot);

int wssetscrreg (WINDOW *win, int top, int bot);

Parameters

bot The bottom line of the scrolling region (top of the window is
line 0).

top The top line of the scrolling region (top of the window is line
0).

win A pointer to the window in which to set up the scroll window.

Return Values

None

Description

The setscrreg() and wsetscrreg() routines set up scrolling regions in
the windows stdscr and win, respectively. The dimensions of the scrolling
region are de�ned by the top and bot parameters. If scrollok() is active, any
attempt to move the cursor beyond the bottom margin of the scrolling region
scrolls the text in the scrolling region up one line.

The terminal screen produces a scrolling e�ect if idlok() is also enabled.

4-168 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

setscrreg

Implementation Considerations

Identical to XPG/3

See Also

idlok(), scroll(), scrollok(), waddch(), wscrl()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-169

FINAL TRIM SIZE : 7.0 in x 8.5 in

setupterm

setupterm
setterm

The setupterm and setterm routines are used to de�ne a set of
terminal-dependent variables (terminfo interface).

Syntax

#include <curses.h>

int setupterm (char *term, int fildes, int *errret);

int setterm (char *term);

Parameters

term The terminal type for which variables are set.

�ldes A �le descriptor initialized for output.

errret A pointer to an integer in which the status value is stored.

Return Values

OK Successful completion.

ERR An error occurred.

Description

Within CURSES, setupterm() is automatically called by initscr() and
newterm(). This routine can be also be used outside of CURSES when the
program has to deal directly with the TERMINFO database to handle certain
terminal capabilities. The use of appropriate CURSES routines is recommended
in all other situations.

The setupterm() routine de�nes terminal-dependent variables for the
terminfo layer of CURSES. The setupterm() routine initializes the terminfo
variables lines and columns such that if use_env(FALSE) has been called, the
TERMINFO values are used regardless of the environmental variables LINES and
COLUMNS or the program's window dimensions. When use_env(TRUE) has been

4-170 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

setupterm

called, which is the default, the environment variables LINES and COLUMNS are
used, if they exist. If the environment variables do not exist and the program is
running in a window, the current window size is used.

The term parameter of setupterm() speci�es the terminal; if null, terminal
type is taken from the TERM environment variable. All output is sent to �ldes
which is initialized for output. If errret is not null, OK or ERR is returned and
a status value is stored in the integer pointed to by errret . The status values
that may be returned are shown in Table 4-7.

Table 4-7. Status Values

Value Description

1 Normal

0 Terminal could not be found

-1 TERMINFO database could not be found

If erret is null, an error message is printed, and setupterm() exits. The
setterm() routine is an older version of setupterm(). It is included for
compatibility with previous versions of CURSES. New programs should use
setupterm().

Implementation Considerations

HP-UX and UNIX System V implementations.

See Also

use_env()

Portability

HP-UX, UNIX System V

CURSES 4-171

FINAL TRIM SIZE : 7.0 in x 8.5 in

start color

The start_color routine is used to initialize the use of color.

Note The start_color routine is not implemented at this time.

Syntax

#include <curses.h>

int start_color();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The start_color() routine initializes the use of color. It must be used if
color is to be used in the program. It must be called before any other color
routines, ideally right after initscr(). Eight basic colors are initialized (black,
red, green, yellow, blue, magenta, cyan, and white) and two global variables
(COLORS and COLOR_PAIRS). The COLORS variable speci�es the number of colors
that the terminal supports, and the COLOR_PAIRS variable speci�es the number
of color pairs. Colors are always in pairs consisting of a foreground color (for
characters) and a background color (for the the rest of the character cell). The
start_color() routine also restores the values of the colors to those that the
terminal had on startup.

4-172 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

start color

Implementation Considerations

UNIX System V implementation

See Also

can_change_color(), color_content(), has_color(), init_color(),
init_pair(), pair_content()

Portability

UNIX System V

CURSES 4-173

FINAL TRIM SIZE : 7.0 in x 8.5 in

subwin

The subwin routine is used to create a subwindow relative to the physical
screen.

Syntax

#include <curses.h>

WINDOW *subwin(WINDOW *orig, int nlines, int ncols, int begin_y,

int begin_x);

Parameters

orig The parent window of the subwindow.

nlines The number of lines in the subwindow.

ncols The number of columns in the subwindow

begin y The y (row) coordinate of the upper-left corner of the window.

begin x The x (column) coordinate of the upper-left corner of the
window.

Return Values

On success, a pointer to the new window structure is returned; otherwise, a
null pointer is returned.

Description

The subwin() routine creates a subwindow within window orig, with the
speci�ed number of lines and columns, and upper left corner positioned at
begin x , begin y (relative to the physical screen, not to window orig). A
pointer to the new window structure is returned.

The original window and subwindow share character storage of the overlapping
area. (Each window maintains its own pointers, cursor location, and other
items.) This means that characters and attributes are identical in overlapping
areas regardless of which window characters are written to.

4-174 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

subwin

When using subwindows, it is often necessary to call touchwin() before
wrefresh() to maintain proper screen contents.

Note The derwin() routine creates a subwindow in exactly the same
way, but allows you to specify coordinates relative to window
orig.

Implementation Considerations

Identical to XPG/3

See Also

newwin(), touchwin(), derwin()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-175

FINAL TRIM SIZE : 7.0 in x 8.5 in

termattrs

The termattrs routine is used to return the video attributes supported by the
terminal.

