
FINAL TRIM SIZE : 7.0 in x 8.5 in

900 Series HP 3000 Computer Systems

MPE/iX Developer's Kit

Reference Manual

Volume I

ABCDE

HP Part No. 36430-90001

Printed in U.S.A. 1994

Second Edition

E0494

FINAL TRIM SIZE : 7.0 in x 8.5 in

UNIX is a registered trademark of UNIX System Laboratories Inc. in the USA
and other countries.

The information contained in this document is subject to change
without notice.

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability or �tness for a particular purpose. Hewlett-Packard
shall not be liable for errors contained herein or for direct, indirect,
special, incidental or consequential damages in connection with the
furnishing or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of
its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information that is protected
by copyright. All rights are reserved. Reproduction, adaptation, or
translation without prior written permission is prohibited, except as
allowed under the copyright laws.

Copyright c 1994 by Hewlett-Packard Company

Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS
252.227-7013. Rights for non-DoD U.S. Government Departments and
agencies are as set forth in FAR 52.227-19 (c) (1,2).

Hewlett-Packard Company
3000 Hanover Street
Palo Alto, CA 94304 U.S.A.

Restricted Rights Legend

FINAL TRIM SIZE : 7.0 in x 8.5 in

Printing History

The following table lists the printings of this document, together with the
respective release dates for each edition. The software version indicates the
version of the software product at the time that this document was issued.
Many product releases do not require changes to the document; therefore,
do not expect a one-to-one correspondence between product releases and
document editions.

Edition Date Software
Version

First Edition October 1992 A.00.00

Second Edition April 1994 C.50.00

iii

FINAL TRIM SIZE : 7.0 in x 8.5 in

Preface

MPE/iX, Multiprogramming Executive with Integrated POSIX, is the latest
in a series of forward-compatible operating systems for the HP 3000 line of
computers.

In HP documentation and in talking with HP 3000 users, you will encounter
references to MPE XL, the direct predecessor of MPE/iX. MPE/iX
is a superset of MPE XL. All programs written for MPE XL will run
without change under MPE/iX. You can continue to use MPE XL system
documentation, although it may not refer to features added to the operating
system to support POSIX (for example, hierarchical directories).

Finally, you may encounter references to MPE V, which is the operating
system for HP 3000s not based on PA-RISC architecture. MPE V software
can be run on the PA-RISC (Series 900) HP 3000s in what is known as
compatibility mode.

The MPE/iX Developer's Kit Reference Manual, Volume 1 (36430-90001)
describes the POSIX/iX library provided with the MPE/iX Developer's Kit
(36430A) on 900 Series HP 3000 computer systems. This manual is intended
for experienced C programmers.

This manual is organized as follows:

Chapter 1 Introduction provides a summary overview of the POSIX/iX
library.

Chapter 2 Using the POSIX/iX Library provides information on general
C library considerations and how to develop applications using
the MPE/iX Shell and Utilities.

Chapter 3 POSIX/iX Library Implementation Considerations describe
important MPE/iX implementation details you need to know
when using POSIX/iX library functions.

Chapter 4 POSIX/iX Library Function Descriptions presents the syntax
and descriptions of POSIX/iX library functions, arranged
alphabetically.

Chapter 5 POSIX/iX Header Descriptions describes the contents of
header �les required by the POSIX/iX library.

v

FINAL TRIM SIZE : 7.0 in x 8.5 in

Conventions

nonitalics Within syntax descriptions, nonitalicized words represent literals.
Enter them exactly as shown. This includes angle brackets
appearing within syntactic descriptions. For example,

#include <unistd.h>

Nonitalicized words and punctuation characters appear in computer

font. In the following example, you must provide the keyword,
function name, parentheses, and trailing semicolon:

int ccode();

italics Within syntax descriptions, italicized words denote argument names,
program names, or strings that you must replace with an
appropriate value. In the following example, you must replace
number and denom with the respective integers you want to pass to
the div function:

div(number, denom);

[] Within syntax descriptions, italicized brackets surround optional
elements. For example, the item list in the scanf() function call is
optional:

scanf(format [,item [,item]...]);

. . . Within syntax descriptions, a horizontal ellipses indicates that a
previous element can be repeated. For example:

[,item]...

Within examples, vertical and horizontal ellipses may show where
portions of the example were omitted.

vii

FINAL TRIM SIZE : 7.0 in x 8.5 in

Contents

1. Introduction
What Is the POSIX/iX Library? 1-1
The POSIX Standards 1-2
How to Use This Manual 1-2
Using the HP C/iX Library Reference Manual 1-3
Using the MPE/iX Developer's Kit Reference Manual, Volume

2 . 1-4
Using the MPE/iX Shell and Utilities Reference Manual . . . 1-4
Using The POSIX.1 Standard - A Programmer's Guide . . . 1-4

Understanding MPE/iX 1-5
Summary of POSIX/iX Library Functions 1-5

2. Using the POSIX/iX Library
Organization of the POSIX/iX Library 2-1
The POSIX/iX library 2-2
The POSIX/iX math library 2-2
The common usage math library 2-2

Specifying the POSIX SOURCE Feature Test Macro 2-3
Input/Output Considerations 2-3
Streams . 2-4
File descriptors . 2-4

Extended Behavior of ANSI C Library Functions 2-4
Developing Applications Using the MPE/iX Shell and Utilities . 2-6

Contents-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

3. MPE/iX Library Implementation Considerations
Naming File System Objects 3-2
Files . 3-3
POSIX File Types 3-3
Creating and Opening Files 3-4
Creating Pipes, FIFOs, and Special Files 3-4
Directory Restrictions 3-4

Input/Output Considerations 3-4
File Limits . 3-5
MPE/iX Accounting Limits on Disk Space 3-5

Additional Implementation Considerations 3-5
Directories . 3-6
MPE/iX Directories 3-6
MPE/iX Directory Features 3-7
Root Directory Features 3-7
MPE/iX Account Features 3-8
MPE/iX Group Features 3-8
Hierarchical Directory Features 3-9
Dot and Dot Dot Directory Features 3-10

Additional Implementation Considerations 3-11
Access Control . 3-11
MPE/iX Access Control De�nitions 3-12
Mapping Between POSIX.1 and ACD Access Permissions . . 3-12
Mapping Between POSIX.1 and ACD File User Classes . . . 3-13
If the ACD Has Been Modi�ed or Removed 3-15
Summary of fstat() and stat() Behavior 3-15
If the File or Directory has an ACD 3-15
If the File Does Not Have an ACD 3-16
The Root Directory, MPE/iX Accounts, and MPE/iX

Groups . 3-16
Summary of chmod() Behavior 3-17
If the File or Directory has an ACD 3-17
If the File Does Not Have an ACD 3-18
The Root Directory, MPE/iX Accounts, and MPE/iX

Groups . 3-18
Determining a Process's Access to a File or Directory 3-18
Returning Information about Access Permissions 3-18
MPE/iX Save Files (SF) Capability 3-19

Contents-2

FINAL TRIM SIZE : 7.0 in x 8.5 in

MPE/iX Lockwords 3-19
Signals . 3-20
Supported Signal Functions 3-20
Signal Descriptions 3-20
Additional Implementation Considerations 3-24

Process Management 3-25
Creating a New Process 3-26
MPE/iX Process Handling Capability 3-26
Inherited Process Attributes 3-27

Process Termination 3-27
Additional Implementation Considerations 3-27

4. POSIX/iX Library Function Descriptions
access . 4-2
alarm . 4-6
chdir . 4-8
chmod . 4-10
chown . 4-14
close . 4-18
closedir . 4-20
confstr . 4-22
creat . 4-24
ctermid . 4-28
dup, dup2 . 4-29
execl . 4-31
execle . 4-37
execlp . 4-42
execve . 4-47
execvp . 4-53
execv . 4-58
exit . 4-64
fcntl . 4-66
fnmatch . 4-74
fork . 4-76
fpathconf . 4-80
fstat . 4-82
getcwd . 4-85
getegid . 4-87

Contents-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

getenv . 4-88
geteuid . 4-90
getgid . 4-91
getgrgid . 4-92
getgrnam . 4-94
getgroups . 4-96
getlogin . 4-98
getopt . 4-100
getpid . 4-105
getpwuid . 4-106
getpgrp . 4-108
getpid . 4-109
getppid . 4-110
getpwnam . 4-111
getpwuid . 4-113
getuid . 4-117
glob . 4-118
globfree . 4-123
ioctl-mag tape . 4-124
ioctl-sockets . 4-130
ioctl-streams . 4-134
isatty . 4-140
kill . 4-142
lseek . 4-146
mkdir . 4-148
mk�fo . 4-153
mknod . 4-156
open . 4-160
opendir . 4-167
pause . 4-170
pathconf . 4-172
pclose . 4-176
pipe . 4-178
popen . 4-180
read . 4-182
readdir . 4-185
readlink . 4-187
regcomp . 4-190

Contents-4

FINAL TRIM SIZE : 7.0 in x 8.5 in

regerror . 4-194
regexec . 4-196
regfree . 4-200
rename . 4-201
rewinddir . 4-204
rmdir . 4-206
setuid . 4-209
sigaction . 4-211
sigaddset . 4-214
sigdelset . 4-216
sigemptyset . 4-218
sig�llset . 4-220
sigismember . 4-222
siglongjmp . 4-224
sigpending . 4-226
sigprocmask . 4-228
sigsetjmp . 4-230
sigsuspend . 4-232
sleep . 4-234
stat . 4-236
symlink . 4-239
sysconf . 4-241
system . 4-246
time . 4-248
times . 4-250
ttyname . 4-252
umask . 4-253
uname . 4-255
unlink . 4-257
utime . 4-260
wait . 4-264
waitpid . 4-267
wordexp . 4-271
wordfree . 4-276
write . 4-277

Contents-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

5. POSIX/iX Header Descriptions

Index

Contents-6

FINAL TRIM SIZE : 7.0 in x 8.5 in

Tables

1-1. Summary of POSIX/iX Library Functions 1-6
3-1. MPE/iX Implementations of POSIX File Types 3-3
3-2. Mapping between POSIX.1 and ACD File Access Permissions 3-12
3-3. Mapping between POSIX.1 and ACD Directory Access

Permissions . 3-13
3-4. Mapping between POSIX.1 and ACD User Classes 3-14
3-5. POSIX/iX Signals 3-21
5-1. POSIX/iX Library Headers 5-3

Contents-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

1

Introduction

This chapter provides a summary overview of the POSIX/iX library available
through the MPE/iX Developer's Kit (product # 36430A). The following
topics are discussed in this chapter:

What is the POSIX/iX library?
How to use this manual.
Overview of the POSIX standards.
Understanding MPE/iX.
Summary of POSIX/iX library functions.

What Is the POSIX/iX Library?

The POSIX/iX library is an implementation on 900 Series HP 3000 computer
systems of many of the C library functions and features de�ned in the
following:

IEEE Standard 1003.1-1990 (ISO/IEC 9945-1:1990)
Appendix B of the IEEE P1003.2/D11.2

Introduction 1-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

The POSIX Standards

The Institute of Electrical and Electronics Engineers (IEEE) has been
investigating the application of standards to information technology. This work
has led to a set of standards known collectively as IEEE 1003, or Portable
Operating System Interface (POSIX). The IEEE 1003 is actually a group of
individual standards that address speci�c areas of information technology.

This book, MPE/iX Developer's Kit Reference Manual Volume 1 (36430-90001)
and MPE/iX Developer's Kit Reference Manual Volume 2 (36430-90002),
describes the MPE/iX implementation of the IEEE 1003 standards:

1003.1 C language bindings
1003.2 Shell commands and utilities

The POSIX/iX library is implemented according to the standards set forth in
the 1990 revision of the POSIX.1 standard.

POSIX.1 is concerned with C language application programming interfaces
(APIs) and contains over 200 function calls (de�ned by POSIX and ANSI),
along with type de�nitions, header �les, and a data interchange format.
POSIX.1 allows C applications a standard programmatic interface to make
system calls, I/O requests, and general library calls.

The POSIX.1 standard is de�ned in the book Information Technology -
Portable Operating System Interface (POSIX) Part 1: System Application
Program Interface (API) [C Language]; ISO/IEC 9945-1:1990;; IEEE, 1990;
ISBN 1-55937-061-0.

How to Use This Manual

This manual is intended to be used with the following four manuals:

HP C/iX Library Reference Manual (30026-90001)

MPE/iX Developer's Kit Reference Manual Volume 2 (36430-90002)

MPE/iX Shell and Utilities Reference Manual, Volumes 1 and 2
(36431-60001)

The POSIX.1 Standard - A Programmer's Guide (36430-90003)

1-2 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

This manual describes C library functions de�ned by the POSIX.1 standard.
Additional C library functions available through the POSIX/iX library are
documented in the HP C/iX Library Reference Manual (30026-90001).

Using the HP C/iX Library Reference Manual

The HP C/iX Library Reference Manual (30026-90001) contains reference
descriptions of ANSI C library functions that are required by the POSIX.1
standard. Some of the functions in the HP C/iX Library Reference Manual
(30026-90001):

Do not correctly describe the POSIX/iX function. Refer to this manual, the
MPE/iX Developer's Kit Reference Manual Volume 1 (36430-90001) for the
appropriate descriptions. The following is a list of those functions:

access()

close()

creat()

dup()

getenv()

getopt()

getpid()

isatty()

lseek()

open()

read()

sleep()

system()

time()

write()

Are not implemented in the POSIX/iX library. At this time there is only one
function that is not implemented:

link()

Support the HP C/iX compiler product and do not apply to the MPE/iX
product. Table 1-1 lists the POSIX/iX functions, which functions are
implemented in POSIX/iX, and where you can �nd the POSIX/iX function
description.

Introduction 1-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

The POSIX.1 standard requires that certain ANSI C library functions have
additional capabilities or characteristics. These extensions to the behavior of
ANSI C library functions are described in the HP C/iX Library Reference
Manual (30026-90001) under the appropriate function description. This manual
is available as a special core supplement to the MPE/iX FOS manual set.

Using the MPE/iX Developer's Kit Reference Manual, Volume 2

The MPE/iX Developer's Kit Reference Manual Volume 2 (36430-90002)
contains descriptions of C library functions available through additional
relocatable libraries provided with the MPE/iX Developer's Kit. Refer to the
MPE/iX Developer's Kit Reference Manual Volume 2 (36430-90002) for more
information.

Using the MPE/iX Shell and Utilities Reference Manual

The MPE/iX Shell and Utilities Reference Manual, Volumes 1 and 2
(36431-60001) provide descriptions of shell commands, headers, and utilities
de�ned in the POSIX.1 standard or in Appendix B of IEEE P1003.2/D11.2.
For more information about this, refer to the MPE/iX Shell and Utilities
Reference Manual, Volumes 1 and 2 (36431-60001). This manual set is
available as part of the Developer's Kit.

Using The POSIX.1 Standard - A Programmer's Guide

The POSIX.1 Standard - A Programmer's Guide (36430-90003) provides
additional information on the POSIX.1 standard and POSIX.1 application
programming.

The POSIX.1 Standard - A Programmer's Guide (36430-90003) is written
to describe how to program in a strictly conforming POSIX.1 environment.
You should understand all implementation considerations associated with the
POSIX/iX library before using The POSIX.1 Standard - A Programmer's
Guide (36430-90003) as a programming aid for application development on
MPE/iX.

1-4 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

Understanding MPE/iX

The MPE/iX Developer's Kit provides facilities that allow you to develop
portable applications while minimizing the need to understand underlying
MPE/iX operating system features. However, because the current
implementation of the POSIX/iX library does not conform to the POSIX.1
standard, some of the topics discussed in this manual require that you have an
understanding of underlying features of the MPE/iX operating system.

Additional MPE/iX documentation is available that contains detailed
information about MPE/iX features not discussed in detail in this manual.
This manual briey summarizes these features and provides pointers to the
manuals where you can acquire additional information.

The following manual provides an introduction to many of the MPE/iX
features that you'll need to understand:

New Features of MPE/iX: Using the Hierarchical File System (32650-90351)

These manuals are available as a special core supplement to the MPE/iX FOS
manual set.

Summary of POSIX/iX Library Functions

The following table lists the functions available through the POSIX/iX library.
It also indicates the manual in which function descriptions are located.

Introduction 1-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions

Function
Name

Standards
De�nition

Description
Location

a64l() HP C/iX Library Reference Manual

abort() ANSI C, POSIX.1 HP C/iX Library Reference Manual

abs() ANSI C, POSIX.1 HP C/iX Library Reference Manual

access() POSIX.1 This manual

acos() ANSI C, POSIX.1 HP C/iX Library Reference Manual

alarm() POSIX.1 This manual

asctime() ANSI C, POSIX.1 HP C/iX Library Reference Manual

asin() ANSI C, POSIX.1 HP C/iX Library Reference Manual

assert() ANSI C, POSIX.1 HP C/iX Library Reference Manual

atan() ANSI C, POSIX.1 HP C/iX Library Reference Manual

atan2() ANSI C, POSIX.1 HP C/iX Library Reference Manual

atexit() ANSI C HP C/iX Library Reference Manual

atof() ANSI C, POSIX.1 HP C/iX Library Reference Manual

atoi() ANSI C, POSIX.1 HP C/iX Library Reference Manual

atol() ANSI C, POSIX.1 HP C/iX Library Reference Manual

Bessel functions HP C/iX Library Reference Manual

brk() HP C/iX Library Reference Manual

1-6 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

bsearch() ANSI C, POSIX.1 HP C/iX Library Reference Manual

calloc() ANSI C, POSIX.1 HP C/iX Library Reference Manual

catread() HP C/iX Library Reference Manual

ccode() HP C/iX Library Reference Manual

ceil() ANSI C, POSIX.1 HP C/iX Library Reference Manual

cfgetispeed() POSIX.1 Not currently implemented

cfgetospeed() POSIX.1 Not currently implemented

cfsetispeed() POSIX.1 Not currently implemented

cfsetospeed() POSIX.1 Not currently implemented

chdir() POSIX.1 This manual

chmod() POSIX.1 This manual

chown() POSIX.1 This manual

clc05() HP C/iX Library Reference Manual

clearerr() ANSI C, POSIX.1 HP C/iX Library Reference Manual

clock() ANSI C HP C/iX Library Reference Manual

close() POSIX.1 This manual

closedir() POSIX.1 This manual

cos() ANSI C, POSIX.1 HP C/iX Library Reference Manual

confstr() POSIX.2 This manual

cosh() ANSI C, POSIX.1 HP C/iX Library Reference Manual

creat() POSIX.1 This manual

Introduction 1-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

crypt() HP C/iX Library Reference Manual

ctermid() POSIX.1 This manual

ctime() ANSI C, POSIX.1 HP C/iX Library Reference Manual

difftime() ANSI C HP C/iX Library Reference Manual

div() ANSI C HP C/iX Library Reference Manual

dup() POSIX.1 This manual

dup2() POSIX.1 This manual

ecvt() HP C/iX Library Reference Manual

encrypt() HP C/iX Library Reference Manual

erf() HP C/iX Library Reference Manual

erfc() HP C/iX Library Reference Manual

execl() POSIX.1 This manual

execle() POSIX.1 This manual

execlp() POSIX.1 This manual

execv() POSIX.1 This manual

execve() POSIX.1 This manual

execvp() POSIX.1 This manual

exit() ANSI C, POSIX.1 HP C/iX Library Reference Manual

_exit() POSIX.1 This manual

exp() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fabs() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fclose() ANSI C, POSIX.1 HP C/iX Library Reference Manual

1-8 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

fcntl() POSIX.1 This manual

fcvt() HP C/iX Library Reference Manual

fdopen() POSIX.1 HP C/iX Library Reference Manual

feof() ANSI C, POSIX.1 HP C/iX Library Reference Manual

ferror() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fflush() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fgetc() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fgetpos() ANSI C HP C/iX Library Reference Manual

fgets() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fileno() POSIX.1 HP C/iX Library Reference Manual

floor() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fmod() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fnmatch() POSIX.2 This manual

fopen() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fork() POSIX.1 This manual

fpathconf() POSIX.2 This manual

fprintf() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fprintmsg() HP C/iX Library Reference Manual

fputc() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fputs() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fread() ANSI C, POSIX.1 HP C/iX Library Reference Manual

Introduction 1-9

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

free() ANSI C, POSIX.1 HP C/iX Library Reference Manual

freopen() ANSI C, POSIX.1 HP C/iX Library Reference Manual

frexp() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fscanf() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fseek() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fsetpos() ANSI C HP C/iX Library Reference Manual

fstat() POSIX.1 This manual

ftell() ANSI C, POSIX.1 HP C/iX Library Reference Manual

fwrite() ANSI C, POSIX.1 HP C/iX Library Reference Manual

gamma() HP C/iX Library Reference Manual

gcvt() HP C/iX Library Reference Manual

getc() ANSI C, POSIX.1 HP C/iX Library Reference Manual

getchar() ANSI C, POSIX.1 HP C/iX Library Reference Manual

getcwd() POSIX.1 This manual

getegid() POSIX.1 This manual

getenv() POSIX.1, ANSI C This manual

geteuid() POSIX.1 This manual

getgid() POSIX.1 This manual

getgrgid() POSIX.1 This manual

getgrnam() POSIX.1 This manual

getgroups() POSIX.1 This manual

getlogin() POSIX.1 This manual

1-10 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

getmsg() HP C/iX Library Reference Manual

getopt() IEEE, POSIX.2 This manual

getpgrp() POSIX.1 This manual

getpid() POSIX.1 This manual

getppid() POSIX.1 This manual

getpwnam() POSIX.1 This manual

getpwuid() POSIX.1 This manual

gets() ANSI C, POSIX.1 HP C/iX Library Reference Manual

getuid() POSIX.1 This manual

getw HP C/iX Library Reference Manual

glob() POSIX.2 This manual

globfree() POSIX.2 This manual

gmtime() ANSI C, POSIX.1 HP C/iX Library Reference Manual

hcreate() HP C/iX Library Reference Manual

hdestroy() HP C/iX Library Reference Manual

hsearch() HP C/iX Library Reference Manual

hypot() HP C/iX Library Reference Manual

ioctl() This manual

isalnum() ANSI C, POSIX.1 HP C/iX Library Reference Manual

isalpha() ANSI C, POSIX.1 HP C/iX Library Reference Manual

isatty() POSIX.1 This manual

iscntrl() ANSI C, POSIX.1 HP C/iX Library Reference Manual

Introduction 1-11

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

isdigit() ANSI C, POSIX.1 HP C/iX Library Reference Manual

isgraph() ANSI C, POSIX.1 HP C/iX Library Reference Manual

islower() ANSI C, POSIX.1 HP C/iX Library Reference Manual

isprint() ANSI C, POSIX.1 HP C/iX Library Reference Manual

ispunct() ANSI C, POSIX.1 HP C/iX Library Reference Manual

isspace() ANSI C, POSIX.1 HP C/iX Library Reference Manual

isupper() ANSI C, POSIX.1 HP C/iX Library Reference Manual

isxdigit() ANSI C, POSIX.1 HP C/iX Library Reference Manual

kill() POSIX.1 This manual

l3tol() HP C/iX Library Reference Manual

l64a() HP C/iX Library Reference Manual

labs() ANSI C HP C/iX Library Reference Manual

ldexp() ANSI C, POSIX.1 HP C/iX Library Reference Manual

ldiv() ANSI C HP C/iX Library Reference Manual

lfind() HP C/iX Library Reference Manual

link() POSIX.1 Not currently implemented

localeconv() ANSI C HP C/iX Library Reference Manual

localtime() ANSI C, POSIX.1 HP C/iX Library Reference Manual

log() ANSI C, POSIX.1 HP C/iX Library Reference Manual

log10() ANSI C, POSIX.1 HP C/iX Library Reference Manual

longjmp() ANSI C, POSIX.1 HP C/iX Library Reference Manual

lsearch() HP C/iX Library Reference Manual

1-12 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

lseek() POSIX.1 This manual

ltol3() HP C/iX Library Reference Manual

mallinfo() HP C/iX Library Reference Manual

malloc() ANSI C, POSIX.1 HP C/iX Library Reference Manual

mallopt() HP C/iX Library Reference Manual

matherr() HP C/iX Library Reference Manual

mblen() ANSI C HP C/iX Library Reference Manual

mbstowcs() ANSI C HP C/iX Library Reference Manual

mbtowc() ANSI C HP C/iX Library Reference Manual

memccpy() HP C/iX Library Reference Manual

memchr() ANSI C HP C/iX Library Reference Manual

memcmp() ANSI C HP C/iX Library Reference Manual

memcpy() ANSI C HP C/iX Library Reference Manual

memmove() ANSI C HP C/iX Library Reference Manual

memset() ANSI C HP C/iX Library Reference Manual

mkdir() POSIX.1 This manual

mkfifo() POSIX.1 This manual

mknod() This manual

mktemp() HP C/iX Library Reference Manual

mktime() ANSI C, POSIX.1 HP C/iX Library Reference Manual

modf() ANSI C, POSIX.1 HP C/iX Library Reference Manual

_mpe_fileno() HP C/iX Library Reference Manual

offsetof() ANSI C HP C/iX Library Reference Manual

Introduction 1-13

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

open() POSIX.1 This manual

opendir() POSIX.1 This manual

pathconf() POSIX.2 This manual

pause() POSIX.1 This manual

pclose() POSIX.2 This manual

perror() ANSI C, POSIX.1 HP C/iX Library Reference Manual

pipe() POSIX.1 This manual

popen() POSIX.2 This manual

pow() ANSI C, POSIX.1 HP C/iX Library Reference Manual

printf() ANSI C, POSIX.1 HP C/iX Library Reference Manual

printmsg() HP C/iX Library Reference Manual

putc() ANSI C, POSIX.1 HP C/iX Library Reference Manual

putchar() ANSI C, POSIX.1 HP C/iX Library Reference Manual

putenv() This manual

puts() ANSI C, POSIX.1 HP C/iX Library Reference Manual

putw() HP C/iX Library Reference Manual

qsort() ANSI C, POSIX.1 HP C/iX Library Reference Manual

raise() ANSI C HP C/iX Library Reference Manual

rand() ANSI C, POSIX.1 HP C/iX Library Reference Manual

rand48() HP C/iX Library Reference Manual

read() POSIX.1 This manual

readdir() POSIX.1 This manual

1-14 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

realloc() ANSI C, POSIX.1 HP C/iX Library Reference Manual

regcomp() POSIX.2 This manual

regerror() POSIX.2 This manual

regexec() POSIX.2 This manual

regfree() POSIX.2 This manual

remove() ANSI C, POSIX.1 HP C/iX Library Reference Manual

rename() POSIX.1, ANSI C This manual

rewind() ANSI C, POSIX.1 HP C/iX Library Reference Manual

rewinddir() POSIX.1 This manual

rmdir() POSIX.1 This manual

sbrk() HP C/iX Library Reference Manual

scanf() ANSI C, POSIX.1 HP C/iX Library Reference Manual

setbuf() ANSI C, POSIX.1 HP C/iX Library Reference Manual

setgid() POSIX.1 Not currently implemented

setjmp() ANSI C, POSIX.1 HP C/iX Library Reference Manual

setkey() HP C/iX Library Reference Manual

setlocale() ANSI C, POSIX.1 HP C/iX Library Reference Manual

setpgid() POSIX.1 Not currently implemented

setsid() POSIX.1 Not currently implemented

Introduction 1-15

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

setuid() POSIX.1 This manual

setvbuf() ANSI C HP C/iX Library Reference Manual

sigaction() POSIX.1 This manual

sigaddset() POSIX.1 This manual

sigdelset() POSIX.1 This manual

sigemptyset() POSIX.1 This manual

sigfillset() POSIX.1 This manual

sigismember() POSIX.1 This manual

siglongjmp() POSIX.1 This manual

signal() ANSI C HP C/iX Library Reference Manual

sigpending() POSIX.1 This manual

sigprocmask() POSIX.1 This manual

sigsetjmp() POSIX.1 This manual

sigsuspend() POSIX.1 This manual

sin() ANSI C, POSIX.1 HP C/iX Library Reference Manual

sinh() ANSI C, POSIX.1 HP C/iX Library Reference Manual

sleep() POSIX.1 This manual

sprintf() ANSI C, POSIX.1 HP C/iX Library Reference Manual

sprintmsg() HP C/iX Library Reference Manual

sqrt() ANSI C, POSIX.1 HP C/iX Library Reference Manual

srand() ANSI C, POSIX.1 HP C/iX Library Reference Manual

1-16 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

sscanf() ANSI C, POSIX.1 HP C/iX Library Reference Manual

stat() POSIX.1 This manual

strcat() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strchr() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strcmp() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strcoll() ASNI C HP C/iX Library Reference Manual

strcpy() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strcspn() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strerror() ANSI C HP C/iX Library Reference Manual

strftime() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strlen() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strncat() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strncmp() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strncpy() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strpbrk() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strrchr() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strspn() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strstr() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strtod() ANSI C HP C/iX Library Reference Manual

strtok() ANSI C, POSIX.1 HP C/iX Library Reference Manual

strtol() ANSI C HP C/iX Library Reference Manual

Introduction 1-17

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

strtoul() ANSI C HP C/iX Library Reference Manual

strxfrm() ANSI C HP C/iX Library Reference Manual

swab() HP C/iX Library Reference Manual

symlink()j This manual

sysconf() POSIX.2 This manual

system() ANSI C, POSIX.2 This manual

symlink() This manual

tan() ANSI C, POSIX.1 HP C/iX Library Reference Manual

tanh() ANSI C, POSIX.1 HP C/iX Library Reference Manual

tcdrain() POSIX.1 Not currently implemented

tcflow() POSIX.1 Not currently implemented

tcflush() POSIX.1 Not currently implemented

tcgetattr() POSIX.1 Not currently implemented

tcgetpgrp() POSIX.1 Not currently implemented

tcsendbreak() POSIX.1 Not currently implemented

tcsetattr() POSIX.1 Not currently implemented

tcsetpgrp() POSIX.1 Not currently implemented

tdelete() HP C/iX Library Reference Manual

tfind() HP C/iX Library Reference Manual

time() POSIX.1, ANSI C This manual

times() POSIX.1 This manual

1-18 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

tmpfile() ANSI C, POSIX.1 HP C/iX Library Reference Manual

tmpnam() ANSI C, POSIX.1 HP C/iX Library Reference Manual

toascii() HP C/iX Library Reference Manual

tolower() ANSI C, POSIX.1 HP C/iX Library Reference Manual

toupper() ANSI C, POSIX.1 HP C/iX Library Reference Manual

tsearch() HP C/iX Library Reference Manual

ttyname() POSIX.1 This manual

twalk() HP C/iX Library Reference Manual

tzset() POSIX.1 HP C/iX Library Reference Manual

umask() POSIX.1 This manual

uname() POSIX.1 This manual

ungetc() ANSI C, POSIX.1 HP C/iX Library Reference Manual

unlink() POSIX.1 This manual

utime() POSIX.1 This manual

va_arg() ANSI C HP C/iX Library Reference Manual

va_end() ANSI C HP C/iX Library Reference Manual

va_start() ANSI C HP C/iX Library Reference Manual

vfprintf() ANSI C HP C/iX Library Reference Manual

vprintf() ANSI C HP C/iX Library Reference Manual

Introduction 1-19

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 1-1. Summary of POSIX/iX Library Functions (continued)

Function
Name

Standards
De�nition

Description
Location

vsprintf() ANSI C HP C/iX Library Reference Manual

wait() POSIX.1 This manual

waitpid() POSIX.1 This manual

wcstombs() ANSI C HP C/iX Library Reference Manual

wctomb() ANSI C HP C/iX Library Reference Manual

wordexp() POSIX.2 This manual

wordfree() POSIX.2 This manual

write() POSIX.1 This manual

1-20 Introduction

FINAL TRIM SIZE : 7.0 in x 8.5 in

2

Using the POSIX/iX Library

The POSIX/iX library provides an extensive library of C functions. The
functions provide facilities for such operations as input, output, process
management, signal management, mathematics, string manipulation, and time
and date operations.

This chapter provides information on the following subjects:

how the POSIX/iX library is organized
specifying the _POSIX_SOURCE macro
how to develop applications using the MPE/iX Shell and Utilities
general input/output considerations
ANSI C library functions that have modi�ed behavior

Organization of the POSIX/iX Library

The POSIX/iX library consists of three relocatable library �les:

The �le /lib/libc.a is a relocatable library �le that includes C
library functions de�ned by ANSI C, the POSIX.1 standard, and IEEE
P1003.2/D11.2.

The �le /lib/libm.a is a relocatable library �le containing all ANSI C math
library functions.

The �le /lib/libM.a is a relocatable library �le containing all common
usage math library functions.

Using the POSIX/iX Library 2-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

The POSIX/iX library

The POSIX/iX library �le, /lib/libc.a, contains four classes of C library
functions:

functions de�ned by ANSI C
functions de�ned by the POSIX.1 standard
functions de�ned by IEEE P1003.2/D11.2
functions provided to increase portability between MPE/iX and HP-UX

The POSIX/iX math library

The POSIX/iX math library consists of additional mathematical functions,
such as trigonometric and logarithmic functions, that perform oating-point
operations. These math library functions perform in a manner de�ned by ANSI
C.

Note It is recommended that you use the POSIX/iX math library
when developing applications using the MPE/iX Developer's
Kit.

The common usage math library

The common usage math library consists of the same library functions available
in the POSIX/iX math library; however, common usage math library functions
perform in a pre-ANSI manner that does not conform to either ANSI C or the
POSIX.1 standard.

The primary di�erence between the two math libraries is the manner in
which errors are handled, such as attempting to compute the square root of a
negative value. POSIX/iX math library behavior causes the library to call a
user-written function named _matherr if one is provided, and no error message
is displayed. Common usage math library behavior causes the library to call
a user-written function named matherr if one is provided; otherwise, an error
message is displayed.

2-2 Using the POSIX/iX Library

FINAL TRIM SIZE : 7.0 in x 8.5 in

Specifying the POSIX SOURCE Feature Test Macro

An application that includes a header described by the POSIX.1 standard must
specify the _POSIX_SOURCE feature test macro prior to any instance of that
header being included in the source �le. When _POSIX_SOURCE is speci�ed in
the source �le, the following conditions are true:

All symbols required by the POSIX.1 standard are made visible to the
application.

Symbols that are explicitly permitted, but not required, by the POSIX.1
standard are made visible to the application.

Additional symbols not required or explicitly permitted by the POSIX.1
standard are not made visible.

Input/Output Considerations

The POSIX/iX library provides two mechanisms to operate on MPE/iX �les:

streams

�le descriptors

Both streams and �le descriptors serve as \handles" to the underlying �le.

MPE/iX supported many di�erent �le types and �le record formats; however,
the POSIX/iX library supports operations only on �les whose MPE/iX record
format is byte-stream (referred to as byte-stream �les). All �les created or
opened through POSIX/iX library functions are MPE/iX byte-stream �les.
Attempts to open an MPE/iX �le whose type is other than byte-stream results
in an error. This applies to emulators.

The HP C/iX Library Reference Manual (30026-90001) describes the behavior
of C library functions when operating on various MPE/iX �le types. You
should ignore these references and pay attention only to those sections that
describe the behavior of library functions when they are operating on MPE/iX
byte-stream �les.

Using the POSIX/iX Library 2-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

Streams

Streams are abstractions over �le descriptors in order to provide bu�ered I/O
de�ned by ANSI C. ANSI C de�nes two types of streams, the text stream
and the binary stream; however, the POSIX/iX library does not distinguish
between text and binary streams. For more information about streams, refer to
the HP C/iX Library Reference Manual (30026-90001).

Note The term \stream" should not be confused with the MPE/iX
�le whose record format is \byte-stream".

File descriptors

The POSIX.1 standard de�nes an additional method of accessing a �le,
through the use of �le descriptors. A �le descriptor is a per-process
nonnegative integer used to identify an open �le. For example, when creating
or opening a �le using the open() function, a �le descriptor whose type is
integer is associated with the underlying �le description and returned to the
calling process. All subsequent accesses of that �le are performed through the
�le descriptor. The bu�ered I/O performed for streams is not performed when
accessing a �le through its �le descriptor.

Extended Behavior of ANSI C Library Functions

The POSIX.1 standard de�nes extended or additional behavior of certain ANSI
C library functions beyond those set forth in ANSI C. The enhanced behavior
does not interfere with strict ANSI C compliance.

The following ANSI C functions provide extensions or modi�ed behavior
beyond those set forth in ANSI C when used in the POSIX/iX library
environment:

setlocale()

rename()

abort()

2-4 Using the POSIX/iX Library

FINAL TRIM SIZE : 7.0 in x 8.5 in

ANSI C time functions:
ctime()

gmtime()

localtime()

mktime()

strftime()

fseek()

exit()

fileno()

fdopen()

fopen()

fclose()

freopen()

fflush()
ANSI C functions that read input:
fgetc()

fgets()

fread()

getc()

getchar()

gets()

scanf()

fscanf()

ANSI C functions that write output
fputc()

fputs()

fwrite()

putc()

putchar()

puts()

printf()

fprintf()

vprintf()

vfprintf()

Using the POSIX/iX Library 2-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

rewind()

perror()

tmpfile()

ftell()

remove()

Extensions required by POSIX.1 are documented in the library function
descriptions found in the HP C/iX Library Reference Manual (30026-90001).

Developing Applications Using the MPE/iX Shell and
Utilities

Application development using libraries provided with the MPE/iX Developer's
Kit must be accomplished through the MPE/iX Shell and Utilities, a command
interpreter that provides a set of commands and utilities useful for application
development. The MPE/iX Shell is based on the Korn Shell, a command
interpreter available on many computer systems.

To invoke the MPE/iX Shell from the MPE/iX Command Interpreter (CI),
enter either of the following at the CI prompt:

:RUN SH.HPBIN.SYS;INFO="-L"

:SH.HPBIN.SYS -L

:xeq sh.hpbin.sys -l

Note The L must be entered in uppercase.

For more information about the MPE/iX Shell and Utilities, refer to the
following manuals:

MPE/iX Shell and Utilities Reference Manual, Volumes 1 and 2
(36431-60001)
MPE/iX Shell and Utilities User's Guide (36431-90002)

2-6 Using the POSIX/iX Library

FINAL TRIM SIZE : 7.0 in x 8.5 in

Compiling and linking an application that requires libraries available through
the MPE/iX Developer's Kit must be accomplished through the c89 command
available in the MPE/iX Shell. For detailed information about using the c89
command, refer to the MPE/iX Shell and Utilities Reference Manual, Volumes
1 and 2 (36431-60001).

Using the POSIX/iX Library 2-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

3

MPE/iX Library Implementation Considerations

This chapter describes important implementation details that you should
understand when using functions provided by the MPE/iX library.
Implementation details are divided into the following subjects:

naming �le system objects
�les
directories
signals
process management
access control
Pipes and FIFOs
Privileged �les in HFS
Program �les in HFS
HFS aware loader
Record level locking
CI Environment Variables
Symbolic Links
Device �les
File Emulation
Read/Write of TAR tapes from the shell

MPE/iX Library Implementation Considerations 3-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

Naming File System Objects

The syntax that the operating system uses to resolve an object name that you
specify (either a �le or directory) to an actual system object depends upon the
interface you are using to access or name the object. A name syntax is a set of
rules that de�nes the structure of valid names for that syntax.

The hierarchical �le system (HFS) name syntax used by MPE/iX conforms to
object name syntax rules de�ned by the POSIX.1 standard. (A second name
syntax, MPE name syntax, is supported through the MPE/iX Command
Interpreter and through system intrinsics.) The POSIX/iX library and the
MPE/iX Shell and Utilities interpret object names using only the HFS name
syntax when resolving an object name to a system object. You can successfully
name any �le or directory on your system using HFS name syntax.

The following rules apply when naming �les and hierarchical directories using
MPE/iX HFS name syntax:

File and hierarchical directory names can contain alphanumeric characters
(A-Z, a-z, 0-9) as well as the dot (.), underscore (), and dash (-) characters.
File and hierarchical directory names cannot begin with a dash (-) character.
File and hierarchical directory names can be up to 255 characters in length;
however, certain restrictions apply to �le and hierarchical directory names
when they are located directly beneath either the root directory or MPE/iX
groups. For more information about name restrictions, refer to the sections
on �les and directories.

For more information about HFS syntax and MPE syntax, refer to New
Features of MPE/iX: Using the Hierarchical File System (32650-90351).

3-2 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

Files

This section provides an overview of implementation considerations that you
should understand when creating, accessing, and managing �les through the
POSIX/iX library. For more information about how �les are created and
managed in a POSIX.1 environment, refer to chapter 3, \Files and Directories",
in The POSIX.1 Standard - A Programmer's Guide (36430-90003).

Additional information about MPE/iX byte-stream �les is located in New
Features of MPE/iX: Using the Hierarchical File System (32650-90351).

POSIX File Types

The following table lists the �ve �le types de�ned in the POSIX.1 standard as
well as their equivalent implementations on MPE/iX:

Table 3-1. MPE/iX Implementations of POSIX File Types

POSIX File Type MPE/iX File Type

Regular �le Byte-stream �le, used to refer to an MPE/iX
standard ASCII disk �le with a record format of
byte-stream.

Directory special �le Hierarchical directory, used to refer to an MPE/iX
standard disk �le with a �le type of directory.

FIFO special �le Supported on 5.0

Block device special �le Not currently implemented on MPE/iX

Character device special �le Not currently implemented on MPE/iX

MPE/iX supports a �le whose record format is byte-stream to comply with
the regular �le behavior de�ned in the POSIX.1 standard. All �les created or
opened through POSIX/iX library functions are MPE/iX byte-stream �les.

Refer to the section \Directories" for implementation details of MPE/iX HFS
directories.

MPE/iX Library Implementation Considerations 3-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

Creating and Opening Files

While MPE/iX supports many �le types and �le record formats, only MPE/iX
byte-stream �les can be created or opened using POSIX/iX library functions.
Attempts to open an existing �le that is not a byte-stream �le result in an
error, with errno set to EIMPL. This applies to emulators.

The group ID (GID) of a newly created �le or directory is set to the GID of
the directory (the parent directory) in which the �le is created.

Creating Pipes, FIFOs, and Special Files

Pipes and FIFOs are supported on 5.0 and later systems. Device special �les,
and read-only �le systems are not currently implemented through POSIX/iX
interfaces. The standard �les are inherited from the parent process, which has
them opened as STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO (de�ned
in the header <unistd.h>.

Directory Restrictions

A �le created directly under the root directory or directly under an MPE/iX
group cannot have a �le name that exceeds 16 characters in length. Attempts
to create a �le whose name exceeds 16 characters in length directly under
either the root directory or an MPE/iX group result in an error, with errno

set to EIMPL.

Input/Output Considerations

The following sections describe implementation details associated with
POSIX/iX data transfer functions. For more information about POSIX.1 input
and output, refer to chapter 4, \Input and Output", in The POSIX.1 Standard
- A Programmer's Guide (36430-90003).