Syntax

#include <curses.h>

chtype termattrs();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The termattrs() routine returns a logical OR of all video attributes available
on a terminal.

Implementation Considerations

UNIX System V implementation

Portability

UNIX System V

4-176 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

termname

termname

The termname routine is used to obtain the return value of the environmental
variable TERM.

Syntax

#include <curses.h>

char *termname();

Return Values

On success, a pointer to the value of the environmental variable is returned;
otherwise, a null pointer is returned.

Description

The termname() routine returns a pointer to the value of the environmental
variable TERM (truncated to 14 characters).

Implementation Considerations

UNIX System V implementation

Portability

UNIX System V

CURSES 4-177

FINAL TRIM SIZE : 7.0 in x 8.5 in

tgetent

The tgetent routine is used to look up the termcap name (interface to
termcap library).

Syntax

#include <curses.h>

int tgetent (char *bp, char *name);

Parameters

bp A pointer to a bu�er 1024 bytes long.

name The termcap entry to look up.

Return Values

-1 Cannot open termcap �le.

0 No entry in termcap.

1 Successful completion.

Description

The tgetent() routine looks up the termcap entry for the terminal name.

The tgetent() routine is included for compatibility with programs that use
the termcap library. New programs should use terminfo functions.

Note The parameter bp should designate an area 1024 bytes long
that is retained for all calls to tgetnum(), tgetflag(),
tgetstr(), and tgoto().

4-178 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

tgetent

Implementation Considerations

UNIX System V implementation

See Also

setupterm()

Portability

HP-UX, UNIX System V

CURSES 4-179

FINAL TRIM SIZE : 7.0 in x 8.5 in

tgetflag

The tgetflag routine is used to get the Boolean entry for termcap capability
(interface to termcap library).

Syntax

#include <curses.h>

int tgetflag (char id[2]);

Parameters

cap The capability for which to get the Boolean entry.

Return Values

TRUE Successful completion.

FALSE An error occurred.

Description

The tgetflag() routine returns the Boolean value of the termcap cap.

The tgetflag() routine is included for compatibility purposes with programs
that use the termcap library. New programs should use the terminfo routines.

Implementation Considerations

UNIX System V implementation

See Also

tigetflag(), tputs()

Portability

HP-UX, UNIX System V

4-180 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

tgetnum

tgetnum

The tgetnum routine is used to get the numeric entry for termcap capability
(interface to termcap library).

Syntax

#include <curses.h>

int tgetnum (char id[2]);

Parameters

cap The termcap capability for which to get the numeric entry.

Return Values

Returns the value of the numeric termcap entry, or returns -1 if the entry is
not given for the terminal.

Description

The tgetnum() routine looks up the numeric entry for cap.

The tgetnum() routine is included for compatibility purposes with programs
that use the termcap library. New programs should use the terminfo routines.

Implementation Considerations

UNIX System V implementation

See Also

tigetnum(), tputs()

Portability

HP-UX, UNIX System V

CURSES 4-181

FINAL TRIM SIZE : 7.0 in x 8.5 in

tgetstr

The tgetstr routine is used to get the string entry for termcap capability
(interface to termcap library).

Syntax

#include <curses.h>

char *tgetstr (char cap[2], char **area);

Parameters

cap The termcap capability for which to get the string entry.

area A pointer to the area where the decoded string is stored.

Return Values

On success, a pointer to the string is returned; otherwise, a null pointer is
returned.

Description

The tgetstr() routine looks up the string entry for the termcap cap, placing
the decoded string at area and advancing the area pointers. The tputs()
routine should be used to output the string.

The tgetstr() routine is included for compatibility purposes with programs
that use the termcap library. New programs should use the terminfo routines.

Implementation Considerations

UNIX System V implementations

4-182 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

tgetstr

See Also

tigetstr(), tputs(), tparm()

Portability

HP-UX, UNIX System V

CURSES 4-183

FINAL TRIM SIZE : 7.0 in x 8.5 in

tgoto

The tgoto routine is used to decode the cursor motion values (interface to
termcap library).

Syntax

#include <curses.h>

char *tgoto (char *cap, int col, int row);

Parameters

cap The pointer to the termcap capability for cursor motion.

col The column placement of the new cursor.

row The row placement of the new cursor.

Return Values

On success, a pointer to the decoded cursor addressing string is returned;
otherwise, a null pointer is returned.

Description

The tgoto() routine decodes cursor values returned from tgetstr(). A
pointer to a cursor addressing string is returned that, when sent to the
terminal with tputs(), moves the cursor to the new location.

The tgoto() routine is included for compatibility purposes with programs that
use the termcap library. New programs should use terminfo routines.

Implementation Considerations

UNIX System V implementation

4-184 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

tgoto

See Also

mvcur()

Portability

HP-UX, UNIX System V

CURSES 4-185

FINAL TRIM SIZE : 7.0 in x 8.5 in

tigetflag

tigetflag
tigetnum
tigetstr

The tigetflag, tigetnum, and tigetstr routines are used to return the value
of terminfo capability (interface to terminfo).

Syntax

#include <curses.h>

int tigetflag (char *capname);

int tigetnum (char *capname);

char *tigetstr (char *capname);

Parameters

capname The name of the terminfo capability for which the value is
required.

Return Values

The tigetflag() routine returns -1 if capname is not a Boolean capability.
The tigetnum() routine returns -1 if capname is not a numeric capability. The
tigetstr() routine returns (char *)-1 if capname is not a string capability.

Description

The tigetflag(), tigetnum(), and tigetstr() routines return values for
terminfo capabilities passed to them.

The following null-terminated arrays contain the capnames , the termcap codes
and full C names for each of the terminfo variables.

char *boolnames, *boolcodes, *boolfnames

char *numnames, *numcodes, *numfnames

char *strnames, *strcodes, *strfnames

4-186 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

tigetflag

Implementation Considerations

UNIX System V implementation

See Also

terminfo

Portability

UNIX System V

CURSES 4-187

FINAL TRIM SIZE : 7.0 in x 8.5 in

timeout

timeout
wtimeout

The timeout and wtimeout routines are used to set a timed blocking or
nonblocking read for a window.

Syntax

#include <curses.h>

int timeout(int delay);

int wtimeout(WINDOW win, int delay);

Parameters

delay The number of milliseconds to block or wait for input.

win A pointer to the window in which to set the timed blocking.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The timeout() and wtimeout() routines set the length of time getch() waits
for input for windows stdscr and win, respectively. These routines are similar
to nodelay except the time to block or wait for input can be speci�ed.

A negative delay causes the program to wait inde�nitely for input; a delay of 0
returns ERR if no input is ready; and a positive delay blocks until input arrives
or the time speci�ed expires (in which case, ERR is returned).

Note The timeout() routine is a macro.

4-188 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

timeout

Implementation Considerations

UNIX System V implementation

See Also

wgetch(), nodelay()

Portability

UNIX System V

CURSES 4-189

FINAL TRIM SIZE : 7.0 in x 8.5 in

touchwin

touchwin
touchline
untouchwin
wtouchln
is linetouched
is wintouched

The touchwin set of routines is used to control the refresh of the window.

Syntax

#include <curses.h>

int touchwin(WINDOW *win);

int touchline(WINDOW *win, int start, int count);

int untouchwin(WINDOW *win);

int wtouchln(WINDOW *win, int y, int n, int changed);

int is_linetouched(WINDOW *win, int line);

int is_wintouchwin(WINDOW *win);

Parameters

count The number of lines in the window to mark as changed.

changed A
ag indicating whether to make lines look changed (TRUE) or
not changed (FALSE).

line The line to be checked for change since refresh.

n The number of lines in the window to mark as changed.

win A pointer to the window in which the refresh is to be
controlled or monitored.

start The starting line number of the portion of the window to make
appear changed.

y The starting line number of the portion of the window to make
appear changed or not changed.

4-190 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

touchwin

Return Values

OK Successful completion.

ERR An error occurred.

Description

The touchwin() routine marks the entire window as dirty. This makes it
appear to CURSES as if the whole window has been changed, thus causing
the entire window to be rewritten with the next call to wrefresh(). This
is sometimes necessary when using overlapping windows; the change to one
window is not re
ected in the other and, hence is not recorded.

The touchline() routine marks as dirty a portion of the window starting
at line start and continuing for count lines, instead of the entire window.
Consequently, that portion of the window is updated with the next call to
wrefresh().

The untouchwin() routine marks all lines in the window as unchanged since
the last refresh, ensuring that it is not updated.

The wtouchln() routines marks n lines starting at line y as either changed
(TRUE) or unchanged (FALSE) since the last refresh.

To �nd out which lines or windows have been changed since the last refresh,
use the is_linetouched() and is_wintouched() commands, respectively.
These return TRUE if the speci�ed lines or window have been changed since the
last call to wrefresh() or FALSE if no changes have been made.

Note All routines except wtouchln() and is_wintouched() are
macros.

Implementation Considerations

The touchwin() routine is identical to XPG/3. The touchline(),
untouchwin(), wtouchln(), is_linetouched(), and is_wintouched()

routines are UNIX System V implementations.

CURSES 4-191

FINAL TRIM SIZE : 7.0 in x 8.5 in

touchwin

See Also

wrefresh()

Portability

The touchwin() routine conforms to HP-UX, UNIX System V, and XPG/3.
The touchline(), untouchwin(), wtouchln(), is_linetouched(), and
is_wintouched() routines conform to UNIX System V.

4-192 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

tparm

tparm

The tparm routine is used to instantiate a parameterized string (interface to
terminfo).

Syntax

#include <curses.h>

char *tparm (char *str, long int p1, long int p2, long int p3,

long int p4, long int p5, long int p6, int p7,

long int p8, long int p9);

Parameters

p1...p9 The parameters to be instantiated.

str A pointer to the string to be instantiated.

Return Values

On success, a pointer to parameterized string is returned; otherwise, a null
pointer is returned.

Description

The tparm() routine is a low-level routine used outside of CURSES to deal
directly with the terminfo database. The use of appropriate CURSES routines
is recommended for most situations.

The tparm() routine instantiates a parameterized string using up to nine
arguments. The string is suitable for output processing by tputs().

CURSES 4-193

FINAL TRIM SIZE : 7.0 in x 8.5 in

tparm

Implementation Considerations

UNIX System V implementation

See Also

tputs()

Portability

HP-UX, UNIX System V

4-194 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

tputs

tputs
putp

The tputs and putp routines are used to apply padding information and
output string (interface to terminfo).