The POSIX.1 standard does not support the MPE/iX concept of a �le limit.
MPE/iX provides two facilities for limiting the amount of disk space that a
user can have for �les:

�le limit
MPE/iX accounting limits on disk space

3-4 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

File Limits

MPE/iX supports �le limits on all objects created on the system to allow
users to control the maximum size a that �le can attain. Files created
through POSIX/iX library functions have �le limits. The default �le limit
for a byte-stream �le is two gigabytes when created through POSIX/iX
library functions. A �le's �le limit cannot be manipulated through POSIX/iX
functions.

Attempts to write data to a �le that would result in that �le's size exceeding
the �le limit result in an error, with errno set to EFBIG.

The �le limit of two gigabytes should rarely, if ever, be reached; however, a user
can use MPE/iX CI commands or system intrinsics to set a �le limit to a much
lower value. If you open a byte-stream �le whose �le limit has been set to a
lower value, the chance of a write error is increased.

MPE/iX Accounting Limits on Disk Space

MPE/iX allows a system administrator to limit the amount of disk space that
a user may allocate. MPE/iX disk space limitations can be placed only on
MPE/iX accounts and MPE/iX groups; however, a limit placed on an MPE/iX
account or MPE/iX group is also imposed on all hierarchical directories and
�les created at all levels beneath that account or group. No such accounting
limits exist for hierarchical directories and �les that are not under MPE/iX
accounts and MPE/iX groups.

If a process attempts to write data to a �le that would result in the disk
allocation exceeding MPE/iX disk space limitations, an error is returned, with
errno set to EIMPL.

Additional Implementation Considerations

All POSIX/iX library functions that allow you to specify a pathname return an
error and set errno to EIMPL if you attempt to specify a pathname beginning
with two slash characters (//).

The S_ISUID and S_ISGID bits are not currently implemented.

Access permissions are normally passed or returned through POSIX/iX library
functions through a variable of type mode_t. Bits of such a variable that are

MPE/iX Library Implementation Considerations 3-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

not associated with access control bits must be set to zeros or the function
returns an error, with errno set to EIMPL.

On MPE/iX, the �le structure associated with directory streams is
implemented using a �le descriptor. One e�ect of this implementation is
encountered when using an exec() function to execute a �le. Because streams
are implemented using �le descriptors, the �le descriptors associated with
the parent's streams remain open for the new process image and are counted
towards the new process image's {OPEN_MAX} count of open �le descriptors;
however, these �le descriptors are inaccessible to the new process image.

MPE/iX supports symbolic links on 5.0 or later systems. MPE/iX supports
multiple links to �les or hierarchical directories.

All POSIX/iX library functions that allow you to pass a pointer in a parameter
return an error and set errno to EFAULT if the system detects a NULL or bad
address in attempting to evaluate the pointer. The only exception to this rule
is when a NULL value is a valid value to pass in place of a pointer reference.

Directories

This section provides an overview of implementation considerations that you
must understand when creating and managing MPE/iX directories through the
POSIX/iX library. For more information about how directories are created and
managed in a POSIX.1 environment, refer to chapter 3, \Files and Directories",
in The POSIX.1 Standard - A Programmer's Guide (36430-90003).

Additional information about MPE/iX directories is located in New Features of
MPE/iX: Using the Hierarchical File System (32650-90351).

MPE/iX Directories

Beginning with MPE/iX Release 4.5, the directory structure of MPE/iX has
been enhanced with the introduction of the MPE/iX hierarchical �le system
(HFS) directory structure. This has been accomplished by integrating the
POSIX.1 hierarchical directory structure within the \classic" MPE directory
structure, providing the bene�ts of both directory structures to existing and
new users.

3-6 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

MPE/iX HFS directory services present an integrated view of the �le system.
Files and hierarchical directories can be created anywhere in the �le system.

MPE/iX accounts and MPE/iX groups are special directories that serve as
directories while continuing to serve as \classic" MPE accounts and groups.

POSIX/iX directory functions can access any �le in the �le system hierarchy,
including �les in the \classic" MPE directory structure, using HFS syntax. For
example, both of the following fully quali�ed �le name speci�cations refer to
the same �le.

/MYACCT/MYGROUP/MYFILE

MYFILE.MYGROUP.MYACCT

MPE/iX Directory Features

The following sections describe special features of the MPE/iX root directory,
MPE/iX accounts and MPE/iX groups, hierarchical directories, and the
dot (.) and dot dot (..) directories. You need to understand these special
features in order to create and manage directories through POSIX/iX library
functions.

Root Directory Features

The MPE/iX root directory (.) cannot be renamed, copied, or purged.

Only users with SM capability can create objects directly under the root
directory.

Access permissions for the root directory are read and execute access for all
users and write access for none. Attempts to use the chmod() function to
remove or change access permissions of the root directory result in an error,
with errno set to EINVAL.

Names of �les and hierarchical directories created directly under the root
directory are restricted to 16 characters in length.

The root directory is restricted to the MPE/iX system volume set.

The root directory does not contain explicit dot (.) and dot dot (..)
directories; however, dot (.) and dot dot (..) directory behavior is
supported. The dot (.) and dot dot (..) directories can be opened just like

MPE/iX Library Implementation Considerations 3-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

any other hierarchical directory. File information functions can be used to
return information about these directories.

MPE/iX Account Features

MPE/iX accounts cannot be created, renamed, copied, or purged through
POSIX/iX library functions. MPE/iX accounts can be created directly under
the root directory only by a user with SM capability using the MPE/iX CI
command NEWACCT.

Access permissions for an MPE/iX account are read and execute access for
all users and write access for none. Attempts to use the chmod() function
to remove or change access permissions of an MPE/iX account result in an
error, with errno set to EINVAL.

When an MPE/iX account name is a component in a pathname, it must be
speci�ed in uppercase.

MPE/iX accounts are restricted to the MPE/iX system volume set.

An MPE/iX account does not contain explicit dot (.) and dot dot (..)
directories; however, dot (.) and dot dot (..) directory behavior is
supported. The dot (.) and dot dot (..) directories can be opened just like
any other hierarchical directory. File information functions can be used to
return information about these directories.

The user ID (UID) and group ID (GID) associated with an MPE/iX account
cannot be modi�ed through POSIX/iX library functions.

MPE/iX Group Features

MPE/iX groups cannot be created, renamed, copied, or purged through
POSIX/iX library functions. MPE/iX groups can be created directly under
MPE/iX accounts only by a user with SM capability or a user with AM
capability who is a member of that account (whose GID matches the GID
of the account). MPE/iX groups are created by MPE/iX CI command
NEWGROUP and modi�ed by the MPE/iX CI command ALTGROUP.

Default access permissions for MPE/iX groups are read and execute access
for all users and write access for none. Attempts to use the chmod() function
to remove or change access permissions of an MPE/iX group result in an
error, with errno set to EINVAL.

3-8 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

When an MPE/iX group name is a component in a pathname, it must be
speci�ed in uppercase.

Files and hierarchical directories can be created at any level beneath
MPE/iX groups.

Names of �les and hierarchical directories created directly under MPE/iX
groups are restricted to 16 characters in length.

MPE/iX groups (and, indirectly, all �les and hierarchical directories at all
levels under them) can optionally be assigned to a user volume set.

MPE/iX accounting limits for disk space apply to both hierarchical
directories and �les located at all levels under MPE/iX groups.

An MPE/iX group does not contain explicit dot (.) and dot dot (..)
directories; however, dot (.) and dot dot (..) directory behavior is
supported. The dot (.) and dot dot (..) directories can be opened just like
any other hierarchical directory. File information functions can be used to
return information about these directories.

The user ID (UID) and group ID (GID) associated with an MPE/iX group
cannot be modi�ed through POSIX/iX library functions.

An MPE/iX group must have MPE/iX save access assigned to it before �les
and hierarchical directories can be created at any level under it.

Hierarchical Directory Features

Hierarchical directories cannot be renamed through POSIX/iX library
functions.

Users can de�ne and modify access permissions for hierarchical directories
through POSIX/iX library functions.

The group ID (GID) of a hierarchical directory is inherited from its parent
directory. The user ID (UID) of a hierarchical directory is inherited from
the e�ective UID of the process that created it. The UID and GID of a
hierarchical directory can be modi�ed using the chown() function.

Hierarchical directories (and all objects under them) that are not under
MPE/iX accounts and MPE/iX groups are restricted to the MPE/iX system
volume set.

MPE/iX Library Implementation Considerations 3-9

FINAL TRIM SIZE : 7.0 in x 8.5 in

Names of hierarchical directories and �les located directly under either the
root directory or MPE/iX groups are restricted to 16 characters in length.

Names of hierarchical directories that are not directly under either the root
directory or MPE/iX groups are restricted to 255 characters in length. This
limit is de�ned by {NAME_MAX}, found in the header <limits.h>.

Hierarchical directories contain explicit dot (.) and dot dot (..) directory
entries.

Dot and Dot Dot Directory Features

When a hierarchical directory is �rst created by the mkdir() function, two
special directory entries are placed in the hierarchical directory:

The dot (.) directory entry is an alternative way to specify a current
directory without having to use a formal directory name.

The dot dot (..) directory is an alternative way to specify a current
directory's parent directory without having to use a formal directory name.

The dot (.) and dot dot (..) directories provide additional navigation aids
to a process. Applications using the dot (.) and dot dot (..) directories to
express current directory or parent directory need not be concerned with their
absolute location on the system. The use of these directory names in pathname
resolution increases the portability of applications to any location in a �le
system.

The dot (.) and dot dot (..) directories can be opened just like any other
hierarchical directory. File information functions can be used to return
information about these directories.

These two directories cannot be explicitly purged from their parent directory
except by purging the parent directory. For example, an attempt to use
rmdir() to purge the dot (.) or dot dot (..) directory results in an error,
with errno set to EIMPL.

Note The dot (.) and dot dot (..) directories are not found
explicitly under the root directory or under MPE/iX accounts
and MPE/iX groups; however, dot (.) and dot dot (..)
behavior is supported.

3-10 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

Additional Implementation Considerations

The return type of the rewinddir() function is implemented as int in order
to return a value of -1 indicating an error. The POSIX.1 standard calls for
no value to be returned (void). A strictly conforming POSIX.1 application
should not evaluate values returned by rewinddir().

If an entry is purged from or added to a directory after the most recent call to
opendir() or rewinddir(), subsequent returns from readdir() accurately
reect the current state of the directory.

The unlink() function cannot be used to purge hierarchical directories.
Instead, use rmdir() to purge hierarchical directories.

Access Control

This section provides an overview of implementation considerations that you
should understand when using access control features as they are implemented
in the POSIX/iX library.

MPE/iX security features have been enhanced to provide full support for
security features de�ned by the POSIX.1 standard. MPE/iX supports
additional access security features, but they remain largely transparent to your
application.

You may need to understand these underlying access security features if
your application accesses �les that were not created by the POSIX/iX
library functions, or if the security of those �les was modi�ed by MPE/iX CI
commands or system intrinsics.

For more information about how �le access permissions are used in a POSIX.1
environment, refer to chapter 3, \Files and Directories", in The POSIX.1
Standard - A Programmer's Guide (36430-90003).

For more information about MPE/iX implementation of POSIX.1 security
standards, refer to User's Guide to MPE/iX Security (32650-90472).

MPE/iX Library Implementation Considerations 3-11

FINAL TRIM SIZE : 7.0 in x 8.5 in

MPE/iX Access Control Definitions

Access permissions de�ned by the POSIX.1 standard are fully supported in the
POSIX/iX library through the use of the MPE/iX access control de�nition
(ACD) facility. POSIX.1 security is fully integrated with MPE/iX security.
Except in cases described below, ACD access control remains transparent
when accessed through POSIX/iX library functions. The POSIX/iX library
automatically provides translation between the POSIX.1 view of access
permission and the MPE/iX view of access permission.

ACDs are required for the following �le system objects:

All hierarchical directories.
All �les under hierarchical directories.
All �les directly under MPE accounts.
All �les directly under MPE/iX groups where the �le GID does not match
the GID of the account and group in which the �le resides.

A �le or hierarchical directory created by POSIX/iX library functions is
automatically assigned an ACD.

For more information about MPE/iX ACDs, refer to New Features of MPE/iX:
Using the Hierarchical File System (32650-90351).

Mapping Between POSIX.1 and ACD Access Permissions

The following table describes the correspondence between POSIX.1 �le access
permissions and MPE/iX ACD access permissions.

Table 3-2.

Mapping between POSIX.1 and ACD File Access Permissions

POSIX.1 Access
Permissions

ACD Access Permissions

Read ACD read (R) access

Write ACD write (W) access

Execute ACD execute (X) access

3-12 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

The following table describes the correspondence between POSIX.1 directory
access permissions and MPE/iX ACD access permissions.

Table 3-3.

Mapping between POSIX.1 and ACD Directory Access

Permissions

POSIX.1 Access Permissions ACD Access Permissions

Read ACD read directory entries (RD) access

Write Both ACD create directory entries (CD)
and ACD delete directory entries (DD)
access

Execute ACD traverse directory entries (TD)
access

Write access to a directory is implemented by two MPE/iX ACD access
modes, create directory entry (CD) and delete directory entry (DD). Setting
or modifying write access permission to a directory using POSIX/iX library
functions always modi�es both ACD access modes. Both CD and DD access
modes must be speci�ed in order for a POSIX/iX library function to have write
access to a hierarchical directory.

MPE/iX CI commands and system intrinsics allow you to remove either the
CD or DD access mode. When this occurs, both fstat() and stat() indicate
that write access permission is no longer granted to the process; however, if
only DD access is speci�ed, a process can delete directory entries but cannot
create directory entries. Likewise, if only CD access is speci�ed, a process can
create directory entries but cannot delete directory entries.

Mapping Between POSIX.1 and ACD File User Classes

The following table describes the correspondence between the POSIX.1 �le user
classes and MPE/iX ACD user speci�cations.

MPE/iX Library Implementation Considerations 3-13

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-4. Mapping between POSIX.1 and ACD User Classes

POSIX.1 File Classes ACD User Speci�cations

File owner $OWNER

File group $GROUP and $GROUP_MASK

File other @.@

The $OWNER ACD entry speci�es the owner of the �le or directory. A user is a
�le or directory owner if the user's e�ective UID matches the UID of the �le.

The $GROUP ACD entry speci�es the group members of the �le or directory. A
user is a �le or directory group member if the user's e�ective GID matches the
GID of the �le.

The $GROUP_MASK entry restricts all ACD entries except for $OWNER and @.@.
In this case, if a user matches a user.account entry, an @.account entry, or
a $GROUP entry, the user is granted only the access permissions that appear
in both the matching entry and the $GROUP_MASK entry. An ACD with a
$GROUP_MASK entry must also contain a $GROUP entry. The $GROUP_MASK entry
serves to integrate the POSIX de�nition of security with the more robust
security provided by MPE/iX ACDs.

The @.@ ACD entry speci�es the �le other class members of the �le or
directory who are not members of the �le owner class or the �le group class.

A �le or hierarchical directory created by POSIX/iX library functions is
automatically assigned an ACD containing the four MPE/iX user speci�cations
$OWNER, $GROUP, $GROUP_MASK, and @.@. The access permissions associated
with each of the four user speci�cations are initialized from the mode
parameter and modi�ed by the calling process's �le creation mask. The access
modes associated with the $GROUP_MASK entry are initialized to the same access
modes associated with the $GROUP entry.

The following example shows the correspondence between a POSIX view of
access permissions and the underlying ACD.

3-14 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

Example of POSIX file security and underlying ACD

File Owner Class File Group Class File Other Class

rwx r-x --x

R,W,X,RACD:$OWNER R,X,RACD:$GROUP R,X,

RACD:$GROUP_MASK

X:@.@

If the ACD Has Been Modified or Removed

If you are accessing �les that were not created through POSIX/iX library
functions, or whose security was modi�ed by MPE/iX commands or system
intrinsics, the ACDs may be missing any or all of the four ACD user
speci�cation entries $OWNER, $GROUP, $GROUP_MASK, and @.@. ACDs missing
any of these four ACD user speci�cation entries still support access control
as de�ned by the POSIX.1 standard since they can be regarded as containing
default values for the missing ACD entries.

Summary of fstat() and stat() Behavior

MPE/iX uses the rules described in the following sections when determining
the access permissions returned by calls to the fstat() and stat() functions.

If the File or Directory has an ACD

If the ACD contains a $OWNER entry, fstat() and stat() return for the �le
owner class the access permissions associated with the $OWNER entry. If the
ACD contains no $OWNER entry, fstat() and stat() return for the �le owner
class the access permissions of both read and write access. Execute access is
also returned for the �le owner class if any ACD entry speci�es execute access
to the �le.

If the ACD contains an @.@ entry, fstat() and stat() return for the �le
other class the access permissions associated with the @.@ entry. If the ACD
contains no @.@ entry, fstat() and stat() return for the �le other class
access permissions of NONE.

If the ACD contains a $GROUP_MASK entry, fstat() and stat() return for the
�le group class the access permissions associated with the $GROUP_MASK entry.

MPE/iX Library Implementation Considerations 3-15

FINAL TRIM SIZE : 7.0 in x 8.5 in

If the ACD contains no $GROUP_MASK entry, fstat() and stat() return for the
�le group class the access permissions resulting from ORing all �le group class
members (all user.account entries, @.account entries, and the $GROUP entry). If
the $GROUP entry and the @.account entry that corresponds to the �le GID are
both missing, and an @.@ entry exists, the permissions associated with the @.@
entry are included in the calculation.

If the File Does Not Have an ACD

If the �le does not have an ACD, fstat() and stat() return access
permissions resulting from an evaluation of the MPE/iX �le system security
matrix. Evaluation occurs in the following manner:

The �le owner class access permissions returned by fstat() and stat()

indicate both read and write access. Execute access is also indicated if any
user has execute access to the �le.

The �le group class access permissions returned by fstat() and stat() are
the result of ORing together the access permissions associated with the �le
system security matrix AC and ANY user speci�cations.

The �le other class access permissions returned by fstat() and stat() are
the access permissions associated with the �le system security matrix ANY
user speci�cation.

The Root Directory, MPE/iX Accounts, and MPE/iX Groups

For the root directory and MPE/iX accounts, the �le owner class, �le group
class, and �le other class access permissions returned by fstat() and stat()

indicate read and execute access.

For MPE/iX groups, the �le owner class and �le group class access permissions
returned by fstat() and stat() indicate read, write, and execute access. The
�le other access permissions indicate read and execute access.

3-16 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

Summary of chmod() Behavior

MPE/iX uses the rules described in the following sections when determining
how the chmod() function modi�es access permissions.

If the File or Directory has an ACD

If the ACD contains the $GROUP entry, and does not contain user.account or
@.account entries, the $GROUP entry is assigned the �le group class access
permissions passed by chmod(), plus RACD access.

If the ACD contains the $GROUP entry as well as user.account or @.account
entries, the $GROUP entry is not a�ect by chmod(). In this case, only the
$GROUP_MASK is assigned the �le group class access permissions passed by
chmod(), plus RACD access.

If the ACD does not contain the $GROUP entry, and does not contain
user.account or @.account entries, the $GROUP entry is created with the �le
group class access permissions passed by chmod(), plus RACD access.

If the ACD does not contain the $GROUP entry but contains user.account entries
and/or @.account entries, the following rules apply, in order of precedence:

If an @.account entry exists where account matches the GID of the �le, the
$GROUP entry is created with the access permissions of that @.account entry.

If no @.account entry exists where account matches the GID of the �le, and
an @.@ entry exists, $GROUP is created with the access permissions of the
@.@ entry.

If no @.account entry exists where account matches the GID of the �le, and
no @.@ entry exists, $GROUP is created with access permissions of NONE.

If the ACD contains the $GROUP_MASK entry, the $GROUP_MASK entry is assigned
the �le group class access permissions passed by chmod(), plus RACD access.
If the ACD does not contain the $GROUP_MASK entry, the $GROUP_MASK entry
is created with the �le group class access permissions passed by chmod(), plus
RACD access.

If the ACD contains a $OWNER entry, the $OWNER entry is assigned the �le owner
class access permissions passed in chmod(), plus RACD access. If the ACD
contains no $OWNER entry, a $OWNER entry is created with the �le owner class
access permissions passed in chmod(), plus RACD access.

MPE/iX Library Implementation Considerations 3-17

FINAL TRIM SIZE : 7.0 in x 8.5 in

If the ACD contains the @.@ entry, the @.@ entry is assigned the �le other
class access permissions passed by chmod(), plus RACD access. If the ACD
contains no @.@ entry, the @.@ entry is created with the �le other class access
permissions passed in chmod(), plus RACD access.

If the File Does Not Have an ACD

When chmod() is invoked on a �le that does not have an ACD, an ACD is
created with the following user speci�cations and access permissions:

The $OWNER entry is assigned the �le owner class access permissions passed
by chmod(), plus RACD access.

Both the $GROUP and $GROUP_MASK entries are assigned the �le group class
access permissions passed by chmod(), plus RACD access.

The @.@ entry is assigned the �le other class access permissions passed by
chmod(), plus RACD access.

The Root Directory, MPE/iX Accounts, and MPE/iX Groups

Attempts to use chmod() to modify access permissions of the root directory,
MPE/iX accounts, or MPE/iX groups result in an error, with errno set to
EINVAL.

Determining a Process's Access to a File or Directory

For information about MPE/iX implementation of POSIX.1 security standards,
refer to User's Guide to MPE/iX Security (32650-90472).

Refer to chapter 9, \Handling Security on MPE/iX", in New Features of
MPE/iX: Using the Hierarchical File System (32650-90351) for a thorough
description of how MPE/iX determines a process's access to a �le or directory.

Returning Information about Access Permissions

An additional MPE/iX ACD access permission, read ACD (RACD) access, is
used to restrict a user from reading access permissions of a directory or �le
that is assigned an ACD. The POSIX/iX library does not allow manipulation
of the RACD access permission. By default, all users are given RACD access
to all objects created through POSIX/iX library functions. This default allows

3-18 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

queries of directory and �le access permissions to occur through the stat()
and fstat() functions without error.

MPE/iX provides facilities outside the POSIX/iX library to manipulate the
RACD access permission of a directory or �le. If a process attempts to invoke
the fstat() or stat() function on a directory or �le with an ACD that does
not allow RACD access to that process, both functions return an error, with
errno set to EPERM.

You can modify RACD access to a �le or directory using the MPE/iX CI
command ALTSEC.

MPE/iX Save Files (SF) Capability

The user associated with a process must have save �les (SF) capability to
create an entry in a �le. In POSIX.1 terminology, SF capability acts as an
additional access control mechanism. A process must, therefore, have SF
capability to successfully create �les or hierarchical directories. The SF
capability is an MPE/iX capability assigned to a user through the MPE/iX CI
commands NEWUSER or ALTUSER.

MPE/iX Lockwords

MPE/iX provides an additional �le security feature, �le lockwords, that is not
accessible through POSIX/iX library functions; however, �le lockword security
is suppressed for all �les and directories that contain ACDs. Lockwords can be
encountered only on �les located directly under MPE/iX groups.

Attempts to open an existing �le that has an MPE/iX lockword result in an
error, with errno set to EACCESS. Attempts to modify the access permissions of
an existing �le that has an MPE/iX lockword also result in an error.

For more information about MPE/iX lockwords, refer to User's Guide to
MPE/iX Security (32650-90472).

MPE/iX Library Implementation Considerations 3-19

FINAL TRIM SIZE : 7.0 in x 8.5 in

Signals

This section provides an overview of implementation considerations that you
must understand when using signals as they are implemented in the POSIX/iX
library. For more information about how signals are used in a POSIX.1
environment, refer to chapter 5, \Signals", in The POSIX.1 Standard - A
Programmer's Guide (36430-90003).

Supported Signal Functions

All signal functions de�ned by the POSIX.1 standard are implemented in the
POSIX/iX library. While the ANSI C functions signal() and raise() are
provided in the POSIX/iX library, they are not part of the POSIX.1 standard.
A strictly conforming POSIX application should not use them.

Signal Descriptions

Table 3-5 describes the signal constants declared in the <signal.h> header
that are used by a process to refer to the signals that occur on the system.
Also noted are the default action taken by the system when the signal is
delivered, whether the signal is required for POSIX.1 conformance, and any
MPE/iX implementation details.

3-20 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-5. POSIX/iX Signals

Constant Default
Action

Description and Implementation Details

SIGABRT Abnormal
termination

Abnormal termination signal (initiated by the abort()
function).
Required for POSIX.1 conformance.

SIGALRM Abnormal
termination

Timeout signal (initiated by the alarm() function).
Required for POSIX.1 conformance.

SIGBUS Abnormal
termination

Address violation. SIGBUS is not required for POSIX.1
conformance, but is a signal commonly used on
UNIXTM-based systems. A POSIX.1-conforming
application should not rely upon the generation of this
signal by the system. The results are unde�ned if the
system generates this signal while the signal is either
blocked, ignored, or has a signal-handling function that
returns normally.

SIGFPE Abnormal
termination

Erroneous arithmetic operation, such as division by zero or
a oating-point exception. The results are unde�ned if the
system generates this signal while the signal is either
blocked, ignored, or has a signal-handling function that
returns normally.
Required for POSIX.1 conformance.

SIGHUP Abnormal
termination

Hang-up detected on a controlling terminal or death of a
controlling process.
Required for POSIX.1 conformance.

SIGILL Abnormal
termination

Detection of an invalid or illegal hardware instruction (not
reset when caught).
Required for POSIX.1 conformance.

SIGINT Abnormal
termination

Interactive interrupt signal.
Required for POSIX.1 conformance.

MPE/iX Library Implementation Considerations 3-21

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-5. POSIX/iX Signals (continued)

Constant Default
Action

Description and Implementation Details

SIGKILL Abnormal
termination

Termination signal (cannot be caught or ignored). If an
application attempts to change the default action
associated with SIGKILL, the attempt is ignored without
error.
Required for POSIX.1 conformance.

SIGPIPE Abnormal
termination

Write on a pipe with no readers.
Required for POSIX.1 conformance.

SIGPOLL Ignore Streams poll signal. Also known as SIGIO.

SIGQUIT Abnormal
termination

Interactive termination signal.
Required for POSIX.1 conformance.

SIGSEGV Abnormal
termination

Detection of an invalid or illegal memory reference. The
results are unde�ned if the system generates this signal
while the signal is either blocked, ignored, or has a
signal-handling function that returns normally.
Required for POSIX.1 conformance.

SIGTERM Abnormal
termination

Software termination signal (initiated by the kill()
function).
Required for POSIX.1 conformance.

SIGURG Ignore Urgent condition in I/O channel.

SIGUSR1 Abnormal
termination

Reserved as application-de�ned signal #1.
Required for POSIX.1 conformance.

SIGUSR2 Abnormal
termination

Reserved as application-de�ned signal #2.
Required for POSIX.1 conformance.

3-22 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 3-5. POSIX/iX Signals (continued)

Constant Default
Action

Description and Implementation Details

Job Control Signals

SIGCHLD Ignore the
signal

Child process stopped or terminated.
Required for POSIX.1 conformance.

SIGCONT Continue if
stopped;
otherwise,
ignore

Continue if stopped. This signal is never generated by the
system.
Required for POSIX.1 conformance.

SIGSTOP Stop the
process

Stop signal (cannot be caught or ignored). If an application
attempts to change the default action associated with
SIGSTOP, the attempt is ignored without error. This signal
is never generated by the system.
Required for POSIX.1 conformance.

SIGTSTP Stop the
process

Interactive stop signal. Because job control is not currently
implemented, your application should not rely upon the
generation of this signal by the system.
Required for POSIX.1 conformance.

SIGTTIN Stop the
process

Read from the controlling terminal attempted by a member
of a background process group. Because job control is not
currently implemented, your application should not rely
upon the generation of this signal by the system.
Required for POSIX.1 conformance.

SIGTTOU Stop the
process

Write to the controlling terminal attempted by a member
of a background process group. Because job control is not
currently implemented, your application should not rely
upon the generation of this signal by the system.
Required for POSIX.1 conformance.

MPE/iX Library Implementation Considerations 3-23

FINAL TRIM SIZE : 7.0 in x 8.5 in

Additional Implementation Considerations

On MPE/iX, signals cannot be delivered to a process while that process is
executing system code. The signal remains pending until control returns to
the calling process. A sending process cannot rely on timely delivery of a
signal if the target process is executing system code. For example, if a signal
is generated for a process when the process is executing a call to read() or
write(), the signal remains pending until the function call returns either after
successful transfer of data or when an error is encountered.

The ANSI C signal() function is implemented in the POSIX/iX library
as a call to sigaction(); however, the signal() function is considered by
the POSIX.1 standard to be incompatible with the POSIX.1 sigaction()

function. A strictly conforming POSIX.1 application must not use the
signal() function.

The sigaction() function can return and reinstall a signal action that was
originally installed by signal(); however, the structure that sigaction()
returns in oact cannot be reliably examined by the calling process. If this
same signal action is later reinstalled, without modi�cation, by another call to
sigaction(), the result is as if the original call to signal() were repeated.

If multiple occurrences of a signal are generated while that signal is blocked
and pending, each occurrence of the signal is left pending. If the signal is later
unblocked, multiple instances of that signal can be delivered to the process.

A signal that is both blocked and ignored for a calling process remains pending
if generated. Calls to the sigpending() function return signals that are both
blocked and ignored. When the signal is no longer blocked, it is discarded when
delivery is attempted.

Setting SIGCHLD to SIG_IGN has no e�ect on the operation of the wait() and
waitpid() functions. A strictly conforming POSIX.1 application must not set
the action associated with SIGCHLD to SIG_IGN.

When using the kill() function, the value -1 is not a valid value for passing to
the pid parameter. If a -1 is passed in the pid parameter, kill() returns an
error and sets errno to EINVAL.

On MPE/iX, a process's real user ID, e�ective user ID, and saved set-user-ID
are always identical. In addition, {SAVED_SET_IDS} is always de�ned.

3-24 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

If the sigmask parameter of the sigsuspend() function is set to NULL, the
process is suspended with the current signal mask. This implementation is
considered an extension to the POSIX.1 standard. A strictly conforming
POSIX application should pass in the sigmask parameter of the sigsuspend()
function the current signal mask returned by a successful call to
sigprocmask() where set is set to NULL.

POSIX/iX library functions that have parameters that pass or return pointers
can return an error and set errno to EFAULT if a NULL or a bad address is
passed.

Process Management

This section provides an overview of implementation considerations that
you must understand when creating and managing processes as they are
implemented in the POSIX/iX library. For more information about how
processes are created and managed in a POSIX.1 environment, refer to chapter
6, \Process Creation and Synchronization", in The POSIX.1 Standard - A
Programmer's Guide (36430-90003).

The implementation and behavior of processes created through the POSIX/iX
library conform in most respects to the POSIX.1 standard. In most cases,
underlying MPE/iX process features are transparent to a POSIX.1 application;
however, there are some MPE/iX features outside the scope of the POSIX.1
standard that cannot be hidden from your application. These additional
implementation features must be taken into account when you are creating and
managing processes through the POSIX/iX library.

Note Users need PH capability when running a program in an HFS
directory that spawns childprocesses.

MPE/iX Library Implementation Considerations 3-25

FINAL TRIM SIZE : 7.0 in x 8.5 in

Creating a New Process

The following implementation considerations must be understood when using
fork() or an exec() function to create or execute processes.

The executable �le must have an MPE/iX �le code of NMPRG.

The MPE/iX process handling (PH) capability must be appropriately
assigned. Process handling capability is described in the section \MPE/iX
Process Handling Capability."

An executable �le that is compiled and linked using the c89 command
(available through the MPE/iX Shell) always creates an executable �le with an
MPE/iX �le code of NMPRG. Attempts to use an exec() function to execute a
�le that has a �le code of anything other than NMPRG results in an error, with
errno set to ENOEXEC.

To determine whether a �le has an MPE/iX �le code of NMPRG, you must use
the MPE/iX CI command LISTFILE. For more information about using the
LISTFILE command, refer to MPE/iX Commands Reference manual.

MPE/iX Process Handling Capability

By default, MPE/iX restricts an application's ability to spawn multiple
processes. The MPE/iX process handling (PH) capability allows the creation of
multiple processes.

There are two levels of restrictions that apply if an application wishes to invoke
the fork() function or exec() functions:

The executable �le must be linked with PH capability. The c89 command
available through the MPE/iX Shell automatically assigns PH capability to
�les at link time.

If the executable �le resides in an MPE/iX group, that group must have PH
capability in order to execute the �le. PH capability is assigned by a user
with either SM or AM capability to an MPE/iX group using the MPE/iX CI
commands NEWGROUP (when the group is created) or ALTGROUP (when the
group exists).

If an executable �le is located in a hierarchical directory, the user attempting
to execute the �le must have PH capability assigned using the ALTUSER
command.

3-26 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

Inherited Process Attributes

Because processes created through POSIX/iX library functions reside in an
MPE/iX process environment, certain MPE/iX process attributes are inherited
by a process created by fork(); however, these MPE/iX process attributes are
not visible in the POSIX/iX environment.

For example, the following MPE/iX process attributes are inherited by a new
process created by fork():

process priority
capabilities
stack size
heap size

Also, some MPE/iX process attributes that are not de�ned by the
POSIX.1 standard are not inherited by the child process. The lack of these
attributes does not a�ect the behavior of a process created in the POSIX/iX
environment.

Process Termination

On MPE/iX, if a parent process terminates without waiting for all of its child
processes to terminate, the resulting \orphaned" child processes are terminated
immediately prior to termination of the parent process. The implementation
does not allow orphaned child processes to be adopted by a system process.
Your application should not rely upon orphaned child processes being adopted
by a system process.

Additional Implementation Considerations

No user process can be a controlling process. Only system processes, such
as the MPE/iX Command Interpreter (CI), are allowed to be controlling
processes.

The controlling terminal is not disassociated from the session when a user
process terminates. The controlling terminal is associated with the MPE/iX
CI session that invokes the application. The controlling terminal is only
disassociated when the MPE/iX session is ended (when the user logs o� the
system using the BYE command).

MPE/iX Library Implementation Considerations 3-27

FINAL TRIM SIZE : 7.0 in x 8.5 in

CPU time accounting information accrued by process is not made available to
the parent process through the wait() and waitpid() functions. A zero is
always returned.

Attempts to use the fork() or exec() function to create a new process fails if
the calling process

has active switches to MPE/iX compatibility mode (CM) code

has set critical mode

has outstanding NOWAITIO

is holding an operating system internal resource (SIR)

3-28 MPE/iX Library Implementation Considerations

FINAL TRIM SIZE : 7.0 in x 8.5 in

4

POSIX/iX Library Function Descriptions

This chapter describes POSIX/iX library functions de�ned in the POSIX.1
standard. Function descriptions are arranged alphabetically.

POSIX/iX Library Function Descriptions 4-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

access

Check �le accessibility

Syntax

#include <unistd.h>

int access (const char *path, init amode);

Parameters

path The pathname of a �le.

amode One of the following �le access permissions.

The bitwise inclusive OR of the following access permission
constants to be checked:

Access
Permissions

Descriptions

R OK Test for read permission.

W OK Test for write permission.

X OK Test for execute or search permission.

Or the existence test (F OK)

Other values of the amode argument are ignored.

Description

The access permissions of the �lenamed path is checked by the access()
function. The path argument for �le access permissions is indicated by amode

based on the real (not e�ective) user ID (UID) and group ID (GID).

The amode value is the bitwise inclusive OR of the access permissions or the
existence test checking if the �le exists or not.

The three access permissions are checked individually, if they need to be
checked at all. If the process has appropriate privileges, execute �le permission
will be granted.

4-2 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

access

Implementation Considerations

None.

Errors

If an error occurs, errno is set to one of the following values:

E2BIG CAUSE The number of bytes used by the new process
image's argument list and environment list
combined is greater than the limit of {ARG_MAX}
(de�ned in <limits.h>).

ACTION Reduce the size of the argument list or environment
list or both.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname did not resolve to a valid MPE/iX
�le, group, and account, or the pathname begins
with two slashes.

ACTION Specify a valid pathname as described in the
pathname parameter description.

POSIX/iX Library Function Descriptions 4-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

access

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

ENOEXEC CAUSE The program �le does not have the NMPRG �le code.
ACTION Make sure that the program �le has the NMPRG �le

code.

ENOMEM CAUSE The new process image requires more memory than
the system allows.

ACTION No action required. The new process image cannot
be created.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

4-4 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

access

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process is in a
Procedure Exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

See Also

chmod(), stat(), <unistd.h>

POSIX/iX Library Function Descriptions 4-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

alarm

Schedules a SIGALRM signal.

Syntax

#include <unistd.h>

unsigned int alarm (unsigned int seconds);

Parameters

seconds The number of real-time seconds to wait before generating a
SIGALRM signal. A zero cancels any previously scheduled alarm
request.

Return Values

0 Success. There is no previously scheduled alarm.

>0 Success. The number of seconds remaining on a previously
scheduled alarm is returned.

Description

The alarm() function causes the operating system to generate a SIGALRM

signal for the calling process after the number of real-time seconds speci�ed by
the seconds parameter have elapsed. Operating system scheduling delays may
prevent delivery of the signal until after the speci�ed time.

Only one SIGALRM signal can be scheduled at a time. Any previously scheduled
alarm is cancelled by the current alarm. A previously scheduled alarm is
cancelled by passing zero in the seconds parameter.

4-6 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

alarm

Implementation Considerations

Currently, alarm() does not cause a read timeout.

Errors

None.

See Also

fork(), pause(), sigaction(), <signal.h>, POSIX.1 (Section 3.4.1)

POSIX/iX Library Function Descriptions 4-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

chdir

Changes the current working directory.

Syntax

#include <unistd.h>

int chdir (const char *pathname);

Parameters

pathname A pointer to a string containing the pathname of the directory
to be the current working directory. The pathname must be
terminated by a null character.

Return Values

0 Success.

-1 An error occurred. The current working directory is not changed,
and errno is set to indicate the error condition.

Description

The chdir() function causes the directory speci�ed by pathname to be the
current working directory of the calling process. The current working directory
is the directory used by a process in resolving pathnames not beginning with a
slash character (/).

If chdir() fails, the current working directory remains unchanged and a -1 is
returned.

Implementation Considerations

Refer to the EFAULT, EIMPL, and ESYSERR error descriptions below.

The chdir() function does not a�ect the logon MPE/iX group or MPE/iX
account against which CPU and connect time are accumulated, nor does
chdir() alter the set of accessible �les.

4-8 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

chdir

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process does not have search permission
to a component of the pathname.

ACTION Make sure that the calling process has search
permission to all components of the pathname.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname begins with two slash characters (//).
ACTION Do not begin pathnames with two slash characters

(//).

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE The speci�ed directory does not exist or pathname
points to an empty string.

ACTION Specify an existing directory name.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

getcwd(), POSIX.1 (Section 5.2.1)

POSIX/iX Library Function Descriptions 4-9

FINAL TRIM SIZE : 7.0 in x 8.5 in

chmod

Changes �le access permissions.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

int chmod (const char *pathname, mode_t mode);

Parameters

pathname A pointer to a string containing the pathname of a �le or directory
whose access permissions are to be modi�ed. The pathname must
be terminated by a null character.

mode New access permissions. Access permission bits are set by ORing
any combination of the following macros:

S_IRWXU Set �le owner class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IRUSR Set �le owner class read permission bit.

S_IWUSR Set �le owner class write permission bit.

S_IXUSR Set �le owner class execute (if a �le) or search (if a
directory) permission bit.

S_IRWXG Set �le group class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IRGRP Set �le group class read permission bit.

S_IWGRP Set �le group class write permission bit.

S_IXGRP Set �le group class execute (if a �le) or search (if a
directory) permission bit.

S_IRWXO Set �le other class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IROTH Set �le other class read permission bit.

4-10 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

chmod

S_IWOTH Set �le other class write permission bit.

S_IXOTH Set �le other class execute (if a �le) or search (if a
directory) permission bit.

Unused bits of the mode parameter not associated with access
permissions must contain zeros, or an error occurs.

Return Values

0 Success.

-1 An error occurred. Access permission bits are not changed, and
errno is set to indicate the error condition.

Description

The chmod() function sets the �le access permission bits of the �le or directory
named in pathname to the bits speci�ed in mode. Access permissions can be
modi�ed only when one of the following conditions is true:

The user associated with the calling process is the �le owner (a user whose
e�ective UID matches the UID of the �le).
The user associated with the calling process has appropriate privileges,
de�ned to be one of the following:
a user whose GID matches the GID of the �le and who has the MPE/iX
account manager (AM) user capability
a user who has the MPE/iX system manager (SM) user capability

Upon successful completion, chmod() marks for update the st_ctime time �eld
of the �le.

Implementation Considerations

Refer to the EIMPL, EINVAL, and EFAULT error descriptions below.

The S_ISUID and S_ISGID bits are not currently supported.

Changes to �le access permission bits do not a�ect access to pathname through
open �le descriptors already associated with pathname at the time of the
chmod() call.

POSIX/iX Library Function Descriptions 4-11

FINAL TRIM SIZE : 7.0 in x 8.5 in

chmod

If bits in mode other than access permission bits are set to a nonzero value, an
error is returned and access permission bits are not changed.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process does not have search permission
to a component of the pathname.

ACTION Make sure that the calling process has search
permission to all component directories in the
pathname.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use pathname, or the pathname was
not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE One of the following:

The pathname begins with two slash characters
(//).
The unused bits of the mode parameter do not
contain zeros.

ACTION One of the following:

Do not begin pathnames with two slash characters
(//).
Set to zero all mode bits that are not access
permission bits.

EINVAL CAUSE The pathname parameter speci�ed the root
directory, an MPE/iX account, or an MPE/iX
group.

ACTION Do not attempt to change the access permission bits
of the root directory, an MPE/iX account, or an
MPE/iX group.

4-12 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

chmod

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE The speci�ed �le does not exist, or pathname points
to an empty string.

ACTION Specify an existing �lename.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process is in a
Procedure Exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

See Also

chown(), mkdir(), stat(), fstat(), <sys/stat.h>, POSIX.1 (Section 5.6.4)

POSIX/iX Library Function Descriptions 4-13

FINAL TRIM SIZE : 7.0 in x 8.5 in

chown

Changes the owner and group of a �le.

Syntax

#include <sys/types.h>

#include <unistd.h>

int chown (const char *pathname, uid_t owner,

gid_t group);

Parameters

pathname A pointer to a string containing the pathname of a �le whose user
ID and group ID are to be modi�ed. The pathname must be
terminated by a null character.

owner The new owner (user ID) of the �le.

group The new group ID of the �le.

Return Values

0 Success.

-1 An error occurred. The �le's owner and group ID are not changed,
and errno is set to indicate the error condition.

Description

The chown() function changes the user ID (UID) of the speci�ed �le to owner
and the group ID (GID) of the �le to group.

In order to change the UID of a �le, the user associated with the calling
process must be one of the following:

The �le's account manager (a user whose GID matches the GID of the �le
and who has the MPE/iX account manager (AM) user capability). In this
case, owner must specify a UID belonging to a user assigned to the account
manager's own account, and group must specify the account manager's own
e�ective GID.