Syntax

#include <curses.h>

int tputs (char *str, int affcnt, int (*putc) (int));

int putp (char *str);

Parameters

str A pointer to a terminfo variable or return value from tparm()

or tigetstr().

a�cnt The number of lines a�ected, or 1 if not relevant.

putc The output function.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The tputs() and putp() routines are low-level routines used outside of CURSES
to deal directly with the terminfo database. The use of appropriate CURSES
routines is recommended for most situations.

The tputs() routine adds padding information and then outputs str . The
value for str must be the result value from tparm(), or tigetstr(), or a
terminfo string variable.

The tputs() routine replaces the padding speci�cation (if one exists) with
enough characters to produce the speci�ed delay. Characters are output one at
a time to putc, a routine similar to putchar().

CURSES 4-195

FINAL TRIM SIZE : 7.0 in x 8.5 in

tputs

The putp() routine calls tputs() as follows:

tputs(str, 1, _putchar)

Note The output of putp() goes to stdout, not to the �le descriptor,
�ldes , speci�ed in setupterm().

Implementation Considerations

UNIX System V implementation

See Also

tigetstr(), tparm()

Portability

HP-UX, UNIX System V

4-196 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

traceon

traceon
traceoff

The traceon and traceoff routines are used to enable or disable tracing.

Syntax

#include <curses.h>

traceoff();

traceon();

Return Values

OK Successful completion.

ERR An error occurred.

Description

The traceon() and traceoff() routines turn on or turn o� tracing,
respectively. Since the volume of output produced by these routines can be
very large, limit the area traced at a given time.

The output generated by these routines is stored in a �le called trace.out.
The information provided by the trace.out �le is the name of the function
and its parameters when entered and the function name and its return value
upon exit.

Implementation Considerations

Nonstandard

Portability

HP-UX

CURSES 4-197

FINAL TRIM SIZE : 7.0 in x 8.5 in

typeahead

The typeahead routine is used to check for type-ahead characters.

Syntax

#include <curses.h>

int typeahead (int fd);

Parameters

fd The �le descriptor that is used to check for type-ahead
characters.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The typeahead() routine speci�es the �le descriptor (fd) to use to check for
type-ahead characters (characters typed by the user but not yet processed by
CURSES).

CURSES checks for type-ahead characters periodically while updating the
screen. If characters are found, the current update is postponed until the next
wrefresh() or doupdate(). This speeds up response to commands that have
been typed ahead. Normally, the input FILE passed to newterm(), or stdin in
the case of initscr(), is used for type-ahead checking.

If fd is -1, no type-ahead checking is done.

4-198 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

typeahead

Implementation Considerations

Identical to XPG/3

See Also

wgetch(), wrefresh()

Portability

HP-UX, UNIX System V, XPG/3

CURSES 4-199

FINAL TRIM SIZE : 7.0 in x 8.5 in

unctrl

The unctrl routine is used to convert a character to printable form.

Syntax

#include <curses.h>

#include <unctrl.h>

char *unctrl(chtype c);

Return Values

Returns a string.

Description

The uncntl() routine converts the character code c into a printable form (if
unprintable). Control characters are displayed in the ^x notation where ^
identi�es the control key, and x represents an alphanumeric character that is
pressed while the control key is held down.

Implementation Considerations

Identical to XPG/3

See Also

waddch(), waddstr()

Portability

HP-UX, UNIX System V, XPG/3

4-200 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

use env

use env

The use_env routine is used to set values of lines and columns.

Syntax

#include <curses.h>

int use_env(char bool);

Parameters

bool A Boolean expression.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The use_env() routine takes the values for lines and columns from the
terminfo database (if bool is FALSE), or from environmental variables (if bool
is TRUE). If no environmental variables have been set, the window size is used.
This routine must be set before initscr(), newterm(), or setupterm() is
called. The default action is TRUE.

Implementation Considerations

UNIX System V implementation

See Also

initscr(), newterm(), setupterm()

Portability

UNIX System V

CURSES 4-201

FINAL TRIM SIZE : 7.0 in x 8.5 in

vidputs

vidputs
vidattr

The vidputs and vidattr routines are used to display a string with video
attributes (interface to terminfo).

Syntax

#include <curses.h>

int vidputs (chtype attrs, int (*putc) (int));

int vidattr (chtype attrs);

Parameters

attrs The attributes of the foreground window.

putc The output function.

Return Values

OK Successful completion.

ERR An error occurred.

Description

The vidputs() and vidattr() routines are low-level routines used outside of
CURSES to deal directly with the terminfo database. The use of appropriate
CURSES routines is recommended for most situations.

The vidputs() routine enables and disables attributes for the current terminal.
The attributes shown in Table 4-8 are de�ned in curses.h and can be
combined with the bitwise OR operator.

4-202 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

vidputs

Table 4-8. Constant Values for Highlighting Attributes

Constant Description

A_ALTCHARSET Alternate character set

A_ATTRIBUTES Attribute mask

A_BLINK Blinking

A_BOLD Bold

A_CHARTEXT Character mask

A_COLOR Color mask

A_DIM Dim

A_INVIS Invisible

A_NORMAL Disable attributes

A_PROTECT No display

A_REVERSE Reverse video

A_STANDOUT Highlights speci�c to terminal

A_UNDERLINE Underline

COLOR_PAIR(n) Color-pair number n

PAIR_NUMBER(a) Pair number for COLOR_PAIR(n)

The characters are passed one at a time to the putc routine, a routine similar
to putchar().

The vidattr() routine is similar to vidputs() except characters are sent to
stdout instead of a user-supplied output function.

CURSES 4-203

FINAL TRIM SIZE : 7.0 in x 8.5 in

vidputs

Implementation Considerations

UNIX System V implementation

Portability

HP-UX, UNIX System V

4-204 CURSES

FINAL TRIM SIZE : 7.0 in x 8.5 in

Index

A

access control
SVID IPC, 2-4

addch , 4-7
addchnstr, 4-12
addchstr, 4-12
addnstr, 4-15
addstr, 4-15
attaching shared memory, 2-38
attribute capabilities, 3-43
attro�, 4-18
attron, 4-18
attrset, 4-18

B

baudrate, 4-22
beep, 4-23
bkgd, 4-24
bkgdset, 4-24
boolean capabilities, 3-12, 3-55
border, 4-27
box, 4-27

C

can change color, 4-81
capabilities
attribute, 3-43
boolean, 3-3, 3-11, 3-55
con�guration, 3-30
cursor movement, 3-36
edit, 3-40
margins, 3-48

miscellaneous, 3-52
names, 3-11
numeric, 3-3, 3-11, 3-13, 3-57
scrolling, 3-36
string, 3-3, 3-11, 3-15, 3-59
tabs, 3-48
terminal key, 3-50

cbreak, 4-31
clear, 4-33
clearok, 4-35
clrtobot, 4-36
clrtoeol, 4-38
color content, 4-81
color pair, 4-40
con�guration capabilities, 3-30
con�gure SVID IPC resources, 2-5
conformance
SVID IPC , 2-6

controlling message queues, 2-9
controlling semaphores, 2-23, 2-32
controlling shared memory, 2-41
copywin, 4-41
creating a SVID IPC key, 2-7
curses, 4-1{204
addch , 4-7
addchnstr, 4-12
addchstr, 4-12
addnstr, 4-15
addstr, 4-15
attro�, 4-18
attron, 4-18
attrset, 4-18

Index-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

baudrate, 4-22
beep, 4-23
bkgd, 4-24
bkgdset, 4-24
border, 4-27
box, 4-27
can change color, 4-81
cbreak, 4-31
clear, 4-33
clearok, 4-35
clrtobot, 4-36
clrtoeol, 4-38
color content, 4-81
color pair, 4-40
copywin, 4-41
cur set, 4-43
def prog mode, 4-44
def shell mode, 4-44
delay output, 4-48
delch, 4-49
del curterm, 4-46
deleteln, 4-51
delscreen, 4-53
delwin, 4-54
derwin, 4-56
doupdate, 4-153
dupwin, 4-58
echo, 4-59
echochar, 4-61
endwin, 4-63
erase, 4-65
erasechar, 4-67

ash, 4-23

ushinp, 4-68
getbegyx, 4-78
getch, 4-69
getmaxyx, 4-78
getparyx, 4-78
getstr, 4-76
getyx, 4-78
halfdelay, 4-80

has color, 4-81
has ic, 4-83
has il, 4-83
idlok, 4-84
immedok, 4-86
inch, 4-87
inchnstr, 4-89
inchstr, 4-89
init color, 4-92
init pair, 4-92
initscr, 4-95
innstr, 4-105
insch, 4-96
insdelln, 4-98
insertln, 4-100
insnstr, 4-102
insstr, 4-102
instr, 4-105
intr
ush, 4-108
isendwin, 4-63
keyname, 4-110
keypad, 4-111
killchar, 4-113
leaveok, 4-114
longname, 4-116
meta, 4-117
move, 4-119
mvaddch , 4-7
mvaddchnstr, 4-12
mvaddchstr, 4-12
mvaddnstr, 4-15
mvaddstr, 4-15
mvcur, 4-121
mvdelch, 4-49
mvgetch, 4-69
mvgetstr, 4-76
mvinch, 4-87
mvinchnstr, 4-89
mvinchstr, 4-89
mvinnstr, 4-105
mvinsch, 4-96

Index-2

FINAL TRIM SIZE : 7.0 in x 8.5 in

mvinsnstr, 4-102
mvinsstr, 4-102
mvinstr, 4-105
mvprintw, 4-146
mvscanw, 4-157
mvwaddch , 4-7
mvwaddchnstr, 4-12
mvwaddchstr, 4-12
mvwaddnstr, 4-15
mvwaddstr, 4-15
mvwdelch, 4-49
mvwgetch, 4-69
mvwgetstr, 4-76
mvwin, 4-123
mvwinch, 4-87
mvwinchnstr, 4-89
mvwinchstr, 4-89
mvwinnstr, 4-105
mvwinsch, 4-96
mvwinsnstr, 4-102
mvwinsstr, 4-102
mvwinstr, 4-105
mvwprintw, 4-146
mvwscanw, 4-157
napms, 4-125
newpad, 4-126
newterm, 4-128
newwin, 4-130
nl, 4-132
nocbreak, 4-31
nodelay, 4-133
noecho, 4-59
nonl, 4-132
noqi
ush, 4-148
noraw, 4-149
notimeout, 4-135
overlay, 4-137
overwrite , 4-137
pair content, 4-81, 4-143
pnoutrefresh, 4-144
prefresh, 4-144