4-14 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

chown

A system manager (a user who has the MPE/iX system manager (SM) user
capability). In this case, owner can specify any UID existing in the user
database.

In order to change the GID of a �le, the user associated with the calling
process must be one of the following:

The �le owner (a user whose e�ective UID matches the UID of the �le). In
this case, owner must specify the �le's UID and group must specify the �le
owner's own GID.
A user with appropriate privileges, de�ned to be one of the following:
The �le's account manager (a user whose GID matches the GID of the
�le and who has the MPE/iX account manager (AM) user capability). In
this case, owner must specify the UID of a user assigned to the account
manager's own account, and group must specify the account manager's
own e�ective GID.
A system manager (a user who has the MPE/iX system manager (SM)
user capability). In this case, group can specify any GID existing in the
group database.

Upon successful completion, chown() marks for update the st_ctime time �eld
of the �le.

Implementation Considerations

Refer to the EIMPL and EFAULT error descriptions below.

The S_ISUID and S_ISGID bits are not supported.

The {_POSIX_CHOWN_RESTRICTED} constant is always in e�ect for pathname.

You cannot modify the GID of the root directory, MPE/iX accounts, or
MPE/iX groups.

An object's owner, its account manager(s), and system managers have di�erent
abilities to assign UID and GID values. A system manager (user with MPE/iX
SM capability) can specify any positive UID or GID value de�ned in the user
or group databases. An account manager (user with MPE/iX AM capability)
can specify the UID of any user belonging to the account manager's account,
but can only specify the GID associated with the account manager's own
e�ective GID. File owners lacking SM or AM capability cannot change a �le's
UID, but can change a �le or directory's GID to their own e�ective GID.

POSIX/iX Library Function Descriptions 4-15

FINAL TRIM SIZE : 7.0 in x 8.5 in

chown

Changing an object's �le owner ID (UID) or �le group ID (GID) changes access
control for that �le or directory. File owners of �les and directories can also
change the access permissions granted to the object. Changing an object's
UID or GID also changes the �le owner or �le group referenced by $OWNER and
$GROUP entries in the ACD associated with the �le or directory.

An ACD is automatically assigned to a �le if the �le lacks an ACD and the
group parameter speci�es a di�erent GID than the GID associated with the
MPE/iX account in which the �le resides. The new ACD grants all access to
the �le owner and RACD access to all others.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process does not have search permission
to a component of the pathname.

ACTION Make sure that the calling process has search
permission to all component directories in the
pathname.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE One of the following:

An attempt was made to change the UID or GID
of the root directory, an MPE/iX account, an
MPE/iX group, an output spool �le, or a
system-de�ned �le.
The pathname begins with two slash characters
(//).

ACTION One of the following:

Do not attempt to change the UID or GID of the
root directory, an MPE/iX account, an MPE/iX
group, an output spool �le, or a system-de�ned
�le.
Do not begin pathname with two slash characters
(//).

4-16 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

chown

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE The speci�ed �le does not exist, or pathname points
to an empty string.

ACTION Specify an existing �lename.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

EINVAL CAUSE The owner parameter or group parameter speci�ed
an invalid or unsupported value.

ACTION Specify a valid and supported value.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process is in a
Procedure Exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

See Also

chmod(), POSIX.1 (Section 5.6.5)

POSIX/iX Library Function Descriptions 4-17

FINAL TRIM SIZE : 7.0 in x 8.5 in

close

Closes a �le.

Syntax

#include <unistd.h>

int close (int �ldes);

Parameters

�ldes An open �le descriptor.

Return Values

0 Success. The �le is closed.

-1 An error occurred. The �le is not closed, and errno is set to
indicate the error condition.

Description

The close() function closes the �le speci�ed by �ldes . Upon the close, all
record locks held by the calling process on the �le associated with �ldes are
removed.

When all �le descriptors associated with an open �le description have been
closed, the open �le description is freed and is no longer accessible.

If the link count of the �le is zero upon closing, when all open �le descriptors
associated with the �le are closed, the �le is purged from the system.

The close() function updates the following �le time �elds to the current time:

All time �elds that have been previously marked for update. All update
marks are removed.
The st_atime time �eld.
The st_mtime time �eld only if the �le was opened O_WRONLY or O_RDWR.

4-18 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

close

Implementation Considerations

Refer to the ESYSERR error description below.

Signals generated for the calling process during the execution of close() are
deferred from delivery until the completion of close().

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The �ldes parameter is not a valid open �le
descriptor.

ACTION Check to see if �ldes has been altered or is not
initialized.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

creat(), dup(), execl(), execv(), fork(), open(), unlink(), POSIX.1
(Section 6.3.1)

POSIX/iX Library Function Descriptions 4-19

FINAL TRIM SIZE : 7.0 in x 8.5 in

closedir

Closes a directory stream.

Syntax

#include <sys/types.h>

#include <dirent.h>

int closedir (DIR *dirp);

Parameters

dirp A pointer to a structure of type DIR representing an open directory
stream (returned by a call to opendir()).

Return Values

0 Success. The directory is closed.

-1 An error occurred. The directory �le is not closed, and errno is
set to indicate the error condition.

Description

The closedir() function closes the open directory �le pointed to by dirp. The
directory stream must be a structure of type DIR (de�ned in <dirent.h>)
returned from a successful call to opendir(), or an error occurs. The �le
descriptor associated with the DIR structure is also closed.

Implementation Considerations

Refer to the EFAULT error description below.

The DIR structure is implemented using a �le descriptor.

4-20 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

closedir

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The dirp parameter does not point to an open
directory stream.

ACTION Pass a pointer to an open directory stream returned
by the opendir() function.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the dirp parameter.

ACTION Make sure that the pointer is correctly initialized.

See Also

opendir(), readdir(), rewinddir(), <dirent.h>, POSIX.1 (Section 5.1.2)

POSIX/iX Library Function Descriptions 4-21

FINAL TRIM SIZE : 7.0 in x 8.5 in

confstr

Determine string-valued system con�guration options.

Syntax

#include <unistd.h>

size_t confstr(int name, char *buf, size_t len);

Parameters

name Speci�es the system con�guration option, the string value
of which you want to obtain. The value of name may be
any one of a set of symbols de�ned in <unistd.h>; each
of these symbols corresponds to a system con�guration
option. Possible symbols are:

CS PATH This name is used to return a value for the
PATH environment variable that can �nd all
the POSIX.2 standard utilities.

CS SHELLThis name is used to �nd the path name to the
standard shell command line interpreter.

buf Points to the region of memory where confstr() stores the
string value of the variable indicated by name.

len Is the maximum number of characters that can be placed
in buf. If this is not enough to hold the complete string
value of name, confstr() truncates the string value to
len-1 characters and appends a null terminator (the n0
character).

Return Values

The confstr() function returns con�guration-de�ned string values.

If name is not a con�guration de�ned value, then confstr() returns 0 and sets
errno.

4-22 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

confstr

Description

confstr() is for options that have a string value; for options with a numeric
value, use sysconf(). Unless there is an error, confstr() returns the length
of the con�guration de�ned string, including the null termination character.
This may be greater than len if len wasn't big enough to hold the entire string
value.

If len is zero and buf is a NULL pointer, confstr() does not attempt to
return a string but does return the appropriate length. In this way, you can use
the value to allocate su�cient memory to hold the string.

Errors

If an error occurs, errno is set to one of the following values:

EINVAL CAUSE The value speci�ed for the name argument was
invalid.

ACTION Specify a valid name.

If name has a con�guration de�ned value, confstr() returns the size of the
bu�er required to hold that value. If this return value is greater than len,
confstr() truncates the string returned in buf.

See Also

sysconf(), POSIX.2

POSIX/iX Library Function Descriptions 4-23

FINAL TRIM SIZE : 7.0 in x 8.5 in

creat

Creates a new �le or rewrites an existing �le.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int creat (const char *pathname, mode_t mode);

Parameters

pathname A pointer to a string containing the pathname of a �le to be
created or rewritten. The pathname must be terminated by a null
character.

mode File access permission bits. If the �le already exists, mode is
ignored. Access permission bits are set by ORing any combination
of the following macros:

S_IRWXU Set �le owner class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IRUSR Set �le owner class read permission bit.

S_IWUSR Set �le owner class write permission bit.

S_IXUSR Set �le owner class execute (if a �le) or search (if a
directory) permission bit.

S_IRWXG Set �le group class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IRGRP Set �le group class read permission bit.

S_IWGRP Set �le group class write permission bit.

S_IXGRP Set �le group class execute (if a �le) or search (if a
directory) permission bit.

S_IRWXO Set �le other class read, write, and execute (if a
�le) or search (if a directory) permission bits.

4-24 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

creat

S_IROTH Set �le other class read permission bit.

S_IWOTH Set �le other class write permission bit.

S_IXOTH Set �le other class execute (if a �le) or search (if a
directory) permission bit.

Return Values

>=0 Success. A nonnegative integer is returned representing the lowest
numbered �le descriptor not open by the calling process.

-1 An error occurred. The �le is not opened, and errno is set to
indicate the error condition.

Description

The creat() function opens for write-only access a �le whose pathname is
speci�ed in the string pointed to by pathname.

The creat() function establishes the connection between a �le and a �le
descriptor. It creates an open �le description that refers to a �le, and a �le
descriptor that refers to that open �le description. The �le descriptor is used
by other I/O functions to refer to the �le.

The creat() function returns a �le descriptor for the speci�ed �le which is the
lowest �le descriptor not currently open for the calling process. The open �le
description is new; therefore, the �le descriptor does not share it with any other
process in the system.

If the �le does not already exist, the �le is created and the following occurs:

The �le o�set is set to the beginning of the �le.
The �le is opened for O_WRONLY access.
The �le's UID is set to the e�ective UID of the calling process.
The �le's GID is set to the GID of the directory in which the �le is being
created.
The �le permission bits of the �le are set to mode and modi�ed by the �le
mode creation mask of the calling process.
The following �le time �elds are marked for update:
the �le's st_atime, st_ctime and st_mtime time �elds
the parent directory's st_ctime and st_mtime time �elds

POSIX/iX Library Function Descriptions 4-25

FINAL TRIM SIZE : 7.0 in x 8.5 in

creat

If the �le already exists, the following occurs:

The �le is truncated to zero length, and the �le o�set is set to the beginning
of the �le.
The �le's UID, GID, and mode remain unchanged.
The st_ctime and st_mtime time �elds of the �le are marked for update.

The function call

creat (path, mode);

is equivalent to

open (path, O_WRONLY | O_CREAT | O_TRUNC, mode);

Implementation Considerations

Refer to the EACCES, EEXCL, EFAULT, EIMPL, EINVAL, EMFILE, and ESYSERR

error descriptions in the error section of the open() function description.

Pipes (or FIFOs), device special �les, and read-only �le systems are not
supported through POSIX/iX interfaces and cannot be opened by creat().
Device �les are inherited from the parent process, which has them opened as
STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO.

The GID of a newly created �le is set to the GID of the directory in which the
�le is created.

MPE/iX �le equations are ignored by creat().

The calling process must have the correct access permissions as de�ned by
either an attached ACD or by the MPE/iX �le security matrix. The calling
process must have either ACD write access and append access or MPE/iX
write access and append access.

Signals generated for the calling process during execution of open() are
deferred from delivery until completion of this function.

4-26 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

creat

Errors

Refer to the error section of the open() function description for errors returned
by creat(). Possible errors returned by creat() are the same as those
returned by open() when oag is set to (O_WRONLY | O_CREAT | O_TRUNC).

See Also.

open(), close(), dup(), execl(), execv(), <fcntl.h>, lseek(), read(),
<signal.h>, fstat(), stat(), <stat.h>, write(), umask(), POSIX.1
(Section 5.3.2)

POSIX/iX Library Function Descriptions 4-27

FINAL TRIM SIZE : 7.0 in x 8.5 in

ctermid

Identi�cation of controlling terminal.

Syntax

#include <stdio.h>

char *ctermid(char *s);

Parameters

s The address of an array that will receive the pathname fo the
current controlling terminal.

Return Values

If s is not NULL then it points to an array of char L ctermid bytes long, or
longer, as de�ned in <stdio.h>.

An empty string is returned if the ctermid() function is unsuccessful.

Description

The ctermid() function returns a string that can be used as a �lename for
referencing a terminal.

If a pathname is returned, access is not guaranteed.

Implementation Considerations

None.

Errors

None.

See Also

ttyname(), POSIX.1 (Section 4.7.2)

4-28 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

dup, dup2

dup, dup2

Duplicates an open �le descriptor.

Syntax

#include <unistd.h>

int dup (int �ldes);

int dup2(iint �ldes, int �ldes2)

Parameters

�ldes An open �le descriptor.

Return Values

>=0 Success. A new �le descriptor is returned.

-1 An error occurred. the open �le descriptor is not duplicated, and
errno is set to indicate the error condition.

Description

The dup() and dup2 functions return the lowest numbered �le descriptor not
currentely open by the calling process. The �le descriptors returned by dup()

and dup2() refer to the same open �le description as �ldes and share any locks.

The dup() and dup2() functions ignore �le access permission bits when
attempting to duplicate an open �le descriptor.

Implementation Considerations

Refer to the EEXCL and ESYSERR error descriptions below.

Signals generated for the calling process during execution of dup() re deferred
from delivery until completion of this function.

POSIX/iX Library Function Descriptions 4-29

FINAL TRIM SIZE : 7.0 in x 8.5 in

dup, dup2

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The parameter �ldes is not a valid open �le
descriptor.

ACTION Check to see if the value passed in �ldes has been
altered or whether the �le indicated by �ldes was
ever opened.

EEXCL CAUSE The speci�ed �le descriptor is opened for exclusive
access.

ACTION Do not attempt to duplicate a �le descriptor that is
opened for exclusive access.

EMFILE CAUSE The number of open �les and directories would
exceed {OPEN_MAX}, the limit of opened �les per
process.

ACTION Check process limit in <limits.h>. Close a �le.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

close(), creat(), execl(), execv(), open(), POSIX.1 (Section 6.2.1)

4-30 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execl

execl

Executes a �le.

Syntax

#include <unistd.h>

int execl (const char *pathname, const char *arg0, ...,

const char *argn-1, (const char *)0);

Parameters

pathname A pointer to a string containing the pathname of the executable
�le that is to become the new process image. The pathname must
be terminated by a null character.

The elements of the pathname must be uppercase and must
resolve to a valid MPE/iX �le, group, and account. For
example, the pathname /FINANCE/PAYROLL/JULY must resolve to
JULY.PAYROLL.FINANCE, where JULY is an executable �le located
in MPE/iX group PAYROLL in MPE/iX account FINANCE.

arg0, ...,
argn

Each of the parameters arg0, ..., argn-1 point to a string
containing an argument to the new process image. Each argument
must be terminated by a null character. The last parameter, argn,
must be a NULL pointer.

For an application to be strictly conforming, the �rst parameter,
arg0 , must point to a string containing a �lename that identi�es
the executable �le for the new process image.

Return Values

No return Success.

-1 An error occurred. The current process image remains unchanged,
and errno is set to indicate the error condition.

POSIX/iX Library Function Descriptions 4-31

FINAL TRIM SIZE : 7.0 in x 8.5 in

execl

Description

The execl() function replaces the current process image with a new process
image created from the executable �le speci�ed in pathname.

Use the execl() function if you know the exact number of arguments to be
passed to the new process image. Use the execv() function if the number of
arguments passed to the new process image might vary at run time.

If the new process image is a C program, it is entered as a C function call
having the following declaration:

int main (int argc, const char *argv[])

In the above declaration, argc is a count of the number of pointers in the
array argv[] and argv[] is an array of character pointers to the parameters arg0
through argn. The NULL pointer terminating argv[] is not counted in argc.

The environment for the new process image is identical to the environment of
the calling process.

If the new process image is not a C program, no information is made available
through the argument list in argv[] .

The sum of the bytes used in both the argument list and environment list must
not exceed {ARG_MAX} (de�ned in the �le <limits.h>).

File descriptors open in the calling process image remain open in the new
process image. For all �le descriptors that remain open, all attributes of the
open �le description remain unchanged by this function, including �le locks.

Streams open in the calling process image are not accessible in the new
process image. (However, the underlying �le descriptors that remain open, but
inaccessible, are counted towards {OPEN_MAX}.)

Signals set to SIG_DFL or SIG_IGN in the calling process remain unchanged in
the new process image. All signals of the calling process whose action is to
invoke a signal handling function are set to SIG_DFL in the new process image.

4-32 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execl

The following attributes of the new process image are set to the same values of
those of the calling process:

process ID
parent process ID
process group ID
session membership
real user ID
real group ID
time remaining until a SIGALRM signal
current working directory
root directory
�le mode creation mask
process signal mask
pending signals
tms_utime, tms_stime, tms_cutime, and tms_cstime

The executable �le's st_atime time �eld is marked for update. The executable
�le is open until the new process image terminates or executes another of the
exec() functions.

Implementation Considerations

Refer to the EPERM, EIMPL, and ENOEXEC error descriptions below.

Some MPE/iX process attributes that are not speci�ed in the POSIX 1003.1
standard are not inherited by the new process image.

NULL terminators and pointers are counted against {ARG_MAX}. Alignment
bytes are counted against {ARG_MAX}.

The calling process's privilege level is used as the new program's maximum
privilege level.

If the calling process entered debug mode through the DEBUG option of the
MPE/iX CI RUN command, the new process image is also in debug mode.

POSIX/iX Library Function Descriptions 4-33

FINAL TRIM SIZE : 7.0 in x 8.5 in

execl

Errors

If an error occurs, errno is set to one of the following values:

E2BIG CAUSE The number of bytes used by the new process
image's argument list and environment list
combined is greater than the limit of {ARG_MAX}
(de�ned in <limits.h>).

ACTION Reduce the size of the argument list or environment
list or both.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.
The �le is not a valid executable �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.
Make sure that the �le has an MPE/iX �le code
of NMPRG.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname did not resolve to a valid MPE/iX
�le, group, and account.

ACTION Specify a valid pathname as described in the
pathname parameter description.

4-34 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execl

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

ENOEXEC CAUSE The program �le does not have the NMPRG �le code.
ACTION Make sure that the program �le has the NMPRG �le

code.

ENOMEM CAUSE The new process image requires more memory than
the system allows.

ACTION No action required. The new process image cannot
be created.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

POSIX/iX Library Function Descriptions 4-35

FINAL TRIM SIZE : 7.0 in x 8.5 in

execl

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource.

See Also

execv(), fork(), alarm(), chmod(), _exit(), <signal.h>, sigprocmask(),
sigpending(), fstat(), stat(), <sys/stat.h>, umask(), POSIX.1 (Section
3.1.2)

4-36 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execle

execle

Executes a �le.

Syntax

#include <unistd.h>

int execle (const char *path, const char *arg ...),

Parameters

path A pointer to a string containing the pathname of the executable
�le that is to become the new process image. The pathname must
be terminated by a null character.

The elements of the pathname must be uppercase and must
resolve to a valid MPE/iX �le, group, and account. For
example, the pathname /FINANCE/PAYROLL/JULY must resolve to
JULY.PAYROLL.FINANCE, where JULY is an executable �le located
in MPE/iX group PAYROLL in MPE/iX account FINANCE.

arg0, ...,
argn

Each of the parameters arg0, ..., argn-1 point to a string
containing an argument to the new process image. Each argument
must be terminated by a null character. The last parameter, argn,
must be a NULL pointer.

For an application to be strictly conforming, the �rst parameter,
arg0 , must point to a string containing a �lename that identi�es
the executable �le for the new process image.

Return Values

No return Success.

-1 An error occurred. The current process image remains unchanged,
and errno is set to indicate the error condition.

POSIX/iX Library Function Descriptions 4-37

FINAL TRIM SIZE : 7.0 in x 8.5 in

execle

Description

The execle() function replaces the current process image with a new process
image created from the executable �le speci�ed in pathname.

Use the execl() function if you know the exact number of arguments to be
passed to the new process image. Use the execv() function if the number of
arguments passed to the new process image might vary at run time.

If the new process image is a C program, it is entered as a C function call
having the following declaration:

int main (int argc, const char *argv[])

In the above declaration, argc is a count of the number of pointers in the
array argv[] and argv[] is an array of character pointers to the parameters arg0
through argn. The NULL pointer terminating argv[] is not counted in argc.

The environment for the new process image is identical to the environment of
the calling process.

If the new process image is not a C program, no information is made available
through the argument list in argv[] .

The sum of the bytes used in both the argument list and environment list must
not exceed {ARG_MAX} (de�ned in the �le <limits.h>).

File descriptors open in the calling process image remain open in the new
process image. For all �le descriptors that remain open, all attributes of the
open �le description remain unchanged by this function, including �le locks.

Streams open in the calling process image are not accessible in the new
process image. (However, the underlying �le descriptors that remain open, but
inaccessible, are counted towards {OPEN_MAX}.)

Signals set to SIG_DFL or SIG_IGN in the calling process remain unchanged in
the new process image. All signals of the calling process whose action is to
invoke a signal handling function are set to SIG_DFL in the new process image.

The following attributes of the new process image are set to the same values of
those of the calling process:

process ID
parent process ID

4-38 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execle

process group ID
session membership
real user ID
real group ID
time remaining until a SIGALRM signal
current working directory
root directory
�le mode creation mask
process signal mask
pending signals
tms_utime, tms_stime, tms_cutime, and tms_cstime

The executable �le's st_atime time �eld is marked for update. The executable
�le is open until the new process image terminates or executes another of the
exec() functions.

Implementation Considerations

Refer to the EPERM, EIMPL, and ENOEXEC error descriptions below.

Some MPE/iX process attributes that are not speci�ed in the POSIX 1003.1
standard are not inherited by the new process image.

NULL terminators and pointers are counted against {ARG_MAX}. Alignment
bytes are counted against {ARG_MAX}.

The calling process's privilege level is used as the new program's maximum
privilege level.

If the calling process entered debug mode through the ;DEBUG option of the
MPE/iX CI RUN command, the new process image is also in debug mode.

POSIX/iX Library Function Descriptions 4-39

FINAL TRIM SIZE : 7.0 in x 8.5 in

execle

Errors

If an error occurs, errno is set to one of the following values:

E2BIG CAUSE The number of bytes used by the new process
image's argument list and environment list
combined is greater than the limit of {ARG_MAX}
(de�ned in <limits.h>).

ACTION Reduce the size of the argument list or environment
list or both.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname did not resolve to a valid MPE/iX
�le, group, and account or the pathname begins
with two slashes.

ACTION Specify a valid pathname as described in the
pathname parameter description.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

4-40 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execle

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

ENOEXEC CAUSE The program �le does not have the NMPRG �le code.
ACTION Make sure that the program �le has the NMPRG �le

code.

ENOMEM CAUSE The new process image requires more memory than
the system allows.

ACTION No action required. The new process image cannot
be created.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process in in a
procedure exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

EBUSY CAUSE The new process image �le is loded by another user.
ACTION None.

See Also

alarm(), chmod(), _exit(), fcntl(), fork(), setuid(), <signal.h>,
sigpromask(), sigpending, stat(), <sys/stat.h>, times(), umask, POSIX.1

POSIX/iX Library Function Descriptions 4-41

FINAL TRIM SIZE : 7.0 in x 8.5 in

execlp

Executes a �le.

Syntax

#include <unistd.h> /* proto */

int execlp(const char *filename, const char *arg0, ...,);

Parameters

�lename A pointer to a string containing the pathname of the executable
�le that is to become the new process image. The pathname must
be terminated by a null character.

The elements of the pathname must be uppercase and must
resolve to a valid MPE/iX �le, group, and account. For
example, the pathname /FINANCE/PAYROLL/JULY must resolve to
JULY.PAYROLL.FINANCE, where JULY is an executable �le located
in MPE/iX group PAYROLL in MPE/iX account FINANCE.

arg0, ...,
argn

Each of the parameters arg0, ..., argn-1 point to a string
containing an argument to the new process image. Each argument
must be terminated by a null character. The last parameter, argn,
must be a NULL pointer.

For an application to be strictly conforming, the �rst parameter,
arg0 , must point to a string containing a �lename that identi�es
the executable �le for the new process image.

Return Values

No return Success.

-1 An error occurred. The current process image remains unchanged,
and errno is set to indicate the error condition.

4-42 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execlp

Description

The execlp() function replaces the current process image with a new process
image created from the executable �le speci�ed in �lename .

Use the execlp() function if you know the exact number of arguments to be
passed to the new process image. Use the execv() function if the number of
arguments passed to the new process image might vary at run time.

If the new process image is a C program, it is entered as a C function call
having the following declaration:

int main (int argc, const char *argv[])

In the above declaration, argc is a count of the number of pointers in the
array argv[] and argv[] is an array of character pointers to the parameters arg0
through argn. The NULL pointer terminating argv[] is not counted in argc.

The environment for the new process image is identical to the environment of
the calling process.

If the new process image is not a C program, no information is made available
through the argument list in argv[] .

The sum of the bytes used in both the argument list and environment list must
not exceed {ARG_MAX} (de�ned in the �le <limits.h>).

File descriptors open in the calling process image remain open in the new
process image. For all �le descriptors that remain open, all attributes of the
open �le description remain unchanged by this function, including �le locks.

Streams open in the calling process image are not accessible in the new
process image. (However, the underlying �le descriptors that remain open, but
inaccessible, are counted towards {OPEN_MAX}.)

Signals set to SIG_DFL or SIG_IGN in the calling process remain unchanged in
the new process image. All signals of the calling process whose action is to
invoke a signal handling function are set to SIG_DFL in the new process image.

The following attributes of the new process image are set to the same values of
those of the calling process:

process ID
parent process ID

POSIX/iX Library Function Descriptions 4-43

FINAL TRIM SIZE : 7.0 in x 8.5 in

execlp

process group ID
session membership
real user ID
real group ID
time remaining until a SIGALRM signal
current working directory
root directory
�le mode creation mask
process signal mask
pending signals
tms_utime, tms_stime, tms_cutime, and tms_cstime

The executable �le's st_atime time �eld is marked for update. The executable
�le is open until the new process image terminates or executes another of the
exec() functions.

Implementation Considerations

Refer to the EPERM, EIMPL, and ENOEXEC error descriptions below.

Some MPE/iX process attributes that are not speci�ed in the POSIX 1003.1
standard are not inherited by the new process image.

NULL terminators and pointers are counted against {ARG_MAX}. Alignment
bytes are counted against {ARG_MAX}.

The calling process's privilege level is used as the new program's maximum
privilege level.

If the calling process entered debug mode through the ;DEBUG option of the
MPE/iX CI RUN command, the new process image is also in debug mode.

4-44 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execlp

Errors

If an error occurs, errno is set to one of the following values:

E2BIG CAUSE The number of bytes used by the new process
image's argument list and environment list
combined is greater than the limit of {ARG_MAX}
(de�ned in <limits.h>).

ACTION Reduce the size of the argument list or environment
list or both.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname did not resolve to a valid MPE/iX
�le, group, and account or the pathname begins
with two slashes.

ACTION Specify a valid pathname as described in the
pathname parameter description.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

POSIX/iX Library Function Descriptions 4-45

FINAL TRIM SIZE : 7.0 in x 8.5 in

execlp

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

ENOEXEC CAUSE The program �le does not have the NMPRG �le code.
ACTION Make sure that the program �le has the NMPRG �le

code.

ENOMEM CAUSE The new process image requires more memory than
the system allows.

ACTION No action required. The new process image cannot
be created.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource.

See Also

alarm(), chmod(), _exit(), fcntl(), fork(), setuid, <signal.h>,
sigpromask(), sigpending, stat(), <sys/stat.h>, times(), umask(),
POSIX.1

4-46 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execve

execve

Executes a �le.

Syntax

#include <unistd.h>

int execve (const char *path, char *const *argv[],

cr *const envp[]);

har *const envp[]);

Parameters

path A pointer to a string containing the pathname of the executable
�le that is to become the new process image. The pathname must
be terminated by a null character.

The elements of the pathname must be uppercase and must
resolve to a valid MPE/iX �le, group, and account. For
example, the pathname /FINANCE/PAYROLL/JULY must resolve to
JULY.PAYROLL.FINANCE, where JULY is an executable �le located
in MPE/iX group PAYROLL in MPE/iX account FINANCE.

arg0, ...,
argn

Each of the parameters arg0, ..., argn-1 point to a string
containing an argument to the new process image. Each argument
must be terminated by a null character. The last parameter, argn,
must be a NULL pointer.

For an application to be strictly conforming, the �rst parameter,
arg0 , must point to a string containing a �lename that identi�es
the executable �le for the new process image.

envp[] An array of character pointers to null terminated strings. These
strings constitute the environment for the new process image.

POSIX/iX Library Function Descriptions 4-47

FINAL TRIM SIZE : 7.0 in x 8.5 in

execve

Return Values

No return Success.

-1 An error occurred. The current process image remains unchanged,
and errno is set to indicate the error condition.

Description

The execve() function replaces the current process image with a new process
image created from the executable �le speci�ed in pathname.

Use the execl() function if you know the exact number of arguments to be
passed to the new process image. Use the execv() function if the number of
arguments passed to the new process image might vary at run time.

If the new process image is a C program, it is entered as a C function call
having the following declaration:

int main (int argc, const char *argv[])

In the above declaration, argc is a count of the number of pointers in the
array argv[] and argv[] is an array of character pointers to the parameters arg0
through argn. The NULL pointer terminating argv[] is not counted in argc.

The environment for the new process image is identical to the environment of
the calling process.

If the new process image is not a C program, no information is made available
through the argument list in argv[] .

The sum of the bytes used in both the argument list and environment list must
not exceed {ARG_MAX} (de�ned in the �le <limits.h>).

File descriptors open in the calling process image remain open in the new
process image. For all �le descriptors that remain open, all attributes of the
open �le description remain unchanged by this function, including �le locks.

Streams open in the calling process image are not accessible in the new
process image. (However, the underlying �le descriptors that remain open, but
inaccessible, are counted towards {OPEN_MAX}.)

4-48 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execve

Signals set to SIG_DFL or SIG_IGN in the calling process remain unchanged in
the new process image. All signals of the calling process whose action is to
invoke a signal handling function are set to SIG_DFL in the new process image.

The following attributes of the new process image are set to the same values of
those of the calling process:

process ID
parent process ID
process group ID
session membership
real user ID
real group ID
time remaining until a SIGALRM signal
current working directory
root directory
�le mode creation mask
process signal mask
pending signals
tms_utime, tms_stime, tms_cutime, and tms_cstime

The executable �le's st_atime time �eld is marked for update. The executable
�le is open until the new process image terminates or executes another of the
exec() functions.

Implementation Considerations

Refer to the EPERM, EIMPL, and ENOEXEC error descriptions below.

Some MPE/iX process attributes that are not speci�ed in the POSIX 1003.1
standard are not inherited by the new process image.

NULL terminators and pointers are counted against {ARG_MAX}. Alignment
bytes are counted against {ARG_MAX}.

The calling process's privilege level is used as the new program's maximum
privilege level.

If the calling process entered debug mode through the ;DEBUG option of the
MPE/iX CI RUN command, the new process image is also in debug mode.

POSIX/iX Library Function Descriptions 4-49

FINAL TRIM SIZE : 7.0 in x 8.5 in

execve

Errors

If an error occurs, errno is set to one of the following values:

E2BIG CAUSE The number of bytes used by the new process
image's argument list and environment list
combined is greater than the limit of {ARG_MAX}
(de�ned in <limits.h>).

ACTION Reduce the size of the argument list or environment
list or both.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname did not resolve to a valid MPE/iX
�le, group, and account or the pathname began with
two slashes.

ACTION Specify a valid pathname as described in the
pathname parameter description.

4-50 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execve

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

ENOEXEC CAUSE The program �le does not have the NMPRG �le code.
ACTION Make sure that the program �le has the NMPRG �le

code.

ENOMEM CAUSE The new process image requires more memory than
the system allows.

ACTION No action required. The new process image cannot
be created.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

POSIX/iX Library Function Descriptions 4-51

FINAL TRIM SIZE : 7.0 in x 8.5 in

execve

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process is in a
Procedure Exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

See Also

alarm(), chmod(), _exit(), fcntl(), fork(), setuid(), <signal.h>,
sigpromask(), sigpending(), stat(), <sys/stat.h>, times(), umask,
POSIX.1

4-52 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execvp

execvp

Executes a �le.

Syntax

#include <unistd.h>

int execvp (const char *�le, char * const argv[]);

Parameters

�le A pointer to a string containing the pathname of the executable
�le that is to become the new process image. The pathname must
be terminated by a null character.

The elements of the pathname must be uppercase and must
resolve to a valid MPE/iX �le, group, and account. For
example, the pathname /FINANCE/PAYROLL/JULY must resolve to
JULY.PAYROLL.FINANCE, where JULY is an executable �le located
in MPE/iX group PAYROLL in MPE/iX account FINANCE.

arg0, ...,
argn

Each of the parameters arg0, ..., argn-1 point to a string
containing an argument to the new process image. Each argument
must be terminated by a null character. The last parameter, argn,
must be a NULL pointer.

For an application to be strictly conforming, the �rst parameter,
arg0 , must point to a string containing a �lename that identi�es
the executable �le for the new process image.

Return Values

No return Success.

-1 An error occurred. The current process image remains unchanged,
and errno is set to indicate the error condition.

POSIX/iX Library Function Descriptions 4-53

FINAL TRIM SIZE : 7.0 in x 8.5 in

execvp

Description

The execvp() function replaces the current process image with a new process
image created from the executable �le speci�ed in pathname.

Use the execl() function if you know the exact number of arguments to be
passed to the new process image. Use the execv() function if the number of
arguments passed to the new process image might vary at run time.

If the new process image is a C program, it is entered as a C function call
having the following declaration:

int main (int argc, const char *argv[])

In the above declaration, argc is a count of the number of pointers in the
array argv[] and argv[] is an array of character pointers to the parameters arg0
through argn. The NULL pointer terminating argv[] is not counted in argc.

The environment for the new process image is identical to the environment of
the calling process.

If the new process image is not a C program, no information is made available
through the argument list in argv[] .

The sum of the bytes used in both the argument list and environment list must
not exceed {ARG_MAX} (de�ned in the �le <limits.h>).

File descriptors open in the calling process image remain open in the new
process image. For all �le descriptors that remain open, all attributes of the
open �le description remain unchanged by this function, including �le locks.

Streams open in the calling process image are not accessible in the new process
image. The underlying �le descriptors that remain open, but inaccessible, are
counted towards {OPEN_MAX}.

Signals set to SIG_DFL or SIG_IGN in the calling process remain unchanged in
the new process image. All signals of the calling process whose action is to
invoke a signal handling function are set to SIG_DFL in the new process image.

The following attributes of the new process image are set to the same values of
those of the calling process:

process ID
parent process ID

4-54 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execvp

process group ID
session membership
real user ID
real group ID
time remaining until a SIGALRM signal
current working directory
root directory
�le mode creation mask
process signal mask
pending signals
tms_utime, tms_stime, tms_cutime, and tms_cstime

The executable �le's st_atime time �eld is marked for update. The executable
�le is open until the new process image terminates or executes another of the
exec() functions.

Implementation Considerations

Refer to the EPERM, EIMPL, and ENOEXEC error descriptions below.

Some MPE/iX process attributes that are not speci�ed in the POSIX 1003.1
standard are not inherited by the new process image.

NULL terminators and pointers are counted against {ARG_MAX}. Alignment
bytes are counted against {ARG_MAX}.

The calling process's privilege level is used as the new program's maximum
privilege level.

If the calling process entered debug mode through the ;DEBUG option of the
MPE/iX CI RUN command, the new process image is also in debug mode.

POSIX/iX Library Function Descriptions 4-55

FINAL TRIM SIZE : 7.0 in x 8.5 in

execvp

Errors

If an error occurs, errno is set to one of the following values:

E2BIG CAUSE The number of bytes used by the new process
image's argument list and environment list
combined is greater than the limit of {ARG_MAX}
(de�ned in <limits.h>).

ACTION Reduce the size of the argument list or environment
list or both.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname did not resolve to a valid MPE/iX
�le, group, and account, or the pathname begins
with two slashes.

ACTION Specify a valid pathname as described in the
pathname parameter description.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

4-56 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execvp

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

ENOEXEC CAUSE The program �le does not have the NMPRG �le code.
ACTION Make sure that the program �le has the NMPRG �le

code.

ENOMEM CAUSE The new process image requires more memory than
the system allows.

ACTION No action required. The new process image cannot
be created.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process is in a
Procedure Exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

See Also

alarm(), chmod(), _exit(), fcntl(), fork(), setuid, <signal.h>,
sigpromask(), sigpending, stat(), <sys/stat.h>, times(), umask, POSIX.1

POSIX/iX Library Function Descriptions 4-57

FINAL TRIM SIZE : 7.0 in x 8.5 in

execv

Executes a �le.

Syntax

#include <unistd.h>

int execv (const char *pathname, const char *argv[]);

Parameters

pathname A pointer to a string containing the pathname of the executable
�le that is to become the new process image. The pathname must
be terminated by a null character.

The elements of the pathname must be uppercase and must
resolve to a valid MPE/iX �le, group, and account. For
example, the pathname /FINANCE/PAYROLL/JULY must resolve to
JULY.PAYROLL.FINANCE, where JULY is an executable �le located
in MPE/iX group PAYROLL and MPE/iX account FINANCE.

argv A pointer to an array where each element contains a pointer to a
string containing an argument to the new process image. Each
argument must be terminated by a null character. The element
following the last element pointing to an argument must contain a
NULL pointer.

For an application to be strictly conforming, the �rst element,
argv[0] , must point to a string containing a �lename that identi�es
the executable �le for the new process image.

Return Values

No return Success.

-1 An error occurred. The current process image remains unchanged,
and errno is set to indicate the error condition.

4-58 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execv

Description

The execv() function replaces the current process image with a new process
image created from the executable �le speci�ed by pathname.

Use the execl() function if you know the exact number of arguments to be
passed to the new process image. Use the execv() function if the number of
arguments passed to the new process image might vary at run time.

If the new process image is a C program, it is entered as a C function call
having the following declaration:

int main (int argc, const char *argv[])

In the above declaration, argc is a count of the number of pointers in the array
argv[] . The NULL pointer terminating argv[] is not counted in argc.

The environment for the new process image is identical to the environment of
the calling process.

If the new process image is not a C program, no information is made available
through the argument list in argv[] .

The sum of the bytes used in both the argument list and environment list must
not exceed {ARG_MAX} (de�ned in the �le <limits.h>).

File descriptors open in the calling process image remain open in the new
process image. For all �le descriptors that remain open, all attributes of the
open �le description remain unchanged by this function, including �le locks.

Streams open in the calling process image are not accessible in the new
process image. (However, the underlying �le descriptors that remain open, but
inaccessible, are counted towards {OPEN_MAX}.)

Signals set to SIG_DFL or SIG_IGN in the calling process remain unchanged in
the new process image. All signals of the calling process whose action is to
invoke a signal handling function are set to SIG_DFL in the new process image.

POSIX/iX Library Function Descriptions 4-59

FINAL TRIM SIZE : 7.0 in x 8.5 in

execv

The following attributes of the new process image are set to the same values of
those of the calling process:

process ID
parent process ID
process group ID
session membership
real user ID
real group ID
time remaining until a SIGALRM signal
current working directory
root directory
�le mode creation mask
process signal mask
pending signals
tms_utime, tms_stime, tms_cutime, and tms_cstime

The executable �le's st_atime time �eld is marked for update. If the execv()
function succeeds, the executable �le is open until the new process image
terminates or executes another of the exec() functions.

Implementation Considerations

Refer to the EPERM, EIMPL, and ENOEXEC error descriptions below.

Some MPE/iX process attributes that are not speci�ed in the POSIX 1003.1
standard are not inherited by the new process image.

NULL terminators and pointers are counted against {ARG_MAX}. Alignment
bytes are counted against {ARG_MAX}.

The calling process's privilege level is used as the new program's maximum
privilege level.

If the calling process entered debug mode through the ;DEBUG option of the
MPE/iX CI RUN command, the new process image is also in debug mode.

4-60 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execv

Errors

If an error occurs, errno is set to one of the following values:

POSIX/iX Library Function Descriptions 4-61

FINAL TRIM SIZE : 7.0 in x 8.5 in

execv

E2BIG CAUSE The number of bytes used by the new process
image's argument list and environment list
combined is greater than the limit of {ARG_MAX}
(de�ned in the �le <limits.h>).

ACTION Reduce the size of the argument list or the
environment list or both.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.
The �le is not a valid executable �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.
Make sure that the �le has an MPE/iX �le code
of NMPRG.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname did not resolve to a valid MPE/iX
�le, group, and account.

ACTION Specify a valid pathname as described in the
pathname parameter description.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

4-62 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

execv

ENOENT CAUSE A component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

ENOEXEC CAUSE The program �le does not have the NMPRG �le code.
ACTION Make sure that the program �le has the NMPRG �le

code.

ENOMEM CAUSE The new process image requires more memory than
the system allows.

ACTION No action required. The new process image cannot
be created.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource.

See Also

execl(), fork(), alarm(), chmod(), _exit(), <signal.h>, sigprocmask(),
sigpending(), fstat(), stat(), <sys/stat.h>, umask(), POSIX.1 (Section
3.1.2)

POSIX/iX Library Function Descriptions 4-63

FINAL TRIM SIZE : 7.0 in x 8.5 in

exit

Terminates a process.

Syntax

#include <unistd.h>

void _exit (int status);

Parameters

status A status code to be made available to the parent process of the
calling process through the wait() or waitpid() functions.

Return Values

None. This function does not return to the calling process.

Description

The _exit() function terminates the calling process. The following actions are
performed:

The calling process is terminated.

All open �les and directory streams in the calling process are closed.

The low-order 8 bits of the status parameter are saved and made available to
the parent process through the wait() or waitpid() functions.

All child processes of the calling process are terminated.

A SIGCHLD signal is sent to the parent process to notify it of the calling
process's termination.

4-64 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

exit

Implementation Considerations

All child processes of the calling process are terminated. They are not adopted
by a system process.

The CI session variable CJCW is set to status .

Time accounting information of the calling process is not made available to the
parent process through the wait() or waitpid() functions. A zero is always
returned.

No user process can be a controlling process. Only system processes (CI
processes) are allowed to be controlling processes.

The controlling terminal is not disassociated from the session of the calling
process.

Errors

None.

See Also

close(), sigaction(), wait(), waitpid(), POSIX.1 (Section 3.2.2)

POSIX/iX Library Function Descriptions 4-65

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl

File control.

Syntax

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int fcntl(int *�ldes, int cmd, ...);

Parameters

�ldes An open �le descriptor.

cmd The following values can be used for the �le control command.

F DUPFD Duplicate �le descriptor.

F GETFD Get �le descriptor ags.

F GETLK Get record locking information.

F SETFD Set �le descriptor ags.

F GETFL Get �le status ags.

F SETFL Set �le status ags.

F SETLK Set record locking information.

F SETLKW Set record locking information;wait if blocked.