printw, 4-146
putp, 4-195
qi
ush, 4-148
raw, 4-149
redrawwin, 4-151
refresh, 4-153
reset prog mode, 4-155
reset shell mode, 4-155
resetty, 4-156
savetty, 4-156
scanw, 4-157
scr dump, 4-159
scrollok, 4-163
scr restore, 4-159
set curterm, 4-165
setscrreg, 4-168
set term, 4-167
setterm, 4-170
setupterm, 3-74, 4-170
srcl, 4-161
standend, 4-18
standout, 4-18
start color, 4-172
subwin, 4-174
termattrs, 4-176
terminfo, 3-74
termname, 4-177
tgetent, 4-178
tget
ag, 4-180
tgetnum, 4-181
tgetstr, 4-182
tgoto, 4-184
tiget
ag, 4-186
tigetnum, 4-186
tigetstr, 4-186
timeout, 4-188
touchline, 4-190
touchwin, 4-190
tparm, 4-193
tputs, 4-195
traceo�, 4-197

Index-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

traceon, 4-197
typeahead, 4-198
unctrl, 4-200
ungetch, 4-69
untouchwin, 4-190
use env, 4-201
vidattr, 4-202
vidputs, 4-202
vwprintw, 4-146
vwscanw, 4-157
waddch , 4-7
waddchnstr, 4-12
waddchstr, 4-12
waddnstr, 4-15
waddstr, 4-15
wattro�, 4-18
wattron, 4-18
wattrset, 4-18
wbkgd, 4-24
wbkgdset, 4-24
wborder, 4-27
wclear, 4-33
wclrtobot, 4-36
wclrtoeol, 4-38
wdelch, 4-49
wdeleteln, 4-51
wechochar, 4-61
werase, 4-65
wgetch, 4-69
wgetnstr, 4-76
wgetstr, 4-76
winch, 4-87
winchnstr, 4-89
winchstr, 4-89
winnstr, 4-105
winsch, 4-96
winsdelln, 4-98
winsertln, 4-100
winsnstr, 4-102
winsstr, 4-102
winstr, 4-105

wmove, 4-119
wnoutrefresh, 4-153
wprintw, 4-146
wredrawln, 4-151
wrefresh, 4-153
wscanw, 4-157
wstandend, 4-18
wstandout, 4-18
wtimeout, 4-188
wtouchln, 4-190

cur set, 4-43
cursor movement capabilities, 3-36

D

database
terminfo, 3-1

def prog mode, 4-44
def shell mode, 4-44
delay output, 4-48
delch, 4-49
del curterm, 4-46
deleteln, 4-51
delscreen, 4-53
delwin, 4-54
derwin, 4-56
detaching shared memory, 2-44
display SVID IPC status , 2-5
doupdate, 4-153
dupwin, 4-58

E

echo, 4-59
echochar, 4-61
edit capabilities, 3-40
endwin, 4-63
erase, 4-65
erasechar, 4-67

F

ash, 4-23

ushinp, 4-68

Index-4

FINAL TRIM SIZE : 7.0 in x 8.5 in

ftok(), 2-7

G

getbegyx, 4-78
getch, 4-69
getmaxyx, 4-78
getparyx, 4-78
getstr, 4-76
getyx, 4-78

H

halfdelay, 4-80
has color, 4-81
has ic, 4-83
has il, 4-83
headers
SVID IPC, 2-50
<sys/ipc.h>, 2-51
<sys/msg.h>, 2-53
<sys/sem.h>, 2-55
<sys/shm.h>, 2-57

I

idlok, 4-84
immedok, 4-86
implementation
SVID IPC , 2-6

inch, 4-87
inchnstr, 4-89
inchstr, 4-89
include �les
SVID IPC, 2-50
<sys/ipc.h>, 2-51
<sys/msg.h>, 2-53
<sys/sem.h>, 2-55
<sys/shm.h>, 2-57

init color, 4-92
init pair, 4-92
initscr, 4-95
innstr, 4-105
insch, 4-96

insdelln, 4-98
insertln, 4-100
insnstr, 4-102
insstr, 4-102
instr, 4-105
intr
ush, 4-108
IPCRM utility , 2-5
IPCS utility , 2-5
isendwin, 4-63

K

key
SVID IPC, 2-4, 2-7

key capabilities, 3-50
keyname, 4-110
keypad, 4-111
killchar, 4-113

L

leaveok, 4-114
/lib/libsvipc.a, 2-4
libraries
SVID IPC, 2-4

longname, 4-116

M

message queues, 2-2, 2-12
controlling, 2-9
header description, 2-53
msgctl(), 2-9
msgget(), 2-12
msgrcv(), 2-15
msgsnd(), 2-19
receiving messages, 2-15
returning identi�er, 2-12
sending messages, 2-19

meta, 4-117
miscellaneous capabilities, 3-52
move, 4-119
MPE/iX shell, 2-4
msgctl(), 2-9