FD CLOEXEC Close �le descriptor upon execution of an
exec-family function.

l type Values for Record Locking With fcntl()

F RDLCK Shared or read lock.

F UNLCK Unlock.

F WRLCK Exclusive or write lock.

oag Values for open()

4-66 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl

O CREAT Create �le if it does not exist.

O EXCL Exclusive use ag.

O NOCITY Do not assign a controlling terminal.

O TRUNC Truncate ag.

File Status Flags Used for open() and fcntl()

O APPEND Set append mode.

O NONBLOCK No delay.

File Access Modes Used for open() and fcntl()

O RDONLY Open for reading only.

O RDWR Open for reading and writing.

O WRONLY Open for writing only.

Mask for Use With File Access Modes

O ACCMODE Mask for �le access modes.

Return Values

>=0 Success. A nonnegative integer is returned representing the lowest
numbered �le descriptor not open by the calling process.

-1 An error occurred. The �le is not opened, and errno is set to
indicate the error condition.

Description

Upon successful completion, the value returned will depend on cmd . The
various return values are shown in Table 6-9.

Otherwise, a value of -1 will be returned and errno will be set to indicate the
error.

The available values for cmd are de�ned in the <fcntl.h> (see 6.5.1) which will
include:

F DUPFD Return a new �le descriptor that is the lowest numbered
avaliable �le descriptor greater than or equal to the third

POSIX/iX Library Function Descriptions 4-67

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl

argument, arg , taken as an integer of type int . The new �le
descriptor refers to the same open �le description as the
original �le descriptor and shares any locks.

The FD CLOEXEC ag associated with the new �le descriptor
cleared to keep the �le open across calls to the exec family of
functions.

F GETFD Get the �le descriptor ags that are associated with the �le
descriptor �ldes. File descriptor ags are associated with a
single �le descriptor and do not a�ect other �le descriptors
that refer to the same �le.

F GETLK
F SETFD Set the �le descriptor ags that are associated with

�ldes to the third argument, arg taken as type int. If the
FD CLOEXEC ag is zero, the �le will be closed upon
successful execution of an exec function.

F GETFL Get the �le status ags and the �le access modes for the
open �le description associated with �ldes. The �le access
modes can be extracted from the return value using the mask
O ACCMODE, which is de�ned in <fcntl.h>. File status
ags and �le access modes are associated with the open �le
description and do not a�ect other �le descriptors that refer to
the same �le with di�erent open �le descriptions.

F SETFL Set the �le status ags for the open �le description associated
with �ldes from the corresponding bits in the third argument,
arg , taken as type int . Bits corresponding to the �le access
modes and the oag values that are set in arg are ignored. If
any bits in arg other than those mentioned here are changed by
the application, the result is unspeci�ed.

The following commands are available for advisory record locking. Advisory
record locking shall be supported for regular �les, and may be supported for
other �les.

F GETLK Get the �rst lock that blocks the lock description pointed to
by the third argument, arg , taken as a pointer to type struct
ock (see below) The information retrived overwrites the
information passed to fcntl() in the ock structure. If no lock

4-68 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl

is found that would prevent this lock from being created, the
structure will be left unchanged by this function call except for
the lock type, which will be set to F UNLCK.

F SETLK Set or clear a �le segment lock according to the lock
description pointed to by the third argument, arg , taken as a
pointer to type struct ock (see below). F SETLK is used to
establish shared (or read) locks (F RDLCK) or exclusive (or
write) locks, (F WRLCK), as well as to remove either type of
lock (F UNLCK). F RDLCK, F WRLCK, and F UNLCK are
de�ned by the <fcntl.h> header. If shared or exclusive lock
cannot be set, fcntl() will return immediately.

F SETLKW This command is the same as F SETLK except that if a
shared or exclusive lock is blocked by other locks, the process
will wait until the request can be satis�ed. If a signal that is
to be caught is received while fcntl will be interrupted. Upon
return from the signal handler of the process, fcntl() will return
-1 with errno set to [EINTR], and the lock operation will not
be done.

The ock structure, de�ned by the <fcntl.h> header, describes an advisory
lock. It includes the members shown in Table 6-8.

When a shared lock has been set on a segment of a �le, other processes will
be able to set shared locks on that segment or a portion of it. A shared lock
prevents any other process from setting an exclusive lock on any portion of the
protected area. A request for a shared lock will fail if the �le descriptor was
not opened with read access.

An exclusive lock will prevent any other process from setting a shared lock
or an exclusive lock on any portion of the protected area. A request for an
exclusive lock will fail if the �le descriptor was not opened with write access.

The value of l whence is DEEK SET, SEEK CUR, or SEEK END to indicate
that the relative o�set, L START bytes, will be measured from the start of
the �le, current position, or end of the �le, respectively, The value of l en is
the number of consecutive bytes to be locked. If l len is negative, the result is
unde�ned. The l pid �eld is only used with F GETLK to return the process
ID of the process holeing a blocking lock. After a successful F GETLK
request, the value of l whence will be SEEK SET.

POSIX/iX Library Function Descriptions 4-69

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl

flock Structure

Member Type Member Name Description
short l type F RDLCK,F WRLCK,or

F UNLCK.
short l whence Flag for starting o�set.
o� t l start Relative o�set in bytes.
o� t l len Size;if 0,then until EOF.
pid t l pid Process ID of the process holding

the lock, returned with
F GETLK.

Locks may start and extend beyond the current end of a �le, but, will not start
or extend before the beginning of the �le. A lock will be set to extend to the
largest possible value of the �le o�set for that �le is l len is set to zero. If the
ock struct has l whence and l start that point to the beginning of the �le,
and l len of zero, the intire �le will be locked.

There will be at most one type of lock set for each byte in the �le. Before
a successful return from an F SETLK or an F SETLKW request when the
calling process has previously existing locks on bytes in the region speci�ed by
the request, the previous lock type for each byte in the speci�ed region will be
replaced by the new lock type. As speci�ed above under the descriptions of
shared locks and exclusive locks, and F SETLK of an F SETLKW request will
(respectively) fail or block when another process has existing locks on bytes in
the speci�ed region and the type of any of those locks conicts with the type
speci�ed in the request.

All locks associated with a �le for a given process will be removed when a �le
descriptor for that �le is closed by that process or the process holding that �le
descriptor terminates. Locks are not inherited by a child process created useing
the fork() function.

A potential for deadlock occurs if a process controlling a locked region is put to
sleep by attempting to lock the locked region of another process. If the system
detects that sleeping until a locked region is unlocked would cause a deadlock,
the fcntl() function will fail with an [EDEADLK]error.

4-70 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl

Description

The function fcntl() provides for control over open �les. The argument �ldes is
a �le descriptor.

Implementation Considerations

The calling process must have the correct access permissions as de�ned by
either an attached ACD or by the MPE/iX �le security matrix. For example,
a �le opened O_RDONLY must have either ACD read access or MPE/iX read
access. A �le opened O_WRONLY or O_RDWR must have either ACD write access
and append access or MPE/iX write access and append access.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The �le does not exist and the calling process
does not have write permission to the parent
directory of the �le to be created.
The �le exists and the permissions speci�ed by
oag are denied.
Both O_TRUNC and O_RDONLY were speci�ed.
Both O_APPEND and O_RDONLY were speci�ed.
An MPE/iX lockword is associated with the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all directory components of the
pathname.
Make sure that the calling process has write
permission to the parent directory of the �le to be
created.
Specify valid and compatible ags in oag.
Remove the MPE/iX lockword.

POSIX/iX Library Function Descriptions 4-71

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl

EBADF CAUSE The �ldes argument is not a valid �le descriptor.
The argument cmd is F SETLK or F SETLKW,
the type of lock (l type) is shared lock(F RDLCK),
and �ldes is not a valid �le descriptor open for
reading.

The argument cmd is F SETLK or F SETLKW,
the type of lock (l type) is an exclusive
lock(F WLRCK), and �ldes is not a valid �le
descriptor open for writing.

ACTION None.

EINTR CAUSE The argument cmd is F SETLKW, and the function
was interrupted by a signal.

ACTION None.

EINVAL CAUSE More than one of the following three open ags were
speci�ed in oag: O_WRONLY, O_RDONLY, and O_RDWR.

ACTION Specify only one of the open ags in oag.

EMFILE CAUSE The argument cmd if F DUPED and
fOPEN MAXg �le descriptors are currently in use
by this process, or no �le descriptors greater than or
equal to arg are available.

ACTION None.

ENOLCK CAUSE The argument cmd is F SETLK or F SETLKW,
and satisfying the lock or unlock request would
result in the number of locked regions in the system
exceeding a system-imposed limit.

ACTION None.

For each of the following conditions, if the condition is detected, the fcntl()
function will return -1 and set errno to the corresponding value:

4-72 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl

EDEADLK CAUSE The argument cmd is F SETLKW, and a deadlock
condition was detected.

ACTION None.

EAGAIN CAUSE The system lacked the resources to create another
process.

ACTION Attempt process creation at a later time, or decrease
the number of processes associated with the
application.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource.

See Also

close(), exec(), open(), <fcntl.h>, (POSIX.1).

POSIX/iX Library Function Descriptions 4-73

FINAL TRIM SIZE : 7.0 in x 8.5 in

fnmatch

Compare �lename to pattern (wild card) string.

Syntax

#include <fnmatch.h>

int fnmatch (const char *pattern, const char *string, int ags);

Parameters

pattern Is a string that may contain standard path name matching wild
card characters. For example, asterisk (*), question mark (?), []
constructs, and so on.

string is a path name you want to compare to pattern.

ags speci�es options for the match. Flags are represented by symbols
de�ned in <fnmatch.h>. Recognized symbols are:

FNM_NOESCAPE disables backslash (n) escaping. When this ag
is not set, the default behaviour is backslash
escaping enabled; that is, if pattern contains
a backslash (n) followed by a character,
fnmatch() matches the character itself in
string regardless of any special meaning it may
have. For example, nn in pattern matches n in
string.

FNM_PATHNAME indicates that slash (/) is a special character
in string. For path names to match, pattern
must have a slash wherever string does. For
example, the string dir/�le matches the
pattern d* when FNM PATHNAME is not
given as a ag, but does not match when
FNM PATHNAME is present.

FNM_PERIOD indicates that a leading period in string
must be matched by a period in pattern.
An asterisk, question mark, or bracket

4-74 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fnmatch

expression does not match a leading period if
FNM PERIOD is set.

FNM_IGNORECASE indicates that case is to be ignored when
comparing characters. For example, a matches
A when this ag is set.

Return Values

0 string is a path name matching the wild card construct pattern.

FNM_ERROR error with the pattern and consequently no match.

FNM_NOMATCHthere is no match.

Description

fnmatch() determines whether string is a path name matching the wild card
construct pattern. If so, fnmatch() returns zero. If there is an error with the
pattern and consequently no match, fmnatch() returns FNM ERROR. If there
is no match, fnmatch() returns the value FNM NOMATCH.

Errors

None.

See Also

regcomp(), regexec()

POSIX/iX Library Function Descriptions 4-75

FINAL TRIM SIZE : 7.0 in x 8.5 in

fork

Creates a new child process.

Syntax

#include <sys/types.h>

#include <unistd.h>

pid_t fork (void);

Parameters

None.

Return Values

>0 Success. The process ID of the newly created child process is
returned to the calling process.

0 Success. A value of 0 is returned to the newly created child
process.

-1 An error occurred. The process is not created, and errno is set to
indicate the error condition.

Description

The fork() function creates a new child process. Both the new child process
and the calling process (known as the parent process) continue execution
upon the return from fork(). The new process is an exact copy of the calling
process with the following exceptions:

The child process has a unique process ID that does not match any active
process group ID.

The child process's parent process ID is that of the calling process.

The child process has its own copy of the parent's �le descriptors. Each
of the child's �le descriptors refers to the same open �le description as the
corresponding �le descriptor of the parent.

4-76 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fork

The child process has its own copy of the parent's open directory streams.
Each open directory stream in the child process shares stream positioning
with the corresponding directory stream of the parent.

Directory streams are implemented using �le descriptors. Both parent and
child share the same open �le descriptor for each directory stream.

The child process's tms_utime, tms_stime, tms_cutime, and tms_cstime are
set to zero.

File locks set by the parent process are not inherited by the child process.

Pending alarms are cleared for the child process.

The set of signals pending for the child process is set to the empty set.

Implementation Considerations

Refer to the EPERM and EIMPL error descriptions below.

Some MPE/iX process characteristics not de�ned by POSIX are not inherited
by the child. Examples are CM structures such as extra data segments, RINs,
and SIRs.

The following MPE/iX characteristics not de�ned by POSIX.1 are inherited by
the child:

process's priority
process's capability
stack size
heap size

POSIX/iX Library Function Descriptions 4-77

FINAL TRIM SIZE : 7.0 in x 8.5 in

fork

Errors

If an error occurs, errno is set to one of the following values:

EAGAIN CAUSE The system lacked the resources to create another
process.

ACTION Attempt process creation at a later time, or decrease
the number of processes associated with the
application.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the functional return argument.

ACTION Make sure that the functional return is correctly
initialized.

EIMPL CAUSE The stack and heap could not be copied to the new
process, or a �le could not be inherited to the new
process, or a system data structure could not be
copied to the new process.

ACTION Contact your Hewlett-Packard Support
Representative.

ENOMEM CAUSE The program requires more memory than the
system allows for a process.

ACTION Reduce memory requirements for the process.

4-78 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fork

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process is not executing a program �le
whose MPE/iX �le code is NMPRG.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource.

ACTION One of the following:

Make sure that the calling process has the
MPE/iX PH capability.
Make sure that the calling process is executing a
program �le whose �le code is NMPRG.
Do not execute fork() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource.

See Also

alarm(), execl(), execv(), kill(), wait(), POSIX.1 (Section 3.1.1)

POSIX/iX Library Function Descriptions 4-79

FINAL TRIM SIZE : 7.0 in x 8.5 in

fpathconf

Returns con�guration variable for �le descriptor.

Syntax

#include <unistd.h>

long fpathconf(int �ldes, int name);

Parameters

�ldes is an open �le descriptor for the �le or directory of which you want
to determine the con�guration variables.

name is a symbol indicating the variable, the value of which you want to
determine.

Return Values

variable value fpathconf() lets you determine the value of a
con�guration variable associated with a particular �le
descriptor. If fpathconf() can determine the value of the
requested variable, it returns that value as its result.

-1 If fpathconf() cannot determine the value of the speci�ed
variable, it returns -1 and sets errno

fpathconf() works exactly like pathconf(), except that it takes a �le
descriptor as an argument rather than a path name. For further details, see
pathconf().

4-80 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fpathconf

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE �ldes was not a valid �le descriptor.
ACTION Specify a valid �le descriptor.

EINVAL CAUSE Name was not a valid variable code, or the given
variable cannot be associated with the speci�ed �le.

ACTION Specify a valid variable code.

See Also

pathconf()

POSIX/iX Library Function Descriptions 4-81

FINAL TRIM SIZE : 7.0 in x 8.5 in

fstat

Returns open �le status information.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

int fstat (int �ldes, struct stat *bu�er);

Parameters

�ldes An open �le descriptor.

bu�er A pointer to a bu�er of type struct stat (de�ned in
<sys/stat.h>) where �le information is returned.

Return Values

0 Success.

-1 An error occurred. File status information is not returned and
errno is set to indicate the error condition.

Description

The fstat() function returns status information on the open �le speci�ed by
�ldes . In order to use fstat() on an open directory stream, the directory
stream associated with the open directory must be converted to a �le
descriptor by calling the ANSI C function fileno().

The fstat() function updates to the current time all time �elds that have
been previously marked for update. All update marks are removed.

4-82 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

fstat

Implementation Considerations

Refer to the EFAULT, EPERM, and ESYSERR error descriptions below.

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The �ldes parameter is not a valid open �le
descriptor.

ACTION Pass a valid open �le descriptor.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the bu�er parameter.

ACTION Make sure that the pointer is correctly initialized.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process is not executing a program �le
whose MPE/iX �le code is NMPRG.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource.

ACTION One of the following:

Make sure that the calling process has the
MPE/iX PH capability.
Make sure that the calling process is executing a
program �le whose �le code is NMPRG.
Do not execute fork() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource.

ESYSERR CAUSE Access denied. Unable to map UID and GID to
owner of the �le or directory designated by �ldes,
either because user database is corrupted or �le is
invalid for the POSIX/iX environment.

ACTION Check user database or if access to the �le is valid in
the POSIX/iX environment.

POSIX/iX Library Function Descriptions 4-83

FINAL TRIM SIZE : 7.0 in x 8.5 in

fstat

See Also

creat(), dup(), open(), <sys/stat.h>, POSIX.1 (Section 5.6.2)

4-84 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getcwd

getcwd

Returns the pathname of the current working directory.

Syntax

#include <sys/types.h>

#include <unistd.h>

char *getcwd (char *bu�er, size_t size);

Parameters

bu�er A pointer to a character array where an absolute pathname for
the calling process's current working directory is returned. The
pathname must be terminated by a null character. The size of the
array must be large enough to contain the length of the pathname
plus the terminating null character.

size The size, in bytes, of the array pointed to by bu�er .

Return Values

<>NULL Success. A pointer to bu�er is returned.

NULL An error occurred. The contents of bu�er are unde�ned, and
errno is set to indicate the error condition.

Description

The getcwd() function places in the array pointed to by bu�er the absolute
pathname of the calling process's current working directory. Any contents of
bu�er past the terminating null character are unde�ned. If an error occurs, the
contents of the bu�er are unde�ned.

Implementation Considerations

Refer to the EFAULT and ESYSERR error descriptions below.

POSIX/iX Library Function Descriptions 4-85

FINAL TRIM SIZE : 7.0 in x 8.5 in

getcwd

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process either does not have search
permission to a component of the pathname or does
not have read permission to the current working
directory.

ACTION Make sure that the calling process has search
permission to all component directories in the
pathname and read permission to the current
working directory.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the bu�er parameter.

ACTION Make sure that the pointer is correctly initialized.

EINVAL CAUSE The size parameter is equal to zero.
ACTION Make sure that the size parameter is greater than

zero.

ERANGE CAUSE The size parameter speci�es a length that is less
than the size of the current working directory
pathname plus one.

ACTION Pass enough bu�er area to contain a full pathname.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

chdir(), POSIX.1 (Section 5.2.2)

4-86 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getegid

getegid

Returns the e�ective group ID.

Syntax

#include <sys/types.h>

#include <unistd.h>

gid_t getegid (void);

Parameters

None.

Return Values

The e�ective group ID of the calling process.

Description

The getegid() function returns the e�ective group ID (GID) of the calling
process.

Implementation Considerations

None.

Errors

None.

See Also

getgid(), geteuid(), getuid(), POSIX.1 (Section 4.2.1)

POSIX/iX Library Function Descriptions 4-87

FINAL TRIM SIZE : 7.0 in x 8.5 in

getenv

Returns an environment value.

Syntax

#include <stdlib.h>

char *getenv (const char *name);

Parameters

name A pointer to a string of characters to match in the environment
list.

Return Values

<>NULL A pointer to the value portion of a name=value string is returned.

NULL A matching name was not found, and errno is not modi�ed.

NULL +
errno

An error occurred, and errno is set to indicate the error condition.

Description

The getenv() function takes a string, name, and searches for a matching name
in the environment list (in environ) associated with the calling process.

If a match to name is found, getenv() returns a pointer to the value portion
of that string. The value is terminated by a null character. If a matching
name is not found, getenv() returns a NULL pointer but does not modify the
current value of errno.

The environment list contains strings in the form name=value. If more than one
string has the same name, getenv() returns the value for the �rst matching
name found. The length of name is limited by {ARG_MAX} as de�ned in
<limits.h>.

4-88 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getenv

Implementation Considerations

Refer to the EFAULT error description below.

Errors

If an error occurs, errno is set to the following value:

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the name parameter or while
dereferencing environ and traversing the process's
environment list.

ACTION Check to see if the pointer is correctly initialized or
if the environment list is corrupted.

See Also

environ(), POSIX.1 (Section 4.6.1)

POSIX/iX Library Function Descriptions 4-89

FINAL TRIM SIZE : 7.0 in x 8.5 in

geteuid

Returns the e�ective user ID.

Syntax

#include <sys/types.h>

#include <unistd.h>

uid_t geteuid (void);

Parameters

None.

Return Values

The e�ective UID of the calling process.

Description

The geteuid() function returns the e�ective user ID (UID) of the calling
process.

Implementation Considerations

None.

Errors

None.

See Also

getegid(), getgid(), getuid(), POSIX.1 (Section 4.2.1)

4-90 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getgid

getgid

Returns the real group ID.

Syntax

#include <sys/types.h>

#include <unistd.h>

gid_t getgid (void);

Parameters

None.

Return Values

The real GID of the calling process.

Description

The getgid() function returns the real group ID (GID) of the calling process.

Implementation Considerations

None.

Errors

None.

See Also

getegid(), geteuid(), getuid(), POSIX.1 (Section 4.2.1)

POSIX/iX Library Function Descriptions 4-91

FINAL TRIM SIZE : 7.0 in x 8.5 in

getgrgid

Group data base access based on GID.

Syntax

#include <sys/types.h>

#include <grp.h>

struct group *getgrgid(gid_t gid);

Parameters

gid A value of a GID.

Return Values

Returns a pointer to an object of type struct group on success. The return
values may point to static data that is overwritten by each cell.

A null pointer is returned on error or if the requested entry is not found.

Description

The getgrgid() function returns a pointer to an object of type struct group
containing an entry from the group database with a matching GID. This
structure, which is de�ned in <grp.h>, includes the members shown below:

gr name The name of the group.

gr gid The numerical group ID.

gr mem A null-terminated vector of pointers to the individual member
names.

Implementation Considerations

Currently, member gr-mem has not been implemented. It returns NULL.

4-92 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getgrgid

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad address when
attempting to allocate or access a struct group
bu�er.

ACTION Report circumstances to HP

EINVAL CAUSE The GID parameter is invalid. No matching entry
was found in the group database.

ACTION Specify a valid GID.

ESYSERR CAUSE The system detected an unexpected error.
ACTION Report circumstances to HP.

See Also

getlogin(),getgrnam() POSIX.1

POSIX/iX Library Function Descriptions 4-93

FINAL TRIM SIZE : 7.0 in x 8.5 in

getgrnam

Group data base access.

Syntax

#include <sys/types.h>

#include <grp.h>

struct group *getgrnam(const char *name);

Parameters

name A character-string value.

Return Values

Returns a pointer to an object of type struct group on success. The return
values may point to static data that is overwritten by each cell.

A null pointer is returned on error or if the requested entry is not found.

Description

The getgrnam() routine returns a pointer to an object of type struct group
containing an entry from the group database with a matching name. This
structure, which is de�ned in <grp.h>, includes the members shown below:

gr name The name of the group.

gr gid The numerical group ID.

gr mem A null-terminated vector of pointers to the individual member
names.

4-94 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getgrnam

Implementation Considerations

Currently, member gr-nam has not been implemented. It returns NULL.

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad address when
attempting to allocate or access a struct group
bu�er.

ACTION Report circumstances to HP

EINVAL CAUSE The name is invalid. No matching entry was found
in the group database.

ACTION Specify a valid name.

ESYSERR CAUSE The system detected an unexpected error.
ACTION Report circumstances to HP.

See Also

getlogin(), POSIX.1

POSIX/iX Library Function Descriptions 4-95

FINAL TRIM SIZE : 7.0 in x 8.5 in

getgroups

Gets Supplementary Group IDs.

Syntax

#include <sys/types.h>

int getgroups (int *gidsetsize, gid_t grouplist[]);

Parameters

gidsetsize The number of elements in the grouplist array.

grouplist An array containing the supplementary group IDs of the calling
process.

Return Values

Upon successful completion, the number of supplementary group IDs is
returned. This value is zero if fNGROUPS MAXg is zero. A return value of -1
indicates failure, and errno is set to indicate the error.

Description

The getgroups() function �lls in the array grouplist with the supplementary
group IDs of the calling process. The gidsetsize argument speci�es the number
of elements in the supplied grouplist array. The actual number of suplementary
group IDs stored in the array is returned. The values of array entries with
indices larger than or equal to the returned value are unde�ned.

As a special case, if the gidsetsize argument is zero, getgroups() returns the
number of supplemental group IDs associated with the calling process without
modifying the array pointed to by the grouplist argument.

4-96 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getgroups

Implementation Considerations

Supplemental group IDs are not currently supported (fNGROUPS MAXg is
0). Therefore, this function will always return 0.

Errors

If an error occurs, errno is set to one of the following values:

EINVAL CAUSE gidsetsize is not equal to zero and is less than the
number of supplemental group IDs.

ACTION Specify a valid and supported value.

See Also

getgid(), POSIX.1

POSIX/iX Library Function Descriptions 4-97

FINAL TRIM SIZE : 7.0 in x 8.5 in

getlogin

Gets user name.

Syntax

#include <unistd.h>

char *getlogin(void);

Parameters

None.

Return Values

Returns a pointer to a string on success. The return values may point to static
data that is overwritten by each cell.

A null pointer is returned on error or if the user's login name cannot be found.

Description

The getlogin() function returns a pointer to a string giving a user name
associated with the calling process.

Implementation Considerations

The users login name string will be in the form \USER.ACCOUNT".

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad address in
attempting to allocate or access a string bu�er area
in which to move the user's login name.

ACTION Report circumstances to HP.

ESYSERR CAUSE The system detected an unexpected error.
ACTION Report circumstances to HP.

4-98 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getlogin

See Also

getpwnam(), getpwuid, POSIX.1

POSIX/iX Library Function Descriptions 4-99

FINAL TRIM SIZE : 7.0 in x 8.5 in

getopt

Command option parsing.

Syntax

#include <unistd.h>

extern char *optarg;

extern int optind, opterr, optopt;

int getopt(int argc, const char *argv[],

const char *optstring);

Parameters

argc is the argument count as passed to main().

argv[] is the argument vector as passed to main().

optstring is a string containing letters and/or digits which should be
recognized as command line arguments. For example, if a program
takes the arguments -a, -A, and -b, optstring could be \aAb". The
characters in optstring may be in any order. If an option may take
an argument, the option character in optstring should be followed
by a colon. For example, if the example command also takes an
option

-c value

optstring could be \aAbc:". A colon as the �rst character of
optstring returns a : (instead of a ?) if getopt encounters a
missing argument.

Return Values

-1 When it reaches the end of the options. This can be when
argv[optind] is NULL or the strings - or|, or when a command
line argument does not begin with -. If argv[optind] is|, getopt()
increments optind by 1; otherwise, it does not increment optind.

4-100 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getopt

? If getopt() encounters an invalid option (one whose character does
not appear in optstring) or an option that was supposed to be
followed by an argument value but was not, getopt() returns a
question mark (?). If the �rst character is a :, and the error is a
missing argument, then : is returned instead of ?. The character
that caused the error is assigned to the variable optopt, and optind
is not updated.

1 Normally, getopt() writes an error message to the standard error
stream if it encounters an error; to disable this error message,
assign the value zero to the variable opterr or start the optstring
with :. By default, opterr is initialized to 1.

Description

getopt() helps parse a command line that corresponds to the standard
POSIX.2 syntax: options are single letters or digits marked with a minus (-)
and possibly followed by a value. getopt() recognizes that options may be
concatenated; for example,

-a -b

can be combined into

-ab

getopt() returns the character that represents the option. For example, if
getopt() identi�es the -a option, it returns 'a'.

Successive calls to getopt() obtain successive options from the command
line. getopt() uses the variable optind to keep track of which argv element it
examines . optind is initialized to 1, and every invocation of getopt() sets
optind to the command line argument to be scanned. When a single argument
contains several options (as in -abc), optind indicates the same argv element
until all the options have been returned.

If an option takes an argument, getopt() sets optarg to point to the associated
argument, according to these rules:

*If the option character was at the end of an argv element, the associated
argument is assumed to be the element of argv. In this case, optind
is incremented by 2; otherwise, the argument value is assumed to come

POSIX/iX Library Function Descriptions 4-101

FINAL TRIM SIZE : 7.0 in x 8.5 in

getopt

immediately after the argument letter. It is the rest of the argv element. In
this case, optind is incremented by 1.

Example

The following code fragment shows how one might process the arguments for a
utility that can take the mutually exclusive options a and b and the options f
and o, both of which require arguments.

#include <unistd.h>

int main (int argc, char *argv[])
{

int c, bflg, aflg, errflg = 0;

char *ifile, *ofile;

extern char *optarg;

extern int optind, optopt;

. . .

while ((c = getopt(argc, argv, ":abf:o:")) != -1) {

switch (c) {

case 'a':

if (bflg)

errflg = 1;

else

aflg = 1;

break;

case 'b':

if (aflg)

errflg = 1;

else

bflg = 1;

bproc();

break;

case 'f':

ifile = optarg;

break;

case 'o':

ofile = optarg;

break;

4-102 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getopt

case ':': /* -f or -o without option-arg */

fprintf (stderr,

"Option -%c requires an option-argument0,
optopt);

errflg = 1;

break;

case '?':

fprintf (stderr,

"Unrecognized option: -%c0, optopt);

errflg = 1;

break;

}

}

if (errflg) {

fprintf(stderr, "usage: . . . ");

exit(2);

}

for (; optind < argc; optind++) {

if (access(argv[optind], R_OK)) {

. . .

}

Errors

If an error occurs, errno is set to one of the following values:

Option -option
argument
missing

CAUSE When invoking a program that calls getopt(), you
speci�ed -option but did not provide the argument
that optstring indicated.

ACTION Provide the missing argument.

Unknown
option
\-option"

CAUSE When invoking a program that calls getopt(), you
speci�ed an option that was not in optstring.

ACTION Specify an option included in optstring.

POSIX/iX Library Function Descriptions 4-103

FINAL TRIM SIZE : 7.0 in x 8.5 in

getopt

Implementation Considerations

The current implementation of MPE/iX uses the INFO string to pass
arguments to programs. If the size of this string plus the size of the current
environment (determined by the number and size of the environment variables
in the current process) is greater than 8192 bytes, the string is too long to pass
to a subprocess and the process creation fails.

See Also

getopt(1), getopts(1)

4-104 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpid

getpid

Returns the process identi�cation number.

Note If linking with the POSIX/iX libraries, refer to the description
of getpid() located in the MPE/iX Developer's Kit Reference
Manual .

Syntax

int getpid (void)

Parameters

None.

Return Values

x The process identi�cation number (PIN) of the calling process.

Implementation Considerations

None.

See Also

MPE/iX intrinsics FATHER and GETPROCID, described in the MPE/iX Intrinsics
Reference Manual .

POSIX/iX Library Function Descriptions 4-105

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpwuid

User database access based on UID.

Syntax

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

Parameters

uid A value of a user ID.

Return Values

Returns a pointer to an object of type struct passwd on success. The return
values may point to static data that is overwritten by each cell.

A null pointer is returned on error or if the requested entry is not found.

Description

The getpwuid() function returns a pointer to an object of type struct passwd
containing an entry from the group database with a matching uid or name.
This structure, which is de�ned in <pwd.h>, includes the members shown in
the following:

pw name User name

pw uid User ID number

pw gid Group ID number

pw dir Initial working directory

pw shell Initial User Program

4-106 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpwuid

Implementation Considerations

None.

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad address when
attempting to allocate or access a struct passwd
bu�er.

ACTION Report circumstances to HP

EINVAL CAUSE the UID parameter is invalid. No matching entry
was found in the passwd bu�er.

ACTION Specify a valid UID.

ESYSERR CAUSE The system detected an unexpected error.
ACTION Report circumstances to HP.

See Also

getlogin(), getpwnam() POSIX.1

POSIX/iX Library Function Descriptions 4-107

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpgrp

Returns the process group ID.

Syntax

#include <sys/types.h>

#include <unistd.h>

pid_t getpgrp (void);

Parameters

None.

Return Values

The process group ID of the calling process.

Description

The getpgrp() function returns the process group ID of the calling process.

Implementation Considerations

None.

Errors

None.

See Also

getpid(), sigaction(), POSIX.1 (Section 4.3.1)

4-108 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpid

getpid

Returns the process ID.

Syntax

#include <sys/types.h>

#include <unistd.h>

pid_t getpid (void);

Parameters

None.

Return Values

The process ID of the calling process.

Description

The getpid() function returns the process ID (PID) of the calling process.

Implementation Considerations

None.

Errors

None.

See Also

getppid(), execl(), execv(), fork(), kill(), POSIX.1 (Section 4.1.1)

POSIX/iX Library Function Descriptions 4-109

FINAL TRIM SIZE : 7.0 in x 8.5 in

getppid

Returns the parent's process ID.

Syntax

#include <sys/types.h>

#include <unistd.h>

pid_t getppid (void);

Parameters

None.

Return Values

The parent process ID of the calling process.

Description

The getppid() function returns the parent process ID of the calling process.

Implementation Considerations

None.

Errors

None.

See Also

getpid(), execl(), execv(), fork(), kill(), POSIX.1 (Section 4.1.1)

4-110 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpwnam

getpwnam

User database access based on UID

User database access.

Syntax

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwnam(const char *name);

Parameters

name A character string value corresponding to the user name.

Return Values

Returns a pointer to an object of type struct passwd on success. The return
values may point to static data that is overwritten by each cell.

A null pointer is returned on error or if the requested entry is not found.

Description

The getpwnam() function is used to obtain entry from the user database with
a matching name. This structure, which is de�ned in <pwd.h>, includes the
members shown below:

pw name User name

pw uid User ID number

pw gid Group ID number

pw dir Initial working directory

pw shell Initial User Program

POSIX/iX Library Function Descriptions 4-111

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpwnam

Implementation Considerations

None.

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad address when
attempting to allocate or access a struct passwd
bu�er.

ACTION Report circumstances to HP

EINVAL CAUSE The name parameter is invalid. No matching entry
was found in the group database.

ACTION Specify a valid name.

ESYSERR CAUSE The system detected an unexpected error.
ACTION Report circumstances to HP.

See Also

getlogin(), getpwuid(), POSIX.1

4-112 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpwuid

getpwuid

User database access based on UID.

Syntax

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwuid(uid_t uid);

Parameters

uid A value of a user ID.

Return Values

Returns a pointer to an object of type struct passwd on success. The return
values may point to static data that is overwritten by each cell.

A null pointer is returned on error or if the requested entry is not found.

Description

The getpwuid() function returns a pointer to an object of type struct passwd
containing an entry from the group database with a matching uid . This
structure, which is de�ned in <pwd.h>, includes the members shown in the
following:

pw name User name

pw uid User ID number

pw gid Group ID number

pw dir Initial working directory

pw shell Initial User Program

POSIX/iX Library Function Descriptions 4-113

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpwuid

Implementation Considerations

None.

Errors

If an error occurs, errno is set to one of the following values:

E2BIG CAUSE The number of bytes used by the new process
image's argument list and environment list
combined is greater than the limit of {ARG_MAX}
(de�ned in <limits.h>).

ACTION Reduce the size of the argument list or environment
list or both.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

4-114 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpwuid

EIMPL CAUSE The pathname did not resolve to a valid MPE/iX
�le, group, and account, or the pathname begins
with two slashes.

ACTION Specify a valid pathname as described in the
pathname parameter description.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

ENOEXEC CAUSE The program �le does not have the NMPRG �le code.
ACTION Make sure that the program �le has the NMPRG �le

code.

ENOMEM CAUSE The new process image requires more memory than
the system allows.

ACTION No action required. The new process image cannot
be created.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

POSIX/iX Library Function Descriptions 4-115

FINAL TRIM SIZE : 7.0 in x 8.5 in

getpwuid

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process is in a
Procedure Exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

ESYSERR CAUSE System error occurred when accessing a system
database.

ACTION None.

See Also

getlogin(), getpwnam(), POSIX.1

4-116 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

getuid

getuid

Returns the real user ID (UID).

Syntax

#include <sys/types.h>

#include <unistd.h>

uid_t getuid (void);

Parameters

None.

Return Values

The real UID of the calling process.

Description

The getuid() function returns the real user ID (UID) of the calling process.

Implementation Considerations

None.

Errors

None.

See Also

geteuid(), getegid(), getgid(), POSIX.1 (Section 4.2.1)

POSIX/iX Library Function Descriptions 4-117

FINAL TRIM SIZE : 7.0 in x 8.5 in

glob

Generate path name list matching pattern.

Syntax

#include <glob.h>

int glob(const char *pattern, int ags,

int (*errfunc)(const char *name, int errno),

glob_t *paths);

Parameters

pattern is a string giving a path name pattern, possibly
containing wild card characters and other path name
generation constructs.

ags is a collection of ags controlling the glob() action.
Flags are speci�ed by ORing together symbolic
constants de�ned in <glob.h>. Possible symbols are:

GLOB APPEND appends path names to an
existing paths list generated
by a previous call to
glob().

GLOB DOOFFS uses the gl_offs �eld in the
glob_t structure paths.

GLOB ERR tells glob() to return when
it encounters a directory it
cannot open or read. By
default, glob() continues to
look for matches (see also
errfunc.)

GLOB MARK distinguishes between
directories and �les with
names that match pattern

4-118 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

glob

by putting a slash (/) after
directory names.

GLOB NOCHECK takes a special action if
no path names match
pattern. By default,
glob() returns a null list
if there are no path names
matching pattern. However,
if GLOB NOCHECK is
speci�ed, glob() returns
a list consisting only of
pattern and indicates that
the number of matched path
names is 1. You might use
this option if an argument
can be either a path name
or a normal string.

GLOB NOESCAPE turns o� escape character
functionality. By default,
glob() treats a backslash
(n) as the escape character.

GLOB NOSORT does not sort matching path
names. By default, glob()
sorts the path names
according to the current
locale's collating sequence.

errfunc is a function to be called if glob() �nds a directory
that cannot be opened or read. If the errfunc pointer
is NULL, glob() ignores such directories; otherwise,
glob() calls the function indicated by errfunc, passing
two arguments:

a const char * giving the name of the directory that
could not be opened or read;

POSIX/iX Library Function Descriptions 4-119

FINAL TRIM SIZE : 7.0 in x 8.5 in

glob

an int giving the value of errno set by the function
that tried to open or read the directory. This
function could be opendir(), readdir(), or stat().

paths points to an area where glob() can store a glob_t

structure. This structure gives the list of path names
matching pattern and other information. It must be
created by the caller.

Description

glob() generates a list of all accessible path names matching pattern.
For access to a path name, glob() must have search permission on every
component of the path name except the last, and must have read permission on
the parent directory of each �lename component of pattern that contains any of
the wild card characters *, ?, or [.

The path name list is given using a glob_t structure. This structure has the
following �elds:

size t
gl pathc

is the number of path names that match pattern. This is
zero if glob() �nds no matching path names. However, if
GLOB NOCHECK is speci�ed, gl pathc is always 1, as discussed
under the description of GLOB NOCHECK in the Parameters
section. This �eld is set by glob().

char
**gl pathv

points to a list of strings giving the path names that matched
pattern. The �rst pointer after the last path name is NULL. This
�eld is set by glob().

size t
gl o�s

tells how many NULL pointers you want at the beginning of the
gl pathv list. This creates a speci�ed amount of blank space at the
beginning of gl pathv that can be used for other purposes. For
example, you might �ll this space with other arguments before
passing the whole gl pathv vector as an argument to a function
like execv().

Before calling glob(), set gl o�s to the number of NULL pointers that glob()
inserts in the gl pathv list. These NULL pointers precede the pointers to the
strings which identify path names that match pattern. glob() only uses the
value in gl o�s if you have set GLOB DOOFFS in ags.

4-120 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

glob

If GLOB APPEND is speci�ed to add new path names to an existing list,
glob() follows these rules:

If GLOB DOOFFS is set in the �rst call to glob(), it must be set in
subsequent calls and gl o�s must have the same value in each call;

If GLOB DOOFFS is not set in the �rst call, it must not be set in
subsequent calls;

After the second call, gl pathv points to a list containing:

The number of NULL pointers as determined by GLOB DOOFFS and
gl o�s;

Pointers to the path names that were in the list before the second call, in
the same order as before;

Pointers to the new path names obtained by the second call, in the order
dictated by the ags for the second call.

gl pathc gives the total number of path names from all the calls.

The application should not change gl pathc or gl pathv between calls.

As noted earlier, the function given by (*errfunc) () is called if glob()
encounters a directory that cannot be opened or read. If (*errfunc) () returns
non-zero or if GLOB ERR is set in ags, glob() sets paths to reect the path
names already obtained, then returns with a result of GLOB ABORTED.
(This symbolic constant is de�ned in <glob.h>.) If GLOB ERR is not
speci�ed and if either errfunc is NULL or (*errfunc) () returns zero, glob()
ignores the error and continues searching for matching path names.

Return Values

0 Completes successfully

Error
Value

Not successful

If glob() terminates prematurely with one of these errors, it still sets
paths->gl pathc and paths->gl pathv to show whatever path names it has
already found.

Once a program has �nished using the paths structure, it should use
globfree() to free up the space used to store the path name list.

POSIX/iX Library Function Descriptions 4-121

FINAL TRIM SIZE : 7.0 in x 8.5 in

glob

Errors

If an error occurs, errno is set to one of the following values:

GLOB_NOSPACE CAUSE glob() was unable to allocate memory for at least
one of the path names obtained.

ACTION Free up more memory.

GLOB_NOMATCH CAUSE glob() did not �nd any path names which matched
pattern and GLOB NOCHECK was not set in the
ags.

ACTION No action required.

GLOB_ABORTED CAUSE glob() stopped because GLOB ERR was set
(perhaps a directory could not be opened or read),
or because (*errfunc) () returned non-zero.

ACTION Check that the o�ending directory exists, that it
was named properly, and that you have appropriate
permissions.

See Also

fnmatch(), globfree()

4-122 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

globfree

globfree

Release data created by glob().

Syntax

#include <glob.h>

void globfree(glob_t *paths);

Parameters

paths is a glob_t structure used in a previous call to glob().

Description

globfree() frees any memory allocated in connection with the paths structure.
Typically, this gets rid of any space that a call to glob() allocated to hold a
path name list.

Errors

None.

See Also

glob()

POSIX/iX Library Function Descriptions 4-123

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-mag tape

Provides an interface and control over magnetic tape devices. In the case of
magnetic tape devices, the ioctl() function provides an interface for issuing
various control commands to opened tape devices. The ioctl() operations can
be used to position the magnetic tape, and to determine the tape device status.

Syntax

int ioctl (�ldes, request, arg)

int �ldes;

int request;

void *arg;

Parameters

�ldes The �le descriptor of the successfully opened device.

request For magnetic tape devices, this parameter speci�es which type of
command to perform. In addition to the desired command, the
request parameter is made up of several �elds which encode the
size and direction of the arg parameter. The two types of requests
that are available are described below.

MTIOCTOP This request is used to position the magnetic tape
device.

MTIOCGET This request is used to retrieve the magnetic tape
device status.

The MTIOCTOP and MTIOCGET requests are de�ned in
<sys/mtio.h>.

arg Depending on the type of request speci�ed, the arg parameter
will be equal to one of the structure listed below. The following
structures are de�ned in <sys/mtio.h>.