Index-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

msgget(), 2-12
msgrcv(), 2-15
msgsnd(), 2-19
mvaddch , 4-7
mvaddchnstr, 4-12
mvaddchstr, 4-12
mvaddnstr, 4-15
mvaddstr, 4-15
mvcur, 4-121
mvdelch, 4-49
mvgetch, 4-69
mvgetstr , 4-76
mvinch, 4-87
mvinchnstr, 4-89
mvinchstr, 4-89
mvinnstr, 4-105
mvinsch, 4-96
mvinsnstr, 4-102
mvinsstr, 4-102
mvinstr, 4-105
mvprintw, 4-146
mvscanw, 4-157
mvwaddch , 4-7
mvwaddchnstr, 4-12
mvwaddchstr, 4-12
mvwaddnstr, 4-15
mvwaddstr, 4-15
mvwdelch, 4-49
mvwgetch, 4-69
mvwgetstr, 4-76
mvwin, 4-123
mvwinch, 4-87
mvwinchnstr, 4-89
mvwinchstr, 4-89
mvwinnstr, 4-105
mvwinsch, 4-96
mvwinsnstr, 4-102
mvwinsstr, 4-102
mvwinstr, 4-105
mvwprintw, 4-146
mvwscanw, 4-157

N

napms, 4-125
newpad, 4-126
newterm, 4-128
newwin, 4-130
nl, 4-132
nocbreak, 4-31
nodelay, 4-133
noecho, 4-59
nonl, 4-132
noqi
ush, 4-148
noraw, 4-149
notimeout, 4-135
numeric capabilities, 3-11, 3-13, 3-57

O

overlay, 4-137
overwrite , 4-137

P

padding speci�cation, 3-4
pair content, 4-81, 4-143
parameterized strings, 3-5
pnoutrefresh, 4-144
prefresh, 4-144
printw, 4-146
putp, 4-195

Q

qi
ush, 4-148

R

raw, 4-149
receiving messages, 2-15
redrawwin, 4-151
refresh, 4-153
remove SVID IPC resources, 2-5
reset prog mode, 4-155
reset shell mode, 4-155
resetty, 4-156

Index-6

FINAL TRIM SIZE : 7.0 in x 8.5 in

returning shared memory identi�er,
2-46

routines
curses, 3-74, 4-1{204
terminfo, 3-1{77

S

savetty, 4-156
scanw, 4-157
scr dump, 4-159
scrolling capabilities, 3-36
scrollok, 4-163
scr restore, 4-159
semaphores, 2-3
controlling, 2-23
header description, 2-55
operations, 2-32
returning identi�er, 2-28
semctl(), 2-23
semget(), 2-28
semop(), 2-32
shmat(), 2-38
shmctl(), 2-41
shmdt(), 2-44
shmget(), 2-46

semctl(), 2-23
semget(), 2-28
semop(), 2-32
sending messages, 2-19
set curterm, 4-165
setscrreg, 4-168
set term, 4-167
setterm, 4-170
setupterm, 3-74, 4-170
shared memory, 2-3
attaching, 2-38
controlling, 2-41
detaching, 2-44
header description, 2-57
returning identi�er, 2-46

shmat(), 2-38

shmctl(), 2-41
shmdt(), 2-44
shmget(), 2-46
special characters, 3-9
srcl, 4-161
stack operators, 3-6
standend, 4-18
standout, 4-18
start color, 4-172
string capabilities, 3-11, 3-15, 3-59
subwin, 4-174
SVID IPC
access control, 2-4
conformance , 2-6
header descriptions, 2-50
implementation considerations , 2-6
IPCS utility , 2-5
IPRM utility , 2-5
key, 2-4
library use, 2-4
managing , 2-5
message queues, 2-2
overview, 2-1
semaphores, 2-3
shared memory, 2-3, 2-38, 2-41, 2-44,

2-46
SVIPC utility , 2-5
utilities , 2-5

SVID IPC functions
ftok(), 2-7
msgctl(), 2-9
msgget(), 2-12
msgrcv(), 2-15
msgsnd(), 2-19
semctl(), 2-23
semget(), 2-28
semop(), 2-32
shmat(), 2-38
shmctl(), 2-41
shmdt(), 2-44
shmget(), 2-46

Index-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

SVID IPC headers
<sys/ipc.h>, 2-51
<sys/msg.h>, 2-53
<sys/sem.h>, 2-55
<sys/shm.h>, 2-57

SVID IPC key
ftok(), 2-7

SVID IPC message queues, 2-9
header description, 2-53
receiving messages, 2-15
returning identi�er, 2-12
sending messages, 2-19

SVID IPC semaphore operations, 2-32
SVID IPC semaphores, 2-23
header description, 2-55
returning identi�er, 2-28

SVID IPC shared memory
header description, 2-57

SVIPC utility , 2-5
<sys/ipc.h>, 2-51
<sys/msg.h>, 2-53
<sys/sem.h>, 2-55
<sys/shm.h>, 2-57

T

termattrs, 4-176
termcap
interface, 4-178, 4-180, 4-181, 4-182,

4-184
termcap library, 4-178
term �le, 3-74
terminfo, 3-1{77
compiled �le, 3-74
database, 3-1
device descriptions, 3-2
interface, 4-1, 4-46, 4-121, 4-165,

4-170, 4-186, 4-193, 4-195, 4-202
source �le, 3-2, 3-74
term �le, 3-74

termname, 4-177
tgetent, 4-178

tget
ag, 4-180
tgetnum, 4-181
tgetstr, 4-182
tgoto, 4-184
tic utility, 3-74
tiget
ag, 4-186
tigetnum, 4-186
tigetstr, 4-186
timeout, 4-188
touchline, 4-190
touchwin, 4-190
tparm, 4-193
tputs, 4-195
traceo�, 4-197
traceon, 4-197
tracing
disabling, 4-197
enabling, 4-197

typeahead, 4-198

U

unctrl, 4-200
ungetch, 4-69
untouchwin, 4-190
use env, 4-201
utilities
IPCRM , 2-5
IPCS , 2-5
SVID IPC , 2-5
SVIPC , 2-5
tic, 3-74