4-124 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-mag tape

Return Values

0 The function completed successfully.

-1 An error occured. The value of -1 is returned by the function, and
the global variable errno is set with the resultant error.

Description

If the request is MTIOCTOP, then the arg parameter will be equated to the
following structure:

full

struct mtop {

short mt_op; /* operations to be performed */

long mt_count; /* number of times to performed */

/* the specified operation */

};

The di�erent operations that can be performed are as follows.

MTWEOF Writes an end of �le record.

MTFSF Moves the tape forward until a tape mark is encountered.

MTBSF Moves the tape backward until a tape mark is encountered.

MTFSR Moves the tape forward a speci�ed number of records.

MTBSR Moves the tape backward a speci�ed number of records.

MTREW Rewinds the tape.

MTOFFL Rewinds the tape and puts the drive o�ine.

MTNOP This operation is not supported.

MTEOD This operation is not supported.

MTWSS For DDS devices only. Writes and saves the setmark.

MTFSS For DDS devices only. Spaces forward to the setmark.

MTBSS For DDS devices only. Spaces backward to the setmark.

POSIX/iX Library Function Descriptions 4-125

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-mag tape

If the request is MTIOCGET, then the arg parameter returned will be equated to
the following structure:

full
struct mtget {

long mt_type; /* type and subtype of device */

long mt_resid; /* not supported */

long mt_dsreg1; /* not supported */

long mt_dsreg2; /* not supported */

long mt_gstat; /* generic device status */

long mt_erreg; /* not supported */

long mt_fileno; /* not supported */

long mt_blkno; /* not supported */

};

The mt_type that is returned will be a integer with the upper 16 bits
representing the device type, and the lower 16 bits representing the device
subtype. The device type and subtype, will be returned in the hexadecimal
format listed below:

MT_7976 0x180001 /* HP7976 tape devices */

MT_7978 0x180002 /* HP7978A & HP7978B tape devices */

MT_7974 0x180003 /* HP7974A tape devices */

MT_7979 0x180004 /* HP7979A tape devices */

MT_7980 0x180005 /* HP7980A & HP7980XC tape devices */

MT_HPIBDDS 0x180006 /* HPIB interface DDS tape devices */

MT_SCSIDDS 0x180007 /* SCSI interface DDS tape devices */

Status information will be returned in mt_gstat. This is a integer in which the
bits represent the following:

bit 00 eof
bit 01 bot
bit 02 eot
bit 03 ssm
bit 04 eod
bit 05 wrt protect
bit 06 unused
bit 07 online
bit 08 bpi 6250
bit 09 bpi 1600

4-126 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-mag tape

bit 10 bpi 800
bit 11 unused
bit 12 unused
bit 13 door open
bit 14 unused
bit 15 immediate mode
bit 16 bit 31 unused

Implementation Considerations

There will not be any implementation de�ned items in the magnetic tape
portion of ioctl().

There are two operations, MTNOPs and MTEOD, that will not be supported. The
MTNOP operation only sets the status, it does not perform an operation. The
MTEOD operation is used for DDS and QIC devices only, and it does a seek
to the \end of data" point. If either of these operations are speci�ed, the
ioctl';' operation will fail and the ENOTTY error will be set.

Only two of the items in the mtget structure will be supported, and their
implementation will be as follows. In the Unix implementation of ioctls, the
mt type item returns a category or family type of device to the caller. In this
implementation of tioctl, in addition to returning the device family type, the
mt type item will also return the speci�c tape device type to the caller. The
other item that will be supported is mt gstat , and it will return the generic
device status as in the Unix implementation. The items that are not supported
in the mtget structure will be set to 0, and returned to the caller.

If ioctl() is interrupted by a signal, the EINTR error will be set. Once this
function is executing an intrinsic, no signal interruption may occur. Signal
interrupts can only occur in the library portion of the code.

POSIX/iX Library Function Descriptions 4-127

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-mag tape

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The argument �ldes is not a descriptor for an
opened �le.

ACTION Check to see if �ldes has been altered or if �ldes is
not initialized.

EFAULT CAUSE The system detected a NULL address while
attempting to use the arg parameter passed by the
caller.

ACTION Check to see if the pointer used is initialized and/or
not equal to NULL.

EINTR CAUSE The ioctl() was interrupted by a signal.
ACTION Check the state of the �le referenced by �ldes.

EINVAL CAUSE The �ldes parameter, the request parameter, or the
arg parameter is invalid. The �ldes parameter may
be zero. The request parameter may specify an
incorrect operation. The arg parameter may specify
an unsupported operation for the device.

ACTION Validate the parameter values; check if the device is
supported.

EIO CAUSE A physical I/O error occurred on the device.
ACTION Check the status of the device.

ENOTTY CAUSE The speci�ed request is not correct for the speci�ed
device.

ACTION Check to see if the request parameter is a correct
command. Make sure the request is valid for the
device.

4-128 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-mag tape

ENXIO CAUSE The request parameter referenced a device that did
not exist, or the request made was beyond the limits
of the device.

ACTION Check to see if the request parameter is a correct
command. Make sure the request is valid for the
device.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process is in a
Procedure Exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

EROFS CAUSE A write attempt was made to a device that was
read-only at the time. This error will be returned
for certain devices.

ACTION Check the request to make sure it is correct for the
device speci�ed. Make sure the tape can be written
to.

ESYSERR CAUSE An internal operating system error has occurred; an
error not directly applicable to the POSIX
functionality.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

ioctl-sockets, ioctl-streams, POSIX.1

POSIX/iX Library Function Descriptions 4-129

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-sockets

Provides an interface and control over magnetic tape devices. In the case of
magnetic tape devices, the ioctl() function provides an interface for issuing
various control commands to opened tape devices. The ioctl() operations can
be used to position the magnetic tape, and to determine the tape device status.

Syntax

int ioctl(�ldes, request, arg)

int �ldes;

int request;

void *arg;

Parameters

�ldes The socket descriptor.

request This parameter speci�es which command to perform on the
socket. The commands are de�ned in <sys/ioctl.h>. The di�erent
commands that are available are described below.

FIONREAD Gets the number of bytes that are readable from the
socket. For TCP sockets, this is the total number of
bytes queued to the socket. For UDP sockets, this is
the total number of bytes queued in each datagram
and the sum of all the source address structures. The
arg parameter, will contain the address of the integer
with the number of bytes readable.

FIOSNBIO Enables or disables non-blocking I/O for the socket.
If the integer whose address is arg is not zero, then
non-blocking I/O is enabled. When non-blocking I/O
is enabled, subsequent read and write requests to
the socket are prevented from blocking whether the
request succeeds or fails. If the integer whose address
is arg is zero, then non-blocking I/O is disabled.

FIONBIO This command is same as the FIOSNBIO command.

4-130 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-sockets

FIOGNBIO Gets the status of non-blocking i/o. If non-blocking
i/o is enabled for the socket, then the integer whose
address is arg is set to 1. If non-blocking i/o is
disabled, the integer is set to zero.

FIOGSAIO-

STAT

If asynchronous signaling is enabled for the socket,
then the integer whose address is arg is set to 1. If the
asynchronous state is disabled, the integer is set to
zero.

SIOCAT-

MARK

For SOCK STREAM TCP sockets, upon return if
the integer whose address is arg is not zero, then the
inbound TCP stream has been read up to where the
out-of-band data byte starts. If the integer at address
arg is zero, then the inbound TCP stream has not
yet been read up to where the out-of-band data byte
starts. For non-TCP sockets, upon return the integer
with the address arg is always zero.

SIOCSPGRP This command sets the process group or process
ID associated with the socket to be the value of
the integer whose address is arg . If the value of the
integer is positive, then a signal is sent to the process
with the matching process ID value when the state
of the socket changes. If the value is negative, then
a signal is sent to all processes that have a process
group equal to the absolute value of the speci�ed
value when the socket state changes. If the value of
the integer with address arg is zero, no signal is sent
to any processes when the socket state changes.

SIOCGPGRP This command returns the process group or process
ID associated with the socket in the integer whose
address is arg . If the integer is positive, then the value
returned corresponds to a process ID. If the integer
is negative, then the value returned corresponds to
all processes that have a process group equal to the
absolute value of that value.

arg This parameter is the address of the integer that the speci�ed
request needs in order to perform its function. Depending on the

POSIX/iX Library Function Descriptions 4-131

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-sockets

type of request speci�ed, the integer can represent a variety of
values. See the appropriate request command for an explanation of
the value that the integer will represent in that context.

Return Values

0 The function completes successfully.

-1 If an error occurs, a value of -1 is returned by the function and the
global variable errno is set with the resultant error.

Description

Sockets are communication endpoints that allow processes to communicate
either locally or remotely. For sockets, the ioctl() function provides an
interface for setting di�erent characteristics for a socket, and retrieving
information on a socket.

Implementation Considerations

There will not be any implementation de�ned items in the sockets portion of
ioctl().

There are no mixed environment issues for the sockets portion of ioctl().

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The argument �ldes is not a valid open �le
descriptor.

ACTION Check to see if �ldes has been altered or if �ldes is
not initialized.

4-132 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-sockets

EFAULT CAUSE The system detected a NULL address while
attempting to use the arg parameter passed by the
caller.

ACTION Check to see if the pointer used is initialized and/or
not equal to NULL.

EINTR CAUSE Once this function is executing an intrinsic, no
signal interruption may occur. Signal interrupts can
only occur in the library portion of the code.

ACTION Check the state of the socket referenced by �ldes.

EINVAL CAUSE The request parameter or the arg parameter is
invalid, or a socket type that is not supported was
speci�ed.

ACTION Validate the request and arg values; check if the
socket type is supported.

See Also

ioctl-streams, ioctl-mag_tape(), POSIX.1

POSIX/iX Library Function Descriptions 4-133

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-streams

Provides an interface and control over magnetic tape devices. In the case of
magnetic tape devices, the ioctl() function provides an interface for issuing
various control commands to opened tape devices. The ioctl() operations can
be used to position the magnetic tape, and to determine the tape device status.

Syntax

int ioctl(�ldes, request, arg)

int �ldes;

int request;

void *arg;

Parameters

�ldes The open �le descriptor for the stream that will be used.

request This parameter speci�es which command to perform on the
stream. The commands are de�ned in <sys/stropts.h>. The
di�erent commands that are available are described below.

FIOGNBIO Gets the status of non-blocking i/o. If
non-blocking i/o is enabled, then the
integer whose address is arg is set to 1. If
non-blocking i/o is disabled, then the integer is
set to zero.

FIONBIO Enables or disables non-blocking i/o. If the
integer whose address is arg is not zero,
then non-blocking i/o is enabled. When
non-blocking i/o is enabled, subsequent read
and write requests to the device �le are
prevented from blocking whether the request
succeeds or fails. If the integer whose address
is arg is zero, then non-blocking i/o is disabled.

I_ATMARK Checks to see if the next message is \marked"
by the downstream module. If the earg value is
set to ANYMARK, then the check will be to see if

4-134 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-streams

the message is marked. If the arg value is set
to LASTMARK, then the check will be to see if
the message is the last one that is marked on
the queue. If marked conditions is satis�ed, a 1
is returned; otherwise a zero is returned.

I_CANPUT Checks if a message can be passed on a stream.
The arg parameter speci�es which priority
band to check. If the priority band is ow
controlled, then a zero is returned; otherwise a
1 is returned.

I_CKBAND Checks if a priority band message is currently
on the stream head read queue. The ^fearg^s
parameter speci�es the priority band being
checked. If a message is on the queue, a 1 is
returned; otherwise a zero is returned.

I_FDINSERT Creates a message and sends it downstream.

I_FIFO Converts a stream into a FIFO. Used for
non-System V systems.

I_FIND Checks for a speci�c module in the stream.
The arg parameter will contain the name of
the module to be searched for. If the module
is present, a 1 is returned; otherwise a zero is
returned.

I_FLUSH Flushes the read and/or write queues of the
stream depending on the value of the arg
parameter.

I_FLUSHBAND Flushes a read and/or write band of messages
depending on the value of the arg parameter.
The band of messages to be ushed is also
de�ned in the arg structure.

I_GETBAND Gets the priority of the next message on the
stream read queue. The priority is returned in
the arg parameter.

POSIX/iX Library Function Descriptions 4-135

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-streams

I_GETCLTIME Gets the time delay for closing a stream. The
time value is returned in the arg parameter.

I_GETSIG Gets the events for which the calling process
has registered to receive a signal. The events
are returned in the arg parameter.

I_GETSTREAMID Gets the stream handle for a C-library �le
descriptor. Use for NETWARE.

I_GRDOPT Gets the current read mode setting of the
stream. The integer value is returned in the
arg parameter.

I_GWROPT Gets the current write mode setting of the
stream. The integer value is returned in the
arg parameter.

I_LINK Connects two streams. The descriptor of
the stream referenced by �ldes parameter is
connected to the descriptor of the stream that
is referenced in the arg parameter.

I_LIST Gets the list of names of the modules present
on the stream.

I_LOOK Gets the name of the �rst stream module, and
places in a character string pointed to by the
arg parameter.

I_NREAD Returns the number of bytes in the data block
of the �rst message on the stream read queue.
The number of bytes is stored in a location
pointed to by the arg parameter.

I_PEEK Allows the user process to \peek"/look at
the �rst message on the stream read queue.
This information will be stored in a location
pointed to by the arg parameter. If a message
is retrieved, a 1 is returned; otherwise a zero is
returned.

4-136 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-streams

I_PIPE Connects two streams as a pipe. Used for
non-System V systems.

I_PLINK Permanently connects two streams. The
descriptor of the stream referenced by the
�ldes is connected to the descriptor of the
stream referenced by the arg parameter. The
latter stream is connected via a persistent link
that can exist even if the �rst stream is closed.

I_POP Removes/pops the module just below the
stream head. For this request , the arg
parameter must be set to zero.

I_PUNLINK Disconnects two streams that are connected
via a persistent link.

I_PUSH Pushes the module whose name is pointed to
by the arg parameter onto the stream just
below the stream head.

I_RECVFD Retrieves the �le descriptor associated with the
message sent by the I_SENDFD command over a
stream pipe.

I_SENDFD Requests the stream referred to by �ldess to
send a message M_PASSFP to the stream head
at the other end of a stream pipe.

I_SETCLTIME Sets the time that the stream head delays
when the stream is closing and the write
queues contain data. The arg parameter
contains a pointer to the number of
milliseconds to delay.

I_SETSIG Tells the stream head that the user process
wants a SIGPOLL signal to be issued by the
kernel for a particular event that can occur on
a stream. This command provides support for
asynchronous processing in streams. The arg
parameter contains information that speci�es

POSIX/iX Library Function Descriptions 4-137

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-streams

the particular events that SIGPOLL is to be
sent for.

I_SRDOPT Sets the read mode of the stream according to
the value of the arg parameter.

I_STR Creates an internaltioctl() message from
the data pointed to by the arg parameter and
sends the message downstream to a module or
driver.

I-SWROPT Sets the stream write mode according to the
value of the arg parameter.

I_UNLINK Disconnects two streams. One descriptor
referenced by the �ldes parameter, and
the other descriptor referenced by the arg
parameter.

arg This parameter contains additional information that the speci�ed
request may need to perform its function. This is usually an
integer or a pointer to a structure speci�c to the request . See the
appropriate request command for an explanation of the value that
the integer will represent in that context.

Return Values

If the ioctl function completes successfully, the following two conditions can
occur. If a speci�c condition is met, then a 1 is returned; if the condition is not
met, then a 0 is returned.

If the ioctl function does not complete successfully, then a value of -1 is
returned by the function and the global variable errno is set with the resultant
error.

Description

The ioctl() commands can be used to perform control operations on streams.
User processes can use the commands on all streams �le types.

4-138 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

ioctl-streams

When the stream head receives a streams ioctl() function, the request and
the arg parameters are interpreted into an M_IOCTL message. In some cases,
the parameters are passed onto a module or driver in the stream.

The module in a stream can detect errors in the ioctl() function. If an error
is detected, an error message containing the error number is sent to the stream
head. Subsequent calls to functions will fail with the errno set to this number.

Implementation Considerations

None.

Errors

There are many corresponding errors for each of the request commands
mentioned above. For a list of these errors, and an explanation of the di�erent
error conditions, please refer to the HP-UX Release 9.0 manual.

See Also

ioctl-mag_tape, ioctl-streams, POSIX.1

POSIX/iX Library Function Descriptions 4-139

FINAL TRIM SIZE : 7.0 in x 8.5 in

isatty

Determines whether or not an open �le descriptor is associated with a terminal.

Syntax

#include <unistd.h>

int isatty (int �ldes);

Parameters

�ldes An open �le descriptor.

Return Values

1 The speci�ed �le descriptor is associated with a terminal.

0 The speci�ed �le descriptor is not associated with a terminal.

-1 The speci�ed �le descriptor is invalid, and errno is set to indicate
the error condition.

Description

The isatty() function returns a value indicating whether or not the open �le
descriptor �ldes is associated with a terminal.

Implementation Considerations

Refer to the EBADF error description below.

Errors

If an error occurs, errno is set to the following value:

EBADF CAUSE The �ldes parameter is not a valid open �le
descriptor.

ACTION Check to see if �ldes has been altered or not
initialized.

4-140 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

isatty

See Also

POSIX.1 (Section 4.7.2)

POSIX/iX Library Function Descriptions 4-141

FINAL TRIM SIZE : 7.0 in x 8.5 in

kill

Sends a signal to a process or a process group.

Syntax

#include <sys/types.h>

#include <signal.h>

int kill (pid_t pid, int sig);

Parameters

pid A value indicating the process or process group to receive the
signal speci�ed in sig . Following are valid values and their
meanings:

>0 A process whose process ID is equal to pid .
0 All processes whose process group ID is equal to the

caller's process group ID.
<-1 All processes whose process group ID is equal to the

absolute value of pid .

If -1 is passed in pid , kill() fails and sets errno to EINVAL.

sig A value indicating the signal to be sent. Following are valid values
and their meanings:

>0 The signal number of the signal to send. Refer to
Table 3-5 for a list of supported signals and their symbolic
constants.

0 Test for existence of speci�ed process or process group. (0
is equivalent to the null signal.)

Return Values

0 Success. The kill() function had permission to send the signal to
at least one of the processes speci�ed in pid .

-1 An error occurred. No signal is sent, and errno is set to indicate
the error condition.

4-142 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

kill

Description

The kill() function sends a signal speci�ed by sig to a process or group of
processes speci�ed by pid . If sig is 0 (the null signal), no signal is sent, but
error checking is performed. Use the null signal to check for the validity of pid .

The signal is sent only if the caller has permission to send it to the target
process(es). The calling process has permission to send a signal to a target
process if one of the following conditions is true:

The user associated with the calling process has appropriate privileges,
de�ned to be one of the following:

A user whose GID matches the GID of the �le and who has the MPE/iX
account manager (AM) user capability.
A user who has the MPE/iX system manager (SM) user capability.

The signal is SIGCONT and the caller's session ID matches the target's session
ID.

The caller's real UID matches either the target's real UID or its saved
set-user-ID.

The caller's e�ective UID matches either the target's real user ID or its saved
set-user-ID.

The target's UID has been modi�ed by a call to one of the exec() functions.

A target process that is blocking a signal does not receive that signal until it
unblocks it. (Refer to the sigaction() function.) A target process can ignore
a signal or install a handler for it. The calling process should not assume that
the target process will take the default (or any other) action for the signal.

If the value of pid causes sig to be generated for the calling process, and if
sig is not blocked, either sig or at least one pending and unblocked signal is
delivered to the calling process before the kill() function returns.

POSIX/iX Library Function Descriptions 4-143

FINAL TRIM SIZE : 7.0 in x 8.5 in

kill

Implementation Considerations

Job control is not supported.

The {POSIX_SAVED_IDS} constant is always de�ned.

Use the kill() function to send SIGCONT to a process to continue it after
SIGSTOP has stopped it. The system never generates SIGCONT and SIGSTOP for
a process.

A sending process cannot rely on the target process acting upon a signal in a
timely manner if the target process is executing operating system code. The
target process is not interrupted until it returns from operating system code.

Refer to Table 3-5 for implementation considerations associated with signals.

4-144 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

kill

Errors

If an error occurs, errno is set to one of the following values:

EINVAL CAUSE The signal sig is not a valid signal number, or pid is
-1.

ACTION Refer to Table 3-5 for descriptions of valid signal
numbers, or set pid to a valid value.

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource, or the calling process is in a
Procedure Exit handler.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource, or
in a Procedure Exit handler.

ESRCH CAUSE No process or process group matches pid .
ACTION No action required.

See Also

getpid(), sigaction(), <signal.h>, POSIX.1 (Section 3.3.2).

POSIX/iX Library Function Descriptions 4-145

FINAL TRIM SIZE : 7.0 in x 8.5 in

lseek

Repositions a read/write �le o�set.

Syntax

#include <sys/types.h>

#include <unistd.h>

off_t lseek (int �ldes, off_t o�set, int whence);

Parameters

�ldes An open �le descriptor.

o�set The number of bytes for the new o�set. The application of this
value is de�ned by whence.

whence A value specifying how o�set is to be applied to calculate the
resultant o�set. Following are valid values and their meanings
(de�ned in <unistd.h>).

SEEK_SET Set new o�set to o�set .
SEEK_CUR Set new o�set to o�set plus the current o�set.
SEEK_END Set new o�set to o�set plus the current �le size.

Return Values

>=0 Success. The new �le o�set position is returned.

-1 An error occurred. The current o�set is not changed, and errno is
set to indicate the error condition.

Description

The lseek() function sets the �le o�set for the open �le description associated
with �ldes to a new position de�ned by both the o�set and whence parameters.
The �le o�set is the number of bytes from the beginning of the �le (where the
beginning of the �le is �le o�set 0).

4-146 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

lseek

The lseek() function allows the �le o�set to be set beyond the end of existing
data in the �le. If data is later written at this point, subsequent reads of data
in the gap return bytes with the value zero until data is actually written into
the gap; however, the lseek() function cannot, by itself, extend the size of a
�le.

Implementation Considerations

Refer to the ESEEK and ESYSERR error descriptions below.

Pipes (or FIFOs) and device special �les are not supported.

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The �ldes parameter is not a valid open �le
descriptor.

ACTION Check to see if �ldes has been altered or is not
initialized.

EINVAL CAUSE The whence parameter is not a valid value, or the
resulting �le o�set would be invalid.

ACTION Check if value contained by whence exceeds the �le
limit or is a negative value.

ESEEK CAUSE The �ldes parameter does not refer to a �le that
supports seeking.

ACTION Certain �les or devices do not support seeking.
Make sure that the program is not attempting to
seek on those �les.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

creat(), dup(), open(), read(), sigaction(), write(), <unistd.h>,
POSIX.1 (Section 6.5.3)

POSIX/iX Library Function Descriptions 4-147

FINAL TRIM SIZE : 7.0 in x 8.5 in

mkdir

Creates a directory.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

int mkdir (const char *pathname, mode_t mode);

Parameters

pathname A pointer to a string containing the pathname of the directory to
be created. The pathname must be terminated by a null character.

mode The access permission bits for the new directory. Access
permission bits are set by ORing any combination of the following
macros:

S_IRWXU Set �le owner class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IRUSR Set �le owner class read permission bit.

S_IWUSR Set �le owner class write permission bit.

S_IXUSR Set �le owner class execute (if a �le) or search (if a
directory) permission bit.

S_IRWXG Set �le group class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IRGRP Set �le group class read permission bit.

S_IWGRP Set �le group class write permission bit.

S_IXGRP Set �le group class execute (if a �le) or search (if a
directory) permission bit.

S_IRWXO Set �le other class read, write, and execute (if a
�le), or search (if a directory) permission bits.

S_IROTH Set �le other class read permission bit.

4-148 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

mkdir

S_IWOTH Set �le other class write permission bit.

S_IXOTH Set �le other class execute (if a �le) or search (if a
directory) permission bit.

Unused bits of the mode parameter not associated with access
permissions must contain zeros or an error occurs.

Return Values

0 Success.

-1 An error occurred. The new directory is not created, and errno is
set to indicate the error condition.

Description

The mkdir() function creates a new directory �le whose name is speci�ed in
the pathname parameter. The newly created directory is an empty directory
containing only the directory entries dot (.) and dot-dot (..).

The access permission bits of the new directory are initialized from mode and
modi�ed by the calling process's �le creation mask. The directory's UID is set
to the calling process's e�ective UID. The directory's GID is set to the parent
directory's GID.

The mkdir() function marks for update the st_atime, st_ctime, and
st_mtime time �elds of the newly created directory. In addition, mkdir()
marks for update the st_ctime and st_mtime time �elds of the parent
directory.

Implementation Considerations

Refer to the EFAULT, EIMPL, ENOSPC, and ESYSERR error descriptions below.

The S_ISUID and S_ISGID bits are not currently supported.

The mkdir() function requires that the calling process have

write permission to the parent directory
search permission to each directory component of the pathname
MPE/iX save �les (SF) capability

POSIX/iX Library Function Descriptions 4-149

FINAL TRIM SIZE : 7.0 in x 8.5 in

mkdir

The mkdir() function cannot create the root directory, MPE/iX accounts, or
MPE/iX groups.

The mkdir() function does not support read-only �le systems.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process does not have search permission
to a component of the pathname, or does not have
write permission to the parent directory.

ACTION Make sure that the calling process has search
permission for all components of the pathname and
write permission to the parent directory.

EEXIST CAUSE The directory speci�ed in pathname already exists.
ACTION Make sure that pathname speci�es a directory that

does not already exist.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

4-150 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

mkdir

EIMPL CAUSE Any of the following conditions:

Attempted to create a directory in an MPE/iX
account.
The directory name exceeded 16 characters in
length in the root directory, an MPE/iX account,
or an MPE/iX group.
The pathname begins with two slash characters
(//).
Bits of mode that are not �le permission bits do
not contain zeros.

ACTION One of the following:

Do not create a directory in an MPE/iX account.
Make sure that the directory name does not
exceed 16 characters in length when in the root
directory, an MPE/iX account, or an MPE/iX
group.
Do not begin a pathname with two slash
characters (//).
Make sure that bits of mode that are not �le
permission bits contain zeros.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

POSIX/iX Library Function Descriptions 4-151

FINAL TRIM SIZE : 7.0 in x 8.5 in

mkdir

ENOENT CAUSE A component of the pathname does not exist, or
pathname points to an empty string.

ACTION Specify a valid pathname.

ENOSPC CAUSE The directory could not be created because of a lack
of disk space, or the process owner would have
exceeded limits imposed by the MPE/iX accounting
facility.

ACTION Make sure that there is enough space to create the
directory on the volume set, or ask your system
administrator to increase your accounting limits.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

chmod(), stat(), umask(), <sys/stat.h>, POSIX.1 (Section 5.4.1)

4-152 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

mkfifo

mkfifo

Make a FIFO special �le.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

int mkfifo (const char *path, mode_t mode);

Parameters

path The pathname of a �le.

mode The access permission bits for the new directory. Access
permission bits are set by ORing any combination of the
following macros:

S_IRWXU Set �le owner class read, write, and execute (if
a �le) or search (if a directory) permission bits.

S_IRUSR Set �le owner class read permission bit.

S_IWUSR Set �le owner class write permission bit.

S_IXUSR Set �le owner class execute (if a �le) or search
(if a directory) permission bit.

S_IRWXG Set �le group class read, write, and execute (if
a �le) or search (if a directory) permission bits.

S_IRGRP Set �le group class read permission bit.

S_IWGRP Set �le group class write permission bit.

S_IXGRP Set �le group class execute (if a �le) or search
(if a directory) permission bit.

S_IRWXO Set �le other class read, write, and execute (if
a �le), or searc h (if a directory) permission
bits.

S_IROTH Set �le other class read permission bit.

POSIX/iX Library Function Descriptions 4-153

FINAL TRIM SIZE : 7.0 in x 8.5 in

mkfifo

S_IWOTH Set �le other class write permission bit.

S_IXOTH Set �le other class execute (if a �le) or search
(if a directory) permission bit.

Unused bits of the mode parameter not associated with access
permissions must contain zeros or an error occurs.

Return Values

0 Successful completion

-1 No FIFO is created, and errno is set to indicate the error.

Description

The mkfifo() routine creats a new FIFO special �le named by the pathname
pointed to by path. The �le permission bits of th enew FIFO are initialized
from mode. The �l epermission bits of the moide argument are modi�ed by
the �el creation mask of the process. When bits in mode other than the �le
permission bits are set, the e�ect is implementation de�ned.

The owner ID of the FIFO shall be set to the e�ective user ID of the process.
The group ID of the FIFO shall be set to the group ID of the directory in
which the FIFO is being created or to the e�ective group ID of the process.

Upon successful completion, the mkfifo() function shall mark for update the
st atime, st ctime, and st mtime% �elds of the �le. Also, the st ctime and the
st mtime �elds of the directory taht contains the new entry are ;marked for
update.

Implementation Considerations

None.

4-154 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

mkfifo

Errors

If any of the following conditions occur, the mkfifi9() function returns -1 and
sets errno to the corresponding value.

EACCES CAUSE Serach permission is denied on a compoenent of the
path pre�x, or wirte permission is denied on the
parent directory of the �le to be created.

ACTION Make sure that the calling process has search
permission for all components of the pathname and
write permission to the parent directory.

EEXIST CAUSE The named �le already exists.
ACTION Make sure that pathname speci�es a directory that

does not already exist.

ENAMETOOLONG CAUSE The length of the path string exceeds [PATH MAX]
, or a pathname component is larger thatn
[NAME MAX] while f POSIX NO)TRUNC) is in
e�ect.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE A component of the path pre�x does not exists, or
the path argument points to an empty string.

ACTION Specify a valid pathname.

ENOSPC CAUSE The directory that would contain the new �le
cannot be extended, or the �le system is out of �le
allocation resources.

ACTION Extend accounting limits for the directory in which
the �le is located, or fr ee up disk space.

ENOTDIR CAUSE A component of the path pre�x is not a directory.
ACTION Specify a valid pathname.

EROFS CAUSE The named �le resided on a read-only �le system.
ACTION Create the slink on a writable volume (�le system).

See Also

chmod(), exec(), pipe(), stat(), <sys/stat.h>, umask(), POSIX.1

POSIX/iX Library Function Descriptions 4-155

FINAL TRIM SIZE : 7.0 in x 8.5 in

mknod

Make a FIFO special �le.

Makes a directory, or a special or regular �le.

Syntax

#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

Parameters

path The pathname of a �le.

mode Speci�es the �le type and �le access permission.

dev Speci�es the major and minor device numbers.

Return Values

0 Successful completion

-1 Error and errno is set to indicate the error.

Description

mknod() creates a new �le named by the path name pointed to by path. The
mode of the new �le is speci�ed by the mode argument.

Symbolic constants de�ning the �le type and �le access permission bits are
found in the <sys/stat.h> header �le and are used to construct the mode
argument. The value of the mode argument should be the bit-wise inclusive
OR of the values of the desired �le type, miscellaneous mode bits, and access
permissions. See stat(5) for a description of the components of the �le mode.

The owner ID of the �le is set to the e�ective-user-ID of the process. If the
set-group-ID bit of the parent directory is set, the new �le's group ID is set to
the group ID of the parent directory. Otherwise, the new �le's group ID is set
to the e�ective-group-ID of the process.

4-156 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

mknod

The �le access permission bits of mode are modi�ed by the process's �le mode
creation mask: for each bit set in the process's �le mode creation mask, the
corresponding bit in the �le's mode is cleared (see umask(2)).

The new �le is created with three base access-control-list (ACL) entries,
corresponding to the �le access permission bits.

The dev argument is meaningful only if mode indicates a block or character
special �le, and is ignored otherwise. It is an implementation- and
con�guration-dependent speci�cation of a character or block I/O device.
The value of dev is created by using the makedev() macro de�ned in
<sys/mknod.h>. The makedev() macro takes as arguments the major and
minor device numbers, and returns a device identi�cation number which is
of type dev_t. The value and interpretation of the major and minor device
numbers are implementation-dependent. For more information, see mknod(5)
and the System Administration manuals for your system.

Only users with appropriate privileges can invoke mknod for �le types other
than FIFO �les.

Implementation Considerations

Proper discretion should be used when using mkrnod to create generic device
�les in an HP Clustered Environment. A generic device �le accessed from
di�erent cnodes in a cluster applies to di�erent physical devices. Thus the �le's
ownership and permissions might not be appropriate in the context of every
individual cnode in the cluster.

POSIX/iX Library Function Descriptions 4-157

FINAL TRIM SIZE : 7.0 in x 8.5 in

mknod

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE One of the following:

The directory in which path would be created
denies write permission, mode is for a FIFO �le
and the caller does not have appropriate
privileges.
A component of the path pre�x denies search
permission.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of t he pathname.
Make sure that the calling process has execute
permission to the �le.

EEXIST CAUSE The named path already exists.
ACTION Make sure that path speci�es a directory that does

not already exist.

EFAULT CAUSE The path argument points outside the process's
allocated address space. The reliable detection of
this error is implementation dependent.

ACTION Make sure that the pointer is correctly initialized.

ELOOP CAUSE Too many symbolic links were encountered in
translating the path name.

ACTION Make sure that there is not a loop in the symbolic
links that loops more than POSIX_SYMLOOP.

ENAMETOOLONG CAUSE The length of the speci�ed path name exceeds
PATH MAX bytes, or the length of a component of
the path name exceeds NAME MAX bytes while
POSIX NO TRUNC is in e�ect.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE Either of the following:

The path argument is null.
A component of the path pre�x does not exist.

ACTION Specify a valid pathname.

4-158 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

mknod

ENOSPC CAUSE Not enough space on the �le system.
ACTION Extend accounting limits for the directory in which

the �le is located, or fr ee up disk space.

ENOTDIR CAUSE A component of the path pre�x is not a directory.
ACTION Specify a valid pathname.

EPERM CAUSE The e�ective-user-ID of the process does not match
that of the super-user, and the �le type is not FIFO
special.

ACTION Refer to the kill() function description for signal
permission rules.

EROFS CAUSE The directory in which the �le is to be created is
located on a read-only �le system.

ACTION Create the slink on a writable volume (�le system).

See Also

mknod(1M), chmod(2), exec(2), mkdir(2), setacl(2), umask(2), cdf(4),
fs(4), acl(5), mknod(5), stat(5), types(5).

POSIX/iX Library Function Descriptions 4-159

FINAL TRIM SIZE : 7.0 in x 8.5 in

open

Opens a �le and returns its �le descriptor.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open (const char *pathname, int oag, ...);

Parameters

pathname A pointer to a string containing a pathname of a �le to be opened.
The pathname must be terminated by a null character.

oag A value specifying the �le status and �le access modes of the �le
to be opened. If O_CREAT is speci�ed, the mode of the �le must be
passed in a third parameter, modes .

The value of oag is the bitwise inclusive OR of ags from the
following two lists (de�ned in <fcntl.h>).

Only one of the following three ags must be speci�ed in oag :

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for both reading and writing.

If the �le is opened O_WRONLY or O_RDWR, the st_mtime �le time
�eld is marked for update. If the �le is opened O_RDONLY or
O_RDWR, the st_atime �le time �eld is marked for update.

4-160 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

open

Any combination of the following optional ags may also be
speci�ed in oag :

O_APPEND The �le o�set is set to the end of the �le prior to each
write.

O_CREAT This option requires a third parameter, mode, which is
of type mode_t. If the optional third parameter is not
passed when O_CREAT is speci�ed, open() attempts to
read invalid data o� the stack, and the results are
indeterminate. If the �le exists, this ag has no e�ect,
except as noted under O_EXCL, below.

If the �le is created, the following occurs:

The �le o�set is set to the beginning of the �le
(where the o�set position is 0).
The �le's UID is set to the e�ective UID of the
calling process.
The �le's GID is set to the GID of the directory in
which the �le is being created.
The access permission bits of the �le are set to mode
and modi�ed by the �le mode creation mask of the
calling process.
The following �le time �elds are marked for update:
The �le's st_atime, st_ctime and st_mtime time
�elds.
The parent directory's st_ctime and st_mtime

time �elds.

O_EXCL The �le is opened for exclusive access by the calling
process. An error results if both O_EXCL and O_CREAT

are speci�ed for an existing �le.

An existing �le can be opened with O_EXCL and
without O_CREAT only if the �le is not currently open
by another process (otherwise, an error results).

O_TRUNC If the �le exists and opened O_TRUNC and either
O_RDWR or O_WRONLY, it is truncated to zero length and
the mode and owner remain unchanged. The �le o�set

POSIX/iX Library Function Descriptions 4-161

FINAL TRIM SIZE : 7.0 in x 8.5 in

open

is set to the beginning of the �le (where the o�set
position is 0).

An error results if the �le is opened O_TRUNC and
O_RDONLY.

If O_TRUNC is speci�ed for an existing �le, the
st_ctime and st_mtime time �elds of the �le are
marked for update.

If oag speci�es O_CREAT, mode, a structure of type mode_t, must
be passed to specify the access permission bits that the �le is to
be created with. Access permission bits are set by ORing any
combination of the following macros:

S_IRWXU Set �le owner class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IRUSR Set �le owner class read permission bit.

S_IWUSR Set �le owner class write permission bit.

S_IXUSR Set �le owner class execute (if a �le) or search (if a
directory) permission bit.

S_IRWXG Set �le group class read, write, and execute (if a
�le) or search (if a directory) permission bits.

S_IRGRP Set �le group class read permission bit.

S_IWGRP Set �le group class write permission bit.

S_IXGRP Set �le group class execute (if a �le) or search (if a
directory) permission bit.

S_IRWXO Set �le other class read, write, and execute (if a
�le), or search (if a directory) permission bits.

S_IROTH Set �le other class read permission bit.

S_IWOTH Set �le other class write permission bit.

S_IXOTH Set �le other class execute (if a �le) or search (if a
directory) permission bit.

Bits that are not access permission bits must contain zeros, or an
error is returned.

4-162 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

open

Return Values

>=0 Success. A nonnegative integer is returned representing the lowest
numbered �le descriptor not open by the calling process.

-1 An error occurred. The �le is not opened, and errno is set to
indicate the error condition.

Description

The open() function establishes the connection between a �le speci�ed by
pathname and a �le descriptor. It creates an open �le description that refers to
the �le and a �le descriptor that refers to that open �le description. The �le
descriptor is used by other I/O functions to refer to the �le.

The open() function returns a �le descriptor for the speci�ed �le, which is the
lowest �le descriptor not currently open for the calling process. The open �le
description is new; therefore, the �le descriptor does not share it with any other
process in the system.

Implementation Considerations

Refer to the EACCES, EMFILE, EEXCL, EFAULT, EIMPL, EINVAL, and ESYSERR

error descriptions below.

Pipes (or FIFOs), device special �les, and read-only �le systems are not
supported through POSIX/iX interfaces and cannot be opened by open().
Device �les are inherited from the parent process, which has them opened as
STDIN_FILENO, STDOUT_FILENO, and STDERR_FILENO.

The GID of a newly created �le is set to the GID of the directory in which the
�le is created.

MPE/iX �le equations are ignored by open().

POSIX/iX Library Function Descriptions 4-163

FINAL TRIM SIZE : 7.0 in x 8.5 in

open

The calling process must have the correct access permissions as de�ned by
either an attached ACD or by the MPE/iX �le security matrix. For example,
a �le opened O_RDONLY must have either ACD read access or MPE/iX read
access. A �le opened O_WRONLY or O_RDWR must have either ACD write access
and append access or MPE/iX write access and append access.

Signals generated for the calling process during execution of open() are
deferred from delivery until completion of this function.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The �le does not exist and the calling process
does not have write permission to the parent
directory of the �le to be created.
The �le exists and the permissions speci�ed by
oag are denied.
Both O_TRUNC and O_RDONLY were speci�ed.
Both O_APPEND and O_RDONLY were speci�ed.
An MPE/iX lockword is associated with the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all directory components of the
pathname.
Make sure that the calling process has write
permission to the parent directory of the �le to be
created.
Specify valid and compatible ags in oag.
Remove the MPE/iX lockword.

EEXCL CAUSE Attempt to open an existing �le exclusively failed
because �le is already opened.

ACTION Check for ownership of previously opened �le.
Check �le's permission bits.

4-164 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

open

EEXIST CAUSE O_CREAT and O_EXCL are set, and the named �le
exists.

ACTION Open the �le a di�erent way, or remove the �le.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.
EIMPL CAUSE One of the following:

The speci�ed �le is not a byte-stream �le.
The pathname began with two slash characters
(//).
Bits in mode that are not �le permission bits did
not contain zeros.
An attempt was made to create a �le in an
MPE/iX account.
An attempt was made to create a �le with a name
that exceeds 16 characters in the root directory or
an MPE/iX group.

ACTION One of the following:

Open only byte-stream �les.
Do not begin a pathname with two slash
characters (//).
Set bits in mode that are not �le permission bits
to zero.
Do not create �les in an MPE/iX account.
Do not attempt to create a �le with a name which
exceeds 16 characters in the root directory or an
MPE/iX group.

EINVAL CAUSE More than one of the following three open ags were
speci�ed in oag: O_WRONLY, O_RDONLY, and O_RDWR.

ACTION Specify only one of the open ags in oag.

EISDIR CAUSE The pathname speci�es a directory to be opened.
ACTION Use opendir() to open a directory �le.

POSIX/iX Library Function Descriptions 4-165

FINAL TRIM SIZE : 7.0 in x 8.5 in

open

EMFILE CAUSE The number of open �les and directories would
exceed {OPEN_MAX}, the limit of opened �les per
process.

ACTION Reduce the number of �les and directories opened
by the calling process.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE The O_CREAT option is not set, and the named �le
does not exist; or the O_CREAT option is set, and the
pathname does not exist; or pathname points to an
empty string.

ACTION Specify a valid pathname.
ENOSPC CAUSE Creation of the �le would exceed the disk space

limits imposed by the MPE/iX accounting facility,
or there is not enough free disk space to create the
�le.

ACTION Extend accounting limits for the directory in which
the �le is located, or free up disk space.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

close(), creat(), dup(), execl(), execv(), <fcntl.h>, lseek(), read(),
<signal.h>, fstat(), stat(), <stat.h>, write(), umask(), POSIX.1
(Section 5.3.1)

4-166 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

opendir

opendir

Opens a directory stream.

Syntax

#include <sys/types.h>

#include <dirent.h>

DIR *opendir (const char *pathname);

Parameters

pathname A pointer to a string containing a pathname of a directory to open.
The pathname must be terminated by a null character.

Return Values

<>NULL Success. A pointer to an object of type DIR is returned.

NULL An error occurred. The directory is not opened, and errno is set
to indicate the error condition.

Description

The opendir() function opens a directory stream associated with the directory
speci�ed by pathname and returns a pointer to the open directory stream to be
used by subsequent calls to readdir(), rewinddir(), and closedir().

The directory stream is positioned at the �rst entry in the directory.

Implementation Considerations

Refer to the EFAULT, EIMPL, EMFILE, and ESYSERR error descriptions below.

The type DIR (de�ned in <dirent.h>) is implemented using a �le descriptor.
Applications can only open a total of {OPEN_MAX} �les and directories.

The FD_CLOEXEC ag is not currently supported.

POSIX/iX Library Function Descriptions 4-167

FINAL TRIM SIZE : 7.0 in x 8.5 in

opendir

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE Either the calling process does not have search
permission to a component of pathname or does not
have read permission to the directory to be opened.

ACTION Make sure that the calling process has ACD traverse
directory (TD) access for all components of the
pathname and ACD read directory (RD) access to
the directory to be opened.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname begins with two slash characters (//).
ACTION Do not begin pathnames with two slash characters

(//).

EMFILE CAUSE The number of directory streams and �les opened by
the calling process would exceed {OPEN_MAX}.

ACTION Reduce the number of directories and �les opened
by the process.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE The speci�ed directory does not exist, or pathname
points to an empty string.

ACTION Specify an existing directory name.

4-168 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

opendir

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

closedir(), readdir(), rewinddir(), <dirent.h>, POSIX.1 (Section 5.1.2)

POSIX/iX Library Function Descriptions 4-169

FINAL TRIM SIZE : 7.0 in x 8.5 in

pause

Suspends execution of the calling process.

Syntax

#include <unistd.h>

int pause (void);

Parameters

None.

Return Values

No return Success.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The pause() function suspends execution of the calling process until the
delivery of a signal that either executes a user-supplied signal handling function
(signal handler) or causes the process to terminate. If the signal executes a
signal handler, pause() returns a -1 after the signal handler returns. If a signal
terminates the paused process, pause() does not return to the caller.

Implementation Considerations

None.

Errors

If an error occurs, errno is set to the following value:

EINTR CAUSE A signal was caught by the calling process, and
control was returned from the signal handler.

ACTION No action required.

4-170 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

pause

See Also

alarm(), kill(), sigaction(), wait(), POSIX.1 (Section 3.4.2).

POSIX/iX Library Function Descriptions 4-171

FINAL TRIM SIZE : 7.0 in x 8.5 in

pathconf

Gets con�guration variable for path name.

Syntax

#include <unistd.h>

long pathconf(char *pathname, int name);

Parameters

pathname is the name of the �le or directory.

name is a symbol indicating the variable, the value of which you
want to determine, relative to the �le or directory speci�ed
in pathname. .

Description

pathconf() lets you determine the value of a con�guration variable associated
with a particular �le. If pathconf() can determine the value of the requested
variable, it returns that value as its result.

The name argument may be any one of a set of symbols de�ned in <unistd.h>.
Each symbol stands for a con�guration variable. The following list shows the
possible symbols and the variables that each symbol stands for:

_PC_LINK_MAX stands for LINK_MAX de�ned in <limits.h>|the
maximum number of links the �le can have. If
pathname is a directory, pathconf() returns the
maximum number of links which can be established
to the directory itself.

_PC_MAX_CANON stands for MAX_CANON de�ned in <limits.h>|the
maximum number of bytes in a terminal canonical
input line. pathname must refer to a terminal �le.

_PC_MAX_INPUT stands for MAX_INPUT de�ned in <limits.h>|
the minimum number of bytes for which space is
available in a terminal input queue, which means
the maximum number of bytes that a portable

4-172 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

pathconf

application may have the user enter before the
application actually reads the input. pathname
must refer to a terminal �le.

_PC_NAME_MAX stands for NAME_MAX de�ned in <limits.h>|the
maximum number of characters in a �lename (not
including any terminating 0 if the �lename is stored
as a string). This only refers to the �lename itself,
that is, the last component of the �le's path name.
pathname must be a directory, and pathconf()

returns the maximum length of �lenames for �les in
the directory.

_PC_PATH_MAX stands for PATH_MAX de�ned in <limits.h>|the
maximum number of characters in a complete path
name (not including any terminating n0 if the path
name is stored as a string). pathname must be a
directory, and pathconf() returns the maximum
length of a relative path name when the speci�ed
directory is the working directory.

_PC_PIPE_BUF stands for PIPE_BUF de�ned in <limits.h>|the
maximum number of bytes that can be written
`atomically' to a pipe. If more than this number
of bytes are written to a pipe, the operation may
take more than one physical write operation and
may require more than one physical read operation
to read the data on the other end of the pipe. If
pathname is a FIFO �le, pathconf() returns the
value for the �le itself. If pathname is a directory,
pathconf() returns the value for any FIFOs which
exist or can be created under the directory. If
pathname is any other kind of �le, the behavior is
unde�ned.

_PC_CHOWN _RESTRICTED stands for _POSIX_CHOWN_RESTRICTED de�ned in
the <unistd.h>. This indicates that the use of
the chown() function is restricted|see chown()
for more details. If pathname is a directory,
pathconf() returns the value for any kind of �le

POSIX/iX Library Function Descriptions 4-173

FINAL TRIM SIZE : 7.0 in x 8.5 in

pathconf

under the directory, but not for subdirectories of
the directory.

_PC_NO_TRUNC stands for _POSIX_NO_TRUNC de�ned in <unistd.h>.
This indicates that an error is to be generated if
a �le name is longer than NAME_MAX. pathname
must be a directory, and the value returned by
pathconf() applies to all �les under that directory.

_PC_VDISABLE stands for _POSIX_VDISABLE de�ned in <unistd.h>.
This indicates that terminal special characters
can be disabled using this character value, if it is
de�ned; see tcsetattr() for details. pathname
must refer to a terminal �le.

For _POSIX_CHOWN_RESTRICTED, _POSIX_NO_TRUNC, and _POSIX_VDISABLE,
pathconf() returns -1 if the option is turned o� and another value otherwise.

If a particular variable has no limit (for example PATH_MAX), pathconf()
returns -1 but does not change errno.

Errors

If pathconf() cannot determine an appropriate value, it returns -1 and sets
errno to one of the following:

EACCES CAUSE The process does not have search permission on
some component of the pathname pre�x.

ACTION Ensure that the process has search permissions on
all components of the pathname pre�x.

EINVAL CAUSE name is not a valid variable code, or the given
variable cannot be associated with the speci�ed �le.

ACTION Ensure that name is a valid variable code.

4-174 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

pathconf

ENAMETOOLONG CAUSE pathname is longer than PATH_MAX characters, or
some component of pathname is longer than
NAME_MAX and _POSIX_NO_TRUNC is set.

ACTION Unset the con�guration variable _POSIX_NO_TRUNC'
to disable checking the length of pathname
or modify pathname to ensure that the

entire name is less than PATH_MAX characters
in length and that each component is less than
NAME_MAX characters in length.

ENOENT CAUSE There is no �lenamed pathname, or the pathname
argument is an empty string.

ACTION Ensure that you provide a pathname and that
pathname is a valid �le.

ENOTDIR CAUSE Some component of the pathname pre�x is not a
directory.

ACTION Ensure that all components of pathname are valid
directories.

See Also

fpathconf()

POSIX/iX Library Function Descriptions 4-175

FINAL TRIM SIZE : 7.0 in x 8.5 in

pclose

Close a pipe.

Syntax

#include <stdio.h>

int pclose(FILE *stream);

Parameters

stream is the pointer for a pipe opened with popen(). If it is not a pointer
for a pipe opened with popen(), the result is unde�ned.

Description

pclose() closes a pipe that was opened with popen(). It then waits for the
command on the other end of the pipe to terminate.

Errors

Normally, pclose() returns the termination status of the command at the
other end of the pipe. However, if the process calling pclose() has also
called wait() or waitpid() with a pid argument less than or equal to zero,
or with some non-standard function that makes it impossible for pclose()
to determine the termination status, pclose() returns -1 and sets errno to
ECHILD.

If popen() was unable to invoke the shell to execute a command, pclose()
returns a termination status as if the shell had terminated with exit(127).

pclose() may set errno to one of the following:

ECHILD CAUSE pclose() was unable to determine the child
process's status.

ACTION No action is necessary.

4-176 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

pclose

See Also

sh(1), popen()

POSIX/iX Library Function Descriptions 4-177

FINAL TRIM SIZE : 7.0 in x 8.5 in

pipe

Create an inter-process channel.

Syntax

int pipe (int �ldes[2])

Parameters

�ldes An open �le descriptor.

Return Values

0 successful completion

-1 error, errno is set to indicate the error

Description

The pipe() function creates a pipe and places two �le descriptors, one each
into the arguments �ldes [0] and �ldes [1]. These arguments refer to the open
�le descriptions for the read and write ends of the pipe. Their integer values
are the two lowest available at the time of the pipe() function call. The
O NONBLOCK and FD CLOEXEC ags are clear on both �le descriptors.
The fcntl() function can be used to set these ags.

Data is written to �le descriptor �ldes [1] and read from �le descriptor �ldes [0].
A read on �le descriptor �ldes [0] accesses the data written to �le descriptor
�ldes [1] on a �rst-in-�rst-out basis.

A process has the pipe open for reading if the read end �le descriptor, �ldes [0],
is open. A process has the pipe open for writing if the write end �le descriptor,
�ldes [1] is open.

Upon successful completion, the pipe() function marks for update the
st_atime, st_ctime, and st_mtime �elds of the pipe.

4-178 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

pipe

Implementation Considerations

None.

Errors

If an error occurs, errno is set to one of the following values:

EMFILE CAUSE More than fOPEN MAXg-2 �le descriptors are
already in use by this process.

ACTION Check process limit in <limits.h>. Close a �le.

ENFILE CAUSE The number of simultaneously open �les in the
system would exceed a system-imposed limit.

ACTION Close a �le.

See Also

fcntl(), open(), read(), write(), POSIX.1

POSIX/iX Library Function Descriptions 4-179

FINAL TRIM SIZE : 7.0 in x 8.5 in

popen

Open a pipe to a command and execute the command.

Syntax

#include <stdio.h>

FILE *popen(const char *command, const char *mode);

Parameters

command Is a string giving the command line for a command you
want to execute.

mode Speci�es the nature of the pipe you want to open. This can
be the string \r" or \w". See the following section for more
details.

Description

popen() executes the command speci�ed by command. It does this as if it
spawns a child process with fork(), then the child process invokes the shell sh
with

execl (shellpath, "sh", "-c", command, NULL);

where shellpath is the path name of the �le that contains the shell.

popen() establishes a pipe between command and the process which executes
popen(). The result of popen() is a FILE * pointer that can be used to
read/write on this pipe. If mode is \r", standard output from command is
piped to the process which calls popen(). Data shipped along this pipe can be
read with normal I/O calls using the FILE * pointer returned by popen(). If
mode is \w", output written to the pipe by the process which calls popen() is
sent as the standard input to command .

Streams opened with popen() should be closed with pclose().

4-180 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

popen

Errors

popen() returns NULL if it cannot create the pipe or the child process. It sets
errno to one of the values used by pipe() or fork(). popen() may also set
errno to:

EINVAL CAUSE The value of mode was invalid.
ACTION Specify a valid value for mode.

See Also

sh(1), pclose()

POSIX/iX Library Function Descriptions 4-181

FINAL TRIM SIZE : 7.0 in x 8.5 in

read

Reads data from a �le.

Syntax

#include <unistd.h>

ssize_t read (int �ldes, void *bu�er, size_t nbyte);

Parameters

�ldes An open �le descriptor.

bu�er A pointer to a bu�er where data is returned. The size of the bu�er
must be greater than nbyte.

nbyte The maximum number of bytes to read.

Return Values

>=0 Success. An integer value indicating the number of bytes actually
read is returned.

-1 An error occurred. The content of the bu�er is indeterminate and
errno is set to indicate the error condition.

Description

The read() function attempts to read nbyte bytes from the open �le associated
with the open �le descriptor �ldes into the bu�er pointed to by bu�er .

On a �le capable of seeking, read() starts from the current �le o�set position.
Before successful return, the �le o�set is incremented by the number of bytes
actually read.

On a �le not capable of seeking, read() starts from the current position. (The
�le o�set for such a �le is unde�ned.)

Upon successful completion, the read() function returns the actual number of
bytes copied to the bu�er and, if nbyte is greater than 0, marks for update the
st_atime time �eld of the �le.

4-182 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

read

The value returned by read() is never greater than nbyte. The value returned
may be less than nbyte if either the number of bytes left in the �le is less than
nbyte or the �le is a special �le (STDIN_FILENO) and fewer than nbytes are
available.

If nbytes is zero, the read() function returns zero bytes of data. In this case,
the �le o�set position is not changed, and no time �elds are marked for update.

No data transfer occurs past the current end-of-�le (EOF). Zero is returned if
the �le o�set position is at or after the EOF. For any portion of the �le prior
to the EOF that is not written to, read() returns bytes with a value of zero.

Implementation Considerations

Refer to the EFAULT, EIMPL, and ESYSERR error descriptions below.

Signals generated for the calling process during execution of read() are
deferred from delivery until completion of this function.

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The �ldes parameter is not a valid �le descriptor
open for reading.

ACTION Check the value of the �ldes, check permission bits
of �le or check the access mode used in opening the
�le.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the bu�er parameter.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The value speci�ed in nbyte is greater than
{SSIZE_MAX}.

ACTION Reduce the value speci�ed in nbyte.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

POSIX/iX Library Function Descriptions 4-183

FINAL TRIM SIZE : 7.0 in x 8.5 in

read

See Also

creat(), dup(), execl(), execv(), fork(), open(), unlink(), POSIX.1
(Section 6.4.1)

4-184 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

readdir

readdir

Reads entries from an open directory stream.

Syntax

#include <sys/types.h>

#include <dirent.h>

struct dirent *readdir (DIR *dirp);

Parameters

dirp A pointer to an open directory stream obtained from a successful
call to opendir().

Return Values

<>NULL Success.

NULL End of directory stream was reached, but errno is not modi�ed.

NULL An error occurred, and errno is set to indicate the error condition.

Description

The readdir() function returns a pointer to a structure of type dirent
representing the directory entry at the current position in the directory stream
associated with dirp, then positions the directory stream at the next entry. A
NULL pointer is returned upon reaching the end of the directory stream.

Upon successful completion, readdir() marks for update the st_atime time
�eld of the directory.

The pointer returned by readdir() points to data that is overwritten by
another call to readdir() on the same directory stream.

POSIX/iX Library Function Descriptions 4-185

FINAL TRIM SIZE : 7.0 in x 8.5 in

readdir

Implementation Considerations

Refer to the EFAULT and ESYSERR error descriptions below.

Both the dot and dot dot directory entries are returned only for directories
that explicitly contain them. The root directory, MPE/iX accounts, and
MPE/iX groups do not contain explicit dot and dot dot entries.

If an entry is removed from or added to the directory after the most recent call
to opendir() or rewinddir(), subsequent returns from readdir() accurately
reect the current state of the directory.

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The dirp parameter does not refer to an open
directory stream.

ACTION Pass an open directory stream pointer returned by
the opendir() function.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the dirp parameter.

ACTION Make sure that the pointer is correctly initialized.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

mkdir(), closedir(), opendir(), rewinddir(), <dirent.h>, POSIX.1
(Section 5.1.2)

4-186 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

readlink

readlink

Reads the value of a symbolic link.

Syntax

#include <unistd.h>

init readlink(const char *path, char *buf, size_t bufsiz);

Parameters

path The pathname of a �le.

buf Points to the region of memory where confstr() stores the string
value of the variable indicated by name.

len Is the maximum number of characters that can be placed in buf.
If this is not enough to hold the complete string value of name,
confstr() truncates the string value to len-1 characters and
appends a null terminator (the n0 character).

Return Values

Upon successful completion, the readlink() function will return the number of
bytes placed in the bu�er when bufsiz is greater than zero, or the number of
bytes contained in the symbolic link when bufsiz is equal to zero. If the return
value is equal to bufsiz , the bu�er need not contain the entire contents of the
symbolic link; for bufsiz can be used to determine the size of the contents of
the symbolic link. If the readlink() function is unsuccessful, a value of -1 will
be returned and errno will be set to indicate the error.

Description

The readlink function will place the contents of the symbolic link, path, in the
bu�er buf , which has size bufsiz . The contents of the returned symbolic link
will not include a null terminator. As a special case, if the value of bufsiz is 0,
no change will occur to the bu�er buf and readlink() will return the number of
bytes contained in the symbolic link.

POSIX/iX Library Function Descriptions 4-187

FINAL TRIM SIZE : 7.0 in x 8.5 in

readlink

Implementation Considerations

None.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

4-188 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

readlink

ELOOP CAUSE A loop exists in symbolic links encountered during
resolution of the path argument. This error may be
returned if more than fPOSIX SYMLOOPg
symbolic links are encountered during resolution of
the path argument.

ACTION Make sure that there is not a loop in the symbolic
links that loops more than POSIX_SYMLOOP.

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, ot pathname points to an empty
string.

ACTION Specify a valid pathname.

See Also

stat(), lstat(), symlink()

POSIX/iX Library Function Descriptions 4-189

FINAL TRIM SIZE : 7.0 in x 8.5 in

regcomp

Compile a regular expression.

Syntax

#include <regex.h>

int regcomp (regex_t *reg, const char *regstr, int ags);

Parameters

reg points to an object where regcomp() stores the compiled
regular expression. regex_t is de�ned in <regex.h>.

regstr points to the regular expression as a string (the way it
might be speci�ed for a command like grep).

ags gives a variety of ags for the compilation. Flags are given
by symbols de�ned in <regex.h> which can be ORed
together. The recognized symbols are:

REG_EXTENDED uses extended regular
expressions (see regexp(3)).
The default is to interpret regstr
as a basic regular expression.

REG_ICASE ignores the case of letters
in matches. The setting
of LC_CTYPE a�ects which
characters are considered to be
opposite cases of each other.

REG_NEWLINE treats the newline character as
a regular character, without its
special meaning.

REG_NOSUB indicates that regcomp() should
only report success or failure,
and not set reg->re_nsub
(see the following section). It

4-190 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

regcomp

also a�ects the behavior of
regexec(3)

Return Values

0 Successful compile

Error code Not successful compile

Description

regcomp() compiles a regular expression for later use. Early implementations
of regcomp() generated executable code that determined whether or not
strings matched regstr . Under POSIX.2, regcomp() may generate executable
code and/or data which speeds pattern-matching. The result of regcomp() is
a structure of the regex_t type which is stored in reg . This structure type
contains at least the following �eld:

size_t

re_nsub

is usually set to the number of parenthesized subexpressions found
in regstr . These subexpressions are delimited with

\(\)

in basic regular expressions and

()

in extended regular expressions. regcomp() does not set re_nsub
if REG_NOSUB is turned on in ags .

Errors

If regcomp() successfully compiles regstr it returns zero; otherwise, it returns
one of the following symbolic values:

REG_BADBR CAUSE The contents of

\{\}

were invalid: not a number, too large a number,
more than two numbers, �rst number larger than
second.

ACTION Make sure that the contents of \{\} or {} are valid.

POSIX/iX Library Function Descriptions 4-191

FINAL TRIM SIZE : 7.0 in x 8.5 in

regcomp

REG_BADPAT CAUSE regstr was an invalid regular expression.
ACTION Specify a valid regular expression

REG_BADRPT CAUSE regstr contained a ?, *, or + that was not preceded
by a valid regular expression.

ACTION Make sure that every unquoted /, *, or + in regstr
is preceded by a valid regular expression.

REG_EBRACE CAUSE regstr contained a \{\} imbalance.
ACTION Make sure that all { and } characters and all \{ and

\} characters appear in matched pairs in regstr .

REG_EBRACK CAUSE regstr contained a [] imbalance.
ACTION Make sure that all [and] characters appear in

matched pairs in regstr .

REG_ECOLLATE CAUSE regstr contained a reference to an invalid collating
element.

ACTION Make sure that all collating elements referenced in
regstr are valid in the locale indicated by
LC_COLLATE.

REG_ECTYPE CAUSE regstr contained a reference to an invalid character
class.

ACTION Make sure that all character classes referenced in
regstr are valid in the locale indicated by LC_CTYPE.

REG_EESCAPE CAUSE regstr contained a trailing \.
ACTION Remove the trailing \ or complete the escape

sequence.

REG_ENEWLINE CAUSE A newline was found before the end of a pattern,
and the REG_ENEWLINE ag was not set.

ACTION Set the REG_ENEWLINE ag, or check the pattern for
a missing /.

REG_EPAREN CAUSE regstr contained a () or \(\) imbalance.
ACTION Make sure that all (and) characters and all \(and

\) characters appear in matched pairs in regstr.

4-192 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

regcomp

REG_ERANGE CAUSE A range expression contained an invalid endpoint.
For example, an equivalence or character class is not
valid.

ACTION Specify a valid endpoint.

REG_ESPACE CAUSE There were not enough free system resources for
regcomp() to compile regstr

ACTION Free up more resources or specify a less complex
regular expression.

REG_ESUBREG CAUSE The number in a nnumber construct was greater
than the number of matching subexpressions.

ACTION Make sure that number is less than or equal to the
number of matching subexpressions.

REG_EFATAL CAUSE An internal error occurred.
ACTION Contact your system manager.

See Also

grep(1), regexec(), regfree(), regexp(3)

POSIX/iX Library Function Descriptions 4-193

FINAL TRIM SIZE : 7.0 in x 8.5 in

regerror

Convert regular expression errors to messages.

Syntax

#include <sys/types.h>

#include <regex.h>

size_t regerror(int errcode, const regex_t *reg,

char *errbuf, size_t len)

Parameters

errcode Is the last non-zero value returned by a call to regcomp() or
`regexec()''.

reg Points to an object where regcomp() stored a compiled regular
expression. regex_t is de�ned in <regex.h>. reg is currently
unused in this implementation.

errbuf Points to the region of memory where regerror() stores the
generated error message.

len Is the maximum number of characters that can be placed in errbuf.
If this is not enough to hold the generated message, regerror()
truncates the message to len-1 characters and appends a \0

character.

Description

regerror() takes an error code produced by regcomp() or regexec() and
produces a printable error message that corresponds to the error condition.
The return value of regerror() is the length of this error message.

If the len argument is not zero, regerror() places the error message in the
bu�er pointed to by errbuf, truncating it, if necessary. If the len is zero,
regerror() ignores the bu�er, but still returns the length of the appropriate
error message.

4-194 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

regerror

Erorrs

regerror() normally places one of the messages from the regerror(3) man
page in the bu�er indicated by *errbuf. All messages are shown with the error
code returned by regcomp() or regexec()''.

See Also

regexec(), regfree(), regexp(3)

POSIX/iX Library Function Descriptions 4-195

FINAL TRIM SIZE : 7.0 in x 8.5 in

regexec

Compare string against compiled regular expression.

Sytnax

#include <sys/types.h>

#include <regex.h>

int regexec(const regex_t *reg, const char *string,

size_t maxmatch, regmatch_t submatch[] ,

int ags);

Parameters

reg Must point to an object where regcomp() stored a compiled
regular expression.

string Is the string you want to compare against the regular expression
associated with reg .

maxmatch Is the maximum number of matching substrings that you want
regexec() to �nd. This should be less than or equal to the
number of elements that can be stored in the submatch array.

submatch[] Points to an array with a length of at least maxmatch where
regexec()strings of string which match the regular expression reg .

ags Holds ags that a�ect the behavior of regexec(). Flag values are
represented by symbolic constants de�ned in <regex.h>. To get an
appropriate ags value, OR the desired symbols together. Possible
symbols are:

REG_NOTBOL Tells regexec() not to treat the beginning of
string as the beginning of the text line. This
means that the special meaning of the caret
(^) (the beginning of the line) never matches in
string .

REG_NOTEO Tell regexec() not to treat the end of string
as the end of the text line. This means that

4-196 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

regexec

the special meaning of the dollar sign ($) (the
end of the line) never matches in string .

Return Values

regexec() returns zero to indicate a successful match, or one of the following
error codes.

Description

regexec() compares the given string to the regular expression reg . reg must
have been created by a previous call to regcomp(). The regcomp() ags that
were speci�ed at the time the regular expression was compiled a�ect the results
of as speci�ed in the ags to regcomp() or maxmatch is zero, regexec()
simply checks whether or not the given string contains a match for reg . If so,
regexec() returns zero. If there is no match, regexec() returns the value of
REG_NOMATCH, de�ned in <regex.h>. When REG_NOSUB is in e�ect, maxmatch
should be zero.

If REG_NOSUB was not speci�ed, regexec() uses the array submatch to record
substrings matching the regular expression. The elements of this array have the
structure type regmatch_t, de�ned in <regex.h>. This structure contains at
least the following:

char

*rm_sp;

points to the �rst character of a matching substring.

char

*rm_ep;

points to the character immediately following the end of a
matching substring.

off_t

rm_so;

o�set from string to the �rst character of a matching substring.

off_t

rm_eo;

o�set from string to the character immediately following the end of
a matching substring.

submatch[0] contains the �rst substring of string that matches the entire
regular expression reg . If reg contains parenthesized subexpressions,
submatch[i] contains the substring matching the ith parenthesized
subexpression. For example, if you have a Basic regular expression

a\(b*\)c\(d*\)

POSIX/iX Library Function Descriptions 4-197

FINAL TRIM SIZE : 7.0 in x 8.5 in

regexec

submatch[0] contains the match for the whole regular expression, submatch[1]
contains the match for \(b*\), and submatch[2] contains the match for
\(d*\). Unused elements of submatch have NULL pointers and -1 o�sets. If
there are more than maxmatch matching substrings, regexec() �nds them but
only records maxmatch in submatch.

A parenthesized subexpression of pattern might be part of several di�erent
substring matches, or match nothing even though the expression as a whole
matches. In this case, regexec() follows these rules:

1. If subexpression i participated in the match several times, submatch[i] refers
to the last such match.

2. If subexpression i did not participate in a successful match, the pointers
in submatch[i] are NULL and the byte o�sets in submatch[i] are set to -1.
This can happen, for example, if the regular expression has the form A|B; if
string matches the A part and subexpression i appears in the B part, there is
no match for subexpression i .

3. If subexpression i is contained within another subexpression j , no other
subexpression within j contains i , and submatch[j] reports a match of
subexpression j , then submatch[i] reports the match or nonmatch of
subexpression i as described in rules 1 and 2, but within the substring
reported in submatch[j] rather than the whole string.

4. If subexpression i is contained in subexpression j , and the pointers in
submatch[j] are NULL, the pointers in submatch[i] are also NULL and the
byte o�sets in submatch[i] are set to -1.

5. If subexpression i matches a zero-length string, both pointers and both byte
o�sets in submatch[i] indicate the character after the zero-length string.

4-198 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

regexec

Errors

If an error occurs, errno is set to one of the following values:

REG_ESPACE CAUSE There were not enough free system for regexec() to
carry out the comparison.

ACTION Free up more resources, or specify a less complex
regular expression or shorter string.

REG_NOMATCH CAUSE No match was found.
ACTION No action is required.

REG_EFATAL CAUSE Some other error occurred. For example, reg was
not a valid compiled regular expression, or was
destroyed by an errant pointer.

ACTION Check your program carefully.

See Also

grep(1), regcomp(), regfree(), regexp(3)

POSIX/iX Library Function Descriptions 4-199

FINAL TRIM SIZE : 7.0 in x 8.5 in

regfree

Free a compiled regular expression.

Syntax

#include <regex.h>

void regfree(regex_t *reg);

Parameters

reg must point to an object where regcomp() stored a compiled
regular expression.

Description

regfree() frees any memory that was allocated by regcomp() when it
compiled the regular expression associated with reg .

Note The regex_t object itself is not freed.

See Also

regcomp(), regexec(), regexp(3)

4-200 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

rename

rename

Renames an existing �le.

Syntax

#include <stdio.h>

int rename(const char *old, const char new);

Parameters

old The pathname of the �le to be renamed.

new The new pathname of the �le.

Return Values

Upon successful completion, a value of zero will be returned, Otherwise, a
value of -1 will be returned and errno will be set to indicate the error. If -1
is returned, neither the �lenamed by old nor the �lenamed by new , if either
exists, will be changed by this function call.

Description

The rename() function changes the name of a �le. The old argument points to
the pathname of the �le to be renamed, The new argument points to the new
pathname of the �le.

If the old argument and the new argument both refer to links to the same
existing �le, The rename() function will return successfully and perform no
other action.

The old and new arguments must be of the same type of �le or directory.
If the link named by the new argument exists, it will be removed and old
renamed to new . Write access permission is required for both the directory
containing old and the directory containing new .

If the old argument points to the pathname of a directory, the new argument
will not point to the pathname of a �le that is not a directory. If the directory
named by the new argument exists, it will be removed and old renamed to

POSIX/iX Library Function Descriptions 4-201

FINAL TRIM SIZE : 7.0 in x 8.5 in

rename

new . Thus, if new names an existing directory, it will be required to be an
empty directory.

The new pathname should not contain a path pre�x that names old .

If the link named by the new argument exists and the link count of the �le
becomes zero when it is removed and no process has the �le open, the space
occupied by the �le will be freed and the �le will no longer be accesable. If one
or more processes have the �le open when the last link is removed, the link will
be removed before rename() returns, but the removal of the �le contents will be
postponed until all references to the �le have been closed.

Upon successful completion, the rename() function will mark for update the
st ctime and st mtime �elds of the parent directory of each �le.

Errors

If an error occurs, errno is set to one of the following values:

EINVAL CAUSE More than one of the following three open ags were
speci�ed in oag: O_WRONLY, O_RDONLY, and O_RDWR.

ACTION Specify only one of the open ags in oag.

EISDIR CAUSE The pathname speci�es a directory to be opened.
ACTION Use opendir() to open a directory �le.

EMFILE CAUSE The number of open �les and directories would
exceed {OPEN_MAX}, the limit of opened �les per
process.

ACTION Reduce the number of �les and directories opened
by the calling process.

4-202 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

rename

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE The O_CREAT option is not set, and the named �le
does not exist; or the O_CREAT option is set, and the
pathname does not exist; or pathname points to an
empty string.

ACTION Specify a valid pathname.

ENOSPC CAUSE Creation of the �le would exceed the disk space
limits imposed by the MPE/iX accounting facility,
or there is not enough free disk space to create the
�le.

ACTION Extend accounting limits for the directory in which
the �le is located, or free up disk space.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

close(), creat(), dup(), execl(), execv(), <fcntl.h>, lseek(), read(),
<signal.h>, fstat(), stat(), <stat.h>, write(), umask(), POSIX.1
(Section 5.3.1)

POSIX/iX Library Function Descriptions 4-203

FINAL TRIM SIZE : 7.0 in x 8.5 in

rewinddir

Resets an open directory stream to point to the �rst entry of the directory.

Syntax

#include <sys/types.h>

#include <dirent.h>

int rewinddir (DIR *dirp);

Parameters

dirp A pointer to an open directory stream obtained from a successful
call to opendir().

Return Values

0 The position is successfully reset.

-1 An error occurred. The current position is not changed, and errno

is set to indicate the error condition.

Description

The rewinddir() function resets the position of the directory stream to which
dirp refers to the �rst entry of the directory. It also causes the directory stream
to refer to the current state of the directory, as a call to opendir() does.

Implementation Considerations

Refer to the EFAULT error description below.

The return type of rewinddir() is int to be able to return a value indicating
an error. The POSIX.1 standard calls for no value to be returned (void).
A strictly conforming POSIX application should not evaluate the return of
rewinddir().

The type DIR is implemented using a �le descriptor.

4-204 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

rewinddir

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The dirp parameter does not refer to an open
directory stream.

ACTION Pass an open directory stream pointer returned by
the opendir() function.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the dirp parameter.

ACTION Make sure that the pointer is correctly initialized.

See Also

mkdir(), closedir(), opendir(), readdir(), <dirent.h>, POSIX.1 Section
5.1.2.

POSIX/iX Library Function Descriptions 4-205

FINAL TRIM SIZE : 7.0 in x 8.5 in

rmdir

Purges (removes) a directory.

Syntax

#include <unistd.h>

int rmdir (const char *pathname);

Parameters

pathname A pointer to a string containing a pathname of the directory to
purge. The pathname must be terminated by a null character.

Return Values

0 Success.

-1 An error occurred. The directory is not removed, and errno is set
to indicate the error condition.

Description

The rmdir() function purges (removes) the directory speci�ed by pathname.
The directory is removed only if it is an empty directory (containing only the
dot and dot dot directory entries).

If the link count of the directory becomes zero, and no process has the
directory open, the directory is purged from the system and is no longer
accessible.

If one or more processes have the directory open when the last link is removed,
the dot and dot dot entries are removed before rmdir() returns and no new
entries can be created; however, the directory is not purged until all references
to the directory have been closed.

Upon successful completion, rmdir() marks for update the st_ctime and
st_mtime time �elds of the parent directory.

4-206 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

rmdir

Implementation Considerations

Refer to the EFAULT, EIMPL, and ESYSERR error descriptions below.

The rmdir() function cannot remove the dot and dot dot directory entries, the
root directory, MPE/iX accounts, or MPE/iX groups.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process either does not have search
permission to a component of the pathname or does
not have write permission to the parent directory.

ACTION Make sure that the calling process has search
permission to all components of the pathname and
write permission to the parent directory.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter, or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE An attempt was made to remove the dot or dot dot
directory entries, the root directory, an MPE/iX
account, or an MPE/iX group; or the pathname
began with two slash characters (//).

ACTION Remove MPE/iX accounts and MPE/iX groups
using MPE/iX CI commands. The root directory
can never be removed. Do not begin pathnames
with two slash characters (//).

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

POSIX/iX Library Function Descriptions 4-207

FINAL TRIM SIZE : 7.0 in x 8.5 in

rmdir

ENOENT CAUSE The speci�ed directory does not exist, or pathname
points to an empty string.

ACTION Specify a valid pathname.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

ENOTEMPTY CAUSE The directory speci�ed by pathname cannot be
removed because it is not empty.

ACTION Make sure that the directory is an empty directory.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

mkdir(), unlink(), POSIX.1 (Section 5.5.2)

4-208 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

setuid

setuid

Sets user IDs.

Syntax

#include <sys/types.h>

init setuid(uid_t uid);

Parameters

uid The ID of a user.

Return Values

Upon successful completion, a value of zero is returned. If unsuccessful, a value
of -1 is returned and errno is set to indicate the error.

Description

If f POSIX SAVED IDSg is de�ned:

If the process has appropriate privileges, the setuid() function sets the real user
ID, e�ective user ID, and the saved set-user-ID to uid .

If the process does not have appropriate privileges, but uid is equal to the real
user ID or the saved set-user-ID , the setuid() function sets the e�ective user
ID to uid ; the real user ID and saved set-user-ID remain unchanged by this
functioncall.

Otherwise:

If the process has appropriate privileges, the setuid() function sets the real user
ID and e�ective user ID to uid .

If the process does not have appropriate privileges, but uid is equal to the real
user ID, the setuid() function sets the e�ective user ID to uid ; the real user ID
remains unchanged by this function call.

If the process does not have appropriate privileges, but gid is equal to the real
group ID, the setgid() functionsets the e�ective group ID to gid ; the real group
ID remains unchanged by this function call.

POSIX/iX Library Function Descriptions 4-209

FINAL TRIM SIZE : 7.0 in x 8.5 in

setuid

Implementation Considerations

None.

Errors

If any of the following conditions occur, the setuid() function shall return -1
and set errno to the corresponding value:

EINVAL CAUSE The signal sig is not a valid signal number, or pid is
-1.

ACTION Refer to Table 3-5 for descriptions of valid signal
numbers, or set pid to a valid value.

EPERM CAUSE The caller does not have permission to send the
signal to any receiving process.

ACTION Refer to the kill() function description for signal
permission rules.

If any of the following conditions occur, the setgid() function shall return -1
and set errno to the corresponding value:

EINVAL CAUSE The signal sig is not a valid signal number, or pid is
-1.

ACTION Refer to Table 3-5 for descriptions of valid signal
numbers, or set pid to a valid value.

EPERM CAUSE The caller does not have permission to send the
signal to any receiving process.

ACTION Refer to the kill() function description for signal
permission rules.

See Also

exec(), getuid(), POSIX.1 (Section 3.3.2).

4-210 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigaction

sigaction

Examines and/or changes a signal action.

Syntax

#include <signal.h>

int sigaction (int sig, const struct sigaction *act,

struct sigaction *oact);

Parameters

sig The signal number of the signal to examine or change. Valid
signals are described in Table 3-5.

act If not NULL, a pointer to a structure of type sigaction that
describes a new signal action to be associated with sig . If NULL,
the current signal action is unchanged.

oact If not NULL, a pointer to a structure of type sigaction that
returns the description of the current action for the signal sig
(prior to any changes). If NULL, the current action is not
returned.

Return Values

0 Success.

-1 An error occurred. The signal action is not changed, and errno is
set to indicate the error condition.

Description

The sigaction() function enables the calling process to examine or change (or
both) the action associated with the speci�ed signal.

POSIX/iX Library Function Descriptions 4-211

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigaction

In order to examine the current action associated with a signal without
changing the current action, set act to NULL. In order to change an action
associated with a signal, de�ne the new signal action in a structure of type
sigaction and pass it in act. Refer to the following discussion of the
sigaction structure.

The sigaction structure, de�ned in <signal.h>, includes the following �elds:

Member Type Member
Name

Description

void (*)() sa handler Either SIG_DFL for the default action, SIG_IGN to
ignore the signal, or a pointer to a signal handling
function (a signal handler).

sigset_t sa mask ; Additional signals to be blocked during execution of
the signal handler speci�ed in sa handler .

int sa ags ; If sig speci�es SIGCHLD and sa ags speci�es
SA_NOCLDSTOP, a SIGCHLD signal is not generated for
the calling process whenever any of its child
processes stop. If sig speci�es SIGCHLD and sa ags
does not specify SA_NOCLDSTOP, SIGCHLD is
generated for the calling process whenever any of its
child processes stop.

When installing a new signal handler, you must specify in sa mask any
additional signals to be blocked during the execution of the signal handler.
When a signal is caught by a signal handler installed by sigaction(), a new
signal mask is calculated and installed for the duration of the signal handler (or
until a call to either sigprocmask() or sigsuspend()).

This mask is formed by taking a union of the current signal mask and sa mask
for the signal being delivered, then including the signal being delivered. If and
when the signal handler returns normally, the original signal mask is restored.

The signals SIGKILL and SIGSTOP, if speci�ed in the sa mask �eld, are
removed by the system without error.

The structure passed in sa mask must be initialized by either the
sigemptyset() or the sigfillset() functions before adding or removing
signals from it using the sigaddset() or sigdelset() functions.

4-212 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigaction

A signal action installed by sigaction() remains in e�ect until changed
by another call to sigaction() or until the next call to one of the exec()
functions.

The sigaction() function is incompatible with the ANSI C signal()

function. The sigaction() function can return and reinstall a signal action
that was originally installed by signal(); however, the structure that
sigaction() returns in oact may not reliably be examined by the caller. If
this same signal action is later reinstalled, without modi�cation, by another call
to sigaction(), the result is as if the original call to signal() were repeated.

Implementation Considerations

Refer to the EFAULT error description below.

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a bad address in attempting to
use the act or oact parameters.

ACTION Make sure that the pointer is correctly initialized.

EINVAL CAUSE One of the following:

The sig parameter is not a valid signal number.
An attempt was made to handle a signal that
cannot be handled or to ignore a signal that
cannot be ignored.
An attempt was made to change the action from
SIGDFL for a signal that cannot be handled or
ignored.

ACTION Refer to Table 3-5 for descriptions of valid and
supported signal numbers.

See Also

kill(), sigprocmask(), sigsuspend(), <signal.h>, POSIX.1 (Section 3.3.4)

POSIX/iX Library Function Descriptions 4-213

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigaddset

Adds a signal to a signal set.

Syntax

#include <signal.h>

int sigaddset (sigset_t *set, int sig);

Parameters

set A pointer to a structure of type sigset_t containing a set of
signals to which sig is to be added.

sig The signal number of the signal to add to set . Valid signals are
described in Table 3-5.

Return Values

0 Success.

-1 An error occurred. The signal is not added, and errno is set to
indicate the error condition.

Description

The sigaddset() function adds the signal sig to the set of signals speci�ed in
the structure pointed to by set .

The structure of type sigset_t pointed to by set must be initialized by
sigemptyset() or sigfillset() prior to being used by sigaddset();
otherwise, the results are unde�ned.

Implementation Considerations

Refer to the EFAULT error description below.

4-214 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigaddset

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the set parameter.

ACTION Make sure that the pointer is correctly initialized.

EINVAL CAUSE The signal sig is not a valid signal number.
ACTION Refer to Table 3-5 for descriptions of valid signal

numbers.

See Also

sigaction(), sigdelset(), sigemptyset(), sigfillset(), sigismember(),
<signal.h>, POSIX.1 (Section 3.3.3)

POSIX/iX Library Function Descriptions 4-215

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigdelset

Deletes a signal from a signal set.

Syntax

#include <signal.h>

int sigdelset (sigset_t *set, int sig);

Parameters

set A pointer to a structure of type sigset_t containing a set of
signals from which sig is to be deleted.

sig The signal number of the signal to delete from set . Valid signals
are described in Table 3-5.

Return Values

0 Success.

-1 An error occurred. The signal is not deleted, and errno is set to
indicate the error condition.

Description

The sigdelset() function deletes the signal sig from the set of signals
speci�ed in the structure pointed to by set .

The structure of type sigset_t pointed to by set must be initialized by
sigemptyset() or sigfillset() prior to being used by sigdelset();
otherwise, the results are unde�ned.

Implementation Considerations

Refer to the EFAULT error description below.

4-216 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigdelset

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the set parameter.

ACTION Make sure that the pointer is correctly initialized.

EINVAL CAUSE The signal sig is not a valid signal number.
ACTION Refer to Table 3-5 for descriptions of valid signal

numbers.

See Also

sigaction(), sigaddset(), sigemptyset(), sigfillset(), sigismember(),
<signal.h>, POSIX.1 (Section 3.3.3)

POSIX/iX Library Function Descriptions 4-217

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigemptyset

Initializes a signal set to the empty set.

Syntax

#include <signal.h>

int sigemptyset (sigset_t *set);

Parameters

set A pointer to a structure of type sigset_t to initialize to the
empty set.

Return Values

0 Success.

-1 An error occurred. The signal set is not initialized, and errno is
set to indicate the error condition.

Description

The sigemptyset() function initializes set to the empty set. All signals
described in Table 3-5 are excluded from the set.

The sigemptyset() or sigfillset() function must be called to initialize
the structure of type sigset_t pointed to by set prior to its use by other
functions.

Implementation Considerations

Refer to the EFAULT error description below.

4-218 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigemptyset

Errors

If an error occurs, errno is set to the following value:

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the set parameter.

ACTION Make sure that the pointer is correctly initialized.

See Also

sigaction(), sigaddset(), sigdelset(), sigfillset(), sigismember(),
<signal.h>, POSIX.1 Section 3.3.3.

POSIX/iX Library Function Descriptions 4-219

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigfillset

Initializes a signal set to the full set.