V

variables
boolean, 3-55
environment, 3-1, 4-2{3
global, 4-5
keys, 3-50
margins, 3-48
miscellaneous, 3-52
ncv, 3-45

Index-8

FINAL TRIM SIZE : 7.0 in x 8.5 in

numeric, 3-57
string, 3-59
tabs, 3-48
terminfo, 3-11

vidattr, 4-202
vidputs, 4-202
vwprintw, 4-146
vwscanw, 4-157

W

waddch , 4-7
waddchnstr, 4-12
waddchstr, 4-12
waddnstr, 4-15
waddstr, 4-15
wattro�, 4-18
wattron, 4-18
wattrset, 4-18
wbkgd, 4-24
wbkgdset, 4-24
wborder, 4-27
wclear, 4-33
wclrtobot, 4-36
wclrtoeol, 4-38
wdelch, 4-49
wdeleteln, 4-51

wechochar, 4-61
werase, 4-65
wgetch, 4-69
wgetnstr, 4-76
wgetstr, 4-76
winch, 4-87
winchnstr, 4-89
winchstr, 4-89
winnstr, 4-105
winsch, 4-96
winsdelln, 4-98
winsertln, 4-100
winsnstr, 4-102
winsstr, 4-102
winstr, 4-105
wmove, 4-119
wnoutrefresh, 4-153
wprintw, 4-146
wredrawln, 4-151
wrefresh, 4-153
wscanw, 4-157
wstandend, 4-18
wstandout, 4-18
wtimeout, 4-188

wtouchln, 4-190

Index-9

FINAL TRIM SIZE : 7.0 in x 8.5 in

	Contents
	Introduction
	What Is the SVID IPC Library?
	What Is the TERMINFO Database?
	What Is the CURSES Library?
	How to Use This Manual
	Developing Applications Using the MPE/iX Shell and Utilities
	Understanding MPE/iX

	SVID IPC Library Function Descriptions
	Overview of SVID IPC
	Message queues
	Shared memory
	Semaphores
	Access control

	Using the SVID IPC Library
	Managing SVID IPC Services
	Conformance and Implementation Considerations
	SVID IPC Library Function Descriptions
	ftok
	msgctl
	msgget
	msgrcv
	msgsnd
	semctl
	semget
	semop
	shmat
	shmctl
	shmdt
	shmget

	SVID IPC Header Descriptions
	sys/ipc.h
	sys/msg.h
	sys/sem.h
	sys/shm.h

	TERMINFO Database
	TERMINFO Source File
	Padding
	Parameterized Strings
	Stack Operators

	Creating Device Descriptions
	Special Characters
	Names of Capabilities
	Cursor Movement and Scrolling Capabilities
	Edit Capabilities
	Attribute Capabilities
	Tabs and Margins
	Terminal Key Capabilities
	Miscellaneous Capabilities
	Capabilities Sorted by Variable Name

	TERMINFO Compiled File

	CURSES
	Environment Variables
	Implementation Details
	Global Variables
	Descriptions of CURSES Routines
	addch
	addchstr
	addstr
	attroff
	baudrate
	beep flash
	bkgdset wbkgdset bkgd wbkgd
	border box wborder
	cbreak nocbreak
	clear wclear
	clearok
	clrtobot wclrtobot
	clrtoeol wclrtoeol
	copywin
	curs set
	del curterm
	delay output
	delch wdelch mvdelch mvwdelch
	deleteln wdeleteln
	delscreen
	delwin
	derwin
	dupwin
	echo noecho
	echochar wechochar
	endwin isendwin
	erase werase
	erasechar
	getch wgetch mvgetch mvwgetch ungetch
	getstr wgetstr wgetnstr mvgetstr mvwgetstr
	getyx getparyx getbegyx getmaxyx
	halfdelay
	has_color can_change_color color_content pair content
	has ic has il
	idlok
	immedok
	inch winch mvinch mvwinch
	inchstr
	initscr
	insch winsch mvinsch mvwinsch
	insdelln winsdelln
	insertln winsertln
	insstr
	instr
	intrflush
	keyname
	keypad
	killchar
	leaveok
	longname
	meta
	move wmove
	mvcur
	mvwin
	newpad
	newterm
	newwin
	nl nonl
	nodelay
	notimeout
	overlay overwrite
	prefresh pnoutrefresh
	printw wprintw mvprintw mvwprintw vwprintw
	qiflush noqiflush
	raw noraw
	redrawwin wredrawln
	refresh wrefresh doupdate wnoutrefresh
	reset prog mode reset shell mode
	resetty savetty
	scanw wscanw mvscanw mvwscanw vwscanw
	scr dump scr restore
	srcl wscrl scrol
	scrollok
	set curterm
	set term
	setscrreg
	setupterm setterm
	subwin
	termattrs
	termname
	tgetent
	tgetflag
	tgetnum
	tgetstr
	tgoto
	tigetflag tigetnum tigetstr
	timeout wtimeout
	touchwin touchline
	tparm
	tputs putp
	traceon traceoff
	typeahead
	unctrl
	use env
	vidputs vidattr

	Index