Syntax

#include <signal.h>

int sigfillset (sigset_t *set);

Parameters

set A pointer to a structure of type sigset_t to initialize to the full
set.

Return Values

0 Success.

-1 An error occurred. The signal set is not initialized, and errno is
set to indicate the error condition.

Description

The sigfillset() function initializes set to the full set. All signals described
in Table 3-5 are included in the set.

The sigfillset() or sigemptyset() function must be called to initialize
the structure of type sigset_t pointed to by set prior to its use by other
functions.

Implementation Considerations

Refer to the EFAULT error description below.

4-220 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigfillset

Errors

If an error occurs, errno is set to the following value:

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the set parameter.

ACTION Make sure that the pointer is correctly initialized.

See Also

sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigismember(),
<signal.h>, POSIX.1 (Section 3.3.3)

POSIX/iX Library Function Descriptions 4-221

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigismember

Tests whether a signal is a member of a signal set.

Syntax

#include <signal.h>

int sigismember (const sigset_t *set, int sig);

Parameters

set A pointer to a structure of type sigset_t containing a set of
signals to test.

sig The signal number of the signal to test for membership in set .
Valid signals are described in Table 3-5.

Return Values

1 The signal sig is a member of the signal set.

0 The signal sig is not a member of the signal set.

-1 An error occurred. The test is not performed, and errno is set to
indicate the error condition.

Description

The sigismember() function tests whether or not the signal sig is a member of
the set of signals speci�ed in the structure pointed to by set .

Implementation Considerations

Refer to the EFAULT error description below.

4-222 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigismember

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the set parameter.

ACTION Make sure that the pointer is correctly initialized.

EINVAL CAUSE The signal sig is not a valid signal number.
ACTION Refer to Table 3-5 for descriptions of valid signal

numbers.

See Also

sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(),
<signal.h>, POSIX.1 (Section 3.3.3)

POSIX/iX Library Function Descriptions 4-223

FINAL TRIM SIZE : 7.0 in x 8.5 in

siglongjmp

Restore an environment previously saved by sigsetjmp().

Syntax

#include <setjmp.h>

void siglongjmp (sigjmp_buf env, int val);

Parameters

env Passes information needed to restore a previous environment.
This variable was used in a previous call to sigsetjmp()

to save the environment. The type sigjmp_buf (de�ned in
<setjmp.h>) de�nes an array of unsigned integers. For this
reason, the env argument does not require an & operator..

val Passes a value to be returned by sigsetjmp(). If a zero is
passed in this argument, it is changed to a value of 1 to ensure
that siglongjmp() never causes sigsetjmp() to return a zero
value.

Return Values

None.

Description

The siglongjmp() function restores the environment saved in env by a
previous call to the sigsetjmp() macro. If the env argument was initialized by
a call to sigsetjmp() with a non-zero value passed in the savemask argument,
the saved signal mask is also restored by siglongjmp(). If the env argument
was not initialized by a call to sigsetjmp(), the operation of siglongjmp() is
unde�ned.

After siglongjmp() is completed, the program executes as if the call to
sigsetjmp() (which stored information into the env argument) had returned
a second time. In this case, sigsetjmp() returns either the non-zero value
passed in the val argument of siglongjmp() or 1 if zero was passed in val .

4-224 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

siglongjmp

The restoration of the environment includes trimming the stack so that
all stack frames beyond the frame marked by env are removed. The
siglongjmp() function cannot add stack frames. This means that if a sequence
of functions is:

A == calls ==> B == calls ==> C

and sigsetjmp() is used in function C to save an environment in a global
env , functions B or A may not contain any siglongjmp() calls that reference
the env values. Only subordinate functions may issue calls to siglongjmp().
As a special case, a function may issue a siglongjmp() call that references a
sigsetjmp() within itself, although this is not usually done.

The values of objects of automatic storage duration that are not quali�ed
by volatile are indeterminate if they have changed since the call to
sigsetjmp().

The siglongjmp() function will work correctly in the context of signals
and interrupts and any of their associated functions. However, if the
siglongjmp() function is invoked from a nested signal handler, the operation
of siglongjmp() is unde�ned.

See Also

sigsetjmp(), POSIX 1003.1 Section 8.3.1

POSIX/iX Library Function Descriptions 4-225

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigpending

Returns the set of pending signals.

Syntax

#include <signal.h>

int sigpending (sigset_t *set);

Parameters

set A pointer to a structure of type sigset_t that is to contain the
signals that are blocked from delivery and pending for the calling
process.

Return Values

0 Success.

-1 An error occurred. No information is returned, and errno is set to
indicate the error condition.

Description

The sigpending() function returns to set the set of signals that are blocked
from delivery and pending for the calling process.

Implementation Considerations

Refer to the EFAULT error description below.

Signals that are both blocked and ignored for the calling process remain
pending if generated for the process.

4-226 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigpending

Errors

If an error occurs, errno is set to the following value:

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the set parameter.

ACTION Make sure that the pointer is correctly initialized.

See Also

sigprocmask(), <signal.h>, POSIX.1 (Section 3.3.6)

POSIX/iX Library Function Descriptions 4-227

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigprocmask

Examines or changes blocked signals.

Syntax

#include <signal.h>

int sigprocmask (int how, const sigset_t *set,

sigset_t *oset);

Parameters

how Indicates how the process's signal mask should be changed by the
parameter set . One only of the following values must be passed:

SIG_BLOCK Add the speci�ed signals in set to the process's
signal mask.

SIG_UNBLOCK Delete the speci�ed signals in set from the
process's signal mask.

SIG_SETMASK Replace the process's signal mask with the signal
mask pointed to by set .

set If not NULL, a pointer to a structure of type sigset_t containing
a set of signals to use when changing the calling process's signal
mask in the manner de�ned by how . If NULL, how is ignored and
the process's signal mask remains unchanged.

oset If not NULL, a pointer to a structure of sigset_t that returns the
process's previous signal mask (prior to any changes). If NULL,
the current signal mask is not returned.

Return Values

0 Success.

-1 An error occurred. The process's signal mask is not changed, and
errno is set to indicate the error condition.

4-228 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigprocmask

Description

The sigprocmask() function allows the caller to examine or change (or both)
the calling process's signal mask. If any pending unblocked signals remain after
a call to sigprocmask(), at least one of those signals is delivered to the calling
process before the function returns.

It is not possible to block the signals SIGKILL and SIGSTOP. If speci�ed in the
structure pointed to by set , they are removed by the system without error.

Implementation Considerations

Refer to the EFAULT error description below.

Refer to Table 3-5 for implementation considerations associated with signals.

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a bad address in attempting to
use the set or oset parameters.

ACTION Make sure that the pointer is correctly initialized.

EINVAL CAUSE The value of how is not valid.
ACTION Specify valid values for how .

See Also

sigaction(), sigpending(), sigsuspend(), <signal.h>, POSIX.1 (Section
3.3.5)

POSIX/iX Library Function Descriptions 4-229

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigsetjmp

Save the current environment and signal mask.

Syntax

#include <setjmp.h>

int sigsetjmp (sigjmp_buf env, int savemask);

Parameters

env Returns the current environment for later use in a call
to siglongjmp(). If savemask is set to a non-zero value,
the current signal mask is also returned in env . The type
sigjmp_buf (de�ned in <setjmp.h>) de�nes an array of
unsigned integers. For this reason, the env argument does not
require an & operator.

savemask If a non-zero value is passed in savemask , the current signal
mask is returned in env . If zero is passed, the current signal
mask is not saved.

Description

A call to setsetjmp() creates an entry point in a program that can be
accessed via siglongjmp(). The sigsetjmp() macro saves the current
environment of the calling process in env . If savemask is set to a non-zero
value, the current signal mask is also saved in env . A subsequent call
to siglongjmp() requires that the env variable be passed to restore the
environment.

If a zero value is returned, the return is from sigsetjmp() itself and not a
return as a result of a call to siglongjmp().

If a nonzero value is returned, the return is a result of a call to siglongjmp().
After siglongjmp() is completed, the program executes as if the call to
sigsetjmp() had returned a second time. In this case, sigsetjmp() returns
either the non-zero value passed in the val argument of siglongjmp() or 1 if
zero was passed in val .

4-230 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigsetjmp

Return Values

0 Successful completion of a call to sigsetjmp().

<>0 Successful completion of a call to siglongjmp(). The value is
that of the val parameter passed to siglongjmp(), or 1 if a
zero was passed in the val parameter.

See Also

siglongjmp(), POSIX 1003.1 (Section 8.3.1)

POSIX/iX Library Function Descriptions 4-231

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigsuspend

Replaces the calling process's signal mask and suspends the calling process to
wait for a signal.

Syntax

#include <signal.h>

int sigsuspend (sigset_t *sigmask);

Parameters

sigmask If not NULL, a pointer to a structure of type sigset_t that
contains a new signal mask to be installed before suspending the
calling process. If NULL, the process's current signal mask is used.

Return Values

No return Because sigsuspend() suspends process execution inde�nitely,
there is no return value indicating success.

-1 An error occurred, and errno is set to indicate the error condition.

Description

The sigsuspend() function replaces the calling process's signal mask with the
set of signals pointed to by sigmask . It then suspends the process until the
delivery of a signal whose action is either to execute a signal-handling function
(signal handler) or to terminate the process.

If the action is to execute a signal handler, upon completion of the signal
handler, sigsuspend() returns and restores the process's previous signal mask.
If the signal action is to terminate the process, sigsuspend() does not return.

It is not possible to block the signals SIGKILL and SIGSTOP. If speci�ed in the
structure pointed to by sigmask , they are removed by the system without error.

4-232 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigsuspend

Implementation Considerations

Refer to the EFAULT error description below.

If the sigmask parameter of the sigsuspend() function is set to NULL, the
process is suspended with the current signal mask. This implementation is
considered an extension to the POSIX.1 standard. A strictly conforming
POSIX application should pass in the sigmask parameter of the sigsuspend()
function the current signal mask returned by a successful call to
sigprocmask() where set is set to NULL.

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a bad address in attempting to
use the sigmask parameter.

ACTION Make sure that the pointer is correctly initialized.

EINTR CAUSE A signal was caught by the process, and control was
returned from a signal-handling function.

ACTION No action required.

See Also

pause(), sigaction(), sigpending(), sigprocmask(), <signal.h>, POSIX.1
(Section 3.3.7)

POSIX/iX Library Function Descriptions 4-233

FINAL TRIM SIZE : 7.0 in x 8.5 in

sleep

Delays process execution.

Syntax

#include <unistd.h>

unsigned int sleep (unsigned int seconds);

Parameters

seconds Speci�es the number of real time seconds to sleep.

Return Values

No return If the action associated with a signal is to terminate, sleep() does
not return.

0 The requested time has elapsed.

>0 The di�erence between seconds and the actual number of seconds
slept before delivery of a signal whose action is to execute a signal
handling function.

Description

The sleep() function suspends the calling process from execution either for
the number of real-time seconds speci�ed by the seconds parameter or until the
delivery of a signal whose action is either to execute a signal-handling function
or to terminate the process.

If seconds real-time seconds have passed without receipt of a signal with the
appropriate action, sleep() returns control to the calling process.

If the action associated with a received signal is to execute a signal handling
function, upon completion of the function, sleep() returns control to the
calling process. If the signal action is to terminate the process, sleep() does
not return.

Due to system activity, the process may be suspended for more than the
number of real-time seconds indicated by the seconds parameter.

4-234 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sleep

Implementation Considerations

The SIGALRM signal is not used to implement sleep().

Errors

None.

See Also

alarm(), pause(), sigaction(), POSIX.1 (Section 3.4.3).

POSIX/iX Library Function Descriptions 4-235

FINAL TRIM SIZE : 7.0 in x 8.5 in

stat

Returns �le status information.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

int stat (const char *pathname, struct stat *bu�er);

Parameters

pathname A pointer to a string containing a pathname of the �le or directory
from which to obtain information. The pathname must be
terminated by a null character.

bu�er A pointer to a bu�er of type struct stat (de�ned in
<sys/stat.h>) where �le status information is returned.

Return Values

0 Success.

-1 An error occurred. File status information is not returned and
errno is set to indicate the error condition.

Description

The stat() function returns status information on the speci�ed �le or
directory to the structure pointed to by bu�er .

The stat() function updates to the current time all time �elds that have been
previously marked for update. All update marks are removed.

4-236 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

stat

Implementation Considerations

Refer to the EACCES, EFAULT, EIMPL, and ESYSERR error descriptions below.

Access permissions to the �le are not required, but if the �le or directory has
an MPE/iX ACD, the calling process must have MPE/iX read ACD (RACD)
access to the �le or directory, or an error occurs.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process does not have search permission
to a component of the pathname.

ACTION Make sure that the calling process has search
permission to all components of the pathname.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the bu�er or pathname
parameters, or the pathname was not terminated by
a null character.

ACTION Make sure that the pointer is correctly initialized.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOENT CAUSE The speci�ed �le does not exist, or pathname points
to an empty string.

ACTION Specify a valid pathname.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

POSIX/iX Library Function Descriptions 4-237

FINAL TRIM SIZE : 7.0 in x 8.5 in

stat

EPERM CAUSE The calling process does not have MPE/iX read
ACD (RACD) access to the �le, or the pathname
begins with two slash characters (//).

ACTION Make sure that the calling process has RACD access
to the �le before calling stat(), or do not begin the
pathname with two slash characters (//).

ESYSERR CAUSE Access denied. Unable to map UID and GID to
owner of the �le or directory either because user
database is corrupted or because the MPE/iX �le
type is not supported by POSIX/iX library
functions.

ACTION Check to see if the user database is corrupted, or if
the MPE/iX �le type is supported by POSIX/iX
library functions.

See Also

creat(), dup(), fstat(), open(), <sys/stat.h>, POSIX.1 (Section 5.6.2)

4-238 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

symlink

symlink

Creates a symbolic link to a �le.

Syntax

#include <unistd.h>

init symlink(const char *pname, const char *slink);

Parameters

pname Is the pathname contained in the symbolic link.

slink Is the name of the symbolic link created.

Return Values

Upon successful completion, the symlink() function will return zero. Otherwise,
a value of -1 will be returned and errno will be set to indicate the error.

Description

The symlink function will create a symbolic link called slink , that contains the
pathname speci�ed by pname (slink is the name of the symbolic link created,
pname is the pathname contained in the symbolic link).

Implementation Considerations

None.

POSIX/iX Library Function Descriptions 4-239

FINAL TRIM SIZE : 7.0 in x 8.5 in

symlink

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process does not have search permission
to a component of the pathname.

ACTION Make sure that the calling process has search
permission to all components of the pathname.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

EEXIST CAUSE The �lenamed by slink already exists.
ACTION Make sure the slink does not exist.

ELOOP CAUSE A loop exists in symbolic links encountered during
resolution of the slink argument. This error may be
returned if more than fPOSIX SYMLOOPg
symbolic links are encountered during resolution of
the slink argument.

ACTION Make sure that there is not a loop in the symbolic
links that loops more than POSIX_SYMLOOP.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

ENOSPC CAUSE The new symbolic link cannot be created because
there is no space left on the �le system that will
contain the symbolic link.

ACTION Create the slink on a writable volume (�le system).

EROFS CAUSE The �le slink would reside on a read-only �le system.
ACTION Create the slink on a writable volume (�le system).

See Also

link(), readlink(), unlink()

4-240 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sysconf

sysconf

Determine system con�guration options.

#include <unistd.h>

long sysconf(int name);

Parameters

name speci�es the system con�guration option for which you want to
obtain the value. The value of name is given may be any one of
a set of symbols de�ned in <unistd.h>; each of these symbols
corresponds to an environment variable or manifest constant which
gives a system con�guration option.

Return Values

sysconf() returns the value associated with the speci�ed name. If name is not
recognized, or stands for a symbol which is unde�ned, then sysconf() returns
-1.

Description

The name argument may be any one of the following symbols:

_SC_ARG_MAX Stands for ARG_MAX de�ned in <limits.h>|
the maximum number of bytes of arguments
and environment data that can be passed in
an exec() call.

_SC_BC_BASE_MAX Stands for BC_BASE_MAX de�ned in
<unistd.h>|the maximum value for ibase
and obase in bc(1).

_SC_BC_DIM_MAX Stands for BC_DIM_MAX de�ned in
<unistd.h>|the maximum number of
elements in a bc(1) array.

_SC_BC_SCALE_MAX Stands for BC_SCALE_MAX de�ned in
<unistd.h>|the maximum scale in bc(1).

POSIX/iX Library Function Descriptions 4-241

FINAL TRIM SIZE : 7.0 in x 8.5 in

sysconf

_SC_BC_STRING_MAX Stands for BC_STRING_MAX de�ned in
<unistd.h>|the maximum length of a
string accepted by bc(1).

_SC_CHILD_MAX Stands for CHILD_MAX de�ned in
<limits.h>|the maximum number of
processes that a real user ID may have
executing simultaneously.

_SC_CLK_TCK Stands for CLK_TCK de�ned in <time.h>|
the number of clock ticks in a second.

_SC_COLL_WEIGHTS_MAX Stands for COLL_WEIGHTS_MAX de�ned in
<unistd.h>|the maximum number of
weights that can be assigned to an entry of
the LC_COLLATE order keyword in the locale
de�nition �le.

_SC_EXPR_NEST_MAX Stands for EXPR_NEST_MAX de�ned in
<unistd.h>|the largest number of
expressions that can be nested within
parentheses by expr(1).

_SC_JOB_CONTROL Stands for _POSIX_JOB_CONTROL which may
be de�ned in <unistd.h>|this indicates
that certain job control operations are
implemented by this version of the operating
system. If _POSIX_JOB_CONTROL is de�ned,
various functions (for example, setpgid())
have greater functionality than when it is
not de�ned.

_SC_LINE_MAX Stands for LINE_MAX de�ned in
<unistd.h>|the maximum length of a
utility's input line when the utility processes
text �les. This length includes the newline
on the end of the line.

_SC_NGROUPS_MAX Stands for NGROUPS_MAX de�ned in
<limits.h>|the maximum number of
supplementary group IDs that may be
associated with a process.

4-242 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sysconf

_SC_OPEN_MAX Stands for OPEN_MAX de�ned in
<limits.h>|the maximum number of �les
that a single process may have open at one
time.

_SC_RE_DUP_MAX Stands for RE_DUP_MAX de�ned in
<unistd.h>|the largest number of repeated
occurrences of a regular expression that you
can use in the notation \{m,n\}.

_SC_SAVED_IDS Stands for _POSIX_SAVED_IDS which may be
de�ned in <unistd.h>|this indicates that
this POSIX implementation has a saved
set-user-ID and a saved set- group-ID.
This a�ects the behavior of functions like
setuid() and setgid().

_SC_STREAM_MAX Stands for _POSIX_STREAM_MAX which may
be de�ned in <limits.h>|the number of
streams that one process can have open at
one time.

_SC_TZNAME_MAX Stands for _POSIX_TZNAME_MAX which may
be de�ned in <limits.h>|the maximum
number of bytes supported for the name of a
time zone (not of the TZ variable).

_SC_VERSION Stands for _POSIX_VERSION which may be
de�ned in <unistd.h>|this indicates the
version of the POSIX.1 standard to which
the system conforms.

_SC_2_C_BIND Stands for _POSIX2_C_BIND which may be
de�ned in <unistd.h>|if this is de�ned, the
system supports the C Language Bindings
Option of POSIX.2.

_SC_2_C_DEV Stands for _POSIX2_C_DEV which may be
de�ned in <unistd.h>|if this is de�ned,
the system supports the C Language
Development Utilities Option of POSIX.2.

POSIX/iX Library Function Descriptions 4-243

FINAL TRIM SIZE : 7.0 in x 8.5 in

sysconf

_SC_2_CHAR_TERM Stands for _POSIX2_CHAR_TERM which may
be de�ned in <unistd.h>|if this is de�ned,
the system supports at least one terminal
type capable of all operations necessary for
the User Portability Utilities. This is only
on if _SC_2_UPE is on.

_SC_2_FORT_DEV Stands for _POSIX2_FORT_DEV which
may be de�ned in <unistd.h>|if this is
de�ned, the system supports the FORTRAN
Development Utilities Option of POSIX.2.

_SC_2_FORT_RUN Stands for _POSIX2_FORT_RUN which may be
de�ned in <unistd.h>|if this is de�ned, the
system supports the FORTRAN Runtime
Utilities Option of POSIX.2.

_SC_2_LOCALEDEF Stands for _POSIX2_LOCALEDEF which may
be de�ned in <unistd.h>|if this is de�ned,
the system supports the creation of locales.

_SC_2_SW_DEV; Stands for _POSIX2_SW_DEV which may be
de�ned in <unistd.h>|if this is de�ned, the
system supports the Software Development
Utilities Option of POSIX.2.

_SC_2_UPE Stands for _POSIX2_UPE which may be
de�ned in <unistd.h>|if this is de�ned,
the system supports the User Portability
Utilities Option.

_SC_2_VERSION Stands for _POSIX2_VERSION which may be
de�ned in <unistd.h>|this indicates the
version of the POSIX.2 standard to which
the system conforms.

4-244 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

sysconf

Errors

If sysconf() fails to recognize name, it returns -1 and sets errno to the value:

EINVAL CAUSE The value speci�ed for the name argument was
invalid.

ACTION Specify a valid value for name.

See Also

bc(1), expr(1), paste(1)

POSIX/iX Library Function Descriptions 4-245

FINAL TRIM SIZE : 7.0 in x 8.5 in

system

Execute a command using the shell.

Syntax

#include <stdlib.h>

int system(const char *command);

Parameters

command is a string giving the command line for the command you
want to execute using the shell (MPE/iX Shell).

Return Values

If command is NULL, system() returns -1.

If command is not NULL, system() returns the exit status of the sh command
that executes command. If sh cannot be invoked to execute the command, the
return value of system() is the value that would be received if sh terminated
with exit(127).

If system() cannot fork() a child process, it returns -1 and sets errno to
an appropriate value. It uses the same errno values used by fork() for its
possible failures.

Description

system() executes the command speci�ed by command . It does this as if it
spawns a child process with fork(), then the child process invokes the shell sh
with

execl(shellpath, "sh", "-c", command, NULL);

where shellpath is the pathname of the �le that contains the MPE/iX Shell.

system() ignores the SIGINT and SIGQUIT signals while waiting for the
command to terminate. It also blocks the SIGCHLD signal. After the command
terminates, the calling process can examine the return value from system() to
determine if any of these signals should be handled.

4-246 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

system

Implementation Considerations

None.

Errors

None.

See Also

sh(1)

POSIX/iX Library Function Descriptions 4-247

FINAL TRIM SIZE : 7.0 in x 8.5 in

time

Returns the number of seconds since the Epoch.

Syntax

#include <time.h>

time_t time (time_t *tloc);

Parameters

tloc If not NULL, a pointer to a variable of type time_t where the
number of seconds since the Epoch is returned. If NULL, no value
is stored.

Return Values

>=0 Success.

-1 An error occurred. The time is not returned, and errno is set to
indicate the error condition.

Description

The time() function calculates and returns the number of seconds since the
last Epoch (00:00:00 Coordinated Universal Time (UTC) January 1, 1970).

If tloc is not NULL, the same value is returned in the variable pointed to by
tloc. If tloc is NULL, no value is returned in tloc.

Implementation Considerations

Refer to the EFAULT error description below.

The TZ environment variable does not a�ect this function.

4-248 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

time

Errors

If an error occurs, errno is set to the following value:

EFAULT CAUSE The system detected a bad address in attempting to
use the tloc parameter.

ACTION Make sure that the pointer is correctly initialized.

See Also

<time.h>, POSIX.1 (Section 4.5.1)

POSIX/iX Library Function Descriptions 4-249

FINAL TRIM SIZE : 7.0 in x 8.5 in

times

Gets process times.

Syntax

#include <sys/times.h>

clock_t (struct tms *bu�er);

Parameters

bu�er insert parameter info here

Return Values

Upon successful completion, times() will return the elapsed real time, in clock
ticks, since and arbitrary point in the past (for example, system start-up time).
This point does not change from one invocation of times() within the process
to another. The return value may overow the possible range of type clock t .
The times function fails, a value of (clock_t)-1 is returned and errno is set to
indicate the error.

Description

The times() function will �ll the structure pointed to by bu�er with
time-accounting information. The type clock t and the tms structure are
de�ned in <sys/times.h>; the tms structure will contain at least the following
members:

Member Type Member Name Description

clock t tms utime User CPU time.

clock t tms stime System CPU time.

clock t tms cutime User CPU time of terminated child processes.

clock t tms cstime System CPU time of terminated child processes.

All times are measured in terms of the number of clock ticks used.

4-250 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

times

The times of a terminated child process are included in the tms cutime and
tms cstime elements of the parent when a wait() or waidpid() function returns
the process ID of this terminated child. See 3.2.1. If a child process has not
waited for its terminated children, their times will not be included in its times.

The value tms utime is the CPU time charged for the execution of user
instructions.

The value tms stime is the CPU time charged for execution by the system on
behalf of the process.

The value tms cstime is the sum of the tms stimes and tms cstimes fo the
child processes.

Implementation Considerations

Because MPE/iX tracks the CPU time used by a process as a single total
value, and does not distinguidsh between \user" and \system" CPU time, the
information returned in the tms structure is based on estimated percentages of
the total CPU time. The sum of the tms utime and tms stime �elds will still
reect the total CPU time of the process. This is similar for the terminated
child times calculation.

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE The system detected a NULL or bad pointer in
attempting to use the bu�er parameter.

ACTION Make sure that the pointer is correctly initialized.

See Also

exec(), fork(), sysconf(), time(), wait(), POSIX.1

POSIX/iX Library Function Descriptions 4-251

FINAL TRIM SIZE : 7.0 in x 8.5 in

ttyname

Determines terminal device name.

Syntax

#include <unistd.h>

char *ttyname(int �ldes);

Parameters

�ldes An open �le descriptor.

Return Values

The ttyname() function returns a NULL pointer if �ledes is not a valid �le
descriptor associated with a terminal or if the pathname cannot be determined.

Description

The ttyname function returns a pointer to a string containing a null-terminated
pathname of the terminal associated with �le descriptor �ldes .

Implementation Considerations

None.

Errors

If an error occurs, errno is set to the following value:

EBADF CAUSE The �ldes parameter is not a valid open �le
descriptor.

ACTION Check to see if �ldes has been altered or not
initialized.

See Also

ctermid(), isatty(), POSIX.1

4-252 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

umask

umask

Sets a process's �le mode creation mask.

Syntax

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask (mode_t cmask);

Parameters

cmask A bit map specifying a creation mask. Bits that are not access
permission bits must be set to zero or an error occurs.

Return Values

0 Success. This is the �rst time umask() has been invoked by the
calling process. There is no previous valid �le creation mask.

-1 An error occurred, and errno is set to indicate the error
condition.

Any other
value

Success. The previous �le creation mask of the calling process.

Description

The umask() function sets the calling process's �le mode creation mask to the
mask speci�ed in the object of type mode_t passed in cmask and returns the
previous value of the mask.

Only the �le permission bits (de�ned in <sys/stat.h>) of cmask are used.
Bits of cmask that are not �le permission bits must contain zeros or an error
occurs.

The process's �le mode creation mask is used during open(), create(), and
mkdir() calls to turn o� permission bits in the mode parameter supplied. Bit
positions that are set in cmask are cleared in the mode of the created �le.

POSIX/iX Library Function Descriptions 4-253

FINAL TRIM SIZE : 7.0 in x 8.5 in

umask

Implementation Considerations

Refer to the EIMPL error description below.

The �rst time umask() is invoked by a process, zero is returned to indicate that
the previous �le creation mask was not initialized.

Errors

If an error occurs, errno is set to the following value:

EIMPL CAUSE Bits of cmask that are not �le permission bits do
not contain zeros.

ACTION Make sure that bits that are not �le permission bits
contain zeros.

See Also

chmod(), creat(), mkdir(), open(), <sys/stat.h>, POSIX.1 (Section 5.3.3)

4-254 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

uname

uname

Returns current system ID's.

Syntax

#include <sys/utsname.h>

init uname(struct utsname *name);

Parameters

name A pointer to a string of characters that will return system
identi�cation.

Return Values

>=0 Successful completion.

-1 Error and errno is set to indicate the error.

Description

The uname() function stores information identifying the current operating
system in the utsname structure pointed to by the argument name.

The structure utsname is de�ned in the header <sys/utsname.h> and contains
at least the members shown below:

sysname Name of this implementation of the operating system.

nodename Name of this node within an implementation-speci�ed
communications network.

release Current operation system release ID.

version Current operation system version ID.

machine Name of the hardware type on which the system is running.

Each of these data items is a null-terminated array of char .

The inclusion of the nodename member in this structure does not imply that it
is su�cient information for interfacing to communications networks.

POSIX/iX Library Function Descriptions 4-255

FINAL TRIM SIZE : 7.0 in x 8.5 in

uname

A sample output of this parameter displays as follow:

sysname = MPE/iX

nodename = STARS.ITG.HP
release = A.41.00

version = A.51.07

machine = SERIES 955

Implementation Considerations

The node name is retrieved from NMCONFIG.PUB.SYS and is not necessarily
su�cient information for interfacing to communications networks. The release
ID is the manufacture release ID, known as the release vuf on MPE/iX. The
version ID stands for the version of the MPE/iX OS product.

Since the POSIX standard does not specify any error conditions that are
required to be detected for the uname() function, all the error conditions are
implementation de�ned. Successful completion will have a function return of
zero.

Errors

If an error occurs, errno is set to one of the following values:

EFAULT CAUSE A null or bad address was detected in attempting to
use the structure pointed to by the name argument.

ACTION Check to see if the pointer is initialized and/or the
structure is de�ned correctly.

ESYSERR CAUSE An internal operating system error has occurred; an
error not directly applicable to the POSIX.1
functionality.

ACTION Contact Hewlett-Packard for support.

See Also

exec(), getuid(), POSIX.1 (Section 3.3.2).

4-256 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

unlink

unlink

Removes a link from a �le.

Syntax

#include <unistd.h>

int unlink (const char *pathname);

Parameters

pathname A pointer to a string containing the pathname of a �le to unlink
(purge). The pathname must be terminated by a null character.

Return Values

0 Success.

-1 An error occurred. The �le is not unlinked, and errno is set to
indicate the error condition.

Description

The unlink() function removes the link name speci�ed by pathname. It
removes the �lename pointed to by pathname from the parent directory, then
decrements the �le link count. When the link count of the �le becomes zero
and no process has the �le open, the �le is purged from the system and is no
longer accessible.

If one or more processes have the �le open when the link count becomes zero,
the �le is not purged until all references to the �le have been closed.

Upon successful completion, unlink() marks for update the st_ctime and
st_mtime time �elds of the parent directory.

POSIX/iX Library Function Descriptions 4-257

FINAL TRIM SIZE : 7.0 in x 8.5 in

unlink

Implementation Considerations

Refer to the EFAULT, EIMPL, EPERM, and ESYSERR error descriptions below.

POSIX/iX does not support using unlink() on directories. Instead, use
rmdir() to remove a directory.

POSIX/iX does not support multiple hard links to �les or soft links to �les or
directories.

Every �le has a link count of 1 when created. Files being unlinked cause the
link count of the �le to be decremented from 1 to 0.

Errors

If an error occurs, errno is set to one of the following values:

EACCES CAUSE The calling process either does not have search
permission to a component of the pathname or does
not have write permission to the parent directory.

ACTION Make sure that the calling process has search
permission for all components of the pathname and
write permission to the parent directory.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the pathname parameter or the
pathname was not terminated by a null character.

ACTION Make sure that the pointer is correctly initialized.

EIMPL CAUSE The pathname begins with two slash characters (//).
ACTION Do not begin pathnames with two slash characters

(//).

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

4-258 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

unlink

ENOENT CAUSE The speci�ed �le does not exist, or pathname points
to an empty string.

ACTION Specify a valid pathname.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

EPERM CAUSE The speci�ed �le is a directory.
ACTION Do not attempt to unlink a directory. Use rmdir()

instead.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

close(), open(), rmdir(), POSIX.1 (Section 5.5.1)

POSIX/iX Library Function Descriptions 4-259

FINAL TRIM SIZE : 7.0 in x 8.5 in

utime

Sets access and modi�cation times of a �le.

Syntax

#include <sys/types.h>

#include <utime.h>

int utime(const char *path, const struct utimbuf *times),

Parameters

path A pointer to a character array containing the pathname of the �le
that is to become the new process image. The pathname must be
terminated by a null character.

times If not NULL, a pointer to a utimbuf structure containing the
access and modi�cation times. Only the owner of the �le, the
system manager, or the account manager can use the utime
function this way.

If this argument is NULL, however, the access and modi�cation
time of the �le are set to the current time.

Return Values

0 Successful completion.

-1 Error. errno is set to indicate the error, and the �le times shall
not be a�ected.

Description

The utime() function sets the access and modi�cation times of the named �le.

If the utime argument is NULL, the access and modi�cation times of the �le
are set to the current time. The e�ective user ID of the process must match
the owner of the �le, or the process must have write permission to the �le or
appropriate privileges, to use the utime() function in this manner.

4-260 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

utime

If the utime argument is not NULL, it is interpreted as a pointer to a utimbuf
structure, and the access and modi�cation times are set to the values contained
in the designated structure. Only the owner of the �le and processes weith
appropriate privileges shall be permitted to use the utime() function in this
way.

The utimbuf structure is de�ned by the header <utime.h> and includes the
following members:

Member Type Member Name Description

time t actime Access time

time t modtime Modi�cation time

The times the utimbuf structure are measured in seconds since the Epoc.

Upon successful completion, the utime() function shall mark for update the
st ctime �eld of the �le.

Implementation Considerations

On the HP 3000, �le times are updated at �le close, not �le open as with many
other platforms. Therefore, a utime() call must follow an explicit close() call
to change �le times. This also means not allowing an implicit �le close at the
end of execution.

Based on the MPE/iX �le system security, this implementation de�nes that the
appropriate privilege which allows the calling process to use the utime function
to modify time stamps is either the SM (System Manager) capability or AM
capability for the speci�ed �le, i.e., the calling process' GID matches the �le's
GID.

An error condition was added to indicate that a �le or directory is inaccessible
because the ACD associated with it does not have write access, or to designate
that a pathname that begins with two slashes was detected. Such pathnames
are reserved by this implementation for future consideration.

POSIX/iX Library Function Descriptions 4-261

FINAL TRIM SIZE : 7.0 in x 8.5 in

utime

Errors

If any of the following conditions occur, the utime() function will return -1 and
set errno to the corresponding value.

EACCES CAUSE One of the following:

The calling process does not have search
permission to a component of the pathname.
The calling process does not have execute
permission to the �le.
The �le is not a valid executable �le.

ACTION One of the following:

Make sure that the calling process has search
permission to all components of the pathname.
Make sure that the calling process has execute
permission to the �le.
Make sure that the �le has an MPE/iX �le code
of NMPRG.

ENAMETOOLONG CAUSE One of the following:

The length of the pathname exceeds the
{PATH_MAX} limit (de�ned in the �le <limits.h>).
A component of the pathname is longer than
{NAME_MAX} (de�ned in <limits.h>), and
{_POSIX_NO_TRUNC} is in e�ect for that directory.

ACTION Make sure that both the component's length and
the full pathname length do not exceed the
{NAME_MAX} or {PATH_MAX} limits.

ENOTDIR CAUSE A component of the pathname is not a directory.
ACTION Specify a valid pathname.

ENOENT CAUSE a component of the pathname for the executable �le
does not exist, or pathname points to an empty
string.

ACTION Specify a valid pathname.

4-262 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

utime

EPERM CAUSE One of the following:

The calling process does not have the MPE/iX
process handling (PH) capability.
The calling process has outstanding switches to
CM code, has set critical mode, has outstanding
NOWAITIO, or is holding an operating system
internal resource.

ACTION One of the following:

Link the program �le with the MPE/iX PH
capability.
Do not execute execl() when the calling process
has outstanding switches to CM code, has set
critical mode, has outstanding NOWAITIO, or is
holding an operating system internal resource.

EROFS CAUSE The named �le resides on a read-only �le system.
ACTION Do not attempt to set the times for the �le.

See Also

<sys/stat.h>, POSIX.1 (Section 5.6.1)

POSIX/iX Library Function Descriptions 4-263

FINAL TRIM SIZE : 7.0 in x 8.5 in

wait

Suspends the calling process to wait for exit status of child processes.

Syntax

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait (int *stat loc);

Parameters

stat loc A pointer to the exit status of the child process. No information is
returned if stat loc is NULL.

Return Values

>0 Success. The process ID of a child process that has terminated is
returned.

-1 An error occurred. There is no result, and errno is set to indicate
the error condition.

Description

The wait() function suspends the calling process until status information
for one of its terminated child processes is available. If status information is
already available, wait() returns immediately.

If the calling process receives a signal whose action is to terminate, the calling
process terminates. If the calling process receives a signal whose action is to
execute a signal handling function, wait() returns to the calling process.

If status is available for more than one process, the order in which their status
is reported may not correspond to the order of their termination.

4-264 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

wait

The wait() function returns to the argument pointed to by stat loc an exit
status of 0 if, and only if, the child process that returned status took one of the
following two actions:

returned a value of zero from its main() function (outer block)

passed a status value of zero to _exit() or exit()

The following macros that evaluate the stat loc parameter, regardless of its
value, are de�ned in the header <sys/wait.h>:

WIFEXITED(exit_status) Evaluates to a nonzero value if status was
returned for a child process that terminated
normally.

WEXITSTATUS(exit_status) If WIFEXITED is nonzero, this macro evaluates to
the low-order 8 bits of the stat loc parameter
that the child process passed to _exit() or
exit(), or the value that the child process
returned from main().

WIFSIGNALED(exit_status) Evaluates to a nonzero value if status was
returned for a child process that terminated due
to the receipt of a signal that was not caught.

WTERMSIG(exit_status) If WIFSIGNALED is nonzero, this macro evaluates
to the number of the signal that caused the
termination of the child process.

WIFSTOPPED(exit_status) Evaluates to a nonzero value if status was
returned for a child process that is currently
stopped.

WSTOPSIG(exit_status) If WIFSTOPPED is nonzero, this macro evaluates
to the number of the signal that caused the
child process to stop.

Implementation Considerations

Refer to the EFAULT error description below.

If a parent process terminates without waiting for all of its child processes to
terminate, the remaining child processes are terminated.

POSIX/iX Library Function Descriptions 4-265

FINAL TRIM SIZE : 7.0 in x 8.5 in

wait

Errors

If an error occurs, errno is set to one of the following values:

ECHILD CAUSE The calling process has no unwaited-for child
processes.

ACTION No action is necessary.

EFAULT CAUSE The system detected a bad address in attempting to
use the stat loc parameter.

ACTION Make sure that the pointer is correctly initialized.

EINTR CAUSE The function was interrupted by a signal. The
stat loc parameter's value is unde�ned.

ACTION Call the wait() function again to continue waiting.

See Also

_exit(), fork(), pause(), waitpid(), <signal.h>, POSIX.1 (Section 3.2.1)

4-266 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

waitpid

waitpid

Suspends the calling process to wait for exit status of the speci�ed child
processes.

Syntax

#include <sys/types.h>

#include <sys/wait.h>

pid_t waitpid (pid_t pid, int *stat loc, int options);

Parameters

pid An parameter of type pid_t that speci�es the process whose status
is being reported. Following are valid values and their meanings:

>0 A single child process with process ID equal to pid .

0 All child processes with process group ID equal to the
caller's.

-1 All child processes.

<-1 All child processes with process group ID equal to the
absolute value of pid .

stat loc A pointer to the exit status of the child process. No information is
stored if stat loc is NULL.

options Modi�es the behavior of the waitpid() function. The contents of
options is a bitwise inclusive OR of the following ags (de�ned in
<sys/wait.h>):

WNOHANG Do not suspend the calling process when no child
status is available.

WHANG Suspend and wait for a child status if none is yet
available.

WUNTRACED Suspend and wait for the status of a stopped child
process.

POSIX/iX Library Function Descriptions 4-267

FINAL TRIM SIZE : 7.0 in x 8.5 in

waitpid

Return Values

>0 Success. The process ID of a terminated child process whose
process ID matches pid is returned.

0 The WNOHANG option is speci�ed in options and no child speci�ed
by pid has terminated.

-1 An error occurred. There is no result, and errno is set to indicate
the error condition.

Description

The waitpid() function suspends the calling process until status information
for the speci�ed child process(es) is available. If status information is already
available, wait() returns immediately.

If the calling process receives a signal whose action is to terminate, the calling
process terminates. If the calling process receives a signal whose action is to
execute a signal handling function, waitpid() returns to the calling process.

If status is available for more than one speci�ed process, the order in which
their status is reported may not correspond to the order of their termination.

The waitpid() function is identical to the wait() function when the pid
parameter has a value of -1 and options is equal to zero.

The waitpid() function returns to the argument pointed to by stat loc an exit
status of 0 if, and only if, the child process that returned status took one of the
following two actions:

returned a value of zero from its main() function (outer block)

passed a status value of zero to _exit() or exit()

The following macros that evaluate the stat loc parameter, regardless of its
value, are de�ned in the header <sys/wait.h>:

WIFEXITED(exit_status) Evaluates to a nonzero value if status was
returned for a child process that terminated
normally.

WEXITSTATUS(exit_status) If WIFEXITED is nonzero, this macro evaluates to
the low-order 8 bits of the stat loc parameter
that the child process passed to _exit() or

4-268 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

waitpid

exit(), or the value that the child process
returned from main().

WIFSIGNALED(exit_status) Evaluates to a nonzero value if status was
returned for a child process that terminated due
to the receipt of a signal that was not caught.

WTERMSIG(exit_status) If WIFSIGNALED is nonzero, this macro evaluates
to the number of the signal that caused the
termination of the child process.

WIFSTOPPED(exit_status) Evaluates to a nonzero value if status was
returned for a child process that is currently
stopped.

WSTOPSIG(exit_status) If WIFSTOPPED is nonzero, this macro evaluates
to the number of the signal that caused the
child process to stop.

Implementation Considerations

Refer to the EFAULT error description below.

If a parent process terminates without waiting for all of its child processes to
terminate, the remaining child processes are terminated.

Errors

If an error occurs, errno is set to one of the following values:

ECHILD CAUSE The process or process group speci�ed by pid does
not exist or is not a child of the calling process.

ACTION No action is necessary.

EFAULT CAUSE The system detected a bad address in attempting to
use the stat loc parameter.

ACTION Make sure that the pointer is correctly initialized.

EINTR CAUSE The function was interrupted by a signal. The
stat loc parameter's value is unde�ned.

ACTION Call the waitpid() function again to continue
waiting.

EINVAL CAUSE The options parameter is invalid.
ACTION Specify a valid option as de�ned in the �le

<wait.h>.

POSIX/iX Library Function Descriptions 4-269

FINAL TRIM SIZE : 7.0 in x 8.5 in

waitpid

See Also

_exit(), fork(), pause(), wait(), <signal.h>, POSIX.1 (Section 3.2.1)

4-270 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

wordexp

wordexp

Expand special constructions.

Syntax

#include <wordexp.h>

int wordexp (const char *words, wordexp_t *expansions, int ags);

Parameters

words is a string containing various special constructions that are
typically expanded in shell command lines (for example, command
substitutions, directory substitutions, parameter expansions, and
so on).

expansions points to an object of type wordexp_t where wordexp() can store
the expanded version of words. It is created by the caller.

ags is a collection of ags controlling the wordexp() action. Flags
are speci�ed by ORing together symbolic constants de�ned in
<wordexp.h>. Possible symbols are:

WRDE_APPEND appends expansions to an existing expansions
list generated by a previous call to wordexp().

WRDE_DOOFFS uses the we_offs �eld in the wordexp_t
structure expansions.

WRDE_NOCMD does not perform command substitution.
wordexp() fails if command substitution is
attempted.

WRDE_REUSE expansions was passed to previous successful
call to wordexp() and has not been passed to
wordfree(). The result is the same as if the
application had called wordfree() and then
called wordexp().

WRDE_SHOWERR Do not redirect the standard error to
/dev/null.

POSIX/iX Library Function Descriptions 4-271

FINAL TRIM SIZE : 7.0 in x 8.5 in

wordexp

WRDE_UNDEF Reports error on attempt to expand an
unde�ned shell variable.

Return Values

If wordexp() completes successfully, it returns zero. Otherwise, it returns one
of the following error messages.

Description

wordexp() expands special constructs in the string words. See the section
Expanded Constructs for a list of the constructs that wordexp() expands.

wordexp() returns the expansion using a wordexp_t structure. This structure
has the following �elds:

int we wordc; is the number of words in the expansion of words. This
�eld is set by wordexp().

char **we wordv; points to a list of strings giving the expansions of words
from words . Each individual �eld created during expansion
becomes a separate word in the we_wordv list. The �rst
pointer after the last path name is NULL. This �eld is set
by wordexp().

int we o�s; tells how many NULL pointers you want at the beginning
of the we_wordv list. This creates a speci�ed amount
of `blank' space at the beginning of we_wordv that can
be used for other purposes. For example, you might
�ll this space with other arguments before passing the
whole we_wordv vector as an argument to a function like
execv().

You set we_offs before calling wordexp(). wordexp() puts the speci�ed
number of NULL pointers at the beginning of the we_wordv list before putting
in pointers to the strings giving the expansion of words. wordexp() only pays
attention to we_offs if WRDE_DOOFFS is set in ags.

If WRDE_APPEND is speci�ed, wordexp() follows these rules:

1. If WRDE_DOOFFS is set in the �rst call to wordexp(), it must be set in
subsequent calls and we_offs must have the same value in each call.

4-272 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

wordexp

2. If WRDE_DOOFFS is not set in the �rst call, it must not be set in subsequent
calls.

3. After the second call, we_wordv points to a list containing: the number of
NULL pointers as determined by WRDE_DOOFFS and we_offs; pointers to
the words that were in the list before the second call, in the same order as
before; and pointers to the new words obtained by the second call, in the
order dictated by the ags for the second call.

4. we_wordc gives the total number of words from all the calls.

You must not change we_wordc or we_wordv between calls to wordexp().

Expanded Constructs

wordexp() performs the following expansions in the order given:

Directory
Substitution

expands constructs of the form ~logname into the full path
name of the user logname's home directory.

Parameter
Expansion

expands the following constructs:

$fparameterg
$fparameter :-wordg
$fparameter :=wordg
$fparameter :?wordg
$fparameter :+wordg
$f#parameterg
$fparameterwordg
$fparameterwordg
$fparameter#wordg
$fparameter##wordg

The result of the expansion of these constructs is detailed in
the sh(1) man page.

Command
Substitution

expands the following constructs

$(command)
`command `

by executing command and replacing the construct with its
output.

POSIX/iX Library Function Descriptions 4-273

FINAL TRIM SIZE : 7.0 in x 8.5 in

wordexp

Arithmetic
Expansion

expands constructs of the form

$((%%expression%%))

by replacing the construct with the value of the arithmetic
expression .

These expansions are discussed in much greater detail in sh(1).

After performing the various expansions, wordexp() breaks up the result
into separate words. Words are assumed to be separated by any one of the
characters in the string value of the environment variable IFS. If IFS does
not exist, wordexp() assumes that words are separated by one or more white
space characters (blanks, tabs, or newlines). When splitting words in this way,
wordexp()

After breaking up words into these separate words, wordexp() performs
�lename generation on names that are not quoted (see sh(1)).

Finally, wordexp() removes backslashes, quotes, and apostrophes from
expanded strings, as appropriate.

Note wordexp() does not handle the special meanings of | (pipe),
& (put job in background), ; (separate one command from
another), < (input redirection) or > (output redirection). If
the words string contains any of these outside of quotes or
apostrophes, wordexp() fails and does not expand any words.

Once a program has �nished using the paths structure, it should use
wordfree() to free up the space used to store the path name list.

4-274 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

wordexp

Errors

If an error occurs, errno is set to one of the following values:

WRDE_BADCHAR CAUSE An unquoted shell metacharacter appeared in words
in an inappropriate context.

ACTION Examine and correct the syntax of the words string
that was passed to the function.

WRDE_BADVAL CAUSE You attempted to reference an unde�ned shell
variable when WRDE_UNDEF was set in ags.

ACTION Unset WRDE_UNDEF, or do not use unde�ned shell
variables.

WRDE_CMDSUB CAUSE Command substitution was requested when
WRDE_NOCMD was set in ags.

ACTION Unset WRDE_NOCMD, or do not request command
substitution.

WRDE_ERRNO CAUSE A system call failed inside wrdexp(), setting the
variable errno. The failure was one of the following:

1. confstr() failed to get the name of the shell

2. pipe() was unable to create a pipe

3. wordexp() was unable to fork() or exec() the
shell.

4. waitpid() for a child process failed.

ACTION Check the value of the variable errno to determine
the true cause of the error.

WRDE_NOSPACE CAUSE wordexp() was unable to allocate memory for one of
its operations. we_wordc and we_wordv are still
updated to show whatever words have already
expanded.

ACTION Free up more memory.

WRDE_SYNTAX CAUSE words contained a shell syntax error, such as an
unbalanced parentheses or unterminated string.

ACTION Correct the syntax of words.

See Also

sh(1), glob(), wordfree()

POSIX/iX Library Function Descriptions 4-275

FINAL TRIM SIZE : 7.0 in x 8.5 in

wordfree

Release data created by wordexp.

Syntax

#include <wordexp.h>

void wordfree(wordexp_t *expansions);

Parameters

expansions Is a wordexp_t structure used in a previous call to
wordexp().

Description

wordfree() frees any memory allocated in connection with the the expansions
structure. Typically, this gets rid of any space that a call to wordexp()

allocated to hold a word expansion list.

See Also

sh(1), wordexp()

4-276 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

write

write

Writes data to a �le.

Syntax

ssize_t write (int �ldes, const void *bu�er, size_t nbyte);

Parameters

�ldes An open �le descriptor.

bu�er A pointer to a bu�er containing data to be written. The size of the
bu�er must be greater than nbyte.

nbyte The maximum number of bytes to write.

Return Values

>=0 Success. An integer indicating the number of bytes actually
written is returned.

-1 An error occurred. No data is written, and errno is set to indicate
the error condition.

Description

The write() function attempts to writes nbyte bytes from the bu�er pointed
to by bu�er to the open �le associated with the open �le descriptor �ldes.

On a �le capable of seeking, write() starts from the current �le o�set position.
Before successful return from write(), the �le o�set is incremented by the
number of bytes actually written. If the incremented �le o�set is greater than
the EOF of the �le, the EOF of the �le is set to the new �le o�set.

If the O_APPEND �le status ag is set, the �le o�set is set to the end of the �le
prior to each write.

On a �le not capable of seeking, write() starts from the current position.
(The �le o�set for such a �le is unde�ned.)

POSIX/iX Library Function Descriptions 4-277

FINAL TRIM SIZE : 7.0 in x 8.5 in

write

Upon successful completion, the write() function returns the actual number of
bytes written to the �le and, if nbyte is greater than 0, marks for update the
st_ctime and st_mtime time �elds of the �le.

If write() requests that more bytes be written than there is room for (for
example, the physical end of medium), only as many bytes as there is room for
are written. In this case, the next write to the �le of a nonzero number of bytes
fails, and an error is returned.

If nbytes is zero, the write() function writes zero bytes of data. In this case,
the �le o�set position is not changed and no time �elds are marked for update.

Implementation Considerations

Refer to the EFBIG, EFAULT, EIMPL, and ESYSERR error descriptions below.

Signals generated for the calling process during execution of write() are
deferred from delivery until completion of this function.

Errors

If an error occurs, errno is set to one of the following values:

EBADF CAUSE The �ldes parameter is not a valid open �le
descriptor open for writing.

ACTION Pass a valid open �le descriptor of a �le open for
writing by the calling process.

EFAULT CAUSE The system detected a NULL or bad address in
attempting to use the bu�er parameter.

ACTION Make sure that the pointer is correctly initialized.

EFBIG CAUSE The �le size has exceeded the �le limit. The default
�le limit is 2 gigabytes.

ACTION Reduce the size of the �le.

4-278 POSIX/iX Library Function Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

write

EIMPL CAUSE The �le size has exceeded the disk space limit
established by the MPE/iX accounting facility.

ACTION Make sure that the MPE/iX accounting facility
allows you to increase the size of the �le.

ENOSPC CAUSE There is no free space remaining on the device
containing the �le.

ACTION Deallocate space on the device.

ESYSERR CAUSE An operating system error has occurred that does
not map directly to any of the above errors.

ACTION Examine the MPE/iX error stack for the type of
system error.

See Also

creat(), dup(), lseek(), open(), POSIX.1 (Section 6.4.2)

POSIX/iX Library Function Descriptions 4-279

FINAL TRIM SIZE : 7.0 in x 8.5 in

5

POSIX/iX Header Descriptions

This chapter describes the contents of the header �les provided with the
POSIX/iX library. The POSIX.1 extensions are invoked by the _POSIX_SOURCE
feature test macro.

Note The _POSIX_SOURCE feature test macro must be speci�ed in
your source code before you include any headers described in
this chapter.

The header or headers required for each function are speci�ed in the syntax
descriptions provided in this manual and in the HP C/iX Library Reference
Manual (30026-90001).

To reference a POSIX/iX library header, place the #include preprocessor
directive in your source code. The order of inclusion of the header �les may be
signi�cant. Include the header in the order described in each POSIX/iX library
function description.

The syntax for including a header �le is:

#include <headername.h>

By enclosing headername in angle brackets (< >), you instruct the compiler to
look for that header in /usr/include.

For example, if you want to use the open() function, your program must
specify three headers:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

POSIX/iX Header Descriptions 5-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

Header �le identi�ers beginning with an underscore () are reserved for library
use. You should not create identi�ers that begin with an underscore within
your source code.

The following headers are not described in this manual. Like all the headers
provided with the MPE/iX Developer's Kit, they are located under the
directory /usr/include. You can view them online from the MPE/iX CI using
the PRINT command or from the MPE/iX Shell using the cat command.

glob.h

regex.h

wordexp.h

The following table lists each of the POSIX/iX library headers and a brief
description of each header. Remaining sections of this chapter describe
the contents of the headers not already described in the HP C/iX Library
Reference Manual (30026-90001).

5-2 POSIX/iX Header Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 5-1. POSIX/iX Library Headers

Header Description Description

Location

<assert.h> De�nes the assert() macro. HP C/iX Library

Reference Manual

<ctype.h> Declares macros and functions useful for testing and
mapping characters.

HP C/iX Library
Reference Manual

<dirent.h> Declares functions and data structures used for managing

directories.

This chapter

<errno.h> Declares error variables and de�nes macros useful for
obtaining a more detailed description of a library function

error.

This chapter

<fcntl.h> De�nes the creat(), fcntl(), and open() functions as well
as macros used by these functions.

This chapter

<float.h> De�nes macros that describe the oating-point types. HP C/iX Library

Reference Manual

<limits.h> De�nes implementation limits for POSIX/iX. This chapter

<locale.h> Used for localization. Contains macro de�nitions, function,
and type declarations needed to select the desired locale.

HP C/iX Library
Reference Manual

<malloc.h> Declares memory management functions, mallopt()

argument functions, and a structure returned by the
mallinfo() function. Memory management functions are

also declared in <stdlib.h>.

HP C/iX Library

Reference Manual

<math.h> Contains declarations for the POSIX/iX math library
functions, as well as functions in the standard library that

return oating-point values. Also de�nes the structure and
constants used by the matherr error-handling mechanisms.

HP C/iX Library
Reference Manual

<memory.h> Declares several functions useful for manipulating character

arrays and other objects treated as character arrays. These
functions are also declared in <string.h>.

HP C/iX Library

Reference Manual

<mpe.h> Declares several types, constants and functions that

facilitate MPE operating system interface.

HP C/iX Library

Reference Manual

<search.h> De�nes the types used with the hsearch() and tsearch()

functions.
HP C/iX Library
Reference Manual

POSIX/iX Header Descriptions 5-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

Table 5-1. POSIX/iX Library Headers (continued)

Header Description Description

Location

<setjmp.h> Declares a type and several functions for bypassing the

normal function call and return discipline.

This chapter

<signal.h> Contains declaration used in dealing with conditions that
may be reported during program execution.

This chapter

<stdarg.h> Provides a standard method for dealing with variable

arguments.

HP C/iX Library

Reference Manual

<stddef.h> De�nes several macros and types required by ANSI C
functions.

HP C/iX Library
Reference Manual

<stdio.h> De�nes a structure and several functions and macros useful

for I/O.

This chapter

<stdlib.h> Declares various ANSI C general utility functions and
macros.

HP C/iX Library
Reference Manual

<string.h> Declares functions useful for manipulating character arrays

and other objects treated as character arrays.

HP C/iX Library

Reference Manual

<sys/stat.h> Declares the chmod(), fstat(), mkdir(), stat(), and
umask() functions and their required data types and

symbols.

This chapter

<sys/times.h> Contains the de�nition of the struct tms. HP C/iX Library
Reference Manual

<sys/types.h> De�nes fundamental types required by POSIX.1 conforming

functions.

This chapter

<sys/wait.h> Declares the wait() and waitpid() functions. This chapter

<time.h> Declares types, global variables, and functions used for
manipulating time.

This chapter

<unistd.h> De�nes various miscellaneous POSIX.1 conforming macros

and functions. Some of these macros are also declared in
<stdarg.h>.

This chapter

<values.h> Contains a set of manifest constants, conditionally de�ned

for particular processor architectures.

HP C/iX Library

Reference Manual

<varargs.h> Declares types and macros for declaring variable argument
functions. See also <stdarg.h>.

HP C/iX Library
Reference Manual

5-4 POSIX/iX Header Descriptions

FINAL TRIM SIZE : 7.0 in x 8.5 in

Index

Special characters

:, 4-187, 4-239
@.@, 3-14

A

access
checks �le accessibility, 4-2

access(), 4-2
access control. See access permissions,

ACDs
access control de�nitions. See ACDs
access permission bits, 4-24
changing, 4-10

access permission bits##
changing, 4-92, 4-94, 4-98, 4-106,

4-111, 4-113, 4-250
access permissions
@.@, 3-14
accounts, 3-8
assigning ACDs, 3-14
chmod() behavior, 3-17
directories, 3-9
directory execute access, 3-13
directory read access, 3-13
directory write access, 3-13
evaluation, 3-18
execute access, 3-12
�le access permissions, 3-12
�le group class, 3-13
�le other class, 3-13
�le owner class, 3-13
�le system security matrix, 3-16

fstat() behavior, 3-15
$GROUP, 3-14
$GROUP MASK, 3-14
groups, 3-8
implementation considerations, 3-11
lockwords, 3-19
mapping between directory access

permissions and ACD access
permissions, 3-13

mapping between POSIX.1 and ACDs,
3-12

$OWNER, 3-14
RACD restriction, 3-18
read access, 3-12
read ACD access, 3-18
root directory, 3-7
save access, 3-9
save �les capability, 3-19
stat() behavior, 3-15
write access, 3-12

accounting limits, 3-5
on disk space, 3-5

account manager, 4-15
groups, 3-8

account manager capability, 4-11
accounts
access permissions, 3-8
accounting limits, 3-5
as directories, 3-8
chmod(), 3-18
creating, 3-8
description, 3-8

Index-1

FINAL TRIM SIZE : 7.0 in x 8.5 in

directories under, 3-4, 3-9
�les and directories under, 3-8
fstat(), 3-16
GID, 3-8
restrictions, 3-8
stat(), 3-16
syntax, 3-8
system manager, 3-8
UID, 3-8

ACDs, 3-12
@.@, 3-14
a�ect on lockwords, 3-19
assigning access permissions, 3-14
chmod() behavior, 3-17
create directory entries access, 3-13
delete directory entries access, 3-13
fstat() behavior, 3-15
$GROUP, 3-14
$GROUP MASK, 3-14
mapping between POSIX.1 and ACDs,

3-12
modi�ed, 3-15
$OWNER, 3-14
RACD access, 3-18
read directory entries access, 3-13
removed, 3-15
stat() behavior, 3-15
traverse directory entries access, 3-13

adding a signal, 4-214
additional manuals, 1-2, 1-4, 1-5, 2-6
alarm(), 4-6
ALTGROUP, 3-8
ALTUSER, 3-19
ANSI C, 1-3
extended behavior, 2-4
functions, 1-3
location of function descriptions, 1-5

application development, 2-6
applications
compiling, 2-6
linking, 2-6

appropriate privileges, 4-11, 4-15
assert.h, 5-2

B

bad address, 3-6
blocked signals, 3-24
changing, 4-228
examining, 4-228

bu�ered I/O, 2-4
byte-stream �les
description, 2-3

C

calendar time
calculating, 4-248

capabilities, 3-27
AM, 4-11, 4-15
process handling (PH) capability,

3-26
save access, 3-9
save �les (SF), 3-19
SM, 4-11, 4-15

changing
access permission bits, 4-92, 4-94,

4-98, 4-106, 4-111, 4-113, 4-250
access permission bits, 4-10
blocked signals, 4-228
current working directory, 4-8
signal action, 4-211

chdir(), 4-8
child processes
e�ects of termination, 3-27

chmod(), 4-10
accounts, 3-18
groups, 3-18
RACD restriction, 3-18
root directory, 3-18
rules determining access permissions,

3-17
chown(), 4-14
C/iX compiler, 1-3

Index-2

FINAL TRIM SIZE : 7.0 in x 8.5 in

close(), 4-18
closedir(), 4-20
closing
a directory stream, 4-20
a �le, 4-18

command interpreter, 2-6
common usage math library, 2-2
compatibility mode code, 3-28
compilers
C/iX, 1-3

compiling source �les, 2-6
conformance, 1-1, 1-5
confstr, 4-22
controlling process, 3-27
controlling terminal, 3-27
CPU time accounting information, 3-27
creat(), 4-24
create directory entries access, 3-13
creates a symbolic link to a �le, 4-239
creating
accounts, 3-8
a directory, 4-148
a �le, 4-24
groups, 3-8
##new process, 4-260
new process, 4-31, 4-37, 4-42, 4-47,

4-53, 4-58, 4-76
new processes, 3-26
restrictions on �les, 3-19

creating �les, 3-4
creation mask, 4-25
critical mode, 3-28
ctermid
terminal identi�cation, 4-28

ctermid(), 4-28
ctype.h, 5-2
current working directory
changing, 4-8
identifying, 4-85

D

delete directory entries access, 3-13
deleting
a directory, 4-206
a �le, 4-257
a signal, 4-216

device �les, 4-26
device special �les, 3-4
DIR, 4-20
directories, 3-3
access, 4-2
access permissions, 3-9
account description, 3-8
accounting limits, 3-5
closing, 4-20
creating, 4-148
ctermid, 4-28
deleting, 4-206
description, 3-9
DIR, 3-6
dot, 3-10
dot dot, 3-10
evaluating access, 3-18
execute access, 3-13
�le descriptors, 3-6
GID, 3-9
group description, 3-8
implementation considerations, 3-6
mapping between directory access

permissions and ACD access
permissions, 3-13

opening, 4-167
read access, 3-13
reading, 4-185
removing, 4-206
restrictions, 3-4, 3-9
rewinding, 4-204
root directory description, 3-7
system volume set, 3-9
UID, 3-9
under accounts, 3-9

Index-3

FINAL TRIM SIZE : 7.0 in x 8.5 in

under groups, 3-8
write access, 3-13

directory management
access(), 4-2
chdir(), 4-8
closedir(), 4-20
ctermid(), 4-28
getcwd(), 4-85
mkdir(), 4-148
opendir(), 4-167
readdir(), 4-185
readlink(), 4-187
rewinddir(), 4-204
rmdir(), 4-206
symlink(), 4-239

disk space
accounting limits, 3-5

dot directory, 3-10
dot dot directory, 3-10
dup(), 4-28
dup, dup2, 4-29
duplicating an open �le descriptor, 4-28

E

e�ective GID
returning, 4-87

e�ective UID, 3-24
returning, 4-90

environ, 4-88
environment
restoring, 4-224

environment values
returning, 4-88

evaluating access to a �le or directory,
3-18

examining blocked signals, 4-228
execl(), 4-31
implementation considerations, 3-26
process handling (PH) capability,

3-26
restrictions, 3-28

execle(), 4-37
execlp(), 4-42
execute access, 3-12
executing## a �le, 4-260
executing a �le, 4-31, 4-37, 4-42, 4-47,

4-53, 4-58
execv(), 4-58
implementation considerations, 3-26
process handling (PH) capability,

3-26
restrictions, 3-28

execve(), 4-47
execvp(), 4-53
exit(), 4-64
exiting a process, 4-64

F

fcntl(), 4-66
feature test macros, 2-3, 5-1
FIFO special �les, 3-4
�le codes, 3-26
�le descriptor
associating with a terminal, 4-140
determines terminal device name,

4-252
duplicating, 4-28
returning, 4-25

�le descriptors
description, 2-4

�le group class, 3-13
$GROUP, 3-14
$GROUP MASK, 3-14

�le information
returning, 4-236

�le limit, 3-5
�le management
chmod(), 4-10
chown(), 4-14
close(), 4-18
creat(), 4-24
dup(), 4-28

Index-4

FINAL TRIM SIZE : 7.0 in x 8.5 in

fcntl(), 4-66
fstat(), 4-82
isatty(), 4-140
lseek(), 4-146
open(), 4-160
read(), 4-182
##rename(), 4-201
stat(), 4-236
ttyname(), 4-252
umask(), 4-253
unlink(), 4-257
write(), 4-277

�le management##
getgrgid(), 4-92
getgrnam(), 4-94
getgroups(), 4-96
getlogin(), 4-98
getpwnam(), 4-111
getpwuid(), 4-106, 4-113
times(), 4-250

�le mode creation mask, 4-25
�le modes
changing, 4-10

�le modes###
changing, 4-92, 4-94, 4-98, 4-106,

4-111, 4-113
times, 4-250

�le o�set
repositioning, 4-146

�le other class, 3-13
@.@, 3-14

�le owner class, 3-13
$OWNER, 3-14

�le ownership
changing, 4-96
changing, 4-14

�le permission bits
changing, 4-92, 4-94, 4-98, 4-106,

4-111, 4-113, 4-250
changing, 4-10

�les

access permission bits, 4-24
accounting limits, 3-5
associating with a terminal �le, 4-140
block device �les, 3-3
bu�ered I/O, 2-4
byte-stream �les, 2-3
##changing group ID, 4-96
changing group ID, 4-14
changing owner, 4-96
changing owner, 4-14
character device �les, 3-3
closing, 4-18
creating, 3-4, 4-24
determines terminal device name,

4-252
directory special �les, 3-3
duplicating an open �le descriptor,

4-28
evaluating access, 3-18
executing, 4-31, 4-37, 4-42, 4-47, 4-53,

4-58
FIFO special �les, 3-3, 3-4
�le access permissions, 3-12
�le control, 4-66
�le creation restriction, 3-19
�le descriptors, 2-4
�le size limit, 3-5
�le types, 2-3, 3-3
GID, 3-4
HFS syntax, 3-2
implementation considerations, 3-3
link count, 4-18
lockwords, 3-19
maximum size, 3-5
MPE syntax, 3-2
naming, 3-2
##opening, 4-201
opening, 3-4, 4-160
permission bits, 4-24
POSIX �le types, 3-3
reading, 4-182

Index-5

FINAL TRIM SIZE : 7.0 in x 8.5 in

read only, 3-4
record formats, 2-3
regular �les, 3-3
repositioning �le o�set, 4-146
returning status information, 4-236
rewriting, 4-24
save access, 3-9
save �les capability, 3-19
setting a creation mask, 4-253
status information, 4-82
STDERR FILENO, 3-4
STDIN FILENO, 3-4
STDOUT FILENO, 3-4
syntax, 3-2
under accounts, 3-8
under groups, 3-8
writing, 4-277

�les##
executing, 4-260

�le status information
returning, 4-82

�le system security matrix, 3-16
oat.h, 5-2
fnmatch, 4-74
fork(), 4-76
implementation considerations, 3-26
process handling (PH) capability,

3-26
restrictions, 3-28

fpathconf, 4-80
fstat(), 4-82
accounts, 3-16
groups, 3-16
RACD restriction, 3-18
root directory, 3-16
rules determining access permissions,

3-15
functions
access(), 4-2
alarm(), 4-6
ANSI C, 1-3

chdir(), 4-8
chmod(), 4-10
chown(), 4-14
close(), 4-18
closedir(), 4-20
common usage math library, 2-2
creat(), 4-24
ctermid(), 4-28
dup(), 4-28
execl(), 4-31
execle(), 4-37
execlp(), 4-42
execv(), 4-58
execve(), 4-47
execvp(), 4-53
exit(), 4-64
extended behavior of ANSI C, 2-4
fcntl(), 4-66
fork(), 4-76
fstat(), 4-82
getcwd(), 4-85
getegid(), 4-87
getenv(), 4-88
geteuid(), 4-90
getgid(), 4-91
getgrgid(), 4-92
getgrnam(), 4-94
getgroups(), 4-96
getlogin(), 4-98
getpgrp(), 4-108
getpid, 4-105
getpid(), 4-109
getppid(), 4-110
getpwnam(), 4-111
getpwuid(), 4-106, 4-113
getuid(), 4-117
header descriptions, 5-2
isatty(), 4-140
kill(), 4-142
link(), 1-3
location of descriptions, 1-5

Index-6

FINAL TRIM SIZE : 7.0 in x 8.5 in

lseek(), 4-146
mkdir(), 4-148
open(), 4-160
opendir(), 4-167
pause(), 4-170
POSIX/iX math library, 2-2
read(), 4-182
readdir(), 4-185
readlink(), 4-187
rename(), 4-201
rewinddir(), 4-204
rmdir(), 4-206
setuid(), 4-209
sigaction(), 4-211
sigaddset(), 4-214
sigdelset(), 4-216
sigemptyset(), 4-218
sig�llset(), 4-220
sigismember(), 4-222
sigpending(), 4-226
sigprocmask(), 4-228
sigsuspend(), 4-232
sleep(), 4-234
stat(), 4-236
symlink(), 4-239
time(), 4-248
times(), 4-250
ttyname(), 4-252
umask(), 4-253
uname(), 4-255
unlink(), 4-257
utime(), 4-260
wait(), 4-264
waitpid(), 4-267
write(), 4-277

G

getcwd(), 4-85
getegid(), 4-87
getenv(), 4-88
geteuid(), 4-90

getgid(), 4-91
getgrgid(), 4-92
getgrnam(), 4-94
getgroups(), 4-96
getlogin(), 4-98
getopt, 4-100
getpgrp(), 4-108
getpid(), 4-109
getpid function, 4-105
getppid(), 4-110
getpwnam(), 4-111
getpwuid(), 4-106, 4-113
gets system name, 4-255
getuid(), 4-117
GID, 3-4
accounts, 3-8
##changing, 4-96
changing, 4-14
directories, 3-9
e�ective, 4-87
groups, 3-8
returning real, 4-91
root directory, 3-7

glob, 4-118
globfree, 4-123
glob.h, 5-2
$GROUP, 3-14
group ID. See GID
$GROUP MASK, 3-14
groups
access permissions, 3-8
accounting limits, 3-5
account manager, 3-8
as directories, 3-8
chmod(), 3-18
creating, 3-8
description, 3-8
�le lockwords, 3-19
�les and directories under, 3-8
fstat(), 3-16
GID, 3-8

Index-7

FINAL TRIM SIZE : 7.0 in x 8.5 in

restrictions, 3-8
save access, 3-9
stat(), 3-16
UID, 3-8

H

hard links, 3-6
header �les. See headers
headers
assert.h, 5-2
ctype.h, 5-2
descriptions, 5-2
oat.h, 5-2
glob.h, 5-2
locale.h, 5-2
malloc.h, 5-2
math.h, 5-2
memory.h, 5-2
mpe.h, 5-2
regex.h, 5-2
search.h, 5-2
stdarg.h, 5-2
stddef.h, 5-2
stdlib.h, 5-2
string.h, 5-2
sys/times.h, 5-2
values.h, 5-2
varargs.h, 5-2
wordexp.h, 5-2

heap size, 3-27
HFS syntax, 3-2, 3-7
hierarchical directories. See directories
hierarchical �le system. See HFS

I

identifying current working directory,
4-85

IEEE, 1-2
IEEE P1003.2/D11.2. See POSIX.2
IEEE Standard 1003.1-1990. See

POSIX.1

ignored signals, 3-24
implementation considerations
access permissions, 3-11
directories, 3-6
�les, 3-3
process management, 3-25
security, 3-11
signals, 3-20

include �les. See headers
inherited process attributes, 3-27
initializing
a full signal set, 4-220
an empty signal set, 4-218

Institute of Electrical and Electronics
Engineers. See IEEE

I/O
bu�ered, 2-4
�le limit, 3-5
maximum, 3-5
unbu�ered, 2-4

ioctl-mag tape, 4-124
ioctl-sockets, 4-130
ioctl-streams, 4-134
isatty(), 4-140

K

kill(), 4-142

L

/lib/libc.a, 2-1, 2-2
/lib/libm.a, 2-1
/lib/libM.a, 2-1
libraries
common usage math library, 2-2
description, 2-2
/lib/libc.a, 2-1
/lib/libm.a, 2-1
/lib/libM.a, 2-1
math library, 2-2
POSIX/iX, 1-1, 2-2

limits

Index-8

FINAL TRIM SIZE : 7.0 in x 8.5 in

�le size, 3-5
link(), 1-3
link count
unlinking a �le, 4-257

linking object �les, 2-6
links
hard, 3-6
soft, 3-6

LISTFILE, 3-26
locale.h, 5-2
lockwords, 3-19
lseek(), 4-146

M

macros
feature test, 2-3
POSIX SOURCE, 2-3
sigsetjmp, 4-230

malloc.h, 5-2
manuals
MPE/iX developer's kit, 1-2, 1-4, 2-6
related reading, 1-2, 1-4, 1-5, 2-6
understanding MPE/iX, 1-5

mask
setting a �le creation mask, 4-253

math.h, 5-2
math library, 2-2
behavior, 2-2
common usage, 2-2

membership of a signal set, 4-222
memory.h, 5-2
mkdir(), 4-148
mk�fo, 4-153
mknod, 4-156
mpe.h, 5-2
MPE/iX developer's kit, 2-6
additional manuals, 1-2, 1-4

MPE syntax, 3-2
multiple hard links, 3-6

N

fNAME MAXg, 3-10
naming �les, 3-2
NEWACCT, 3-8
NEWGROUP, 3-8
NEWUSER, 3-19
NMPRG �le code, 3-26
NOWAITIO, 3-28

O

open(), 4-160
opendir(), 4-167
opening
a directory stream, 4-167
a �le, 4-66, 4-201
a �le, 4-160

opening �les, 3-4
O RDWR, 4-18
orphaned child processes, 3-27
$OWNER, 3-14
O WRONLY, 4-18, 4-25

P

parent process ID
returning, 4-110

pathconf, 4-172
pause(), 4-170
pclose, 4-176
pending signals, 3-24, 4-226
permission bits, 4-24
changing, 4-10

permission bits##
changing, 4-92, 4-94, 4-98, 4-106,

4-111, 4-113, 4-250
PGID
returning, 4-108

PH capability. See process handling
(PH) capability

PID
returning, 4-109

pipe, 4-178

Index-9

FINAL TRIM SIZE : 7.0 in x 8.5 in

Pipes. See FIFO special �les
popen, 4-180
portability, 1-5
portable applications, 1-1
POSIX.1
and ANSI C, 1-3
C language binding, 1-2
conformance, 1-1
�le user classes, 3-13
mapping between directory access

permissions and ACD access
permissions, 3-13

mapping between POSIX.1 and ACD
�le user classes, 3-13

name syntax, 3-2
portability, 1-5
programming guide, 1-4
Standards document, 1-2
version, 1-2

POSIX.2, 1-2
functions, 1-4

f POSIX CHOWN RESTRICTEDg,
4-15

POSIX/iX
math library, 2-2

POSIX/iX library
description, 2-2
introduction, 1-1
POSIX SOURCE, 2-3, 5-1
PPID
returning, 4-110

processes. See process management
process execution
suspending, 4-170

process group ID
returning, 4-108

process handling (PH) capability, 3-26
process ID, 4-105
returning, 4-109
returning parent, 4-110

process management

child processes, 3-27
controlling process, 3-27
controlling terminal, 3-27
CPU time accounting information,

3-27
creating a new process, 3-26
execl(), 3-26, 4-31
execle(), 4-37
execlp(), 4-42
execv(), 3-26, 4-58
execve(), 4-47
execvp(), 4-53
exit(), 4-64
�le access evaluation, 3-18
fork(), 3-26, 4-76
getegid(), 4-87
getenv(), 4-88
geteuid(), 4-90
getgid(), 4-91
getpgrp(), 4-108
getpid(), 4-109
getppid(), 4-110
getuid(), 4-117
heap size, 3-27
implementation considerations, 3-25
inherited attributes, 3-27
inherited capabilities, 3-27
kill(), 4-142
orphaned child processes, 3-27
pause(), 4-170
process handling (PH) capability,

3-26
process priority, 3-27
restrictions, 3-26
sigaction(), 4-211
sigaddset(), 4-214
sigdelset(), 4-216
sigemptyset(), 4-218
sig�llset(), 4-220
sigismember(), 4-222
sigpending(), 4-226

Index-10

FINAL TRIM SIZE : 7.0 in x 8.5 in

sigprocmask(), 4-228
sigsuspend(), 4-232
sleep(), 4-234
stack size, 3-27
suspending, 4-232
suspending for a time, 4-234
termination, 3-27
##utime(), 4-260
wait(), 4-264
waitpid(), 4-267

process management###
setuid(), 4-209

process priority, 3-27
proess managment###
uname(), 4-255

purging a �le, 4-257

R

RACD, 3-18
read(), 4-182
read access, 3-12
read ACD access, 3-18
readdir(), 4-185
read directory entries access, 3-13
reading
a directory stream, 4-185
a �le, 4-182

readlink(), 4-187
read-only �le system, 3-4
reads symbolic link value, 4-187
real group ID
returning, 4-91

real UID, 3-24
returning, 4-117

record locks
removing, 4-18

regcomp, 4-190
regerror, 4-194
regexec, 4-196
regex.h, 5-2
regfree, 4-200

relocatable libraries, 2-1
removing a directory, 4-206
rename(), 4-201
restoring a saved environment, 4-224
restoring a saved signal mask, 4-224
returning
e�ective group ID, 4-87
e�ective UID, 4-90
environment values, 4-88
�le status information, 4-82
parent process ID, 4-110
process group ID, 4-108
process ID, 4-109
real group ID, 4-91
real UID, 4-117

rewinddir(), 4-204
rewinding a directory �le, 4-204
rewriting a �le, 4-24
rmdir(), 4-206
root directory
access permissions, 3-7
chmod(), 3-18
description, 3-7
fstat(), 3-16
GID, 3-7
restrictions, 3-7
stat(), 3-16
syntax, 3-7
system manager, 3-7
system volume set, 3-7
UID, 3-7

S

save access, 3-9
fSAVED SET IDSg, 3-24
saved set-UID, 3-24
save �les capability, 3-19
schedule a SIGALRM signal, 4-6
search.h, 5-2
security. See access permissions, ACDs
sending signals, 4-142

Index-11

FINAL TRIM SIZE : 7.0 in x 8.5 in

setuid(), 4-209
set user IDs, 4-209
SF capability, 3-19
shell, 2-6
c89 command, 2-6
�le name syntax, 3-2
invoking, 2-6

SIGABRT, 3-20
sigaction(), 4-211
and signal(), 3-24

sigaddset(), 4-214
SIGALRM, 3-20, 4-6
SIGBUS, 3-20
SIGCHLD, 3-20, 3-24
SIGCONT, 3-20
sigdelset(), 4-216
sigemptyset(), 4-218
sig�llset(), 4-220
SIGFPE, 3-20
SIGHUP, 3-20
SIG IGN, 3-24
SIGILL, 3-20
SIGINT, 3-20
sigismember(), 4-222
SIGKILL, 3-20
siglongjmp(), 4-224
signal()
and sigaction(), 3-24

signal action
changing, 4-211

signal mask
restoring, 4-224

signals
adding, 4-214
behavior during system code execution,

3-24
blocked and ignored, 3-24
blocked and pending, 3-24
changing blocked signals, 4-228
deleting, 4-216
delivery, 3-24

description, 3-20
examining blocked signals, 4-228
ignored, 3-24
implementation considerations, 3-20
initializing an empty signal set, 4-218
initializing an full signal set, 4-220
pending signals, 4-226
sending, 4-142
sigaction() and signal(), 3-24
supported functions, 3-20
suspending a process, 4-232
suspending a process for a time, 4-234
testing a signal set membership, 4-222

signals##
sending, 4-209, 4-255

signal set
changing blocked signals, 4-228
empty set, 4-218
examining blocked signals, 4-228
full set, 4-220
membership, 4-222
pending signals, 4-226

sigpending(), 4-226
SIGPIPE, 3-20
sigprocmask(), 4-228
SIGQUIT, 3-20
SIGSEGV, 3-20
sigsetjmp macro, 4-230
SIGSTOP, 3-20
sigsuspend(), 4-232
SIGTERM, 3-20
SIGTSTP, 3-20
SIGTTIN, 3-20
SIGTTOU, 3-20
SIGUSR1, 3-20
SIGUSR2, 3-20
S ISGID, 3-5, 4-11, 4-15
S ISUID, 3-5, 4-11, 4-15
sleep(), 4-234
soft links, 3-6
special �les

Index-12

FINAL TRIM SIZE : 7.0 in x 8.5 in

block device, 3-3
character device, 3-3
directory �le, 3-3
FIFO, 3-3

stack size, 3-27
standard �les, 3-4
standard math library. See POSIX/iX

math library
stat(), 4-236
accounts, 3-16
groups, 3-16
RACD restriction, 3-18
root directory, 3-16
rules determining access permissions,

3-15
st atime, 4-18, 4-25
st ctime, 4-25
stdarg.h, 5-2
stddef.h, 5-2
STDERR FILENO, 3-4, 4-26
STDIN FILENO, 3-4, 4-26
stdlib.h, 5-2
STDOUT FILENO, 3-4, 4-26
st mtime, 4-18, 4-25
streams
description, 2-4
text and binary, 2-4

string.h, 5-2
suspending
a process, 4-232, 4-264, 4-267
a process for a time, 4-234
process execution, 4-170

symlink(), 4-239
syntax
accounts, 3-8
headers, 5-1
root directory, 3-7
rules, 3-2

sysconf, 4-241
system, 4-246
system internal resource, 3-28

system manager, 4-15
accounts, 3-8

system manager capability, 4-11
system volume set
directories, 3-9
root directory, 3-7

sys/times.h, 5-2

T

terminal �le
associating with a �le descriptor,

4-252
associating with a �le descriptor,

4-140
terminating a process, 4-64
time
calculating time since Epoch, 4-248

time(), 4-248
time �elds
updating, 4-18

times(), 4-250
traverse directory entries access, 3-13
ttyname(), 4-252

U

UID
accounts, 3-8
##changing, 4-96
changing, 4-14
directories, 3-9
e�ective, 4-90
groups, 3-8
real, 4-117
returning e�ective, 4-90
returning real, 4-117
root directory, 3-7

umask(), 4-253
uname(), 4-255
unbu�ered I/O, 2-4
unlink(), 4-257
unlinking a �le, 4-257

Index-13

FINAL TRIM SIZE : 7.0 in x 8.5 in

user classes, 3-13
user ID. See UID
utime(), 4-260

V

values.h, 5-2
varargs.h, 5-2

W

wait(), 4-264
waiting for signal delivery, 4-234
waitpid(), 4-267
wordexp, 4-271
wordexp.h, 5-2
wordfree, 4-276
write(), 4-277
write access, 3-12

writing to a �le, 4-277

Index-14

	Contents
	Introduction
	What Is the POSIX/iX Library?
	The POSIX Standards
	How to Use This Manual
	Using the HP C/iX Library Reference Manual

	Understanding MPE/iX
	Summary of POSIX/iX Library Functions

	Using the POSIX/iX Library
	Organization of the POSIX/iX Library
	Specifying the POSIX SOURCE Feature Test Macro
	Input/Output Considerations
	Extended Behavior of ANSI C Library Functions
	Developing Applications Using the MPE/iX Shell and Utilities

	MPE/iX Library Implementation Considerations
	Naming File System Objects
	Files
	Directories
	Access Control
	Signals
	Process Management
	Creating a New Process
	Process Termination

	POSIX/iX Library Function Descriptions
	access
	alarm
	chdir
	chmod
	chown
	close
	closedir
	confstr
	creat
	ctermid
	dup, dup2
	execl
	execle
	execlp
	execve
	execvp
	execv
	exit
	fcntl
	fnmatch
	fork
	fstat
	getcwd
	getegid
	getenv
	geteuid
	getgid
	getgrgid
	getgrnam
	getgroups
	getlogin
	getopt
	getpid
	getpwuid
	getpgrp
	getpid
	getppid
	getpwnam
	getpwuid
	getuid
	glob
	globfree
	ioctl-mag tape
	ioctl-sockets
	ioctl-streams
	isatty
	kill
	lseek
	mkdir
	mkfifo
	mknod
	open
	opendir
	pause
	pathconf
	pclose
	pipe
	popen
	read
	readdir
	readlink
	regcomp
	regerror
	regexec
	regfree
	rename
	rewinddir
	rmdir
	setuid
	sigaction
	sigaddset
	sigdelset
	sigemptyset
	sigfillset
	sigismember
	siglongjmp
	sigpending
	sigprocmask
	sigsetjmp
	sigsuspend
	sleep
	stat
	symlink
	sysconf
	system
	time
	times
	ttyname
	umask
	uname
	unlink
	utime
	wait
	waitpid
	wordexp
	wordfree
	write

	POSIX/iX Header Descriptions
	Index

